
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

MATLAB IMPLEMENTATION OF A
FOURIER APPROACH TO

OPTICAL WAVE PROPAGATION

by

Nicholas C. C. Lee

September 1998

Thesis Advisor:
Second Reader:

John P. Powers
Ron J. Pieper

Approved for public release; distribution is unlimited.

DTTCQUALiry INSPECTED 4

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September 1998

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
MATLAB Implementation of a Fourier Approach to Optical Wave Propagation
6. AUTHOR(S)
Lee, Nicholas C. C.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /
MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

This thesis explores a MATLAB implementation of a Fourier transform approach to model and
predict transient optical wave propagation through free-space. A three-step approach is adopted in this study.
First, the mathematical development establishes the importance of the total impulse response as the Green's
function, meeting the boundary conditions and solving the wave equation. Second, a MATLAB program is
developed to simulate the mathematical model by computing and displaying the graphical representation of
an optical wave's spatial distribution on a plane at a given distance from a spatially filtered source. Third, a
circular excitation function is used to verify the program and then the results of another three excitations,
namely the square, circularly truncated Gaussian and circularly truncated Bessel functions are similarly
generated. The effort of this thesis provides an inexpensive means to analyze a transient optical wave
propagation of a spatially filtered optical source.
14. SUBJECT TERMS
Green's function, spatial impulse response, diffraction, optical wave propagation, MATLAB Simulations 15. NUMBER OF

PAGES 130

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT
Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFI-CATION
OF ABSTRACT
Unclassified

20. LIMITATION
OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

11

Approved for public release; distribution is unlimited

MATLAB IMPLEMENTATION OF A FOURIER APPROACH TO
OPTICAL WAVE PROPAGATION

Nicholas C. C. Lee
Major, Republic of Singapore Air Force

B.Eng. (Hons), Aberdeen University, U.K. 1991

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

Author:

from the

NAVAL POSTGRADUATE SCHOOL
September 1998

Nicholas C. C. Lee

Approved by:

>P. Powers, Thesis Advisor

^ <rri/ &

Ron J. %cper, Second »Reader

Jeffrey KnoirAChairman
Department of Electrical and Computer Engineering

111

IV

ABSTRACT

This thesis explores a MATLAB implementation of a Fourier transform approach

to model and predict transient optical wave propagation through free-space. A three-step

approach is adopted in this study. First, the mathematical development establishes the

importance of the total impulse response as the Green's function, meeting the boundary

conditions and solving the wave equation. Second, a MATLAB program is developed to

simulate the mathematical model by computing and displaying the graphical

representation of an optical wave's spatial distribution on a plane at a given distance from

a spatially filtered source. Third, a circular excitation function is used to verify the

program and then the results of another three excitations, namely the square, circularly

truncated Gaussian and circularly truncated Bessel functions are similarly generated. The

effort of this thesis provides an inexpensive means to analyze a transient optical wave

propagation of a spatially filtered optical source.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. PROPAGATION OF PULSE FIELD 2

B. PROBLEM DESCRIPTION 2

n. THEORY 7

A. PROPAGATION MODEL AS A LINEAR SYSTEM 7

B. SOLUTION TO WAVE EQUATION , 9

C. COMPUTATION OF TEMPORAL SPATIAL RESPONSE 11

D. TEMPORAL SPATIAL REPONSE FOR COMPUTER SIMULATION 12

E. MATLAB OVERVIEW 15

III. MATLAB SIMULATION 21

A. PROGRAM STRUCTURE 21

B. PROGRAM DESCRIPTION 24

1. Input Excitation Field Distribution Program Module 24
2. Propagation Spatial Filter Program Module 29
3. Temporal Spatial Field Distribution Program Module 33
4. Two- and Three-Dimensional Graphical Program Modules 35
5. Animation Program Modules 38

IV. NUMERICAL SIMULATION • 43

A. PROPAGATION SPATIAL FILTER FUNCTION 43

B. OUTPUT FIELD DISTRIBUTION 47

1. Circular Field Input Excitation with Small Aperture 48
2. Circular Field Input Excitation with Large Aperture 52
3. Square Field Input Excitation 56
4. Circularly Truncated Gaussian Input Excitation 58
5. Circularly Truncated Bessel Input Excitation 60

Vll

V. SUMMARY 63

APPENDIX A: SOURCE CODE FOR INPUT EXCITATIONS 65

APPENDIX B: SOURCE CODE FOR FILTER FUNCTION 71

APPENDIX C: SOURCE CODE FOR OUTPUT FIELD COMPUTATION 75

APPENDIX D: SOURCE CODE FOR 2D AND 3D GRAPHICS 79

APPENDIX E: SOURCE CODE FOR ANIMATION PROGRAMS 89

LIST OF REFERENCES 113

INITIAL DISTRIBUTION LIST 115

Vlll

LIST OF FIGURES

1. Assumed geometry 3

2. Research approach for thesis 5

3. (a) Impulse response (or Green's function) and (b) temporal impulse response 8

4. (a) SHFT-INPUT is a center geometry circular excitation and (b) INPUT

is a corner geometry circular excitation obtained by applying fftshift to the

center geometry circular excitation 17

5. (a) After applying fft2 on Figure 4a and (b) after applying fft2 on Figure 4b 17

6. (a) After applying fftshift to Figure 5a and (b) after applying fftshift to

Figure 5b. These graphs are shown in two-dimensional perspective so that

negative values may be seen 18

7. (a) Absolute value of Figure 6a and (b) absolute value of Figure 6b. As both

graphs are cylindrically symmetric in shape, viewing them in two-dimensional

perspective will show more clearly that they are equal 18

8. Program structure and program flow 25

9. Base array configuration. The small arrows show the direction of flipping 27

10. Input excitation field distribution with N = 64: (a) circular field distribution

with d= 25, (b) square field distribution with w = 25, (c) circularly truncated

Gaussian field distribution with d = 25 and a = 1 and (d) circularly truncated

Bessel field distribution with d = 25 and sigma= 12 28

11. Three-dimensional graphs of the filter function (left) and output field (right) at

time slices 1, 2,10 and 20. Notice that as the time slice number increases the

amplitude of the field decreases but the field radial spreading increases 36

12. Three-dimensional graphs of the filter function (left) and output field (right) at

time slices 30,40, 50 and 61. Notice that as the time slice number increases

the amplitude of the field decreases but the field radial spreading increases 37

13. Animation format 1. (a) shows the filter spatial frequency response, (b) shows

the output field and (c) shows the image at the output plane. There is a small

window just below graph (c) that shows the time slice 39

IX

14. Animation format 2. (a) shows the filter spatial frequency response, (b) shows

the output field, (c) shows the close-up cross-section view of the total output

and (d) shows the image at the output plane. There is a small window just

below graph (d) that shows the time slice 40

15. Animation format 3. (a) shows the filter spatial frequency response, (b) shows

the output field, (c) shows a ten times magnified view of the total output and

(d) shows the image at the output plane. There is a small window just below

graph (d) that shows the time slice 41

16. Propagation spatial filter function with N = 64 and M= 64: (a) time slice 1,

(b) time slice 2, (c) time slice 30 and (d) time slcie 61. Note that time slice 1

occurs at t = z/c and time slices 2, 30 and 61 occur at t > z/c. Notice that these

waveforms look very coarse and spiky 44

17. Propagation spatial filter function with N = 128 and M= 128: (a) time slice 1,

(b) time slice 2, (c) time slice 4 and (d) time slcie 8. Note that time slice 1

occurs at t = z/c and time slices 2, 30 and 61 occur at t > z/c. Notice that these

waveforms are much smoother than those in Figure 16 45

18. Propagation spatial filter function with N = 128 and M= 128: (a) time slice 60,

(b) time slice 125, (c) filter function cross-section view at time slice 60 and

(d) filter function cross-section view at time slice 125. Notice that more peaks

are formed at higher time slice number 46

19. Fourier transform of an impulse plane wave illuminating a circular aperture

with d = 25 (6.25 cm): (a) circular input excitation field, shft-input, (b) after

applying a fftshift on shft-input to produce input, (c) after applying fft2 on

input to produce F-input and (d) after applying a fftshift on F-input to produce

the two-dimensional spatial Fourier transform, Fshft-input. Note Fshft-input

represents s(fx,fy,0) 49

20. Propagation spatial filter function: (a) time slice 1, (b) time slice 50, (c) time

slice 100 and (d) time slice 125 50

21. Output field (left) and image on output plane (right): (a) time slice 1, (b) time

slice 50, (c) time slice 100 and (d) time slice 125 51

22. Circular field input excitation with d = 25 (6.25 cm): (a) Total output, (b) ten

times magnified view of total output, (c) close-up cross-section view of total

output and (d) close-up front view of total output..... 53

23. (a) Circular input excitation with d = 49 (12.25 cm) and (b) two-dimensional

spatial Fourier transform 54

24. Two-dimensional spatial Fourier transform for circular input excitation for

(a) d= 25 (6.25 cm) and (b) d = 49 (12.25 cm) 54

25. Circular field input excitation with d=49 (12.25 cm): (a) Total output, (b) ten

times magnified view of total output, (c) close-up cross-section view of total

output and (d) close-up front view of total output 55

26. (a) Square input excitation with w = 25 (6.25 cm) and (b) two-dimensional

spatail Fourier transform 56

27. Square field input excitation with w = 25 (6.25 cm): (a) Total output, (b) ten

times magnified view of total output, (c) close-up cross-section view of total

output and (d) close-up front view of total output 57

28. (a) Circularly truncated Gaussian field input excitation with d = 25 (6.25 cm)

and sigma — 12 and (b) two-dimensional spatail Fourier transform 58

29. Circularly truncated Gaussian field input excitation with d = 25 (6.25 cm) and

sigma = 12: (a) Total output, (b) ten times magnified view of total output,

(c) close-up cross-section view of total output and (d) close-up front view of

total output 59

30. (a) Circularly truncated Bessel field input excitation with d = 25 (6.25 cm)

and a = 1 and (b) two-dimensional spatial Fourier transform 60

31. Circularly truncated Bessel field input excitation with d = 25 (6.25 cm) and

a = 1: (a) Total output, (b) ten times magnified view of total output,

(c) close-up cross-section view of total output and (d) close-up front view of

total output 61

xi

Xll

TABLE

1. Defining parameters and their assigned values for our propagation model 30

xni

I. INTRODUCTION

Advances in laser technology have made coherent optical sources readily

available. With applications such as image processing, image pattern recognition,

spectrum analysis, synthetic-aperture radar data processing and biomedical applications,

laser sources may be broadly classified into continuous and pulsed lasers. Any laser

which operates for a second or more at a time is called "continuous wave." There are also

many other types of lasers that operate only in the pulsed mode. For example, in solid-

state lasers, the key problem is heat dissipation. It takes time for excess pump energy

delivered to the laser rod to make its way out as heat and continuous wave operation can

cause heat to build up to laser damaging levels.

The pulsed mode laser also finds many other applications which exploit its short

pulse duration. The short length of the pulse makes it an ideal candidate for three-

dimensional imaging, either to acquire depth resolution through range gating or to

discriminate against scattering. Very high peak intensities can be reached at moderate

pulse energies with ultrashort pulses. Finally, the ability to make nondispersive "solitons"

led to a new pulsed code communication system with optical fibers. All these desirable

qualities of a laser source are made possible solely because of the short pulse duration

and this continuing exploitation has led scientists to discover new techniques to produce

ultrashort pulses in the femtosecond regime. This thesis tries to find a method to model

and predict the behavior of laser pulse propagation using computer simulation.

A. PROPAGATION OF PULSED FIELDS

Laser sources exhibit a spatial amplitude distribution, which is typically Gaussian.

It is possible to spatially filter such a beam to produce an alternative shaped beam. Such a

variation may exhibit a circular or square uniform cross-section and either of these could

have an arbitrary spatial weighting distribution. The utility of such filtering is unknown

unless the diffracted field distribution can be predicted at any given distance.

The theory of linear systems can be applied for our purpose of predicting this

diffracted field distribution. By taking the multi-dimensional Fourier transform of the

complex field distribution across any plane, the spatial Fourier components can be

identified as plane waves travelling in different directions. Accounting for phase shift

during travel and applying the superposition theorem, the field amplitude at any other

point will be the sum of each of these contributing waves directions. Thus, the

propagation phenomenon of the optical wave may be regarded as a linear space-invariant

system characterized by a specific transfer function.

B. PROBLEM DESCRIPTION

In this thesis, we want to consider the prediction of transient optical waves after

free-space propagation from one plane, where the wave is known, to a parallel plane that

is located a distance z away. We shall denote these two planes as the input plane and

output plane, respectively. The assumed geometry is shown in Figure 1.

The wave is assumed known in the z = 0 plane and is given by uo(x,y,0,t). For our

model, the input excitation must be separable in space and time, i.e.,

uo(x,y,0,t) = s(x,y,0)T(t) (1)

where s(x,y,0) is the spatial portion of the excitation and T(t) is the temporal portion of

the excitation. The propagation medium is assumed linear and homogeneous; in this

thesis, we assume free space.

output plane

input plane

output field, u(x,y,z,t)

input field, uo(x,y,0,t)

Figure 1. Assumed geometry

We use scalar wave theory [Ref. 1] to represent the optical wave. Our aim is to

predict u(x,y,z,t) on the output plane, given u0(x,y,0,t) on the input plane and the distance

z unit away from the source plane. The constraints are that the wave must solve the scalar

wave equation

V u(x,y,z,t)
1 d u(x,y,z,t)

= 0 (2)

and, since we are considering propagation in free-space (i.e., no boundaries are present

other than at the input plane), the wave goes to zero as the distance r = *Jx2 +y2 +z2

goes to infinity in the half-space above of the input plane.

In addition, we have also made the following assumptions that helped to simplify

our study and simulation of the field distribution in the output plane:

1. We have fixed the size of the input and output planes, so that we may

concentrate our observation and analysis on the center area of the wave

distribution on these planes.

2. We accounted for the effects of diffraction by using suitable Green's

function for our model.

3. We fixed the distance z, between the source and image planes so that we

may plot u(x,y,z,t) in three-dimensional graphical representations.

4. We considered variable aperture sizes to suit different input excitations.

The approach adopted to solve our thesis propagation question may be

summarized into a flow chart as shown in Figure 2. A mathematical expression based on

linear system theory and Fourier transform is derived for the predicted field, u(x,y,z,t).

This expression is then developed into a MATLAB program, which, given a known

excitation at the input plane, predicts (or simulate) the expected field distribution at the

output plane.

Four input excitation functions were used:

1. Circular field distribution,

2. Square field distribution,

3. Circularly truncated Gaussian field distribution and

4. Circularly truncated Bessel field distribution.

We shall step through the process of generating the predicted field distribution for

a circular input excitation in order to verify the accuracy of our MATLAB programs and

then results of the other three excitations will be generated.

C Start }

Derive mathematical expression for
predicted field.

3E
Write MATLAB program

based on expression.

\l/
Verify accuracy of MATLAB programs

with circular input excitation.
s ^

^-^^ No
^^"^ n~rrar.*1 ' "^ Edit programs.

^"""■"rrr^Yes
>»

Generate results for other excitations.

±.
C End)

Figure 2. Research approach for thesis.

Now that we have defined the scope of our thesis research, next we shall discuss

the theories involved.

