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ABSTRACT 

When a ship suffers underwater damage, there is a rapid influx of water, followed by a 

period of slower progressive flooding. This results in flooding of compartments whose hull 

boundaries, but not interior bulkheads, are still intact. An existing computer model uses the 

FORTRAN computer language and formatted input files to model progressive flooding. 

This thesis uses MATLAB computer language and SMULINK graphical user interface to 

provide a modular, expandable progressive flooding design tool. 
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I. INTRODUCTION 

A. MOTIVATION 

Accurate modeling of progressive flooding is essential in assessing the survivability 

features of a given ship. A realistic flooding and counter flooding scenario is a very 

complex dynamic system including complicated vessel motions, time-varying external 

excitation, changing hull mass and hydrodynamic properties, progressive flooding 

through damage openings, internal sloshing of flooded water, and de-watering control 

actions. Although, due to the complexity of the problem, the traditional method of 

approach is through large amplitude static analyses, the need for a more accurate analysis 

has been recognized. In order to bridge this gap, recently there has been a large amount of 

research focusing on dynamic stability prediction taking into consideration water-on-deck 

and large amplitude time-dependent motions and excitation [Ref. 1]. Equally important, 

however, is the development of a design methodology for incorporating elements of 

man/machine interface into the problem; in other words effects of decision-making and 

control strategies. This presents an additional level of difficulty since combinations of 

discrete events and continuous differential equations describe such systems. The long 

term goal that is initiated with this thesis is to study the development of an improved 

damage stability analysis and design tool, which will address the effects of control 

decisions and vessel dynamics in a progressive flooding scenario. 



B. BACKGROUND 

When a ship suffers underwater damage, there is a rapid influx of flooding water, 

usually followed by a period of slower progressive flooding. Progressive flooding is 

defined as flooding which extends beyond the compartments that are open directly to the 

sea. This results in flooding of compartments whose hull boundaries, but not interior 

bulkheads, are still intact. Existing computer models at the Naval Postgraduate School 

utilize the FORTRAN computer language and formatted input files to model progressive 

flooding [Ref. 2]. Any change in model design conditions, flooding damage, or damage 

control abilities requires a completely new FORTRAN input file. The purpose of this 

thesis is to include the capabilities of the original computer progressive flooding model in 

a more modular and expandable format, using the user-friendly MATLAB and 

SIMULESfK programs. 

C. DEFINING THE MODEL 

1. Hole Model 

Holes can be modeled as a short-tube orifice as shown in figure 1 with a diameter 

(hole size) much larger than its tube length (ship's skin thickness). The flow discharge 

coefficient for this case is 0.816 [Ref.3: pp.42-43]. 

2. Hull Model 

The required hull characteristics are determined using the same table of offsets 

used by Dawson (Hull.dat) [Ref. 2: pp. 127-143] and MATLAB programs arvol .m and 

drafts . m to calculate the locations of center of buoyancy and center of floatation, 

waterplane area, and waterplane moments used in the program equations. Both Matlab 



programs are included in the appendix. For the FFG-7 hull model used here the 

following values were calculated: 

Table 1: Hull Model Characteristics 

Center of Buoyancy 

Xbar 209.9 ft aft of FP 

Ybar 0.0 ft from CL 

Zbar 10.52 ft from baseline 

Center of Floatation 

Xbar 227.4 ft aft of FP 

Ybar 0.0 ft from CL 

Waterplane area 14030 ft2 

Longitudinal Moment of Inertia 1.5883 x 10 9 ft4 

Transverse Moment of Inertia 1.8148 x 10 6 ft4 

3. Equilibrium Model 

The added weight method [Ref.4: pp.76-79] is used within the program to 

determine the equilibrium condition (displacement, heel, and trim) of the hull model for 

any state of flooding. This method assumes hull characteristics are constant and is 

accurate for "small angles". The added weight method treats flooding water as added 

weight and treats the hull as if it were intact. The effect of the added weight is divided 

into a weight, which causes the ship to immerse evenly (parallel sinkage) and moments 

which cause the ship to list and trim about its center of floatation. The small angle 

assumption assumes that the ship lists and trims about a fixed center of floatation. In 

reality, since the hull is not cylindrical, the location of the center of floatation will change 
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with changing list and trim. This method allows much simplified calculation of hull 

characteristics compared with the lost buoyancy method. Since the weight added is liquid 

water which is free to move as the ship moves (and thus does not contribute to pitch and 

roll resistance), a free surface correction is added to the longitudinal and transverse 

moments of inertia to account for the reduced resistance of the hull to pitch and roll. 

