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Abstract 
In the look-down/shoot-down scenario, the next genera- 
tion of air-to-surface missiles will rely on IR sensors 
and advanced signal processing to detect small (or point) 
targets in highly cluttered and noisy environments. In 
this paper, we present a novel wavelet detection algo- 
rithm which incorporates adaptive CFAR detection 
statistics using the bootstrap method. Following detec- 
tion, the estimate of interframe optical flow is made 
using synthetic discriminant filters (SDF's). The detec- 
tion coupled with the new optical flow estimate will 
enable higher performance in tracking small maneuver- 
able targets. Results for the wavelet bootstrap detection 
are presented and compared to a conventional matched 
filter. 

1. Introduction 
Detection of small targets in the look-down shoot- 

down situation is becoming increasingly more difficult 
as target signatures become more noise-like and en- 
gagements take place in cluttered environments where 
the clutter is structured or extended. Such cluttered, lc / 
signal to noise ratio (SNR) environments push the 
limits of conventional detection and tracking algo- 
rithms. This scenario represents a challenging and un- 
solved problem. Modern staring focal plane arrays 
(FPA's) with their superior acquisition ranges and coun- 
termeasure resistance can potentially be used to solve 
the look-down shoot-down problem if two problems can 
be overcome. First, the structured clutter present in 
these situations is not fully described by the simple 
(Gaussian) models commonly used in matched filtering 
[1] which results in lower detection rates and more false 
alarms. The second problem is the presence of fixed 
pattern noise in the IR sensor itself. Fixed pattern 
noise results from the nonuniform response of the detec- 
tors to a uniform incoming signal. Wavelet based 
image processing enables one to overcome these two 
problems. 

This research has quantified the utility of wavelet- 
based image-processing algorithms by  addressing the 
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point target-detection problem in fixed pattern noise and 
in structured clutter. This research follows and parallels 
the standard detection paradigm that has been success- 
fully used in radar detector design. Our research has 
proceeded by first solving the detection problem when 
only array noise is present by characterizing the detector 
array nonuniformity response. Next, we formulated an 
optimum detection algorithm while recognizing the 
array noise limits by defining an adaptive constant false 
alarm rate (CFAR) point target-detection algorithm that 
maximizes the detection signal-to-clutter ratio. The 
effectiveness of these detection algorithms are evaluated 
by using dynamically controlled point targets embedded 
in a selected set of measured IR backgrounds. The point 
targets are modeled using a simulated Gaussian target 
with parametrically varying amplitude, size, and polar- 
ity embedded in both fixed pattern noise and in scene- 
based video images. 

Wavelets have properties that suit them to look-down- 
shoot down antiair and air-to-surface problems; for 
example, they are scaleable—image features at one scale 
can be effectively rejected, while other features (like a 
small target) can be searched out preferentially. Wav- 
elets can extract spatial information (e.g., edges) and can 
"whiten" the fixed pattern 1/f-type noise present on 
InSb and HgCdTe staring arrays [2-5]. The number of 
additions and multiplication's needed to compute the 
fastest (Daubechies) wavelet transform is directly pro- 
portional to the number of pixels in an array and can be 
implemented on commercial off-the-shelf (COTS) digi- 
tal signal-processing hardware. 

The rest of the paper is organized as follows. 
The first section gives a brief overview of wavelets, and 
highlights the reasons that wavelets are beneficial in 
this case. The section is written to give a general de- 
scription of wavelet theory, and the reader is encouraged 
to check the references [6-8] for more details. The sec- 
ond section describes the wavelet CFAR detection algo- 
rithm. The algorithm employs bootstrap statistical 
processing, and this topic is discussed at length in the 
second section. Also in this section one of the problems 
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Figure 1  Examples of Wavelets. 

discussed in the introduction, namely fixed pattern noise 
is covered. In addition to the wavelet CFAR detector, 
the synthetic discriminant filters as developed by Maha- 
lanobis etal[9-l3] are discussed and how they might be 
used for optical flow estimates. The third section pres- 
ents the overview of integrated detection and tracking.. 
Finally we present some results and conclusions. 

