
fie University of Illinois at Chicago 
ü*afe 

•/#&£-- 

lit 

"Ä*^SS»är*^> 

f-l^r^^ «AS*- 
■Ajfc^-^Hj.v'.aiSS*^. .<-^:$®£s%r---V- 

m^ssm fett .-^Jt.. 

m \m apartment of Mechanical Engineering 
SK*- 

pm. 
m^^y^j^yg^si^^^^^ -üS-^. ' . ^5* '■qjp?sls& r* .r^ l 



REPORT DOCUMENTATION PAGE 
Form Approved 
OMB NO. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information Send comment regarding this burden estimates or any oUier aspect of this 
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for ^omaton Operatons andRepo^ 1215 Jefferson 
Davis Highway Suite 1204 Arlington"^ 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED 

Technical Report 

4. TITLE AND SUBTITLE 

Defiition of the Elastic Forces in the Finite Element Formulations 

5. FUNDING NUMBERS 

6. AUTHOR(S) 

Marcello Berzeri, Marcello Campanelli, Ahmed A. Shabana 

DAAG55-97-1-0303 

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES) 

University of Illinois at Chicago 
Chicago, 1L 60612 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9.    SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

U.S. Army Research Office 
P.O. Box 12211 
Research Triangle Park, NC 27709-2211 

10. SPONSORING / MONITORING 
AGENCY REPORT NUMBER 

ARO 35711.13-EG 

11. SUPPLEMENTARY NOTES 

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as 
an official Department of the Army position, policy or decision, unless so designated by other documentation. 

12a. DISTRIBUTION /AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited. 

12 b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

ABSTRACT IN TECHNICAL REPORT 

14. SUBJECT TERMS 

17. SECURITY CLASSIFICATION 
OR REPORT 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

15. NUMBER IF PAGES 

16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 
298-102 



Technical Report # MBS98-1-UIC 
Department of Mechanical Engineering 

University of Illinois at Chicago 

November 1998 

DEFINITION OF THE ELASTIC FORCES 

IN THE FINITE ELEMENT FORMULATIONS 

Marcello Berzeri 
Marcello Campanelli 
Ahmed A. Shabana 

Department of Mechanical Engineering 
University of Illinois at Chicago 

842 West Taylor Street 
Chicago, IL 60607-7022 

This research was supported by the U.S. Army Research Office, Research Triangle Park, NC 



ABSTRACT 

The equivalence of the finite element formulations used in flexible multibody dynamics is 

the focus of this investigation. This equivalence will be used to address several fundamental 

issues related to the deformations, flexible body coordinate systems, and the geometric 

centrifugal stiffening effect. Two conceptually different finite element formulations that 

lead to exact modeling of the rigid body dynamics will be used in this investigation. The 

first one is the absolute nodal coordinate formulation, in which beams and plates can be 

treated as isoparametric elements. This formulation leads to a constant and symmetric mass 

matrix and highly nonlinear elastic forces. It is demonstrated in this study that different 

element coordinate systems which are used for the convenience of describing the element 

deformations lead to similar results as the element size is reduced. In particular, two element 

frames are used in this study; the pinned and the tangent frames. The pinned frame has 

one of its axes passes through two nodes of the element, while the tangent frame is rigidly 

attached to one of the ends of the element. Numerical results obtained in this investigation 

using these two different frames are found to be in a good agreement as the element size 

decreases. The relationship between the coordinates used in the absolute nodal coordinate 

formulation and the floating frame of reference formulation is presented. This relationship 

is used to obtain the highly nonlinear expression of the strain energy used in the absolute 

nodal coordinate formulation from the simple energy expression used in the floating frame of 

reference formulation. It is shown in this paper that the source of the nonlinearity is due to 

the finite rotation of the element. The result of the analysis presented in this paper clearly 

demonstrates that the instability observed in high speed rotor analytical models due to the 

neglect of the geometric centrifugal stiffening is not a problem inherent to a particular finite 

element formulation. Such a problem can only be avoided by considering the known linear 

effect of the geometric centrifugal stiffening or by using a nonlinear elastic model as recently 

demonstrated. Fourier analysis of the solutions obtained in this investigation also sheds new 

light on the fundamental problem of the choice of the deformable body coordinate system 

in the floating frame of reference formulation. 



1    INTRODUCTION 

The floating frame of reference formulation is widely used in flexible multibody simulations. 

In this formulation, a coordinate system is assigned to each flexible body in the multibody 

system [13, 18]. The location and orientation of this body coordinate system are defined 

using absolute Cartesian and orientation coordinates. The deformation of the body with 

respect to its coordinate system is defined using local coordinates that can be introduced 

using the finite element method. The floating frame of reference formulation leads to a simple 

expression for the elastic forces and a highly nonlinear expression for the inertia forces. The 

simplicity of the elastic forces is due to the fact that the deformations of the bodies are 

defined with respect to their respective coordinate systems. The nonlinearity of the inertia 

forces is also the result of using local coordinates to describe the locations of the points 

on the deformable body. In order to define the absolute position, velocity and acceleration 

equations in the floating frame of reference formulation, a coordinate transformation that 

defines the orientation of the body coordinate systems with respect to a selected inertial 

frame is used. The use of this coordinate transformation leads to the nonlinearity and to a 

strong dynamic coupling between the absolute reference and the local coordinates. While the 

finite element floating frame of reference formulation can lead to exact modeling of the rigid 

body dynamics when beam elements are used, this formulation has been only used in the 

analysis of small deformation problems since it employes non-isoparametric beam elements. 

Another conceptually different formulation which is introduced recently for the large ro- 

tation and deformation analysis [2, 3, 10,15, 19] is the absolute nodal coordinate formulation 

[8, 18]. In this formulation, only absolute position and slope coordinates are used. Unlike 

the floating frame of reference formulation, the absolute nodal coordinate formulation leads 

to a simple expression for the inertia forces and a highly nonlinear expression for the elastic 

forces. The mass matrix is constant and symmetric, and the vector of centrifugal and Cori- 

olis forces is identically equal to zero. In the absolute nodal coordinate formulation, exact 



modeling of the rigid body dynamics can be obtained, and beams and plates can be treated 

as isoparametric elements. Furthermore, the formulation of joint constraints and forces can 

be much simpler in the absolute nodal coordinate formulation as compared to the floating 

frame of reference formulation [8]. 

