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ABSTRACT 

The U.S. National Security Agency wishes to predict the routing of messages 

over various communications networks. Before routing predictions can be made in a 

public switch telephone network (PSTN), the hierarchical level of the network's 

switching stations must be known. This thesis develops a integer linear programming 

model for accomplishing this classification. In this model, a PSTN is represented as a 

graph in which switching stations are nodes and the logical connections between the 

switching stations are arcs. Algebraic constraints represent the engineering standards 

common to PSTNs. The model also incorporates probabilistic inferences about the 

class of switching stations to improve classification accuracy for networks not 

following typical PSTN structural practices. Preprocessing routines that analyze the 

network's topology and employ various heuristics to reduce the size of the problem are 

evaluated. The model is implemented in GAMS Development Corporation's Generic 

Algebraic Modeling System and sample PSTNs are solved using IBM's Optimization 

Subroutine Library solver on a 166 MHz desktop personal computer. Accurate 

classification solutions are obtained in under 2 seconds for actual PSTNs, while 

extremely large notional networks of over 300 nodes and 900 arcs are solved in under 

2 minutes. 
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THESIS DISCLAIMER 

Specific computer code is not included in this thesis, although the programs 

developed in this research are available from the author. The reader is cautioned that 

these computer programs may not have been exercised for all cases of interest. While 

every effort has been made, within the time available, to ensure that the programs are 

free of computational and logic errors, they cannot be considered validated. Any 

application of these programs without additional verification is at the risk of the user. 
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I.        INTRODUCTION 

Knowledge of the routes messages will take as they pass through a 

communications network can be exploited to enhance intelligence collection 

capabilities and evaluate network security. Accurately predicting the routes of 

telephone messages within a public switch telephone network (PSTN) is only possible 

when the hierarchical levels of the switching stations are known. Once the 

hierarchical levels of a PSTN's switches have been accurately classified, the network 

can be further processed to yield intelligence insights. This thesis presents an integer 

programming model that can infer the hierarchical levels of PSTN switching stations 

from the logical topology of a network, making best use of available information about 

the network to speed processing time and increase accuracy of the node classifications. 

The goal of this thesis is to develop this model and to evaluate it for suitability as a 

network analysis tool. 

A.       PURPOSE 

The Department of Defense's National Security Agency/Central Security 

Service (NSA/CSS) has two national missions. The foreign signals intelligence (or 

SIGINT) mission requires the NSA/CSS to provide control and organization of all 

foreign signals collection and processing activities of the U.S. Government. The 

information systems security (INFOSEC) mission requires that NSA/CSS provide 

policy and services to aid in protecting U.S. information systems from exploitation 

(E.O. 12333,1981). 

Both missions of the NSA/CSS require good methods for predicting routes that 

messages will take over various communications network technologies. For the 

SIGINT mission, message-routing predictions would help focus collection efforts on 

high-payoff portions of target networks in adversary countries. Route prediction can 



also support the INFOSEC mission by assessing areas of vulnerability to interception 

or unauthorized access of networks used by U.S. agencies. 

The Generalized Communications Assessment Tool (GCAT) is a large-scale 

analysis tool under development for NSA/CSS to provide route prediction, and other 

analysis functions, over various communications technologies. In the fall of 1997, 

GCAT was incorporating methods for analysis of PSTNs. This thesis develops and 

evaluates an integer programming model (DP) for inclusion in the GCAT methods 

implementing PSTN route prediction. The IP will be evaluated primarily by its 

performance in classifying "hierarchical-routing" regional PSTNs from the United 

States, and modified versions of these PSTNs. A future goal is to extend the model to 

classify non-U.S. PSTNs. 

In the model, a PSTN is represented as a graph in which the switching stations 

are nodes, and the trunk lines interconnecting the switching stations are arcs. Most of 

the world's telephone systems use a hierarchical-routing system, in which calls are 

referred to higher-level, more capable switches whenever needed to complete a 

connection. The model attempts to infer the hierarchical level of the switching 

stations by algebraically representing the network structure assumed in a hierarchy, 

and the engineering practices commonly observed in PSTNs. In some cases, PSTNs 

do not strictly follow the typical hierarchical structure, so the model can also 

incorporate inferences about the hierarchical level of switching stations. 

