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ABSTRACT 

This thesis explores a MATLAB implementation of a Fourier transform approach 

to model and predict transient optical wave propagation through free-space. A three-step 

approach is adopted in this study. First, the mathematical development establishes the 

importance of the total impulse response as the Green's function, meeting the boundary 

conditions and solving the wave equation. Second, a MATLAB program is developed to 

simulate   the   mathematical   model   by   computing   and   displaying   the   graphical 

representation of an optical wave's spatial distribution on a plane at a given distance from 

a spatially filtered source. Third, a circular excitation function is used to verify the 

program and then the results of another three excitations, namely the square, circularly 

truncated Gaussian and circularly truncated Bessel functions are similarly generated. The 

effort of this thesis provides an inexpensive means to analyze a transient optical wave 

propagation of a spatially filtered optical source. 



VI 



TABLE OF CONTENTS 

I. INTRODUCTION 1 

A. PROPAGATION OF PULSE FIELD 2 

B. PROBLEM DESCRIPTION 2 

n.        THEORY 7 

A. PROPAGATION MODEL AS A LINEAR SYSTEM 7 

B. SOLUTION TO WAVE EQUATION , 9 

C. COMPUTATION OF TEMPORAL SPATIAL RESPONSE 11 

D. TEMPORAL SPATIAL REPONSE FOR COMPUTER SIMULATION 12 

E. MATLAB OVERVIEW 15 

III. MATLAB SIMULATION 21 

A. PROGRAM STRUCTURE 21 

B. PROGRAM DESCRIPTION 24 

1. Input Excitation Field Distribution Program Module 24 
2. Propagation Spatial Filter Program Module 29 
3. Temporal Spatial Field Distribution Program Module 33 
4. Two- and Three-Dimensional Graphical Program Modules 35 
5. Animation Program Modules 38 

IV. NUMERICAL SIMULATION • 43 

A. PROPAGATION SPATIAL FILTER FUNCTION 43 

B. OUTPUT FIELD DISTRIBUTION 47 

1. Circular Field Input Excitation with Small Aperture 48 
2. Circular Field Input Excitation with Large Aperture 52 
3. Square Field Input Excitation 56 
4. Circularly Truncated Gaussian Input Excitation 58 
5. Circularly Truncated Bessel Input Excitation 60 

Vll 



V.        SUMMARY 63 

APPENDIX A: SOURCE CODE FOR INPUT EXCITATIONS 65 

APPENDIX B: SOURCE CODE FOR FILTER FUNCTION 71 

APPENDIX C: SOURCE CODE FOR OUTPUT FIELD COMPUTATION 75 

APPENDIX D: SOURCE CODE FOR 2D AND 3D GRAPHICS 79 

APPENDIX E: SOURCE CODE FOR ANIMATION PROGRAMS 89 

LIST OF REFERENCES 113 

INITIAL DISTRIBUTION LIST 115 

Vlll 



LIST OF FIGURES 

1. Assumed geometry 3 

2. Research approach for thesis 5 

3. (a) Impulse response (or Green's function) and (b) temporal impulse response 8 

4. (a) SHFT-INPUT is a center geometry circular excitation and (b) INPUT 

is a corner geometry circular excitation obtained by applying fftshift to the 

center geometry circular excitation 17 

5. (a) After applying fft2 on Figure 4a and (b) after applying fft2 on Figure 4b 17 

6. (a) After applying fftshift to Figure 5a and (b) after applying fftshift to 

Figure 5b. These graphs are shown in two-dimensional perspective so that 

negative values may be seen 18 

7. (a) Absolute value of Figure 6a and (b) absolute value of Figure 6b. As both 

graphs are cylindrically symmetric in shape, viewing them in two-dimensional 

perspective will show more clearly that they are equal 18 

8. Program structure and program flow 25 

9. Base array configuration. The small arrows show the direction of flipping 27 

10. Input excitation field distribution with N = 64: (a) circular field distribution 

with d= 25, (b) square field distribution with w = 25, (c) circularly truncated 

Gaussian field distribution with d = 25 and a = 1 and (d) circularly truncated 

Bessel field distribution with d = 25 and sigma= 12 28 

11. Three-dimensional graphs of the filter function (left) and output field (right) at 

time slices 1, 2,10 and 20. Notice that as the time slice number increases the 

amplitude of the field decreases but the field radial spreading increases 36 

12. Three-dimensional graphs of the filter function (left) and output field (right) at 

time slices 30,40, 50 and 61. Notice that as the time slice number increases 

the amplitude of the field decreases but the field radial spreading increases 37 

13. Animation format 1. (a) shows the filter spatial frequency response, (b) shows 

the output field and (c) shows the image at the output plane. There is a small 

window just below graph (c) that shows the time slice 39 

IX 



14. Animation format 2. (a) shows the filter spatial frequency response, (b) shows 

the output field, (c) shows the close-up cross-section view of the total output 

and (d) shows the image at the output plane. There is a small window just 

below graph (d) that shows the time slice 40 

15. Animation format 3. (a) shows the filter spatial frequency response, (b) shows 

the output field, (c) shows a ten times magnified view of the total output and 

(d) shows the image at the output plane. There is a small window just below 

graph (d) that shows the time slice 41 

16. Propagation spatial filter function with N = 64 and M= 64: (a) time slice 1, 

(b) time slice 2, (c) time slice 30 and (d) time slcie 61. Note that time slice 1 

occurs at t = z/c and time slices 2, 30 and 61 occur at t > z/c. Notice that these 

waveforms look very coarse and spiky 44 

17. Propagation spatial filter function with N = 128 and M= 128: (a) time slice 1, 

(b) time slice 2, (c) time slice 4 and (d) time slcie 8. Note that time slice 1 

occurs at t = z/c and time slices 2, 30 and 61 occur at t > z/c. Notice that these 

waveforms are much smoother than those in Figure 16 45 

18. Propagation spatial filter function with N = 128 and M= 128: (a) time slice 60, 

(b) time slice 125, (c) filter function cross-section view at time slice 60 and 

(d) filter function cross-section view at time slice 125. Notice that more peaks 

are formed at higher time slice number 46 

19. Fourier transform of an impulse plane wave illuminating a circular aperture 

with d = 25 (6.25 cm): (a) circular input excitation field, shft-input, (b) after 

applying a fftshift on shft-input to produce input, (c) after applying fft2 on 

input to produce F-input and (d) after applying a fftshift on F-input to produce 

the two-dimensional spatial Fourier transform, Fshft-input. Note Fshft-input 

represents s(fx,fy,0) 49 

20. Propagation spatial filter function: (a) time slice 1, (b) time slice 50, (c) time 

slice 100 and (d) time slice 125 50 

21. Output field (left) and image on output plane (right): (a) time slice 1, (b) time 



slice 50, (c) time slice 100 and (d) time slice 125 51 

22. Circular field input excitation with d = 25 (6.25 cm): (a) Total output, (b) ten 

times magnified view of total output, (c) close-up cross-section view of total 

output and (d) close-up front view of total output..... 53 

23. (a) Circular input excitation with d = 49 (12.25 cm) and (b) two-dimensional 

spatial Fourier transform 54 

24. Two-dimensional spatial Fourier transform for circular input excitation for 

(a) d= 25 (6.25 cm) and (b) d = 49 (12.25 cm) 54 

25. Circular field input excitation with d=49 (12.25 cm): (a) Total output, (b) ten 

times magnified view of total output, (c) close-up cross-section view of total 

output and (d) close-up front view of total output 55 

26. (a) Square input excitation with w = 25 (6.25 cm) and (b) two-dimensional 

spatail Fourier transform 56 

27. Square field input excitation with w = 25 (6.25 cm): (a) Total output, (b) ten 

times magnified view of total output, (c) close-up cross-section view of total 

output and (d) close-up front view of total output 57 

28. (a) Circularly truncated Gaussian field input excitation with d = 25 (6.25 cm) 

and sigma — 12 and (b) two-dimensional spatail Fourier transform 58 

29. Circularly truncated Gaussian field input excitation with d = 25 (6.25 cm) and 

sigma = 12: (a) Total output, (b) ten times magnified view of total output, 

(c) close-up cross-section view of total output and (d) close-up front view of 

total output 59 

30. (a) Circularly truncated Bessel field input excitation with d = 25 (6.25 cm) 

and a = 1 and (b) two-dimensional spatial Fourier transform 60 

31. Circularly truncated Bessel field input excitation with d = 25 (6.25 cm) and 

a = 1: (a) Total output, (b) ten times magnified view of total output, 

(c) close-up cross-section view of total output and (d) close-up front view of 

total output 61 

xi 



Xll 



TABLE 

1.        Defining parameters and their assigned values for our propagation model 30 

xni 



I.       INTRODUCTION 

Advances in laser technology have made coherent optical sources readily 

available. With applications such as image processing, image pattern recognition, 

spectrum analysis, synthetic-aperture radar data processing and biomedical applications, 

laser sources may be broadly classified into continuous and pulsed lasers. Any laser 

which operates for a second or more at a time is called "continuous wave." There are also 

many other types of lasers that operate only in the pulsed mode. For example, in solid- 

state lasers, the key problem is heat dissipation. It takes time for excess pump energy 

delivered to the laser rod to make its way out as heat and continuous wave operation can 

cause heat to build up to laser damaging levels. 

The pulsed mode laser also finds many other applications which exploit its short 

pulse duration. The short length of the pulse makes it an ideal candidate for three- 

dimensional imaging, either to acquire depth resolution through range gating or to 

discriminate against scattering. Very high peak intensities can be reached at moderate 

pulse energies with ultrashort pulses. Finally, the ability to make nondispersive "solitons" 

led to a new pulsed code communication system with optical fibers. All these desirable 

qualities of a laser source are made possible solely because of the short pulse duration 

and this continuing exploitation has led scientists to discover new techniques to produce 

ultrashort pulses in the femtosecond regime. This thesis tries to find a method to model 

and predict the behavior of laser pulse propagation using computer simulation. 



A. PROPAGATION OF PULSED FIELDS 

Laser sources exhibit a spatial amplitude distribution, which is typically Gaussian. 

It is possible to spatially filter such a beam to produce an alternative shaped beam. Such a 

variation may exhibit a circular or square uniform cross-section and either of these could 

have an arbitrary spatial weighting distribution. The utility of such filtering is unknown 

unless the diffracted field distribution can be predicted at any given distance. 

The theory of linear systems can be applied for our purpose of predicting this 

diffracted field distribution. By taking the multi-dimensional Fourier transform of the 

complex field distribution across any plane, the spatial Fourier components can be 

identified as plane waves travelling in different directions. Accounting for phase shift 

during travel and applying the superposition theorem, the field amplitude at any other 

point will be the sum of each of these contributing waves directions. Thus, the 

propagation phenomenon of the optical wave may be regarded as a linear space-invariant 

system characterized by a specific transfer function. 

B. PROBLEM DESCRIPTION 

In this thesis, we want to consider the prediction of transient optical waves after 

free-space propagation from one plane, where the wave is known, to a parallel plane that 

is located a distance z away. We shall denote these two planes as the input plane and 

output plane, respectively. The assumed geometry is shown in Figure 1. 

The wave is assumed known in the z = 0 plane and is given by uo(x,y,0,t). For our 

model, the input excitation must be separable in space and time, i.e., 

uo(x,y,0,t) = s(x,y,0)T(t) (1) 



where s(x,y,0) is the spatial portion of the excitation and T(t) is the temporal portion of 

the excitation. The propagation medium is assumed linear and homogeneous; in this 

thesis, we assume free space. 

output plane 

input plane 

output field, u(x,y,z,t) 

input field, uo(x,y,0,t) 

Figure 1. Assumed geometry 

We use scalar wave theory [Ref. 1] to represent the optical wave. Our aim is to 

predict u(x,y,z,t) on the output plane, given u0(x,y,0,t) on the input plane and the distance 

z unit away from the source plane. The constraints are that the wave must solve the scalar 

wave equation 

V u(x,y,z,t) 
1 d  u(x,y,z,t) 

= 0 (2) 

and, since we are considering propagation in free-space (i.e., no boundaries are present 

other than at the input plane), the wave goes to zero as the distance r = *Jx2 +y2 +z2 

goes to infinity in the half-space above of the input plane. 



In addition, we have also made the following assumptions that helped to simplify 

our study and simulation of the field distribution in the output plane: 

1. We have fixed the size of the input and output planes, so that we may 

concentrate our observation and analysis on the center area of the wave 

distribution on these planes. 

2. We accounted for the effects of diffraction by using suitable Green's 

function for our model. 

3. We fixed the distance z, between the source and image planes so that we 

may plot u(x,y,z,t) in three-dimensional graphical representations. 

4. We considered variable aperture sizes to suit different input excitations. 

The  approach  adopted  to  solve  our  thesis  propagation  question  may  be 

summarized into a flow chart as shown in Figure 2. A mathematical expression based on 

linear system theory and Fourier transform is derived for the predicted field, u(x,y,z,t). 

This expression is then developed into a MATLAB program, which, given a known 

excitation at the input plane, predicts (or simulate) the expected field distribution at the 

output plane. 

Four input excitation functions were used: 

1. Circular field distribution, 

2. Square field distribution, 

3. Circularly truncated Gaussian field distribution and 

4. Circularly truncated Bessel field distribution. 



We shall step through the process of generating the predicted field distribution for 

a circular input excitation in order to verify the accuracy of our MATLAB programs and 

then results of the other three excitations will be generated. 

C     Start    } 

Derive mathematical expression for 
predicted field. 

3E 
Write MATLAB program 

based on expression. 

\l/ 
Verify accuracy of MATLAB programs 

with circular input excitation. 
s ^ 

^-^^       No 
^^"^  n~rrar.*1        '                                                             "^ Edit programs. 

^"""■"rrr^Yes 
>» 

Generate results for other excitations. 

±. 
C     End     ) 

Figure 2. Research approach for thesis. 

Now that we have defined the scope of our thesis research, next we shall discuss 

the theories involved. 





II. THEORY 

Two main theories were involved in this thesis research: linear systems theory and 

Fourier transform theory. Section A develops the concept of how linear system theory 

may be used to characterize wave propagation model in terms of a transfer function (also 

known as the spatial impulse response or Green's function). Section B shows how the 

field distribution at the output plane may be found by solving the wave equation using a 

set of defined propagation and boundary conditions specified in our problem description 

in Chapter I. Section C shows that the temporal spatial impulse response may be derived 

from the expression of the computed field distribution at the output plane. Section D 

demonstrates how the temporal spatial impulse response may be expressed in a suitable 

form for computer simulation by taking its spatial Fourier transform. Finally, Section E 

provides an overview of the software that was used in our simulation program. 

A.        PROPAGATION MODEL AS A LINEAR SYSTEM 

Many physical phenomena are found to share the basic property that their 

response to several stimuli acting simultaneously is identically equal to the sum of the 

responses that each stimulus would produce individually. Such phenomena are called 

linear and the property they share is called linearity. Optical propagation in linear 

homogeneous media is such a phenomenon. The wave equation (Equation 2) leads us to 

regard optical propagation as a linear mapping of the input light distribution into the 

output light distribution. Therefore we may consider the mapping of wave distribution, 

uo(x,y,0,t) to u(x,y,z,t) on a plane located z unit distance away as linear and apply all of 



the properties of linear system in simplifying the mathematics that describe this 

operation. 

