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ABSTRACT 

This paper discusses the nonuniform illumination of individual pixels in an array that is intrinsic to the scene 
viewed, as opposed to turbulence or platform motion as an error source in quantitative imagery. It describes two classes of 
algorithms to treat this type of problem. It points out that this problem can be viewed as a type of inverse problem with a 
corresponding integral equation unlike those commonly treated in the literature. One class allows estimation of the spatial 
variation of radiance within pixels using the single digital number irradiances produced by the measurements of the detectors 
within their mstantaneous-fields-of-view (IFOVs). Usually it is assumed without discussion that the intrapixel radiance 
distribution is constant. Results are presented showing the improvements obtained by the methods discussed. 
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I. INTRODUCTION 

This paper discusses a source of error in quantitative imaging that has received little attention; the nonuniform 
illumination of individual detectors in arrays of detectors, and describes some techniques to reduce errors from this source. 
The nonuniform illumination is determined by that portion of a scene viewed at an instant by an individual detector that is not 
intrinsically random, however such nonuniformities of illumination are: 

• unknown in advance 
• vary in a way unknown in advance from detector to detector in the 

array since each detector usually views a separate portion of the scene, and 
• vary in time in a manner unknown in advance (because of platform motion 

or time-varying scenes, or both). 

Therefore such nonuniformities cannot be calibrated prior to the fielding of such sensors, and represent a potential 
source of errors that fluctuate with time from detector to detector. The errors arise from the fact that although the irradiance 
measured by each detector is produced by a spatially nonuniform radiance illuminating that detector's surface, the measurement 
process leads to a single digital number for each detector. This number represents an averaged value of radiance equivalent to 
some constant, often fictitious, spatial distribution of radiance across the detector surface. 

The spatial nonuniformities of concern may reach significant proportions in circumstances such as when the ima^e 
includes: ° 

small objects (comparable to the instantaneous-field-of-view (IFOV) of 
the detector) 

rapid or abrupt changes in properties of the surface viewed (such as at 
the edges of farm vegetation or buildings) 

fine topographic features of the ground, and 
rapid changes in surface altitude within the image. 
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Such nonuniformities are intrinsic to the scene viewed. There are other causes, extrinsic to what is to be imaged, but also of 
considerable importance and commonly occurring, such as atmospheric turbulence and platform motion. This paper will 
concentrate on the intrinsic problem and not make use of a physical model of an extrinsic blur mechanism, such as turbulence 
or platform motion. Contributing to the problem are aspects of the limited spatial resolution of all sensor systems. 

This nonuniformity error source is one among many classes of error sources in optical ima^ina that are widely 
-discussed and catalogued in the literature. See, e.g., [1]. Many of these error sources are from truly random processes e g 
thermal and shot noise in detectors, but many are not, e.g., small unaccounted for optical system misalignments and 
atmospheric distortions. Nevertheless the general approach has been to try to estimate quantitative bounds on the errors these 
sources produce, and to develop techniques (e.g. atmospheric correction) that reduce their effects on the final product. 

In this paper the terms IFOV and pixel often will be used interchangeably although they refer to different but 
intimately related aspects. What is viewed by the detector through its IFOV may be thought of as the input to an electro- 
optical system, while the pixel, in common circumstances, occurs in the system output. The usage here will be governed by 
common use, e.g. the expression "subpixel demixing" is commonly used but not "sub-IFOV demixing." 

Errors in spatial imagery due to the nonuniform illumination of individual detectors appear to have been discussed 
only recently, see e.g. [2-5] and meir references, and except for [2] and [5], do not seem to deal with effects intrinsic to the 
scene viewed. Nor does the error source, when intrinsic to the scene viewed, seem to be included in any of the past extensive 
error source catalogues. There are, however, some well known types of errors that should be mentioned. The first pattern 
noise or pattern nonuniformity [6], arises from the unintentional differences between the recorded intensities of identically 
arrayed detectors due to manufacturing imperfections, and should not be confused with the error source discussed in this paper. 

