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AFIT/DSS/ENS/98S-1 

Abstract 

This dissertation research extends the current knowledge of feature saliency in 

artificial neural networks (ANN). Selecting a good input feature set is crucial to the 

success of any ANN model. Many feature saliency measures were developed in the last 

decade for use in feedforward multilayer perceptron (MLP) ANNs. Feature saliency 

measures allow for the user to rank order the features based upon the saliency, or relative 

importance, of the features. 

This research contributes significantly to the theory of feature saliency. In 

addition, the techniques developed as part of this research effort are applied to the real- 

world Air Force problem of classifying pilot workload in addition to classifying air traffic 

controller workload. This research resulted in the following significant contributions: 

• Development of the Signal-to-Noise Ratio (SNR) saliency measure to identify 
salient features in a feedforward MLP ANN used to classify pilot workload as 
well as air traffic controller workload. 

• Empirical evidence that the SNR saliency measure provides rankings that are 
statistically consistent with that of a partial derivative-based saliency measure 
and a weight-based saliency measure. 

• Development of the SNR screening method to identify and remove nonsalient 
features while maintaining good classification accuracy in & feedforward MLP 
ANN used to classify pilot workload. 

• Further application of the SNR screening method to identify and remove 
nonsalient features while maintaining good classification accuracy in an 
Elman RNN used to estimate pilot workload. 

• Development of a partial derivative-based spatial-temporal saliency measure 
to identify salient features in an Elman RNN via unfolding the layers of the 
network through time used to classify pilot workload. 

• Development of a screening method that utilizes the partial derivative-based 
spatial-temporal saliency measure to identify and remove nonsalient features 

xxxvi 



while maintaining good classification accuracy in an Elman RNN used to 
classify pilot workload. 

• Development of a methodology to study the memory capacity of an Elman 
RNN that utilizes the partial derivative-based spatial-temporal saliency 
measure. 

In summary, this dissertation develops several new saliency measures in addition 

to several new screening methods for use in several types of ANNs to classify mental 

workload.   In addition, a technique for determining the memory capacity of an Elman 

RNN was developed. 
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FEATURE SALIENCY IN ARTIFICIAL NEURAL NETWORKS 

WITH APPLICATION TO MODELING WORKLOAD 

1     Introduction 

1.1    Overview 

This dissertation research extends the current knowledge of feature saliency in 

artificial neural networks (ANN).   Dr. Steven K. Rogers, a leading ANN researcher, 

summed it up the best when he said: 

Your classifier is only as good as your features. If you find a good set of 
features, you will have a good classifier. [116] 

Selecting a good input feature set is crucial to the success of any ANN model. 

This dissertation research also provides insight to modeling mental workload and 

in particular, that of pilots and air traffic controllers. Colonel David W. Milam, a retired 

United States Air Force (USAF) fighter pilot and test pilot who flew with General Chuck 

Yeager, summed it up best when he said: 

If we only knew what was going on in the mind of a pilot while he was 
flying an airplane, we could build better airplanes. [89] 

The feature saliency techniques developed as part of this research effort are applied to the 

real-world Air Force problem of classifying pilot workload in addition to classifying air 

traffic controller workload. 



1.2    Literature Review 

This dissertation research reviewed the areas of ANNs, feature saliency measures, 

and classifying mental workload. 

1.2.1   Artificial Neural Networks (ANN) 

An ANN is an ensemble of interconnected nodes. A weight is associated with 

each interconnection. The foundation for the concept of ANNs is biological in that the 

nodes of an ANN represent neurons, the interconnections of an ANN represent axons, 

and the weights of an ANN represent the conversion of action potentials to a chemical 

ion [58]. An ANN is capable of classification and function estimation [58]. The ability 

to classify nonlinearly separable (but multi-hyperplane separable) disjoint regions is the 

greatest attribute of ANNs [115]. An ANN can generalize well for both classification 

and function estimation problems despite noise in the data [115]. 

One of the first neural like models for pattern recognition was Rosenblatt's 

perceptron [119, 120, 121, 122, 123]. Rosenblatt's Perceptron provided the building 

blocks for the feedforward multilayer perceptron (MLP) ANN which is the most widely 

used ANN today [160]. A feedforward MLP ANN typically has three layers: an input 

layer, a hidden layer, and an output layer. The feedforward MLP ANN learns by the 

backpropagation training algorithm as developed by Rumelhart et al. [128] and Werbos 

[161]. 

There are several ANNs that can process temporal data. Both the time delay 

neural network (TDNN) and the recurrent neural network (RNN) allow for the encoding 

of time [40, 158].   A TDNN is sometimes referred to as a simple temporal ANN.   A 



TDNN typically has three layers: an input layer, a hidden layer, and an output layer. A 

TDNN embeds time delays on the inputs in a parallel fashion. The user predefines the 

number of time delays to use. Takeri's Theorem [150, 151] as applied by Lapedes [76, 

77, 78] is useful for providing an upper and a lower bound on the number of time delays 

necessary based upon the fractal dimension of the time series inputs to a TDNN. 

Unfortunately, there are several shortcomings to TDNNs. The most serious of these 

shortcomings is that a TDNN can not distinguish between relative temporal position and 

absolute temporal position in a time series [31]. 

RNNs do not suffer from the shortcomings of a TDNN. Instead of explicitly 

representing time by embedding time delays on the inputs, a RNN implicitly represents 

time via a feedback. Most of the shortcomings of a TDNN stem from its representation 

of time as additional dimensions in the input feature space. A RNN represents time via 

context nodes by the effect time has on processing the input features. In other words, a 

RNN is given memory. The hidden nodes are fed back in an Elman RNN, the most 

commonly used RNN, as shown in Figure 10 [31]. An Elman RNN typically has three 

layers: an input layer, a hidden layer, and an output layer. The output nodes are fed back 

in a Jordan RNN as shown in Figure 11 [69]. Like an Elman RNN, a Jordan RNN 

typically has three layers: an input layer, a hidden layer, and an output layer. Both the 

hidden nodes and the output nodes are fed back in a Williams and Zipser RNN as shown 

in Figure 12 [166, 167]. A Williams and Zipser RNN typically has two layers: an input 

layer and a top layer that contains both the hidden nodes and the output nodes. 



1.2.2   Feature Saliency Measures 

Saliency measures provide a way to measure the relative usefulness of a feature 

which can be used to rank order the features. There are many reasons why feature 

saliency is important in ANNs. Both Foley's Rule [37] and Cover's Theorem [23] 

provide rules of thumb for the appropriate number of input features. Principal component 

analysis (PCA), one of the classical feature saliency techniques, is based on the 

normalized eigenvectors and eigenvalues from the covariance matrix of the input feature 

set [149]. PCA does not depend upon a trained ANN [149]. Ruck's partial derivative- 

based saliency measure is based upon the sensitivity of a trained ANN's outputs to its 

inputs and utilizes the sum of the absolute value of the derivative of the outputs with 

respect to a specific input [124, 126]. Tarr's weight-based saliency measure is based 

upon the first layer weights of a trained ANN [152]. 

Feature screening methods, which typically utilize feature saliency measures, are 

useful for selecting a parsimonious set of salient features while maintaining good 

classification accuracy. Feature screening methods strive to remove irrelevant features in 

addition to redundant features. The Setiono-Liu screening method adds a penalty 

function to the error term so that the weights emanating from necessary inputs will have 

large magnitudes and the weights emanating from irrelevant input will drop to 0.0 [132]. 

The Belue-Bauer screening method adds an injected noise feature to provide a baseline 

for statistically comparing saliency measures that can be either partial derivative-based or 

weight-based [11, 12]. The Steppe-Bauer screening method improves upon the Belue- 

Bauer screening method by providing a more powerful statistical test, which can be a 

paired t -test or a Bonferroni joint test [136, 137, 138, 139]. 



1.2.3    Classifying Mental Workload 

The issue of pilot workload is important to the US AF because pilot overload or 

task saturation is decreasing mission effectiveness and, in some extreme cases, causing 

loss of lives [3].  The ability to monitor a pilot's workload will also have far-reaching 

results in the research and development of future cockpits.  Like flying an airplane, air 

traffic control   has long been regarded as a complex, demanding, and at times task 

saturating endeavor [15, 177]. There is a considerable amount of data from past studies 

and past experiments that show consistent changes in human physiological responses that 

are related to the nature and intensity of mental activity.   Research to date has been 

initially successful and shows promise in using electrophysiological measures to 

distinguish   between   certain   levels   of   mental   workload.       Several   peripheral 

psychophysiological measures that show promise and will be used in this dissertation for 

classifying mental workload include electro-oculography (EOG), electrocardiography 

(ECG), respiration gauges, and electroencephalography (EEG). Eye blink rate from EOG 

has been shown to be a sensitive measure to visual workload [15, 169, 170, 175, 177]. 

Eye Blink rate typically decreases when visual demands increase [15, 169, 170, 175, 

177]. Increased heart rate from ECG is typically associated with increased workload [15, 

169, 170, 175, 177]. Heart rate from ECG and respiration rate from respiration gauges 

increase during periods of increased mental workload such as during take-offs and 

landings [55, 117, 118].   Also, the variability of the cardiac rhythm in addition to the 

respiration rhythm decrease with increased task difficulty [15, 169, 170, 175, 177]. 

Ongoing measurements of EEG shows the most promise of being sensitive to the 

levels or intensity of mental workload. As early as 1929, Hans Berger, the discoverer of 



EEG, asked: 

Will is be possible to demonstrate intellectual processes by means of the 
EEG? [13: 569]. 

This research will investigate the use of EEG as a measurement of mental 

workload.    In particular, this dissertation will explore the use of preprocessed EEG 

features for determining the level of a pilot's intellectual processes while flying an 

airplane in addition to that of an air traffic controller while controller several aircraft. 

EEG from as little as six channels up to 128 channels can be collected from electrode 

sites located on the head using the Workload Assessment Monitor (WAM) [172]. Since 

the brain is the organ responsible for evaluating sensory information and then making and 

carrying out decisions based upon that sensory information, ongoing activity as measured 

by EEG would seem to hold a great deal of potential for measuring mental workload. Dr. 

Glenn F. Wilson, a leading workload researcher, states in.the preface of the special issue 

of Biological Psychology on "EEG in Basic and Applied Settings": 

The EEG can be used to derive a more complete understanding of the 
workings of the human brain and also can be correlated with human 
performance to provide insights into cognition. [171: vii] 

EEG currently appears to be our best "window to the brain." 

The use of electrophysiological measures for classifying types of mental activities 

and for classifying the levels of these mental activities is only in its infancy.   The 

research has shown success but still has a long way to go. There are many obstacles to 

overcome in using EEG.   There are tradeoffs between assumptions, practicality, and 

accuracy. There are some challenges faced in using EEG which include nonstationarity 

of the EEG signal, cross-correlation between EEG channels, consistency day-to-day and 



individual-to-individual in the EEG channels, quantifying the EEG signal, and 

appropriately sampling the EEG. 

There are filter and detection schemes available for trying to discover, in the 

EEG, data relevant to some component of human activity. Previous methods include 

nonparametric methods, parametric methods, mimetic analysis, matched filtering or 

template matching, and topographic analysis [100]. 

ANNs show promise for classifying workload using EEG and peripheral 

psychophysiological data due to the nonlinearity of data, the generalization capabilities of 

ANNs, and the classification capabilities of ANNs. In particular, TDNNs and RNNs 

show promise for classifying mental workload due to the temporal nature of EEG and 

other psychophysiological measures. 

1.3 Feasibility Studies Using Time Delay Neural Networks (TDNN) and Recurrent 

Neural Networks (RNN) to Classify Mental Workload 

Two feasibility studies were conducted to investigate the potential use of TDNNs 

and RNNs to classify mental workload. Prior to this dissertation, TDNNs and RNNs had 

never been used to classify EPs, ongoing EEG, or mental workload. The first study 

investigates the feasibility of using a TDNN to detect EPs in an EEG signal. The second 

study investigates the feasibility of using an Elman RNN to classify mental workload 

using ongoing EEG activity in the presence of noise. 



1.3.1    Feasibility of Using Time Delay Neural Networks (TDNN) to Detect Evoked 

Potentials (EP) 

Only recently have investigators begun to focus on single evoked potential (EP) 

responses. If EPs are ever to be used to classify pilot workload or air traffic controller 

workload, then the ability to detect and then classify single EPs must be possible. The 

major problem is determining what portion of the EEG signal is evoked by the response 

to the stimulus and what portion represents the continuation of ongoing background EEG. 

An EEG signal is generated at a sampling rate of 50 Hz by summing five 

incommensurate sin waves based, in part, on actual EEG data. A total of 17 rectangle 

pulses to represent an EP are randomly placed throughout the EEG signal. Five time 

series are created such that the SNR between the rectangle pulse and the EEG are 

different: +27.40 dB, +17.41 dB, +7.40 dB, and -2.59 dB, and -12.60 dB. The time 

series are divided into four classes as follows: 

1. EEG only 
2. Slight chance that an EP is present 
3. EP is more than likely present 
4. EP present 

Another EEG signal is generated at a sampling rate of 100 Hz by summing five 

incommensurate sin waves based, in part, on actual EEG data. A total of 17 generated 

EPs are randomly placed throughout the EEG signal. Five time series are created such 

that the SNR between the EP and the EEG are different: -1.59 dB,-3.53 dB,-6.02 dB, 

-9.55 dB, -15.57 dB. As before, the time series are divided into four classes as follows: 

1. EEG only 
2. Slight chance that an EP is present 
3. EP is more than likely present 
4. EP present. 



A TDNN is trained for each of the varying SNRs via instantaneous 

backpropagation using a fixed learning rate 77 = 0.3 and no momentum. A such, a total of 

10 TDNNs are trained. The trained TDNNs for rectangle pulse detection performed 

adequately when the SNR was +27.40 dB, +17.41 dB, or 7.40 dB. When the SNR was 

-2.59 dB or -12.60 dB, the TDNN for rectangle pulse detection did not perform 

adequately. The TDNNs for EP detection performed adequately when the SNR was 

-1.59 dB, -3.53 dB, -6.02 dB, and -9.55 dB. The TDNN did surprisingly well when the 

SNR was -9.55 dB. The TDNN for EP detection at -15.57 dB did not perform adequately 

but it performed better than the TDNN for rectangle pulse detection at -12.82 dB. 

Since the actual SNR between an EP and EEG is -20 dB, it is clear from this feasibility 

study that the modeling of pilot workload in addition to air traffic controller workload 

should not utilize single event EPs. 

1.3.2   Feasibility of Using Elman Recurrent Neural Networks (RNN) to Classify Mental 

Workload Using Ongoing Electroencephalography (EEG) 

If an Elman RNN is ever to classify pilot workload using EEG collected during 

flight, than an Elman RNN classifier must be robust to the effects of noise. There are 

many sources of potential noise in a cockpit including vibration, movement, talking on 

the radios, and G forces. For this feasibility study, EEG is collected from a test subject 

performing three types of mental activity: 

1. Reading 
2. Eyes open 
3. Eyes closed. 



An Elman RNN is first trained using 10 features derived from the a-band of 

EEG to classify the type of mental activity being performed. The features represent the 

average power of the or-band over a 10-second moving window with 50% overlap in 

addition to the variance of the power of the a -band over a 10-second moving window 

with 50% overlap from five electrodes. The Elman RNN is trained via backpropagation 

with momentum and an adaptive learning rate. The initial learning rate 77 is set to 0.001. 

Ten test sets with varying levels of added uniformly distributed noise are used to evaluate 

the Elman RNN's robustness to noise. The varying levels of noise added to the 

normalized test exemplars are: 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, and 

0.50. The measure of effectiveness (MOE) is the test set classification accuracy CAtest. 

Next, an Elman RNN is trained using 90 features derived from nine frequency 

bands of the EEG to classify the type of mental activity being performed. The features 

represent the average power of nine frequency bands over a 10-second moving window 

with 50% overlap in addition to the variance of the of the power of nine frequency bands 

over a 10-second moving window with 50% overlap from five electrodes. Again, 10 test 

sets with varying levels of added uniformly distributed noise are used to evaluate the 

Elman RNN's robustness to noise. As before, The varying levels of noise added to the 

normalized test exemplars are: 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, and 

0.50. Again, the MOE is CAlest. 

In both Elman RNNs trained, the training set classification accuracy CAlmjn with 

no added noise is 100%. With only 10 input features derived from the a-band, the 

CAlesl remains greater than 80% so long as the noise added is no larger than 0.15. With 

all 90 input features, the CAlesl remains greater than 80% so long as the noise added is no 
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larger than 0.30. The Elman RNN trained with 90 features appears to be more robust to 

the effects of added noise. This feasibility study shows that an Elman RNN can 

adequately classify among three types of mental activity even in the presence of some 

added noise. The Elman RNN shows promise for classifying pilot workload in addition 

to air traffic controller workload. 

1.4    Significant Contributions 

This research contributes significantly to the theory of feature saliency. In 

addition, the techniques developed as part of this research effort are applied to the real- 

world Air Force problem of classifying pilot workload in addition to classifying air traffic 

controller workload. 

1.4.1 Development of the Signal-to-Noise Ratio (SNR) Saliency Measure to Classify 

Workload 

A significant contribution of this research is the development of the SNR saliency 

measure to identify salient features in a feedforward MLP ANN used to classify pilot 

workload as well as air traffic controller workload. The SNR saliency measure is a new 

saliency measure. The SNR saliency measure determines the saliency of a feature by 

comparing the first layer weights of a feature to that of an injected noise feature. The 

value of the SNR saliency measure should be significantly larger than 0.0 for salient 

features and very close to 0.0 or less than 0.0 for nonsalient features. The SNR saliency 

measure is appealing not only because it can be used to rank order the features from most 

relevant to least relevant, but that it directly compares the saliency of a feature to that of 
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an injected noise feature. 

Saliency measures aid in identifying salient psychophysiological features for 

classifying workload. Input features are derived from EEG, EOG, ECG, and respiration 

gauges collected from a pilot or air traffic controller while performing his duties. Several 

saliency measures are computed including partial derivative-based saliency measures, 

weight-based saliency measures, and the SNR saliency measure. The rankings derived 

from the SNR saliency measure are compared to that of a partial derivative-based 

saliency measure and a weight-based saliency measure. Empirical evidence shows that 

the SNR saliency measure provides rankings that are statistically consistent with that of a 

partial derivative-based saliency measure and a weight-based saliency measure. This 

result is another significant contribution of this dissertation. 

1.4.1.1   Classifying Pilot Workload 

Before this research, a methodology for identifying a salient set of 

psychophysiological features for classifying pilot workload did not exist. In previous 

studies, psychophysiological features were selected by maximization of the CA by trial 

and error [175]. The pilot workload data set used involved a simulated landing scenario. 

The pilot "test subject" started off the scenario descending to an airfield in the clouds. At 

this point, his workload was classified as low. As soon as the pilot test subject broke 

through the clouds, his workload was classified as high until touchdown. The scenario 

ended at touchdown. EEG were collected at six scalp location as shown in Figure 16 and 

preprocessed into nine frequency bands as listed in Table 4. Features representing the 

average power and the variance of the power over a 10-second moving window with 50% 
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overlap were computed for each frequency band at each electrode. Peripheral 

psychophysiological features computed over a 10-second moving window with 50% 

overlap included number of eye blinks, heart interbeat interval, the slope of the heart rate, 

and respiration interbreath interval. Correlation analysis was used as an initial screening 

method on the features. Eighteen features with a sample correlation greater than 0.75 

(with workload) were selected. A feedforward MLP ANN with a 19/19/2 architecture 

was trained using those 18 features and an injected noise feature. 

Two types of partial derivative-based saliency measures, four types of weight- 

based saliency measures, and the SNR saliency measure were utilized to rank order 

features used for classifying a pilot's workload as low or high. The top four features for 

the given pilot test subject were average log of the power of the A frequency band at 

electrodes P3, FZ, and C4 (see Figure 16) along with number of eye blinks. All of the 

saliency measures provided rankings that were similar. The CAtest using 18 features for 

the given test pilot subject was 90%. The CAlest using only the top four salient features 

was 90%. The CAtesl did not decrease for the given pilot test subject. 

This investigation exhibited the usefulness of ongoing EEG for classifying levels 

of pilot workload. This research showed that features derived from EEG may have more 

potential for classifying levels of pilot workload than peripheral psychophysiological 

features. In addition, this investigation showed that the SNR saliency measure appears to 

provide rankings consistent with that of partial derivative-based and weight-based 

saliency measures. Most importantly, this research developed a methodology that can 

select a set of salient features for classifying pilot workload that does not decrease the 
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1.4.1.2   Classifying A ir Traffic Controller Workload 

The methodology that was developed for determining salient features for 

classifying pilot workload was also applied to air traffic controllers but in more detail. 

As with classifying pilot workload, a methodology for identifying a salient set of 

psychophysiological features for classifying air traffic controller workload did not exist 

prior to this research. The air traffic controller workload data set used involved 

simulated air traffic control tasks at Los Angeles International Airport using TRACON 

(Terminal Radar Approach Control), a computer-based air traffic control simulation []. 

Four levels of workload were determined by the number of aircraft controlled. The low 

workload condition consisted of controlling six aircraft in 15 minutes. The medium 

workload condition consisted of controlling 12 aircraft in 15 minutes. The high workload 

condition consisted of controlling 18 aircraft in 15 minutes. Finally, the overload 

condition consisted of controlling 15 aircraft in 5 minutes. 

EEG were collected at six scalp location as shown in Figure 15 and preprocessed 

into five frequency bands as listed in Table 3. Features representing the average power 

over a 10-seco'nd moving window with 50% overlap were computed for each frequency 

band at each electrode. Peripheral psychophysiological features computed over a 10- 

second moving window with 50% overlap included average power of the EOG, heart 

interbeat interval, and respiration interbreath interval. 

There were four steps. In the first step, 30 feedforward MLP ANNs with a 

33/68/4 architecture were trained using 33 features. Thirty training sessions were 

conducted in order to invoke the central limit theorem [88]. Clvalid over 30 training 

session was 84.71%. A 95% confidence interval for Clwlid was (82.69%, 86.73%). The 
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minimum CAvalid attained was 73.91% and the maximum CAvaljd was 95.65%.   The 

CAvalid over 30 training sessions for the overload condition was 99.46%. 

In the second step, 30 feedforward MLP ANNs with a 34/68/4 architecture 

were trained using 33 features plus an injected noise feature. The average saliency of the 

33 features over 30 training sessions was computed using three types of saliency 

measures: a partial derivative-based saliency measure, a weight-based saliency measure, 

and the SNR saliency measure. Regardless of saliency measure, the injected noise feature 

was always the least salient feature. Of the autonomic nervous system features, 

respiration interbreath interval was, on average, the most salient feature. The heart 

interbeat interval was, on average, the second most salient autonomic nervous system 

feature and power of the EOG signal was, on average, the least salient autonomic nervous 

system feature. For EEG, those features derived from the fiß frequency band appeared, 

on average, to be the most salient. In fact, three of the top four most salient features were 

derived from the ju/3 frequency band for all three saliency measures. Those features 

derived from the A frequency band appeared, on average, to be the least salient. 

In the third step, Spearman rank correlation tests [88] concluded that the rankings 

from the three types of saliency measures were, on average, statistically consistent with 

95% confidence. 

In the fourth and final step, 30 training sessions were performed for each 

combination of the top ranked features. The highest CAmlid corresponded to the feature 

set combination that contained the top 17 ranked features. CAmljd over 30 training 

session was 87.10%. A 95% confidence interval for CÄmlid was (85.16%, 89.04%). The 

minimum CAvalid attained was 76.09% and the maximum CAvalid was 97.83%. A t- test 
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concluded that the CAraljd significantly increased after removing 16 nonsalient features 

with 95% confidence. 

The CAvalid over 30 training sessions for the overload condition was 99.73%. x1 

tests performed on the rows of the validation set confusion matrix with 33 features and 

that with the top 17 ranked features concluded that the CAvalid for the overload condition 

significantly increased after removing 16 nonsalient features with 95% confidence.  The 

CAvalid for the other workload conditions were not effected by removing 16 nonsalient 

features with 95% confidence. 

This air traffic controller workload investigation exhibited the usefulness of 

ongoing EEG in addition to peripheral psychophysiological measures for classifying 

levels of air traffic controller workload. Of the top 17 features, all three peripheral 

psychophysiological features were included. Of the EEG frequency bands, features from 

the juß frequency band were selected more often than any other frequency band. 

Selection of EEG features mostly came from the scalp locations of Fz, T5, and T6 (see 

Figure 15). In addition, this investigation empirically showed that the SNR saliency 

measure provides rankings that are, on average, statistically consistent with that of partial 

derivative-based and weight-based saliency measures. Most importantly, this research 

developed a methodology that can select a set of salient features for classifying air traffic 

controller workload that does not decrease the CAmlid, on average, and may even 

statistically increase CAmM, on average. 
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1.4.2   Development of the Signal-to-Noise Ratio (SNR) Screening Method to Modeling 

Pilot Workload 

Another major contribution of this research is the development of the SNR 

screening method, which utilizes the SNR saliency measure, to identify a parsimonious 

set of salient features for modeling pilot workload. The SNR screening method identifies 

and removes nonsalient features while maintaining good classification accuracy. The 

SNR screening method is employed on a feedforward MLP ANN to classify pilot 

workload. The SNR screening method is also employed on an Elman recurrent neural 

network (RNN) to estimate pilot workload. 

Since  there  is  a strong temporal  component to  EEG  and the  peripheral 

psychophysiological features, the next logical step was to classify pilot workload using a 

type of ANN that allows for the encoding of time such as the Elman RNN [31] as 

depicted in Figure 10.  First, an Elman RNN was trained using 112 features over, a 52 

full-factorial design of experiments. A 52 full-factorial design of experiments was used 

to examine the effects of two factors: the momentum constant mc and the number of 

hidden/context nodes denoted as J. Five levels of each factor was investigated. Feature 

inputs were derived from psychophysiological recordings including EEG. Next, the SNR 

screening method was utilized to select the parsimonious set of salient features over the 

52  full-factorial design of experiments.    An Elman RNN was then trained on the 

parsimonious set of salient features over the 52 full-factorial design of experiments. 

Results showed that SNR screening method can be successfully employed on an Elman 

RNN to reduce the root mean squared error (RMSE) of the pilot workload test set, on 

average, by 67%. When an Elman RNN was used to estimate pilot workload while 
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landing an airplane, a root mean squared error (RMSE) of 0.2893 was attained using all 

available EEG and peripheral measures as inputs to the Elman RNN which was not 

acceptable. The SNR screening method was applied which reduced the number of 

features and achieved a RMSE of only 0.0864. This was the first time that the SNR 

screening method was applied to an Elman RNN. 

1.4.3 Development of a Partial Derivative-Based Spatial-Temporal Saliency Measure 

to Classifying Pilot Workload 

Another significant contribution of this research is the development of a partial 

derivative-based spatial-temporal saliency measure to identify salient features in Elman 

RNNs to classifying pilot workload. The partial derivative-based spatial-temporal 

saliency measure is computing by unfolding the layers of an Elman RNN. Each unfolded 

layer represents a time lag. Whereas feature saliency measures in feedforward MLP 

ANNs typically provide a single measurement for each feature, the partial derivative- 

based spatial-temporal saliency measure provides a vector measure for each feature. 

Each element in the vector represents the saliency of the input feature for each time lag. 

The features can be rank ordered by comparing the saliency vectors. 

1.4.4 Development of a Spatial-Temporal Screening Method 

Another major contribution of this research is the development of a screening 

method, which utilizes the partial derivative-based spatial-temporal saliency measure, to 

identify a parsimonious set of salient features for classifying pilot workload in an Elman 

RNN.     The  screening  method  identifies  and  removes  nonsalient  features  while 
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maintaining good classification accuracy. 

1.4.5 Determining the Memory Capacity of an Elman Recurrent Neural Network (RNN) 

The final major contribution of this research is the development of a methodology 

for determining the memory capacity of an Elman RNN. The memory capacity of an 

Elman RNN is defined in terms of the number of unfolded layers containing salient input 

and context nodes. The technique developed in this research determines how far back an 

Elman RNN remembers. In other words, the technique ascertains how far back in time 

the input and context nodes effect the current output of an Elman RNN. This 

methodology extends the theory of the partial derivative-based spatial-temporal saliency 

measure and the SNR saliency measure in that the partial derivative-based spatial- 

temporal saliency measure is calculated and then statistically compared to an injected 

noise feature. This noise feature provides a baseline for determining the time lag at 

which a feature provides no more information than noise. In essence, this noise-like 

feature provides a baseline for determining the memory capacity of RNN. Application to 

a wave amplitude detection problem, a well known nonlinear process, as shown in 

Figure 69 demonstrates the utility of this methodology to determine the memory capacity 

of an Elman RNN. 

A total of 52 Elman RNNs with a 2 + 2/2/1 architecture as shown in Figure 70 

were trained using Equation 50 on the wave amplitude detection problem in order to get 

30 sufficiently trained Elman RNNs. An Elman RNN is sufficiently trained if its 

classification accuracy for the training, test, and validation sets are all greater than 90%. 

Thirty sufficiently trained Elman RNNs are desired so that the Central Limit Theorem 
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tendencies may be exploited in performing one-sided t - tests. It appears from the results 

that the specific Elman RNN applied to this problem has a high likelihood of training to a 

local minimum. In this case, the error backpropagation algorithm converged to a local 

minimum 42% of the time. Techniques utilizing simulated annealing may correct for the 

Elman RNN's apparent high probability of local minima. 

The partial derivatives for the input feature, the two context nodes, and the 

injected noise feature were computed up to eight unfolded layers for the 30 sufficiently 

trained Elman RNNs. Next, one-sided t- tests were performed at a significance level 

a = 0.05 to determine the layer at which the input and context nodes provided no more 

information than noise. The t - tests involve computing the sample mean and sample 

standard deviation of the partial derivatives computed. Care must be taken when 

computing the sample mean and sample standard deviation for the context nodes due to 

the flip-flop reversing nature of the trained weights associated with context nodes. To 

alleviate this problem, the sample mean and sample standard deviation were computed 

over the context node resulting in the maximum partial derivative and for the context 

node resulting in the minimum partial derivative. 

From the  t- tests, it was concluded that the following inputs, on average, 

provided more information than noise to the Elman RNN with 95% confidence: x(t), 

x{t-1), x{t-2), x(t-3), and x[t-A). It was also concluded that the following context 

nodes, on average, provided more information than noise to the Elman RNN with 95% 

confidence: y} (t-\), y} (t-2),  v; (t - 3), y. (t - 4), and y} (t - 5) for j = 1,2.   The 

memory capacity of an Elman RNN with an architecture as that in Figure 70 for this 

wave amplitude problem is four unfolded layers. 
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This methodology for determining the memory capacity of an Elman RNN 

provides insight into the theoretical workings of RNNs. It is now possible to calculate 

how far back in time, on average, an Elman RNN remembers for a given data set, a given 

Elman RNN architecture, and a given noise distribution to the extent that it is appropriate 

to measure memory by the partial derivative-based saliency measure over time. 

1.5    Organization of this Dissertation 

This document is written in the following fashion. Chapters 2 through 4 provide 

literature reviews of several pertinent subjects. Chapter 2 provides a literature review of 

ANNs. Chapter 3 provides a literature review of feature saliency measures. Chapter 4 

provides a literature review of classifying mental workload. Chapters 5 provides a 

summary of feasibility studies conducted on the use of TDNN and RNNs for classifying 

mental workload. Chapter 6 though 9 provide original work that contributes significantly 

to the theory and application of ANNs, feature saliency measures, and classifying mental 

workload. Chapter 6 provides the development of the SNR saliency measure to classify 

mental workload via feedforward MLP ANNs. Chapter 6 summarizes a referee reviewed 

Artificial Neural Networks in Engineering (ANNIE) Conference paper entitled "A 

Preliminary Investigation of Selection of EEG and Psychophysiological Features for 

Classifying Pilot Workload" [46] that was selected as the second runner-up for the best 

paper with a novel engineering application at the 1996 ANNIE Conference. In addition, 

Chapter 6 summarizes a paper submitted to the International Journal of Smart 

Engineering System Design entitled "Selection of Psychophysiological Features for 

Classifying Air Traffic Controller Workload in Neural Networks" [50]. Chapter 7 
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provides the development of the SNR screening method to modeling pilot workload via a 

feedforward MLP ANN in addition to an Elman RNN. Chapter 7 summarizes a referee 

reviewed ANNIE conference paper entitled "Estimating Pilot Workload Using Elman 

Recurrent Neural Networks: A Preliminary Investigation" [47] in addition to a paper 

accepted for publication in Neurocomputing entitled "Feature Screening Using Signal-to- 

Noise Ratios" [49]. Chapter 8 provides the development of the partial derivative-based 

spatial-temporal saliency measure and a screening method that uses the partial derivative- 

based spatial-temporal saliency measure to classify pilot workload via Elman RNNs. 

Chapter 9 provides the theory of determining the memory capacity of an Elman RNN and 

the application of the theory to a wave amplitude detection problem. Chapter 9 

summarizes a referee reviewed ANNIE conference paper entitled "Determining the 

Memory Capacity of an Elman Recurrent Neural Network" [48] that was selected as 

second runner-up for the best paper with a theoretical development in technique at the 

1998 ANNIE Conference. Conclusions and recommendations are provided in Chapter 

10. 
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2    Literature Review of Artificial Neural Networks (ANNs) 

2.1 Introduction 

This chapter provides a literature review of ANNs. Topics covered include the 

biological and historical foundations of ANNs, Rosenblatt's perceptron, feedforward 

MLP ANNs, the backpropagation training algorithm, and temporal ANNs to include the 

Elman RNN, the Jordan RNN, and the Williams and Zipser RNN. 

2.2 Biological and Historical Foundations of ANNs 

The human brain possesses remarkable processing power. It interprets imprecise 

information from the senses at an incredible rate. Most impressive of all, the brain learns 

without any explicit instructions to create the internal representations that make our 

interpretations possible. For years, science has attempted to mimic the vast capabilities 

of the human brain. However, much is still unknown about how the brain trains itself to 

process information. One attempt to model the brain's learning process is to model the 

work of individual neurons. From these simple neuron models, interconnections are 

generated and weighted between the neuron nodes. This ensemble of interconnected 

neuron nodes, termed an ANN, is capable of learning, recognizing patterns, and 

classifying data. 

2.2.1    Biological Foundations 

The foundation for the concept of ANNs lies in our understanding of how the 

biological neuron works. In the human brain, a typical neuron in an excited state conveys 
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information to other nearby connected neurons via action potentials. The receiving 

neuron collects its incoming action potentials from numerous nearby connected neurons 

and converts the action potentials to a chemical ion. The chemical ion then either excites 

or inhibits activity in the receiving neuron. It is thought that learning occurs within the 

brain when the conversion of action potentials is altered [115]. 

An ANN contains an ensemble of interconnected nodes that represent neurons. 

Each connection in an ANN has a weight that represents the conversion of action 

potentials to a chemical ion. 

2.2.2   Historical Foundations 

The first historical work of neural like models for pattern recognition was 

accomplished in 1943 by McCulloch and Pitts [87]. McCulloch and Pitts brought forth 

the idea of modeling individual neurons as threshold elements in two-class linear 

machines [87]. The work of McCulloch and Pitts emphasized error-free performance and 

included the idea of adaptivity or learning [87]. McCulloch and Pitts built upon previous 

work done by Fisher [35] and Highleyman [59]. In 1936, Fisher published his classical 

linear discriminant function paper [35] which paved the way for the application of linear 

discriminant functions to pattern recognition. Highleyman posed the problem in 1962 of 

finding the optimal (minimum risk) linear discriminant and proposed plausible gradient 

descent procedures to determine a solution from samples [59]. 

2.3    Rosenblatt's Perceptron 

The perceptron as shown in Figure 1 was demonstrated by Rosenblatt in 1957 in 

his efforts to develop a two-class linear machine that was biologically inspired by the 
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Figure 1. Rosenblatt's Perception 

human brain [119, 120, 121, 122, 123]. Rosenblatt's work at the time was very 

controversial but his vision of the human information processing system as a dynamic, 

interactive, self-organizing system lies at the core of ANNs. The output y of the 

perceptron is the result of summing each neuron x, for i = l,...,I multiplied by its 

synaptic weight w, for i = \,...,I and then adding the synaptic weight associated with 

the bias term w0. The bias term allows for the intercept to be non-zero. The surface that 

separates the two classes can be viewed geometrically as a (I-I) dimensional 

hyperplane [81] represented by the following equation: 

x-w = 0 (1) 

If v < 0, then the input vector x is classified as belonging to Class 1. If y > 0, then the 

input vector x is classified as belonging to Class 2. Rosenblatt's perceptron, acting as a 

pattern classification system, can make limited generalizations and can properly 

categorize patterns despite noise. 
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Training a perceptron to classify correctly is equivalent to finding a set of weights 

w such that the hyperplane correctly separates input vectors x belonging to Class 1 from 

those belonging to Class 2. Rosenblatt employed several reinforcement rules for 

changing the weight vector w in his perceptron and hence the orientation and position of 

the hyperplane in order to improve performance. The best known of these was the fixed 

increment rule, which guaranteed error free performance whenever it could be achieved 

for linearly separable two-category problems [119, 120, 121, 122, 123]. Nilsson 

presented two proofs of the Perceptron Convergence Theorem in 1965 for linearly 

separable two-category problems [103]. The weight vector w is updated incrementally 

during supervised training of the perceptron depending upon whether the perceptron 

classified the input vector x correctly. Training is described as supervised when a 

desired or known output exists for a given input vector x. In the case of the perceptron, 

supervised training occurs when the class of the input vector x is known. If the input 

vector x is correctly classified, no adjustments are made to the weight vector w. 

However, if the input vector x is incorrectly classified, the old weight vector w" is 

changed to a new weight vector w+as follows: 

w+ = w~ + v • c if v belongs to Class 1 
(2) 

w   =w  - v • c if v belongs to Class 2 

where c is the correction increment vector where each element of c is the same constant 

and can be any fixed number greater than zero. 

Unfortunately, the perceptron only saw limited use because it was shown by 

Minsky and Papert in 1969 to be unable to classify simple Boolean functions like the 

Exclusive OR (XOR) classification problem as shown in Figure 2 [91, 92].   This was 
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Figure 2. XOR Classification Problem 

catastrophic to neural like models. Feedforward MLP ANNs, which we know today 

easily solve the XOR problem, were in existence at this time but no proven learning 

algorithms existed for the feedforward MLP ANN [91, 92]. 

Little research was conducted in neural like models again until 1986 when 

Rumelhart et al. proposed the backpropagation training algorithm for the feedforward 

MLP ANN [128]. Though Rumelhart et al. get the credit for developing the 

backpropagation training algorithm, Werbos was first to derive it in 1974 [161]. Neural 

like models, in the form of feedforward MLP ANNs, were once again a popular research 

area. 
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2.4    Feedforward Multilayer (MLP) Artificial Neural Networks (ANN) 

Rosenblatt's perceptron is the basic building block to the feedforward MLP ANN. 

Feedforward MLP ANNs are necessary to classify the XOR classification problem, more 

complex  classification problems,  and  nonlinearly  separable  (but  multi-hyperplane 

separable) classification problems.    Feedforward MLP ANNs will even allow for 

discrimination  between  disjoint  regions.     Feedforward  MLP  ANNs   are  termed 

nonparametric models because they make no assumptions about the functional form of 

the underlying population density distribution [160].    In addition, feedforward MLP 

ANNs make no assumptions about the equality of the covariance matrices between 

classes. 

A feedforward MLP ANN is defined by Hecht-Nielson in the following manner: 

A neural network is a parallel, distributed, information processing 
structure consisting of processing elements (which can possess a local 
memory and can carry out localized information processing operations) 
interconnected via unidirectional signal channels called connections. Each 
processing element has a single output connection that branches ("fans 
out") into as many collateral connections as desired; each carries the same 
signal - the processing element output signal. The processing element 
output signal can be of any mathematical type desired. The information 
processing that goes on within each processing element can be defined 
arbitrarily with the restriction that it must be completely local; that is, it 
must depend only on the current values of the input signals arriving at the 
processing element via impinging connections and on values stored in the 
processing element's local memory [58: 2-3]. 

2.4.1   Architecture 

Each connection in a feedforward MLP ANN has a weight. The architecture of a 

feedforward MLP ANN is depicted in Figure 3. A feedforward MLP ANN typically has 

three layers: 
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• One input layer containing i = l,...,I input nodes .xt and a bias node x0. 

• One hidden layer containing j = l,...,J hidden nodes y- and a bias node y0. 

• One output layer containing k = \,...,K output nodes zk. 

A node (Hecht-Nielson's element) in a feedforward MLP ANN is very similar to 

Rosenblatt's perceptron. The feedforward MLP ANN as shown in Figure 3 has a 

I/J/K architecture meaning it has /input nodes on the input layer, Jhidden nodes on 

the hidden layer, and K output nodes on the output layer. In the past, feedforward MLP 

ANNs may have been constructed with more than one hidden layer. Hornik et al. showed 

in 1989 that only one hidden layer is required to approximate any response surface so 

long as it contains an adequate number of hidden nodes [62: 360]. The MLP ANN in 

Figure 3 is a. feedforward ANN because inputs from the input layer are fed forward to the 

hidden layer and then fed forward to the output layer. Each input node JC,- and the input 

bias node x0 is connected to each hidden node y. via the first layer weight matrix W1. 
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Each first layer weight w)j connects input node xt to hidden node y.. Similarly, each 

hidden node yj and the hidden bias node yQ is connected to each output node zk via the 

second layer weight matrix W2. Each second layer weight w2
Jk connects hidden node 

yj to output node zk.   The feedforward MLP ANN as depicted in Figure 3 is for 

classification with K output classes. A feedforward MLP ANN can be used for either 

function estimation or classification. 

Figure 4 shows hidden node y2 in detail. Though Figure 4 is very similar to 

Rosenblatt's perceptron in Figure 1, there is one major difference: y2 is activated by a 

transfer function f(a) where a is the activation into y2 and is defined as: 

a = w0i2 + ZvW (3) 
;=1 

2.4.2    Transfer Functions 

Many transfer functions exist. The most popular transfer function is the sigmoid 

yi=f   <2+X*X. 

Figure 4. Hidden Node in a Feedforward MLP ANN 
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nonlinear transform function: 

f(a) = sig(a) = 
l + e~ 

(4) 

which is depicted in Figure 5. Note that 0 < f(a) < 1 for the sigmoid nonlinear transfer 

function. The popularity of the sigmoid nonlinear transfer function is due to two reasons. 