In linear system theory, we characterize a mapping operation by its impulse 

response. As shown in Figure 3a, the impulse response, h(x,y,z,t), is the response of the 

operation to an input of S(x,y,z,t)=8(x,y,z)5(t). In propagation terms, the impulse response 

is called the Green's function, which is the solution of the wave equation and its boundary 

conditions to an impulse excitation. 

S(x,y,z)S(t) 

s(x,y,0)5(t 

Propagation & 

boundary conditions 

(a) 

Propagation & 

boundary conditions 

(b) 

h(x,y,z,t) 

 > 

d h(x,y,z,t) 
p(x,y,z,t) = -s(x,y,0)**-  

* y o z 

p(x,y,z,t) = -s(fx,fy,0)Z< 
dh(x,y,z,t) 

Figure 3. (a) Impulse response (or Green's function) and (b) temporal impulse response. 

Also, as we shall see in section B, we may predict, for a spatially invariant 

system, the response to a source with an arbitrary excitation and impulse temporal 

excitation in terms of the impulse response. As shown in Figure 3b, if we represent the 

input excitation on the source plane as s(x,y,0)5(t), the field distribution at the output 

plane,p(x,y,z,t), will be given as 

p(x,y,z,t) = -s(x,y,0)**- 
x y 

dh(x,y,z,t) 

~dz (3) 



where * notation indicates convolution over the variable noted [Ref. 2]. We shall call the 

output field distribution, p(x,y,z,t), the temporal spatial impulse response (i.e., it is the 

response of the system to an arbitrary spatial excitation with an impulsive temporal 

excitation). 

As we know from convolution theory, the spatial convolution of Equation 3 may 

be converted into multiplication in the spatial frequency domain by taking its spatial 

Fourier transform [Ref. 5]; 

\dh(fx,fy,z,t) 
p(fxJy,zJ) = -?(fxJy,0M-^jy 2 

■>z 
(4) 

Also as we shall see later that for our computer simulation purposes, Equation 4 is a more 

suitable form for quick computation than Equation 3. 

In a more general form, the output field distribution, <f>(x,y,z,t), to an excitation 

with an arbitrary spatial and temporal dependence can be expressed in terms of the 

temporal spatial impulse response as [Ref. 2] 

* 
(f>(x,y,z,t) = T(t)tp(x,y,z,t). (5) 

B.        SOLUTION TO WAVE EQUATION 

To derive the impulse response, we first need to find a solution to the wave 

equation meeting the set of propagation and boundary conditions defined by our 

propagation model in Chapter I. From [Ref 2], the solution to the wave equation, 

Equation 2, is given by the radiation integral. Assuming a planar input aperture, the field 

u(x,y,z,t) is given by 



du0(x,y,0,t) dh(x,y,z,t) 
u(x,y,z,t) = ***h(x,y,z,t)-u0(x,y,0,t)*** —:—        (6) 

— * y i on dn x y I 

where the quantity u0(x,y,0,t) is the scalar wave distribution at the source plane, h(x,y,z,t) 

is the Green's function that both solves the wave equation and meets the boundary 

conditions and the derivative with respect to n represents the normal derivative. For input 

and output planes that are normal to the z-axis, the normal derivative will become the 

derivative with respective to z. Hence Equation 6 may be rewritten as 

du0(x,y,0,t)                                                 dh(x,y,z,t) 
u(x,y,z,t) = ***h(x,y,z,t)-uo(x,y,0,t)*** .       (7) 

OZ xy I x y I &Z 

In this thesis, the value of the field on the planar source plane, ito(x,y,0,t), is 

known. Hence, it is desirable to eliminate the normal derivative of Equation 7 (i.e., the 

first term on the right side of the equation) and to use the second known term for the 

solution. This can be done by using a Green's function given by [Ref 2] which has also 

considered the effects of diffraction; 

^jr2+(z-z0)
2\       \       yjr2+(z + z0) 

t —       o t —  

h(x,y,z,t) = 
Y2+{z-z0)

2 ^r
2+(z + z0)

2 
(8) 

On the source plane, where z = 0, this Green's function has the additional property 

that 

and 

h\ z=0 : (9) 

10 



0 h    0 h      2zs[t-R/)j    2zö'(t-R/c) 

0n    0z R> cR2 (10) 

where R = yr2 +z2 = yx2 + y2 +z2  and 8' indicates the time derivative of the Dirac 

delta function. 

By eliminating the known first term on the right of Equation 7 and substituting the 

Green's function of Equation 8, the field can then be written as 

0h(x,y,z,t) 
u(x,y,z,t) = -u0(x,y,0,t)*** 

xy        oz 

= u,(x,y,0,t)*** X—T
J-£l + u,(x,y,0,t)*** V^'      (n) 

x y i K * y' CR 

This equation represents the expression for the field distribution at the output plane. 

C.       COMPUTATION OF THE TEMPORAL SPATIAL RESPONSE 

To simplify Equation 11 further so that it is easier for computer simulation, first 

we take its two-dimensional Fourier transform to convert convolution in the space 

domain into multiplication in the spatial frequency domain. Then, by substituting 

Equation 1 into the expression, we have 

u(fx,fy,z,t) = 3{u(x,y,z,t)} = 3- 
0h(x,y,z,t) 

-uo(x,y,0,t)***  
*yt 0z 

T(0* s(/x,fym< 
0h(x,y,z,t) 

Jz 

(13) 

By comparing Equation 5 with Equationl3, we observe that 

11 



p(fx,fy,z,o=-s(fx,fym< 
dh(x,y,z,t) 

dz 
(14) 

The inverse spatial transform of p(fx,fy,z,t) produces the spatial impulse response, 

p(x,y,z,t), which is our required field distribution at z when the excitation at the input 

plane is a temporal pulse excitation. 

D.        TEMPORAL SPATIAL REPONSE FOR COMPUTER SIMULATION 

We now want to find an expression for the spatial impulse response, p(x,y,z,t). 

Substituting u0(x,y,0,t) = s(x,y,0)d(t) into Equation 11, we have 

2zS 
p(x, y, z, t) = s(x, y,0)8(t) * * * - 

x y I 

('-Ye) 
R3 

+ s(x,y,0)S (t)*** 
x y I 

^{<-R/c) 
cR2 

(15) 

Since f * g' = (f * g)1 = f' * g, we can interchange the order of the derivative in the second 

term of Equation 15 and, by expanding the convolution term with 8(t), get 

p(x,y,z,t) 

= s(x,y,0)S (t)*** \3       } + s(x,y,0)5 (t)*** 
x y t R1 

x y I 

2z5 (<-*4 
cR' 

s(x,y,0)** j 
x y K 

K-     ^- + 0 (t)* 
2zS 

s(x,y,0)** ('-%) 
y      cr 

(16) 

The spatial convolutions over x and y in last line of Equation 16 are more easily 

performed in the transform domain. Taking the two-dimensional spatial Fourier 

transform of Equation 16 gives 

12 



P(fx>fyz>t) = 

-s(fx,fy,0)2zJ0(pJc2t2-z2)      ,    (s(fx,fy>0)2zJ0(pJc2t2-z2j 
 + 8 * 

c2t2 c2t 
(17) 

where  p   is the two-dimensional spatial transform of p, fx and fy are the spatial 

frequencies, p is the radial spatial frequency (p = Jfx
2 +// ) and the transform pah- 

given below has been used 

R" 

J0 [pjc't2 -z2)H(t - z/c) 

(ctr1        • (18) 

Recognizing that time convolution with the time derivative of the Dirac impulse is the 

same as taking the derivative of the function in the time domain, i.e., 

5 (t)*f(t) = f'(t), 

we have 

p(x,y,z,t) = 5-'^(fxJy,0)^J0(pylc2t2-z2)H(t-z/c)} 

r'\s(fx,fy,0)^-tJ0[p4c2t2-z2)H{t-zlc^ 

By factoring the common term ~s(fx,fy,0) from Equation 20, we have 

p(x,y,z,t) = 5-'h(f„fy,0) {J^J,[plc't' -z')H(t-zlc) 

which may be simplified further as 

(19) 

(20) 

(21) 
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p(x,y,z,t) = Z-'{s(fx,fy,0)c(fx,fyz,t)} 

where we denote the following as the propagation spatialßlter [Ref. 2] 

2zpJx\p4c2t2 -z2] H{t-z/c) 

(22) 

C(fX,fy,Z,t)   =   -- ' x> J y /   2,2        ~~2 \C t   —z 

+ 
2zJ0 (pyjc2t2-z2) S(t - z/c) 

(23) 

c2t 

For our simulation model, we have evaluated c(fx,f,z,t) for three different time 

regions, 

c{fz,fy,z,t) = 

0 

■zp2 + 2zJ^ 
c2t 

2zpJ iW „2,2 2 c t  —z 
/   2,2~2 \c t  -z 

t < 

t = 

t>z/ 

(24) 

where we have made the assumptions for the second line of Equation 24 that both 

H(t - z/c) and S(t - z/c) are equal to one. 

Equations 22 and 24 are the only two equations required for our simulation 

program. Recall that ~s(fx,fy,0) represents our spatial pulse excitation at the input plane, 

p(fx,fy,z,t) represents the spatial field distribution at the output plane and 

c(fx,fy,z,t) represents the linear system transfer function that maps 7(fx,fy,0) onto 

p(fx,fy,z,t). In optics term, c(fx,fy,z,t) is also known as the propagation spatial 

filter. It is the "filtering function" that meets the set of defined boundary conditions in 
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Chapter I. It also characterizes the effects of diffraction that modify the input excitation 

as it propagates through the free space between the input and output planes. 

E.        MATLAB OVERVIEW 

MATLAB is an acronym for MATrix LABoratory. It is a high-performance, 

interactive, scientific and engineering software package. As its name suggests, its basic 

data element is a matrix. A major advantage of MATLAB is that traditional programming 

is not needed since problems and solutions are expressed just as they would be written 

mathematically. Another distinct advantage is MATLAB's expansion capability with 

preprogrammed functions, such as the calculation of two-dimensional FFTs and the 

calculation of Bessel functions. [Ref. 7] 

There are two types of macro-like files called m-files (called m-files for the ".m" 

suffix); one is known as the script m-file and the other is the function m-file. A script m- 

file is used to automate long sequences of commands including functions. Arguments are 

not passed into script files. A function m-file, however, may have arguments passed into 

them. Another difference between the two file types is that the first line of a function m- 

file begins with the word "function" and all variables used in the function are local. 

Examples of script m-files in this thesis are IOPTFIL.m, IOPTPROP.m, 

PLOTFILTER.m, PLOTFIELD.m, ANIMATEl.m, ANIMATE2.m and ANIMATE3.m 

(Appendixes B, C, D and E). Examples of function m-files include the input excitation 

functions: CRCLE.m, SQUARE.m, CRCGAUS.m and CRCBESS.m (Appendix A), the 

three-dimensional graphing function mesh and the two fft functions that realize the 

Fourier transform required for our programs. 
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The two fft functions employed for Fourier transform are fft2 and fftshift; fft2 

carries out a two-dimensional Fourier transform while fftshift carries out a center-to- 

corner geometrical shift on an input function. Both of these functions must be used 

together and they perform the fast Fourier transform on an input function. Since these are 

frequently used functions throughout our program, it is worth the attention here to 

elaborate on its proper usage, especially on their order of application to ensure the correct 

phase result is obtained for the resultant function. 

The correct way to do a fast Fourier transform in MATLAB is to do it in three 

separate operations. First a fftshift must be applied to the input function which we shall 

denote as shft-input and its result as input. (The "shfl" prefix here is to remind us that a 

fftshift operation must be applied first prior to a fft2 function.) Then a fft2 function is 

applied and the result is denoted as F-input. Finally another fftshift function is applied 

and we denote the result as Fshft-input. In MATLAB source code, this may be written as 

a single line code: fftshift(fft2(fftshift(s7z/^'/7/?w/))). Figures 4a and b show respectively 

the input excitation function and the result after applying a fftshift. Figure 5b shows the 

result after applying a fft2 and Figure 6b shows the final result of the fast Fourier 

transform operation after applying another fttshift. (Figure 6 is shown in two- 

dimensional perspective so that negative values may be seen.) The absolute value is 

shown in Figure 7b. (Because these graphs are cylindrically symmetric in shape, the two- 

dimensional perspective here will illustrate better that both Figure 7a and b are equal.) 

Figures 5a and 6a show the wrong way of executing a fast Fourier transform on 

an input excitation function. If a fft2 is applied directly onto shft-input (see Figure 5a), 
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(a) SHFT-INPUT (b) INPUT 

Y-axis 0   0 
X-axis 

64 

Y-axis 

Figure 4. (a) SHFT-INPUT is a center geometry circular excitation and (b) INPUT is a 
corner geometry circular excitation obtained by applying fftshift to the center geometry 

circular excitation. 

(a) FFT2(SHFT-INPUT) (b) FFT2(INPUT) 

fy-axis fy-axis fx-axis 

Figure 5. (a) After applying fft2 on Figure 4a and (b) after applying fft2 on Figure 4b. 
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(a) FFTSHIFT(FFT2(SHFT-INPUT)) 

0 33 
fx-axis 

i 

 "23 •') a      

64 

500 
(b) FFTSHIFT(FFT2(INPUT)) 

Figure 6. (a) After applying fft shift to Figure 5a and (b) after applying fftshift to Figure 
5b. These graphs are shown in two-dimensional perspective so that negative values may 

be seen. 

500 
(a)ABS(FFTSHIFT(FFT2(SHFT-INPUT))) 

500 

400 

300 

(a) ABS(FFTSHIFT(FFT2(INPUT))) 

Ö 
200 

100 

Figure 7. (a) Absolute value of Figure 6a and (b) absolute value of Figure 6b. As both 
graphs are cylindrically symmetric in shape, viewing them in two-dimensional 

perspective will show more clearly that they are equal. 
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the result undergo a lateral phase shift which when corrected with a fftshift, the result is 

shown in Figure 6a and its absolute value in Figure 7a. Note in Figure 7 that both 

methods provide a similar absolute value function but, as shown in Figure 6, the Fourier 

transforms are different. The incorrect method gives a spiky transform and has wrong 

phase information required for our computer simulation. 

Beside the correct order of application of these two fft functions, we would also 

like to highlight another very important fact pertaining to their speed of computation. The 

MATLAB User Guide [Ref. 7] points out that when the row and column dimensions of 

the matrix are power of two, a high-speed radix-two fft algorithm is used. When the 

dimensions are not other than a power of two, a non-power-of-two algorithm finds the 

prime factors of the dimensions and computes the mixed-radix discrete Fourier transform. 

This latter process can be quite time consuming, particularly as the size of the matrices 

becomes larger. For this reason, a decision was made to work with NxN matrices, where 

N is a power of two. 

