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1   RESEARCH OBJECTIVE 3 

1    Research Objective 

Research efforts supported by AFOSR Grant F49620-95-1-0095 have centered on development a 
cohesive theory for the design of systems for precision control of uncertain, highly nonlinear systems 
including, but not limited to, high performance military aircraft flight control, laser-based tracking 
and targeting sensors, missile autopilots, and so forth. While such applications form the context 
of the research, the aim has been to develop the mathematical concepts and theory needed to 
formulate, analyze and solve such problems in an engineering setting. Specifically, the focus has 
been on the development of flexible analytical tools for use in the design of design of feedback 
control systems which perform reliably in the face of imprecise knowledge regarding the differential 
equations representing the systems under consideration. The question of evolving information about 
uncertainties has emerged as critical for robust control theory and, towards the end of the grant 
period, the research emphasis shifted slightly in order to address this issue. 

2    Accomplishments 

Fifty publications supported under AFOSR Grant F49620-95-1-0095 have either appeared, been 
submitted or are currently pending publication [1]—[50]. Areas of significant progress represented 
by these AFOSR supported publications include the following: 

• Real Multivariable Stability Margin (MSM) Analysis [5, 15, 17, 29, 43, 44] 

• Theory for Reliable Numerical Computation of Hoo Controllers [3] 

• Beyond if«, Control [3, 7, 9, 24, 25, 26, 27, 33, 34] 

• Bilinear Matrix Inequality (BMI) robust control synthesis [1, 4, 7, 9, 16, 19, 20, 22, 24, 25, 
27, 33, 35, 46, 47, 48] 

• Unfalsified-Control, Learning, Adaptation k. Controller Identification [6, 10, 11, 12, 13, 14, 
18, 21, 23, 28, 32, 34, 35, 36, 37, 38, 39, 41, 42, 45, 49, 50] 

• Hoc Control Design Applications [2, 8, 37, 36, 42, 43] 

Generally, the theoretical developments embodied in the above listed recent AFOSR publications 
have been accompanied by software implementation and test case studies. The BMI theory plays a 
critical role in extending and generalizing the Hoo robust controller design theory that has already 
proven its value in aircraft flight control applications [51, 52, 53]. It allows greater flexibility in han- 
dling structured uncertainties, controller complexity constraints and gain-scheduling requirements. 
The generalized Popov multiplier robustness analysis and synthesis techniques [2, 26, 27] developed 
in have led directly to improved approaches for the design of active vibration damping systems for 
flexible space structures [8]. The effective and rapid transition from theory to practice has been fa- 
cilitated by my on-going non-AFOSR-supported involvement with Dr. R. Y. Chiang in upgrading 
the MATLAB ROBUST CONTROL TOOLBOX, a robust control design software product published 
by The Math Works and in widespread use by government, university and aerospace engineering 
company labs [54]. But perhaps the most significant new results pertain to our recent development 
of unfalsified control theory. This new theory is a precise, experiment-based approach to adaptive 
controller synthesis based on evolving measurements of plant response. Unlike traditional control 
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design methods where controller choices generally depend heavily of prior knowledge of plant mod- 
els and error-bounds, the unfalsified control theory gives primary emphasis to the precise analysis of 
the implications of experimental measurement data. A plant model, though useful, is not required. 

Positive Real Synthesis and Singular H^ Control 

One of the topics on which our research has touched has been positive-real feed back synthesis, a 
topic closely related to H^ robust control theory. Motivated by problems in active vibration control 
in flexible space structures, control engineers have long been interested in how to synthesize feedback 
controllers which make a mechanical structure appear to be energy dissipative to potential sources of 
vibrational disturbances. Linear time-invariant dissipative systems are called positive real, because 
their impedance are have positive real parts at each frequency. The design of feedback controllers 
which will make a system seem positive real also has uses in decentralized robust control synthesis, 
since interconnections of several independently designed energy dissipative systems remain energy 
dissipative and, hence, robustly stable. 

