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ABSTRACT 

The life extension of aging fleet aircraft requires an assessment of the safe-life 

remaining after refurbishment. Risk can be estimated by conventional deterministic 

fatigue analysis coupled with a subjective factor of safety. Alternatively, risk can be 

quantitatively and objectively predicted by probabilistic analysis. In this investigation, a 

general probabilistic life formulation is specialized for constant amplitude, fully reversed 

fatigue loading utilizing conventional breakdown laws applied to the general probability 

damage function. Experimental data was collected both as a bench mark data base, as 

well as an example of the implementation of probabilistic fatigue life prediction. Fully 

reversed, sinusoidal fatigue testing under load control was carried out at load levels 

giving high cycle fatigue lives from 1 x 104 to 5 x 106 cycles. The number of replications 

at each stress level is greater than currently available in the literature, thereby increasing 

the confidence of predictions in the long-life domain, as well as extending the statistical 

basis for probabilistic inference. The load level data sets are interpreted by the 

probabilistic damage function for life location as well as life shape parameters using 

maximum likelihood analysis. Homologous life ranking and the minimum entropy 

hypothesis are investigated as well. 
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I.        INTRODUCTION 

A. BACKGROUND 

As a result of tighter defense budgets and reductions in resources, the funding for 

replacement aircraft has diminished to the point that current fleet aircraft are under 

extensive life assessment and extension programs. The P-3 Orion, the Navy's Fleet 

Maritime Patrol Aircraft, has been under continuous service life assessment, extension 

and sustained readiness programs for many years now. The original service life of the 

aircraft has been extended such that the aircraft will need to be in service until well 

beyond the year 2000, which may include different flight profiles. 

The overall objective is to quantitatively assess the reliability against failure for 

the remainder of the life of the aircraft. The most efficient method of obtaining this 

objective is through the use of a probabilistic life prediction model. 

B. MOTIVATION 

1.        Quantitative Risk Assessment or Life Extension 

The life extension of aging fleet aircraft requires an assessment of the safe-life 

remaining on non-refurbished components and structures as well as for those after 

refurbishment. Conventional deterministic fatigue analysis has allowed the community 

to use an estimated risk assessment. These risks can be estimated by applying a 

subjective factor of safety to a design life based on the mean of a small amount of data 

points taken at the stress levels and the amplitude ratios (R), in question. The design life 

is sometimes referred to as the median fatigue life as referred to in MIL-HDBK-5G [Ref. 

1: p. 9-85]. The issue with this methodology is whether the variability of the fatigue life 

at the design loads or stress histories is adequately accounted for in the application of the 

factor of safety. This factor may be overly conservative in some cases, while less 

conservative in others. 



Alternatively, risk can be quantitatively and objectively predicted by probabilistic 

analysis. Through this type of analysis, a more definitive risk assessment is fully 

realizable, leading to better decisions based on known variability in life with specific 

loading conditions and stress histories. Given this more definitive and formal approach', 

the result could save the Navy time, money, and aircraft as well as further enhance the 

safety of aircrew. 

Constant amplitude stress histories (single level amplitude ratios, R) only require 

statistics to apply risk assessment analysis. However, for multiple load level, sequences 

and spectrum histories based on ground-air-ground (GAG) cycles, quantitative risk 

assessment requires a probabilistic damage function. Therefore, the main objective of 

this thesis is to provide a formulation and accumulate the probabilistic knowledge 

needed for this application. 

C.       SCOPE OF THIS THESIS 

The purpose of this thesis was to build upon and continue the experimental and 

research efforts, which originated at NPS in 1996. In this investigation, a general 

probabilistic life formulation is specialized for constant amplitude, fully reversed fatigue 

loading. Experimental data was collected both as a bench mark data base as well as an 

example of the implementation of probabilistic fatigue life prediction. Fully reversed, 

sinusoidal fatigue testing under load control was carried out at load levels giving very 

high cycle fatigue lives from 104 to 5.x 107 cycles. The number of replications at each 

load level for these ranges is greater than can be found in the current literature, thereby 

extending the confidence of predictions into the long-life domain, as well as lending to 

the expansion of the statistical basis for probabilistic inference. Although the more 

general spectrum loading conditions can be predicted by the current formulation, they 

have not been experimentally carried out in this investigation. 

In this investigation, specialized conventional breakdown laws (power law and 

exponential law) are applied to the general probabilistic damage function. The data sets 

collected at each level are interpreted by the probabilistic damage function for life 

location as well as life shape parameters using maximum likelihood analysis. 

Homologous life ranking (i.e., the strongest in terms of strength is equivalent to the 
2 



longest in terms of life) and a minimum entropy (least variability) hypothesis are also 

investigated. Future exploration is required in reconciling the strain control life 

prediction versus stress (load) controlled life prediction. 





II.       PROBABILISTIC LIFE PREDICTION 

A.       PROBABILISTIC MODEL 

To effectively predict a single component's life, the probability density function, 

PDF or f, and the cumulative distribution function, CDF or F, of the component must be 

determined. This requires a sufficient amount of data, usually limited by time constraints 

and resources. However, to get an accurate statistical reliability estimate from direct 

testing, one must test a number of samples an order of magnitude greater than the desired 

reliability. In the case of military aircraft, the desired reliability is 0.99999 (1 -10"5), 

which would require testing at least one million samples under this statistical approach. 

Therefore the analytical probabilistic approach based on experience and understanding of 

the physical phenomena is crucial in making reasonably accurate life predictions with the 

limited amount of data available. 

Determination of the forms of the distributions requires breaking a component 

such as a spar web down into it's constituent components whose distribution functions 

are known. This is similar to breaking down a spar web component into components the 

size of a normal fatigue testing coupon or specimen, which is the basis for this 

investigation. 

The general probabilistic distribution for failure time was initiated by B. Coleman 

[Ref. 2], stating that the cumulative distribution function, CDF or F, of fatigue is a joint 

distribution of stress (S) and time (t)=> F(S,t). This was incorporated by Phoenix and 

Wu[Ref. 3, p. 139] as follows: 

F(tlS)=l-R(tlS)=l-expj-Y }K(S(^ |,t>0 (2.1) 

where S(t), t>0 is the stress history, KQ is commonly referred to as the damage function 

or breakdown rule, and ¥(■) is the shape function. The basis for this general formulation 

will be discussed in the following sections. 



B.       FLAW DISTRIBUTION 

In order to properly formulate the general damage function, it is important to 

understand the basic underlying principles and physics behind the formulation. This 

begins with the distribution of flaws within the material itself. The intrinsic properties of 

a material, including the introduction of flaws and dislocations, are inherent to the 

material composition and the manufacturing process. In other words, there are flaws that 

deal with the nature of the material makeup and those that deal with the making of the 

material and the quality control that goes along with it. 

The mechanistic basis for fatigue failure in metals is related to crack size and 

dislocation density. Failure of the material occurs when the flaws (crack size or 

dislocation density) increase and exceed a critical value. The test section of a fatigue 

specimen can be broken down into smaller constituent, yet equivalent metric volumes or 

crystals. The size of these volumes or crystals is arbitrary but bounded by the 

predetermined critical flaw size. If each crystal were microscopically inspected for flaws 

sizes greater than or equal to the critical size, the occurrence of flaws greater than or 

equal to critical value can be represented as p. Each crystal can be considered flawed (p) 

or not flawed (r). Thus there are only two possibilities for each crystal, pass or fail. 

Respective to the critical flaw size the exceedences are binomially distributed. Here 

again, p can be considered intrinsic to the manufacturing process or the quality control of 

the aluminum sheet used to make the fatigue test specimen. 

According to Lewis [Ref. 4: p. 148], if the crystals are independent of one another 

and identically distributed, the reliability of the coupon can be written as: 

Rn =P{ri nr2 nr3 n...nrnj=P{r1}p{r2}p{r3}...P{rn}. (2.2) 

Equation 2.2 can be simply written as Rn =rn or Rn =(l-p)n. In the case of aircraft 

material components, the probability of occurrence of a flaw greater than the critical 

value within any metric volume must be very small. If the probability of a flaw, p, is 

very small then ln(l - p) = -p. Thus, the reliability of the coupon can then be 

represented as: 

R„=e"np. (2.3) 



Therefore the binomial distribution has effectively been reduced to the Poisson 

distribution because the probability of a flaw is very small. 

C.       LIFE DISTRIBUTION 

For any given instant in time, in order for a coupon to have life x (fractional life 

consumed), each of the crystals, or metric volumes, must have life, T which can be best 

characterized by the weakest link theory. In other words, when the weakest link or 

crystal fails, the chain or coupon fails. Again, the assumption is made that the reliability 

of each crystal is independent of the others and is identically distributed. The failure is 

also assumed to be homogeneous to mechanism or not related to the size of a coupon. A 

larger component will have more elements, but the flaw distribution does not change. 

In exploring the weakest link theory further, the reliability of the coupon is: 

Rn(p)=(l-FD(P))=(1-F(p))n. (2-4) 

where ln(l-Fn(p))=nln(l-F(p)). Since (l-Fn(p)) is always less than 1 because Fn(p) 

is monotonically increasing, ln(l - Fn (/?)) is always negative and the relation becomes: 

ln(-ln(l-FnG))))=lnn+ln(-ln(l-F(p))). (2.5) 

Equation (2.5) is most commonly referred to as the weakest link transformation for 

plotting realized data in the weakest link space. If the realized data were to plot as a 

straight line in this space, the distribution is said to follow that of the Weibull 

distribution. The Weibull distribution is generally written as: 

Fw»=l-R(p)=l-e  W  =i- 
P 

e ^ (2.6) 

D.       HAZARD FUNCTION 

The exponent in Equation (2.3), np, is referred to as the hazard, ¥(T), which 

relates to how the crystal deteriorates in general. In the fatigue process, the location 

parameter of the distribution of flaws is time dependent. As time increases, flaws grow 

and the probability that flaws exceed the critical size increases. Therefore, Equation (2.3) 

is just a snapshot in time and is generally represented as: 
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Rn(T)=e(-,W)j (2J) 

where x is the fractional life consumed for the system. In the case in which the test 

sections of the coupons were smaller elements of a larger component, the reliability of 

the total population of test coupons could be written as: 

RN(*)=e(-^». (2.8) 

In summary, the hazard function, *F(x), is what describes the general nature of 

degradation induced by the fatigue process. The functional form of ^(x) is very 

important because it describes the actual physical process in which flaws grow over time, 

p«. 

Using the power form where *F(x)= xa seems to logically fit in most cases. This 

form is based on the power series expansion which gives is the reason for the exponent, a. 

The power term is a single term, non-integer because the stress (mechanism acting on the 

system and its components) is a stress norm or scalar. The derivative must always be 

greater than zero because p(x) is always monotonically increasing. In other words, there 

is no self-healing process present. It is important to choose the form that best describes 

p(x) (how it increases), which is what makes the fatigue process physically reasonable. 



III.     DAMAGE ACCUMULATION VIA LIFE CONVOLUTION 

A.        FORMULATION 

The intrinsic normalized life or fractional life consumed, x, for a given stress 

history,  S(t), is obtained by convolving the effect of stress by means of a damage 

function (breakdown rule), K. 

= 4JK(S(0K. (3.1) 
t.. 

T 
t 

ti 

t is constant, has dimension of time, and serves to make x non-dimensional due to the 

fact that Equation (2.1) (reliability or probability) has no dimension. S(t) is a stress norm 

that is piecewise continuous in time t, ti is the initial time and K() is a damage function. 

K() is the kernel or function that serves the purpose of properly modeling the cumulative 

damage effects over time, which in the simplest case reduces to the familiar Miner's rule, 

a linear superposition of damage. 

Different failure mechanisms require different forms of the breakdown rule or 

combinations thereof. The two forms that will be investigated are the Power Law 

Damage function and the Exponential Law Damage Function. 

1.        Power Law Damage Function 

The first proposed damage function is based on the power law. This form has 

been postulated to fit low cycle fatigue data in metals associated with yielding. The 

general form of the power law damage function is usually written as: 

(3.2) K(sO=W 

where b is the non-integer power needed to prevent multiple terms. Ci is the non- 

dimensionalizing intrinsic value of the material (the population capacity) where in most 

S(M 
cases this is the true fracture strength of aluminum, of. —— is the fractional loading 



better described as how close the stress history approaches the material limit (true 

fracture strength). Both b and d are generally matched to the material constants. 

2.        Exponential Form Damage Function 

The second proposed damage function is defined using an exponential form. This 

form has been postulated to fit high cycle fatigue data in metals associated with flaw 

growth. 

(3.3) 

Sft) is again the fractional loading. C3 is the intrinsic non-dimensionalizing constant. 

C2 is a non-dimensional constant related to the exponential of the stress intercept divided 

by the non-dimensionalizing value of C3. This equation has dimension of time, t. 

3.        Constant Stress Case Examples 

Having developed the above forms of the damage functions, the solution approach 

for each form can be used to determine the parameters from a known stress history. Once 

the parameters are known, they can be used to predict F(t IS) for another stress history. 