4. Compartment Model 

The ship compartments are modeled as rectangular boxes. Extension to more 

realistic shapes is one of the recommendations for further expansions to the capabilities 

of the program. 

D. SIMULINK 

The SIMULINK program provides a graphical representation of mathematical 

relationships and equations to enable the user to determine the response of system 

odels. Graphical symbols and connections are used instead of numbers and 

mathematical symbols, allowing more intuitive use and understanding of complex 

mathematical relationships between system components. The SIMULINK program also 

allows easy modification of input parameters and import and export of data from 

MATLAB programs. Lastly, SIMULINK allows the user to observe system or individual 

component behavior during the simulation through the use of output graphs. 

E. OBJECTIVES 

The objective of this thesis is to develop a progressive flooding model to utilize the 

superior user interface and data exchange capabilities of the SIMULINK program. The 



program must be able to accurately calculate flooding rates and the subsequent response 

of the ship. The program must also be user-friendly, easily modified and have the 

potential for further expansion by subsequent users. To achieve these goals the following 

programs were written by the author: 

1. Programs 

a. Pflood.m 

Pflood.m is the main program created by the author. This program calculates the 

flooding and ship response caused by a hole of user-chosen size and location in the 

ship's hull. The flooding rate, flooded volume, heel and trim are calculated and 

updated each second. In addition, the user can specify the number, time of 

activation and size of pumps used for dewatering and the duration of their use. 

b. Arvol.m 

Arvol.m is a MATLAB program written by the author to determine the center of 

buoyancy of the hull model defined by the Hull.dat data file using Simpson's rule 

integration techniques. 

c. Drafts.m 

Drafts.m is a MATLAB program written by the author to determine the waterplane 

area, center of floatation, and second moment of inertia of the hull waterplane for 

a given draft. 

2. Validation 

Program performance was validated by comparing the program output to expected 

ship behavior for a given flooding condition. 





II. SIMULINK PROGRAM 

The schematic representation of Pflood.m is shown in Figure 1. For illustrative purposes, 

Pflood.m is shown in its "expanded" form. By leaving Pflood.m in expanded form, any 

function or variable can be observed or changed by the user. For ordinary use, the various 

subroutines would be grouped into subsystem blocks with only the user-defined variables 

and the outputs represented by discrete function blocks. Placing the program in 

subsystem block form has the added advantage of greatly enhancing program readability 

and user-friendliness. Specific details of the individual block diagram elements are 

included in Chapter IE. 
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Figure 1: Pflood.m Simulink Program 



III. PROGRAM AND SUBROUTINES 

A. FLOW RATE THROUGH HOLE(S) 

The flow through the damage, either primary or secondary, can be modeled as 

turbulent flow through an orifice of negligible length, or a hole. Flow rate through a hole 

is a function of the hole size (cross sectional area), hole shape, and pressure difference 

across the hole. The hole size and shape are related to the discharge coefficient, Ca. A Cd 

of 0.816 is used in this application in order to remain consistent with Dawson's previous 

computer flooding model. This number is also consistent with theoretical predictions of 

flow through orifices as explained in the previous chapter [Ref. 3: pp. 42-43]. The 

pressure difference is determined by the difference in height of the liquid on either side of 

the hole. The equation is 

Q = CdxAx^j2gx(h2-hi) 

where Q is the volumetric flow rate, A is the cross sectional area, Cd is the discharge 

coefficient, g is the acceleration due to gravity, and h2-hi is the liquid height difference 

across the hole. This height difference is a function of the level of the flooding water 

inside the flooded tanks, as well as the draft and trim of the ship. The latter quantities 

will have to be calculated using the added weight method as explained in the previous 

chapter. The Simulink representation of the above equation is shown in Figure 2. 