It was recently demonstrated that the highly nonlinear inertia forces obtained in the float- 

ing frame of reference formulation are equivalent to the simple inertia forces obtained using 

the absolute nodal coordinate formulation [17]. The result of this study clearly demonstrated 

that the floating frame of reference formulation does not lead to a separation between the 

rigid body motion and the elastic deformation. A procedure for evaluating the inertia shape 

integrals required to evaluate the nonlinear inertia forces of the floating frame of reference 

formulation from the constant mass matrix of the absolute nodal coordinate formulation was 

presented [17]. 

It was observed, in high speed rotor-craft applications, that the solutions obtained using 

the floating frame of reference formulation incorrectly exhibit instability problems when the 

angular velocity of the flexible body exceeds a certain limit [11, 14]. This incorrect solution 

was attributed to the neglect of the centrifugal geometric stiffening effect. Studies which 

include the geometric stiffening effect or employ a nonlinear elastic model showed that the 

instability problem can be solved [7]. There has been an argument, however, that the in- 

stability problem is an inherent problem of the floating frame of reference formulation and 

can be avoided using a full finite element representation; and in such a full finite element 

representation, a correct stable solution can be obtained without the need to explicitly ac- 

count for the geometric centrifugal stiffening effect nor the elastic nonlinearity. The analysis 

presented in this paper will be used to demonstrate that this is not the case. To this end, 

the absolute nodal coordinate formulation which employs a full finite element representation 

is used. Using the absolute nodal coordinate formulation, it will be demonstrated that the 

generalized elastic forces obtained using the full finite element representation are equiva- 



lent to the elastic forces obtained using the floating frame of reference formulation, thereby 

demonstrating that the instability problem resulting from the neglect of the geometric cen- 

trifugal stiffening effect is not a problem inherent to only the floating frame of reference 

formulation. The results of the analysis presented in this paper, with the results previously 

reported [17] demonstrate that the forces used in the floating frame of reference formulation 

can be obtained from the forces resulting from the use of a full finite element representation 

by simply using coordinate transformation, provided that no linearization of the kinematic 

equations is employed. 

This paper is organized as follows. In Section 2, a brief review of the absolute nodal 

coordinate formulation is presented. In Section 3 and 4, two coordinate systems, the pinned 

and tangent frames, shown in Fig. 1, are used to define the element deformations and the 

elastic forces in the absolute nodal coordinate formulation. In Section 5, it is shown that 

the results obtained using these two frames are in a good agreement as the element size 

decreases. In Section 6 and 7, the floating frame of reference formulation is briefly discussed. 

In Section 8, the relationship between the coordinates used in the floating frame of reference 

formulation and the absolute nodal coordinate formulation is presented. This relationship 

is used in Section 9 to demonstrate the equivalence of the elastic forces used in the floating 

frame of reference formulation and the absolute nodal coordinate formulation. In Section 10, 

a Fourier analysis of the solution time history is used to shed more light on the fundamental 

problem of selecting the deformable body coordinate system in the floating frame of reference 

formulation [1, 4, 5, 9,12,16]. Summary and conclusions drawn from this study are presented 

in Section 11. 



2    ABSOLUTE NODAL COORDINATE FORMULATION 

The absolute nodal coordinate formulation is a non-incremental finite element procedure in 

which the coordinates of each node are defined in a fixed inertial coordinate system; hence no 

transformation matrices are required to define the kinematic position and velocity equations 

of the elements. Using the motion description of the absolute nodal coordinate formulation, 

a constant mass matrix is obtained for the finite elements. The element stiffness matrix, 

however, is a nonlinear function of the nodal coordinates. In this investigation the attention 

is focused on beam elements, which are not considered as isoparametric in the classical finite 

element formulations [10]. 

Referring to Fig. 2, the global position vector r of an arbitrary point P on the element 

is defined in terms of the nodal coordinates and the element shape function as 

Se, (1) 

where S is the global shape function which has a complete set of rigid body modes, and e is 

the vector of element nodal coordinates: 

e = ei   e2   e3   e4   e5   e6   e7   e8 (2) 

This vector of absolute nodal coordinates includes the global displacements 

ex = ri|x=0 ,    e2 = r2|x=0 ,    e5 = rx\x=l,    e6 = r2\x=l, (3) 

and the global slopes of the element nodes, that are defined as 

e3 

drx 

dx 
e4 = 

x=0 

dr2 

dx 
e7 

i=0 

drx 

dx e8 = 
x=l 

dr2 

dx 
i=i 

(4) 

Here x is the coordinate of an arbitrary point on the element in the undeformed configuration, 

and I is the original length of the beam. 



(5) 

Since absolute coordinates are used, a cubic polynomial is employed to describe both 

components of the displacements. Therefore, the global shape function S can be written as 

[ 1 - 3£2 + 2£3 0 l{£ - 2f2 + f) 0 

0 l-3£2 + 2£3 0 2(£-2£2 + £3) 

3£2-2f    o    i(e-e)    0 
o     3£2-2f     o     /(e3-e2) 

where £ = x/l. It can be shown that this shape function contains a complete set of rigid body 

modes that can describe arbitrary rigid body translational and rotational displacements, 

provided that global slope coordinates are used instead of infinitesimal rotations. Using the 

absolute coordinates and slopes, it can also be shown that the beam element defined by the 

shape function of Eq. (5) is an isoparametric element. 

Equations of motion Using the global position vector r defined in Eq. (1), the kinetic 

energy of the finite element can be defined as 

T=\j pvTvdV = ^eT (J pSTSdv"j e = ieTMae, (6) 

where p and V are the mass density and the volume of the element respectively, and Ma is 

the mass matrix defined as follows: 

Ma = / PSTSdV. (7) 
Jv 

This is a constant and symmetric matrix, obtained using a consistent mass approach. It can 

be shown [8] that this matrix leads to exact modeling of the rigid body inertia. 

In order to develop the equations of motion of the element, the vector Q^ of the elastic 

forces and the vector Qa of the externally applied forces must be defined. The vector Qfc 

can be defined using the strain energy U as follows: 



As it will be demonstrated later in this section, this vector is a highly nonlinear function of 

the vector of nodal coordinates e, even when a simple linear elastic model is used. 

The vector Qa, which contains the generalized external forces, including the gravity force, 

can be defined using the virtual work as 

6We = Q>. (9) 

Using the expressions of the kinetic energy, strain energy, and the virtual work, the dynamic 

equations of the finite element can be obtained in a matrix form as follows: 

Mae + Qfe = Qa, (10) 

where all the terms that appear in this equation have already been defined. 

Elastic forces In order to demonstrate the nonlinearity of the elastic forces even when 

a simple linear elastic model is used, the classical Euler Bernoulli beam theory is used [20]. 

