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Abstract 

Torsion tests are conducted under fixed-end (axial constraint) conditions on thin tubular 
OFHC copper specimens. After a large shear strain of 2.2 in the forward direction, the specimen 
is twisted back to zero shear strain. From the tests, shear and axial stresses are obtained as a 
function of shear strain. These stress responses are also obtained from the Taylor-type 
polycrystal analysis with simple shear boundary conditions. Single-crystal constitutive 
parameters in the polycrystal analysis are obtained from uniaxial compressive tests conducted 
for large strains. Experimental and predicted torsion test results are compared. The Taylor 
method predicts the experimental shear stress response reasonably well under simple shear 
boundary conditions. Most of the salient features of the experimental axial stress response are 
captured by the Taylor prediction. 
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1. Introduction 

During armor-antiarmor interaction, material elements at the interface are subjected to large 

deformations. These material elements reach large plastic strains and rotations monotonically 

and then undergo a large reversal of strain and rotation [ 1]. When numerically simulating such a 

finite deformation, predictions significantly depend on the constitutive models that represent the 

plastic deformation behavior. Constitutive models in most computer codes are extensions of the 

small plastic deformation behavior. In these codes, extension to multiaxiality is achieved 

through the assumption that there exists a unique effective stress-strain behavior for materials at 

a given strain rate and temperature. Finite strain deformation experiments show this assumption 

is not valid for large deformations. That is, tension, compression, and torsion experimental data 

for large deformation cannot be correlated by an effective stress-strain representation [2,3]. The 

torsional effective stress-strain curve lies significantly below both the tensile and the 

compressive stress-strain curves at large strains. To simulate armor-antiarmor interaction 

accurately, it is necessary that the constitutive models in computer codes follow the response of 

the material at finite deformation more closely. These models should also be valid for 

nonmonotonic finite deformation loading situations. 

Thin-wall tubular torsion testing is widely used to obtain the shear stress-shear strain 

response of materials for small strains. When these specimens are twisted to large shear strains, 

material elements in the gauge area of the specimen rotate by significant amounts. In spite of the 

ability to obtain large shear strains and rotations, this type of testing is not that widely used for 

the evaluation and the development of finite deformation plastic models. 

It has been experimentally observed that when torsion tests are conducted with thin-wall 

tubular specimens either under fixed-end (no axial strain) or free-end (no axial stress) conditions, 

there will be an axial response: an axial stress in the fixed-end case and an axial strain in the 

free-end case [3, 4] These axial effects can be explained by the evolution of texture; they can be 

predicted by poly crystal methodologies based on crystal plasticity [3-7]. Also 

phenomenological methods for small strains have been extended, with limited success, in trying 

to explain these experimentally observed axial responses [8-10]. Because the predicted axial 

response is extremely sensitive to the finite plasticity methods used in the predictive schemes, 

the axial measurement is a good tool for evaluating these models [6]. In spite of this, only few 

large strain experimental studies on thin-wall tubular specimens are available in the literature 

with axial measurements [3, 4, 7, 8,11]. In addition, there is a reported study on solid specimens 

with axial measurements [5].  Because the stress varies along the radius, experiments on solid 
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specimens add another level of complexity to the evaluation of finite plasticity models; therefore, 

experiments with solid specimens are less attractive for model evaluations. All but one of the 

thin-wall specimen studies have been conducted with a monotonically increasing shear strain. 

To evaluate finite plasticity methods that are also applicable for a single reversal of loading after 

a large prestrain, experimental data are necessary for large deformation following changes in the 

path of straining. These experimental data are also important in studying plastic instabilities due 

to strain localization. Analyses of Pierce et al. [12] and Iwakuma and Nemat-Nasser [13] 

showed that the transient response during nonmonotonic loading and the corresponding changes 

in the instantaneous elastic-plastic moduli affect the plastic instabilities. The only reported study 

that measures the axial response following a change in the path of straining after a finite prestrain 

has been conducted by Lipkin and Lowe [11]. They have obtained axial and shear stress 

responses of 306L stainless steel for reverse loading after a finite prestrain of 1.6. In the 

evaluation of the polycrystal method, they used a portion of the results from the same test (shear 

stress response) to obtain the parameters of the crystal constitutive model. The gripping 

arrangement used in these tests produced a backlash, thus distorting both shear and axial stress 

transients just after change in the direction of loading. 