The program allows continuous adjustment of the values of hi and h2 to account for 

increased immersion of the exterior hole and increased compartment water height. 
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Figure 2: SIMULINK Hole Flow Symbology 
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B. NET FLOW INTO A COMPARTMENT 

Flooding water removed from the compartment by pump activation or by flow 

into adjacent compartments is subtracted from the water flow rate into the compartment. 

Two way flow due to water removal from one of two connected flooded compartments is 

also possible, and is accounted for by taking the square root of absolute value of the 

liquid height difference and then multiplying the result by the sign of the height 

difference. This method avoids program failure due to trying to take the square root of a 

negative number. This program also continuously updates the values of hi and h2 to 

account for increased immersion of the exterior hole and increased compartment water 

height. 

C. HEIGHT OF WATER (HOW) 

Once the net volumetric flow rate of water is known, integrating the flow rate 

results in the net volume of water added to the compartment. This volume, divided by the 

horizontal area of the compartment, and divided again by the permeability of the 

compartment, gives the height of water in the compartment. A saturation function ensures 

that the height of water in the compartment is always between zero and the maximum 

height of the compartment. Figure 3 shows the Simulink height of water function. 

D. MOMENTS DUE TO ADDED WATER 

The added weight method treats the added weight as a combination of a weight 

which causes the ship to sink evenly (parallel sinkage) and transverse and longitudinal 

11 
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moments which cause the ship to heel and trim respectively. Multiplying the height of 

water (HOW) by the product of the weight density of the liquid (pg), the compartment 

permeability (per), and the compartment horizontal area (A) determines the weight added 

to the compartment. Multiplying the added weight by the moment arm (Ztrans/iong) from 

the ship's center of floatation to the center of gravity of the added weight gives the 

moment about the center of floatation in the longitudinal and transverse directions. In 

equation form: 
Moment = (pgA x HOW x per) x Z/™« / umg 

The Simulink representation of the above equation is shown in Figure 4. 

E. KG (VERTICAL POSITION OF CENTER OF GRAVITY) 

KG (Vertical Position of Center of Gravity) is determined by multiplying the 

original weight of the ship by the original KG, adding the product of the weight of the 

added water and the height of the added water center of gravity above the keel, and 

dividing the sum by the new ship weight. The equation for KG is: 

KGNEW = (KGOLD X WOLD + KGADD X WADD) -*• WNEW 

The Simulink representation is shown in Figure 5. 

F. VERTICAL CENTER OF BUOYANCY (KB) 

The ship's new vertical center of buoyancy (KB) is determined by multiplying the 

original KB by the original displacement, adding the product of the added weight and the 

original draft plus one half of the parallel sinkage, then dividing the product by the new 

13 
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weight. In equation form: 

KBNEW = (KBORIG X Worn + KB ADD X WADD) •*- WNEW 

This is based on the assumption that the hull is effectively wall-sided, and that the vertical 

center of buoyancy of the newly submerged portion is located at one half the added draft. 

Both of these assumptions are consistent with the small angle assumption that was 

mentioned in the previous chapter. If the small angle assumption is no longer true, then 

the true position of the center of buoyancy will have to be calculated. This can be done by 

employing numerical integrations and utilizing the provided table of offsets, or by 

interfacing the program with a standard external ship hydrostatics calculations program, 

such as SHCP [Ref. 2: pp. 24-25]. Such an interface is relatively straight forward since 

the computational environment of Matlab/Simulink already allows incorporation of 

external ASCII files. Figure 6 shows the Simulink representation of the KB equation. 

G.  HEIGHT OF THE METACENTER ABOVE THE CENTER OF BUOYANCY 
(BM) 

The height of the metacenter above the center of buoyancy (BM) is determined by 

the second moment of the waterplane (about the waterplane centerline or longitudinal 

center of floatation) divided by the hull displacement. For the added weight method, a 

free surface correction is made by subtracting the second moment of the flooded 

compartment area from the waterplane moment. Typically, free surface corrections are 

done for liquids when calculating the final metacentric height. In such a case, the free 

surface correction appears as a reduction in the metacentric height or, equivalently, an 

increase in the virtual center of gravity. The same effect can be observed by modifying 

16 
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the second moment of the waterplane area in the calculation of the metacentric radius, 

BM. This is because the added weight in this case is seawater. With this modification in 

BM, the added weight method produces identical results with the lost buoyancy 

calculations (reference a naval architecture book). The BM Simulink terminology is 

shown in Figure 7. 