Now that we have discussed the theories involved in this thesis, next we shall 

show how we simulate our propagation model in MATLAB. 
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III. MATLAB SIMULATION 

This chapter describes the simulation programs written in MATLAB. Simulation 

is used here to refer to the modeling of Equations 22 and 23 of Chapter II in MATLAB 

source codes and the animation of the behavior of the propagation spatial filter and the 

output field. Section A discusses the program structure adopted for our simulations 

programs and section B explains critical algorithms in each program module. No in-depth 

knowledge of MATLAB is assumed and the discussion of the program will be as 

functional as possible. All MATLAB source codes can be found in Appendixes A to E. 

A.        PROGRAM STRUCTURE 

In an effort to shorten simulation time, a modular program structure has been 

selected. The objective is to separate the time-consuming and repetitive calculation 

algorithms into separate independent modules from the main program. Most often, these 

modules will only be executed once and their results are stored into data files to be 

recalled later for use by other program modules during the simulation process or for 

generating three-dimensional graphs for print out. 

In general, we may characterize our programs into five main functional types: 

(1) To create input excitation field distribution, u(x,y,0,t) = s(x,y,0)5(t) of 

Equation 1. We have here the m-files: CIRCLE.m, SQUARE.m, 

CRCGAUS.m and CRCBESS.m. These generate input excitations with 

circular, square, circularly truncated Gaussian and circularly truncated 

Bessel field distributions, respectively. These programs are written as 
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function m-files with two or three required input arguments. They can be 

executed independently by just calling the function name and providing it 

with the required input arguments at the MATLAB command window. 

For example, CIRCLE(d,N) will create a circular input excitation field 

distribution with a diameter of d units based on a square base of N units 

size. In addition, these function m-files may also be executed as an 

embedded function in a script m-file. In our program structure, we utilize 

these function m-files in both ways, which we will elaborate in the later 

sections. 

(2)       To create the propagation spatial filter, c(fx ,fy,z, t) of Equation 23. This 

is done by the m-file, IOPTFIL.m (which stand for Improved OPTical 

FILter; the prefix, "Improved" is added to differentiate this m-file from a 

previous work on an m-file in [Ref. 3]). IOPTFIL.m is written as a 

function m-file, which generates data required for our simulation program. 

The data generated by IOPTFIL.m is stored in two MATLAB database 

files named as OPTVAR.mat and PJINxn.mat (".mat" is a file extension 

used   by   MATLAB   database   files).   OPTVAR   stand   for   OPTical 

VARiables  and  it  stores  all  the  initialized parameters  required  for 

subsequent programs computations. PJINxn is an acronym comprising of 

P which stands for Propagation, Jl for the Bessel function of the first kind 

contained in the filter function, N for the square matrix size, N, used to 

store the filter function data and n for the integer number ranging from 1 
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to 61 representing the time slice when the propagation spatial filter 

function is computed. 

(3) To compute the temporal spatial field distribution at the output plane, 

p(x,y,z,t). This is done by IOPTPROP.m (which stand for Improved 

OPTical PROPagation for the same reason stated in the above paragraph). 

IOPTPROP is also written as a function m-file and it generates data 

required for our animation programs. The main function of IOPTPROP.m 

is to compute p(x,y,z,t) by taking the inverse Fourier transform of the 

product of !s(fx,fy) and c(fx,fy,z,t). The results are stored in two 

forms in two separate MATLAB database files, OPTABS.mat and 

OPTOUT.mat. OPTABS.mat contains the output field intensity, which we 

will use later in our animation programs to simulate the image on the 

output plane. OPTOUT.mat contains the data required to plot a three- 

dimensional graphical representation of the total output field. 

(4) To plot two- and three-dimensional graphical representations of the input 

excitation distribution, the propagation spatial filter function and the 

output field distribution in both temporal and spatial frequency domains. 

This is done by PLOTFILTERm and PLOTFIELD.m from data generated 

by IOPTFIL.m and IOPTPROP.m. Both of these programs are written as 

script m-files. The graphs generated by these two programs allow us to 

view the input and output field distributions as well as the filter function 

behavior at different time slices, in different viewing perspective and with 
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different magnification factors. Hence, they provide us a very useful 

means to analyze our optical propagation model at different stages of time 

and space. 

(5)       To animate our optical propagation model. This is done by ANIMATE 1 .m 

ANIMATE2.m and ANIMATE3.m. These programs are written as script 

m-files. Their purposes are to animate the behavior of our propagation 

spatial filter, the output field distribution, the total output field distribution 

and the image (or field intensity) over the entire simulation time. The three 

animation m-files provide similar types of information but in different 

formats. This is to cater to different purposes which we will elaborate 

further in the subsequent sections. 

Figure 8 is a flow chart that shows our program structure as described above and 

from this figure, we may see the inter-links between the various modules. 

B.        PROGRAM DESCRIPTION 

The following sub-sections explain in detail the critical algorithms in each of the 

five functional file types discussed above. 

1. Input Excitation Field Distribution Program Module 

As mentioned before, the m-files required to generate the input excitation field 

distribution comprise of CRCLE.m, SQUARE.m, CRCGAUS.m and CRCBESS.m. 

In this section, we would like to highlight the reason for selecting these four 

specific shapes for our input excitation. They were selected because: (1) they represent 

real input excitation sources that can be easily generated in the optical laboratory and (2) 

24 



(     Start     } 

Initialize parameters & store 
into OPTVAR.mat. 

Compute propagation spatial filter 
& store data into filter database, 
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Field matrix database 
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(ANIMATEl.m, ANIMATE2.m 

&ANIMATE3.m) 

3D graph field (PLOTFIELP!m)"|4- 
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Compute & store field data at 
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OPTABS.mat & OPTOUT.mat 

(OPTPROP.m) 

7X7 
C  End  ) 

Figure 8. Programs structure and program flow, 

their geometrically symmetric properties help to simplify our MATLAB algorithm used 

to generate them. The latter means that, since the shape of the input excitation is 

symmetrical, we are able to reproduce the whole excitation field by simply generating a 

quarter-shape of the field and duplicating it three times to create the whole field. 
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However, as we shall see later, the implementation in MATLAB is not as straight 

forward as discussed here. 

For reasons already explained in Chapter I, we would like to fix the size of the 

input and output planes. Therefore in our program, we represent these planes with a 

square base matrix of size N, where N must be power of two as explained at the end of 

Chapter II. 

In MATLAB, matrix indices begin with 1 rather than 0 (i.e., the upper left entry 

being row 1, column 1 and not row 0, column 0 as an origin would require). This means a 

matrix of dimension NxN will have N points and N-l segments in each row and column. 

This also means that the center of symmetry of the array which we denote as NO, would 

be at the number (JV+l)/2 row and the (7V+l)/2 column. However, in our case, we require 

that N must be power of two and we have chosen the number 64 for preliminary 

simulation programs (128 later was used to achieve better resolution). This means we will 

not be able to find an associate center of symmetry since for JV=64, (N+l)/2 will not be an 

integer number. Therefore, in our program, we had to arbitrary choose NO to be as near 

to the actual center as possible and position (33,33) was the best choice. 

Figure 9 depicts a NxN equal a 64x64-array base situated on the x, y plane divided 

into four quadrants. To generate the whole input excitation, first we generate the field to 

fill the smallest quadrant, which is quadrant IV. Then by flipping up, we create the field 

in quadrant II and then, by flipping both quadrants II and IV to the left, we create the 

field in quadrants I and III, thus completing the field on the entire input plane. In 
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MATLAB, the flipping of the field can be achieved by using the flipud and fliplr 

commands as illustrated in the source code of Appendix A. 

33 

64 

33 

QUADRANT 
I 

QUADRANT 
II 

QUADRANT 
III 

l 

QUADRANT 
IV 

X 

64 

Figure 9. Base array configuration. The small arrows show the direction of flipping. 

Figure 10 shows the graphical plot of the four input excitation field distributions 

generated by the above program module. 
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(a) Circular excitation 
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0.5- 
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64 Wm II'IUli '11   [Eä^^S 

life,      i                     0 

(b) Square excitation 

Y-axis 0   0 Y-axis 

(c) Circularly truncated Gaussian excitation (d) Circularly truncated Bessel excitation 

Y-axis 

Figure 10. Input excitation field distribution with N = 64: (a) circular field distribution 
with d= 25, (b) square field distribution with w = 25, (c) circularly truncated Gaussian 

field distribution with d =25 and a = 1, and (d) circularly truncated Bessel field 
distribution with d= 25 and sigma =12. 
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2.        Propagation Spatial Filter Program Module 

The propagation spatial filter, c(fx,fy,z,t) is computed by the m-file 

IOPTFIL.m. In addition, IOPTFIL.m is also responsible for initializing and storing all the 

defining parameters into a data file named OPTVAR.mat that is required for other 

program modules. First, we will go through all defining parameters store in 

OPTVAR.mat and then we will explain how c(fx,fy,z,t) is computed in IOPTFIL.m. 

A defining parameter is a parameter that delineates an aspect of the basic setup 

which all the remaining parameters or variables depend. Table 1 shows all the defining 

parameters used in this thesis and their assigned values used for our simulation model. 

The first parameter, N, sets the dimension of the square base array giving the number of 

spatial sample points. The next parameter, NO, defines the center of this square base 

array. M is the number of time samples or time slices, which we use to observe the filter 

behavior over time. Step represents the number of leading zeros in the NxM output array. 

Step is required to simulate the Heaviside step function that we see in Equation 21. 

Timejnax is the maximum propagation time that we have fixed for our simulation model, 

z is the distance between the input and output planes and c is the speed of light. We have 

also parameter, rho, which represents the maximum spatial radius of the filter function. 

At the beginning of IOPTFIL.m, we initialize all the above defining parameters to 

the assigned values for our simulation model. Then we used some of these parameters to 

generate two important matrices, time and row, which are required for the program 

module, IOPTPROP.m for the computation of p(x,y,z,t)and IOPTFIL.m itself for the 

computation of c(fx,fy,z,t) respectively. 
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PARAMETER VALUE DEFINITION 
N 64 size of square matrix 

NO 33 assigned center of square matrix 
M 64 total number of time slices 

Step 3 time increment prior to z/c 
timejnax 0.95e-9 ns maximum observation time 

z 100 mm distance between input and output planes 
c 3e8 m/s velocity of propagation 

rho 200 mm spatial radius 
Table 1. Defining parameters and their assigned values for our propagation model. 

The matrix, time, represents the time base that we used to observe the filter 

function and the output field, time is generated by the MATLAB built-in function, 

linspace with z/c, timejnax and M-Step as input arguments. Basically, linspace divides 

the time period from z/c to timemax into M-Step points which represent 61 time slices, 

each of 10 picoseconds when M = 64 (if M = 128, 125 time slices each of 5 picoseconds 

were used). These ultrashort time slices are required in order to capture the fast rate of 

change of the field distribution from the pulsed input excitation. With these ultrashort 

time slices, we are also able to observe our propagation model in slow motion in our 

animation program modules, which no existing optical measuring equipment is capable 

of doing. 

Next, IOPTFIL.m computes the filter spatial radius matrix, row (which is actually 

the parameter, p, of Equation 23) with three separate steps. First, we divide the value of 

rho into MM linear spaces with the linspace command. These linear spaces are then 

stored in the matrix, rhojn, and represent the radial discrete points between the center to 

the side of the NxN matrix space. Then the cartesian equivalent of rho (with coordinates 

label as rhox and rhoy) is generated by using the meshgrid command on rhojn. Next, 
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using the coordinates rhox and rhoy and applying the Pythagorean equation, we compute 

the radial distances from the center (i.e., NO) to any points on one of the four quadrants 

of the NxN matrix space (depicted in Figure 9). These radial distances are then stored into 

a NOxNO matrix, call row. Note again that row here contains only the radial distances for 

just one quadrant of the NxN matrix space. To compute the radial distances for the whole 

NxN matrix space, we use a similar algorithm as illustrated in Figure 9. However, as we 

shall see later that we do not apply this algorithm straight away onto row, but as part of 

the computation of c(fx,fy,z,t). Once we have computed time and row, we store the 

parameters, N, NO, M, Step, c, z and time into the data file, OPTVAR.mat with the save 

command and then proceed to compute c(fx,fy,z,t). 

As given by Equation 23, c(fx,fy,z,t) are defined over three different time 

regions: 

(1) t < z/c. This represents the time when the laser pulse has not yet reached 

the output plane and hence the field at the output plane is zero. Therefore, we will 

not even consider this time region in our simulation model. 

(2) t = z/c. This represents the time when the laser pulse has first reached the 

output plane and hence we expect a sudden jump in the field amplitude given by 

(as in Equation 23) 

2    2zJ0{0) 2     2z 2    2 
;•*>'=*/" = -*? '—t       " •—- - c(fx,fy,z,t = z/c) = -zp2+—£— = -zp2+-^ = -zp2 +-. (24) 

In our simulation program, this represents time slice 1. 
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(3) / > z/c. This represents the time after the laser pulse has impinged onto the 

output plane and waves are arriving from different portions of the source. As time 

increases, the amplitude of the output field distribution decreases as a function of 

the Bessel function of the first kind, given by (as in Equation 23) 

2zpJ,[p4c2t2 -z2) 
c(fx,fy,z,t> z/c) = /  '- (25) 

Vc r -z 

As mentioned earlier, we have set a maximum to this propagation time given by 

timejnax, as we are unable to simulate time indefinitely. We have arbitrary 

chosen timejnax = 0.95 nanoseconds which is long enough for the output field to 

go to zero. In our simulation program, this time region is represented by time 

slices 2 to 61 if M = 64 (or 2 to 125 if M = 128). 

We compute c(fx,f,z,t) for different time slices in a program loop. At time 

slice 1, we compute c(fx,f,z,t) by using Equation 24 and for time slices 2 to 61, we 

use Equation 25. Note that when we compute c(fx,fy,z,t) by using Equation 24 or 25, 

we are only computing the field for one of the four quadrants of the NxN matrix space. To 

compute the whole field of the NxN matrix space, we adopt the same algorithm as 

depicted in Figure 9. For each time slice when c(fx,f,z,t) is computed, we store its 

value into a matrix named as PROP(m), where m is the rrP time slice and then store this 

matrix into a data files PJINxn.mat. We have also incorporated a "movie play" feature 

into this program loop to allow us to observe the changing behavior of the filter function 

at different time slices with the command, moviein, getframe and movie. The source 

code of IOPTFIL.m can be found in Appendix B. 
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3.        Temporal Spatial Field Distribution Program Module 

The temporal spatial field distribution, p(x,y,z,t), is computed by 

IOPTPROP.m. IOPTPROP.m also uses p(x,y,z,t) to compute the field intensity on the 

output plane by taking the square of its absolute value and we have used this to simulate 

the image that would be seen from behind the output plane. 

We begin the computation of p(x,y,z,t) by first loading all the defining 

parameters from the file OPTVAR.mat with the load command. Then we allow the 

program user to select any one of the four input excitations: Circle, Square, Gaussian and 

Bessel. The Circle and Square are equal amplitude sources having the shape of a circle 

and square, respectively. The Gaussian and Bessel inputs are circularly truncated 

functions that have spatially varying amplitudes across the circular face of the source. 