The first is its similarity to the sigmoidal relationship between the excitation and the 

frequency of firing observed in biological systems.    The second is the ease of the 

Sigmoid Nonlinear Transfer Function 
1.5r 

f     0.5- 
O 

-0.3— 
-10 

10- 

-15 
-10 

Hyperbolic Tangent Nonlinear Transfer Function 
l.Sr 

0.5' 

-0.5- 

10 
-1.3 

-10 

Linear Transfer Function 

10 

10 

Figure 5. Transfer Functions 
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calculation of the first derivative. The first derivative of sigmoid nonlinear transfer 

function is calculated using the following: 

f(a) = f(a)-[l-f(a)] (5) 

Another popular nonlinear transfer function is the hyperbolic tangent nonlinear transfer 

function: 

f(a) = tanh(fl) 

_ sinh(a) 

cosh(a) 

„-<*    „<* e    -e 

ea+e~a 

2 

/(a) = ea~gfl (6) 
ea+e~a W 

which is also depicted in Figure 5. Note that -1 < f(a) < 1 for the hyperbolic tangent 

nonlinear transfer function. The first derivative of hyperbolic tangent nonlinear transfer 

function is calculated using the following: 

/(a) = l-[/(a)]2 (7) 

Also popular and quite simple is the linear transfer function with slope = 1: 

f(a) = lin(a) = a (8) 

which is also depicted in Figure 5. Note that - oo < /(a) < +oo for the linear transfer 

function with slope = 1. The first derivative of linear transfer function with slope = 1 is 

easy to calculate using the following: 

f{a) = 1 (9) 
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Rosenblatt's perceptron can be thought of as using the linear transfer function with 

slope = 1. The three more popular transfer functions and their first derivatives are 

summarized in Table 1. 

2.4.3   Backpropagation Training Algorithm 

Backpropagation is a gradient descent method that incrementally trains the 

weights of a MLP ANN via supervised training. Ruck et al. proved in 1990 that the 

feedforward MLP ANN, when trained as a classifier using backpropagation, 

approximates by minimum mean squared error (MSE) the Bayes optimal discriminant 

function for both the two-class problem and the multi-class problem [124, 127]. Ruck et 

al. showed that this is true regardless of the number of layers and the type of transfer 

function [124, 127]. Further, outputs of the feedforward MLP ANN approximate the a 

posteriori probability functions of the classes being trained [124, 127]. 

Since backpropagation is a learning algorithm for supervised training, a desired 

output vector dm exists for every training exemplar xm for m = l,...,Mtrajn. For each 

layer, the weight matrices W*0""" are updated based on backpropagation of the training 

set sum squared error SSE^^ generated by squaring the difference between the actual 

output vector zm and the desired output vector dm. 

Table 1. Three Popular Transfer Functions and First Derivatives 

Transfer Function f(a) First Derivative f(a) 
Sigmoid 

f(n\ f{a) = f(a)\\ -f(a)] 
f{a)-\ + e-" 

Hyperbolic Tangent 
fd)    e~a-e" f(a) = \-[f(a)f 
f(d)~ e" be- 

Linear fiel) = a /(*) = ! 
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2.4.4 Training, Test, and Validation Sets 

For supervised training, there is typically a training set and a test set [58]. In 

some situations, a validation set may also exist [58]. The training set contains Mmin 

exemplars, the test set contains Mtest exemplars, and the validation set contains Mvalid 

exemplars. Therefore, the total number of exemplars M is: 

M = Mtrain+Mtest+Mvalid (10) 

For feedforward MLP ANNs, exemplars are typically randomly chosen for the 

training set, test set, and validation set. A good rule of thumb is to randomly select 50% 

of all available exemplars for the training set, 25% of all available exemplars for the test 

set, and 25% of all available exemplars for the validation set [115]. In some cases, it may 

be necessary to randomly select exemplars per class for the training, test, and validation 

sets. 

2.4.5 Measures of Effectiveness 

Classification accuracy of the training, test, and validation sets (CAmin, CAlesl, and 

CAvaiid) provide excellent measures of effectiveness (MOE) for ANNs used for 

classification. Various measures of CA include the observed CA, CA confidence 

intervals, minimum CA, and maximum CA . Confusion matrices also contain valuable 

information for measuring the effectiveness of ANNs. 

2.4.5.1   Observed Classification A ccuracy 

The observed training set classification accuracy CAlrain is defined as: 
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rA     _ Number of Training Exemplars Classified Correctly 

■*'•*   iKTIll 

dl) 

Each exemplar m may be classified by the winner takes all scheme on the output nodes 

such that: 

Class... = • 

lif max(zkm) = zhm 

2ifmax(z,j = z2,m   fork = l2_K (12) 

Kif max(zim) = zJt„ 

CA,es,  and  CAvalld are calculated in a similar fashion to  CAlrain  in Equation 11. If 

g = l,2,...,G ANNs are trained, then the observed classification accuracy for the g'h 

ANN is denoted CA^ain, CA*,, and CA?alid 

In addition to the classification accuracy, confusion matrices are helpful to 

distinguish between the classification accuracy for the K different classes. A confusion 

matrix such as the one in Table 2 shows the true classification versus the ANN's 

classification for each of K = 4 classes. The diagonal of the confusion matrix contains 

the number of correct ANN classifications and the CA for each class. The overall CA is 

Table 2. Example Confusion Matrix 

Network Classification 

Class 1 Class 2 Class 3 Class 4 Overall 

True 

Classification 

Class 1 702 
98.46% 

1 
0.14% 

10 
1.40% 

0 
0.00% 

713 

Class 2 7 
1.00% 

657 
94.26% 

33 
4.73% 

0 
0.00% 

697 

Class 3 4 
0.59% 

21 
3.11% 

650 
96.30% 

0 
0.00% 

675 

Class 4 0 
0.00% 

0 
0.00% 

0 
0.00% 

675 
100.00% 

675 

Overall 713 679 693 675 2760 
97.25% 
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found in the bottom right-hand corner. The off-diagonals are the number and percent of 

classification errors for each type of misclassification. A confusion matrix also contains 

summary totals in the bottom row and the last column. 

2.4.5.2   Confidence Intervals 

CA only provides a point estimate. If several ANNs are trained, a confidence 

interval (CI) for CA provides information as to the reliability the observed CA . CA is a 

random variable because its value is influenced by the weight initialization and the 

selection of the training, test, and validation sets. It may be desirable to perform G > 30 

training sessions so that the Central Limit Theorem (CLT) can be invoked [88]. The CLT 

states that a sample mean will have a sampling distribution that is approximately normal 

if the sample size is large (i.e. > 30) [88]. For G training sessions, the following CI 

formula is employed on the training set as: 

C A     -t 
^■™train ?-,G-\ 

where CAlrain is the average observed classification for the training set, t«GX comes 

from any ^-distribution table, Strain is the sample standard deviation of CAfmin  for 

g= \,...,G, and nCA^ is the expected training set classification accuracy [88].   CAlrajn 

over G training sessions is defined as the following: 

G 

ZCAg 

CÄlmb,=*2—  (14) 

Strain is calculated over G training sessions so that: 
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2-1 \ CArain      ^Arain ) 

Slrain=^ —  (15) 

All calculations for the test and validation sets are calculated in a fashion similar to 

Equations 13-15. 

2.4.5.3   Minimums and Maximums 

In addition to reporting CA and CIs for pCA, it may be desirable to compute the 

minimum CA and the maximum CA attained for the training, test, and validation sets of 

several ANNs are trained. 

2.4.6   Feature Preprocessing 

Before the training algorithm can begin, each input feature is typically 

preprocessed so that the features are "unitless" thus preventing the input features with 

larger value from dominating. Preprocessing can be done by either standardization or by 

normalization. The parameters used to preprocess the input features are calculated from 

the training and test sets. A feature can be standardized via the following: 

<m=^^ (16) 

where x\ is the preprocessed input feature x,., *,. is the sample mean of input feature JC, 

in the training and test sets, and Si is the sample standard deviation of input feature xi in 

the training and test sets. The sample mean xt is computed as: 
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"^ train.test 

*--lf— (17) 

The sample standard deviation Si is computed as: 

IVI tram.test 

Z(*»_J<) 
is—rr (18) 

train jest 

After standardization preprocessing, each input feature will have zero mean and unit 

variance. Depending upon the application, it may be necessary to standardize the training 

set and the test set individually by replacing Mtrajnlest with Mlmin when standardizing the 

training set and by replacing MlrainJesl with Mlesl when standardizing the test set in 

Equations 16 through 18 above. 

An input feature is typically normalized via the following: 

x, - min(x,) 
x' = r   ^       ■ f   ^ (19) max(x,.)-mm(x;.) 

where x,' is preprocessed input feature x,., min(x,) is the minimum value of x, in the 

training and test sets, and max(x,) is the maximum value of x, in the training and test 

sets. After normalization preprocessing in this fashion, each input feature will have 

values between 0.0 and 1.0. Depending upon the application, it may be necessary to 

normalize the training set and the test set individually so that min(jc;) is the minimum 

value of xt in the training set and max(x,) is the maximum value of x, in the training set 

when normalizing the training set using Equation 19. Likewise, min(x;) is the minimum 

value of xi in the test set and max(x,) is the maximum value of x,. in the test set when 

normalizing the test set using Equation 19. 
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On occasion, it may be desired to normalize the input features to have values 

between -1.0 and 1.0 via the following: 

x' = 2 
x, -min(jc;) 

max(x,.)-min(x;.) 
-1 (20) 

2.4.7 Weight Initialization 

The weights must be initialized before training can begin. Weights can be 

initialized randomly from a Uniform distribution [115]. The range of the Uniform 

distribution can be as wide as (-0.5, 0.5) or as narrow as (-0.001, 0.001). A more optimal 

strategy for initializing weights as developed by Nguyen and Widrow decreases training 

time by more than an order of magnitude [102]. Nguyen and Widrow's weight 

initialization scheme assumes that each hidden node is responsible for approximating a 

small portion of the desired output vector d and as such, selects initial weights so that 

each hidden node provides a piece-wise linear approximation to d [102]. 

2.4.8 Mathematics for Weight Updates of Instantaneous Backpropagation 

Backpropagation requires that the partial derivative of the sum squared error of 

the training set denoted as SSElrain be computed with respect to each weight in each 

layer's weight matrix W'ayer. Define the instantaneous sum squared error SSElrainm 

associated with exemplar x„( from the training set as: 

1   K 2 

SSE
,rain,m = Ö ' Z [dk„ ~ Zk,m ) '(21) 

■^    k=\ 

where dkm is the desired output for output node k for exemplar x,„ from the training set 
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and zkm is the actual output for output node k for exemplar x„, from the training set. 

Note that SSElrajnm is a function of the training set and the weights. Note that SSElmjn m 

may be replaced with the mean squared error associated with exemplar x,„ from the 

training set denoted as MSElrajnm and defined as: 

A^**,=—Y*=- (22) 

The results from the instantaneous backpropagation algorithm using MSElmjn m instead of 

SSElrainm do not differ. 

For a given layer in the feedforward MLP ANN, the instantaneous 

backpropagation learning rule for updating a layer's old weight matrix Wlayer~ to a 

layer's new weight matrix W''°*''"f is the following: 

yylayer+ _ yylayer' _     _     OJi:train,m ,yr\ 

d\Vlayer 

dSSE 
where 77 is the learning rate and typically 0.0 < 77 < 1.0 and  train^  .      matrix 

dWlayer 

whose elements are given as: 

"l        dSSE., 
for first layer weights 

r0SSE^S\        dSSE,^, train, m train,m 

\  sw  ;..     dw) 

tor second layer weight 
,k        *< 

For a specific second layer weight w\ A the instantaneous backpropagation learning rule 

for exemplar x,„in the training set is: 

^»„=^A-'/-£f^ (24) 
dW: k 

Jo >*0 

40 



where the partial derivative of the training set sum squared error SSEtrain m with respect 

to the weight w) t is: 
° J«."0 

dSSE, trainjn 

dw) k dw) k Ja >fto Jo >Ao 

1   K / 
T ' Z_i \^k,m ~ zk,m ) 

k=\ 

(25) 

In the partial derivative of the summation in Equation 25, the summation's dependency 

on w) .  must be isolated: 

dSSE, trainjn d 
dw) k 

Ja >Ao 
dw) k 

k» - *!,* )2 + (dl* ~ Z2,m Y+-- + [dK,m ~ ZK,m )2 

+ - + (dK-X,m ~ ZK-lm Y + fc.m " zK,m f 
(26) 

Taking the partial derivative of Equation 26, the only part to survive the differentiation 

will be variables that involve both subscripts j0 and k0. This reasoning identifies the 

terms dKm and zKm. The partial derivative of the summation simplifies to: 

d(dk,m-zkm) 

dw2, ./<) >*<) 

if k*kn 

2-k„,,„-^„„,)-   ./"'"'     ifk = ki 
[   ZK*>) (27) 

Ja >Äo 

And thus: 

dSSE, train,m 

dw) k 
Ji) >Ao 

0 + 0 + ... + 2idk^-zkJ.^^ + ... + 0 + 0 
dW1:    k 

dSSEtrain^ 

dw) k 
(28) 

While the desired output dKm is a constant, the actual output zKm is a function of the 

summation of the weighted outputs from the hidden layer: 
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k„jn        J k (].'"      " "(I 

WIK +Zwi„-^ 
7=1 

(29) 

where fK (a) is the transfer function at output node k0.  The partial derivative of z 

can be written as: 

k„,m 

Jo iÄn 

d 

Jo »*o 

A w, U+Z^V^ 
7=1 

(30) 

And therefore: 

dSSE,. 

JO*K0 

-     ("*„,«      ZA,„/«j- 
<? 

J()Ä<) V 7=1 

dSSE.. 

JO '*0 

• = ~{dko,m ~ zko,m) • A„  KK + X WM, • JO, 
V 7=1 

^ d       ' 

J  dw)k 
w; U+IX^-JO,» 

7=1 

(31) 

where fK (a) represents the derivative of fK (a)   with respect to a. For clarity, let 

Zk.,,m ~ Jk K <„+ZWM,^7,- 
7=1 

(32) 

Substituting Equation 32 into Equation 31: 

dSSE,, 

d*>)k ./O>*0 

~~     \"k„ ,w ~ Zk„ ,m ) ' Zk„ ,i 
<? 

<*.+I>,V^, 
7=1 

(33) 

where 

zK,m (0 = ZA,„», (0 • [l - ^,„,„ (0] for sigmoid nonlinear transfer functions, 

^„»i (0 = 1- [zt0,m (0]   for hyperbolic tangent nonlinear transfer functions, and 

^„,»«(0 = 1 f°r linear transfer functions with slope = 1. 

Taking the partial  derivative  in Equation 33,  the  only variables to  survive  the 
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differentiation will be those that involve the subscript j0: 

dSSE„ 
^   *„ ,m k0 ,m ) ' ZkQ ,m ' S j{) ,m (34) 

And thus, for a specific second layer weight w2
hk(j, the instantaneous backpropagation 

learning rule for exemplar x'm in the training set is simplified to: 

<*„ = <*. + v-fa» -**„,». K„,» -y^, (35) 

Similarly to Equation 24, the instantaneous backpropagation learning rule for a 

specific first layer weight wjaJ for exemplar x'„ in the training set is: 

w
1+. =wl~   -n-dSSE,n*un 

'«Jo Wo ' £wl 
'oJo 

(36) 

where the partial derivative of the training set sum squared error SSEfra/„ m with respect 

to the weight w) ,  is: ° 'o Jo 

dSSE, tram.m d 
dwt ■ dw-, ■ 

'oJo '«J« 

1 £ 
" 2-i \dk,m ~ Zk,m ) 

k=\ 

K 

I 
k=\ 

~Z-\dk,m ~Zk,m)' 
d(-Zk,m) 

M 
I«,Jo 

K 

~2-X   kjrn ~Zkjn)' 
k=\ dM>\ 

Wo 

{ J 

fk wlk+Ysw2j,k-yj,«, 

= "ZK»< -Zk*)-fk\ Kk +Hwlk -yM 

^     d   ( 

k=\ 7=1 aw, , 
'« Jo 

W, 0,k 
+Twlk-yj,, 

7=1 

k=l 

a 
k,m     o.,,l aw, 

wo,* + 
Wo  ^ 7=1 

T,wlk-yj,n 
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dSSEtrai 

dw\ 
~    La Wfc,m ~ Zk,m )' Zk,m ' Wj„,, 

dy 
Jo,"> 

Wo k=\ 'o 'Ja 

(37) 

The output of a hidden layer node is: 

( ' A 

yj^=fJa\Kjll
+JZwL-xf,l (38) 

;=1 

Substituting Equation 38 into Equation 37 gives: 

dSSE„ 

'oJo 

dSSElrail 

dy»), 'oh 

k=\ 
■ z,, „A-zk „, • w"i 

d 
k,m k,m)   *"k,m L.k      .-,     1 

' aw; 
i«,Ja  L 

fh K/„+I>i/„-*/.» 
i=i 

—=-E K» -z*.*) •f*.» • wL* • //. <*, + Z wL • xfj- 
7o >./o 

<^K,-^K39) 

For clarity, let 

/=i 

Substituting Equation 40 into Equation 39: 

(40) 

dSSE„ 

dw, ■ = "ZK'« -Zk,,n)-Zk,n, -Wl,k -y. 
hJa k=\ 

J°'m  dwx . 
Wo 

w, i./o+Z<-^    (4i) 
/=! 

where 

yh.o'if) = y.jtt,mW • [l - ^.A„;„(0] for sigmoid nonlinear transfer functions, 

y/o ,<»(0 = 1- \yJa,„,(0J   for hyperbolic tangent nonlinear transfer functions, and 

>y„,m(0 = 1 f°r linear transfer functions with slope = 1. 

Realizing that 

dw) . 
if / * i0 
if i = ir (42) 

then Equation 41 becomes: 
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dSSEtrain,m \^ ( , \    . 2 ,^^ 
—T-\ = ~L \dk,m ~ Zk,m )■ Zk,m ' ™j0,k ' ^„.m " \„ (43) 

Therefore, for a specific first layer weight w\)Jn  the instantaneous backpropagation 

learning rule is simplified to: 

K 

ww. = wtk + ^• SK.» - zk,«) ■ h,„, ■ wj0,k • yJo,m ■ x, (44) 
k = \ 

The above derivations for the weight updates are for instantaneous 

backpropagation. Backpropagation is instantaneous whenever the weights are updated 

after every exemplar in the training set is presented. In other words, the gradient 

calculation is based on the error from a single training exemplar. For each training cycle 

or epoch, each exemplar in the training set is inputted to the feedforward MLP ANN in 

random order. Thus for any epoch during training, the weights are updated Mlrain times. 

For each epoch, the order of presentation of the exemplars is randomly changed. 

2.4.9   Batch Backpropagation 

Another variation is batch backpropagation where the weights are updated after 

all of the exemplars in the training set are presented. In other words, the gradient 

calculation is based on the total sum squared error from all of the training exemplars. 

Thus for any epoch during training, the weights are updated only once. There is no need 

to randomly change the order of presentation of the training exemplars during batch 

backpropagation. The total error SSEtrain for all exemplars x„, for m = \,2,...,Mlrain is 

defined as the following: 

M,r. 

SSElmin = ZSSElminim . (45) 
m=l 

45 



where SSElMinm is computed via Equation 21.   Note that like SSEtrainm, SSEtrain is a 

function of the training set and the weights. The backpropagation learning rule for batch 

training is: 

dW!ayer 

Derivations for batch backpropagation for a specific weight are similar to those 

developed   for   instantaneous   backpropagation.       Note   that   like   instantaneous 

backpropagation, SSEtrain may be replaced with the mean squared error for all exemplars 

x,„ from the training set denoted as MSEtrain and defined as: 

MSElrain=—JSSi (47) 
K ■ M train 

train 
The results from the batch backpropagation algorithm using MSElrajn instead of SSE, 

do not differ. SSE and MSE can also be calculated for the test and validation sets in 

the same fashion as Equations 45 and 47. SSE and MSE for the training, test, and 

validation sets provide excellent MOEs for an ANN. Another form of the error that 

provides an excellent MOE for an ANN is the root mean squared error (RMSE). The 

RMSE for the training set denoted as RMSElrajn is defined as: 

RMSElrain = JMSElmin (48) 

RMSE can also be calculated for the test and validation sets in the same fashion as 

Equation 48. 

2.4.10 Momentum 

The convergence of backpropagation is slow.  One approach for speeding up the 
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training of a feedforward MLP ANN via the backpropagation learning rule is the 

momentum method. Momentum allows for the learning algorithm to respond not only to 

the local error gradient but to recent trends in the error surface. With momentum, the 

backpropagation learning rule becomes: 

yjlayer+ _ yjlayer- _ ^ _ "SSE„,„,„  + ^ _ (flayer- _ flayer" \ ^ 

where mc is the momentum constant and typically 0.0 <mc< 1.0 and Wlayer~~ is a layer's 

weight matrix one epoch before Wlayer~. Variations do exist for momentum and include 

the following MATLAB implementation: 

W'^+ = W"-- +(l-mc).T?.^^ + mc .(w*-- - W'^-) (50) 

MATLAB implements momentum only if the ratio of the new error to the old error falls 

below a predefined criterion such as 1.04 [24]. In other words, if SSEtrai„ increases more 

than 4% as a result of a weight update, the weight update is recalculated and mc = 0. 

2.4.11 Adaptive Learning Rate 

Another approach for speeding up the training is an adaptive learning rate TJ . If 

the learning rate is too large, the backpropagation algorithm may continually jump over 

the minimum and never converge. If the learning rate is too small, though, the training 

will take a long time to converge. The solution is to use an adaptive learning rate that 

allows for both large and small steps in the weight updates depending upon the 

complexity of the error-weight space. With MATLAB''s implementation, the learning rate 

is decreased by multiplying it by 0.7 if SSEtrain increases more than 4% as a result of a 
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weight update [24]. If SSEtrain decreases, the learning rate is increased by multiplying it 

by 1.05 [24]. White suggests a declining learning rate that is a function of the number of 

epochs e = \,2,...,E [162]. Steppe provides three types of declining learning rates that 

are a function of number of epochs e = \,2,...,E [136]. The log declining learning rate 

is computed as: 

"M-hö^j (51) 

Note that the learning rate is called a log declining learning rate though the natural 

logarithm (In) is used in the calculation. The linearly declining learning rate is computed 

as: 

*)=»{I-^Y) (52) 

where rj0 is the initial learning rate and E is the total number of epochs. The log- 

linearly declining learning rate is computed as: 

i- e 

*>-l^) (53) 

As with Equation 51, note that the learning rate is called a log-linearly declining learning 

rate though In is used in the calculation. Of the three declining learning rates 77(e), 

Steppe recommends the log declining learning rate in Equation 51 since E which is 

necessary for both the linearly declining learning rate and the log-linearly declining 

learning rate is usually not known in advance [136]. 
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2.4.12 Stopping Criterion 

There are many stopping criteria for the backpropagation learning algorithm. The 

learning algorithm may be stopped after a pre-defined number of epochs. For example, 

the feedforward MLP ANN may be trained for 2000 epochs. The stopping criteria for the 

backpropagation algorithm may be a pre-defined error minimum. For example, the 

feedforward MLP ANN may be trained until the SSEtrain falls below 10.0. In order to 

prevent memorization of the training set, however, it is typical to train for a pre-defined 

number of epochs and then keep the set of weights that produced the minimum SSEtest 

[24]. An example of this is given in Figure 6 where the set of weights from epoch 238 

are retained. 

2.5    Temporal ANNs 

Since biological neural networks can process temporal data, it can be assumed 

that ANNs which were originally formulated from biological research can do the same. 

The two general types of temporal ANNs are the time delay neural network (TDNN) and 

the recurrent neural network (RNN). The three types of RNNs include the Elman RNN 

[31], the Jordan RNN [69], and the Williams and Zipser RNN [166, 167]. 

2.5.1    Time Delay Neural Network (TDNN) 

A TDNN as shown in Figure 7 is a special type of ANN that allows for the 

encoding of time. The simplest solution to encoding time is to attempt to parallelize time 

on the input layer via a TDNN. A TDNN embeds time delays on the inputs to encode 

and learn these temporal sequences. Each connection in a TDNN has a weight. A TDNN 
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Figure 6. SSEtntn and SSEtest During Training 

typically has three layers: 

• One input layer containing / = 1,...,/ input nodes x, that are each lagged L 

times and a bias node. For each input i = 1,...,/, the lagged inputs are x.(t), 

x.(t-\),x.(t-2),...,x.(t-L). 

• One hidden layer containing j = \,...,J hidden nodes at time t denoted as 
>>.(^) and a bias node. 

• One output layer containing k = \,...,K output nodes at time t denoted as 
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The TDNN as shown in Figure 7 has a l\L + l)l JIK architecture meaning it has 

I-(L + \) input nodes on the input layer, J hidden nodes on the hidden layer, and K 

output nodes on the output layer. The TDNN as depicted in Figure 7 is for classification 

with K output classes. A TDNN can be used for either function estimation or function 

prediction in addition to classification or classification prediction. Waibel et al. used a 

TDNN to recognize Japanese phonemes [158] and Gainey used a TDNN to predict 

British pound opening prices [40]. 

The user defines the number of inputs, the number of output classes, the number 

of time delays, and the number of hidden nodes. The activations on the hidden and 

output nodes can be any of the transfer functions as given in Table 1. The output of a 

TDNN is based upon the current and lagged inputs. The architecture utilizes a fixed 

number of the actual time sequence values as inputs thus spatially presenting a fixed 

window of the time sequence. After the architecture of a TDNN is selected, it is trained 

via the backpropagation method either instantaneously or by batch. Whereas a 

feedforward MLP ANN will have first layer weights wjy for i = 1,2,...,/ input features 
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and j = l,2,...,J hidden nodes, a TDNN will have first layer weights w-f(lag)  for 

i = l,2,...,I input features, j = \,2,...,J hidden nodes, and lag = 0,1,...,Z lagged time 

delays. 

2.5.1.1   Use of Fractal Dimension in Time Delay Neural Networks (TDNN) 

The fractal dimension of the input time series to a TDNN may be helpful in 

determining the number of time delays. The fractal dimension provides a measurement 

of the order and randomness of a time series. Time series with high fractal dimensions 

are more random than time series with low fractal dimensions. A time series with a low 

fractal dimension may contain enough order to be predictable [33]. The fractal 

dimension df of an attractor^ is defined as 

df(A) = lim 
e-*0 

W^)ll 
log(f) 

where N[A,s) is the smallest number of squares with side length e > 0 required to cover 

A [38]. There is a lack of agreement in the literature for defining an attractor. Milnor's 

definition states that an attractor of x contained in a metric space is the set of 

accumulation points for the sequence x,x,x,... [90]. The plots in Figure 8 are provided 

to illustrate the box counting calculation of df(A) in Equation 54. A simple two- 

dimensional attractor with df(A) = 1.0 is shown. Values of s = 0.5, 0.25, and 0.1 are 

used. N(A,s) is determined by counting the number of boxes that contain A. Figure 8 

shows that as s -» 0, df (A) ->■ 1.0. 
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Figure 8. Simple 2-D Attractor with df (Ä) = 1.0 

Grassberger and Procaccia provide a methodology for estimating the fractal 

dimension df of a time series x by embedding the time series into a phase space and 

then extracting the fractal dimension of the attractor associated with the time series [45]. 

This method creates a /»-dimensional space consisting of/?-tuples taken from the time 

series [45]. The number of dimensions p chosen is an estimate slightly larger than a 

estimate of the fractal dimension such that 

53 



df(x)<p< df(x) + 6 (55) 

A set of small numbers qu for u = 1,2,...,6 is chosen and for each u, the number of pairs 

of contiguous /^-tuples \xl,x2,...,xp
>j within Euclidean distance qu  of each other is 

determined and denoted C(qu) [45]. If /rf(x)<7and an adequate number of sample 

points are used, the Grassberger and Procaccia method will produce pairs of 

(log(<7„),log[C(?„)]) where log(x) = log10(x) so that when plotted are logarithmically 

linear and collinear to each other [45]. The average of the slopes of these plotted lines is 

a good approximation of the fractal dimension of the time series [45]. Figure 9 provides 

an example of the Grassberger and Procaccia method. The time series used in the 

example is a sum of two sin waves with incommensurate frequencies. Frequencies are 

incommensurate if their ratio is an irrational number. Specifically, the time series used in 

Figure 9 is 

2 + sin(V2 • t\ + sin(V3 • t) 
XI ll — (56) 

Figure 9 shows the pairs of (log(^„),log[C(^„)]) using the Grassberger and Procaccia 

Plots Used to Estimate Average Slope 
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Figure 9. Example of Grassberger and Procaccia Method 
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method. For the time series in Figure 9, the mean slope is 1.76. One disadvantage of the 

Grassberger and Procaccia method is a minimum of 5,000 data points is recommended to 

adequately determine the fractal dimension of a time series. However, this is not a 

serious limitation. The example in Figure 9 used only 200 data points of the time series 

to attain an estimate of df(x)& 1.76. 5,220 data points of the time series provided an 

estimate of df(x)«l.7 [146]. 

Once the fractal dimension of a time series is computed, Lapedes recommends 

applying Taken's Theorem [150, 151] to provide an upper and lower bound on the 

number of lagged inputs required for a TDNN [76, 77, 78]. The number of lagged 

network inputs for a TDNN must satisfy 

fä(Ä)<L + K2-fä(A) + l (57) 

Applying Equation 57 to the example given in Figure 9 results in 1 < L < 3. 

2.5.1.2   Drawbacks of Time Delay Neural Networks (TDNN) 

There are several drawbacks to using a TDNN. First, it requires that there be 

some interface with the world, which buffers the input, so that it can be presented all at 

once [31]. Second, the shift register imposes a rigid limit on the duration of patterns 

since the input layer must provide for the longest possible pattern [31]. Finally, and most 

seriously, a TDNN does not easily distinguish relative temporal position from absolute 

temporal position [31]. As an illustration of relative and absolute temporal position, 

consider the following two time series: 

[011100000] 

[000111000] 
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These two time series appear to have the same basic pattern that is displaced in time by 

two time periods. However, if each of these time series are now treated as a vector for 

input into a TDNN, the geometric interpretation of the two vectors would show the two 

vectors to be quite dissimilar and spatially distant. A TDNN can be trained to treat these 

two vectors as having similar patterns but the similarity as learned by the TDNN is the 

consequence of an external teacher instead of the similarity structure of the pattern. As a 

results, the desired similarity will not generalize well to novel patterns. 

2.5.2   Recurrent Neural Networks (RNN) 

A RNN is another special type of temporal ANN that does not suffer from the 

shortcomings of an TDNN. A RNN contains an ensemble of interconnected nodes and is 

capable of learning, recognizing, and classifying temporal data [31]. A RNN allows for 

the encoding of time by modeling temporal behavior via a feedback or recurrent loop. 

The so-called recurrent connection weights are set to 1.0 and are not subject to 

adjustment. The recurrent connections feed back onto the input layer. A RNN uses this 

feedback to encode and learn these temporal sequences. As such, a RNN can reflect both 

differences and changes over both time and space. A RNN allows time to be represented 

by the effect it has on processing. The recurrent connections allow the hidden nodes to 

see previous hidden and/or output node activations so that subsequent behavior can be 

shaped by previous responses [31]. These recurrent connections are what give a RNN 

memory [31]. Once a hidden or output node activation is fed back onto the input layer, 

the recurrent node is termed a context node.  The context nodes are initially set at 0.0 if 

56 



hyperbolic tangent nonlinear transfer functions are used on the hidden nodes and to 0.5 if 

sigmoid nonlinear transfer functions are used on the hidden nodes. The three most 

popular types of RNNs are the Elman RNN, the Jordan RNN, and the Williams and 

Zipser RNN. 

2.5.2.1   Elman Recurrent Neural Network (RNN) 

The Elman RNN as shown in Figure 10 is the most commonly used RNN. In an 

Elman RNN, the hidden layer is fed back onto the input layer with one time delay. Each 

connection in an Elman RNN has a weight. An Elman RNN typically has three layers: 

• One input layer containing i = l,...,I input nodes at time t, denoted asxi(t), 
j0 = \,...,J context nodes (representing the outputs of the j = \,...,J hidden 

nodes at time t -1) at time t -1 denoted as yk (t-l), and a bias node x0. 

Input Nodes Context Nodes 

Figure 10. Elman RNN 

57 



• One hidden layer containing j = 1,..., J hidden nodes at time t denoted as 
vy (t) and a bias node y0. 

• One output layer containing k = l,...,K output nodes at time t denoted as 

The Elman RNN as depicted in Figure 10 has a I + JIJIK architecture meaning it has / 

input nodes and J context nodes on the input layer, J hidden nodes on the hidden layer, 

and K output nodes on the output layer. The Elman RNN as depicted in Figure 10 is for 

classification with K output classes. An Elman RNN can be used for either function 

estimation or function prediction in addition to classification or classification prediction. 

An Elman RNN has been used to recognize the structure in letter sequences, words, and 

even simple sentences [31]. 

The user defines the number of inputs, the number of output classes, and the 

number of hidden nodes. The activations on the hidden and output nodes can be any of 

the transfer function as given in Table 1 though in practice, the hidden nodes are typically 

activated by the hyperbolic tangent nonlinear transfer function and the output nodes are 

typically activated by the linear transfer function with slope = 1 [31]. The output of an 

Elman RNN is based upon the current inputs and previous internal state which is 

represented by the context nodes on the input layer. The context nodes are the activations 

from the hidden nodes at time t -1. After the architecture of an Elman RNN is selected, 

it is trained via backpropagation through time (BPTT) as developed by Rumelhart [128]. 

BPTT is simply the backpropagation training algorithm in batch. In other words, the 

actual outputs for all time steps are compared in batch to the desired outputs and the 

backpropagation of error is used to adjust all of the weights. A disadvantage of BPTT is 

the memory required due to the temporal component. Whereas a feedforward MLP ANN 
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will have first layer weights wjd for i = 1,2,...,I input features and j = \,2,...,J hidden 

nodes, an Elman RNN will have first layer weights w?. for / = 1,2,...,I input features, 

and j = 1,2,...,/ hidden nodes in addition to first layer weights w] ., for j0 = 1,2,..., J 

context nodes and j = 1,2,..., J hidden nodes. 

Through training an ERNN, the hidden units develop an internal representation that 

"recode" input features and the previous internal state [31]. The effect of time is implicit 

in this internal representations of the hidden nodes [31]. 

2.5.2.2   Jordan Recurrent Neural Network (RNN) 

The Jordan RNN as shown in Figure 11 is another commonly used RNN. In a 

Jordan RNN, the output layer is fed back onto the input layer with one time delay. Each 

connection in a Jordan RNN has a weight. A Jordan RNN typically has three layers: 

• One input layer containing i = l,...,I input nodes at time t, denoted asxi(t), 
k0=\,...,K context nodes (representing the outputs of the k = l,...,K output 

nodes at time t -1) at time t -1 denoted as zK (t -1), and a bias node x0. 

• One hidden layer containing j = \,...,J hidden nodes at time t denoted as 
yt (t) and a bias node y0. 

•    One output layer containing k = \,...,K output nodes at time t denoted as 

The Jordan RNN as depicted in Figure 10 has a I + K/J/K architecture meaning it has 

/input nodes and K context nodes on the input layer, J hidden nodes on the hidden layer, 

and K output nodes on the output layer. The Jordan RNN as depicted in Figure 11 is for 

classification with K output classes. A Jordan RNN can be used for either function 

estimation or function prediction in addition to classification or classification prediction. 
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Input Nodes Context Nodes 

Figure 11. Jordan RNN 

The user defines the number of inputs, the number of output classes, and the 

number of hidden nodes. The activations on the hidden and output nodes can be any of 

the transfer function as given in Table 1 though in practice, the hidden nodes are typically 

activated by the hyperbolic tangent nonlinear transfer function and the output nodes are 

typically activated by the linear transfer function with slope = 1 [69]. The output of a 

Jordan RNN is based upon the current inputs and previous outputs which are represented 

by the context nodes on the input layer. The context nodes are the outputs from the 

output nodes at time t -1. After the architecture of a Jordan RNN is selected, it is 

trained via BPTT. Whereas a feedforward MLP ANN will have first layer weights w). 

for i = 1,2,...,I input features and j = 1,2,...,J hidden nodes, a Jordan RNN will have 
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first layer weights wjj for i = 1,2,...,I input features, and j = 1,2,..., J hidden nodes in 

addition to first layer weights w\aj, for k0 = 1,2,...,K context nodes and j = 1,2,..., J 

hidden nodes. 

Through training a Jordan RNN, the hidden units develop an internal representation 

that "recode" input features and the previous outputs [31]. The effect of time is implicit 

in this internal representations of the hidden nodes [31]. 

2.5.2.3   William and Zipser Recurrent Neural Network (RNN) 

The Williams and Zipser RNN as shown in Figure 12 is another commonly used 

RNN. The Williams and Zipser RNN is a combination of the Elman RNN and the Jordan 

RNN in that both the hidden layer and the output layer are fed back onto the input layer 

Outputs Hidden Nodes 

wu> wu> 

wkoJ, andwk 

Inputs Context Nodes 

Figure 12. Williams and Zipser RNN 
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with one time delay. Each connection in a Williams and Zipser RNN has a weight. A 

Williams and Zipser RNN typically has two layers: 

• One input layer containing i = \,...,I input nodes at time t, denoted asxf(t), 
j0 = \,...,Jcontext nodes (representing the outputs of the j = \,...,J hidden 
nodes at time t-l) at time t-l denoted as yk(t-\), k0 = \,...,Kcontext 

nodes (representing the outputs of the k = l,...,K output nodes at time t-l) 
at time t -1 denoted as zK (/ -1), and a bias node x0. 

• One output layer containing k = l,...,K output nodes at time t denoted as 
zk (t) and j = 1,..., J hidden nodes at time t denoted as y (t). 

The Williams and Zipser RNN as depicted in Figure 12 has a I + J+K/J+K 

architecture meaning it has / input nodes, J context nodes, and K context nodes on the 

input layer. It also has J hidden nodes and K output nodes on the output layer. The 

Williams and Zipser RNN as depicted in Figure 12 is for classification with K output 

classes. The Williams and Zipser RNN can be used for either function estimation or 

function prediction in addition to classification or classification prediction. A Williams 

and Zipser RNN has been used in the past to mimic human behavior and performance 

[36]. 

The user defines the number of inputs, the number of output classes, and the 

number of hidden nodes. The activations on the hidden and output nodes can be any of 

the transfer function as given in Table 1 though in practice, the hidden nodes are typically 

activated by the hyperbolic tangent nonlinear transfer function and the output nodes are 

typically activated by the linear transfer function with slope = 1 [166, 167]. The output 

of a Williams and Zipser RNN is based upon the current inputs, previous outputs which 

are represented by the context nodes on the input layer and previous internal state which 

is also represented by the context nodes on the input layer.. The context nodes are the 

outputs from the output nodes at time r-1 and the activations of the hidden nodes at 
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time t -1. After the architecture of the Williams and Zipser RNN is selected,, it is 

trained. There are several ways to train a Williams and Zipser RN but the most common 

is the real-time recurrent learning (RTRL) algorithm as developed by Williams and 

Zipser [166, 167]. Whereas a feedforward MLP ANN will have first layer weights w). 

for i = l,2,...,I input features and j = l,2,...,J hidden nodes, a Williams and Zipser 

RNN will have weights wtJ for i = l,2,...,I input features and j = l,2,...,J hidden 

nodes in addition to: 

• Weights wik for / = 1,2,...,/ input features and k = 1,2,...,K output nodes 

• Weights*^,, for j0 =1,2,...,J context nodes and j = l,2,...,J hiddennodes 

• Weightsw;nk for j0 = 1,2,...,J contextnodesand k = 1,2,...,K outputnodes 

• Weights*^,, for k0 =\,2,...,K context nodes and j = \,2,...,J hiddennodes 

WeightswKk for k0 = 1,2,...,Z context nodes and k = l,2,...,K output 
nodes. 

• 
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3    Literature Review of Feature Saliency Measures 

3.1 Introduction 

This chapter provides a literature review of feature saliency measures. Topics 

covered include the importance of features saliency, rules of thumb for the appropriate 

number of features, feature saliency measures, and feature screening methods. The 

feature saliency measures discussed include principal component analysis (PCA), Ruck's 

partial derivative-based saliency measure, and Tarr's weight-based saliency measure. 

The feature screening methods discussed are those developed by Setiono-Liu, Belue- 

Bauer, and Steppe-Bauer. All feature screening methods discussed are backwards 

screening methods in that the heuristics begin with all candidate features and then remove 

features. A forward screening method, on the other hand, adds features. 

3.2 Importance of Feature Saliency 

It is well known that the use of too many input features in a classifier can have 

negative effects. First of all, insignificant input features to a neural network may reduce 

classification accuracy. Also, too many input features may overfit the data resulting in a 

decreased capability to generalize [110]. Ruck and Rogers improved the CAlest for a 

breast cancer detection problem from 73% to 78% (no standard deviations reported) by 

removing 14 nonsalient features from 21 candidate input features [125]. Setiono and Liu 

improved the CAlesl for the Monks 3 problem [153] from 93.55% (standard deviation of 

1.41) to 98.41% (standard deviation of 1.66) by removing 13 nonsalient features from 17 

candidate input features [132]. Shaudys and Leen improved the CAlesl for a spoken letter 
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recognition system by removing 146 nonsalient features from 160 candidate input 

features [133]. 

In addition, the so-called "Curse of Dimensionality" states that as the number of 

features grows, the number of training vectors required grows exponentially [25]. Thus, 

the number of training vectors required can be reduced which, in turn, typically reduces 

the training time if nonsalient features are removed. 

3.3    Rules of Thumb 

Both Foley's Rule and Cover's Theorem provide rules of thumb for the 

appropriate number of input features. 

3.3.1    Foley's Rule 

Foley's Rule states that if the number of training exemplars Mlrain is greater than 

3 times the number of features / times the number of classes K, then the training set 

error is approximately the test set error [37]. In addition, the test set error is close to the 

optimum error attained by a Bayes classifier [37]. In equation form, Foley's Rule for 

normally distributed inputs is: 

Mlmin>3-I-K (58) 

Since Foley's Rule assumes that the features are normally distributed, a greater ratio 

should be used if the distribution of the features is unknown [37]. In equation form, 

Foley's Rule for inputs with unknown distributions becomes: 

Mlmin»3-I-K (59) 
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3.3.2    Cover 's Theorem 

Cover states that the training set error will be near zero if the total number of 

training exemplars Mtrajn for a two-class problem is more than twice the number of 

features / [23]. In equation form, Cover's Theorem is: 

M,ra„>2-/ (60) 

Cover's Theorem is valid regardless of the distribution of the features [23]. Note that 

Foley's Rule is more stringent than Cover's Theorem. If Foley's Rule is satisfied for a 

two-class problem, then Cover's Theorem is also satisfied. 