H. RIGHTING ARM (GM) 

The righting arm (GM) is determined by GM = KB + BM - KG. This equation is 

graphically represented by the triple summing point shown in Figure 8. 

I.    HEEL AND TRIM ANGLE 

The angle of heel is determined by 

sin <j) = Volume x ZTRANS + (Displacement x GM) 

as shown in Figure 9. The total trim is determined by dividing the total trimming moment 

by the moment to change trim (MCT). MCT is equal to the total weight times the 

longitudinal GM, divided by the ship length at the waterline. The tangent of the trim 

angle is equal to the total trim divided by the ship's length at the waterline. If the large 

angle assumption needs to be utilized, the moment to change trim will have to be 

imported as an external array. This is not expected to cause significant difficulties since 

MCT is readily available from the hydrostatic diagrams of a given ship. The Simulink 

trim angle terminology is shown in Figure 10. 
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J. ADDITIONAL SUBMERGENCE 

The additional submergence of the hole due to list is determined by multiplying the 

sine of the heel angle by the transverse distance from the transverse center of floatation to 

the hole. Similarly, the increased hole depth due to trim is obtained by multiplying the 

sine of the trim angle by the longitudinal distance to the center of floatation. The new 

hole depth is the sum of the original hole depth and the depth increases due to heel and 

trim. In algebraic form, these relations are shown by 

hlNEw = hloiD + (ZTRANS ,hc>k x sin <f)) + (ZLONG ,Me x sin( trim)) 

and in graphical form they are represented by the diagram of Figure 11. 

K. PROGRAM USAGE 

To use Pflood.m, the user needs only select "simulation" from the SEVIULINK 

menu, then select "start". Modifications to the simulation parameters or the program are 

easily accomplished by "double-clicking" on the symbol of interest. Additionally, 

SEVIULINK allows the user to easily add output displays in order to observe the behavior 

of any desired variable during the simulation. 

23 



trim, ft 

PaSinkg 

& 

1/L 

arm-!on-hole1 
sin phi 

arm-t-hole1 

+ + + Sum3 1 

Figure ll: SIMULINK Hole Submergence Terminology 

24 



IV. RESULTS 

Results for a test case consisting of a compartment with a 4 square foot hull 

penetration (compartment 1) and a 4 square inch watertight bulkhead penetration 

(compartment 2). Pumps were activated at 10 minutes (600 seconds) which completely 

dewatered compartment 1 in order to test the ability of the program to account for 

backflow through holes. As shown in figure 12, the four square foot hull penetration 

completely floods compartment 1 essentially instantly.   Activating the pumps 

dewaters compartment 1, instantly removing the water entering through the hull 

penetration. Similar results could have been achieved by changing the characteristics of 

the hull penetration to simulate hull repairs. 

Figure 13 illustrates how the program accurately predicts backflow into 

compartment 1 from compartment 2, which had no pumps assigned. A saturation function 

ensures that backflow from compartment 2 will stop when compartment 2 water height 

drops to the level of the bulkhead penetration. 

The predicted trim response of the ship is shown in Figurel4. The ship initially 

trims as a result of the rapid flooding of compartment 1, then gradually increases its trim 

angle as compartment 2 floods. The instant dewatering of compartment 1 then causes the 

trim angle to decrease, followed by further trim angle reduction as compartment 2 is 

dewatered. Without altering the pump or hole configuration, the ship will assume a steady 

trim angle corresponding to compartment 2 flooded up to the height of the bulkhead 

penetration. 