The main objective of this work is to obtain experimental forward/reverse torsional data for 

larger strains for another material. It will then make it possible to fully evaluate large 

deformation constitutive methodologies, especially crystal plasticity methods. The stress-strain 

distortions observed by Lipkin and Lowe [11] due to the backlash in their experiments are 

eliminated with a different gripping arrangement of the specimen. In contrast to the work of 

Lipkin and Lowe [11], parameters of the crystal constitutive model are obtained from a different 

type of test (uniaxial compressive test conducted for large strain). None of the torsional tests 

results is used in the crystal plasticity analysis. Therefore, the procedure employed in this paper 

is a better method for evaluation of the large deformation polycrystal methods. Also, instead of 

using the more complex numerical integration scheme employed by Lipkin and Lowe [11], 

crystal plasticity simulations reported here are conducted with a relatively simpler integration 

scheme by Kalidindi et al. [7]. This scheme can be used with a microcomputer instead of a 

supercomputer and hence can be used by more researchers. This work provides an evaluation of 

the polycrystal method by Asaro and Needleman [ 14] with the new integration scheme. 

This report presents the shear and axial stress responses of the experimental forward/reverse 

torsional study that was conducted under fixed-end (zero relative axial displacement) conditions. 

Thin-walled oxygen-free-high-conductivity (OFHC) copper specimens are monotonically 

strained for a maximum forward strain of 2.2 before reversing the strain to zero. OFHC copper 

was chosen as the material for the following reasons:   1) OFHC copper was previously studied 



under monotonically increasing uniaxial compression as well as torsion loading conditions for 

large strains. Single-crystal model parameters are already available from this study [3]. 2) 

OFHC copper is a single-phase material, and its deformation can be simulated using existing 

crystal plasticity methods. 3) This material can be deformed to large shear strains before failure 

and therefore is suitable for large deformation studies. 4) Copper is used in shape charged jets 

and is of interest to the Army. Axial and shear stress responses for forward/reverse shear loading 

are also computed with a Taylor-type polycrystal methodology (Asaro and Needleman [14]) and 

compared with the experimental observations. Taylor predictions are obtained by a combined 

experimental and analytical procedure; single-crystal model parameters are obtained from 

uniaxial compression experiments, and then this model is used to obtain the fixed-end torsional 

test predictions. 

2. Experimental Stress-Strain Behavior 

2.1 Material. 

Test specimens were machined from OFHC copper (99.99% copper). OFHC copper was 

received as bar stocks in the work-hardened condition. Torsion specimens were machined from 

this bar stock and were annealed after machining at 400° C in argon for 1 hr. This annealing heat 

treatment produced equiaxed grains of average diameter of 45 urn. 

2.2 Experimental Procedure. 

Specimen geometry of the torsion test specimen is given elsewhere [2]. This specimen is a 

modified Lindholm-type specimen that was used by White, Bronkhorst, and Anand [8] and 

Weerasooriya and Swanson [3]. The gauge portion of the torsion specimen is a thin-wall tube of 

0.240 in. (6.096 mm) length and external and internal diameters of 0.810 in. (20.574 mm) and 

0.750 in. (19.050 mm), respectively (0.030-in. wall thickness). The torsion tests were conducted 

using a tension-torsion hydraulic test machine. Specimens were attached to the test machine 

using a pair of hydraulic collet grips, thus eliminating any backlash similar to that observed by 

Lipkin and Lowe [11]. First, the specimen was twisted in a forward direction at a constant 

angular rate. Then the specimen was twisted in the reverse direction to the original position at 

the same angular rate. During both forward and reverse rotation, relative distance between the 

grips was kept constant to the extent of the ability of the test machine (within ± 0.0025 mm). 