Cover's Theorem also has extensions for providing an upper bound on the total 

number of hidden nodes J [23] so that: 

3.4    Feature Saliency Measures 

PCA is a classic statistical method of dimensionality reduction that can be applied 

to ANNs but with some drawbacks. The majority of feature saliency measures for use in 

ANNs have been developed in the last decade. Of these feature saliency measures, two 

general categories exist: partial derivative-based saliency measures and weight-based 

saliency measures. 

3.4.1    Principal Component Analysis (PCA) 

PCA is a classical statistical method used on multivariate data sets in order to 

reduce the dimensionality. The use of PCA, also referred to as the Karhunen-Loeve 

transformation [71], for feature saliency does not require a trained ANN.   In addition, 
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PCA does not require any information on the classes to be discriminated. The only thing 

needed to calculate the principal components of the input feature set is the covariance 

matrix of the input data [26]. The underlying assumption of PCA is that the covariance 

of the input feature set is the most important information characteristic of the data [149]. 

While this assumption is suitable for reconstruction of the input feature set, it is not 

appropriate for classification. The principal components (PC), which are linear 

combinations of the input features, capture as much of the data variability as possible in a 

linear fashion. PCA may be suitable for feature saliency if the ANN is used for function 

estimation or function prediction [149]. But PCA is not appropriate if the ANN is used 

for classification where the objective is to maintain separation of the classes and not 

necessarily to explain the variance [149]. Following the procedures outlined in Dillon 

and Goldstein [26], the first step in PCA is to mean correct the normalized input feature 

set following: 

X' = 

x\,\ -x[ X\,2 -x{    ■ •■    x' -x[ 
X2,\ ~X2 x' xl,2 -x'2    ■ ■■   x' 

£y"4train, text ~X2 

Xl,l -x\ x' •*7,2 -x\    ■ XlM„al„M 
-x\ 

(62) 

where X' is the mean corrected normalized input feature set and x\ is the mean of 

feature x\ for i = 1,2,...,/. 3c/ is calculated following Equation 17. The exemplars from 

the training and test sets are included if the input feature set was normalized using 

Equation 19 or 20. If the training and test sets were normalized separately, replace 

Mrrmn,,e.s; in Equation 62 with M,rain to mean correct the training set and with Mlesl to 

mean correct the test set. The covariance matrix C is calculated using X' as: 
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(«f-X'-ir—(*•»)>'•*) M  ■ 
C = 22^2  (63) 

train,lesl ~ * 

If the training and test sets were normalized separately, replace Mlraintesl in Equation 63 

with Mlrajn to mean correct the training set and with Mlesl to mean correct the test set. 

The eigenvalues and normalized eigenvectors are next extracted from C so that 

C = P A P' (64) 

where P is an Ix I orthogonal matrix whose columns are the normalized eigenvectors 

of Cand A is an Ix /diagonal matrix whose diagonal elements An for i = 1,2,...,I are 

the eigenvalues of C. Now the PCs can be computed as: 

PC = [PC,   PC2    ■■•   PC,] = P' X (65) 

The PCs are uncorrelated. The first PC denoted as PQ accounts for the largest amount 

of variance and is the /'* column in PC that corresponds to the largest eigenvalue An in 

A. The second PC denoted as PC2 accounts for the second largest amount of variance 

and is the /'* column in PC that corresponds to the second largest eigenvalue Xi,. in A . 

And so on. 

After the PCs are computed, the PCs are then used as inputs to an ANN. The PCs 

can be rank ordered using the eigenvalues where higher eigenvalues correspond to higher 

saliency and lower eigenvalues correspond to lower saliency. 

3.4.2   Partial Derivative-Based 

Ruck developed a partial derivative-based saliency measure that is based upon the 

sensitivity of an ANN's outputs to an input and utilizes the partial derivative of the 
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outputs with respect to a specific input [124, 126]. The partial derivative-based saliency 

measure depends on the distribution of the input data relative to the decision boundaries. 

The partial derivative-based saliency measure can be used to rank order the features from 

most salient to least salient where higher partial derivative-based saliency measure values 

indicate higher relative saliency and lower values indicate lower relative saliency. The 

partial derivative-based saliency measure determines feature /'s effect on the ANN's 

outputs by calculating the sum of absolute value of the partial derivatives of the outputs 

with respect to feature /. This partial derivative-based saliency measure depends upon 

the inputs and the weights within the trained ANN. Ruck derived two types of partial 

derivative-based saliency measures: 

• One   that   calculates   the   partial   derivatives   using   the   normalized   (or 
standardized) training exemplars. 

• One that calculates the partial derivatives using pseudo-sampling of the input 
feature space [124, 126]. 

3.4.2.1   Partial Derivative-Based Saliency Measure 

The most commonly used partial derivative-based saliency measure is the one that 

calculates the partial derivatives at the normalized (or standardized) training exemplars 

as: 

1 1 K   M,m,„ 

A,=-—-yy 
"*     1V1 train  *=1   m=\ 

^,,„Qc>w) 
dx\ ijn 

(66) 

where A, is the partial derivative-based saliency measure for feature i = l,2,...,I and 

z*;m(x«>w) is me actual output of output node k with input exemplar x'm for 

m = l,2,...,Mlrain with the trained ANN weight matrix W.   zkJK(x'm,Y?) is used in this 
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derivation of the partial derivative-based saliency measure instead of zk ,„ to clearly 

annotate that the calculated partial derivatives are functions of x'm for m= \,2,...,Mlrajn 

and W. The normalized (or standardized) training exemplars x'jm  for / = 1,2,...,I and 

for m = 1,2,..., Mlrajn are used so that the features are "unitless" thus preventing the input 

features with larger value from dominating. The partial derivative-based saliency 

measure as given in Equation 66 is appropriate if the training set adequately represents 

the input feature space and in particular, the boundaries separating the classes. Using 

Equation 29, the partial derivatives are calculated as: 

^M,0CW)_    d 
dx\. /* woVZw;Vj%(x»'W) 

7=1 

(67) 

^iiffl(x;„w) 
dx\. = fk 

wo,*+Zw7V.y7>(x;,,w) 
N   d f 

dx\„ 

j \ 

V 7=1 J 

Substituting Equation 32 into Equation 68: 

 L = zk„(x'm,V/).——\ £><:, -j^fa.W) 
aXi,m \j=\ dx'. 

(69) 

Knowing that 

y.i,n,(K»w) = fj w]
0J + £wjj ■ <„ 

i=\ 

(70) 

Equation 69 becomes: 

dx\. dx\ Zw72,*-// </+Z</-<» 
7=1 ;=I 

= \m(K^)-lK 
7=1 

fj-wl+yLwl-xi 
i=i 
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dz    ix'   Wl J ( ' 
—j^, = ^,mK>w)-2>7,* ■/;[ < + 2>u •<„ 

7=1 1=1 <?*;„ 
<+S^7-<m     (?1) 

1=1 

For clarity, let 

j>,(x;„,w)=/. <7+I^.-< 
;=1 

(72) 

Substituting Equation 72 into Equation (71: 

^M,(x:»>w) 

<?x;. 7=1 ;'=1 

^£L,W) aUCW)-k ^.w)V, (73) 
7=1 

Substituting Equation 73 into Equation 66, 

1 1 K   MM„ 

/: M, train k=l  m=\ 7=1 

(74) 

Those exemplars that are closest to the boundaries separating the classes will contribute 

the most to the calculation of Equation 74. 

3.4.2.2   Partial Derivative-Based Saliency Measure with Pseudo-Sampling 

The other method for calculating the partial derivative-based saliency measure 

uses a pseudo-sampling technique on the /-dimensional feature space. The pseudo- 

sampling technique uniformly divides the /-dimensional feature space into r = 1,2,...,R1 

range bins. Instead of calculating the partial derivatives at the normalized (or 

standardized) training exemplars x'm for m= l,2,...,M,ra,„, the partial derivatives are 

calculated at the midpoints of each range bin denoted as x^ for r = 1,2,. ..,i?7. The 

partial derivative-based saliency measure with pseudo-sampling can be written as a 
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function of the range bin midpoints x^ for r = l,2,...,RI and W as follows: 

^>r(x;,w) l   l K R 

dx\. 
(75) 

where A,, is the partial derivative-based saliency measure with pseudo-sampling for 

feature / = 1,2,...,I and x'jr is the normalized range bin midpoints for input / = 1,2,...,I 

and range bin r = \,2,...,R'. Note that the normalized (or standardized) range bin 

midpoints x'ir for i = \,2,...,I and for r = 1,2,...,R1 are used so that the features are 

"unitless" thus preventing the input features with larger value from dominating. 

Following the logic of the derivations for the partial derivative-based saliency measure 

without pseudo-sampling, Equation 75 can be rewritten as: 

1     1    K R 

-•—yy 
K    K     *=1 r=l 

(76) 

Those exemplars that are closest to the boundaries separating the classes will contribute 

the most to the calculation of Equation 76. The idea of the pseudo-sampling method is to 

provide a means to adequately represent the input feature space and, in particular, the 

boundaries between classes. However, empirical evidence provided by Steppe shows 

that the rankings provided by the partial derivative-based saliency measure appear to be 

similar to that provided by the partial derivative-based saliency measure with pseudo- 

sampling [136]. This conclusion makes sense since the partial derivatives, regardless if 

made at the training exemplars or at the pseudo-sampled points, are dependent upon the 

weights that were trained using the training exemplars. The weights of a trained ANN 

represent the boundaries as approximated from the training exemplars. 
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3.4.3    Weight-Based Saliency Measure 

Tarr developed a weight-based saliency measure that determines the saliency of 

feature / by summing the squared values of the first layer weights connecting feature i 

to the hidden nodes [152].   Tarr describes the idea behind the weight-based saliency 

measure: 

When a weight is updated, the network moves the weight a small amount 
based on the error. Given that a particular feature is relevant to the 
problem solution, the weight would be moved in a constant direction until 
a solution with no error is reached. If the error term is consistent, the 
direction of the movement of the weight vector, which forms a hyperplane 
decision boundary, will also be consistent... In a similar fashion, if the 
feature did not contribute to a solution, the weight updates would be 
random. In other words, useful features would cause the weights to grow, 
while weights attached to nonsalient features simply fluctuate around zero. 
[152: 44-45] 

The weight-based saliency measure can be written as follows: 

j 

*.=EK,)2 (77) 
M 

where r is the weight-based saliency measure for feature /' = 1,2,..../ [152]. Equation 

77 is simply the sum of the squared weights between input node / and hidden node j. 

There are three variants to the weight-based saliency measure. The first variant is the 

Euclidean norm of the weights of the feature and is typically equated by the square root 

of the sum of the squared weights emanating from a given input node and can be written 

as: 

<SZ«)2 (78) 
7=1 

where r,"1 is the first variant of T, [111, 136]. The second variant as used by Reinhart is 

the "taxi-cab" norm of the weights of the features and is calculated by summing the 
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absolute value of the weights emanating from a given input node as: 

^=ZK| (79) 
7=1 

where r,1'2 is the second variant of r. [111,136]. The third variant is the infinity norm of 

the weights of the feature and is simply the largest weight in absolute value of all the 

weights from a given input node: 

r;3=max{|w;.|:y = l,2,...,j} (80) 

where r/3 is the third variant of r. [111]. 

Utilizing the triangle inequality [2], Steppe derived the theoretical relationship 

between the partial derivative-based saliency measure in Equation 74 and the second 

variant of the weight-based saliency measure in Equation 79 as: 

A;<0'T/
2 (81) 

where O is a vector of constants [136]. 

Note that the input features must be normalized or standardized when using any 

of the weight-based saliency measures. 

3.5    Feature Screening 

Feature screening methods provide a way to determine the parsimonious set of 

salient features while maintaining good classification accuracy. Whereas feature saliency 

measures help to rank order input features, feature screening methods provide a means to 

remove irrelevant and/or redundant input features. The feature screening method 

developed by Setiono and Liu utilizes a penalty term on the error function while training 

a feedforward MLP ANN in order to distinguish irrelevant input features using a weight- 
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based saliency measure. The Setiono-Liu screening method uses CA as a MOE. The 

feature screening method developed by Belue and Bauer utilizes an injected noise 

feature. Salient features are distinguished from nonsalient features using confidence 

intervals around the saliency measure (both a partial derivative-based saliency measure 

and a weight base saliency measure are presented). Confidence intervals for the saliency 

measures are attained from training the feedforward MLP ANN at least 30 times.. The 

feature screening method developed by Steppe and Bauer improves upon that of Belue 

and Bauer by incorporating either a paired Mest or a Bonferroni joint hypothesis test in 

addition to reducing the number of trained ANNs required to at least 10. 

3.5.1    Error Term Penalty Function 

The screening method proposed by Setiono and Liu provides a method for 

removing irrelevant and redundant features in a feedforward MLP ANN [132]. The 

Setiono-Liu screening method assumes that the important information for determining 

feature saliency lies in the first layer weights [132]. Their screening method augments 

the error term by an adaptive penalty function on the first layer weights of the form: 

p^»u = yfffl + *2tiJ (82) i + p ■ wu 

where e,, e2, and ß are user-defined parameters [132]. A plot of the recommended 

initial penalty function with e,= 0.1, e2= 0.0001, and /?=10 is shown in Figure 13. 

The penalty function serves as a complexity measure of a feedforward MLP ANN that 

was developed for use as a network pruning algorithm [131]. The objective of Equation 

82 is to force as many first layer weights as possible to zero during training since a 
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Figure 13. Setiono-Liu Penalty Function on the First Layer Weights 

weight with a small magnitude will incur almost no penalty. On the other hand, a weight 

with a large magnitude will incur a penalty during training that increases as a quadratic 

function of the weight's magnitude. The user-defined parameters e,, e2, and ß 

determine the range over which the value of the penalty function is approximately equal 

to €,. 

Setiono-Liu Screening Method 

1. Set  the   allowable   maximum   decrease   in   CAlesl   denoted   as   ACAlesl 

(A CAlest = 3% is recommended). 

2. Normalize or standardize the input features. Separate the input feature set into 
a training set and a test set. 

3. Initialize the weights.   Train a feedforward MLP ANN with all available 
features. Compute CAlrain and CAlesl following Equations 11 and 12 . 
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4. For 1 = 1,2,...,/, drop feature x, from the ANN by setting 

w)j = 0 V j = 1,2,... J. Compute CAtest without feature x.,, denoted as CA'lexl, 
following Equations 11 and 12. 

5. Determine max(c4^.,) and the average of CA\esl denoted as CA^, where 

CÄL=yicAL, (83) 

6. IfCAlesl-m^(CA;esl)<ACAlexl: 

a. Drop the feature and the first layer weights associated with the highest 

b. Set 7=7-1. 

c. SetC4e,=max{c4e.s„max(c4,,)} 

d. Update   penalty   parameters   for   all   features   7 = 1,2,...,/    with 
CA\es, > Cl;exl so that e, (i) = 1.1- e, (/) and e2 (/) = 1.1- €2 (i). 

e. Update   penalty   parameters   for   all   features    i = l,2,...,I    with 

CAL, < CÄL so that e, (i) = ^ and e2 (/) = ^&. 

f. Go to Step 3. 

7. Else stop. 

The Setiono-Liu screening method produced good results in many classification 

problems using the following classification data sets: Monks, IBM, Wisconsin Breast 

Cancer, United States Congressional Voting Records, Pima Indians Diabetes, and Sonar 

Targets [132]. 

3.5.2   Injecting Noise 

The Belue-Bauer screening method was the first to inject a noise-like feature into 

a feedforward MLP ANN to use as a baseline for determining feature saliency [11, 12]. 

This approach can use either the partial derivative-based saliency measure with pseudo- 

sampling A, in Equation 76 or the weight-based saliency measure T. in Equation 77. 
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The Belue-Bauer screening method trains at least 30 ANNs so that an upper one-sided 

confidence interval may be constructed around the saliency measure of the injected noise 

feature [11,12]. A feature with an average saliency measure that falls within this upper 

one-sided confidence interval is considered to be noise-like or nonsalient. The 

distribution of the average saliency of a feature is assumed to be normally distributed 

based upon the Central Limit Theorem (CLT) [88]. 

Belue-Bauer Screening Method 

1. Determine the total number of training sessions G > 30. Set g = 1. 

2. Determine the level of significance a. 

3. Augment the feature input set with a uniformly distributed U(0,1) noise 
feature N. 

4. Normalize all input features. 

5. Separate the input feature set into a training set and a test set. 

6. Initialize the weights. 

7. Train a feedforward MLP ANN with all available features. 

8. Compute the saliency of feature z' = l,2,...,7 for training session 
g = l,2,...,G using a partial derivative-based saliency measure with 

pseudo-sampling denoted as Aig following Equation 76 or using a 

weight-based saliency measure T. g following Equation 77. 

• 9. Compute the saliency of the injected noise feature N for training session 

g = \,2,...,G denoted as ANg following Equation 76 or rNg following 
Equation 77 

10. If g < G, set g = g +1 and go to Step 5. 

11. Calculate the observed average saliency of feature i = 1,2,..., I denoted as 

A, or r. such that: 
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~      1    G ~ _     1    G 

A/=7^2X* or r/=77-Z^ 
°" *=1 G g-l 

(84) 

12. Calculate the observed average saliency of the injected noise feature N 

denoted as AN or fN in a fashion similar to Equation 84. 

13. Compute the one-sided upper 100%-(l-ar) confidence interval (CI) for 

the expected saliency for the injected noise feature denoted as u-K or 

uT suchthat: 

Ml      <AN+ta«-l 
(S;      } 

VVGy 
or MrN  <^N+ta,G- 

\4GJ 
.(85) 

where taG_i is the ? -value for level of significance a and G -1 degrees 

of freedom and S. is the sample standard deviation of A„ for 

g = 1,2,..., G computed as: 

5,   = 
A",if-A" 

G-\ 
(86) 

5^is the sample standard deviation of rNg  for g = l,2,...,G  and is 
computed in the same fashion as Equation 86. 

14. Select those features i e {l,2,...,/} whose average saliency AN or fN 

falls outside the CI computed in Step 12. In other words, retain feature 
ie {1,2,...,/} if: 

Ac    \ 
Ai>^N+ta,G-l 

vvGy 

r Q   \ 
or T, >TN+tajG_l 

vvGy 
(87) 

15. Train a feedforward MLP ANN using the selected features. 

The Belue-Bauer screening method produced good results in a noisy XOR 

classification problem (noisy in that there are four added distractor features which are 
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known to be nonsalient) and a four-class problem with bivariate normally distributed 

input features [11,12]. 

3.5.3   Improvements to Injecting Noise 

The Steppe-Bauer screening method improves on the statistical test performed by 

Belue-Bauer screening method by using a paired t -test or a conservative Bonferroni joint 

test to compare the saliency for feature i = 1,2,...,/ to that for an injected noise feature 

[136, 137, 140]. The Steppe-Bauer screening method trains at least 10 ANNs so that the 

paired t-test or Bonferroni joint test can be conducted [136, 137, 140]. The approach 

can use either the partial derivative-based saliency measure A,, in Equation 74 or the first 

variant of the weight-based saliency measure r,"1 in Equation 78 [136, 137, 140]. Like 

the paired / -test, the Bonferroni joint test is a paired test since it also is performed by 

comparing pairs of observed averages. A paired test is necessary since the saliency 

values can be different from problem to problem and thus, the magnitude of the injected 

noise feature should be characterized for the problem at hand [136, 140]. In addition, 

feature saliency measures computed within the same feedforward MLP ANN are likely to 

be correlated [136, 140]. Finally, the saliency for feature /' = 1,2,...,/ and that for an 

injected noise feature are dependent [136, 140]. The Bonferroni joint test is more 

conservative than the paired t -test.  The Bonferroni joint test utilizes a family level of 

cc 
significance — whereas the paired t -test uses level of significance a. 

Steppe-Bauer Screening Method 

1.   Determine the total number of training sessions G > 10. Set g = 1. 

80 



2. Determine the level of significance a. 

3. Augment the feature input set with a uniformly distributed U(0,1) noise 
feature N. 

4. Normalize all input features. 

5. Separate the input feature set into a training set and a test set. 

6. Initialize the weights. 

7. Train a feedforward MLP ANN with all available features. 

8. Compute the saliency for feature i = 1,2,...,/ for training session g using a 
partial derivative-based saliency measure denoted as A,,   following Equation 

74 or using a variant of a weight-based saliency measure  T*
1
    following 

Equation 78. 

9. Compute the saliency for the injected noise feature N for training session g 

denoted as A^ following Equation 74 or r'N\g following Equation 78. 

10. Compute  the   difference   Dig   between  the   saliency  value   for  feature 

z' = 1,2,...,/ and that for the injected noise feature N for training session 
g= 1,2,...,G so that: 

A,g=A,g-A^orD,g = ^-<g (88) 

11. If g<G,set g = g + l and go to Step 5. 

12. Calculate the observed average difference Dt between the expected saliency 
value for feature i = 1,2,...,I and that for the injected noise feature N as: 

Ä=^iX (89) 
O g=l 

13. Calculate the sample standard deviation of Dt denoted as Sn : 

Z(A,-Ä) 
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Perform     i = \,2,...,I  paired   t-tests and Bonferroni joint tests on the 

following hypothesis: 

Ha:   //A>0 

where nD is the expected difference between the saliency value for feature 

i = 1,2,...,/ and that for the injected noise feature N such that: 

MD^^-MA,   or   vDl = MT>> ~ Mrx (91) 

where //A. or /^vl   denote the expected saliency for feature / = 1,2,...,/ and 

//Av or //rWl    denote the expected saliency for the inject noise feature N. 

Compute the   t-test statistic for feature   / = 1,2,...,/   denoted as   tsi   is 
calculated as: 

Ä 
tsj=^-h- (92) 

/4G 

For / = 1,2,...,/, reject H0 if tsi > taG_x for the paired t -test. 

For / = 1,2,...,/, reject H0 if tsj > ta      for the Bonferroni joint test. 
—,G—1 / 

14. Using either the paired t -test or the Bonferroni joint test, select those features 
i = 1,2,...,/ that reject H0. 

15. Train a feedforward MLP ANN using the selected features. 

The Steppe-Bauer screening method requires that the saliency A; or r/1 for 

feature / = 1,2,...,/ for training session g = \,2,...,G and the saliency ANg or rf for 

the injected noise feature N for training session g = 1,2,...,G are normally distributed 

random variables [136, 137, 140]. If not, the conditions of the Central Limit Theorem 

(CLT) should be applied. An assumption of normality via the CLT is reasonable for the 
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partial derivative-based saliency measure Aig or ANg so long as Mlraill>30. An 

assumption of normality via the CLT is also reasonable when G > 30. The Steppe-Bauer 

screening method requires that the saliency Ajg or tfg for feature z' = 1,2,...,/ for 

training session g=l,2,...,G is identically and independently distributed (IID) with 

expected saliency //A. or //r,„ and variance a2
Aj or a2

vl . Likewise, the saliency AN    or 

T^g for the injected noise feature N for training session g = 1,2,...,G is assumed to be 

IID with constant expected saliency juAf/ or //r„, and variance a2
A   or <r2

v,. 

The Steppe-Bauer screening method produced good results in a noisy version of 

Fisher's iris classification problem and a real-world armor piercing incendiary projectile 

classification problem [136, 137, 140]. 

3.6    Backwards Screening versus Forward Screening 

The main advantage of backwards screening methods over forward screening 

methods is computational efficiency. In a backwards screening, an ANN is first trained 

with / candidate input features for Emax epochs. One feature is removed and the same 

ANN or perhaps a new ANN is trained with the remaining / -1 input features for £raax 

epochs. Another feature is removed and the same ANN or perhaps a new ANN is trained 

with the remaining 1-2 input features for £max epochs. And so on until all candidate 

input features are exhausted. A total of / ANNs are trained in a backwards screening 

method. A MOE such as CAmlid may be used to determine the parsimonious set of 

salient features. In a forward screening method, /ANNs are trained each containing one 

candidate input feature.    One feature is retained and  /-l  ANNs are trained each 
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containing the retained feature and one of the remaining candidate input features. The 

ANNs trained may use the same ANN or a new ANN. Another feature is retained and 

1-2 ANNs are trained each containing the retained features and one of the remaining 

candidate input features. And so on until all of the input features are retained. A total of 

/•(/ + 1) 
—*-—- ANNs are trained in a forward screening method [84]. 

A MOE such as CAraUd may be used to determine the parsimonious set of salient 

features. Figure 14 shows the number of trained ANNs as a function of the number of 

candidate input features for both the backwards screening method and the forward 

screening method. The number of ANNs to train in forward screening methods increases 

exponentially as the number of candidate input features increases as seen in Figure 14. 

In practical instances, the parsimonious set of salient features derived from the 
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Figure 14. Computational Efficiency of Backwards Screening versus Forward Screening 

84 



backwards screening method may not differ substantially from that derived from the 

forward screening method [84]. 

85 



4    Literature Review of Classifying Mental Workload 

4.1 Introduction 

This chapter provides a literature review of psychophysiological approaches used 

to measure mental workload. Topics covered include a motivation for the importance of 

researching pilot workload and air traffic controller workload, physiological responses 

that measure psychological state, collecting and preprocessing EEG, challenges using 

EEG, EEG analysis techniques, and modeling mental workload using ANNs. 

4.2 Motivation to Research Pilot Workload and Air Traffic Controller Workload 

The issue of pilot workload is important to the US AF because pilot overload or 

task saturation is decreasing mission effectiveness and, in some extreme cases, causing 

loss of lives [3]. The modern aircraft is not an ideal work station for human operators. 

The fighter pilot must perform complex cognitive tasks while exposed to acceleration 

levels up to +9 Gs. Between 1986 and 1995, the USAF lost 14 of its fighter pilots to G- 

induced loss of consciousness (G-LOC) [3]. All but one of these 14 mishaps occurred 

during demanding portions of the flight under conditions of high workload [3]. These 

mishaps resulted from the pilot being so task saturated, that he failed to perform an 

adequate anti-G straining maneuver [3]. Some day, instrumentation may be in every 

cockpit to monitor a pilot's workload in order to warn a pilot that overload or task 

saturation is imminent. The ability to monitor a pilot's workload will also have far- 

reaching results in the research and development of future cockpits. 
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Like flying an airplane, air traffic control has long been regarded as a complex, 

demanding, and at times task saturating endeavor. In the past decade, air traffic control 

workload has become a particular concern of the Federal Aviation Administration (FAA). 

This is primarily due to the increased traffic load in our national airspace system. 

Reports from NASA's Aviation Safety Reporting System show that controller errors (i.e. 

monitoring failures, improperly executed handoffs, wrong heading assignments, or wrong 

altitude assignments) are associated most frequently with increases in workload factors 

such as traffic volume and frequency congestion [96]. The FAA's National Airspace 

Plan proposes to increase the automation of air traffic control in order to decrease air 

traffic controller workload and safely meet the ever rising demand for air traffic services 

[34]. Relevant measures must be developed in order to effectively show that automation 

is indeed lowering the workload of air traffic controllers [15, 177]. 

4.3    Physiological Responses that Measure Psychological State 

There is a tremendous amount of research that has been conducted that shows that 

there are indeed consistent changes in several physiological responses that are related to 

the nature and level of mental activity. Measured physiological responses that are 

associated with psychological state are termed psychophysiological measures. 

Psychophysiological measures can be continuous, non-intrusive, and relatively easy to 

collect [169, 170, 175, 177]. Attempts to model mental activity using 

electrophysiological responses thus far have been initially successful and show much 

promise. Consistent measurements of physiological responses shown to be related to the 

nature and the intensity of mental activities are the following: EOG, ECG, respiration 
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gauges, electromyography (EMG), rheoencephalography (REG), blood pressure and 

blood flow, temperature, skin resistance and skin conductance, and EEG. EEG 

measurements, which show the most promise for analyzing mental activity can be 

divided into two types: EPs and ongoing activity. 

4.3.1    Peripheral Psychophysiological Measures 

Psychophysiological measures that do not directly measure the brain are termed 

peripheral psychophysiological features. Those showing the most promise are EOG, 

ECG, respiration measures, and REG. There are several other peripheral 

psychophysiological measures that are very briefly described. In the last few years, 

peripheral psychophysiological measures have been used to aid in monitoring pilot 

workload in addition to air traffic controller workload and include eye blink rate, heart 

rate, heart rate variability, and respiration rate [15,169,170,175,177]. 

4.3.1.1   Electro-oculography (EOG) 

EOG features have been shown to reflect cognitive state by monitoring eye 

movement, eye blinks, direction of gaze, and eye closure [63]. Eye blink rate increases 

reflect the deterioration in attention and performance which occur over a prolonged task 

[8, 10]. An increase in eye blink rate and duration indicate fatigue or lack of vigilance 

[63]. As visual information processing demands increase, eye blink rate decreases 

reflecting the brain's attempt to not "miss anything." Eye blink rate decreases and 

latency increases as mental workload increases [7]. Eye blink durations increase with 

time on task [44]. Both eye position and pupil dilation appear to vary systematically with 
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mental workload [53]. The pupils dilate with increased task difficulty, increased mental 

workload, activation, and arousal [9, 21, 29]. Eye blink rate has been shown to be a 

sensitive measure to visual workload [15, 170, 173, 175, 177]. Eye blink rate typically 

decreases when visual demands increase [15, 170, 173, 175, 177]. The power of the 

EOG signal provides eye activity information by representing both eye blinks and eye 

movement. Eye movement typically increases as visual demands increase [144]. 

4.3.1.2   Electrocardiograph)! (ECG) 

ECG provides a measure of the cardiovascular activity in terms of rate per unit 

time and change in heart period across beats. Other possible measurements include 

interbeat interval, rate-of-change, maximum beat-to-beat periods, and minimum beat-to- 

beat periods. Heart rate has been shown to increase with stress [114] and activation [29]. 

The heart rate response to stimuli in a task environment is more often characterized by a 

complex pattern of deceleration and acceleration [63]. Lacey proposes that heart rate 

deceleration reflects a receptivity to external stimulation whereas acceleration occurs if 

the situation is found, after initial attention, to warrant an increase in energy reflexes [74]. 

Heart rate increases during periods of increased mental workload such as during take-offs 

and landings [55, 117, 118]. More consistent relationships with mental workload have 

been reported for heart rate variability. The general finding has been that with increased 

attention and mental workload, heart rate variability decreases [130, 156]. A frequently 

used technique to reveal mental workload effect is a spectral analysis of the beat-to-beat 

time interval with a focus on the power in the 0.1 Hertz (Hz) band [97]. Of particular 

interest has been the component of heart rate variability related to respiratory sinus 
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arrhythmia. The beat-to-beat regularity of the heart reflects mediation by the central 

nervous system. Porges has developed a moving polynomial filter technique that 

removes the slowly shifting baseline from the interbeat interval data over time in order to 

reveal the faster oscillations due to respiratory sinus arrhythmia. [108, 109]. Increased 

heart rate is typically associated with increased workload [15, 169, 170, 175, 177]. Also, 

the variability of the cardiac rhythm decreases with increased task difficulty [15, 169, 

170, 175, 177]. Previous pilot workload research shows that heart interbeat interval 

decreases as workload increases during fighter aircraft air-to-ground missions [170]. 

4.3.1.3 Respiration Gauges 

Principal measures from respiration gauges include respiration rate, interbreath 

interval, average volume, timing of respiration, inspiratory pause, expiration, expiratory 

pause, and the volume of air expired. Mercury-in-silastic tubing strain gauges measure 

the thorax and the abdomen. Thermostors mounted in an oxygen mask sense the volume 

of air expired. Williges and Wierwille give evidence that respiration becomes more 

shallow, regular, and rapid with increased mental workload [168]. Like heart rate, 

increased respiration rate is typically associated with increased workload [15, 169, 170, 

175, 177]. Also, the variability of the breathing rhythm decreases with increased task 

difficulty [15, 169, 170, 175, 177]. Interbreath interval has been reported to decrease 

with higher levels of mental effort [20, 164, 165, 169]. 

4.3.1.4 Electromyography (EMG) 

EMG recording from  surface electrodes detect muscle tone or movement 
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mediated by selected muscle groups. The forehead and the masseter muscle (the large 

muscle used in chewing that raises the lower jaw) indicate overall tension levels [63]. 

Tension level typically averaged over 0.1 to 0.5 seconds is used to derive mean level, 

variance of the level, minimum level, maximum level, and number of increases over a 

threshold. Muscle tension increases with arousal, stress, and activation [29, 30]. 

Increased EMG activity is also associated with the onset of fatigue [63]. Several studies 

have reported relationships between increased EMG activity and increased mental 

workload or task difficulty [22,67] but it is not clear how sensitive EMG is as an index to 

small changes in mental workload. 

4.3.1.5 Rheoencephalography (REG) 

REG provides measurement of cerebral circulation, cerebral neural activity, and 

intracranial blood flow [94]. REG measures can provide indices of left and right 

hemisphere hemodynamic changes. Increasing mental activity in a given brain area is 

highly correlated with increasing intracranial blood flow in the same brain area [94]. 

REG changes to mental activities have been described by Ingvar and Risberg [64], 

Jacquy et al. [66], Montgomery et al. [93, 95], and Piraux et al. [107]. 

4.3.1.6 Other Peripheral Psychophysiological Measures 

There are many other psychophysiological measures than those described above. 

A few are mentioned here. Evoked magnetic fields have been correlated with attention 

and subjective probability [104]. In addition, blood pressure and blood flow provide 

useful  information  about  cardiovascular  status  and  complements  the  information 
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available from heart rate and heart rate variability. Core temperature monitored from a 

swallowed "pill" with telemetry and skin temperature changes have been related to 

mental workload [52]. Finally, skin resistance and skin conductance have some value 

for indicating changes in arousal and stress but have not yet shown utility for inferring 

cognitive states [63]. 

4.3.2   Electroencephalography (EEG) 

As early as 1929, Hans Berger, the discoverer of EEG, asked: 

Will it be possible to demonstrate intellectual processes by means of the 
EEG? [13: 569]. 

The development of the link between EEG and mental activity began 50 years ago 

[43].   Early investigators immediately showed that mental activity profoundly effects 

scalp electricity [43].   Since the brain is the organ responsible for evaluating sensory 

information and then making and carrying out decisions based upon that sensory 

information, ongoing activity as measured by EEG would seem to hold a great deal of 

potential for measuring mental workload. Wilson states in the preface of the special issue 

of Biological Psychology on "EEG in Basic and Applied Setting": 

The EEG can be used to derive a more complete understanding of the 
workings of the human brain and also can be correlated with human 
performance to provide insights into cognition. [171: vii] 

Peripheral   psychophysiological   measures   have   shown   limited   success   in 

classifying mental workload. Gevins performed much of the early research in correlating 

EEG to mental workload [41, 42.]  In the last few years, EEG measures have also been 

used to classify pilot workload in addition to air traffic controller workload [15, 143, 170, 

175, 177].  Measures of the brain's electrical activity have only been recently added to 
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the arsenal of pilot workload measurements in work done by Caldwell et al. [17, 18, 19], 

Russell et al. [129], Sterman et al. [141, 142, 143] and Wilson et al. [175]. EEG has also 

only been recently added to the arsenal of air traffic controller workload measurements in 

work done by Brookings et al. [15] and Wilson et al. [177]. EEG currently appears to be 

our best "window to the brain." There are generally two types of EEG data used as 

features for determining a relationship with a human activity: EPs and ongoing EEG 

activity. EPs are typically the response of an EEG channel to some stimuli and consists 

of the amplitude of the EEG channel's signal. 

4.3.2.1   Evoked Potentials (EP) 

EPs have shown to vary reliably with cognitive processes [27], selective attention 

[60], expectancy [148], discrimination processes [112], and response preparation [159]. 

There is a body of research that has shown relationships between EPs and mental 

workload. There is evidence that EPs are sensitive to the cognitive processes affected by 

mental workload [98]. In almost all cases, averaged EPs are used. Single trial EPs still 

require much research. 

In 1995, Skrandies used averaged EPs to analyze mental activity evoked by 

localized visual stimuli and by stereroscopic stimulation [134]. He showed changes in 

averaged EPs by a checkerboard reversing in contrast [134]. Skrandies also 

demonstrated changes in averaged EPs by a stereoscopic checkerboard pattern moving in 

depth [134]. In addition, Skrandies showed changes in averaged EPs during the time 

course of perceptual learning in human adults [134]. 

Ullsperger and Grune successfully used the P300 component of averaged EPs 
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during mental comparison of compound digits in 1995 [155]. The test subject was asked 

to decide whether a physically larger digit was numerically larger or smaller than a 

physically smaller one. The averaged P300 amplitude increased with increasing 

differences between the numbers compared [155]. 

Trejo et al. utilized EPs in 1995 to index performance in visual display- 

monitoring tasks. For signal detection and running memory, averaged P300 amplitudes 

increased when the task was engaged and was greater for accurate response trials then 

inaccurate response trials [154]. The P300 latency has been shown to vary with only a 

subset of manipulations that affect overt reaction time. This suggests that the timing of 

the P300 indexes the completion of a stimulus evaluation process, independent of the 

response selection process [86]. Steady-state EPs elicited by rapid, periodic stimulation 

by a checkerboard have also been reported to reflect mental workload when the 

checkerboard was presented concurrently with task performance [177]. 

Hohnsbein et al. showed in 1995 that increases in mental workload can induce 

acceleration or deceleration of specific processing stages which can be monitored or 

observed by latency changes of affiliated EPs [61]. Their approach established a 

relationship between EPs and information processing stages. The P300 component can 

show both stimulus evaluation and response selection [61]. Hohnsbein also demonstrated 

that as time pressures increase, the latency of the P300 component for response selection 

was shortened [61]. 

The results from a 1995 study on Navy radar operators by Kramer et al. also 

suggest that EPs are an effective method for evaluating increases in mental workload in 

complex tasks [73]. Amplitudes of the N100 and N200 components decreased during a 
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low-load radar monitoring task and then increased during high-load radar monitoring 

tasks [73]. The load of the radar monitoring task varied in the density and type of targets 

to be detected and identified. 

4.3.2.2   Ongoing Electroencephalography (EEG) 

It wasn't until the early 1990s that derived measures from ongoing EEG proved to 

be reliable indicators of mental workload. In 1995, Wilson and Fisher were able to 

classify with 86% accuracy which of 14 tasks each of seven subjects had performed using 

ongoing EEG activity [174]. The tasks used by Wilson and Fisher included auditory and 

visual stimuli, visual and auditory memory tasks, a spatial processing task, and a visual 

monitoring task. The memory, spatial, and monitoring tasks each had two levels of 

difficulty. The artifact-removed EEG signal was processed via a fast-Fourier transform 

(FFT) and divided up into frequency bands as summarized in Table 3. The spectrum 

power of each frequency band proved to be the most reliable measurement. This study 

by Wilson and Fisher demonstrated that EEG can be used to discriminate between human 

cognitive activity involving a number of different tasks [174]. 

Sterman et al. utilized ongoing EEG during signal detection, flight simulation, and 

actual flight performance [141, 142, 143].   Their study provided evidence that distinct 

Table 3. Frequency Band Designations 

Band Symbol Frequency 

Delta A 1.0-3.0 Hz 

Theta 9 4.0 - 7.0 Hz 

Alpha a 8.0-12.0 Hz 

Beta ß 13.0-30.0 Hz 

UltraBeta juß 31.0-42.0 Hz 
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EEG frequency changes are related to psychomotor behavior, signal processing, and 

intrinsic attentional modulation during complex performance. The research by Sterman 

et al. indicated that EEG can provide a valid and objective index for mental effort and, in 

addition, may reveal task-related cognitive resource allocation, task mastery, and task 

overload [141,142,143]. 

Gundel et al. showed a direct relationship in 1995 between levels of sleepiness 

and ongoing EEG activity in airline pilots [51]. Their study utilized broadband power in 

four bands (A,0,a, and ß), a desynchronization index, and a peak frequency [51]. 

Horst ranks EEG as the top feature for demonstrating a relationship with mental 

activities as in the following circumstances: 

Changes in the predominant frequencies in the EEG with levels of arousal 
and activation have been known for some time [80, 83]. An alert person 
performing an engaging task shows predominately low amplitude, fast 
frequency ß (13-30 Hz) activity. An awake, but less alert, person shows 
an increased incidence of high amplitude a (8-12 Hz) activity. With the 
onset of drowsiness, slower frequency 6 (4-7 Hz) activity enters the 
spectrum and in the early stages of sleep, very high amplitude, slow 
frequency A (1-3 Hz) waves dominate. The generalized effect of stress, 
activation, or arousal is, therefore, a shift towards the faster frequencies, 
often with an abrupt blocking of the a rhythm [29, 83]. Fatigue and 
boredom generally shift the spectrum in the other direction towards the 
lower frequencies. [63: 31 ] 

John and Easton's 1995 study investigated both ongoing EEG activity and EPs 

[68].   John and Easton used "tracer strategy" to show that different levels of mental 

workload such as easy, moderately difficult, and extremely demanding can be statistically 

monitored using power in the EEG spectrum and EP waveshapes [68]. Their method was 

applied during performance of an audio-visual continuous pursuit task in which the target 

and pursuer were labeled at different frequencies and during performance of a delayed 
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match from sample tasks in which sets of letters, numbers, or faces modulated at a 

specific frequency had to be retrieved from working memory [68]. 

Past investigations show psychophysiological features derived from EEG as good 

indicators of mental workload [15, 41, 42, 46, 47, 49, 129, 143, 170, 174, 177]. 

4.4    Collecting and Preprocessing Electroencephalography (EEG) 

In this research, EEG from as little as six channels up to 128 channels can be 

collected from electrode sites located on the head using the Workload Assessment 

Monitor (WAM) [172]. One or two electrodes typically serve as reference. The location 

of the sites are based on the International 10-20 system. Figure 15 and Figure 16 show 

the locations of six electrode sites used in this research. The electrodes in Figure 15 are 
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Fz, Cz, Pz, T5, T6, and 01. The electrodes in Figure 16 are FP1, Fz, C3, C4, P3, and P4. 

EEG data for classifying pilot workload and air traffic controller workload is 

typically sampled by the WAM at 128 Hz [129]. The WAM preprocesses the EEG 

signals. First, the EEG data is amplified 60,000 times using bioamplifiers with filter 

cutoff settings at 1.0 Hz and 40.0 Hz [129]. Then, the WAM removes all artifacts caused 

by eye blinks [172]. 

The preprocessed data from the WAM is then further processed using MATLAB 

code. One way of processing the EEG is to take a 64-point, 1-Hz resolution FFT every 

second [129]. Then, the power spectral density is calculated using the direct method of a 

periodogram [129]. A 10-second window with 50% overlap is applied for smoothing 

processes (prior pilot workload classification methods, including discriminant analysis 
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and Bayes quadratic classification, indicate that this results in the highest workload 

classification accuracies) [129]. The periodogram is then grouped into frequency bands 

as listed in Table 3 or in more detail as listed in Table 4. 