For example, a constant stress case can be defined as shown in Equation (3.4): 

,,    fO      t < tn 
s(t)=H IS      t>tn 

(3.4) 

a.        Power Law Application 

In applying this stress history to the power law form, the stress history 

simplifies to S(ü;)=S. The fractional life consumed becomes: 

■m t 
t-t, 

J t 
«0 l 

Substituting Equation (3.5) into the hazard equation, \J/(T) = xa, gives: 

(3.5) 
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/ 

v(0= 
vc>y 

t-tf 

\ 

(3-6) 

Substituting Equation (3.6) into the Reliability equation, Equation (2.8), yields: 

R(t)=exp 

V 
t-t. 

(3.7) 

If the data were to be consistent with that of a Weibull distribution, then 

Equation (3.7) can be compared to the Weibull form to match the parameters (i.e., 

R(t)= Rw (t)). For instance: 

exp 
t-t. 

:expi (3.8) 

where a is the shape parameter and tß is the location parameter. Equation (3.8) can be 

simplified to: 

t-t( 
t 

Y   f   \a 

\}>J 
(3.9) 

If to = 0, and the shape parameter is related to the exponent a (a = a), Equation (3.9) 

reduces to: 

t 
(3.10) 

Expansion of Equation (3.10) into the logarithmic form yields: 

ft } 
bloge(s)+loge 4 =bloge(C,). (3.11) 

v.        > 

Equation (3.11) is thus linear in a log(s)- log(t„ jdomain where the slope is with an 
b 

intercept of loge (Cj) as shown in Figure 3.1. 

11 



Figure 3.1. Constant Stress Power Relation 

The comparison to the Weibull form allows the use of the Weibull 

parameters to formulate the damage function once the data has been proven to fit a 

Weibull distribution. 

b.        Exponential Law Application 

Utilization of the same methodology as described for the power law 

example, the exponential law form can also be pursued. Again, in the case of a constant 

stress history as described above, S(£)=S. The stress tensor is a stress norm or scalar. 

The fractional life consumed thus becomes: 

If 1 exp sft) d^ =—exp 
( s Xt-t0) 

\-* J 

Here again, if to = 0, then Equation (3.12) simplifies to: 

x = -exp 

v   3 JJ 

Substitution of Equation (3.13) into the hazard function yields: 

vW= 
(( 

-exp 
c 

\~> JJ 

Substitution of Equation (3.14) into Equation (2.1), thus reveals: 

R(t)=exp 
(f 

-exp 
_S_ 
C, 

>V 
j) 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

12 



Again, if the data were to be consistent with that of a Weibull distribution, 

Equation (3.15) can be compared to the Weibull form as such: 

exp- 
(f 1 

—exp 
C,     t 

Equation (3.16) can then be simplified to: 

(" = exp<|-—} (3.16) 

r t Y  ( 

\^J      V 

1 
—exp 

r o w 

y~3jj 
(3.17) 

The Weibull shape parameter, a, can again be related to the exponent a, where a = a. 

The relation then becomes: 

t       1 
— = —exp 
t      C 

(3.18) 

Further simplification and rearranging terms in Equation (3.18) yields: 

C2 =^r-exp (3.19) 

Expansion of Equation (3.19) into the logarithmic domain yields: 

log, 
(     f    s Y\ 
exp 

V 

ft.} 
= log« 

^   ->J) VlJ 
+ log, (3.20) 

Simplification of Equation (3.20) gives a more familiar form: 

ft ^ 
S = -C3loge 1 + loge(C2). (3.21) 

Equation (3.21) is thus linear in a stress-log tß, semi-Log space and is 

illustrated in Figure 3.2. The slope is -C3 and the intercept is C2 or: 

C2 = exp 
vc3y 

(3.22) 
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Figure 3.2. Constant Stress Exponential Relation 

Therefore, if the Weibull parameters of the needed stress histories are found through 

experimental data, the generalized form of the damage function can then be determined. 

4.        Alternating Stress Case Example 

Fatigue testing for this investigation was done using stress control with a fully 

reversed sinusoidal wave form which can be modeled as: 

tf 

s(t)=jsa sin (3.23) 

tp is the period, Sa is the stress norm amplitude and S(t) is the stress norm history with 

time. In the case of using the power law damage function the fractional life consumed, x, 

over time, t then becomes: 

ti 
-sin '2O 

"lb 

dt (3.24) 

The damage function for this case is therefore: 

K(saO= 
r. 

-sin '2*.^ 
(3.25) 

Unlike the previous constant stress cases, the integrand in Equation (3.24) is not 

symbolically integrable. Therefore, the integral must either be solved numerically or 

approximated. However, in the same case examples, the integration is the area under the 

curve of the stress history. This methodology may be applied to the constant amplitude 

14 



case in that the area under the curve over time will be a constant. The constant 

amplitude, sinusoidal stress case can then be reduced to an equivalent constant stress and 

can be related to the same forms of the damage functions formulated in constant stress 

case examples. For instance, Equation (3.25) can be represented in the same manner as 

Equation (3.2). Therefore, the constant amplitude stress history damage function can 

then be related in the same manner as was done in the constant stress history solutions 

with the resultant damage function differing only by a constant. 

15 
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IV.      NPS ALUMINUM 7075-T6 FATIGUE DATA 

A.       INTRODUCTION 

Fully reversed sinusoidal fatigue tests under load (stress) control were carried out 

at load levels giving high cycle fatigue lives (104 to 5 x 106 cycles) As previously stated, 

the number of replications is greater than available in literature. NPS constant amplitude, 

load controlled fatigue testing was originated during thesis work conducted by LT Todd 

Kousky in 1996 [Ref. 5:p. 47]. This testing was done at medium and low stress levels of 

30.9 and 25.6 kilo-pounds per square inch (ksi), respectively. For this investigation, tests 

were conducted at the lower stress level of 25.6 ksi and then further extended to a higher 

stress level of 51.2 ksi. In all, 119 coupon specimens were tested until failure with 36 

conducted at the high stress level, 23 at the medium stress level and 39 at the low stress 

level. 

Throughout the course of this thesis research, testing equipment and techniques 

were further refined to increase the level of confidence in the data being collected. The 

overall breakdown of the number of tests completed at each of the test conditions and 

stress levels have been depicted in a data matrix, -{Dy j, as shown in Table 4.1. A 

Servo Control Device / Accessory / Technique 

Stress Level Analog Analog (1) Digital (1) Digital (1>2) 

High 36 

Medium 23 

Low 7 9 8 15 
Notes: (1) refined gripping technique, (2) amplitude control 

Table 4.1. Data Set Matrix, {p^ j 

description of each note can be found in Chapter VIII. 
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1.        Data Set Descriptions 

The rows of the data matrix, (i = 1, 2, 3), pertain to the high, medium and low 

stress levels of testing conducted at 51.2, 30.9, and 25.6 ksi, respectively. The columns, 

(j = 1,2, 3,4) denote the different methods and equipment used in the collection of each 

data set. A description of each of the features and techniques can be found in Chapter 

vm. 

Data sets,{Dn } were collected using an older analog controller (circa 1975 

technology), which was the only servo control device available for use at the time. Data 

set (Di2} was collected with the same controller but a more refined gripping technique 

was instituted due to problems encountered with specimens breaking in the gripping 

sections. This technique was subsequently applied to the remaining data sets. 

Through funding provided by the research sponsor, a modern digital controller 

was purchased and used to collect data sets {Di3} and {Di4}. This new digital controller 

(circa 1997) provided more capability in control and tuning, which further enhanced 

confidence in the data being collected. Data sets {Di4 } were produced with the highest 

experimental technique refinement which included the previously mentioned amplitude 

control feature. This feature eliminated small drifts in amplitude that had to be closely 

observed and manually adjusted in the previous data set, {Di3}. Data collected in data 

sets {Di4} are the main emphasis of this investigation. 
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V.       DATA INTERPRETATION 

A. GENERALIZATION 

Engineering fatigue data collection is typically done either under strain control for 

low cycle fatigue or load (stress) control for high cycle fatigue. The actual structures 

themselves experience mixed strain and stress conditions. In order to further formulate 

the general probabilistic damage function, the data sets collected under the different 

methods and load levels needed to be interpreted using probabilistic methodologies such 

as parameter estimation for life location as well as life variability. 

B. INITIAL INTERPRETATIONS 

1.        Weakest Link Observations 

The first step in interpreting the data consisted of plotting each of the data sets in 

the weakest link space as discussed in Chapter II. The exact realized random variables, 

xn , of each data set {p^}, were compiled in the order of testing sequence. The data was 

then sorted and ranked in order of life or cycles to failure (i.e., weakest to the strongest 

specimen). The expected rank, F, was calculated as: 

P = ^TT' (5-1} 
N + l 

where n is the rank in order of life and N is the total number of realized data in the data 

set {Py }. The weakest link transformation was performed as shown in Equation (5.2). 

F*=ln(-ln(l-F)). (5.2) 

The realized data was then plotted in the weakest link space, F* vs. xDe, for each 

data set. As an example, the data set {Dj4}, is shown in Table 5.1. 
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Specimen No. Cydes(Nf) Specimen No. CycIes(Nf) Specimen No. Cycles(Nf) 
1 8617 13 12421 25 12206 
2 11283 14 10748 26 11272 
3 10699 15 10120 27 11630 
4 11200 16 13550 28 11785 
5 7804 17 11972 29 12121 
6 10481 18 9825 30 9502 
7 8503 19 12996 31 11090 
8 8263 20 10833 32 9809 
9 11309 21 10457 33 10988 
10 7574 22 10333 34 9769 
11 10154 23 11109 35 9492 
12 11906 24 10461 36 10466 

Table 5.1. {D14}, High Stress Level "Exact" Data 

The weakest link plot for this data set is shown in Figure 5.1. 

1000 

O  Realized Data Weibull Fit (MLE) 

10000 

Log(Cycles to Failure) 

100000 

Figure 5.1.  {D14 } Weakest Link Plot 

Figure 5.1 shows the data in {D14} very nearly plots as a straight line in the 

weakest link space. Therefore, it can be safely assumed this data can be represented by a 
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Weibull distribution. Appendix A contains the Data Tables and Weakest Link Plots of all 

data sets. Each of the data sets consistently followed the same approximate straight line 

trend in the weakest link space. With these observations, further analysis of the data was 

then pursued to determine the Weibull distribution shape (a) and location (ß) parameters. 

C.       PARAMETER ESTIMATION OBSERVATIONS 

One rudimentary method of parameter estimation is by a least squares fit of 

linearized data. However, least squares provides an equal weighting of the data which 

does not account for data cluster. A better and more sophisticated method called the 

Maximum Likelihood Estimate (MLE) weights the data by probability. 

For each exact data set {Dy j with Weibull pdf, f w (x n; a;j, ß;j), the joint density 

function for the observation can be written as the likelihood function, L^ \xD;aii,^ii): 

h (Dij Ifw (xn; ag. ßij)) = fw (*i; cxSj, ßij) fw (x2; ai}, ßfj)...fw (xn; a;j,ßy). (5.3) 

The maximum likelihood can be obtained by taking the derivative of L() with respect to 

the parameters and setting it equal to zero. In this case, where the likelihood is based on 

two parameters, the software package uses an iterative method to obtain the simultaneous 

dL dL 
solution where — = 0 and —— = 0. Hence, maximum likelihood parameter estimation, 

da dß 

MLE, determines the values of a;j and ßy that provide the highest likelihood of 

observing the given set of data, -p^ j. 

At NPS, Professor Edward M. Wu has developed an MLE software package for 

this research that handles exact, censored and interval data. This software consisted of a 

program written in MATLAB by Professor Wu and was utilized to determine the 

parameters for each of the data sets. The solution of the maximum likelihood estimations 

for the data sets can be found in Appendix B. The results have been tabulated in Table 

5.2. 
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w to,} {DJ {DJ {DJ 

k) 
a14=8.9 

ß14=1.12xl04 

W 
oc2i =3.1 

ß2, =6.92xl04 

M 
a31 =1.5 

ß3I = 2.42 x10s 
32  —     * 

ß32=1.61xl06 

a33 = 7.5 

ß33=3.22xl06 

a34 = 4.2 

ß34=3.29xl06 

Table 5.2. Weibull Parameters, Initial Data Sets 

These preliminary observations clearly show the differences between the two 

different controllers and the personnel conducting the tests. This emphasizes the need for 

continuity of personnel conducting the tests and the equipment being used. 

D. COMBINING THE DATA SETS 

In order to better utilize the data collected, regardless of method, further 

interpretation and analysis was needed to determine which data sets could be combined. 

Combining the data sets provided more observations to obtain more substantial results 

with the limited number of data collected. The goal was to merge the data sets into one 

single column in the data set table using proper methodologies such as data censoring and 

equivalent life (rank is homologous) maximum likelihood analysis. 

1. Equivalent Stress Level Considerations 

There were four different sets of data observed at the low stress level, {D3j ]. 