The second error source, though different than nonuniform illumination, may need to be considered in conjunction 
with some of the corrective methods discussed here if it is of significant magnitude in the detectors used in a specific 
application. This source of errors is usually determined by scanning a very narrow beam of illumination across the surface of 
a detector. 

It is usually corrected by using the measured spatial variation to calculate an averaged intensity for the detector If 
the measured spatial variation is small it may be sufficient. If not, the measured spatial variation for each detector determined 
during calibration before fielding, must be retained and used as a weighting function in some of the corrective techniques 
being proposed here. 

Two of the authors (Berger, Bosch) recently discussed a class of methods, called derivative-as-limit (DAL) to 
reduce the effect of nonuniform illumination of individual detectors on imagery accuracy [2]. This paper will discuss the 
nature of the fundamental problem to be dealt with, describe it as a type of inverse problem differing from those commonly 
found in the literature, and distinguish it from the related problems of subpixel spectral demixing and target location and track 
it with subpixel accuracy. Then, it will discuss the DAL class of methods, propose another class to reduce imagery errors 
and discuss and make use of a technique for determining centroids of what is viewed within individual pixels in an array. 

II. THE NATURE OF THE PROBLEM 

While it is the radiance that is usually desired, optical detectors measure irradiance. To determine radiance from 
that measurement, the fundamental relationship between the two quantities, 

L = dE/dH . (1) 

must be invoked. Here L = radiance, E = irradiance and D. = projected solid angle. The integral form of this, 

Eo= jLdn (2) 



also is useful. Here Do is the projected solid angle subtended by the detector of interest and E0 is the irradiance measured by 
that detector. 

Clearly if the illuminating radiance L = f(0,ß) is a known function of the angles 0 and ß, which locate a variable 
point on the surface of the individual detector, then integration over the surface of that detector yields a specific irradiance 
Unfortunately it ,s L(0,ß) that is unknown and is the numerical value of the integral, E0 that is known from the measured 

data. When the noise from all the other mechanisms are added as an additional term on the right side (RS) of eq (2) that 
equation may look somewhat like the form of a conventional inverse problem. 

However, it is in fact different in an important way. The left side (LS) of eq. (2) is a number, not a function and 
the equation does not fit into any of the usual inverse problem categories. Even when restricting the class of inteorands from 
power considerations to L > 0, there probably are still an infinite number of functions, L = f(0,ß), that would satisfy eq. (2). 

The problem becomes more tractable if consideration is extended to a small group of n neighboring detectors with 
cont.guous IFOVs that include the one of primary interest. Now eq. (2) takes the expanded form 

2Ei8(<p-<t>i,ß-ß)= |L(0,/3)dn + N (3) 
i Hn 

where £ is a variable summation over the group of n detectors, Ej are the irradiances measured at the i th detector within 

the group of n, 5(x,y) is the classical two-dimensional Dirac delta function, 0; and ßj are the coordinates of some point 

within the i ÜLdetector surface, N represents the total additive "noise" and D is the total projected solid an°le over the IFOV 
of the group of detectors that is variable. The key is the variability of the range of integration on the RS and the 
corresponding summation on the LS of eq. (2). Eq. (3) also does not quite look like a standard integral equation in 
conventional inverse theories, however it, and the physics of the problem, suggest opportunities to explore that eq (2) does 
not. The exploration of some of these appears to be productive. 

It is usually assumed without comment that L(0,ß) = constant = L0 because the IFOV is sufficiently small and 
whatever is seen in the field of view is uniform. Then 

£o = Lo i/o rA\ 

and since Do is a known characteristic of the detector and E0 is measured datum, then L0 is calculated in a trivial manner. 

Another aspect of this problem is the question of what coordinates, 0j and ßj, should the measured irradiances Ej 
be associated with. Initially it is simplest to choose the center of each detector's IFOV, but this can be improved with the" use 
of the notion of centroids for those IFOVs, as will be discussed later. 