After the program user has selected the input excitation, the user is asked to input the 

diameter, d, of the truncating circle or the width, w, of the square in the case of the 

Square function. For the case of the Gaussian and Bessel inputs, the user is further 

requested to input the standard deviation, sigma, or a scaling factor, a, respectively. The 

purpose of this part of the program is to not only allow the user to select one of four 

choices of input excitations but also to give the user the flexibility to vary the cross- 

sectional size of the excitation. This feature of the program has expanded the user choice 

to analyze and study varieties of input excitations. 

We shall denote the selected input excitation as shft-input. From shft-input, input 

is created by shifting shfi_input with the fftshift command to a corner geometry. Then 

with the fft2 command, we create its two-dimensional spatial Fourier transform, F-input. 
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As explained in Chapter II, the fftshift operation is necessary before the spatial Fourier 

transform operation to obtain the correct phase relationship in the transform operation. 

With a shift back to the center geometry with another fftshift command, the angular 

spectrum of the source s(fx,fy), called Fshftjnput in the program, is created. The 

Bessel function propagation transfer function, c(fx,fy,z,t), from Equation 23 must now 

be loaded from the data file, PJINxn.mat. The product of s(fx,f ) and c(fx,f ,z,t) is 

then taken to find p(fx,fy,z,t) which is called Fshft_output. The loading and 

multiplication process is repetitive since Fshftjnput must form a product with the filter 

function for each time slice. This repetitive multiplication is accomplished with a 

program loop. 

To find the desired result (i.e., p(x,y,z,t)), the two-dimensional inverse spatial 

Fourier transform (ifft2) must be taken for the product. Before this can be done, F_output 

is formed by shifting Fshfi_output from the centered geometry to the corner geometry. 

Executing the inverse transform of the product yields output, which is then shifted to give 

shft_output. The array shftjoutput represents the output at the time slice that the loop is 

currently computing. (Note that shftjoutput does not depict the optical wave or the 

propagation pattern through time; it only depicts the optical wave at a specific time). 

Because of the cylindrical symmetry of the output field, to produce a time history 

of the desired output (which we refer subsequently as the "total output"), first we take its 

absolute value, call it shft_outabs, and then store the center row (row NO) of shftoutabs 

th 
into another array, output_plot, as its m   column (where m is the loop counter which 
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relates directly to the time slice number). For example if m = 4, then column 4 of 

output_plot represents the center row of the absolute value of the output field computed 

at the fourth time slice. The array output_plot is therefore of size Nx Mand we store this 

array into a data file named as opdxM.mat where d is the diameter of the input excitation 

and Mis the number of time slices. 

To obtain the field intensity, the square of shfioutput is taken and this is called 

shfijntensity. For each time slice, shftjntensity is stored in a file named optabm.mat 

where m corresponds to the /w01 time slice when the field intensity was computed. We use 

optabm.mat in the animation program modules to simulate the image at the output plane. 

The source code for IOPTPROP.m can be found in Appendix C. 

4. Two- and Three-Dimensional Graphical Program Modules 

There are two program modules that do two- and three-dimensional graphical 

plotting of the filter function and the output field at different time slices. These are called 

PLOTFILTER.m and PLOTFIELD.m. While PLOTFILTER.m makes use of the data 

from data files, PJlNxn.mat, to plot the filter function at different time slices in different 

perspectives, PLOTFIELD.m makes use of the data from data files, opdxM.mat and 

optabm.mat, to plot the output field and total output at different time slices in different 

perspectives. The basic commands used in these two program modules are load, figure, 

mesh, subplot, axis, grid, set and view. Of all these commands, view is one of the most 

useful ones as we use view in our programs very frequently to plot graphs in different 

perspectives. Figures 11 and 12 show examples of some three-dimensional graphical 

plots generated by these two program modules. 

35 



Time slice 1:      Filter response Field ouput 

fy-axis       0  o        ^-axis 

Time slice 2:     Filter response 

Time slice 10:     Filter response 

v0P?$ft 

Time slice 20:     Filter response 

fy-axis        0  0 fx-axis 

Y-axis        0  0 x-axis 

Field ouput 

200 

Field ouput 

Y-axis 

Figure 11. Three-dimensional graphs of the filter function (left) and output field (right) at 
time slices 1,2,10 and 20. Notice that as the time slice number increases the amplitude 

of the field decreases but the field radial spreading increases. 
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Time slice 30:     Filter response Field ouput 
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Time slice 40:     Filter response 
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Time slice 50:     Filter response 
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Time slice 61:     Filter response 
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I     ft« 
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Figure 12. Three-dimensional graphs of the filter function (left) and output field (right) at 
time slices 30,40, 50 and 61. Notice that as the time slice number increases the amplitude 

of the field decreases but the field radial spreading increases. 
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The graphs on the left represent the filter function and those on the right represent the 

output field in different time slices. The source code of PLOTFILTER.m and 

PLOTFIELD.m can be found in Appendix D. 

5. Animation Program Modules 

In addition to the usual static two- and three-dimensional plots generated by the 

graphical program modules described above, the animation program modules go one step 

further to animate the changing behavior of the filter as well as the output fields at the 

output planes over the entire simulation time. We have adopted the "frame-by-frame 

capture and playback" technique to create our animation. For example, to animate the 

filter function, we plot the filter function at each time slice, starting from time slice 1 to 

61. For each time slice that we plot, this represents a frame of our animated movie and, if 

we were to capture and playback all the frames in sequence, it gives the effect of a 

moving picture. 

Three main commands are used: moviein, getframe and movie. To create an 

animation, the command moviein is first used to pre-allocate enough memory space to 

store all the graphical frames which comprises of the 61 PROP(m) filter function, 61 

shft_output and 61 shftjntensity matrices computed over the 61 (M-Step) time slices. 

This is a lot of memory especially when we are plotting three-dimensional graphs. 

Therefore, to save on computer memory and thus to increase the speed of animation, we 

combine all three matrices into a single graphical plot using the subplot command and 

capture all three plots into a single frame. In this way, we need only to pre-allocate 

enough memory for 61 frames. To increase the speed of animation further, we have also 
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reduced the size of the viewing window, which further reduces the computer memory 

required to do the animation. 

We use the getframe command to take a snapshot of the current plot for use in 

the movie playback and to start playback, we use the movie command. Three animation 

program modules were written and they all animate the filter function, the output field 

and the image at the output plane but in different format. These formats are shown in 

Figures 13,14 and 15. 

Now that we have explained in detail all the program modules, we shall proceed 

to the next chapter on numerical simulation. 
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(a) Filter spatial frequency response (b) Image field intensity 
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Figure 13. Animation format 1. The graph (a) shows the filter spatial frequent response, 
graph (b) shows the output field and graph (c) shows the image at the output plane. There 

is a small window just below graph (c) that shows the time slice. 
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(a) Filter spatial frequency response (b) Image field intensity 
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Figure 14. Animation format 2. Graph (a) shows the filter spatial frequent response, 
graph (b) shows the output field, graph (c) shows the close-up side view of the total 

output and graph (d) shows the image at the output plane. There is a small window just 
below graph (d) that shows the time slice. 
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(a) Filter spatial frequency response 

fy-axis 0  0 fx-axis 

(b) Image field intensity 
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(c) Field distribution (d) Image 

Time-slice 64  64 Space 

Figure 15. Animation format 3. Graph (a) shows the filter spatial frequent response, 
graph (b) shows the output field, graph (c) shows a ten times magnified view of the total 
output and graph (d) shows the image at the output plane. There is a small window just 

below graph (d) that shows the time slice. 
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IV NUMERICAL SIMULATION 

This chapter presents the numerical simulation results for the MATLAB program 

modules described in Chapter III. Section A shows and analyzes the propagation spatial 

filter function over different time slices. Section B steps through the process for 

generating the results for a circular field input excitation. An analysis is also done here on 

the effect of varying the diameter of the circular field. Finally, the simulation results for 

the square, circularly truncated Gaussian and circularly truncated Bessel input excitations 

are presented and compared with the circular input field in term of the field amplitude 

and rate of field radial spreading. We also discuss the formation of constructive 

interference. 

A.        PROPAGATION SPATIAL FILTER FUNCTION 

IOPTFIL.m was first executed with N = 64 and M = 64 and Figure 16 provides 

the results of the spatial filter function for time slices 1, 2, 30 and 61. (These time slices 

were arbitrary chosen to illustrate the dynamic changes of the filter over the entire 

simulation time.) The waveform at time slice 1 represent the filter function computed at t 

= z/c and the waveforms at time slices 2, 30 and 61 represent the filter function computed 

when t > z/c. 

Notice that as the time slice increases, the filter function becomes very coarse and 

spiky (notably at the higher time slices such as 30 and 61 as shown). In order to smooth 

these waveforms, we need a higher number of spatial sampling points and hence we set N 

= 128. With this new value of N, we are able to observe finer details of the changes 
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occurring in the filter function as time progresses. Furthermore, we have also set M= 128 

so that we may observe a more progressive change in the filter function. 

(a) Time slice 1 (b) Time slice 2 

1200, 

800 

400 

0 

-400 J 

■M."'Ä^ 

(c) Time slice 30 

1 AT*      <l' 

(d) Time slice 61 

fy-axis 0   0 
fx-axis fy-axis 

Figure 16. Propagation spatial filter function with 7^ = 64 and M= 64: (a) time slice 1, (b) 
time slice 2, (c) time slice 30 and (d) time slice 61. Note that time slice 1 occurs at t = z/c 
and time slices 2, 30 & 61 occur at t > z/c. Notice that these waveforms look very coarse 

and spiky. 
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The resultant filter function obtained with the new set of values for N and M are 

shown in Figures 17 and 18. Figure 17 shows the filter function at time slices 1, 2, 4 and 

8. Note that both the waveforms at time slice 1 of Figure 16 and 17 are similar as they 

both represent the filter function computed at t = z/c. 

-9000 
128 

fy-axis 

(a) Time slice 1 

0   0 
fx-axis 

1200 s 
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128 
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(b) Time slice 2 

0   0 
fx-axis 

128 

(d) Time slice 4 (d) Time slice 8 

fy-axis fx-axis 

Figure 17. Propagation spatial filter function with N= 128 and M= 128: (a) time slice 1, 
(b) time slice 2, (c) time slice 4 and (d) time slice 8. Note that time slice 1 occurs at t = 

z/c and time slices 2, 4 and 8 occur at t > z/c. Notice that these waveforms are much 
smoother than those in figure 16. 
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However, the waveforms at time slice 2 of Figure 16 and 17 are not similar because the 

time slice increment for both waveforms are not the same; recall from Chapter III that 

when M= 64, each time slice increment is 10 picoseconds whereas for M= 128, each 

time slice increment is only 5 picoseconds. Figure 18a and b show the propagation spatial 

filter function at time slices 60 and 125 respectively. 

(a) Time slice 60 (b) Time slice 125 
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Figure 18. Propagation spatial filter function with JV= 128 and M= 128: (a) time slice 60, 
(b) time slice 125, (c) filter function cross-section view at time slice 60 and (d) filter 

function cross-section view at time slice 125. Notice that more peaks are formed at higher 
time slice number. 
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Notice that as the time slice number increases, the filter function forms more peaks and 

collapses on itself. This phenomenon can be observed by looking at the cross-sectional 

view of the filter function as shown in Figure 18c and d for time slices 60 and 125 

respectively. 

B.        OUTPUT FIELD DISTRIBUTION 

In this section, we shall first step through the process for computing the output 

field for a circular field input excitation. We shall present results obtained for a circular 

source with diameter, d = 25. Another set of results was also generated for a circular 

source with d = 49 to compare the effect of an increased source cross-sectional area. Then 

we shall present the simulated results for the square, circularly truncated Gaussian and 

circularly truncated Bessel input field excitations. 

Before we proceed further, we wish to highlight that the diameter for all the 

circular sources, d, and the width for the square source, w, are given in term of the 

number of spatial points on the input planes which is made up of a NxN array. To convert 

d into unit of centimeters (given by D), we adopt the following conversion equations: 

DfcmJ = 100 * d * Ax , (26) 

and 

Ax = — = —^— = 0.0025 [mj (27) 
2 *  p 2 * 200 

where Ax represents the lateral displacement between each discrete points on the NxN 

array and pmax = 200 cycle/meter is the spatial radius that we have selected for our 

propagation model. For example, if d= 25, this represents a physical aperture diameter of 
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6.25 centimeters on the input plane. In what follows, we shall indicate the diameter, D in 

units of centimeter in parenthesis. 

1. Circular Field Input Excitation with Small Aperture 

Figures 19 to 22 show the simulation results obtained for a circular field input 

excitation with d - 25 (6.25 centimeter). Figure 19a shows the circular input excitation 

and Figure 19b, c and d illustrate the three steps required to produce its two-dimensional 

spatial Fourier transform. Note that Figure 19d is 's(fx,fy,0) of Equation 22 and if we 

multiply this with c(fx,fy,z,t) and take the two-dimensional inverse spatial Fourier 

transform of the product, we produce the field at the output plane, p(x,y,z,t). 

For this simulation run, we use M = 128. This implies that we have 125 time 

slices and the simulation run have computed the filter function 125 times. Unfortunately, 

we are unable to show all the 125 plots of the filter function and, therefore, only four of 

these plots are selected to illustrate the computation of the output field. Figure 20 shows 

the filter function computed at time slices 1, 50, 100 and 125. Notice that the filter 

function forms more peaks and collapses on itself as the time slice number increases. If 

we multiply these plots with that of Figure 19d and take the two-dimensional spatial 

Fourier transform of their product one at a time, we produce the output field distribution 

as illustrated on the left-hand side plots of Figure 21. Notice that the amplitude of the 

output field decreases as expected and the field radial size increases as the time slice 

number increases. The plots on the right-hand side of Figure 21 show the image formed 

on the output plane. From these two-dimensional plots, the field radial spread with time 
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becomes more obvious and this has clearly demonstrated the effect of wave diffraction 

over time. 

(a) SHFT-INPUT (b) INPUT 

Y-axis 0   0 

128 

X-axis 

128 

Y-axis 

-100 
128 

fy-axis 

(c) F-INPUT 

0   0 

128 

-100 
128 

(d) FSHFT-INPUT 

fx-axis fy-axis 

128 

0   0 
fx-axis 

Figure 19. Fourier transform of an impulse plane wave illuminating a circular aperture 
with d = 25 (6.25 cm): (a) circular input excitation field, shfi-input, (b) after applying a 

fftshift on shfi-input to produce input, (c) after applying fft2 on input to produce F-input 
and (d) after applying a fftshift on F-input to produce the two-dimensional spatial 

Fourier transform, Fshft-input. Note Fshft-input represents 's(fx,fy,0). 
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(a) Filter function at time slice 1 (b) Filter function at time slice 50 
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Figure 20. Propagation spatial filter function: (a) time slice 1, (b) time slice 50, (c) time 
slice 100 and (d) time slice 125. 
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(a) Output field at time slice 1 
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Figure 21. Output field (left) and image on output plane (right): (a) time slice 1, (b) time 
slice 50, (c) time slice 100 and (d) time slice 125. 
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To present the output field distribution on the output plane over time requires a 

four-dimensional plot in x-, y-, amplitude- and time-spaces. However, this is beyond 

MATLAB's graphics capability. Nevertheless, we can still use MATLAB's three- 

dimensional graphics capability to show this four-dimensional information on a three- 

dimensional plot. To do this, we utilize the fact that the output field distribution is 

cylindrically symmetric and therefore a center cross-section of the field distribution is 

sufficient to describe the entire field on the whole output plane. If we line up all the 

center cross-section of the output field for all the 125 time slices, we are able to produce a 

time history of the output field and we denote this as the total output. 

