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Abstract 

In the past few years there has been growing interest in photorefractive crystals be- 

cause their unique optical properties make them excellent recording media for holo- 

grams. To record a hologram two beams, a reference beam and an information- 

carrying signal beam, are incident on the crystal. These two beams create an inter- 

ference pattern that induces, through the photorefractive effect, a spatially-variant 

index of refraction. When a readout beam properly illuminates this recorded holo- 

gram, part of the incident light is diffracted such that, ideally, the diffracted beam is 

a perfect reconstruction of the original signal beam. The illumination condition that 

yields the optimum diffraction efficiency is called the Bragg condition. As soon as 

one moves away from the Bragg condition, for example, by changing the angle or the 

wavelength of the readout beam, by modifying the index of refraction of the crystal, 

or by inducing strains inside the crystal, the diffraction efficiency drops to almost 

zero. All these changes can formally be described by a single parameter £, known as 

the Bragg detuning parameter, such that, in most practical situations, the diffraction 

efficiency is proportional to (sin£/£)2 where £ = 0 if the Bragg condition is satisfied. 

This selectivity behavior is the most important property of thick holograms and is the 

main reason why these photorefractive gratings are used in multiplexed holographic 

data storage and wavelength filtering. 

In the first part of this thesis, we review the fundamental principles and the 

basic physics of holography and of the photorefractive effect. In the second part 

of the thesis, we develop a general formalism to study Bragg detuning effects that 

takes into account electric field effects, temperature effects, polarization effects as 

well as changes in readout angle and wavelength.   We then use this formalism to 

IV 



study diffraction and Bragg detuning effects as they pertain to holographic data 

storage in photorefractive crystals. We analyze more specifically the consequences of 

Bragg detuning on the retrieval of image-bearing holograms because it is shown that 

detuning leads to image distortion. Transfer functions are introduced to quantify 

these distortions and to analyze two aspects of holographic data storage in which 

Bragg detuning occurs. The first one deals with thermal fixing, in which temperature 

changes are applied to photorefractive crystals as a way to fix the information recorded 

inside these crystals. The second one deals with electric fields applied to crystals as 

a way to enhance and control diffraction efficiencies. Finally in the third part of the 

thesis, we study theoretically the diffraction properties of photorefractive stratified 

volume holographic optical elements and analyze their use in the context of dynamic 

wavelength filtering. 
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Chapter 1 

Introduction 

1.1    Motivation 

The main goal of the research presented in this dissertation is to study the diffraction 

properties of layered and volume photorefractive gratings in the context of holographic 

storage and optical signal processing. The major application of interest in this re- 

search is volume holography in which a photorefractive crystal acts as the recording 

medium. The fundamental property of a volume hologram is that it has a finite 

bandwidth within which it can be retrieved, meaning that the hologram must be 

illuminated in a precise way in order for it to be able to diffract part of the incident 

readout light. For example, if the angle of incidence of the readout beam varies, 

a diffracted signal will exist only when the readout beam angle lies within a finite 

given angular bandwidth. This bandwidth is inversely proportional to the thickness 

of the recording medium. Therefore the longer the crystal, the more selective is the 

hologram. 

This selectivity behavior of volume holograms is the fundamental property behind 

the two applications that are treated in this dissertation. The first one is multiplex- 

ing, in which several holograms can be stored in a single crystal because of the finite 

bandwidth of each individual hologram. Typically the holograms are stored at differ- 

ent reference beam angles or wavelengths such that the diffraction efficiency of each 

hologram is maximum where the diffraction efficiency of all the other holograms is 
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minimum. The second application is wavelength filtering, in which the crystal acts as 

a narrow-band filter on a broad-band input signal. With a crystal of 1 cm, a spectral 

bandwidth as low as 10 pm can be easily achieved. 

In the context of holographic data storage, one of the problems that we have sought 

to analyze in depth is the distortion that arises because of Bragg detuning changes, 

i.e., because of changes in the crystal properties that are due to electric fields or tem- 

perature changes applied to the crystal and that occur during the recording/readout 

cycle. 

Holographic data storage using photorefractive crystals is a very promising tech- 

nology to achieve high capacity data storage with fast data transfer rates and short 

access times. However in a real holographic data storage system, many problems 

occur that tend to degrade the overall performance of the system, characterized by 

its signal-to-noise ratio, its maximum capacity, its reconstruction fidelity, its physical 

size, etc. Currently a lot of attention and research is being devoted to the study of 

the impact of imperfect crystals, of imperfect optical components, of misalignment, 

and of noise on the performance of a holographic data storage system. These prob- 

lems can be roughly defined as materials and systems problems. However, very little 

work is being done on a comprehensive study of Bragg detuning effects and on the 

distortions that these effects may induce in a storage device. These problems can typ- 

ically be classified as physical-optics problems. The first part of this thesis deals with 

these problems, first by developing a general Bragg detuning formalism, and second 

by defining, computing, and measuring Bragg detuning-based transfer functions that 

quantify the distortions that occur through Bragg detuning effects in a holographic 

data storage system. To illustrate these phenomena, we consider two aspects of holo- 

graphic storage, one being related to thermal fixing and the other one being related 

to the electrically controlled diffraction effect. 

In the second part of this thesis, we analyze the properties of structures of pho- 

torefractive films, also known as photorefractive stratified volume holographic optical 

elements. These devices are receiving a lot of attention currently because they of- 

fer several advantages over bulk crystals. First, for many photorefractive materials, 

growing films is easier and cheaper than growing bulk crystals. Second, each film and 



each layer of the structure can be seen as independent degrees of freedom. There- 

fore, because of their increased number of degrees of freedom they offer opportunities 

for novel applications in the fields of optical communication and beam steering, to 

mention a few. One can also envision building devices in which different physical 

mechanisms, like transport and the electro-optic effect, are physically separated (e.g., 

composite and engineered materials) to obtain new materials with enhanced proper- 

ties and improved performance. In this context, we have come up with a new applica- 

tion of photorefractive stratified volume holographic optical elements that consists of 

a dynamic multiple-wavelength filter that could have potentially useful applications 

in the field of wavelength division multiplexing. 

1.2    Organization and Summary of the Thesis 

In Part I we first review the principle and the general theory of volume holography 

(Chapter 2) and then describe the basic physical process underlying the photore- 

fractive effect (Chapter 3). In Part II we describe several issues that are specifically 

related to photorefractive gratings and to their diffraction and Bragg selectivity prop- 

erties. In Chapter 4, we combine volume holography and photorefractive theory to 

study grating formation in a typical photorefractive crystal. We show that under 

certain conditions, the recorded photorefractive grating has a nonuniform amplitude 

and phase upon reaching steady-state, despite the fact that the grating is originally 

written by two plane waves. One effect that is especially examined is the fringe bend- 

ing effect, where the fringes of the grating tilt while the recording process takes place. 

We also show how amplitude coupling between the two writing beams significantly 

reduces the thickness of the index grating inside the crystal. In Chapter 5, we study 

the diffraction properties of these nonuniform gratings. We show that there is a sim- 

ple Fourier transform relationship between the selectivity behavior of the diffracted 

intensity and the shape of the grating inside the crystal. We study, for example, how 

amplitude coupling creates a phenomenon of apodization by suppressing the side 

lobes present in the diffraction efficiency of a typical uniform grating. Chapter 6 is 

devoted to an experimental and theoretical study of the different mechanisms that 
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affect the Bragg condition in photorefractive crystals like strontium barium niobate 

(SBN) and lithium niobate (LiNb03). We start by developing a general formalism to 

study Bragg detuning effects and then concentrate on the following most important 

effects: fringe bending effects; electro-optic effects; temperature effects; and polar- 

ization effects. We show how careful measurements of angular selectivities and of 

shifts in the Bragg condition can yield valuable information on some of the crys- 

tal parameters, like the electro-optic coefficients and the birefringence. In practice, 

especially in holographic data storage, image-bearing holograms are stored in pho- 

torefractive crystals. With images, Bragg detuning changes have the added effect 

of inducing deformation when the stored image-bearing holograms are retrieved. In 

Chapter 7, Bragg detuning effects are investigated as a source of image distortion. 

Transfer functions are defined, computed and experimentally measured to quantify 

these distortions. Two cases of interest that correspond to two different aspects of 

holographic data storage are examined: 

• the first case deals with thermal fixing in a digital holographic data storage sys- 

tem, in which a change of temperature is applied to the crystal to achieve fixing of the 

information inside the recording medium. The fixing of information stored in pho- 

torefractive crystals can be achieved by heating the crystal either during of after the 

recording process. We analyze these two methods to achieve fixing: the first method, 

in which there is a temperature difference between recording and readout, is called the 

high-low process, and the second method, in which no net temperature difference is 

present between recording and readout, is called the low-high-low process. We specif- 

ically consider the trade-offs regarding image deformation and diffraction efficiency 

between these two fixing methods in the different typical recording geometries. 

• the second case deals with the electrically controlled diffraction effect, in which 

an electric field is applied to the photorefractive crystal upon readout to control and 

enhance the diffraction efficiency of the image-bearing holograms. We experimen- 

tally show that electrically controlled diffraction can be successfully implemented in 

a holographic data storage system by storing and retrieving with an applied field of a 

few kilo Volts per centimeter multiple planar holograms recorded using angular mul- 

tiplexing. We were also able to record high-resolution image-bearing holograms and 



to retrieve them without image-field loss, despite the presence of an applied electric 

field. 

In Part III of the dissertation, we study the properties of stratified volume holo- 

graphic optical elements. In Chapter 8, we analyze the diffraction properties of layered 

structures of thin photorefractive gratings and in Chapter 9, we extend this study to 

include the diffraction properties of layered structures of thick photorefractive grat- 

ings. We develop an exhaustive analytical formalism to study these two types of 

devices and derive simple closed-form solutions for their first-order diffraction effi- 

ciency that match the numerical and experimental results that have recently been 

published in the literature. Finally, using these results, we propose a novel optical 

device, a dynamic multiple-wavelength filter, and study the properties of such a device 

in the context of wavelength division multiplexing. 
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Part I 

FUNDAMENTAL PRINCIPLES 



Chapter 2 

Holography 

2.1    Introduction 

In 1948, D. Gabor [1] proposed a new imaging process that he called wavefront recon- 

struction and that is now known as holography. In this process, a coherent reference 

wave (usually a plane wave) interferes with the light scattered or diffracted from 

an object so that both amplitude and phase information are encoded in a record- 

ing medium. Using a suitable readout scheme, it is then possible to reconstruct the 

original object from the recorded interference pattern. 

2.1.1    Recording 

Consider a signal (object) wavefront given by 

As(f) = \As(r)\exp[-i<f>s(^) (2-1) 

and a reference wavefront that has a constant amplitude 

Ar(f) = |Ar|expH<Mf)] (2-2) 

When the two waves interfere coherently inside the recording medium as shown on 

Fig. 2.1, the light intensity recorded is given by 

9 
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recording medium 

Figure 2.1: Recording of a hologram. 

1(f)   =   \As(f) + Ar(f)\
2 

=   |As(f)|
2 + \Ar\

2 + 2\As(f)\\Ar\ cos[^(r) - ^,(f)] (2.3) 

This expression shows that information on the intensity and the phase of the incident 

object are recorded onto the medium. Once exposed to 1(f), the medium is called a 

hologram or equivalently a grating. 

2.1.2    Recording Medium 

We assume that the response of the recording medium is linear for the range of 

intensities used. The amplitude transmittance [2] of the recording medium after 

exposure is then given by 

t(f) = tb + ß[\As(f)\
2 + As(f)A*(f) + A:(f)Ar(f)} (2.4) 
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where tt is a uniform bias transmittance due to the constant reference wave and ß is 

a constant depending on the medium used and on the level of exposure. 

2.1.3    Reconstruction 

If a recording medium with the transmittance t(r) is then illuminated on one side by 

a coherent readout wave Ap(f), the wave emerging on the other side of the recording 

medium is given by 

Ap(f)i(f)   =   tbAp(?) + ßAp\As(r)\2 + ßAs(?)Ap(7)A*r(r) 

+ßA:(r)Ap(?)Ar(r) (2.5) 

If the readout wave is identical to the reference wave, the original wavefront, As(r), 

can be exactly reconstructed [third term of Eq. (2.5)] and a virtual image of the 

original object is generated [Fig. 2.2(a)]. If the readout wave is the conjugate of 

the reference wave, the conjugate of the original wavefront, A*(r), can be exactly 

reconstructed [fourth term of Eq. (2.5)] and a real image of the original object is 

generated [Fig. 2.2(b)]. In the case considered here the recording medium has a 

linear response and generates only an amplitude grating, and there is only one order 

of diffraction. More generally, a planar thin grating is described by an arbitrary 

function t(r). For a real t(r), an amplitude grating is obtained and for an imaginary 

t(r) acting only on the phase of the light wave penetrating the grating, a phase 

grating is obtained. Generally, the transmittance t(r) is a complex function and a 

mixed amplitude and phase grating is present. In this case more than one order of 

diffraction will emerge from the grating. 

If the reference and the signal waves are two plane waves, the wavefronts are given 

by 

As(r) = \As\exp(-iks ■ r) 

Ar{r) = \Ar\exp(-ikr-r) (2.6) 
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(a) 

(b) 

Figure 2.2: Wavefront reconstruction: (a) virtual image, (b) real image. 
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—* —* 
where ks and kr are the wave vectors of the signal and the reference beams, respec- 

tively. The intensity recorded inside the medium is given by 

/(f)   =   \As\
2 + \Ar\

2 + 2\Ar\\As\cos[(ks-kr)-r\ 

=   I0{l + mcos[(ks-kr)-r\) (2.7) 

where /o = Ir + L is the total intensity and m = 2y/IrIs/I0 is the modulation depth. 

At this point it is useful to define a grating vector K denning the interference pattern 

being recorded, 

K = ks- kr (2.8) 

The vector K has a magnitude equal to 2TT/A where A is, by definition, the grating 

period. 

Holograms behave differently depending on the relationship between the period A 

and the thickness of the recording medium /. Two categories are commonly defined, 

thick grating and thin grating. To differentiate between the two categories, a quality 

factor Q is defined as [3] 

Q = ^TT (2-9) nA2 

where A0 is the vacuum wavelength and n is the index of refraction of the recording 

medium. By definition, if Q > 2TT, the grating is considered thick and if Q < 2w, the 

grating is considered thin. The description of holography done so far in terms of a 

transmittance t(r) is only valid for thin holograms. In the next section we consider 

in more detail the properties of gratings recorded in a thick medium. We analyze 

more specifically the case of thick phase gratings in which the incident intensity 1(f) 

modulates the index of refraction of the medium because, as shown in Chapter 3, this 

is the case relevant to photorefractive materials. 
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2.2    Coupled-Wave Equations 

In this section, we review the results of Kogelnik's coupled-wave analysis of the diffrac- 

tion of light by a thick uniform phase grating [4]. Consider a thick medium (e.g., a 

photorefractive crystal) containing a uniform phase grating described by a modulated 

index of refraction n(f), the modulation being given by 

An(r) = An cos(K ■ r + <f>), (2.10) 
—* 

where An is the grating amplitude, <j> is the grating phase, and K is the grating 

vector. In photorefractive materials, as we shall show in Chapter 3, An and <f> are 

directly related to the space-charge field that arises from charge redistribution dur- 

ing recording [5]. Consider the following electric field, consisting of a readout wave 

incident on the grating (ap) and a diffracted wave emerging from the grating (aff), 

E(r) = ap(z) exp(-ikp ■ f) + aa{z) exp(-s'Äv • r) (2-ll) 

where kp and ka are the wave vectors of the readout beam and the diffracted beam, 

respectively. These two beams interact with the grating inside the crystal in such a 

way that the momentum-conservation relation, ka± = kp± + K±, is satisfied [6]; JL 

denotes the vector component perpendicular to the propagation axis (the z axis) in 

the plane of incidence. This relation holds true because it is implicitly assumed that 

the crystal has infinite dimension in the direction perpendicular to the propagation 

axis. Figure 2.3 represents these different vectors in a A;-space diagram. 

To derive the coupled equations that describe the interaction between these two 

waves, it is necessary to solve the wave equation 

V2E{f) + k2(f)E(f) = 0 (2.12) 

where, neglecting loss, 

'27r(n +An(f))"12 

k\f)    = 

k2
0+Ak0^-An(f) (2.13) 
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because the index modulation is assumed to be small compared with the bulk index 

of refraction n. k0 = 27rn/X0 is the amplitude of the wave vector inside the crystal. 

Assuming the slowly varying envelope approximation, the following system of 

equations is derived from the wave equation [Eq. (2.12)], 

dun 
cosöp-T—   =   —i/cexp 

dz 

n   dda 
cos Va—z—   =   — e/cexp 

dz 

where / is the crystal length, 

-l(<f>+— ) (2.14) 

£ = -Akz = -(kpz + KZ- Kz) 

is the Bragg detuning parameter, 

irAn 
K = 

Xn 

(2.15) 

(2.16) 

is the coupling constant, A0 is the readout wavelength outside the medium (A = X0/n 

is the wavelength inside the medium), and 0P, Q„ are the angles that the reading 

beam and the diffracted beam make with the z axis, respectively (see Fig. 2.3). The 

Bragg condition is satisfied when, by definition, £ = 0, i.e., when the vectorial identity 
—* —* —* 
kg. = kp + K is satisfied. A full description of the Bragg detuning parameter £ is found 

in Chapter 6. With the change of variables 

A„   =   ac exp 

Ap    —    dp 

• 2£z 

(2.17) 

the coupled-wave equations [Eq. (2.14)] reduce to the system 

COS0, 
dAe 

" dz 
JA,     .2£ 

—iKexp(i<j>)Aa 

cos 6 „ (—jZ-— i—Ap)   =   —iKexp(—i<j>)Ap 
dz l 

(2.18) 
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ko (K-vector closure method) 

_L 

Figure 2.3: fc-space representation of the readout wave vector (kp), the diffracted 
wave vector (Av)(for the Beta-value method and for the if-vector closure method), 
the grating vector (K), and the vector mismatch (Akz = kpz + Kz - kcz = 2£//). 
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This method to solve the diffraction problem is known as the Beta-value method. 

In this case, the amplitude of the diffracted wave vector kff remains constant for all 

off-Bragg readout {\ka\ = k0) and the Bragg detuning parameter is defined as the 

wave vector mismatch along the propagation direction. Therefore 

Kz = V^2-(^ + #±)2 (2.19) 

There exists another method known as the K-vectov closure method (that Kogelnik 

uses in Ref. [4]) in which the wavelength of the diffracted light changes as the readout 

beam moves off-Bragg. In this method the relation 

h = kp + K (2.20) 

holds true at all time and the Bragg detuning parameter £ is defined as 

£ = -—*o-lM2 (2 21) 

The Bragg condition is still satisfied when £ = 0, i.e., when the amplitude of the 

diffracted wave vector is equal to k0, the amplitude of the readout wave vector. It 

can be shown [6] that to first order these two methods are equivalent and that the two 

definitions of the Bragg detuning parameter [Eqs. (2.15) and  (2.21)] are the same. 

2.3    Diffraction Efficiency 

The set of coupled-wave equations [Eq. (2.18)] defining the diffraction problem is a 

linear system of equations that can be solved assuming the following forms for the 

readout wave Ap(z) and the diffracted wave A<r(z): 

Ap(z)   =   r1exp(7iz) + r2exp(72^) 

Ac(z)   =   siexp(7iz) + s2exp(72z) (2.22) 

and with the appropriate boundary conditions. Two geometries are considered, as 

shown in Fig. 2.4, the transmission geometry in which the two beams are copropa- 

gating and the reflection geometry in which the two beams are counterpropagating. 
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The six coefficients 71, 72, rx, sls r2, and s2 are determined by inserting these two 

functional forms into the two coupled-wave equations defined by Eq. (2.18) and by 

using the boundary conditions. 

2.3.1    Transmission Geometry 

For arbitrary boundary conditions at the front face of the crystal (z = 0), the solutions 

to the coupled-wave equations [Eq. (2.18)] at the exit face of the crystal (z = I) are 

expressed in the following way, 

4,(0 ) I 4,(0) 
(2.23) 

where Mtr(l) is the matrix that describes the diffraction from a uniform grating of 

length / in the transmission geometry. The matrix is given by 

where 

MtT{l) = exp(i£) x 

-**££+cos ^^ -wis«p^l^ 1 ve 

y/^+^ 

«/ 
1/ = 

(2.24) 

 = (2.25) 
w cos op cos 0V 

is called the grating strength. For the boundary conditions associated with the usual 

diffraction problem, the diffracted signal is equal to zero at the front-face of the 

crystal, A„(0) = 0. In this case, neglecting Fresnel losses, the diffraction efficiency is 

defined as 

cos 0CT 

cos#„ 

Mjl 
MO) 

(2.26) 



(a) 
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-^ ► 

(b) 

Figure 2.4: (a) Transmission geometry, (b) reflection geometry. 
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From Eq. (2.24), the diffraction efficiency rj is given by 

Figure 2.5 shows the diffraction efficiency, normalized to unity, illustrating the Bragg 

selectivity response in three different cases, corresponding to the following values for 

the grating strength v. TT/8, X/2, and 37r/4. TWO special cases are of interest. The 

first case corresponds to Bragg-matched readout for which the diffraction efficiency 

is given by 

T? = sin2!/ (2.28) 

and the second case corresponds to a weak grating for which the grating strength v 

is small compared to the Bragg detuning parameter £ and for which the diffraction 

efficiency reduces to 

77 = i/2sinc2£ (2.29) 

From this expression one can define a bandwidth determined by the distance between 

two successive zeros of the diffraction function, i.e., by A£ = ir. The Bragg selectivity 

is defined as the inverse of the bandwidth A£. 

2.3.2    Reflection Geometry 

For arbitrary boundary conditions given by Ap(0) and Aa(l), the solutions to the 

coupled-wave equations [Eq. (2.18)] are expressed in the following way, 

A,(O)) \M')) 
where Mre(l) is the matrix that describes the diffraction from a uniform grating of 

length / in the reflection geometry. The matrix is given by 
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Figure 2.5:  Transmission holograms:  Normalized diffraction efficiency showing the 
Bragg selectivity response at three different values of the grating strength v. 

x Mre(l) =    .  .  , W     v^2 ~ £2 cosh yV2 - f2 + i£ sinh Vz'2 - £2 

{"^/^^^v^e 
(2.31) 

exp(-e0vV^F        / 

where, taking into account that in this geometry cos 0P and cos Qa have opposite signs, 

v =    .        ** (2.32) 
W — COS dp COS ^ 

is the grating strength. For the boundary conditions associated with the usual diffrac- 

tion problem, the diffracted signal is equal to zero at the back-face of the crystal, 

AC{1) = 0. In this case, neglecting Fresnel losses, the diffraction efficiency of the 

grating is defined as 
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Figure 2.6: Reflection holograms: Normalized diffraction efficiency showing the Bragg 
selectivity response at three different values of the grating strength v. 

V = 
COSÖtf 

COS0O 

4,(0) 
4(0) 

(2.33) 

From Eq. (2.31), the diffraction efficiency rj is given by 

sinh2 V^2 ~ i2 

(2.34) 
l-£ + sinh2V^^F 

Figure 2.6 shows the normalized diffraction efficiency illustrating the Bragg selectivity 

response in three different cases corresponding to the following values for the grating 

strength v. 7r/8, 7r/2, and 37r/4. For Bragg-matched readout, the efficiency is given 

by 

T) = tanh2 v (2.35) 

If the grating strength v is small compared to the Bragg detuning parameter £, the 

diffraction efficiency reduces to 
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Figure 2.7: Perpendicular geometry. 

7] = z/2sinc2£ (2.36) 

So far we have introduced the transmission and the reflection geometries. A third ge- 

ometry is commonly used in photorefractive holography: the perpendicular geometry 

(also known as the 90 degrees geometry) in which the angle between the readout and 

the diffracted beam is approximately equal to 90 degrees, as illustrated in Fig. 2.7. 

This geometry is much more complex to treat rigorously because the wave vectors 

are not collinear and the signal and reference beams are incident on the crystal on 

perpendicular surfaces. Therefore, a full two-dimensional coupled-wave analysis is 

required to analyze this problem exactly [7]. However, it can be shown that if the 

following assumptions are met (as it is usually the case in practice), the diffraction 

efficiency in the 90 degrees geometry reduces to the small grating strength result of 

the transmission geometry, i.e., T) = i/2sinc2£: (i) during recording, the intensity of 

the signal wave As is significantly less than the intensity of the reference beam Ar 

(leading to m = 2JIS/Ir <C 1); (ii) the readout wave doesn't get depleted during 

reconstruction. Under these assumptions, the readout wave acts as a source and full 

coupled-wave analysis is not required. 



Chapter 3 

The P hot or efr active Effect 

3.1     Introduction 

About thirty years ago it was discovered that an intense laser beam focused on a 

LiNb03 crystal induces a change of the index of refraction of the crystal [8]. The index 

inhomogeneity distorted the wavefront of the beam that went through the crystal and 

was therefore referred to as laser damage. Since the damage was reversible (by heating 

up the crystal), the term photorefractive was adopted to describe the phenomenon. 

This term was chosen because the observed phenomenon was analogous to the then- 

already well-known photochromic effect [9], which describes light-induced absorption 

changes. 

The most common model that describes the photorefractive process is known as 

the band transport model. This model assumes that photoexcited electrons (or holes) 

are ejected from filled donor (or acceptor) sites into the conduction (or valence) band 

as shown in Fig. 3.1. In LiNb03 the main donor/acceptor centers consist of Fe 

impurities (Fe2+/Fe3+) and in SBN, they consist of Ce impurities. In many cases, 

defects and other various impurities can also introduce intermediate levels in the band 

gap that act as donor/acceptor levels. Once excited, the charge-carriers migrate 

to the dark regions inside the crystal before recombining into empty traps. The 

resulting charge separation induces a space-charge field which then modulates the 

index of refraction through the electro-optic effect.  This model was first developed 

24 
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by Kukhtarev et dl. in 1976 [5] [10]. The photorefractive effect is now widely studied 

and has been the subject of many review articles, among others by Glass [11], Hall 

et cd. [12] and Hesselink and Bashaw [13]. Many photorefractive applications are 

also being developed in such fields as holographic data storage, optical processing 

and computing, wavefront reconstruction, soliton propagation, etc. An extensive 

description of different photorefractive applications can be found in Refs. [14] and 

[15]. 

Applications based on photorefractive media are quite diverse, but broadly speak- 

ing they can be classified into two different categories: (i) those that utilize beam 

fanning, a form of scattering, in a high-gain crystal (e.g., self- and mutually-pumped 

phase conjugation [16], novelty filtering [17], and optical limiting [18]), and (ii) those 

involving conventional holographic storage [19] (e.g., mass data storage and optical 

interconnections) or real-time holographic image processing [20] (e.g., image corre- 

lation, edge enhancement, and mask defect detection [21]) in which beam fanning 

and other sources of noise scattering act to degrade device performance. From a 

materials perspective, the ferroelectric class of photorefractive crystals (e.g., LiNbÜ3, 

SBN, BaTi04) finds significant use in both of these categories, while the sillenite 

(e.g., BSO, BGO) and semiconductor photorefractives (e.g., photorefractive multi- 

ple quantum wells) tend to be better suited to the latter case, predominantly for 

real-time image processing applications. Recently, some polymers that have a strong 

photorefractive effect have also been discovered [22]. 

3.2    Band Transport Model 

In this section, we outline the basic equations that describe the band transport model, 

assuming a single charge carrier with a single level. We then derive the solutions for 

the space-charge field assuming small intensity modulation depths as described in 

Ref. [10]. Figure 3.1 represents the energy level model for the photorefractive effect 

in which a single set of recombination centers gives rise to either electrons in the 

conduction band or holes in the valence band. Thus the material contains localized 

energy levels of the same species of concentration N. Levels occupied by electrons 
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conduction band 

£ 
N' 

NL 

donors / acceptors 

valence band 

Figure 3.1: Band transport model: photoexcitation of charge carriers. 

have a concentration of N*, and levels empty of electrons have a concentration of 

N°. This notation allows us to describe electron and hole transport in a uniform 

way. For example, if TV is the concentration of electron donors, then N° = iV+ and 

jV* = N — N+. For hole transport, N° = N~. Photorefractive recording is then 

induced by illuminating the crystal with a spatially variant intensity pattern 1(f) 

that causes photoexcitation from the occupied donor sites. The charge carriers drift 

and diffuse and finally get retrapped in unoccupied levels to give rise to a spatially 

variant space-charge. This space-charge gives rise to an electric space-charge field 

through Maxwell's equations, which then modulates the index of refraction of the 

material through the electro-optic effect. The successive steps of this process are 

depicted in Fig. 3.2. 

The mathematical treatment is based on the following set of equations, assuming 

that the electron is the charge carrier, 

dN° 
dt 

= (seI + ße)N' - ienN°       rate equation (3-1) 

V-E = —[{N°-N°Q)-n) 
C6Q 

Poisson's equation (3.2) 
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I(J) 

P(r) 

Esc{r) 

A«(f) 

Figure 3.2: Steps explaining the formation of an index grating: formation of the space- 
charge through drift and diffusion that induces a space-charge field through Poisson's 
equation, that then creates an index grating through the electro-optic effect. 
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Je = efienE + kßTßeVri       current equation (3.3) 

~- = (sj + ße)N* - -yenN° + -V • fe       continuity equation (3.4) 
at e 

where se is the electron photoionization cross-section, ße is the electron thermal ion- 

ization coefficient, 7e is the electron recombination coefficient, n is the free electron 

density, / is the light intensity, e is the relative permittivity, e0 is the vacuum permit- 

tivity, NQ represents the equilibrium concentration of empty centers in the absence of 

illumination, kß is the Boltzmann constant, T is the temperature, and \it is the free 

electron mobility. These equations assume that there is no photovoltaic effect, but 

we shall show later how the photovoltaic effect can be introduced as a pseudo-applied 

electric field to the crystal. 