Each data set contained only a few data points with {D34} containing 15 exact data 

points. The data observed in {D34 } was collected with the most refined testing 

equipment (digital controller with amplitude control) and therefore the remainder of the 

data sets at the low stress level were considered for merging into this data set. 
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a.        Combining {D34} and {D33} 

The first set considered for merging into {D34} was {D33} since the data 

in this set did not exhibit more disorder than in {D34} (i.e., a33 > a34). The location 

parameters were also essentially the same with ß33 = ß34. Therefore it was judged 

appropriate to combine these two data sets into one represented as: 

{D3WD33MD34}, (5-4) 

where the subscript e denotes the data set is exact data. The data set was then analyzed 

using the MLE software where MLEoc,ß I {D33,D34} yielded oc3e = 4.8 

and ß3  = 3.276xl06. The merged data set (darkened circles) is plotted in the weakest 

O AmpLCtri. • No AmpLCtri.         WeibuD Fit (MLE) 

1.5 

0.5 

-0.5 

Z  -1.5 H 
I 

Z 
J 

-2.5 - 

-3.5 ■ 

-4.5 

1000000 10000000 

Log(Cycles to Failure) 

Figure 5.2. {D3 }e Weakest Link Plot, Merged Data 

link space as shown in Figure 5.2. The MLE software output with the parameter 

solutions can be found in Appendix B. 
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b.        Data Sets {D31} and {D32} 

These data sets exhibited shape parameters much less than those 

corresponding to {D33} and {D34}. The location parameter values were also much less. 

This could be based on two separate issues: (1) the failure mechanism is different than 

that of testing at the same stress level, and (2) the different testing conditions and 

equipment may have caused the added variance and lesser value of life location. This 

second issue could have involved higher than desired stress levels as a result of controller 

inaccuracies, hence, the shorter lives. 

It was further observed that the shorter life data sets would have had to 

exhibit a different failure mechanism than the longer life data sets at the same stress level. 

Therefore, it was judged more appropriate to attribute this difference to the different 

testing conditions and therefore it would only be appropriate to merge the data from these 

sets into {D3}e by means of proper censoring techniques. To be specific, the data in sets 

{D31} and {D32} were considered as right censored data since the life of each specimen 

under these test conditions observed to be less than expected. This may have been due to 

possibly higher stress amplitude conditions under lesser refined test procedures. The 

censored data set for these two data sets then becomes {D3 }r = {D3,} u {D32} , where 

the subscript r denotes the right censoring of the data. The resultant data set from 

combining the censored data with the data set {D3 }e becomes: 

{D3}e,r={D3}e^{D31}r^{D32}r- (5.5) 

The subsequent MLE solution, written as MLEa,ß I {p33,D34,D3]r ,D32 }, yielded 

a3er =5.0 and ß3er =3.333xl06. The weakest link plot for this merged data set is 

shown in Figure 5.3 with the parameter solutions in Appendix B. 

24 



 MLE (Exact) —MLE (Right Censored) O   Exact Data 

1.25 -  7~~ 
• 

0.75 sf> 
0.25 ~r$7 

fa   -0.25 • £w 
Z  -0.75 

3- -1.25 • 
Z 
►J   -1.75 ■ 

-2.25 - o 
/ 

-2.75 - /f n 'f 

1.00E+06 

Log(Cycles to Failure) 

1.00E4O7 

Figure 5.3. {D3 }e r Weakest Link Plot, "Exact" Data 

The resulting shape parameter increased slightly from 4.8 to 5.0 when 

comparing the censored data to the exact data parameter estimation. The same slight 

increase is also observed in the location parameter. The reason for this unexpected 

increase may be due to four points in data set {D32} that were somewhat close to the 

location parameter of the exact data set. These data however, must still be considered 

part of the censored data set because they were tested under the same conditions as the 

remainder of the data in the set. 

Equivalent Life Considerations 

a. Introduction 

The concept of equivalent life where rank is homologous was also applied 

in the scope of this thesis to project the data collected at a higher stress level to the data 

set collected at a lower stress level. Figure 5.5 illustrates the projection using a slope, P;, 

where the slope is unknown because the damage function between the stress levels is 

unknown. 
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Figure 5.4. Life Transformation Example Illustration 

Under the assumption P; is constant, but unknown, for given data sets 

{DA } and {DB } (i.e., for the same rank), implies the breakdown rules or damage 

functions are identical. There are many slopes, pi, that can be used. For instance, a very 

steep slope (almost vertical) would group the data from {DA} to the left of the data in 

{DB } causing a concentration of the data to be in the lower tail of the merged data sets. 

On the other hand, if the slope were very shallow, the data would then be concentrated in 

the upper tail. The goal in this methodology was to find the best slope that corresponds 

to the least amount of disorder in the merged data set. Therefore it was hypothesized that 

the maximum shape parameter, ocimax, of the merged data set exhibits the least amount of 

disorder or minimum entropy in the merged data set. 

b.        Interpretation 

The two candidate data sets considered for life transformation into data set 

{D3}e at the low stress level (data set with the most refined technique) were data sets 

{D2I} and {D14 } at the medium and high stress levels. Because the shape parameter for 

{DM } was considerably larger than the shape parameter at the low stress level (i.e., 

aI4 = 8.9, oc3e = 4.8), this transformation was judged inappropriate because the damage 

functions for the data sets were apparently different. However, for the data set {D21}, the 

shape parameter was less than that of the low stress level (i.e., a2) = 3.1, a3  = 4.8). 

26 



Therefore, this projection was determined to be more appropriate for this life 

transformation. 

c.        Application 

In order to efficiently project the data from data set {D2I} to {D3}e, a 

Microsoft EXCEL Worksheet was used with a programmed macro to perform the 

repeated operations to obtain the merged data sets for a range of slopes. The data set 

{D21} had to first be projected from the medium stress level of 30.9 ksi to the low stress 

level of 25.6 ksi in the log-log space. The equation used to perform the projection, 

Nf   => Nj   , was determined to be; 

N'f2lj =exp(logNf2l )+^-(logca3 -logaj. (5.6) 
r i 

In this equation,  Nf2] is the observed data in {D21} and Nj    denotes the projected data 

from {D21} into {D3}e. The terms aa3 and ca2 are the stress amplitudes at the low and 

medium stress levels, respectively. Once the life transformations were performed, the 

data was combined with {D3}e, ranked, sorted, and plotted in the weakest link space. An 

example of a weakest link plot of transformed data is shown in Figure 5.6. 

The weakest link plots were used to determine the appropriate range of 

slopes needed to make the minimum entropy observation mentioned earlier. Projections 

were performed at various slopes from very large (steep) to very small (shallow) to 

observe the data clusters at the lower and upper tails in the weakest link plots. These 

visual observations determined the range of ps to be from -0.04 to -0.06. The resulting 

data sets were then computed for each p; in this range with an increment of 0.01 

resulting in a total of twenty data sets. Each data set was then input as exact data into the 

MLE software for maximum likelihood parameter analysis. Each a;      was computed 

and plotted versus each corresponding slope, p;, as shown in Figure 5.5. The results 

show that p = -0.05 provides the life transformation introducing the least amount of 

entropy or disorder into the data set. Therefore, the projected data set, {D21} becomes, 
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Figure 5.5.  amaY vs. p; 

{D'21}={D21}p=^05. (5j) 

The resultant data set from combining the projected data with the data set {p3 ) 

becomes, {D3}ep = {D3}e U{D21}, where the subscript, p, denotes the inclusion of 

projected data. The subsequent MLE solution then becomes MLE a, ß I {D33, D34, D'21}, 

which yielded a3ep =3.7 and ß3ep = 3.138xl06. Figure 5.6 shows the merged data set 

plotted in the weakest link space. The merged data is denoted as darkened circles. The 

MLE solution can be found in Appendix B. Both the shape and location parameters 

decreased slightly. This can be expected due to the greater variability in {D21}. 
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Figure 5.6.  {D3 \   Weakest Link Plot, Merged Data 

E.       RESULTS OF COMBINED DATA SETS 

In summary, the data from the medium and low stress levels was merged by 

means of equivalent stress level and life (rank is homologous) considerations. The 

considerations included shape parameter analyses, appropriate data censoring techniques 

and minimum entropy projection. The final data set is denoted as {D3 }e r , where the 

subscripts e, r, and p represent the exact, right censored and projected data, respectively. 

The final representation of this data set can be written: 

{D3L,p ={D34MD33MD31}r u{D32}r u{D'21}p. (5.8) 

The results of all of the mentioned merged data sets are summarized in Table 5.3. 

The table shows the progression of the parameters as each data set was combined. The 
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important observation to be taken from these results is that the shape and location 

parameters of the final merged data set were essentially the same as the original data set. 

*>,} K> {Di2} {Di3} {Di4} 

Kl 
a14 = 8.9 

ß14 =1.12xl04 

Kl 
a2i =3.1 

ß21 =6.92xl04 

K> 

a31 =1.5 

ß31 = 2.42xl05 

a32 =1.2 

ß32 =1.61xl06 

a33 = 7.5 

ß33 =3.22xl06 

a34 = 4.2 

ß34 =3.29xl06 

a3  =4.8 

ß3e =3.28xl06 

a3    =5.0 

ß3    =3.33xl06 

a3    =3.7 

ß3    =3.14xl06 

a,      =4.1 
■'e.r.p 

ß3      =3.22xl06 

Table 5.3. Combined Data Set Results 

For instance, a^ s a34 and ß34 = ß^. 

The final data set {D3}erp represents a total of 69 realized data points with 23 

exact, 16 right censored, and 23 projected realizations. Therefore it can be safely 

assumed the shape and location parameters a = 4.1 and ß = 3.217xl06 cycles give a 

very sound representation of the life distribution parameters for the stress amplitude of 

Ga = 25.6 ksi and amplitude ratio of R=-l. Figure 5.7 shows this final data set in the 

weakest link space with the MLE solutions plotted for both the projected and total 

combined sets as a comparison. 

30 



0 ■ 

z 

z 

-3 • 

-4 ■ 

l.E+06 

-MLE (Projected Data) ■MLE (AD) 

o 

Cycles to Failure (Nf) Log Scale 

Figure 5.7. {b3l     Weakest Link Plot 

F.        FINAL RESULTS 

The major efforts of the constant amplitude testing performed for this thesis lie in 

the testing at the high and low stress levels. The results of the life location and shape 

parameter for 7075-T6 Aluminum are summarized in Table 5.4. 

oa(ksi) a          I              ß 

25.6 4.1 3.217X106 

51.2 8.9 1.122X104 

Table 5.4. NPS Constant Amplitude Parameters, R = -1 
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The distributions are shown in Figures 5.8 and 5.9. The low stress level life 

distribution illustrates the importance of the extent of the life variability. The variability 

6.E-07 

1000000  2000000  3000000  4000000  5000000  6000000 

Cycles to Failure 

Figure 5.8. Weibull pdf for low stress level data 

range is greater than four million cycles. The variability of life in the high stress level 

distribution shows to be around 10,000 cycles. These observations in life variability 

again prove the criticality of choice of factor of safety in both cases. For instance, in the 

low stress amplitude case, the safe life assumption could be approximated to be 600,000 

cycles from Figure 5.8. In this case, the factor of safety would have to be 

6xl05 6xl05 

3 3 217xl06'' °r °'19' Therefore'the factor of safety on life would have t0 be 
"3e - - Je,r:p 

5.4 or greater. The same methodology for the high stress amplitude would require the 

factor of safety on life to be greater than 2.2. 
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Figure 5.9. Weibull pdf of high stress level data 

Hence, the importance of knowing the life location and variability is crucial in 

making quantified risk and reliability predictions. This information could then be utilized 

to quantitatively prevent the over or under prediction of the remaining or refurbished 

structural component safe life remaining. 
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VI.      DAMAGE FUNCTION VISUALIZATION & DATA COMPARISON 

Data are frequently presented graphically to test these hypotheses, i.e., whether 

the trend of data is consistent with the trends of the damage function. These damage 

function laws have been linearized by semi-log or log-log transformations. The 

transformations, however, emphasize a certain range of the data and de-emphasize other 

data ranges. Therefore, it is instructional to view the damage functions in the natural 

linearized space as well as the non-linearized space. 

1. Traditional Methods 

These methods have used the exponential and power curve fits to express the 

damage functions in a more familiar stress-life or S-N curve. Figures 6.1 and 6.2 show 

1000   -i  Power Form Exponential Form 

« •o 
3 
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E 
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1.0E + 00 1.0E + 01 1.0E + 02            1.0E + 03            1.0E + 04            1.0E + 05 

log(Cycles to Failure) 

1.0E + 06 1.0E + 07 

Figure 6.1. Log-Log S-N Curve 

each form in the semi-log and log-log space for 7075-T6 Aluminum. 
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Figure 6.2. Semi-Log S-N Curve 

The visualization in the traditional method clearly indicates the general fit of each 

curve over a specific life range. For instance, the exponential form may indicate a better 

fit to low cycle fatigue while the power form of these traditional curves may fit high 

cycle data. The only way of knowing for sure which form of the damage function fits for 

a certain life cycle range is to compare these curves to experimental data. 

B.        COMPARISON TO EXPERIMENTAL PUBLISHED DATA 

An additional effort to compare the results of the experimentation to published 

data and damage function forms was also conducted in this investigation. Figure 6.3 

contains 7075-T6 Aluminum fatigue data in the log-log space from the data base 

compiled by LT Todd Kousky[Ref. 5:pp. 47-92] along with additional data from Boiler 

and Seeger[Ref. 6:p.71]. All data plotted in Figure 6.3 were collected under the same 

constraints with a fully reversed stress amplitude ratio, R=-l. Figure 6.4 shows the same 

set of data in the semi-log space. 