Figure 22a shows the total output. As expected, we observe a sudden peak at time 

slice 1 where t = z/c and the field amplitude is given by Equation 24. From Figure 22b 

which shows a ten times magnified version of the total output, we observe that as the 

time slice number increases, the amplitude decreases and eventually goes to zero in 

accordance to Equation 25. Also, we can witness a phenomenon called constructive 

interference where the two inboard tails meet somewhere at time slices 82. This manifest 

itself as an unexpected amplitude peak as shown in the close-up cross-section view of the 

total output in Figure 22c. From Figure 22d, which shows a close-up front view of the 

total output, we observe the increase in radial spread of the field as the time slice number 

increases. 

2. Circular Field Input Excitation with Large Aperture 

Figure 23 to 25 show the simulation results obtained for a circular field input 

excitation with d = 49 (12.25 centimeter). With a d value of almost double the previous 
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(a) Total output (b) Magnified view of total output 
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Figure 22. Circular field input excitation with d= 25 (6.25 cm): (a) Total output, (b) ten 
times magnified view of total output, (c) close-up cross-section view of total output and 

(d) close-up front view of total output. 

value, we can intuitively expect to observe in Figure 23 a that the input excitation should 

have a larger circular cross-section area and in Figure 23b that its two-dimensional spatial 

Fourier transform should also have a higher peak value. 
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(a) SHFT-INPUT (b) FSHFT-INPUT 
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Figure 23. (a) Circular input excitation with d = 49 (12.25 cm) and (b) two-dimensional 
spatial Fourier transform. 

Figures 24a and b show the two-dimensional cross-section view of the two-dimensional 

spatial Fourier transform for d = 25 and d = 49, respectively. From this figure, we may 

also observe that, for d - 49, in addition to having a higher peak value, the input also has 

a slimmer spatial Fourier transform. This is analogous to a broad time-base signal having 

a narrower spectral response than a narrow time-base signal. 
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Figure 24. Two-dimensional spatial Fourier transform for circular input excitation for (a) 
d= IS (6.25 cm) and (b) d= 49 (12.25 cm). 
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Figure 25 shows the total output for d = 49 (12.25 centimeter) in different perspective. 

From these plots, we can observe similar phenomena displayed in Figure 22 for d = 25. 

(a) Total output 
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(b) Magnified view of total output 
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100 r 
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Figure 25. Circular field input excitation with d= 49 (12.25 cm): (a) Total output, (b) ten 
times magnified view of total output, (c) close-up cross-section view of total output and 

(d) close-up front view of total output. 

However, we notice that in this case, because of the larger cross-section area of the 

wavefront, the radial spreading is more dispersed and that the strong constructive 
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interference that we observed for d = 25 cannot be seen here. Nevertheless, if we could 

extend the time base beyond 125 time slices, it is anticipated that the two inboard tails 

would still meet and form a constructive interference. But the interference amplitude 

would probably be lower because the expected field amplitude beyond time slice 125 is 

also lower. 

3. Square Field Input Excitation 

Figures 26 and 27 show the simulation results obtained for a square field input 

excitation with w = 25 (6.25 centimeter). We have purposely selected w = 25 so that we 

may compare this set of results with that obtained for the circular field input with d = 25. 

Notice from Figure 26 that that, because a square input of width, w = 25, has a larger 

cross-section area than a circle input with d= 25, the peak amplitude of the square's two- 

dimensional spatial Fourier transform is larger (when comparing Figure 19d with Figure 

26b). 
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Figure 26. (a) Square input excitation with w = 25 (6.25 cm) and (b) two-dimensional 
spatial Fourier transform. 
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Figure 27 shows the total output for the square input excitation with w = 25 (6.25 

centimeter) in different perspective. From these plots, we can observe similar phenomena 

displayed in Figure 22 for the circular input excitation with d= 25. 
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Figure 27. Square field input excitation with w = 25 (6.25 cm): (a) Total output, (b) ten 
times magnified view of total output, (c) close-up cross-section view of total output and 

(d) close-up front view of total output. 
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For this case, a constructive interference has occurred at time slice 86 compared to 82 for 

the small circular input. This result is consistent with what we have anticipated for the 

large circular input that constructive interference would occur at further time slice when 

the wavefront is larger. 

4. Circularly Truncated Gaussian Field Input Excitation 

Figures 28 and 29 show the simulation results obtained for a circularly truncated 

Gaussian field input excitation with d= 25 (6.25 centimeter) and sigma = 12. The sigma 

factor represents the standard deviation and it determines the width of the full Gaussian 

field. Now, because a truncated Gaussian field has a wavefront that has cross-section area 

that is smaller than that of a full circular input field, we can expect to see a lower peak 

amplitude for its two-dimensional Fourier transform (when comparing Figure 19d with 

Figure 28b). 
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Figure 28. (a) Circularly truncated Gaussian field input excitation with d= 25 (6.25 cm) 
and sigma = 12 and (b) Two-dimensional spatial Fourier transform. 
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Figure 29 shows the total output for the circularly truncated Gaussian field input 

excitation with d = 25 (6.25 centimeter) and sigma = 12 in different perspective. 

(a) Total output (b) Magnified view of total output 

128   o 

128 

time slice 
128   0 

time slice 

(d) Close-up front view of total output 

(c) Close-up cross-section view of total output 
100 r 

0       20      40      60      80     100        128 
time slice 

Figure 29. Circularly truncated Gaussian field input excitation with d = 25 (6.25 cm) and 
sigma = 12: (a) Total output, (b) ten times magnified view of total output, (c) close-up 

cross-section view of total output and (d) close-up front view of total output. 

From these plots, again we can observe similar phenomena displayed in Figure 22 for the 

circular input excitation with d = 25. Notice that in this case, because of the smaller 
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wavefront, the field peak amplitude at time slice 1, the field radial spreading and the 

constructive interference amplitude are smaller (when comparing Figure 22 with Figure 

29). 

5. Circularly Truncated Bessel Field Input Excitation 

Figures 30 and 31 show the simulation results obtained for a circularly truncated 

Bessel field input excitation with d = 25 (6.25 centimeter) and a = 1. Factor a here is the 

width scaling factor of the Bessel function. Figure 30a and b show the circularly 

truncated Bessel field input excitation and its two-dimensional spatial Fourier transform 

respectively. Notice the broad spectral response in Figure 30b is attributed by the narrow 

waveform of the input field (when comparing Figure 19 with Figure 30). 
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128 
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Figure 30. (a) Circularly truncated Bessel field input excitation with d = 25 (6.25 cm) and 
a = 12 and (b) two-dimensional spatial Fourier transform. 

Figure 31 shows the total output for the circularly truncated Bessel field input excitation 

with d = 25 (6.25 centimeter) and a = 1 in different perspective. From these plots, again 

we can observe similar phenomena displayed in Figure 22 for the circular input excitation 
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with d= 25. Notice also that, because of the smaller wavefront, the field peak amplitude 

at time slice 1 and the field radial spreading are smaller (when comparing Figure 22 with 

Figure 31). Moreover, the field amplitude is decaying so fast that no noticeable 

constructive interference is created at the point where the two inboard tails meet. 
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Figure 31. Circularly truncated Bessel field input excitation with d= 25 (6.25 cm) and a 
= 1: (a) Total output, (b) ten times magnified view of total output, (c) close-up cross- 

section view of total output and (d) close-up front view of total output. 
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In this chapter, we have done a detailed analysis of the characteristic of the 

propagation spatial filter function. We have also presented the output field distribution 

for the four different shaped input fields as predicted by our simulation model. With this, 

we have come to the concluding chapter of our thesis research. In the next chapter, we 

will summarize our achievements made in this research and give recommendations for 

future work. 
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V. SUMMARY 

This thesis presented a MATLAB implementation of a Fourier transform 

approach to model and predict transient optical wave propagation through free-space. 

Linear systems theory characterized the wave propagation model in terms of a Green's 

function, which solves the wave equation and satisfies the boundary conditions of our 

propagation model. Fourier transform theory simplified the mathematics required for our 

computer simulation. 

A modular programming approach was adopted for our MATLAB program to 

segregate the time-consuming processes from the less time-consuming, which allow the 

simulation programs to run more efficiently with less computer memory. User-interactive 

features introduced in the programs allow the program user to select a variety of input 

excitations for analysis. Animation programs provided visualization of the changes in the 

filter function and the output field over time. Two-dimensional plots of the field intensity 

were presented to help comprehend the image formation on the output plane. Detailed 

description of all the program modules were given and Appendixes A to E contain the 

source codes. Many two- and three-dimensional graphics in different perspectives were 

generated to demonstrate the program's operation. 

We computed the spatial impulse responses for a circular, square, circularly 

truncated Gaussian and circularly truncated Bessel input excitations. Their results were 

compared and thoroughly analyzed to identify known optical phenomena like wave 

diffraction, dispersion and constructive interference. 
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Future investigation is open in several areas. A detailed comparison of our 

simulation model should be made with existing published models. The physical 

interpretation of S{t - z/c) in Equation 24 for the propagation spatial filter should be 

further investigated, especially in the role that plays our time plots of the spatial filter. In 

this thesis, we have only scratched the surface, so to speak, of computer simulation of the 

wide ranging techniques of optical processing. There is much fascination to be found in 

aperture design, complex filtering, optical computing, etc. Computer graphics allow us to 

visualize more than the eye can see. 
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APPENDIX A. SOURCE CODE FOR INPUT EXCITATIONS 

The folio wings are the MATLAB source code for the four input excitations: 

circular, square, circularly truncated Gaussian and circularly truncated Bessel field 

distributions. 

CIRCULAR INPUT EXCITATION 

function Y =crcle(d,N) 

%crcle.m: Y=crcle(d,N) 

%Program for generating uniform circular excitation functions 

%d is the diameter of the circle.(ODD integer) 

%N is the width of the square base. (EVEN integer) 

%Example: z = crcle(33,64); 

% Adopted from [Ref. 3] 

%Check that d is an odd integer 

ifrem(d,2)<0.1; 

error('The diameter of the circle function must be an ODD integer.'); 

else; 

end; 

%Check that N is an even integer 

if rem(N,2) ~= 0.0; 

error(The width of the square base must be an EVEN integer.'); 

else; 

end; 

NO = (N/2)+l; %NO is the center location 

r = d/2; %r is the radius 

Y = zeros(N); 

temp = zeros(NO-l); 

form=l:r+l; 

forn=l:r+l; 
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if sqrt((m-l)A2 + (n-l)A2) <= r; 

temp(m,n)=l; 

end; 

end; 

end; 

%Generate the entire N x N input function 

Y(NO:N,NO:N) = temp; 

Y(2:NO,NO:N) = flipud(temp); 

Y(2:NO,2:NO) = rot90(temp,2); 

Y(NO:N,2:NO) = fliplr(temp); 

%%% End of program %%% 

SQUARE INPUT EXCITATION 

function Y = square(w,N) 

%square.m: Y = square(w,N) 

%Program for generating a uniform square excitation function. 

%w is the width of the table. (ODD inteqer) 

%N is the width of the square base. (EVEN integer) 

%Example: z = square(33,64); 

% Adopted from [Ref. 3] 

%Check that w is an odd integer. 

ifrem(w,2)<0.1; 

error('The width of the table must be an ODD integer.'); 

else; 

end; 

%Check that N is an even integer 

if rem(N,2)~= 0.0; 

error('The width of the square base must be an EVEN integer.'); 
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else; 

end; 

NO = (N/2)+1; %NO is the center location 

wO = ceil(w/2); %wO is the mid-point of the table 

Y = zeros(N); 

temp = zeros(NO-1); 

temp(l :wO,l :wO)= ones(wO); 

Y(NO:N,NO:N) = temp; 

Y(2:NO,NO:N) = rot90(temp); 

Y(2:NO,2:NO) = rot90(temp,2); 

Y(NO:N,2:NO) = rot90(temp,3); 

%%% End of program %%% 

CIRCULARLY TRUNCATED GAUSSIAN INPUT EXCITATION 

function Y = crcgaus(sigma,d,N) 

%crcgaus.m:   Y = crcgaus(sigma,d,N) 

%Program for generating circular Gaussian functions. 

%sigma is the standard deviation of the Gaussian function. 

%d is the diameter of circle. (ODD integer) 

%N is the WIDTH of the square base. (EVEN integer) 

%Example: z crcgaus(12,33,64); 

% Adopted from [Ref. 3] 

mu=0; %mu is the mean of the Gaussian function 

%Check that d is an odd integer. 

ifrem(d,2)<0.1; 

error('The diameter of the circle function must be an ODD integer.'); 

else; 

end; 
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%Check that N is an even integer, 

if rem(N,2) ~= 0.0; 

error(The width of the square base must be an EVEN integer.'); 

else; 

end; 

NO = (N/2)+l; %NO is the center location 

r = d/2; %r is the radius 

Y = zeros(N); 

temp = zeros(NO-l); 

form=l:(d+l)/2; 

forn=l:(d+l)/2; 

x = sqrt((m-l)A2 + (n-l)A2); 

ifx<=r; 

temp(m,n) = (l/(sqrt(2*pi)*sigma))*exp(-((x-mu)A2)/(2*(sigmaA2))); 

end; 

end; 

end; 

Y(NO:N,NO:N) = temp; 

Y(2:NO,NO:N) = flipud(temp); 

Y(2:NO,2:NO) = rot90(temp,2); 

Y(NO:N,2:NO) = fliplr(temp); 

Y=Y./(max(max(Y))); %Normalize the Gaussian distribution to one 

%%% End of program %%% 

CIRCULARLY TRUNCATED BESSEL INPUT EXCITATION 

function Y = crcbess(a,d,N) 

%crcbess.m:   Y = crcbess(a,d,N) 

% Program for generating circular Bessel excitation functions. 

%a is the width scaling factor. 
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%d is the diameter of the circle. (ODD inteq~r) 

%N is the width of the square base. (EVEN integer) 

%Example: z = crcbess(l,33,64); 

% Adopted from [Ref. 3] 

%Check that d is an odd integer. 

ifrem(d,2)<0.1; 

error(The diameter of the circle must be an ODD integer'); 

else; 

end; 

%Check that N is an even integer. 

ifrem(N,2)~=0.0; 

error(The width of the square base must be an EVEN integer'); 

else; 

end; 

NO = (N/2)+1; %NO is the center location 

r = d/2; %r is the radius of the circle 

Y = zeros(N); 

temp = zeros(NO-l); 

for m = 1 :r+l; 

forn= l:r+l; 

x = sqrt((m-l)A2 + (n-l)A2); 

ifx<=r; 

temp(m,n)= bessel(0,a*x); 

end; 

end; 

end; 

Y(NO:N,NO:N) = temp; 

Y(2:NO,NO:N) = flipud(temp); 
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Y(2:NO,2:NO) = rot90(temp,2); 

Y(N0:N,2:N0) = fliplr(temp); 

%%% End of program %%% 
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APPENDIX B. SOURCE CODE FOR FILTER FUNCTION 

The followings are the MATLAB source code for computing the propagation 

spatial filter function. 