The rate of twisting was chosen to give a nominal shear strain rate of 0.001 s'1 for these 

forward/reverse fixed-end torsion tests. 



Experimental torque, axial load, and rotational information were converted to shear stress, 

axial stress, and shear strain by using the thin-wall assumption for the gauge area of the 

specimen. Shear stress was derived using the expression 

Shear stress = Torque/ (2 izvmh), (1) 

where rm is the mean radius of the gauge section and t is the wall thickness of the gauge area. 

The axial stress was obtained by 

Axial stress = Axial force / (7t(R2 - r2)), (2) 

where R is the outer radius and r is the inner radius. The engineering shear strain was given by 

the expression 

Shear strain = (R6)/Gauge length, (3) 

where 0 (in radians) is the relative rotation at the grips. 

2.3 Torsion Test Results. 

Typical shear and axial stress vs. engineering shear strain curves obtained from fixed-end 

torsion tests are given in Figure 1. As can be seen, the experimental shear stress increases with 

shear strain up to a strain of 2.2. When the direction reverses, shear stress elastically rapidly 

decreases and reaches a negative value. Figure 2 shows the magnitude of shear stress plotted as 

a function of the total magnitude of shear strain. Experimental results do show a small 

Bauschinger effect. The slope of shear stress vs. shear strain decreases (between A and B in 

Figure 2) and increases again and then approaches a steady rate (between B and C) with further 

straining in the reverse direction. 

The axial stress is shown as a function of shear strain in Figure 3. Initially, the axial stress is 

compressive and reaches a peak value of about 23 MPa at an approximate shear strain of 1.2 as 

the shear strain is increased in the forward direction. When the shear strain reaches 2.2, the 

magnitude of compressive axial stress decreases to 5 MPa. Previous experiments [3] have 

shown that if the shear strain is increased further in the forward direction, the axial stress would 

become tensile. 



SHEAR STRAIN 

Figure 1. Experimental Shear and Axial Stresses Plotted as a Function of Shear Strain. 
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Figure 2. Magnitude of Experimental Shear Stresses Plotted as a Function of Total Shear 
Strain Showing a Small Bauschinger Effect 



When the strain is reversed, the magnitude of the axial compressive stress increases slightly 

before starting to decrease. As the strain is decreased further, the axial compressive stress 

decreases to zero. The axial stress then becomes tensile briefly before changing back to 

compression and starts to increase in magnitude again. This axial stress response is different 

from that observed by Lipkin and Lowe [11] for 304L stainless steel. For stainless steel, the 

axial compressive stress never reached a peak in the forward loading segment. Additional 

experiments are needed to fully explain these differences. 
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Figure 3. Experimental Axial Stress Plotted as a Function of Shear Strain. 

3. Polycrystal (Taylor) Model Prediction 

An overview of the Taylor-type rate-dependent polycrystal model of Asaro and Needleman is 

given in this section. We followed the formulation of the time integration of the polycrystal 

model as proposed by Kalidindi, Bronkhorst, and Anand [7]. The summary of their integration 

algorithm is also given in this section. With this formulation, the problem could be solved with 

PCs in view of the efficiency of the algorithm. The disadvantage of this formulation is that it can 

be applied easily only with the prescribed displacement boundary conditions. Mixed boundary 

condition problems can be solved by incorporating the polycrystal procedure in a finite element 

scheme. 