GCAT is intended to be used interactively. Consequently, lengthy solution 

times for any of its component modules is undesirable. This thesis proposes and 

evaluates several routines for speeding solution time of the node classification IP. 

These routines reduce the dimensions of the problem prior to solving the model, 

dramatically reducing solution times. 



B.  BACKGROUND 

GCAT's PSTN methods seek to generate route predictions by reverse- 

engineering the hierarchical structure of the network under study. The methods apply 

rules derived from PSTN routing protocols and standard engineering practices to 

surmise the functionality of the network. Some rules model hard engineering 

standards, while others are heuristics, true only some of the time. 

1.        Overview of Hierarchical PSTNs 

Viewed globally, the public telephone system is an interconnected network of 

transmission media allowing virtually any telephone on earth to communicate with any 

other, more or less on demand. Certain structural conventions have been adopted in 

order to provide this service economically and with reasonable service performance to 

subscribers. 

One such convention is the notion of a hierarchical structure. While less 

efficient than more recent dynamic routing technologies, hierarchical routing is still 

the most prevalent protocol worldwide (Ash, 1998). Hierarchical routing greatly 

reduces the requirement for complicated interactions between the switches of a 

network. This simplification was mandatory in order to construct telephone systems 

using the technology available in the early part of the 20th century. 

Within a PSTN, calls are routed among interconnected switching stations, 

congestion permitting, so as to minimize the number of trunk lines used in the path 

(Noll, 1991). Calls that cannot be switched via shorter paths overflow onto less 

preferred paths, i.e., paths using more trunks. If no direct routing possibilities at a 

particular switch can complete the connection, the switch will, by default, route the 



call to a higher-ranking switching station. The higher-ranking switch will have a 

wider geographic domain and increased ability to route calls traveling greater distances 

(Ash, 1998). An example of a hierarchical PSTN is depicted in Figure 1. 

Class 3 

F~| | Class 4 

H>   I Class 5 

@   | Class 6 

Figure 1. Example of a Hierarchical PSTN 
This is an example of a "typical" hierarchical PSTN. Each node in the graph represents a switching 
station, while each arc indicates a path for routing telephone calls between the interconnected nodes. 
Hierarchical classes will be defined in greater detail later in the text; however, nodes with lower class 
numbers are higher in the PSTN's hierarchy, and more able to route calls travelling greater distances. 
The node annotations will be referred to later in the text. 

2.        Node Classification Using Artificial Intelligence 

Prior to considering a mathematical programming approach to the PSTN node 

classification problem, a rules-based artificial intelligence (AI) routine for 

classification was tested and discarded. This precursor node-classification program 

was coded in NASA's C-Language Integrated Production System (CLIPS), a 

programming tool specialized for encapsulation of expert knowledge (Giarratano, 



1997). Insights from this earlier effort can be adapted for use in the IP to increase 

classification accuracy for non-typical networks and to speed solution times. 

The AI approach to the node classification problem attempts to capitalize on 

the conditional (usually, but not always, true) nature of many of the structural 

conventions of PSTNs. Telecommunications experts have provided heuristic rules 

that can be applied to the node-classification problem. For example, the type of 

equipment used at a switch facility can suggest the level of the station, and the 

commonality of a switch's operating company with others in the network can also 

provide clues to the level of the switch. Since the majority of these heuristic rules are 

true only some of the time, each in isolation can only suggest a likely classification for 

a node. Collectively, it was thought that these rules would enable an AI program to 

converge to an accurate hierarchical labeling of the switching stations. 

Performance of the CLIPS node classification routine was unsatisfactory. It 

was slow to converge to a solution and had no clear stopping rule. The CLIPS routine 

was also a "black box"—the inner workings were obscure. There was no way to 

specify a partial solution, nor any way to tailor the algorithm for classification of 

networks known to vary from the norm. This motivated the development of 

alternative node-classification algorithms. 

Currently, two complementary approaches to solving the node classification 

problem are under development at the Naval Postgraduate School. An "Intelligent 

Enumeration" algorithm is being developed that may be able to classify switching 

stations without resorting to solving an integer programming model. If this algorithm 

proves adaptable enough to cover the range of PSTNs studied with GCAT, its speedier 

solution times may make the algorithm a viable solution technique for the node- 

classification problem. The intelligent enumeration algorithm and the preprocessing 

routines of this thesis employ similar tactics in identifying critical features of the 



network, and a version of the algorithm has been adapted to quickly accomplish the 

network preprocessing used in this thesis (Brandeau, 1998). 