Both the logarithm (log) of the average power and the variance of the power over 

each window for each frequency band for each electrode may be calculated to provide 

features [129]. The log of the average power and the variance of the power over each 

window have thus far been good features of EEG for classifying pilot workload [129]. 

4.5    Challenges Using Electroencephalography (EEG) 

EEG shows the most promise of being sensitive to the levels or intensity of 

mental activity such as mental workload. The use of EEG for classifying types of mental 

activities and for classifying the levels of these mental activities is only in its infancy. As 

such, there are challenges facing the use of EEG for measuring mental workload. 

Table 4. Alternate Frequency Band Designations 

Band Symbol Frequency 

Delta A 1.0-3.0 Hz 

Theta e 4.0 - 7.0 Hz 

Alpha a 8.0-11.0 Hz 

Alphal 
«i 

8.0 - 9.0 Hz 

Alpha2 a2 10.0-11.0 Hz 

Betal A 12.0 -14.0 Hz 

Beta2 A 15.0-30.0 Hz 

UltraBetal MA 31.0-36.0 Hz 

UltraBeta2 M 37.0 - 42.0 Hz 
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4.5.1 Evoked Potentials (EP) 

A major issue with using EPs is that since EPs simply use the amplitude of the 

EEG signal, single trial EP analysis is difficult to do because the signal-to-noise ratio 

(SNR) between a typical EP and the ongoing EEG activity is around -20 decibels (dB). 

As such, experiments are set up to average 30 to 50 trials of the EP. Problems with this 

include synchronizing the beginning and end points of the stimuli. Other problems 

develop when the length of the stimuli differs. 

4.5.2 Ongoing Electroencephalography (EEG) 

This research will use ongoing EEG. There are several challenges, though, to 

using ongoing EEG. 

4.5.2.1   Nonstationarity 

The EEG signal is very complex. It varies in time and is thus typically 

nonstationary. This may cause problems with some analysis methods. Attempts have 

been made to make EEG quasistationary usually by subdividing the EEG into "epochs" 

with the same statistical properties. (Note to reader: Do not to confuse the term epoch 

with the same typically used in ANNs). In a study conducted by Isaksson and Wennberg, 

some 90% of the EEG signals investigated had time-invariant properties after 20 seconds, 

whereas less than 75% remained time-invariant after 60 seconds [65]. 

Empirical observations indicate that EEG obtained under equivalent behavioral 

conditions show highly stable characteristics [100]. Since behavioral conditions can 

change in a very short period of time, it is safe to assume that relatively short period EEG 
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time intervals around 10 seconds recorded under constant behavioral conditions are 

quasistationary [100]. Elul remarked that EEG is related to the intermittent changes in 

the synchrony of cortical neurons and so EEG should be characterized as a series of short 

time periods instead of as a continuous process [32]. To remedy this problem, all 

ongoing EEG used in this dissertation will be averaged over a 10-second moving window 

with 50% overlap as already mentioned in Section 4.4. 

4.5.2.2 Cross Correlation 

Not only is EEG typically nonstationary, but adjacent samples of the EEG are 

usually highly correlated. As such, consecutive samples of EEG are usually not 

independent. In the space dimension, the EEG is dependent on the location of the 

electrodes on the head. The montage of the electrodes must be carefully selected so as to 

reflect necessary topographic characteristics. Decisions as to the number of electrodes 

must also be decided. For this research, only six electrodes will be used to account for 

these shortcoming. 

4.5.2.3 Consistency 

Many factors may effect an individual's EEG: sex, age, medication, sleep, coffee, 

food, et cetera. An individual's ongoing EEG response to a stimuli may change day-to- 

day. It may even change within a day depending upon the person's behavioral state or 

when he had his last cup of coffee. There is also no assurance that the EEG of individual 

A may be the same as individual B.    This research will take these drawbacks into 
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consideration where possible.   These consistency issues, though, are limitations to this 

dissertation. 

4.5.2.4 Relationship between Electroencephalography (EEG) and Human Mental 

Activity 

Problems may exist in attempting to correlate EEG features to some component of 

human mental activity. Many statistical correlation techniques assume a linear 

relationship. This may not be a valid assumption, especially when mother nature and the 

human body is involved. As such, nonlinear techniques using feature saliency measures 

in ANNs (see Section 3.4) are utilized in this dissertation. There also may be serious 

cross-correlation between features, especially among channels that are spatially close to 

each other. Though feature saliency measures do not directly account for cross- 

correlation, this research will use saliency screening methods in ANNs (see Section 3.5) 

for determining parsimonious sets of salient features. These methods may account for 

cross-correlation. 

4.5.2.5 Quantification 

In order to discover, in the EEG, data relevant to some component of human 

mental activity, quantification of the EEG signal must take place. Classical 

quantification of the EEG signal involves measuring frequency and / or amplitude [100]. 

Major problems to finding the relationship between EEG and human mental activity 

hinges on whether EEG signals change in relationship to human mental activity. It also 

depends upon how synchronous the EEG signals really are to different derivations of 
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human mental activity. Quantification of the EEG attempts to describe numerically the 

EEG phenomena of spikes, sharp waves, and other abnormal patterns. EEG is a 

stochastic process with some measurable statistical measures like average amplitude and 

average frequency. The EEG may be characterized by its probability distribution, its 

moments (i.e. mean, variance, skewness, and kurtosis), its frequency spectra, or by its 

correlation function. For this research, ANNs will be used for modeling the EEG since 

ANNs do not make any assumptions about the functional form of the underlying 

population density distribution of in the input features [160]. 

4.5.2.6   Sampling Frequency 

Selection of a sampling frequency is key to the success of quantifying EEG. 

Equidistant time intervals are highly recommended. The choice of a sampling frequency 

is typically based upon Nyquist's sampling theory which states that the sampling 

frequency must be at least equal to 2-fN where fN is the folding or Nyquist frequency 

assuming that the EEG signal denoted as x(t) has a frequency spectrum denoted as 

X(f) such that X(/) = 0 for fN . The sampling theorem forces the use of a low-pass 

filter to ensure that all frequency components greater than fN are removed. If 

neurocognitive relationships are sought after, a very small sampling frequency must be 

used since some cognitive functions change in a fraction of a second. To account for 

proper sampling, this research will sample the EEG at 128 Hz as detailed in Section 4.4. 

4.6    Previous Electroencephalography (EEG) Analysis Methods 

There are many EEG analysis methods that can be utilized to possibly discover 
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EEG data relevant to some component of human activity. EEG analysis methods can be 

divided into five groups: 

1. Nonparametric methods 
2. Parametric methods 
3. Mimetic analysis 
4. Matched filtering or template matching 
5. Topographic analysis [100]. 

These analysis methods, their advantages and disadvantages, and their 

assumptions are briefly described. 

4.6.1    Nonparametric Methods 

The majority of the methods for analyzing EEG are nonparametric. 

4.6.1.1 Amplitude Distributions 

An EEG signal can be characterized by its amplitude distribution and moments. 

The first question typically asked is whether the amplitude distribution is normal. There 

have been several studies that determined the appropriate sampling rates and epoch 

lengths in order to properly assume that the EEG amplitude distributions are normal. 

However, all of these studies violated either the independence or stationary requirement 

of goodness-of-fit tests. So the question still remains as to whether EEG is a Gaussian 

phenomenon. 

4.6.1.2 Interval Analysis 

Interval analysis is a very simple method to analyze EEG signals that has found 

success in quantifying EEG changes induced by psychoactive drugs, in monitoring EEG 

changes during anesthesia, in psychiatry, and in sleep research [100].   Interval analysis 
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computes the zero-crossings of the original EEG signal along with those of the signal's 

first and second derivatives. Disadvantages to interval analysis include its 

underestimation of the contribution of low frequency components and its overestimation 

of fast frequency components. Another disadvantage of interval analysis is its sensitivity 

to high frequency noise. This problem of high frequency noise sensitivity can be 

alleviated by creating a dead band so that no zero-crossings can be detected when the 

signal has an amplitude between those limits. The major advantage of internal analysis 

is ease of use. 

4.6.1.3 Interval-Amplitude Scatter Plots 

Interval-amplitude analysis decomposes the EEG into waves or half-waves, 

defined both in time, by the interval between zero-crossings, and in amplitude by the 

peak-to-trough amplitudes. This requires a minimum sampling rate of 250 Hz and a dead 

band to avoid the influence of high frequency noise. 

4.6.1.4 Correlation Analysis 

Correlation analysis was used extensively in the 1950s and 1960s. It is the 

forerunner to today's spectral analysis. Computing the correlations were time consuming 

and thus, this method was not widely used. A simplified correlation function called the 

"polarity coincidence correlation function" replaced the signals x(t) and x(t-lag) for 

t = 1,2,.. .T and for lag = 1,2,... L by their signs. Another form of simplified correlation 

is called "auto-averaging" and consists of making pulses at a certain phase of the EEG 

(i.e. zero-crossing, peak, and trough) that are then used to trigger a device that averages 
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the same signal (auto-averaging) or another signal (cross-averaging). This allowed for 

the detection of rhythmic EEG. However, correlation analysis is difficult when more 

than one dominant rhythm is present. The correlation analysis method has lost its 

popularity with the advent of the FFT. 

4.6.1.5 Complex Demodulation 

Complex demodulation allows for a particular frequency component such as 10 

Hz to be detected and followed as a function of time. However, a priori knowledge of the 

component is necessary. An "analysis oscillator" at the given frequency (in this case, 10 

Hz) is set and the oscillator output and the EEG are then multiplied. The product 

contains components at the sum (20 Hz) and at the difference (0 Hz). The product is 

smoothed so that only the difference (0 Hz) is considered. Now, phase and amplitude of 

EEG frequency components can be detected and their modulation in time determined. 

Complex demodulation has been successfully used to analyze rhythmic components of 

visual EPs and sleep spindles. This method is very similar to Fourier analysis. 

4.6.1.6 Power Spectra Analysis 

Power spectra analysis provides the most appropriate method of EEG analysis. 

Analogue filtering was used to decompose EEG signals into frequency components until 

the 1960s when the FFT was developed. A spectral window, defined by its form and 

duration, must be selected. Using a window with a large base reduces the variance but 

increases the bias. An excessively large window greatly decreases the frequency 

resolution.  The selection of the spectral window depends upon the practical use of the 
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spectral analysis. For typical clinical use, it is common to compute average spectra by 

making averages of ensembles of 10 epochs of 10 seconds using an elliptic window five 

samples wide for smoothing [100]. 

There are many ways to plot power spectra. The log of the power intensity is 

typically used instead of power intensity because confidence intervals of the log power 

intensity are independent of the spectral intensity. The square root of the spectral 

intensity may also be used. If attention is to be placed on the lower frequencies (A and 

9), it is highly recommended to compress the frequency scale in the higher frequencies 

by plotting log Hz. 

4.6.1.7   Time- Varying Spectra 

Time-varying spectra are computed to analyze slowly changing EEG and is useful 

for an overall view of EEG spectral changes for intraoperative or sleep monitoring [100]. 

Contour plots may provide an interpretable visual display of the evolution of power 

spectra as a function of time. Time-varying power spectra is particularly helpful when 

trying to characterize EEG changes in relation to a specific event such as eyes closing, 

eyes opening, and word association tests [100]. The difficulty here lies in quantifying 

time-locked changes in EEG spectra by ensemble averaging. 

Since baseline EEG (i.e. pre-event segment) can change trial to trial, statistical 

analysis based on ensemble averages and standard deviations can be at times difficult. 

Because the baseline values may vary dramatically, one runs the risk of failing to detect 

real EEG changes related to a particular event if one compares only mean values.  One 
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proposal to alleviate this problem is to analyze EEG epochs immediately before and 

immediately after the event causing the change. 

Statistical evaluation of spectra is possible to determine if two sets of EEG power 

spectra differ significantly. The sets might have been obtained under two different 

behavior conditions (i.e. placebo versus psychotropic drug). It is necessary to state that 

the power spectrum of EEG is an estimate and such, it has variance. Analysis of variance 

(ANOVA) and t -tests are often conducted. Since the normality of EEG is not known, 

though, nonparametric tests such as the Wilcoxon or Mann-Whitney may be more 

applicable. 

4.6.1.8   Cross-Spectral Analysis 

Cross-spectral analysis is an important part of EEG spectral analysis because it 

allows for the quantification of the relationship between different EEG signals. Cross- 

power spectrum is the product of the smoothed FFT of one signal and the complex 

conjugate of another. A so-called coherence function is then computed and normalized. 

The coherence function has been used in several investigations of EEG signal generation 

and their relation to brain functions, including studies of hippocampal 9 band rhythms, 

on limbic structures in humans, on thalamic and cortical a band rhythms, on sleep stages 

in humans, and on EEG development in babies [100]. The major disadvantage to the 

coherence function is its assumption of a linear relationship between the two EEG 

signals. 

The use of coherence functions brings up some interesting points. For example, is 

it possible to differentiate spectral components with frequencies lying close to each 
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other? In the case of a and // band rhythms (the // band frequency, though not listed 

in Table 3 or Table 4, is slightly higher than the a band frequency) it is near impossible 

to differentiate between the two in power spectra plots. Yet, a and ju band rhythms are 

easily separated using coherence functions. As such, coherence may show promise for 

determining topographical relations. 

A so-called phase function can also be developed by cross-spectral analysis. A 

phase function provides information on the temporal relationship between two EEG 

signals. A time delay between two signals can be concluded with certainty only if there 

is a linear relationship between phase and frequency within a certain frequency band. 

4.6.1.9   Bispectral Analysis 

The main problem with using the power spectrum is that it assumes a stationary 

Gaussian process. Bispectra analysis allows for a way to analyze second-order spectra 

called the bispectrum. The bispectrum has not been used much except for showing a 

relationship between harmonic frequency components. 

4.6.2   Parametric Models 

No one yet knows if models of the biophyscial processes underlying the 

generation of EEG are more appropriate. There are a good number of parametric 

biophysical models to describe a band rhythm generation. Most utilize a filter network 

with parameters related to physiologically acceptable variables. Parametric models have 

thus far been successful in detecting epileptiform spikes and sharp waves [100]. 
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4.6.2.1 Autoregressive Model 

An autoregressive model can describe an EEG signal using just a few coefficients 

and allows for understanding of the time-varying properties of EEG. The autoregressive 

model is viewed as a filter described by a linear difference equation. The autoregressive 

model can also be used in an inverted way called the "inverse autoregressive filtering 

operation." Assuming the EEG signal is stationary, it is possible to approximate the EEG 

signal as filtered noise with a normal distribution. This inverse autoregressive filter then 

allows for the detection of nonstationarities in an EEG signal and has been highly 

successful in the detection of EEG transients of epileptics [100]. 

4.6.2.2 Kaiman Filter 

A Kaiman filter allows for the analysis of time-varying signals. The input signal 

to the hypothetical processor responsible for generating the EEG signal is assumed to be 

normally distributed noise. A model is assumed in order to represent the observed signal 

and the process dynamics are represented by an autoregressive model. The Kaiman filter 

requires a recursive algorithm that can up updated. The Kaiman filter is not simple to 

implement because it is difficult to select the order of the model and the initial conditions. 

4.6.2.3 Segmentation Analysis 

Segmentation analysis provides a way to find those segments in an EEG signal 

that have unvarying statistical properties. Each segment is thus quasistationary and of 

varying length. An autoregressive model is used to create each segment. The major 

disadvantage   to   segmentation   analysis   is   the   difficulty   of   defining   clinical- 
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neurophysiological boundaries between segments.    It may, though, prove useful in 

reducing data of very long EEG signals. 

4.6.3 Mimetic Analysis 

Mimetic analysis is based on the general idea that automatic EEG analysis should 

mirror the visual analysis performed by an electroencephalographer in his daily practices. 

This analysis method simply uses tools common to the other methods already described, 

particularly interval-amplitude analysis. This method tends to overemphasize the high 

frequency components. 

4.6.4 Matched Filtering or Template Matching 

Matched filtering or template matching uses the cross-correlation between the 

EEG signal and some a priori defined pattern. This requires that the signal be aligned 

perfectly with the pattern. This also requires a "correct" template. This does not allow 

for time-variance. For example, what if the template lasts 0.3 seconds but yet the current 

signal of interest to match it up against lasts 0.35 seconds? 

4.6.5 Topographical Analysis 

Topographic analysis shows much promise. Topographical analysis may allow 

for understanding the distribution within the skull of the generators responsible for EEG. 

The biggest problem for topographic analysis is the inter-electrode distance. This 

problem is analogous to that of sampling frequency in the time domain (see Section 

4.5.2.6).    Aliasing error is used to determine if the representation of the electrical 
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potential distribution is good. If the ordinary 10-20 electrode system is used with an 

inter-electrode distance of 4.9 cm, the aliasing error is 6%. If the distance is reduced to 

3.2 cm, the aliasing error is only 1%. 

The total number of EEG channels for topographical analysis is typically either 64 

or 128 channels depending upon the application. The first topographic maps called 

toposcopic displays modulated a series of light sources. The EEG signals were 

"visualized" in a multichannel oscilloscope and filmed. Spatial information was attained 

by watching the oscilloscope or film display. These topographic maps were difficult to 

interpret due to their complexity and variability in both time and space. Now two- 

dimensional contour plots are used. Interpolation (linear or not) is used to estimate the 

potentials between recording sites. Two-dimensional plots of averaged signals 

emphasize related EEG activity. 

The appearance of the topographic maps depends on the way the EEG signals are 

recorded (bipolar, against a common reference electrode, or against the arithmetic 

average of all electrodes) and inter-electrode distances. Some studies now even have 

movies of topographic maps. With the advent of color video technology, topographic 

maps now exist for imaging power spectrum and EPs. 

Topographic maps have been used extensively in the last few years. Topographic 

maps are widely used to assess brain function in patients suffering from brain ischemia, a 

form of obstruction of the blood supply in the brain [100]. Topographic maps have also 

been successful in displaying the regional distribution of reactivity in different frequency 

bands during auditory and visual stimulation [100]. 
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Topographical maps allow for the analysis of the relationships between regions of 

the brain. Gevins used topographical analysis to study electrophysiological correlates of 

cognitive functions to determine the degree of interdependence between brain regions 

[100]. 

4.7    Modeling Mental Workload Using Artificial Neural Networks (ANN) 

Previous research to classify pilot workload has used ANNs and, in particular, 

feedforward MLP ANNs as shown in Figure 3. The inputs to feedforward MLP ANNs 

used to classify workload may include peripheral psychophysiological features such as 

number of eye blinks, heart rate, heart interbeat interval, breathing rate, and respiration 

interbreath interval. In addition, the inputs may include features preprocessed in a variety 

of ways from EEG. 

In 1996, Russell et al. classified the mental workload of five test pilot subjects 

using number of eye blinks, heart rate, heart interbeat interval, breathing rate, respiration 

interbreath interval, and ongoing EEG activity [129]. The mental workload was 

classified as low or high via a feedforward MLP ANN using approximately 130 input 

features. Artifact-removed EEG was preprocessed by a FFT and then split up into nine 

frequency bands as summarized in Table 4. EEG features were developed using the 

average log of power in addition to the variance of the power of the frequency bands. 

The classification accuracy for five test pilot was 83% [129]. 

ANNs show promise for classifying workload using EEG data due to the 

nonlinearity of EEG data, the generalization capabilities of ANNs, and the classification 

capabilities of ANNs.   In particular, TDNNs and RNNs show promise for classifying 
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mental workload due to the temporal nature of EEG and the other psychophysiological 

measures discussed. 
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5    Feasibility Studies Using Time Delay Neural Networks (TDNN) and Recurrent 

Neural Networks (RNN) to Classify Mental Workload 

5.1 Introduction 

This chapter provides a summary of two feasibility studies that were conducted. 

The two most common measures of the brain's electrical activity are EPs and ongoing 

activity of the EEG. Previous to this work, TDNNs and RNNs had never been used to 

classify EPs, ongoing EEG, or mental workload. The first study investigated the 

feasibility of using a TDNN to detect EPs in an EEG signal. The second study 

investigated the feasibility of using an Elman RNN to classify mental workload using 

ongoing EEG activity in the presence of noise. 

5.2 Feasibility of Using Time Delay Neural Networks (TDNN) to Classify Evoked 

Potentials (EP) 

5.2.1    Introduction 

Whereas ongoing EEG focuses on a continuous recording of spontaneous brain 

electrical activity, the analysis of EPs focuses on segments of EEG activity that are 

related to (or evoked by) specific stimulus events. EPs are the small changes in voltage 

in EEG that are time locked to a stimulus or cognitive event. Two averaged EPs and 

several components (Nl, P2, N2, and P3) are shown in Figure 17 [175]. The EPs in 

Figure 17 were collected from a USAF F-4 pilot performing the oddball paradigm in 

which two different tones were monaurally delivered to the pilot via a small speaker 
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placed inside his helmet ear cup [175]. The trials were repeated 100 times and the pilot 

was instructed to covertly count the number of times one of the tones was presented and 

then report this number at the end of the test [175]. The EP at the top of Figure 17 was 

collected during a baseline condition while the pilot was performing the oddball 

paradigm only. The other EP was collected while the pilot was flying low level and 

performing the oddball paradigm. 

Analysis of EPs is predominantly accomplished using averaged EPs. Averaging 

is performed because the EEG is much larger in amplitude than the EP (especially at 

higher EEG frequencies). In fact, the SNR between an EP and EEG is typically around 

-20 dB. The maximum amplitude of an EP is usually around two microvolts and the 

maximum amplitude of EEG is usually around 20 microvolts. A large number of EPs are 

averaged in order to make distinctions between sizes and latencies of the EPs. The 

averaged EPs are then scored in terms of latencies (in milliseconds) and amplitudes (in 

microvolts) of each of several components (i.e. Nl, P2, N2, and P3). 

Most attempts at single EP analysis use a template derived from the averaged EP 

but have thus far been unreliable [20]. Only recently have investigators begun to focus 

on single EP responses. The major problem is determining what portion of the EEG 

signal is evoked by the response to the stimulus and what portion represents the 

continuation of ongoing background EEG. Unfortunately, background EEG typically 

looks like noise. If EPs are ever to be used to classify pilot workload or air traffic 

controller workload, then the ability to detect and then classify single EPs must be 

possible. The purpose of this feasibility study was to investigate the use of TDNNs to 

detect single EP responses in an EEG signal. This feasibility study has two parts. 
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Low Level Flying Segment 

Nl 

Figure 17. Averaged EP Collected from F-4 Pilot Performing Oddball Paradigm 
(Adapted from 175 with Permission from Dr. G.F. Wilson) 
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The first part attempted to detect a rectangle pulse in EEG at five varying SNRs.   The 

second part attempted to detect an EP in EEG at five varying SNRs. 

5.2.2   Data 

In order to perform EP analysis, a sampling rate of 500 Hz is typically used on the 

collected EEG signals. This required sampling rate is considerable higher than the 

sampling rate of 128 Hz which is typically employed for EEG analysis when no EP 

analysis is necessary. Since this was only a feasibility study, smaller sampling rates were 

used. 

5.2.2.1   Rectangle Pulse 

An EEG signal was generated at a sampling rate of 50 Hz by summing five 

incommensurate sine waves using the following equation: 

x(0 = 9.5-sin(2-^-1.2- — +1] + 4.4 • sinf 2 • ar • 4.1 • —) + 
V 50    ) \ 50^ 

3.4-sin 2-7T-12.9- — + 3] + 2.8• sinf 2• ^r-16.9- — + 2|+       (93) 
V 50     ) V 50     ) 

1.8-sin|2-7r-17.5- — 
50 

The development of Equation 93 was based, in part, on actual EEG data using Table 5. 

The third column in Table 5 shows the number of sine waves used to represent each band 

Table 5. Generated EEG Signal 

Band Frequency Number of Sine Waves Amplitude Ranking 

A 1.0-3.0 Hz 1 1 
d 4.0 - 7.0 Hz 1 2 

Ä 12.0 - 14.0 Hz 1 3 

Ä 15.0-30.0 Hz 2 4,5 
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in the development of the simulated EEG signal. For example, there is one sine wave to 

represent the A band, one sine wave to represent the 6 band, one sine wave to represent 

the $ band, and two sine waves to represent the ß2 band. The fourth column in the 

table shows a rank ordering of the magnitude of the amplitude for each band. Thus, the 

sine wave corresponding to the A band has the highest relative amplitude, the sine wave 

corresponding to the 6 band has the second highest relative amplitude, and so on. A 

total of 1000 samples representing 20 seconds were created such that the maximum peak 

amplitude was less than 20 microvolts. A plot of approximately two seconds of the EEG 

generated for the first part of this feasibility study is shown in Figure 18. 

Next, a rectangle pulse was created to last 0.2 seconds which is the typical amount 

of time that an EP takes place.   Since the sampling rate is 50 Hz, this equates to 10 

20 

-20 
8        8.2       8.4      8.6 8.8        9        9.2      9.4      9.6       9.8       10 

Time in Seconds 

Figure 18. Generated EEG Signal at 50 Hz 
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samples. In order to randomly place the rectangle pulse throughout the EEG signal, a 

random number generator was used to create 25 random start times between 1 and 1000. 

A start time was thrown out if it fell within 20 time samples of another start time. This 

resulted in a total of 17 rectangle pulses randomly placed throughout the EEG signal. A 

plot of approximately two seconds of the rectangle pulse can be seen in Figure 19. Five 

time series as shown in Figure 20 were created such that the SNR between the rectangle 

pulse and the EEG were different. The plots in Figure 20 are of interest to look at 

because the plots show that the human eye/brain can not detect the rectangle pulse when 

the SNR < -2.59 dB. The SNR between the rectangle pulse and the EEG for each of the 

five time series was calculated following: 

SNR = 20-lJ^^ 
VI(EEG)) 

(94) 
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Figure 19. Generated Rectangle Pulse at 50 Hz 
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where i(Pulse) is the effective value of the rectangle pulse and l{EEG) is the effective 

value of the EEG signal [70]. The effective value of a signal denoted as l(S) is typically 

computed [70] so that: 

S.2      8.4      8.6      8.8        9       9.2      9.4      9.8 
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Figure 20. Generated EEG Signal with Generated Rectangle Pulse at Varying SNRs 
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4*)=Jf jw* (95) 

where S(t) is the signal at time t and T is the total length of time the signal S took 

place. The effective value of the rectangle pulse was approximated using the trapezoidal 

rule [4] as: 

i(Pulse): 
11 

— • [max(aw/?)| + 9 • [max(awp)] + — • [max(amp)] (96) 

where max(amp)  is the maximum amplitude. Since the EEG signal was the sum of five 

incommensurate sine waves, the effective value of the EEG signal was calculated [70] as: 

I(EEG) ■■ 
timax(amPsinn)] 
w=\ (97) 

I(EEG)- |!tf+44'+M'+M'+UP .gu 

where md^\ampsi,A is the maximum amplitude of sine wave w=l,2,...,5.   Table 6 

summarizes the effective values of the rectangle pulse and EEG signal in addition to the 

SNR between the rectangle pulse and the EEG signal. The time series were divided into 

four classes as follows: 

Table 6. Effective Value of Rectangle Pulse and EEG 

Rectangle Max 
Amplitude i(Pulse) EEG Max 

Amplitude I(EEG) SNR 

200.00 180.91 20.0 8.13 +27.40 dB 
63.30 57.26 20.0 8.13 +17.41 dB 
20.00 18.10 20.0 8.13 +7.40 dB 

6.33 5.74 20.0 8.13 -2.59 dB 
2.00 1.86 20.0 8.13 -12.60 dB 
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1. EEGonly 
2. Slight chance that an EP is present 
3. EP is more than likely present 
4. EP present 

Class 1 contained all time samples that consisted of only EEG (no rectangle pulse) in 

addition to the first two time samples of the rectangle pulse: Pulsex and Pulse2. Class 2 

contained the next three time samples of the rectangle pulse: Pulse3, Pulse^, and 

Pulse5. Class 3 contained the next three time samples of the rectangle pulse: Pulse6, 

Pulse-;, and Pulses. Finally, class 4 contained the last two time samples of the rectangle 

pulse: Pulse9 and Pulsew. 

5.2.2.2   Evoked Potential (EP) 

For the second part of this feasibility study, the typical EP shown at the top of 

Figure 17 replaced the rectangle pulse and the sampling rate was increased to 100 Hz. 

2000 time samples of the EEG signal were created in the same fashion as Equation 93 

using the following equation: 

EEG(t) = 9.5 • sinf 2 • n ■ 1.2 • — + ll + 4.4 • sinf 2 • n ■ 4.1 • —1 + 
V 100    ) \ IOOJ 

3.4-sinf2-^-12.9~ + 3j+2.8-sin[2-^-16.9- —+ 2J+ (98) 

1.8-sin f t > 
2-;r-17.59- 

1007 

A plot of approximately one second of the EEG generated for the second part of this 

feasibility study is shown in Figure 21. 

The typical EP was created to last 0.2 seconds . Since the sampling rate now was 

100 Hz, this equated to 20 time samples. Another random number generator was used to 

create 25 random start times between 1 and 2000. A start time was thrown out if it fell 
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within 40 time samples of another time sample. This resulted in a total of 17 EPs 

randomly placed throughout the EEG signal. A plot of approximately one second of the 

EP can be seen in Figure 22. Note in Figure 22 that the EP has two high peaks (P2 and 

P3) and two low peaks (Nl and N2) thus allowing something for a TDNN to pick up on 

for classification purposes. Five time series as shown in Figure 23 were created such that 

the SNR between the rectangle pulse and the EEG were different. The plots in Figure 23 

are of interest to look at because the plots show that the human eye/brain can not detect 

the EP when the SNR < -9.55 dB. The SNR between the EP and the EEG for each of the 

five time series was calculated. The effective value of the EP was approximated using 

the trapezoidal rule [4]. Table 7 summarizes the effective values of the EP and EEG 

signal in addition to the SNR between the EP and the EEG signal. 

5.2.3   Methodology 

A TDNN was used in both parts of this feasibility study. 

5.2.3.1   Rectangle Pulse 

A time lag L = 10 was used in a 11-25-4 TDNN as shown in Figure 24 for 

rectangle pulse classification to account for the time of the rectangle pulse. The effective 

Table 7. Effective Value of EP and EEG 

EPMax 
Amplitude I(EP) 

EEG Max 
Amplitude. I(EEG) SNR 

200.00 6.11 20.0 8.13 -1.59 dB 
63.30 5.42 20.0 8.13 -3.53 dB 
20.00 4.06 20.0 8.13 -6.02 dB 

6.33 2.71 20.0 8.13 -9.55 dB 
2.00 1.35 20.0 8.13 -15.57 dB 

124 



20 

15 

I 

10 An    r\ 1     \ A 
M

ic
ro

vo
lts

 

O
   

   
   

   
  O

l 

\ I \ I          \   \ 

c 

UJ    -5 
LLI 

-10 1  / 

-15 u 

-20 
I i        3.1       3.2       3.3      3.4       3.5      3.6      3.7      3.8 3.9        A 

Time in Seconds 

Figure 21. Generated EEG at 100 Hz 

number of exemplars became M = 1000-10 = 990 due to the lags required. The training 

set contained Mlmin = 495 exemplars, the test set contained Mlesl = 248 exemplars, and 

the validation set contained MYalid = 247 exemplars. All inputs were standardized 

following Equation 16. All weights were initialized between -0.5 and 0.5. A separate 

TDNN was trained for each of the varying SNRs via instantaneous backpropagation 

using a fixed learning rate 77 = 0.3 and no momentum. 

5.2.3.2   Evoked Potential (EP) 

A time lag L = 20 is used in a 21-50-4 TDNN as shown in Figure 25 for EP 

classification to account for the time of the EP. The effective number of exemplars 

became    M = 2000-20 = 1980    due   to   the   lags   required.       The   training   set 
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Figure 22. Generated EP at 100 Hz 

contained Mlrain = 990 exemplars, the test set contained M,est = 495 exemplars, and the 

validation set contained MraliJ = 495 exemplars. All inputs were standardized following 

Equation 16. All weights were initialized between -0.5 and 0.5. A TDNN was trained 

for each of the varying SNRs via instantaneous backpropagation using a fixed learning 

rate rj = 0.3 and no momentum. 

5.2.4   Results 

A total of ten TDNNs were trained. Table 8 summarizes the number of epochs 

required to train each TDNN in addition to the stopping rule used. Table 9 summarizes 

the MSE for the training, test, and validation sets for the trained TDNNs. 
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Table 8. Number of Epochs Required and Stopping Rule 

Signal SNR Epochs Stopping Rule 
Rectangle +27.40 dB 25 MSElrain< 0.4 
Rectangle +17.41 dB 24 MSElrai„< 0.4 
Rectangle +7.40 dB 99 MSE,min< 0.4 
Rectangle -2.59 dB 779 MSElmi„< 0.4 
Rectangle -12.60 dB 168 Minimum MSElesl 

EP -1.59 dB 62 MSElmi)l < 0.4 
EP -3.53 dB 240 MSE,min< 0.4 
EP -6.02 dB 723 MSElmin< 0.4 

EP -9.55 dB 1352 
No significant change in MSElrajn 

or MSEtesl in over 500 epochs 
EP -15.57 dB 1308 Minimum MSElesl 

Figure 26 provides plots of the information provided in Table 9. Table 10 summarizes 

the CA for the training, test, and validation sets for the trained TDNNs. Figure 27 

provides plots of the information provided in Table 10. 

5.2.4.1   Rectangle Pulse 

The TDNNs for rectangle pulse classification performed adequately when the 

SNR was +27.40 dB, +17.41 dB, or 7.40 dB. When the SNR was -2.59 dB or -12.60 dB, 

Rectangle Pulse 

      Training Set 
Test Set 

      Validation Set 

■ 

 * 
V"--*. \ 

' \      x\ ■ 

\    \\ 
■ 

\       "^ \            '"\ 
• \             %=,.—._ 

10 15 20 25 

Training Set 
Test Set 
Validation Set 

•%* 

-14 -12 -10 

Figure 26.   MSE for Varying SNRs 
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Table 9.  MSE 

Signal SNR Training Test Validation 
Rectangle +27.40 dB 0.13 0.06 0.04 
Rectangle +17.41 dB 0.15 0.07 0.06 
Rectangle +7.40 dB 0.18 0.67 0.40 
Rectangle -2.59 dB 0.19 8.92 7.34 
Rectangle -12.60 dB 17.24 9.84 8.77 

EP -1.59 dB 0.17 0.12 0.12 
EP -3.53 dB 0.34 0.33 0.31 
EP -6.02 dB 0.40 0.66 0.86 
EP -9.55 dB 0.51 2.68 2.97 
EP -15.57 dB 0.45 10.26 13.74 

the TDNN for rectangle pulse classification did not perform adequately. At -2.59 dB, the 

TDNN did not performed adequately on the validation set and is evidenced by only 

18.75% of the Class 2 exemplars being correctly classified, 22.22% of the Class 3 

exemplars being correctly classified, and 16.67% of the Class 4 exemplars being 

correctly classified. In the majority of misclassifications at the -2.59 dB level, the 

exemplar was misclassified as belonging to Class 1. 

The TDNN for rectangle pulse classification at -12.60 dB did not perform 

adequately on its validation set, either. In fact, 0.00% of the Class 2, Class 3, and Class 4 

Table 10.  CA 

Signal SNR Training Test Validation 
Rectangle +27.40 dB 100.00% 100.00% 100.00% 
Rectangle +17.41 dB 100.00% 100.00% 100.00% 
Rectangle +7.40 dB 99.80% 95.56% 97.98% 
Rectangle -2.59 dB 98.99% 83.06% 83.40% 
Rectangle -12.60 dB 89.09% 86.29% 86.64% 

EP -1.59 dB 100.00% 99.80% 100.00% 
EP -3.53 dB 97.98% 96.77% 96.97% 
EP -6.02 dB 96.97% 95.76% 94.75% 
EP -9.55 dB 95.96% 92.93% 91.31% 
EP -15.57 dB 98.08% 87.68% 84.85% 
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Figure 27.  CA for Varying SNRs 

validation exemplars were correctly classified.   All but two validation exemplars were 

classified as belonging to Class 1. 

5.2.4.2   Evoked Potential (EP) 

The TDNNs for EP classification performed adequately when the SNR was -1.59 

dB, -3.53 dB, -6.02 dB, and -9.55 dB. The TDNN did surprisingly well when the SNR 

was -9.55 dB. The TDNN for EP classification at -15.57 dB did not perform adequately 

but it performed better than the TDNN for rectangle pulse classification at -12.82 dB. At 

-15.57 dB, the TDNN for EP classification correctly classified 96.89% of the validation 

Class 1 exemplars, 14.29% of the Class 2 exemplars, 26.67% of the Class 3 exemplars, 

and 15.79% of the Class 4 exemplars. 

5.2.5   Conclusions 

Since the actual SNR between an EP and EEG is -20 dB, it is clear from this 

feasibility study that the modeling of pilot workload in addition to air traffic controller 

workload should not utilize single event EPs.   Potential features for classifying mental 
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workload are the amplitudes and latencies of the EP components (i.e. Nl, P2, N2, and 

P3). Wilson et al. showed that the averaged amplitude of the Nl and P2 components of F- 

4 pilots performing the oddball paradigm like that seen in Figure 17 were significantly 

smaller in flight [175]. Wilson et al. also showed that the averaged amplitude of the P2 

component of F-4 pilots performing the oddball paradigm like that seen in Figure 17 was 

significantly smaller if the pilot was flying the airplane as opposed to the weapon systems 

operator (WSO) flying the airplane [175]. In addition, Wilson et al. concluded that the 

averaged amplitude of the P3 component of F-4 pilots performing the oddball paradigm 

like that seen in Figure 17 was significantly larger for the particular tone that the pilot 

was instructed to count [175]. The results obtained by Wilson et al. were averaged over 

seven F-4 pilots and over 100 trials [175]. It is necessary to first identify that an EP is 

present before determining the amplitude of its components. 

As with anything, a lot more work could be done on the pattern recognition of 

EPs in a EEG signal. Future research in this area, though not conducted in this 

dissertation, may improve upon several things. This feasibility study did not consider 

optimization of the number of time lags L . Applying Taken's Theorem as in Equation 

57 can provide an upper and lower bound to L using the fractal dimension of the EEG 

signal, the EP, or the EEG signal with the EP embedded. Another idea may be to utilize 

saliency screening methods as described in Section 3.5 to help select the optimal L . 

This feasibility study simply used the raw amplitude of the time series. There 

may be other features that can provide valuable information to a TDNN for classifying an 

EP. For example, an average of the time samples over a fixed window may be utilized in 

an attempt to smooth the "noise" of the EEG.   The standard deviation of a fixed number 
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of time samples may also provide a measure of the fluctuations in the time series so that a 

high standard deviation may flag the presence of an EP starting or an EP ending and a lo 

standard deviation would indicate the presence of no EP. 

An EEG signal with a rectangle pulse randomly placed throughout can be 

classified when the SNR is +27.40 dB, +17.41 dB, or 7.40 dB. An EEG signal with an 

EP randomly placed throughout can be classified when the SNR is-1.59 dB,-3.53 dB, 

-6.02 dB, and -9.55 dB. The actual SNR between a typical EP and EEG is -20 dB. In 

conclusion, a TDNN will more than likely not be able to classify single event EPs in real 

EEG data. 

5.3 Feasibility of Using Elman Recurrent Neural Networks (RNN) to Classify Mental 

Workload Using Ongoing Electroencephalography (EEG) 

5.3.1    Introduction 

The purpose of this feasibility study was to investigate the use of Elman RNNs for 

classifying mental activity using EEG in the presence of noise. If an Elman RNN is ever 

to classify pilot workload using EEG collected during flight, than an Elman RNN 

classifier must be robust to the effects of noise. There are many sources of potential 

noise in a cockpit including vibration, movement, talking on the radios, and G forces. 

For this feasibility study, EEG was collected from a test subject performing three types of 

mental activity. An Elman RNN was first trained using 10 features derived from the 

a-band to classify the type of mental activity being performed. Ten test sets with 

varying levels of noise were used to evaluate the Elman RNN's robustness to noise. The 
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MOE was CAlest. Next, an Elman RNN was trained using 90 features derived from the 

nine frequency bands listed in Table 4. Again, 10 test sets with varying levels of noise 

were used to evaluate the Elman RNN's robustness to noise. 

5.3.2   Data 

The test subject used in this feasibility study is a 50-year old male who is in 

excellent health and takes no medications. EEG was collected from the test subject at the 

Flight Psychophysiological Laboratory, Wright-Patterson AFB, OH. The WAM recorded 

EEG from six electrodes according to Figure 15 and two reference electrodes following 

the International 10-20 standard at a sampling rate of 128 Hz. The first mental task for 

the test subject was to read an article from Science magazine. He was told that there 

would be a quiz after data collection so that he concentrated on reading the material (he 

really was never given a quiz though). The reading task was performed for three 

minutes. The test subject's next task was to sit quietly but with his eyes open for three 

minutes. The third and final task was to sit quietly but with his eyes closed for three 

minutes. It was soon discovered, unfortunately, that electrode 01 did not pick up a signal 

and was thus removed from the data set. 

The WAM preprocessed the EEG signals as described in Section 4.4. The 

preprocessed data from the WAM was then further processed using MATLAB code as 

described in Section 4.4 to calculate the log of the power and the variance of the power 

over a moving 10-second window with 50% overlap for each frequency band for each 

electrode. The frequency bands as listed in Table 4 were used. There were a total of 34 

exemplars for each of the three classes of mental activity.   Overall, there were 102 
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exemplars. Figure 28 shows the log power of the a -band for each of the five electrodes 

broken into the three classes of mental activity. A unit on the x -axis of each subfigure 

represents a 10-second moving window. In addition, the dotted line in each of Figure 

28 's subfigures shows the mean log power of the a -band for the corresponding mental 

activity class. Figure 29 shows the variance of the log power of the a -band for each of 

the five electrodes broken into the three classes of mental activity. As in Figure 28, a unit 

on the x -axis of each subfigure represents a 10-second moving window. In addition, the 

dotted line in each of Figure 29's subfigures show the mean variance of the log power of 

the a -band for the corresponding mental activity class. The log power of the a -band as 

shown in Figure 28 and that of the variance of the log power of the a -band as shown in 

Figure 29 is representative of the other EEG frequency bands used in this feasibility 

study. 