As we saw in the previous chapter, the light intensity incident on the crystal is 

given by 

7(r) = io(l + mcos/?-f) (3.5) 

where I0 = IT + h is the total intensity, 

m = 2^Zf (3.6) 
Jo 

is the modulation depth and Ir and Is are the reference beam and the signal beam 

intensities, respectively. The modulation depth m is assumed to be much smaller 

than unity so that the different physical quantities introduced in the model equations 

can be described by their zero- and first-order Fourier components: 

n(r,t)   =   raoOO + ^iWe^"] 

N°(f,t)   =   N°(t) + % [N°{t)eig-r'] 

E(f,t)   =   EoW + ^^iWe''^] (3.7) 

where ni(i), Nf(t), and E\(i) are complex quantities containing amplitude and phase 
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Symbol Definition Expression 

EQ Applied field EQ 

ED Diffusion field kBT\K\/e 

EQ Saturation field eNZ(N-NS)/(ee0\K\N) 

Table 3.1: Characteristic fields. 

information. The following approximations are assumed in order to solve the band 

transport equations: 

• We assume that at room temperature the dark conductivity is much smaller 

than the photo-induced conductivity (i.e., we assume that the centers are deep). 

We can therefore neglect thermal ionization and take ße = 0. For shallow levels, 

thermal ionization cannot be neglected. 

• We assume that the free-carrier concentration n is small compared to N* and TV0 

(small-carrier-concentration approximation), and n can therefore be neglected 

in Eq. (3.2). 

• We assume that upon illumination, the free electron density n quickly reaches 

a steady-state value no, and consider that 

dn0(t) 
at 

= 0 (3.8) 

n0 is given by 

n0 
seI0 N - #o° 

7e JV0° 
(3.9) 

Before writing the solutions to Eqs. (3.1), (3.2), (3.3), and (3.4), it is useful to 

define several characteristic parameters shown in Tables 3.1, 3.2, and 3.3. 



30 The Photorefractive Effect 

Symbol Definition Expression 

1 die Dielectric relaxation rate efien0/(ee0) 

Tie Photoionization + ion-recombination rates seIo + 7e«0 

Tße Electron recombination rate 7eJV0° 

r#e Carrier drift rate He\K\E0 

Tue Carrier diffusion rate l*e\K\ED 

Table 3.2: Characteristic rates. 

Symbol Definition Expression 

h Debye screening length JeeokBTN/ieiNSiN-Ng)] 

h Applied field screening length ee0EoN/[eNg(N - NZ)] 

TDe. Free-electron diffusion length ^fj,ekBT/(eTRe) 

TEe. Free-electron drift length fieEo/Tne 

Table 3.3: Characteristic lengths. 
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3.3    Space-Charge Field 

By using these definitions and by inserting Eq. (3.7) into Eqs. (3.1), (3.2), (3.3), and 

(3.4), the following rate equation is derived for the fundamental of the space-charge 

field Ex, 

;('+£-&)$--»<*+*>-4+£-'fe)  <w 
which can be simplified to 

1 dEi 
re dt 

where 

= Esc - Ex (3.11) 

EQ + lEr, . . 
ESC = -m

l + EJ,_iE£L (3-12) 

is the complex space-charge field and 

I _|_ Mn _ {MSL 

rfie      rRe 

is the complex exponential response rate. The solutions to Eq. (3.11) are, for grating 

formation, 

£i = £sc[l-exp(-iy)] (3.14) 

and for grating erasure, 

E1 = EscexV(-Tet) (3.15) 

The complex space-charge field Esc = \Esc\ex?(i<f>sc) can be decomposed into am- 

plitude and phase such that 

ED(      ED        El   \ 
<f>sc   =   -arctan—   1+ — + ■—— 

-fro   \ -&<?       &D&QJ 
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\Esc\   =   rn 

N 
B° + E'D (3.16) 

(1+ !?)+(*)' 

The photorefractive phase shift <^sc is a very important parameter that appears in 

photorefractive theory and is a direct manifestation of the non-local properties of 

the photorefractive effect. As we shall show in subsequent chapters this phase shift, 

representing the phase difference between the illumination pattern and the index 

grating, is responsible for many peculiar photorefractive effects such as wave-mixing 

and beam coupling. We introduce here a useful quantity, Ssc = l-^scl/ra, that 

represents the normalized space-charge field, i.e., the space-charge field up to the 

modulation depth m. This quantity is also called the saturated space-charge field. 

The solutions expressed by Eq. (3.16) are rigorously only valid for small m. It is 

however possible to show that these solutions remain valid to a good approximation 

up to m = 0.8. Above m = 0.8, either higher Fourier orders need to be considered or 

the system of equations must be solved numerically [23]. The figures in the following 

sections show how the amplitude and the phase of the space-charge field vary as a 

function of the following three parameters, the applied field E0, the acceptor concen- 

tration N$, and the magnitude of the grating vector \K\ = 2ir/A, directly related to 

the grating spacing A. 

Photovoltaic Effect 

It has been observed that in certain photorefractive crystals like LiNbC>3 a photocur- 

rent can be produced without an applied voltage. This effect is called the photovoltaic 

effect [11]. It is due to unidirectional transport of free carriers along the polar axis 

of the crystal. A reasonable interpretation of the effect can be given in terms of 

asymmetric charge transfer from the absorbing impurity to the neighboring host ions 

during excitation: the photocarrier is excited with preferred momentum in one direc- 

tion along the polar axis. Note that the measured current or voltage does not depend 

on the electrode material or on the illumination on the electrodes. The magnitude of 

this current (if due to electron transport) can be characterized by the equation 
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Parameter Value 

eo 8.85 10"12 F/m 
e 1.6 10~19 C 

kB 1.38 10"23 J/K 
T 300 K 
K 514 nm 
N 1025 m"3 

e 880 
n 2.3 

Table 3.4: General constants and SBN:60 characteristic parameters. 

fe
h = KeseN*Ic (3.17) 

that consists of an additional term to be added to Eq. (3.3) and where Ke is known as 

the Glass photovoltaic constant for electrons and c is a unit vector along the c axis of 

the crystal. The relation defining the photovoltaic current [Eq. (3.17)] is valid only 

for short electron transport lengths where the electron transport length is defined 

as the mean distance the electrons travel before randomization of the velocity. The 

equation shows that a pseudo electric field generated along the c axis can be defined 

to describe the same photovoltaic effect, 

*ph _ KeSeN*I^ 

efien 
Elh = (3.18) 

The high photovoltaic effect observed in LiNb03 (fields up to 100 kV/cm in an open 

circuit configuration) is mainly due to the low mobility \it of the excited carriers, 

leading to a large value for E% . 

3.3.1    Amplitude of the Space-Charge Field 

Figure 3.3 shows the dispersion of the normalized space-charge field Ssc as a func- 

tion of the magnitude of the grating vector \K\ in SBN:60 for different values of the 

acceptor concentration N£. Figure 3.4 shows the dispersion of the normalized space- 

charge field Ssc as a function of the magnitude of the grating vector \K\ in SBN:60 
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Figure 3.3: Dispersion relation of the amplitude of the space-charge field in SBN:60 
for different values of the acceptor concentration at EQ = 0 kV/cm: 

25^-3 7V0° = (a) 1022m-3, (b) lfFm"3, (c) 1024m-3, (d) 0.5 1025m 

for different values of the applied field E0.  The values for the different parameters 

relevant to SBN:60 are given in Table  3.4. 

In the absence of an applied field, the amplitude of the space-charge field is max- 

imum when the diffusion field is equal to the saturation field, which occurs when the 

magnitude of the grating vector is equal to the inverse of the Debye screening length, 

i.e. 

\K\ = ^-   or   A = 2irlD 
ID 

(3.19) 

For grating spacings smaller than 27T/D, the saturation field EQ is smaller than the 

diffusion field ED and the amplitude of the space-charge field Ssc is equal to the 

saturation field if E0 = 0. This limit is called the saturation limit because the 

recording process is dominated by strong diffusion which drives the space-charge 

field to saturation because the actual number of photorefractive trapping sites is 

finite. This also explains why in this regime an applied field EQ does not affect the 

space-charge field. As the number of sites N£ increases, the saturation field increases 

accordingly, to reach a maximum when NQ = JV/2, i.e., when the number of filled 
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Figure 3.4: Dispersion relation of the amplitude of the space-charge field in SBN:60 
for different values of the applied field at JVg = 1.5 1023m-3: 
EQ = (a) 0.01 kV/cm, (b) 0.1 kV/cm, (c) 1 kV/cm, (d) 10 kV/cm. 

traps equal the number of empty traps, N£ = NQ . 

For grating spacings larger than 2TID, the diffusion field ED is smaller than the 

saturation field EQ. In the absence of an applied field, the amplitude of the space- 

charge field Ssc is equal to the diffusion field ED- If a field Eo is applied to the 

crystal, three regimes have to be distinguished: 

• Eo < ED, SSC = ED 

• ED < EQ < EQ, Ssc — Eo 

• EQ < EQ, Ssc = EQ 

These three regimes are illustrated in Fig. 3.5 [curves (a), (b), and (c)] that shows 

the variation of the amplitude of the space-charge field Ssc in SBN:60 as a function of 

the applied electric field E0 for large grating spacings. As the applied field increases, 

first the charge carriers move in such a way that they screen the electric field and the 

space-charge field is equal to the applied field. Finally at very high applied fields, as 

all the trapping sites are occupied, one reaches saturation and the space-charge field 

is equal to the saturation field. 
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Figure 3.5: Variation of the amplitude of the space-charge field in SBN:60 as a function 
of applied electric field for different grating spacings at N£ = 1.5 KPm-3: 
(a) \K\ = O.ö/xm-^A = 12pm), (b) \K\ = l/mi^A = 6pm), (c) \K\ = 2pm-1(A = 
3pm), (d) \K\ = lO/rai-^A = 0.6pm). 

This discussion shows the importance of the Debye screening length ID because 

in the absence of an applied field, the space-charge field is maximum at this point. 

As we shall show in the next chapters, the diffraction efficiency of a photorefractive 

grating is directly related to Ssc- In many applications, it is desirable to maximize 

the diffraction efficiency, i.e., the space-charge field. One way of achieving this goal 

is to operate the crystal around the Debye screening length that is essentially a 

function of the acceptor concentration N£. Figure 3.6 represents 2TTID as a function 

of NQ in SBN:60 and shows how, by changing the trap concentration, it is possible to 

change the range of grating spacings where the space-charge field and ultimately the 

diffraction efficiency are maximum. 

3.3.2    Phase of the Space-Charge Field 

In the absence of an applied field, the photorefractive process is dominated by diffusion 

and the photorefractive phase shift is always equal to 7r/2 regardless of the value of 
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Figure 3.6: Debye screening length ID (in micrometers) as a function of the acceptor 
concentration A^ in SBN:60. 
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Figure 3.7: Dispersion relation of the phase of the space-charge field (in degrees) in 
SBN:60 for different values of the applied field at 7V0° = 1.5 1023m"3: 
E0 = (a) 0.01 kV/cm, (b) 0.1 kV/cm, (c) 1 kV/cm, (d) 10 kV/cm. 
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Figure 3.8: Variation of the photorefractive phase shift (in degrees) in SBN:60 as a 
function of applied electric field for different grating spacings at N£ = 1.5 1023m"3: 
(a) \K\ = O-ö/xm-^A = 12/mi), (b) \K\ = l^m-^A = tym), (c) \K\ = 2fim~1(A = 

Zpm), (d) |^| = lO/xm-^A = 0.6jun). 

the grating period and the value of the acceptor concentration. In the presence of 

an applied field, the phase shift can take values between 0 and -TT/2 as illustrated 

in Fig. 3.7. If the applied field is very small, the phase shift 4>sc remains close to 

the value of —TT/2 for all grating spacings. If the value of the electric field is high 

compared with the diffusion field but smaller than the saturation field, the phase shift 

is close to zero at large grating spacings because Esc = E0. For an applied field larger 

than the saturation field at large grating spacings or for all values of the applied field 

at small grating spacings, Esc = EQ, and the photorefractive phase shift is close to 

—7r/2. Figure 3.8 shows the variation of the photorefractive phase shift as a function 

of the applied electric field E0, leading to the same conclusions. 

3.3.3    Time Constants 

The time evolution of the space-charge field is determined by the function exp(-~rei). 

The exponential response rate Te is a complex function that contains a real part l/re 
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(re is the photorefractive time constant) and an imaginary part u>e, the photorefractive 

frequency, re = (l/re) + iue: 

re   = 
1 (1 + \K?rlef + |/?[VL 

rA-e (i + \K\
2
PD)(I + \K\*rie) + \K\nErEe 

\K\rEe - \K\lE rq9m 
We     =    I die =s ^ =5 r~ (6.ZU) 

These equations show that the response rate is proportional to the incident intensity 

through Tdie- This explains how prolonged readout can be achieved using a low- 

intensity readout beam because the erasure time is larger in this case. It can be 

shown [13] that the dispersion relation of the response rate is flat at constant accep- 

tor concentration. In the presence of an applied field EQ, the imaginary part ue is 

non-zero. In this case the growth of the space-charge field during recording can be 

represented by damped oscillations. We will not analyze in more detail the time con- 

stants and the temporal behavior of the space-charge field because the work described 

in this thesis considers only the recording process once it has reached steady-state or 

the readout process when the grating is considered fixed (non-destructive readout). 

For a detailed analysis of transient and dynamic effects in photorefractive materials, 

the reader can refer to Ref. [23]. 

3.3.4    Electron-Hole Competition 

So far we have concentrated solely on electron transport. If we include hole transport 

that occurs when electrons are excited from the valence band to unoccupied levels, 

the space-charge field that takes into account both types of transport can be written 

as [24] 

rpe-h _ FeEsC + I\£%c , , 
ESC   - Fe + r, (3-21) 

where Esc is the space-charge field given by Eq. (3.12), EgC is the complex conjugate 

of Esc-, and Th is the response rate for holes. In the diffusion regime, Eq. (3.21) 

simplifies to 
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Etch = C{K)Esc (3.22) 

where (,{&)1S the electron-hole competition factor [25] given by 

C(/0 = FTT^ (3-23) 

In general C(K) 1S a function of the grating spacing and is positive when electron 

transport dominates and negative when hole transport dominates inside the photore- 

fractive material. 

3.4    Index Grating Modulation 

The presence of a space-charge field creates an index grating through the electro- 

optic effect. Most of the ferroelectric-photorefractive crystals that are of interest 

in this research are anisotropic crystals that are characterized by their unperturbed 

impermeability tensor [26]: 

«-G ) (3-24) 
/ ij 

We will only consider uniaxial crystals for which 

ik  o   o\ 
a? (3.25) 

0    *    ° 
V o   o   kl 

where n0 and ne represent the ordinary and the extraordinary index of refraction 

along the two principal axes of the crystal, the a axis and the c axis, respectively. 

When an electric field E is present inside the crystal (it can be an externally applied 

field EQ or an internal field like the space-charge field Esc or the photovoltaic field 

EQ
H
), it modifies the impermeability tensor according to 

ßv = ßij+   E   mkEk (3-26) 
fc=l,2,3 
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SBN:60 SBN:75 

ri3 

r42 

47 
235 

67 
1340 
42 

Table 3.5: Electro-optic coefficients in pm/V for SBN:60 and SBN:75. 

where r^ is, by definition, the electro-optic tensor of the crystal and Ek (k = 1,2,3) 

are the components of the electric field inside the crystal, in this case the components 

of the space-charge field along the three principal axes of the crystal. As an example, 

we consider the case of SBN, a crystal that belongs to the symmetry class 4mm and 

for which the electro-optic tensor is given by (in reduced notation) 

\ 

rijk 

0 0 ri3 

0 0 ris 

0 0 »*33 

0 U2 0 

r42 0 0 

0 0 0 

(3.27) 

/ 
Table 3.5 [26] [27] gives typical values for the electro-optic coefficients at room tem- 

perature for SBN:60 and SBN:75. In the presence of a field, the indices of refraction 

along the three crystal orientations (nx, ny and nz) are determined by 

(\    0 

0    X 

\ 

\ 
0 

* 3s + r13Ez 

0 4/ 
(3.28) 

0 r42Ex      > 

0 ^ + r13Ez       r42Ey 

\     r42Ex r42Ey       ^ + rzzEz j 

If the electric field is applied along the z axis only the crystal remains uniaxial and 

the new indices of refraction are given by 

nx = ny = n0 - l/2r13n^E3 

nz = ne - l/2r33nlEz (3.29) 
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In practice the space-charge field is aligned along the c axis of the crystal if the 

recording configuration is such that the grating vector is parallel to the c axis (Ez = 

Esc)- Therefore Eq. (3.29) defines how the space-charge field generates an index 

grating by creating spatially variant ordinary and extraordinary indices of refraction. 

The index ellipsoid shown in Fig. 3.9 represents the index of refraction seen by a beam 

incident on the crystal at an angle (p. If light with ordinary polarization is incident 

on the crystal, since the crystal remains uniaxial, the index change seen by the beam 

is equal to 

An0(r) = -l/2r13n
3

0\Esc\cos{K • r + <f>SC) (3.30) 

regardless of the angle (p. If light with extraordinary polarization is incident on the 

crystal, the index change seen by the beam coming at an angle (p is given by Ane(<p, r), 

determined by solving 

SinV +TT-^^ (3-31) 
[ne(^) + Ane(y>,r)]2      [n0 + An„(r)]2      [ne + Ane(f)]

2 

where Ane(r) = -l/2r33n
3

e \ESc\ cos (AT • f + <psc) and 

n 
sinV + cosV (3>32) 

1(<P)        nl nl 
For small An0(f) and Ane(f) compared with n0 and ne, 

Arae(v?, f) = sin2 <pAn0(r) + cos2 (pAne(f) (3.33) 
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n (<p) + An (q>) 

Figure 3.9:  Variation of the index ellipsoid along the principal axes of the crystal 
under an electric field, assuming that it is applied along the c axis. 
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Chapter 4 

Recording of a P hot or efr active 

Hologram 

4.1    Introduction 

In this chapter we describe the grating formation in a typical photorefractive crystal. 

This requires us to reconsider the coupled-wave theory developed in Chapter 2 for 

the derivation of the diffraction properties of uniform gratings to take into account 

the photorefractive process described in Chapter 3, because the photorefractive effect 

strongly affects the recording of a hologram in a photorefractive crystal. We shall 

show in the following sections of this chapter that as a result of the nature of the 

photorefractive process, the recorded grating is nonuniform in amplitude as well as 

in phase. The mathematical treatment draws heavily on the two-wave mixing theory 

developed by P. Yeh in Refs. [15] and [28]. 

Two-wave mixing is a physical process that takes advantage of the nonlinear re- 

sponse of some materials to the illumination of electromagnetic radiation. For exam- 

ple, the illumination from two writing beams, a signal and a reference beam, results in 

the formation of an interference pattern that creates an index grating as we described 

in the previous chapter. While the two writing beams are incident on the crystal, 

they interact with the grating they are forming and they scatter continuously from 

it. This results in a situation where one beam scatters into the other and vice-versa. 

47 
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Such scattering explains the energy exchange and wave-mixing observed in photore- 

fractive materials. In developing the model for two-wave mixing, we assume that all 

the beams have the same frequency (degenerate wave-mixing) so that a stationary 

pattern is established inside the crystal. We only consider the steady-state response 

of the photorefractive medium and neglect transients. 

4.2    Coupled-Wave Equations 

We examine the writing of a photorefractive hologram by linearly polarized plane 

waves (extraordinary polarization or ordinary polarization). As stated in Chapter 3, 

we consider only the case in which the electric field is aligned along the c axis of the 

crystal to take advantage of the high electro-optic coefficients in this configuration 

in crystals such as SBN (r13 and r33 instead of r42) and therefore maximize the 

diffraction efficiency. Consider the following writing field incident upon the crystal; 

the field consists of a reference wave and a signal wave: 

Ew(r) = Ar(z)exp(-ikr ■ f)er + As(z) exp(-iks ■ f)es (4.1) 

where AT, As are the complex field amplitudes of the reference and the signal waves, 

respectively. In the case of photorefractive materials, the amplitudes of the two writ- 

ing beams are functions of the propagation distance z because the medium interacts 

and modifies the beams inside the crystal as the recording process reaches steady- 

state. As we show in the rest of this chapter, this results in the formation of a grating 

inside the crystal that is nonuniform in amplitude and in phase. In Chapter 2, we 

developed Kogelnik's diffraction theory of uniform gratings (see Fig. 2.4). However, 

to analyze the diffraction properties of photorefractive gratings, it is necessary to ex- 

tend Kogelnik's theory to account for gratings that have nonuniform amplitude and 
—# —» 

phase. This description is done in the next chapter, Chapter 5. kr and ks are the 

wave vectors of the two writing beams and er and es are the unit vectors along the 

polarization directions. These two waves write a grating in the photorefractive crystal 

whose initial grating vector is given by 
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J\         fCg fCy 

The intensity incident on the crystal is given by 

(4.2) 

I(z)=[\Ar(z)\2+\As(z)\2]\l + $l 2Ar(z)A*{z){er ■ es) ig4 (4.3) 
l\M*)\* + \M*)\2 

As we explained in Chapter 3, such an interference pattern gives rise to an index 

grating with amplitude 

An(r) = & 
2 \Ar\* + \As\> 

(4.4) 

where 

m = -n reff((K)(er • es)ESc (4.5) 

and Esc = \Esc\l™ is *ne intensity-independent normalized space-charge field; <j>sc 

is the photorefractive phase shift; reff is the effective electro-optic coefficient which 

is a function of the writing geometry, the crystal geometry and the polarization of 

the light [26]; and ((K) [Eq. (3.23)] is the electron-hole competition factor. 

To study grating formation in the crystal, it is necessary to solve the wave equation 

for the electric field given by Eq. (4.1), 

2rzf\ &w< V2Ew(r) + k2(r)Ew(r) = 0 (4.6) 

where 

7T 
P(r) = k;- iak0 + 4k0—An(f) (4.7) 

k0 = 27rn/A0 is the propagation constant inside the crystal; a is the intensity absorp- 

tion coefficient; Esc and 4>sc are assumed to be given by the standard band transport 

model for the photorefractive effect as described in the previous chapter [Eq. (3.12)]; 

Esc exp(i<j)sc) = 
EQ(EQW + iEp) 
EQ + ED — iEow 

(4.8) 
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EQW is the electric field applied during writing; ED is the diffusion field; and EQ is 

the saturation field. In the absence of a field, the phase shift is constant and equal 

to IT/2, but in the presence of an applied field it can take any value between 0 and x, 

depending on the value and orientation of the field. 

By solving the wave equation [Eq. (4.6)], assuming the slowly varying envelope 

approximation, we derive the following set of equations to describe the steady-state 

variation inside the crystal of the complex amplitudes of the reference and the signal 

waves: 

C°s6r-d7   =   -tKeMl<l>Sc)\As\> + \Ar\i-2Ar 

COSe*lt   =   -iKeM-iM]A^^-lAs (4-9) 

where 0T and 6S are the angles (inside the crystal) that the respective wave vectors kr 

and kg make with the z axis (the propagation axis), and K is the coupling constant 

given by 

K = ^ (4.10) 

Decomposing the complex amplitudes into intensity and phase, 

Ar(z)     =     yfl^)J+*M 

As{z)   =   y/l&je*™ (4-11) 

we obtain a set of real equations describing the steady-state variations of the intensity 

and the phase of both the reference and the signal beams: 

cos 0T—r =   2K sin <pscf j— &U 
dz ls + lr 

cos 0s-r- —   — 2K sin <j>sc T 
T, %— OLIS dz ls + 1T 

COSVr—r— =     —KCOS(pSC- 
dz Is + IT 

cos6s—-   =   -Kcos 4>sc r   ,r T (4-12) 
dZ ls + 1T 
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The first two equations describe amplitude coupling that is related to the energy 

exchange process between the writing beams. The last two equations describe phase 

coupling that takes place only when a field is applied to the photorefractive crystal 

during the recording of a hologram (cos <f>sc 7^ 0). In the absence of an electric field 

(i.e., EQW = 0, 4>sc = — T/2, the diffusion-dominated case) the phases of the two 

beams remain constant within the crystal. In the perfectly drift-dominated case (i.e., 

sin <f>sc = 0) the amplitudes of the two beams remain constant inside the crystal, and 

only phase coupling affects grating formation. The rest of this chapter is devoted to 

the study of the effects of amplitude and phase coupling on grating formation. 

The two usual recording geometries are considered: the transmission geometry 

in which the two writing beams are copropagating, and the reflection geometry in 

which the two beams are counterpropagating. We explained in Chapter 2 under 

which general assumptions the perpendicular geometry reduces to the transmission 

geometry. Figure 4.1 shows a diagram representing the two recording geometries with 
—» 

the orientations of the c axis, the applied electric field Eo, and the grating vector K. 

In the transmission-geometry case the boundary conditions for Eq. (4.9) are Ar(0) 

and As(0). Note also that cos0r and cos6s have the same sign. In the reflection- 

geometry case the boundary conditions are Ar(0) and As(l), where / is the crystal 

length. In this case cos 6r and cos 6S have opposite signs. 

Once the writing process has reached steady state, the following index function is 

present in the crystal 

n(r) = n + —   \ cos K^ (z) ■ r + <f>Sc (4.13) 
Z   1T{Z) + 1S{Z) L J 

Initially the grating vector is constant (K), but after the process reaches steady state 

the grating vector is given by 

KFC(z) = Kx + ^ + K2 (4.14) 
z 

where K± and Kz are the perpendicular and the longitudinal components of K, 

respectively, and rp(z) is the phase difference between the reference and the signal 

waves: 
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Figure 4.1: Recording configurations: (a) transmission geometry, (b) reflection geom- 
etry. 

ip(z) = VvO) - Mz) (4.15) 

Because of amplitude coupling and phase coupling, neither the amplitude nor the 

phase of the grating are uniform in the z direction. Phase coupling affects only the 

longitudinal component of the grating vector and leaves the transverse component 

unchanged. It is important to stress here that because of phase coupling, which is 

present when an electric field is applied to the crystal during recording, the grating 

vector changes during writing and becomes spatially nonuniform, in spite of the fact 

that the grating is initially written with two plane waves. 

In the transmission geometry the grating is typically written such that |/?j_| >> 

\KZ\. Therefore phase coupling tends primarily to affect the orientation of the grating 

vector. In the transmission geometry this effect is referred to as the fringe bending 

effect. ip(z) can be considered to be the function describing the shape that the fringes 

take inside the crystal. In the reflection geometry, typically \K±\ « \KZ\. Therefore 

phase coupling tends primarily to affect the magnitude of the grating vector, i.e., the 

grating spacing. We shall show, however, that in practice, phase coupling is always 
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negligible in the reflection geometry. 

4.3    Analytical Solutions 

In this section we specifically consider the symmetric configuration, in which the 

signal beam and the reference beam make equal angles (in magnitude) with the z 

axis: 

|cos0r| = |cos0s| = cos0 (4.16) 

In this case the set of equations describing amplitude and phase coupling [Eq. (4.12)] 

can be solved analytically for the two types of geometries considered. For simplicity 

the following two parameters are introduced [15]: 

2K 
7   = -sinfec 

COS0 

ß   =   -^ cos <f>sc (4.17) 
COS0 

For consistency we assume that the electron-hole competition factor, the orientation 

of the c axis, and the electric field are such that by convention the sign of 7 is 

positive. The analytical solutions can be found by integrating Eq. (4.12) as described 

in Ref. [15], where without loss of generality we can choose ^(0) equal to 0. 

4.3.1    Transmission Geometry 

In the transmission geometry, the solutions to Eq. (4.12) are [15]: 

,,,             ß,_ [rPP + exp(7z)][l + rppexp(-7*)] . 
Hz)   =   --In JTT-y2  (4.18) 
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Parameter Value 

N 1025 m"3 

N° 1.5 1023 m"3 

reJfai<) (e-pol) 125 pm/V 
reff((K) (o-pol) 25 pm/V 

/ 2.5 mm 
n 2.3 

Table 4.1: Values of the physical parameters for a Ce-doped SBN:60 photorefractive 
crystal. 

where rpp is the beam ratio, 

rvv ~ 
/r(0) (4.19) 

Since 7 > 0, the signal beam is the beam that becomes amplified in the crystal at 

the expense of the reference beam; i.e., the signal beam can be referred to as the 

probe beam, the reference beam as the pump beam, and rpp as the pump-to-probe 

ratio. Figure 4.2 shows the intensity of the reference and the signal beams as they 

propagate through the crystal for two values of the applied field, 0 and 5 kV/cm and 

for a pump-to-probe ratio rpp = 100. A grating spacing of 2 /im, a crystal length of 

2.5 mm, and extraordinarily polarized light are considered for this example. Figure 

4.2 shows that for large gain coefficients 7, complete energy transfer can occur from 

the pump beam to the probe beam. For ordinary polarization, the constant 7 is 

about 5 to 10 times smaller than for extraordinary polarization, and thus much less 

energy will be exchanged from pump to probe. The numerical values used in all the 

following figures of this chapter are given in Table 4.1 and correspond to a Ce-doped 

SBN:60 crystal. 

4.3.2    Reflection Geometry 

In the reflection geometry the system of equations [Eq. (4.12)] admits of an exact 

solution only for zero loss (a = 0). But in the presence of loss, provided that a <C 7, 
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Figure 4.2: Intensity of the reference and the signal beams as they propagate (trans- 
mission geometry) through the crystal for two values of the applied field: EQW = 0 
and 5 kV/cm (rpp = 100, A = 2 ^m, and / = 2.5 mm). 

a good approximation to the exact solution is given by [15]: 

Ir(z)   =     -C+y/C2 + Bexp{-^z) 

I,(z)   =    Ic + y/C' + Bexpi-yz) 

tl>{z)   =   -ßz 

s—az/ COS $ 

Dot(z—1)/ COS0 

(4.20) 

where 

B   =   Jr(0)/,(0 
ir(0) + /,(/) 

7,(/) + /r(0)exp(-70 
l/s

2(Q-/r
2(0)exp(-7/) 

2/s(/) + Jr(0)exp(-7/) 
(4.21) 

In this geometry too the signal beam is amplified and the reference beam is depleted. 