3.        Contrasting the AI and Mathematical Programming Approaches 

The mathematical programming model of this thesis differs from the AI 

approach in that the IP generates node classifications by first enforcing a baseline 

hierarchical structure. The workings of the IP model are analytically accessible, and 

the baseline model can be adapted in predictable ways. For example, certain countries 

or areas may exhibit a tendency to construct robust PSTNs with redundant routing, 

fewer hierarchical levels and proportionately more nodes at higher hierarchical levels 

(perhaps to improve resiliency when portions of the network sustain damage). In 

modeling these networks, the IP's parameters can be adjusted to solve for a network 

with fewer levels and more top-level nodes. With a basic network structure 

established, the IP incorporates some of the conditional rules of the AI module in order 

to improve classification accuracy on portions of a network not following hierarchical 

standards. Testing the efficacy of these so-called "soft inferences" in the IP is one of 

the goals of this thesis. 



H.       HIERARCHICAL ROUTING 

Building a model of a hierarchical telephone system requires a deeper look at 

the classes of switches and the protocols used in routing calls. This chapter outlines 

the protocols and telecommunications practices that will later be used in developing an 

IP model. 

A.       CLASSES OF SWITCHING STATION 

Functionally, there are two types of switching stations. Individual subscribers 

connect to the phone system via local exchanges, which are at the lowest hierarchical 

level. These exchanges can directly route traffic only between local customers. Calls 

between customers not of the same local exchange must be routed over trunk lines, 

often via transit exchanges. Transit exchanges are at the upper levels of the hierarchy, 

and switch only concentrated traffic destined for non-local destinations (Pearce, 1981). 

Worldwide, there are two prevailing types of hierarchical PSTNs, namely, the 

ATT and CCrTT protocols. Table 1 lists the various levels of switching station and 

their U.S. (ATT) and European (CCITT) nomenclature. In hierarchical PSTNs, each 

switching station except those of highest rank is subordinate to a higher level station 

that serves to concentrate traffic destined for regions beyond the geographic domain of 

the current level. In the ATT routing scheme, class 4 and lower-numbered switches 

are transit exchanges, routing concentrated traffic via trunk lines. Class 3 and 4 

facilities are often referred to as tandems. End offices and remote concentrators, 

classes 5 and 6, connect individual subscribers to the network via subscriber loops 

(Freeman, 1989). 

The ATT and CCITT protocols are quite similar, differing primarily in 

nomenclature and in that CCITT allows for seven hierarchical levels. In the ATT 

scheme, class 3 through 6 switches provide telephone service within a discrete 



geographic region. It is within these regions that the IP attempts to classify nodes. 

Higher level switches exist (Regional and Sectional Centers), providing long-distance 

and international phone switching services at the national network level. GCAT will 

employ other methods to predict call routing at these levels, where hierarchical 

protocols are not used. 

GCAT 
Nomenclature ATT (North American) CCITT (European) 

Class 1 Regional Center Quaternary Center 
Class 2 Sectional Center Tertiary Center 
Class 3 Primary Center Secondary Center 
Class 4 Toll Center Primary Center 
Class 5 End Office Local Office 

* Class 6 Satellite, or Remote Concentrator 

Table 1. Classes of Hierarchical Switching Stations 

The "class" of a hierarchical PSTN switching station refers to its level within the routing hierarchy. The 
lower a switch's class number, the greater its ability to route traffic travelling farther geographic 
distances.   * Note: Remote concentrators do not represent a sixth hierarchical level, but in GCAT such 
facilities are considered "Class 6" exchanges. 

B. CALL ROUTING 

Hierarchical routing is particularly desirable for systems employing 

unsophisticated switches, as was the case when public telephone systems were first 

implemented. Hierarchical routing automatically ensures no call will be returned to a 

node previously used in the route (prevents looping), and also requires that 

connections be established using a reasonable number of trunk lines (Ash, 1998). 