The data from testing at the high and low stress levels clearly falls within the 

published variability at the respective levels. The medium stress testing which was 

conducted with the analog controller falls somewhat below the values of published data. 

The general form of the S-N curve as shown in the log-log space shows a concave 

downward trend in the low to intermediate cycle range but otherwise it is mostly straight. 

The curve clearly shows the variability or scatter when multiple fatigue tests are run at 
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the same stress level. The variability in cycles to failure is also observed to increase with 

life. 

The form of the curve in the semi-log space indicates some slightly different 

observations. Again the curve appears to be mostly straight but slightly concave up in the 

high cycle range. The variability appears somewhat more constant in the semi-log space 

but does open up in the high cycle range similar to the log-log observations. 

C.       DAMAGE FUNCTION FORM COMPARISONS TO EXPERIMENTAL 
DATA 

If a comparison is made in the log-log space between Figures 6.1 and 6.3, the data 

in Figure 6.3 indicate the S-N curve is mostly straight with a slight concave downward 

trend. By the curves in Figure 6.1, this observation would suggest the use of the 

exponential form of the damage function as a model. 

However, if the same comparison were made in the semi-log space, the data in 

Figure 6.4 indicate the curve is mostly straight with a slight concave upward trend. For 

this observation Figure 6.2 suggests the power form of the damage function as a model. 

Therefore, it is quite evident that the failure mechanisms seem to show a mixture 

throughout the life cycle ranges being studied in this investigation. Since the failure 

mechanisms appear to be combined over this life range, a combination of forms of the 

damage function must be used in the analytical model. Clearly, further experimentation 

and data collection would have to be done to clarify these observation for a better 

understanding of the failure mechanisms needed to refine the damage function modeling 

and formulations. 
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VII.    FAILURE MECHANISMS 

A.       FRACTURE MORPHOLOGY OBSERVATIONS 

In order to better observe test validity and associated failure mechanisms, each of 

the failed specimens were physically arranged in order of increasing fatigue life (i.e., 

shortest life to the right and longest life to the left). Specimens which had failed outside 

of the uniform test sections were analyzed as censored data (i.e., the observed life is 

■SPSS 

Figure 7.1. High Stress Level Failed Specimens 

treated to be less than or equal to the intrinsic life) and were thus excluded from these 

observations. Figures 7.1 and 7.2 are photos taken of the failed specimens at the high and 

low stress levels, respectively. Additional photos providing close-up views of these sets 

Figure 7.2. Low Stress Level Failed Specimens 

of failed specimens can be found in Appendix E. 

Fracture morphology is an indicator of the underlying failure mechanism. A 

plane of failure perpendicular to the direction of the applied load is associated with brittle 

failure. A plane of failure at an angle of 45 degrees from the direction of applied load is 

associated with ductile failure. There are two planes of maximum shear; one in the plane 

of the sample, the other in the plane of the thickness. The ultimate ductile failure 



condition may be in either, or, or both of these planes resulting in a tearing appearance. 

An example of this can best be observed in Figures E.6 or E.7 of Appendix E. 

Cursory observations of high stress level failed specimens (resulting in short 

lives) indicate most of the fracture planes are associated with brittle failure. Low stress 

level failed specimens (resulting in long lives) are mixed between brittle and ductile 

failures. Furthermore, the mixture between brittle and ductile failure modes appeared to 

be random within the range of life observed. These morphological observations suggest 

that within the range of applied stress, there are two failure mechanisms which take place 

simultaneously. These mechanisms seemed to be opposite to those surmised in literature. 

For instance, ductile failure is generally associated with high stress level fatigue. 

These observations can only be confirmed with more extensive statistics from 

more samples tested under carefully controlled conditions. When the failure mechanisms 

are considered, appropriate damage functions can be formulated to not only correlate the 

failure data but be consistent with the failure mechanism as well. 
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VIII.   CONSTANT AMPLITUDE FATIGUE TESTING 

A. INTRODUCTION 

In order to gain a better understanding of the associated failure mechanisms, 

variability and life location of fatigue test data, a major undertaking in the development 

of this thesis was to further collect constant amplitude fatigue data. 

B. TEST FACILITY & EQUIPMENT 

All testing was accomplished on the NPS Aeronautics Series 810 Materials Test 

System made by the MTS Systems Corporation. This system is made up of three major 

assemblies consisting of the load frame, hydraulic power supply and system servo 

controller. This particular system is a single channel type system made up of one 

hydraulic actuator driven by a single servo-hydraulic control system. 

1.        Load Frame 

The load frame, MTS Model 312.41, is an extremely stiff, standard two-column 

frame rated at 110 kilo pounds force, kip (50 ton, static). The frame cross-head is 

hydraulically actuated and fully adjustable. The cross-head locks are also hydraulically 

actuated. The load frame assembly consists of five additional components as described 

below. 

a.        Hydraulic Actuator 

The 204.81 Actuator is double ended and dual acting, specifically 

designed for the long life requirements of fatigue testing. It is the force-generating and 

positioning device within the system. A servo valve controls the actuator by porting oil 

to either side of the piston in response to control signal from the servo controller. The 

38.51 square inch piston allows for a six inch stroke of the actuator. 
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b. Hydraulic Service Manifold 

The Model 298.10 Service Manifold is equipped with nitrogen charged 

accumulators in the service pressure and return lines to ensure proper servo valve 

operation by smoothing the pressure fluctuation in the hydraulic pressure lines. 

c. Force Transducer 

The model 661.20E-2 Axial Force Transducer has a fatigue rated capacity 

of 11 kips. The transducer provides the precision load sensing capability needed for 

tension-compression fatigue testing. 

d. Alignment Fixture 

The MTS Model 609 Alignment Fixture gives the ability to ensure proper 

alignment between the upper and lower grips for more precise test results. This fixture is 

designed to reduce unwanted bending by improving both the angular and concentric 

alignment between the grips. 

e. Hydraulic Grips 

The MTS Model 647.10 Hydraulic Wedge Grips have a fatigue testing 

capacity rating of 22 kip and have been specifically designed for fatigue testing in MTS 

servo-hydraulic test systems. The gripping force is adjustable to prevent specimen 

damage or slippage. Each grip is independently actuated. When actuated, all moving 

parts are hydraulically locked in place to prevent backlash in full tension and 

compression testing. The gripping force is constant regardless of test load. 

2.        Hydraulic Power Supply 

The MTS Model 506.20 Hydraulic Power Supply provides a fixed volume fluid 

power source to the servo-hydraulic testing system by means of an internal gear type 

pump. The system is capable of providing a constant hydraulic output pressure up to 

3000 pounds force per square inch (psi) at a flow rate of 20 gallons per minute (gpm) to 

the hydraulic actuator via the hydraulic service manifold and servo valve. 
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3.        Servo Controller 

The primary function of the servo controller is to develop the error signal used to 

control the servo hydraulic system while also performing error detection and program 

pacing. The error signal is further processed to create the desired control signal input as 

provided to the servo valve which drives the actuator to produce the desired force or 

position. This signal is processed in proportion to the error signal. 

The control signal causes the servo-valve to open in the required direction to 

minimize the error by porting oil to the correct side of the actuator causing it to stroke 

and, hence, reduce the deviation or error. When this deviation is zero, the control signal 

is thus reduced to zero, and the servo-valve assumes a null position. Under dynamic 

testing, this process operates continuously to minimize the error between commanded and 

feedback signals. 

Over the course of this thesis research and testing, two different servo controllers 

were utilized. The initial portion of the testing was completed with an MTS analog type 

servo control system. Through additional funding, this system was replaced with a 

digital control system made by Schenk Pegasus, which is now Instron-Schenk 

Technologies. 

a.        MTS Servo Controller 

The Model 442.11 Controller is an electric sub-system containing the 

principal control, failsafe, and readout selection units in an MTS electro-hydraulic testing 

system. The entire controller and readout system consisted of several components 

including the Model 440.13 Servo Controller, 410.31 Digital Function Generator, 413.05 

Master Control Panel, 417.01 Counter Panel, 440.14 Valve Driver, 440.21 Transducer 

Conditioner, 440.31 Feedback Selector, 440.1 Limit Detector, 440.51 Amplitude 

Measurement Unit and the Tektronics D13 Dual Beam Oscilloscope. The function   • 

generator provided the constant amplitude wave shape needed for this testing. The limit 

detection system provided the necessary fatigue test termination capability. 
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This controller was utilized for fatigue testing until December 10, 1997. 

All data collected from tests conducted using this controller have been properly 

annotated. 

b.        Schenk Pegasus Constant Amplitude Controller 

The Schenk Pegasus (now known as Instron Schenk Technologies or 1ST) 

4900 Single Channel Digital Servo Controller was used to control, measure and monitor 

the remainder of the fatigue testing for this thesis. It featured Proportional, Integral, 

Differential and Feedforward (PIDF) digital servo control, AC and DC transducer 

conditioning, digital inputs and outputs, limit error checking and programmable action 

lists, file storage for system parameters and an internal function generator. This 

controller proved to be very useful and integrated nicely with the MTS 810 Materials 

Test System servo-hydraulic system. 

An amplitude control feature was later added and proved to be critical to 

the constant amplitude fatigue testing being performed. This feature provided the 

automatic control of the upper and lower stress limits of the stress control fatigue testing. 

All data collected under this new controller, and under the amplitude control testing, is 

also properly annotated. 

C.       EXPERIMENTAL PROCEDURES 

1.        Test Specimen Description 

The Aluminum 7075-T6 test specimens used for the constant amplitude, stress- 

controlled testing were prepared in 1993.  The coupon specimens were cut from four by 

eight feet sheets which were sheared in the short direction into 0.75 inch strips which 

were then sheared into six inch bars. Each bar was then machined to meet ASTM 

Standards as called out for typical flat specimen fatigue testing. The physical layout of 

the coupons and their dimensions are shown in drawings located in Appendix D. 

Currently there are 422 coupons left in the NPS P-3 Life Extension Program inventory 

for future testing. 
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D.       CONSTANT AMPLITUDE FATIGUE TESTING PROCEDURES 

Testing at the lower stress amplitude of 25.6 (ksi) was a continuation of testing 

completed by Kousky[Ref. 5] in 1996. The lower stress amplitude of 25.6 (ksi) was also 

chosen to study variability effects in the longer life or high cycle fatigue (HCF) regime. 

The higher stress amplitude of 51.2 (ksi) was chosen to make the same observations in 

the shorter life, or low cycle fatigue, (LCF) regime. All stress-control tests were done at 

room temperature. 

In order to more accurately study the effects of variability in these regimes, it is of 

importance to preserve independence and identical distribution among the tests to the 

maximum extent possible. To do this, extreme care and diligent adherence to testing 

procedures was performed to make sure each test was done identically to those previous. 

To facilitate this, specific coupon handling and testing procedures were determined, 

documented and followed. These procedures are summarized as follows with the exact 

procedures listed in Appendix C. 

1. System Power Up 

Procedure 1 of Appendix C dictates proper system power application and 

complete system warm up. This procedure was documented to foster continuity prior to 

beginning testing or system tuning. 

2. Alignment 

In uniaxial testing, perfectly aligned grips produce uniform axial tensile strains in 

a specimen. For grips to be perfectly aligned, their loading axes must be concentric. 

Misalignment between the grips produces non-uniform axial strains in a specimen. Some 

areas will have higher than average strains; other areas will be lower than average. 

Bending strain is the difference between the average strain and areas with higher or lower 

than average strains. Therefore it is important to limit the maximum bending strains 

because they cause specimens to exhibit much lower strengths than if all axial strains 

were uniform. 
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The MTS 609 alignment fixture allows these strains to be reduced by improving 

the concentric and angular alignment. The alignment procedure used to do this can be 

found in Procedure 2 of Appendix C. 

3. Constant Amplitude System Tuning 

In a closed loop, servo control system, the controller allows the adjustment of the 

proportional, integral, differential, and feed forward (PIDF) gains to optimize the servo 

loop.  The controller compares the command signal to the transducer input signal, 

calculates the error and applies the PIDF gains to the drive signal that controls the servo 

valve. The tuning function of the Schenk Pegasus controller provides an oscilloscope for 

viewing the response of the servo loop, while comparing the command and transducer 

input signals during the adjustment of the loop gain values. The scope can be set up to 

display a time plot or a cross plot. The steps taken to do this for constant amplitude 

testing are laid out in Procedure 3 of Appendix C. 