The strain energy due to the longitudinal and transverse deformations is given by 

U 
2 Jo "(£) + w(£ dx, (11) 

where E is Young's modulus, A is the cross sectional area, I is the second moment of area, 

and ui and ut are respectively the longitudinal and transverse deflections as shown in Fig. 

3. 

Let i and j be unit vectors along the axes of the beam coordinate system. The following 

relationship holds for two-dimensional problems: 

j = li, (12) 

where 
0 -1 

1 0 
(13) 



As shown in Fig. 3, the location of an arbitrary point P on the beam with respect to the 

origin O of the local frame xix2 is defined by 

u = rP - T0 = (S - So)e, (14) 

where S is the shape matrix given by Eq. (5), and So is the shape matrix evaluated at the 

reference point O. The longitudinal and transverse deflections of point P can be defined as 

(15) 

According to these definitions of the longitudinal and transverse deflections, the derivatives 

that appear in the strain energy expression of Eq. (11) are defined as follows: 

T 

Ul Uxl — X un — x 
ud = 

ut 
T' u J uTIi 

and 

where 

(£)-(£)'-'-w1'-1-™-1- 
(&u>\   (<PA\ = (a„e)T% 
\ dx2 I      \ dx2 

dS 
S' 

dx' 
S" 

^S 
dx2' 

(16) 

(17) 

(18) 

By defining the following matrices 

d = /' S,Tidx,    C2 = /' S^i • iTS'dx,    C3 = /' S
,/TIi • iTITS"da:, 

Jo Jo Jo 

the strain energy can be written as 

U = l [EA{1 - 2eTCi + eTC2e) + EIeTC3e . 

(19) 

(20) 

Clearly, this expression is not a quadratic form in the nodal coordinates vector e, as in the 

case of linear structural mechanics. Equation (20) is a highly nonlinear function of the vector 

e because the unit vector i is a function of the nodal coordinates; that is i = i(e). The form 



of the matrices given in Eq. (19) and evaluated using the shape function of Eq. (5) are 

presented in the Appendix. 

It is clear from the analysis presented in this section that the mass matrix that results 

from the use of the absolute nodal coordinate formulation takes a simple form. It is a 

constant and symmetric matrix , and it has the same form of the mass matrix used in linear 

structural dynamics. The elastic forces, on the other hand, have a much more complex 

expression as compared to the vector of elastic forces used in linear structural dynamics. It 

is one of the objectives of this investigation to establish a simple procedure for evaluating 

the nonlinear elastic forces of the absolute nodal coordinate formulation from the simple 

expression of the elastic forces used in linear structural dynamics. To this end, we first 

demonstrate that different element coordinate systems used to formulate the strain energy 

in the absolute nodal coordinate formulation lead to the same elastic forces, despite the fact 

that the definition of the longitudinal and transverse deformations depend on the choice of the 

coordinate system. As a consequence, the choice of the element coordinate system becomes 

immaterial in the absolute nodal coordinate formulation as the element size decreases. Using 

this result, we demonstrate in later sections the equivalence of the elastic forces used in the 

absolute nodal coordinate formulation and the floating frame of reference formulation, and 

use this equivalence to establish a simple procedure for defining the nonlinear elastic forces 

of the absolute nodal coordinate formulation from the simple expression of the elastic forces 

used in linear structural dynamics. 

3    THE PINNED FRAME 

In order to describe the deformation of a beam element in the absolute nodal coordinate 

formulation, several coordinate systems can be introduced. It is important, however, to 

emphasize that the use of a coordinate system in such a formulation is only for the purpose 

8 



of measuring the longitudinal and transverse displacements of a point on the element in 

order to evaluate the elastic forces. Therefore, such a local reference frame does not play 

the same role as in the case of the floating frame of reference formulation. For instance, 

the kinetic energy and the mass matrix used in the absolute nodal coordinate formulation 

were formulated in the preceding section without the need for any local coordinate system. 

Furthermore, it is theoretically possible to develop an expression for the strain energy and 

the vector of elastic forces following a continuum mechanics approach without the need for 

introducing a local reference frame. 

In the floating frame of reference formulation [18], on the other hand, the deformation 

of the bodies is often described using elastic modes, and the elastic coordinates can be 

considered as the amplitudes of the modes. In this case, where low frequency modes are 

often used, the choice of the boundary conditions must be consistent with the choice of the 

local coordinate system. 

In this section, we consider the case of a pinned frame, which has one of its axes passes 

through two nodes of the beam element as shown in Fig. lb. The longitudinal and transverse 

deformations of the element are defined in this frame, and they are used to define the elastic 

forces in the absolute nodal coordinate formulation. In the following section, another frame 

known as the tangent frame is employed. The tangent frame can be viewed as an element- 

fixed coordinate system which has one of its axes tangent to the beam at one of the nodes 

as shown in Fig. la. In Section 5, a comparison between the pinned and the tangent frames 

is presented, and it is shown that the choice of such frames does not play a fundamental role 

in the absolute nodal coordinate formulation as in the case of the floating frame of reference 

formulation. 

The pinned frame can be introduced by first defining the unit vector i along a line 

connecting point O (the origin of the coordinate system), and point A.   Hence the unit 



vector i is 

l = 
»1 

«2 

r^-ro 

|iM-ro| 

Using the definition of the vector e of Eqs. (2)-(4), one obtains 

(21) 

.      1 
1=d 

e5 - ei 

ee - e2 

where d is the distance between the nodes at 0 and A defined as 

(22) 

d= yj(e5 - ei)2 + (e6 - e2)2. 

The derivatives ^I and -02 °f H and ^2 with respect to the nodal coordinates are 

(23) 

V>i   = ~de 

* - (£ 

(*2)\ V2T 

"d"11 " T^' 

(^l)2T *li2T 

(24) 

(25) 

where the following vectors have been introduced 

Il = •10   0   0   10   0   0 , h 
lT 

0-1000100 (26) 

Substituting Eqs. (24)-(26) into Eq. (8), the vector of elastic forces can be written as 

Qfc   =   De-EA{i1I1+i2h)-EA{eTI1)il>1-EA{eTh)iJ>2 

+(eTDie)«iV»i + 2(eTD2e)(*i^2 + ^1) + (eTD3e)i2t/>2, 

where the matrices Di, D2, D3 and D are defined as 

B1=EAC21 + EIC3U    B2 = EAC22 + EIC32,    D3 = EAC23 + EIC 33, 

(27) 

(28) 

and 

D = (i1)
2D1 + v2D2 + (z2)

2D3. 

The matrices C^ are defined in the Appendix. 