In subpixel spectral demixing one is concerned about determining the identity of objects contained within a sinele 
pixel by using the spectral signatures of a class of objects, some of which may be contained within that pixel Sol vin* this 
problem does not usually lead to a more accurate data representation, nor an estimate of the spatial variation of radiance 
within, or in the vicinity of, that pixel (which are the concerns of this paper). 

The notion of centroid is used with great accuracy in target detection and tracking, usually for targets seen with the 
sky as background.   Such targets, emanating with sufficiently large peaks in radiance, can be located by some operational 
optical trackers to an accuracy, on the order of one one-hundredth of a pixel or better [7]. In the use of the following centroid 
the concern is for the centroid of radiance within each and every pixel of a larger scene, typically when viewino the°ground or 
some extended surface. °       5 



III.   DERIVATIVE - AS - LIMIT (DAL) ALGORITHMS 

Reference [2] approached this problem by first recognizing that a derivative is mathematically defined as a limit 
So that eq. (1) can be written as 

,_,,^ Lim    AE 
L = dEJdn =   (5) 

Ann - o ADn 

Then it attempted to approximate the limit by inferring it from the data trend using the data from a sequence of nested sets of 
nearby neighbors of the detector of interest (as well as the datum from that detector (D0) as well) that converges to the datum 

of D0. Clearly, objects totally.contained within the IFOV of a single detector will not be revealed by such an approach. 

. However calculations are presented in reference [2] for a specific example of synthetic data, for surface features and 
objects that produce, e.g., a radiance peak (or valley) within D0 with a half-peak-width (HPW) smaller than the IFOV of D0 

(IFOV0), while continuing to spread at a lower level beyond the borders of IFOV0. These show estimation accuracies greater 

than normal by the DAL approach. As the HPWs grow larger than IFOV0, the accuracy for smooth curves grows larger. For 
monotonically increasing or decreasing radiance curves, the accuracy increases as the slope of the curve decreases. 

The above statements are true for the calculations performed to date so long as the total noise, N, from other 
sources, are small enough. Even when applied to aerial imagery of urban areas from altitudes of ten to fifteen thousand feet 
without corrections for any other error sources, including atmospheric distortion, improvements to imagery were seen See 
F.gures 1 and 2. However it must be observed that as N grows large, it could be expected that the accuracy of this estimation 
process will steadily decrease to the point where the results will not be useful. On the other hand, it might also be expected 
that when other error sources are corrected, such as atmospheric distortion and motion-induced blurring, the improvements 
may be greater. Refer to Figure 1 for the results of the application of the DAL algorithm to a HYDICE urban scene. 

IV.   INTERDETECTOR CALIBRATION 

The DAL class of algorithms does not directly address the estimation of the spatial variation of radiance in the 
vicinity or within the IFOV of a detector, from the data trend in a small neighborhood ofthat detector. One approach to this 
as well providing data enhancement, is by using eq. (2) as a consistency relationship applied to an approximation of L(0 ßj 
obtained from linking the data points between detectors by piecewise-linear interpolation. This approach suffers from the 
same restriction as the DAL class of algorithms do, in that objects totally contained within a single IFOV will not be 
represented, but it may be more useful than just the discrete data set Ej * 5(<p - 0i, ß - fi), i = 1, 2,..., n. 

If one has an approximation to L(0, ß), call it Aj(0,ß), across the IFOV of the i ih detector, it may be possible to 
improve that approximation by requiring that 

Ei = JJkiA,(0,/3)dfi (6) 

where Kj is a constant whose value is determined from eq. (6). Then an improved approximation to L across that IFOV may 
be given by 

Bi(0, ß) = Kj A;(0, ß) ■• (7) 

Sample calculations from synthetic data given next agree with this idea. 



Figure 1. Figure 2. 

Figure 1. corresponds to the uncorrected HYDICE image of an urban area. Figure 2 demonstrates the results of the DAL 
algorithm applied to the HYDICE urban scene. 