While methods for solving positive real problems have long been available [55, 56], we have re- 
cently been able to simplify the theory somewhat with alternate derivations based on the positive- 
real Parrott theorem and linear matrix inequality (LMI) control synthesis theory [7, 9, 25, 26, 27]. 
We have also developed extensions of the theory in which unstable ''generalized Popov multi- 
pliers" promise to provide a more direct and numerically reliable LMI solution to real/complex 
mu-synthesis [27, 48]. Also, we have developed an LMI solution to the more general conic-sector 
synthesis problem; this generalization includes H^ and positive-real control synthesis problems as 
special cases [33]. 

In an unrelated development, we have obtained a result that enlarges the class of problems for 
which optimal H^ controllers may be reliably computed. Singular H^ problems having jw-axis 
zeros and infinite zeros could not be solve using standard "two-Riccati" H^ control algorithms. In 
[3], we reported results which make it possible to handle these singular cases. 

Bilinear Matrix Inequality (BMI) Robust Control Synthesis 

Traditionally, robust control theory has been concerned with the control of systems under the 
assumption of precise prior knowledge of modeling uncertainty — i.e., traditional robust control 
theories apply to situations where the uncertainty bounds are themselves completely certain. For 
these cases, the H^ and the more general /z/A'm-synthesis theories are now fairly well developed 
tools for solving robust control problems. In terms of simplicity of mathematical representation, 
the Bilinear Matrix Inequality (BMI) formulation of ju/ÜLm-synthesis theory provides an especially 
flexible formulation [57, 4] 

A suboptimal solution to the right problem is more likely to be useful than an 'optimal' solution 
to a crude approximation to the problem. The BMI mathematically represents the 'right' problems 
— problems which fully and accurately reflect diverse types of plant uncertainty information and 
controller structure/order constraints. These include: (1) mixed KilH<x, performance criteria, (2) 
robustness against real/complex uncertainties, (3) controller order and complexity constraints, (4) 
decentralized and hierarchical control, (5) multi-objective control (pole placement, robustness), and 
(6) multi-plant control (one robust controller for multiple nominal plants). Despite the fact that 
globally optimal BMI solutions in general may be difficult to obtain (e.g., [58, 22]). suboptimal 
solutions to BMI feasibility problems are routinely computed via alternating LMI methods. This 
has made fully automated, albeit possibly suboptimal, BMI /i/i\m-synthesis both practical and, 
apparently, reliable (e.g., [59, 60, 8]) albeit computationally demanding. 
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(a) Unfalsified control provides a sieve. (b) Consistency of controller, data and goal. 

Figure 1: Unfalsified control sifts controllers for consistency with experimental data and control 
performance goals. A control law K is unfalsified (i.e., consistent with data and control goals) if 
the projection under K of the data point {u,y) onto the (r, y)-plane produces a point (r,y) in the 
performance specification set T. 

Mathematically, the BMI is defined as follows: 

Definition 2.1 (BMI Feasibility Problem)  Given real Hermitian matrices Fij = Ff- 6 R 
for i G {!,... nx}, j £ {l,...ny}.   Define the matrix-valued bilinear function F : TZn-x x TZUy —► 

mxm 
3  *"  ' " ' 

F(x,v) = Y,T,XiVjFij (2.0) 
i=ij=i 

Find, if they exist, real vectors x = [xi,...,xn]T G 1Znx and y = [yi,-..,yn]T S 'T^ny such that 
F(x.y) is positive definite.  This is called the bilinear matrix inequality feasibility problem. 

The global solution of such BMI's would resolve many of the major limitations the existing fx/Km-' 
synthesis theory for robust control design. 

For example, as shown in [4], BMI's provide a natural formulation for the problem of optimal 
reduced-order H^ control synthesis introduced by [63, 64]. The BMI formulation seems to us rather 
simpler than the nonlinearly coupled LMI's proposed in [65, 66]. When this research project begin, 
BMI's and nonlinearly coupled LMI's had so far defied attempts to develop globally convergent 
solution algorithms, except for several special cases (e.g., [67]). However, we now have several 
globally convergent algorithms [1], though in general they may be very slow for problems where 
nx and ny are large. This is as expected, since the BMI problem is known to be non-convex and 
NP-complete, which means that polynomial-time algorithms are not possible. And, the class of 
special cases that can be reduced to more tractable LMI problems has been expanded to include a 
certain subset of positive real feedback synthesis problems of that arise adaptive control theory [9]. 