(29) 

10 



4    THE TANGENT FRAME 

In this section, a tangent frame that can be viewed as an element-fixed coordinate system is 

employed. This frame, shown in Fig. 3, has an origin rigidly attached to the node point 0. 

In this case, the unit vector i that defines the xx axis of this frame is given by 

1 e3 

e4 

(30) 
V^s)2 + (e4) 

Differentiation of the direction cosines ix and i2 with respect .to the vector of nodal coordinates 

gives 

* - (!)T=7^->- (31) 

V2   =      ^ = ^1,-^, (32) 
f f 

where 

0   0   10   0   0   0   0 , u = 0   0   0   10   0   0   0 

and 

/ = V
/(e3)2 + (e4)2 = ^? x=0 

(33) 

(34) 

The quantity vW plays the role of the longitudinal deformation gradient, so that the lon- 

gitudinal strain is e\ = 5(r'Tr'_ !)• Hence / gives a measure of the longitudinal deformation 

that occurs at the left end of the beam, at point O, and / = 1 in the case of no deformation. 

A similar comment applies to the other end of the beam element, therefore the information 

provided by the slopes is not only limited to information on the direction cosines. 

The vector of elastic forces in the case of the tangent frame is 

Qfc   =   ^e-EA{illl+i2l2)-EA{ei:ll)<fi1-EA{erl2)ip2 

+(eTD1e)i1<p1 + -(eTD2e)(ii<£2 + *2¥>i) + (eTD3e)z2v?2, (35) 

11 



where the matrices that appear in this equation have already been defined by Eqs. (26), 

(28), (29), (31) and (32). Note that this expression of the elastic forces becomes identical to 

Eq. (27) if iß1 and iß2 
are replaced by ipx and (p2, respectively. 

5 COMPARISON BETWEEN THE PINNED FRAME AND THE TANGENT 

FRAME 

Numerical results are presented in this section in order to compare between the solutions 

obtained using the pinned and tangent frames. The study model used is the four-bar mech- 

anism shown in Fig. 4. The mechanism consists of a crankshaft, a connecting rod (coupler), 

and a follower. The mechanism is driven by a moment applied to the crankshaft. The 

driving moment as a function of time is presented in Fig. 5. The inertia, geometric, and 

elastic properties of the components of the four-bar mechanism are shown in Table 1. The 

table shows the mass m, the cross sectional area A, the second moment of area /, the length 

I, and the modulus of elasticity E of the mechanism components. 

The absolute nodal coordinate formulation is used to obtain the numerical results in the 

two cases of the pinned and tangent frames. Different finite element models that employ 

different numbers of elements are used in this numerical study. Note that a low value for the 

modulus of elasticity of the connecting rod is used in order to allow for the large deformation, 

which can be systematically simulated using the absolute nodal coordinate formulation. The 

results of the computer simulation are shown in Figs. 6-10. In all the four models used, 

one element is used for the crankshaft and four elements are used for the follower. In the 

first model, 6 elements are used for the coupler; in the second model, twelve elements are 

used for the coupler; in the third model, eighteen elements are used for the coupler, and in 

the fourth model thirty-six elements are used for the coupler. Therefore, the first model has 

11 elements, the second model has 17 elements, the third model has 23 elements, and the 

12 



fourth model has 41 elements. The isoparametric beam elements used in this investigation 

are defined by the shape function of Eq. (5) and the vector of nodal coordinates of Eq. (2). 

All components of the four-bar mechanism are assumed to be made of uniform beams which 

are initially straight. The gravity effect is taken into consideration. Pin joints are used to 

describe the connectivity conditions between the components of the four-bar mechanism. In 

the absolute nodal coordinate formulation, the pin joint constraints take a very simple form 

as reported by Escalona et al [8]. 

The numerical results show that in general the pinned frame, as compared to the tangent 

frame, requires a less number of elements in order to achieve convergence. For instance, 

when the pinned frame is used, Model 3 in which the coupler is divided into 18 elements 

gives results which are in a good agreement with the results obtained by discretizing the 

coupler into 36 finite elements. 

Figure 6 shows the results obtained using Model 1, which employs the least number of 

elements for the coupler. These results show that there is a significant difference between the 

solutions obtained using the pinned frame and the tangent frame when the large deformations 

of the coupler are considered. 

Figures 7-9 show the effect of increasing the number of elements. It is clear from the 

results presented in these three figures that as the size of the elements decreases, better 

agreement between the two solutions is obtained. In particular, the results shown in Fig. 9 

demonstrate that there are no significant differences between the two solutions when Model 

4 is used. 

Figure 10 shows the transverse deflection of the midpoint of the coupler using different 

models and different frames. The transverse deflection is determined as the distance of the 

midpoint to the straight line that connects the ends of the coupler. It is interesting to note 

that the model which has 17 elements (12 elements for the coupler) yields good results when 

the pinned frame is used. This is not the case when the tangent frame is considered. More 

13 



elements are required in order to achieve convergence. The good convergence characteristics 

of the pinned frame can be attributed to the fact that the deformation within the element 

as defined with respect to the element coordinate system remains small, despite the fact 

that the connecting rod undergoes large deformation. This is not the case when the tangent 

frame is used. The element deformations defined with respect to a coordinate system fixed 

to the end of the element are no longer small, as shown by Fig. 11. A computer animation 

of the motion of the four-bar mechanism is presented in Fig. 12. This computer animation 

is obtained using Model 4 and the pinned frame. 

6    FLOATING FRAME OF REFERENCE FORMULATION 

A conceptually different formulation from the absolute nodal coordinate formulation dis- 

cussed in the preceding sections is the floating frame of reference formulation, which is 

widely used in flexible multibody dynamics. In the floating frame of reference formulation, a 

mixed set of absolute and local deformation coordinates are used to define the configuration 

of the deformable body. Each body in the multibody system is assigned a body coordinate 

system. The location and orientation of the body coordinate system in an inertial frame of 

reference are defined using a set of reference absolute Cartesian and orientation coordinates. 

The deformation of the body with respect to its coordinate system can be described using 

the finite element method. Since the element shape functions include rigid body modes, and 

since the finite displacements of the body are described using the reference coordinates, the 

rigid body modes of the shape function must be eliminated in order to define a unique dis- 

placement field. To this end, a set of reference conditions [18] which are consistent with the 

kinematic constraints imposed on the boundary of the deformable body are used. Therefore, 

in the floating frame of reference formulation the choice of the deformable body coordinate 

system plays a fundamental role in the formulation of the kinematic position, velocity and 

14 



acceleration equations. Furthermore, the degree of complexity of the inertia forces in the 

floating frame of reference formulation depends on the choice of the deformable body coor- 

dinate system [18]. This is not the case when the absolute nodal coordinate formulation is 

used. 