2. Wavelet Overview 
The development of wavelets is fairly recent, most of 

the basic theory having been developed in the past 10 or 
more years with major contributions from researchers in 
France and the United States. Virtually any function— 
subject to some simple constraints—can be a wavelet. 
Since the formalism of the wavelet transform was first 
introduced by Grossman and Morlet [14], many excel- 
lent books [6-8,15-20] including the classic SIAM 
monograph by Daubechies have appeared. With this 
wealth of material available, here we will only give a 
brief overview of wavelet analysis and how wavelets can 
be brought to bear on the detection problem. 

Wavelet transforms translate and dilate a suita- 
bly chosen mother wavelet, which decomposes the 
signal into its local multiscale resolution (coarse to 
fine). Although wavelets are at least as fundamental as 
Fourier analysis, u,,j are more flexible and provide 
information unavailable from the Fourier transform. 
Like Fourier analysis, wavelets can be interpreted as a 
basis set in some normed function space. Wavelets are 
compactly supported (non-zero on some finite interval 
which provides good localization properties. Localized 
processing means targets and clutter retain their proper 
locations before and after processing, which is ex- 
tremely important for detection. The research of Car- 
mona [21] andMallat [22] suggests that transients will 
be localized in certain frequency subbands of the wavelet 
transform. 

An example of a simple wavelet is the Haar 
wavelet which has compact support, is quite simple, 

V(0: -1 

0 < t < 1/2 

1/2 < t < 1 

0 otherwise 
and the companion scaling function is 

m 0<t<l 

otherwise 

The panels in Figure 1 illustrate the Mallat, Haar, and 
Daubechies wavelets, respectively. Although Haar wav- 
elets are simple and compact in the time domain, they 
are not well localized in Fourier space where they decay 
very slowly as co~l, because of the sharp discontinuity. 
Figure 2 is an example of the standard wavelet trans- 
form in a packet architecture. The labels L (scaling 
coefficients) and H (wavelet coefficients) suggest their 
role as low- and high- pass filters respectively. As an 
example, for the Haar wavelet L is an averaging filter 
and H  is   a differencing filter.   Their  elements   are 

L={l/V2 , 1/V2} and H={l/V2, -1/V2}. The 
wavelet packet transform is a generalized version of the 
wavelet transform (Reference v). Repeating the wavelet 
transform by using the output of either or both the low 
(L)- and high (H)-pass filters as new inputs creates a 
variable bandwidth filter that is multiresolutional. The 
input signal is decomposed into low- and high-frequency 
bands by convolving the signal with the filter and then 
subsampling (e.g. downsampling by 2 ). 

NPUT  — 

FIGURE 2. Wavelet Packet Architecture. 

The two-dimensional transform for images is 
easily constructed from a tensor product of the one- 
dimensional wavelet filters in the appropriate order as 
horizontal and vertical convolutions. As the image is 
decomposed by these filters, their frequency range di- 
vides the image into frequency subbands. Wavelet 
analysis offers a time-frequency or space-frequency 
tradeoff that captures low-frequency signals with great 
frequency accuracy and high-frequency signals with great 
temporal accuracy—a very reasonable tradeoff, since we 
can not simultaneously have both time and frequency 
accuracy , because of the Heisenberg uncertainty princi- 
ple. The dimension of the wavelet subimages is directly 
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related to the original image. When the maximally 
decimated transforms are downsampled by two, the 
dimension of the image is decreased by 1/2 at each node 
(i.e., image dimension is decreased by 1/4). Thus, the 
transformed image will not require any more memory 
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Figure 3. Wavelet Transform 

than the original image. Maximally decimated means 
that the remaining sample after decimation obeys the 
Nyquist sampling rate. 

Figure 3 illustrates a wavelet decomposition of an 
image into unequal subbands. The ordering of the tree 
branches are shown in the pyramid structure. The image 
is split by iterating the four-band decomposition three 
times. The lowest-frequency components are located in 
the upper left corner. 

In Figure 4a512by512 image and its wavelet trans- 
form are displayed. Smooth regions of the original 
image will appear in the low-frequency subimage, and 
sharp edges will appear in the high-frequency su- 
bimages. The high pass filters are labeled by d an' the 
low pass filters are labeled by s. For example, the dl-dl 
256 by 256 subimage in the upper right corner repre- 
sents the vertical and horizontal convolutions using the 
H filter. It has mostly all high-frequency features. The 
256 by 256 si-si subimage, which has mostly all low- 
frequency features, represents the vertical and horizontal 
convolutions with the L filter. It was used as the new 
input image for the next application of the wavelet 
transform. The s3-s3 128 by 128 subimage in the lower 
left corner is the output of the third application of the 
vertical and horizontal convolutions with the L filter. 
The white patches are the multiresolution version of the 
original vehicles; some detail in the subimages is 
washed out because of the graphical transcription into 
this document format. 