4. Coupon Testing Procedures 

a. Coupon Preparation 

As can be observed in the data of Appendix C, some difficulties were 

encountered with coupons breaking in the gripping sections. After some research, it was 

found that the grip teeth were causing localized "stress riser" locations. A coupon 

preparation procedure was developed to prevent this from occurring without interfering 

with the fatigue tests. This involved placing small sections of 60 grit Emory cloth 

between the grips and the gripping sections of the test coupons. The procedure for this 

coupon preparation technique can be found in Procedure 4a. of Appendix C. This 

technique proved to be quite successful in preventing any further premature cracking in 

the gripping sections outside the test sections of the coupons. 

b. Force Transducer Zero Suppression 

Over time, the force transducer did tend to drift very slightly from three to 

ten pounds force with no load applied to the upper grip. In order to verify the force 
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transducer read zero load with no load applied, a zero suppression procedure was written 

and utilized at the start of each new test. The Schenk Pegasus Controller has a built-in 

zero suppression function, making this procedure very straight forward. This procedure 

is annotated in Procedure 4b. of Appendix C. 

c. Coupon Installation 

The installation procedure for inserting each coupon was also carefully 

thought out. The gripping process actually induced a relatively small 200 to 300 lbf 

tension pre-load before the test has started. To minimize this pre-load, a special 

procedure was established. The maximum pre-load under this procedure is 

approximately 20 to 30 lbf. This method is described in detail in Procedure 4b. of 

Appendix C. 

d. Servo Valve Balancing 

Upon closing the loop of the control system, it was noticed that an 

additional load offset was also being imparted on the test coupon up to about 40 lbf. The 

procedure required to zero the offset was centering or "nulling" the servo valve. This 

method is described in Procedure 4c. of Appendix C. 

e. Test Termination & Coupon Removal 

Throughout the experimentation phase, it was always important to use 

extreme caution in recording identical information such as the test configuration for each 

test performed. The process of removing the coupons and recording the data is described 

in Procedure 4e. of Appendix C. 
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IX.      CONCLUSIONS & RECOMMENDATIONS 

A.       CONCLUSIONS 

It is clear that fatigue problems continue to play an increasing role in our resource 

limited environment where the life of current structures has to be fully utilized and even 

extended.  Thus the need to have more definitive techniques for assuring the mechanical 

integrity of our aging airframe structures and life critical components seems more urgent 

now than ever. The rework and refurbishment of Sustained Readiness Programs further 

complicates the life prediction model. 

The continuing high level of activity in fatigue related technologies serves to 

substantiate the criticality of this failure mode in engineering practice. Because of these 

ongoing efforts, we continue to see notable improvements in both our experimental and 

computational capabilities and, more frequently, in their productive interplay. Indeed, 

well-conceived and executed experimentation establishes the dependable database for 

intelligent model development and also provides the requisite validation tool for fine- 

tuning newly developed analytical tools. 

The NPS Life Extension Program has demonstrated the ability to develop the 

required analytical model and probabilistic damage function to perform quantified risk 

assessment. The sensitivity of the data to different operators and equipment was 

unexpected. For example, the life data from specimens tested by different thesis students 

indicated significant statistical difference. Even with the same operator, specimens tested 

with equipment using the two different servo controllers showed significant differences. 

This calls for the need of sustained support to provide continuity in data generation (for 

constant amplitude as well as spectrum loading) to completely assess the model. 

Chapters VI and VE in this investigation, demonstrated that at least two 

breakdown rules (damage functions) are required to model the two fatigue failure 

mechanisms: plastic yielding and elastic crack growth. It was also demonstrated that the 

two well known breakdown laws (power law and exponential law) will need to be 

combined (by set theory) to model the life over the practical range of Naval Aviation 
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applications. This clearly suggests that a set theory formulation of failure mechanisms is 

an inescapable refinement. 

One of the main benefits to Navy fleet aircraft is in the area of reliability. The 

level of probability of experiencing a failure in a specific structural component on a given 

aircraft with a known stress history can be determined. A secondary benefit is that 

readiness can be enhanced through a more accurate determination of the necessary 

rework required on each aircraft. Therefore, rework and refurbishment efforts in support 

of sustained readiness programs can be properly assessed and scheduled for each aircraft 

in lieu of current "full sweep" efforts. The result could lead to significant financial 

savings while enhancing the safety, readiness, and reliability of our currently aging fleet 

aircraft. 

The fatigue life prediction community can also benefit in that the probabilistic 

approach adds real value to the contemporary method for predicting the reliability and 

safety of any structural component. Further development of this modern approach can 

serve to adequately quantify risk assessment in any structural fatigue situation leading to 

efficient and effective engineering design. 

B.       RECOMMENDATIONS 

As a result of the experimentation, formulations and research performed in this 

thesis, the following recommendations for further study are provided: 

1. Continue constant amplitude fatigue testing at additional stress levels , R 

ratios and life ranges to further refine the identification of the damage process 

and the Boolean formulation of a combined failure mechanism model. 

2. Research current fleet spectrum data to conduct spectrum fatigue testing 

modeling current aircraft mission profiles. 

3. Conduct spectrum testing for modified flight profiles and current or proposed 

payload changes. 

4. Test coupon specimens using material cut from refurbished structures with 

known stress histories (i.e., P-3 Drag Struts) for damage function verification 

and assessment of safe life remaining. 
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5.  Continue commitment to adequately replace outdated test system components 

and provide a dedicated laboratory technician to facilitate equipment 

maintenance and testing continuity. Without these, dependable data is simply 

not possible. 
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APPENDIX A. INITIAL DATA INTERPRETATION 

The following Tables A-l through A-6 contain the preliminary data sets described 

in Chapter IV. Figures A-l through A-6 are the plots of the data sets in the weakest link 

space. 

High Stress Level Fatigue Data 

Description: NPS(Kemna), Stress Amplitude=51.2 ksi, R=-1, Instron-Schenck Controller, Ampl. Ctrl. 

Expected 
Rank 

Weakest Link 
F* Sorting 

Specimen No. N Specimen No. N n/(N+1) ln(-ln(1-F)) 

1 8617 10 7574 0.0270270 -3.597249705 
2 11283 5 7804         0.0540541 -2.89011447 
3 10699 8 8263         0.0810811 -2.470324827 
4 11200 7 8503         0.1081081 -2.167963722 
5 7804 1 8617         0.1351351 -1.929767083 
6 10481 35 9492         0.1621622 -1.731997102 
7 8503 30 9502         0.1891892 -1.561979439 
8 8263 34 9769         0.2162162 -1.412137096 
9 11309 32 9809         0.2432432 -1.277571256 
10 7574 18 9825         0.2702703 -1.154925382 
11 10154 15 10120         0.2972973 -1.041793371 
12 11906 11 10154         0.3243243 -0.936386078 
13 12421 22 10333         0.3513514 -0.837331498 
14 10748 21 10457         0.3783784 -0.743548879 
15 10120 24 10461         0.4054054 -0.654165997 
16 13550 36 10466         0.4324324 -0.568462726 
17 11972 6 10481         0.4594595 -0.485831205 
18 9825 3 10699         0.4864865 -0.405746748 
19 12996 14 10748         0.5135135 -0.327745806 
20 10833 20 10833         0.5405405 -0.251408559 
21 10457 33 10988         0.5675676 -0.176344427 
22 10333 31 11090         0.5945946 -0.102179235 
23 11109 23 11109         0.6216216 -0.028542918 
24 10461 4 11200         0.6486486 0.044943303 
25 12206 26 11272         0.6756757 0.118681532 
26 11272 2 11283         0.7027027 0.193115294 
27 11630 9 11309         0.7297297 0.26875367 
28 11785 27 11630         0.7567568 0.346205667 
29 12121 28 11785         0.7837838 0.426232218 
30 9502 12 11906         0.8108108 0.509829786 
31 11090 17 11972         0.8378378  0.598374 
32 9809 29 12121         0.8648649 0.693886907 
33 10988 25 12206         0.8918919 0.799587711 
34 9769 13 12421         0.9189189 0.921200907 
35 9492 19 12996         0.9459459 1.070819877 
36 10466 16 13550         0.9729730 1.283962009 

Table A-1. Data Set {DU} 
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Medium Stress Level Fatigue Data 

Description: NPS(Kouskv), Stress Amplitude=30.9 ksi, H=-1, MTS Controller 

Expected 
Rank 

Weakest Link 
F* Sorting 

Specimen No.|   N   | Specimen No.|  N n/(N+l) ln(-ln(l-R) 

1 32936 1      32936 0.0416667 -3.156849494 
2 38653 2      38653         0.0833333 -2.441716399 
3 39149 3      39149         0.1250000 -2.013418678 
4 42518 4      42518         0.1666667 -1.701983355 
5 45330 5      45330         0.2083333 -1.454081455 
6 45541 6      45541         0.2500000 -1.245899324 
7 46619 7      46619         0.2916667 -1.064673327 
8 49060 8      49060         0.3333333 -0.902720456 
g 52150 9      52150         0.3750000 -0.755014863 
10 52180 10     52180         0.4166667 -0.618046200 
11 53535 11     53535         0.4583333 -0.489219929 
12 54676 12     54676         0.5000000 -0.366512921 
13 56482 13     56482         0.5416667 -0.248258101 
14 61247 14     61247         0.5833333 -0.132995836 
15 68189 15     68189         0.6250000 -0.019356889 
16 70194 16     70194         0.6666667 0.094047828 
17 74580 17     74580         0.7083333 0.208755483 
18 78456 18     78456         0.7500000 0.326634260 
19 81847 19     81847         0.7916667 0.450193650 
20 89906 21      84452         0.8333333 0.583198081 
21 84452 22     86658         0.8750000 0.732099368 
22 86658 20     89906         0.9166667 0.910235093 
23 119502 23     119502        0.9583333 1.156269006 

Table A- 2. Data Set ID,,} 
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Low Stress Level Fatigue Data 

Description: NPS(Kemna& Kousky), Stress Amplitude=25.6 ksi, MTS, R=-1 

Specimen No. N 

1 85059 
2 175586 
3 279772 
4 211932 
5 83595 
6 110733 
7 561919 

1.5 
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0 

-0.5 

-1 

-1.5 
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10000 

Sorting 
Specimen No. N 

5 83595 
1 85059 
6 110733 
2 175586 
4 211932 
3 279772 
7 561919 

Expected Weakest Link 
Rank F* 

n/(N+1) ln(-ln(1-F)) 

0.125 -2.013418678 
0.25 -1.245899324 
0.375 -0.755014863 
0.5 -0.366512921 

0.625 -0.019356889 
0.75 0.32663426 
0.875 0.732099368 

Table A-3. Data Set {D„j 
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Figure A- 3. {D„ } Weakest Link Plot 
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Low Stress Level Fatigue Data 

Description: NPS(Kemna), Stress Amplitude=25.6 ksi, MTS Controller, Emory Cloth Method, R=-1 

Expected 
Rank 

Weakest Link 
F* Sorting 

Specimen No. N Specimen No.        N n/(N+1) ln(-ln(1-F)) 

1 862632 4              118074 0.1 -2.250367327 
2 2958467 5               346851 0.2 -1.499939987 
3 1012679 7              460586 0.3 -1.030930433 
4 118074 1               862632 0.4 -0.671726992 
5 346851 3             1012679 0.5 -0.366512921 
6 2603596 9             2397479 0.6 -0.087421572 
7 460586 6              2603596 0.7 0.185626759 
8 2828806 8             2828806 0.8 0.475884995 
g 2397479 2             2958467 0.9 0.834032445 

Table A-4. Data Set JD,,} 
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Low Stress Level Fatigue Data 

Description: NPS(Kemna), Stress Amplitude=25.6 ksi, R=-1, Schenck-Pegasus Controller 

Specimen No. N 

1 2377272 
2 2767101 
3 3720970 
4 2722597 
5 2541395 
6 3192715 
7 3514703 
8 3333827 

Sorting 
Specimen No. N 

1 2377272 
5 2541395 
4 2722597 
2 2767101 
6 3192715 
8 3333827 
7 3514703 
3 3720970 

Expected 
Rank 

n/(N+1) 

Weakest Link 

ln(-ln(1-F)) 

0.1111111 
0.2222222 
0.3333333 
0.4444444 
0.5555556 
0.6666667 
0.7777778 
0.8888889 

-2.138911028 
-1.381050422 
-0.902720456 
-0.531391212 
-0.209573275 
0.094047828 
0.408179685 
0.787195008 

Table A-5. Data Set {D,,} 

Weakest Link Plot (Aluminum 7075-T6,25.6 ksi, R=-1) 
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Figure A- 5. {D„ j Weakest Link Plot 
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Low Stress Level Fatigue Data 

Description: NPS(Kemna), Stress Amplitude=25.6 ksi, R=-1, Instron-Schenck Controller, Ampl. Ctrl. 