Likewise, while the controller structure constraints required in the synthesis of decentralized 
controllers have so far defied attempts to embed them in the LMI framework, these constraints 
are readily embedded within the BMI framework. Even more importantly, the BMI framework 
naturally handles the /</Am-synthesis with fixed-order generalized Popov multipliers [4]. 
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Unfalsified Control Theory 

Unfalsified control is a type of direct adaptive control based on a precise analysis of the control-goal- 
relevant information in measurement data. Inspired by the "unfalsified model" concepts used in 
model validation (e.g., [68, 69, 70, 71, 72, 73, 74]), but disappointed by their relative complexity and 
inherent conservativeness when used for control-oriented identification in conjunction with state- 
of-the-art robust control methods, a more direct "unfalsified control" approach was introduced by 
us in [6, 13, 21, 75] — see also [76, 77, 78, 79, 80]. 

The unfalsified control concept is a "model-free" approach to the problem of deciding which 
control law to use. The theory works directly with input-output measurement data. The only 
model required is that of a parameterized class of candidate hypotheses as to control laws to be 
considered. The central idea in unfalsified control approach is that controller hypotheses can be 
"validated" against performance specifications directly from plant input-data without any need to 
identify or validate models of the plant itself. Furthermore, the computations required for direct 
"controller validation" are really no more difficult than those required for plant model validation of 
the type in [70, 69, 72, 74, 73, 81]. The theory is non-conservative in that it provides a precise set- 
theoretic characterization of the controller relevant information in experimental data. The result is 
an efficient sure-footed algorithm for identifying controllers consistent with performance goals. A 
salient feature of the theory is that data acquired with one controller in the loop can often be used 
to falsify other as-yet-untried controllers before they are ever physically connected to the plant. 

At the conceptual level, unfalsified control is closely related to the candidate elimination algo- 
rithm of machine learning theory [82]. It works by successive elimination of hypotheses that are 
found to be inconsistent with goals and evolving observational evidence. In the case of unfalsi- 
fied control, the evidence consists of measurements of plant input-output signals, the hypotheses 
are candidate control laws, and the goals are closed-loop performance functionals. The theory 
allows one to sift through candidate control laws in real-time, eliminating those inconsistent with 
performance goals — cf. Fig. 1(a). 

The essence of the unfalsified control concept is depicted abstractly in Figure 1(b). The three 
axes represent the three (infinite dimensional) function spaces of which the signals r, y, u are mem- 
bers. The three signals r. y, u are, respectively, commands r(t), plant output y(t) and control signal 
u(t). In this context, a plant is a collection of input-output signal pairs {u,y). A control design 
specification is a constraint on the signal pairs (r, y) — i.e.. a set. say T, in which the pair (r, y) 
must lie. A control law, say A", is a constraint on the triple (r,y,u), i.e., a subset of the set of 
triples (r,y,u). In Figure 1(b) the plane K(u,y,r) = 0 represents a particular linear control law. 
The key observation is that one may test consistency of the control law K(u,y,r) = 0 with > the 
specification T and the past plant data (u, y) by checking that the image of the pair (w, y) under 
the constraint K(u,y,r) = 0 is a pair (r,y) in T. Moreover, this controller consistency test may 
be performed even if the plant data (u, y) has been generated by another control law — or even 
if is has been generated open-loop with no control law at all. A control law K which fails to be 
consistent with the performance specification and the past plant input-output data is invalidated, 
i.e.. falsified; those control laws which are not falsified are said to be unfalsified. 

Instead of attempting to enforce a somewhat artificial separation between modeling and control 
design, the unfalsified control concept can, if so desired, dispense with plant models and uncertainty 
models altogether, focusing instead directly on the controller model and the implications of the 
available plant data regarding its capability to meet performance specifications. It replaces the 
conventional indirect two-step approach of (a) finding unfalsified plant models and (b) designing 
robust controllers. The unfalsified control concept takes one directly from plant input-output data 
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to control designs without the necessity of plant or uncertainty modeling. This is possible since all 
needed information about the plant is already in the plant input-output data — and this information 
turns out to be sufficient to validate control laws. 