To summarize, wavelets are suitably defined functions 
that can be used to decompose signals into a time- 
frequency or space-frequency space. The ability of a few 
wavelet coefficients to efficiently represent an image 
within the reduced dimensional subimages means that 

the computational burdens associated with pattern- 
recognition algorithms can be accommodated. In addi- 
tion to being computationally efficient and being per- 
fectly invertible, wavelet transforms have a variety of 
other properties which make them well suited to the 
task of point target detection. These properties are 
described in the next section. 

3. Bootstrap, Wavelets and CFAR 
Detectors 

Detection of pulses in the presence of interfer- 
ence or noise requires some type of statistical detection 
strategy. The wavelet-based detection strategy used in 
this report is based on the research of Carmona [21]. 
The functional diagram of our wavelet-based constant 
false alarm rate (CFAR) detector is shown in the sche- 
matic in Figure 5. 

A CFAR detector is necessary to control the false 
alarm rates that are needed to adapt to varying interfer- 
ence and noise. Moreover, any properly designed CFAR 
detector must constantly monitor and adaptively esti- 
mate the CFAR threshold, because a well-known way 
to defeat a CFAR detector is to raise the noise power 
gradually [23]. To do this a CFAR processor must 
adaptively estimate the probability of false alarm rate. 
Thus, any useful CFAR detector must develop an adap- 
tive test statistic for the   false alarm probability    Pfa 

= Pr{decide s(t) is present: s(t) is absent} and the prob- 
ability of detection Pd- Pr{ decide s(t) is present: s(t) is 

present}. 
The original image is in the upper left hand panel, 

while it wavelet transform is in the upper right hand 
panel. After the wavelet transform the pixel values in 
the sub'mage are lexicographically ordered by convert- 
ing the subimage to an n x 1 vector. Modeling the 
density functions that are directly dependent on the d- 
scale of the wavelet transform, while perhaps not hope- 
less, is nontrivial. [24] One fundamental result is 
known: namely, when the input noise is Gaussian, the 
density functions of the d-scales are also Gaussian [22] 
and the variance is decreased by 2"j as the scale index 
integer j is decremented For this reason the bootstrap 
technique seems ideally suited to the task of adaptively 
setting CFAR in complex scenes with non-Gaussian 
background noise. 

The lower left hand panel represents the bootstrap 
option. A basic principle of the bootstrap method as 
enunciated by Efron, who named it and demonstrated its 
scope, is that it represents "the substitution of compu- 
tational power for theoretical analysis. The payoff, of 
course, is freedom from the constraints of traditional 
parametric theory, with its over reliance on a small set 
of standard models for which theoretical solution are 
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Figure 4. Original Image and Wavelet Subimages. 
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Figure 5. Wavelet-Based CFAR Detector. 

available" [25]. Thus, the bootstrap relieves us from 
having to make parametric assumptions about the un- 
derlying background noise. However, it does have its 
own modeling requirements such as the degree of corre- 
lation present in the wavelet coefficients and the required 

number of training sets for valid inference. According 
to Hall, the insight of Efron was to realize that in com- 
plex situations, when bootstrap statistics are awkward 
to compute, they may be approximated by Monte Carlo 
"resampling" [26]. The name "bootstrap" refers to the 
use of the original data set to generate new data sets by 
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sampling with replacement.   A schematic of the basis 
bootstrap resampling processing is shown in Figure 6. 

Given a sample x* of size n, random samples of size n 
are drawn with replacement B times from the original 
sample, and the value of a statistic is then computed for 
each sample. Although there is not a complete and 
rigorous theory for our extension of the bootstrap to 
these problems, we take our inspiration from the fol- 
lowing guidelines found in the paper Efron and Tibshi- 
rani [27], namely, (1) the bootstrap algorithm can be 
applied to almost any statistical estimation problem or 
data structure, and (2) "the statistic t(x) can be anything 
at all, as long as we can compute t(x*) for every boot- 
strap data set x*." 