Specimen No. N 

1 3845245 
2 3464846 
3 2454992 
4 2703580 
5 2940130 
6 4338783 
7 2583897 
8 2971067 
9 2929710 
10 1417504 
11 1360949 
12 4112113 
13 3831401 
14 2852160 
15 3023503 

Sorting 
Specimen No. N 

11 1360949 
10 1417504 
3 2454992 
7 2583897 
4 2703580 
14 2852160 
9 2929710 
5 2940130 
8 2971067 
15 3023503 
2 3464846 
13 3831401 
1 3845245 

12 4112113 
6 4338783 

Expected Weakest Link 
Rank F* 

n/(N+1) ln(-ln(1-F)) 

0.062500 -2.740493007 
0.125000 -2.013418678 
0.187500 -1.571952527 
0.250000 -1.245899324 
0.312500 -0.981647055 
0.375000 -0.755014863 
0.437500 -0.552752143 
0.500000 -0.366512921 
0.562500 -0.190339326 
0.625000 -0.019356889 
0.687500 0.151132538 
0.750000 0.326634260 
0.812500 0.515201894 
0.875000 0.732099368 
0.937500 1.019781441 

Table A- 6. Data Set {D^j 

Weakest Link Plot (Aluminum 7075-T6,25.6 ksi, R=-1) 
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Figure A- 6. JD,4} Weakest Link Plot 
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APPENDIX B. MLE PARAMETER SOLUTIONS 

The following entries contain the maximum likelihood parameter estimation 

solutions for each of the data sets as described in Chapters IV and V. The software was 

written in MATLAB by Prof. E.M. Wu at NPS. The solutions have been downloaded 

from the Command Window. The parameter solutions are located at the end of each 

Command Window readout. 

{D14}: 

»D14 
xe = 

8617 
11283 
10699 
11200 
7804 
10481 
8503 
8263 
11309 
7574 
10154 
11906 
12421 
10748 
10120 
13550 
11972 
9825 
12996 
10833 
10457 
10333 
11109 
10461 
12206 
11272 
11630 
11785 
12121 
9502 
11090 
9809 
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10988 
9769 
9492 
10466 

Total Number of Exact Data points 
ne = 

36 
xr = 

[] 
xr = 

2.225 le-308 
Total Number of Right-Censored Data Points 
nr = 

1 
nra = 

0 
xl = 

[] 
Total Number of Left-Censored Data Points 
nl = 

1 
nla = 

0 
Total Number of Data Points 
N = 

36 
least square estimated shape and scale parameters 
alpha = 

8.4070 
beta = 

1.1241e+004 
Use least-square parameters-estimates to guide... 
entering parameter ranges for Likelihood calculation 
PRESS ANY KEY TO CONTINUE 
Enter the ranges of Weibull Parameters for Likelihood Calculation 
Shape Parameter Alpha minimum=3 
Shape Parameter Alpha maximum=15 
# increments for Alpha=(49)199 
Location Parameter Beta minimum=(>0)5000 
Location Parameter Beta maximum=25000 
# increments for Beta=(49)199 
delt_area = 

6.0605 
wL = 

7.4955 
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Underflow may occur indicated by NaN warning (for Large N; change wL to 0 
ans = 
Total volume under exact Likelihood surface 
VLew = 

2.4111e-015 
Lkemax = 

6.6675e-004 
ans = 
Total volume under Likelihood surface 
VL = 

1.0000 
Lknmax = 

6.6675e-004 
ans = 
MLE Shape and Location of exact sub-set data by calculus 
Ae = 

8.8823 
Be = 

1.1220e+004 
ans = 
MLE Shape and Location of exact and right censored data set by calculus 
Aer = 

8.8823 
Ber = 

1.1220e+004 
Note that calculus computed MLE coincide with Graphical MLE... 
only when data censors are appropriate (no Left censored data). 
PRESS ANY KEY to Observe MLE Plot in Weakest Link Space. 
Calculus MLE is plotted for exact data in Weakest Link Plot 
PRESS ANY KEY TO CONTINUE 
Use Lower Right Graph (fig 2) to specify parameter-ranges... 
for refining Graphical identification of maximum 
Shape Parameter Alpha minimum=8 
Shape Parameter Alpha maximum= 10 
Location Parameter Beta minimum=1.0e4 
Location Parameter Beta maximum=1.3e4 
From Figure 4, observe Contour maximums for Weakest Link plot of exact data 
Press any key to continue 
alpha max=8.8823 
beta max= 11220 

{D21}: 

»D21 
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xe = 

32936 
38653 
39149 
42518 
45330 
45541 
46619 
49060 
52150 
52180 
53535 
54676 
56482 
61247 
68189 
70194 
74580 
78456 
81847 
84452 
86658 
89906 
119502 

Total Number of Exact Data points 
ne = 

23 
xr = 

[] 
xr = 
2.225 le-308 

Total Number of Right-Censored Data Points 
nr = 

1 
nra = 

0 
xl = 

[] 
Total Number of Left-Censored Data Points 
nl = 

1 
nla = 

0 
Total Number of Data Points 
N = 
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23 
least square estimated shape and scale parameters 
alpha = 

3.2749 
beta = 

6.9096e+004 
Use least-square parameters-estimates to guide... 
entering parameter ranges for Likelihood calculation 
PRESS ANY KEY TO CONTINUE 
Enter the ranges of Weibull Parameters for Likelihood Calculation 
Shape Parameter Alpha minimum=2 
Shape Parameter Alpha maximum=6 
# increments for Alpha=(49)199 
Location Parameter Beta minimum=(>0)3e4 
Location Parameter Beta maximum=8e4 
# increments for Beta=(49)199 
delt_area = 

5.0504 
wL = 

7.0475 
Underflow may occur indicated by NaN warning (for Large N; change wL to 0 
ans = 
Total volume under exact Likelihood surface 
VLew = 

1.5608e-039 
Lkemax = 

7.4007e-005 
ans = 
Total volume under Likelihood surface 
VL = 

1.0000 
Lknmax = 

7.4007e-005 
ans = 
MLE Shape and Location of exact sub-set data by calculus 
Ae = 

3.1436 
Be = 

6.9149e+004 
ans = 
MLE Shape and Location of exact and right censored data set by calculus 
Aer = 

3.1436 
Ber = 

6.9149e+004 
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Note that calculus computed MLE coincide with Graphical MLE... 
only when data censors are appropriate (no Left censored data). 
PRESS ANY KEY to Observe MLE Plot in Weakest Link Space. 
Calculus MLE is plotted for exact data in Weakest Link Plot 
PRESS ANY KEY TO CONTINUE 
Use Lower Right Graph (fig 2) to specify parameter-ranges... 
for refining Graphical identification of maximum 
Shape Parameter Alpha minimum=3 
Shape Parameter Alpha maximum=4 
Location Parameter Beta minimum=6e4 
Location Parameter Beta maximum=7e4 
From Figure 4, observe Contour maximums for Weakest Link plot of exact data 
Press any key to continue 
alpha max=3.1436 
beta max=69149 

{D3,}: 

»D31 
xe = 

85059 
175586 
279772 
211932 
83595 
110733 
561919 

Total Number of Exact Data points 
ne = 

7 
xr = 

[] 
xr = 

2.225 le-308 
Total Number of Right-Censored Data Points 
nr = 

1 
nra = 

0 
xl = 

[] 
Total Number of Left-Censored Data Points 
nl = 
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1 
nla = 

0 
Total Number of Data Points 
N = 

7 
least square estimated shape and scale parameters 
alpha = 

1.2767 
beta = 

2.5119e+005 
Use least-square parameters-estimates to guide- 
entering parameter ranges for Likelihood calculation 
PRESS ANY KEY TO CONTINUE 
Enter the ranges of Weibull Parameters for Likelihood Calculation 
Shape Parameter Alpha minimum=.8 
Shape Parameter Alpha maximum=4 
# increments for Alpha=(49)199 
Location Parameter Beta minimum=(>0)le5 
Location Parameter Beta maximum=4e5 
# increments for Beta=(49) 199 
delt_area = 

24.2418 
wL = 

5.8579 
Underflow may occur indicated by NaN warning (for Large N; change wL to 0 
ans = 
Total volume under exact Likelihood surface 
VLew = 

1.0604e-017 
Lkemax = 

6.3670e-006 
ans = 
Total volume under Likelihood surface 
VL = 

1.0000 
Lknmax = 

6.3670e-006 
ans = 
MLE Shape and Location of exact sub-set data by calculus 
Ae = 

1.5200 
Be = 

2.4164e+005 
ans = 
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MLE Shape and Location of exact and right censored data set by calculus 
Aer = 

1.5200 
Ber = 

2.4164e+005 
Note that calculus computed MLE coincide with Graphical MLE... 
only when data censors are appropriate (no Left censored data). 
PRESS ANY KEY to Observe MLE Plot in Weakest Link Space. 
Calculus MLE is plotted for exact data in Weakest Link Plot 
PRESS ANY KEY TO CONTINUE 
Use Lower Right Graph (fig 2) to specify parameter-ranges... 
for refining Graphical identification of maximum 
Shape Parameter Alpha minimum=1.3 
Shape Parameter Alpha maximum=l .9 
Location Parameter Beta minimum=2.3e5 
Location Parameter Beta maximum=2.7e5 
From Figure 4, observe Contour maximums for Weakest Link plot of exact data 
Press any key to continue 
alpha max= 1.52 
beta max=241640 

{D32}: 

»D32 
xe = 

118074 
346851 
460586 
862632 
1012679 
2397479 
2603596 
2828806 
2958467 

Total Number of Exact Data points 
ne = 

9 
xr = 

[] 
xr = 

2.225 le-308 
Total Number of Right-Censored Data Points 
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nr = 
1 

nra = 
0 

xl = 
[] 

Total Number of Left-Censored Data Points 
nl = 

1 
nla = 

0 
Total Number of Data Points 
N = 

9 
least square estimated shape and scale parameters 
alpha = 

0.8509 
beta = 

1.7496e+006 
Use least-square parameters-estimates to guide- 
entering parameter ranges for Likelihood calculation 
PRESS ANY KEY TO CONTINUE 
Enter the ranges of Weibull Parameters for Likelihood Calculation 
Shape Parameter Alpha minimum=.5 
Shape Parameter Alpha maximum=5 
# increments for Alpha=(49) 199 
Location Parameter Beta minimum=(>0)5e5 
Location Parameter Beta maximum=2e6 
# increments for Beta=(49) 199 
delt_area = 

170.4502 
wL = 

6.1092 
Underflow may occur indicated by NaN warning (for Large N; change wL to 0 
ans = 
Total volume under exact Likelihood surface 
VLew = 

1.9652e-030 
Lkemax = 

1.5387e-006 
ans = 
Total volume under Likelihood surface 
VL = 

1.0000 
Lknmax = 
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1.5387e-006 
ans = 
MLE Shape and Location of exact sub-set data by calculus 
Ae = 

1.2424 
Be = 

1.6132e+006 
ans = 
MLE Shape and Location of exact and right censored data set by calculus 
Aer = 

1.2424 
Ber = 

1.6132e+006 
Note that calculus computed MLE coincide with Graphical MLE... 
only when data censors are appropriate (no Left censored data). 
PRESS ANY KEY to Observe MLE Plot in Weakest Link Space. 
Calculus MLE is plotted for exact data in Weakest Link Plot 
PRESS ANY KEY TO CONTINUE 
Use Lower Right Graph (fig 2) to specify parameter-ranges... 
for refining Graphical identification of maximum 
Shape Parameter Alpha minimum=l 
Shape Parameter Alpha maximum=2 
Location Parameter Beta minimum=l .3e6 
Location Parameter Beta maximum=1.9e6 
From Figure 4, observe Contour maximums for Weakest Link plot of exact data 
Press any key to continue 
alpha max= 1.2424 
beta max=l 613200 

{D33}: 

»D33 
xe = 

2377272 
2767101 
3720970 
2722597 
2541395 
3192715 
3514703 
3333827 

Total Number of Exact Data points 
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ne = 
8 

xr = 
[] 

xr = 
2.225 le-308 

Total Number of Right-Censored Data Points 
nr = 

1 
nra = 

0 
xl = 

[] 
Total Number of Left-Censored Data Points 
nl = 

1 
nla = 

0 
Total Number of Data Points 
N = 

8 
least square estimated shape and scale parameters 
alpha = 

5.8258 
beta = 

3.2458e+006 
Use least-square parameters-estimates to guide... 
entering parameter ranges for Likelihood calculation 
PRESS ANY KEY TO CONTINUE 
Enter the ranges of Weibull Parameters for Likelihood Calculation 
Shape Parameter Alpha minimum=l 
Shape Parameter Alpha maximum=10 
# increments for Alpha=(49)199 
Location Parameter Beta minimum=(>0)le6 
Location Parameter Beta maximum=4e6 
# increments for Beta=(49)199 
delt_area = 

681.8010 
wL = 

5.9915 
Underflow may occur indicated by NaN warning (for Large N; change wL to 0 
ans = 
Total volume under exact Likelihood surface 
VLew = 

7.0213e-024 
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Lkemax = 
5.453 le-007 

ans = 
Total volume under Likelihood surface 
VL = 

1 ' 
Lknmax = 

5.453 le-007 
ans = 
MLE Shape and Location of exact sub-set data by calculus 
Ae = 

7.4975 
Be = 

3.2199e+006 
ans = 
MLE Shape and Location of exact and right censored data set by calculus 
Aer = 

7.4975 
Ber = 

3.2199e+006 
Note that calculus computed MLE coincide with Graphical MLE... 
only when data censors are appropriate (no Left censored data). 
PRESS ANY KEY to Observe MLE Plot in Weakest Link Space. 
Calculus MLE is plotted for exact data in Weakest Link Plot 
PRESS ANY KEY TO CONTINUE 
Use Lower Right Graph (fig 2) to specify parameter-ranges... 
for refining Graphical identification of maximum 
Shape Parameter Alpha minimum=7 
Shape Parameter Alpha maximum=8 
Location Parameter Beta minimum=3e6 
Location Parameter Beta maximum=4e6 
From Figure 4, observe Contour maximums for Weakest Link plot of exact data 
Press any key to continue 
alpha max=7.4975 
beta max=3219900 