3.1 Kinematics of the Single Crystal. 

Let F be the global deformation gradient of the polycrystalline material. With the Taylor 

assumption, the deformation gradient of each constituent crystal of the polycrystal will have the 

same deformation gradient F. By multiplicative decomposition of the deformation gradient into 

elastic and plastic components, we obtain 

F = FeFp, (1) 

where Fe is the elastic and Fp is the plastic parts of the deformation gradient. Here Fp is the 

deformation gradient due to plastic slip only (det Fp = 1); it represents an elastically unloaded 

intermediate relaxed configuration of a stress free state with the orientation of the crystal lattice 

coinciding with the crystal lattice in the reference configuration. The deformation gradient Fe 

represents both rotation and elastic stretching of the crystal lattice (det Fe>l). Then the velocity 

gradient L is 

L = FF-1 = FT6"1 + FpLp F"1 ? (2) 

where 

LPo = FPFP_1 (3a) 

or 

Fp=LpFp. (3b) 

Here the notation (') indicates the derivative with respect to time. Since Lp
0 is the plastic 

velocity gradient in the relaxed configuration, LP is given by 

Lp = f>BS-, whereS" = s- ® n«, (3c) 
a=l 

where s" and n" are orthonormal unit vectors representing slip directions and slip planes, 

respectively, for each slip system a in the reference configuration and the ya is the plastic 

shearing rate in the octh slip system. For an fee crystal, there are 12 slip systems derived from its 

four {111} slip planes and three <110> slip directions from each slip plane. Consequently, in the 

octh slip system (n",s"), the unit vector n" represents a slip plane out of the four {111} planes 



and the unit vector s" represents a slip direction out of three corresponding <110> directions of 

the n" slip plane. From equation (2), 

Lp =DP+WP = FpLpFe"1 =Xtasa' where Sa = (Feso
a)® (<Fe_1), (4a) 

a=l 

where Dp and Wp are plastic stretch and spin tensors, respectively, and are given by 

Dp = £1a sym{Sa} and Wp = £ ya asym{Sa}. (4b) 
a=l a=l 

The rate of plastic stress power per unit reference volume is (see Anand [15]) 

cbp = (C T*): V,       with Ce = FcTFe _ (5) 

and 

T*=Fc-1{(detFe)T}Fe-T- (6) 

The stress T is the Cauchy stress of the crystal.  The second Piola-Kirchhoff stress, T\ is the 

elastic work conjugate of the Lagrangean elastic strain measure 

Ee = (1 / 2){Ce -1}, with Ce = FeTFe (7) 

But the plastic stress power per unit volume is 

12 

ä'=Txaya (8) 
a=l 

where xa is the resolved shear stress in the ath slip system. Therefore, from equations (5) and 

(8), resolved shear stress 

xa=(CT):S«. (9) 



3.2 Crystal Plasticity Constitutive Model. 

Single-crystal constitutive behavior relating the resolved shear stress, xa, and resolved shear 

strain rate, ya, is given by the viscoplastic rate power law 

Ya=To 

l/m 

sign(xa). (10) 

where yo is the reference shear strain rate, sa is the resistance of the slip system a (defined by 

the slip plane and the slip direction - total of 12 slip systems for fee copper crystal), and m is the 

strain rate sensitivity parameter (assumed to be the same for all slip systems). Also, sa can be 

considered as the slip resistance of the slip system a at the reference shearing rate, yo 

The slip resistance sa is evolved according to 

sa=£haPly|Jlj (11) 

where h°* is the instantaneous hardening modulus of the slip system a due to a shearing on the 

slip system ß. The form of the hardening moduli is given by 

haß = h(sß)qaß      (no sum of ß), (12) 

where qaß is a 12 by 12 matrix describing the relationship between self- and latent-hardening 

behavior of the crystal slip systems. The ratio of latent-hardening to self-hardening is assumed 

to be unity for coplanar and a value of 1.4 for noncoplanar systems. The slip-hardening 

modulus, h(s), is assumed to be given by 

h(s)=ho(i4T (i3) 

where constants h0, ss, and a are assumed to be the same for all slip systems. Here, ss represents 

the saturated slip resistance and h0 is a measure of the initial hardening modulus of the single 

slip system.   From this assumed slip-hardening behavior, after integrating equation (13) 

( 7 s    Ar   \ 

M=Jdy=j-^- 
o        s0 h(s) 



N-(a+D -(a+1) 

(1 + a) 
(14) 

for a * -1, where so is the initial slip resistance and the |y| is the absolute value of shear strain. 