PROPAGATION SPATIAL FILTER FUNCTION 
______ 

%% This program generates the Bessel filter function 

%% related files/variables : optvar.mat, pJ164x, PROP1 

% Written by Nicholas Lee, Jul 1998 

clear all; 

!delpl28Jl*x*.mat % delete old data files 

!del optvar28.mat % delete old data files 

N = 128; % size of square array 

M = 128; % number of time slices 

NO = (N/2)+l; % defines center of the square array 

Step = 3; % number of leading zero time slices 

z = 100e-3; % distance to the observation plane 

time_max = .95e-9; % time at the final time slice 

rho = 200; % spatial radius of the filter[sqrt(rhoxA2+ rhoyA2)] 

c = 3e8; % velocity of the light wave 

%% Initialize matrices to save processing time 

PROP = zeros(NO); 

PROP1 = zeros(N); 

temp = zeros(NO); %bessel function of order one, Jl 

arg = zeros(NO); 

rho_m = zeros(NO,l); 

row = zeros(NO); 

time = zeros(M-Step,l); 
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%% Generate M-Step time slices between z/c and time_max. 

time = linspace(z/c, time_max, M-Step); 

%% Generate NO-1 values of rho_m from 0 to rho. 

rhojm = linspace(0,rho,NO-l); 

%% Add additional increment to rho_m to compensate for the off-center 

%% orientation of the final NXN matrix 

rho_m = [rho_m (rho_m(NO-l)+rho_m(2))]; %use 2 b'cos Matlab indexing 

% start at l,2,etc 

% Create two NO x NO arrays of rho values for function evaluation. 

[rhox,rhoy] = meshgrid(rho_m,rho_m); 

%% Calculate matrix of radial distance values outside the loop 

row = sqrt(rhox.A2 + rhoy.A2); 

%% Save those variables necessary for ioptprop.m in a data file optvar.mat 

save optvar N M NO Step time c z row; 

MM=movie(125); 

%%%START LOOP%%% 

for m = 1 :M-Step 

fprintf( '%3.0f ,m);    %show m value on screen 

%Generate PROP matrices with suffix of "A" corresponding 

% to the values of the time vector 

% Create an NO x NO array of argument values for the bessel function 

iftime(m)=z/c %creat t=z/c term 

PROP=flipud(2/c-(z.*row.A2)); 

PROPl(l:NO,l:NO) = fliplr(PROP); 

PROPl(l:NO,NO:N) = PROP(l:NO,l:NO-l); 

PROP 1 (NO:N, 1 :N) = flipud(PROP 1 (2 :NO, 1 :N)); 

else 

sq = sqrt( cA2*(time(m))A2-zA2 ); 

arg = row*sq; 
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% Evaluate row* J_l at each argument value; create an NO x NO array 

temp = flipud((-2*z)*(row/sq).*besselj(l,arg)); 

PR0P1(1 :NO,l :NO) = fliplr(temp); 

PROPl(l :NO,NO:N) = temp(l :NO,l :NO-l); 

PROPl(NO:N,l:N) = fiipud(PROPl(2:NO,l:N)); 

end 

mesh(PROPl) 

grid on; xlabel('fx'); ylabelCfy'); zlabel('amplitude'); 

MM(:,m)=getframe; 

%Correlate the name of the variable PROP with the time index;ie, PROP1, PROP2 etc 

vname = ['PROP 1 *,int2str(m)]; %set up name 

eval([vname,'= PROP1 ;']); 

%Save applicable PROP in a file named pJl(N)x(m)A;.e.g., PROP15A in pJ164x5A 

eval(['save pjr,int2str(N),'x'5int2str(m),' ',vname]); 

eval(['clear PROP1 ',vname]); 

end 

%%%END LOOP%%% 

movie (MM); 

%%% End of program %%% 
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APPENDIX C. SOURCE CODE FOR OUTPUT FIELD COMPUTATION 

The followings are the MATLAB source code for computing the output field 

distribution. 

OUTPUT FIELD COMPUTATION 

% ioptprop.m 

%performs transient optical wave propagation simulations 

%It uses the NXN arrays Mp(N)x(m)A/B" to 

% compute the propagation transfer function. 

% Size of the variables NXN - input functions; M-Step - time slices. 

% NxM-output_plot 

% circular, square and gaussian excitation 

% Written by Nicholas Lee, Jul 1998 

clear all; 

!del opt*.met % delete old data files 

% Load the defining parameters specified in OPTFIL.m 

load optvar28.mat 

% Generate the INPUT function; plot it. 

N 

disp('N is the width of the base for each function') 

disp(") 

disp('Please select the excitation function') 

dispC   1-Circle        ') 

disp('   2-Table ') 

disp('   3 - Circular Gaussian ') 

disp('   4 - Circular Bessel     ') 

disp('   ') 

disp('   Please strike "Enter" after selection.') 

dispC   ') 

disp('   Default values are in [ ].') 
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input_func = input('Please enter an excitation function number [1]'); 

if isempty(input_func) 

input_func = 1 

end 

if input_func = 1, 

d = input(Tlease enter ODD diameter, [25], d = '); 

ifisempty(d) 

d = 25 

end 

shftjnput = crcle(d,N); 

elseif input_func = 2, 

w = input(Tlease enter ODD width, [25], w = '); 

if isempty(w) 

w = 25 

end 

shftjnput = table(w,N); 

d = w; 

elseif input_func = 3, 

sigma = input('Please enter the standard deviation, [12],sigma = '); 

if isempty(sigma) 

sigma = 12 

end 

d = input('Please enter the ODD diameter, [25], d ='); 

ifisempty(d) 

d = 25 

end 

shftjnput = crcgaus(sigma,d,N); 

elseif input Jiunc == 4, 

a = input('Please enter the width scaling factor,,[1], a= '); 
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ifisempty(a) 

a=l 

end 

d = input('Please enter the ODD diameter, [25], d ='); 

ifisempty(d) 

d = 25 

end 

shftjnput = crcbess(a,d,N); 

else 

error('Incorrect Excitation Function Selection') 

end 

%% Shift input quadrants and take the 2-D FFT to produce FJNPUT. 

input = (fftshift(shft_input)); 

F_input = real(fft2(input)); 

% Shift F_input in preparation of multiplication with PROP1 

Fshft_input = fftshift(F_input); 

% Array-multiply the filter transfer function PROP1 and Fshft_input. 

disp('Performing array multiplication....'); 

%%% Start loop %%% 

for m = 1 :M-Step 

fprintf( '%2.0f, ',m) 

pause(l) 

%% Load filter transfer function 

filenamel = [,pJl',int2str(N),'x',int2str(m) ]; 

eval(['load ',filenamel]); 

eval(['vname 1 =PROP 1 ',int2str(m),';']); 

% Array-multiply filter transfer function with Fshft_input 

Fshft_outputl = vnamel.*(Fshft_input); 

%Clear unnecessary variables to free RAM 
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clear vnamel; 

eval(['clear PROP 1 ',int2str(m),*;']); 

% Shift Fshft_outputl to corner geometry prior to taking the IFFT2 

F_outputl = fftshift(Fshft_outputl); 

% Take IFFT of F_outputl 

output=ifft2(F_outputl); 

% Shift output 1 prior to summation««««OUTPUT 

shft_output = fftshift(output); 

% View the magnitude of the shifted output<««INTENSITY 

shft_outabs = abs(shft_output); 

shft_intensity = (shft_outabs).A2; 

%Shft_outabs as outabs and store into file optab(time(m)) 

vname = ['outabs',int2str(m)]; 

eval([vname,'=shft_outabs;']) 

eval(['save optab',int2str(m),' ',vname]) 

vname = ['inten',int2str(m)]; 

eval([vname, -shftjntensity;']) 

eval(['save optint',int2str(m),' ',vname]) 

%Save the NO row of the magnitude of the shifted output in the 

%m+Step column of output_plot. 

output_plot(l :N,m+Step)=shft_outabs(NO, 1 :N)'; 

end 

%%%% End loop %%% 

%Save contents of "output_plot" as NxM array, 

filename = ['op',int2str(d),'x',int2str(M)]; % File: op(d)x(M) 

eval(['save ',filename,' output_plot']); 

% plot the responses at each stage 

save excit shft_input input F_input Fshft_input outputjplot 

%%% End of program %%% 
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APPENDIX D. SOURCE CODE FOR 2D AND 3D GRAPHICS 

The fallowings are the MATLAB source code for plotting all two- and three- 

dimensional graphics. 

PLOT FILTER FUNCTION 

%plotfilter.m 

%This program plots all the filter function 

%It uses data files pj 1128xn.mat 

%Written by Nicholas Lee, Jul 1998 

clear all 

cs60 = zeros(128); 

csl25 = zeros(128); 

load pj 1128x1.mat 

loadpjll28x2.mat 

loadpjll28x4.mat 

load pj 1128x8.mat 

Ioadpjll28x60.mat 

loadpjll28xl25.mat 

figure(l) 

subplot( 1,2,1) 

mesh(PROPll) 

axis square, title('(a) Time slice 1') 

grid on, xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis') 

axis([0 128 0 128 -9000 0]) 

set(gca,'xtick,,[0,65,128],'ytick',[0,65,128],'ztick',[-9000,-6000,-3000,0]) 
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subplot( 1,2,2) 

mesh(PR0P12) 

axis square, title('(b) Time slice 2') 

grid on, xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis') 

axis([0 128 0 128 -900 1200]) 

set(gca,,xtick',[0,65,128],,ytick',[0,65,128],'ztick',[-800,-400,0,400,800,1200]) 

figure(2) 

subplot( 1,2,1) 

mesh(PROP14) 

axis square, title('(d) Time slice 4') 

grid on, xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis') 

axis([0 128 0 128 -600 600]) 

set(gca,'xtick,,[0,65,128],'ytick',[0,65,128],'ztick',[-600,-400,-200,0,200,400,600]) 

subplot( 1,2,2) 

mesh(PROP18) 

axis square, title('(d) Time slice 8') 

grid on, xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis') 

axis([0 128 0 128 -600 600]) 

set(gca,'xtick,,[0,65,128],,ytick',[0,65,128],,ztick,,[-600,-400,-200,0,200,400,600]) 

figure(3) 

subplot( 1,2,1) 

mesh(PROP160) 

axis square,title('(a) Time slice 60') 

grid on, xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis') 

axis([0 128 0 128 -50 50]) 
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set(gca,,xtick,,[0,65,128],,ytick*,[0,65,128];ztick,,[-40,-20,0,20,40]) 

subplot( 1,2,2) 

mesh(PROP1125) 

axis square, title('(b) Time slice 125') 

grid on, xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis') 

axis([0 128 0 128 -20 20]) 

set(gca,,xtick',[0,65,128],,ytick',[0,65,128],,ztick',[-20,-10,0,10,20]) 

cs60(65,l:128) = PROP160(65,l:128); 

csl25(65,l:128)=PROPl 125(65,1:128); 

figure(4) 

subplot( 1,2,1) 

mesh(cs60) 

axis square,title('(c) Time slice 60') 

grid on, xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis') 

axis([0 128 0 128 -50 50]) 

set(gca,'xtick,,[0,65,128],'ytick,,[0,65,128],'ztick,,[-40,-20,0,20,40]) 

view(0,0) 

subplot( 1,2,2) 

mesh(csl25) 

axis square, title('(d) Time slice 125') 

grid on, xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis') 

axis([0 128 0 128 -20 20]) 

set(gca;xtick',[0,65,128],'ytick',[0,65,128],'ztick',[-20,-10,0,10,20]) 

view(0,0) 

%%% End of program %%% 
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PLOT FIELD 

%plotfield.m 

%This program plots all the graphics for the input and output fields 

%It uses data files excit, optvar.mat, optabm.mat and optintm.mat 

% Written by Nicholas Lee, Jul 1998 

clear all 

% Load the defining parameters specified in OPTFIL.m 

load excit.mat 

%load output field 

load optabl.mat 

load optab50.mat 

load optabl00.mat 

load optabl25.mat 

%load intensity to create image 

load optintl .mat 

load optint50.mat 

load optintlOO.mat 

load optintl25.mat 

figure(l) % input excitation 

subplot( 1,2,1) 

mesh(shft_input);title('(a)SHFT-INPUr); 
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axis square; 

axis([0 128 0 128 0 1]) 

set(gca,'xtick',[0,655128],,ytick,,[0,65,128],,ztick,,[0,0.5,l]) 

grid on, xlabel('X-axis'), ylabel('Y-axis'), zlabel('Z-axis') 

subplot( 1,2,2) 

mesh(input);title('(b) INPUT') 

axis square; 

axis([0 128 0 128 0 1]) 

set(gca,'xtick,,[0,65,128],,ytick',[0,65,128],,ztick,,[0,0.5,l]) 

grid on, xlabel('X-axis'), ylabel('Y-axis'), zlabel('Z-axis') 

pause;   " 

figure(2) % Fourier transform of shifted input 

subplot( 1,2,1) 

mesh(F_input);title('(c) F-INPUT') 

axis square; 

axis([0 128 0 128 -100 500]) 

set(gca,,xtick,,[0,65,128],,ytick',[0,65,128],,ztick',[-100,0,100,200,300,400,500]) 

grid on, xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis') 

subplot( 1,2,2) 

mesh(Fshft_input);title('(d) FSHFT-INPUT') 

axis square; 

axis([0 128 0 128 -100 500]) 

set(gca,'xtick',[0,65,128],,ytick,,[0,65,128],'ztick,,[-100,0,100,200,300,400,500]) 

grid on, xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis') 

pause; 
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figure(3) 

subplot(2,2,l) 

mesh(outabsl) 

axis square,title('(a) Output field at time slice 1') 

grid on, xlabel('X-axis'), ylabel('Y-axis'), zlabel('Amplitude') 

axis([0 128 0 128 0 1500]) 

set(gca;xtick',[0,65,128],'ytick,,[0,65,128],,ztick,,[0,500,1000,1500]) 

subplot(2,2,2) 

mesh(intenl) 

axis square,title('Image at time slice 1') 

grid on, xlabel('X-axis'), ylabel('Y-axis'), zlabel('Z-axis') 

axis([0 128 0 128 0 2e6]) 

colorbar 

set(gca,'xtick,,[0,65,128],,ytick',[0,65,128],,ztick',[]) 

view(0,90) 

subplot(2,2,3) 

mesh(outabs50) 

axis square,title('(b) Output field at time slice 50') 

grid on, xlabel('X-axis'), ylabel('Y-axis'), zlabel('Amplitude') 

axis([0 128 0 128 0 30]) 

set(gca,'xtick',[0,65,128],'ytick',[0,65,128],'ztick',[0,10,20,30]) 

subplot(2,2,4) 

mesh(inten50) 

axis square,title('Image at time slice 50') 

grid on, xlabel('X-axis'), ylabel('Y-axis'), zlabel('Z-axis') 

axis([0 128 0 128 0 600]) 
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colorbar 

set(gca;xtick,,[0,65,128],'ytick,,[0565,128],,ztick'5[]) 

view(0,90) 

pause; 