{D34}: 

»D34 
xe = 

3845245 
3464846 
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2454992 
2703580 
2940130 
4338783 
2583897 
2971067 
2929710 
1417504 
1360949 
4112113 
3831401 
2852160 
3023503 

Total Number of Exact Data points 
ne = 

15 
xr = 

[] 
xr = 

2.225 le-308 
Total Number of Right-Censored Data Points 
nr = 

1 
nra = 

0 
xl = 

[] 
Total Number of Left-Censored Data Points 
nl = 

1 
nla = 

0 
Total Number of Data Points 
N = 

15 
least square estimated shape and scale parameters 
alpha = 

2.9844 
beta = 

3.3844e+006 
Use least-square parameters-estimates to guide- 
entering parameter ranges for Likelihood calculation 
PRESS ANY KEY TO CONTINUE 
Enter the ranges of Weibull Parameters for Likelihood Calculation 
Shape Parameter Alpha minimum=l 
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Shape Parameter Alpha maximum=15 
# increments for Alpha=(49) 199 
Location Parameter Beta minimum=(>0)le6 
Location Parameter Beta maximum=5e6 
# increments for Beta=(49)199 
delt_area = 

1.414164003 
wL = 

6.6201 
Underflow may occur indicated by NaN warning (for Large N; change wL to 0 
ans = 
Total volume under exact Likelihood surface 
VLew = 

1.6691e-049 
Lkemax = 

8.7963e-007 
ans = 
Total volume under Likelihood surface 
VL = 

1 
Lknmax = 

8.7963e-007 
ans = 
MLE Shape and Location of exact sub-set data by calculus 
Ae = 

4.1784 
Be = 

3.2936e4006 
ans = 
MLE Shape and Location of exact and right censored data set by calculus 
Aer = 

4.1784 
Ber = 

3.2936e4006 
Note that calculus computed MLE coincide with Graphical MLE... 
only when data censors are appropriate (no Left censored data). 
PRESS ANY KEY to Observe MLE Plot in Weakest Link Space. 
Calculus MLE is plotted for exact data in Weakest Link Plot 
PRESS ANY KEY TO CONTINUE 
Use Lower Right Graph (fig 2) to specify parameter-ranges... 
for refining Graphical identification of maximum 
Shape Parameter Alpha minimum=4 
Shape Parameter Alpha maximum=4.5 
Location Parameter Beta minimum=3e6 
Location Parameter Beta maximum=3.5e6 
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From Figure 4, observe Contour maximums for Weakest Link plot of exact data 
Press any key to continue 
alpha max=4.1784 
beta max=3.2936e6 

{D3}e 

»D3e 
xe = 

2377272 
2767101 
3720970 
2722597 
2541395 
3192715 
3514703 
3333827 
3845245 
3464846 
2454992 
2703580 
2940130 
4338783 
2583897 
2971067 
2929710 
1417504 
1360949 
4112113 
3831401 
2852160 
3023503 

Total Number of Exact Data points 
ne = 

23 
xr = 

[] 
xr = 

2.225 le-308 
Total Number of Right-Censored Data Points 
nr = 

1 

81 



nra = 
0 

xl = 
[] 

Total Number of Left-Censored Data Points 
nl = 

1 
nla = 

0 
Total Number of Data Points 
N = 

23 
least square estimated shape and scale parameters 
alpha = 

3.7131 
beta = 

3.3398e+006 
Use least-square parameters-estimates to guide... 
entering parameter ranges for Likelihood calculation 
PRESS ANY KEY TO CONTINUE 
Enter the ranges of Weibull Parameters for Likelihood Calculation 
Shape Parameter Alpha minimum=l 
Shape Parameter Alpha maximum=15 
# increments for Alpha=(49)199 
Location Parameter Beta minimum=(>0)le6 
Location Parameter Beta maximum=5e6 
# increments for Beta=(49)199 
delt_area = 

1.4141e+003 
wL = 

7.0475 
Underflow may occur indicated by NaN warning (for Large N; change wL to 0 
ans = 
Total volume under exact Likelihood surface 
VLew = 
2.565 le-073 

Lkemax = 
1.3998e-006 

ans = 
Total volume under Likelihood surface 
VL = 

1.0000 
Lknmax = 

1.3998e-006 
ans = 
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MLE Shape and Location of exact sub-set data by calculus 
Ae = 

4.7925 
Be = 

3.2756e+006 
ans = 
MLE Shape and Location of exact and right censored data set by calculus 
Aer = 

4.7925 
Ber = 

3.2756e+006 
Note that calculus computed MLE coincide with Graphical MLE... 
only when data censors are appropriate (no Left censored data). 
PRESS ANY KEY to Observe MLE Plot in Weakest Link Space. 
Calculus MLE is plotted for exact data in Weakest Link Plot 
PRESS ANY KEY TO CONTINUE 
Use Lower Right Graph (fig 2) to specify parameter-ranges... 
for refining Graphical identification of maximum 
Shape Parameter Alpha minimum=4.5 
Shape Parameter Alpha maximum=5 
Location Parameter Beta minimum=3e6 
Location Parameter Beta maximum=3.5e6 
From Figure 4, observe Contour maximums for Weakest Link plot of exact data 
Press any key to continue 
alpha max=4.7925 
beta max=3.2756e6 

{Dsi, 

» D3er 
xe = 

2377272 
2767101 
3720970 
2722597 
2541395 
3192715 
3514703 
3333827 
3845245 
3464846 
2454992 
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2703580 
2940130 
4338783 
2583897 
2971067 
2929710 
1417504 
1360949 
4112113 
3831401 
2852160 
3023503 

Total Number of Exact Data points 
ne = 

23 
xr = 

85059 
175586 
279772 
211932 
83595 
110733 
561919 
118074 
346851 
460586 
862632 
1012679 
2397479 
2603596 
2828806 
2958467 

xr = 
1.0e+006 * 
0.0000 
0.0851 
0.1756 
0.2798 
0.2119 
0.0836 
0.1107 
0.5619 
0.1181 
0.3469 
0.4606 
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0.8626 
1.0127 
2.3975 
2.6036 
2.8288 
2.9585 

Total Number of Right-Censored Data Points 
nr = 

17 
nra = 

16 
xl = 

[] 
Total Number of Left-Censored Data Points 
nl = 

1 
nla = 

0 
Total Number of Data Points 
N = 

39 
least square estimated shape and scale parameters 
alpha = 

3.1371 
beta = 
4.3298e+006 

Use least-square parameters-estimates to guide... 
entering parameter ranges for Likelihood calculation 
PRESS ANY KEY TO CONTINUE 
Enter the ranges of Weibull Parameters for Likelihood Calculation 
Shape Parameter Alpha minimum=l 
Shape Parameter Alpha maximum=15 
# increments for Alpha=(49)199 
Location Parameter Beta minimum=(>0)le6 
Location Parameter Beta maximum=5e6 
# increments for Beta=(49) 199 
delt_area = 

1.4141e+003 
wL = 

7.0475 
Underflow may occur indicated by NaN warning (for Large N; change wL to 0 
ans = 
Total volume under exact Likelihood surface 
VLew = 

2.565 le-073 
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Lkemax = 
1.3998e-006 

ans = 
Total volume under Likelihood surface 
VL = 

0.2057 
Lknmax = 

1.4237e-006 
ans = 
MLE Shape and Location of exact sub-set data by calculus 
Ae = 

4.7925 
Be = 

3.2756e+006 
ans = 
MLE Shape and Location of exact and right censored data set by calculus 
Aer = 

5.0397 
Ber = 

3.3332e+006 
Note that calculus computed MLE coincide with Graphical MLE... 
only when data censors are appropriate (no Left censored data). 
PRESS ANY KEY to Observe MLE Plot in Weakest Link Space. 
Calculus MLE is plotted for exact data in Weakest Link Plot 
PRESS ANY KEY TO CONTINUE 
Use Lower Right Graph (fig 2) to specify parameter-ranges... 
for refining Graphical identification of maximum 
Shape Parameter Alpha minimum=4.5 
Shape Parameter Alpha maximum=5.5 
Location Parameter Beta minimum=3. Ie6 
Location Parameter Beta maximum=3.5e6 
From Figure 4, observe Contour maximums for Weakest Link plot of exact data 
Press any key to continue 
alpha max=5.0397 
beta max=3.3332e6 

*>.L 

» D3ep 
xe = 

1360949 
1417504 
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1419192 
1665534 
1686906 
1832074 
1953242 
1962334 
2008784 
2113965 
2247111 
2248404 
2306790 
2355955 
2377272 
2433775 
2454992 
2541395 
2583897 
2639095 
2703580 
2722597 
2767101 
2852160 
2929710 
2938222 
2940130 
2971067 
3023503 
3024616 
3192715 
3213606 
3333827 
3380621 
3464846 
3514703 
3526737 
3638985 
3720970 
3734040 
3831401 
3845245 
3873994 
4112113 
4338783 
5149268 

Total Number of Exact Data points 
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ne = 
46 

xr = 
[] 

xr = 
2.225 le-308 

Total Number of Right-Censored Data Points 
nr = 

1 
nra = 

0 
xl = 

[] 
Total Number of Left-Censored Data Points 
nl = 

1 
nla = 

0 
Total Number of Data Points 
N = 

46 
least square estimated shape and scale parameters 
alpha = 

3.7328 
beta = 

3.1367e+006 
Use least-square parameters-estimates to guide... 
entering parameter ranges for Likelihood calculation 
PRESS ANY KEY TO CONTINUE 
Enter the ranges of Weibull Parameters for Likelihood Calculation 
Shape Parameter Alpha minimum=l 
Shape Parameter Alpha maximum=15 
# increments for Alpha=(49)199 
Location Parameter Beta minimum=(>0)le6 
Location Parameter Beta maximum=5e6 
# increments for Beta=(49)199 
delt_area = 

1.4141e+003 
wL = 

7.7407 
Underflow may occur indicated by NaN warning (for Large N; change wL to 0 
ans = 
Total volume under exact Likelihood surface 
VLew = 

3.6385e-141 
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Lkemax = 
3.0613e-006 

ans = 
Total volume under Likelihood surface 
VL = 

1.0000 
Lknmax = 

3.0613e-006 
ans = 
MLE Shape and Location of exact sub-set data by calculus 
Ae = 

3.7084 
Be = 

3.1381e+006 
ans = 
MLE Shape and Location of exact and right censored data set by calculus 
Aer = 

3.7084 
Ber = 

3.1381e+006 
Note that calculus computed MLE coincide with Graphical MLE... 
only when data censors are appropriate (no Left censored data). 
PRESS ANY KEY to Observe MLE Plot in Weakest Link Space. 
Calculus MLE is plotted for exact data in Weakest Link Plot 
PRESS ANY KEY TO CONTINUE 
Use Lower Right Graph (fig 2) to specify parameter-ranges... 
for refining Graphical identification of maximum 
Shape Parameter Alpha minimum=3.5 
Shape Parameter Alpha maximum=4 
Location Parameter Beta minimum=3e6 
Location Parameter Beta maximum=3.3e6 
From Figure 4, observe Contour maximums for Weakest Link plot of exact data 
Press any key to continue 
alpha max=3.7084 
beta max=3.13 81 e6 

foU 

» D3erp 
xe = 

2377272 
2767101 
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3720970 
2722597 
2541395 
3192715 
3514703 
3333827 
3845245 
3464846 
2454992 
2703580 
2940130 
4338783 
2583897 
2971067 
2929710 
1417504 
1360949 
4112113 
3831401 
2852160 
3023503 
1360949 
1417504 
1419192 
1665534 
1686906 
1832074 
1953242 
1962334 
2008784 
2113965 
2247111 
2248404 
2306790 
2355955 
2377272 
2433775 
2454992 
2541395 
2583897 
2639095 
2703580 
2722597 
2767101 
2852160 
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2929710 
2938222 
2940130 
2971067 
3023503 
3024616 
3192715 
3213606 
3333827 
3380621 
3464846 
3514703 
3526737 
3638985 
3720970 
3734040 
3831401 
3845245 
3873994 
4112113 
4338783 
5149268 

Total Number of Exact Data points 
ne = 

69 
xr = 

85059 
175586 
279772 
211932 
83595 
110733 
561919 
118074 
346851 
460586 
862632 
1012679 
2397479 
2603596 
2828806 
2958467 

xr = 
1.0e+006 * 
0.0000 
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0.0851 
0.1756 
0.2798 
0.2119 
0.0836 
0.1107 
0.5619 
0.1181 
0.3469 
0.4606 
0.8626 
1.0127 
2.3975 
2.6036 
2.8288 
2.9585 