Here, the Bauschinger effect is assumed to be negligible. 

From finite elasticity, the reduced constitutive equation for an elastic material in a grain can 

be written in the form 

T* = 4E1, (15) 

where L is the fourth-order elastic tensor. Assuming all the grains are of equal volume, with the 

Taylor assumption that the local deformation gradient of each grain is the same as the global 

deformation gradient, then the volume average Cauchy stress TG is 

1   N 

TG — — "V Tk 

IN
 k=l 

(16) 

where Tk is the Cauchy stress of each grain and N is the number of grains. The volume average 

stress TG is the global stress response of the polycrystal (Asaro and Needleman [14]). 

In the reformulation of the Asaro-Needleman polycrystal method with their efficient time- 

integration scheme, Kalidindi, Bronkhorst, and Anand [7] have assumed the following 

approximations: 

For small isotropic elastic stretches: 

2\i, 

and 

L = 2\il + (K—S1®1 

xa=T*:Sa. 

(17) 

(18) 

3.3 Numerical Procedure for Model Predictions. 

In the simulation of the experiments reported in this report, the time-integration procedure 

proposed by Kalidindi et al. was used to integrate the aforementioned polycrystal methodology. 

This formulation of the time-integration procedure is summarized in this section. 

10 



The problem of integrating this polycrystal model can be summarized as follows. Let X be 

the time At after the current time t. Then the problem is to find the list { Fp (X), sa(X), T(X)} for 

each grain at time X when the current state {Fp(t), sa(t), T(t)} of all the grains and the global 

deformation gradients at t and X are given. Once the stress at each grain is known, global stress 

behavior at X can be calculated from equation (16). Following equation (4a), the new texture at 

the time X for each crystal can be computed. 

sa
x=F\X)sa

0 (19) 

and 

<=Fe-Ttt,)n°, (20) 

where (s",n") is the slip system in the deformed configuration. Since the slip systems in the 

undeformed configuration (s",n") are orthonormal, the slip systems in the deformed 

configuration are also orthonormal.   If Fe(X) is found, then the slip system in the deformed 

configuration for each crystal at the time X can be computed, and hence the pole figure can be 

constructed for the deformed polycrystal. 

The starting point for the formulation of the time integration procedure is the result obtained 

by Weber and Anand [16] in the implicit time-integration of the evolution equation for Fp given 

in equation (3b): 

Fp(X) = exp{AtLp(?t)}Fp(t). (21) 

By neglecting terms of higher order than Ay" for small Ay" and using equation (3c), 

12 
Fp(?i) = {I + £AYaS"}Fp(t) (22a) 

a=l 

or 

12 

Fp-1(X) = Fp-1(t){I-2AYaSH, (22b) 
a=l 

11 



where 

Aya=ya(?i)At. (23) 

From equations (23), (18), and (10), Ay" is given by 

Aya=y0 At 
rp«   . qa   1/m 

sign te' i(T*:Sa)? (24) 

Substituting equations (7) and (1) in the elastic constitutive equation (15), the following 

equations are obtained (see Kalidindi et al. [7] for details): 

T(l) = Y,T-^AyaC\ (25) 

and 

a=l 

12 

where 

saa) = sa(t) + £haß|Ayß|5 (26) 
ß=i 

T,tr = ^A + 3K-2M.(trA)1 _ 3KX (2?) 