In general, the floating frame of reference formulation leads to a simple expression for 

the elastic forces and a highly nonlinear expression for the inertia forces. The nonlinearity 

of the inertia forces is due to the coordinate transformation required to define the location 

of an arbitrary point on the body in the global inertial frame of reference. Such a coordinate 

transformation is not required in the absolute nodal coordinate formulation, and as a con- 

sequence, the mass matrix in the absolute nodal coordinate formulation takes a very simple 

form. Shabana and Schwertassek [17] demonstrated the equivalence of the inertia forces used 

in the absolute nodal coordinate formulation and the floating frame of reference formulation. 

It was shown that the nonlinear mass matrix of the floating frame of reference formulation 

can be systematically obtained from the constant mass matrix of the absolute nodal coor- 

dinate formulation. Crucial to proving this equivalence is the definition of the coordinates 

in the floating frame of reference formulation; local slopes instead of infinitesimal rotations 

must be used. 

The fact that the stiffness matrix in the floating frame of reference formulation takes a 

simple form leads to the natural and interesting question of whether or not one can use this 

simple stiffness matrix to formulate the nonlinear elastic forces that appear in the absolute 

nodal coordinate formulation. In order to answer this question, one needs first to develop 

the relationship between the coordinates used in the absolute nodal coordinate formulation 

and the floating frame of reference formulation. Crucial to the success in developing this 

relationship is avoiding the kinematic linearization resulting from the use of the infinitesimal 

rotations as local deformation coordinates in the floating frame of reference formulation. 

Therefore, in the following section, local slopes instead of infinitesimal rotations are used 

15 



as deformation coordinates to formulate the strain energy in the floating frame of reference 

formulation. As it will be seen, the use of the slopes will slightly change the form of the 

strain energy. 

7 STRAIN ENERGY IN THE FLOATING FRAME OF REFERENCE FOR- 

MULATION 

In this section, an expression of the strain energy will be derived for beam elements using 

the floating frame of reference formulation in terms of local location coordinates instead 

of the familiar expression often obtained in terms of deformation coordinates. This new 

expression will be used in the following sections to formulate the nonlinear elastic forces in 

the absolute nodal coordinate formulation from the simple expression of the elastic forces 

used in the floating frame of reference formulation. To this end, a coordinate system that 

satisfies the simply supported end conditions is considered. The location and orientation 

of this coordinate system is identified using three coordinates; the position vector R of the 

origin O and the angle 9 which defines the orientation of the beam coordinate system with 

respect to a global inertial system, as shown in Fig. 13. These three coordinates are the 

reference coordinates which can be written as 

R 

e 

It follows that an arbitrary point P, whose position in the element coordinate system is 

given by the vector u, has the global position vector 

(36) 

where A is the transformation matrix 

A = 

r = R + Aü, 

cos 9   — sin 9 

sin 9     cos 9 
(37) 
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In the case of a rigid body, the value of u remains constant during the motion, while in 

the case of deformable bodies, u depends on time and can be expressed in terms of a local 

shape-function matrix S/ and the vector of local coordinates q; as follows: 

u = 
Ml 

Ü2 

= S/q*. (38) 

In order to be consistent with the assumed displacement field used previously in this paper 

for the absolute nodal coordinate formulation, the following local coordinates are employed 

for the beam element in the case of the floating frame of reference formulation: 

iT 

<n 9l     92    <?3     94     ?5 (39) 

where 

9i = 
düi 

dx 92 
&äo 

x=0 dx 
,    q3=ul(A),    q4 

düi 

c=0 
dx Qb 

duo. 

x=l dx 
(40) 

x=l 

in which point A is the right node of the beam element as shown in Fig. 13. Note that local 

slopes instead of infinitesimal rotations are employed, in order to avoid the linearization of 

the kinematic equations. The local shape function S/ is given by (with £ = x/l): 

S, (41) 
*(£-2£2 + £3) 0 3£2-2£3   Iß3-?) 0 

o      m-2e+e)    o       o    ^3-a 
The deflections of an arbitrary point P in the case of the floating frame of reference 

formulation are given by 

Ul Ui — X __ = 
ut Ü2 

Using this equation, the expression of the strain energy Uf (where the subscript / refers to 

the floating frame of reference formulation) is identical to Eq. (11), which is repeated here 

for convenience: 
1   fl 

"'"it, EA(^)2 + EI(82<"V dx J dx*) 
dx. (42) 
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In this case, 

(duC 
\dxt 

'dW 

d_ 
dx 

d2 

(Suqj -x) = S'ltqi - 1, 

S2/qz = S2,q;, 

(43) 

(44) 
\ dx2 I dx2 

where Su and S2; are the first and the second rows of the local shape function matrix defined 

in Eq. (41), and the prime indicates derivation with respect to x. Substituting the preceding 

two equations into Eq. (42) leads to 

1  fl 

Uf = \jQ  [EA (l - 2S'1(q, + q,TSffS'uq/) + ElctfS^S'^] dx. (45) 

Let 

K0 = EAl f1 SftdS = EA 
Jo 

-|T 

0   0   10   0 (46) 

Kx = EAl f1 SffS'udf - 
Jo 

EA 

2Z2/15 0 —Z/10 -P/30 0 

0 0       0 0 0 

-Z/10 0     6/5 -Z/10 0 

-l2/30 0 -1/10 2Z2/15 0 

0 0       0 0 0 

(47) 

K2 = EIlJo
lS'27S'^ = ^- 

0    0    0   0    0 

0   4/2   0   0   2l2 

0    0    0   0    0 

0    0    0   0    0 

0   2l2   0   0   4l2 

Using these definitions, the expression of the strain energy can be simply written as 

U, = \EAI - Kfo + ^(K, + K2)qi. 

(48) 

(49) 

Note that the strain energy contains the linear term \EAl - K^q;.  Therefore, the strain 

energy is not a simple quadratic form of the local coordinates. This is mainly due to the fact 
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that the local coordinates, as defined in Eq. (38), describe the local position of an arbitrary 

point P in the undeformed state as well as the deformation of this point. When coordinates 

that only account for deformations are used, the simple and familiar quadratic form of the 

strain energy can be obtained. 

8    RELATIONSHIP BETWEEN THE COORDINATES 

In this section, a relationship between the coordinates used in the absolute nodal coordinate 

formulation and the floating frame of reference formulation is presented. This relationship 

will be used in the following section to obtain the nonlinear elastic forces in the absolute 

nodal coordinate formulation from the simple expression of the elastic forces in the floating 

frame of reference approach. 