II. THEORY

Two main theories were involved in this thesis research: linear systems theory and

Fourier transform theory. Section A develops the concept of how linear system theory

may be used to characterize wave propagation model in terms of a transfer function (also

known as the spatial impulse response or Green's function). Section B shows how the

field distribution at the output plane may be found by solving the wave equation using a

set of defined propagation and boundary conditions specified in our problem description

in Chapter I. Section C shows that the temporal spatial impulse response may be derived

from the expression of the computed field distribution at the output plane. Section D

demonstrates how the temporal spatial impulse response may be expressed in a suitable

form for computer simulation by taking its spatial Fourier transform. Finally, Section E

provides an overview of the software that was used in our simulation program.

A. PROPAGATION MODEL AS A LINEAR SYSTEM

Many physical phenomena are found to share the basic property that their

response to several stimuli acting simultaneously is identically equal to the sum of the

responses that each stimulus would produce individually. Such phenomena are called

linear and the property they share is called linearity. Optical propagation in linear

homogeneous media is such a phenomenon. The wave equation (Equation 2) leads us to

regard optical propagation as a linear mapping of the input light distribution into the

output light distribution. Therefore we may consider the mapping of wave distribution,

uo(x,y,0,t) to u(x,y,z,t) on a plane located z unit distance away as linear and apply all of

the properties of linear system in simplifying the mathematics that describe this

operation.

In linear system theory, we characterize a mapping operation by its impulse

response. As shown in Figure 3a, the impulse response, h(x,y,z,t), is the response of the

operation to an input of S(x,y,z,t)=8(x,y,z)5(t). In propagation terms, the impulse response

is called the Green's function, which is the solution of the wave equation and its boundary

conditions to an impulse excitation.

S(x,y,z)S(t)

s(x,y,0)5(t

Propagation &

boundary conditions

(a)

Propagation &

boundary conditions

(b)

h(x,y,z,t)

 >

d h(x,y,z,t)
p(x,y,z,t) = -s(x,y,0)**-

* y o z

p(x,y,z,t) = -s(fx,fy,0)Z<
dh(x,y,z,t)

Figure 3. (a) Impulse response (or Green's function) and (b) temporal impulse response.

Also, as we shall see in section B, we may predict, for a spatially invariant

system, the response to a source with an arbitrary excitation and impulse temporal

excitation in terms of the impulse response. As shown in Figure 3b, if we represent the

input excitation on the source plane as s(x,y,0)5(t), the field distribution at the output

plane,p(x,y,z,t), will be given as

p(x,y,z,t) = -s(x,y,0)**-
x y

dh(x,y,z,t)

~dz (3)

where * notation indicates convolution over the variable noted [Ref. 2]. We shall call the

output field distribution, p(x,y,z,t), the temporal spatial impulse response (i.e., it is the

response of the system to an arbitrary spatial excitation with an impulsive temporal

excitation).

As we know from convolution theory, the spatial convolution of Equation 3 may

be converted into multiplication in the spatial frequency domain by taking its spatial

Fourier transform [Ref. 5];

\dh(fx,fy,z,t)
p(fxJy,zJ) = -?(fxJy,0M-^jy 2

■>z
(4)

Also as we shall see later that for our computer simulation purposes, Equation 4 is a more

suitable form for quick computation than Equation 3.

In a more general form, the output field distribution, <f>(x,y,z,t), to an excitation

with an arbitrary spatial and temporal dependence can be expressed in terms of the

temporal spatial impulse response as [Ref. 2]

*
(f>(x,y,z,t) = T(t)tp(x,y,z,t). (5)

B. SOLUTION TO WAVE EQUATION

To derive the impulse response, we first need to find a solution to the wave

equation meeting the set of propagation and boundary conditions defined by our

propagation model in Chapter I. From [Ref 2], the solution to the wave equation,

Equation 2, is given by the radiation integral. Assuming a planar input aperture, the field

u(x,y,z,t) is given by

du0(x,y,0,t) dh(x,y,z,t)
u(x,y,z,t) = ***h(x,y,z,t)-u0(x,y,0,t)*** —:— (6)

— * y i on dn x y I

where the quantity u0(x,y,0,t) is the scalar wave distribution at the source plane, h(x,y,z,t)

is the Green's function that both solves the wave equation and meets the boundary

conditions and the derivative with respect to n represents the normal derivative. For input

and output planes that are normal to the z-axis, the normal derivative will become the

derivative with respective to z. Hence Equation 6 may be rewritten as

du0(x,y,0,t) dh(x,y,z,t)
u(x,y,z,t) = ***h(x,y,z,t)-uo(x,y,0,t)*** . (7)

OZ xy I x y I &Z

In this thesis, the value of the field on the planar source plane, ito(x,y,0,t), is

known. Hence, it is desirable to eliminate the normal derivative of Equation 7 (i.e., the

first term on the right side of the equation) and to use the second known term for the

solution. This can be done by using a Green's function given by [Ref 2] which has also

considered the effects of diffraction;

^jr2+(z-z0)
2\ \ yjr2+(z + z0)

t — o t —

h(x,y,z,t) =
Y2+{z-z0)

2 ^r
2+(z + z0)

2
(8)

On the source plane, where z = 0, this Green's function has the additional property

that

and

h\ z=0 : (9)

10

0 h 0 h 2zs[t-R/)j 2zö'(t-R/c)

0n 0z R> cR2 (10)

where R = yr2 +z2 = yx2 + y2 +z2 and 8' indicates the time derivative of the Dirac

delta function.

By eliminating the known first term on the right of Equation 7 and substituting the

Green's function of Equation 8, the field can then be written as

0h(x,y,z,t)
u(x,y,z,t) = -u0(x,y,0,t)***

xy oz

= u,(x,y,0,t)*** X—T
J-£l + u,(x,y,0,t)*** V^' (n)

x y i K * y' CR

This equation represents the expression for the field distribution at the output plane.

C. COMPUTATION OF THE TEMPORAL SPATIAL RESPONSE

To simplify Equation 11 further so that it is easier for computer simulation, first

we take its two-dimensional Fourier transform to convert convolution in the space

domain into multiplication in the spatial frequency domain. Then, by substituting

Equation 1 into the expression, we have

u(fx,fy,z,t) = 3{u(x,y,z,t)} = 3-
0h(x,y,z,t)

-uo(x,y,0,t)***
*yt 0z

T(0* s(/x,fym<
0h(x,y,z,t)

Jz

(13)

By comparing Equation 5 with Equationl3, we observe that

11

p(fx,fy,z,o=-s(fx,fym<
dh(x,y,z,t)

dz
(14)

The inverse spatial transform of p(fx,fy,z,t) produces the spatial impulse response,

p(x,y,z,t), which is our required field distribution at z when the excitation at the input

plane is a temporal pulse excitation.

D. TEMPORAL SPATIAL REPONSE FOR COMPUTER SIMULATION

We now want to find an expression for the spatial impulse response, p(x,y,z,t).

Substituting u0(x,y,0,t) = s(x,y,0)d(t) into Equation 11, we have

2zS
p(x, y, z, t) = s(x, y,0)8(t) * * * -

x y I

('-Ye)
R3

+ s(x,y,0)S (t)***
x y I

^{<-R/c)
cR2

(15)

Since f * g' = (f * g)1 = f' * g, we can interchange the order of the derivative in the second

term of Equation 15 and, by expanding the convolution term with 8(t), get

p(x,y,z,t)

= s(x,y,0)S (t)*** \3 } + s(x,y,0)5 (t)***
x y t R1

x y I

2z5 (<-*4
cR'

s(x,y,0)** j
x y K

K- ^- + 0 (t)*
2zS

s(x,y,0)** ('-%)
y cr

(16)

The spatial convolutions over x and y in last line of Equation 16 are more easily

performed in the transform domain. Taking the two-dimensional spatial Fourier

transform of Equation 16 gives

12

P(fx>fyz>t) =

-s(fx,fy,0)2zJ0(pJc2t2-z2) , (s(fx,fy>0)2zJ0(pJc2t2-z2j
 + 8 *

c2t2 c2t
(17)

where p is the two-dimensional spatial transform of p, fx and fy are the spatial

frequencies, p is the radial spatial frequency (p = Jfx
2 +//) and the transform pah-

given below has been used

R"

J0 [pjc't2 -z2)H(t - z/c)

(ctr1 • (18)

Recognizing that time convolution with the time derivative of the Dirac impulse is the

same as taking the derivative of the function in the time domain, i.e.,

5 (t)*f(t) = f'(t),

we have

p(x,y,z,t) = 5-'^(fxJy,0)^J0(pylc2t2-z2)H(t-z/c)}

r'\s(fx,fy,0)^-tJ0[p4c2t2-z2)H{t-zlc^

By factoring the common term ~s(fx,fy,0) from Equation 20, we have

p(x,y,z,t) = 5-'h(f„fy,0) {J^J,[plc't' -z')H(t-zlc)

which may be simplified further as

(19)

(20)

(21)

13

p(x,y,z,t) = Z-'{s(fx,fy,0)c(fx,fyz,t)}

where we denote the following as the propagation spatialßlter [Ref. 2]

2zpJx\p4c2t2 -z2] H{t-z/c)

(22)

C(fX,fy,Z,t) = -- ' x> J y / 2,2 ~~2 \C t —z

+
2zJ0 (pyjc2t2-z2) S(t - z/c)

(23)

c2t

For our simulation model, we have evaluated c(fx,f,z,t) for three different time

regions,

c{fz,fy,z,t) =

0

■zp2 + 2zJ^
c2t

2zpJ iW „2,2 2 c t —z
/ 2,2~2 \c t -z

t <

t =

t>z/

(24)

where we have made the assumptions for the second line of Equation 24 that both

H(t - z/c) and S(t - z/c) are equal to one.

Equations 22 and 24 are the only two equations required for our simulation

program. Recall that ~s(fx,fy,0) represents our spatial pulse excitation at the input plane,

p(fx,fy,z,t) represents the spatial field distribution at the output plane and

c(fx,fy,z,t) represents the linear system transfer function that maps 7(fx,fy,0) onto

p(fx,fy,z,t). In optics term, c(fx,fy,z,t) is also known as the propagation spatial

filter. It is the "filtering function" that meets the set of defined boundary conditions in

14

Chapter I. It also characterizes the effects of diffraction that modify the input excitation

as it propagates through the free space between the input and output planes.

E. MATLAB OVERVIEW

MATLAB is an acronym for MATrix LABoratory. It is a high-performance,

interactive, scientific and engineering software package. As its name suggests, its basic

data element is a matrix. A major advantage of MATLAB is that traditional programming

is not needed since problems and solutions are expressed just as they would be written

mathematically. Another distinct advantage is MATLAB's expansion capability with

preprogrammed functions, such as the calculation of two-dimensional FFTs and the

calculation of Bessel functions. [Ref. 7]

There are two types of macro-like files called m-files (called m-files for the ".m"

suffix); one is known as the script m-file and the other is the function m-file. A script m-

file is used to automate long sequences of commands including functions. Arguments are

not passed into script files. A function m-file, however, may have arguments passed into

them. Another difference between the two file types is that the first line of a function m-

file begins with the word "function" and all variables used in the function are local.

Examples of script m-files in this thesis are IOPTFIL.m, IOPTPROP.m,

PLOTFILTER.m, PLOTFIELD.m, ANIMATEl.m, ANIMATE2.m and ANIMATE3.m

(Appendixes B, C, D and E). Examples of function m-files include the input excitation

functions: CRCLE.m, SQUARE.m, CRCGAUS.m and CRCBESS.m (Appendix A), the

three-dimensional graphing function mesh and the two fft functions that realize the

Fourier transform required for our programs.

15

The two fft functions employed for Fourier transform are fft2 and fftshift; fft2

carries out a two-dimensional Fourier transform while fftshift carries out a center-to-

corner geometrical shift on an input function. Both of these functions must be used

together and they perform the fast Fourier transform on an input function. Since these are

frequently used functions throughout our program, it is worth the attention here to

elaborate on its proper usage, especially on their order of application to ensure the correct

phase result is obtained for the resultant function.

The correct way to do a fast Fourier transform in MATLAB is to do it in three

separate operations. First a fftshift must be applied to the input function which we shall

denote as shft-input and its result as input. (The "shfl" prefix here is to remind us that a

fftshift operation must be applied first prior to a fft2 function.) Then a fft2 function is

applied and the result is denoted as F-input. Finally another fftshift function is applied

and we denote the result as Fshft-input. In MATLAB source code, this may be written as

a single line code: fftshift(fft2(fftshift(s7z/^'/7/?w/))). Figures 4a and b show respectively

the input excitation function and the result after applying a fftshift. Figure 5b shows the

result after applying a fft2 and Figure 6b shows the final result of the fast Fourier

transform operation after applying another fttshift. (Figure 6 is shown in two-

dimensional perspective so that negative values may be seen.) The absolute value is

shown in Figure 7b. (Because these graphs are cylindrically symmetric in shape, the two-

dimensional perspective here will illustrate better that both Figure 7a and b are equal.)

Figures 5a and 6a show the wrong way of executing a fast Fourier transform on

an input excitation function. If a fft2 is applied directly onto shft-input (see Figure 5a),

16

(a) SHFT-INPUT (b) INPUT

Y-axis 0 0
X-axis

64

Y-axis

Figure 4. (a) SHFT-INPUT is a center geometry circular excitation and (b) INPUT is a
corner geometry circular excitation obtained by applying fftshift to the center geometry

circular excitation.

(a) FFT2(SHFT-INPUT) (b) FFT2(INPUT)

fy-axis fy-axis fx-axis

Figure 5. (a) After applying fft2 on Figure 4a and (b) after applying fft2 on Figure 4b.

17

500

400

300

200

100

0

-100

-200

-300

-400

-500

(a) FFTSHIFT(FFT2(SHFT-INPUT))

0 33
fx-axis

i

 "23 •') a

64

500
(b) FFTSHIFT(FFT2(INPUT))

Figure 6. (a) After applying fft shift to Figure 5a and (b) after applying fftshift to Figure
5b. These graphs are shown in two-dimensional perspective so that negative values may

be seen.

500
(a)ABS(FFTSHIFT(FFT2(SHFT-INPUT)))

500

400

300

(a) ABS(FFTSHIFT(FFT2(INPUT)))

Ö
200

100

Figure 7. (a) Absolute value of Figure 6a and (b) absolute value of Figure 6b. As both
graphs are cylindrically symmetric in shape, viewing them in two-dimensional

perspective will show more clearly that they are equal.

18

the result undergo a lateral phase shift which when corrected with a fftshift, the result is

shown in Figure 6a and its absolute value in Figure 7a. Note in Figure 7 that both

methods provide a similar absolute value function but, as shown in Figure 6, the Fourier

transforms are different. The incorrect method gives a spiky transform and has wrong

phase information required for our computer simulation.

Beside the correct order of application of these two fft functions, we would also

like to highlight another very important fact pertaining to their speed of computation. The

MATLAB User Guide [Ref. 7] points out that when the row and column dimensions of

the matrix are power of two, a high-speed radix-two fft algorithm is used. When the

dimensions are not other than a power of two, a non-power-of-two algorithm finds the

prime factors of the dimensions and computes the mixed-radix discrete Fourier transform.

This latter process can be quite time consuming, particularly as the size of the matrices

becomes larger. For this reason, a decision was made to work with NxN matrices, where

N is a power of two.

Now that we have discussed the theories involved in this thesis, next we shall

show how we simulate our propagation model in MATLAB.