figure(4) 

subplot(2,2,l) 

mesh(outabslOO) 

axis square,title('(c) Output field at time slice 100') 

grid on, xlabel('X-axis'), ylabel('Y-axis'), zlabel('Amplitude') 

axis([0 128 0 128 0 20]) 

set(gca,'xtick',[0,65,128],'ytick',[0,65,128];ztick',[0,5,10,15520]) 

subplot(2,2,2) 

mesh(intenlOO) 

axis square,title('Image at time slice 100') 

grid on, xlabel('X-axis'), ylabel('Y-axis'), zlabel('Z-axis') 

axis([0 128 0 128 0 250]) 

colorbar 

set(gca,'xtick',[0,65,128],*ytick',[0,65,128],'ztick,,[]) 

view(0,90) 

subplot(2,2,3) 

mesh(outabsl25) 

axis square,title('(d) Output field at time slice 125') 

grid on, xlabel('X-axis'), ylabel('Y-axis'), zlabel('Amplitude') 

axis([0 128 0 128 0 10]) 

set(gca,'xtick',[0,65,128],'ytick',[0,65,128],'ztick',[0,2,4,6,8,10]) 
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subplot(2,2,4) 

mesh(intenl25) 

axis square,title('Image at time slice 125') 

grid on, xlabel('X-axis'), ylabel('Y-axis'), zlabel('Z-axis') 

axis([0 128 0 128 0 80]) 

colorbar 

set(gca,'xtick,,[0,65,128],'ytick,,[0,65,128],,ztick,,[]) 

view(0,90) 

pause; 

figure(5) % output_plot with close-up view 

subplot(l,2,l) 

mesh(output_plot);title('(a) Total output'); 

axis square; 

axis([0 128 0 128 0 800]) 

set(gca,'xtick',[0,40,80,128],*ytick',[0,65,128],'ztick',[0,200,400,600,800]) 

grid on, xlabel('time slice'), ylabel('space'), zlabel('amplitude') 

view(52.5,30) 

subplot( 1,2,2) 

mesh(output_plot);title('(b) Magnified view of total output'); 

axis square; 

axis([0 128 0 128 0 80]) 

set(gca,'xtick',[0,40,80,128],'ytick,,[0,65,128],,ztick',[0,20,40,60,80]) 

grid on, xlabel('time slice'), ylabel('space'), zlabel('amplitude') 

view(52.5,30) 

pause; 

figure(6) % output_plot side & front views 
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subplot( 1,2,1) 

mesh(output_plot);title('(a) Close-up cross-section view of total output'); 

axis square; 

axis([0 128 0 128 0 80]) 

set(gca,'xtick,,[0,20,40,60,80,100,128],,ytick',[0,65,128],'ztick',[0,20,40,60,80]) 

grid on, xlabel('time slice'), ylabel('space'), zlabel('amplitude') 

view(0,0) 

subplot( 1,2,2) 

mesh(output_plot);title('(b) Close-up front view of total output'); 

axis square; 

axis([0 128 0 128 0 80]) 

set(gca,'xtick*,[0,40,80,128],'ytick,,[0,30,65,90,128],'ztick',[]) 

grid on, xlabel('time slice'), ylabel('space'), zlabel('') 

view(90,45) 

%%% End of program %%% 
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APPENDIX E. SOURCE CODE FOR ANIMATION PROGRAMS 

The followings are the MATLAB source code for the animation programs. 

ANIMATION FORMAT 1 

% animatel.m 

%This program animate filter function , output field and image 

%uses N=64 

%Written by Nicholas Lee, Aug 1998 

clear all; 

% Load the defining parameters specified in IOPTFIL.m 

load optvar.mat 

% Array-multiply the shifted transfer function PRROP and Fshftjnput. 

disp('Animation in-progress....'); 

movie_figure = figure('position',[50 200 600 220]);%col, row 

MM=moviein(M-Step,movie_figure); 

%%% Start loop %%% 

for m = 1 :M-Step 

nic=['time-slice ',int2str(m) ]; 

fprintf( '%2.0f, ',m); 

ifm=l 

filenamel = ['pJl',int2str(N),'x'5int2str(m) ]; 

eval(['load',filenamel]); 

eval(['vnamel=PR0Pr,int2str(m);;']); 

filename2 = ['optab',int2str(m) ]; 

eval(['load ',filename2]); 

eval(['vname2=outabs',int2str(m),';']); 

subplot( 1,3,1) 

mesh(vnamel);title('(a) Filter spatial frequency response') 

axis square; 

grid on; xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis') 
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axis([0 64 0 64 -9000 0]) 

set(gca,,xtick,,[0,33,64],'ytick',[0,33,64],,ztick,,[-9000,0]) 

subplot(l,3,2) 

mesh(vname2);title('    (b) Image field intensity') 

axis square; 

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity') 

axis([0 64 0 64 0 1500]) 

set(gca,,xtick',[0,33,64];ytick',[0,33,64],*ztick',[0,500,1000,1500]) 

subplot(l,3,3) 

mesh(vname2);title('(c) Image') 

axis square; 

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity') 

axis([0 64 0 64 0 1500]) 

colorbar 

set(gca,'xtick',[0,33,64],'ytick',[0,33,64],'ztick',[0,500,1000,1500]) 

view(0,90) 

eval(['text(l 5,-30,0,nic);']); 

elseifm<=3 

filename 1 = ['pJl',int2str(N),'x',int2str(m) ]; 

eval(['load ',filenamel]); 

eval(['vname 1 =PROP r,int2str(m),';']); 

filename2 = ['optab',int2str(m) ]; 

eval(['load ',filename2]); 

eval(['vname2=outabs',int2str(m),';']); 

subplot( 1,3,1) 

mesh(vnamel);title('(a) Filter spatial frequency response') 

axis square; 
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grid on; xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis') 

axis([0 64 0 64 -400 600]) 

set(gca;xtick',[0533,64],,ytick,,[0,33,64],,ztick',[-400,-200,0,200,400,600]) 

subplot(l,3,2) 

mesh(vname2);title('    (b) Image field intensity') 

axis square; 

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity') 

axis([0 64 0 64 0 250]) 

set(gca,,xtick,,[0,33,64]3
,ytick',[0,33,64],'ztick,,[0,50,1005150,200,250]) 

subplot(l,3,3) 

mesh(vname2);title('(c) Image') 

axis square; 

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity') 

axis([0 64 0 64 0 250]) 

colorbar; 

set(gca,'xtick',[0,33,64];ytick',[0,33564],'ztick',[0,50,100,150,200,250]) 

view(0,90) 

eval([*text(l 5,-30,0,nic);']); 

elseifm<=ll 

filename 1 = ['pJl',int2str(N),'x',int2str(m) ]; 

eval(['load ',filenamel]); 

eval(['vname 1 =PROP 1 \int2str(m),';']); 

filename2 = ['optab',int2str(m) ]; 

eval(['load ',filename2]); 

eval(['vname2=outabs',int2str(m),';']); 

subplot(l,3,l) 

mesh(vnamel);title('(a) Filter spatial frequency response') 
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axis square; 

grid on; xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis') 

axis([0 64 0 64 -300 300]) 

set(gca,,xtick',[0,33,64],'ytick,,[0,33,64];ztick',[-300,-200,- 

100,0,100,200,300]) 

subplot(l,3,2) 

mesh(vname2);title('    (b) Image field intensity') 

axis square; 

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity') 

axis([0 64 0 64 0 100]) 

set(gca,*xtick,,[0,33,64],,ytick',[0,33,64],,ztick',[0,20,40,60,80,100]) 

subplot(l,3,3) 

mesh(vname2);title('(c) Image') 

axis square; 

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity') 

axis([0 64 0 64 0 100]) 

colorbar 

set(gca,'xtick',[0,33,64],'ytick',[0,33,64],,ztick',[0,20,40,60,80,100]) 

view(0,90) 

eval(['text(15,-30,0,nic);']); 

elseif m<=25 

filenamel = ['pJl',int2str(N),'x',int2str(m)]; 

eval(['load ',filenamel]); 

eval(['vnamel=PROPl',int2str(m),';']); 

filename2 = ['optab',int2str(m) ]; 

eval(['load ',filename2]); 

eval(['vname2=outabs',int2str(m),';']); 
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subplot( 1,3,1) 

mesh(vnamel);title('(a) Filter spatial frequency response') 

axis square; 

grid on; xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis') 

axis([0 64 0 64-100 100]) 

set(gca;xtick',[0,33,64],,ytick,,[0,33,64],,ztick',[-100,-50,0550,100]) 

subplot(l,3,2) 

mesh(vname2);title('     (b) Image field intensity') 

axis square; 

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity') 

axis([0 64 0 64 0 50]) 

set(gca,'xtick,,[0,33,64],'ytick',[0,33,64],'ztick',[0,10,20,30,40,50]) 

subplot(l,3,3) 

mesh(vname2);title('(c) Image') 

axis square; 

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity') 

axis([0 64 0 64 0 50]) 

colorbar 

set(gca;xtick',[0,33,64],'ytick',[0,33,64],,ztick*,[0,10,20,30,40,50]) 

view(0,90) 

eval(['text(l 5,-30,0,nic);']); 

elsem<=61 

filenamel = ['pJr,int2str(N),'x',int2str(m) ]; 

eval(['load ',filenamel]); 

eval(['vnamel=PROPl',int2str(m),';']); 

filename2 = ['optab',int2str(m) ]; 

eval(['load ',filename2]); 
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eval(['vname2=outabs',int2str(m),,;,]); 

subplot( 1,3,1) 

mesh(vnamel);title('(a) Filter spatial frequency response') 

axis square; 

grid on; xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis') 

axis([0 64 0 64 -50 50]) 

set(gca,*xtick,,[0,33,64],,ytick',[0,33,64],,ztick',[-50,0,50]) 

subplot(l,3,2) 

mesh(vname2);title('    (b) Image field intensity') 

axis square; 

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity') 

axis([0 64 0 64 0 30]) 

set(gca,'xtick',[0,33,64],'ytick',[0,33,64],'ztick',[0,10,20,30]) 

subplot(l,3,3) 

mesh(vname2);title('(c) Image') 

axis square; 

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity') 

axis([0 64 0 64 0 30]) 

colorbar 

set(gca,,xtick,,[0,33,64],'ytick',[0,33,64],'ztick',[0,10,20,30]) 

view(0,90) 

eval(['text(l 5,-30,0,nic);']); 

end 

figure(mo vie_figure); 

MM(: ,m)=getframe(gcf); 

end 

%%% END OF LOOP %%% 

echo off 
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dispC'); 

disp('Press a key to play back movie.'); 

pause 

echo on 

start_frame=input('Enter start frame:'); 

end_frame=input('Enter end frame:'); 

movie(movie_figure,MM,[l (start_frame:end_frame)], 1); 

echo off 

%%%End of program %%% 

ANIMATION FORMAT 2 

% animate2.m 

%This program animate filter function, output field, total output (side view) 

%and image 

%uses N=64 

%Written by Nicholas Lee, Aug 1998 

clear all; 

% Load the defining parameters specified in IOPTFIL.m 

load optvar.mat 

center=zeros(N); 

% Array-multiply the shifted transfer function PRROP and Fshft_input. 

disp('Animation in-progress....'); 

movie_figure = figure('position',[50 100 450 350]);%col, row 

MM=moviein(M-Step,movie_figure); 

%%% Start loop %%% 

for m = 1,:M-Step 

nic=['time-slice ',int2str(m) ]; 

fprintf( *%2.0f, ',m); 

ifm=l 
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filenamel = ['pJl',int2str(N),'x',int2str(m) ]; 

eval(['load',filenamel]); 

eval(['vnamel=PR0Pl',int2str(m),';']); 

filename2 = ['optab',int2str(m) ]; 

eval(['load ',filename2]); 

eval(['vname2=outabs',int2str(m),';']); 

subplot(2,2,l) 

mesh(vnamel);title('(a) Filter spatial frequency response') 

axis square; 

grid on; xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis') 

axis([0 64 0 64 -9000 0]) 

set(gca;xtick,,[0,33,64],'ytick',[0,33,64];ztick,,[-9000,0]) 

subplot(2,2,2) 

mesh(vname2);title('(b) Image field intensity') 

axis square; 

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity') 

axis([0 64 0 64 0 1500]) 

set(gca,'xtick',[0,33,64],'ytick,,[0,33,64],,ztick',[0,500,1000,1500]) 

subplot(2,2,3) 

center(m,l :N)=vname2(NO,l :N); 

mesh(center);title('(c) Field distribution') 

axis square; 

grid on; xlabel('Space'), ylabel('Time-slice'), zlabel('Intensity') 

axis([0 64 0 64 0 100]) 

set(gca,'xtick',[0,33,64],'ytick',[0,33,64],'ztick',[0,20,40,60,80,100]) 

view(90,0) 

hold on 
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subplot(2,2,4) 

mesh(vname2);title('(d) Image') 

axis square; 

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity') 

axis([0 64 0 64 0 1500]) 

colorbar 

set(gca;xtick',[0,33,64],,ytick,,[0,33,64],,ztick',[0,500,100031500]) 

view(0,90) 

eval(['text(64,-13,0,nic);']); 

elseifm<=3 

filenamel - [,pJl',int2str(N),'x',int2str(m) ]; 

eval(['load ',filenamel]); 

eval(['vnamel=PROPl'4nt2str(m),';']); 

filename2 = ['optab',int2str(m) ]; 

eval(['load ',filename2]); 

eval(['vname2=outabs',int2str(m),';']); 

subplot(2,2,l) 

mesh(vnamel);title('(a) Filter spatial frequency response') 

axis square; 

grid on; xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis') 

axis([0 64 0 64 -400 600]) 

set(gca,'xtick',[0,33,64];ytick',[0,33,64];ztick*,[-400,-200,0J20054003600]) 

subplot(2,2,2) 

mesh(vname2);title('(b) Image field intensity') 

axis square; 

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity') 

axis([0 64 0 64 0 250]) 

set(gca,'xtick,,[0,33,64]5'ytick,,[0,33,64];ztick',[0,50,100,1505200,250]) 
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subplot(2,2,3) 

center(m, 1 :N)=vname2(N0,1 :N); 

mesh(center);title('(c) Field distribution') 

axis square; 

grid on; xlabel('Space'), ylabel('Time-slice'), zlabel('Intensity') 

axis([0 64 0 64 0 100]) 

set(gca,,xtick,,[0,33,64],'ytick,,[0,33,64],'ztick,,[0,20>40,60,80,100]) 

view(90,0) 

hold on 

subplot(2,2,4) 

mesh(vname2);title('(d) Image') 

axis square; 

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity') 

axis([0 64 0 64 0 250]) 

colorbar; 

set(gca,*xtick,,[0,33,64],'ytick',[0,33,64],'ztick',[0,50,100,150,200,250]) 

view(0,90) 

eval(['text(64,-13,0,nic);']); 

elseif m<=ll 

filenamel - ['pJl',int2str(N),'x',int2str(m) ]; 

eval(['load ',filenamel]); 

evaKt'vname^PROPl'^strCm),';']); 

filename2 = ['optab',int2str(m) ]; 

eval(['load ',filename2]); 

eval(['vname2=outabs',int2str(m),';']); 

subplot(2,2,l) 

mesh(vnamel);title('(a) Filter spatial frequency response') 
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axis square; 

grid on; xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis') 

axis([0 64 0 64 -300 300]) 

set(gca,,xtick',[0,33,64]5
,ytick,,[0,33,64];ztick,,[-300,-200,- 

100,0,100,200,300]) 

subplot(2,2,2) 

mesh(vname2);title('(b) Image field intensity') 

axis square; 