Using Eq. (40), it can be shown that the nodal coordinates of the absolute nodal coor- 

dinate formulation can be expressed in terms of the coordinates used in the floating frame 

of reference formulation as 

e = 

ei 

e4 

e5 

ee 

e7 

eg 

Ri 

qi cos 9 — #2 sin 9 

qi sin 9 + q2 cos 9 

Ri + q3 cos 9 

R2 + qz sin 9 

q± cos 9 — q5 sin 9 

q^ sin 9 + qs cos 9 

= e(qr,qO- (50) 
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Using Fig. 14, it can be shown that the inverse relationship is 

<Zi — e3 cos 9 + e4 sm 9 

q2 — —e3 sin 9 + e± cos 0 

<?3 = (es ~ ei) cos0 + (e6 - e2) sin(9  ) , (51) 

?4 = 67 cos 0 + eg sin 9 

q5 = —e-j sin 9 + e$ cos 0 

where the angle 9 can be expressed as a function of the vector e using Eq. (22). Equation 

(51) can be written in a matrix form as 

q* = Be, (52) 

where 

B = 

0 0 COS0 sin# 0 0 0 0 

0 0 — sin# COS0 0 0 0 0 

COS0 — sin# 0 0 COS0 sin0 0 0 

0 0 0 0 0 0 COS0 sin0 

0 0 0 0 0 0 — sin0 cos# 

(53) 

9    ELASTIC FORCES 

It is shown in this section, using the coordinate relationship presented in the preceding 

section, that the nonlinear elastic forces used in the absolute nodal coordinate formulation 

can be systematically obtained using the simple expression of the elastic forces used in the 

floating frame of reference formulation. To this end, Eq. (52) is substituted into Eq. (49) 

leading to 

Uf = \EAl - K^Be + £eTBT(Ki + K2)Be. (54) 

Using the following definitions: 

c = cosö,     s = sin#, (55) 
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K,o = BTK0=EA —c   - s   0   0   c   s   0 0 
T 

(56) 

36c2   36cs     2,1c2 3lcs    -36c2 —36cs 3Zc2      3lcs 

36s2      3Zcs 3ls2    -36cs -36S2 3lcs      3ls2 

Al2c2 4l2cs    -3lc2 —3lcs -l2c2    -l2cs 

1          I   30 

symm 

4l2s2    -3lcs 

36c2 

-3ls2 

36cs 

36s2 

-l2cs   -l2s2 

-3k2   -3Zcs 

-3lcs   -3ls2 

Al2c2     Al2cs 

Al2s2 

> 

[57) 

0   0        0 0       0   0 0 0 

- 0        0 0       0   0 0 0 

Al2s2 -Al2cs  0   0    : ll2s2 -2l2cs 

Kt = BTK2B = ^ 
Al2c2    0   0- 

0   0 

-2l2cs 

0 

2l2c2 

0 
(58) 

0 0 0 

symm. I l/2s2 -4Z2cs 

4Z2c2 

the strain energy can be written as 

Uf = \ [EM - 2K£e + eT(K, + K4)e (59) 

It can be shown that this expression for the strain energy is the i same as the strain energy U 

of Eq. (20) obtained in the case of the absolute nodal coordinat e formi üation. Considering 

the expression of the matrices Ci, C2, and C3 presented in the Appendix, it can be shown 

that K;o = EACi and K( = EAC2. However, Kt 7^ EIC3. On the other hand, the simple 

structure of matrix Kt is consistent with the type of reference frame used for the evaluation 

of the longitudinal and transverse deflections. The reference frame used satisfies the simply- 

supported end conditions, and as such, a variation in the coordinates of the end points, say 
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O and A, makes a variation in the rotation 8 of the frame, but does not affect the transverse 

deflections which depend only on the slopes. This explains why K4 has zeros in all the 

positions not related to the slopes. 

In order to prove that the expression of the strain energy given by Eq. (59) is the same 

as the one given by Eq. (20), it is enough to show that eT(Kt - EICz)e is identically equal 

to zero for every e and for every length I. This can be easily demonstrated by carrying 

out the matrix multiplication, and noting that the coordinates of node A can be written as 

e5 = ei + dcos6 and e§ — e2 + dsin9, d being the distance between the nodes as shown in 

Fig. 14. 

Straightforward differentiation of Uf with respect to the nodal coordinates gives the 

expression of the elastic forces. Note that instead of calculating the derivatives of K;o, Kj 

and Kt with respect to 9, it is more convenient to differentiate with respect to c and s, where 

c = cos 9, s = sin 9. The result of this differentiation is 

'dUfV 
de =   -KJO - (eTKj0lc)V>i - (eTK;0)S)V'2 

+K,e + -(eTK,,ce)^1 + -(eTK/iSe)V>2 

+Kte + ^(e^e)^ + ^(eTKMe)V>2, (60) 

where 
()-e = l'     ()' = £'    ^1=(l)   '    ^2=(i 

T 

Here if}l and ip2 
are tne same vectors defined by Eqs. (24) and (25), since c = i\ and s = %i. 

Note that Eq. (60) yields the same results as Eq. (27), as a consequence of the equivalence 

of the expressions of the strain energy used in the two formulations. 

It is also important to point out that starting with Eq. (50), a velocity transformation 

matrix can be defined and used to obtain a relation similar to Eq. (52), but with a matrix 

B depending on q; as well as 9. This approach leads to a more complicated expression for 

the elastic forces. On the other hand, the approach used in this section leads to a matrix B 
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that depends only on 9. 

10    FREQUENCIES AND BOUNDARY CONDITIONS 

The equivalence of the two finite element formulations discussed in the preceding sections 

can be used to shed more light on the fundamental problem of selecting the deformable 

body coordinate system in the floating frame of reference formulation. In the absolute 

nodal coordinate formulation, a full finite element representation is used. In this case, large 

deformation problems can be examined as previously demonstrated by the results of the 

four-bar example presented in this paper. The floating frame of reference formulation, on 

the other hand, has been primarily used for the small deformation analysis. This is due to the 

fact that non-isoparametric beam and plate elements, which employ infinitesimal rotations, 

have been often used with the floating frame of reference formulation. Mode reduction 

techniques have been also used with the floating frame of reference formulation in order to 

reduce the number of elastic degrees of freedom. 