19

20

III. MATLAB SIMULATION

This chapter describes the simulation programs written in MATLAB. Simulation

is used here to refer to the modeling of Equations 22 and 23 of Chapter II in MATLAB

source codes and the animation of the behavior of the propagation spatial filter and the

output field. Section A discusses the program structure adopted for our simulations

programs and section B explains critical algorithms in each program module. No in-depth

knowledge of MATLAB is assumed and the discussion of the program will be as

functional as possible. All MATLAB source codes can be found in Appendixes A to E.

A. PROGRAM STRUCTURE

In an effort to shorten simulation time, a modular program structure has been

selected. The objective is to separate the time-consuming and repetitive calculation

algorithms into separate independent modules from the main program. Most often, these

modules will only be executed once and their results are stored into data files to be

recalled later for use by other program modules during the simulation process or for

generating three-dimensional graphs for print out.

In general, we may characterize our programs into five main functional types:

(1) To create input excitation field distribution, u(x,y,0,t) = s(x,y,0)5(t) of

Equation 1. We have here the m-files: CIRCLE.m, SQUARE.m,

CRCGAUS.m and CRCBESS.m. These generate input excitations with

circular, square, circularly truncated Gaussian and circularly truncated

Bessel field distributions, respectively. These programs are written as

21

function m-files with two or three required input arguments. They can be

executed independently by just calling the function name and providing it

with the required input arguments at the MATLAB command window.

For example, CIRCLE(d,N) will create a circular input excitation field

distribution with a diameter of d units based on a square base of N units

size. In addition, these function m-files may also be executed as an

embedded function in a script m-file. In our program structure, we utilize

these function m-files in both ways, which we will elaborate in the later

sections.

(2) To create the propagation spatial filter, c(fx ,fy,z, t) of Equation 23. This

is done by the m-file, IOPTFIL.m (which stand for Improved OPTical

FILter; the prefix, "Improved" is added to differentiate this m-file from a

previous work on an m-file in [Ref. 3]). IOPTFIL.m is written as a

function m-file, which generates data required for our simulation program.

The data generated by IOPTFIL.m is stored in two MATLAB database

files named as OPTVAR.mat and PJINxn.mat (".mat" is a file extension

used by MATLAB database files). OPTVAR stand for OPTical

VARiables and it stores all the initialized parameters required for

subsequent programs computations. PJINxn is an acronym comprising of

P which stands for Propagation, Jl for the Bessel function of the first kind

contained in the filter function, N for the square matrix size, N, used to

store the filter function data and n for the integer number ranging from 1

22

to 61 representing the time slice when the propagation spatial filter

function is computed.

(3) To compute the temporal spatial field distribution at the output plane,

p(x,y,z,t). This is done by IOPTPROP.m (which stand for Improved

OPTical PROPagation for the same reason stated in the above paragraph).

IOPTPROP is also written as a function m-file and it generates data

required for our animation programs. The main function of IOPTPROP.m

is to compute p(x,y,z,t) by taking the inverse Fourier transform of the

product of !s(fx,fy) and c(fx,fy,z,t). The results are stored in two

forms in two separate MATLAB database files, OPTABS.mat and

OPTOUT.mat. OPTABS.mat contains the output field intensity, which we

will use later in our animation programs to simulate the image on the

output plane. OPTOUT.mat contains the data required to plot a three-

dimensional graphical representation of the total output field.

(4) To plot two- and three-dimensional graphical representations of the input

excitation distribution, the propagation spatial filter function and the

output field distribution in both temporal and spatial frequency domains.

This is done by PLOTFILTERm and PLOTFIELD.m from data generated

by IOPTFIL.m and IOPTPROP.m. Both of these programs are written as

script m-files. The graphs generated by these two programs allow us to

view the input and output field distributions as well as the filter function

behavior at different time slices, in different viewing perspective and with

23

different magnification factors. Hence, they provide us a very useful

means to analyze our optical propagation model at different stages of time

and space.

(5) To animate our optical propagation model. This is done by ANIMATE 1 .m

ANIMATE2.m and ANIMATE3.m. These programs are written as script

m-files. Their purposes are to animate the behavior of our propagation

spatial filter, the output field distribution, the total output field distribution

and the image (or field intensity) over the entire simulation time. The three

animation m-files provide similar types of information but in different

formats. This is to cater to different purposes which we will elaborate

further in the subsequent sections.

Figure 8 is a flow chart that shows our program structure as described above and

from this figure, we may see the inter-links between the various modules.

B. PROGRAM DESCRIPTION

The following sub-sections explain in detail the critical algorithms in each of the

five functional file types discussed above.

1. Input Excitation Field Distribution Program Module

As mentioned before, the m-files required to generate the input excitation field

distribution comprise of CRCLE.m, SQUARE.m, CRCGAUS.m and CRCBESS.m.

In this section, we would like to highlight the reason for selecting these four

specific shapes for our input excitation. They were selected because: (1) they represent

real input excitation sources that can be easily generated in the optical laboratory and (2)

24

(Start }

Initialize parameters & store
into OPTVAR.mat.

Compute propagation spatial filter
& store data into filter database,

PJlNxn.mat. (OPTFIL.m)

73T
(End)

Field matrix database
(OPTABS.mat &
OPTOUT-mat)

Animate filter & field
(ANIMATEl.m, ANIMATE2.m

&ANIMATE3.m)

3D graph field (PLOTFIELP!m)"|4-

►| 3D graph filter (PLOTFILTER.m)|^.

Initialized parameter
(OPTVAR.mat)
& filter matrix

database (PJlNxn.mat)

I
Select input excitation

(CRCLE.m, SQUARE.m,
CRCGAUS.m & CRCBESS.m)

I
Compute & store field data at

output plane into database files
OPTABS.mat & OPTOUT.mat

(OPTPROP.m)

7X7
C End)

Figure 8. Programs structure and program flow,

their geometrically symmetric properties help to simplify our MATLAB algorithm used

to generate them. The latter means that, since the shape of the input excitation is

symmetrical, we are able to reproduce the whole excitation field by simply generating a

quarter-shape of the field and duplicating it three times to create the whole field.

25

However, as we shall see later, the implementation in MATLAB is not as straight

forward as discussed here.

For reasons already explained in Chapter I, we would like to fix the size of the

input and output planes. Therefore in our program, we represent these planes with a

square base matrix of size N, where N must be power of two as explained at the end of

Chapter II.

In MATLAB, matrix indices begin with 1 rather than 0 (i.e., the upper left entry

being row 1, column 1 and not row 0, column 0 as an origin would require). This means a

matrix of dimension NxN will have N points and N-l segments in each row and column.

This also means that the center of symmetry of the array which we denote as NO, would

be at the number (JV+l)/2 row and the (7V+l)/2 column. However, in our case, we require

that N must be power of two and we have chosen the number 64 for preliminary

simulation programs (128 later was used to achieve better resolution). This means we will

not be able to find an associate center of symmetry since for JV=64, (N+l)/2 will not be an

integer number. Therefore, in our program, we had to arbitrary choose NO to be as near

to the actual center as possible and position (33,33) was the best choice.

Figure 9 depicts a NxN equal a 64x64-array base situated on the x, y plane divided

into four quadrants. To generate the whole input excitation, first we generate the field to

fill the smallest quadrant, which is quadrant IV. Then by flipping up, we create the field

in quadrant II and then, by flipping both quadrants II and IV to the left, we create the

field in quadrants I and III, thus completing the field on the entire input plane. In

26

MATLAB, the flipping of the field can be achieved by using the flipud and fliplr

commands as illustrated in the source code of Appendix A.

33

64

33

QUADRANT
I

QUADRANT
II

QUADRANT
III

l

QUADRANT
IV

X

64

Figure 9. Base array configuration. The small arrows show the direction of flipping.

Figure 10 shows the graphical plot of the four input excitation field distributions

generated by the above program module.

27

(a) Circular excitation

1, 1

0.5-
CO

1 0-5
CO

N

0,
64 Wm II'IUli '11 [Eä^^S

life, i 0

(b) Square excitation

Y-axis 0 0 Y-axis

(c) Circularly truncated Gaussian excitation (d) Circularly truncated Bessel excitation

Y-axis

Figure 10. Input excitation field distribution with N = 64: (a) circular field distribution
with d= 25, (b) square field distribution with w = 25, (c) circularly truncated Gaussian

field distribution with d =25 and a = 1, and (d) circularly truncated Bessel field
distribution with d= 25 and sigma =12.

28

2. Propagation Spatial Filter Program Module

The propagation spatial filter, c(fx,fy,z,t) is computed by the m-file

IOPTFIL.m. In addition, IOPTFIL.m is also responsible for initializing and storing all the

defining parameters into a data file named OPTVAR.mat that is required for other

program modules. First, we will go through all defining parameters store in

OPTVAR.mat and then we will explain how c(fx,fy,z,t) is computed in IOPTFIL.m.

A defining parameter is a parameter that delineates an aspect of the basic setup

which all the remaining parameters or variables depend. Table 1 shows all the defining

parameters used in this thesis and their assigned values used for our simulation model.

The first parameter, N, sets the dimension of the square base array giving the number of

spatial sample points. The next parameter, NO, defines the center of this square base

array. M is the number of time samples or time slices, which we use to observe the filter

behavior over time. Step represents the number of leading zeros in the NxM output array.

Step is required to simulate the Heaviside step function that we see in Equation 21.

Timejnax is the maximum propagation time that we have fixed for our simulation model,

z is the distance between the input and output planes and c is the speed of light. We have

also parameter, rho, which represents the maximum spatial radius of the filter function.

At the beginning of IOPTFIL.m, we initialize all the above defining parameters to

the assigned values for our simulation model. Then we used some of these parameters to

generate two important matrices, time and row, which are required for the program

module, IOPTPROP.m for the computation of p(x,y,z,t)and IOPTFIL.m itself for the

computation of c(fx,fy,z,t) respectively.

29

PARAMETER VALUE DEFINITION
N 64 size of square matrix

NO 33 assigned center of square matrix
M 64 total number of time slices

Step 3 time increment prior to z/c
timejnax 0.95e-9 ns maximum observation time

z 100 mm distance between input and output planes
c 3e8 m/s velocity of propagation

rho 200 mm spatial radius
Table 1. Defining parameters and their assigned values for our propagation model.

The matrix, time, represents the time base that we used to observe the filter

function and the output field, time is generated by the MATLAB built-in function,

linspace with z/c, timejnax and M-Step as input arguments. Basically, linspace divides

the time period from z/c to timemax into M-Step points which represent 61 time slices,

each of 10 picoseconds when M = 64 (if M = 128, 125 time slices each of 5 picoseconds

were used). These ultrashort time slices are required in order to capture the fast rate of

change of the field distribution from the pulsed input excitation. With these ultrashort

time slices, we are also able to observe our propagation model in slow motion in our

animation program modules, which no existing optical measuring equipment is capable

of doing.

Next, IOPTFIL.m computes the filter spatial radius matrix, row (which is actually

the parameter, p, of Equation 23) with three separate steps. First, we divide the value of

rho into MM linear spaces with the linspace command. These linear spaces are then

stored in the matrix, rhojn, and represent the radial discrete points between the center to

the side of the NxN matrix space. Then the cartesian equivalent of rho (with coordinates

label as rhox and rhoy) is generated by using the meshgrid command on rhojn. Next,

30

using the coordinates rhox and rhoy and applying the Pythagorean equation, we compute

the radial distances from the center (i.e., NO) to any points on one of the four quadrants

of the NxN matrix space (depicted in Figure 9). These radial distances are then stored into

a NOxNO matrix, call row. Note again that row here contains only the radial distances for

just one quadrant of the NxN matrix space. To compute the radial distances for the whole

NxN matrix space, we use a similar algorithm as illustrated in Figure 9. However, as we

shall see later that we do not apply this algorithm straight away onto row, but as part of

the computation of c(fx,fy,z,t). Once we have computed time and row, we store the

parameters, N, NO, M, Step, c, z and time into the data file, OPTVAR.mat with the save

command and then proceed to compute c(fx,fy,z,t).

As given by Equation 23, c(fx,fy,z,t) are defined over three different time

regions:

(1) t < z/c. This represents the time when the laser pulse has not yet reached

the output plane and hence the field at the output plane is zero. Therefore, we will

not even consider this time region in our simulation model.

(2) t = z/c. This represents the time when the laser pulse has first reached the

output plane and hence we expect a sudden jump in the field amplitude given by

(as in Equation 23)

2 2zJ0{0) 2 2z 2 2
;•*>'=*/" = -*? '—t " •—- - c(fx,fy,z,t = z/c) = -zp2+—£— = -zp2+-^ = -zp2 +-. (24)

In our simulation program, this represents time slice 1.

31

(3) / > z/c. This represents the time after the laser pulse has impinged onto the

output plane and waves are arriving from different portions of the source. As time

increases, the amplitude of the output field distribution decreases as a function of

the Bessel function of the first kind, given by (as in Equation 23)

2zpJ,[p4c2t2 -z2)
c(fx,fy,z,t> z/c) = / '- (25)

Vc r -z

As mentioned earlier, we have set a maximum to this propagation time given by

timejnax, as we are unable to simulate time indefinitely. We have arbitrary

chosen timejnax = 0.95 nanoseconds which is long enough for the output field to

go to zero. In our simulation program, this time region is represented by time

slices 2 to 61 if M = 64 (or 2 to 125 if M = 128).

We compute c(fx,f,z,t) for different time slices in a program loop. At time

slice 1, we compute c(fx,f,z,t) by using Equation 24 and for time slices 2 to 61, we

use Equation 25. Note that when we compute c(fx,fy,z,t) by using Equation 24 or 25,

we are only computing the field for one of the four quadrants of the NxN matrix space. To

compute the whole field of the NxN matrix space, we adopt the same algorithm as

depicted in Figure 9. For each time slice when c(fx,f,z,t) is computed, we store its

value into a matrix named as PROP(m), where m is the rrP time slice and then store this

matrix into a data files PJINxn.mat. We have also incorporated a "movie play" feature

into this program loop to allow us to observe the changing behavior of the filter function

at different time slices with the command, moviein, getframe and movie. The source

code of IOPTFIL.m can be found in Appendix B.

32

3. Temporal Spatial Field Distribution Program Module

The temporal spatial field distribution, p(x,y,z,t), is computed by

IOPTPROP.m. IOPTPROP.m also uses p(x,y,z,t) to compute the field intensity on the

output plane by taking the square of its absolute value and we have used this to simulate

the image that would be seen from behind the output plane.

We begin the computation of p(x,y,z,t) by first loading all the defining

parameters from the file OPTVAR.mat with the load command. Then we allow the

program user to select any one of the four input excitations: Circle, Square, Gaussian and

Bessel. The Circle and Square are equal amplitude sources having the shape of a circle

and square, respectively. The Gaussian and Bessel inputs are circularly truncated

functions that have spatially varying amplitudes across the circular face of the source.

After the program user has selected the input excitation, the user is asked to input the

diameter, d, of the truncating circle or the width, w, of the square in the case of the

Square function. For the case of the Gaussian and Bessel inputs, the user is further

requested to input the standard deviation, sigma, or a scaling factor, a, respectively. The

purpose of this part of the program is to not only allow the user to select one of four

choices of input excitations but also to give the user the flexibility to vary the cross-

sectional size of the excitation. This feature of the program has expanded the user choice

to analyze and study varieties of input excitations.

We shall denote the selected input excitation as shft-input. From shft-input, input

is created by shifting shfi_input with the fftshift command to a corner geometry. Then

with the fft2 command, we create its two-dimensional spatial Fourier transform, F-input.