6 2 

A = Fp-T(t)FT(X)F(X)Fp-T(t), (28) 

6 
(29) 

and 

Ba=AS0
a+SfA. (30) 

Equations (25) and (26) are 2 sets of nonlinear simultaneous equations (T*(A,) with 6 

unknowns and sa(A.) with 12 unknowns) and can be solved using a modified Newton-Raphson- 

type algorithm (see Kalidindi and coworkers [7] for the details of the algorithm).  Once T*(X) 

and sa(X) are known, FP(X) is obtained using equation (22a) and Fc(k) is obtained from 

equation (1). The new texture at time T can be found by the polar decomposition of Fe(X) into 

its elastic lattice rotation component [ Re(^)] and elastic stretching component and by using the 

equations (19) and (20) to obtain 

12 



sa
x=Re(X)sa

0 (31) 

and 

< = Re-T(aX, (32) 

where s" (slip direction) and n" (slip plane) are unit vectors representing the slip system a at 

timeX. 

A computer program based on the aforementioned algorithm is given elsewhere [3]. 

3.4 Model Predictions. 

The computer program by Weerasooriya and Swanson [3] was modified to include 

forward/reverse loading. This revised program was used to obtain the polycrystal model 

predictions of the forward/reverse loading of the fixed-end torsion (simple shear) tests. Single- 

crystal model parameters obtained earlier from the uniaxial compressive test data [3] were 

employed in the simulations. The values of these parameters are strain rate sensitivity, 

m = 0.012; latent hardening, q = 1.4; initial hardening modulus, h0 = 700 MPa; initial slip 

resistance, s0 = 16 MPa; saturated slip resistance, ss = 155 MPa; and the exponent in the 

hardening modulus, a = 3.8. The material elements are assumed to follow a simple shear motion, 

which is given by 

x = (X1+y tX2)e1+X2e2+X3e3> (33) 

where y is the engineering shear strain rate, X {Xi,X2,X3} and x are the original and current 

positions of a material element, respectively, and $ {i = 1, 2, 3} are orthonormal base vectors of 

a global rectangular Cartesian coordinate system. Here, ei is the shear direction, e2 is the axial 

direction, and e3 is the radial direction of the specimen. 

Computations were conducted using a PC. The initial crystallographic texture was assumed 

to be isotropic (the grains were randomly oriented); the initial distribution of the crystals were 

taken from Molinari et al. [17] and was given as 300 sets of Euler angles. Each set of Euler 

angles would rotate the axes (<100>) of the corresponding crystal to coincide with the global 

fixed rectangular Cartesian axes. The Schmid tensor, S", was computed with respect to the 

global coordinate system for each crystal by 

13 



S^ = QS?Q\ (34) 

where S" is defined with respect to an orthonormal basis associated with the crystal lattice 

<100> directions. Twelve slip systems that define S" for fee crystal are given in Table 1. 

Table 1. Twelve Slip Systems for fee Crystal 

slip system 
a 

slip plane 
na 

slip direction 
sa 

1 (1 1 1)W3 [-1 1 0]/V2 

2 (1 1 1)/V3 [-1 0 1]/V2 

3 (1 1 1)/V3 [0-1 1]/V2 

4 (-1 1 1)W3 [ 1 1 0]/\2 

5 (-1 1 1)/V3 [ 1 0 1]/V2 

6 (-1 1 1)/V3 [ 0-1 1]/V2 

7 (1-1 1)/V3 [ 1 1 0]/V2 

8 (1-1 1)W3 [ 0 1 1]/V2 

9 (1-1 1)/V3 [ 1 0-1J/V2 

10 (1 1-1)/V3 [ 0 1 1]W2 

11 (1 1-1)/V3 [ 1 0 1]W2 

.2 (1 1-1)/V3 [1-1 0]/V2 

The orthogonal matrix Q, which rotates the crystal basis to coincide with the global fixed 

basis, is given by 

14 



Q = 

cos <|) sin 0 sin § cos CO 

-sin ()) sin CO cos 0 4cos (j) sin CO cos 0 

-cos (j) sin CO -sin ty sin CO 

-sin <|> sin co cos 0 cos (j) cos co cos 0 

sin (j) sin 0 -cos (|) sin 0 

sin co sin 0 

cos co sin 0 

cos 0 

(35) 

where {0 < <J> < 27C, 0 < 0 < %, 0 < co < 2%) are the three Euler angles that represent this 

transformation. Our previous work showed that there was no appreciable difference in the 

results whether 300 or 100 crystals were used in simulations. Therefore, simulations were 

conducted with a subset of 100 crystals. The initial random distribution of these 100 crystals are 

given in Figure 4 as equal area projection {111} pole figures. 