In the floating frame of reference formulation interesting and fundamental issues related 

to the choice of the boundary conditions, mode shapes and deformable body coordinate 

systems must be addressed [16]. Different sets of mode shapes that correspond to different 

sets of end conditions and natural frequencies can be chosen for a flexible link to yield 

approximately the same results as previously demonstrated [16]. 

For example, the deformation of the connecting rod of the four-bar mechanism shown in 

Fig. 4 can be modeled using mode shapes obtained from simply supported end conditions, 

free-free end conditions, or double cantilever end conditions. The first six mode shapes and 

the corresponding natural frequencies using these different end conditions of the connecting 

rod are shown in Table 2 [6]. The results presented in Table 2 are obtained using the 

dimensions and material properties of the connecting rod reported in Section 5, with the 
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exception of the moduli of elasticity. For the connecting rod, E is increased to 0.5E10 

MPa in order to obtain small deformations and justify the use of the linear model; for the 

crankshaft, E is increased to 1.0E10 MPa; and for the follower, E is increased to 5.0E10 

MPa. 

As demonstrated in previous publications, the simulation results obtained using these end 

conditions agree well [16]. Figure 15 shows a comparison between the results obtained using 

the floating frame of reference formulation and the absolute nodal coordinate formulation 

for the midpoint deflection of the connecting rod. The results of the floating frame of 

reference formulation are obtained using the simply supported end conditions and six modes 

of vibrations. It is clear from this figure that there is a good agreement between the results 

obtained using the two formulations. 

With this good agreement, it is possible to examine the frequency content in the solution 

obtained using the absolute nodal coordinate formulation which does not employ modes. 

These frequency contents can be compared with the natural frequencies presented in Table 

2 in order to see if there is any correlation between the natural frequencies of the linear 

problem and the frequency contents in the solution of the nonlinear multibody problem. 

Figure 16 shows the Fourier transform of the solution for the midpoint deflection of the 

connecting rod. Several frequencies appear to be significant from the results presented in 

this figure. It is difficult, however, to draw any correlation between the frequency content 

in the solution and the natural frequencies obtained using the boundary conditions specified 

in Table 2. These results show that in the floating frame of reference formulation, it is 

important to choose the boundary conditions that yield a shape of deformation consistent 

with the kinematic constraints imposed on the motion of the deformable body. However, 

there is no relationship between the natural frequencies of the linear problem that result 

from imposing these boundary conditions and the frequency content in the solution of the 

nonlinear problem. 
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11    SUMMARY AND CONCLUSIONS 

The floating frame of reference formulation is widely used in flexible multibody simulations. 

In this formulation, a coordinate system is assigned to each flexible body in the multibody 

system. The location and orientation of this body coordinate system are defined using 

absolute Cartesian and orientation coordinates. The deformations of the body with respect 

to its coordinate system are defined using local coordinates that can be introduced using 

the finite element method. It was observed, in high speed rotor craft applications, that 

the solutions obtained using the floating frame of reference formulation incorrectly exhibit 

instability problems when the angular velocity of the flexible body exceeds a certain limit. 

This incorrect solution was attributed to the neglect of the centrifugal geometric stiffening 

effect. Studies which include the geometric stiffening effect or employ a nonlinear elastic 

model showed that the instability problem can be solved. There has been an argument, 

however, that the instability problem is a characteristic of the floating frame of reference 

formulation and can be avoided using a full finite element representation which does not 

account for the geometric centrifugal stiffening effect nor the elastic nonlinearity. 

The analysis presented in this paper demonstrates otherwise. To this end, the absolute 

nodal coordinate formulation which employs a full finite element representation is used. Un- 

like the floating frame of reference formulation, in the absolute nodal coordinate formulation 

global position and slope coordinates are used. The formulation leads to a constant mass 

matrix and a highly nonlinear vector of elastic forces. Using the absolute nodal coordinate 

formulation, it was demonstrated that the generalized elastic forces obtained using the full 

finite element representation are equivalent to the elastic forces obtained using the floating 

frame of reference formulation, thereby demonstrating that the instability problem resulting 

form the neglect of the geometric centrifugal stiffening effect is not a problem inherent to 

only the floating frame of reference formulation. 

The results of the analysis presented in this paper with the results previously reported 
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[17] clearly demonstrate that all the forces used in the floating frame of reference formulation 

can be obtained from the forces resulting from the use of a full finite element representation 

by simply using coordinate transformation, provided that no linearization of the kinematic 

equations is employed. Using the equivalence between the absolute nodal coordinate formu- 

lation and the floating frame of reference formulation, the fundamental problem of selecting 

the deformable body coordinate system in the floating frame of reference formulation is 

discussed. 
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APPENDIX 

The stiffness shape integrals that appear in Eq. (19) are as follows: 

Ci = «ill + i2I2,    C2 = (ii)2C2i + M2C22 + (*2)
2C23,   C3 = (ii)2C3i + M2C32 + (i2)

2C33, 

where 

C2i = 

'22 

6 
5 0     -L u

        10 0 6 
5 0 I 

10 0 

0      0 0 0 0 0 0 

2l2 

15 0 I 
10 0 I2 

30 0 

1 0 0 0 0 0 

I 

sym. 

6 
5 0 

0 

10 

0 

2l2 

15 

0 

0 

0 

0 

) 

"o I 0       -L u
          10 0 6 

5 0 10 

0 -*-      0 10         u 
6 
5 0 I 

10 0 

0      ^ u          15 0 I 
10 0 I2 

30 

0 I 
10 0 i2 

30 0 

0 6 
5 0 i 

10 

sym. 0 I 
10 

0 

0 

2l2 

15 

0 
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C23 — 

'31 

C.S2 = Z3 

0 0 0 0 0 0 0 0 
6 
5 0 10 0 6 

5 0 1 
10 

0 0 0 0 0 0 

1 2l2 

15 0 10 0 I2 

30 

7 

sym. 

0 0 
6 
5 

0 

0 

0 

0 
I 

10 

0 
2/2 

15 

J 

0    0 0 0 0 0 0 0 

12 0 6/ 0 -12 0 6/ 

0 0 0 0 0 0 

1 4Z2 0 -61 0 2Z2 

¥ 

sym. 

0 0 

12 

0 

0 

0 

0 

-6/ 

0 

4/2 

? 