This simple idea is the essence of the unfalsified control concept. But, simple though it may 
be, it is a revolutionary concept. It makes no explicit use of plant models other than the data 
itself, so in this sense it is a "model-free" approach to control. Because it requires no unverifiable 
assumptions and works only with data and specifications, it provides a direct, nonconservative 
approach to control design, as illustrated by the examples and design studies in [21, 36, 42, 12]. 

Thus, unfalsified control is beginning to emerge as a practical theory for real-time robust control 
suitable for use when prior knowledge of plant models is very limited. The "ACC Benchmark" 
robust control design problem solved by us using unfalsified control techniques in [13, 80] established 
not only the conceptual feasibility of the unfalsified control approach, but also that it can actually 
lead to superior designs. 

Though there remain some questions regarding what, if any, is the appropriate role for modeling 
assumptions and noise in unfalsified control theory, it has become increasingly clear that stochastic 
noise is not as great an issue as had been believed. In fact, the emerging theory of unfalsified 
control is providing a sharper picture of the fundamental nature of learning and adaptation than has 
previously been possible precisely because it does not rely upon prior knowledge of noise statistics 
and plant models in formulating control objectives or evaluating consistency of controller hypotheses 
with data and goals. This is so because, unlike traditional control theory which is essentially 
based on an introspective analysis of mathematical models, unfalsified control theory is a precise 
characterization of the raw implications of open-eyed observation — observation of past data which 
may not always conform to the predictions of models, but which a posteriori is always deterministic. 
And, even though it may sometimes be convenient to express control design goals in terms of unseen 
internal plant signals that are tied to experimental observations via stochastic noise models, the 
probabilistic character of such performance criteria inevitably evaporates when these criteria are 
evaluated a posteriori, as would normally be the case in unfalsified control applications. Thus, even 
when performance criteria are given implicitly in terms of stochastic models, the corresponding 
unfalsified control problem generally has an equivalent deterministic interpretation. 

Looking beyond control theory, we see unfalsified control as a key to beginning the important 
task of building a solid common foundation for robust, adaptive and intelligent systems — a founda- 
tion sufficiently broad to be embraced not only by control theorists but by the artificial intelligence 
(AI) community as well. Along the latter line, we note that the AI community where falsification 
concepts are already widely embraced as an integral part of machine learning theory for example, 
in the candidate elimination algorithm [82]. 

Control System Design Studies 

The unfalsified control theory has enjoyed further successes in design studies involving an adaptive 
missile flight control system [42] and a nonlinear robot arm controller [36, 12]. Figure 2 depicts the 
results of the missile control design study. Here, time domain inequalities specified the acceptable 
response shape for a bang-bang stepping command signal. The controller had a PID structure, with 
adaptive time-varying gains. The unfalsified control theory sifted through candidate PID gains "on 
the fly," allowing it to automatically discover the right gains without any prior knowledge of the 
missile dynamics. The unfalsified control algorithm was able to eliminate most of the candidate 
gains based on data collected early in the flight while other as yet unfalsified controllers were in 
the loop, so that after only a very few controller gain switches, the algorithm was able to discover 
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Unfalsified Adaptive Autopilot 

• Missile autopilot 
• Learns control gains 

in real-time 

• Time-domain 
inequalities satisfied 

• No prior knowledge 

Simulation of unfalsified adaptive autopilot showing: 
- stepping reference signal 
- specified response bounds 
- output signal response 

Figure 2: Unfalsified controller for missile. 

suitable control gains directly from real-time sensor and actuator data. The result, as seen in 
the figure, was a sure-footed control response capable of adapting rapidly to abrupt changes in 
missile dynamics. A more theoretical study of issues arising in the face of changing plant dynamics 
are addressed in [11], where an unfalsified control problem with a quadratic performance criterion 
and a parameterized infinite set of candidate controllers was shown to lead to a computationally 
tractable unfalsified control problem. This is important because early examples of unfalsified control 
applications had required the set of candidate controller gain values to be finite, which had proved 
somewhat restrictive. The ability of the unfalsified control design to maintain precise control in 
the face of evolving uncertainties enables it to better compensate for uncertain and time-varying 
effects such as battle damage, equipment failures and other changing circumstances. 