25 
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Figure 12: Height of Water in Compartment 1 
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Figure 13: Height of Water in Compartment 2 
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Figure 14: Ship Trim Response 
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V. DISCUSSION, CONCLUSIONS, AND RECOMMENDATIONS 

A. DISCUSSION 

This thesis has successfully developed the foundation for a modular and 

expandable progressive flooding computer model. The computer model accurately 

predicts the quasi-static ship response to progressive flooding and is easily modified by 

the user to explore ship response to any desired damage situations. 

B. CONCLUSIONS 

Based on the above results, the following conclusions are drawn: 

1. Pflood.m is an effective design tool for modeling and studying the effects of 
progressive flooding. 

2. Pflood.m is easily modified to model virtually any damage scenario. 

3. Pflood.m can be expanded to include different ship progressive flooding and 
equilibrium models. 

C. RECOMMENDATIONS 

The following items are recommended to further expand Pflood.m and enhance 

its utility as a design tool: 

1. Incorporate a hull characteristics look-up table into the Pflood.m program 
to expand the ship response modeling ability beyond "small angles" of 
heel and trim and non-rectangular compartments. 

2. Explore the effect of pump configuration on dewatering effectiveness and 
ship response. 
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APPENDIX A: HULL.DAT 

-.98 .203 34.011 
-.98 1.0097 37.035 
-.98 2.09 40.059 
-.98 2.30593 40.536 
-.98 2.525 41.213 
-.49 .204 24.201 
-.49 1.0381 28.1305 
-.49 2.2 32.06 
-.49 3.60937 36.059 
-.49 5.199 40.058 
-.49 5.26214 40.2255 
-.49 5.325 40.393 
.196 .207 10.687 
.196 .4439 12.3765 
.196 .741 14.066 
.196 1.2739 17.065 
.196 1.881 20.064 
.196 2.9 24.061 
.196 4.249 28.058 
.196 5.8592 32.0575 
.196 7.529 36.057 
.196 8.2218 37.65 
.196 8.921 39.323 
.49 .205 5.841 
.49 .319 6.453 
.49 .431 7.065 
.49 .72482 8.5655 
.49 .981 10.066 
.49 1.3109 12.0655 
.49 1.651 14.065 
.49 1.847 15.0645 
.49 2.031 16.064. 
.49 2.941 20.062 
.49 4.1 24.06 
.49 5.6094 28.058 
.49 7.338 32.056 
.49 8.8498 35.4695 
.49 10.346 38.883 
.98 .201 .831 
.98 .32937 1.193 
.98 .558 1.555 
.98 .84406 2.309 
-98 1.036 3.063 
.98 1.2508 4.064 
.98 1.441 5.065 
.98 1.621 6.065 
.98 1.811 7.065 
.98 2.10725 8.565 
.98 2.381 10.065 
.98 2.7609 12.0645 
.98 3.166 14.064 
.98 3.38543 15.0635 
.98 3.621 16.063 
.98 4.70985 20.0605 
.98 6.099 24.058 
.98 7.78322 28.0565 
.98 9.628 32.055 
.98 11.0459 35.1215 
.98 12.466 38.1880 
1.569 .443 .031 
1.569 .73779 .288 
1.569 .98 .545 
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1.569 1.18262  7975 
1.569 1.365 1.05 
1-569 1.667 1.553 
1.569 1.918 2.056 
1.569 2.30982 3.0585 
1-569 2.63 4.061 
1.569 2.911 5.062 
1-569 3.171 6.063 
1.569 3.41112 7.0635 
1.569 3.641 8.064 
1.569 4.081 10.064 
1-569 4.521 12.064 
1.569 4.79912 13.238 
1.569 5.088 14.412 
1.569 5.88294 17.23^5 
1-569 6.82 20.059 
1.569 8.389 24.057 
1.569 10.198 28.055 
1-569 12.118 32.055 
1-569 14.043 36.0-5 
1.569 14.3628 36.724 
1-569 14.682 37.393 
1.961 .587 .031 
1-961 .93975 .286 
1-961 1.257 .541 
1.961 1.53453 .7925 
1.961 1.791 1.044 
1-961 2.223 1.547 
1-961 2.585 2.05 
1-961 3.14751 3.05^ 
1-961 3.569 4.058 
1-961 3.91984 5.0595 
1-961 4.22 6.061 
1-961 4.491 7.062 
1-961 4.741 8.063 
1-961 5.221 10.063 
1.961 5.701 12.063 
1-961 6.0018 13.2375 
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1.961 9.82922 24.0565 
1-961 11.684 28.055 
1-961 13.638 32.055 
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1.961 16.007 36.893 
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2.353 1.'89568 .7895 
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.784 18.969 7.043 