5.3.3   Methodology 

5.3.3.1   Ten Input Features 

The first Elman RNN trained as shown in Figure 30 had a 10 + 20/20/3 

architecture. Only the a -band features were used as inputs to the first Elman RNN 

trained. It is expected that the log power of the a -band will increase as the test subject 

transitions from "reading" to "eyes open" to "eyes closed." The log power of the 

a -band for all five electrodes exhibits this behavior in Figure 28. There were a total of 

10 input features to the Elman RNN representing the log power of the a-band and the 

variance of the log power of the a -band from five electrodes. Each input feature was 

normalized between 0.0 and 1.0 following Equation 19. 
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Figure 28. Log Power of a -Band 
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Reading Eyes Eyes 
Open      Closed 

10 a-Band Input Nodes 20 Context Nodes 

Figure 30. First Elman RNN Architecture Attempted 

Twenty context nodes were used. There were three output classes: reading, eyes 

open, and eyes closed. The hidden/context nodes were activated by the sigmoid nonlinear 

transfer function. The output nodes were activated by a linear transfer function with 

slope = 1. The Elman RNN was trained using backpropagation with momentum and an 

adaptive learning rate following Equation 50. The initial learning rate 77 was set to 

0.001. Training was stopped after 35,000 epochs. 

Ten test sets were created with different levels of added noise to test the Elman 

RNN trained using 10 features from the a-band. For each of the 10 tests sets, noise 

following a Uniform random distribution was added to each normalized input feature in 
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the training set. For the first test set, noise following a Uniform random distribution 

between 0.00 and 0.05 denoted as U(0.00,0.05) was added to each input feature. For the 

second test set, noise following a U(0.00,0.10) distribution was added to each input 

feature. For the third test set, noise following a U(0.00,0.15) distribution was added to 

each input feature. And so on. Table 11 describes the maximum value of the Uniformly 

distributed noise added to each input feature for each test set. 

5.3.3.2   Ninety Input Features 

The next Elman RNN trained as shown in Figure 31 had a 90 + 180/180/3 

architecture. It used all 90 features available from the collected EEG data. The 90 

features represent the log power and the variance of the log power from nine frequency 

bands collected from five electrodes. All input features were normalized between 0.0 and 

1.0 following Equation 19. 180 context nodes were used. The were three output classes: 

reading, eyes open, and eyes closed. The hidden/context nodes were activated by the 

sigmoid nonlinear transfer function. The output nodes were activated by a linear transfer 

function with ' slope = 1. The Elman RNN was trained using backpropagation with 

momentum and an adaptive learning rate following Equation 50. The initial learning rate 

77 was set to 0.001. Training was stopped after 10,500 epochs. 

Ten test sets were created with different levels of added noise to test the Elman 

RNN trained using 90 features in the same fashion as described in Section 5.3.3.1. 

Table 11. Maximum Value of Uniform Distribution for Testing 

Test Set 1 2 3 4 5 6 7 8 9 10 
Max(Uniform) 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 
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Reading Eyes        Eyes 
Open      Closed 

90 EEG Input Nodes 180 Context Nodes 

Figure 31. Second ERNN Architecture Attempted 

5.3.4   Results 

5.3.4.1   Ten Input Features 

Training was stopped after 35,000 epochs which took about five hours on a 

Pentium-90 personal computer (PC). The SSElmin was 1.70 and the CAlrain was 100%. 

The solid curve in Figure 32 is the CA,esl using 10 features for each level of noise added. 

About 95% of the misclassifications from the test sets were the results of the Elman.RNN 

misclassifying the mental activity as "reading" instead of "eyes open." This implies that 

the log power and the variance of the log power of the a -band from five electrodes may 

not be enough to separate "reading" from "eyes open" for this 50-year old male test 
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subject.   The other 5% or so of the misclassifications occurred at the transitions from 

"reading" to "eyes open" or from "eyes open" to "eyes closed." 

5.3.4.2   Ninety Input Features 

Training was stopped after 10,500 epochs which took about five hours on a 

Pentium-133 PC. The SSElrain was 0.90 and the CAlrain was 100%. The dashed curve in 

Figure 32 is the CAlesl using 90 input features for each level of noise added. There does 

not appear to be any trend associated with the misclassifications using 90 input features. 

By comparing the two curves in Figure 32, it appears that an Elman RNN that includes 

all 90 features is more robust to noise. 

2  50 < o 
40 

30 

20 

10 10 Input Features 
90 Input Features 

0.05       0.1       0.15       0.2       0.25       0.3       0.35       0.4       0.45       0.5 
Noise Added 

Figure 32.  CA,exl for Differing Levels of Noise Added 
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5.3.5    Conclusions 

This feasibility study shows that an Elman RNN can adequately classify among 

three types of mental activity even in the presence of added noise. In both Elman RNNs 

trained, the CAlrajn with no added noise was 100%. With only 10 input features derived 

from the a -band, the CAlest remains greater than 80% so long as the noise added is no 

larger than 0.15. With all 90 input features, the CAlesl remains greater than 80% so long 

as the noise added is no larger than 0.30. The Elman RNN trained with 90 features 

appears to be more robust to the effects of added noise. The Elman RNN shows promise 

for classifying pilot workload in addition to air traffic controller workload. 
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6    Signal-to-Noise Ratio (SNR) Saliency Measure as Applied to Classifying the 

Workload of Pilots in Addition to Air Traffic Controllers via Feedforward Multilayer 

Perceptron (MLP) Artificial Neural Networks (ANN) 

6.1    Introduction 

The SNR saliency measure is a new saliency measure. The SNR saliency 

measure determines the saliency, or relative importance, of a feature by comparing it to 

an injected noise feature. Bauer proposed the SNR saliency measure [6] and Sumrell was 

the first to experiment with the SNR saliency measure using a noisy version of the XOR 

classification problem as shown in Figure 2 and Fisher's iris classification problem [147]. 

This chapter summarizes the application of both partial derivative-based saliency 

measures in Equations 74 and 76, the weight-based saliency measures in Equations 77 

through 80, and the SNR saliency measure to classify pilot workload in addition to air 

traffic controller workload via feedforward MLP ANNs as published in [46] and 

submitted for publication in [50]. This dissertation research produced the first non- 

trivial, real-world applications of the SNR saliency measure. 

This research summarized in this chapter had two objectives. The primary 

objective was to develop a methodology to identify salient features to classify the 

workload of pilots in addition to air traffic controllers. The second objective was to 

compare the results of the SNR saliency measure to that of partial derivative-based and 

weight-based saliency measures. 

6.2     Signal-to-Noise Ratio (SNR) Saliency Measure 

The SNR saliency measure directly compares the saliency of a feature to that of 
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an injected noise feature. The theoretical basis for a comparison to noise is similar to 

previous research performed by Belue [11, 12] and Steppe [136, 137, 138, 139] as 

described in Sections 3.5.2 and 3.5.3. The SNR saliency measure is computed using the 

first layer weights of a trained ANN as the following: 

SNR,= 10 -log 

f J , \ 

IK) 
7=1 

(99) 

ZK/} 

where SNR, is the value of the SNR saliency measure for feature i = 1,2,... , /  and 

W
NJ 

is the first layer weight from the injected noise node N to hidden node j . The 

injected noise feature is created such that its distribution follows that of a U(0.00,1.00) 

random variable. All feature inputs are normalized (or standardized) so that the features 

are "unitless" thus preventing the input features with larger value from dominating. The 

scaled logarithm transformation of the ratio converts the saliency measure to a decibel 

scale. The effect of the scaled logarithm transformation is shown in Figure 33. It is very 

interesting to compare Figure 33 with the penalty function employed by Setiono-Liu in 

Figure 13. The effect of the scaled logarithm transformation appears to be similar to that 

of the penalty function employed by Setiono-Liu. A small ratio will produce a near-zero 

or negative SNR saliency measure. On the other hand, a large ratio will produce a large 

SNR saliency measure that increases as a logarithmic function of the ratio.   Note that 

negative ratio values are not possible due to squared terms but are shown in Figure 33 to 

illustrate similarity to Figure 13. 

The SNR saliency measure is a weight-based saliency measure since it relies on 

the sum of squared first layer weights. The theoretical concept behind the SNR saliency 
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measure is similar to that of the weight-based saliency measures as described in Section 

3.4.3. If a given feature is not relevant to an ANN's output, the updates of the first layer 

weights emanating from that feature's input node should be random and simply fluctuate 

around zero [152]. If, on the other hand, a given feature is relevant to an ANN's output, 

then the updates of the first layer weights emanating from that feature's input node 

should be moved in the weight space in a constant direction until the error is minimized 

[152]. Thus, the SNR saliency measure should be significantly larger than 0.0 for salient 

features and very close to 0.0 or less than 0.0 for nonsalient features. 

The SNR saliency measure is similar to weight-based saliency measures as 

described in Section 3.4.3 in that it relies on the sum of squared first layer weights. The 

SNR saliency measure, however, is different from weight-based saliency measures in 
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addition to partial derivative-based saliency measures described in Section 3.4.2 because 

the SNR saliency measure directly compares the saliency of a feature to that of an 

injected noise feature. 

The SNR saliency measure is appealing because, like the partial derivative-based 

and previously discussed weight-based saliency measures, the SNR saliency measure can 

be used to rank order the features from most relevant to least relevant. The greatest 

potential of the SNR saliency measure results from its comparison of the saliency of each 

feature to a baseline noise feature. 

6.3    Classifying Pilot Workload 

6.3.1 Introduction 

Before this dissertation research, a set of salient features had never been identified 

for classifying pilot workload. In previous studies, psychophysiological features were 

selected by maximization of the CA by trial and error [175]. For classifying pilot 

workload, no one psychophysiological feature has been demonstrated as sufficient and no 

one psychophysiological feature has been demonstrated as superior. Individual 

differences in psychophysiological response and in particular mental response should be 

recognized. As a result, an extremely large number of psychophysiological features were 

used as inputs to feedforward MLP ANNs in previous research efforts. 

6.3.2 Data 

The pilot workload data set consisted of processed data from a flight simulation. 

The test subject flew a simulated aircraft landing scenario. The scenario started off with 
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the test subject flying his descent in the clouds. While in the clouds, the pilot's workload 

was classified as low. The test subject then broke through the clouds on his descent to 

the airfield. As soon as the pilot broke through the clouds, his workload was classified as 

high. The scenario ended at touchdown. 

Throughout the scenario, the WAM collected EEG at the six scalp locations 

shown in Figure 16. The EEG data were preprocessed as described in Section 4.4 and 

then grouped into nine different bands as summarized in Table 4. For each band at each 

electrode, two general categories of features were calculated over a 10-second moving 

window resulting in a total of 108 features (9 bands x 6 electrodes x 2 types). For every 

electrode and frequency band, the two general categories of features computed were: 

• Log power averaged over a 10-second moving window with 50% overlap. 
• Variance of the power over a 10-second moving window with 50% overlap. 

Four peripheral psychophysiological features derived from EOG, ECG, and respiration 

gauges were also developed for inclusion in the data set. One feature, number of eye 

blinks in a 10-second moving window with 50% overlap, was derived from EOG. One 

respiratory feature, interbreath interval averaged over a 10-second moving window with 

50% overlap, was derived from the respiration gauges. Two cardiopulmonary features 

were derived from the ECG: 

• Interbeat interval averaged over a 10-second moving window with 50% 
overlap. 

• Slope of the heart rate over a 10-second moving window with 50% overlap. 

The input feature set contained a total of 7=112 psychophysiological features 

(108 EEG features and 4 peripheral psychophysiological features). Unfortunately, the 

input feature set contained only M = 32 exemplars: 22 high workload exemplars and 10 

low workload exemplars. Foley's Rule as given in Equation 59 and Cover's Theorem as 
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given in Equation 60 applied to this two-class (low workload, high workload) problem. 

Since the data set contains 112 features and only 32 exemplars, it was clear that both 

Foley's Rule and Cover's Theorem are violated. Two solutions existed: 

1. Increase the number of exemplars. 
2. Decrease the number of features. 

It was desired to decrease the number of features by selecting the most salient features. 

6.3.3   Methodology 

As a first attempt to screen the input feature set, an analysis of the correlation 

between each feature and pilot workload was conducted. The sample correlation between 

each feature x, for /' = 1,2,...,/ and the desired workload d was computed as: 

C(i,d) 

where pjd is the sample correlation between feature i = l,2,...,I and the desired 

workload d where d = 0 for low workload and d = 1 for high workload, C(i,d) is the 

sample covariance between feature / = 1,2,...,/ and d, Sf is the sample standard 

deviation of feature i = 1,2,...,/, Sd is the sample standard deviation of d, and / =' 112 . 

The sample covariance C(i,d) was computed as: 

1       M _ 
CM)=77T7-H*<> -*<)-K -*) (101) 

where M = 32 exemplars, x, is the mean of feature i = 1,2,...,/, and d is the mean of 

the d so that: 
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M M 

*<=J!E77-     d=JS^r (102) 

The sample standard deviations for feature xt for i = 1,2,...,/  and for d were computed 

as: 

M 2 M 2 

!(*.--*,) 2('.-*) 

Those features with correlation coefficients pjd < 0.75 were removed and no longer 

considered as possible salient features. 

Mlrajn = 22 exemplars were randomly selected as training exemplars and the 

remaining Mlest = 10 exemplars were used as test exemplars. A "noise" feature with a 

U(0.0,1.0) distribution was added to the data set for use as a baseline and for use in the 

SNR saliency measure. Each of the input features were normalized between 0.0 and 1.0 

following Equation 19. The weights were initialized between -0.001 and 0.001 in order 

to equalize the signal strength for all input features. All hidden and output nodes are 

activated by sigmoid nonlinear transfer functions. A 19-19-2 feedforward MLP ANN 

was trained via instantaneous backpropagation with a fixed learning rate rj = 0.3 and no 

momentum until all of the following stabilized: 

• MSElrain 

•• MSEM 

• W 
• SNR,Vi = 12,...,I. 
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6.3.4   Results 

Eighteen of the original 112 features had a sample correlation pxd>0.75. 

Seventeen of the selected features were EEG features. Of those 17 EEG features selected 

in the preliminary screening, ten were average power features and seven were variance 

features. The only peripheral psychophysiological feature selected in the preliminary 

screening was number of eye blinks. 

The feedforward MLP ANN was trained in 1200 epochs using 18 input features 

plus the injected noise feature. The CAlexl was 90.0%. Table 12 lists all of the saliency 

measures computed based upon the following: 

• Correlation (pjd) 

Partial derivative-based saliency measure (A,) 

Partial derivative-based saliency measure with pseudo-sampling (A,) 
Weight-based saliency measure (r,.) 

Euclidean norm of weight-based saliency measure (r,vl) 

• Taxi-Cab norm of weight-based saliency measure (r/2) 

• Infinity norm of weight-based saliency measure (rf ) 
• SNR saliency measure (57V/?,) 

If we adhere to Foley's Rule given that there are only M = 32 exemplars, at most 

1 = 5 features (3 Foley's Factor x 5 features x 2 classes) could be used to train the 

feedforward MLP ANN for this two-class pilot workload problem. If / = 5 features were 

selected, then Mtrain = 30 training exemplars must be randomly selected leaving only 

Mlesl = 2 test exemplars.   This would not adequately test the feedforward MLP ANN. 

Thus, only  1 = 4  features were selected to train a feedforward MLP ANN using 

M,ram = 24 training exemplars (3 Foley's Factor x 4 features x 2 classes) and Mlest = 8 

test exemplars. 
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Table 12. Calculated Feature Saliency Measures 

i Pi,d A,- A, h < T? <3 SNR, 

Noise 0.0187 0.0001 0.0001 0.01 0.10 0.46 0.02 0.0000 
Var^) atFZ 0.7535 0.0005 0.0008 0.78 0.88 3.94 0.20 42.7731 

Var(ar2) atFZ 0.7570 0.0004 0.0006 0.58 0.76 3.41 0.17 39.8555 

Var(a) atFZ 0.7684 0.0004 0.0007 0.63 0.80 3.56 0.18 40.7045 

Var(a) atC4 0.8039 0.0005 0.0008 0.88 0.94 4.20 0.22 44.0242 

Var(a) atP3 0.7514 0.0005 0.0008 0.80 0.89 3.99 0.21 43.0018 

Var(#)atFZ 0.7801 0.0005 0.0007 0.77 0.88 3.93 0.20 42.6814 

Var(/?,)atC4 0.7919 0.0004 0.0007 0.66 0.81 3.63 0.19 41.1027 

Log(ör2) atFZ 0.8989 0.0006 0.0010 1.29 1.13 5.07 0.26 47.7967 

Log(a2) atC4 0.8620 0.0006 0.0009 1.19 1.09 4.87 0.25 46.9922 

Log (a) atC4 0.8164 0.0006 0.0009 1.14 1.07 4.78 0.24 46.6283 

Log(/?,) atC4 0.8426 0.0006 0.0009 1.02 1.01 4.52 0.23 45.4791 

Log (A) atFPl 0.8607 0.0006 0.0010 1.35 1.16 5.19 0.27 48.2794 

Log (A) atFZ 0.8731 0.0007 0.0010 1.45 1.20 5.38 0.27 48.9860 

Log (A) atC4 0.8827 0.0006 0.0010 1.40 1.18 5.29 0.27 48.6425 

Log (A) atP3 0.9702 0.0007 0.0011 1.71 1.31 5.85 0.30 50.6575 

Log (A) atT6 0.8577 0.0006 0.0010 1.28 1.13 5.06 0.26 47.7640 

Log(#) atFZ 0.7921 0.0006 0.0009 1.10 1.05 4.69 0.24 46.2252 

Number Eye Blinks 0.8965 0.0007 0.0010 1.51 1.23 5.50 0.28 49.4052 
Constant NA 0.0002 0.0003 0.10 0.31 1.41 0.07 22.1355 

Table 13 summarizes the top four rankings for the partial derivative-based, 

weight-based, and SNR saliency measures and Table 14 describes the four most salient 

features. From examination of Table 13, it appears that the saliency measures provided 

consistent rankings. All of the saliency measures ranked feature 101, average log power 

of the A frequency band at electrode P3, as the most salient feature. It is quite 

interesting to see that all three of the top salient EEG features were average log power of 
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Table 13. Top Four Rankings of Each Saliency Measure 

Saliency 
Measure 

Rankl Rank 2 Rank 3 Rank 4 

Am,,* Log (A) atP3 
(tie 1) 

Number Eye Blinks 
(tie 1) 

Inconclusive Inconclusive 

A rank 
Log (A) atP3 Inconclusive Inconclusive Inconclusive 

rank Log (A) atP3 Number Eye Blinks Log (A) atFZ Log (A) atC4 

rank Log (A) atP3 Number Eye Blinks Log (A) atFZ Log (A) atC4 

Tv2 
rank Log (A) atP3 Number Eye Blinks Log (A) atFZ Log (A) atC4 

rank Log (A) atP3 Number Eye Blinks Log (A) atFPl Log (A) atFZ 
SNRrank Log (A) atP3 Number Eye Blinks Log (A) atFZ Log (A) atC4 

the   A   frequency  band.     The  number  of eye  blinks  was  the  only  peripheral 

psychophysiological feature selected as one of the top four salient features. 

6.3.5   Conclusions 

In summary, several saliency measures were successfully employed to determine 

the most useful features to classify pilot workload as low or high. The SNR saliency 

measure appeared to provide saliency rankings consistent with that of partial derivative- 

based and weight-based saliency measures. Since the weight-based and the SNR saliency 

measures rely on the sum of the first layer weights squared, it makes sense that they 

would produce similar results. A set of salient features can be selected from a data set of 

Table 14. Four Most Salient Features 

Rank i Feature 
1 101 Average Log Power Of A Frequency Band At Electrode P3 
2 112 Number Of Eye Blinks 
3 98 Average Log Power Of A Frequency Band At Electrode FZ 
4 100 Average Log Power Of A Frequency Band At Electrode C4 
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EEG and peripheral psychophysiological features using several types  of saliency 

measures. 

6.4    Classifying Air Traffic Controller Workload 

6.4.1    Introduction 

Before this dissertation research, a set of salient features had not yet been 

identified for classifying air traffic controller workload. The SNR saliency measure was 

used to determine the usefulness of psychophysiological features for classifying air traffic 

controller workload in feedforward MLP ANNs. Thirty-three psychophysiological 

features were derived from EEG, EOG, ECG, and respiratory gauges in order to classify 

air traffic controller workload as low, medium, high, or overload. Using the SNR 

saliency measure, the 33 features were rank ordered. Feature rankings using the SNR 

saliency measure were statistically shown to be consistent with that of a partial 

derivative-based saliency measure and a weight-based saliency measure. The SNR 

saliency measure feature rankings provided a useful way to identify and remove 

nonsalient features for classifying air traffic controller workload and thus significantly 

improved the classification accuracy of the validation set. 

The objective was to develop a methodology for identifying key 

psychophysiological features derived from EEG, EOG, ECG, and respiratory gauges for 

classifying air traffic controller workload. The EEG features used include the power of 

the five frequency bands in Table 3 collected as the six scalp location shown in Figure 

15. The peripheral features used include power of the EOG signal, heart interbeat 

interval, and respiration interbreath interval.  This section is organized in the following 
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fashion. First, background information to the data collection and preprocessing is 

summarized. Then, the methodology section describes each step of this air traffic 

controller workload investigation. Details described in the methodology section include 

the architecture and training used via a feedforward MLP ANN, the three types of feature 

saliency measures (a partial derivative-based saliency measure, a weight-based saliency 

measure, and the SNR saliency measure) used to rank order the features, and the various 

MOEs using CA. A section contains the results from each step of methodology. In 

addition, a section provides conclusions. 

6.4.2   Data 

Data were collected from one fully trained USAF air traffic controller during 

simulated air traffic control tasks at Los Angeles International Airport using TRACON 

(Terminal Radar Approach Control), a computer-based air traffic control simulation. 

EEG is collected at six scalp locations (Fz, Cz, Pz, T5, T6, and 01) shown in Figure 15 

following the International 10-20 electrode system. These six scalp locations were 

selected based upon results from previous studies on air traffic controller workload [15, 

177]. EOG, ECG, and respiration measures were also taken. 

There were a total of K = 4 classes (low, medium, high, and overload) of mental 

workload. Mental workload levels were selected to correlate well with subjective 

workload levels using NASA's Task Load Index (TLX) [15, 177]. The low workload 

condition consisted of controlling six aircraft in 15 minutes. The medium workload 

condition consisted of controlling 12 aircraft in 15 minutes. The high workload condition 

consisted of controlling 18 aircraft in 15 minutes.   The overload workload condition 
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consisted of controlling 15 aircraft in five minutes. The test subject was given a three 

minute break in between random presentations of the workload condition scenarios. 

Across all four workload conditions, all other factors, such as aircraft type and the ratio 

of arriving flights to departures and overflights, were held constant. Scenarios were 

designed so that the workload in each condition increased up to approximately the 

midpoint of the scenario and then tapered off. EEG, EOG, ECG, and respiratory 

measures were collected for five minutes at the midpoint of the low, medium, and high 

workload condition scenario (i.e. minutes 5-10) and for the entire overload condition 

scenario. The first 30 seconds and the last 30 seconds of data collected were removed. 

As such, the data collected for the two minutes immediately preceding and for the two 

minutes immediately following the workload peak for each condition were used. 

Thirty EEG power features were developed by passing each EEG signal through a 

bank of elliptical filters which segmented the signal into five frequency bands as depicted 

in Table 3 [85]. The power was then calculated for each frequency band over a 

10-second moving window with 50% overlap. All EEG data were corrected for eye 

movements and any portion of the EEG signal that contained other artifacts was 

discarded. 

Three autonomic nervous system features were preprocessed from the EOG, 

ECG, and respiration gauges. The EOG signal was first passed through a Butterworth 

lowpass filter with a cutoff frequency of 10 Hertz. The power of the EOG signal was 

then calculated over a 10-second moving window with 50% overlap. The heart interbeat 

interval was developed from the ECG signal and was averaged over a 10-second moving 

window with 50% overlap.   The respiration interbreath interval was developed from 
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respiratory gauges and was, also, averaged over a 10-second moving window with 50% 

overlap. 

A total of 30 EEG features and three autonomic nervous system features were 

available for input to a feedforward ANN classifier. Three were a total of 47 exemplars 

for each workload condition. However, one exemplar per workload condition was 

removed due to artifacts found in the EEG leaving 46 exemplars available for each 

workload conditions. Since K = 4 workload conditions existed with a total of 46 

exemplars available for each workload condition, there were a total of M = 4 • 46 = 184 

exemplars. 

6.4.3   Methodology 

There were four main steps that included training using all available features, 

calculating feature saliency, determining if the rankings are positively correlated, and 

then training all combinations of the ranked features. 

6.4.3.1   Step One: Train Using all Available Features 

The first step was to train 30 feedforward MLP ANNs as that shown in Figure 3 

with a 33/66/4 architecture using all 33 features. Each feedforward MLP ANN was 

trained by the batch error backpropagation algorithm in Equation 50 via MATLAB's 

Neural Network Toolbox with mc =0.90 and an initial learning rate 7 = 0.01. After 

training for 1000 epochs, the weights for the epoch that produced the minimum SSEtest 

were kept. 
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Each of the input features were normalized between 0.0 and 1.0 following 

Equation 19. All hidden and output nodes utilized the sigmoid nonlinear transfer 

function. Each of the four output nodes corresponded to a workload condition. The 

desired output vector dm for exemplar m was: 

(0.9   0.1   0.1   0.1) for me Low Workload Condition 

(0.1   0.9   0.1   0.l)forwe Medium Workload Condition 
(104) 

(0.1   0.1   0.9   0.l)for me High Workload Condition 

(0.1 0.1 0.1 0.9) for we Overload Workload Condition 

Desired output values of 0.1 and 0.9 were used instead of 0.0 and 1.0 to speed up training 

and to prevent saturation of the sigmoid nonlinear transfer functions. The weights were 

randomly initialized between -0.5 and 0.5 for each of the 30 training sessions. In 

addition, the training, test, and validation sets differed for each of the 30 trained 

feedforward MLP ANNs. For training, 50% of all available exemplars were randomly 

placed in the training set and 25% of all available exemplars in the test set [58]. The 

validation set was made up of the remaining 25% of all available exemplars [58]. Since 

there were a total of M= 184 exemplars, Mlmin = 92 exemplars were contained in the 

training set, Mlexl = 46 exemplars were contained in the test set, and MraliJ = 46 

exemplars were contained in the validation set. 

6.4.3.2   Step Two: Calculate Saliency Using Three Types ofSaliency Measures 

The second step was to train 30 feedforward MLP ANNs using all 33 features 

plus an injected noise feature with a U(0.0,1.0) distribution in order to calculate the 

saliency of the 33 features using several saliency measures. The training was conducted 

in a fashion similar to that described above in Section 6.4.3.1 except that for this second 
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step, the weights were initialized between -0.1 and 0.1 instead of-0.5 and 0.5 to exploit 

the fundamental assumption of the weight-based saliency measure and the SNR saliency 

measure. These measures are based on the assumption that first layer weights emanating 

from nonsalient features will simply fluctuate around zero during the course of training. 

As such, it may be desirable to start the weights close to zero in order to speed up the 

training. 

Three saliency measures were calculated using a partial derivative-based saliency 

measure, a weight-based saliency measure, and the SNR saliency measure. The partial 

derivative-based saliency measure A,, for i = 1,2,...,/ = 33 was computed at the training 

exemplars following equation 66. Since the sigmoid nonlinear transfer function was used 

for all activations, then A,, for / = 1,2,. ..,7 = 33 can be computed specifically following 

Equation 74 as: 

1 i A: MM„ 

^(*:.W)-[I-Z^(I:,W)].£^(X;,W)-[I-^I111(X;,W)].W;>4.^ (105) 

where K = 4 and M)mjn = 92. The weight-based saliency measure r(. for 

/ = 1,2,...,/ = 33 was computed as the sum of the squared first layer weights emanating 

from the feature of interest following Equation 77. Finally, the SNR saliency measure 

SNR, for i = 1,2,...,/ = 33 was calculated following Equation 99. The features were then 

rank ordered by the average over the 30 trained feedforward MLP ANNs for each 

saliency measure. 
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6.4.3.3   Step Three: Spearman Rank Correlation Tests 

For the third step, Spearman rank correlation tests were run to determine if the 

three types of feature saliency measures, averaged over G = 30 training sessions, 

produced rankings that were consistent. The following ranked pairs were tested using the 

Spearman rank correlation test: 

1. Average partial derivative-based saliency measure rankings versus average 
weight-based saliency measure rankings 

2. Average partial derivative-based saliency measure rankings versus average 
SNR saliency measure rankings 

3. Average weight-based saliency measure rankings versus average SNR saliency 
measure rankings 

The Spearman rank correlation test calculated the correlation between the 

rankings assigned for each given feature. The null hypothesis H0 stated that there was no 

association between the rankings derived from the two average saliency measures.  The 

alternate hypothesis Ha stated that there was a positive correlation between the rankings. 

A positive correlation implied that the rankings being compared were consistent. The test 

statistic was calculated as: 

'■ZvHZ". H& 
r. = " '-'    " (106) 

/=1 ^ ;=1 
'•I*HZ* 

i=l 

where  rs  was the Spearman rank correlation coefficient statistic, and  aj   and  bt 

represented the ranks assigned to feature i = l,...,I  [88].    The test rejected  H0  if 

rs ^ ra,I where raI is the critical value of the Spearman rank correlation coefficient for 

a given level of significance a and number of features /. The level of significance was 
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set to a = 0.05 and there were / = 34 features. Since / > 30, the Central Limit Theorem 

was applicable and so, the sampling distribution of raI = ro.05,34 was normal [105]. As 

such, raI=rQ 0534 =0.2818. 

6.4.3.4   Step Four: Train Using Different Combinations of Features 

The fourth step utilized the average ranking of the 33 input features derived from 

the SNR saliency measure. Thirty feedforward MLP ANNs were trained for each 

combination of the top ranked features. In other words, 30 feedforward MLP ANNs were 

trained using only the top ranked feature. Next, 30 feedforward MLP ANNs were trained 

using the top two ranked features. Then, 30 feedforward MLP ANNs were trained using 

the top three ranked features, and so on. For each training session, the weights were 

randomly initialized between -0.5 and 0.5. The training, test, and validation sets differed 

for each of the 30 training sessions. 

One sided t - tests were run to determine if the CA was significantly increased 

or decreased as a result of removing nonsalient features for the training, test, and 

validation sets. In the case of the training set, the null hypothesis H0 stated that there 

was no significant difference between the CAtrain with all 33 features and that of the 

combination that resulted in the highest CAralid. The alternate hypothesis Ha stated that 

the CAtrain with all 33 features was lower or higher than that of the combination that 

resulted in the highest CAmljil. The test statistic assuming the variance of the two 

samples was unknown and unequal was calculated as: 

160 



t - CA"">"(33 features)-C^<Mt,(BestC^w) 

|^L,(33 features)+ S£4Best CÄ~Ü) 

where f, was the f-test statistic, CA^^[33 features) was the average observed 

classification accuracy over  G = 30  trained feedforward MLP ANNs using all 33 

features for the training set, C4,ra/„(Best CAvaiid) was the average observed 

classification accuracy over 30 trained ANNs for the training set using the combination 

of top ranked features that resulted in the highest CÄvalid, SJrain{33 features) was the 

sample variance of the CA"rain for g=\,...,G using all 33 features, and 

si-ain{BestCAvalid) was the sample variance of the CA^in for g=l,...,G using the 

combination of top ranked features that resulted in the highest CAvalid [88]. The test 

rejected H0 if \ts\>taiN_i where /^-l is the critical /-value for a given level of 

significance a and degrees of freedom JV-1. The level of significance was set to 

a = 0.05     and    there    were     G-l = 29     degrees    of    freedom. As    such, 

ta,N-\ = ^0.05,29 = 1-6991. In the case where H0 was rejected and ts < -ta N_\, the 

test concluded that CAtrain with all 33 features was lower than that of the combination 

that resulted in the highest CAmlid. In the case where H0 was rejected and ts > taN_x, 

the test concluded that CAtrain with all 33 features was higher than that of the 

combination that results in the highest CAmM. Calculations for the test and validation 

sets were calculated in a fashion similar to Equation 107. In all, there were one t - test to 

compare Ci4fra/W, one t - test to compare CAtest, and one / - test to compare Clvalid. 
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For the combination that resulted in the highest CAmlid, the confusion matrices 

summed over the 30 training sessions for the training, test, and validation sets were 

developed. % tests were then run on each of the rows (hence each true workload 

condition) of the confusion matrices with all 33 features and with the combination of top 

ranked features that resulted in the highest CAraljd. (Note that this research was the first 

to ever perform % tests on each of the rows of two or more confusion matrices. No 

methods for statistically comparing two or more confusion matrices were found in the 

literature.) These % tests were run f°r each true workload condition in order to gain 

insight into whether the proportion of network classification for each true workload 

condition was altered as a result of removing nonsalient features for the training, test, and 

validation sets. In the case of the low workload condition for the training set, the null 

hypothesis H0 stated that there was no difference between the proportion of network 

classification for low workload exemplars using all 33 features (Row 1 in the Training 

Set Confusion Matrix in Table 16) and that using the combination that results in the 

highest CAmljd (Row 1 in the Training Set Confusion Matrix in Table 22). The alternate 

hypothesis Ha stated that the proportion of network classification for low workload 

exemplars using all 33 features differed from that using the combination that resulted in 

the highest CAvalid . The test statistic was calculated as: 

y2 = 2 ■ Mkm El—4^ T-1 

*•"■' KZ, ■ Z/,, 
(108) 
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where %] is me X2 test statistic, M^J„ is the total number of low workload exemplars 

in each training set, and fke is the number of low workload exemplars that the 

feedforward MLP ANN classified as belonging to class k = \,...,K in training set 

confusion matrix l = \,...,L [101]. In this case, M,^J„=713 and L = 2 since two 

training set confusion matrices were compared.   The test rejected H0 if %2
S > %2

a K_^ 

where ZI,K-I 
was me critical % value for a given level of significance a and degrees 

of freedom K-l. The level of significance was set to a = 0.05 and there were 

K-\ = 3 degrees of freedom. As such, XI,K-\ 
= ^0.05,3 =7.8147. Calculations for 

comparing the workload conditions in the test and validation confusion matrices were 

calculated in a fashion similar to Equation 108.  In all, 12 (four workload conditions in 

the training, test, and validation sets) %2 tests were run. 

6.4.4   Results 

6.4.4.1   Step One: Train Using all Available Features 

For the first step, 30 feedforward MLP ANNs were trained using all 33 features. 

Table 15 summarizes several MOEs of various CA forms attained in the training, test, 

and validation sets. The CIs reported in Table 15 for the expected classification accuracy 

MCA had a level of significance set to a = 0.05 and t.^ = ^ 30_, = t02529 = 2.045. 

Therefore, the CIs reported provide  100%(l-a) = 95%  confidence bounds on the 

estimate of CA. Of particular interest are the results from the validation set. 
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Table 15. Classification Accuracy Summary Over 30 Trained Feedforward MLP 
ANNs Using 33 Features 

Training Set Test Set Validation Set 

CA 97.25% 87.39% 84.71% 

95% CI for CA (96.09%, 98.41%) (84.95%, 89.83%) (82.69%, 86.73%) 

Min CA, Max CA 88.04%, 100.00% 76.09%, 100.00% 73.91%, 95.65% 

Table 16 contains the confusion matrices for the training, test, validation set. Of 

particular interest is the CAvalid for the overload condition. Classifying the overload 

condition correctly is of high importance to the safety of air traffic control. The medium 

and high workload conditions in the test and validation sets, on average, were not 

classified as well as the low workload and overload condition. Though the medium and 

high workload conditions over classified correctly over 90% of the time in the training 

set, the medium and high workload conditions were classified correctly only over 70% of 

the time in the test and validation sets. 

6.4.4.2   Step Two: Calculate Saliency Using Three Types ofSaliency Measures 

The second step calculated the average saliency of the 33 features over 30 trained 

ANNs for all three saliency measures. Table 17 lists the features for each average 

saliency rankings over 30 trained feedforward MLP ANNs. Table 18 lists the average 

saliency ranking for each feature. The information provided in Table 17 is the same as 

that provided in Table 18 but in a different format. 
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Table 16. Confusion Matrices Summed Over 30 Trained ANNs Using 33 Features 

Training Set Network Classification 

Low Medium High Overload Overall 

True 

Classification 

Low 702 
98.46% 

1 
0.14% 

10 
1.40% 

0 
0.00% 

713 

Medium 7 
1.00% 

657 
94.26% 

33 
4.73% 

0 
0.00% 

697 

High 4 
0.59% 

21 
3.11% 

650 
96.30% 

0 
0.00% 

675 

Overload 0 
0.00% 

0 
0.00% 

0 
0.00% 

675 
100.00% 

675 

Overall 713 679 693 675 2760 
97.25% 

Test Set Network Classification 

Low Medium High Overload Overall 

True 

Classification 

Low 330 
95.10% 

16 
4.61% 

1 
0.29% 

0 
0.00% 

347 

Medium 17 
4.99% 

270 
79.18% 

53 
15.54% 

1 
0.29% 

341 

High 20 
5.57% 

58 
16.16% 

278 
77.44% 

3 
0.84% 

359 

Overload 0 
0.00% 

0 
0.00% 

5 
1.50% 

328 
98.50% 

333 

Overall 367 344 337 332 1380 
87.39% 

Validation Set Network Classification 

Low Medium High Overload Overall 

True 

Classification 

Low 302 
94.38% 

11 
3.44% 

7 
2.19% 

0 
0.00% 

320 

Medium 19 
5.56% 

248 
72.51% 

74 
21.64% 

1 
0.29% 

342 

High 23 
6.65% 

69 
19.94% 

249 
71.97% 

5 
1.45% 

346 

Overload 0 
0.00% 

■0 

0.00% 
2 

0.54% 
370 

99.46% 
372 

Overall 344 328 332 376 1380 
84.71% 
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Table 17. Features for Each Average Saliency Rankings Over 30 Trained Feedforward 
MLP ANNs 

Average 
Ranking 

Partial Derivative- 
Based Saliency 

Weight-Based 
Saliency 

SNR 
Saliency 

1 ß Power at T5 piß Power at T6 Hß Power at T6 
2 ßß Power at 01 juß Power at 01 ß Power at T5 
3 ///? Power at T5 ß Power at T5 juß Power at 01 
4 juß Power at T6 juß Power at T5 ///? Power at T5 
5 9 Power at Fz ß Power at T6 ß Power at T6 
6 Interbreath Interval 9 Power at Fz Interbreath Interval 

7 juß Power at Cz Interbreath Interval Interbeat Interval 

8 Interbeat Interval Interbeat Interval 9 Power at Fz 
9 ß Power at T6 juß Power at Cz /jß Power at Cz 
10 9 Power at Pz 9 Power at Pz a Power at 01 
11 a Power at 01 a Power at 01 9 Power at Pz 
12 9 Power at T5 A Power at Pz 9 Power at T5 
13 A Power at Pz 9 Power at T5 a Power at T6 
14 a Power at T6 A Power at Fz A Power at Pz 
15 ß Power at Fz a Power at T6 A Power at Fz 
16 A Power at Fz ß Power at Fz Eye Power 

17 a Power at Pz Eye Power ß Power at Fz. 
18 a Power at Fz a Power at Fz a Power at Pz 
19 Eye Power a Power at Pz ß Power at 01 
20 A Power at T6 A Power at T6 a Power at Fz 
21 A Power at T5 A Power at T5 9 Power at T6 
22 9 Power at Cz A Power at Cz 9 Power at Cz 
23 A Power at Cz 9 Power at Cz A Power at T5 
24 fj.ß Power at Pz ß Power at 01 a Power at Cz 

25 9 Power at T6 juß Power at Pz A Power at T6 
26 a Power at T5 9 Power at T6 a Power at T5 
27 a Power at Cz a Power at T5 A Power at Cz 
28 ß Power at 01 a Power at Cz juß Power at Pz 
29 ß Power at Cz juß Power at Fz A Power at 01 
30 ß Power at Pz A Power at 01 juß Power at Fz 
31 A Power at 01 ß Power at Cz ß Power at Cz 
32 juß Power at Fz ß Power at Pz 9 Power at 01 
33 9 Power at 01 9 Power at 01 ß Power at Pz 
34 Injected Noise Injected Noise Injected Noise' 

166 



Table 18. Average Saliency Rankings for Each Feature Over 30 
Trained Feedforward MLP ANNs 

Feature i A, Ranking Tj Ranking SNR, Ranking 
A Power at Fz 16 14 15 
A Power at Cz 23 22 27 
A Power at T5 21 21 23 
A Power at Pz 13 12 14 
A Power at T6 20 20 25 
A Power at 01 31 30 29 
9 Power at Fz 5 6 8 
9 Power at Cz 22 23 22 
9 Power at T5 12 13 12 
9 Power at Pz 10 10 11 
9 Power at T6 25 26 21 
9 Power at 01 33 33 32 
a Power at Fz 18 18 20 
a Power at Cz 27 28 24 
a Power at T5 26 27 26 
a Power at Pz 17 19 18 
a Power at T6 14 15 13 
a Power at 01 11 11 10 
ß Power at Fz 15 16 17 
ß Power at Cz 29 31 31 
ß Power at T5 1 3 2 
ß Power at Pz 30 32 33 
ß Power at T6 9 5 5 
ß Power at 01 28 24 19 

juß Power at Fz 32 29 30 
Hß Power at Cz 7 9 9 
juß Power at T5 3 4 4 
juß Power at Pz 24 25 28 
juß Power at T6 4 1 1 
juß Power at 01 2 2 3 
Power of EOG 19 17 16 

Interbreath Interval 8 8 7 
Interbeat Interval 6 7 6 

Injected Noise             34 34 34 

167 



Regardless of saliency measure, the injected noise feature was always the least 

salient feature. Of the autonomic nervous system features, respiration interbreath interval 

was, on average, the most salient feature. The heart interbeat interval was, on average, 

the second most salient autonomic nervous system feature and power of the EOG signal 

was, on average, the least salient autonomic nervous system feature. For EEG, those 

features derived from the juß frequency band appeared, on average, to be the most 

salient. In fact, three of the top four most salient features were derived from the juß 

frequency band for all three saliency measures. Those features derived from the A 

frequency band appeared, on average, to be the least salient. 

6.4.4.3   Step Three: Spearman Rank Correlation Tests 

The Spearman rank correlation test was performed in the third step. Table 19 

summarizes the results from the three Spearman rank correlation tests performed. In all 

cases, H0 was rejected and the test concluded that all three saliency measures produced 

rankings that were, on average, consistent with 95% confidence. 