B BOOTSTRAP 
SAMPLES D 

SELECT A SAMPLE 
FHOM X' 

S i ^ 
t(x,) t(x,) »<*3> 

\T7 
SAMPLE WrTH 

REPLACEMENT 

COMBINE 
BOOTSTRAP 

REPLICATIONS 

DRAW STATISTICAL INFERENCE 

FIGURE 6. Basis Bootstrap Resampling Process. 

The computational overhead associated with the boot- 
strap is directly proportional to B times the number of 
operations in the computation of T(d*). For a sample of 
size n, the number of operations is proportional to 
B*0(n) for a maximally decimated Daubechies wavelet 
transform and to B*0(n log n) for an undecimated trans- 
form. 

3.1  MATCHED  FILTERING 
It is well known that the optimal detector for known 

signals in additive white Gaussian noise is the matched 
filter, which is normally implemented by correlating the 
received signal, r(t), with the known signal, s(t) ■ In 

discrete time we compute 

g(r) =Tr£ 

where r and s are vectors containing samples of the 
received signal and known signal. These statistics are 
compared to a threshold to decide whether the signal s 

was present during the observation interval. When the 
arrival time of the signal is unknown one typically 
correlates at each possible time shift. The output of the 
filter exceeding a threshold indicates the presence of the 
signal, and the location of the peak output indicates the 
location of the signal. 

For non-white Gaussian noise the optimal discrete- 
time detector uses essentially the matched filter modified 
by multiplication by the inverse of the noise covariance 
matrix: 

g(r) ="/!-'£ 
Another well-known result in detection theory is that, 

for known signals in additive Gaussian noise, one can 
expand the known signal and the received signal in 
another orthonormal basis and perform the detection 
process in the coordinate system without degrading the 
overall performance. Daubechies' wavelets are an or- 
thogonal transform. When the known signal is cor- 
rupted by non-Gaussian noise, there is usually no 
simple derivation for the optimal detector. In many 
cases the optimal detector is unknown, which explains 
the existence of numerous competing suboptimal ap- 
proaches. 

To evaluate the performance of the wavelet bootstrap 
detector it is necessary to embed and compare it within 
the matched filter context. Figure 7 is a block diagram 
illustrating the details of matched filter detection. The 
original derivation is by Chen and Reed [28] with help- 
ful discussions in [29] 

Before we explain the concepts associated with the 
main block s, some of the terms should be defined. An 
image chip is a sub-block of pixels on the array; often 
it will be a 3 by 3 or 4 by 4 square of pixels. The noise 
sample is another image chip, ideally devoid of targets, 
that is selected to estimate the covariance of the back- 
ground noise/clutter. The template s is a model of the 
target and can be quite detailed. For small targets it is 
often a simple numerical approximation for the optical 
point spread function. Using CFAR detectors is equiva- 
lent to testing the hypothesis H„(no target present, only 
clutter/noise) denoted by £ versus the alternative hy- 
pothesis H, (target and clutter/noise present) denoted by 
b + £ by using a simple threshold. The clutter co- 
variance is denoted by ££, and its inverse multiplied 

by the transpose of the lexicographically ordered tem- 
plate is the matched filter. If the clutter distribution is 
Gaussian and the filter is linear, then the filtered clutter 
is also Gaussian. Assuming a Gaussian clutter model, 
the Gaussian log likelihood ratio test [28] is designed to 
make the optimum distinction between the two hy- 
potheses. The threshold is  set by noting that these 
assumptions are equivalent to testing a mean shift mod- 
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Figure 7. Matched Filter Detection. 

eled by the template s in the multivariate normal distri- 
butions 

H,x = s+£  X~  N (S, E) 

H0x= £ x~ N(0,E) 

Thus, the false alarm can be estimated using the multi- 
variate normal with zero mean and sample variance 

s'^z^s. Setting the CFAR rate is a critical step for 

infrared images, because if the background clutter is not 
always well approximated by the Gaussian hypothesis, 
higher false alarm rates will result. 
3.2   Spatial   Clutter   Statistics 