33

As explained in Chapter II, the fftshift operation is necessary before the spatial Fourier

transform operation to obtain the correct phase relationship in the transform operation.

With a shift back to the center geometry with another fftshift command, the angular

spectrum of the source s(fx,fy), called Fshftjnput in the program, is created. The

Bessel function propagation transfer function, c(fx,fy,z,t), from Equation 23 must now

be loaded from the data file, PJINxn.mat. The product of s(fx,f) and c(fx,f ,z,t) is

then taken to find p(fx,fy,z,t) which is called Fshft_output. The loading and

multiplication process is repetitive since Fshftjnput must form a product with the filter

function for each time slice. This repetitive multiplication is accomplished with a

program loop.

To find the desired result (i.e., p(x,y,z,t)), the two-dimensional inverse spatial

Fourier transform (ifft2) must be taken for the product. Before this can be done, F_output

is formed by shifting Fshfi_output from the centered geometry to the corner geometry.

Executing the inverse transform of the product yields output, which is then shifted to give

shft_output. The array shftjoutput represents the output at the time slice that the loop is

currently computing. (Note that shftjoutput does not depict the optical wave or the

propagation pattern through time; it only depicts the optical wave at a specific time).

Because of the cylindrical symmetry of the output field, to produce a time history

of the desired output (which we refer subsequently as the "total output"), first we take its

absolute value, call it shft_outabs, and then store the center row (row NO) of shftoutabs

th
into another array, output_plot, as its m column (where m is the loop counter which

34

relates directly to the time slice number). For example if m = 4, then column 4 of

output_plot represents the center row of the absolute value of the output field computed

at the fourth time slice. The array output_plot is therefore of size Nx Mand we store this

array into a data file named as opdxM.mat where d is the diameter of the input excitation

and Mis the number of time slices.

To obtain the field intensity, the square of shfioutput is taken and this is called

shfijntensity. For each time slice, shftjntensity is stored in a file named optabm.mat

where m corresponds to the /w01 time slice when the field intensity was computed. We use

optabm.mat in the animation program modules to simulate the image at the output plane.

The source code for IOPTPROP.m can be found in Appendix C.

4. Two- and Three-Dimensional Graphical Program Modules

There are two program modules that do two- and three-dimensional graphical

plotting of the filter function and the output field at different time slices. These are called

PLOTFILTER.m and PLOTFIELD.m. While PLOTFILTER.m makes use of the data

from data files, PJlNxn.mat, to plot the filter function at different time slices in different

perspectives, PLOTFIELD.m makes use of the data from data files, opdxM.mat and

optabm.mat, to plot the output field and total output at different time slices in different

perspectives. The basic commands used in these two program modules are load, figure,

mesh, subplot, axis, grid, set and view. Of all these commands, view is one of the most

useful ones as we use view in our programs very frequently to plot graphs in different

perspectives. Figures 11 and 12 show examples of some three-dimensional graphical

plots generated by these two program modules.

35

Time slice 1: Filter response Field ouput

fy-axis 0 o ^-axis

Time slice 2: Filter response

Time slice 10: Filter response

v0P?$ft

Time slice 20: Filter response

fy-axis 0 0 fx-axis

Y-axis 0 0 x-axis

Field ouput

200

Field ouput

Y-axis

Figure 11. Three-dimensional graphs of the filter function (left) and output field (right) at
time slices 1,2,10 and 20. Notice that as the time slice number increases the amplitude

of the field decreases but the field radial spreading increases.

36

Time slice 30: Filter response Field ouput

fy-axis 0 0 ^.^j

Time slice 40: Filter response

33

fy-axis 0 0

Time slice 50: Filter response

33

fx-axis

0 0

Time slice 61: Filter response

fy-axis 0 0 fx-axis

Y-axis

Y-axis

I ft«
0 0 X-axis

Figure 12. Three-dimensional graphs of the filter function (left) and output field (right) at
time slices 30,40, 50 and 61. Notice that as the time slice number increases the amplitude

of the field decreases but the field radial spreading increases.

37

The graphs on the left represent the filter function and those on the right represent the

output field in different time slices. The source code of PLOTFILTER.m and

PLOTFIELD.m can be found in Appendix D.

5. Animation Program Modules

In addition to the usual static two- and three-dimensional plots generated by the

graphical program modules described above, the animation program modules go one step

further to animate the changing behavior of the filter as well as the output fields at the

output planes over the entire simulation time. We have adopted the "frame-by-frame

capture and playback" technique to create our animation. For example, to animate the

filter function, we plot the filter function at each time slice, starting from time slice 1 to

61. For each time slice that we plot, this represents a frame of our animated movie and, if

we were to capture and playback all the frames in sequence, it gives the effect of a

moving picture.

Three main commands are used: moviein, getframe and movie. To create an

animation, the command moviein is first used to pre-allocate enough memory space to

store all the graphical frames which comprises of the 61 PROP(m) filter function, 61

shft_output and 61 shftjntensity matrices computed over the 61 (M-Step) time slices.

This is a lot of memory especially when we are plotting three-dimensional graphs.

Therefore, to save on computer memory and thus to increase the speed of animation, we

combine all three matrices into a single graphical plot using the subplot command and

capture all three plots into a single frame. In this way, we need only to pre-allocate

enough memory for 61 frames. To increase the speed of animation further, we have also

38

reduced the size of the viewing window, which further reduces the computer memory

required to do the animation.

We use the getframe command to take a snapshot of the current plot for use in

the movie playback and to start playback, we use the movie command. Three animation

program modules were written and they all animate the filter function, the output field

and the image at the output plane but in different format. These formats are shown in

Figures 13,14 and 15.

Now that we have explained in detail all the program modules, we shall proceed

to the next chapter on numerical simulation.

35

(a) Filter spatial frequency response (b) Image field intensity

300- 100 v
200. ^m^M^ -• 80.

„ 100.
S o
£-100.

-200 ■V «^SäQ^f 60-
\T^S^Z^W : 20.

-300,
..•■■*■"■■■.. >■ 64 64 \^

< ^"^ 64
33 ^v-"""33

00
fy-axi s fx-axis Y-axis

0 0

64 0

(c) Image
64 nuitiiii'iiiiiiiiiiiiiiiiiiiiiiiniiiiiiiiiiiiniiiiiiHttttw liHMiMIBMMMMBII

SBI MgSBiaaiS'HiiillliilMiin

„„J6K5aFiPpH

X-axis

33 64
X-axis

time-slice 13

30

25

20

15

10

Figure 13. Animation format 1. The graph (a) shows the filter spatial frequent response,
graph (b) shows the output field and graph (c) shows the image at the output plane. There

is a small window just below graph (c) that shows the time slice.

39

(a) Filter spatial frequency response (b) Image field intensity

3001

200
100

-200j
-300

64

ä -100 J *l®^g^^f^ v

Y-axis

(c) Field distribution

33
Time-slice

64

x 33

(d) Image

■fe^fesSH-:
•■ j ■■■

33
X-axis

64

time-slice 24

Figure 14. Animation format 2. Graph (a) shows the filter spatial frequent response,
graph (b) shows the output field, graph (c) shows the close-up side view of the total

output and graph (d) shows the image at the output plane. There is a small window just
below graph (d) that shows the time slice.

40

(a) Filter spatial frequency response

fy-axis 0 0 fx-axis

(b) Image field intensity

£• 20

Y-axis 0 0 X-axis

(c) Field distribution (d) Image

Time-slice 64 64 Space

Figure 15. Animation format 3. Graph (a) shows the filter spatial frequent response,
graph (b) shows the output field, graph (c) shows a ten times magnified view of the total
output and graph (d) shows the image at the output plane. There is a small window just

below graph (d) that shows the time slice.

41

42

IV NUMERICAL SIMULATION

This chapter presents the numerical simulation results for the MATLAB program

modules described in Chapter III. Section A shows and analyzes the propagation spatial

filter function over different time slices. Section B steps through the process for

generating the results for a circular field input excitation. An analysis is also done here on

the effect of varying the diameter of the circular field. Finally, the simulation results for

the square, circularly truncated Gaussian and circularly truncated Bessel input excitations

are presented and compared with the circular input field in term of the field amplitude

and rate of field radial spreading. We also discuss the formation of constructive

interference.

A. PROPAGATION SPATIAL FILTER FUNCTION

IOPTFIL.m was first executed with N = 64 and M = 64 and Figure 16 provides

the results of the spatial filter function for time slices 1, 2, 30 and 61. (These time slices

were arbitrary chosen to illustrate the dynamic changes of the filter over the entire

simulation time.) The waveform at time slice 1 represent the filter function computed at t

= z/c and the waveforms at time slices 2, 30 and 61 represent the filter function computed

when t > z/c.

Notice that as the time slice increases, the filter function becomes very coarse and

spiky (notably at the higher time slices such as 30 and 61 as shown). In order to smooth

these waveforms, we need a higher number of spatial sampling points and hence we set N

= 128. With this new value of N, we are able to observe finer details of the changes

43

occurring in the filter function as time progresses. Furthermore, we have also set M= 128

so that we may observe a more progressive change in the filter function.

(a) Time slice 1 (b) Time slice 2

1200,

800

400

0

-400 J

■M."'Ä^

(c) Time slice 30

1 AT* <l'

(d) Time slice 61

fy-axis 0 0
fx-axis fy-axis

Figure 16. Propagation spatial filter function with 7^ = 64 and M= 64: (a) time slice 1, (b)
time slice 2, (c) time slice 30 and (d) time slice 61. Note that time slice 1 occurs at t = z/c
and time slices 2, 30 & 61 occur at t > z/c. Notice that these waveforms look very coarse

and spiky.

44

The resultant filter function obtained with the new set of values for N and M are

shown in Figures 17 and 18. Figure 17 shows the filter function at time slices 1, 2, 4 and

8. Note that both the waveforms at time slice 1 of Figure 16 and 17 are similar as they

both represent the filter function computed at t = z/c.

-9000
128

fy-axis

(a) Time slice 1

0 0
fx-axis

1200 s

U

128

fy-axis

(b) Time slice 2

0 0
fx-axis

128

(d) Time slice 4 (d) Time slice 8

fy-axis fx-axis

Figure 17. Propagation spatial filter function with N= 128 and M= 128: (a) time slice 1,
(b) time slice 2, (c) time slice 4 and (d) time slice 8. Note that time slice 1 occurs at t =

z/c and time slices 2, 4 and 8 occur at t > z/c. Notice that these waveforms are much
smoother than those in figure 16.

45

However, the waveforms at time slice 2 of Figure 16 and 17 are not similar because the

time slice increment for both waveforms are not the same; recall from Chapter III that

when M= 64, each time slice increment is 10 picoseconds whereas for M= 128, each

time slice increment is only 5 picoseconds. Figure 18a and b show the propagation spatial

filter function at time slices 60 and 125 respectively.

(a) Time slice 60 (b) Time slice 125

fy-axis 0 0

128

fx-axis fy-axis 0 0

128

fx-axis

(c) Time slice 60

40

20

to 0

-20

-40

1 H ,
• ■ -v

I \) ■!

\lv ■'■■

65
fx-axis

128

20r

10

S 0

-10

-20

(d) Time slice 125

-U-y-f,

'; ' ! ■ i

■Hfr-"

1 ■

65
fx-axis

128

Figure 18. Propagation spatial filter function with JV= 128 and M= 128: (a) time slice 60,
(b) time slice 125, (c) filter function cross-section view at time slice 60 and (d) filter

function cross-section view at time slice 125. Notice that more peaks are formed at higher
time slice number.

46

Notice that as the time slice number increases, the filter function forms more peaks and

collapses on itself. This phenomenon can be observed by looking at the cross-sectional

view of the filter function as shown in Figure 18c and d for time slices 60 and 125

respectively.

B. OUTPUT FIELD DISTRIBUTION

In this section, we shall first step through the process for computing the output

field for a circular field input excitation. We shall present results obtained for a circular

source with diameter, d = 25. Another set of results was also generated for a circular

source with d = 49 to compare the effect of an increased source cross-sectional area. Then

we shall present the simulated results for the square, circularly truncated Gaussian and

circularly truncated Bessel input field excitations.

Before we proceed further, we wish to highlight that the diameter for all the

circular sources, d, and the width for the square source, w, are given in term of the

number of spatial points on the input planes which is made up of a NxN array. To convert

d into unit of centimeters (given by D), we adopt the following conversion equations:

DfcmJ = 100 * d * Ax , (26)

and

Ax = — = —^— = 0.0025 [mj (27)
2 * p 2 * 200

where Ax represents the lateral displacement between each discrete points on the NxN

array and pmax = 200 cycle/meter is the spatial radius that we have selected for our

propagation model. For example, if d= 25, this represents a physical aperture diameter of

47

6.25 centimeters on the input plane. In what follows, we shall indicate the diameter, D in

units of centimeter in parenthesis.

1. Circular Field Input Excitation with Small Aperture

Figures 19 to 22 show the simulation results obtained for a circular field input

excitation with d - 25 (6.25 centimeter). Figure 19a shows the circular input excitation

and Figure 19b, c and d illustrate the three steps required to produce its two-dimensional

spatial Fourier transform. Note that Figure 19d is 's(fx,fy,0) of Equation 22 and if we

multiply this with c(fx,fy,z,t) and take the two-dimensional inverse spatial Fourier

transform of the product, we produce the field at the output plane, p(x,y,z,t).

For this simulation run, we use M = 128. This implies that we have 125 time

slices and the simulation run have computed the filter function 125 times. Unfortunately,

we are unable to show all the 125 plots of the filter function and, therefore, only four of

these plots are selected to illustrate the computation of the output field. Figure 20 shows

the filter function computed at time slices 1, 50, 100 and 125. Notice that the filter

function forms more peaks and collapses on itself as the time slice number increases. If

we multiply these plots with that of Figure 19d and take the two-dimensional spatial

Fourier transform of their product one at a time, we produce the output field distribution

as illustrated on the left-hand side plots of Figure 21. Notice that the amplitude of the

output field decreases as expected and the field radial size increases as the time slice

number increases. The plots on the right-hand side of Figure 21 show the image formed

on the output plane. From these two-dimensional plots, the field radial spread with time

48

becomes more obvious and this has clearly demonstrated the effect of wave diffraction

over time.

(a) SHFT-INPUT (b) INPUT

Y-axis 0 0

128

X-axis

128

Y-axis

-100
128

fy-axis

(c) F-INPUT

0 0

128

-100
128

(d) FSHFT-INPUT

fx-axis fy-axis

128

0 0
fx-axis

Figure 19. Fourier transform of an impulse plane wave illuminating a circular aperture
with d = 25 (6.25 cm): (a) circular input excitation field, shfi-input, (b) after applying a

fftshift on shfi-input to produce input, (c) after applying fft2 on input to produce F-input
and (d) after applying a fftshift on F-input to produce the two-dimensional spatial

Fourier transform, Fshft-input. Note Fshft-input represents 's(fx,fy,0).

49

(a) Filter function at time slice 1 (b) Filter function at time slice 50

-9000
128

fy-axis 0 0
fx-axis fy-axis 0 0

fx-axis

(c) Filter function at time slice 100 (d) Filter function at time slice 125

128

fy-axis 0 0
fx-axis

128

Figure 20. Propagation spatial filter function: (a) time slice 1, (b) time slice 50, (c) time
slice 100 and (d) time slice 125.