X2 

Figure 4. {111} Equal-Area Projection Pole Figures of Initial Randomly Oriented 100 
Crystals. 

Figure 5 shows the shear (T12), axial (T22), and hoop (Til) stresses plotted as a function of 

shear strain from the polycrystal simulation. Predicted shear stress increases with increasing 

shear strain until the shear strain is reversed. After the direction of the shear strain is reversed, 

the shear stress rapidly (elastically) unloads to a negative value. When the magnitude of the 

shear stress reaches the maximum stress at the end of the forward loading, the work-hardening 

rate decreases and then starts to increase again. This work-hardening behavior is identical to that 

observed from experiments and is discussed earlier. 

15 



Axial and hoop stresses shown in Figure 5 are opposite in sign for a given strain. That is, 

when the axial stress is compressive, the hoop stress is tensile and vise versa. As the shear strain 

is increased in the forward direction, initially the axial stress is compressive. It reaches a 

compressive peak, and then the magnitude of the stress starts to decrease. When the loading is 

reversed, the axial stress rapidly decreases to zero and then becomes tensile. As the shear strain 

is reduced to zero, tensile axial stress reaches a tensile peak and decreases to a value close to 

zero. 

ni 

on 
V) 
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1 1.5 2 
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Figure 5. Predicted Shear, Axial, and Hoop Stresses as a Function of Shear Strain. 

4. Comparison of Experimental Results With Polycrystal 
Model Predictions 

Figure 6 compares the predicted and experimental shear stresses as a function of the shear 

strain. Figure 7 shows both the experimental and simulated magnitudes of shear stress plotted as 

a function of the total magnitude of shear strain. Because, in simulation, the single slip 

hardening behavior [see equation (14)] was assumed to have no Bauschinger effect, the 

prediction does not show any either. During initial forward loading, up to a shear strain of 1.5, 

shear stress predicted by the polycrystal plasticity method is higher than the experimental stress 

at most by 31 MPa (initial higher work-hardening rate in the prediction). However, beyond this 

shear strain, the model generated shear stress agrees with the experimental data extremely well 

(difference is at most 8 MPa). 
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Figure 8 compares the predicted and experimental axial stress-shear strain responses. The 

overall trend (loop)—initially compressive with a peak and then tensile with a peak—of both 

experimental and predicted axial stress responses is similar for most of the forward/reverse 

loading. In the forward loading segment, both experimental and predicted axial stresses are 

compressive; however, the magnitude of the prediction is larger than that from the experiments. 

Both experimental and predicted axial stresses reach a compressive peak, approximately at the 

same values of shear strain. When the shear strain is reversed, predicted compressive axial stress 

decreases rapidly; in contrast, the experimental compressive axial stress increases before it starts 

to decrease. Beyond this point, both predicted and experimental axial stresses reach tensile 

peaks and then decrease back to a small compressive residual stress as the specimen is twisted 

back to its original configuration (shear strain of zero). Shear strain values at these peaks during 

reverse loading are also approximately equal. Although the prediction shows a tensile stress 

during most of the reverse loading, experiments show a tensile stress only for a small section of 

the reverse loading segment. Even though the overall trends of both the predicted and 

experimental axial responses are similar, in general, the model overpredicts the magnitude of the 

experimental axial stress. 
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Figure 8. Experimental and Predicted Axial Stresses Plotted as a Function of Shear Strain. 

The model simulation ideally assumes zero axial strain. In the fixed-end torsion experiments 

conducted by Weerasooriya and Swanson [3] and Lipkin and Lowe [11], they have shown that it 

is not possible to completely eliminate the axial strain in the gauge area.   Appreciably large 
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combined compliance of the specimen outside the gauge area and the test machine is the reason 

for this axial strain. Simulation by Lowe and Lipkin [18] showed that the relaxation of the 

assumed zero axial strain constraint reduced the magnitude of the predicted axial stress. 