A pump-to-probe ratio rpp can therefore be defined as 
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Figure 4.3: Intensity of the reference and the signal beams as they propagate (reflec- 
tion geometry) through the crystal for two values of the applied field: EQW = 0 and 
5 kV/cm (rpp = 100, A = 0.1 /mi, and I = 2.5 mm). 

rpp ~ 
/r(0) 
Is(l) 

(4.22) 

Figure 4.3 shows the intensity of the reference and the signal beams as they propagate 

through the crystal for two values of the applied field E0w and for a grating spacing of 

0.1 (xm and a pump-to-probe ratio of 100. In this case, because the grating spacing is 

small, the applied field does not modify the space-charge field and therefore does not 

increase the gain coefficient 7 contrary to the transmission-geometry case (Fig. 4.2). 

In addition, because of the orientation of the c axis that is parallel to the propagation 

axis, the light incident on the crystal has ordinary polarization, which further reduces 

the amplitude of the constant 7, which explains why, in this geometry, the energy 

exchange between the two beams is incomplete. 
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4.4    Index Grating 

It is interesting to study the dependence inside the crystal of the phase ip(z) and of 

the amplitude of the grating n(f) [Eq. (4.13)]. A normalized grating amplitude m(z), 

i.e., the modulation depth, can be defined as 

4.4.1    Transmission Geometry 

In the transmission geometry the modulation depth m(z) and the phase t(?(z) take 

simple analytical forms: 

m{z)   =   sechh'^A 

if>(z)   =   2-\nm(z) + constant (4.24) 
7 

Figure 4.4 shows the dependence of tß(z) and m(z) inside an SBN:60 crystal (/ = 2.5 

mm) for a grating written with extraordinarily polarized light, for different applied 

fields (Eow), for two pump-to-probe ratios (rpp = 100 and rpp = 1/100), and for a 

grating spacing of 5 //m. 

In the transmission geometry, the space charge field is strongly affected by the 

applied electric field because the grating spacing A = 5 /jm is much larger than the 

Debye grating spacing (= 2-KID = 0.7 ^m at N£ = 1.5 1023 m~3). Therefore the 

field significantly affects the coupling constants 7 and ß and the behavior of the 

modulation depth m{z) and of the phase tfi(z), as is shown in Fig. 4.4. The figure 

shows, for example, the increase in phase shift that is due to stronger phase coupling 

at high applied fields. It also shows how the field reduces the effective thickness of 

the grating inside the crystal owing to stronger amplitude coupling. The beam ratio 

rpp has a strong influence, too; for values of rpp larger than one, the modulation 

initially increases and possibly reaches unity at some point inside the crystal. For 

these values of rpp the phase is a nonlinear function of the distance inside the crystal. 
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Figure 4.4: Transmission geometry: grating amplitude m(z) and grating phase xj>{z) 
as a function of distance inside a SBN:60 crystal for 6 different fields (from 0 to 10 
kV/cm). (a) rpp = 100 and (b) rpp = 1/100 (A = 5 /mi, I = 2.5 mm). 
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For values of rpp much smaller than one the modulation m(z) always decreases with 

the propagation distance, and to a good approximation iß(z) is a linear function of z: 

m(z)   =   2y^exp (.-yj 

ij>(z)   =   -ßz (4.25) 

These two limiting cases are illustrated with rpp taken equal to 1/100 and 100/1 in 

Fig. 4.4. Another special case of interest is the drift-dominated case, attained when 

7 = 0. In this case 

m(z)   = 
LyJTvv 

SS*M = -*ir£ (4'26) 

Note also that the loss does not have any effect on the transmission geometry, as it 

cancels out in the expression for the modulation and does not appear in the phase 

coupling equations. For gratings written with ordinarily polarized light, the coupling 

is much weaker (because r13 is used instead of T33 for re//), and the fringe bending 

effect will be accordingly reduced because of a reduction in the magnitude of the 

constants 7 and ß. 

Another way to represent the index grating is by a density plot where the contrast 

between the dark and the bright regions is proportional to the amplitude of the 

grating. Figures 4.5(a) and 4.5(b) represent the gratings as described by Figs. 4.4(a) 

and 4.4(b) for an applied field of 10 kV/cm. It clearly illustrates the concept of fringe 

bending. For small pump-to-probe ratios, as we said earlier, the fringe bending is 

linear and the final grating recorded in the crystal is the initial grating defined by 

the grating vector K rotated by an amount ß. For large pump-to-probe ratios, the 

resulting grating can be viewed as a spatial distribution of grating vectors along the 

crystal length defined by Kpc(z). 
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PP 
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r     =  1/100 
PP 
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Figure 4.5: Density plot of an index grating in the transmission geometry: (a) rvv = 
100, (b) rvv = 1/100 (A = 5 /im, / = 2.5 mm, E0w = 10 kV/cm). The horizontal axis 
represents the propagation axis (0 to /) and the vertical axis represents the transverse 
axis inside the crystal (0 to three times A). 
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Figure 4.6: Reflection geometry: grating amplitude rn(z) and grating phase t(>(z) as a 
function of distance inside a SBN:60 crystal for 6 different fields (from 0 to 10 kV/cm) 
(rpp = 100, A = 0.1 /*m, / = 2.5 mm). 

4.4.2    Reflection Geometry 

In the reflection geometry, the modulation depth m(z) and the phase i(;(z) take the 

following analytical forms: 

m(z)   ■■ 

^{z)   =   -ßz 

1 /ln£ jz\ 

4   -J)J sech 
ln^- -7ZN 

(4.27) 

where 5 and C are given by Eq. (4.21). Figure 4.6 represents one example of index 

amplitude m(z) and phase ip(z) inside the crystal in the reflection geometry. The 

grating spacing is taken equal to A = 0.1 //m with ordinary polarization and a pump- 

to-probe ratio rpp = 100. In the reflection geometry and for the crystal described in 

Table 4.1, the applied electric field has little effect on phase coupling and amplitude 

coupling. Indeed, because the grating spacing (A = 0.1 //m) is smaller than the Debye 
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grating spacing, the space-charge field is essentially limited by the saturation field and 

is not affected by the applied field. Therefore the value of the photorefractive phase 

shift remains close to -7r/2, keeping the constant ß small. Figure 4.6 shows how 

small the phase shift ip(z) is and how little the modulation m(z) is affected by the 

applied electric field compared with the transmission-geometry case. Provided that 

a -C 7, loss does not significantly change the modulation inside the crystal. 

In the reflection geometry the sinusoidally varying term of the index grating goes 

as 

sin T-' (4.28) 

27r/A is typically of the order of 107 m"1 in the reflection geometry.   A maximum 

value for ß can be estimated using 

QTtiax   < \K\ (4.29) 
A0 

Even considering a big index change of ri^ax = 10"2, it gives a maximum value for 

ßmax _ JQ5 ^-I^  EqUation (4.29) shows that in the reflection geometry, regardless 

of the value of the acceptor concentration and of the applied field, phase coupling is 

negligible and is not going to affect the grating spacing A. 

It can be seen from Eq. (4.21) that C = 0 when 

lnrpp = ^ (4.30) 

In this case, Ir(z) — Is(z) at all points inside the crystal and the modulation is uni- 

formly equal to unity inside the crystal. In the reflection geometry it is therefore 

possible to get a perfectly uniform index grating despite amplitude coupling by ap- 

propriately choosing the pump-to-probe ratio such that Eq. (4.30) is satisfied. Figure 

4.7 represents the modulation m(z) as a function of z and rpp for two values of the 

acceptor concentration N£. In case (a), the value of the Debye screening length is 

such that amplitude coupling is very weak. As seen by Eq. (4.30), this situation leads 

to a constant index grating inside the crystal (m = 1) for a ratio rvv « 1. In case (b), 

that corresponds to a much higher acceptor concentration, the Debye screening length 
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Figure 4.7: Representation of the modulation depth m(z) as a function of pump-to- 
probe ratio rpp and length z inside the crystal (SBN:60) for two values of the acceptor 
concentration: (a) JV0° = 1.5 1023 m"3, (b) JV° = 0.5 1025 m"3 (A = 0.1 fxm, Eow = 
0 kV/cm) 

is in the same range as the grating spacing (see Fig. 3.6). In this case, amplitude 

coupling is much stronger, as illustrated in Fig. 4.7(b). In the case of strong coupling 

the effective thickness of the grating inside the crystal can be significantly reduced, 

as it is also the case in the transmission geometry. 

4.5     Conclusions 

In this chapter we have analyzed the formation of gratings in photorefractive crystals 

in the transmission and in the reflection geometries. We have shown that because 

of the nonlinear nature of the photorefractive effect there is amplitude and phase 

coupling between the recording beams during grating formation. These two forms 

of coupling lead to the formation of gratings that have nonuniform amplitude and 

nonuniform phase, which results in fringe bending. We have studied and analyzed 

the influence of several factors that play an important role during grating formation, 
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i.e., the grating spacing A, the applied electric field Eo, the acceptor concentration 

NQ, and the pump-to-probe ratio rpp. 

In the next chapter we shall study the diffraction properties of such nonuniform 

gratings (shown in Figs. 4.5 and 4.7) and show how the selectivity behavior of their 

diffraction efficiency is related to the shape of the grating inside the crystal. 



Chapter 5 

Readout of a P hot or efr active 

Hologram 

5.1    Introduction 

In this chapter we describe the diffraction properties of the photorefractive gratings 

whose formation has been described in Chapter 4. We describe more specifically the 

selectivity properties of these gratings, i.e., the behavior of the diffraction efficiency 

away from the Bragg condition £ = 0. In Chapter 2, we derived the diffraction 

efficiency and analyzed the selectivity behavior of uniform gratings. This behavior 

is compared in this chapter with the selectivity of gratings that are nonuniform in 

amplitude as well as in phase. In Chapter 6, we will then analyze the different 

factors that modify the Bragg condition in photorefractive crystals, i.e., the different 

processes by which the Bragg detuning parameter and the Bragg condition can be 

altered (the Bragg condition being defined as the point where the diffraction efficiency 

is maximum). It is important to analyze these two factors, the Bragg condition and 

the selectivity, because they are important parameters to consider in holographic 

storage for example. Indeed, the Bragg condition determines where the information 

is recorded in a crystal and the selectivity is directly related to the maximum capacity 

that can be stored in that crystal. 

In analyzing the diffraction properties of photorefractive gratings, we concentrate 

65 
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on the nondestructive readout properties. Nondestructive readout assumes that either 

the photorefractive grating is fixed and is not erased by the readout process, or that 

the readout process is done at a low enough intensity so that the grating persists 

long enough and is not substantially erased during the readout process. As we saw 

in Chapter 3, the erasure time constant is directly proportional to the light intensity, 

therefore at weak intensity nondestructive readout can be achieved over reasonably 

long readout times. 

In Chapter 4 we showed how an applied field, the acceptor concentration, the 

grating spacing and the recording geometry can significantly modify the grating shape 

inside the grating. In this chapter we show how these different parameters affect 

diffraction efficiency. 

5.2     Coupled-Wave Equations 

In this section we derive the coupled-wave equations describing the readout process, 

assuming a nondestructive readout process. We show that the equations are formally 

identical to the equations derived in Chapter 2 for a uniform grating, except that 

a nonuniform grating amplitude as well as a nonuniform Bragg detuning parameter 

have to be introduced. 

We examine the diffraction properties of the recorded nonuniform grating when a 

field EQR is applied to the crystal during readout. The field applied during readout 

need not be the same as the field applied during writing, but this difference will affect 

the Bragg detuning parameter as discussed in the next chapter, Chapter 6. The 

approach used here is similar to the one used by Kubota [29] to solve the problem of 

bending of interference fringes inside a hologram owing to a pre-stress in photographic 

emulsions. 

The sum of the reading (p) and diffracted (<r) fields during the readout process is 

given by, similar to Eq. (2.11), 

ER(r) = ap(z) exp(-ikp ■ r) + aa(z) exp(-iAv • r) (5.1) 

where ap and aa are the complex field amplitudes and kp and ka are the corresponding 
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wave vectors. On readout, momentum conservation implies that 

KJ. = kP± + KL (5.2) 

By inserting Eq. (5.1) into the standard wave equation, neglecting loss, considering 

the slowly varying envelope approximation, and assuming that the modulation of the 

index of refraction is given by Eq. (4.13), 

111 r -» I 

An(r) = — m(z) cos K • r + <f>sc + i>(z) (5.3) 

we derive the following coupled equations to describe the amplitudes of the reading 

and the diffracted waves: 

cos Qp-^-   —   —in{z) exp(z'^sc)a<7 exp [^(z)?] 
dz 
j 

cos^-r^   =   -iK(z)exp(-i<f>sc)aPexp[-ix(z)z] (5.4) 
dz 

where the function x(z) and the coupling function K{Z) are given by 

X(z) = kpz-Kz + ^1 + Kz (5.5) 

K(Z) = YYHZ) (5-6) 

and dp and Ba are the angles inside the crystal that the reading and the diffracted 

wave vectors make with the z axis, respectively. m(z) = 2Jlr(z)Is(z)/[Ir(z) + Is(z)] 

is the modulation depth and t/;(z) = il>T{z) — i>s(z) is the grating phase as defined in 

Chapter 4. For the transmission geometry, m(z) and xl>(z) are found with Eq. (4.18), 

and for the reflection geometry, they are found with Eq. (4.20). 

With the change of variables 

Ap(z)   =   ap(z) 

A^z)   =   aa(z)exv[ix(z)z] (5.7) 
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the system of equations [Eq. (5.4)] can be simplified to yield 

dA 
cos 6p——£   =   —iK,(z) exp(i(j>sc)A0 

dz 

0 
dz I 

cos0, f^-i^W)    =   -i/c(z)exp(-«>5c)Ap (5.8) 

where 

IW-2f+/^ (5.9) 

is the generalized nonuniform Bragg detuning parameter. £ is the Bragg detuning 

parameter in the absence of phase coupling and is given by 

The coupled-wave equations written this way for a nonuniform grating [Eq. (5.8)] 

are then completely analogous to the coupled-wave equations for a uniform grating as 

derived in Chapter 2, Eq. (2.18), except for a coupling constant and a Bragg detuning 

parameter that are now functions of the propagation distance z. The boundary 

conditions for Eq. (5.8) are, for the transmission geometry, Ac(0) = 0 and Ap(0) = 

constant, and, for the reflection geometry, A„{1) = 0 and Ap(0) = constant. In some 

specific cases, the system of coupled-equations describing the readout process can be 

solved to yield simple analytical solutions. 

5.3     Analytical Solutions 

5.3.1    Bragg Selectivity 

If the coupling is weak, i.e., if the amplitude of the reading beam ap(z) is approx- 

imately constant throughout the crystal (the undepleted pump approximation), we 

can find a closed-form solution for the diffracted wave, valid in both geometries, by 

directly integrating Eq. (5.4): 
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a,(fl = -m,(0)eXp(   ^SC) f K{Z) exp[-ij,(z)] exp (-i2f y) <Zz (5.11) 
cos uc      Jo \ IJ 

Note that Eq. (5.11) will be rederived in Chapter 8 using a completely different 

approach. 

Uniform Grating 

In the absence of phase and amplitude coupling, i.e., i>{z) = ^(0) and K(Z) = K(0), 

the set of equations [Eq. (5.8)] reduces to the well-known equations of Kogelnik's 

theory [4], and the diffraction efficiency of the weak grating can directly be derived 

from Eq. (5.11), by noting that 

/'exp (-*'2fy) dz = le~*^ (5.12) 

Therefore, 

m = MW = [ö^K) 
smc ( (5-13) 

This equation is the same as the expression derived in Chapter 2 for the diffraction 

efficiency of a weak grating, 

T) = z/2sinc2£ (5.14) 

that is valid in all three geometries, the transmission, the reflection and the perpen- 

dicular geometry. 

Nonuniform Grating 

Equation (5.11) is also interesting because it shows how the off-Bragg behavior of a 

thick nonuniform grating is directly related to the Fourier transform of the complex 

index envelope An(z), given by 

An(z) = — ra(z)exp[—it^(z)] (5.15) 
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When multiplied by a rect function corresponding to the crystal boundaries, it rep- 

resents the index grating inside the crystal. According to [30], the Fourier transform 

F(v) of a function f(u) is defined as 

/CO 

f(u)e-*2™vdu (5.16) 
-co 

This integral, which is a function of u, may be written as F(v) = Tv[f(u)}. The 

formula exhibiting the reversibility of the Fourier transform is 

/CO 

F(v)el2™vdv (5.17) 
-co 

The diffracted signal is then given by, noting that u = z/l and v = £/v 

'z     V 

In other words, in the undepleted pump approximation the efficiency is determined 

by the convolution of a sine function (representing the crystal boundaries) and of the 

Fourier transform of the complex index envelope: 

7/(0   oc   |TL [An(z)rect (j - ^ 

oc    fL[An(z)]*smc£exp(-i£) (5.19) 

When an electric field is applied to the crystal during writing, under certain condi- 

tions, as shown in Fig. 4.4, the grating amplitude m(z) goes from an almost constant 

value inside the crystal (at 0 kV/cm) to a full sech(z) (at 10 kV/cm). Relation (5.19) 

shows that in this case, the shape of the selectivity curve r}(£) will substantially depart 

from the typical sinc2£ shape because of the convolution with the Fourier transform 

of the index envelope. Strong amplitude coupling essentially smoothes the tail of 

the selectivity curve by suppressing the side lobes, i.e., it creates a phenomenon of 

apodization. This also demonstrates the relationship as conjugate coordinates between 

the propagation parameter (z/l) and the Bragg detuning parameter (£/n). 

An important case of interest is when the function xj;(z) is a linear function of z: 
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tß(z) = uz (5.20) 

where u> is some arbitrary constant coefficient. In this case, the diffraction efficiency 

is given by 

v{{)<* **+fc [m(2)rect (j " \) (5.21) 

Therefore the diffraction efficiency is simply translated along the f axis by an amount 

IOJ/2 and the selectivity shape depends only on the Fourier transform of the modu- 

lation depth m{z). This case is important because if>(z) is a linear function of z in 

the following three cases: in the reflection geometry [Eq. (4.20)], in the transmission 

geometry for small pump-to-probe ratios [Eq. (4.25)], and in the transmission geom- 

etry for 7 = 0 [Eq. (4.26)]. In this last case, the amplitude of the grating is constant, 

too (because there is no amplitude coupling): in the perfectly drift-dominated case 

(i.e., 7 = 0), K{Z) — constant and from Eq. (4.26), £(z) is given by 

ftz) = 2£ - lßl-^f (5.22) 
■!■ T ' pp 

In this case, the^solutions to Eq. (5.8) reduce to Kogelnik's solutions [4] for a uniform 

grating with a constant detuning parameter. 

Discussions 

Figure 5.1 shows the modulation depth m(z) and the corresponding selectivity be- 

havior of the diffraction efficiency in the transmission geometry for a pump-to-probe 

ratio rpp = 1/100, a grating spacing A = 5 ^m and an acceptor concentration N$ = 

1.5 1023 m~3 (for the same SBN:60 crystal used in Chapter 4, / = 2.5 mm and N = 

1025 m-3). The four figures correspond to four different applied fields, 0, 3, 6, and 

9 kV/cm. In this case, the selectivity behavior is just the Fourier transform of the 

function m(z) inside the crystal. However, due to phase coupling, there is a rotation 

of the fringes of the grating that translates itself onto a translation of the diffraction 

efficiency along the £ axis. The maximum diffraction efficiency is around 10 to 12 %, 

which shows that the Fourier transform approximation is valid in this case. 
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m(z) Diffraction Efficiency (%) 

EoW = 0 kV/cm 

Eow = 3 kV/cm 

EQW 
= ^ kV/cm 

Eow = 9 kV/cm 

Figure 5.1: Index modulation depth m(z) and corresponding selectivity behavior in 
the transmission geometry (rpp = 1/100, A = 5 /mi, JVJ = 1.5 1023 m-3, / = 2.5 mm 
and N = 1025 m~3 for a SBN:60 crystal). The boxes on the left-hand figures represent 
the crystal boundaries and are normalized to unity. 
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Figure 5.2 shows the index modulation depth m(z) and the corresponding selec- 

tivity behavior in the reflection geometry at no applied field, for a grating spacing A = 

0.1 ^m and an acceptor concentration N£ = 2 1024 m-3. The two figures correspond 

to two pump-to-probe ratios rpp, 1/100 and 100. In this case, too, the selectivity 

behavior is just the Fourier transform on the function m(z) inside the crystal. In the 

reflection geometry phase coupling is negligible, as mentioned in Chapter 4, regardless 

of the value of N£ and indeed no significant translation of the diffraction efficiency 

along the £ axis is observed. 

5.3.2    Maximum Diffraction Efficiency 

If <f(z) is taken equal to zero in Eq. (5.8) and the symmetric configuration is considered 

(cos Op = cos#), a general analytical solution valid for any given K(Z) can be found. 

Hong and Saxena [31] derived the solutions for the specific case when m(z) is given 

by Eq. (4.24). More generally, for any m(z), the solution for the diffraction efficiency 

T) can be written as follows: 

For the transmission geometry, 

rj = sin  '  fm(z)dz) (5.23) 
2Aocos0 

When m(z) is given by Eq. (4.24), 

m(z) = sech hz-^nrA (524) 

the diffraction efficiency [Eq. (5.23)] can be written as 

rj = sin2 i         7-z — In rpp\ 1 / lnrpp^ 
arctan   tanh ——   + ——;— arctan   tann —■—■ 

sin (j>sc \ 4       J     sin <j>sc \ 4 

For the reflection geometry, 

(5.25) 

'-"■"•(«^■"H (5-26) 

when m(z) is given by Eq. (4.27), 
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m(z) Diffraction Efficiency (%) 

>=ioo 

rpp= 1/100 

Figure 5.2: Index modulation depth m(z) and corresponding selectivity behavior in 
the reflection geometry at no applied field (A = 0.1 /im, N£ = 2 1024 m~3, / = 2.5 
mm and N = 1025 m~3 for a SBN:60 crystal). 
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m(z) =    . 

Y1 + exP (7* ~ln c*J 

the diffraction efficiency [Eq. (5.26)] can be written as 

(5.27) 

r\ = tanh2 2 
sin <f>sc 

where 

'1 + 91 
B 

+ 
smcj), sc 

gül+exp(7/-ln^) (5.28) 

g(x)=1-ln 
1 + x 
1-x 

(5.29) 

Equations (5.23) and (5.26) can be considered as expressions representing the maxi- 

mum diffraction efficiency because they correspond to zero Bragg detuning [£(z) = 0]. 

In the case of uniform gratings, they reduce to the equations derived in Chapter 2, 

7/   =   sin2 v    (transmission) 

7?   =   tanh v    (reflection) (5.30) 

Figure 5.3 shows the maximum diffraction efficiency (for three different grating spac- 

ings A) as a function of applied field (E0w) in the transmission geometry (rpp = 

1/100). It shows that after some point the maximum diffraction efficiency starts to 

decrease with field. This is due to stronger amplitude coupling between the writing 

beams, causing the amplitude of the index grating to be significant only at z = 0, i.e., 

near the entrance face of the crystal: amplitude coupling decreases the effective thick- 

ness of the index envelope. At high applied fields this thickness decrease dominates 

the increase in space-charge field amplitude in such a way that the net diffraction 

efficiency decreases. 

Figure 5.4 shows experimental measurements of the maximum diffraction efficiency 

as a function of applied field (Eow) in the transmission geometry (rpp = 1/100 and A 

= 5 /im). It shows good qualitative agreement with the theoretical curves of Fig. 5.3 

(the experimental setup will be further discussed in Chapter 6). Several points need 
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Figure 5.3: Maximum diffraction efficiency as a function of applied field (E0w) for 
three grating spacings, A (1 fim, 2.5 (im and 5 /.m) (transmission geometry and rpp 

= 1/100). 

to be emphasized though: (i) it is difficult to measure absolute efficiencies, as shown 

on Fig. 5.4 in which two sets of identical experiments are represented. Measurements 

are often unpredictable because the crystal is not uniform and the results depend 

on the location used inside the crystal to record the holograms; (ii) at high applied 

fields, the gain being very high, it induces strong beam fanning that also tends to 

deplete the diffracted signal. Figure 5.5 shows the maximum diffraction efficiency 

(for four different acceptor concentrations jVjJ) as a function of pump-to-probe ratio 

rpp, in the reflection geometry, and at no applied field. It shows that there is a point 

where the diffraction efficiency is maximum. This point, which is a function of the 

acceptor concentration, is directly related to the value of the pump-to-probe ratio for 

which the grating, in the reflection geometry, is uniform. We showed in Chapter 4 

[Eq. (4.30)] that when 

\nrpp = — (5.31) 

the modulation depth inside the crystal is uniformly equal to unity inside the crystal. 
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Figure 5.4: Experimental maximum diffraction efficiency as a function of applied field 
(EQW) for a grating spacing A = 5 ^m (transmission geometry and rpp = 1/100). 
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This point is also the point where the diffraction efficiency is maximum. At small 

acceptor concentrations, the parameter 7 is small and the diffraction efficiency is 

maximum for a pump-to-probe ratio close to one. 

5.4    Conclusions 

In this chapter we have solved the coupled-wave equations describing the readout 

process for fixed nonuniform gratings. We have derived analytical solutions for the 

diffraction efficiency in the undepleted pump approximation as well as in the case of 

zero Bragg detuning £(z) = 0. The most important conclusion is that a phenomenon 

of apodization is observed in the diffraction efficiency because the photorefractive 

grating is nonuniform: the side lobes of the selectivity behavior that are normally 

observed in the case of uniform gratings disappear when the grating is nonuniform. 

In the transmission geometry, in order to solve the complete problem, i.e., with a 

depleted pump, a general modulation depth m(z), and a general phase il>(z), to the 

best of our knowledge, it is necessary to solve the set of equations numerically as no 

analytical solution could be found. The reflection geometry is easier to treat because 

£(2) is a constant. Hofmeister et dl. [32] were able to derive a general analytical 

solution in this case using hypergeometric functions. 

In the next chapter we will concentrate on the Bragg condition, i.e., the point 

where the diffraction efficiency is maximum. We already showed how phase coupling 

in the transmission geometry induces a shift of the selectivity curve along the Bragg 

detuning axis due to fringe bending. In the next chapter we will consider other effects 

that can also contribute to a change in the Bragg condition. Finally we will show a 

series of experimental results confirming the theory developed in this chapter and in 

Chapter 6. 



Chapter 6 

Bragg Detuning Effects 

6.1    Introduction 

In this chapter, we study in detail the different mechanisms that affect Bragg detun- 

ing and that are usually encountered in applications making use of photorefractive 

crystals. When a grating is recorded in a photorefractive crystal, the Bragg condition 

is satisfied when, by definition, the expression £(z) is identically equal to zero. Phys- 

ically, it means that the Bragg condition is satisfied when, for example, the reading 

configuration is identical to the recording configuration and no fringe bending takes 

place. However in many practical instances, the recording and the readout configu- 

rations are different because of changes in external conditions. As we shall show, this 

situation induces a shift of the diffraction efficiency along the Bragg detuning axis. 

These changes can, for example, be due to variations in the angle or the wavelength 

of the readout beam relative to the position or wavelength of the reference beam. A 

change in Bragg condition can also be due to variations in the index of refraction 

of the crystal or to an expansion or a dilatation of the crystal. In the former case, 

it modifies the wavelength of light inside the crystal and in the latter case it affects 

the grating spacing inside the crystal. Such effects can be induced by electric fields 

applied to the photorefractive crystal, by polarization changes or by temperature 

changes. It is thus important to start by analyzing the Bragg detuning parameter 

separately to determine exactly by how much the diffraction efficiency is detuned for 
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a given change in external conditions. 

We start from the general expression for the Bragg detuning parameter derived 

in Chapter 5, 

äz) = 2t + (pC(z) (6.1) 

where 

t = [{kpz - Kz + IQ = eAn + £AA (6.2) 

and 

frsM-'^ («-3) 

By definition £An encompasses the terms that depend on changes in angle and wave- 

length of the readout beam and the terms that depend on changes in index of refrac- 

tion of the crystal. £AA encompasses the terms that account for the crystal expansion 

(or dilatation). From these definitions we derive, in the rest of this chapter, an ex- 

plicit and comprehensive analytical expression for the Bragg detuning parameter £, 

assuming a first-order calculation. We then show experimental results of Bragg de- 

tuning measurements in strontium barium niobate (SBN) and fit the results to the 

general theory. We first show results from measurements of Bragg detuning due to 

fringe bending and phase coupling when an electric field is applied to a SBN:60 crystal 

during recording. We then show how the electro-optic effect induces Bragg detuning 

in SBN:75 and deduce values for the electro-optic coefficient of the crystal. Finally, 

we show how the measurement of Bragg detuning at different polarizations yields a 

value for the birefringence of SBN:60. 