In order to carry out the above, we obtain the first approximation, Aj, by initially associating the data Ej with the 
centerpoints of the i th IFOV and later changing the association to the centroids of those IFOVs. In the initial stage we use 
the approximation from eq. (4) to obtain a radiance from the measured irradiance to associate with the IFOV centerpoint. 
Then a piecewise-linear approximation is used to connect those discrete points associated with the detectors with contiguous 
IFOVs in a small immediate neighborhood of the detector of interest. 

To demonstrate this initial stage and give numerical results to indicate what is accomplished, we consider a 
specific example. In order to quantify improvements obtained, a specific spatial variation of radiance will be assumed and the 
measured irradiance data that a group ofideal detectors would produce (one numerical value per pixel) are calculated. From 
this synthetic discrete data set we try to infer the original' continuous spatial variation of radiance within some of the pixels 
and compare that with what had been assumed. 

For simplicity we consider the following one-dimensional case for the spatial distribution of radiance: 

L(0) = 
|Lo * exp(+0/a), <p < Ol 

[LO * exp(- 0/a), <p > 01 
(8) 

where L0 is a constant magnitude, exp(x) represents the exponential function of x and 2a equals the angular width of the 

IFOV of each of a linear array of identical detectors, with contiguous IFOVs with the center of D0 located at the origin of the 

local coordinate system. The HPW of this L(0) is approximately 0.69 (2a), i.e. about 0.7 of the IFOV.   Only, the data from 



the two nearest detectors on each side of D0 will be used, since when applying the method to real imagery one would usually 
expect the data in a small neighborhood of a pixel to be "relevant" to the data within the pixel. 

To calculate the synthetic irradiance measurement data set, eq. (8) is used in eq. (2) and then eq. (4) is used to 
transform the results into the set of discrete radiances the assumption of a uniform field would lead to. The resulting radiance 
"data" set (L, 0) with L normalized to L0, associated with pixel centerpoints is: (0.0215, -4a), (0.1590, -2a), (0.6321, 0) 

(0.1590, 2a), (0.0215, 4a). Linear interpolations between these points using the form L(0) = m 0 + b. m and b are constants' 
was earned out between the five pixel centerpoints. Then eq. (6) was used to obtain the corrective constants Ki for 
consistency with the original "measurements." Table 1 illustrates the results of the calculations performed for the center pixel 
Do- 

Table 1. True and Inferred Normalized (to L0) Radiances, Based on Centerpoints, 
for the Center Pixel D0 

Location: 0 = 0 0 = ±a/2 0 = ±a 
Actual radiance 1.000 0.606 0.361 
Radiance (and error) from 0.632 0.632 0.632 

uniformity assumption (36.8%) (4.3%) (75.1%) 
Radiance (and error) after 0.951 0.644 0.313 
correction with Ki (4.9%) (6.2%) (13.3%) 

Note that the results are superior to that from the uniform radiance approximation except near the points where the true 
radiance function passes near its average value. 

V. THE USE OF CENTROIDS 

The association of the irradiance data with the centerpoints of the pixels is an arbitrary choice, and arises from its 
convenience and the lack of information to base choosing other points within the pixel. However once'the centerpoints arc 
used, as are done above, in the approximate fashion with sets of linear interpolations for L(0), it becomes possible to 
determine more appropriate points through the notion of centroids. Associating the irradiance data with the centroids should 
lead to an improved approximation to L(0) when using the linear interpolations between data points. 

The context of the traditional use of centroids for optical trackers is described in section II. Here we shall use them 
within each pixel where we will determine them from the linear interpolations. The definition of centroid as applied to the 
center pixel is 

0C 
J>L(0)d0 
-a  

+a (9) 

Similar usage applies to the other pixels. 

When these definitions are used with the linear interpolations for the case given by eq. (8), the results in Table 2 
are found for the center pixel D0, the two pixels adjacent on both sides (Dj) centered at 0 = 2a and -2a (which differ only by 

sign because of symmetry), and the two adjacent to them (D2) centered on 0 = 4a and -4a (which also differ only by sign 
because of symmetry). 