50

(a) Output field at time slice 1

Y-axis 0 0

(b) Output field at time slice 50

128

Y-axis 0 0

(c) Output field at time slice 100

128

Y-axis 0 0

(d) Output field at time slice 125

128

Y-axis

128
Image at time slice 1 xlO'

128

128

128

Image at time slice 50

65
X-axis

Image at time slice 100

Image at time slice 125

m

128

70

60

50

J40

30

20

10

Figure 21. Output field (left) and image on output plane (right): (a) time slice 1, (b) time
slice 50, (c) time slice 100 and (d) time slice 125.

51

To present the output field distribution on the output plane over time requires a

four-dimensional plot in x-, y-, amplitude- and time-spaces. However, this is beyond

MATLAB's graphics capability. Nevertheless, we can still use MATLAB's three-

dimensional graphics capability to show this four-dimensional information on a three-

dimensional plot. To do this, we utilize the fact that the output field distribution is

cylindrically symmetric and therefore a center cross-section of the field distribution is

sufficient to describe the entire field on the whole output plane. If we line up all the

center cross-section of the output field for all the 125 time slices, we are able to produce a

time history of the output field and we denote this as the total output.

Figure 22a shows the total output. As expected, we observe a sudden peak at time

slice 1 where t = z/c and the field amplitude is given by Equation 24. From Figure 22b

which shows a ten times magnified version of the total output, we observe that as the

time slice number increases, the amplitude decreases and eventually goes to zero in

accordance to Equation 25. Also, we can witness a phenomenon called constructive

interference where the two inboard tails meet somewhere at time slices 82. This manifest

itself as an unexpected amplitude peak as shown in the close-up cross-section view of the

total output in Figure 22c. From Figure 22d, which shows a close-up front view of the

total output, we observe the increase in radial spread of the field as the time slice number

increases.

2. Circular Field Input Excitation with Large Aperture

Figure 23 to 25 show the simulation results obtained for a circular field input

excitation with d = 49 (12.25 centimeter). With a d value of almost double the previous

52

(a) Total output (b) Magnified view of total output

128 0

128

time slice
128 0

128

time slice

(b) Close-up front view of total output

(a) Close-up cross-section view of total output
80 m

0 20 40 60 80 100 128
time slice

40 _

128

Figure 22. Circular field input excitation with d= 25 (6.25 cm): (a) Total output, (b) ten
times magnified view of total output, (c) close-up cross-section view of total output and

(d) close-up front view of total output.

value, we can intuitively expect to observe in Figure 23 a that the input excitation should

have a larger circular cross-section area and in Figure 23b that its two-dimensional spatial

Fourier transform should also have a higher peak value.

53

(a) SHFT-INPUT (b) FSHFT-INPUT

Y-axis 0 0

128

X-axis fy-axis 0 0

128

fx-axis

Figure 23. (a) Circular input excitation with d = 49 (12.25 cm) and (b) two-dimensional
spatial Fourier transform.

Figures 24a and b show the two-dimensional cross-section view of the two-dimensional

spatial Fourier transform for d = 25 and d = 49, respectively. From this figure, we may

also observe that, for d - 49, in addition to having a higher peak value, the input also has

a slimmer spatial Fourier transform. This is analogous to a broad time-base signal having

a narrower spectral response than a narrow time-base signal.

500

400

300

i 200
i

100

0

-100

(a) Small circular FSHFT-INPUT (b) Large circular FSHFT-INPUT

I
i'

Is 1
L 1

65
fx-axis

128

Figure 24. Two-dimensional spatial Fourier transform for circular input excitation for (a)
d= IS (6.25 cm) and (b) d= 49 (12.25 cm).

54

Figure 25 shows the total output for d = 49 (12.25 centimeter) in different perspective.

From these plots, we can observe similar phenomena displayed in Figure 22 for d = 25.

(a) Total output

128 0

128

(b) Magnified view of total output

time slice
128 0

128

time slice

(d) Close-up front view of total output

(c) Close-up cross-section view of total output
100 r

0 20 40 60 80 100 128
time slice

Figure 25. Circular field input excitation with d= 49 (12.25 cm): (a) Total output, (b) ten
times magnified view of total output, (c) close-up cross-section view of total output and

(d) close-up front view of total output.

However, we notice that in this case, because of the larger cross-section area of the

wavefront, the radial spreading is more dispersed and that the strong constructive

55

interference that we observed for d = 25 cannot be seen here. Nevertheless, if we could

extend the time base beyond 125 time slices, it is anticipated that the two inboard tails

would still meet and form a constructive interference. But the interference amplitude

would probably be lower because the expected field amplitude beyond time slice 125 is

also lower.

3. Square Field Input Excitation

Figures 26 and 27 show the simulation results obtained for a square field input

excitation with w = 25 (6.25 centimeter). We have purposely selected w = 25 so that we

may compare this set of results with that obtained for the circular field input with d = 25.

Notice from Figure 26 that that, because a square input of width, w = 25, has a larger

cross-section area than a circle input with d= 25, the peak amplitude of the square's two-

dimensional spatial Fourier transform is larger (when comparing Figure 19d with Figure

26b).

(a) SHFT-INPUT (b) FSHFT-INPUT

1,

111
I 0.5.

nflmi' K
r^j

0, if
128

128
65

Y-axis 0 0

65

X-axis

128

fy-axis 0 0
fx-axis

Figure 26. (a) Square input excitation with w = 25 (6.25 cm) and (b) two-dimensional
spatial Fourier transform.

56

Figure 27 shows the total output for the square input excitation with w = 25 (6.25

centimeter) in different perspective. From these plots, we can observe similar phenomena

displayed in Figure 22 for the circular input excitation with d= 25.

(a) Total o utput

800.
;.

600.

■a
.

am
pl

itu

o

 o

o

 o

0;
o ^B Ä- 40 ^Hj pppp

80 ^Hmj^^ 65
128 0

ime slice space

(b) Magnified view of total output

128

80,

60.
V

■D

a.
e
03

20.

0.
0 ^|

40
80

128 0

P^'65

space

128

(d) Close-up front view of total output

(c) Close-up cross-section view of total output
100 r

0 20 40 60 80 100 128
time slice

40

80

128
128

Figure 27. Square field input excitation with w = 25 (6.25 cm): (a) Total output, (b) ten
times magnified view of total output, (c) close-up cross-section view of total output and

(d) close-up front view of total output.

57

For this case, a constructive interference has occurred at time slice 86 compared to 82 for

the small circular input. This result is consistent with what we have anticipated for the

large circular input that constructive interference would occur at further time slice when

the wavefront is larger.

4. Circularly Truncated Gaussian Field Input Excitation

Figures 28 and 29 show the simulation results obtained for a circularly truncated

Gaussian field input excitation with d= 25 (6.25 centimeter) and sigma = 12. The sigma

factor represents the standard deviation and it determines the width of the full Gaussian

field. Now, because a truncated Gaussian field has a wavefront that has cross-section area

that is smaller than that of a full circular input field, we can expect to see a lower peak

amplitude for its two-dimensional Fourier transform (when comparing Figure 19d with

Figure 28b).

(a)SHFT-INPUT (b) FSHFT-INPUT

Y-axis 0 0
X-axis fy-axis 0 0

fx-axis

Figure 28. (a) Circularly truncated Gaussian field input excitation with d= 25 (6.25 cm)
and sigma = 12 and (b) Two-dimensional spatial Fourier transform.

58

Figure 29 shows the total output for the circularly truncated Gaussian field input

excitation with d = 25 (6.25 centimeter) and sigma = 12 in different perspective.

(a) Total output (b) Magnified view of total output

128 o

128

time slice
128 0

time slice

(d) Close-up front view of total output

(c) Close-up cross-section view of total output
100 r

0 20 40 60 80 100 128
time slice

Figure 29. Circularly truncated Gaussian field input excitation with d = 25 (6.25 cm) and
sigma = 12: (a) Total output, (b) ten times magnified view of total output, (c) close-up

cross-section view of total output and (d) close-up front view of total output.

From these plots, again we can observe similar phenomena displayed in Figure 22 for the

circular input excitation with d = 25. Notice that in this case, because of the smaller

59

wavefront, the field peak amplitude at time slice 1, the field radial spreading and the

constructive interference amplitude are smaller (when comparing Figure 22 with Figure

29).

5. Circularly Truncated Bessel Field Input Excitation

Figures 30 and 31 show the simulation results obtained for a circularly truncated

Bessel field input excitation with d = 25 (6.25 centimeter) and a = 1. Factor a here is the

width scaling factor of the Bessel function. Figure 30a and b show the circularly

truncated Bessel field input excitation and its two-dimensional spatial Fourier transform

respectively. Notice the broad spectral response in Figure 30b is attributed by the narrow

waveform of the input field (when comparing Figure 19 with Figure 30).

(a) SHFT-INPUT (b) FSHFT-INPUT

128

Y-axis X-axis

Figure 30. (a) Circularly truncated Bessel field input excitation with d = 25 (6.25 cm) and
a = 12 and (b) two-dimensional spatial Fourier transform.

Figure 31 shows the total output for the circularly truncated Bessel field input excitation

with d = 25 (6.25 centimeter) and a = 1 in different perspective. From these plots, again

we can observe similar phenomena displayed in Figure 22 for the circular input excitation

60

with d= 25. Notice also that, because of the smaller wavefront, the field peak amplitude

at time slice 1 and the field radial spreading are smaller (when comparing Figure 22 with

Figure 31). Moreover, the field amplitude is decaying so fast that no noticeable

constructive interference is created at the point where the two inboard tails meet.

(a) Total output (b) Magnified view of total output

128 o

128

time slice
128 0

128

time slice

(d) Close-up front view of total output

(c) Close-up cross-section view of total output
100 r

0 20 40 60 80 100 128
time slice

Figure 31. Circularly truncated Bessel field input excitation with d= 25 (6.25 cm) and a
= 1: (a) Total output, (b) ten times magnified view of total output, (c) close-up cross-

section view of total output and (d) close-up front view of total output.

61

In this chapter, we have done a detailed analysis of the characteristic of the

propagation spatial filter function. We have also presented the output field distribution

for the four different shaped input fields as predicted by our simulation model. With this,

we have come to the concluding chapter of our thesis research. In the next chapter, we

will summarize our achievements made in this research and give recommendations for

future work.

62

V. SUMMARY

This thesis presented a MATLAB implementation of a Fourier transform

approach to model and predict transient optical wave propagation through free-space.

Linear systems theory characterized the wave propagation model in terms of a Green's

function, which solves the wave equation and satisfies the boundary conditions of our

propagation model. Fourier transform theory simplified the mathematics required for our

computer simulation.

A modular programming approach was adopted for our MATLAB program to

segregate the time-consuming processes from the less time-consuming, which allow the

simulation programs to run more efficiently with less computer memory. User-interactive

features introduced in the programs allow the program user to select a variety of input

excitations for analysis. Animation programs provided visualization of the changes in the

filter function and the output field over time. Two-dimensional plots of the field intensity

were presented to help comprehend the image formation on the output plane. Detailed

description of all the program modules were given and Appendixes A to E contain the

source codes. Many two- and three-dimensional graphics in different perspectives were

generated to demonstrate the program's operation.

We computed the spatial impulse responses for a circular, square, circularly

truncated Gaussian and circularly truncated Bessel input excitations. Their results were

compared and thoroughly analyzed to identify known optical phenomena like wave

diffraction, dispersion and constructive interference.

63

Future investigation is open in several areas. A detailed comparison of our

simulation model should be made with existing published models. The physical

interpretation of S{t - z/c) in Equation 24 for the propagation spatial filter should be

further investigated, especially in the role that plays our time plots of the spatial filter. In

this thesis, we have only scratched the surface, so to speak, of computer simulation of the

wide ranging techniques of optical processing. There is much fascination to be found in

aperture design, complex filtering, optical computing, etc. Computer graphics allow us to

visualize more than the eye can see.

64

APPENDIX A. SOURCE CODE FOR INPUT EXCITATIONS

The folio wings are the MATLAB source code for the four input excitations:

circular, square, circularly truncated Gaussian and circularly truncated Bessel field

distributions.

CIRCULAR INPUT EXCITATION

function Y =crcle(d,N)

%crcle.m: Y=crcle(d,N)

%Program for generating uniform circular excitation functions

%d is the diameter of the circle.(ODD integer)

%N is the width of the square base. (EVEN integer)

%Example: z = crcle(33,64);

% Adopted from [Ref. 3]

%Check that d is an odd integer

ifrem(d,2)<0.1;

error('The diameter of the circle function must be an ODD integer.');

else;

end;

%Check that N is an even integer

if rem(N,2) ~= 0.0;

error(The width of the square base must be an EVEN integer.');

else;

end;

NO = (N/2)+l; %NO is the center location

r = d/2; %r is the radius

Y = zeros(N);

temp = zeros(NO-l);

form=l:r+l;

forn=l:r+l;

65

if sqrt((m-l)A2 + (n-l)A2) <= r;

temp(m,n)=l;

end;

end;

end;

%Generate the entire N x N input function

Y(NO:N,NO:N) = temp;

Y(2:NO,NO:N) = flipud(temp);

Y(2:NO,2:NO) = rot90(temp,2);

Y(NO:N,2:NO) = fliplr(temp);

%%% End of program %%%

SQUARE INPUT EXCITATION

function Y = square(w,N)

%square.m: Y = square(w,N)

%Program for generating a uniform square excitation function.

%w is the width of the table. (ODD inteqer)

%N is the width of the square base. (EVEN integer)

%Example: z = square(33,64);

% Adopted from [Ref. 3]

%Check that w is an odd integer.

ifrem(w,2)<0.1;

error('The width of the table must be an ODD integer.');

else;

end;

%Check that N is an even integer

if rem(N,2)~= 0.0;

error('The width of the square base must be an EVEN integer.');

66

else;

end;

NO = (N/2)+1; %NO is the center location

wO = ceil(w/2); %wO is the mid-point of the table

Y = zeros(N);

temp = zeros(NO-1);

temp(l :wO,l :wO)= ones(wO);

Y(NO:N,NO:N) = temp;

Y(2:NO,NO:N) = rot90(temp);

Y(2:NO,2:NO) = rot90(temp,2);

Y(NO:N,2:NO) = rot90(temp,3);

%%% End of program %%%

CIRCULARLY TRUNCATED GAUSSIAN INPUT EXCITATION

function Y = crcgaus(sigma,d,N)

%crcgaus.m: Y = crcgaus(sigma,d,N)

%Program for generating circular Gaussian functions.

%sigma is the standard deviation of the Gaussian function.

%d is the diameter of circle. (ODD integer)

%N is the WIDTH of the square base. (EVEN integer)

%Example: z crcgaus(12,33,64);

% Adopted from [Ref. 3]

mu=0; %mu is the mean of the Gaussian function

%Check that d is an odd integer.

ifrem(d,2)<0.1;

error('The diameter of the circle function must be an ODD integer.');

else;

end;

67

%Check that N is an even integer,

if rem(N,2) ~= 0.0;

error(The width of the square base must be an EVEN integer.');

else;

end;

NO = (N/2)+l; %NO is the center location

r = d/2; %r is the radius

Y = zeros(N);

temp = zeros(NO-l);

form=l:(d+l)/2;

forn=l:(d+l)/2;

x = sqrt((m-l)A2 + (n-l)A2);

ifx<=r;

temp(m,n) = (l/(sqrt(2*pi)*sigma))*exp(-((x-mu)A2)/(2*(sigmaA2)));

end;

end;

end;

Y(NO:N,NO:N) = temp;

Y(2:NO,NO:N) = flipud(temp);

Y(2:NO,2:NO) = rot90(temp,2);

Y(NO:N,2:NO) = fliplr(temp);

Y=Y./(max(max(Y))); %Normalize the Gaussian distribution to one

%%% End of program %%%

CIRCULARLY TRUNCATED BESSEL INPUT EXCITATION

function Y = crcbess(a,d,N)

%crcbess.m: Y = crcbess(a,d,N)

% Program for generating circular Bessel excitation functions.