If the Gaussian assumption is violated, out- 
liers will be present and manifest themselves in the tail 
of the distribution. Outliers are "rogue observations" 
that lie, in some sense, far from the middle of the data 
and bias the false alarm estimate. A quick and effective 
means with which to visualize the tail behavior in 
empirical data is provided by the quantile-quantile plot 
(Q-Q plot). It can be used to compare the degree of 
agreement between two empirical distributions, or it 
can be used to compare the empirical quantiles with the 
quantiles from an ideal distribution. Two distributions 
are compared by graphing quantiles of one distribution 
against the corresponding quantiles of the other. A 
normal Q-Q plot is a plot of the ordered data yt from 

the sample {XO,---,XN-I} versus yp = <J>_1(£>,.), 

where p,. = (i-J^)/N, i = l,2,---,N, and 0T1 is 

the inverse of the standard normal distribution [30], If 
the shape of the unknown distribution is approximately 
normal, even in the tails, then the empirical quantile 
sample values will approximate the normal line. A 
normal Q-Q plot will reveal the presence of outliers in 
the extreme tails or leptokurtic shape. Both are strong 
indicators that robust methods are required. The shape is 
leptokurtic as defined in Cleveland [3l]if the relative 
density of the data in the middle of the distribution 
compared with the density in the tails is thinner than 
the normal distribution. Figure 8 displays a Q-Q plot 
using a 64 by 64 subimage taken from a Skyball im- 
age. These samples clearly exhibit non-normal behavior 
in the tails. Moreover, the subimage dimensions are 
typical of the subimage tiling that is often used to 
localize the scene statistics. 
3.21  Fixed  pattern  noise 

In a series of seminal papers, Flandrin [32], and 
Wornell [33] proved that the Daubechies wavelets will 
decorrelate or "whiten" a broad class of stochastic proc- 
esses that have a 1/f-type spectra. Earlier, Scribner and 
others [2-4] have observed that a major contributor to 
the fixed pattern nonuniformity observed on infrared 
staring arrays is primarily due to the 1/f-type spectra 
associated with the sampled output of the individual 
pixels. Using measurement from an Amber 128 by 128 
staring array, Hewer and Kuo [5] combined these two 
results to demonstrate that the Daubechies wavelets do 
"whiten" the 1/f-type spectra as predicted. These trans- 
forms effectively decorrelate the fixed pattern noise 
inherent on indium antimonide (InSb) and mercury 
cadmium telluride (HgCdTe) starring arrays. 
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Quantiles of Standard Normal 

Figure 8. Q-Q plot of data from a Skyball image. 
Note the deviation from the straight line in the tails, 
indicating non normal behavior. 

3.3        Optimal  trade-off synthetic  discrimi- 
nant  filters   (SDF's) 

As an adjunct to the matched filtering, a class of cor- 
relation filters as developed by Mahalanobis et al [9- 
13], has been implemented. These filters have excep- 
tional tolerance to scaling and rotation distortions. The 
tolerance of the filters is incorporated through the selec- 
tion of an appropriate training set, and can be tuned to 
provide high (generalization) or low (specificity) toler- 
ance. 

In the discussion of the MACH (maximum average 
correlation height) filters that follows, bold lowercase 
indicates a column vector, while bold uppercase repre- 
sents a diagonal matrix. The filters result from maxi- 
mizing the ratio 

where 

Q=  aP + ßD + Y S (5). 

S is as defined previously, while P is the power spec- 
tral density of the expected noise, and D is the average 
power spectral density of the training set. The constants 
a, ß , Y, 8 are non-negative and must satisfy a2 + ß2 + 
y2 + 52 = k where k is any positive constant, 
mizing E(h) results in 

Mini- 

Q1!!! (6). 

By varying the parameters, one can adapt the filter for 
the optimal performance for the situation under study. 
If one sets a = ß = 0 , the result is the MACH filter 
discussed earlier. Further variations can be made to the 

J(h) = 
h+m 

h+Sh 
(l) 

where h is the correlation filter and m is the average of 
the training images in the Fourier domain. Each image 
is lexigraphically ordered to form a vector. S is the 
average similarity measure matrix 

S= X(Xk-M)(Xk-M)+     (2). 
k=l 

In eq. (2) Xk are the individual training images, again 
in the Fourier domain. The training image is lexi- 
graphically ordered and its elements placed on the di- 
agonal of Xk. M is the mean training image, arranged 
similarly to Xk. All of the processing to generate the 
filters is performed in the Fourier domain, to gain 
translational invariance. It is possible to perform the 
processing in other domains (e.g. wavelet or spatial) 
but care must be taken to properly register the training 
imagery. 