6.2    Angle, Wavelength and Index Changes 

In this section, we analyze how the Bragg detuning parameter (denoted by £An in this 

case) is affected by changes in the angle and the wavelength of the readout beam and 
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by changes in the bulk index of refraction n of the crystal. £An is given by Eq. (6.2), 

otherwise written as 

If A0 is the wavelength during writing and A0 + AA0 is the wavelength during readout 

(AA0 is a variable describing to first order the wavelength detuning of the readout 

beam), the different components of the four wave vectors are given by 

k»* = rax:"'cos6p   k»L = T^kr0
npsin9

P 

(6.5) 

k" = \^kr0
n°cos 9°  k*± = T^kr0

n°sin6° 

kTZ = irUr cos 9r kT\ = T^n,. sin 9T Ao Ao 

ksz = Y0
ns cos 9S ksL = j^nssin6s 

where n, (i = r, s, />, a) is the index seen by the respective beam. Because of the 

anisotropy of the crystal, the different beams do not necessarily see the same index 

of refraction. We define 

9P = 9T + A9P 

9C = 9S + A9ff (6.6) 

where A6P is a variable describing to first order the angular detuning of the readout 

beam. Ao? describes the angular shift of the diffracted beam and can be determined 

directly from the momentum-conservation relation, k„± = kp± + K±, 

sinfltf = —-r-sm0/> + -r^sm6s — -r^-sin9r (6.7) "a 

\0 + A\0       °     A0 + AA0       
p    A0       

5     A 
that simplifies to 

na(sin 9S + A9C cos 9S) = n„(sin9r + A9P cos 9r) + (ns sin 9S — nT sin9r) I 1 H——- 

(6.8) 
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by keeping only the first-order terms in A9P, A9(7, and AA0. We assume that there is 

no first-order change in the index of refraction as a function of angle (this is the case 

in uniaxial crystals, as explained later), i.e., 

n0 = n<r(9c) = nff{9. + A6<r) = nff(6a) (6.9) 

The difference between nr and ns is assumed to be a first-order quantity, as well as 

the differences 

Anp   —   rip — nr 

Anff   =   rip — ns (6.10) 

In this case we can define an average bulk index of refraction n, and the angular shift 

of the diffracted beam can be expressed as 

A9C =     1 

cos9s 

'' Anp     AX0\   . (An„      AX0 sin 6r —    — :—   sin 9S + A9P cos 9r (6.11) 
n \0 ) \   n X0 

By using Eq. (6.11) and Eq. (6.5) in the definition of the Bragg detuning parameter 

[(Eq. (6.4)] and by considering only the first-order terms in A9P, An^, Anp, and AA0, 

we can express £An as 

\„ cos 9S 

'' Anp     A\0\       .           .      (Ana     A\0\ . p ' cos{9T - 9S) -    — —   - A9P s\n{9r - 9S) 
n X0 J \   n \0 

(6.12) 

This expression is valid in all three writing geometries. The angular detuning A9P is 

taken inside the crystal. There are thus two contributions to this angular detuning: 

one is due to the outside physical rotation of the readout beam and one is due to the 

change in index of refraction Anp, which also creates a rotation of the readout beam 

inside the crystal because of Snell's law, even if the beam is not physically rotated 

outside the crystal. 

In the transmission and the reflection geometry, if the angles outside the crystal 

are denoted by a hat, 9, one can write 
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sin6p = UpSmOp (6.13) 

sin 9r + A6p cos 9T = np(sm 9r + A6P cos 9r) (6.14) 

where A9P = 9P — 9T is the amount by which the readout beam is physically rotated 

outside the crystal relative to the position of the reference beam. Since np(6p) = np(9r) 

and sin 9r = nr sin 0r, 

A9D cos 9r     An0 
A9P = -=£- -f- - -^ tan 9T (6.15 

n   cos c/r        n 
Similarly, in the perpendicular geometry, because the reference beam is incident on a 

perpendicular surface of the crystal and all the angles are measured with respect to 

the z axis, 

cos 9p = np cos 9p (6.16) 

cos 9r — A9P sin 9r = nfi(cos 9r — A9P sin 9T) (6-17) 

Since np(9p) = np(9r) and cos 9T = nT cos 9T, 

A90 sin 9T     AnD A9P =   _" .   / + -^- cot 9r 6.18 
n   sm0r        n 

If the angle and the wavelength of the readout beam remain unchanged and if the 

contribution from the index change is assumed isotropic, Anp — Anc = An, the 

Bragg detuning parameter is given by 

An     irAnlcos9s-cos9T 

A0     cos vs cos or 

in the transmission and in the reflection geometries, and by 

An = irAnlsm9s-sm9r 

X0     cos 9S sin 9r 

in the perpendicular geometry. Equation (6.19) is important because it demonstrates 

that by just using the symmetric configuration in the transmission geometry, it is pos- 

sible to cancel out the contribution due to an isotropic index change in the expression 

for the Bragg detuning parameter. 
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Figure 6.1: Crystal orientation with respect to the propagation axis, ß = 0° for the 
reflection geometry, ß = 45° for the perpendicular geometry, and ß = 90° for the 
transmission geometry. 

Uniaxial crystals 

In this subsection we compute the index changes that occur in crystals that typically 

are used for photorefractive applications: uniaxial crystals like SBN and LiNbOs- We 

consider the geometry shown in Fig. 6.1 with the c axis in the plane of incidence. 

In-plane polarization corresponds to extraordinary polarization and out-of-plane po- 

larization corresponds to ordinary polarization. For ordinary polarization the light 

sees an isotropic material, and the changes in index of refraction are thus isotropic. 

For an extraordinarily polarized beam incident at an angle 6, the index of refraction 

is determined by solving 

nl(0) 
sin2(fl - ß)      cos2(fl - ß) 

ni nt 
(6.21) 

where ß is the angle that the c axis makes with the propagation axis z, and n0 is the 

ordinary and ne is the extraordinary index of refraction. The angle ß is chosen such 

that the grating vector K is parallel to the c axis to maximize the diffraction efficiency. 

During readout, assuming that the crystal remains uniaxial (this is rigorously true 
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only if the space-charge field and the applied electric field are aligned along the c axis 

of the crystal), the two principal indices of refraction, n0 and ne, change to 

n0       -+n0 + An0 

ne      —* ne + Ane (6.22) 

As a result of thermal and electric field effects, 

An0   =   -lri3n3
0AE0+^AT 

Ane   =   -±r33n
3

eAE0 + ^AT (6.23) 

where AEo and AT are variations in applied field and temperature between the 

readout and the recording configurations, r13 and r33 are the electro-optic coefficients 

and dn0/dT and dne/dT are the index coefficients for thermal change. The new index 

of refraction is then given by 

sin2(0 ~ ß) + cos2(fl - ß) 
[ne{0) + Ane(0)]2      (ne + Ane)

2 T (n0 + An0)
2 

To first order in Ane and An0, Ane(6) is given by 

Ane(0) = sin2(6 - ß)Ane + cos2(6 - ß)An0 (6.25) 

It can be shown that there is no index change to first order as a result of a first-order 

change in angle, i.e., if 6 = 6 + A6, ne(6) = ne(9) if A6 is a first-order quantity. In 

the rest of this chapter we assume that the same polarization is used for the readout, 

the diffracted, and the writing beams. Therefore if ordinary polarization is used, 

Anp = AnCT = Ara0, and if extraordinary polarization is used, Anp = Ane(0r) and 

Ana = Ane($s). In the transmission geometry (ß = TT/2), it is most often the case 

that the angles of incidence (6T, 6S) inside the crystal are small. Since furthermore in 

most of the crystals ri3 <C r33, to a good approximation, Eq. (6.25) simplifies to 

Ane(8) » Ane (6.26) 
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and the crystal can be considered as an isotropic medium regarding index of refraction 

changes, even for extraordinarily polarized light. The general formulation for the 

Bragg detuning parameter [Eq. (6.12)] is also valid to describe anisotropic diffraction 

where the readout beam and the diffracted beam have different polarization states 

[33]. 

6.3    Crystal Expansion 

If the crystal itself expands or contracts after recording, it leads to a change in the 

length of the grating spacing. The related change in grating vector then induces a 

change in the Bragg detuning parameter (denoted by £AA in this case). Starting from 

Eq. (6.2), 

where 

^ = Ukpz + Kd
z - Jk*-{kpjL + Ki)*) (6.27) 

fön                 A/j- 

k2    =    \kr? 
Kd   =   K + AK (6.28) 

where K is the initial grating vector and Kd is the grating vector after deformation. 

Therefore 

e AA / r k„ + AKZ - ^/k*-(ksL + AK±y (6.29) 

which, to first order in AKZ and AKU reduces to 

ZAA = t(AKz + t<in0sAKx) (6.30) 

In practice, the known quantities are the strains along the two principal axes, ec = 

AAC/AC and ea = AAa/Aa, where Ac and A0 are the projections of the grating spacing 
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a 

AA. a 

A„ AA„ 

Figure 6.2: Anisotropie expansion of the grating spacing inside the crystal: deforma- 
tions along the principal axes of the crystal (A = 2TT/\K\ and Ad = 2ft/\Kd\). 

A = 27r/\K\ along the c and a axes, respectively (Fig. 6.2). We then need to relate 

these known strains to the changes in grating vector AKZ and AK±. We have 

Kc   =   K ■ ec = 2it 

Ka   =   K-ea = 2% 

By differentiating Eq. (6.31) we get that 

A, 
A2

a + A? 

Aa 

A* + A* 
(6.31) 

AKC   _   K2
a-K2AAC    2lQAAa 

Kc K2      Ac K2 Aa 

AKa   _   K2-K2AAa    2ÄjAAc 

Ka K2      Aa        K
2 A 

—* 
From the definition of the grating vector K we have that 

(6.32) 

Kc   = 

Ka    = 

2-irn 

X" 
2TU 

[cos(0s - ß) - cos(0r - ß)] 

[sin(0s -ß)- sin(0r - ß)\ (6.33) 



88 Bragg Detuning Effects 

We also have that 

AKZ   =   AKcCosß-AKasmß 

AKs.   =   A#csin/? + A#acos/? (6.34) 

By use of Eqs. (6.32), (6.33) and (6.34) in the expression for £AA [Eq. (6.30)], it is 

possible to relate the detuning parameter to the strains AAC/AC and AAQ/Aa: 

tAA  _ —L-{ cos(0s - ß)£ \{Kl - K2
C)^ - 2K2

a^± 
2 cosOA      v ' K2 i    a Ac Aa 

+ 

sin(9s-ß)^i 
-I V2^a OBr2AAc {Kl-KD- 2Ki (6.35) 

which can be simplified to yield 

tAA Ttln 
\0 cos 6S 

[cos(0r - 6S) - 1] ^cos2(0r-/?) + ^sin2(0r-/?) 

sin(0r - es) (^ - ^) sin(0r - ß) cos(0r - ß)\ (6.36) 

We consider two types of crystal expansion; one is due to thermal changes and the 

other one is due to electric fields. In the rest of this chapter and in Chapter 7 we 

show under which circumstances these two effects are either important or negligible. 

6.3.1     Thermal Expansion 

When a crystal is heated, it expands according to [34] 

C{j — CXjjJ. (6.37) 

where the thermal expansion coefficient a is a second-rank tensor that relates temper- 

ature (T) to strain (e), another second-rank tensor. For uniaxial crystals, there are 

only two nonzero coefficients, an = 022 = aa and 0:33 = ac, along the two principal 

axes of the crystal. This leads to 
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ec   =   e33 = —— = acAT 
Ac 

ea   =   £ll = ^ = aaAr (6.38) 

where AT is the change in temperature between writing and readout. The following 

convention is adopted for the sign of a: if a > 0, the crystal expands when it is 

heated (AT > 0). 

6.3.2    Piezoelectric Expansion 

An electric field Eo applied to a photorefractive crystal induces expansion (strain) 

inside the crystal through the piezoelectric effect 

Cij = ^2 dijkEok (6.39) 
j 

where dijk is the piezoelectric tensor [27]. For uniaxial crystals and an electric field 

Eo applied along the c axis, the only piezoelectric coefficients (in reduced notation) 

relevant to the expansion of the crystal are d\3 and d33: 

AAC      ,   A „ 
ec   =   -£— = d33AE0 

ea   =   ^± = dl3AE0 (6.40) 

where AEo = EQW — EQR is the change in applied field between writing and readout. 

6.4    Bragg Detuning Parameter 

The complete Bragg detuning parameter £ can then be written as the sum of the two 

contributions, 

£ = £A" + £AA (6.41) 

Therefore, 
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£ = 
■K In     {An0 — An0 

X0 cos 6S 
+ 

n 

ec cos2(0r - ß) + ea sin2(0r - ß) + ^ - ^ [cos(^r - es) -1] - 

\A$P(A9P, Anp) + (e0 - ec) sin(0r - /?) cos(0r - ß)\ sin(0r - 0.) 1        (6.42) 

If extraordinarily polarized light is considered, Eq. (6.42) can be written as 

Tcln     I Ane — An0  ...       . .  .  ,n      .      „n,  , 
£ = V—Z7T<i — ~ sm(^ _ 9») sm(^ + e* ~ 2ß) + A„ cos 6S 

ec + ^)cos\9r-ß)+{ea + [(-+T) —^   sin'(^r - ß) - -T- 
n   1 A0 

[cos(#r — $s 

A0P(A6P, An0, Ane) + (ea - ec) sm(0r - ß) cos(0r - ß)\ sm(0r - 0S)' 

If ordinarily polarized light is used, Eq. (6.42) simplifies to 

1]- 

(6.43) 

£ = 
■win 

X0 cos 9S 

eccos2(0r -ß) + ea sin2(0r - ß) + 
An0     AX0 

n 
[cos(0r - 0S) - 1] - 

AÖP(A^, An0) + (ea - ec) sin(0r - ß) cos(^ - ß)] sin(0r - 6S) 1        (6.44) 

Equation (6.42) shows how external variations between the readout and the record- 

ing configurations induce changes in the Bragg condition. Therefore, by measuring 

Bragg condition changes, it is possible to measure variations in the crystal properties 

and determine some of the crystal parameters (e.g., electro-optic coefficient, birefrin- 

gence, etc.), as shown in the experiments described in the next sections. By further 

examining the diffraction efficiency away from the Bragg condition and measuring 

the selectivity behavior, it is also possible to obtain information on the index grating 

modulation depth and on the interaction length inside the crystal [35], as mentioned 

in the previous chapter. 
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Equation (6.42) consists of a sum of three terms, the terms proportional to (Anp — 

An<r) and (ea — ec) being direct manifestations of the anisotropy of the crystal. If 

the crystal were perfectly isotropic, the physical meaning of the second term is that 

both index change and crystal expansion could be viewed as equivalent wavelength 

changes [AA/A + An/n = (AA/A)e?m]. Therefore a shift in the readout wavelength 

is sufficient to compensate for these effects and the shift is the same regardless of the 

value of the signal beam angle 0S. The third term means that the anisotropic part of 

the crystal expansion can be viewed as an equivalent angular detuning of the readout 

beam. This contribution can therefore be compensated by a change in readout angle. 

The anisotropy of the index of refraction introduces an additional term (the first one) 

that cannot be compensated directly by an angle or a wavelength change. 

Important concepts to analyze from these expressions for the Bragg detuning pa- 

rameter are the angular selectivity and the wavelength selectivity of a planar grating. 

By definition the angular (wavelength) selectivity is given by the inverse of the an- 

gular (wavelength) bandwidth defined in Chapter 2. In terms of £, the bandwidth 

is given by A^6™) = TT. Translated into angle and wavelength, the bandwidths are 

given by 

A0(bw)   = 

AX0
{bw) 

X0     cos 0S 

nl sm{9s — 6r) 

\0 cos 6, s 
nl cos(0r — 6S) — 1 

(6.45) 

Figures 6.3 and 6.4 give these bandwidths as a function of the reference beam angle 9T 

for a given signal beam angle 6S = 0. The figures show that the perpendicular geom- 

etry offers the largest angular selectivity and that the reflection geometry offers the 

largest wavelength selectivity. These selectivity properties are one of the main rea- 

sons the perpendicular geometry is chosen for holographic data storage using angular 

multiplexing, and the reflection geometry is chosen for holographic data storage using 

wavelength multiplexing. In addition, scatter noise is minimized in the perpendicular 

geometry. 

When an image-bearing hologram is recorded in a photorefractive crystal, it can 
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Figure 6.3: Angular bandwidth AO^^ as a function of reference beam angle 0r for a 
crystal length / = 1 cm (A0 = 514 nm, n = 2.3). 
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Figure 6.4: Wavelength bandwidth AA(6u,) as a function of reference beam angle 9r 

for a crystal length / = 1 cm (A0 = 514 nm, n = 2.3). 
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be viewed as a collection of plane waves incident on the crystal at different angles 6S, 

all of these waves being recorded with a single reference plane wave at 8r. Equation 

(6.42) gives the Bragg detuning as seen by each of the components 9S. For perfect 

reconstruction of the whole image during readout, it is necessary to satisfy the rela- 

tion £(9S) = 0 for all 6S contained within the image bandwidth. The two variables 

at our disposal that can be controlled to satisfy £(0S) — 0 are AA0/A0 and A6P. By 

examining Eq. (6.42), one can see that if there is no index anisotropy, the first term 

in Eq. (6.42) cancels out, and reconstruction over the whole image bandwidth can 

be done by adjusting simultaneously AA0/A0 and Adp, despite the anisotropy of the 

crystal expansion. In the next chapter, we will examine in more detail the recon- 

struction of image-bearing holograms under a modified Bragg condition and define 

transfer functions to quantify the distortion that occurs during readout. 

6.5    Phase Coupling Effect 

From Eqs. (4.18) and (4.20), the following expressions can be derived for the phase 

coupling component of the Bragg detuning parameter in the transmission geometry 

(ZPC) 
an(i in *ne reflection geometry (£pc)i respectively: 

?PC(z)   =   -//?tanh72-2
lnrpp 

$c(z)   =   -Iß (6.46) 

Some special cases of Bragg shifting in LiNbOß induced by phase coupling due to the 

photovoltaic effect have been analyzed by Heaton et ah [36] and demonstrated by 

Tao et al. [37] [38]. 

In the transmission geometry, strong nonlinear coupling occurs at large applied 

fields. As shown in Fig. 4.4, this coupling induces strong nonlinear variations in 

the modulation and in the phase of the index grating inside the crystal. For large 

pump-to-probe ratios (rpp >> 1), the Bragg detuning parameter £pC(z) is a nonlinear 

function of z. In this case the concept of a Bragg condition is actually lost: £(z) = 0 

cannot be satisfied at all points inside the crystal because the grating consists of a 
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spatial distribution of grating vectors inside the crystal. This means that a hologram 

recorded under these conditions can no longer be retrieved with optimum efficiency. 

For small values of rpp (rpp < 1), the Bragg detuning parameter is approximately 

constant ((pC « —Iß), implying that in this case, phase coupling simply shifts the 

diffraction efficiency along the Bragg detuning axis and that the concept of a Bragg 

condition remains meaningful. 

In the reflection geometry, the Bragg detuning component due to phase coupling 

£pC is constant regardless of the value of the pump-to-probe ratio. Like in the previous 

case (rpp < 1 in the transmission geometry), phase coupling simply shifts the Bragg 

selectivity curve along the Bragg detuning axis. However, we showed in Chapter 4 

that in the reflection geometry, phase coupling is always negligible, mainly because of 

the necessary use of ordinary polarization and of small grating spacings. Therefore, 

in the reflection geometry, Bragg detuning due to phase coupling will in general not 

be observed. The same conclusion holds for the perpendicular geometry as well. 

Figures 4.4 (transmission geometry) and 4.6 (reflection geometry) show that am- 

plitude coupling tends to reduce the effective thickness of the index grating inside 

the crystal. Because the readout beam sees an effectively thinner grating, the Bragg 

selectivity of the resulting hologram will decrease. We already showed (Fig. 5.3) how 

this decrease in effective thickness also influences the maximum diffraction efficiency. 

6.6    Experiments 

6.6.1     Introduction 

We performed several experiments to measure the Bragg detuning and the diffraction 

efficiency of holograms written and/or retrieved in the presence of an applied field. 

We used only the transmission geometry because the properties of our photorefrac- 

tive crystals (Ce-doped SBN:60 and Ce-doped SBN:75) are such that their optimum 

response (Debye screening length) lies within the large grating spacing domain (~ 

1 /am). Figure 6.5 is a diagram of the experimental setup. It consists of a simple 

holographic arrangement in which a single laser beam originating from an argon-ion 
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Ar-ion laser 
A,0 = 514nm 
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Figure 6.5: Experimental setup: ND, neutral density filter; A/2, half-wave plate. 

laser is split into two branches of equal optical length, one branch being the reference 

beam, the other one being the signal beam. The crystal is mounted on a rotation 

stage to facilitate the measurement of the diffraction efficiency as a function of the 

incidence angle of the readout beam. 

To measure £pC it is necessary to apply a field during recording to yield phase 

coupling between the writing beams. £Ara can be measured using the electro-optic 

effect, by recording with no field to avoid phase coupling and applying a field during 

readout. A weak readout beam is necessary for nondestructive readout and to avoid 

beam fanning. With the SBN:60 crystal used in the transmission geometry, the 

electro-optic effect is too weak to permit observation of a substantial Bragg detuning 

£An that can be measured accurately. Therefore, to illustrate the Bragg detuning due 

to the electro-optic effect, experiments are performed in Ce-doped SBN:75, which 

has a much more pronounced electro-optic effect. At room temperature SBN:75 is 

quite close to the ferroelectric phase transition and therefore exhibits also a nonlinear 
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electro-optic effect. This experiment will thus also confirm the nonlinear behavior that 

is characteristic of photorefractive crystals operating near the phase transition [39]. 

Finally, to illustrate Eq. (6.42) with SBN:60, a grating is written with extraordinary 

polarization and read with ordinary polarization. The birefringence Anb is large 

enough to observe and measure accurately a detuning. 

6.6.2    Phase Coupling Effect 

We already showed in Chapter 5, using a simple Fourier transform argument, how 

phase coupling shifts the Bragg condition. The purpose of this experiment is then 

to measure the phase coupling component of the Bragg detuning parameter and to 

fit the results to the theoretical model to obtain valuable information on some of 

the crystal parameters. The symmetric geometry is used to cancel out the electro- 

optic component of the Bragg detuning parameter. The grating (A = 5 /mi) is written 

with extraordinarily polarized light (A0 = 514 nm) in a Ce-doped (0.05 mol%) SBN:60 

crystal with the field applied along the c axis. The crystal is completely illuminated to 

minimize screening fields. The hologram is written to steady state with an exposure 

of 0.28 J/cm2 (I = 56 mW/cm2 for 5 sees). Readout is then performed with one of the 

original writing beams sufficiently reduced in intensity so as not significantly to erase 

the written hologram. With a grating spacing A of 5 /mi and a field E0w of 10 kV/cm 

(/ = 2.67 mm), it can easily be shown that the contribution from the piezoelectric 

effect is at least more than one order of magnitude smaller than the observed detuning 

due to fringe bending (we use d33 = 80 pm/V which is a typical value for SBN:60 

[27]). This confirms that in this case, the piezoelectric component is negligible. Since, 

in addition, fringe bending is not affected by the nondestructive readout process, it is 

not necessary to apply a field during the diffraction efficiency and the Bragg detuning 

measurements. This also allows us to minimize beam fanning. 

The first set of experiments is conducted with a pump-to-probe ratio rpp = 1/100. 

For this small value of rpp, the phase of the grating varies linearly inside the crys- 

tal, iß(z) tu -ßz [Eq. (6.46) and Fig. 4.5(b)]. The Bragg condition, defined as the 

condition for which the diffraction efficiency is maximum, is then given by 



Experiments 97 

&~-) = _u±=u^sc (647) 

and is different for holograms recorded at different fields, since (f>sc and K depend on 

Eow- 
The dotted curves of Fig. 6.6 show the experimental diffraction efficiencies, with 

the peak efficiency normalized to unity, as a function of the angular detuning A$p 

[translated into the Bragg detuning parameter £ = 7r/sin(0r — 9s)A9p/(\0 cos#s)] for 

five planar gratings recorded at five different electric fields. The solid curves show 

the corresponding theoretical diffraction efficiencies that we obtained by numerically 

solving the coupled-wave equations for the readout process, as described in Chapter 

5. 

Figure 6.6 shows good agreement between theory and experiment. The discrep- 

ancy at zero field is due to the background noise, as the efficiency is very small. The 

asymmetry observed at high fields appears to be due to beam fanning and scatter- 

ing from striations in the crystal. At high electric fields, owing to stronger energy 

transfer, the magnitude of the grating is significant only near the entrance face of the 

crystal as mentioned in Chapter 4. Therefore the reading beam sees a thinner grating, 

which explains why the width of the diffraction peak increases with the applied field: 

if amplitude coupling takes place in a long crystal, it is no longer the crystal length 

I but the width of the grating amplitude (proportional to I/7) that determines the 

Bragg selectivity of the grating. Figure 6.6 also clearly illustrates the phenomenon of 

apodization, since at high applied fields, the side lobes have completely disappeared. 

Figure 6.7 shows the experimental data points and the theoretical fit for the angu- 

lar detuning A9P of the maximum diffraction efficiency determined from Eq. (6.47), 

as a function of the applied field Eow (note that because the angles of incidence are 

small, one can take A9P = nA0p): 

n A 
A0p(Eow) = «COS^SCTT- (6-48) 

lit 

from which rejj((K) and EQ are inferred: reff((K) = 125 pm/V and EQ = 22 

kV/cm at A = 5 fim. This yields a value for N£ = 1.5 1023 m~3. An independent 

measurement of the electro-optic coefficient rc of the crystal, 



98 Bragg Detuning Effects 

Figure 6.6: Experimental (dotted curves) and theoretical (solid curves) diffraction 
efficiencies as a function of the Bragg detuning parameter £ for holograms recorded 
at five different applied fields Eow in SBN:60 (rpp = 1/100, A = 5 pm). 
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Figure 6.7: Experimental data points and theoretical fit of the angular detuning A9P 

(in degrees) as a function of the applied field E0w (in kV/cm) (rpp = 1/100, A = 5 

K 
rc = r33 0^13 (6.49) 

yields a value of 180 pm/V, which is consistent with other experimental values found 

in the literature and the value of re//((/lT) measured above, considering that typical 

values for ((K) in SBN:60 vary from 0.6 to 1.0 [25]. 

The second set of experiments is conducted with a beam ratio rpp = 100. With 

a large value of rpp it is possible to get a fringe shape having both a negative and 

a positive slope [Fig. 4.5(a)] which creates a strong asymmetry in the diffraction 

efficiency. This also results in an important broadening of the main diffraction peak 

and in the appearance of a double peak in the selectivity curve, as shown in the 

experimental plots of Fig. 6.8. In this case, particularly for large grating spacings, 

the linearization of the band transport model is no longer valid, as the modulation 

depth inside the crystal approaches unity. It becomes difficult to fit the diffraction 

efficiencies to the theory because the selectivity is extremely sensitive to small changes 

in the nonuniform index amplitude and in the phase inside the crystal. Nevertheless, it 
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7.5      10 

Figure 6.8: Experimental diffraction efficiencies as a function of the Bragg detuning 
parameter £ for holograms recorded in SBN:60 at five different applied fields: (a) 0, 
(b) 2.5, (c) 5, (d) 7.5, and (e) 10 kV/cm (rpp = 100, A = 5 /mi). 

is important to note that wave mixing alters considerably the Bragg condition and the 

selectivity of holograms; this can be of significant importance for image amplification 

and may pose upper limits on data storage. 

6.6.3    Electro-Optic Effect 

Equations 

If there are no changes in the angle and the wavelength of the readout beam and 

if an isotropic index change Anp = AnCT = An is considered, the Bragg detuning 

parameter in the transmission and reflection geometry is given by Eq. (6.19): 

fAn pun   ■xAnl fcosO, — cos6r 

cos 9. cos 9r 
(6.50) 

Because the angles of incidence are small (the beams are almost at normal incidence 

on the crystal), this expression can be written to a good approximation using Snell's 

law as 
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An         nAnl /sin20r-sin26s\ .   . 
£       =   —-—    —        transmission geometry 

tAn   = 
irAnl 

2 +—r(sin2 ßT + sin2 9S)      reflection geometry       (6.51) 
2n2 

The index change An comes from the fact that the bulk index seen by the writing 

and the readout waves is different. For example in an uniaxial crystal, An can take 

the following forms (again assuming small incidence angles inside the crystal): 

1 
Ane_no/   =   ~^n3 

1 

le-pol     — 2'"e r33(Eow)E0w — f33{EoR)EoR^ 

An0_po;   =   -~nz
0 ri5{Eow)Eow—TI3{EOR)EQR^ 

Arib   =   ne — n0 (6.52) 

for gratings written and read with extraordinary polarization and in the presence of 

an applied field (Ane_po/), for gratings written and read with ordinary polarization 

and in the presence of an applied field (An0_po;), and for gratings written with one 

polarization and read with the other polarization in the absence of a field (An;,). In 

Eq. (6.52) rij is the low-frequency undamped electro-optic coefficient defined by [40] 

rik(E0) = rik(Eo) + 2>m(#>)<U(£*) (6.53) 
m 

where r^ is the high-frequency clamped electro-optic tensor that includes the nonlin- 

ear terms responsible for such effects as electrically controlled diffraction (ECD) [39], 

Pij is the elasto-optic tensor, and d{j is the piezoelectric tensor. It is important to note 

that the full expression for rtJ-, as given in Eq. (6.53), must be considered when one 

is properly accounting for the electro-optic effects described here. Detailed and in- 

teresting discussions on the differences between clamped (strain-free) and undamped 

(stress-free) electro-optic coefficients as well as their influence on the photorefractive 

effect through a uniform or nonuniform field can be found in Refs. [41] and [42]. 

In the transmission geometry, even if the fields applied during writing and readout 

are different, the Bragg detuning parameter cancels out in the symmetric configura- 

tion ($r = —9S). Note also that in this case, the detuning parameter is much larger 
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for extraordinarily polarized light than for ordinarily polarized light. In the reflection 

geometry, regardless of the recording configuration, there is a detuning as soon as the 

fields applied during recording and readout are different. Note also that in absolute 

value [Eq. (6.51)], for the same field difference, the detuning is much larger in the 

reflection geometry than it is in the transmission geometry. The former is thus a 

more favorable geometry for the field multiplexing technique [43]. Note also that in 

the reflection geometry, the piezoelectric contribution can usually not be neglected. 

Electro-Optic Coefficient of SBN:75 

The goal of this experiment is to measure the electro-optic component of the Bragg 

detuning parameter in a Ce-doped (0.015 wt %) SBN:75 crystal (7 = 5 mm) and 

deduce from the experiment values for the electro-optic coefficient of that crystal. 

The grating is written with extraordinary polarization (A0 = 514 nm) with a total 

exposure of 0.19 J/cm2 (I = 37.5 mW/cm2 for 5 sees) and is subsequently read with 

a weak-intensity beam while an electric field is applied to the crystal. To avoid phase 

coupling no field is applied to the crystal during the recording process. 