%a is the width scaling factor.

68

%d is the diameter of the circle. (ODD inteq~r)

%N is the width of the square base. (EVEN integer)

%Example: z = crcbess(l,33,64);

% Adopted from [Ref. 3]

%Check that d is an odd integer.

ifrem(d,2)<0.1;

error(The diameter of the circle must be an ODD integer');

else;

end;

%Check that N is an even integer.

ifrem(N,2)~=0.0;

error(The width of the square base must be an EVEN integer');

else;

end;

NO = (N/2)+1; %NO is the center location

r = d/2; %r is the radius of the circle

Y = zeros(N);

temp = zeros(NO-l);

for m = 1 :r+l;

forn= l:r+l;

x = sqrt((m-l)A2 + (n-l)A2);

ifx<=r;

temp(m,n)= bessel(0,a*x);

end;

end;

end;

Y(NO:N,NO:N) = temp;

Y(2:NO,NO:N) = flipud(temp);

69

Y(2:NO,2:NO) = rot90(temp,2);

Y(N0:N,2:N0) = fliplr(temp);

%%% End of program %%%

70

APPENDIX B. SOURCE CODE FOR FILTER FUNCTION

The followings are the MATLAB source code for computing the propagation

spatial filter function.

PROPAGATION SPATIAL FILTER FUNCTION

%% This program generates the Bessel filter function

%% related files/variables : optvar.mat, pJ164x, PROP1

% Written by Nicholas Lee, Jul 1998

clear all;

!delpl28Jl*x*.mat % delete old data files

!del optvar28.mat % delete old data files

N = 128; % size of square array

M = 128; % number of time slices

NO = (N/2)+l; % defines center of the square array

Step = 3; % number of leading zero time slices

z = 100e-3; % distance to the observation plane

time_max = .95e-9; % time at the final time slice

rho = 200; % spatial radius of the filter[sqrt(rhoxA2+ rhoyA2)]

c = 3e8; % velocity of the light wave

%% Initialize matrices to save processing time

PROP = zeros(NO);

PROP1 = zeros(N);

temp = zeros(NO); %bessel function of order one, Jl

arg = zeros(NO);

rho_m = zeros(NO,l);

row = zeros(NO);

time = zeros(M-Step,l);

71

%% Generate M-Step time slices between z/c and time_max.

time = linspace(z/c, time_max, M-Step);

%% Generate NO-1 values of rho_m from 0 to rho.

rhojm = linspace(0,rho,NO-l);

%% Add additional increment to rho_m to compensate for the off-center

%% orientation of the final NXN matrix

rho_m = [rho_m (rho_m(NO-l)+rho_m(2))]; %use 2 b'cos Matlab indexing

% start at l,2,etc

% Create two NO x NO arrays of rho values for function evaluation.

[rhox,rhoy] = meshgrid(rho_m,rho_m);

%% Calculate matrix of radial distance values outside the loop

row = sqrt(rhox.A2 + rhoy.A2);

%% Save those variables necessary for ioptprop.m in a data file optvar.mat

save optvar N M NO Step time c z row;

MM=movie(125);

%%%START LOOP%%%

for m = 1 :M-Step

fprintf('%3.0f ,m); %show m value on screen

%Generate PROP matrices with suffix of "A" corresponding

% to the values of the time vector

% Create an NO x NO array of argument values for the bessel function

iftime(m)=z/c %creat t=z/c term

PROP=flipud(2/c-(z.*row.A2));

PROPl(l:NO,l:NO) = fliplr(PROP);

PROPl(l:NO,NO:N) = PROP(l:NO,l:NO-l);

PROP 1 (NO:N, 1 :N) = flipud(PROP 1 (2 :NO, 1 :N));

else

sq = sqrt(cA2*(time(m))A2-zA2);

arg = row*sq;

72

% Evaluate row* J_l at each argument value; create an NO x NO array

temp = flipud((-2*z)*(row/sq).*besselj(l,arg));

PR0P1(1 :NO,l :NO) = fliplr(temp);

PROPl(l :NO,NO:N) = temp(l :NO,l :NO-l);

PROPl(NO:N,l:N) = fiipud(PROPl(2:NO,l:N));

end

mesh(PROPl)

grid on; xlabel('fx'); ylabelCfy'); zlabel('amplitude');

MM(:,m)=getframe;

%Correlate the name of the variable PROP with the time index;ie, PROP1, PROP2 etc

vname = ['PROP 1 *,int2str(m)]; %set up name

eval([vname,'= PROP1 ;']);

%Save applicable PROP in a file named pJl(N)x(m)A;.e.g., PROP15A in pJ164x5A

eval(['save pjr,int2str(N),'x'5int2str(m),' ',vname]);

eval(['clear PROP1 ',vname]);

end

%%%END LOOP%%%

movie (MM);

%%% End of program %%%

73

74

APPENDIX C. SOURCE CODE FOR OUTPUT FIELD COMPUTATION

The followings are the MATLAB source code for computing the output field

distribution.

OUTPUT FIELD COMPUTATION

% ioptprop.m

%performs transient optical wave propagation simulations

%It uses the NXN arrays Mp(N)x(m)A/B" to

% compute the propagation transfer function.

% Size of the variables NXN - input functions; M-Step - time slices.

% NxM-output_plot

% circular, square and gaussian excitation

% Written by Nicholas Lee, Jul 1998

clear all;

!del opt*.met % delete old data files

% Load the defining parameters specified in OPTFIL.m

load optvar28.mat

% Generate the INPUT function; plot it.

N

disp('N is the width of the base for each function')

disp(")

disp('Please select the excitation function')

dispC 1-Circle ')

disp(' 2-Table ')

disp(' 3 - Circular Gaussian ')

disp(' 4 - Circular Bessel ')

disp(' ')

disp(' Please strike "Enter" after selection.')

dispC ')

disp(' Default values are in [].')

75

input_func = input('Please enter an excitation function number [1]');

if isempty(input_func)

input_func = 1

end

if input_func = 1,

d = input(Tlease enter ODD diameter, [25], d = ');

ifisempty(d)

d = 25

end

shftjnput = crcle(d,N);

elseif input_func = 2,

w = input(Tlease enter ODD width, [25], w = ');

if isempty(w)

w = 25

end

shftjnput = table(w,N);

d = w;

elseif input_func = 3,

sigma = input('Please enter the standard deviation, [12],sigma = ');

if isempty(sigma)

sigma = 12

end

d = input('Please enter the ODD diameter, [25], d =');

ifisempty(d)

d = 25

end

shftjnput = crcgaus(sigma,d,N);

elseif input Jiunc == 4,

a = input('Please enter the width scaling factor,,[1], a= ');

76

ifisempty(a)

a=l

end

d = input('Please enter the ODD diameter, [25], d =');

ifisempty(d)

d = 25

end

shftjnput = crcbess(a,d,N);

else

error('Incorrect Excitation Function Selection')

end

%% Shift input quadrants and take the 2-D FFT to produce FJNPUT.

input = (fftshift(shft_input));

F_input = real(fft2(input));

% Shift F_input in preparation of multiplication with PROP1

Fshft_input = fftshift(F_input);

% Array-multiply the filter transfer function PROP1 and Fshft_input.

disp('Performing array multiplication....');

%%% Start loop %%%

for m = 1 :M-Step

fprintf('%2.0f, ',m)

pause(l)

%% Load filter transfer function

filenamel = [,pJl',int2str(N),'x',int2str(m)];

eval(['load ',filenamel]);

eval(['vname 1 =PROP 1 ',int2str(m),';']);

% Array-multiply filter transfer function with Fshft_input

Fshft_outputl = vnamel.*(Fshft_input);

%Clear unnecessary variables to free RAM

77

clear vnamel;

eval(['clear PROP 1 ',int2str(m),*;']);

% Shift Fshft_outputl to corner geometry prior to taking the IFFT2

F_outputl = fftshift(Fshft_outputl);

% Take IFFT of F_outputl

output=ifft2(F_outputl);

% Shift output 1 prior to summation««««OUTPUT

shft_output = fftshift(output);

% View the magnitude of the shifted output<««INTENSITY

shft_outabs = abs(shft_output);

shft_intensity = (shft_outabs).A2;

%Shft_outabs as outabs and store into file optab(time(m))

vname = ['outabs',int2str(m)];

eval([vname,'=shft_outabs;'])

eval(['save optab',int2str(m),' ',vname])

vname = ['inten',int2str(m)];

eval([vname, -shftjntensity;'])

eval(['save optint',int2str(m),' ',vname])

%Save the NO row of the magnitude of the shifted output in the

%m+Step column of output_plot.

output_plot(l :N,m+Step)=shft_outabs(NO, 1 :N)';

end

%%%% End loop %%%

%Save contents of "output_plot" as NxM array,

filename = ['op',int2str(d),'x',int2str(M)]; % File: op(d)x(M)

eval(['save ',filename,' output_plot']);

% plot the responses at each stage

save excit shft_input input F_input Fshft_input outputjplot

%%% End of program %%%

78

APPENDIX D. SOURCE CODE FOR 2D AND 3D GRAPHICS

The fallowings are the MATLAB source code for plotting all two- and three-

dimensional graphics.

PLOT FILTER FUNCTION

%plotfilter.m

%This program plots all the filter function

%It uses data files pj 1128xn.mat

%Written by Nicholas Lee, Jul 1998

clear all

cs60 = zeros(128);

csl25 = zeros(128);

load pj 1128x1.mat

loadpjll28x2.mat

loadpjll28x4.mat

load pj 1128x8.mat

Ioadpjll28x60.mat

loadpjll28xl25.mat

figure(l)

subplot(1,2,1)

mesh(PROPll)

axis square, title('(a) Time slice 1')

grid on, xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis')

axis([0 128 0 128 -9000 0])

set(gca,'xtick,,[0,65,128],'ytick',[0,65,128],'ztick',[-9000,-6000,-3000,0])

79

subplot(1,2,2)

mesh(PR0P12)

axis square, title('(b) Time slice 2')

grid on, xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis')

axis([0 128 0 128 -900 1200])

set(gca,,xtick',[0,65,128],,ytick',[0,65,128],'ztick',[-800,-400,0,400,800,1200])

figure(2)

subplot(1,2,1)

mesh(PROP14)

axis square, title('(d) Time slice 4')

grid on, xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis')

axis([0 128 0 128 -600 600])

set(gca,'xtick,,[0,65,128],'ytick',[0,65,128],'ztick',[-600,-400,-200,0,200,400,600])

subplot(1,2,2)

mesh(PROP18)

axis square, title('(d) Time slice 8')

grid on, xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis')

axis([0 128 0 128 -600 600])

set(gca,'xtick,,[0,65,128],,ytick',[0,65,128],,ztick,,[-600,-400,-200,0,200,400,600])

figure(3)

subplot(1,2,1)

mesh(PROP160)

axis square,title('(a) Time slice 60')

grid on, xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis')

axis([0 128 0 128 -50 50])

80

set(gca,,xtick,,[0,65,128],,ytick*,[0,65,128];ztick,,[-40,-20,0,20,40])

subplot(1,2,2)

mesh(PROP1125)

axis square, title('(b) Time slice 125')

grid on, xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis')

axis([0 128 0 128 -20 20])

set(gca,,xtick',[0,65,128],,ytick',[0,65,128],,ztick',[-20,-10,0,10,20])

cs60(65,l:128) = PROP160(65,l:128);

csl25(65,l:128)=PROPl 125(65,1:128);

figure(4)

subplot(1,2,1)

mesh(cs60)

axis square,title('(c) Time slice 60')

grid on, xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis')

axis([0 128 0 128 -50 50])

set(gca,'xtick,,[0,65,128],'ytick,,[0,65,128],'ztick,,[-40,-20,0,20,40])

view(0,0)

subplot(1,2,2)

mesh(csl25)

axis square, title('(d) Time slice 125')

grid on, xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis')

axis([0 128 0 128 -20 20])

set(gca;xtick',[0,65,128],'ytick',[0,65,128],'ztick',[-20,-10,0,10,20])

view(0,0)

%%% End of program %%%

81

PLOT FIELD

%plotfield.m

%This program plots all the graphics for the input and output fields

%It uses data files excit, optvar.mat, optabm.mat and optintm.mat

% Written by Nicholas Lee, Jul 1998

clear all

% Load the defining parameters specified in OPTFIL.m

load excit.mat

%load output field

load optabl.mat

load optab50.mat

load optabl00.mat

load optabl25.mat

%load intensity to create image

load optintl .mat

load optint50.mat

load optintlOO.mat

load optintl25.mat

figure(l) % input excitation

subplot(1,2,1)

mesh(shft_input);title('(a)SHFT-INPUr);

82

axis square;

axis([0 128 0 128 0 1])

set(gca,'xtick',[0,655128],,ytick,,[0,65,128],,ztick,,[0,0.5,l])

grid on, xlabel('X-axis'), ylabel('Y-axis'), zlabel('Z-axis')

subplot(1,2,2)

mesh(input);title('(b) INPUT')

axis square;

axis([0 128 0 128 0 1])

set(gca,'xtick,,[0,65,128],,ytick',[0,65,128],,ztick,,[0,0.5,l])

grid on, xlabel('X-axis'), ylabel('Y-axis'), zlabel('Z-axis')

pause; "

figure(2) % Fourier transform of shifted input

subplot(1,2,1)

mesh(F_input);title('(c) F-INPUT')

axis square;

axis([0 128 0 128 -100 500])

set(gca,,xtick,,[0,65,128],,ytick',[0,65,128],,ztick',[-100,0,100,200,300,400,500])

grid on, xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis')

subplot(1,2,2)

mesh(Fshft_input);title('(d) FSHFT-INPUT')

axis square;

axis([0 128 0 128 -100 500])

set(gca,'xtick',[0,65,128],,ytick,,[0,65,128],'ztick,,[-100,0,100,200,300,400,500])

grid on, xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis')

pause;

83

figure(3)

subplot(2,2,l)

mesh(outabsl)

axis square,title('(a) Output field at time slice 1')

grid on, xlabel('X-axis'), ylabel('Y-axis'), zlabel('Amplitude')

axis([0 128 0 128 0 1500])

set(gca;xtick',[0,65,128],'ytick,,[0,65,128],,ztick,,[0,500,1000,1500])

subplot(2,2,2)

mesh(intenl)

axis square,title('Image at time slice 1')

grid on, xlabel('X-axis'), ylabel('Y-axis'), zlabel('Z-axis')

axis([0 128 0 128 0 2e6])

colorbar

set(gca,'xtick,,[0,65,128],,ytick',[0,65,128],,ztick',[])

view(0,90)

subplot(2,2,3)

mesh(outabs50)

axis square,title('(b) Output field at time slice 50')

grid on, xlabel('X-axis'), ylabel('Y-axis'), zlabel('Amplitude')

axis([0 128 0 128 0 30])

set(gca,'xtick',[0,65,128],'ytick',[0,65,128],'ztick',[0,10,20,30])

subplot(2,2,4)

mesh(inten50)

axis square,title('Image at time slice 50')

grid on, xlabel('X-axis'), ylabel('Y-axis'), zlabel('Z-axis')

axis([0 128 0 128 0 600])