Depicted in Fig. 3 is another recent application of unfalsified control theory to the design of 
an adaptive 'computed torque' controller for a nonlinear robot manipulator [12, 36]. The plot 
shows that the method yields significantly more precise and rapid parameter adjustments than a 
conventional adaptive controller. The unfalsified control theory allows sure-footed, precise control 
in the face of evolving uncertainty because it is a precise non-conservative technique that relies on 
data — not on possibly incorrect modeling assumptions and approximations. Unfalsified control 
optimally exploits all information in the data to robustly adapt controller gains. 



3   CONCLUSIONS 

q 

',' "RöBöT'MäNIWLATöRäRM" " 1 
disturbances Control 

d Actuators 

Uncertain 
Arm 

Dynamics 

+ 
■* f VI Ga(s) 

U +    Ü 

-©«— 
L + 

H{6,q) 

H(9,q)q + C{6,q,q)q + g(0,q) 

s2 + 2Xs + 1 J-G& Id 

time (sec) 

Figure 3: Unfalsified control produced superior results for a nonlinear two-link robot manipulator 
subject to uncertain dynamics, noisy disturbances and abrupt changes in load mass. The two slug- 
gishly smooth traces large amplitude signals in the plot are with a conventional adaptive controller 
used to adjust control gain-vector 6{t), and the two very low amplitude traces are for the unfalsified 
controller. The unfalsified controller had a much quicker, sure-footed and precise response without 
increased control effort. 

3    Conclusions 

With support from AFOSR Grant F49620-95-1-0095, significant progress has been made to theory 
for reliable computation of robust controllers, to the field of robust BMI synthesis theory, and to 
the development of the unfalsified control theory formulation of adaptation and learning problems. 

The Bilinear Matrix Inequality (BMI) formulation of the robust control synthesis problem has 
been found to be among the most flexible, allowing a broad spectrum of control design constraints 
to be embedded within the single simple mathematical framework afforded by the BMI. Constraints 
which can be readily embedded in this framework include controller complexity, decentralized con- 
trol, uncertainty tolerance, bandwidth, noise attenuation, nonlinear gain-scheduling, energy dissi- 
pativeness. control precision, stability margins, and more. The mathematical and numerical prop- 
erties of the BMI optimization problems have been comprehensively studied. Though in general, 
BMI problems are NP-complete and hence theoretically hard to solve, cases for which alternative 
closed-form solutions are known have been generally found to be reducible to simpler LMI (linear 
matrix inequality) problems for which reliable computation methods are available.  Thus, it may 
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be said that the BMI theory has unified and simplified robust control theory, bringing it to a fairly 
mature state. 

As robust, control theory has matured, a key remaining challenge to control theorists has been the 
need for a more flexible theory that provides a unified basis for representing and exploiting evolving 
information flows from models, noisy data, and more. The unfalsified control theory developed 
with AFOSR support gives sharp mathematical representation of the role of experimental data in 
identifying robust control laws and provides a practical technique for identifying robust controllers 
in real-time with little or no a priori information. The theory paves the way for important links 
between robust control, adaptive control and artificial intelligence. It is a conceptual breakthrough 
because it distills the mathematical essence of control-oriented learning by focusing sharply on 
what is. and is not, knowable from experimental data and by challenging both the need and 
the appropriateness of a number of common assumptions. The results of our unfalsified control 
research lay a firm theoretical foundation for the design of feedback control systems with the 
ability to efficiently exploit evolving real-time information flows as they unfold, thereby endowing 
control systems with the intelligence to adapt to unfamiliar environments and to more effectively 
compensate for the uncertain and time-varying effects battle damage, equipment failures and other 
changing circumstances. 
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