Figures 6.9 and 6.10 show the angular selectivity of gratings written in the sym- 

metric configuration and the asymmetric configuration, respectively, and then read 

in the presence of an applied field (E0R) (the diffraction efficiency at zero applied 

field is normalized to one). The five curves in each figure correspond to five different 

applied fields, from 0 kV/cm to 4 kV/cm. In the symmetric configuration, no signifi- 

cant detuning is observed. Indeed in this configuration there is no contribution from 

the electro-optic effect as shown by Eq. (6.51). The only contribution that could 

induce Bragg detuning would be from the piezoelectric effect. Figure 6.9 confirms 

(as indicated earlier) that in the transmission geometry the piezoelectric contribution 

to the detuning is negligible in SBN. Figure 6.10 shows the angular selectivity of a 

grating written in the asymmetric configuration at approximately the same grating 

spacing (A = 0.6 /mi). This figure shows a strong detuning arising from the electro- 

optic effect. The figure also clearly illustrates the electrically controlled diffraction 

(ECD) phenomenon: applying an electric field after writing the grating enhances the 
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Figure 6.9: Angular selectivity of a grating written at symmetric incidence in SBN:75 
and then read at five different applied fields E0R equal to 0-4 kV/cm (A = 0.6 //m, 
§r = -§, = 25°). 

diffraction efficiency of that grating. At room temperature in this crystal the in- 

crease is approximately a factor of two. Closer to the ferroelectric transition, i.e., at 

higher temperatures, the increase is much more pronounced, as is observed in Ref. [39] 

(as much as one or even two orders of magnitude). The ECD effect will be further 

discussed in the next chapter in the context of holographic data storage. By tak- 

ing Bragg detuning measurements at different grating spacings and different applied 

fields, it is possible to estimate the value of the electro-optic coefficient r33(E) by use 

of Eq. (6.51) 

e = 
2irlne 

"X"8 sin 9sr33(EoR}EoR (6.54) 

Figure 6.11 shows the general behavior of r33 as a function of field at three different 

grating spacings. The behavior and the values agree well with the observed behavior 

mentioned in Ref. [44] and is characteristic of photorefractive crystals operating near 

the ferroelectric phase transition. 
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Figure 6.10: Angular selectivity of a grating written at asymmetric incidence in 
SBN:75 and then read at five different applied fields E0R equal to 0-4 kV/cm (A 
= 0.6 urn, K = 0°, 6S = 50°). 
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Figure 6.11: Electro-optic coefficient r33 as a function of the field E0R for Ce-doped 
SBN:75 (*   A = 0.6 /mi; A   A = 0.75 /mi; o   A = 1 /mi). 
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6.6.4    Phase Coupling and Electro-Optic Effects 

In the absence of phase coupling [£pc(z) = 0] and with no external change in the 

readout beam [A6P = A\0 = 0], if a field EQW is applied during the recording of a 

hologram in a general writing configuration, then the same field needs to be applied 

during readout to satisfy the Bragg condition, £ = 0, thereby retrieving the stored 

hologram with maximum efficiency. This is the basic principle of the field multiplexing 

technique introduced by Stepanov et al. [43] and further developed by Kewitsch et 

al. [45]. 

In the presence of a linear detuning that is due to phase coupling (as it is the 

case in the transmission geometry for small pump-to-probe ratios rpp <C 1; in the 

perfectly drift-dominated case 7 = 0; or in the reflection geometry), it is still possible 

to retrieve the hologram with maximum efficiency, but it is necessary either to apply 

a different field during readout than during writing or to adjust the angle (A0P) or 

the wavelength (AA0) of the reading wave to compensate for the phase-coupling com- 

ponent. If the phase-coupling component is small, one can reconstruct the hologram 

by simply changing the field during readout. 

For large grating spacings in the transmission geometry, because of strong phase 

coupling, the fringe-bending effect can be so large that it becomes impossible for one 

to retrieve the image by simply applying a different electric field. It is then necessary 

to fulfill the Bragg condition by adjusting A$p or AA0. Figure 6.12 shows a three- 

dimensional representation of the Bragg detuning parameter £ in the transmission 

geometry for SBN:60 as a function of EQR and 6S, taking 0r = 0, a writing field Eow 

= 5 kV/cm, a pump-to-probe ratio rpp <C 1, and extraordinary polarization. In this 

case Eq. (6.1) simplifies to 

I = ^ne sin2 e$rzz{Em - E0R) - Iß (6.55) 

The highlighted curve (intersection of the plane with the shaded contour) represents 

the Bragg condition £ = 0. It shows how the fringe-bending effect can be compen- 

sated by application of a field that is different during readout than during writing. 

Figure 6.12 also shows that for large grating spacings (small 9S), the Bragg detuning 

parameter cannot be compensated by adjustment of only the field during readout. In 
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Figure 6.12: Three-dimensional representation of the Bragg detuning parameter £ as 
a function of EOR and 0S in an asymmetric transmission geometry, showing the simul- 
taneous influence of the phase coupling component and the electro-optic component 
in SBN:60 (rpp < 1, 0r = 0, E0w = 5 kV/cm). The plane (solid grid) represents 
1=0. 



Experiments 107 

this case it is necessary to either change the angle or the wavelength of the incoming 

readout beam. 

6.6.5    Polarization Effect 

Our goal in this experiment is to measure the detuning that is due to the birefringence 

of a Ce-doped SBN:60 crystal. We exemplify Eq. (6.51) by writing a grating with 

extraordinarily polarized light and by reading it with ordinarily polarized light at 

low intensity. The grating is written with an asymmetric configuration, i.e., with the 

reference beam coming at normal incidence (6r = 0) and the signal beam coming at 

an angle 9S. The intensities of the two writing beams are both equal to 29 mW/cm2. 

In this case assuming small incidence angles, we have that 

ns = nT = ne 

n(T = np = n0 (6.56) 

and the Bragg detuning parameter reduces to 

£ = -JEÜL. (^[cos(0r - $,) - 1] - ^sin(0r - 0.)) (6.57) 
Aocos0s [   n n ) 

No electric field is applied to the crystal during writing or readout. Figure 6.13 shows 

the angular selectivity of a grating written with the reference beam coming at normal 

incidence and the signal beam coming at an angle 6S of 40°. The main diffraction peak 

corresponds to ordinary polarization readout, and the small peak at 0° corresponds 

to Bragg-matched readout, because a small amount of extraordinary polarization is 

still present in the readout beam. From data at different signal-beam angles 6S, the 

birefringence determined from Eq. (6.57), 

|An6| = A0por  **'• (6.58) 
cos 6S — 1 

can be estimated. A9poi is the observed angular detuning (angle taken outside the 

crystal) of the main diffraction peak, i.e., A0P when £ = 0. Figure 6.14 shows the 

measured angular detuning A0poi as a function of the parameter X, 
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Figure 6.13: Normalized diffraction efficiency of a grating written with extraordinary 
polarization and read with ordinary polarization in SBN:60 (A = 0.75 fim). 

X = 
cos0s-l /180 

sinö. 7T 
(6.59) 

for five data points at 4 = 0°, 20°, 30°, 40° and 50°. The angular coefficient of the 

linear fit is then a direct measure of the birefringence and yields | An&| = 0.027. This 

value agrees well with other published values for the birefringence of bulk SBN:60 

[46]. 

6.6.6    Temperature Effect 

Under the assumptions used in this chapter, the Bragg detuning parameter varies lin- 

early with a change of temperature, the proportionality coefficient being determined 

from the recording geometry and the parameters a0, ac, dn0/dT, and dne/dT. We 

will discuss in more detail in the next chapter the consequence of Bragg detuning due 

to thermal changes when we analyze the effects of thermally fixing information in a 

holographic data storage system. 
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Figure 6.14: Measured angular detuning in degrees (A6poi) as a function of the pa- 
rameter X. The angular coefficient of the linear fit yields |Anj,| = 0.027. 

6.7    Conclusions 

In this chapter we have studied how different mechanisms affect the Bragg condition 

in photorefractive crystals. We have concentrated on the effects that induce variations 

in the index of refraction of the crystal and that change the grating vector inside the 

medium. These variations can be due to change of polarization, change of wavelength, 

change of temperature or change of applied fields. Using a plane wave approach, we 

first derived an analytical expression for the Bragg detuning parameter, taking into 

account all these different mechanisms and the fact that the crystal is anisotropic. 

We then showed how careful measurements of Bragg detuning can yield valuable 

information on several of the crystal parameters like the acceptor concentration, the 

electro-optic coefficient and the birefringence. 

In practice though, most often image-bearing holograms are stored in photore- 

fractive crystals and not simple plane waves. Nevertheless, the theory developed in 

this chapter is useful to solve the problems that arise when image-bearing holograms 

are recorded.  In general, when image-bearing holograms are reconstructed under a 
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different Bragg condition, the images cannot be fully and perfectly reconstructed be- 

cause of some deformation that occurs upon readout, as we shall show in the next 

chapter. We will show that, using the results of this chapter, transfer functions can be 

defined to quantify these distortions and we will also propose methods to compensate 

for these distortions. 



Chapter 7 

Image-Bearing Holograms 

7.1    Introduction 

In this chapter we examine the case of image-bearing volume holograms and the prob- 

lems that arise when the conditions under which they are retrieved are different from 

the recording conditions. The case of image-bearing holograms is especially impor- 

tant in holographic data storage applications. We start this chapter by a brief review 

of holographic data storage and then analyze the theory underlying the retrieval of 

images when Bragg conditions change. We show that it is useful to define transfer 

functions, whose expressions derive directly from the results presented in Chapter 

6. We consider two practical examples of holographic data storage applications in 

which a change of Bragg condition cannot be avoided. The first one corresponds to 

the typical setup for a digital data storage system in which thermal fixing is used to 

fix the information inside the crystal. The second one corresponds to a transmission 

geometry configuration in which holograms are stored in a SBN:75 crystal operating 

near the phase transition and an electric field is applied to the crystal to dynamically 

control the diffraction efficiency of the image-bearing holograms. 

Ill 
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7.2    Holographic Data Storage 

As we said in the first chapter, many applications in optical storage and optical pro- 

cessing make use of photorefractive materials. In this section we focus on the use of 

photorefractive materials for volume holographic data storage. This encompasses ap- 

plications in which either a few holograms, each having a large diffraction efficiency, or 

a large number of holograms, each having a small share of the available dynamic range, 

are to be recorded in a given volume of material. Ferroelectric-photorefractive materi- 

als tend to be highly polarizable (as characterized by large dielectric and electro-optic 

effects) and, when suitably doped, they generally provide large dynamic ranges with 

correspondingly high storage capacities. Accessing the full storage capacity, though, 

requires that all sources of noise scattering be kept to an absolute minimum in order 

to provide the best possible signal-to-noise ratio (SNR) during readout [7]. An esti- 

mate of this total capacity can be done by use of an exhaustive analysis that considers 

the interactions and trade-offs between signal-to-noise ratio, cross talk, and capacity 

issues [7] [47]. 

The storage of multiplexed volume holograms in photorefractive media, particu- 

larly for data storage applications, has recently become a topic of renewed interest. 

Angular multiplexing [48] [49] is widely used because it is the easiest to implement 

experimentally. Up to 10,000 holograms [49] have been stored using this method, in 

which each image is stored at a given angle for the reference beam. Phase encoding 

is a variant of angular multiplexing, in which each image is recorded with a different 

phase code, the different codes being orthogonal to each other [50] [51]. This method 

has the advantage of having no moving parts. Wavelength multiplexing [52] [53] in 

which each hologram is stored at a different reference wave wavelength can also be 

used. In photorefractive media possessing a sufficiently large electro-optic and piezo- 

electric effect, an applied electric field can directly be used for multiplexing, as first 

demonstrated in LiNbC>3 by Stepanov et al. [43] and most recently by Kewitsh et 

al. [45]. In this case, the bulk refractive index, and hence the Bragg condition, is 

controlled by the electric field. There also exist other exotic multiplexing techniques 

to store multiple holograms in a single volume, like the mosaic multiplexing [54] and 
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Figure 7.1: Representation of a typical setup for holographic data storage. 

the fractal multiplexing [49] techniques developed at the California Institute of Tech- 

nology. All these schemes take advantage of the large Bragg selectivity of volume 

holograms to store large numbers of holograms in a single crystal. 

These different data storage techniques offer various advantages and disadvan- 

tages, as explained and described in the references that have been mentioned. How- 

ever they all have the same generic setup like the one shown in Fig. 7.1. It consists of a 

computer feeding the digital information onto a spatial-light-modulator (SLM) that 

usually modulates the amplitude of the signal wave. This information is recorded 

inside the crystal with the use of a reference beam. During retrieval, the readout 

beam, at the appropriate Bragg condition, is diffracted out of the crystal and the 

diffracted signal is then captured by a charge-coupled-display (CCD) array before 

the information is fed back to the computer for further treatment. The multiplexing 

techniques mentioned above deal with the different possible ways the reference beam 

can be used to record the information and then to retrieve the signal at the correct 

Bragg condition. 
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7.3    Image-Bearing Holograms 

We start by examining the case of image-bearing volume holograms and the problems 

that arise when they are retrieved under different Bragg conditions. An image can 

always be decomposed into a set of angular components, and each component can 

then be viewed as a plane wave incident on the crystal at a different angle 0S. The 

set of angles 6S that forms the image is called the signal beam angular extent. 

When the Fourier transform of the input image is stored in the crystal, the signal 

beam angular extent represents the field of view, i.e., the lateral extent of the image. 

In the two-dimensional representation considered here, the lateral extent is measured 

in the plane of incidence and in a direction perpendicular to the propagation axis. 

In this case each point or pixel on the input image corresponds to a plane wave 

propagating at a given angle 6S. If the crystal acts as a filter and limits the signal 

beam angular extent to some finite quantity, it puts an upper limit on the size of 

an input image such that the whole signal is reconstructed during readout. When 

an imaging system is used, the components of the angular spectrum represent the 

different spatial frequencies contained in the image. In this case a crystal that limits 

the signal beam angular extent imposes a limit on the spatial resolution of the images 

that can be stored in the crystal. The relationship between the signal beam angular 

extent and either the lateral size or the resolution of the input image is determined 

by the F number of the optical system used in the setup. 

The consequences of changes in the Bragg condition during the readout process 

on the reconstruction quality is an important problem to analyze, because it is a 

problem that occurs in many applications that make use of image-bearing holograms. 

For example, the most promising method for fixing information in a holographic data 

storage system is currently thermal fixing [55], but as we shall show in the next section, 

this can lead to situations where image-bearing holograms are recorded and retrieved 

at different temperatures. An applied electric field might also be used during readout, 

for example, in a system that uses the electrically controlled diffraction effect [39], to 

enhance and dynamically control diffraction efficiencies. However a readout electric 

field different from the writing electric field will also induce a change in the Bragg 
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condition through the electro-optic and piezoelectric effects. Anisotropie diffraction 

at various wavelengths [33] is used to achieve nondestructive readout, but it also 

modifies the Bragg condition through polarization and wavelength changes. 

A change in Bragg condition during the readout of an image-bearing hologram 

has two consequences, as illustrated in Fig. 7.2 : first, the readout beam needs to 

be adjusted (by changing AA0 and/or A0P) to achieve optimum diffraction efficiency, 

and second, in the most general case, only a single angular component of the image 

(0°) can be made to be exactly Bragg matched. Therefore, because only one of the 

image angular components is exactly Bragg matched, it is necessary to examine by 

how much the readout process under a different Bragg condition induces distortion 

in the reconstructed signal. This is done by decomposing the stored input image into 

its angular spectrum and by determining the amplitude of each diffracted plane wave 

component. One can define a transfer function, H(0S), relating the input angular 

spectrum, AP(0S) to the diffracted angular spectrum, Aa{9s)i such that Aa(0s) = 

H(0s)Ap(9s) where 0S represents the signal beam angular extent [56]. 

7.3.1    Transfer Function 

To compute H(6S), we assume that the input signal has a narrow bandwidth so as to 

neglect the dispersion of the photorefractive response and the modulation due to the 

obliquity factor. We further assume that the efficiencies are small so as to neglect the 

intermodulation gratings. In this case, the complex transfer function, based solely on 

Bragg detuning effects, is given by [57] [58] [59] 

i7(0s)=exPHm)]!|^ (7-1) 

where £°(0S) is the detuning seen by the component at 0S, assuming that the com- 

ponent at 0° is Bragg matched [i.e., £(0°) = 0]. We consider three different cases, 

corresponding to the three different ways to satisfy the relation £(0°) = 0, using 

the variables A0P and AA0: case (i), by changing only the angle 6P of the readout 

beam, which is the easiest to implement experimentally if angular multiplexing is 

used; case (ii), by changing only the wavelength A0 of the readout beam, which can 
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writing sphere 
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Figure 7.2:  Ar-space representation of an image-bearing hologram when a change of 
Bragg condition occurs during readout. 

be implemented easily if wavelength multiplexing is used; and case (iii), by changing 

simultaneously the angle 6P and the wavelength A0 of the readout beam. In the last 

case, because both variables are modified, one more degree of freedom exists for us 

to try to improve the transfer function. Therefore, in addition to £(0°) = 0, one can 

also impose d£(0s)/d6s = 0 at 0S = 0° to improve the flatness of the transfer function 

around the component 0° and to get better reconstruction quality. From Eq. (6.42) it 

is possible to compute explicitly the parameter £°(0S) and hence the transfer function 

H(6S) as well as the detunings A6P and AA0 necessary to satisfy ((6°) = 0 in these 

three different cases. The general analytical expressions are given in an appendix to 

this chapter. As we shall show in the following examples, these three cases lead to 

very different transfer functions and to different image quality on reconstruction. 
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7.4    Thermal Fixing in Holographic Data Storage 

7.4.1    Thermal Fixing 

The basic idea underlying the thermal fixing process is to generate an ionic grating 

that matches and compensates the original space-charge pattern of trapped electronic 

charges and that is not erasable optically [60]. This ionic grating can be generated by 

heating the crystal either after (low-high-low process) or during (high-low process) 

the storage process. The crystal is then cooled down and exposed to uniform light to 

erase the electronic contribution to the grating and reveal the then-fixed ionic grating. 

Theories have been proposed recently to explain in detail the physical mechanisms and 

the dynamics of thermal fixing [61] [62]. If the storage and the ionic compensation 

take place at the same time at an elevated temperature, the ionic grating is not 

bounded by a pre-existing electronic grating, and after the revealing process this 

high-low method in general generates higher diffraction efficiencies than does the 

low-high-low method [63] [64]. Large diffraction efficiencies are highly desirable in a 

holographic data storage system because higher capacity can be achieved for the same 

signal-to-noise ratio [7]. Unfortunately, this temperature difference between readout 

and writing induces strains and index changes inside the crystal that then affect 

the Bragg condition, as shown by Eq. (6.42). Using this technique, Staebler et al. 

[65] were, however, able to store, fix, and retrieve multiple image-bearing holograms 

angularly multiplexed in LiNbOß in the transmission geometry. 

7.4.2    Transfer Function 

In this example we consider a typical digital holographic data storage system [19], 

using the perpendicular geometry (0T = —90°) to angularly multiplex images in a 

LiNbC>3 crystal, with ordinarily polarized light (A0 = 514 nm), the c axis at 45°, 

no applied field, and an assumed temperature difference AT = -150 °C necessary to 

achieve fixing (high-low method). This AT induces a change in the index of refraction 

and a change in the grating spacing owing to thermal expansion. Typical values for 

the different crystal parameters are given in Table 7.1, the values for LiNbC>3 coming 
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Parameters LiNbOs SBN:75 

/ 1 cm 1 cm 

A0 514 nm 514 nm 
n 2.21 2.3 

o.a 14 10-6 1/K - 

ac 4 10-6 1/K - 

dn0/dT 5.9 lO"6 1/K - 

dne/dT 6.4 lO"6 1/K - 

ri3 10 pm/V 67 pm/V 

7*33 30 pm/V 1340 pm/V 

^13 2 pm/V 25 pm/V 

<^33 8 pm/V 80 pm/V 

Table 7.1: Parameters for the photorefractive crystals Ce-SBN:75 and LiNb03. 

from Ref. [66]. 

We assume the image to be normally incident on the crystal and take 0° = 0, which 

corresponds to the dc component of the angular spectrum. Since for data storage, 

the Fourier transform of the input image is usually stored in the crystal, the signal 

beam angular extent 6S, representing the field of view, is a measure of the lateral 

dimension of the input object that is stored in the crystal and, by extension, of the 

number of pixels on the input spatial light modulator. This number will determine 

the page capacity and ultimately the total capacity of a holographic data storage 

system. Under these conditions the different transfer functions given in the appendix 

at the end of this chapter can be simplified to yield (taking into account that the 

angle 6S is small, typically a few degrees): 

case (i) 

?V.) 
TTITIAT (1 dn0     ac + aa\ 

H    0s 
Afl n dT 

A*>=4§MAr 

(7.2) 

(7.3) 
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case (ii) 

m) = _Z^AT (^JZ^I ] 9s 

AA0      (ldn0 

A„ ndT 
+ ac   AT 

(7.4) 

(7.5) 

case (iii) 

e{os)=o 
AA, 1 dn0  , ac + aa\ 

ndT 
+ 

Aep = n(^)AT 

(7.6) 

(7.7) 

(7.8) 

7.4.3    Discussions 

Figure 7.3 represents the square of the amplitude of the transfer function, \H(6S)\
2, 

[Eq. (7.1)] as a function of 6S (measured in degrees inside the crystal). The solid 

curve corresponds to case (i) (A6P), the dashed curve to case (ii) (AA0), and the 

dotted line to case (iii) (A6P and AA0). By changing A6P only, the reconstructed 

bandwidth is limited to a full width of ~ 1.5°. The distortion is due to the factor 

(l/fi)dn0/dT + l/2(ac + aa), where thermal expansion is the dominant factor. By 

changing AA0 only, one can achieve reconstruction over a larger signal bandwidth 

because distortion depends only on the difference aa — ctc, i.e., the anisotropic part 

of thermal expansion. When 6T = —90°, anisotropy is the sole cause for image 

distortion and reconstruction over the whole angular spectrum is possible if the crystal 

is isotropic (aa = ac). By optimizing the wavelength and the angle of the readout 

beam simultaneously, one can achieve reconstruction (to first order in A0P and AA0) 

over the whole signal bandwidth, despite the crystal anisotropy. Figure 7.4 represents 

the Bragg detuning parameter £°(0S), i.e., the phase of the transfer function, as a 

function of 0S, for the same three different cases. 

From such a transfer function we define a field of view, corresponding to the angle 

between its (-1) and (+1) zeros. Figure 7.5 shows the field of view (FOV) expressed 
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M°) 

Figure 7.3: Transfer function in the perpendicular geometry with use of LiNb03 for 
a AT = — 150°C. The solid curve represents the case in which only the angle of the 
readout beam is adjusted [case (i)], the dashed curve represents the case in which 
only the wavelength of the readout beam in adjusted [case (ii)], and the dotted line 
represents the case in which both the angle and the wavelength are simultaneously 
adjusted [case (iii)]. 
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Figure 7.4: Bragg detuning parameter (phase of the complex transfer function) in the 
perpendicular geometry with use of LiNbC>3 for a AT = —150° C. Solid curve: case 
(i); dashed curve: case (ii); and dotted line: case (iii). 

in degrees as a function of temperature for case (i) (solid curve) and case (ii) (dashed 

curve). The third case, case (iii), is not represented since in this case the full field of 

view is reconstructed, as shown by the flat transfer function of Fig. 7.3. Figure 7.5 

shows that the field of view increases with decreasing temperature changes. Therefore, 

if a given temperature change is required for fixing to be achieved and if, for example, 

angular multiplexing is used with no tunable laser source, Bragg detuning sets an 

upper limit on the reconstructed field of view, hence on the size of the input image 

(number of pixels). 

Figures 7.6(a) and (b) compare the different detunings that are required to Bragg 

match the dc component of the angular spectrum of the image, i.e., to impose £(0°) = 

0, as a function of temperature. Figure 7.6(a) compares the angular detuning of 

case (i) [Eq. (7.3)] with case (iii) [Eq. (7.8)]. Figure 7.6(b) compares the wavelength 

detuning of case (ii) [Eq. (7.5)] with case (iii) [Eq. (7.7)]. In particular, the wavelength 

detuning necessary to Bragg match the dc component of the image (at 100°C, AA0 « 

0.5 nm) [in case (ii) or case (iii)] is shown to be much larger than the wavelength 

bandwidth of the grating itself (that is of the order of 0.01 nm). 
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temperature in the perpendicular geometry with use of LiNb03. Solid curve: case 
(i); dashed curve: case (ii). 
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Figure 7.7: Relative angular shift of the diffracted beam [AB^O,) - A9C(9°)] (in 
degrees outside the crystal) as a function of 9S for a AT = —150°C. Solid curve: case 
(i) [ABa(9°s) = 0.05°]; dashed curve: case (ii) [A9a(9°s) = -0.075°]; and dotted line: 
case (iii) [A0,(0°) = -0.17°]. 

As shown by Eq. (6.11) the angular direction of the diffracted beam changes as a 

result of a temperature difference AT, and this shift depends on the signal angular 

extent 6S as well. Therefore different parts of the image will be shifted by different 

amounts, resulting in image compression or dilatation. Figure 7.7 shows the relative 

change in angular shift compared with the shift of the central component (measured 

in degrees outside the crystal) as a function of 9S for the cases (i), (ii), and (iii), 

assuming a AT = -150 °C. In case (i) the shift results in a dilatation of the output 

image on the detector, and in cases (ii) and (iii) it results in a compression of the image 

on the output detector. Figure 7.7 shows that the image compression or dilatation 

is approximately equal to 0.2 - 0.3 %. This problem is of particular importance in 

a digital holographic data storage system where high accuracy is required to image 

the spatial light modulator onto the CCD array [67]. Indeed, for an input image 

consisting of 1024 x 1024 pixels, a deformation of 0.3 % represents several pixels, 

which is significant and cannot be neglected. 

So far, the perpendicular geometry has been considered with 9T — —90°. However 
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Figure 7.8: Relative detuning changes (%) as a function of the angle of the reference 
beam 6r (in the perpendicular geometry and for a AT = — 150°C). If angular mul- 
tiplexing is used, each reference beam angle corresponds to an image number. Solid 
curve: case (i); dashed curve: case (ii); and dotted line: case (iii). 

in a holographic data storage system that uses angular multiplexing, different pages 

are stored at different angles 9r. In a typical setup, 6r varies by a few degrees around 

the normally incident position. It is thus necessary to examine by how much the 

field of view and the different angular and wavelength detunings vary as a function 

of 6r, i.e., as a function of page number in a data storage system. The relative 

changes in detuning (expressed in percent) are plotted in Fig. 7.8 and show that a 

variation of a few percent is possible between the two extreme pages stored in the 

crystal. These changes are significant enough that the Bragg condition needs to be 

readjusted for each of the retrieved pages of information. Note that the range of angles 

chosen in Fig. 7.8 for the reference beam angle corresponds to the range required for 

angularly multiplexing 1000 images in a 1-cm-thick crystal by placing reference beams 

at adjacent nulls. 

Figures 7.9(a) and (b) represent the field of view in LiNb03 with a temperature 

difference of 150 °C in the reflection, the perpendicular, and the transmission record- 

ing geometries.   Figure 7.9(a) corresponds to the angular multiplexing case, where 
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only the readout angle is adjusted during reconstruction and Fig. 7.9(b) corresponds 

to the wavelength multiplexing case, where only the wavelength is adjusted. 

In the angular multiplexing case it is clear that the reflection geometry is inappro- 

priate because only an extremely small field of view can be reconstructed. However 

the smaller the reference angle (e.g., in the transmission geometry), the larger the 

reconstructed field of view, which shows that in terms of field of view, the transmis- 

sion geometry is a better choice than the perpendicular one. Unfortunately, in the 

transmission geometry case, the total capacity is less and the cross talk is higher than 

in the perpendicular geometry. 

In the wavelength multiplexing case the reflection geometry is the best choice 

because the reconstruction is almost perfect over the whole signal bandwidth, and it 

is also the optimum geometry in terms of wavelength selectivity [4] [52]. In this case 

the optimum in terms of field of view is also the optimum for achieving maximum 

capacity and minimum cross talk. 

To get a better understanding of the consequences of temperature changes in a 

digital holographic data storage setup (we assume that we use angular multiplexing 

in the perpendicular geometry), it is necessary to relate the field of view to the 

number of pixels on the input spatial light modulator. This number will then give 

a better estimate of how much temperature differences limit the capacity per page. 

The maximum size D of the input image that can be fully reconstructed is given by 

D « n/FOV where / is the focal length of the Fourier lens and FOV is the field 

of view (inside the crystal) determined by the temperature difference applied to the 

crystal and by the writing configuration. For example, with / = 3 cm and FOV = 

4°, D = 4.6 mm. In comparison, the dimension of a typical spatial light modulator 

(SLM) of 1024 x 1024 pixels (of 18-fim size) is of the order of 20 mm. 

Figure 7.10 shows the relationship between the field of view (expressed in degrees 

inside the crystal) and the number of pixels on the input SLM that are fully recon- 

structed. The field of view is plotted for three different focal lengths, /: / = 3 cm, / 

= 5 cm, and / = 10 cm. Figure 7.10 shows that if the 1024 pixels need to be recon- 

structed during readout and if a lens with / = 10 cm is used to store the information, 

the crystal needs to be able to reconstruct a total field of view of 5°, which limits the 
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Figure 7.9: Field of view (in degrees inside the crystal) as a function of BT in the three 
recording geometries for a AT = -150°C. The shaded areas represent the forbidden 
regions resulting from the crystal boundary conditions and SnelPs law. (a) Change in 
angle only (angular multiplexing), (b) change in wavelength only (wavelength multi- 
plexing). 