Physically, telephone calls travel via trunk lines, and the arrangement of these 

media (fiber, copper wire, etc.) is the physical topology of the network. The logical 

topology refers to how the nodes actually communicate. In the logical topology, 

interconnections (arcs) between switching nodes are called links. A link between two 

nodes / and j may be physically composed of several sets of trunks and intermediate 

switches; however, from the perspectives of switches / and j, a direct connection exists 



between them. The hierarchical routing protocols described next operate within the 

context of a network's logical topology. 

The set of paths available for routing calls between a pair of origin and 

destination nodes is referred to in GCAT as a route table. These paths are composed 

of two types of links: direct and final. Direct links may be established whenever an 

average high volume of traffic exists between any two nodes, regardless of the classes 

of the nodes. Direct links are essentially high-volume short-cuts. A node's final link 

connects it to its hierarchical parent. By following the final links from an originating 

office up through each hierarchical level, across (if necessary) to the destination node's 

predecessor parent at the top level, and then down via final links to the destination 

office, one would be tracing the, final path (see Figure 2). The final path is formed of 

two routing ladders, one rising from the originating local exchange up to the top level, 

and another descending from the top level to the destination local office. In order to 

prevent any possibility of "call looping," the only valid routing paths between two 

local exchanges are those along the final path, or following direct links which short- 

cut the final path. In other words, paths routed through a node of a third hierarchical 

ladder are prohibited (Ash, 1998). Figure 2 shows several direct routing possibilities 

and the final path for an origin-destination pair of end offices. 

While somewhat simplified, for purposes of this thesis the paths in a route 

table can be ordered by preference using two rules. Since call quality diminishes with 

increasing number of trunk lines used, paths using fewer links are preferred. It is also 

preferred that a switch advance a call as far as possible toward its destination. By this 

second rule, a switch will exhaust all direct routing possibilities at its level before 

defaulting and utilizing the final link to its parent switch higher in the hierarchy 

(Freeman, 1989). The final route is so called because it is the final opportunity to 

complete a call, since all direct routing possibilities will have been exhausted prior to 



utilizing it. Figure 3 shows the route table generated by these rules for the example 

route of Figure 2. These paths are also depicted in Figure 1. 

Class 4 

Class 5 

Origin Destination 

Direct path Direct Path Direct Path Final path 

Figure 2. Direct and Final Paths in Hierarchical Routing 

Final links are shown as solid lines, and direct links are dashed. This example identifies three of the 
four direct routing paths, and the final path. The fourth direct path would utilize the direct link between 
the class 4 and class 3 nodes. 

Class 3 

Class 4 

Class 5 

most preferred route to least: 

C-F 
C-E-F 
C-B-F 
C-B-D-E-F 
C - B - A - D - E - F (final path) 

Figure 3. A Route Table 

In a route table, more preferred paths use fewer trunks. Where this rule is ambiguous, the least preferred 
route uses a final link (indicated as solid lines) earlier in the path. Notice in Figure 1 that paths from C 
to F also exist through the node marked with an asterisk. These paths are invalid in the hierarchical 
routing protocol because a third ladder would be involved. 

10 



C.       NETWORK TOPOLOGIES 

The hierarchical routing scheme simplifies switching requirements, since only 

the default final route to a parent station, and the additional high-usage direct routes, 

need to be known by a switch in order to route calls (Ash, 1998). The issue then 

becomes one of configuring the network cost-effectively. There are four basic 

network configurations in general use: mesh, star, double star, and hub and spoke (see 

Figure 4). The configuration of the network has a major impact on solution time for 

the node-classification IP. 

Mesh Star Double Star Hub and spoke 

Figure 4. Examples of Basic Network Topologies for PSTNs 

A regional PSTN may contain several of these topologies. 

In a mesh-connected portion of a network, there are direct links between every 

pair of switches. This is a costly configuration indicating high traffic volumes 

between exchanges, such as in metropolitan areas. In a star configuration, every node 

is interconnected via a central exchange called a "tandem." Double-star configurations 

have satellite star networks interconnected via their tandems to higher-order tandems. 

Star configurations are typically found in lower traffic volume situations, such as rural 

areas. Hub and spoke formations are an intermediate configuration, offering some 

redundant routing possibilities without the expense of a full mesh (Freeman, 1989). 