.784 19.953 8.047 
-784 21.267 10.0535 
.784 22.075 12.06 
•784 22.381 13.2385' 
.784 22.612 14.41 
.784 22.943 17.2435 
.784 23.142 20.07 
.784 23.362 24.071 
.784 23.482 28.072 
.784 23.494 28.9075 
.784 23.502 29.743 
.961 .588 .031 
•961 1.674 
-961 2.69 
.961 3.647 
-961 4.548 1.033 
•961 6.222 1.533 
-961 7.764 2.033 
-961 10.515 3.034 
-961 12.917 4.035 
.961 15.02 5.0365 
.961 16.768 6.038 
.961 18.183 7.041 
.961 19.286 8.044 
-961 20.846 10.05 
.961 21.839 12.05 
•961 22.219 13.237 
.961 22.49 14.416 
.961 22.899 17.243 
961 23.122 20.07 
961 23.372 24.07 
961 23.502 28.07 
961 23.509 28.7325 
961 23.512 29.393 
941 .589 .031 

1-435 .282 
2.258 .533 

941 3.043 .783 
941 3.8 1.033 
941 5.229 1.533 
941 6.575 2.034 
941 9.042 3.034 
941 -11.294 4.035 
941 13.369 5.036 
941 15.211-6.037 
941 16.806 7.0395 
941 18.118 8.042 
941 20.04 10.0485 
941 2"1.258 12.055 
941 21.732 13.2345 
941 22.081 14.414 
941 22.574 17.24 
941 22.882 20.069 
941 23.222 24.07 
941 23.462 28.071 
941 23.488 28.657 
941 23.512 29.243 
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02 2.1554 1.517 
02 3.66 2.033 
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14.602 
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21.316 14.41 
21.981 
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17.1296 10.042 
18.954 12.048 
19.658 
20.189 
21.081 
21.731 
22.551 
23.261 
23.393 
23.493 
.588 5. 
4.447 6 

13.228 
14.409 
17.2365 
20.064 
24.065 
28.066 
28.6595 
29.25 
067 
05 

7.762 7.033 
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20.769 20.06 
22.004 24.06 

■22.7355 26.722 
23.433 29.383 
-587 6.801 
3.559 7.417 
6.27 8.032 
12.98 10.036 
15.967 12.04 
16.83 13.04 
17.42 14.05 
17.955 15.05 
18.419 16.056 
19.969 28.058 
21.34 24.06 
22.236 26.821 
23.074 29.583 
-587 8.541 
10.03 10.23 ' 
14.02 11.92 
15.292 12.98 
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18.958   20.0565 
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21.375   26.951 
22.309   29.843 
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12.014 11.528 
13.203 12.11 
14.027 12.708 
14.931 13.553 
15.649 14.399 
17.331 17.229 
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21.774     29.993 
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4.488 16.881 
6.005 17.061 
8.304 17.402 
10.009 17.742 
11.04 17.972 
12.01 18.202 
13.264 18.523 
14.322 18.849 
14.543 19.455 
14.75 20.06 
15.35 22.062 
15.89 24.063 
16.598 27.017 
17.23 29.97 
.584 16.819 
2.903 16.896 
4.055 16.97 
6.03 17.18 
7.504 17.388 
9.364 17.724 
10.912 18.06 
12.757 18.507 
14.267 18.954 
14.86 20.584 
15.37 22.214 
15.836 23.89 
16.26 25.565 
16.655 27.262 
17.008 28.959 
-584 19.032 
'2.629 19.1 
3.779 19.168 
5.634 19.343 
6.956 19.519 