Thermal Fixing in Holographic Data Storage 127 

> 
O 

7.5 

5 

2.5 

0 

-2.5 

-5 

-7.5 

  «.--**""" 

_^*»i£~~Z —-"".'"""■   

^**<i^^ 
s«^~~ •"--.««,,   \ 

**"■■••■«• 

""■»«»^^ 

0 

/=3cm 

/=5cm 

/= 10 cm 

200 400        600        800        1000 

Number of Pixels 
Figure 7.10: Field of view (in degrees inside the crystal) as a function of the number 
of SLM pixels that are fully reconstructed, for three different focal lengths, /. 

temperature difference that can be applied to the crystal to a maximum value of 45 

°C. If a temperature gradient of 150 °C is applied to the crystal [see Fig. 7.9(a)] in 

an angularly multiplexed storage system, a maximum field of view of approximately 

1.5° can be fully reconstructed, which corresponds to ~ 300 pixels (/ = 10 cm), one 

third of the total extent of the SLM. 

7.4.4    Experimental Results 

In this experiment the Fourier transform of a circular aperture of diameter d = 2.5 

cm is stored and fixed in a LiNbC>3 crystal with use of the perpendicular geometry 

and a lens of focal length / = 10 cm. The image has a signal beam angular extent 

of 14° outside the crystal, i.e., 6.3° inside the crystal (the field of view is measured 

along the horizontal axis of the aperture). First the aperture is recorded at room 

temperature (25 °C). The crystal is then successively heated to 140 °C, cooled down 

to room temperature, and uniformly illuminated to fix and reveal the hologram (low- 

high-low process). Figure 7.11(a) shows the thermally fixed image on readout. In 

this case there is no temperature difference between the recording and the readout 
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Figure 7.11: Circular aperture recorded in LiNbOß with the perpendicular geometry: 
(a) thermally fixed image with the low-high-low process, (b)-(f) fixed images with the 
high-low process, taken at five different readout angles (AT = —115°C). 

conditions and no visible image deformation (as expected, the whole field of view is 

reconstructed). 

Second, the other approach to achieve fixing is performed: the aperture is recorded 

at an elevated temperature (140 °C), and then the crystal is cooled down and illumi- 

nated to reveal the fixed grating (high-low process). In this case there is a tempera- 

ture difference of -115 °C between the recording and the readout conditions. Figures 

7.11(b)-(f) show the resulting diffracted signals taken at five slightly different readout 

angles (only the readout angle is adjusted to Bragg match the image; there is no 

wavelength detuning in this experiment). Figure 7.11(d) corresponds to the central 

image with the dc component exactly Bragg matched and clearly shows the different 

zeros of the transfer function. From this figure, it can be inferred that the field of 

view for a temperature difference of -115 °C is approximately equal to 4° (inside the 
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crystal). Figure 7.12 shows the corresponding transfer functions computed from the 

expression given by Eq. (7.2) and the parameters of Table 7.1. The theoretical field 

of view (~ 2°) shows good qualitative agreement with Fig. 7.11(d) although the ex- 

perimental field of view (~ 4°) appears larger than the theoretical one (~ 2°). One of 

the reasons is that the interaction length of the fixed grating is less than the crystal 

length (/ = 1 cm). This can be partly due to the fact that the illumination cannot be 

made perfectly uniform over the whole crystal. It could also be partly due to fringe 

bending and beam coupling. Figure 7.13 shows the experimentally measured angular 

selectivity of the different gratings, the unfixed, the fixed following the low-high-low 

process, and the fixed following the high-low process and compares these results with 

the theoretical curve for / = 1 cm. It shows that the interaction length of the grating 

inside the crystal is less than 1 cm. From these selectivity measurements the actual 

interaction length of the fixed grating can be estimated to be / = 0.55 cm. This result 
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Figure 7.13: Angular selectivity: theoretical curve corresponding to / = 1 cm, and 
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is confirmed by the fact that the field of view corresponding to this interaction length 

shows better agreement with the observed value of 4°. Note that similar reduction 

in the grating interaction length because of the fixing process has been previously 

observed during attempts to build a wavelength filter containing a thermally fixed 

grating [68] [69]. 

7.4.5    Conclusions 

In this first application we study the effects that thermal fixing has in a digital 

holographic data storage system. One of the goals is to underscore and point out 

several trade-offs among efficiency, signal-to-noise ratio, and capacity to optimize a 

digital holographic data storage system that utilizes thermal fixing. When several 

pages of information (images) are multiplexed in a single crystal, it is well known 

that the diffraction efficiency of each page goes down as 1/N2 where N is the total 

number of pages multiplexed in a single location inside the crystal. Therefore it is 

highly desirable to store the smallest number of pages possible and pack as much 
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information as possible on a single page. 

This study shows that because of a temperature change, the actual size D of 

the input image is limited to D ~ nf FOV, where / is the focal length of the 

Fourier lens and FOV is the field of view (inside the crystal) determined by the 

temperature difference applied to the crystal. Therefore it is necessary to maximize 

FOV to maximize D, D representing also the maximum number of pixels that can 

be perfectly reconstructed. In an imaging system the effects of temperature changes 

will similarly affect the resolution of the input images, i.e., the size and the spacing 

between the pixels on the SLM. The capacity per page and ultimately the total 

capacity of the data storage system will therefore be affected in a similar way by 

temperature differences. In both the Fourier and the imaging systems it is therefore 

necessary to maximize the reconstructed signal angular bandwidth, which can be 

done by adopting the low-high-low fixing process. 

A recent study [70] showed that in the perpendicular and the reflection geometries, 

the gain in efficiency from using the high-low process compared with using the low- 

high-low process (r)h-i/r)i-h-i) is of the order of 1 to 2 for a usual LiNbOs crystal 

(material optimization is required to achieve this ratio). This gain in efficiency is 

relatively small compared with the price one has to pay in terms of image deformation, 

as shown by the experimental results and the theoretical transfer functions. Therefore 

in these geometries it is preferable to use the low-high-low process. However in the 

transmission geometry this gain factor T)h-i/r)i^h,-i can be of the order of 102-103, 

which shows that a substantial gain in diffraction efficiency and dynamic range can 

be achieved by use of the high-low process. Figure 7.9 also shows that distortions 

in the transmission geometry are relatively limited and that in practical situations 

and for typical temperature changes the field of view determined by a 1024 x 1024- 

pixels SLM will be always fully reconstructed. Therefore in this geometry it is largely 

preferable to use the high-low process to achieve fixing of image-bearing holograms. 
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7.5    ECD Effect in Holographic Data Storage 

7.5.1    Introduction 

In this section we examine the operation of recording a hologram in a photorefractive 

crystal at a temperature slightly above the ferroelectric-paraelectric phase transition, 

or Curie point, so as to eliminate both beam fanning noise and beam coupling ef- 

fects, while also employing electrically controlled diffraction to substantially enhance 

and adjust the diffraction efficiency of the stored holograms [56]. Above the Curie 

point defined by the Curie temperature Tc the crystal is in the paraelectric state and 

therefore, in the absence of an applied bias field, possesses no linear electro-optic ef- 

fect. The lack of a linear electro-optic effect precludes first-order diffraction, thereby 

suppressing beam fanning and beam coupling. It is helpful in storage applications to 

eliminate beam coupling because, as we saw in earlier chapters, it acts to broaden the 

angular bandwidth of the holograms and can therefore diminish the overall storage 

capacity [71]. 

Operation above Tc also requires that an applied field be used during readout to 

electrically reveal the stored holograms [39]. The applied field induces a small-signal 

linear electro-optic component, thereby providing the necessary linear relationship 

between the photorefractive space-charge field and the refractive index modulation. 

When using this approach, field-induced changes in the average bulk refractive index 

also come into play since these changes alter the Bragg condition. For an image- 

bearing hologram, each angular component of the reconstructed signal wave is affected 

differently and is best described by means of a field-dependent transfer function, as 

defined earlier by Eq. (7.1). 

Not only is electrically controlled diffraction (ECD) [39] an integral part of the 

scheme described here for holographic storage above Tc, it is also quite useful in its own 

right as a potentially important mechanism on which to base new holographic devices 

for applications such as dynamic wavelength filtering [72] and integrated crossbar 

switching [73]. In Chapter 9 we will describe in detail the properties of a dynamic 

multiple-wavelength filter based on a photorefractive stratified volume holographic 

optical element that uses the ECD effect to selectively address different wavelengths. 
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Material Tc (°C) Ref. 

Sr0.6oBao.4oNb206 (SBN:60) 78 Glass [74] 
Sr0.75Bao.25Nb2O6 (SBN:75) 44 Glass [74] 

BaTi03 130 Klein [75] 
KTao.70Nbo.30O3 (KTN) -32 Levya [76] 

Ba2_,Sr:cK1_2/NayNb5015 (BSKNN) 80 Neurgaonkar [77] 
PLZT 10/65/35 ~-20 Rupp [78] 

Table 7.2: Ferroelectric photorefractive materials having phase transition tempera- 
tures within 100 °C of room temperature. 

As shown in Table 7.2, there exists a number of ferroelectric photorefractive ma- 

terials with a Curie temperature within 100 °C of room temperature [74] [75] [76] 

[77] [78]. Most notable are the tungsten bronzes - such as strontium barium niobate 

(SBN), lead barium niobate (PBN), and barium strontium potassium sodium niobate 

(BSKNN) - that can be grown over a wide compositional range, with the nominal 

phase transition temperature being dependent on the particular composition chosen. 

Previous studies of photorefractive recording in the vicinity of the ferroelectric phase 

transition have been carried out in SBN:75 [39], PLZT [78], and KTN [79]. By way 

of example, we focus on Ce-doped Sro.7sBao.25Nb206 (SBN:75) since it offers many 

interesting properties related to its near room-temperature diffuse phase transition, 

with Tc being distributed over a range of 35 - 45 °C [39]. 

7.5.2    Electric Field Enhancement 

The ferroelectric phase transition of a crystal refers to the transformation of the 

crystal from a paraelectric state above Tc to a ferroelectric state below Tc. In the 

paraelectric state, the crystal is nonpolar and centrosymmetric, meaning that the 

material has no linear electro-optic effect; hence, no first-order diffraction can be 

observed from photorefractive holograms, although space-charge formation can still 

take place. In the ferroelectric state, the crystal acquires a spontaneous polarization 

in the form of ferroelectric domains. When a ferroelectric photorefractive crystal is 

uniformly poled to a single domain, it possesses a macroscopic linear electro-optic 
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effect and can record volume holograms in the usual manner. The minimum field 

necessary to pole the crystal is called the coercive field. The transition between the 

paraelectric and the ferroelectric states typically occurs at a critical temperature Tc, 

the Curie temperature, that is an intrinsic characteristic of the material [44]. 

When operating near the ferroelectric phase transition (i.e., around T = Tc), the 

material properties respond strongly to changes in electric field and become very 

sensitive to changes in other external variables such as temperature and pressure. 

Therefore, it is generally necessary to maintain fairly tight control over these param- 

eters. The materials sensitivity to changes in the environment is governed by the 

nature of the phase transition. In a well-ordered crystalline lattice the transition 

is typically quite sharp, occuring over just a few degrees. In contrast, disordered 

solid-solution crystals, like many of the tungsten bronze materials, are characterized 

by local variations in composition which act to spread the transition over a much 

broader range of temperatures compared with an ideal crystal with a uniform com- 

position. With regard to device applications, a diffuse phase transition is useful since 

it relaxes the degree to which the operating temperature and pressure must be main- 

tained constant. Tungsten bronze materials such as SBN and PBN are also referred 

to as "relaxor ferroelectrics" because they exhibit strong dielectric dispersion near 

the phase transition [80]. 

As we said, in the vicinity of the ferroelectric-paraelectric phase transition, many 

of the crystal properties become strongly field-dependent and nonlinear. The fact that 

an applied field can, under these conditions, be used to control the hologram ampli- 

tude is most easily seen by considering the simplest nonlinear form, a purely quadratic 

electro-optic effect (characteristic of the paraelectric phase) in which An(jBo) oc 

Etotai = {Esc + Eofi where Esc is the photorefractive space-charge field defining 

the hologram and E0 is a uniform applied field. By simply expanding the square, it 

is clear that the cross term 2ESCEQ yields an index modulation proportional to Esc 

with the amplitude being controlled by Eo- Near the phase transition, the nonlinear- 

ity takes on a more general form, but the applied field can still be viewed as providing 

a bias to a linear regime. It can be shown [44] that An(E0) oc Escf(E0) where 
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is an increasing function of EQ, and where r is the electro-optic coefficient and e is the 

dielectric constant. The field dependence of the dielectric constant must be taken into 

account since this determines the degree to which the space-charge field is screened 

by the lattice. The grating strength v is then given by 

v =      f^ (7.10) 
\0yJcos 0p cos 9 <r 

where / is the crystal length, and 9P, 9a are the propagation angles (inside the crystal) 

of the readout and the diffracted beams, respectively. In conclusion, a hologram can 

still be recorded in the paraelectric state in the form of a space-charge pattern, but 

an applied field Eo is needed to reveal the index grating An(Eo) and to observe a 

diffracted signal. 

7.5.3    Transfer Function 

The transfer function is given by Eq. (7.1), 

^.) = exph^,)]^ (7.11) 

where £°(0«) is the detuning seen by the component at 9S assuming that the component 

at 0°s is exactly Bragg matched. The general expressions are given in an appendix to 

this chapter. Note that in the following experiments we consider only the transmission 

geometry and vary only the angle of the readout beam. Finally the image-bearing 

holograms are recorded using a telecentric imaging system. 

Figures 7.14 and 7.15 show examples of transfer functions, \H(9S)\2, as a function 

of the signal beam angular extent 9S (degrees inside the crystal) for the Ce-doped 

SBN:75 crystal used in the experiments described in the next section. The transfer 

functions are shown in case (i), in which only the readout angle is adjusted upon 

reconstruction. For a telecentric imaging system, the angular extent of an object is 

related to its spatial frequency f0 by 
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Figure 7.14: Transfer function as a function of the signal beam angular extent 9S for 
9r = 5° and 6° = 0° at four different applied fields: (a) 1, (b) 2, (c) 3, and (d) 4 
kV/cm (1 = 1 cm, A0 = 514 nm, extraordinary polarization). 

"$ — A0/0 (7.12) 

This indicates that an object with a resolution of 100 lp/mm has a total angular 

extent of ± 6° outside the crystal, i.e., ± 2.7° inside the crystal. 

Figure 7.14 is computed for a reference beam angle 6r = 5° and a Bragg matched 

component 9°s = 0°. Figure 7.15 is computed for a reference beam angle 9r = 6.5° and 

a Bragg matched component 6° = -6.5°. For a large angle difference between 9T and 

0°, substantial deformation occurs at the highest angular components of the input 

image. For a small difference between 9r and 0°, very little distortion occurs during 

image retrieval. Note also that the transfer function, while being strongly dependent 

on the difference between 9r and 0°, is also a non-symmetric function of the signal 

beam angular extent 9S. 



ECD Effect in Holographic Data Storage 137 

1 

0.975 

0.95 

SL_ 0.925 

§*      0.9 

^- 0.875 

0.85 

0.825 

(S) ^* 
:r^ <:S -« "*""*""■ 

y / / » 
"V x\ *^ 

(b) /     / 

■ / 
/      /' 
(0 / 

N : 

/ * 
/ 

/(d) 

t i 

-9 -8 -7 -6 

e,(°) 

Figure 7.15: Transfer function as a function of the signal beam angular extent 6S for 
0T = 6.5° and 0° = -6.5° at four different applied fields: (a) 1, (b) 2, (c) 3, and (d) 4 
kV/cm (/ = 1 cm, A0 = 514 nm, extraordinary polarization). 

7.5.4    Experimental Results 

Angular Multiplexing of Plane Waves 

In this experiment, we combine angular multiplexing and an applied field to store 

and efficiently retrieve multiple planar gratings in a Ce-doped SBN:75 crystal heated 

at 60 °C. The temperature is maintained constant throughout the recording and the 

readout process. The recording intensities are Is = Ir = 5 mW/cm2. An asymmetric 

writing geometry where 0° = 0° and 0r = 12.5° (30° outside the crystal) is used 

during the recording process. A sequential recording exposure schedule is considered 

to obtain equal diffraction efficiencies upon readout. The recording schedule [81] is 

determined from 

,   -Ti Jm-l)ß + l 
tm~  rln(m-l)/? + 2 

(7.13) 

with rr = 7 s and ß = 0.75. rT is the recording time constant, ß = 1—exp(—ti/rT), and 

tm is the recording time of the mth hologram. The multiplexed holograms are then 

read with a low intensity (25 pW/cm2) readout beam so as not to erase the holograms. 
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Figure 7.16: Diffraction efficiency of five angularly multiplexed planar holograms 
recorded in SBN:75 at T = 60 °C (8r = 12.5° and 0° = 0°). The holograms are 
successively read with three different applied fields: 0 kV/cm (a, solid), 2 kV/cm (b, 
dashed), and 4 kV/cm (c, dotted). 

Figure 7.16 shows the diffraction efficiency as a function of angle, clearly illustrating 

the presence of the five holograms previously recorded in the crystal in a sequential 

way. It also shows how the field applied during readout drastically enhances the 

diffraction efficiency of all the holograms compared with the efficiency at no applied 

field, because of the strong ECD effect at T = 60°C. The figure finally shows how the 

electric field changes the Bragg condition of each hologram, because an asymmetric 

writing geometry is used [see Eq. (6.51)]. 

Figure 7.17 shows the diffraction efficiency distribution of one hundred holograms 

stored in the same Ce-doped SBN:75 crystal under the same recording conditions 

as in Fig. 7.16. The following parameters are used for the recording schedule, rT = 

25 s and ß == 0.05. Figure 7.17 shows the relative uniformity of all the diffraction 

efficiencies, even after a field of 4 kV/cm is applied to the crystal to simultaneously 

reveal all the one hundred previously recorded holograms. 
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Figure 7.17: Distribution of the diffraction efficiencies of one hundred angularly mul- 
tiplexed planar holograms recorded in SBN:75 at T = 60 °C (0r= 12.5° and 0S = 0°). 
The holograms are read with an applied field of 4 kV/cm. 

Storage Of High Resolution Images 

Figure 7.18 shows three pictures of the Air-Force resolution test target (Group 6.2, i.e., 

a resolution of ~ 100 lp/mm). The image is recorded in the same Ce-doped SBN:75 

crystal at T = 60°C, as an image hologram using a telecentric imaging system. The 

magnification of the test target onto the crystal is 3.2, the writing intensities are Is = 

Ir = 5 mW/cm2 and a symmetric recording geometry is used with 0° = -6.5° and $r 

= 6.5° (± 15° outside the crystal); Fig. 7.18(a): original transmitted image through 

the crystal; Fig. 7.18(b): reconstructed image with no applied field, showing low 

diffraction efficiency; and Fig. 7.18(c): reconstructed image using a field of 2 kV/cm, 

showing no distortion compared with the original transmitted image and a greatly 

enhanced diffraction efficiency compared with the signal reconstructed with no field. 

Figure 7.15 represents the transfer function corresponding to this experiment. As 

mentioned earlier, 100 lp/mm corresponds to a total angular extent of 5.5°. The 

transfer function confirms the fact that, using this optical system, a resolution of 100 

lp/mm can be effectively retrieved despite the presence of an applied field of 2 kV/cm. 
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Figure 7.18: Air Force resolution test target stored in a Ce-doped SBN:75 crystal and 
reconstructed using the ECD effect: (a) original transmitted image; (b) reconstructed 
image at 0 kV/cm; and (c) reconstructed image at 2 kV/cm (T = 60°C, 0r = 6.5° 
and 0° = -6.5°). 
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7.6    Conclusions 

In Chapter 6 we studied the different effects that may induce changes in the Bragg 

condition in photorefractive crystals. The combined effect of angle, wavelength, index 

of refraction, and grating spacing changes were analyzed with temperature and elec- 

tric field effects taken into consideration. These changes can be significant in many 

applications involving the use of photorefractive crystals and need to be carefully 

considered and studied to optimize diffraction efficiencies. 

In this chapter, transfer functions are defined, computed and measured to describe 

and quantify the distortion that is due to Bragg detuning and that occurs during the 

readout of image-bearing holograms. We show that in certain cases, by adjusting 

the angle and the wavelength of the readout beam simultaneously, it is possible to 

compensate for these distortions. The knowledge of such transfer functions can also 

be potentially useful for design of suitable digital signal processing techniques that 

can compensate for such distortion if, for example, it is not possible to do it directly 

during the readout process. We have concentrated our study on applications in the 

field of holographic data storage, including the effect of themal fixing in a digital 

holographic data storage system and the effect of electrically controlled diffraction 

for image enhancement. Finally I would like to thank J. F. Heanue and J. P. Wilde 

and acknowledge their help for mounting the experiments described in Sections 7.4 

and 7.5, respectively and for storing and retrieving the images shown in Figs. 7.11 

and 7.18. 
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7.7    Appendix to Chapter 7 

In this appendix, we give the exact analytical expressions for the parameter £°(0S) 

as well as the corresponding angle and wavelength detunings (in the three cases 

mentioned in the text).  These expressions are functions of the recording geometry, 

the position of the reference beam, AT, AE0, and the different crystal parameters. 

We start by defining several functions: 

An 
C = ec cos2(0r -ß) + €a sm2(0T -ß) + ^ (7.14) 

ft 

An 
T   =   (ea - ec) sin(0r -/?) cos(0r -/?) --^ tan 0r       R,T 

=   {ea-ec)sm(Or-ß)cos(Or-ß) + ^cot0r        P (7.15) 

where R denotes the reflection, T the transmission, and P the perpendicular geometry. 

cos#, 
n cos 0r 

sin. 8, 

d9p   =   ^^rA6p       R,T 

A0P       P (7.16) 
n sin uT 

69'p corresponds to the angular detuning of the readout beam that is due to the 

physical rotation outside the crystal (A0P) but is expressed in terms of angles inside 

the crystal [see Eqs. (6.15) and (6.18)]. 

n 

By use of these four definitions, the Bragg detuning parameter [Eq. (6.42)] can be 

expressed the following way 

i{9s) = j^- U(0s) +U-^A [cos(0r - 6.) - 1] - (T + dOp) sin(0r - *.)} 

(7.18) 
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The transfer function is given by 

where 

H{0,)=exp[-i?{e.)] 
rin{°(fl.) 

(7.19) 

case (i) 

f(0.) = 
irln 

£[sin(0r -9,) + sin(0, - ff) + sin(ff - 0r)]} (7.20) 

case (ii) 

d6D = 
Af(ff) + £[cos(flr - 9°s) - 1] - Tsin(flr - ff) 

sin(0r - ff) 

*°C) = 
■icln 

-—    ;;        fo/-(0,)[co8(gr _ ff) _ i] 
Aocos0s[cos(0r — ff) — 1J •• 

Äf(9°s)[cos{Br - 9S) - 1] + 

T[sin(0r - 0.) + sin(0s - ff) + sin(ff - 9r)}} 

AA0 _ Af(9°s) + £[cos(flr - ff) - 1] - Tsin(flr - 
A0   ~ cos(0r-ff)-l 

case (iii) 

t°(0s) = 
irln 

(7.21) 

(7.22) 

(7.23) 

A0 cos 9S sin(9r — ff) 

sin(flr - 0.) + sin(fl, - ff) + sin(ff - 9T) 
cos(9T - ff) - 1 

s\n{9r - ff )^f   + cos(0r - ff )7V(ff) 
dVs n 

Af(0,) sm(9r - ff) - AT(ff) sin(Ör - 9S) + 

(7.24) 
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AA0 sin(^-^)f 
\ ~T~ *-'  — 

+ cos(0r - 0°)^(0°) 

dd0 + r = dM 

dO„ 
+ 

cos(0r - 0°) - 1 

1 + cos(0r - 0°) -W) 

(7.25) 

(7.26) 
sin(0r - 6\ 

It is interesting to note that in case (iii), regardless of the geometry, the transfer 

function depends only on the index anisotropy (Anp — Anc) and not on the crys- 

tal expansion. This is a consequence of the fact that it is possible to compensate 

for the anisotropic expansion by adjusting simultaneously the outside angle and the 

wavelength of the readout beam. 
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Chapter 8 

Structures of Thin Gratings 

8.1    Introduction 

Layered structures of gratings have been studied several times in the past. One of the 

first authors to study such structures and some of their applications was Yakimovitch 

[82], who showed how the diffraction efficiency and the angular selectivity of a system 

of three-dimensional holographic gratings in layers are determined by the total thick- 

ness of the structure and by the separation between the gratings. His approach was 

to solve the coupled-wave equations in each layer [4], implicitly assuming a structure 

of thick gratings. Zel'dovich and Yakovleva [83] and Zel'dovich et al. [84] studied 

in detail the characteristics of two-layer thin phase holograms and showed theoret- 

ically and experimentally how these systems can increase the diffraction efficiency 

and improve the selectivity compared with single thin phase holograms. The concept 

of stratified volume holographic optical element (SVHOE) was first introduced by 

Tanguay and Johnson [85] [86]. A SVHOE consists of a succession of thin holographic 

recording layers separated by buffer layers. Nordin et al. [87] studied in detail the 

diffraction properties of SVHOE's by using a computational algorithm known as the 

optical beam-propagation method [88]. They also proposed several applications in 

the fields of optical processing and optical computing. One of the applications [89] 

that has been experimentally demonstrated consists of a multiple-beam-generation 

system in which the authors were able to divide an incoming beam of light into seven 
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beams of equal intensity by using an optimized two-layer SVHOE. This application 

underlines one of the major advantages of SVHOE's: by considering each layer as an 

independent degree of freedom and by being able to modify variables and parameters 

within each layer, SVHOE's can be exploited for new optical processing applications. 

Different materials have been used in the fabrication of SVHOE's: (i) dichromated 

gelatin films [84], (ii) photoresist [86] [89], and (iii) photopolymers [90] [87]. All 

these materials require, to some extent, processing and complicated recording and 

development procedures. 

We specifically concentrate on SVHOE's made of photorefractive films [91], al- 

though the general theory developed is also valid for SVHOE's made from other 

recording materials if the physical process responsible for the photorefractive effect is 

neglected. Photorefractive crystals are of growing interest currently because several 

methods, e.g., metalorganic chemical-vapor deposition (MOCVD) [92] and excimer- 

laser ablation [93], are being developed to grow them as thin films. Besides, photore- 

fractive polymers [94] [22] and semiconductor quantum wells [95] are also being grown 

in the form of thin films having attractive photorefractive properties, which makes 

them suitable for the fabrication of artificially structured media, too. One of the main 

advantages of photorefractive materials compared with the materials previously used 

in the fabrication of SVHOE's is their interesting and unique properties in real-time 

optical processing and optical data storage [96] [97]. 

In this chapter we first develop an analytical model to describe a structure of thin 

photorefractive films in a general holographic writing-reading configuration. The 

model is essentially an extension of the theory developed in Ref. [83] to an arbitrary 

number of thin holograms and includes the photorefractive effect. We extend the 

model, which gives a closed-form solution for the first-order diffraction efficiency of 

such structures, to a single thick photorefractive grating by taking the limit for an 

infinite number of thin films. This leads to a solution for the diffraction efficiency 

of a thick grating with a nonuniform amplitude and a nonuniform phase that agrees 

with the results that have been derived in Chapter 5 by using a coupled-wave ap- 

proach.  The analytical solutions for SVHOE's are then compared with the existing 
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numerical results for SVHOE's that can be found in Ref. [87]. Finally these struc- 

tures are analyzed in the context of holographic multiplexing. More specifically, a 

new multiplexing scheme is proposed, with the application of an electric field to each 

layer, which permits the multiplexing of several holograms in the structure by means 

of the photorefractive phase shift. One general and important conclusion is that the 

maximum number of holograms that can be multiplexed in a photorefractive SVHOE 

is equal to the number of layers in the SVHOE. In Chapter 9 we will generalize the 

model developed in this chapter for a layered structure of thin gratings to take into 

account structures of thick gratings. 

8.2    Analytical Analysis 

8.2.1    General Configuration 

Writing Geometry 

Figure 8.1(a) describes the general writing geometry of a system containing a stack 

of N thin films separated by buffer layers. Incident upon the structure are the signal 

wave As(f) and the reference wave AT(r). The two waves, assumed to be monochro- 

matic plane waves, both at a frequency u0 = ck0 = 2irnc/\0, write a thin phase 

hologram in each of the photorefractive films (if the signal beam carries an image, 

it is straightforward to decompose the image in its Fourier components and to treat 

each one of them as an independent plane wave). 

The writing field incident on the structure can be written as 

E(r) = A,(r) + Ar(f) = \AS\ exp [-i{cf>s + ks • r)] + \Ar\ exp{-ikT • r) (8.1) 

where \AS\ and \Ar\ are the real amplitudes of the signal and the reference waves, 

respectively, ks and kr are the corresponding wave vectors, and (f>s is an arbitrary 

constant phase in the signal beam. In the following calculations the vectors are 

decomposed into their transverse and longitudinal components, with the z axis being 

the propagation axis: 
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Figure 8.1:  General configuration of a SVHOE: (a) writing geometry, (b) readout 
geometry. 
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k = k± + yf\k\2 - k\ez (8.2) 

f=x + zez (8.3) 

In Chapter 2, we introduced the concept of amplitude grating in which the intensity 

modulates the absorption of the recording medium. In the case of photorefractive 

materials the hologram is modeled as a phase transparency because the incident 

intensity primarily modulates the index of refraction of the material. Each thin 

hologram is therefore represented by a transparency tj{x) describing, at steady state, 

the spatially modulated phase introduced by the photorefractive film located at z — lj, 

when illuminated by the writing field: 

tj{x) = exp (-iy J Anj{x, z)dz\        Vj € [0, N - 1] (8.4) 

with 

Anj(x, z) = —^n3reff\Esc\j cos(<^s + zKz +q-x + <f>j) (8.5) 

where 

q   =   lcsj_     /crj_ 

Kg   =   ksz - hTZ (8.6) 

are the perpendicular and the longitudinal components of the grating vector K inside 

the structure, respectively; n is the index of refraction; refj is the effective electro- 

optic coefficient; and dj is the thickness of the film j. \Esc\j is the magnitude of 

the space-charge field and <j)j is the photorefractive phase shift (<f>j could represent 

any arbitrarily imposed phase shift on the index grating). The magnitude of the 

space-charge field and the phase shift are assumed to be given by the results of the 

standard photorefractive band transport model [10] [11], as described in Chapter 3: 

|^5c|jexp(^i) = -m 
EQ(E0 + iED) 
EQ + ED — iEo 

(8.7) 
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where EQ is the applied electric field; m = 2|A.r||As|/(|j4r|
2 + \AS\2) is the modulation 

depth; ED = 2TrkBT/(eA) is the diffusion field and EQ = eAiV0°(l - N^/N)/(2ire0e) 

is the saturation field in film j. In the absence of an applied field <f>j = —TT/2 and 

in the presence of a field, <f>j can take any value between 0 and — TT. Considering the 

thin-grating approximation and defining the grating strength by 

Vi = ^-djü^fflEsclj (8.8) 

we can write the transmission function as 

tj(x) = exp [iuj cos(^>s + ljKz + q • x + <f>j)] (8.9) 

Use of this expression to describe the transparency of a thin phase hologram implicitly 

limits the theory to the paraxial region. Decomposing the transparency tj(x) into its 

Fourier components, we obtain 

oo 

tj(x)=    £   Ci}exV(-iajq-x) (8.10) 
aj=—oo 

where the coefficients C3
a. are given by 

CJ
aj = (-ipJajfa) exp [-iaM, + <f>j + IjKz)) (8.11) 

where Jaj is the Bessel function of order a,-. 