The optimal filter h is then given by 

(3). 

Variants on the MACH filter can be achieved by vary- 
ing the performance metric one wishes to maximize. 
For example Refrieger [13] has developed optimal trade- 
off synthetic discriminant filters (OTSDF's) which 
attempt to minimize the energy functional 

E(h) = h+Qh-8h+m (4) 

basic idea, including the extension to multiple class 
discrimination using distance classifier correlation fil- 
ters (DCCF's), which are able to distinguish between 
multiple classes of similar objects (e.g. T72's vs. 
M1A1 tanks). 

The class of OTSDF filters was chosen for the feature 
detection for several reasons. As discussed, the filters 
can incorporate varying degrees of distortion tolerance 
and be built to generalize classes of targets. Another 
benefit of the algorithm is that the result is statistically 
optimum, and depends on a realistic, mathematically 
rigorous optimaztion procedure, as opposed to other 
heuristic methods. A final consideration is the compu- 
tational efficiency. The MACH filters require no seg- 
mentation or edge detection preprocessing and the 
correlation step can be performed rapidly using dedicated 
FFT hardware. However, the limit of its performance 
may be reached when considering small (< 5x5 pixels). 
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I his limit is to be investigated more thoroughly in 
future work. 

4.   Integrated detection and tracking 

The functional diagram of our overall integrated detec- 
tion and tracking design is shown in the schematic in 
Figure 9. The original image is in the upper left hand 
panel, while it wavelet transform is in the upper right 
hand panel. The two images in the lower left hand 
panel illustrate optical flow. Optical-flow fields, which 
describe image domain motion, extracted from two or 
more images, must discriminate between motion and 
local illumination changes due to the intrinsic noise 
field on the array, and the illumination changes due to 
the clutter field in the sensor's field of view. Being able 
to accurately estimate the velocity field when sub-pixel 
and multi-pixel interframe changes are present is essen- 
tial and difficult especially for dim targets moving 
relative to the background . Nobody has a satisfactory 
solution for optical flow , when dynamic occlusion is 
present—the estimation of optical flow is not yet a 
mature subject. The highlighted streak in the lower 
right hand image represents a track history from a 
Kaiman filter. When detecting low intensity targets in 
dense clutter the allowable false target confirmation 
rate is a system requirement. Thus, an integrated 
system must include a system tradeoff between tracking 
complexity, scan rate, and detection threshold. The 
tracking methodology in this research will borrow 
heavily from the research of Blackman [34] and Bar- 
Shalom [35]. The challenge here is to integrate the 
wavelet-bootstrap detector and the SCF for multipixel 
targets with their data association algorithms and Kai- 
man filters for track file maintenance. 

The SDF's are used to estimate the interframe motion. 
Given a set of potential targets as detected by the wav- 
elet matched fi\er, the SDF detection/classification is 
performed to yield an accurate assessment of the posi- 
tion of the target. In the next frame, the SDF algo- 
rithm is performed again, searching in areas which 
previously contained targets. From these two frame 
results, it is possible to estimate the target motion. 
With the motion estimate in hand, it is possible to feed 
this data into a Kaiman filter and update the filter more 
accurately. In some test cases, extremely accurate track- 
ing performance was demonstrated. The lower limits of 
the algorithm, in terms of SNR and target size, is yet to 
be determined, and is a basis for future work. 

5.  Results 
5.1 Imagery and Data 

Before presenting our results, a brief description of the 
data sets that were used will be presented. Several data- 
bases have been used in this effort. Blackbody meas- 
urements to characterize fixed pattern noise were 
obtained during our early research using an Amber AE 
4128 128 by 128 InSb staring array that operates at 
midwave infrared wavelengths. Additional blackbody 
images from a Honeywell uncooled microbolometer 336 
by 165-pixel IR sensor at long wave infrared wave- 
lengths were obtained from D. A. Scribner, J. T. Caul- 
field, and M. R. Kruer of the Electro-Optical 
Technology Branch at the Naval Research Laboratory 

Wavelet 
Transform All 

* 

Figure 9 Integrated detection and track 

(NRL), Washington, D.C. A bolometer is an infrared 
detector that measures absorbed, incident infrared radia- 
tion by a voltage change in electrical resistance due to a 
nonequilibrium temperature differential. They also pro- 
viö ' ,r~>0 Amber 256 by 256 images taken during 
tests overlooking the Chesapeake Bay. 