■8.664 19.806 
10.1 20.09 
11.796 20.478 
13.204 20.862 
13.976 21.074 
14.746 21.285 
15.05 22.114 
14.34 22.943 
15.78 24.397 
16.17 25.851 
16.569 27.4 
16.947 28.951 
-584 21.361 
4.413 21.536 
6.005 21.711 



20 .294 8.225 22.049 
20 -294 10.009 22.386 
20 -294 13.064 23.1275 
20 .294 15.414 23.869 
20 .294 16.149 26.406 
20 .294 16.884 28.943 
20 .392 .588 2 3.67 
20 .392 4.155 . 23.851 
20 .392 5.975 24.031 
20 .392 8-307 24.3715 
20 .392 10.009 24.712 
20 .392 12.188 25.2275 
20 .392 14.012 25.743 
20 392 14.953 26.0365 
20 392 15.762 26.33 
20 392 16.284 27.637 
20 392 16.805 28.943 
20 49 . 534 26. Oil 
20. 49 3 .117 26 ".086 
20. 49 4 .004 26 -161 
20. 49 7 .627 26 .599 
20. 49 10.009 27.037 
20. 49 12.125 27.535 
20. 49 13.929 28.033 
20. 49 15.086 28.4075 
20. 49 16.131 28.782 
20. 49 16.506 28.8625 
20. 49 1 6.88 28 .943 
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APPENDIX B. ARVOL.M 

% arvol.m 
% by Russell wright 
% calculates station areas and center o' bouvancy 
% for T =16.9 ft 

load hulll.dat 
a=zeros(41,3); 
zz=16.9 
for i=l:41 

beg=23*(i-l)+l,- 
endd=23*i; 
a(i,l)=hulll(beg) ; 
z=hulll (beg: endd, 3 ) ,- 
if z(l) > zz 
a(i,3)=0;a(i,2)=l; 

else 
% y=hulll(beg:endd,2); 

zp=hulll(beg:endd, 3); 
z=zp(l):(16.9-zp(l))/22:16.9; 
yy=hulll(beg:endd,2); 
y=SDline(zo,yy,z),- 
h=z(2)-z(l"j ; 

hhh(i)=h; 
four = 0.0,-fr=0; 
tWO=0.0;tO=0; 

for j= 1:11 
four=four+y(2 *j),- 
fr=fr+z(2*j)'*y(2*j) ; 

end 

for k=l:10 
two= two+y(2*k+l) ; 
to=to+y(2*k+l)*z(2*k+l) ; 

end 

% calculate station area using Simpson's rule: 
a(i,2)=2*(y(l)+4*four+2*two+y(23))*h/3; 
% calculate station centroid (z bar) using Simpson's rule: 
a(i,3)=2*(y(l)*z(l)+4*fr+2*to+y(23)»z(23)}*h/(3*a(i, 2) ) ; 

end 

end 

aa=zeros(101,3) ; 
hh=( (a (37,1)-a(3,1) )/100) ,- 
aa(:,l) = (a(3,l):hh:a(37,l)) ' ; 
aa(:,2)=spline(a(3:37,l),a(3:37,2),aa(: , 1)) ; 
aa(:,3)=spline(a(3:37,l),a(3:37, 3) , aa(:, 1) ) ; 

fore=0;too=0;fre=0;tw=0;fo=0;tu=0; 
for i=l:50 
fore=fore+aa(2*i,2); 
fre=fre+aa(2*i,2) *aa(2*i,3) ,- 
fo=fo+aa(2*i,2)*aa(2*i,l); 

end 

for i=l:49 
too=too+aa(2*i+l,2) ,- 
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tw=tw+aa(2*i+l,2)*aa(2*i+i   3) 
tu=tu+aa(2*i+i.2i *aa t->*i^ ', 

end ^tu=tu+aa(2*i+l,2)*aa(2*i+i,i) 