Reading Geometry 

Figure 8.1(b) describes the general reading geometry with the different diffracted 

orders and the readout field Ap(r) at a frequency u = u>0 + Aw, 

A,(fO = |A,|exp(-»Vf) (8.12) 

where 

kp = kr± + K$ + J^° +g2
Aa;)2 - (kr± + k0$fez (8.13) 
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is the wave vector and \AP\ is the amplitude of the readout wave. The parameters 

$ and Au are introduced to describe the off-Bragg situation, i.e., when the readout 

wave vector kp does not satisfy the Bragg condition kp = kr. Within the paraxial 

approximation, the wave vectors of the different diffracted beams are given by 

h,Q = kp± + Qq + y ^ - (V + Qq)2^ (8.14) 

where Q is the diffraction order. 

8.2.2 Thin Hologram Condition 

We assumed that the films in the SVHOE structure generate thin gratings when 

exposed to the spatially modulated incident light. This assumption can be verified 

by analysis of the value of the quality factor [3] 

Q = 2ird^z (8.15) 
nA2 

where d is the interaction length, i.e., the film thickness, and A the grating spacing. 

If Q < 2ir, the hologram is said to be in the thin region (the Raman-Nath regime) 

and if Q > 2it, the hologram is said to be in the thick region (the Bragg regime). For 

the relatively small angles of incidence that satisfy the paraxial approximation, the 

grating spacing is usually several times larger than the wavelength (only the trans- 

mission geometry is of interest in this case). Therefore, for typical photorefractive 

materials, the thin hologram condition will be satisfied for thin films with thicknesses 

up to a few micrometers. As we stated in the introduction, such films have already 

been successfully grown [92] [93]. 

8.2.3 Propagation of the Readout Field 

The electric field diffracted by the first transparency t0(x) can be written as 

A?\x)   =   to(S)Ap(x,z = 0) 
oo 

=     E   \Ap\C%0exp[-i(a0q + kr± + k0V)-x] (8.16) 
ao=—oo 
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which corresponds to a sum of plane waves. Between two transparencies, i.e., within a 

buffer layer, each wave propagates according to the free-space propagation of a plane 

wave: 

U(k;x,z) = U(k; x, z0) exp  — iy|A;|2 — k\{z — z0) (8.17) 

where U(k; x, z) is a plane wave of wave vector k. Continuing the propagation process 

through the whole structure and neglecting reflections at the different interfaces, we 

can write the field diffracted by the N holograms as 

N~2 r    °° .i.J-fi-"('rti-ij)v'7-(?Ei.o«*+^+i»*)2 

-aj- 
a,=—oo 3=0 

X 

E c{. 
=—oo 

JV-1 e-iaN^!g.x 
l 

(8.18) 
ajv"_i=—oo 

8.2,4    Diffraction Efficiency 

The efficiency of the Qth order diffracted wave is defined by 

A(N)      2 

VN,Q = Ap(z = 0) 
(8.19) 

££>>=« 
From Eq. (8.18) and with Eq. (8.11), we can write Eq. (8.19) as 

Wo E---E 

x TT
1
 Ja (v.)e-i*Mi+hK*) Nj[ e-«'('>+i-'>)^-(fEi.o»*+^j-+*»*)a 

i=o 

with the constraint 

j=o 

]V-1 

E ai = Q 
3=0 

(8.20) 

(8.21) 
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This is a useful formulation for the efficiencies of the different diffraction orders be- 

cause it explicitly shows the dependence on all the individual parameters of each layer 

when an arbitrary grating vector K is recorded in a SVHOE of N thin films and is 

then read by a readout beam that does not necessarily satisfy the Bragg condition. 

This is especially interesting in the design of complex structures in which each layer 

must be optimized separately. 

First Order Diffraction Efficiency 

We can explicitly calculate the first-order diffraction efficiency by making some further 

assumptions to obtain a simpler expression than Eq. (8.20). Without too much loss 

of generality, it is reasonable to consider all the films to be equidistant from each 

other; therefore if L is the total length of the SVHOE, 

L_ 

N-\ 

Taking the first order Q = 1 implies that 

h=JT^~r       Vi€[0,iV-l] (8.22) 

X>i = l (8.23) 
3=0 

and, further assuming that all the grating strengths !/j < 1, which is always true for 

photorefractive thin gratings, we obtain 

iV-l N-l      Jaj\ 

gw-nps (8-24) 

Keeping the lowest-order terms implies that 

X>;l = l (8-25) 
3=0 

With this constraint [Eq. (8.25)] and the previous condition [Eq. (8.23)], only the 

terms in which one of the index a,- is equal to one and all the others are equal to 

zero must be kept in the multiple sum [Eq. (8.20)]. The expression for the first order 

diffraction efficiency [Eq. (8.20)] can then be simplified to yield 
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where 

VN,I 

N-l ™ .   ., ,        /        £(#,Aw) 
2^ VJ exp{-t<f>j) exp I -i2j —— 

1 
(8.26) 

£(tf,Aw)   =    - Kz + i/^ - (4i + W2 - y ^ - (£± + q + A^)2 

=   —(ÜTÄ + ^ - *„) = -Aks(V, Aw) (8.27) 

is the Bragg detuning parameter, fcp is the wave vector of the readout beam and ka 

is the wave vector of the first-order diffracted beam. 

It is easy to check that the function £($, Aw) defined by Eq. (8.27) is identical to 

zero when the wave vector of the reading beam satisfies the Bragg condition kp = kr. 

Figure 8.2 shows a two-dimensional &-space representation of the Bragg detuning 

parameter and of all the wave vectors incident upon and emerging from the structure. 

Closed-Form Solution 

If we further assume that there is no applied field and that all the films are made of 

the same material, i.e., for all the films <j>j = — TT/2 and Vj — v, Eq. (8.26) reduces to 

v 
VN,1 = 

N-l 

J2 exp 
j=0 

—I 
2j 

N-l 
■t(V,A») 

v2 sin2 

sin 

^,Aw)^ 

£(*,Aw)^ 
(8.28) 

Figure 8.3(a) represents what physically happens when these approximations are con- 

sidered: the diffracted field is the coherent sum of all the waves diffracted in the first 

order by the readout field at each thin grating. In this case, the representation of a 

SVHOE is analogous to the description of a Fabry-Perot etalon [98], for which the 

transmitted field can also be described as the coherent sum of waves with a constant 

dephasing term exp(z£) between them [see Fig. 8.3(b)]. 
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Akz (\|/5 Aco) 

Figure 8.2: fc-space diagram of the writing, the reading, and the diffracted wave 
vectors and the Bragg detuning parameter. 

8.2.5    Limit for an Infinite Number of Holograms 

It is interesting to take the limit of the previous results, Eqs. (8.26) and (8.28), for 

an infinite number of thin holograms, keeping the total distance L constant (i.e., the 

buffer layer thickness goes to zero): 

Vthick lim 7?JVI (8.29) 

This equation yields the results for the equivalent thick grating, defined as the thick 

grating having a thickness equal to the total length L of the structure. 

Nonuniform Grating 

The successions <f>j = </>(ZJ) and Vj = v{zy) can be thought of as a description of 

nonuniform variations in the z direction of the phase and of the amplitude of a thick 

index grating. By taking the limit of Eq. (8.26) and by transforming the sum into 

an integral, we derive the following expression for the diffraction efficiency of a thick 
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Srf-X«"' 6) 

E{oc Y (r2yy(«8) 

Figure 8.3: Comparison between a SVHOE (a) and a Fabry-Perot etalon (b). 8 and 
8 represent in both cases the phase retardation between adjacent beams. E{ is the 
incident field; Ed is the field diffracted by the SVHOE; Et is the field transmitted by 
the etalon; and r is the reflectivity of the mirror. 
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nonuniform grating: 

Vthick —   ^ o /   An(z)< 
./o 

-»'*<*> exp -,*(*;*">,   &' (8.30) 

where the function <^(z) physically represents the shape of the fringes within the thick 

hologram. This formulation is interesting for two reasons. First, if we consider a large 

number of films to approximate a thick hologram and adjust the (j>j accordingly, any 

fringe shape <f>(z) can be simulated. Then nonuniform gratings can occur in a thick 

medium when nonlinear two-wave mixing and fringe-bending effects are taken into 

account in the formation of a grating in a photorefractive crystal [28]. These effects 

have been studied in detail in Chapter 5 and indeed, Eq. (8.30) is identical to the 

result derived in Chapter 5, in which the diffraction properties of nonuniform gratings 

in photorefractive crystals are examined using a coupled-wave approach and Fourier 

transform arguments [Eq. (5.11)]. Note that this expression is only valid within the 

undepleted pump approximation (small v). 

Uniform Grating 

If <f>(z) = constant and v{z) = constant, we find from Eq. (8.30) or as the limit for 

N -*■ oo of Eq. (8.28) that 

^k=p2SV(S (8-31) 
where 

= uN = xAnZ, 
N^oo   2 A0 

v        ' 

is the grating strength as defined for a thick grating. It is denoted by v in this case 

to clearly differentiate it from the grating strength of the thin gratings denoted by v. 

Note that the two equations are different by a factor of two. Equation (8.31) gives 

the well-known expression for the diffraction efficiency of a thick uniform hologram 

in the undepleted pump approximation. 
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In practice one is often concerned with the diffraction efficiency when the readout 

beam deviates only slightly from the Bragg condition. Expanding Eq. (8.27) to first 

order in § and Au; yields 

«#,AW) = f(|i-|i).«„ + f^(f-f) (8.33) 
L    \   Ksz Krz   I Z/ C       \ ft.TZ ™sz ' 

£ is then proportional to the wavelength and the angle detuning of the readout beam. 

In a two-dimensional configuration in which all the wave vectors lie in the same plane 

of incidence (Fig. 8.2), relation (8.33) is equal to the Bragg detuning parameter of 

Kogelnik's coupled wave analysis of thick holograms [4]. Thus the general formula 

[Eq. (8.26)] for a structure containing N thin photorefractive films gives the expected 

expression for a thick-hologram diffraction efficiency when the limit for an infinite 

number of identical films is taken. 

Figure 8.4 shows the diffraction efficiency [Eq. (8.28)], normalized to unity, as a 

function of the Bragg detuning parameter £ for different numbers N of thin holograms 

in the structure and for the equivalent thick hologram. In this form these analytical 

results agree perfectly well with the numerical results of Johnson and Tanguay [86]. 

The selectivity behavior represented in Fig. 8.4 is a periodic function of the Bragg 

detuning parameter £. The period, i.e., the separation between the main diffraction 

peaks, is directly proportional to the number of films N (keeping L constant). Finally, 

the width of the main diffraction peak is determined by the total thickness L of the 

structure, regardless of the number of films and of the thicknesses of each one of them. 

This diffraction-efficiency behavior demonstrates one reason for interest in these 

composite layered structures: they are able to duplicate, to some extent, the proper- 

ties of a thick grating. But, more interestingly, these photorefractive structures per- 

mit new applications by precisely offering the possibility of modifying variables and 

parameters within the different layers as shown in the next section on holographic 

multiplexing and as demonstrated in one experimental application [89]. 
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Normalized Diffraction Efficiency 

N=2 

N=4 

N=10 

N=3 

TV =5 

thick 

-15  -10 

Figure 8.4: Normalized diffraction efficiency ^norm) = -fa {^/(iv^)?1} as a function 
of the Bragg detuning parameter £ for SVHOE's of different number N of thin films 
and for the equivalent thick grating of length L. 
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8.2.6    Non-Photorefractive Films 

Here we consider a structure of N identical films that are not necessarily photore- 

fractive to check the validity of the theory in that case and compare it with some 

of the numerical results of Nordin et cd. [87]. Equation (8.20) must be considered 

with no photorefractive phase shift <f>j and with Vj = z/, where v still represents the 

thin-grating strength but is no longer given by Eq. (8.8) and is no longer assumed to 

be much smaller than one. It is clear that the first part of the above analysis remains 

valid and that it is not limited to photorefractive SVHOE's. 

It is interesting to examine, assuming that the Bragg condition is satisfied, the 

diffraction efficiency as a function of the grating strength. From Eq. (8.20) the fol- 

lowing limits can be checked: 

hm 7JV,I   =   sin    7r —— 
N-KX> \ A0     J 

lim 7?^   =   0       Q?l (8.34) 
N—i-oo 

which are the expected results for any thick grating [4]. 

Table 8.1 gives the maximum efficiency of the first diffraction order and the value 

of the grating strength v at which the maximum occurs as a function of the number 

of films N. Provided that the correct grating strength v can be achieved, a maximum 

diffraction efficiency close to 100% can be obtained with a relatively low number of 

films. It also shows how, when the number of films increases, all the diffracted energy 

progressively accumulates into the first order only at the expense of the higher orders. 

This behavior can be overcome by considering a structure of films where each film 

has a different property [89]. 

The convergence of the series [Eq. (8.20)] is quite rapid as long as the value of 

v is not too large. The larger the value of u, the larger the number of terms to 

be considered in the multiple sum to have a good approximation for the diffraction 

efficiency. In practice, with v being of the order of one (e.g., for photographic films), 

it is sufficient to consider in the multiple sum [Eq. (8.20)] only the terms a, € [-2,2]. 

In other words, a good approximation will be given when all the diffracted rays up 

to the orders ±2 from all the different thin gratings are considered. The diffraction 



Holographie Multiplexing 163 

N Maximum Efficiency(%) V 

1 33 1.84 
2 68 1.30 
3 87 1.00 
4 92 0.76 
5 95 0.62 

Table 8.1: Maximum first-order diffraction efficiency as a function of N and corre- 
sponding grating strength. 

efficiency [Eq. (8.20)] is also a periodic function of the grating spacing. However 

as TV —> oo and v < 0.5, this dependence on the grating spacing disappears. This 

behavior is thus an interesting and unique feature of a stack of a low number of thin 

gratings, as pointed out in Ref. [87]. 

8.3    Holographic Multiplexing 

In this section we analyze the possibilities of multiplexing several holograms in a 

structure of thin gratings. One important application of photorefractive materials 

in the form of bulk crystals, is holographic data storage. As mentioned in Chapter 

7 several methods for multiplexing holograms in one crystal exist, with the most 

widely used being angular multiplexing [48], wavelength multiplexing [47], and phase 

encoding [51]. The main problem encountered in holographic multiplexing is the cross 

talk in the signal-to-noise-ratio (SNR) that results because when one hologram is 

being read, at the same time all the other holograms stored in the medium contribute 

to the diffracted signal because their diffraction efficiency is not uniformly identical 

to zero [13]. If M holograms are recorded in a SVHOE of N films, assuming an 

incoherent system and neglecting scattering from materials imperfections, the SNR 

for the hologram k can be estimated with 
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SNR« = J^(^"6) (8.35) 

3=1 

where r)ft\(£ = £&) is the diffraction efficiency of the hologram j when the Bragg 

condition for the hologram k is satisfied. Let us analyze how the multiplexing of M 

holograms in a SVHOE and in a thick crystal compare. 

In a structure of N thin films it is not possible to record more than N holograms 

by angular or wavelength multiplexing while keeping a high SNR for each hologram. 

Indeed, as soon as M > N, the SNR [as given by Eq. (8.35)] abruptly decreases. 

This is because of the periodic nature of the diffraction efficiency (see Fig. 8.4) and 

because this period increases with the number of thin films, with the total length 

L remaining constant. Therefore a structure consisting of a low number of thin 

films is not suitable for storing a large number of holograms. But for applications 

involving a small number of multiplexed holograms such that M < N, the SNR of 

the structure is equal to the SNR of the equivalent thick crystal. As in angular or 

wavelength multiplexing in a thick crystal, the width of the main diffraction peak, 

i.e., the Bragg selectivity, is different for each recorded hologram, which is responsible 

for the intrinsic cross talk [13] (as opposed to the extrinsic cross talk which is mainly 

due to scattering and to imperfections in materials). 

8.4    Phase Multiplexing 

In this section we analyze the possibilities of multiplexing several holograms in a 

structure by taking advantage of the specific nature of a SVHOE, i.e., by changing 

the properties of each layer independently. As pointed out in the introduction to this 

chapter, this feature is one of the major reasons that makes these types of devices 

attractive and worth studying. 

We propose a new technique for possibly recording several holograms in a strati- 

fied volume holographic optical element based on the freedom to adjust and to control 

externally the phase <f>j of each thin grating during the writing process (by applying 
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a different electric field, during recording, to each of the photorefractive thin films). 

Each hologram is then recorded with a different phase pattern (because of the pho- 

torefractive phase shift) across the structure of films (see Fig. 8.5), with the writing 

geometry remaining the same for all the recorded holograms. By this technique the 

maximum diffraction efficiency can be shifted along the Bragg detuning parameter 

axis, i.e., the Bragg condition can be controlled and can be changed independently for 

each hologram. Then each one of them can be selectively addressed during readout 

by satisfying its Bragg condition. The addressing can be done by a simple adjustment 

of the angle (A9P) or the wavelength (AA0) of the readout beam. It is also possible to 

take advantage of the layered structure by introducing electro-optic but nonphotore- 

fractive beam-steering devices, i.e., buffer layers that can change the amplitude and 

the direction of the readout wave vector when biased with an electric field in such a 

way that the Bragg condition for a given hologram is satisfied. This system has the 

advantages of having no moving parts and being completely electrically controlled 

and could easily be optimized to any given specifications. 

The diffraction efficiency of the hologram k stored in the structure is given by 

(*) _ l 

VN,I - 1 2^ i/j,fcexp(-t&f*)exp I-*-^—r 
j=o \ i 

(8.36) 

where <f>jtk is the phase shift imposed on the thin grating of film j while hologram 

k is being recorded in the SVHOE. For the same reasons explained in the previous 

section, the maximum number of holograms that can be stored with a high SNR is 

theoretically limited to N. 

8.4.1    Optimum Case 

The ideal situation corresponds to the case in which, by some external means, the 

following conditions can be achieved: 

OTT 

ti,k-=jk—       and       ujtk = uk       j,*€[0,JV-l] (8.37) 

It is easy to see that, with Eq. (8.37), the diffraction efficiency [Eq. (8.36)] can be 

written as 
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Figure 8.5: General concept of phase multiplexing in a SVHOE: the three types of 
curves (solid, short-dashed, and long dashed) represent three holograms stored in the 
structure with different amplitudes. Phase multiplexing is based on the fact that each 
hologram undergoes a different phase shift in each thin film layer. 
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Hologram A; 

Table 8.2: Phase pattern <f>jtk across the structure for the optimum case and chosen 
intensities Al of each hologram. 

„(*) re A1 — 
sin2 (ejfe + *k) 

(8.38) 

This relation represents the identical diffraction-efficiency curve shifted by an amount 

£ = 7rk(N — l)/N for the hologram k. Table 8.2 shows the succession of phases across 

a SVHOE of N = 7 films of each of the seven holograms stored. Figure 8.6 shows the 

seven corresponding normalized diffraction efficiencies with the intensities Al given 

in Table 8.2. The values of these intensities are chosen to be different only for easy 

differentiation of each corresponding Bragg selectivity curve shown in Fig. 8.6. With 

this choice of phase [Eq. (8.37)], each efficiency is translated by an amount such that, 

where one hologram has its maximum diffraction efficiency, all the others have a zero 

diffraction efficiency. This situation is thus the optimum case because the SNR of 

each hologram, as defined by Eq. (8.35), will be infinite. 

This process is analogous to angular multiplexing because imposing this phase 

scheme [Eq. (8.37)] is equivalent to forcing the grating fringes to slant at a given 

angle, different for each hologram. In angular multiplexing one achieves this effect by 

recording each hologram with a different angle for the reference beam. It is important 
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Figure 8.6: Normalized diffraction efficiencies of seven holograms recorded in a 
SVHOE of seven films: optimum case. The numbers correspond to the hologram 
numbers (k) in Table 8.2. 

to note, though, that in the case of phase multiplexing, the writing geometry remains 

the same for all holograms. 

8.4.2    Photorefractive Case 

Unfortunately the optimum situation described in Table 8.2 cannot be achieved if only 

the photorefractive phase shift resulting from an applied electric field is considered. 

In this case, indeed, the phase shift can take only values between 0 and —7r, half 

the full possible range of angles. From Eq. (8.7) the following expressions for the 

magnitude of the space-charge field and the photorefractive phase shift are derived 

(see also Chapter 3): 

\Esc\j,k = rn< \ (EQ + EDf + Elhk 
(8.39) 
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hjk = <f>PR(E0j,k) = - arctan JJ2-(i + p. + ^f-) (8.40) 

where E0 k is the electric field applied to film j during the recording of hologram k. 

A structure of N identical films is otherwise considered. The diffraction efficiency 

[Eq. (8.36)] can then be written as 

■n(h> «■ A2 
7]N1 OC Ak hi^+^+K.        expl N-i (8.41) 

The optimizing problem addressed here is then to find a sequence of fields E0jk to 

maximize the SNR of each hologram. The SNR, which we compute by using Eq. (8.41) 

in Eq. (8.35), therefore becomes a direct function of the different applied electric fields 

E°j,k- 

Table 8.3 gives one qualitative example of a field pattern E0jk and Fig. 8.7 shows 

the corresponding normalized diffraction efficiencies for four holograms stored in a 

structure of seven thin films made of SBN. It shows how the Bragg condition of four 

holograms recorded with the same writing geometry can be made different only by 

application of different electric fields to the successive layers of the SVHOE. The 

numerical values used to compute the diffraction efficiencies are: N£ = 1.5 1023m-3, 

N = 1025m-3, e = 880, and A0 = 514 nm as well as a grating spacing A = 15 fim. 

Because this situation is not optimum (compared with Table 8.2), the total number 

of holograms that can be stored in the structure with a high SNR will have to be less 

than the number of films N. With only the photorefractive phase shift, half the full 

range of phases is available, and as a general rule the maximum number of holograms 

that can be stored will be equal to JV/2 if N is even or (N + l)/2 if N is odd. 

8.5    Conclusions 

We have developed an analytical formalism to describe, in an arbitrary recording and 

reading geometry, the diffraction properties of stratified volume holographic optical 

elements made of photorefractive thin films.   The model is shown to be valid for 
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Al 12     3     4     5     6    7    Film; 

1 1 7    7     7     7     7     7    7 

2 1 7-77-77-77 

3 1 6    6-9-9-966 

4 1 5-9-5    5    -5   -9    5 
Hologram k 

Table 8.3: Field pattern EQk (—) across the structure for the photorefractive case 
and chosen intensities Al of each hologram. 

Figure 8.7: Normalized diffraction efficiencies of four holograms recorded in a SVHOE 
of seven films: photorefractive case. The numbers correspond to the hologram num- 
bers (k) in Table 8.3. 
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SVHOE's made of any type of recording material. This model leads to a simple closed- 

form formulation for the first-order diffraction efficiency [Eq. (8.28)] that agrees with 

the numerical results of Nordin et al. [87]. We then considered the limiting case of a 

SVHOE, a thick photorefractive crystal, and found an expression for the diffraction 

efficiency of a thick index grating, nonuniform in phase and in amplitude that confirms 

the results derived in Chapter 5 using a coupled-wave approach. 

Finally, SVHOE's made of photorefractive thin films have been analyzed in the 

context of holographic multiplexing. We have proposed a new principle for multiplex- 

ing several holograms in a SVHOE that uses the freedom to adjust the phase of each 

thin grating of the structure by applying an electric field to the different layers during 

recording. We have also shown how the finite number of films limits the maximum 

number of holograms that can be recorded in a SVHOE. 

In the next chapter we extend the analytical formalism developed in this chapter 

to study the diffraction properties of layered structures of thick holograms. We show 

that, to first order, the formulation for the diffraction efficiency is identical to the 

one derived in this chapter for layered structures of thin gratings. Finally, we study 

in detail the properties of one application of a photorefractive SVHOE: a dynamic 

multiple-wavelength filter. 
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Structures of Thick Gratings 

9.1     Introduction 

In this chapter, we generalize the concept of photorefractive SVHOE introduced in 

Chapter 8 to include structures of thick gratings that can then be used in the trans- 

mission geometry as well as in the reflection geometry. By using thick gratings instead 

of thin gratings, we can also obtain higher diffraction efficiencies. One of the goals of 

this theoretical analysis is to obtain a closed-form expression for the diffraction effi- 

ciency of such structures and to compare it with the expression obtained in Chapter 

8 for structures made of thin gratings. The theory is developed to account for such 

cases in which photorefractive SVHOE's are made of several different kinds of mate- 

rials or cases in which for example gratings with different grating spacings are written 

in successive layers. Constructing a comprehensive analytical model describing the 

properties of photorefractive SVHOE's is useful in guiding their development, be- 

cause it offers a simple framework to manipulate the different diffraction parameters 

for optimal performance. 

To compute the diffraction efficiency describing the Bragg selectivity, one solves 

the coupled-wave equations in each grating layer [4] and then combines these solutions 

to find the general solution for the whole structure, taking into account wave prop- 

agation in the buffer layers. This analytical development is a generalization of the 

theory developed by Yakimovich in Ref. [82], so we can obtain an explicit closed-form 
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solution for SVHOE's made of an arbitrary number of layers, having each different 

properties. We consider the transmission and the reflection geometry and show that 

in both cases the diffraction efficiency can formally be written in a similar manner. 

The theory developed in this chapter is especially important for describing appli- 

cations that use photorefractive films fabricated from photopolymer materials. Pho- 

topolymers tend to grow as films having thicknesses in the range 10 - 100 /an, for 

which the thin grating approximation is usually not valid. However, the thickness 

of these films is such that, in the context of holographic storage, it is difficult to 

use them individually. Therefore, as first demonstrated by Nordin and Tanguay [99] 

and more recently by Stankus et al. [90], these materials are excellent candidates for 

grating layer components of photorefractive SVHOE's. 

One application of these layered structures consists of a multiple-layer optical 

memory. Basic proof-of-principle devices that use this idea have already been pro- 

posed and demonstrated [100] [101]. The theory developed in this chapter helps one 

to a better understanding of the properties of these memory devices and to an accu- 

rate estimation of their cross talk and signal-to-noise characteristics. Finally, a novel 

optical application, a dynamic multiple-wavelength filter, is proposed and analyzed. 

It consists of a photorefractive SVHOE in the reflection geometry that makes use of 

the electrically controlled diffraction (ECD) effect [39] (see explanation in Chapter 

7) to change individually the properties of each thick grating layer. We show how 

this device can be used to filter dynamically one or several wavelengths by selectively 

applying different electric fields to the grating layers of the photorefractive SVHOE. 

Such a device might be useful in the context of wavelength division multiplexing 

(WDM). 

For simplicity, we consider the unslanted grating configuration in which the read- 

out and the diffracted beams are symmetric with respect to the z axis. Two types 

of geometries are considered: the transmission geometry in which the two recording 

beams are copropagating and the reflection geometry in which these two beams are 

counterpropagating. In most of the holographic applications (filtering, storage, etc.), 

a large Bragg selectivity is desirable. This is the reason why angular selectivity is used 

in the transmission geometry whereas wavelength selectivity is used in the reflection 
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geometry [4]. 

We assume that the gratings inside the thick grating layers are uniform in am- 

plitude and in phase. In photorefractive crystals, it means that beam coupling and 

wave mixing [28] are neglected during grating formation. A detailed description of 

the diffraction properties of nonuniform gratings can be found in Chapter 5. 

9.2    Transmission Geometry 

In the symmetric configuration, as shown in Fig. 9.1, the grating vector is perpen- 

dicular to the propagation axis, i.e., Kz = 0 and K± = -2ksm6B, where 9B is, by 

definition, the Bragg angle and k = 2TT/A where A = \0/n. If we assume that the 

angle 6P of the readout beam varies in the plane of incidence and that the readout 

wavelength A is the same as the wavelength used during recording, the Bragg detuning 

parameter is given by 

£ = ^ LoseR - V/l-(sinöR-2sin^)2} (9.1) 

For arbitrary boundary conditions at the front face of the crystal (z = 0), the solutions 

to the coupled-wave equations [Eq. (2.18)] at the exit face of the crystal (z = I) are 

expressed in the following way, 

(AM)=M"m     A'm) (9.2) 
^ Ml) ) I MO) ) 

where Mtr(l) is the matrix describing the diffraction from a uniform grating of length 

/ in the transmission geometry. Figure 9.2 represents the succession of grating layers 

and buffer layers forming the SVHOE. Each layer is described by a matrix relating 

its input field to its output field. 
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Figure 9.1: k-vector diagram in the symmetric configuration using the transmission 
geometry. 