84

colorbar

set(gca;xtick,,[0,65,128],'ytick,,[0565,128],,ztick'5[])

view(0,90)

pause;

figure(4)

subplot(2,2,l)

mesh(outabslOO)

axis square,title('(c) Output field at time slice 100')

grid on, xlabel('X-axis'), ylabel('Y-axis'), zlabel('Amplitude')

axis([0 128 0 128 0 20])

set(gca,'xtick',[0,65,128],'ytick',[0,65,128];ztick',[0,5,10,15520])

subplot(2,2,2)

mesh(intenlOO)

axis square,title('Image at time slice 100')

grid on, xlabel('X-axis'), ylabel('Y-axis'), zlabel('Z-axis')

axis([0 128 0 128 0 250])

colorbar

set(gca,'xtick',[0,65,128],*ytick',[0,65,128],'ztick,,[])

view(0,90)

subplot(2,2,3)

mesh(outabsl25)

axis square,title('(d) Output field at time slice 125')

grid on, xlabel('X-axis'), ylabel('Y-axis'), zlabel('Amplitude')

axis([0 128 0 128 0 10])

set(gca,'xtick',[0,65,128],'ytick',[0,65,128],'ztick',[0,2,4,6,8,10])

85

subplot(2,2,4)

mesh(intenl25)

axis square,title('Image at time slice 125')

grid on, xlabel('X-axis'), ylabel('Y-axis'), zlabel('Z-axis')

axis([0 128 0 128 0 80])

colorbar

set(gca,'xtick,,[0,65,128],'ytick,,[0,65,128],,ztick,,[])

view(0,90)

pause;

figure(5) % output_plot with close-up view

subplot(l,2,l)

mesh(output_plot);title('(a) Total output');

axis square;

axis([0 128 0 128 0 800])

set(gca,'xtick',[0,40,80,128],*ytick',[0,65,128],'ztick',[0,200,400,600,800])

grid on, xlabel('time slice'), ylabel('space'), zlabel('amplitude')

view(52.5,30)

subplot(1,2,2)

mesh(output_plot);title('(b) Magnified view of total output');

axis square;

axis([0 128 0 128 0 80])

set(gca,'xtick',[0,40,80,128],'ytick,,[0,65,128],,ztick',[0,20,40,60,80])

grid on, xlabel('time slice'), ylabel('space'), zlabel('amplitude')

view(52.5,30)

pause;

figure(6) % output_plot side & front views

86

subplot(1,2,1)

mesh(output_plot);title('(a) Close-up cross-section view of total output');

axis square;

axis([0 128 0 128 0 80])

set(gca,'xtick,,[0,20,40,60,80,100,128],,ytick',[0,65,128],'ztick',[0,20,40,60,80])

grid on, xlabel('time slice'), ylabel('space'), zlabel('amplitude')

view(0,0)

subplot(1,2,2)

mesh(output_plot);title('(b) Close-up front view of total output');

axis square;

axis([0 128 0 128 0 80])

set(gca,'xtick*,[0,40,80,128],'ytick,,[0,30,65,90,128],'ztick',[])

grid on, xlabel('time slice'), ylabel('space'), zlabel('')

view(90,45)

%%% End of program %%%

87

88

APPENDIX E. SOURCE CODE FOR ANIMATION PROGRAMS

The followings are the MATLAB source code for the animation programs.

ANIMATION FORMAT 1

% animatel.m

%This program animate filter function , output field and image

%uses N=64

%Written by Nicholas Lee, Aug 1998

clear all;

% Load the defining parameters specified in IOPTFIL.m

load optvar.mat

% Array-multiply the shifted transfer function PRROP and Fshftjnput.

disp('Animation in-progress....');

movie_figure = figure('position',[50 200 600 220]);%col, row

MM=moviein(M-Step,movie_figure);

%%% Start loop %%%

for m = 1 :M-Step

nic=['time-slice ',int2str(m)];

fprintf('%2.0f, ',m);

ifm=l

filenamel = ['pJl',int2str(N),'x'5int2str(m)];

eval(['load',filenamel]);

eval(['vnamel=PR0Pr,int2str(m);;']);

filename2 = ['optab',int2str(m)];

eval(['load ',filename2]);

eval(['vname2=outabs',int2str(m),';']);

subplot(1,3,1)

mesh(vnamel);title('(a) Filter spatial frequency response')

axis square;

grid on; xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis')

89

axis([0 64 0 64 -9000 0])

set(gca,,xtick,,[0,33,64],'ytick',[0,33,64],,ztick,,[-9000,0])

subplot(l,3,2)

mesh(vname2);title(' (b) Image field intensity')

axis square;

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity')

axis([0 64 0 64 0 1500])

set(gca,,xtick',[0,33,64];ytick',[0,33,64],*ztick',[0,500,1000,1500])

subplot(l,3,3)

mesh(vname2);title('(c) Image')

axis square;

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity')

axis([0 64 0 64 0 1500])

colorbar

set(gca,'xtick',[0,33,64],'ytick',[0,33,64],'ztick',[0,500,1000,1500])

view(0,90)

eval(['text(l 5,-30,0,nic);']);

elseifm<=3

filename 1 = ['pJl',int2str(N),'x',int2str(m)];

eval(['load ',filenamel]);

eval(['vname 1 =PROP r,int2str(m),';']);

filename2 = ['optab',int2str(m)];

eval(['load ',filename2]);

eval(['vname2=outabs',int2str(m),';']);

subplot(1,3,1)

mesh(vnamel);title('(a) Filter spatial frequency response')

axis square;

90

grid on; xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis')

axis([0 64 0 64 -400 600])

set(gca;xtick',[0533,64],,ytick,,[0,33,64],,ztick',[-400,-200,0,200,400,600])

subplot(l,3,2)

mesh(vname2);title(' (b) Image field intensity')

axis square;

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity')

axis([0 64 0 64 0 250])

set(gca,,xtick,,[0,33,64]3
,ytick',[0,33,64],'ztick,,[0,50,1005150,200,250])

subplot(l,3,3)

mesh(vname2);title('(c) Image')

axis square;

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity')

axis([0 64 0 64 0 250])

colorbar;

set(gca,'xtick',[0,33,64];ytick',[0,33564],'ztick',[0,50,100,150,200,250])

view(0,90)

eval([*text(l 5,-30,0,nic);']);

elseifm<=ll

filename 1 = ['pJl',int2str(N),'x',int2str(m)];

eval(['load ',filenamel]);

eval(['vname 1 =PROP 1 \int2str(m),';']);

filename2 = ['optab',int2str(m)];

eval(['load ',filename2]);

eval(['vname2=outabs',int2str(m),';']);

subplot(l,3,l)

mesh(vnamel);title('(a) Filter spatial frequency response')

91

axis square;

grid on; xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis')

axis([0 64 0 64 -300 300])

set(gca,,xtick',[0,33,64],'ytick,,[0,33,64];ztick',[-300,-200,-

100,0,100,200,300])

subplot(l,3,2)

mesh(vname2);title(' (b) Image field intensity')

axis square;

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity')

axis([0 64 0 64 0 100])

set(gca,*xtick,,[0,33,64],,ytick',[0,33,64],,ztick',[0,20,40,60,80,100])

subplot(l,3,3)

mesh(vname2);title('(c) Image')

axis square;

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity')

axis([0 64 0 64 0 100])

colorbar

set(gca,'xtick',[0,33,64],'ytick',[0,33,64],,ztick',[0,20,40,60,80,100])

view(0,90)

eval(['text(15,-30,0,nic);']);

elseif m<=25

filenamel = ['pJl',int2str(N),'x',int2str(m)];

eval(['load ',filenamel]);

eval(['vnamel=PROPl',int2str(m),';']);

filename2 = ['optab',int2str(m)];

eval(['load ',filename2]);

eval(['vname2=outabs',int2str(m),';']);

92

subplot(1,3,1)

mesh(vnamel);title('(a) Filter spatial frequency response')

axis square;

grid on; xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis')

axis([0 64 0 64-100 100])

set(gca;xtick',[0,33,64],,ytick,,[0,33,64],,ztick',[-100,-50,0550,100])

subplot(l,3,2)

mesh(vname2);title(' (b) Image field intensity')

axis square;

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity')

axis([0 64 0 64 0 50])

set(gca,'xtick,,[0,33,64],'ytick',[0,33,64],'ztick',[0,10,20,30,40,50])

subplot(l,3,3)

mesh(vname2);title('(c) Image')

axis square;

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity')

axis([0 64 0 64 0 50])

colorbar

set(gca;xtick',[0,33,64],'ytick',[0,33,64],,ztick*,[0,10,20,30,40,50])

view(0,90)

eval(['text(l 5,-30,0,nic);']);

elsem<=61

filenamel = ['pJr,int2str(N),'x',int2str(m)];

eval(['load ',filenamel]);

eval(['vnamel=PROPl',int2str(m),';']);

filename2 = ['optab',int2str(m)];

eval(['load ',filename2]);

93

eval(['vname2=outabs',int2str(m),,;,]);

subplot(1,3,1)

mesh(vnamel);title('(a) Filter spatial frequency response')

axis square;

grid on; xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis')

axis([0 64 0 64 -50 50])

set(gca,*xtick,,[0,33,64],,ytick',[0,33,64],,ztick',[-50,0,50])

subplot(l,3,2)

mesh(vname2);title(' (b) Image field intensity')

axis square;

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity')

axis([0 64 0 64 0 30])

set(gca,'xtick',[0,33,64],'ytick',[0,33,64],'ztick',[0,10,20,30])

subplot(l,3,3)

mesh(vname2);title('(c) Image')

axis square;

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity')

axis([0 64 0 64 0 30])

colorbar

set(gca,,xtick,,[0,33,64],'ytick',[0,33,64],'ztick',[0,10,20,30])

view(0,90)

eval(['text(l 5,-30,0,nic);']);

end

figure(mo vie_figure);

MM(: ,m)=getframe(gcf);

end

%%% END OF LOOP %%%

echo off

94

dispC');

disp('Press a key to play back movie.');

pause

echo on

start_frame=input('Enter start frame:');

end_frame=input('Enter end frame:');

movie(movie_figure,MM,[l (start_frame:end_frame)], 1);

echo off

%%%End of program %%%

ANIMATION FORMAT 2

% animate2.m

%This program animate filter function, output field, total output (side view)

%and image

%uses N=64

%Written by Nicholas Lee, Aug 1998

clear all;

% Load the defining parameters specified in IOPTFIL.m

load optvar.mat

center=zeros(N);

% Array-multiply the shifted transfer function PRROP and Fshft_input.

disp('Animation in-progress....');

movie_figure = figure('position',[50 100 450 350]);%col, row

MM=moviein(M-Step,movie_figure);

%%% Start loop %%%

for m = 1,:M-Step

nic=['time-slice ',int2str(m)];

fprintf(*%2.0f, ',m);

ifm=l

95

filenamel = ['pJl',int2str(N),'x',int2str(m)];

eval(['load',filenamel]);

eval(['vnamel=PR0Pl',int2str(m),';']);

filename2 = ['optab',int2str(m)];

eval(['load ',filename2]);

eval(['vname2=outabs',int2str(m),';']);

subplot(2,2,l)

mesh(vnamel);title('(a) Filter spatial frequency response')

axis square;

grid on; xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis')

axis([0 64 0 64 -9000 0])

set(gca;xtick,,[0,33,64],'ytick',[0,33,64];ztick,,[-9000,0])

subplot(2,2,2)

mesh(vname2);title('(b) Image field intensity')

axis square;

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity')

axis([0 64 0 64 0 1500])

set(gca,'xtick',[0,33,64],'ytick,,[0,33,64],,ztick',[0,500,1000,1500])

subplot(2,2,3)

center(m,l :N)=vname2(NO,l :N);

mesh(center);title('(c) Field distribution')

axis square;

grid on; xlabel('Space'), ylabel('Time-slice'), zlabel('Intensity')

axis([0 64 0 64 0 100])

set(gca,'xtick',[0,33,64],'ytick',[0,33,64],'ztick',[0,20,40,60,80,100])

view(90,0)

hold on

96

subplot(2,2,4)

mesh(vname2);title('(d) Image')

axis square;

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity')

axis([0 64 0 64 0 1500])

colorbar

set(gca;xtick',[0,33,64],,ytick,,[0,33,64],,ztick',[0,500,100031500])

view(0,90)

eval(['text(64,-13,0,nic);']);

elseifm<=3

filenamel - [,pJl',int2str(N),'x',int2str(m)];

eval(['load ',filenamel]);

eval(['vnamel=PROPl'4nt2str(m),';']);

filename2 = ['optab',int2str(m)];

eval(['load ',filename2]);

eval(['vname2=outabs',int2str(m),';']);

subplot(2,2,l)

mesh(vnamel);title('(a) Filter spatial frequency response')

axis square;

grid on; xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis')

axis([0 64 0 64 -400 600])

set(gca,'xtick',[0,33,64];ytick',[0,33,64];ztick*,[-400,-200,0J20054003600])

subplot(2,2,2)

mesh(vname2);title('(b) Image field intensity')

axis square;

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity')

axis([0 64 0 64 0 250])

set(gca,'xtick,,[0,33,64]5'ytick,,[0,33,64];ztick',[0,50,100,1505200,250])

97

subplot(2,2,3)

center(m, 1 :N)=vname2(N0,1 :N);

mesh(center);title('(c) Field distribution')

axis square;

grid on; xlabel('Space'), ylabel('Time-slice'), zlabel('Intensity')

axis([0 64 0 64 0 100])

set(gca,,xtick,,[0,33,64],'ytick,,[0,33,64],'ztick,,[0,20>40,60,80,100])

view(90,0)

hold on

subplot(2,2,4)

mesh(vname2);title('(d) Image')

axis square;

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity')

axis([0 64 0 64 0 250])

colorbar;

set(gca,*xtick,,[0,33,64],'ytick',[0,33,64],'ztick',[0,50,100,150,200,250])

view(0,90)

eval(['text(64,-13,0,nic);']);

elseif m<=ll

filenamel - ['pJl',int2str(N),'x',int2str(m)];

eval(['load ',filenamel]);

evaKt'vname^PROPl'^strCm),';']);

filename2 = ['optab',int2str(m)];

eval(['load ',filename2]);

eval(['vname2=outabs',int2str(m),';']);

subplot(2,2,l)

mesh(vnamel);title('(a) Filter spatial frequency response')

98

axis square;

grid on; xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis')

axis([0 64 0 64 -300 300])

set(gca,,xtick',[0,33,64]5
,ytick,,[0,33,64];ztick,,[-300,-200,-

100,0,100,200,300])

subplot(2,2,2)

mesh(vname2);title('(b) Image field intensity')

axis square;

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity')

axis([0 64 0 64 0 100])

set(gca,'xtick,,[0,33,64],,ytick',[0,33,64],'ztick',[0,20,40,60,80,100])

subplot(2,2,3)

center(m,l :N)=vname2(NO,l :N);

mesh(center);title('(c) Field distribution')

axis square;

grid on; xlabel('Space'), ylabel(Time-slice'), zlabel('Intensity')

axis([0 64 0 64 0 100])

set(gca,'xtick',[0,33,64],'ytick',[0,33,64],'ztick',[0,20,40,60,80,100])

view(90,0)

hold on

subplot(2,2,4)

mesh(vname2);title('(d) Image')

axis square;