Additional digital IR image sequences collected from 
an airborne platform using the Skyball two-color IR 
seeker. Skyball was a joint, 1.5-year, digital data- 
collection effort by the Naval Air Warfare Center Weap- 
ons Division, China Lake, California, and Hughes 
Missile Systems. The Skyball sensors consisted of two 
128 by 128 HgCdTe FPAs operating simultaneously in 
both mid- and long-wave IR spectral bands mounted in 
the nose of a Jetstar-8 aircraft with an in-flight black- 
body calibrator. Typical frame rates varied typically 
from 25.6 to 49.1 frames per second. Unclassified 
Skyball image sets include a statistically significant 
sample of cluttered backgrounds flown at varying 
ranges, geometries, and seasons. Very large format, 
extremely high spatial resolution 12-bit digital IR im- 
age sequences were also acquired from the Airborne 
Infrared Measurement System program sponsored by 
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ÜARPA. A full description of the data can be found in 
reference [36]. 

To quantify algorithm performance, an interactive 
approach between algorithm testing and development 
was employed by using synthetic targets. Routines were 
written to generate subpixel-size to N- by N-size raised 
Gaussian targets. Target sizes are presently limited to 
subpixel up to 7 by 7 pixels. This range has been ade- 
quate for small target-detection investigations to date. 
The method can be readily extended to larger sizes, 
should this be required. The software enables the re- 
searcher to insert anti-aliased Gaussian targets at user- 
specified pixel locations with user-designated peak am- 
plitudes. Polarity reversal of contrast is supported so 
that targets may fall through the neighboring back- 
ground level and rise back up through it. Peak ampli- 
tude, amplitude change, rate of change, size, and 
location are specified by the user and can be adjusted to 
meet requirements. Care has been taken during the ren- 
dering process to preserve target edge contrast and 
minimize aliasing so that any artificial edge enhance- 
ment due to target insertion is minimized 
5.2   Results 

All of the comparative detectors were applied to the 
d3-d3 subimage described in Figure 3. For very small 
targets occupying a square image chip (i.e., <5 X 5 or 
fewer pixels), the matched filter shape is matched to the 
blur circle. The three matched filter detectors using a 
sampling annulus are: 1) empirical covariance assum- 
ing a Gaussian distribution to set the detection thresh- 
old [1], 2) empirical covariance using a bootstrap 
method to set the detection threshold, 3) autocovariance 
using a bootstrap method to set the detection threshold. 
Two other detectors, namely, 4) a matched filter withouc 
a sampling annulus combined with an autocovariance 
and bootstrap threshold 5) a bootstrap threshold 
extracted directly in the d3-d3 subimage were also 
studied, statistics. All video sequences were fifty frames 
in length and used embedded Gaussian stationary targets. 
The CFAR detection statistics were estimated from the 
d3-d3 subimage of the first frame and then applied to the 
entire sequence. Further details are forthcoming in the 
NAWCWPNS Technical Publication [39]. If the sam- 
pling chip in Figure 9 should accidentally include the 
target, then a lower-than-expected probability of detec- 
tion will result [27]. To avoid this possibility a sam- 
pling annulus, as suggested by Singer and Saski [1], is 
placed around the suspected target area and the covari- 
ance estimate is obtained from it 

The background clutter used in these investigations 
included Skyball and Chesapeake Bay IR imagery. The 
Skyball sequences selected for the comparative study 
represent mountainous and urban - light industrial and 

residential terrain. The mountainous background data 
collected during daylight hours over the Sierra Nevada is 
comprised primarily of forest, snow and rock. The mid- 
wave infrared urban images were collected at night 
along U.S 101 near the Santa Barbara, CA coast. The 
sequences included light industrial urban areas with the 
highway and freeway interchange visible, small to large 
several story buildings and residential areas. The 
Chesapeake Bay video imagery comprised of ocean and 
sky background c was collected using an on shore 
stationary Amber camera. 

The standard SNR as given in [38] is defined as 

SNR   =    10 log 10 

1   n 2 — ^signal 
nj=l 
\ar(noise) 

V J 

where signal is pixel amplitude, j denotes pixel 

number, and Tl is the number of target pixels in the 
sampling chip. In these studies a 10 x 10 chip was 
used. 