Table 2. True and Inferred Centroids for the Radiance Given by Eq. (8) 

Centroid Locations for Do Dl D2 
True Locations 0.000 11.687(a) +3.687(a) 
Inferred Locations 0.000 ± 1.747(a) 13.588(a) 

(and errors) (0%) (3.6%) (2.7%) 
Centerpoints 0.000 ±2.000(a) ±4.000(a) 
and errors) (0%) (15.7%) (7.8%) 

. With approximate values for the centroids now in hand we can recast the data set (L,0), again using eq. (4) and 
w,th L normalized to L0, as: (0.0215, -3.687a), (0.1590, -1.687a), (0.6321, 0). (0.1590, 1.687a) and (0.0215, 3.687a). 

These become the basis for a new determination of the linear interpolations between data point locations. Applying eq. (6) to 
determine a different set of Kj to improve the interpolation approximations, produces the results for the spatial variation of 
radiance within the pixels shown forD0 in Table 3, and for Di in Table 4. 

Table 3. True and Inferred Radiances (Normalized to L0) Using Centroids 
for the Center Pixel D0 

Location: 
True radiance 
Radiance (and error) from 

uniformity assumption 
Radiance (and error) after 
correcting with Ki 

0 = 0 

1.000 
0.632 

(36.8%) 
0.921 

(7.9%) 

0 = ±a/2 
0.607 
0.632 

(4.1%) 
0.632 

(4.21%) 

0 = ±a 
0.361 
0.632 

(75.1%) 
0.343 

(2.45%) 

Table 4. True and Inferred Radiances (Normalized to Lo) Using Centroids 
for the Pixels Dl Adjacent to the Center Pixel 

Location: 0 = ±a 0 = ±2a 0 = ±3a 
True radiance 0.361 0.135 0.050 
Radiance (and error) from 0.159 0.159 0.159 

uniformity assumption (56%) (17.5%) (218%) 
Radiance (and error) after 0.343 0.133 0.062 

correcting with Ki (2.5%) (1.7%) (24.7%) 

It is clear from Tables 3 and 4 that the procedure described using centroids gives a better description of the spatial 
variation of radiance within the pixels than does the assumption of uniformity for the case considered. Furthermore the 
comparison of Tables 1 with 3 indicates that the use of centroids as data points gives somewhat better results than does the 
use centerpomts. When what is desired from this information is a single value of radiance for a pixel, the choice of value 
from the continuum calculated depends on the objectives. For example, when peak values occur within a pixel, the value of 
the peak within that pixel may be most useful in some circumstances. 

VI.   CONCLUSIONS 

. A. .A , A" fPPa^'y new type of inverse problem has been considered in which the spatial variation of radiance within 
individual pixels is to be reconstructed from the discrete set of irradiances, one digital number per pixel, measured by an array 
of detectors with contiguous IFOVs. Two classes of algorithms have been discussed. The first, DAL, does not retrieve 
detailed spatial profiles of radiance, but considers a sequence of nested sets of neighboring detectors, the data from which is 
used to estimate the l.mit that defines the derivative in the radiance/irradiance relationship L = dE/dD [2]. The second class of 
algonthms, called mterdetector calibration, does estimate the intrapixel spatial variation of radiance using the data trends from 
the neighboring pixels and the datum of the pixel of interest. 



In the past, it has customarily been assumed, usually without discussion, that the radiance is simply a constant 
within the pixel. This yields the radiance for a pixel from E = J L dfl, the measured irradiance (a single digital number) and 
the designed flo in an elementary manner. However when there is a concern for relatively small objects, rapidly varying 
surface conditions or topography, such an assumption of uniformity may be counterproductive. Airborne imagery illustrating 
the enhancement using a DAL algorithm and calculations of the accuracy of the spatial variations of intrapixel radiance" 

-supplied by two mterdetector calibration algorithms has been presented. 
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