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity')

axis([0 64 0 64 0 100])

colorbar

99

set(gca,'xtick,,[0,33,64]>
,ytick',[0,33,64],,ztick,,[0,20,40,60,80,100])

view(0,90)

eval(['text(64,-13,0,nic);']);

elseif m <=25

filenamel = ['pJl',int2str(N),'x,,int2str(m)];

eval(['load ',filenamel]);

eval(['vnamel-PR0Pl',int2str(m),';']);

filename2 = ['optab',int2str(m)];

eval(['load ',filename2]);

eval(['vnarne2=outabs',int2str(m),';']);

subplot(2,2,l)

mesh(vnamel);title('(a) Filter spatial frequency response')

axis square;

grid on; xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis')

axis([0 64 0 64-100 100])

set(gca,'xtick,,[0,33,64];ytick,,[0,33,64],,ztick',[-100,-50,0,50,100])

subplot(2,2,2)

mesh(vname2);title('(b) Image field intensity')

axis square;

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity')

axis([0 64 0 64 0 50])

set(gca,'xtick',[0,33,64],'ytick',[0,33,64],'ztick',[0,10,20,30,40,50])

subplot(2,2,3)

center(m, 1 :N)=vname2(NO, 1 :N);

mesh(center);title('(c) Field distribution')

axis square;

grid on; xlabel('Space'), ylabel('Time-slice'), zlabel('Intensity')

100

axis([0 64 0 64 0 100])

set(gca,'xtick,,[0,33,64],'ytick,
J[0,33,64],'ztick',[0,20,40,60,80,100])

view(90,0)

hold on

subplot(2,2,4)

mesh(vname2);title('(d) Image')

axis square;

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity')

axis([0 64 0 64 0 50])

colorbar

set(gca;xtick,,[0533,64],,ytick,,[0,33,64],,ztick,,[0,10,20,30540,50])

view(0,90)

eval(['text(64,-13,0,nic);']);

elsem<=61

filenamel = ['pJl',int2str(N),'x,,int2str(m)];

eval(['load ',filenamel]);

eval([Vnamel=PROPr4nt2str(m),';']);

filename2 = ['optab',int2str(m)];

eval(['load ',filename2]);

eval(['vname2=outabs,,int2str(m),';']);

subplot(2,2,l)

mesh(vnamel);title('(a) Filter spatial frequency response')

axis square;

grid on; xlabel('fx-axis'), ylabel('ry-axis'), zlabel('fz-axis')

axis([0 64 0 64 -50 50])

set(gca,*xtick*,[0,33,64],'ytick',[0,33,64],'ztick',[-50,0,50])

subplot(2,2,2)

101

mesh(vname2);title('(b) Image field intensity')

axis square;

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity')

axis([0 64 0 64 0 30])

set(gca/xtick,,[0,33,64],'ytick',[0,33,64],,ztick',[0,10,20,30])

subplot(2,2,3)

center(m, 1 :N)=vname2(NO, 1 :N);

mesh(center);title('(c) Field distribution')

axis square;

grid on; xlabel('Space'), ylabel('Time-slice'), zlabel('Intensity')

axis([0 64 0 640 100])

set(gca,'xtick',[0,33,64],'ytick',[0,33,64],'ztick',[0,20,40,60,80,100])

view(90,0)

hold on

subplot(2,2,4)

mesh(vname2);title('(d) Image')

axis square;

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity')

axis([0 64 0 64 0 30])

colorbar

set(gca,'xtick',[0,33,64],,ytick',[0,33,64],'ztick',[0,10,20,30])

view(0,90)

eval(['text(64,-13,0,nic);']);

end

figure(movie_figure);

102

MM(:,m)=getframe(gcf);

end

%%% END OF LOOP %%%

echo off

dispC);

disp(Tress a key to play back movie.');

pause

echo on

start_frame=input('Enter start frame:');

end_frame=input('Enter end frame:');

movie(movie_figure,MM, [1 (start_frame :end_frame)], 1);

echo off

%%% End of program %%%

ANIMATION FORMAT 3

% animate3.m

%This program animate filter function, output field, total output (magnified)

%and image

%uses N=64

%Written by Nicholas Lee, Aug 1998

clear all;

% Load the defining parameters specified in IOPTFIL.m

load optvar.mat

center=zeros(N);

% Array-multiply the shifted transfer function PRROP and Fshft_input.

disp('Animation in-progress....');

movie_figure = figure('position',[50 100 450 350]);%col, row

MM=moviein(M-Step,movie_figure);

%%% Start loop %%%

103

for m = 1 :M-Step

nic=['time-slice ',int2str(m)];

fprintf('%2.0f, ',m);

ifm=l

filename 1 = [,pJl',int2str(N),'x',int2str(m)];

eval(['load ',filenamel]);

eval(['vname 1 =PROP 1',int2str(m),';']);

filename2 = ['optab',int2str(m)];

eval(['load ',filename2]);

eval(['vname2=outabs',int2str(m),V]);

subplot(2,2,l)

mesh(vnamel);title('(a) Filter spatial frequency response')

axis square;

grid on; xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis')

axis([0 64 0 64 -9000 0])

set(gca;xtick,,[0,33,64],,ytick',[0,33,64],,ztick,,[-9000,0])

subplot(2,2,2)

mesh(vname2);title('(b) Image field intensity')

axis square;

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity')

axis([0 64 0 64 0 1500])

set(gca,'xtick',[0,33,64],'ytick',[0,33,64],'ztick',[0,500,1000,1500])

subplot(2,2,3)

center(m,l :N)=vname2(NO,l :N);

mesh(center);title('(c) Field distribution')

axis square;

grid on; xlabel('Space'), ylabel('Time-slice'), zlabel('Intensity')

104

axis([0 64 0 64 0 100])

set(gca,,xtick,,[0533,64],,ytick',[0,33,64],'ztick',[0,20,40,60,80,100])

view(142.5,30)

hold on

subplot(2,2,4)

mesh(vname2);title('(d) Image')

axis square;

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity')

axis([0 64 0 64 01500])

colorbar

set(gca,'xtick',[0,33564],'ytick',[0,33,64];ztick,,[0,500,1000,1500])

view(0,90)

eval(['text(64,-13,0,nic);']);

elseifm<=3

filename 1 = ['pJl',int2str(N),'x',int2str(m)];

eval(['load ',filenamel]);

eval(['vnamel=PROP 1 ',int2str(m),';']);

filename2 = ['optab',int2str(m)];

eval(['load ',filename2]);

eval(['vname2=outabs',int2str(m).,';']);

subplot(2,2,l)

mesh(vnamel);title('(a) Filter spatial frequency response')

axis square;

grid on; xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis')

axis([0 64 0 64 -400 600])

set(gca,'xtick*,[0533564]3'ytick',[0,33,64],'ztick',[-400J-200,0,200,400,600])

subplot(2,2,2)

105

mesh(vname2);title('(b) Image field intensity')

axis square;

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity')

axis([0 64 0 64 0 250])

set(gca,'xtick',[0,33,64],,ytick',[0,33,64],,ztick,,[0,50,100,150,200,250])

subplot(2,2,3)

center(m,l :N)=vname2(NO,l :N);

mesh(center);title('(c) Field distribution')

axis square;

grid on; xlabel('Space'), ylabel('Time-slice'), zlabel('Intensity')

axis([0 64 0 64 0 100])

set(gca,*xtick*,[0,33,64],'ytick',[0,33,64],'ztick',[0,20,40,60580,100])

view(142.5,30)

hold on

subplot(2,2,4)

mesh(vname2);title('(d) Image')

axis square;

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity')

axis([0 64 0 64 0 250])

colorbar;

set(gca,*xtick',[0,33,64],,ytick',[0,33,64],'ztick',[0,50,100,150,200,250])

view(0,90)

eval(['text(64,-13,0,nic);']);

elseifm<=ll

filenamel = ['pJl',int2str(N),'x',int2str(m)];

eval(['load ',filenamel]);

eval(['vnamel=PROPl',int2str(m),';']);

106

filename2 = ['optab',int2str(m)];

eval(['load ',filename2]);

eval(['vname2=outabs',int2str(m),';']);

subplot(2,2,l)

mesh(vnamel);title('(a) Filter spatial frequency response')

axis square;

grid on; xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis')

axis([0 64 0 64 -300 300])

set(gca;xtick',[0533,64],'ytick',[0,33,64],'ztick',[-300,-200,-

100,0,100,200,300])

subplot(2,2,2)

mesh(vname2);title('(b) Image field intensity')

axis square;

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity')

axis([0 64 0 64 0 100])

set(gca;xtick,,[0,33,64],'ytick',[0,33,64],'ztick,,[0,20,40,60,80,100])

subplot(2,2,3)

center(m, 1 :N)=vnarne2(NO, 1 :N);

mesh(center);title('(c) Field distribution')

axis square;

grid on; xlabel('Space'), ylabel(Time-slice'), zlabel('Intensity')

axis([0 64 0 64 0 100])

set(gca,'xtick',[0,33,64],'ytick*,[0,33,64],'ztick',[0,20,40,60,80,100])

view(142.5,30)

hold on

subplot(2,2,4)

107

mesh(vname2);title('(d) Image')

axis square;

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity')

axis([0 64 0 64 0 100])

colorbar

set(gca,,xtick',[0,33,64],,ytick,
>[0,33,64],,ztick,,[0,20,40,60,80,100])

view(0,90)

eval(['text(64,-13,0,nic);']);

elseifm<=25

filenamel = ['pJl',int2str(N),'x,,int2str(m)];

eval(['load',filenamel]);

eval(['vname 1 =PROP 1 ',int2str(m),*;']);

filename2 = ['optab',int2str(m)];

eval(['load ',filename2]);

eval([,vname2=outabs',int2str(m),';']);

subplot(2,2,l)

mesh(vnamel);title('(a) Filter spatial frequency response')

axis square;

grid on; xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis')

axis([0 64 0 64-100 100])

set(gca,'xtick',[0,33,64],'ytick,,[0,33,64],,ztick',[-100,-50,0,50,100])

subplot(2,2,2)

mesh(vname2);title('(b) Image field intensity')

axis square;

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity')

axis([0 64 0 64 0 50])

set(gca,'xtick',[0,33,64],'ytick',[0,33,64],'ztick',[0,10,20,30,40,50])

subplot(2,2,3)

108

center(m, 1 :N)=vname2(N0,1 :N);

mesh(center);title('(c) Field distribution')

axis square;

grid on; xlabel('Space'), ylabel('Time-slice'), zlabel('Intensity')

axis([0 64 0 64 0 100])

set(gca,,xtick,,[0,33,64],,ytick,,[0,33,64],,ztick,
>[0,20,40s60s80,100])

view(142.5,30)

hold on

subplot(2,2,4)

mesh(vname2);title('(d) Image')

axis square;

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity')

axis([0 64 0 64 0 50])

colorbar

set(gca,'xtick*,[0,33,64],'ytick,,[0,33,64];ztick',[0,10520,30,40,50])

view(0,90)

eval(['text(64,-l 3,0,nic);']);

elsem<=61

filename 1 = [,pJl',int2str(N),'x,,int2str(m)];

eval(['load ',filenamel]);

eval([Vnamel=PROPl^nt2str(m),';']);

filename2 = ['optab',int2str(m)];

eval(['load ',filename2]);

eval(['vname2=outabs',int2str(m),';']);

subplot(2,2,l)

mesh(vnamel);title('(a) Filter spatial frequency response')

axis square;

grid on; xlabel('fx-axis'), ylabel('fy-axis'), zlabel('fz-axis')

109

axis([0 64 0 64 -50 50])

set(gca,'xtick,,[0,33,64],'ytick,,[0,33,64],,ztick,,[-50,0,50])

subplot(2,2,2)

mesh(vname2);title('(b) Image field intensity')

axis square;

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity')

axis([0 64 0 64 0 30])

set(gca,,xtick',[0,33,64],,ytick,,[0,33,64],'ztick',[0,10,20,30])

subplot(2,2,3)

center(m,l :N)=vname2(NO,l :N);

mesh(center);title('(c) Field distribution')

axis square;

grid on; xlabel('Space'), ylabel('Time-slice'), zlabel('Intensity')

axis([0 64 0 64 0 100])

set(gca,,xtick,,[0,33,64];
,ytick',[0,33,64],'ztick',[0,20,40,60,80,100])

view(142.5,30)

hold on

subplot(2,2,4)

mesh(vname2);title('(d) Image1)

axis square;

grid on; xlabel('X-axis'), ylabel('Y-axis'), zlabel('Intensity')

axis([0 64 0 64 0 30])

colorbar

set(gca;xtick',[0,33,64],'ytick',[0,33,64],'ztick',[0,10,20,30])

view(0,90)

eval(['text(64,-13,0,nic);']);

110

end

figure(movie_figure);

MM(: ,m)=getframe(gcf);

end

%%% END LOOP %%%

echo off

disp('');

disp('Press a key to play back movie.');

pause

echo on

start_frame=input('Enter start frame:');

end_frame=input('Enter end frame:');

movie(movie_figure,MM, [1 (start_frame:end_frame)], 1);

echo off

%%% End of program %%%

111

112

LIST OF REFERENCES

1. J. W. Goodman, Introduction to Fourier Optics, second edition, San Francisco, CA:
McGraw-Hill, Inc, 1996.

2. J. Powers and D. Guyomar, "Propagation of Transient Scalar Waves: Fourier Optics
Approach" Naval Postgraduate School Technical Report, in preparation.

3. John G. Upton, Microcomputer Simulation Of a Fourier Approach to Optical Wave
Propagation, Master's Thesis, Naval Postgraduate School, Monterey, California, June
1992.

4. T. Merrill, A Transfer Function Approach to Scalar Wave Propagation in Lossy and
Lossless Media, Master's Thesis, Naval Postgraduate School, Monterey, California,
March 1987.

5. R. M. Bracewell, The Fourier Transform and Its Applications, San Francisco, CA:
McGraw-Hill, Inc., 1965.

6. E. Oran Brigham, The Fast Fourier Transform and Its Applications, Englewood
Cliffs, NJ: Prentice-Hall, Inc., 1988.

7. Partha P. Banerjee and Ting-Chung Poon, Principles of Applied Optics, Boston, MA:
Irwin, Inc., and Aksen Associates, Inc., 1991.

8. MATLAB for MS-DOS Personal Computer, User's Guide by the MathWorks, Inc.,
(1997).

9. Patrick Marchand, Graphics and GUIs with MATLAB, CRC Press, Inc.,1996.

10. Henry Stark, Application of Optical Fourier Transforms, Academic Press, Inc., 1982.

11. Herbert Bristol Dwight, Tables of Integrals and Other Mathematical Data, The
Macmillian Co., 1961.

12. Raymond G. Wilson, Fourier Optical Transform Techniques in Contemporary
Optics, John Wiley & Sons, Inc., 1995.

13. E. G. Steward, Fourier Optics: An Introduction, John Wiley & Son, Inc., 1987.

113

114

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library 2
Naval Postgraduate School
411 DyerRd.
Monterey, California 93943-5101

3. Chairman, Code EC 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5121

4. Professor John P. Powers, Code EC/Po
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5121

5. Professor Ron J. Pieper, Code EC/Pr
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, California 93943-5121

Major Nicholas C. C. Lee
Air Logistics Department
HQ Republic of Singapore Air Force
MINDEF Building
Gombak Drive
Singapore 669638

115