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity') 

axis([0 64 0 64 0 100]) 

set(gca,'xtick,,[0,33,64],,ytick',[0,33,64],'ztick',[0,20,40,60,80,100]) 

subplot(2,2,3) 

center(m,l :N)=vname2(NO,l :N); 

mesh(center);title('(c) Field distribution') 

axis square; 

grid on; xlabel('Space'), ylabel(Time-slice'), zlabel('Intensity') 

axis([0 64 0 64 0 100]) 

set(gca,'xtick',[0,33,64],'ytick',[0,33,64],'ztick',[0,20,40,60,80,100]) 

view(90,0) 

hold on 

subplot(2,2,4) 

mesh(vname2);title('(d) Image') 

axis square; 

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity') 

axis([0 64 0 64 0 100]) 

colorbar 
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set(gca,'xtick,,[0,33,64]>
,ytick',[0,33,64],,ztick,,[0,20,40,60,80,100]) 

view(0,90) 

eval(['text(64,-13,0,nic);']); 

elseif m <=25 

filenamel = ['pJl',int2str(N),'x,,int2str(m) ]; 

eval(['load ',filenamel]); 

eval(['vnamel-PR0Pl',int2str(m),';']); 

filename2 = ['optab',int2str(m) ]; 

eval(['load ',filename2]); 

eval(['vnarne2=outabs',int2str(m),';']); 

subplot(2,2,l) 

mesh(vnamel);title('(a) Filter spatial frequency response') 

axis square; 

grid on; xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis') 

axis([0 64 0 64-100 100]) 

set(gca,'xtick,,[0,33,64];ytick,,[0,33,64],,ztick',[-100,-50,0,50,100]) 

subplot(2,2,2) 

mesh(vname2);title('(b) Image field intensity') 

axis square; 

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity') 

axis([0 64 0 64 0 50]) 

set(gca,'xtick',[0,33,64],'ytick',[0,33,64],'ztick',[0,10,20,30,40,50]) 

subplot(2,2,3) 

center(m, 1 :N)=vname2(NO, 1 :N); 

mesh(center);title('(c) Field distribution') 

axis square; 

grid on; xlabel('Space'), ylabel('Time-slice'), zlabel('Intensity') 
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axis([0 64 0 64 0 100]) 

set(gca,'xtick,,[0,33,64],'ytick,
J[0,33,64],'ztick',[0,20,40,60,80,100]) 

view(90,0) 

hold on 

subplot(2,2,4) 

mesh(vname2);title('(d) Image') 

axis square; 

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity') 

axis([0 64 0 64 0 50]) 

colorbar 

set(gca;xtick,,[0533,64],,ytick,,[0,33,64],,ztick,,[0,10,20,30540,50]) 

view(0,90) 

eval(['text(64,-13,0,nic);']); 

elsem<=61 

filenamel = ['pJl',int2str(N),'x,,int2str(m) ]; 

eval(['load ',filenamel]); 

eval([Vnamel=PROPr4nt2str(m),';']); 

filename2 = ['optab',int2str(m) ]; 

eval(['load ',filename2]); 

eval(['vname2=outabs,,int2str(m),';']); 

subplot(2,2,l) 

mesh(vnamel);title('(a) Filter spatial frequency response') 

axis square; 

grid on; xlabel('fx-axis'), ylabel('ry-axis'), zlabel('fz-axis') 

axis([0 64 0 64 -50 50]) 

set(gca,*xtick*,[0,33,64],'ytick',[0,33,64],'ztick',[-50,0,50]) 

subplot(2,2,2) 
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mesh(vname2);title('(b) Image field intensity') 

axis square; 

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity') 

axis([0 64 0 64 0 30]) 

set(gca/xtick,,[0,33,64],'ytick',[0,33,64],,ztick',[0,10,20,30]) 

subplot(2,2,3) 

center(m, 1 :N)=vname2(NO, 1 :N); 

mesh(center);title('(c) Field distribution') 

axis square; 

grid on; xlabel('Space'), ylabel('Time-slice'), zlabel('Intensity') 

axis([0 64 0 640 100]) 

set(gca,'xtick',[0,33,64],'ytick',[0,33,64],'ztick',[0,20,40,60,80,100]) 

view(90,0) 

hold on 

subplot(2,2,4) 

mesh(vname2);title('(d) Image') 

axis square; 

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity') 

axis([0 64 0 64 0 30]) 

colorbar 

set(gca,'xtick',[0,33,64],,ytick',[0,33,64],'ztick',[0,10,20,30]) 

view(0,90) 

eval(['text(64,-13,0,nic);']); 

end 

figure(movie_figure); 
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MM(:,m)=getframe(gcf); 

end 

%%% END OF LOOP %%% 

echo off 

dispC); 

disp(Tress a key to play back movie.'); 

pause 

echo on 

start_frame=input('Enter start frame:'); 

end_frame=input('Enter end frame:'); 

movie(movie_figure,MM, [ 1 (start_frame :end_frame)], 1); 

echo off 

%%% End of program %%% 

ANIMATION FORMAT 3 

% animate3.m 

%This program animate filter function, output field, total output (magnified) 

%and image 

%uses N=64 

%Written by Nicholas Lee, Aug 1998 

clear all; 

% Load the defining parameters specified in IOPTFIL.m 

load optvar.mat 

center=zeros(N); 

% Array-multiply the shifted transfer function PRROP and Fshft_input. 

disp('Animation in-progress....'); 

movie_figure = figure('position',[50 100 450 350]);%col, row 

MM=moviein(M-Step,movie_figure); 

%%% Start loop %%% 
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for m = 1 :M-Step 

nic=['time-slice ',int2str(m) ]; 

fprintf( '%2.0f, ',m); 

ifm=l 

filename 1 = [,pJl',int2str(N),'x',int2str(m) ]; 

eval(['load ',filenamel]); 

eval(['vname 1 =PROP 1',int2str(m),';']); 

filename2 = ['optab',int2str(m) ]; 

eval(['load ',filename2]); 

eval(['vname2=outabs',int2str(m),V]); 

subplot(2,2,l) 

mesh(vnamel);title('(a) Filter spatial frequency response') 

axis square; 

grid on; xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis') 

axis([0 64 0 64 -9000 0]) 

set(gca;xtick,,[0,33,64],,ytick',[0,33,64],,ztick,,[-9000,0]) 

subplot(2,2,2) 

mesh(vname2);title('(b) Image field intensity') 

axis square; 

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity') 

axis([0 64 0 64 0 1500]) 

set(gca,'xtick',[0,33,64],'ytick',[0,33,64],'ztick',[0,500,1000,1500]) 

subplot(2,2,3) 

center(m,l :N)=vname2(NO,l :N); 

mesh(center);title('(c) Field distribution') 

axis square; 

grid on; xlabel('Space'), ylabel('Time-slice'), zlabel('Intensity') 
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axis([0 64 0 64 0 100]) 

set(gca,,xtick,,[0533,64],,ytick',[0,33,64],'ztick',[0,20,40,60,80,100]) 

view(142.5,30) 

hold on 

subplot(2,2,4) 

mesh(vname2);title('(d) Image') 

axis square; 

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity') 

axis([0 64 0 64 01500]) 

colorbar 

set(gca,'xtick',[0,33564],'ytick',[0,33,64];ztick,,[0,500,1000,1500]) 

view(0,90) 

eval(['text(64,-13,0,nic);']); 

elseifm<=3 

filename 1 = ['pJl',int2str(N),'x',int2str(m) ]; 

eval(['load ',filenamel]); 

eval(['vnamel=PROP 1 ',int2str(m),';']); 

filename2 = ['optab',int2str(m) ]; 

eval(['load ',filename2]); 

eval(['vname2=outabs',int2str(m).,';']); 

subplot(2,2,l) 

mesh(vnamel);title('(a) Filter spatial frequency response') 

axis square; 

grid on; xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis') 

axis([0 64 0 64 -400 600]) 

set(gca,'xtick*,[0533564]3'ytick',[0,33,64],'ztick',[-400J-200,0,200,400,600]) 

subplot(2,2,2) 
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mesh(vname2);title('(b) Image field intensity') 

axis square; 

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity') 

axis([0 64 0 64 0 250]) 

set(gca,'xtick',[0,33,64],,ytick',[0,33,64],,ztick,,[0,50,100,150,200,250]) 

subplot(2,2,3) 

center(m,l :N)=vname2(NO,l :N); 

mesh(center);title('(c) Field distribution') 

axis square; 

grid on; xlabel('Space'), ylabel('Time-slice'), zlabel('Intensity') 

axis([0 64 0 64 0 100]) 

set(gca,*xtick*,[0,33,64],'ytick',[0,33,64],'ztick',[0,20,40,60580,100]) 

view(142.5,30) 

hold on 

subplot(2,2,4) 

mesh(vname2);title('(d) Image') 

axis square; 

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity') 

axis([0 64 0 64 0 250]) 

colorbar; 

set(gca,*xtick',[0,33,64],,ytick',[0,33,64],'ztick',[0,50,100,150,200,250]) 

view(0,90) 

eval(['text(64,-13,0,nic);']); 

elseifm<=ll 

filenamel = ['pJl',int2str(N),'x',int2str(m)]; 

eval(['load ',filenamel]); 

eval(['vnamel=PROPl',int2str(m),';']); 
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filename2 = ['optab',int2str(m) ]; 

eval(['load ',filename2]); 

eval(['vname2=outabs',int2str(m),';']); 

subplot(2,2,l) 

mesh(vnamel);title('(a) Filter spatial frequency response') 

axis square; 

grid on; xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis') 

axis([0 64 0 64 -300 300]) 

set(gca;xtick',[0533,64],'ytick',[0,33,64],'ztick',[-300,-200,- 

100,0,100,200,300]) 

subplot(2,2,2) 

mesh(vname2);title('(b) Image field intensity') 

axis square; 

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity') 

axis([0 64 0 64 0 100]) 

set(gca;xtick,,[0,33,64],'ytick',[0,33,64],'ztick,,[0,20,40,60,80,100]) 

subplot(2,2,3) 

center(m, 1 :N)=vnarne2(NO, 1 :N); 

mesh(center);title('(c) Field distribution') 

axis square; 

grid on; xlabel('Space'), ylabel(Time-slice'), zlabel('Intensity') 

axis([0 64 0 64 0 100]) 

set(gca,'xtick',[0,33,64],'ytick*,[0,33,64],'ztick',[0,20,40,60,80,100]) 

view(142.5,30) 

hold on 

subplot(2,2,4) 

107 



mesh(vname2);title('(d) Image') 

axis square; 

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity') 

axis([0 64 0 64 0 100]) 

colorbar 

set(gca,,xtick',[0,33,64],,ytick,
>[0,33,64],,ztick,,[0,20,40,60,80,100]) 

view(0,90) 

eval(['text(64,-13,0,nic);']); 

elseifm<=25 

filenamel = ['pJl',int2str(N),'x,,int2str(m) ]; 

eval(['load',filenamel]); 

eval(['vname 1 =PROP 1 ',int2str(m),*;']); 

filename2 = ['optab',int2str(m) ]; 

eval(['load ',filename2]); 

eval([,vname2=outabs',int2str(m),';']); 

subplot(2,2,l) 

mesh(vnamel);title('(a) Filter spatial frequency response') 

axis square; 

grid on; xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis') 

axis([0 64 0 64-100 100]) 

set(gca,'xtick',[0,33,64],'ytick,,[0,33,64],,ztick',[-100,-50,0,50,100]) 

subplot(2,2,2) 

mesh(vname2);title('(b) Image field intensity') 

axis square; 

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity') 

axis([0 64 0 64 0 50]) 

set(gca,'xtick',[0,33,64],'ytick',[0,33,64],'ztick',[0,10,20,30,40,50]) 

subplot(2,2,3) 
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center(m, 1 :N)=vname2(N0,1 :N); 

mesh(center);title('(c) Field distribution') 

axis square; 

grid on; xlabel('Space'), ylabel('Time-slice'), zlabel('Intensity') 

axis([0 64 0 64 0 100]) 

set(gca,,xtick,,[0,33,64],,ytick,,[0,33,64],,ztick,
>[0,20,40s60s80,100]) 

view(142.5,30) 

hold on 

subplot(2,2,4) 

mesh(vname2);title('(d) Image') 

axis square; 

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity') 

axis([0 64 0 64 0 50]) 

colorbar 

set(gca,'xtick*,[0,33,64],'ytick,,[0,33,64];ztick',[0,10520,30,40,50]) 

view(0,90) 

eval(['text(64,-l 3,0,nic);']); 

elsem<=61 

filename 1 = [,pJl',int2str(N),'x,,int2str(m) ]; 

eval(['load ',filenamel]); 

eval([Vnamel=PROPl^nt2str(m),';']); 

filename2 = ['optab',int2str(m) ]; 

eval(['load ',filename2]); 

eval(['vname2=outabs',int2str(m),';']); 

subplot(2,2,l) 

mesh(vnamel);title('(a) Filter spatial frequency response') 

axis square; 

grid on; xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis') 
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axis([0 64 0 64 -50 50]) 

set(gca,'xtick,,[0,33,64],'ytick,,[0,33,64],,ztick,,[-50,0,50]) 

subplot(2,2,2) 

mesh(vname2);title('(b) Image field intensity') 

axis square; 

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity') 

axis([0 64 0 64 0 30]) 

set(gca,,xtick',[0,33,64],,ytick,,[0,33,64],'ztick',[0,10,20,30]) 

subplot(2,2,3) 

center(m,l :N)=vname2(NO,l :N); 

mesh(center);title('(c) Field distribution') 

axis square; 

grid on; xlabel('Space'), ylabel('Time-slice'), zlabel('Intensity') 

axis([0 64 0 64 0 100]) 

set(gca,,xtick,,[0,33,64];
,ytick',[0,33,64],'ztick',[0,20,40,60,80,100]) 

view(142.5,30) 

hold on 

subplot(2,2,4) 

mesh(vname2);title('(d) Image1) 

axis square; 

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity') 

axis([0 64 0 64 0 30]) 

colorbar 

set(gca;xtick',[0,33,64],'ytick',[0,33,64],'ztick',[0,10,20,30]) 

view(0,90) 

eval(['text(64,-13,0,nic);']); 
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end 

figure(movie_figure); 

MM(: ,m)=getframe(gcf); 

end 

%%% END LOOP %%% 

echo off 

disp(''); 

disp('Press a key to play back movie.'); 

pause 

echo on 

start_frame=input('Enter start frame:'); 

end_frame=input('Enter end frame:'); 

movie(movie_figure,MM, [ 1 (start_frame:end_frame)], 1); 

echo off 

%%% End of program %%% 
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