0 -12 0 -6/ 0 12 0 -61 

0 -6Z 0 12 0 -61 0 

0      - -4Z2 0 61 0      - -2Z2 

0 61 

0 

0 

-12 

-2Z2 

0 

0 

61 

sym. 0 61 0 

0      - -4Z2 

0 

28 



'33 
1_ 

12   0     6/ 0 -12 0 61 0 

0      0 0 0 0 0 0 

Al2 0 -61 0 2f 0 

0 0 0 0 0 

12 0 -61 0 

sym. 0 0 

4/2 

0 

0 

0 

29 



REFERENCES 

[1] Ashley H., 'Observations on the Dynamic Behavior of Large Flexible Bodies in Orbit', 

AI A A Journal 5(3), 1967, 460-469 

[2] Avello A., De Jalon G. and Bayo E., 'Dynamics of flexible multibody systems using 

Cartesian co-ordinates and large displacement theory', Int. Journal for Numerical Meth- 

ods in Engineering 32(8), 1991, 1543-1564 

[3] Belytschko T. and Hsieh B.J., 'Non-linear transient finite element analysis with con- 

verted co-ordinates', Int. Journal for Numerical Methods in Engineering 7, 1973, 255- 

271 

[4] Canavin J.R. and Likins P.W., 'Floating Reference Frames for Flexible Spacecrafts', 

Journal of Spacecraft 14(12), 1977, 724-732 

[5] De Veubeke B.F., 'The dynamics of flexible bodies', Int. Journal for Engineering Science 

14, 1976, 895-913 

[6] Den Hartog J.P., Mechanical Vibrations, Dover Publications, 1985 

[7] El-Absy H. and Shabana A.A., 'Geometric stiffness and stability of rigid body modes', 

Journal of Sound and Vibration 207(4), 1997, 465-496 

[8] Escalona J.L., Hussien H.A. and Shabana A.A., 'Application of the absolute nodal 

coordinate formulation to multibody system dynamics', Journal of Sound and Vibration 

214(5), 1998, 833-851 

[9] Friberg O., 'A method for selecting deformation modes in flexible multibody dynamics', 

Int. Journal for Numerical Methods in Engineering 32(8), 1991 1637-1656 

[10] Hughes T.J.R., The Finite Element Method, Prentice-Hall, 1987 

30 



[11] Kane T.R., Ryan R.R. and Banerjee A.K., 'Dynamics of a cantilever beam attached to a 

moving base', AIAA Journal of Guidance, Control, and Dynamics 10(2), 1987, 139-151 

[12] Koppens W.R, 'The dynamics of systems of deformable bodies', Ph.D. Thesis, Technical 

University of Eindhoven, The Netherlands, 1989 

[13] Likins P.W., 'Modal method for analysis of free rotations of spacecraft', AIAA Journal 

5(7), 1967, 1304-1308 

[14] Mayo J., 'Geometrically nonlinear formulations of flexible multibody dynamics', Ph.D. 

Thesis, University of Seville, Spain 1993 

[15] Rankin C.C. and Brogan F.A., 'An element independent corotational procedure for the 

treatment of large rotations', ASME Journal of Pressure Vessel Technology 108, 1986, 

165-174 

[16] Shabana A.A., 'Resonance conditions and deformable body coordinate systems', Journal 

of Sound and Vibration 192(1), 1996, 389-398 

[17] Shabana A.A. and Schwertassek R., 'Equivalence of the floating frame of reference 

approach and finite element formulations', Int. Journal of Non-Linear Mechanics 33(3), 

1998, 417-432 

[18] Shabana A.A., Dynamics of Multibody Systems, 2nd Ed., Cambridge University Press, 

1998 

[19] Simo J.C. and Vu-Quoc L., 'On the Dynamics of Flexible Beams Under Large Overall 

Motions-The Plane Case: Part F, Journal of Applied Mechanics 53, Dec. 1986, 849-854 

[20] Timoshenko S., Theory of elasticity, 3rd Ed., New York McGraw-Hill, 1987 

31 



Table 1 . Parameters used in the simulation of the four-bar mechanism 

Body /«[kg] A[m2]            /[m4]              /[m]           £[MPa] 

Crankshafi 
Coupler 

Follower 

0.6811 
2.4740 
1.4700 

1.257E-03    1.257E-07         0.2         1.000E+09 
1.960E-03   3.068E-07         0.9         5.000E+06 
7.068E-03   3.976E-08   0.5196174   5.000E+08 

Table 2. Mode shapes and natural frequencies for different boundary conditions 

Mode 
Simply supported 

Shape Freq. [Hz] 

45.81 

183.24 

412.30 

732.97 

1145.27 

'V/X/Vy 1649.19 

Double cantilever 
Shape Freq. [Hz] 

65.28 

65.28 

409.10 

409.10 

^/ 
1145.50 

/°^ 1145.50 

Free-freen 

Shape Freq. [Hz] 

/\/\x\ 
(,) The rigid body mode is not reported in this table 

103.85 

286.26 

561.19 

927.67 

1385.78 

1935.51 



a) Tangent coordinate system 

b) Pinned coordinate system 

Fig. 1. The tangent and the pinned coordinate systems 



a) Undeformed configuration 

b) Deformed configuration 

Fig. 2. Undeformed and deformed configurations 



Fig. 3. Deformations defined in the tangent coordinate system 
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Fig. 4. Four-bar mechanism 
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Fig. 5. Moment applied to the crankshaft 



t = 0.2 s / = 0.4 s 

t = 0.6 s ? = 0.8s 

Fig. 6. Large deformations of the four-bar mechanism 
— Model 1 with pinned frame 
— Model 1 with tangent frame 



t = 0.2 s t = 0.4 s 

t = 0.6 s r = 0.8s 

Fig. 7. Large deformations of the four-bar mechanism 
—   Model 2 with pinned frame 
_  Model 2 with tangent frame 



t = 0.2 s t = 0.4 s 

f = 0.6s r = 0.8s 

Fig. 8. Large deformations of the four-bar mechanism 
—   Model 3 with pinned frame 

Model 3 with tangent frame 



t = 0.2 s t = 0.4 s 

t = 0.6 s f = 0.8s 

Fig. 9. Large deformations of the four-bar mechanism 
— Model 4 with pinned frame 
— Model 4 with tangent frame 
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Fig. 10. Transverse deformation of the midpoint of the connecting-rod using different models 



Fig. 11. Transverse deflections measured by the tangent system and by the pinned system 



f = 0.1 s t = 0.2 s 

t = 0.3 s / = 0.4 s 

t = 0.5 s t = 0.6 s 

f = 0.7 s r = 0.8s 

Fig. 12. Computer animation of the motion of the four-bar mechanism 



Fig. 13. Floating frame of reference formulation 
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Fig. 14. Relationship between the coordinates of the two formulations 
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Fig. 15. Comparison between the results of two different formulations 
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Fig. 16. FFT of the midpoint deflection of the connecting rod 