The design of a simple binary hypothesis detector is 
such that any pixel value that exceeds the threshold will 
be classified as a target. If a single detection threshold is 
used for the entile infrared array, then any patchy outlier 
clutter response or fixed pattern noise will force a com- 
promise between the false alarm rate and the local tar- 
get-to-clutter ratio. Thus, the standard receiver operating 
characteristic or CFAR performance curves that use the 
dichotomous probability of detection versus probability 
of false alarm will require very high target-to-clutter 
ratios. Such high ratios will understate the performance 
of any detector that has a high probability of detecting 
the target, while simultaneously admitting an acceptable 
number of threshold exceedances. One major function of 
Kaiman filtering is to provide data association files to 
manage threshold exceedances. For this reason, the 
number of false positives is a useful performance 
metric. 

In the Chesapeake Bay sequence, all detectors were 
able to detect the target with a probability of detection 
(Pd) of 100% down to a SNR of -4 dB. However, at the 
lowest detected SNR the average number of false posi- 
tives per frame for the fifty frames was quite variable. 
The range was as follows, Detector 1 has 0.52 false 
positives, Detector 2 had 2.42 false positives, Detector 
3 had 6.8 false positives, Detector 4 had 16.02 false 
positives, and Detector 5 had 4.02 false positives. This 
data set was unique in that the dynamic range of the 
pixel amplitudes in each of these frames was 6-bits. 
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In the Skyball IR long wavelength mountainous 
terrain sequence, Detector 1 had a Pd of 6% with 0.33 
false positives per frame at a SNR of 2 dB. It could 
not reliably detect targets at lower SNRs.   Detector 2 
had a Pd of 6% with 3.33 false, positives at a SNR of - 
5 dB while Detector 3 had Pd of 30% with 1.33 false 
positives.   Detector 4 exhibited 100% Pd down to a 
SNR of-5 dB with 13.42 false positives per frame, and 
Detector 5 had a Pd of 6% with 0.67 false positives at - 
5 dB SNR. 

In the Skyball mid-wavelength IR mountainous ter- 
rain sequence, Detector 1 had a Pd of 4% with 
0.5 false positives at a SNR of -6 dB. It had no further 
reliable detections at lower SNRs.   At a SNR of -10 
dB Detector 2 had a Pd of 18% with 2.78 false posi- 
tives , Detector 3 had a Pd of 18 % with 5.0 false posi- 
tives, Detector 4 had a Pd of 100% with 10.70 false 
positives per frame. Detector 5 had Pd of 2% with 2.0 
false positives at SNR of -9 dB. It was unable to relia- 
bly detect the target below -9dB SNR. 

In the Skyball mid wavelength urban-light industrial 
sequence, Detectors 1, 2, and 5 could not reliably detect 
the target at a SNR of -1 dB. No higher SNR data 
were run with this background.     Detector 3 had a Pd 
of 94% with 1.19 false positives at a SNR of -6 dB 
while Detector 4 had a Pd of 100% with 13.46 false 
positives. At a SNR of-13 dB Detector 3 had a Pd of 
50% with 1.0 false positives while Detector 4 had a Pd 
of 52% with 13.77 false positives . 

5.3   CONCLUSIONS 
Wavelet transforms combined with matched filtering 

represent a computationally efficient algorithm to 
locate small target candidates on an imaging array. 
These filters are compatible with CFAR detectors 
methodology. V. .r, robustly setting the CFAR 
threshold is still one of the biggest challenges in infra- 
red detection, because of the limitations of parametric 
models to capture the structured clutter diversity. For 
this reason the results are open to further interpretation 
and research. While the bootstrap can accommodate the 
non-Gaussian clutter distributions, its overall perform- 
ance will depend on being able to manage the resulting 
false alarm rate, which ultimately must be evaluated 
within a track file context in order assess its final im- 
pact. 

The use of synthetic discriminant filters to estimate 
optical flow of small targets is a new approach. The 
limiting factor is the target size. Further work needs to 
be done do determine the lower limit on target size. It 
is known that reliable results can be achieved with 
targets of 5x5 pixels; results for smaller targets are 
forthcoming.    For midcourse corrections and the end 

game scenario, the SDF's are able to improve the accu- 
racy of the tracking, and also able to discriminate be- 
tween types of targets. 
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