9.2.1    Layer Matrices 

Grating Layer Matrix 

The grating layer matrix defined by Eq. (9.2) has been explicitly computed in Chapter 

2 [Eq. (2.24)] and is given by 

Mtr(l)   =   exp(^) x 

< 
siny/^+u2 \ 

\ 

,    + cos -v/f2 + v2        — ii/exp(i6)sl  Y 

.:_ . lei i ..2 

-ivexp(-i<f>)sml^2+? iy/e+v2 

+ COS \/£2 + v2 

(9.3) 

where v — tdj cos 9P is the grating strength, K = 7rAn/A0, and (f> is the phase of the 

grating. 
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Figure 9.2: Photorefractive SVHOE of N grating layers in the transmission geometry. 
Vj is the grating strength; <f>j is the grating phase; lj and dj are the thicknesses and £,- 
and Q are the Bragg detuning parameters of the grating layers and the buffer layers, 
respectively. 

Buffer Layer Matrix 

The propagation of the transmitted and the diffracted beams over the length d of 

a buffer layer between two successive grating layers is taken into account by the 

introduction of a buffer layer matrix defined by 

A^)=M^d)(A^ 
Ac{d) ) \ 4,(0) 

(9.4) 

where 

/ exp(-ik&d) 0 \ 

Mbu{d) 

\ 0 exp(-ik&d) ] 

In a buffer layer we define a detuning parameter (: 

(9.5) 

(9.6) 
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where bu denotes the buffer layer. Therefore, 

I exp(-t'C)        0      \ 
(9.7) Mhu{d) = exv{-ikb

s
u

zd)exp(-i() 

\       0 exp(e'C) I 

We assume that the buffer layers have a similar index of refraction to that of the 

grating layers and we thus neglect the multiple reflections at the different interfaces. 

Element Matrix 

The matrix of one element j, consisting of a grating layer of thickness lj followed by 

a buffer layer of length dj, is the product of the two matrices: 

Mf=Mfi{di)Mf{li) (9.8) 

Structure Matrix 

The complete stratified element consists of a succession of N grating layers and (N—l) 

intermediate buffer layers as shown in Fig. 9.2. The grating layer properties, namely 

the grating strength [VJ = wAnjlj/(\0 cos 6P)] and the grating phase (<f>j), as well as 

the Bragg detuning parameters £,- and Q are allowed to be different from one layer 

to another. Cases in which, for example, holograms with different grating periods 

are written in different layers can then be considered with a composite detuning 

parameter, 

&■ = ?k jcos6P - yJl-{smOp-2sm6Bjy} (9.9) 

where 9Bj is the Bragg angle in the grating layer j. The total length L of the structure 

is given by 

N N-l 

3=1 j=l 

The structure matrix is defined such that 
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ML) )=Mst   MO) 
A„(L) ) \ A,(0) 

and is given by the product of all the different layer matrices: 

(9.11) 

Mtt=M$(iN) n Mt 
j=N-l 

(9.12) 

9.2.2    Closed-Form Solutions 

Structure of Different Layers 

To obtain an analytical expression for Mst and a closed-form solution for the diffrac- 

tion efficiency, we assume that the grating strengths i/j are small compared with 

unity (this is equivalent to assuming the undepleted pump approximation through- 

out the structure). However, there is no restriction on the magnitude of the Bragg 

detuning parameter £,-, which is usually much larger than the grating strength. If we 

develop the grating layer matrices Mf(lj) [Eq. (9.3)] to first order in i/j, the following 

expression is found: 

/ exp(-i&) -ivj*-^exp(t^) \ 

Mf{lj) = exp(ifc) 

V -Wj^ exp(-^j) exp(t&) / 

The element matrix is then given by 

(9.13) 

Mf = exp (-ik^dj) exp [»(&■ - £)] 

(       exp [-i (& + Cj)] -ivj*-^ exp[-i(Ci - fa)] ^ 

x 

^ -iuj^fi- exp[i(0 - fa)] exp [i (&• + &)] J 

(9.14) 
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If we keep only the first order terms in Vj in the product defining the structure matrix 

[Eq. (9.12)], Mst is given by 

JV-l 

Mst = exp | -i £ kfadj ) exp 

/ (      N N~l    N 

exp   -t E (j ~ i E 0 

JV-l    \ /   N 

-*Eo exp ME^J X 

/    JV JV-l     \   JV 

-e'exp   iE6 + i E C*    E *0" 
V fc=i fc=i    / i=i 

-2»E(6 + a) 
fc=i 

2|fie-i«i+*>) exp 

/        JV JV-l      \    TV \ 
-iexp I -»' E & - «' E Cfc    £ Vj 

V       fc=l fc=l       / j=l 

!^ei(?i+^)eXp 2i £(& + &) 
fc=l 

/    JV JV-l     ^ 

exp   i E & + * E Cj 

/ 
(9.15) 

For the boundary conditions associated with the usual diffraction problem, Ap(0) = 1 

and -4^(0) = 0, the diffraction efficiency is given by 

V   =   \A*(L)f 
N sin£ 
J2 Vj exp(-%) —-1 exp(-t&) exp 

si i=i A=l 

(9.16) 

The solution [Eq. (9.16)] can be further simplified if the same grating is written in 

each layer and if the layers lengths are assumed equal, i.e., £j = £ and Q = £d/l. In 

this case, the diffraction efficiency reduces to 

V = 
'sin£v JV 

^i/jexp(-?>J)exp 
3=1 

-2i(j - l)t \l + j (9.17) 

If we take Z = 0 in Eq. (9.17), the expression reduces to the expression obtained in 

Chapter 8 for the diffraction efficiency of a structure of thin holograms [Eq. (8.26)], 
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„thin   
77 = 

N 

J2 vi exP(-^i) exP [~2iU - 1)C] (9.18) 

by noting that the factor 1/4 in Eq. (8.26) comes from the different definition of the 

grating strength v adopted in Chapter 8 and Chapter 9 (it is different by a factor of 2 

between thin and thick gratings). The modulation factor in front of the absolute value 

in Eq. (9.17), sinc2£, represents the Bragg selectivity of a single thick hologram in the 

structure. In the case of a structure of thin holograms, this factor is equal to unity 

because thin holograms do not exhibit any Bragg selectivity behavior. Therefore the 

diffraction efficiency of a structure of thick gratings is essentially the same as the 

diffraction efficiency of a structure of thin gratings except that it is modulated by the 

selectivity of a single layer. 

Structure of Identical Layers 

If a structure of grating layers with identical properties is considered, the exact so- 

lution for the diffraction efficiency can be derived without the assumption of the 

undepleted pump approximation. In this case, the element matrix, which is the same 

for all the elements of the structure, can be written as 

Mel = exp(-ikszd) exp tf   1- x 

H=^+«-^^)^f 

sin^/g+2   cos ^nn-A e«f 

(9.19) 

The structure matrix is given by 

Mst = Mtr{l) (Mel) 
N-l 

(9.20) 
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The diffraction efficiency can then be calculated by use of the Chebyshev identity: if 

a matrix M. 

M = 
( A   B\ 

\0   D , 

is unimodular (AD — BC = 1), MN is given by 

/ AUN-I - UN-2 BUs-i        ^ 

^       CUN-i DUN-I - UN-2 ) 

where 

MN = 

(A   B\ 

(9.21) 

(9.22) 

UN   = 
sm(N + l)y 

smy 

y   =   arccos 
A + D 

(9.23) 

It is easy to check that, because of energy conservation, the element matrix given by 

Eq. (9.19) is unimodular. The diffraction efficiency is then given by 

/ . 

7? = V 2
s_inV^TF 

2 _L« V2+£ 

sin N arccos (cos y/u2 + £2 cos £f — £smy      -_ sin £i j \ 

sin arccos (cosy^+Fcos£?-£^^sin£f 
>+e 

For small grating strengths, i.e., to first order in i>, 

y = arccos I cos £ cos £y — sin f sin £y I =ql + y 

and the diffraction efficiency [Eq. (9.24)] reduces to 

3inA
2sin2[iV£(l + f)] 

(9.24) 

(9.25) 

7] = V 
sm< 

T sm [<(! + *)] 
(9.26) 



182 Structures of Thick Gratings 

(a) 

0 

(b) 

LüJllli 

$ 

% 

Figure 9.3: Normalized diffraction efficiency rjnorm as a function of the Bragg detuning 
parameter £ for a SVHOE of N identical grating layers in the transmission geometry: 
(a) f = 1, N = 5, and L/l = 9, (b) f = 2, N = 5, and L/l = 13, (c) f = 1, J\T = 2, 
and L/l = 3, (d) f = 2, TV = 2, and L/Z = 4. 

We can also derive this simple expression from Eq. (9.17), by explicitly computing the 

absolute value of the finite sum for grating layers with identical properties (UJ = u, 

<j)j = <f>). The normalized (to unity) diffraction efficiency is given by 

j/sin£Vsin2[iVe(l + f)] 
N2\ £ sin [{(i + f)J 

(9.27) 

Figure 9.3 represents the normalized diffraction efficiency -qnorm describing the selec- 

tivity behavior [Eq. (9.27)] of a structure of thick gratings for two values of the ratio 

d/l and N. One distance can be chosen as unit, in this case / because £ is proportional 

to 7. The normalized length of the structure is then given by L/l = (N—l)(l+d/l) + l. 

Figure 9.4 represents the diffraction efficiency for two cases that have the same total 

length L/l = 13. From Figs. 9.3 and 9.4, it is interesting to note the presence of three 

inverse length scales: the inverse of the total length of the structure, 1/L, which de- 

termines the width of each narrow selectivity peak; the inverse of the thickness of the 
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Figure 9.4: Normalized diffraction efficiency rjnorm as a function of the Bragg detuning 
parameter £ for a SVHOE of N identical grating layers in the transmission geometry 
(constant total length L): (a) f = 0.2, N = 11, and L/l = 13, (b) f = 3, JV = 4, and 
L/l = 13. 

grating, 1//, which determines the width of the overall envelope of the diffraction effi- 

ciency; and the inverse of the thickness of the buffer layer, 1/d, which determines the 

separation between two main narrow peaks. Figures 9.3 and 9.4 and Eq. (9.26) agree 

perfectly well with the experimental selectivity measurements and the conclusions as 

described in Refs. [90] and [99]. 

9.3    Reflection Geometry 

In the symmetric configuration, as shown in Fig. 9.5, the perpendicular component 

and the longitudinal component of the grating vector are given by Kj_ = 0 and 

Kz = —2kBCOs0B = —4TTCOS0B/^B, where 9B is, by definition, the Bragg angle and 

Aß is the writing wavelength (i.e., the Bragg wavelength). If we assume that only the 
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Figure 9.5:   fc-vector diagram in the symmetric configuration using the reflection 
geometry. 

wavelength A of the readout beam varies, the Bragg detuning parameter is given by 

t = 2«lcosOB({-±) (9.28) 

For arbitrary boundary conditions Ap(0) and Aa{l), the solutions to the coupled-wave 

equations [Eq. (2.18)] are expressed in the following way: 

A„(0)   ) I    Ar(0 
(9.29) 

where Mre(l) is the matrix describing the diffraction from a uniform grating of length 

/ in the reflection geometry. Figure 9.6 represents the succession of grating and buffer 

layers forming the SVHOE in the reflection geometry. 
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9.3.1    Layer Matrices 

Grating Layer Matrix 

In the reflection geometry, the grating matrix defined by Eq. (9.29) has been explicitly 

derived in Chapter 2 [Eq. (2.31)] and it is given by 

MreM   "   V^3^C0Sh^T^F+^sinhv/^rF>< 

f exp(i£,)\/v2 — £2 iv exp(i<f>) sinh y/v2 — £2 

(9.30) 

^ iv exp(-i^)) sinh y/v2 — £2        exp(—i£)y/v2 — £2      / 

Buffer Layer Matrix 

The buffer layer matrix is now defined as follows because the beams are counterprop- 

agating: 

Mo) / \ MV 

where 

Mbu{d) = 

I exp (-ik&d) 0 ^ 

^ 0 exp (ikfzd) j 

Defining ( = 2ird cos OB /A, we obtain 

Mbu{d) = 

1 exp (-tC) 0        ^ 

\        0 exp(-zC) / 

(9.31) 

(9.32) 

(9.33) 
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Figure 9.6: Photorefractive SVHOE of N grating layers in the reflection geometry. Vj 
is the grating strength; <f>j is the grating phase; lj and dj are the thicknesses and £,• 
and (j are the Bragg detuning parameters of the grating layers and the buffer layers, 
respectively; Mj is the layer matrix. 

Structure Matrix 

Figure 9.6 represents an example of a layered structure of thick gratings in the re- 

flection geometry. Because the beams are counterpropagating, the structure matrix 

cannot simply be represented by the product of the different element matrices as in 

the transmission case. For a structure containing N grating layers and N - 1 buffer 

layers, one needs to solve a system of 2(2iV - 1) equations to find the expression for 

the diffracted beam exiting the structure: 

( K ) = Mk 

( A"'1 \ 

\ A«"1 ) {   A*   j 
ke [i,2JV-i] (9.34) 

where M* represents either the buffer layer matrix or the grating layer matrix, de- 

pending on the layer considered, 



Reßection Geometry 187 

M2i_a   =   Mp(lj)       je[l,N] 

M2j   =   M?{dj)       j€[l,JV-l] (9.35) 

Ak and Ak are the values of the transmitted and the diffracted beam at the different 

interfaces, A°p and A™'1 are the known boundary conditions and AQ
a is the diffracted 

wave exiting the structure. 

As an example, the next equation, derived from Eq. (9.34), represents the linear 

system of algebraic equations corresponding to a three-grating-layer system (N = 3) 

(this equation can easily be generalized to an arbitrary number of layers): 

M 

(A1A ( M[hl]A°p \ 

Al MJ2'1]A° 

A\ 0 

A\ 0 

K 0 

Al 0 

K 0 

Al 0 

Al MpU* 
\Al) { MpU* j 

(9.36) 

where MJ?,?J is the (p, q) element of the matrix Mk defined by Eq. (9.35) and M is 

the structure matrix given by 
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M = 

1 0 0 -M\l* 0 0 0 0 0 0 

0 1 0 -M\2'2] 0 0 0 0 0 0 

-M™ 0 1 0 0 -M™ 0 0 0 0 

-M™ 0 0 1 0 -M^2] 0 0 0 0 

0 0 -Mt] 0 1 0 0 -Mt2] 0 0 

0 0 -M™ 0 0 1 0 -MP1 
0 0 

0 0 0 0 -M\hl] 0 1 0 0 -*#* 
0 0 0 0 -Ml2'1' 0 0 1 0 -M™ 
0 0 0 0 0 0 -Mpl 0 1 0 

0 0 0 0 0 0 -M^ 0 0 1 
(9.37) 

9.3.2    Closed-Form Solutions 

In the reflection geometry, a general expression of the form of Eq. (9.24) could not 

be derived because, without the assumption of the undepleted pump approximation, 

the diffraction problem to be solved is more complex than it is in the transmission 

geometry. It is however possible to solve Eq. (9.36) for an arbitrary number of layers 

and to find an analytical solution for the diffraction efficiency if only the first order 

terms in Vj are considered (there is no restriction on the magnitude of £,■). To first 

order in i/j, the grating layer matrix is given by 

MTih) = 

( 1 ^exp[-z'(^-^)]^ > 

^ ivj exp[-*(& + &)]==& exp(-2i&) j 

je[i,N\ 

(9.38) 

By generalizing Eq. (9.36) to an arbitrary number of layers and by solving it with the 

boundary conditions A°p = 1 and A2^-1 = 0, we derive the following expression for 

the diffraction efficiency: 
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V   =   14 
N 

0|2 

iV £ 

Y, vi exP(-*^i)-TJ' exP(-^i) exP 
j=i 

-2i£(6+a) (9.39) 

This expression is formally identical to the expression obtained for the diffraction 

efficiency of a structure of thick holograms in the transmission geometry [Eq. (9.16)]. 

However, in this case, the detuning parameters are given by 

£fc   =   27r/fc cos OB f -r - rr- 

Ck   =   —T—COSVB (9.40) 

where Ajg is the writing wavelength in the grating layer k and A is the readout wave- 

length. The physical meaning of Eqs. (9.16) and (9.39) is that the diffracted intensity 

is the coherent sum of all the N first-order diffracted signals from each of the iV 

grating layers. A similar argument was used to explain the diffraction efficiency of 

a structure of thin gratings and the analogy with a Fabry-Perot etalon. If the same 

grating is written in all the layers, i.e., if A| = Aß, and if the layers lengths are 

assumed equal (Ik — /, <4 = d), the diffraction efficiency given by Eq. (9.39) simplifies 

to 

T) = 

where 

'sin^ N 

J2 VJ exp(-i<f>j) exp[-t(i - 1)<M exp 

o<f = —— cos OB 

-2i(j - 1)£ (l + ? (9.41) 

(9.42) 

The expression for the diffraction efficiency in the reflection geometry [Eq. (9.41)] is 

similar to the expression for the transmission geometry [Eq. (9.17)], except for the 

phase factor exp[—i(j — l)6<p].  This term is due to the fact that there is a phase 
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difference between the N different diffracted beams <x^ forming the diffracted signal 

^(0): because of the propagation in the buffer layers, two beams c^ and cr^, 

diffracting from the grating layers k and /, respectively, will have a phase difference 

given by (k — l)Stp after propagation in the structure, even when the Bragg condition 

(£ = 0) is satisfied (see Fig. 9.7). This term does not appear in the transmission- 

geometry case, because there is no such phase difference between two beams a^ and 

<jW when the Bragg condition is satisfied, i.e., when £ = 0. 

If a structure of identical gratings is considered (VJ = u, <j>j = <f>), the sum in 

Eq. (9.41) can be evaluated to yield 

' = '  VT)       -n'[f(l + f)+ ««».] (9-43' 

The selectivity behavior in the reflection geometry is thus analogous to that in the 

transmission case (see Figs. 9.3 and 9.4), except for the fact that the maximum 

diffraction efficiency can be shifted along the Bragg detuning parameter (£) axis. 

The detuning shift is a unique feature of a stratified medium used in the reflection 

geometry and is inherent to the fact that the beams must propagate through buffer 

layers. This phenomenon, through which one can shift the Bragg peaks by, for ex- 

ample, changing the properties of the buffer layers only, without affecting the grating 

itself, offers opportunities for novel applications involving the use of photorefractive 

SVHOE's (e.g., dynamic beam-steering devices). Figure 9.8 shows the relative wave- 

length shift A\/X\shift of the maximum diffraction efficiency as a function of the 

buffer layer thickness for a given grating layer thickness. 

Equations (9.26) and (9.43), however, reduce to the diffraction efficiency of a single 

thick grating of thickness Nl when the limit d —»• 0 is taken. 

, = (*„). (=£|£) (9.44) 

This expression is valid in the transmission geometry as well as in the reflection 

geometry, provided the undepleted pump approximation is assumed [4]. 
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Figure 9.7: Illustration of the phase shift 8<p that arises between the beams a^ in 
the reflection geometry as a result of the propagation in the buffer layers. In the 
transmission geometry, such phase shift does not exist. 

9.4    Dynamic Multiple-Wavelength Filter 

Wavelength filters with narrow spectral bandwidths are widely used in such applica- 

tions as spectroscopy, astronomy, and optical communication. One way of achieving 

a narrow-band filter is to use the principle of volume holography in a thick grating 

[63] [68] [69] [102]. Because of its Bragg selectivity a thick grating acts as a filter and 

by using the reflection geometry, which exhibits the highest wavelength selectivity, 

one can achieve subnanometer spectral resolution. Extending this idea, we propose 

a novel device, a dynamic multiple-wavelength filter: it is based on a photorefrac- 

tive SVHOE in which planar holograms with different grating spacings (i.e., central 

Bragg wavelengths) are recorded in different grating layers and then fixed. Figure 9.9 

represents schematically such a device in the perfectly counterpropagating geometry 

(cos $B = 1). Therefore each layer k will selectively respond at one given wavelength, 

the Bragg wavelength \%, with a bandwidth AA* given by [69] 
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Figure 9.8: Wavelength shift AX/X\shift of the maximum diffraction efficiency as a 
function of buffer layer thickness d for a photorefractive SVHOE in the reflection 

geometry. 

A\k = t_(^! •B). 
h 

(9.45) 

One can then use the electrically controlled diffraction (ECD) effect [44] during the 

filtering process to control independently the diffraction efficiency of each single thick 

grating layer. The ECD effect is present in some photorefractive materials (like 

SBN) operating near the ferroelectric-paraelectric phase transition. In the vicinity 

of this phase transition, the electro-optic coefficient and the dielectric constant are 

strongly dependent on the applied field. As shown in Ref. [44] and in Chapter 7, this 

combined field dependence allows the grating amplitude and ultimately the diffraction 

efficiency to be electrically controlled and enhanced. Through this effect, a single 

grating efficiency can be enhanced from almost 0% in the absence of a field to 70% 

in the presence of a field of a few kilovolts per centimeter. Therefore, by application 

of a field E% to the grating of a layer k, its amplitude vk = vk{E$) can be electrically 

controlled, i.e., the grating layer k can alternately be switched "on" and "off". 
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Figure 9.9: Schematical representation of a dynamic multiple-wavelength filter, with 
the photorefractive layers (of thickness /), the buffer layers (of thickness d), and the 
transparent electrodes. 

The dynamic multiple-wavelength filter is thus a device that can be electrically 

switched to filter one or several wavelengths at a time from a broad-band input signal. 

Figure 9.9 represents the general configuration of a dynamic multiple-wavelength 

filter consisting of a photorefractive SVHOE with its grating layers, buffer layers 

and transparent electrodes used in the reflection geometry. By use of the electrically 

controlled diffraction effect, one can selectively activate one or several holograms 

within the structure, making it possible to filter selectively one or several wavelengths 

from an incoming incident light with a broad wavelength spectrum. 

Because of the nature of a SVHOE, there is interference between the different 

grating layers as described by the theory developed in the previous sections. As seen 

in Figs. 9.3 and 9.4, this interference is maximum when the same grating is written in 

all the layers (As = AB, Vk) because in this case the diffraction efficiency is expressed 

by a coherent sum [Eq. (9.41)]. As we shall show, this interference decreases with an 

increase in the separation between Bragg wavelengths AB and with a decrease in the 

length of the buffer layer d. This effect introduces a minimum separation between two 
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wavelengths Ag in the dynamic multiple-wavelength filter for some maximum allowed 

interference cross talk. It is easy to show that the separation between two successive 

Bragg wavelengths, Ag+1 — A^, must satisfy the following approximate relation for the 

interference terms between two successive layers to be less than a small number e: 

|A|+1-A^|> — AA* (9.46) 

Figure 9.10 shows the Bragg selectivity responses as a function of wavelength of a 

two-layer system if the separations between the two writing wavelengths are given by 

A^-A^jAA1       j = 1,2,3,4 (9.47) 

with Xß = 223.5 nm (corresponding to 514 nm outside the crystal with n = 2.3, d 

= 100 /zm, li = I2 = 100 /mi). It clearly illustrates the strong interference present 

in the wavelength selectivity responses when two writing wavelengths Ag are only a 

few AXk apart. If the peak wavelengths Ag are separated such that the cross talk 

between layers is negligible (e <C 1), the interference terms between grating layers 

can be neglected and the diffraction efficiency of the device reduces to the incoherent 

sum 

? = X>J^ (9-48) 

This shows that the diffraction efficiency around each Bragg wavelength \k
B varies like 

I/1(EQ). Such a device can be useful for wavelength division multiplexing (WDM). 

Typical requirements for WDM are channels bandwidths of about 1 nm separated 

by a few nanometers. A bandwidth of 1 nm can be achieved with a grating layer 

thickness of 50 fim (at A0 = 514 nm). Several of these layers can then be stacked 

together to form a SVHOE multiple-wavelength filter with the desired performance 

for WDM. 

Figure 9.11 represents the normalized output spectral distribution of a dynamic 

multiple-wavelength filter when different grating layers are successively turned "on" 

and "off", assuming that light with a constant spectral distribution is incident on the 

device. This figure is computed with the use of Eq. (9.39) for a structure of three layers 
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with widely spaced Bragg wavelengths A^ [such that Eq. (9.48) is actually valid]. It 

is further assumed that a field EQ applied to the photorefractive material of a grating 

layer k increases the grating amplitude by a factor of 10, i.e., Vk(Eo) = lOz'fc(O). 

When a field is applied to a photorefractive crystal, it also induces a change in the 

Bragg condition due to the electro-optic effect and the piezoelectric effect. This will 

introduce a shift between the writing wavelength (A^) and the reflected wavelength. 

This shift is given by [68] 

A\i{det)      (n2 

^— = I -rlzE* + d33E
k

0 1 (9.49) 

where r13 is the electro-optic coefficient, d^ is the piezoelectric coefficient and EQ 

is the field applied to the layer k during the filtering process. In Eq. (9.49), we 

assume that the electric field EQ is applied along the c axis of the photorefractive 

crystal. If this is not the case, the detuning has a more complex expression, as 

described in Ref. [45]. For a given applied field this detuning is constant and can 

therefore be compensated for during writing in order to yield the desired central 

filtering wavelength. 

An additional possible application of photorefractive SVHOE's that use the same 

configuration as in Fig. 9.9, consists of a multiple-layer optical memory: any multi- 

plexing technique can be used to store several holograms in one grating layer, and one 

can then use the ECD effect to achieve spatial multiplexing of these holograms within 

a single layer of the whole structure. The reflection geometry is especially interest- 

ing, as the Bragg detuning that is due to a given applied electric field or wavelength 

change is the largest in this case and therefore allows a high number of holograms to 

be recorded in one grating layer. Elementary layered optical memory devices based 

on this idea have been proposed and successfully demonstrated [100] [101], although 

they were not using the ECD effect. The capacity and the performance of these el- 

ementary memory devices could potentially be improved by the introduction of the 

ECD effect. The theory developed in this paper is then an important step to a better 

understanding of these devices and also to improvement of their performance. 
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9.5    Conclusions 

We have developed in this last chapter a theory to analyze the diffraction properties 

of layered structures of thick photorefractive gratings in the transmission and in the 

reflection geometries. A closed-form solution for the diffraction efficiency is found in 

both cases. The theory accounts for cases in which holograms with different grating 

spacings are written in different recording layers and cases in which the different 

grating and buffer layers have different properties (composite structures). Finally, the 

performance of a novel optical device, a dynamic multiple-wavelength filter, based on 

the properties of photorefractive SVHOE's, is described and analyzed. 



Chapter 10 

Conclusions and Future Research 

After reviewing the fundamental principles of volume holography and the photore- 

fractive effect in the first part of this thesis, we have studied, in the second part, 

grating formation in photorefractive crystals and analyzed the diffraction properties 

of the resulting holograms. We have shown that in the presence of an applied field, 

amplitude and phase coupling can considerably alter the grating formation process, 

resulting in a grating that is strongly nonuniform in amplitude and in phase, although 

it is recorded using plane waves. We have experimentally demonstrated the presence 

of phase coupling by measuring the diffraction properties of these nonuniform grat- 

ings. Indeed phase coupling results in fringe bending, i.e., a rotation of the fringes 

inside the crystal, that can be measured by analyzing the angular selectivity of the 

nonuniform grating and the shift in Bragg condition. 

We have then generalized the concept of shift in the Bragg condition to encompass 

a series of effects that are encountered in photorefractive applications. We have 

first developed a general formalism to describe Bragg detuning that is due to the 

following effects: electro-optic effect, piezoelectric effect, anisotropic expansion, index 

of refraction changes, and polarization changes. We have then verified this model by 

explicitly measuring changes in Bragg condition in strontium barium niobate (SBN:60 

and SBN:75) that are due to electric field effects and polarization effects. 

However in most of the photorefractive applications, particularly in holographic 

data storage, image-bearing holograms are stored in the crystals. In the presence of 
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Bragg detuning, image-bearing holograms can be severely distorted when one tries to 

retrieve the information previously stored in the crystal. To analyze this problem we 

have first defined detuning-based transfer functions in a general way and then used 

this theory to consider two cases that are of practical interest. 

The first case deals with thermal fixing in a digital holographic data storage sys- 

tem. The fixing of information stored in photorefractive crystals can be achieved by 

heating the crystal during of after the recording process. We have analyzed these two 

methods to achieve thermal fixing: the first method, in which there is a tempera- 

ture difference between recording and readout, is called the high-low process, and the 

second method, in which no net temperature difference is present between recording 

and readout, is called the low-high-low process. We have finally considered the trade- 

offs regarding image deformation and diffraction efficiency between these two fixing 

methods in the different typical recording geometries. 

The second case deals with the electrically controlled diffraction effect in stron- 

tium barium niobate in which, by application of an electric field during readout, 

it is possible to dynamically control and enhance diffraction efficiencies. We have 

experimentally shown that electrically controlled diffraction can be successfully im- 

plemented in a holographic data storage system: we have stored and retrieved with an 

applied field of a few kilo Volts per centimeter multiple planar holograms recorded us- 

ing angular multiplexing as well as high-resolution image-bearing holograms without 

image field loss. 

In the third part of this thesis, we have concentrated on a theoretical study of 

the diffraction properties of stratified volume holographic optical elements. We have 

developed a general analytical formalism to study the diffraction properties of struc- 

tures of thin as well as thick gratings. Finally, we have described a novel optical 

device, a dynamic multiple-wavelength filter, with potential applications in the fields 

of spectroscopy, optical communication and wavelength division multiplexing. 

In the future, more work needs to be done in the field of thermal fixing, first to 

have a better understanding of the physical processes underlying the fixing mecha- 

nism, and then to fully integrate thermal fixing in a high-capacity digital holographic 

data storage system.   At the same time more work can be done to try to improve 
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and optimize the different photorefractive materials used as recording media for holo- 

graphic storage. 

Future work can also be done to grow and characterize stratified volume holo- 

graphic optical elements. Because of their versatility, SVHOE's can be used as com- 

posite structures of photorefractives with enhanced properties or as engineered ma- 

terials with potential applications in the fields of wavelength filtering, beam steering 

or wave guiding. 
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