Table 19. Results from the Spearman Rank Correlation Tests 

Saliency Measures Compared rs rs > 0.282 Conclusion 

Partial derivative-based saliency measure 
to weight-based saliency measure 

0.9858 Yes Reject H0 

Partial derivative-based saliency measure 
to SNR saliency measure 

0.9612 Yes Reject H0 

Weight-based saliency measure to SNR 
saliency measure 

0.9752 Yes Reject H0 
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6.4.4.4   Step Four: Train Using Different Combinations of Features 

In the fourth step, 30 training sessions were performed for each combination of 

the top ranked features. Figure 34 contains plot of the CA , the 95% CI for HQA , the 

minimum classification accuracy, and the maximum classification accuracy for the 

training, test, and validation sets. A very large dip occurs in the minimum classification 

accuracy curves in the training and validation sets with the top 31 ranked features. This 

dip is more than likely a result of the error backpropagation training algorithm getting 

stuck in a local minimum of the error-weight space. 

The results for the validation set are of particular interest. From the bottom plot 

of Figure 34, the highest CAmljd corresponds to the feature set combination that contains 

the top 17 ranked features. Table 20 summarizes the classification accuracies attained in 

the training, test, and validation sets using the top 17 ranked features. The classification 

accuracy results with the top 17 ranked features in Table 20 can be directly compared to 

that using all 33 features in Table 15. Table 21 summarizes the results from the three 

t - tests performed. Both CAlmjn and CAlexl did not significantly increase or decrease 

after removing 16 nonsalient features with 95% confidence. 

Table 20. Classification Accuracy Summary Over 30 Trained Feedorward MLP 
ANNs Using Top 17 Ranked Features 

Training Set Test Set Validation Set 

CA 97.17% 89.78% 87.10% 

95% CI for CA (96.03%, 98.32%) (87.80%, 91.76%) (85.16%, 89.04%) 

Min CA,Max CA 90.22%, 100.00% 73.91%, 100.00% 76.09%, 97.83% 
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Table 21. Results from /-Tests 

CA Compared ts |^| > 1.6991 Conclusion 

CAlrajn (33 features) versus 

CAtraiA\l features) 

0.0908 No Fail to reject Ho, 

CAlrai„(33 features) = CAlrain(17 features) 

CAlexl (33 features) versus 

CAlesl (17 features) 

-1.5555 No Fail to reject H0, 

CA~,es,{33 features) - Clto,(l7 features) 

CAvalid (33 features) versus 

CAralid(l7 features) 

-1.7472 Yes Reject Ho, 

CAvalid(33 features) < CAmM(\l features) 

However, H0 was rejected and the test concluded that CAvaljd significantly increased 

after removing 16 nonsalient features with 95% confidence. 

Table 22 contains the confusion matrices for the training, test, and validation sets, 

respectively, using the top 17 ranked features. The rows of confusion matrices using the 

top 17 ranked features can be compared to that of the confusion matrices using all 33 

features in Table 16. 

The CAvaljd for the overload condition in Table 22 is of particular interest. As in 

the case with all 33 features, the CAlesl and CAvalid for the medium and high workload 

conditions were, on average, lower that than of the low workload and overload 

conditions. Though the CAlrajn was greater than 90% for the medium and high workload 

conditions, the CAlesl and CAvaljd were only greater than 75% for the medium and high 

workload conditions. By removing 16 nonsalient features, the classification of the high 

workload condition in the validation set was significantly improved. The change in the 

medium workload condition in the validation set was, however, not significantly 

changed. 
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Table 23 summarizes the results from the 12 % tests performed. In all but one 

comparison, the proportion of network classification for each workload condition did not 

significantly change as a result of removing 16 nonsalient features in the training, test, 

and validation sets. The only % test where H0 was rejected occurred when comparing 

the proportion of network classification of the high workload condition in the validation 

set. Since CAvai^ significantly increased after removing 16 nonsalient features (see 

Table 21), at least one workload condition in the validation set was expected to change 

significantly. 

6.4.5    Conclusions 

The first step showed that features from EEG, EOG, ECG, and respiratory gauges 

show potential for classifying air traffic controller workload as low, medium, high, and 

overload. The CAralid over 30 training sessions was 84.71% using 33 features derived 

from EEG, EOG, ECG, and respiratory gauges via a feedforward MLP ANN.    In 

addition, the CAvalid over 30 training sessions for the overload condition using 33 

features was 99.46%. 

In the second step, a noise feature was injected and several types of saliency 

measures were calculated for all 33 features. The saliency measures computed included 

the partial derivative saliency measure, the weight-based saliency measure, and the SNR 

saliency measure. From these three measures, the features were rank ordered. 

In the third step, the rankings provided by the three types of saliency measures 

were shown to be, on average, consistent with 95% confidence. There is a computational 

172 



Table 22. Confusion Matrices Summed Over 30 Trained ANNs Using 17 Features 

Training Set Network Classification 

Low Medium High Overload Overall 

True 

Classification 

Low 704 
98.74% 

2 
0.28% 

7 
0.98% 

0 
0.00% 

713 

Medium 7 
1.00% 

655 
93.97% 

35 
5.02% 

0 
0.00% 

697 

High 4 
0.59% 

23 
3.41% 

648 
96.00% 

0 
0.00% 

675 

Overload 0 
0.00% 

0 
0.00% 

0 
0.00% 

675 
100.00% 

675 

Overall 715 680 690 675 2760 
97.17% 

Test Set Network Classification 

Low Medium High Overload Overall 

True 

Classification 

Low 324 
93.37% 

13 
3.75% 

10 
2.88% 

0 
0.00% 

347 

Medium 15 
4.40% 

285 
83.58% 

. 41 
12.02% 

0 
0.00% 

341 

High 15 
4.18% 

43 
11.98% 

300 
83.57% 

1 
0.28% 

359 

Overload 0 
0.00% 

0 
0.00% 

3 
0.90% 

.   330 
99.10% 

333 

Overall 367 344 337 332 1380 
89.78% 

Validation Set Network Classification 

Low Medium High Overload Overall 

True 

Classification 

Low 301 
94.06% 

12 
3.75% 

7 
2.19% 

0 
0.00% 

320 

Medium 19 
5.56% 

259 
75.73% 

64 
18.71% 

0 
0.00% 

342 

High 22 
6.36% 

53 
15.32% 

271 
78.32% 

0 
0.00% 

346 

Overload 0 
0.00% 

0 
0.00% 

1 
0.27% 

371 
99.73% 

372 

Overall 342 324 343 371 1380 
87.10% 
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Table 23. Results from x1 Tests Comparing Rows of Confusion Matrices with 33 
Features to that with Top 17 Ranked Features 

True 
Workload xi Zs > TSUI Conclusion 

Training 

Set 

Low 0.8656 No Fail to reject H0, Equal network 
classification proportions 

Medium 0.0619 No Fail to reject H0, Equal network 
classification proportions 

High 0.0940 No Fail to reject H0, Equal network 
classification proportions 

Overload 0.0000 No Fail to reject H0, Equal network 
classification proportions 

Test 

Set 

Low 7.7290 No Fail to reject H0, Equal network 
classification proportions 

Medium 3.0623 No Fail to reject H0, Equal network 
classification proportions 

High 4.7794 No Fail to reject H0, Equal network 
classification proportions 

Overload 0.5061 No Fail to reject H0, Equal network 
classification proportions 

Validation 

Set 

Low 0.0451 No Fail to reject HQ, Equal network 
classification proportions 

Medium 1.9633 No Fail to reject H0, Equal network 
classification proportions 

High 8.0514 Yes Reject H0, Network classification 
proportions not equal 

Overload 0.3347 No Fail to reject H0, Equal network 
classification proportions 
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advantage to using the weight-based saliency measure and the SNR saliency measure 

over the partial derivative-based saliency measure. Both the weight-based saliency 

measure and the SNR saliency measure take only a fraction of the time it takes to 

calculate the partial derivative-based saliency measure. The SNR saliency measure also 

offers the advantage of comparing the saliency of each feature to that of an injected 

known noisy nonsalient feature. 

Finally, statistical tests showed in the fourth step that the removal of 16 nonsalient 

features did, in no way, decrease any classification capability of a feedforward MLP 

ANN to classify air traffic control workload. In fact, the CÄ~Yalid was significantly 

increased by removing nonsalient features. Using the top 17 ranked features produced a 

CAvalid over 30 training sessions of 87.10%. Thus, 48.48% of the features can be 

removed while actually improving the CAvalid by 2.39% which was a significant increase 

with 95% confidence. The CAralid over 30 training sessions for the overload condition 

using the top 17 ranked features increased slightly to 99.73%, though this was not a 

significant increase. The increase in CAralid was mainly attributed to the improvement in 

classification of the high workload condition. 

Of the top 17 features, all three of the of autonomic nervous system features were 

included. This showed that peripheral psychophysiological features are useful, as 

expected, for classifying air traffic controller workload. Of the EEG frequency bands, 

features from the juß frequency band were selected more often than any other frequency 

band. Selection of features from the juß frequency band agreed with stepwise 

discriminant analysis results and principle component analysis results from Wilson and 

Fisher's mental workload study in which subjects performed 14 cognitive tasks [174]. 
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However, questions loom about the biological insight to the selection of features from the 

juß frequency band. The physiological origin of the of the juß frequency band is of 

question since it is not known whether the higher frequencies are from the brain or from 

the musculature covering the scalp [174]. Regardless of the physiological origin of the 

juß frequency band, it is clear that the features derived from the juß frequency band for 

this investigation were, on average, the most salient. Finally, selection of EEG features 

mostly from the scalp locations of Fz, T5, and T6 showed that air traffic control involves 

many areas of the brain. This was expected since air traffic control is a complex and 

demanding task. 

6.5    Conclusions 

In conclusion, the methodology as developed for classifying the workload of a 

pilot in addition to that of an air traffic controller appears to be able to remove nonsalient 

features while maintaining, and in some cases improving, classification of air traffic 

controller workload. Feature saliency is an important step in developing any ANN model 

for improving generalization capability. 
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7    Signal-to-Noise Ratio (SNR) Screening Method as Applied to Classifying Pilot 

Workload via Feedforward Multilayer (MLP) Artificial Neural Networks (ANN) in 

Addition to Elman Recurrent Neural Networks (RNN) 

7.1    Introduction 

The SNR screening method is a new feature screening technique. The SNR 

screening method utilizes the SNR saliency measure in order to produce a parsimonious 

set of salient features while maintaining good classification accuracy. As with the SNR 

saliency measure, Bauer proposed the SNR screening method [6] and Sumrell was the 

first to experiment with the SNR screening method using a noisy version of the XOR 

classification problem in Figure 2 and Fisher's iris classification problem [147]. The 

SNR screening method significantly reduces the number of features inputted to an ANN 

while maintaining classification accuracy or, in some cases, significantly improving 

classification accuracy. The SNR screening method may account for feature redundancy. 

The SNR screening method holds the potential to require only a single training run to 

remove all nonsalient features. 

This chapter summarizes the application of the SNR screening method to 

modeling pilot workload via feedforward MLP ANNs in addition to Elman RNNs as 

published in [47] and to appear in [49]. This dissertation research produced the first non- 

trivial, reäl-world applications of the SNR screening method in both feedforward MLP 

ANNs and Elman RNNs. 

The objective of both the feedforward MLP ANN and the Elman RNN was to 

estimate a pilot's workload while landing an airplane in a similar fashion to that as 
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described in Section 6.3. This chapter will first described the SNR screening method. 

Next, the application of the SNR screening method to a feedforward MLP ANN for 

classifying a pilot's workload while landing an airplane is summarized. Then, the 

application of the SNR screening method to an Elman RNN for estimating a pilot's 

workload while landing an airplane is summarized. 

7.2    Signal-to-Noise Ratio (SNR) Screening Method 

The SNR screening method is a backwards screening method that utilizes the 

SNR saliency measure. Previously developed feature screening methods, such as the 

Belue-Bauer screening method [11, 12] discussed in Section 3.5.2 and the Steppe-Bauer 

screening method [136, 137, 140] discussed in Section 3.5.3, utilize a partial derivative- 

based saliency measure [124, 126] or a weight-based saliency measure [152]. The SNR 

screening method holds the promise of potentially identifying and removing nonsalient 

input features in a single training run. Both the Belue-Bauer and the Steppe-Bauer 

screening method typically require between 10 to 30 training runs [11, 12, 136, 137, 

140]. The SNR saliency measure appears highly robust relative to the effects of the 

weight initialization, the ANN's architecture, and the selection of training and test sets. 

The SNR screening method provides a mechanism to potentially identify a 

parsimonious set of salient features by removing non-salient features while striving to 

maintain good generalization. 

Signal-to-Noise Ratio (SNR) Screening Method 

1. Introduce a Uniform (0,1) noise feature xN to the original set of features. 

2. Normalize all features following Equation 16 or Equation 19. 
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3. Randomly initialize the weights between -0.001 and 0.001. 

4. Randomly select the training and test sets. 

5. Begin to train the ANN. 

6. After each epoch, compute the SNR saliency measure for each input feature. 

7. Interrupt training when the SNR saliency measures for all input features have 
stabilized. 

8. Compute CAlesl. 

9. Identify the feature with the lowest SNR saliency measure and remove it 
from further training. 

10. Continue training the ANN. 

11. Repeat steps 6 through 9 until all the features (except the noise feature) in the 
original set are removed from training. 

12. Compute the reaction of CAlest due to the removal of the individual features. 

13. Retain the first feature whose removal caused a significant decrease in CAlest, 
as well as all features which were removed after that first salient feature. 

14. Retrain the ANN with only the parsimonious set of salient input features. 

Because the SNR saliency measure directly compares the saliency of each feature 

to a baseline noise feature, the SNR saliency measure has the potential to be used "on the 

fly" to rank order the features while the ANN is training. In other words, the SNR 

screening method, which utilizes the SNR saliency measure, may be completed in only a 

single training run of the ANN. The potential to remove all non-salient features in a 

single run would be a distinct advantage over the Belue-Bauer screening method and the 

Steppe-Bauer screening method which typically require between 10 to 30 runs [11, 12, 

136, 137, 140]. 

179 



7.3    Signal-to-Noise Ratio (SNR) Screening Method in Feedforward Multilayer (MLP) 

Artificial Neural Networks (ANN) 

7.3.1 Introduction 

The SNR screening method was applied to the same pilot workload classification 

problem described in Section 6.3 to assess its potential to remove nonsalient features 

within a single training run of a feedforward MLP ANN. Results from Section 6.3 

determined that the four most salient features using the SNR saliency measure included 

number of eye blinks and the average log power of the A frequency band at electrodes 

P3, Fz, and C4. Because three of the top four salient features were log power of the A 

frequency band at three different electrodes, this may suggest that the SNR saliency 

measure does not account for feature redundancy. The SNR screening method may 

account for redundant features. 

7.3.2 Data 

The same pilot workload classification data set with 18 prescreened features as 

described in Section 6.3 was used to explore the ability of the SNR screening method to 

identify and remove nonsalient features. Seventeen features of the average log power of 

the EEG signals in addition to the number of eye blinks over a 10-second moving 

window with 50% overlap served as inputs to a feedforward MLP ANN to classify pilot 

workload as low or high. 
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7.3.3 Methodology 

The SNR screening method was replicated 20 times, each time with a different 

random seed. As such, each replication had a different set of initialized weights between 

-0.001 and 0.001. Also, each replication randomly selected two-thirds of the data for 

training and one-third of the data for testing. A noise feature with a Uniform(0.0,1.0) 

distribution was injected. All features were normalized following Equation 19. Each 

feedforward MLP ANN trained had a 19/19/2 architecture. All hidden and output 

nodes were activated by the sigmoid nonlinear transfer function in Equation 4. A fixed 

learning rate 7 = 0.3 was used. No momentum was used. Training of each feedforward 

MLP ANN was stopped when all of the following stabilized: 

• MSElrain 

• MSE„ 
• W 
• SNRiyi = l,2,...,I. 

7.3.4 Results 

The SNR screening method, on average, took 2747.6 epochs to remove all 

features and identify a parsimonious set of salient features. Seventeen out of 20 times 

(85%), the SNR screening method selected average log power of the A frequency band 

at electrode P3, as the only feature required in order to attain CAlesl = 100% . Three out 

of 20 times (15%), the SNR screening method determined that average log power of the 

A frequency band at electrode P3 and number of eye blinks were the only features 

required to maintain CA,esl = 100%. CAlexl =100% is an improvement over 

CAlesl = 90% using the top four salient features from Section 6.3. 
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Figure 35.  CA,esl Resulting From Feature Removal 

Figure 35 plots CAlest as a result of feature removal over the 20 independent 

training sessions. After the first feature was removed, Cllesl = 94.5% . In fact, CAll!Kl 

remained at 94.5% until 11 features were removed. CAlesl gradually increased each time 

an additional feature was removed until 16 features were removed. C~Ätesl then slightly 

increased after 16 features were removed and remained the same after 17 features were 

removed.   Finally, the CAlest decreased significantly after 18 features were removed. 

Figure 35 suggests that CAlesl may increase as nonsalient features are removed. 

7.3.5   Conclusions 

In addition to the parsimonious set of salient features improving the CAlesl, the 

selected set of salient features for classifying pilot workload is physiologically sound. 
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Landing an aircraft is a very demanding visual task. Number of eyes blinks is inversely 

related to the level of difficulty of a visual task and has been shown to be a sensitive 

measure to visual workload [15,170,173,175,177]. The more difficult a visual task, the 

less a human will blink [15, 170, 173, 175, 177] (see Section 4.3.1.1 for a discussion of 

EOG for classifying mental workload). As such, the selection of the number of eye 

blinks in three of the 20 replications makes sense. Also, the selection of the average log 

power of the A frequency band at electrode P3 makes sense. The electrode P3 as shown 

in Figure 16 is located at the parietal area of the brain (left side of the back of the head) 

and is commonly known as the "cortical association area" which performs both reasoning 

and secondary processing of sensory information [100]. In addition, Harmony et al. 

showed that the EEG A frequency band is an indicator of attention to internal processing 

during performance of mental tasks [54]. 

Not once was the average power of the EEG A band at two different scalp 

locations selected for the parsimonious set of salient features. This suggests that the SNR 

screening method may help account for redundant features. 

7.4    Signal-to-Noise Ratio  (SNR)  Screening Method in  Elman Recurrent Neural 

Networks (RNN) 

7.4.1    Introduction 

EEG continually changes in both time and space. Feedforward MLP ANNs as 

utilized in previous chapters of this dissertation can adequately reflect the differences and 

changes of EEG over the electrodes as shown in Figure 15 and Figure 16.  Feedforward 
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MLP ANNs can also adequately reflect differences and changes of EEG over the various 

frequency bands as listed Table 3 and Table 4. However, feedforward MLP ANNs can 

not reflect the changes in EEG in addition to the peripheral psychophysiological features 

over time. Since there is a strong temporal component to EEG and to the peripheral 

psychophysiological features, the next logical step was to model pilot workload using a 

type of ANN that allows for the encoding of time such as the Elman RNN [31] as 

depicted in Figure 38. Whereas the pilot workload research described in Chapter 6 and in 

Section 7.3 classified workload as low or high, the pilot workload summarized here 

estimates pilot workload. 

7.4.2   Data 

Data similar to that described in Section 6.3.2 were used. Features were derived 

from EEG and peripheral psychophysiological measures collected while a pilot flew 

simulated landing scenarios on two different days. Data collected on the first day was 

used as training data. Data collected on the second day was used as test data. (The data 

described in Section 6.3.2 was collected in one day). The landing scenario was repeated 

five times on each data collection day. 

Both the training set and the test set contained a total of 112 psychophysiological 

features (108 EEG features and four physiological features). A description of these 112 

psychophysiological features is given in Section 6.3.2. The training set contained only 32 

exemplars. The test set also contained only 32 exemplars. Figure 36 contains plots of a 

few of the input features before normalization. 
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Figure 36. Four Input Features of Training Set (Dotted Line) and of the Test Set (Solid 
Line) 

Whereas the pilot workload research described in Chapter 6 and in Section 7.3 

classified workload as low or high, now levels of pilot workload range between 0.0 and 

1.0. When the pilot is flying straight and level, his workload is low and is therefore given 

a workload value of 0.0. When the pilot begins his descent to the airfield, his workload is 

assumed to increase linearly until touchdown. For this scenario, a pilot's workload is 

highest at touchdown and is therefore given a workload value of 1.0. After each 

touchdown, the pilot was given a 30-second rest period and then the scenario was reset. 

Data from the 30-second rest period was removed and not considered for analysis. 

Figure 37 is a plot of the desired output of the training set and of the test set. Note from 
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Figure 37. Desired Output of Training Set (Dotted Line) and of Test Set (Solid Line) 

Figure 37 that the time it takes to land the airplane differs between the training set and the 

test set. Also note from Figure 37 that the time it takes to land the airplane differs 

between each landing scenario. In some cases, it only took the pilot three time periods to 

land the airplane. In other cases, it took the pilot five time periods to land the airplane. 

The amount of time it takes to land an airplane can depend on several factors such as 

airspeed, rate of descent, and touchdown point. 

7.4.3   Methodology 

7.4.3.1   Step One: Train Using all Candidate Input Features over Experimental Design 

The first step was to train Elman RNNs [31] with a 112 + JIJ11 architecture, as 

depicted in Figure 38, using all 112 available features over a 52 full-factorial 

experimental design. A 52 full-factorial experimental design was used to examine the 

effects of two factors, mc and J, on RMSElest as in Equation 48. Five values of mc were 

evaluated: 0.1, 0.3, 0.5, 0.7, and 0.9. Five values of J were evaluated:  1, 3, 5, 7, and 9. 
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Figure 38.  112 + J1J11 Elman RNN 

Cover's Theorem as extended to hidden nodes in Equation 61 provided guidance in the 

selection of the levels of J evaluated [23]. Ten replications were performed at each of 

the 25 (52) design points resulting in a total of 250 trained Elman RNNs using all 112 

features. All hidden/context node were activated by the hyperbolic tangent nonlinear 

transfer in Equation 6. A linear transfer function with slope = 1 in Equation 8 was used 

on the output node. 

Using the Matlab Neural Network Toolbox, each of the 250 Elman RNNs was 

trained using the error backpropagation algorithm with an adaptive learning rate rj and 

momentum in Equation 50 until RMSElrain < 0.02 or for E = 2000 epochs, whichever 

occurred first.   The set of weights for the epoch that produced the minimum RMSEtest 
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was kept.  For each design point, the average minimum root mean squared error of the 

test set denoted as RMSEtesl was calculated in addition to the average number of epochs 

denoted as E required to reach the minimum RMSElesl. 

7.4.3.2   Step Two: Perform Signal-to-Noise Ratio (SNR) Screening Method over 

Experimental Design 

The next step was to perform the SNR screening method over the 52 full-factorial 

experimental design in order to determine the parsimonious set of salient features for 

estimating a pilot's workload while landing an airplane. Since there are only 32 

exemplars, training an Elman RNN with 112 input features is in violation of Foley's Rule 

[37] in Equation 59 and the so-called "curse of dimensionality" [28] is clearly apparent. 

The SNR screening method may cure this data set's "curse of dimensionality" by 

eliminating enough nonsalient features. The SNR screening method may reduce the 

RMSElesl. This was the first attempt ever to apply the SNR screening method to an 

Elman RNN. 

Modified Signal-to-Noise Ratio (SNR) Screening Method 

1. Inject a noise feature xN with a Uniform(0.0,1.0) distribution to the original 
set of features. 

2. Normalize all features between -1.0 and 1.0 using Equation 20. 

3. Randomly initialize the weights between -0.001 and 0.001. 

4. Begin training the Elman RNN. 

5. After every epoch, compute RMSElrajn and RMSE,exl. 

6. Stop training when RMSEtrain < 0.02 or after 500 epochs, whichever happens 
first. 
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7. Compute the SNR saliency measure following Equation 99 for each input 
feature. Note that the SNR saliency measure is not computed for the context 
nodes. 

8. Identify the feature with the lowest SNR saliency measure and remove it from 
further training. 

9. Continue training the Elman RNN. 

10. After every epoch, compute RMSElrajn and RMSElesl. 

11. Stop training when RMSElrajn <0.02 or after 100 epochs, whichever happens 
first. 

12. Compute the SNR saliency measure for each input feature. 

13. Identify the feature with the lowest SNR saliency measure and remove it from 
further training. 

14. Repeat steps 9 through 13 until all the features (except the noise feature) in the 
original set are removed from training. 

15. Determine when the minimum RMSElesl occurred during training. 

16. Retain all features that were removed after the minimum RMSElexl occurred. 

The same 52 full-factorial design of experiments was used with 10 replications at each 

design point. As such, the SNR screening method was performed 250 times. 

7.4.3.3 Step Three: Train Using Parsimonious Set of Salient Features over 

Experimental Design 

The final step in this preliminary investigation was to train Elman RNNs using the 

parsimonious set of salient features as determined by the SNR screening method over the 

52 full-factorial experimental design. Once again, 10 replications were performed at 

each design point resulting in a total of 250 Elman RNNs trained on the parsimonious set 
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of salient features. As in Step One in Section 7.4.3.1, each of the 250 Elman RNNs were 

trained with the Matlab Neural Network Toolbox using the error backpropagation 

algorithm with an adaptive learning rate 77 and momentum in Equation 50 until 

RMSElmjn < 0.02 or for E = 2000 epochs, whichever occurred first. The set of weights 

for the epoch that produced the minimum RMSElexl was kept. For each design point, the 

average minimum RMSElesl  was calculated in addition to  E  required to reach the 

minimum RMSElesl. 

7.4.4   Results 

7.4.4.1   Step One: Train Using all Candidate Input Features over Experimental Design 

The first step was to train 250 Elman RNNs following the experimental design. 

Figure 39 is a plot of the RMSElrain and the RMSElesl for one of the training sessions with 

mc = 0.1 and J = 3. For the training session depicted in Figure 39, the minimum 

RMSElexl = 0.2874 occurred after 95 epochs of training. Training was stopped after 1521 

epochs when RMSElrain < 0.02. 

Table 24 provides a summary of the minimum RMSElesl using 112 features. The 

design point that produced the best  RMSElest   is shaded in Table 24.    The best 

RMSElest = 0.2893 was achieved with mc = 0.1 and J = 3. But upon closer examination 

of Table 24, it becomes apparent that the selection of mc and J did not significantly 

affect RMSElest. Overall, RMSEte„ = 0.2930. 
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Figure 39. RMSElrain (Dotted Line) and RMSElesl (Solid Line) with 112 Features 

Table 25 provides a summary of £ required until the minimum RMSElesl was 

attained using 112 features. The design point that produced E is shaded in Table 25. 

The minimum E achieved was 84.4 epochs with mc = 0.3 and J = 5. The overall E 

until reaching the minimum RMSElexl was 94.1. It appears from Table 25 that the design 

points with mc = 0.9 surprisingly required, on average, the highest E in order to attain 

Table 24. Average Minimum Test Set RMSE Using 112 Features 

Momentum Constant 
0.1 0.3 0.5 0.7 0.9 Avg 

Number 
of Hidden/ 

Context 
Nodes 

1 0.2896 0.2903 0.2941 0.3042 0.3120 0.2981 
3 0.2893 0.2899 0.2896 0.2942 0.3040 0.2934 
5 0.2897 0.2911 0.2907 0.2929 0.2940 0.29.16 
7 0.2901 0.2910 0.2903 0.2924 0.2913 0.2910 
9 0.2906 0.2914 0.2902 0.2918 0.2896 0.2907 

Avg 0.2898 0.2907 0.2910 0.2951 0.2982 0.2930 
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Table 25. Average Number of Epochs Using 112 Features 

Momentum Constant 
0.1 0.3 0.5 0.7 0.9 Avg 

Number 
of Hidden/ 

Context 
Nodes 

1 89.3 90.0 89.6 94.4 114.2 95.5 
3 95.3 86.1 88.6 90.7 112.5 94.6 
5 98.2 84.4 86.2 87.4 110.4 93.3 
7 97.5 85.1 86.5 87.2 108.6 93.0 
9 98.8 88.5 85.8 89.8 107.9 94.2 

Avg 95.8 86.8 87.3 89.9 110.7 94.1 

the minimum RMSElexl. 

For the training sessions depicted in Figure 39, the set of weights from the 95th 

epoch was kept. Figure 40 contains plots of the actual output and of the desired output 

using 112 features using that set of weights at the design point with mc = 0.1 and  J = 3. 

7.4.4.2   Step Two: Perform Signal-to-Noise Ratio (SNR) Screening Method over 

Experimental Design 

The second step of this preliminary investigation was to perform the SNR 

screening method 250 times following the experimental design.  Number of eye blinks 

was  selected as the  only  salient feature  required 248  times  (99.2%).     From  a 

psychophysiological viewpoint, the number of eye blinks makes sense since number of 

eye blinks is a good indicator of visual workload and landing an airplane is a visually 

demanding task [175]. One replication with mc = 0.1 and   J = 1 selected number of eye 

blinks and the variance of the log power of the a frequency band at electrode C4 as the 

parsimonious set of salient features (0.4%).   One replication with mc = 0.1 and   J = 5 

selected all 112 features as the parsimonious set of salient features (0.4%).   Figure 41 

plots the SNR saliency measure of the number of eye blinks and of the variance of the log 
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Figure 40. Actual Output (Solid Line) And Desired Output (Dotted Line) With 112 
Features 

power of the a frequency band at electrode C4 after each feature is removed. The 

replication depicted in Figure 41 had mc = 0.9 and J = 1. Note from Figure 41 that the 

SNR saliency measure of the variance of the log power of the a frequency band at 

electrode C4 drops to 0.0 when it is the 111th feature removed. It appears from Figure 41 

that the SNR saliency measure of the number of eye blinks is always larger than that of 

the variance of the log power of the a frequency band at electrode C4. 

Figure 42 plots the SNR saliency measure of the average log power of the A 

frequency band at electrode P3 and of the average log power of the a2 frequency band at 

electrode FZ. The replication depicted in Figure 42 had mc = 0.9 and J = 1. Note from 

Figure 42 that average log power of the a2 frequency band at electrode Fz is the 36th 

feature removed. As such, the SNR saliency measure of the average log power of the a2 

frequency band at electrode Fz is 0.0 after it is removed. Also note from Figure 42 that 

average log power of the A frequency band at electrode P3 is the 106th feature removed. 

Figure 43 shows the effect of each feature's removal on RMSElrain and RMSEresl. 

The replication depicted in Figure 43 had mc = 0.9 and  J = 1. The minimum RMSE, , 
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Figure 41. SNR Saliency Measure of Number of Eye Blinks (Solid Line) and 
of Variance of Log Power of the a Frequency Band at Electrode C4 

occurred after 111 features were removed and the number of eye blinks was the only 

feature remaining. This replication selected number of eye blinks as the only salient 

feature required to estimate a pilot's workload while landing an airplane. 

7.4.4.3 Step Three: Train Using Parsimonious Set of Salient Features over 

Experimental Design 

The third and final step was to train 250 Elman RNNs using the parsimonious set 

of salient features over the experimental design. Figure 44 is a plot of the RMSElrajn and 

the RMSElesl for one of the training sessions with mc = 0.9 and J = 7. For the training 

session depicted in Figure 44, the minimum RMSElexl = 0.0904 occurred after E = 1936 

epochs of training. Training was stopped after E = 2000 epochs. After E = 2000 

epochs , RMSElrain = 0.0759. 
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Figure 42. SNR Saliency Measure of Average Log Power of A Frequency Band at 
Electrode P3 (Solid Line) and of Average Log Power of a2 Frequency Band at 

Electrode Fz (Dotted Line) 

Table 26 provides a summary of the minimum RMSEtesl using number of eye 

blinks. It appears from Table 26 that mc and   J have a small but noticeable effect on 

RMSEtesl. The design point that produced the best RMSElesl is shaded in Table 26. The 

best RMSEtes;= 0.0864 was achieved with mc =0.9 and J = 1.   This provided a 70% 

reduction from the best RMSElesl = 0.2893 attained using all 112 features with mc = 0.1 

and J = 3. The overall RMSElest using number of eye blinks was 0.0969. The overall 

average test set RMSE using all 112 features was 0.2930. The SNR screening method 

provided, on average, a 67% reduction in RMSElex,. By comparing Table 26 with Table 

24, it is clear that results from the SNR screening method produce a lower RMSElesl 

regardless of mc and J. 
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Table 27 provides a summary of E required until the minimum RMSElesl is 

attained using number of eye blinks. The design point that produced the best E is shaded 

in Table 27. The minimum E required using number of eye blinks was 1498.8 epochs 

with mc =0.9 and J = 3. The minimum E required using all 112 features was 84.4 

epochs with mc = 0.3 and J = 5. The minimum E required using number of eye blinks 

is larger than that using all 112 features by a factor of 17.75. The overall E using 

number of eye blinks was 1903.4. The overall E using all 112 features was 94.1. The 

overall E required using number of eye blinks is larger than that using all 112 features 

by a factor of 20.22. By comparing Table 27 with Table 25, it is clear that it takes a 

larger E, on average, to train an Elman RNN using number of eye blinks regardless of 
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Figure 44. RMSE,rajn (Dotted Line) and RMSElesl (Solid Line) with 
Number Of Eye Blinks 

mc and J.   It may take longer to train with number of eye blinks as the only input 

feature, but the added epochs provide a much lower RMSElexl. 

Figure 45 is a plot of the actual output and of the desired output for both the 

training set and the test set. Results depicted in Figure 45 are from an Elman RNN for 

the training session depicted in Figure 44 where the set of weights from E = 1936 are 

kept, mc = 0.9 and J = 7. By comparing Figure 45 with Figure 40, it is clear that using 

only the number of eye blinks provided better results to estimating a pilot's workload 

while landing an airplane. 
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Ti ible 26. Minimum RMSElext Using Number Of Eye Blinks 

Momentum Constant 
0.1 0.3 0.5 0.7 0.9 Avg 

Number 
of Hidden/ 

Context 
Nodes 

1 0.1192 0.1155 0.1122 0.1088 0.1041 0.1120 
3 0.0954 0.0944 0.0941 0.0899 0.0906 0.0929 
5 0.0975 0.0897 0.0891 0.0915 0.0871 0.0910 
7 0.1010 0.0958 0.0882 0.0900 0.0864 0.0923 
9 0.1038 0.0978 0.0950 0.0944 0.0900 0.0962 

Avg 0.1034 0.0986 0.0957 0.0949 0.0916 0.0969 

7.4.5   Conclusions 

In conclusion, this application of the SNR screening method was the first 

successful USAF effort to estimate a pilot's workload while landing an airplane using 

EEG and psychophysiological features via an Elman RNN. This was also the first 

successful application of the SNR screening method to an Elman RNN.   The overall 

minimum RMSElesl using all 112 available features was 0.2930.   Conclusions drawn 

from applying the SNR screening method to the Elman RNN consistently stated that 

number of eye blinks was the only salient feature required. The overall RMSElest using 

number of eye blinks was 0.0969. 

Table 27.  E Using Number of Eye Blinks 

Momentum Constant 
0.1 0.3 0.5 0.7 0.9 Avg 

Number 
of Hidden/ 

Context 
Nodes 

1 1991.3 1990.8 1992.4 1998.3 1997.8 1994.1 
3 1943.1 1922.2 1870.7 1691.5 1489.8 1783.5 
5 1993.4 1980.4 1887.2 1873.1 1623.7 1871.6 
7 1721.3 1986.4 1990.0 1988.5 1890.7 1915.4 
9 1854.7 1949.1 1986.4 1984.0 1988.9 1952.6 

Avg 1900.8 1965.8 1945.3 1907.1 1798.2 1903.4 
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Figure 45. Actual Output (Solid Line) And Desired Output (Dotted Line) With Number 
of Eye Blinks 

7.5    Conclusions 

The SNR screening method, as demonstrated in the pilot workload classification 

and estimation problems, identified and removed non-salient features. The SNR 

screening method shows promise and offers significant advantages over previous 

screening methods. A significant advantage of the SNR saliency measure is that the 

saliency of each feature is compared to that of a known nonsalient noise feature. A 

significant advantage of the SNR screening method over the Belue-Bauer screening 

method and the Steppe-Bauer screening method is that the screening may be completed 

in only one training run. The SNR screening method is able to select a parsimonious set 

of salient features while maintaining, and in some cases decreasing, RMSElesl.  Finally, 

the SNR screening method shows some potential for identifying redundant features. 
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8    Spatial-Temporal Feature Screening Method that Utilizes a Partial Derivative- 

Based Spatial-Temporal Saliency Measure 

8.1    Introduction 

Unfortunately, the SNR saliency measure as used in an Elman RNN in the previous 

chapter does not explicitly account for the temporal saliency of each feature. In response 

to this, this research derived and developed a partial derivative-based spatial-temporal 

saliency measure for use in Elman RNNs. This partial derivative-based saliency measure 

provides the spatial-temporal saliency of each feature by unfolding the layers of an 

Elman RNN through time. This chapter discusses the development of a partial 

derivative-based spatial-temporal saliency measure to be used in Elman RNNs. 

In order to use the partial derivative-based spatial-temporal saliency measure for 

feature selection, a spatial-temporal feature screening method was developed. As with 

other screening methods developed in this dissertation, a noise feature is injected. In the 

spatial-temporal feature screening method, features are screened out by comparing the 

area under the spatial-temporal curves. The applicability of the new methodology is 

exhibited by applying it to classifying pilot workload. The features include those derived 

from peripheral psychophysiological quantities. The new spatial-temporal feature 

screening method and the new partial derivative-based spatial-temporal feature saliency 

measure is useful in determining the relevance of peripheral psychophysiological features 

for classifying pilot workload over time. 

This chapter is organized as follows. First, derivations for the partial derivative- 

based saliency measure are provided for a simple 1 + 1/1/1 Elman RNN, a l + J/J/l 
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Elman RNN, and a general I + J/J/K Elman RNN. Next, the spatial-temporal feature 

screening method is described. Finally, the applicability of the spatial-temporal feature 

screening method is shown for classifying pilot workload using peripheral 

psychophysiological features. To show the advantages of the using Elman RNNs for 

classifying pilot workload, feature screening is also performed using the SNR screening 

method for a feedforward MLP ANN and a TDNN. Then the results using an Elman 

RNN are compared to that using a feedforward MLP ANN and a TDNN. 

8.2    Partial Derivative-Based Spatial-Temporal Saliency Measure 

This section derives the partial derivative-based spatial-temporal saliency measure 

denoted as T for varying complexity of Elman RNN architectures. First, the derivations 

for T are provided for a very simple 1 + 1/1/1 Elman RNN. Then, derivations are 

provided for a l + J/J/l Elman RNN. Finally, derivations are provided for a general 

I + J/J/K Elman RNN. This bottom-up approach to deriving T is provided as a 

convenience to the reader. 

8.2.1    Derivations for a 1 + 1/1/1 Elman Recurrent Neural Network (RNN) 

Figure 46 shows a  1 + 1/1/1   Elman RNN which is simplest Elman RNN 

architecture.   Let f(a) denote an activation function and / denote —^-.   Given a 
da 

function x,(?) for t e {l,2,3,...}, then define the function a{(t,W) as: 

a\(t,W) = wl
0A + w\_, ■ x,(t)+ w\x -yx{t-1) (109) 

where a\(t,W) is the activation argument for hidden node j = 1 and for layer = 1.  The 
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subscript of a,'(if,W) denotes hidden node j = \ and the superscript denotes layer = 1. 

Then define: 

y](t,W)=flial(t,yv)) (110) 

where the subscript of //  denotes hidden node  j = \  and the superscript denotes 

layer = 1. Now, define the function a2(/,W) for t e {l,2,3,...} as: 

■flfcw) (111) al(t,W)=w;,+w, 2 2 
0,1 +<1 

where the subscript of a,2(f,W) denotes output node k = \ and the superscript denotes 

layer = 2. Then define: 

zl{t,W) = fl
2(a^(t,W)) (112) 

where the subscript of /,2  denotes output node  k = \  and the superscript denotes 

layer = 2.   Note that z,(f,W) depends upon the parameters vi^,, w',, wj,, w2^ and 
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wx
2
x.  Hence, z,(?,W) is a function of W, the weight matrix.  The function z, clearly 

depends on xx and so, zx(t,W) is actually: 

zx(t,V/) = zx(xx{o),xx(\),...,xx{t),V/) (113) 

For / fixed let zx{%Q,i;x,l;2...,%nW) denote the function so that: 

z1(^,W)=z1(xI(0),x,(l),x1(2),...,x1(4w) (114) 

Therefore, the instantaneous rate of change of zx(t,W) with respect to xx(t) is written as: 

dz, 
{xx(o),xx(l),xx(2),...,xx{t),W) (115) 

Equation 115 will be written in abbreviated form as: 

az,(',w) 
(116) 

dxx{t) 

Applying the chain rule, Equation 116 becomes: 

^$=X(<+< •*('))■»£ ■£(<+< •*.(')+<, -*('-i)Ri   (in) 

Equation 117 can be rewritten as: 

^^=/M^))<- fMb w)> w, 
1,1 (118) 

For the 1 + 1/1/1 Elman RNN as depicted in Figure 46, the partial derivative- 

based saliency measure is calculated for feature xx, using the training set exemplars 

following Equation 66 as: 

1    T 

x
i       rr   £-4 

<?*,(f,W) 

dxx{i) 
(119) 

where TXi  is the partial derivative-based saliency measure for feature xx, T  is the 
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number of time steps, z,(?,W) is the activation of output zx at time t with the trained 

weight matrix W,and xx(t) is the input for feature xx at time t. More specifically: 

(120) 

where fx
2(t,W) is the partial derivative of zx(t,W), w,2, is the second layer weight 

connecting hidden node yx{t) to the output node zx{t), fx(t,W) is the partial derivative 

of v^W), 7,(/,W) is the activation of hidden node v, at time t with the trained 

weight matrix W, and w\x is the first layer weight connecting input node xx(t) to 

hidden node y.x (t). The partial derivatives of various transfer functions are listed in 

Table 1. Similarly to Equation 119, the partial derivative-based saliency measure can be 

computed for the context node 7, as: 

1    T 

r   =--Y 
i=\ 

dzx(t,W) 

#yi(t-i,yv) 
(121) 

where Tyi is the partial derivative-based saliency measure for context node yx.   More 

specifically: 

1   l=\ 
W- 2,1 (122) 

where w\x is the first layer weight connecting context node yx(t-l) to hidden node 

yx{t). Note the following relationship: 

^•Z|/1
2(«1

2(^W)).w1V/1
1(a1'(r,W)).^1 

~ ■ Z |/.2 («12 C> w)> < ■ fx («i C> W))- w\, 
1   (=1 

w. 1,1 

w 2,1 

(123) 
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8.2.2    One Time Lag of a 1 + 1/1/1 Elman Recurrent Neural Network (RNN) 

An Elman RNN can be viewed as a feedforward MLP ANN which has been 

folded back on itself in time. An 1 + 1/1/1 Elman RNN can be unfolded one layer as 

shown in Figure 47. Unfolding a layer of an Elman RNN allows us to visualize the input 

and hidden layers that effect the output zx(t). The partial derivative-based saliency 

measure can be calculated for the first unfolded layer by extending the equations in 

Section 8.2.1. For the unfolded layer 1 in Figure 47, the partial derivative-based saliency 

measure for x, is calculated as: 

T-l 

^■5 
^w) 
dxx(t-\) 

(124) 
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where rj   is the partial derivative-based saliency measure for feature x, on unfolded 

layer 1. 