The observed differences in the predicted and experimental axial stress transients just after 

the change in the direction of loading may also be due to the large combined compliance of the 

specimen (outside the gauge area) and the test machine. This combined compliance could be a 

nonlinear function of the displacement due to some plastic deformation at the tapered shoulder of 

the specimen. During loading, rate of rotation at the rotation measuring device of the test 

machine is kept constant. If the compliance between the rotation measuring device and the 

gauge area is appreciable, the relative rotation at the ends of the gauge area does not follow the 

applied rotation to the test machine. Especially when the loading is reversed, relative rotation at 

the gauge area could follow a complex response that could even include changes in the direction 

of loading. Therefore, the experimental axial stress transient response after the load reversal is 

not reliable. 

Based on the results, the following recommendations are suggested for future work. In the 

experiments, to eliminate any axial strain in the gauge area, torsion tests can be conducted with 

real-time measurement and control of the axial strain. Controlling axial strain in the gauge area 

requires complex new extensometry that should fit into the short gauge section with large 

rotational displacements. The other possibility is to measure the average axial strains in the 

gauge area using an optical method, while the experiments are being conducted with the relative 

axial displacement between the grips held at zero. In this case, during simulation, the measured 

axial strain can be used as an input boundary condition. 

The Taylor method assumes a uniform deformation gradient tensor for each grain that is 

identical to the applied global deformation gradient. Though this assumption satisfies the 

compatibility between grains, it violates the equilibrium condition. If the simulation is 

conducted using a finite element code with the polycrystal procedure implemented in it, we 

could have obtained a better agreement between simulated and experimental stress-strain data. 

In this case, at least between the elements, the equilibrium condition is satisfied. Such a 

procedure is recently suggested by Kalidindi using the ABAQUS finite element code [19]. He 

has shown that with this procedure, the prediction closely resembled the experimental results. 
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5. Summary and Conclusions 

Experimental data for a thin-wall tubular OFHC copper specimen subjected to reverse 

torsional loading after a large prestrain in the forward direction were presented in this report. 

The tests were conducted at a shear strain rate of 0.001 s1 under fixed-end conditions (zero axial 

displacement). Experimental results were presented as axial stress vs. shear strain plots. Data 

also include the shear stress in the thin tubular specimen. The experimental shear and axial 

stress responses are compared with the Taylor-type polycrystal model predictions. For the 

simulation, parameters for single-crystal constitutive behavior were obtained from large 

deformation uniaxial compression experiments. 

In general, the predicted shear behavior agreed with the experimental measurements; a 

difference of at most 31 MPa was observed between the measured and the predicted shear 

stresses in the forward loading up to the shear strain of 1.5. For the rest of the forward and 

reverse straining, the predicted followed the experimental results reasonably well. 

Although the simulated axial stress was higher than the experimental axial stress, the 

predicted overall response was similar for most of the shear loading; both predicted and 

experimental axial stress responses reached a compressive peak during the forward straining and 

a tensile peak during the reverse straining, at approximately same values of shear strains. Due to 

the inherent complexities in the experimentation (inability in holding axial strain in the gauge 

area at exactly zero), the experimental axial transient response just after the change of the 

direction of loading was different from the corresponding predicted stress transient. 

In conclusion, the Taylor-type polycrystal method, with the assumed simple shear boundary 

condition, predicts the shear stress response reasonably well. The model-calculated axial stress 

response for most of the forward and reverse loading matched the salient features of the data. 

Axial compliance of the load train and the specimen outside the gauge area affects the 

experimental axial stress response. Due to the inherent difficulties in conducting ideal simple 

shear experiments, a reformulated Taylor procedure with the measured axial displacement 

boundary conditions can be a better predictive method of the experimental results. 
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