Ibariua(i^^aa,3+f:4
f^e+2^OO+aa(101'2) » " 
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APPENDIX C. DRAFTS.M 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% 
% drafts2.m 
% by russell wright 
% calculates wp points for a given draft 

load hulll.dat 
ind=0; 
yincl=zeros(41,3) 
zz=16.9; 

zincl=zz 
zinc2=zz 
for i=l:41 
i 
beg=23*(i-l)+l; 
endd=23*i; 
wpla(i,l)=hulll(beg,l) ; 
z=hulll(beg:endd,3); 
y=hulll (beg: endd, 2) ,- 

wpla(i, 2 ) =interpl (z,y, zz, ' spline') ,- 
if z(l) > zz 
wpla(i,2)=0; 
yincl(i,2)=0; 
yincl(i,3)=0; 
wpla(i,1)=0; 

end 

yincl(i,l)=hulll(beg,l),- 
yincl(i,2)=interpl(z,y,zincl,'spline') 
if yincl(i,2) <0.0 
yincl(i,2) =0.0; 
end 
yincl(i,3)=zz; 

if wpla(i,2)==0 
yincl(i,2)=0; 
yincl(i,3)=0; 
end 

end 

yincl=yinci(3:37,:); 

xx=yincl(:,1); 
x=yincl(l,i):(yincl(35,1)-yincl(1,1))/34:yincl(35,1) 
yy=yincl(:,2); 
y=spline(xx,yy,x); 

h=x(2)-x(1); 
hhh(i)=h; 

four = 0.0,-fr=0; 
two=0.0;to=0; 

for j= 1:17 
four=four+y(2'j) ; 

. fr=fr+x(2*j)*y(2*j); 
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end 

for k=l:16 
two= two+y(2*k+l); 
to=to+y(2*k+l) *x(2*k+l) ,- 

end 

% calculate wp 1/2 area using Simpson's rule: 
a2=2*(y(l)+4*four+2*two+y(35))*h/3; 

■ % calculate wp centroid (x bar) using Simpson's rule: 
xbar=2*(y(l)*x(l)+4*fr+2*to+y(35)*x(35) ) *h/(3*a2) 

% calculate long, moment o' inertia about xbar 

fr=0; 
to=0; 

for j= 1:17 

fr=fr+(x(2*j)~2)*y(2*j) ; 
end 

for k=l:16 

to=to+y(2*k+l)*(x(2*k+l)~2) ; 
end 

io=2*(y(l)*x(l)*x(l)+4*fr+2*to+y(35)*(x(35)"2))*h/3• 
isubl=io-a2*xbar~2 
% calculate trans moment o' inertia 

fr=0; 
to=0; 

for j= 1:17 

fr=fr+(y(2*j)~3); 
end 

for k=l:16 

to=to+(y(2*k+l)~3); 
end 

isubt=2*( (y(l)~3)+4*fr+2*to+(y(35)~3) )*h/9; 

46 



LIST OF REFERENCES 

1. Advanced Marine Enterprises "Advanced Stability Algorithm Phase I - Technology 
assessment", 1996 

2. Dawson, P, "Computer Modeling of Ship Progressive Flooding as a Design Tool", 
Thesis, Naval Postgraduate School, Monterey, Ca. May 1995 

3. Merritt, H. E., "Hydraulic Control Systems", John Wiley and Sons, Inc, 1967 

4. Tupper, E., "Introduction to Naval Architecture", Butterworth-Heinemann, 1996 

47 



48 



INITIAL DISTRIBUTION LIST 

No. Copies 

1. Defense Technical Information Center 2 
8725 John J. Kingman Rd. STE 0944 
Fort Belvoir, VA 22060-6218 

2. Dudley Knox Library 2 
Naval Postgraduate School 
411 Dyer Road 
Monterey, CA 93943-5101 

3. Chairman, Code ME 2 
Departmant of Mechanical Engineering 
Naval Postgraduate School 
Monterey, Ca 93942-5000 

4. Professor Fotis A. Papoulias, Code ME/PA 2 
Department of Mechanical Engineering 
Naval Postgraduate School 
Monterey, Ca 93942-5000 

5. Curricular Officer, Code 34 1 
Department of Mechanical Engineering 
Naval Postgraduate School 
Monterey, CA 93942-5000 

6. LT Russell A. Wright, USN 2 
Department Head Class 154 
SWOSCOLCOM 
446 Cushing Road 
Newport, RI02841-1209 

49 