The superscript of T denotes the unfolded lag £ = 1,2,...L . If £ = 0, then no 

superscript is used on T to clarify the use of the classical version of the partial 

derivative-based saliency measure as described in Section 3.4.2. The subscript of T 

denotes the type of node. In the case of a 1 + 1/1/1 Elman RNN, the type of node is 

either input node x, or context node v,. Equation 124 can be written more specifically 

as: 

r = :rVl|>i2(fl.2^W))-wu -/.'tew))-^ .//(a^-lW)).^,       (125) 

Note that w|, connecting input node xx(t-\) to hidden node yx{t-\) is the same as 

w\x connecting input node x\t) to hidden node yx(t). The weights in an Elman RNN 

are not dynamic. 

Similarly to Equation 124, the partial derivative-based saliency measure can be 

computed for the context node yx on unfolded layer 1 as: 

r1 i T-l 

— •I -1   tf 
^(f.W) 

^(/-2,W) 
(126) 

where T^  is the partial derivative-based saliency measure for context node yx  on 

unfolded layer 1 . More specifically: 

1     T-'' 
K = YrT-Ik'2(fl'^w))-w'2> •/i,(flI('.w))X. ■/I

I(«!(/-i,w)). 

Note the following relationship: 

w- 2,1 (127) 
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1 
7-Z|/i2fo2fr W))X •/.1(fli(^W))-<. ■/i,(«,,a-l,W)> w, 

T-l, 

The results in Equation 128 are the same as that in Equation 123. 

2,1 

w, 1,1 

w 2,1 

(128) 

5.2.3    Two Time Lags of a 1 + 1/1/1 Elman Recurrent Neural Network (RNN) 

The unfolding of an Elman RNN can be continued further.   Figure 48 shows a 

1 + 1/1/1 Elman RNN unfolded two layers. This unfolding of an Elman RNN shows the 
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effect of the temporal feedback in a spatial representation. The partial derivative-based 

saliency measure can be calculated for the second unfolded layer by extending the 

equations in Section 8.2.1 and Section 8.2.2. For the unfolded layer 2 in Figure 48, the 

partial derivative-based saliency measure for x, is calculated as: 

r2 = 1 
T-2 

T-2 

(=1 

<?z,(f,W) 

dxx(t-l) 
(129) 

where r2  is the partial derivative-based saliency measure for feature x, on unfolded 

layer 2. More specifically: 

1 T-2 t f?{at{t,W)\wl-ft{a\(t,W))-w, 

f!(a\{t-\,VJ)\w\yf}{a\(t-2,W)\wl 
(130) 

T-2 t. 

Similarly to Equation 129, the partial derivative-based saliency measure can be computed 

for the context node yx on unfolded layer 2 as: 

r2=^- 
*     T-2 

T-2 

r=l 

^(/,w) 
dyx(t-3,W) 

(131) 

where T^  is the partial derivative-based saliency measure for context node yx  on 

unfolded layer 2. More specifically: 

f. =■ ' 
T-2 

' yi T-2 tr 

Note the following relationship 

fx
2{ax

2(t,W))-Wi ./^(f,W)><, • 

/,l(fl1
l(r-l,W))V2il./I

1(o1
I(/-2,W)).w 

(132) 

1 T-2 

T-2 ti 

T-2 

T-2 

/il^'-w^.V/.'ta/.w))..;,,. 
// (a,1 (t -1, W)> <t ■ // (al (t - 2, W)). w[x 

/1
,(a1

,(/-l,W)).^il./I
,(fl1

1(/-2,W)> w. 2,1 

W, 

w, 
(133) 
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As with Equation 123 and Equation 128, Equation 133 has the same results. 

8.2.4   N Time Lags of a 1 + 1/1/1 Elman Recurrent Neural Network (RNN) 

Continuing on with the unfolding, a 1 + 1/1/1 Elman RNN can be unfolded N 

layers as shown in Figure 49. The partial derivative-based saliency measure can be 

calculated for the N'h unfolded layer by extending the equations in Sections 8.2.1 

through 8.2.3. For the unfolded layer N in Figure 49, the partial derivative-based 

saliency measure for xx is calculated as: 

r" = l 
T-N 

T-JV 

1=\ 

0Zi(t,Vf) 

dxx(t-N) 
(134) 

where r*   is the partial derivative-based saliency measure for context node  xx  on 

unfolded layer N. More specifically: 

1 1?=- /i2(«i2('.w))-Mi -/.few))-^ ■/,I(fl,1(f-l,W)} 

w\yfx
,{a[(t-2,W))...,w\yfx

l{al(t-N,W)).wl 
(135) T-N tr 

Similarly to Equation 134, the partial derivative-based saliency measure can be computed 

for the context node v, on unfolded layer N as: 

rN — 
T-N 

l=\ 

dZy(t,Vf) 

dyx(t-N-l,W) 
(136) 

where F" is the partial derivative-based saliency measure for context node   v,  on 

unfolded layer N. More specifically: 

1 T-N 

yi     T-N  £f 

fx
2{ax

2{t,W)).wlx -//(aifcW)).^ .//(aftf-LW)) 

Wu ■ /,' (a\ {t - 2, W)>.., wl ■ // {al
x (t - N, W)> w{x 

(137) 
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Figure 49. 1 + 1/1/1 Elman RNN Unfolded N Layers 

Note the following relationship: 

T-N 

*1   _ 

1 T-N 

T-N 

fx
2{a2

x{t,V!)).wl -//(«iftW))-V2>1 •/i
,(a!('-l,W)). 

w\yfi{a\(t-2,V<)\    ■wl
2yfl

l{a\(t-N,W)}wl 

^kl'.wj.w,:, -//k^w)).^ -//(oKf-LW)) 
w, 1,1 

w. 2,1 

(138) 
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The result in Equation 138 is the same as that in Equations 123, 128, and 133. In fact the 

resulting ratio holds for all unfolded layers of an Elman RNN whenever J = 1. 

8.2.5   Derivations for a l + J/J/l Elman Recurrent Neural Network (RNN) 

The complexity of an Elman RNN architecture can be increased from a 1 + 1/1/1 

Elman RNN to a l + J/J/l Elman RNN by allowing for J hidden nodes which are 

feedback onto the input layer as J context nodes. Figure 50 shows a l + J/J/l Elman 

RNN. The partial derivative-based saliency measure for a l + J/J/l Elman RNN is 

calculated for feature x{, using the training set exemplars following Equation 119 as: 

1    T 

1
   /=i 

<?z,(',W) 

dxx{t) 

More specifically: 

1   (=1 >1 

(139) 

(140) 

w! , and w)  . 
'•J Jo-} 

Figure 50. l + J/J/l Elman RNN 
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The difference between Equation 120 and Equation 140 is the summation over the hidden 

nodes. Similarly to Equation 139, the partial derivative-based saliency measure can be 

computed for context node yk for j0 = 1,2,... J as: 

<?z,(f,W) 1    T 

r   =--Y 
1    /=1 

(141) 
<?v,,(/-l,W) 

where Yy    is the partial derivative-based saliency measure for context node y L  for 

j0 = 1,2,... J. More specifically: 

Jo 

1   i=i 7=1 

(142) 

The difference between Equation 142 and Equation 122 is the summation over the hidden 

nodes. With the summation found in Equation 140 and Equation 142, however, the ratio 

found in Equation 123 no longer holds. The summation difference between a 

l + JIJIl Elman RNN and a 1 +1 /1 /1 Elman RNN will hold for every unfolded layer 

as described in Sections 8.2.6 through 0. In addition, the ratio of saliency measures will 

no longer hold true for all unfolded layers in a 1 + JIJI1 Elman RNN as described in 

Sections 8.2.6 through 0. 

5.2.6   One Time Lag of a l + J/J/l Elman Recurrent Neural Network (RNN) 

Just as an 1 + 1/1/1 Elman RNN can be unfolded one layer, so can a l + J/J/l 

Elman RNN as shown in Figure 51. The partial derivative-based saliency measure can be 

calculated for the first unfolded layer by extending the equations in Section 8.2.5. For the 

unfolded layer 1 in Figure 51, the partial derivative-based saliency measure for jr, is 

calculated as: 
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T-l 

T-l ti 

^,(/,W) 

<?*,(>-l) 
(143) 

More specifically: 

r1 =■ 
1     T~l 

—z '-i tr 
/i^w)).^,, ■/X-i^W)).£<7 .£(4(r-i,W))y 

7=1 7„=1 
Jo 

(144) 

Similarly to Equation 143, the partial derivative-based saliency measure can be computed 

for context node yh for j\ =\,2,...J as: 

r' =-' ̂ •2 1 /=i 

^i(^,W) 

^,(r-2,W) 

More specifically: 

(145) 

^jyp 
^^^^^/   1w1' 

v r(!z f£r jL '''  J*^# fe/    M'§ 
w\, and >v".  .   /    \//^J^^^><C S*^/   ^^Z^^^    / 

7o-l 

foiasJ |*/W| l/C-4 S^'^J      •       |^"7i tBiasj 

wLand wL, /xO^^^^^^>0\ 
IBiasj bj(t-la Wt-2a\^,(t-2a    ...    }y/t-2a 

Figure 51. 1 + J1J11 Elman RNN Unfolded One Layer 
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r =- T-l 

1   (=1 

/I
2k(/,w))-t^1./;fc(/,w))-tHiJ-/Jik(/-i,w)).w ./ijo 

7=1 A=i 

(146) 

& 2.7   Two 77/Me Zags o/a l + J/J/l Elman Recurrent Neural Network (RNN) 

The unfolding of an Elman RNN can be continued further. Figure 52 shows a 

l + J/J/l Elman RNN unfolded two layers. The partial derivative-based saliency 

measure can be calculated for the second unfolded layer by extending the equations in 

Section 8.2.5 and Section 8.2.6. For the unfolded layer 2 in Figure 52, the partial 

derivative-based saliency measure for xx is calculated as: 

1 1-2 

r2 =—. y 
xi      T _ 9   ^J 

(=1 

<?z,(',W) 
dxx(t-2) 

(147) 

More specifically: 

T-2 

r2 =• 
T-2 ti fM^tt^ -fM^Ht<j -/ikc-i.w)). 

>1 ./o=l 

z^,.,^k^-25w)).<A 
Jl=l 

(148) 

Similarly to Equation 147, the partial derivative-based saliency measure can be computed 

for context node yh for j2 =l,2,...J as: 

1 
T-2 

T-2 

(=1 

^(t,W) 

<?v,2(/-3,W) 
(149) 

More specifically: 

214 



w, j and wt j 

Figure 52. l + J/J/l Elman RNN Unfolded Two Layers 

r2 1          T-2 

T-2 tr 7ü=l 
(150) 

8.2.8   N Time Lags for a l + J/J/l Elman Recurrent Neural Network (RNN) 

Continuing on with the unfolding, a l + J/J/l Elman RNN can be unfolded JV 

layers as shown in Figure 53. The partial derivative-based saliency measure can be 

calculated for the  N'h unfolded layer by extending the equations in Sections 8.2.5 
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through 8.2.7.   For the unfolded layer N in Figure 53, the partial derivative-based 

saliency measure for xl is calculated as: 

1 

T-N 

T-N 

t=\ 

^(f.W) 

dxx(t-N) 
(151) 

More specifically: 

K -~lf^%Hi^ -ffa«Mi<, -iifce-w). 
>i A=i (152) 

ix,, -/;fca-2,w)),..- i-<_„^ ■/yLk.c-^w)).^ 
•/!=! 7'*r-l=l 

Similarly to Equation 151, the partial derivative-based saliency measure can be computed 

for context node yJt/ for jN = 1,2,..../ as: 

1 T-N 
rN  — 

y[N ~ T-N   ,=1 
z ^,(^,W) 

dyh(t-N-l,W) 
(153) 

More specifically: 

1 T-N 
rN =——y 

(154) 

A--I=> 

5.2. P   Derivations for a I + J/J/K Elman Recurrent Neural Network (RNN) 

The complexity of an Elman RNN architecture can be increased from a 

1 + Jl Jl\ Elman RNN to a I + J/J/K Elman RNN, the most general form of an 

Elman RNN, by allowing for / input nodes and K output nodes. Figure 54 shows a 

I + J/J/K Elman RNN. The partial derivative-based saliency measure for a 

1 + Jl J11 Elman RNN is calculated for feature x, for i = 1,2,...,/, using the training set 
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Figure 53. l + J/J/l ElmanRNN Unfolded N Layers 

exemplars following Equation 119 as: 

1      K   T <M'*W) 
<MO 

(155) 

The main difference between Equation 155 and Equations 119 and 139 is the summation 

over the output nodes.  The summation difference will hold for every unfolded layer as 
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(yjCOJ wo)   ■ ■ ■ (y/0' ) £ Bias | 

V\ ^\ w,1. and w) . 

■ Bias* * Ifl( J ^L2(t))   ''' Up) | W'-w w'-1} ■ -^wt-m 
Figure 54. / + J/J/£ElmanRNN 

described in Sections 8.2.10 through 8.2.12.    Equation 155 can be written more 

specifically as: 

1    1    K   T 

Ä
      1     *=1  (=1 

n{^t^\±^yf){a%yS)\^ (156) 

Similarly to Equation 156, the partial derivative-based saliency measure can be computed 

for context node yk for j0 = 1,2,... J as: 

1 K    T 

r  =—.yy 
A  x   k=\ 1=1 

dzk(ty/) 
0yk(t-\,w) 

(157) 

More specifically: 

1      K   T 

r  =-J-.yy w 
.W (158) 
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8.2.10 One Time Lag of a I + J/J/K Elman Recurrent Neural Network (RNN) 

A I + J/J/K Elman RNN can be unfolded as shown in Figure 55. The partial 

derivative-based saliency measure can be calculated for the first unfolded layer by 

extending the equations in Section 8.2.9. For the unfolded layer 1 in Figure 55, the 

partial derivative-based saliency measure for feature x, for i = 1,2,...,/ is computed as: 

1 K   T-l 

•yy 
*.(T-I) £itt 

#'k(t,Vf) 
<?X,(f-l) 

(159) 

More specifically: 

r1 = :'    AT-(T-l) II /»
2teM4ix, ■ fM{t,w))±w\aJ ■/2fc,c-i,w)).</ 

7=1 A=i 

(160) 

Similarly to Equation 159, the partial derivative-based saliency measure can be computed 

:'('0 \:"0   '     Xli"}) 

A    l^\P\^\l    H* 

fit v.:'"L        W'O v iav V'(0J V:"JJ W") 
r' k 

w), and w\ ,   / 
'<J                Jn>J     I 

wi.* 

fBiasjl fci'O \ &y</J         v'v v""'i C""X fe./'-/J feiasll 

w,1, and w) ,   /     y   \l   Jc^y^^j^i. 

f Bias! §/'-/j| ß/'-'J    • ■ ■ m ■'i: I w^m fep ■ ■ ̂fyj<'-2n 

Fi gure 55. I + J/J/K Elman RNN Unfolded One Layer 
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for context node v for j\ =\,2,...J as: 

r1 = — 
y,    K 

K  T-l 

(T-1)*SS 
dzk(t,Vi) 

^,(/-2,W) 
(161) 

More specifically: 

1 K    T-l 

r1 = - y.y //fe^w)).t^./;fc(/.w)).t<J./Jife(r-i,w))vJl.A, (162) 

5.2.7 7 Two T/'we Zag? o/a I + J/J/K Elman Recurrent Neural Network (RNN) 

The unfolding of an Elman RNN can be continued further. Figure 56 shows a 

I + J/J/K Elman RNN unfolded two layers. The partial derivative-based saliency 

measure can be calculated for the second unfolded layer by extending the equations in 

Section 8.2.9 and Section 8.2.10. For the unfolded layer 2 in Figure 56, the partial 

derivative-based saliency measure for feature x, for / = 1,2,...,/ is calculated as: 

r2 = 
K-(T-2) 

K  T-2 zz 
k=\  t=\ 

dzk(tyt) 
dxt(t-2) 

(163) 

More specifically: 

1 K  T-2 

*  /c-(T-2)trtr fk
2(a}(t,w)).±wik -flip^MiKj -fjMß-iM 

y.=i 

(164) 

Similarly to Equation 163, the partial derivative-based saliency measure can be computed 

for context node yh for j2 = 1,2,. ..J as: 

r. = 
' y,-. K\T-2) 

K  T-2 zz 
k=\ 1=1 ^,2(f-3,W) 

(165) 
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More specifically: 

r2 = - yy ti&(<,Hi<* -/;fcft w)). ± wM .f)Xa)ß-w)\ 
7=1 7»=i 

Z^-/Jlfc('-2.W))VAJi 
7i=i 

(166) 

8.2.12 N Time Lags for a I + J/J/K Elman Recurrent Neural Network (RNN) 

Continuing on with the unfolding, a I + JIJIK Elman RNN can be unfolded N 

layers as shown in Figure 57. The partial derivative-based saliency measure can be 

calculated for the N'h unfolded layer by extending the equations in Sections 8.2.9 

through 8.2.11. For the unfolded layer N in Figure 57, the partial derivative-based 

saliency measure for feature xi for / = 1,2,...,/ is calculated as: 

1 

K-(T-N) 

K   J-N 

k=\  l=\ 

<^(',w) 
dx,(t-N) 

(167) 

More specifically: 

1 K   T-JV  t yy /4
2fefr,w)>t^ ■/;(«;(/, w)). 

7=1 

7o=l 7i=l 

(168) 

7AM =1 

Similarly to Equation 167, the partial derivative-based saliency measure can be computed 

for context node yJN for jN =l,2,...J as: 
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yjN ~ K-(T-N) 

K 1-N 

IS 
k=\   l=\ 

<?*»(', w) 
<?yJt-N-l,W) 

More specifically: 

1 K  T-JV 

rN = - yy 
*"     K-(T-N)£ttt 

fkial(t,yv)).±wlk.f;{a)(t,W)). 
7=1 

S^-/ik(^l.W)).t^-/l(fli(r--2,W)),., 
70=1 7'i=l 

Yw)    ,    •//   (a1,   (r-iV,W))j,   (t-N,W)-w)  ,. 
Z_i    V,v-i.7,v-2    ■/7;V-iV  7.V-1 v '       ' y Jn-\y '       '       7,v7,v-i 

3n-\- 

(169) 

(170) 

5.5    Spatial- Temporal Feature Screening Method 

A spatial-temporal feature screening method to determine the parsimonious set of 

salient features in an Elman RNN was developed. The significant contribution of this 

spatial-temporal feature screening method is that it accounts for the temporal dimension 

of the features in addition to the spatial dimension. The spatial-temporal feature 

screening method utilizes the partial derivative-based spatial-temporal saliency measure 

derived in previous sections of the this Chapter to screen features. 

The screening method is similar to the SNR screening method in that a noise 

feature denoted xN(t) for f = 1,2,...,T is added to the set of candidate input features. 

The time series of noise is generated from a Uniform(0,l) random distribution. The 

spatial-temporal screening method is a backwards screening method that provides a 

mechanism to potentially identify a parsimonious set of salient features in both time and 

space. The screening method strives to maintain good generalization while removing 

non-salient features. 
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Spatial-Temporal Screening Method 

1. Introduce a Uniform(0,l) noise feature xN(t) for t = 1,2,...,T to the original 
set of features. 

2. Preprocess all features following Equation 16 or Equation 19. 

3. Initialize the weights following the Nguyen-Widrow method [ 102]. 

4. Initialize all context nodes to 0.0. 

5. Compute the fractal dimension of each input feature by the Grassberger and 
Procaccia method described in Section 2.5.1.1. 

6. Apply Taken's Theorem in Equation 57 to determine the lag upper bound 
denoted as £msx. 

7. Set^ = 0. 

8. Train the Elman RNN for a pre-defined number of epochs. Keep the weights 
that minimize the MSElexl. 

9. Compute CAlesl. 

10. Compute rX/ for i = \,2,...,I and TXK . 

11. Set £ = £ + !. 

12. Compute Ye
x for i = 1,2,...,/. 

13. If T'Xi <TXs for z = l,2,...,7 or if £ = £max, set £ = £slop and go to Step 14. 
Else go to Step 11. 

14.-Plot T^ for i = 1,2,...,/ versus £ = 0,1,2,...,£slop. 

15. Using the trapezoidal rule, compute the area under the spatial-temporal 
saliency curve for each feature x, for / = 1,2,...,/. 

16. Remove the feature with the smallest area and set 7 = 7-1. 

17. If I > 0, go to step 7. Else go to step 18. 
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18. Keep the set of salient features that produced the best CAtest. Remove xN(t) 

for f = l,2,...,T. 

19. Initialize the weights following the Nguyen-Widrow method [102]. 

20. Initialize all context nodes to 0.0. 

21. Train the Elman RNN with the set of salient features that produced the best 
CAlesl until the MSEtest is minimized. 

8.4    Application to Classifying Pilot Workload 

8.4.1    Introduction 

The spatial-temporal feature screening method was applied to a two-class and a 

three-class pilot workload problem. The objective of the two-class problem was to 

determine whether the pilot was in visual flight rules (VFR) or instrument flight rules 

(IFR) meteorological conditions. The objective of the three-class problem was to 

determine if the pilot's workload was low, medium, or high. Features for both 

classification problems were number of eye blinks, heart rate, and respiration rate. Data 

were collected from the test subject, a general aviation pilot with an instrument rating, 

flying a Piper Arrow single-engine airplane in both VFR and IFR conditions. Several 

types of ANNs (feedforward MLP ANN, TDNN, and Elman RNN) and several number 

of hidden nodes (J = l, 2, 3, 4, 8, and 12 for the feedforward MLP ANN, 

J= 1, 2, 3, 4, 8, and 12 for the TDNN, and J = 1, 2, 3, and 4 for the Elman RNN) 

were utilized in an experimental design approach to feature screening. The SNR feature 

screening method was used in a feedforward MLP ANN and a TDNN. The new spatial- 

temporal feature screening method was used in an Elman RNN. 

226 



8.4.2   Data 

The pilot workload data used in this chapter was actual flight data collected in both 

VFR and IFR conditions. An instrumented rated private pilot flew two sorties each on 

two separate days. Data collected during the first sortie was used for training. Data 

collected during the second sortie was used for testing. Since a third sortie was not 

conducted, no validation was conducted. The two sorties used in this dissertation each 

had 16 usable segments of flight described in Table 28. Other segments of flight were 

flown, but were not useable due mainly to data drop-out. For both sorties, the segments 

of flight were flown in the exact same order. Each segment lasted approximately two 

minutes. After completion of each two-minute segment of flight, the test subject pilot 

was asked to rate his workload for that segment between 0.0 and 100.0 with 100.0 being 

the highest. The average of the ratings for each of the two sorties was used to cluster the 

workload into low, medium, and high classifications. 

For each segment of flight, several peripheral psychophysiological measurements 

were taken. EOG provided the number of eye blinks over 10-second moving windows 

with 50% overlap. EKG provided the average heart rate over 10-second moving 

windows with 50% overlap. Respiratory gauges provided the average respiration rate 

over 10-second moving windows with 50% overlap. Plots of the number of eye blinks, 

heart rate, and respiration rate are shown in Figure 58 for the training and test set. Each 

of the plots in Figure 58 are divided up into 16 blocks where each block represents a 

segment. The workload associated with each segment is denoted above each block where 

"L" is for low, "M" is for medium, and "H" is for high. The average over each segment 

is also provided in the plots in Figure 58 as a straight horizontal line. The three plots on 

227 



the left hand side of Figure 59 show the average over each segment for each feature for 

both the training and test sets. 

In this dissertation, features were typically preprocessed by normalizing the 

features between 0.0 and 1.0 following Equation 19 by combining all data available in the 

training and test sets. But, the plots on the left hand side of Figure 59 for heart rate and 

respiration show that a day-to-day difference existed. In an attempt to account for the 

day-to-day differences, the first attempt at preprocessing the features was to normalize 

the features within each day. The three plots on the right hand side of Figure 59 show the 

average over each segment for each normalized feature for both the training and test sets. 

Unfortunately, this did not alleviate the day-to-day difference for respiration rate as 

shown in the respiration rate plot on the right hand side of Figure 59. 

The next attempt at preprocessing the features was to standardize the features 

within each day following Equation 16. After standardization, the preprocessed features 

Table 28. Segments of Flight 

Segment VFR/IFR Description Avg Rating Workload 
1 VFR Take Off 50.0 Medium 
2 VFR Climb Out 42.5 Low 
3 VFR Cruise 45.0 Low 
4 VFR Air Work 42.5 Low 
5 VFR Approach 45.0 Low 
6 VFR Touch and Go 52.5 Medium 
7 VFR Climb Out 42.5 Low 
8 IFR Hold 57.5 High 
9 IFR DMEArc 62.5 High 
10 IFR ILS Tracking 72.5 High 
11 IFR Missed Approach 55.0 Medium 
12 IFR Climb Out 47.5 Medium 
13 IFR High Speed Hold 57.5 High 
14 IFR High Speed DME Arc 55.0 Medium 
15 IFR High Speed ILS Tracking 62.5 High 
16 IFR Landing 60.0 High 
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have 0.0 mean and unit variance. Plots of the number of eye blinks, heart rate, and 

respiration rate after standardization are shown in Figure 60 for the training and test set. 

Like Figure 58, the plots in Figure 60 are divided up into 16 blocks where each block 

represents a segment. The workload associated with each segment is denoted above each 

block where "L" is for low, "M" is for medium, and "H" is for high. The average over 

each segment is also provided in the plots in Figure 60 as a straight horizontal line. The 

three plots on the right hand side of Figure 61 show the average over each segment for 

each standardized feature for both the training and test sets. As a reference, the plots on 

the left hand side of Figure 61 are the same as the plots on the left hand side of Figure 59. 

It appears from the plots on the right hand side of Figure 61 that preprocessing the input 

features via standardization within each day accounted for the day-to-day differences. 

Throughout the experimental design, all features were standardized within each day. 

8.4.3   Methodology 

The objective was to apply a feature screening method to three peripheral 

psychophysiological features used to classify pilot workload in order to determine the 

parsimonious set of salient features for three types of ANNs: 

1. Feedforward MLP ANN 
2. TDNN 
3. ElmanRNN. 

For each type of ANN used, several different numbers of hidden nodes were used. 

The SNR screening method was used for workload classification using feedforward MLP 

ANNs and TDNNs. The new spatial-temporal feature screening method was used for 

workload classification using Elman RNNs. 
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Two pilot workload classification problems were used. In the first, the objective 

of the ANN was to classify the pilot's workload as VFR or IFR (second column in Table 

28). In the second, the objective of the ANN was to classify the pilot's workload as low, 

medium, or high (fifth column in Table 28). In order to compare performance, an 

experimental design was performed. There were three factors in the experimental design: 

1. ANN type 
• Feedforward MLP ANN 
• TDNN 
• ElmanRNN 

2. Number of workload classes 
• VFR/IFR 
• Low/Medium/High 

3. Number of hidden nodes 
• J=\ 
• J = 2 
• J = 3 
• J = 4 
• J = 8 (only for feedforward MLP ANN and TDNN) 

J = 12 (only for feedforward MLP ANN and TDNN) • 

For all three types of ANNs, K = 2 output nodes were used for the two class pilot 

workload classification problem (VFR/IFR) and K - 3 output nodes were used for the 

three class pilot workload classification problem (low/medium/high). In the two class 

pilot workload classification problem, one output node corresponded to VFR and the 

other output node corresponded to IFR. The desired output for VFR exemplars was 

z = [l.O -1.0]. The desired output for IFR exemplars was z = [-1.0 1.0]. For the three 

class pilot workload classification problem, one output node corresponded to low 

workload, one output node corresponded to medium workload, and one output 

corresponded to high workload. The desired output for low workload exemplars was 
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z = [l.O -1.0 -1.0]. The desired output for medium workload exemplars was 

z = [-1.0 1.0 -1.0]. The desired output for high workload exemplars was 

z = [-1.0 -1.0 1.0]. The actual output of the ANN was determined using the winner 

take all strategy. 

In all replications, the ANN was trained for 500 epochs using batch 

backpropagation with momentum and an adaptive learning rate following Equation 50. 

Momentum was implemented following the description given in Section 2.4.10. The 

adaptive learning rate was implemented following the description given in Section 2.4.11. 

The weights from the epoch that produced the minimum MSElexl were kept. All hidden, 

context, and output nodes were activated by the nonlinear hyperbolic tangent transfer 

function in Equation 6. 

8.4.3.1 Feedforward Multilayer (MLP) Artificial Neural Network (ANN) Experimental 

Design 

The SNR screening method was applied to a feedforward MLP ANN for 

J=\, 2, 3, 4, 8, and 12 hidden nodes for the two-class and three-class pilot workload 

problems. For each level of J, the SNR screening method was replicated 30 times. For 

each replication of the SNR screening method, a random seed set equal to the replication 

number was used to initialize the weights. In other words, the random seed was set to 1 

for the first replication and the random seed was set to 2 for the second replication and so 

on. 

235 



8.4.3.2   Time Delay Neural Network (TDNN) Experimental Design 

In order to determine the maximum number of lags to use in a TDNN, the fractal 

dimension was computed following the Grassberger and Procaccia algorithm described in 

Section 2.5.1.1 for the following: 

Standardized injected noise feature in the training set 
Standardized injected noise feature in the test set 
Standardized number of eye blinks in the training set 
Standardized number of eye blinks in the test set 
Standardized heart rate in the training set 
Standardized heart rate in the test set 
Standardized respiration rate in the training set 
Standardized respiration rate in the test set. 

In using the Grassberger and Procaccia algorithm, k = 3, 4, 5, 6, and 7 and 

£ = 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, and 1.8. Taken's Theorem as given in Equation 57 was 

then applied to determine the maximum number of lags required. 

The SNR screening method was applied to a TDNN for J= 1, 2, 3, 4, 8, and 12 

hidden nodes for the two-class and three-class pilot workload classification problems. 

For each level of J, the SNR screening method was replicated 30 times. For each 

replication of the SNR screening method, a random seed set equal to the replication 

number was used to initialize the weights. This was the first time that the SNR screening 

method was applied to the lagged inputs of a TDNN. The SNR screening method was 

allowed to remove any lag of any input feature. As an example, the SNR screening 

method may remove x,(r-3) and x^t-5) while retaining x,(r), x,(f-l), xx(t-2), 

. Xj (t - 4), and x\ (t - 6) for feature x, with £ max = 6. Further, the SNR screening method 

may remove x2(t), x2(t-3), and x2(t-4) while retaining, x2(r-l), x2(t-2), 

x2(t-5), and x2(^-6) for feature x2  with £mSK=6.   This is a novel approach to 
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utilizing a TDNN since in the past, all lagged inputs for all features were used as inputs to 

a TDNN. The CAlexl may increase as a result of removing nonsalient lagged inputs. 

8.4.3.3   Elman Recurrent Neural Network (RNN) Experimental Design 

Finally, the spatial-temporal feature screening method was applied to an Elman 

RNN for «7 = 1, 2, 3, and 4 hidden nodes for the two-class and three-class pilot 

workload classification problems. The spatial-temporal feature screening method was 

not applied to an Elman RNN for J = 8 and 12 because results from the feedforward 

MLP ANN and TDNN replications showed that J = \, 2, 3, and 4 hidden nodes were 

sufficient for both workload classification problems. For each level of J, the spatial- 

temporal feature screening method was replicated 30 times. For each replication of the 

spatial-temporal feature screening method, a random seed set equal to the replication 

number was used to initialize the weights. 

8.4.4   Results 

8.4.4.1   Feedforward Multilayer Perceptron (MLP) Artificial Neural Network (ANN) 

Experimental Design 

Table 29 summarizes the average classification accuracy denoted as CÄ from 

applying the SNR screening method thirty times to a feedforward MLP ANN. The 

results are given for the K = 2 class workload problem (VFR/IFR) and the K = 3 class 

workload problem (low/medium/high). The various CAs summarized in Table 29 

include the average CA,rain using all three features (and the injected noise) denoted as 

c4m*,(3)>the average CAlexr using all three features (and the injected noise) denoted as 
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Table 29. CA Results from SNR Screening Method for Feedforward MLP ANN 

K / CAlrain(3) CAleM CA,j2) CA,J\) CAlest(N) 

2 

1 76.07% 66.48% 67.43% 70.17% 55.23% 
2 82.24% 66.97% 66.71% 58.13% 55.78% 
3 85.48% 66.65% 63.45% 51.75% 55.07% 
4 86.86% 66.20% 64.04% 52.38% 54.61% 
8 89.14% 66.48% 59.61% 53.38% 53.99% 
12 90.84% 66.76% 57.00% 54.31% 53.72% 

3 

1 48.80% 38.89% 39.67% 36.98% 36.36% 
2 59.07% 42.36% 42.24% 37.39% 36.35% 
3 62.46% 43.66% 43.05% 37.51% 36.79% 
4 64.38% 42.97% 43.31% 37.03% 36.83% 
8 68.51% 43.10% 40.50% 37.24% 36.05% 
12 71.69% 42.82% 40.70% 37.51% 35.71% 

CAlest{S), the average CAlesl using the top two salient features (and the injected noise) 

denoted as CAtest\l), the average CAlesl using the top salient feature (and the injected 

noise) denoted as CAleill(l), and the average CAtest with noise as the only input denoted as 

For each TDNN architecture, Table 30 lists the maximum CAlesl denoted as 

max(G4/es/) attained from applying the SNR screening method thirty times. In addition, 

Table 30 lists the number of salient features I that produced the maximum CAlesl in 

addition to the associated CAlmin. 

For each feedforward MLP ANN architecture, Table 31 lists the parsimonious set 

of salient features and their rankings resulting from the SNR screening method that 

produced the maximum CAlesl listed in Table 30. In Table 31, EB is for number of eye 

blinks, HR is for heart rate, and RR is for respiration rate. Table 32 summarizes the 

results attained after the feedforward MLP ANN was retrained 30 times using only the 
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Table 30.  max(C4to,) Results from SNR Screening Method 

for Feedforward MLP ANN 

K J / max(C4to,) CA 

2 

1 1 71.02% 76.24% 
2 2 72.06% 84.07% 
3 3 72.85% 85.64% 
4 1 71.02% 76.76% 
8 3 70.76% 89.82% 
12 3 71.28% 90.86% 

3 

1 3 5().0|"„ 42.30% 
2 1 49.35% 45.95% 
3 3 46.74% 60.84% 
4 2 45.43% 64.49% 
8 2 48.04% 66.06% 
12 2 45.95% 66.06% 

salient features without the injected noise feature.   For both workload classification 

problems, there were 30 feedforward MLP ANNs trained using the architecture with the 

set of salient features that produced the maximum CAlesl and 30 feedforward MLP ANNs 

trained using the architecture with the set of salient features that produced the maximum 

CAest ■ 

8.4.4.1.1   Visual Flight Rules (VFR) /Instrument Flight Rules (IFR) Classification 

Problem 

For the VFR/IFR classification problem, the 1/1/2  feedforward MLP ANN 

architecture produced the maximum CAles, = 70.17% as highlighted in Table 29.  In all 

thirty replications of the SNR screening method as applied to a 1/1/2 feedforward MLP 

ANN, the only salient feature was the number of eye blinks. 
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Of the thirty replications of the SNR screening method as applied to 1/1/2 

feedforward MLP ANNs, the best replication produced CAlesl = 71.02% as shown in 

Table 30. But, the replication that produced the overall highest CAlexl = 72.85% was a 

3/3/2 feedforward MLP ANN that included all three peripheral psychophysiological 

features as highlighted in Table 30. Table 31 lists the set of salient features and their 

rankings for the replication that produced the maximum CAtest. For the 1/1/2 

feedforward MLP ANN architecture, the only salient feature was number of eye blinks as 

highlighted in Table 31. For the 3/3/2 feedforward MLP ANN architecture, the salient 

features in order were: 

1. Heart rate 
2. Respiration rate 
3. Number of eye blinks 

as highlighted in Table 31. 

Thirty 1/1/2 feedforward MLP ANNs with number of eye blinks as the only 

Table 31. Results from SNR Screening Method for Feedforward MLP ANN 

K 7 = 1 7 = 2 7 = 3 7 = 4 7 = 8 7 = 12 

2 
1. EB 1. HR 1. HR 1. EB 1. HR 1. HR 

2. EB 2. RR 2. RR 2. RR 
3. EB 3. EB 3. EB 

3 
1. KB 1. EB 1. HR 1. HR 1. HR 1. HR 
2. HR 2. EB 2. EB 2. EB 2. EB 
3. RR 3. RR 

Table 32. Best Results without Noise for Feedforward MLP ANN 

K 7 / CAatl ^■^irain max(CAtest) ^■^train 

2 
1 1 70.23% 76.24% 70.23% 76.24% 
3 3 64.83% 85.24% 68.14% 84.07% 

3 
1 3 38.43% 46.70% 43.86% 46.74% 
3 3 43.38% 63.68% 44.91% 65.80% 
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feature and thirty 3/3/2 feedforward MLP ANNs with all three input features were 

trained. The results are shown in Table 32. For the VFR/IFR classification problem, the 

maximum CAlesl =70.23% and the maximum CAtesl =1Q22>% was attained using only 

number of eye blinks in a 1/1/2 feedforward MLP ANN. Figure 62 provides plots of 

the actual and desired outputs for the feedforward MLP ANNs listed in Table 32 for the 

VFR/IFR classification problem. 

8.4.4.1.2 Low/Medium/High Workload Classification Problem 

For   the   low/medium/high   workload   classification   problem,   the    3/3/3 

feedforward MLP ANN architecture produced the maximum CAlexl =43.66% as 

highlighted in Table 29. 

Of the thirty replications of the SNR screening method as applied to 3/3/3 

feedforward MLP ANNs, the best replication produced CAlest =46.74% as shown in 

Table 30. But, the replication that produced the overall highest CAtest — 50.91% was a 

3/1/3 feedforward MLP ANN that included all three peripheral psychophysiological 

features as highlighted in Table 30. Table 31 lists the set of salient features and their 

rankings for the replication that produced the maximum CAlesl. For the 3/1/3 

feedforward MLP ANN architecture, the salient features in order were: 

1. Number of eye blinks 
2. Heart rate 
3. Respiration rate 

as highlighted in Table 31. For the 3/3/3 feedforward MLP ANN architecture, the 

salient features in order were: 

241 



1. Heart rate 
2. Number of eye blinks 
3. Respiration rate 

as highlighted in Table 31. 

Thirty 3/1/3  feedforward MLP ANNs and thirty 3/3/3 feedforward MLP 

ANNs were trained without noise. The results are shown in Table 32. For the three-class 

pilot workload problem, the maximum CAlexl = 43.38% and the maximum 

CAlesl = 44.91% was attained using all three peripheral psychophysiological features in a 

3/3/3 feedforward MLP ANN.   Figure 63 provides plots of the actual and desired 
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outputs for the feedforward MLP ANNs listed in Table 32 for K = 3. 

8.4.4.2   Time Delay Neural Network (TDNN) Experimental Design 

The computed estimates of the fractal dimensions for the input features and the 

injected noise feature are shown in Table 33. The fractal dimension for the injected noise 

feature in the training set had the largest fd(A) = 4.5397. Applying Taken's Theorem as 

in Equation 57 provided an upper bound to the maximum number of lags L so that: 

3 Classes, 1 Hidden Node, 3 Features, Training Set 3 Classes, 1 Hidden Node, 3 Features, Test Set 
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Table 33. Estimated Fractal Dimension of Injected Noise and Input Features 

Feature Training Set Test Set 
Noise 4.5397 4.4784 

Number of Eye Blinks 3.4803 3.6120 
Heart Rate 3.2991 3.3513 

Respiration Rate 3.5586 4.1199 

L + l<2-fd(A) + l 

Z<2-4.5397 

L < 9.0794 

The maximum number of lag L used was 9.  For each feature x, for / = 1,2,...,/, the 

following nine lags were included: x,(t), x^t-l), xt(t-2), x^t-3), x^t-A), 

x, {t - 5), X) (t-6), x, (t-T), and x, (t - 8). Note that the input x, (t) counts as one of the 

lags where / = 0. Since there were three peripheral psychophysiological features, there 

were a total of 3-9 = 27 input features to the TDNN in addition to one injected noise 

feature. 

Table 34.  CAlexl Results from SNR Screening Method for TDNN 

K J / CAesI C A 

2 

1 6 78.21% 85.30% 
2 8 79.53% 95.91% 
3 10 79.51% 99.46% 
4 11 80.12% 99.85% 
8 11 79.86% 99.99% 
12 16 78.80% 100.00% 

3 

1 16 42.87% 52.80% 
2 14 51.13% 73.94% 
3 15 50.39% 80.73% 
4 24 49.43% 87.50% 
8 26 47.41% 97.24% 
12 9 46.57% 92.22% 
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Table 35. max(C4to,) Results from the SNR Screening Method for TDNN 

K J / max(C4teÄ) CA 

2 

1 5 87.20% 84.80% 
2 6 86.13% 92.27% 
3 9 85.33% 98.40% 
4 7 84.27% 97.07% 
8 11 83.73% 100.00% 
12 14 83.20% 100.00% 

3 

1 20 57.60% 48.80% 
2 7 60.80% 72.53% 
3 6 58.67% 73.33% 
4 24 57.33% 80.27% 
8 13 56.27% 93.33% 
12 10 55.47% 91.47% 

For each TDNN architecture, Table 34 lists the maximum CAlesl attained from 

applying the SNR screening method thirty times. In addition, Table 34 lists the number 

of salient features and that produced the maximum CAlesl in addition to the associated 

CAtmjn. The results are given for the K = 2 class workload problem (VFR/IFR) and the 

K = 3 class workload problem (low/medium/high). 

For each TDNN architecture, Table 35 lists the maximum CAlest denoted as 

max(C4,e„) attained during thirty replications of the SNR screening method. In 

addition, Table 35 lists the number of salient features / that produced the maximum 

CAlesl in addition to the associated CAlrain. 

For each TDNN architecture, Table 36 lists the parsimonious set of salient 

features and their rankings resulting from the SNR screening method that produced the 

maximum CAlest in Table 35. In Table 36, EB is for number of eye blinks, HR is for 

heart rate, and RR is for respiration rate.  Table 37 summarizes the results attained after 
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the TDNN was retrained thirty times using only the salient features without the injected 

noise feature. For both workload classification problems, there were 30 TDNNs trained 

using the architecture with the set of salient features that produced the maximum CÄtexl 

and 30 TDNNs trained using the architecture with the set of salient features that produced 

the maximum CAlesl. 