Total Number of Right-Censored Data Points 
nr = 

17 
nra = 

16 
xl = 

[] 
Total Number of Left-Censored Data Points 
nl = 

1 
nla = 

0 
Total Number of Data Points 
N = 

85 
least square estimated shape and scale parameters 
alpha = 

3.5155 
beta = 

3.5723e+006 
Use least-square parameters-estimates to guide... 
entering parameter ranges for Likelihood calculation 
PRESS ANY KEY TO CONTINUE 
Enter the ranges of Weibull Parameters for Likelihood Calculation 
Shape Parameter Alpha minimum=l 
Shape Parameter Alpha maximum=15 
# increments for Alpha=(49)199 
Location Parameter Beta minimum=(>0)le6 
Location Parameter Beta maximum=5e6 
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# increments for Beta=(49)199 
delt_area = 

1.4141e+003 
wL = 

8.1461 
Underflow may occur indicated by NaN warning (for Large N; change wL to 0 
ans = 
Total volume under exact Likelihood surface 
VLew = 

4.569 le-201 
Lkemax = 
4.4805e-006 

ans = 
Total volume under Likelihood surface 
VL = 

0.1223 
Lknmax = 
4.4939e-006 

ans = 
MLE Shape and Location of exact sub-set data by calculus 
Ae = 

3.9825 
Be = 

3.1867e+006 
ans = 
MLE Shape and Location of exact and right censored data set by calculus 
Aer = 

4.0566 
Ber = 

3.2171e+006 
Note that calculus computed MLE coincide with Graphical MLE... 
only when data censors are appropriate (no Left censored data). 
PRESS ANY KEY to Observe MLE Plot in Weakest Link Space. 
Calculus MLE is plotted for exact data in Weakest Link Plot 
PRESS ANY KEY TO CONTINUE 
Use Lower Right Graph (fig 2) to specify parameter-ranges... 
for refining Graphical identification of maximum 
Shape Parameter Alpha minimum=3.5 
Shape Parameter Alpha maximum=4.5 
Location Parameter Beta minimum=3e6 
Location Parameter Beta maximum=3.5e6 
From Figure 4, observe Contour maximums for Weakest Link plot of exact data 
Press any key to continue 
alpha max=4.0566 
beta max=3.2171 e6 
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APPENDIX C. NPS CONSTANT AMPLITUDE FATIGUE TEST PROCEDURES 

1.        SYSTEM POWER & WARM UP PROCEDURE 

a. Hydraulic Power Supply (Pump Room) 

1) Turn on the main electrical power to the hydraulic service system 
which will also turn on the heat exchanger system and cooling 
towers. 

2) This switch is located on the left just inside the door of the pump 
room. 

3) If there is no power to this room, check circuit breaker panels P480 
andP6. 

4) Turn on the pump room ventilation fans. 
5) Check the status of the high pressure filter delta "p". 

b. Schenk Pegasus Controller 

1) Perform a system safety and area situational awareness check 
while ensuring the crush zone is clear. 

2) Note the control mode of the controller to make sure it is in the 
desired mode (POS). 

3) Check the limit status by noting which parameter are currently in 
override for safety purposes. 

4) The system is now ready to go to LOW PRESSURE 

CAUTION: Do not use PUMP ON to go to turn the hydraulic system on. 

CRUSH ZONE CAUTION: The area under the cross-head and above/around the 

actuator is a hazardous crush zone. Ensure body parts and objects remain in 

safe areas. Wear safety goggles and use the provided pointer, insertion clamp, 

and positioning mirror for obvious safety reasons. 

5) Press HYD LOW to go to low pressure. 
6) The hydraulic pump will engage in the low pressure mode. 
7) Check to see that the system is in position control. 
8) Wait a few seconds for the system to stabilize and prepare to go to 

high pressure. 
9) Press HYD HIGH. 
10) The hydraulic pump is now operating in the high pressure mode. 

Allow the system to warm up for approximately 30 minutes for 
system stabilization. 
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GRIP ALIGNMENT PROCEDURE 

1) Conduct the system power-up procedure (Procedure 1). 
2) Use the rigid alignment specimen (steel bar). 
3) The alignment specimen should be marked left, right, top, and 

bottom. 
4) This specimen is of similar length dimensions to simulate test 

coupons for accuracy. 
5) Position the lower grip at the actual coupon testing position of - 

2.095 inches. 
6) Refer to the coupon installation procedures if needed. 
7) Adjust the grip pressure to approximately 500 (psi) to suppress 

grip teeth indentations 
8) Insert the rigid alignment specimen in the top grip and close the 

grip. 
9) Ensure the specimen is aligned as an actual test coupon. 
10) Insert a hardened rod (drill rod) in the lower grip. 
11) The diameter of the rod should be approximately 0.010 (in) greater 

than the width of the rigid alignment specimen. 
12) Slowly close the lower grip on the rod without touching the 

alignment specimen. 
13) Measure and record the spacing on each side of the alignment 

specimen. 
14) Repeat the steps above in each of the geometric configurations to 

assess the angular and concentric adjustment needed. 
15) Adjust the alignment fixture accordingly if needed. 

3.        SYSTEM TUNING PROCEDURE 

1) Follow the power up procedure and allow the system to warm up. 
2) Follow the coupon installation procedures and insert a sample 

coupon to simulate an exact test coupon. 
3) Select the proper STATIC and SPAN loads, function wave shape 

and frequency to be used for the actual tests to be performed. 
4) Ensure amplitude control (AMPL CTRL) is engaged. 
5) Select DYN START to start the tuning process. 
6) Go to the TUNING/DRV SIG page. 
7) Select MANUAL PE> TUNING. 
8) Select MORE INFO. 
9) Select CROSSPLOT CONT and press ENTR. 
10) Select STD INFO. 
11) Observe the tuning crossplot. 
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12) Adjust the PIDF gains as necessary to suppress any loopholes or 
non-linearity of the crossplot line. The line should be at 45 
degrees for a sinusoidal wave form. 

13) Once the system is tuned, record and save the settings in the SAVE 
page to ensure all tests will be performed under these PIDF 
settings. 

4.        CONSTANT AMPLITUDE COUPON TESTING PROCEDURES 

a. Coupon Preparation 

1) Cut a 3A inch strip of 60 grit Emory cloth into 1.5 inch lengths. 
2) Use rubber cement or weather-strip adhesive to attach the Emory 

cloth sections to the gripping sections of the test coupon with the 
abrasive side to the coupon. 
a)        Application of a small amount at the far end of the gripping 

section away from the test section is sufficient since the 
purpose is only to hold the sections in place for safe coupon 
insertion. 

3) Allow the adhesive to set. This should only take ten to fifteen 
minutes. 

b. Coupon Installation 

1) Power up the system and allow to warm up. 
2) Set the lower grip position in the testing position. 
3) From the OPR page ensure the system is in POS control. 
4) Select STATIC and press ENTR. 
5) Perform a safety check in preparation to move the lower grip. 
6) Enter -2.095 in. and press ENTR. 

a) The lower grip should move to the selected position. 
b) Allow a 10 to 20 seconds for the grip to settle into position. 
c) Ensure the POS FEEDBACK value reads -2.095 in. 

7) The lower grip should now be in position ready for installation. 
8) Insert the coupon for testing. 

d) Grasp the coupon with the special insertion clamp. 
e) Place the coupon against the right side of the grips. 
f) Vertically align the coupon against the guides. 
g) Vertically position the coupon using an extension mirror, 
h) Align the bottom of the upper coupon gripping section with 

the bottom face of the upper alignment guide, 
i) Close the top grip slowly. 

9) The coupon should now be in position and ready for closing the 
bottom grip. 
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j)        Closing the bottom grip closes the loop of the control 
system. 

10) From the OPR page, prepare the system for a control mode switch 
from POS control to LOAD control. 

k)        Check to ensure the STATIC position still reads -2.095 in. 
11) Select MODE (F12). 

1)        The cursor will now be blinking on LOAD control 
indicating the system is prepared to go to LOAD control. 

12) Close the lower grip slowly but without touching the coupon 
13) Press ENTR. 
14) The system will ask "Are you sure?" 
15) Press ENTR and close the lower grip simultaneously. 
16) The system is now in LOAD control and the control loop is closed 

for servo valve balancing and testing. 

Servo Valve Balancing 

1) From the OPR page select STATIC. 
2) Enter 0 and press ENTR. 
3) Observe the LOAD FEEDBACK. 
4) If the LOAD FEEDBACK does not indicate approximately 0 the 

valve will need to be balanced. 
5) Select TUNING/DRV SIG (F4). 
6) Select MORE INFO (F5). 
7) Place the cursor on the VALVE BALANCE value. 
8) If the LOAD FEEDBACK value is (+) this value will need to be 

more negative.    . 
9) If the LOAD FEEDBACK value is (-) this value will need to be 

more positive. 
10) Enter the proper adjustment needed. 
11) Select OPR(Fl). 
12) Observe the LOAD FEEDBACK value. 
13) Repeat these steps until the LOAD FEEDBACK value indicates 

approximately zero. 

d.        Test Initiation 

1) Procedures 4(a-c) have been completed. 
2) From the OPR page check the following: 

a)        Ensure LOAD control and AMPL CTRL are selected, 
m)       Ensure the STATIC value is correct (0 for R=-1). 
n)        Ensure the SPAN value is correct (max. load value), 
o)        Ensure the proper FCTN GEN shape is selected (sine 

wave). 
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p)        Ensure the correct FREQ is selected (5 Hz). 
q)        Ensure the proper visualization windows are set. (i.e. 

CYCLE AND TOTAL CURRENT COUNT, LOAD 
FEEDBACK (UPPER/LOWER PEAK), and POS 
FEEDBACK (UPPER/LOWER PEAK)) 

3) From the LIMIT/DIG 10 page perform the following: 
a)        Select VALUES(F12). 
a) Reset the cycle counters to zero. 
b) In the CYCLE COUNT position select RESTART and 

press ENTR. 
c) In the TOTAL COUNT position select RESTART and 

press ENTR. 
d) Ensure every parameter is in OVR except ERROR. 

4) The system should now be ready to begin testing. 
5) Check the OPR page for the following items once again: 

a) Check that AMPL CTRL is indicated. 
b) Check the STATIC and SPAN values. 

6) Begin testing by pressing DYN START. 
7) The system has now begun constant amplitude fatigue testing. 
8) Allow the system to stabilize. 
9) Observe the LOAD FEEDBACK(UPPER/LOWER PEAK) values, 

a)        Ensure these values are within the constraints of the test. 
10) Perform the following to set and arm the limit detection system: 

a) Select the LIMIT/DIG 10 page. 
b) Select VALUES (F12). 
c) Select ERROR and set the limit at +/- 7%. 
d) Select under/over LOAD PEAK and set the limit at +/- 

40% of full span. 
e) Select POSITION and set the limits at +/- 0.05 inches from 

the peak values. 
f) Select LOAD and set the limits at +/- 15% of the peak 

loads. 
g) Reset any errors (*) that may be indicated for each limit 

detection category. (Put the cursor on the * and press 
ENTR.) 

h)        If the error does not reset, the limit may not be entered 
correctly, 

i) Reenter the limit and repeat. 
11) The limit detection system should now be ready to be armed. 
12) Select OVR ALL (F10). 
13) This will completely arm the limit detection system. 

Test Termination 
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1) Observe that the test coupon has broken, the hydraulic system has 
shut down, and the lower grip has settled down to the lowest 
position. 

2) Record the pump time. 
3) Record the number of cycles on the OPR page. 
4) OVR the errors on the LIMIT/DIG 10 page, 

r) Select OVR ALL (F10). 
5) From the OPR page switch to POS control. 

s)        Select MODE. 
t) Select POS and press ENTR. 
u)        The prompt will state "Are you sure?" 
v)        Press ENTR. 

6) The system is now in POS control to prevent the lower grip from 
moving. 

7) Conduct the system power up procedure. 
8) Release the grips to remove the coupon pieces with clamp. 
9) Mark the coupon pieces with the appropriate identification. 
10) Record the appropriate information in the data base. 
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APPENDIX D. SPECIMEN DRAWINGS 

NPS[Kemna, 1998 & Kousky, 1997] 
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APPENDIX E. FAILED SPECIMEN PHOTOS 

Figure E.l shows the failed specimens at the high stress level. The specimens are 

shown in the order of life (i.e., shortest life on the left). 

■TOE* —"yg"7f ' TPaf,8r3RS 

r- L- L Z i I a § 11 * ■ ■ 1 * 
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Figure E. 1.  {D14} Failed Specimens 

Figure E.2 depicts 33 of 39 failed specimens for the low stress level data in order 

of life. These are the specimens collected under this thesis investigation. 

Figure E.2. {D3} Failed Specimens 

Figures E.3 and E.4 are close up views of the first 12 specimens and the last 12 

specimens, respectively in Figure E. 1. 

Figures E.5 through E.7 give close-up views of all of the specimens shown in 

Figure E.2. 
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Figure E.3.  {D]4 } First 12 Specimens (Lowest Life) 

Figure E.4. {D14} Last 12 Specimens (Highest Life) 
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Figure E.5. Low Stress Level, First 13 Failed Specimens 

Figure E.6. Low Stress Level, Specimens 14 through 24 
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Figure E.7. Low Stress Level, Last 9 Failed Specimens 
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