8.4.4.2.1   Visual Flight Rules (VFB) / Instrument Flight Bules (IFR) Classification 

Problem 

For the VFR/IFR classification problem, the 11/4/2 TDNN architecture 

produced the maximum CÄtesl =80.12% as highlighted in Table 34. Of the thirty 

replications of the SNR screening method as applied to 7/4/2 TDNN architectures, the 

best replication produced CAlesl = 84.27% with 1 = 1 salient input features as shown in 

Table 35. But, the replication that produced the overall highest CAlest =87.20% was a 

5/1/2 TDNN as highlighted in Table 35. 

For each architecture, Table 36 lists the parsimonious set of salient features and 

their rankings for the replication that produced the maximum CAlexl. For the 7/4/2 

TDNN architecture, the salient features in order were: 

l.HR(t-2) 
2. HR(t-7) 
3. EB9(t-4) 
4. EB(t-8) 
5. EB(t) 
6. EB(t-6) 
7. HR(t-6) 
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Table 36. Feature Ranking ; Results from SNR Screening Method for TDNN 

K J=\ J = 2 J = 3 J = 4 J = 8 7 = 12 

2 

1.   EB(t-8) 1.   HR(t-8) 1.   HR(t-2) 1.   HR(t-2) 1.   HR(t-l) 1.   HR(t-6) 
2.  EB(t) 2.   EB(t-8) 2.   EB(t-4) 2.   HR(t-7) 2.   HR(t-6) 2.   EB(t-8) 
3.   EB(t-2) 3.   EB(t-4) 3.   HR(t-l) 3.   EB(l-4) 3.   EB(t-4) 3.   HR(t-2) 
4.   EB(t-4) 4.   EB(t) 4.   EB(t-8) 4.   KBU-8) 4.   HR(t-4) 4.   RR(t-7) 
5.  EB(t-6) 5.   EB(t-2) 5.   HR(t-6) 5.   KB(l) 5.   EB(t-6) 5.   EB(t) 

6.   EB(t-6) 6.   EB(t-6) 6.   KB(t-6) 6.   EB(t-8) 6.   EB(t-6) 
7.   RR(t) 7.   EB(t) 7.   HR(t-6) 7.   HR(t-2) 7.   HR(t-l) 

8.  HR(t-8) 8.   RR(t-7) 8.   EB(t-2) 
9.  EB(t-2) 9.   EB(t) 9.   HR(t-7) 

10. HR(t-8) 10. EB(t-4) 
ll.HR(t-5) ll.HR(t-5) 

12. HR(t-8) 
13. EB(t-7) 
14. EB(t-5) 

3 

1.   EB(t-l) 1.   KB(t) 1.   HR(t-l) 1.   HR(t-6) 1.   HR(t-8) 1.   HR(t-6) 
2.   EB(t-8) 2.   HRd-2) 2.   EB(t-2) 2.   HR(t-8) 2.   HR(t-2) 2.   EB(t-2) 
3.   EB(t-5) 3.   EB(t-8) 3.   EB(t) 3.   HR(t) 3.   EB(t-6) 3.   EB(t) 
4.   EB(t) 4.   1IKÜ-4) 4    FR/"t-4A 4.   HR(t-3) 4.   EB(t-8) 4.   HR(t-l) 
5.   RR(t-8) 5.   EB(t-2) 5.   EB(t-8) 5.   EB(t-2) 5.   HR(t-6) 5.   EB(t-6) 
6.   HR(t-l) 6.   EB(t-6) 6.   HR(t-3) 6.   HR(t-4) 6.   RR(t-8) 6.   HR(t-4) 
7.   EB(t-6) 7.   IFR(l-l) 7.   RR(t-6) 7.   EB(t) 7.   HR(t-7) 
8.   RR(t-l) 8.   EB(t-4) 8.   HR(t-4) 8.   EB(t-4) 
9.   EB(t-2) 9.   HR(t-2) 9.   RR(t-2) 9.   EB(t-l) 
10. HR(t) 10. RR(t-4) 10. EB(t-4) 10. RR(t-8) 
ll.HR(t-8) ll.RR(t-8) ll.EB(t-2) 
12. RR(t-6) 12. EB(t-6) 12. RR(t-4) 
13. RR(t-3) 13. RR(t-2) 13. HR(t-5) 
14. HR(t-6) 14. RR(t) 
15. HR(t-3) 15.EB(t-5) 
16. HR(t-7) 16. EB(t) 
17. HR(t-5) 17. HR(t-5) 
18.EB(t-3) 18. RR(t-5) 
19. EB(t-4) 19. EB(t-8) 
20:RR(t-4) 20. RR(t-l) 

21.HR(t-l) 
22. HR(t-7) 
23. EB(t-l) 
24. RR(t-7) 
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For the 5/1/2 TDNN architecture, the salient features in order were: 

1. EB(t-8) 
2. EB(t) 
3. EB(t-2) 
4. EB(t-4) 
5. EB(t-6) 

Thirty 7/4/2 TDNNs with the salient features listed in Table 36 were trained without 

noise. In addition, thirty 5/1/2 TDNNs with the salient features listed in Table 36 were 

trained without noise. The results are shown in Table 37. For the VFR/IFR classification 

problem, the maximum CAlexl = 87.57% and the maximum CAlesl = 88.53% was attained 

using a 5/1/2 TDNN with number of eye blinks at time window t, t-2, t-A, t-6, 

and t - 8. Figure 64 provides plots of the actual and desired outputs for the TDNN listed 

in Table 37 for the VFR/IFR classification problem. 

The parsimonious set of salient features selected provides an interested result in 

that no redundant lags of the number of eye blinks were selected. Each input feature was 

averaged over a 10-second moving window with 50% overlap. The SNR screening 

method selected the number of eye blinks at time window /, t-2, t-A, t-6, and t - 8 

which provided no overlapping information. Figure 65 provides further elaboration on 

this point. Figure 65 pictorially shows the 10-second moving windows with 50% overlap 

for the number of eye blinks at time window t, t-l, t-2,..., t-8. 

Table 37. Best Results without Noise for TDNN 

K J / CAlesl C A 
*-"-train 

max(C4terf) ^■^train 

2 
1 5 87.57% 86.64% 88.53% 86.93% 
4 7 79.87% 98.42% 82.67% 98.67% 

3 
2 7 54.42% 71.15% 56.00% 72.53% 
3 6 53.66% 71.94% 58.40% 73.07% 
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Figure 64. Actual and Desired Plots for Two-Class TDNN 

8.4.4.2.2 Low/Medium/High Workload Classification Problem 

For the low/medium/high workload classification problem, the 15/3/3 TDNN 

architecture produced the maximum CAlesl = 50.39% as highlighted in Table 34. Of the 

thirty replications of the SNR screening method as applied to 7/3/3 TDNNs, the best 

replication produced CAlesl = 58.67% with 1 = 6 salient input features as shown in Table 

35. But, the replication that produced the overall highest CAtesl = 60.80% was a 7/2/3 

TDNN as highlighted in Table 35. 
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Figure 65. Further Elaboration on Overlapping and Redundancy 

For each architecture, Table 36 lists the parsimonious set of salient features and 

their rankings for the replication that produced the maximum CAlest. For the 6/3/3 

TDNN architecture, the salient features in order were: 

1. HR(t-l) 
2. EB(t-2) 
3. EB(t) 
4. EB(t-4) 
5. EB(t-8) 
6. HR(t-3) 

as highlighted in Table 36.  For the   7/2/3 TDNN architecture, the salient features in 

order were: 

1. EB(t) 
2. HR(t-2) 
3. EB(t-8) 
4. HR(t-4) 
5. EB(t-2) 
6. EB(t-6) 
7. HR(t-l) 

as highlighted in Table 36. 

Thirty 6/3/3 TDNNs with the salient features listed in Table 36 were trained 

without noise. In addition, thirty 7/2/3 TDNNs with the salient features listed in Table 

36 were trained without noise. The results are shown in Table 37. For the three-class 

pilot workload problem, the maximum CAlesl = 54.42% was attained using a 7/2/3 
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Figure 66. Actual and Desired Plots for Three-Class TDNN 

TDNN. The maximum CAlexl =58.40% was attained using a 6/3/3 TDNN. Figure 66 

provides plots of the actual and desired outputs for the feedforward MLP ANNs listed in 

Table 37 for the three-class pilot workload problem. 

8.4.4.3   Elman Recurrent Neural Network (RNN) Experimental Design 

Table 38 summarizes the average classification accuracy denoted as CÄ from 

applying the spatial-temporal feature screening method thirty times to an Elman RNN. 
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Table 38.  CA Results from Spatial-Temporal Screening Method for Elman RNN 

K / C4*(3) CA,j3) C4,,(2) CA,Jl) CAlesl{N) 

2 

1 69.51% 67.98% 69.56% 68.75% 51.47% 
2 88.76% 82.73% 84.15% 86.00% 61.50% 
3 94.39% 86.86% 88.10% 83.57% 62.44% 
4 96.39% 89.16% 88.05% 83.32% 59.63% 

3 

1 45.20% 41.43% 41.35% 38.99% 35.22% 
2 58.58% 48.88% 51.64% 44.97% 37.48% 
3 59.16% 48.51% 49.70% 39.03% 40.06% 
4 66.69% 53.46% 55.77% 45.24% 41.25% 

The results are given for the K = 2 class workload problem (VFR/IFR) and the K = 3 

class workload problem (low/medium/high). 

For each Elman RNN architecture, Table 39 lists the maximum CAlesl denoted as 

max(G4,e,,) attained from applying the spatial-temporal feature screening method thirty 

times. In addition, Table 39 lists the number of salient features I that produced the 

maximum CAlest in addition to the associated CAtrain. 

For each Elman RNN architecture, Table 40 lists the parsimonious set of salient 

features and their rankings from the spatial-temporal feature screening method that 

produced the maximum CAlest listed in Table 39. Table 41 summarizes the results 

attained after the Elman RNN was retrained thirty times using only the salient features 

without the injected noise feature. For the two-class problem (VFR/IFR), there were 

thirty Elman RNNs trained using the architecture with the set of salient features that 

produced the maximum CAlexl and thirty Elman RNNs trained using the architecture with 

the set of salient features that produced the maximum CAlexl. For the three-class problem 

(low/medium/high), the same architecture with the same set of salient features produced 

the maximum   CAlexl   and the maximum   CAlesl.     So for the three-class problem 
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Table 39.  max(C4teW) Results from Spatial-Temporal Feature 

Screening Method for Elman RNN 

K / / max(C4tert) ^^train 

2 

1 2 97.33% 93.33% 
2 1 98.13% 96.00% 
3 1 99.20% 96.27% 
4 2 99.20% 90.93% 

3 

1 1 67.47% 67.73% 
2 2 68.00% 63.73% 
3 3 64.27% 73.33% 
4 2 ■     70.13% 77.60% 

(low/medium/high), there were thirty Elman RNNs trained using the architecture with the 

set of salient features that produced both the maximum CAtexl and the maximum CAlexl. 

Because the Elman RNN has a high tendency to converge to local minima via 

backpropagation, the minimum CAlext and the associated CAtmjn. This high likelihood of 

training to a local minima negatively effected the CAlexl and CA~lrain results for the Elman 

RNN and should be taken into consideration when comparing the results between the 

feedforward MLP ANN, the TDNN, and the Elman RNN. 

8.4.4.3.1 Visual Flight Rules (VFR) / Instrument Flight Rules (IFR) Classification 

Problem 

For the VFR/IFR classification problem, the 3 + 4/4/2 Elman RNN architecture 

produced the maximum CAlexl =89.16% as highlighted in Table 38. Of the thirty 

replications of the spatial-temporal feature screening method as applied to 7 + 4/4/2 

Elman RNNs, the best replication was a 2 + 4/4/2 Elman RNN architecture that 

produced CAlexl = 99.20% with an associated CAlrain = 90.93% as shown in Table 39. 
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Table 40. Results from Spatial-Temporal Feature Screening Method for Elman RNN 

K 7 = 1 7 = 2 7 = 3 7 = 4 

2 
1. EB 1. EB 1. KB 1: EB 
2. RR 2. HR 

3 
1. EB 1. HR 1. HR 1. HR 

2. EB 2. EB ;-2.-EB-: 

3. RR 

Table 41. Best Results without Noise for Elman RNN 

K / / CAest CArain 
max(C4to,) ^frai« mHCA>es>) ^■^train 

2 
3 1 84.83% 87.49% 94.40% 97.60% 42.67% 42.67% 
4 2 88.10% 95.75% 99.47";, 100.00% 57.33% 57.33% 

3 1 3 58.25% 69.04% 69.33% 77.60% 46.13% 56.80% 

The best replication of the 1 + 3/3/2 Elman RNN architecture also produced 

CAlesl = 99.20% as highlighted in Table 39 but with a slightly better CAlrain = 96.27% 

and with one less feature. Table 40 lists the set of salient features and their rankings for 

the replication that produced the maximum CAlesl. For the 2 + 4/4/2 Elman RNN 

architecture, the salient features in order were: 

1. Number of eye blinks 
2. Heart rate 

as highlighted in Table 40. For the 1 + 3/3/2 Elman RNN architecture, the only salient 

feature was number of eye blinks. 

Thirty 2 + 4/4/2 Elman RNNs were trained with number of eye blinks and heart 

rate as inputs with no noise. In addition, thirty 1 + 3/3/2 Elman RNNs were trained 

with number of eye blinks as the only input with no noise. The results are shown in 

Table 41. For the VFR/IFR classification problem, the maximum Cllext =88.10% and 

the maximum CAlexl =99.47% were attained using a 2 + 4/4/2 Elman RNNs were 
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Figure 67. Actual and Desired Plots for Two-Class Elman RNN 

trained with number of eye blinks and respiration rate as inputs. Figure 67 provides plots 

of the actual and desired output for the Elman RNNs in Table 41 for the VFR/IFR 

classification problem. 

8.4.4.3.2 Low/Medium/High Workload Classification Problem 

For the VFR/IFR classification problem, the 2 + 4/4/3 Elman RNN architecture 

produced the maximum CAlest = 55.77% as highlighted in Table 38. Of the thirty 

replications of the spatial-temporal feature screening method as applied to 7 + 4/4/3 
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Elman RNNs, the best replication was a 2 + 4/4/3  Elman RNN architecture that 

produced CAtesl = 70.13% as shown in Table 39. 

For each architecture, Table 40 lists the set of salient features and their rankings 

for the replication that produced the maximum CAlesl. For the 2 + 4/4/3 Elman RNN 

architecture, the salient features in order were: 

1. Number of eye blinks 
2. Heart rate 

as highlighted in Table 40. Thirty 2 + 4/4/3 Elman RNNs were trained with number of 

eye blinks and heart rate as inputs with no noise. The results are shown in Table 41. For 

the low/medium/high workload classification problem, the maximum CAlesl = 58.25% 

and the maximum CAlesl = 69.33% . Figure 63 provides plots of the actual and desired 

outputs for the Elman RNN listed in Table 41 for the three-class pilot workload problem. 

8.4.5    Conclusions 

By using a TDNN instead of a feedforward MLP ANN, the maximum CZ„, was 
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Figure 68. Actual and Desired Plots for Three-Class Elman RNN 
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improved by 17.34% and the maximum CAlexr was improved by 18.30% for the VFR/IFR 

classification problem.    The maximum  CAlesl   was improved by  11.04% and the 

maximum CAlexl was improved by 13.49% by using a TDNN for the low/medium/high 

workload classification problem. 

By using an Elman RNN instead of a feedforward MLP ANN, the maximum 

CAtesl was improved by 29.24% for the VFR/IFR classification problem. The maximum 

CAtesl was improved by 24.42% by using a Elman RNN for the low/medium/high 

workload classification problem. 

Table 42 provides the average CPU time in minutes required to perform the 

feature screening method used. For the feedforward MLP ANN and the TDNN, the SNR 

screening method was used. For the Elman RNN, the spatial-temporal screening method 

was used. Though the spatial-temporal feature screening method and the Elman RNNs 

produced the best results, those results came at the cost of CPU. A trade-off exists 

between classification accuracy performance and CPU. 

Table 42. Average CPU Time in Minutes to Perfc >rm Feature Screening Method 

K ANN J=\ J = 2 / = 3 J = 4 J = 8 J = U 

2 
MLP 0.89 1.09 1.18 1.19 1.47 1.76 

TDNN 5.30 7.36 7.93 8.34 11.02 14.04 
Elman RNN 39.07 37.43 40.18 52.61 

3 
MLP 1.30 1.16 1.26 1.29 1.61 1.89 

TDNN 7.08 9.55 10.34 11.43 15.06 19.05 
Elman RNN 40.30 45.53 66.19 94.08 
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9    Determining the Memory Capacity of an Elman Recurrent Neural Network (RNN) 

9.1 Introduction 

This chapter contains a methodology for determining the memory capacity of an 

Elman RNN [48]. The memory capacity of an Elman RNN is defined in terms of the 

number of unfolded layers containing salient input and context nodes. Researchers are 

interested in determining how far back in time RNNs remember. In other words, how far 

back in time do the input and context nodes effect the current output of an Elman RNN? 

This chapter provides mathematical derivations for determining the memory capacity of 

an Elman RNN performing a wave amplitude detection problem, a well known nonlinear 

process, by unfolding through time. The proposed method is based on partial derivatives 

calculated over time. The approach calculates the partial derivatives over time of the 

output of a trained Elman RNN relative to the input. In addition, the partial derivatives 

over time of the output relative to the context nodes are calculated. The partial 

derivatives over time relative to the input and context nodes are statistically compared to 

that of an injected noise feature. This injected noise feature provides a baseline for 

determining the unfolded layer at which the input and context nodes provide no more 

information than noise to the Elman RNN. 

9.2 Data 

A wave amplitude detection problem is shown in Figure 69.  A signal x(t) that 

varies between two amplitudes is inputted to the Elman RNN. 
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Figure 69. Wave Amplitude Detection Problem 
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The desired output of the Elman RNN at time /  denoted as  d(t) is a nonlinear 

metafunction of the input signal x(t) and is defined as: 

(-1.0   if amplitude(x(t)) = 0.5 
d(t) = < .     . (171) 

[+1.0   if amplitude{x(t)) = 1.0 

9.3    Methodology 

An Elman RNN with a 2 + 2/2/1 architecture as shown in Figure 70 is utilized. 

The input layer contains: 

• One injected uniform (-1.0, 1.0) noise node [11, 12, 147] at time t denoted as 
noise(t). 

• One input node at time t denoted as x(t). 

• Two context nodes at time t -1 denoted as v .„ (t -1) for f = 1,2. 

• One bias node. 

The hidden layer contains: 

• Two hidden nodes at time t denoted as yj (t) for j = 1,2. 

• One bias node. 

The output layer contains: 

• One output node at time t denoted as z(t). 

All hidden and context nodes are activated with the hyperbolic tangent nonlinear transfer 

function in Equation 6. The linear transfer function with slope = 1 in Equation 8 

activates the output node. 

9.3.1 Partial Derivative-Based Saliency Measure in Elman Recurrent Neural Networks 

(RNN) 

For the Elman RNN as depicted in Figure 70, the partial derivative-based saliency 
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Figure 70. 2 + 2/2/1 ElmanRNN 

measure for x is calculated using the training set exemplars following Equation 66 as: 

1    T 

t=\ 

dz(t,Vt) 

dx(f) 
(172) 

where Tx is the partial derivative-based saliency measure for x, T is the number of time 

steps, z(t,W) is the activation of the output node at time t with the trained weight matrix 

W, and x(t) is the input at time t. More specifically: 

1 /=i >i 

(173) 

Equation 173 becomes: 

r =- 
T tr 

IZ-MM^w))2).^, 
/=!   7=1 

(174) 

since f(a) = \ for linear transfer functions and f(a) = l-(f(a))2 for hyperbolic tangent 

nonlinear transfer functions. The partial derivative-based saliency is calculated in the 

same manner for the noise node as: 
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r . -I.T 
HOI.«      rp   ^ 

;=1 >1 
(175) 

where Tnojse is the partial derivative-based saliency measure for the noise node and w)misej 

is the first layer weight connecting the noise node to hidden node yr The partial 

derivative-based saliency is calculated in the same manner for context node y „ on the 

input layer as: 

T'~T'1 /=1   >1 

for/=1,2 (176) 

where F.„ is the partial derivative-based saliency measure for context node v.„ and w\ . 

is the first layer weight connecting context node y „ to hidden node y}. 

9.3.2   Partial Derivative-Based Saliency Measure Over Time in Elman Recurrent 

Neural Networks (RNN) 

An Elman RNN can be viewed as a feedforward MLP ANN which has been 

folded back onto itself in time. The Elman RNN can be unfolded through time as 

depicted in Figure 71. Unfolding each layer of the Elman RNN allows us to visualize the 

input and hidden layers that affect z{t). This unfolding of an Elman RNN shows the 

effect of the temporal feedback in a spatial representation. The partial derivative-based 

saliency measure can be calculated for each unfolding of the Elman RNN by extending 

the equations in Section 9.3.1. For the unfolded layer 1, the partial derivative-based 

saliency measure for x is calculated as: 

r =■ 
l T-l 

1   (=1 

<?z(f,W) 
dx{t-\) 

(177) 
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unfolded layer 1; j'=\,2 

unfolded layer 2; /=1,2 

Figure 71.2 + 2/2/1 Elman RNN Unfolded Through Time (Note: Dotted Box Area 
is Same as Figure 70) 

where Y\ is the partial derivative-based saliency measure for x on unfolded layer 1. 

More specifically, 

, 1        T-l    2 
r;=- 

1    '=1   7=1 7°=1 

(178) 

The partial derivative-based saliency is calculated in the same manner for the noise node 

on unfolded layer 1 as: 

P.. 
1 

T-l ti 
w 

noi.sej (179) 
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where Yx
noise is the partial derivative-based saliency measure for the noise node on 

unfolded layer 1. The partial derivative-based saliency is calculated for the two context 

nodes y., on unfolded layer 1 as: 

1     T-' r1 =— 
>t     T-l - ZZ^-(i-(vA^)2)-t^-(i-(v/'-w)2)-^/ 

(=1   7=1 f=[ 

for/ =1,2 (180) 

where rj    is the partial derivative-based saliency measure for context node j/.,  on 

unfolded layer 1. 

For the unfolded layer 2, the partial derivative-based saliency measure for x is 

calculated as: 

r2=- l T-2 

T-2 
dz(t,W) 
dx(t-2) 

(181) 

where E2 is the partial derivative-based saliency measure for x on unfolded layer 2. 

More specifically, 

r2 = 
I '-•* 

T-2 tr 2>,2 ■(i-G'ya.w))1)- 2X,y •(i-(y/.('-i,w))2)-tw;, .„ .J_^(/-2,w)) 2> V, (182) 

The partial derivative-based saliency is calculated in the same manner for the noise 

node on unfolded layer 2 as: 

St^^-^^-t^-t^/P-^W-t^-t-tv/^-iW))2)- 
2 

I 
2 (183) 

1 - <£   tai y=i 

where r,2
0/re is the partial derivative-based saliency measure for the noise node on 

unfolded layer 2'. The partial derivative-based saliency is calculated for the two context 

nodes y 2 on unfolded layer 2 as: 
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' l-Z     ,=]    y=, yo,, y=, 
for/ = l,2(

184) 

where Fj    is the partial derivative-based saliency measure for context node  v.2  on 

unfolded layer 2.   Following this logic, the partial derivatives can be calculated as far 

back in time as desired. 

9.3.3    Training 

All weights and biases were initialized using the Nguyen-Widrow method [102]. 

The initial context nodes were set to 0.0. All Elman RNNs were trained using the Matlab 

Neural Network Toolbox implementation of gradient descent backpropagation with 

momentum and an adaptive learning rate following Equation 50 with mc = 0.90 and 

initially, rj = 0.01. The momentum and adaptive learning rate were implemented as 

described in Section 2.4.11. After training for 500 epochs, the weights for the epoch that 

produced the minimum SSElest is kept thus preventing memorization of the training set. 

The validation set is used to validate the set of weights selected during the training-test 

phase. 

9.4    Results 

Fifty-two Elman RNNs were trained in order to get 30 sufficiently trained Elman 

RNNs. Thirty Elman RNNs were sufficiently trained so Central Limit tendencies can be 

exploited [88]. An Elman RNN is sufficiently trained if CA,rain > 90%, CAlesl > 90% , 

and CAvalid > 90%. An output z(t) is considered to correctly classify the input signal 

x(t) when: 
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z(t) = - 
>0.0   andü?(0 = 1.0 

<0.0   andJ(0 = -1.0 
(185) 

Of the 52 Elman RNNs that were trained, only 58% provided sufficient classification 

accuracies. Table 43 summarizes the classification accuracies where CA is the average 

classification accuracy and S^j is the standard deviation of the average classification 

accuracy. It appears from these results that the specific Elman RNN applied to this 

problem has a high likelihood of training to a local minimum. Techniques utilizing 

simulated annealing may correct for the Elman RNN's apparent high probability of local 

minima. 

The partial derivatives up to eight unfolded layers for the 30 sufficiently trained 

Elman RNNs was computed. Table 44 summarizes the partial derivatives where T is the 

average partial derivative and Sf is the standard deviation of the average partial 

derivative. Instead of taking the average over 30 sufficiently trained Elman RNNs for 

each context node, the average of the context node that results in the maximum and 

minimum partial derivative was taken. 

As in the case of unfolded layer 1: 

SnMxfatoriM} 
_  n=l 

N 
(186) 

Table 43.  CA of Trained Elman RNNs 

Sufficient TV =30 Not Sufficient N =22 
CA Scl CA SCÄ 

Training Set 98.42% 0.11% 72.25% 2.27% 
Validation Set 97.73% 0.30% 67.75% 2.57% 

Test Set 98.82% 0.12% 60.12% 3.72% 
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Table 44. Partial Derivatives Of 30 Sufficiently Trained Elman RNNs 
(Note: All Numbers Are Multiplied By 1000) 

Unfolded Layer r . noise ST. 1 noise r, *r * X /mm >*min 

0 43.65 5.52 602.15 25.11 496.10 14.43 464.56 13.79 

1 16.53 2.99 177.33 29.17 201.34 18.15 183.57 15.87 

2 10.01 1.76 92.36 18.15 127.66 11.32 122.70 11.70 

3 3.96 1.37 36.98 11.15 45.48 11.01 41.91 9.78 

4 1.90 0.95 13.20 6.02 18.32 7.78 16.65 6.94 

5 1.02 0.54 6.63 3.26 6.16 3.56 5.52 3.21 

6 0.38 0.23 3.31 1.79 1.63 0.88 1.44 0.77 

7 0.18 0.15 1.72 1.25 0.26 0.13 0.19 0.09 

8 0.11 0.10 1.13 0.86 0.08 0.05 0.08 0.06 

pi      _ n=l 
£min|r;>),r;>)} 

TV 
(187) 

where T1 is the partial derivative with respect to the maximum context node on 

unfolded layer 1 over N = 30 sufficiently trained Elman RNNs, Tx
y («) is the realized 

partial derivative with respect to context node y , for / = 1,2 on unfolded layer 1 for the 

rih sufficiently trained Elman RNN, and r^    is the partial derivative with respect to the 

minimum context node on unfolded layer 1 over N = 30 sufficiently trained Elman 

RNNs. It is necessary to calculate the averages for the context nodes in this fashion due 

to the flip-flop reversing nature of the trained weights associated with context nodes. 

When several ANNs are trained and then compared to each other, the roles of the 

hidden/context nodes often reverse. As an example, consider an Elman RNN with two 

hidden/context nodes and one output node. For the weights resulting from the first 

training session, it is possible that hidden/context node 1 fires high when the desired 

output is 1 and fires low when the desired output is -1. Hidden/context node 2 fires low 
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when the desired output is 1 and fires high when the desired output is -1. The next time 

the Elman RNN is trained, it is possible that the weights do a flip-flop. In other words, 

the weights that were associated with hidden/context node 1 are now associated with 

hidden/context node 2 and vice versa. So now hidden/context node 1 fires low when the 

desired output is 1 and fires high when the desired output is -1. And now hidden/context 

node 2 fires high when the desired output is 1 and fires low when the desired output is -1. 

Because of this flip-flop of the weights associated with the hidden/context nodes, care 

must be taken when computing the average of the partial derivative-based saliency 

measure of the hidden/context nodes. In the case of two hidden/context nodes, the 

average is taken for the maximum and the minimum. Otherwise, the averages of the 

partial derivative base saliency measure of the hidden/context nodes, in the limit, would 

be the same. 

Figure 72 provides plots of the average partial derivatives in addition to 95% 

confidence intervals on the averages. These plots show a decline in the average partial 

derivatives for each additional unfolded layer. This, in essence, means that more current 

or recent values of the input x and context nodes y} strongly effect the current output z. 

One-sided / - tests with a = 0.05 were run in order to determine the layer I at 

which the input and context nodes on layer £ provide no more information than noise on 

layer £. One-sided t - tests were also run in order to compare the input and context 

nodes to each other. 
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In the case of comparing the partial derivative of the input x to noise at unfolded 

layer 1, the null hypothesis HQ states that there is no significant difference between the 

average partial derivative for x at unfolded layer 1 denoted as f,1 and that of noise 

denoted as rj0/re.  The alternate hypothesis Ha states that r,1 is either lower or higher 

than r,,1^. The test statistic assuming independent pairwise samples and assuming the 

variance of the two samples is unknown and unequal is calculated as: 

r'-r1. 
t,=   ,J      ""'" (188) 

where ts is the t - test statistic, N is the number of trained Elman RNNs ( N = 30), S2, 

is the sample variance of r] for n = 1,..., N, and S2,     is the sample variance of Tx
mlse 

for n = \,...,N [88]. H0 is rejected if |fs|£faj#_i where taN_x is the critical 

t - value for a given level of significance a and degrees of freedom N-l. The level of 

significance was set to a = 0.05 and there were N -1 = 29 degrees of freedom. As such, 

f
a,N-i = 'o.o5,29 = 1-6991. In the case where H0 is rejected and ts < -ta N_y, the test 

concludes that Tx
x is lower than rj^e. In the case where H0 is rejected and ts >ta^N_x, 

the test concludes that Tl
x is higher than F,,1^. Table 45 lists the test statistics. Those 

comparisons that are significant are shaded. The input and context nodes provide more 

information than noise up to the fourth unfolded layer. We now know that the following 

inputs, on average, significantly effect z(t): x(t), x{t-\), x(t-2), x(t-3), and 

x{t -4). We now also know that the following context nodes, on average, significantly 

270 



Table45. Calculated /-Statistics 

Unfolded Layer X *^max .Jmin 

noise 

0 21.3695 28.7895 27.8576 

1 5.3916 9.8800 10.1719 

2 4.4414 10.0985 9.3629 

3 2.8893 3.6795 3.7781 

4 1.8255 2.0592 2.0716 

5 1.6698 1.4017 1.3581 

6 1.5955 • 1.3542 1.2942 

7 1.19 0.3631 0.0698 

8 1.1593 0.3324 0.3047 

X 

0 * 3.6002 4.7224 

1 * -0.6872 -0.1848 

2 * -1.6228 -1.3814 

3 * -0.5330 -0.3267 

4 * -0.5109 -0.3690 

5 * 0.0958 0.2383 

6 * 0.8258 0.9417 

7 * 1.1407 1.1931 

8 * 1.2078 1.2046 

•'max 

0 * * 1.5538 

1 * * 0.7248 

2 * * 0.2996 

3. * * 0.2381 

4 * * 0.1570 

5 * * 0.1308 

6 * * 0.1611 

7 * * 0.3850 

8 * * -0.0309 

effect z(t): yj(t-l), yj(t-2), yj(t-3), yj(t-4), and y^t-S) for 7= 1,2. The 

memory capacity of an Elman RNN with an architecture as that in Figure 70 and Figure 

71 for this wave amplitude problem is four unfolded layers. 
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For unfolded layer 0, the input JC(^) significantly effects z(i) more, on average, 

than the context nodes j/. (t -1) for j = 1,2. 

9.5    Conclusions 

This methodology for determining the memory capacity of an Elman RNN 

provides insight into the theoretical workings of RNNs. It is now possible to calculate 

how far back in time, on average, an Elman RNN remembers for a given data set, a given 

Elman RNN architecture, and a given noise distribution to the extent that it is appropriate 

to measure memory by the partial derivative-based saliency measure over time. The 

significant contribution of this chapter was the theoretical development of a technique to 

determine the memory capacity of an Elman RNN that was applied to a wave amplitude 

detection problem. 
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/ 0   Conclusions and Recommendations 

10.1 Introduction 

This chapter summarizes the significant contributions resulting from this research. 

This chapter also provides recommendations for future research. 

10.2 Significant Contributions 

This research resulted in three referee-reviewed conference papers [46,47,48]and two 

submitted archival journal papers [49,50]. This section summarizes the significant 

contributions resulting from this research. 

10.2.1 Development of the Signal-to-Noise Ratio (SNR) Saliency Measure in 

Feedforward Multilayer (MLP) Artificial Neural Networks (ANN) to Classify 

Pilot Workload and Air Traffic Controller Workload 

The development of the SNR saliency measure in feedforward ANNs has resulted 

in one referee-reviewed conference paper for classifying pilot workload [46] and one 

submitted archival journal paper for classifying air traffic controller workload [50]. The 

referee-reviewed conference paper for classifying pilot workload was selected as second 

runner-up for best conference paper with a novel engineering application at the 1996 

Artificial Neural Networks in Engineering (ANNIE) Conference, St. Louis, MO. 

10.2.2 Empirical Evidence that the Signal-to-Noise Ratio (SNR) Saliency Measure 

Provides Rankings Consistent with that of Other Saliency Measures 

This dissertation provided empirical evidence that the SNR saliency measure 
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provides rankings consistent with that of a derivative-based saliency measure [124,126] 

and a weight-based saliency measure [152]. 

10.2.3 Development of the Signal-to-Noise Ratio (SNR) Screening Method in 

Feedforward Multilayer Perceptron (MLP) Artificial Neural Networks (ANN) to 

Classify Pilot Workload 

The development of the SNR screening method in a feedforward MLP ANN to 

classify has resulted in an archival journal paper to appear in Neurocomputing [49]. 

10.2.4 Development of the Signal-to-Noise Ratio (SNR) Screening Method in Elman 

Recurrent Neural Networks (RNN) to Estimate Pilot Workload 

The development of the SNR screening method in an Elman RNN to estimate 

pilot workload has resulted in a referee-reviewed conference paper [47]. 

10.2.5 Development of a Partial Derivative-Based Spatial-Temporal Screening Method 

for Elman Recurrent Neural Networks (RNN) 

One archival journal paper will be submitted summarizing the development of a 

partial derivative-based spatial-temporal screening method for Elman RNNs. 

10.2.6 Development of a Methodology For Determining the Memory Capacity of an 

Elman Recurrent Neural Network (RNN) 

The development of a methodology for determining the memory capacity of an 

Elman RNN resulted in referee-reviewed conference paper [48].   The conference paper 
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was selected as second runner-up for best conference paper with a theoretical 

development in technique at the 1998 Artificial Neural Networks in Engineering 

(ANNIE) Conference, St. Louis, MO. One archival journal paper will be submitted 

summarizing the development of a methodology for determining the memory capacity of 

an Elman RNN. 

10.3 Recommendations for Future Research 

There are many areas for future research and this section will list but just a few. 

10.3.1 Distribution of the Signal-to-Noise Ratio (SNR) Saliency Measure 

It is desirable to determine the distribution of the SNR saliency measure and then 

utilize this distribution when testing for saliency. White concludes that the weights of a 

feedforward ANN, under certain assumptions, are distributed normally [163]. Assuming 

J .      2 

the weights are normally distributed, then the numerator XlWy)   and tne denominator 

J    . . 2 

2(w]vj)   of the ratio may both have %2 distributions with /degrees of freedom [88]. 

If both the numerator and the denominator have x1 distributions, then the following ratio 

(189) 

IK) 
may have a F distribution with J numerator degrees of freedom and J denominator 

degrees of freedom [88]. 
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10.3.2 Distribution of the Injected Noise Feature 

Another future research area may be determining the appropriate distribution of 

the injected noise feature. This research used a uniform distribution for noise. However, 

there are other distributions of noise that may be used such as Gaussian noise. The form 

of normalization may effect the optimal distribution of noise to use. For example, if the 

features are normalized between 0 and 1, then this research used a uniform(0,l) 

distribution for the injected noise feature. If the features are normalized between -1 and 

1, then this research used a uniform(-l,l) distribution for the injected noise feature. 

However, what distribution of noise should be used if the features are standardized 

instead of normalized? Would it be more optimal to use Gaussian noise in this case? 

10.3.3 Use ofSaliency Measures in Architecture Selection 

Future research may investigate the use of the partial derivative-based saliency 

measure and the SNR saliency measure for use in architecture selection for determining 

the optimal number of hidden nodes in a feedforward ANN. Research in this direction 

using the SNR saliency measure was initiated by Rizzo but much more research is needed 

[113]. Issues to be addressed regarding the SNR saliency measure include figuring out 

where the important information for deriving hidden node saliency is located in the ANN. 

In other words, is information for deriving the saliency of a hidden node found in the first 

layer weights, the second layer weights, or both? 

10.3.4 Other Types of Recurrent Neural Networks (RNN) 

All of the RNN research done in this dissertation was accomplished using an 
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Elman RNN. There are two other popular RNNs in the literature: the Jordan RNN [69] 

and the Williams and Zipser RNN [166,167]. Whereas the Elman RNN feeds back the 

hidden layer onto the input layer, the Jordan RNN feeds back the output layer onto the 

input layer. The Williams and Zipser RNN is a combination of the Elman RNN and the 

Jordan RNN in that it feeds back both the hidden and output layers onto the input layer. 

Future research may utilize the partial derivative-based saliency measure over time for 

feature saliency in the Jordan RNN and the Williams and Zipser RNN. Additional 

research may utilize the partial derivative-based saliency measure over time for 

determining the memory capacity of a Jordan RNN and a Williams and Zipser RNN. 

10.3.5 User Friendly Software Development 

It is highly recommended that user friendly software similar to that of Reinhart be 

developed to perform the methodologies as developed in this research [111]. Matlab and 

its Neural Network Toolbox are recommended to perform the algorithms. The user 

interface needs to be improved. The Matlab code written for this dissertation should be 

modified to be more general and allow for many modifications that the user would input 

in a simple but efficient manner. Parameters that the user may modify could include the 

various transfer functions (i.e. sigmoid or hyperbolic tangent), number of hidden nodes, 

number of training epochs, type of neural network (i.e. feedforward MLP ANN or RNN), 

et cetera. 

10.3.6 Address Individual Differences in Workload 

Research is already being started to select a parsimonious  set of salient 
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psychophysiological features for classifying air traffic controller workload using the SNR 

saliency measure and its associated screening method. This research being conducted by 

Laine and will attempt to determine if one ANN classifier is sufficient to classify air 

traffic controller or if each air traffic controller will require his own ANN classifier [75]. 

Approximately 10-12 test subjects will be utilized. 

10.3.7 In-Flight Pilot Workload Data Collection 

Future research must involve extensive data collection efforts in order to obtain 

in-flight pilot workload data. As a minimum, three test flights with data collection is 

necessary for each test subject pilot since it is highly desirable to have a training, test, and 

validation set. Due to the temporal nature of the RNNs, the training, test, and validation 

data sets should be collected on separate but near identical test flights. Various issues 

will arise with in-flight data collection which will require investigation to include noise, 

vibration, G-forces, and EEG artifacts. As a minimum, data should be collected for 

twelve test subject pilots. With an extensive in-flight data set, research for determining a 

parsimonious set of salient features may be conducted on pilot workload. In addition, 

individual differences in pilot workload may be investigated for determining if a robust 

parsimonious set of salient features exists for both feedforward ANNs and the three types 

of RNNs. 

1.3.8 Investigate Other Electroencephalography (EEG) Preprocessors 

The only preprocessors for EEG is the FFT and the elliptic filter. Other 

possibilities that show promise include feature space trajectory neural networks (FSTNN) 
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and wavelets. 

A FSTNN allows for shift-invariance and distortion-invariance by representing a 

feature vector as a trajectory in the feature space [99]. Calculation of the closest feature 

space trajectory results in classification. A FSTNN can be used in speech recognition 

where words represent a sequence of phonemes [16]. The major advantage to a FSTNN 

is its success in classify overlapping data sets since its decision rule is based on distance 

to a class trajectory [16]. A FSTNN is similar to a nearest neighbor algorithm. In a 

FSTNN, a test point X is inputted and the vector inner product with each of the "links" in 

the trajectory is calculated to find the closest point P on the trajectory to X [16]. The 

closest link wins. Brandstrom used a FSTNN to compare sequences of images of 

satellites passing over an observatory on Maui to known sequences to identify the 

satellite and its orbit. 

A dynamic time warp (DTW) in conjunction with the FSTNN may be an option 

for preprocessing the EEG data to encode temporal information. The DTW algorithm 

provides a way to incorporate sequence information without increasing the 

dimensionality' of the network because the sequence information is encoded in the 

algorithm itself rather than additional features [16]. The DTW does not allow for a test 

point Xio project to a link more previous in the sequence than the link selected by the 

previous test point [16]. Ideally, each subsequent test point will project to sequential 

links in the design trajectory [Bruegger]. A point may skip ahead two links instead of 

one but the distance calculation will be penalized [16]. The penalty is the product of the 

distances to non-preferred links and a "stretch factor" [16]. Ney used a DTW for 

recognizing connected speech. 
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Wavelets transform a signal into a sum of small, overlapping waves [145]. The 

wavelet transform is the newest way to analyze and synthesize a signal (the Fourier 

transform and the FFT are the others). In Fourier analysis, the signal becomes the sum of 

cosine waves. The major disadvantage to the Fourier transform is that its cosines go on 

forever [145]. With the FFT, segments of the signal are transformed into cosines 

separately. The FFT therefore allows for each segment to have a different amplitude. 

The major disadvantage to the FFT is the sudden discontinuity between segments or 

rather its "blocking effect" [145]. The smoothing over a 10-second window in the 

preprocessing of the EEG signal is an attempt to correct for this. 

Instead of cosine building blocks, a wavelet transform has a wavelet building 

block. A wavelet is a small wave that starts and stops. Each wavelet in a transform 

comes from a "mother wavelet" W(t) [145]. The mathematical framework for the 

wavelet transform was developed by Mallet. The framework is based on the notion of a 

multiresolution analysis consisting of approximating vector spaces Vj where j e Z and a 

scaling function <p [72].    The set of functions  ll2tß(2Jx-ri)\n eZ>       forms *an 

orthonormal basis for Vj [72]. 
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