Mesh, hub and spoke, and star configurations are also depicted as components of the 

example PSTN of Figure 1. There are no routing decisions to be made in star 

configurations, since every call is either local or passed to the tandem. Classifying the 

11 



hierarchical level of nodes in such a configuration is relatively simple. Networks with 

mesh, or hub and spoke, configurations are more difficult to classify, since there are 

many possible ways to assign hierarchical levels to the nodes. 

12 



III.     MODEL FORMULATION 

The chapter presents an integer programming model for classifying PSTN 

hierarchical levels, along with the assumptions underlying the model. The model 

seeks to be as general as possible; but the formulation is derived primarily from 

observations of U.S. (ATT) networks. Some of the assumptions, and their 

implementation in the model, may need to be revalidated for analysis of non-US. 

networks. 

A.       MODEL ASSUMPTIONS 

From the description of hierarchical PSTN protocols in Chapter n, some 

assumptions can be drawn that will be used in the IP described in this chapter. In the 

interest of brevity later, each assumption is assigned a short-hand name. 

♦ Final_Reqd. Every node in the network is either subordinate to another 

node, or is at the top level of the network. Furthermore, a node will have at 

most one parent, and that parent will be at a higher hierarchical level. In 

telecommunications terms, every node not at the highest level will have a 

final link to its parent in the hierarchy. 

♦ TopJSiesh. Nodes at the top level of the network must form a complete 

(sub) graph (i.e., be completely interconnected). This is a requirement for 

the existence of route ladders between every pair of local exchanges. 

Additionally, expert knowledge about typical telephone networks can be drawn 

upon to derive assumptions about the usual "shape" of PSTNs. Since these 

assumptions may not be universally true, they will appear in the IP model as 

"aspirations," rather than requirements. 

13 



♦   MinJLevel. A network will be constructed with the fewest possible 

number of hierarchical levels. The paths containing the most trunks, and 

therefore the most signal loss and inefficient trunk usage, will be the final 

paths defining the hierarchy. By reducing the number of hierarchical 

levels, the final paths will use the fewest possible trunks. 

♦   MinJTops. The number of top-level nodes will be the minimum required 

to establish route ladders between all pairs of local exchanges. If 

functionality of the network does not require a top-level candidate to be at 

the top level, it is probably not a top-level node. This observation is most 

likely a result of economic incentives-it will be more economical to install 

direct trunks, whenever possible, rather than establishing a high-level 

switching facility. 

♦   More_5s. Class 5 end offices are the most common switches in a network. 

This is a logical result of the pyramid-shape typical of hierarchies. Since 

transit exchanges have increased geographic span of influence, fewer are 

required to span the domain. Class 6 remote concentrators are specialized 

entities, observed to be less common than end offices. Whenever a node 

may be one of several possible classes and still satisfy all other 

assumptions, most often the node will be a class 5 end office. 

14 



B. INDICES 

Two indices are needed for the basic model. An additional, optional, subset 

will be described in section F. 

♦ i - an element of the set of switching stations (nodes) of the network. 

♦ c - an element of the set of possible switch classes. While this set can be 

generalized to represent arbitrary levels, in U.S. regional PSTNs the 

domain of this set is {3,4, 5, 6}. 

C. DATA 

The basic input to the IP is the logical topology described by a node-node 

adjacency matrix (see Ahuja, et al, 1993, for a description of adjacency matrices). The 

adjacency matrix defines an undirected network G = (N, A) with node set N = {1,2,..., 

n} and arc set A = {(i,j)} e NxN. 

♦ (i,J)eA - an arc of the network; e.g. a logical link. 

♦ ZWT   - objective function weight whose relative proportion with other 

such scalars establishes the importance of the Min_Level assumption. 

♦ TWT   - objective function weight penalizing the number of top-level 

nodes in the solution. Implements the Min_Tops assumption. 

♦ PWT   - objective function weight rewarding the number of class 5 nodes 

in the solution. Implements the More_5s assumption. 
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♦ SOFTci - soft inference parameter; an objective function weight applied to 

influence the class c assigned to node i in the final solution. Soft 

inferences are more completely described in a later section. 

♦ zclass - minimum class allowable in the network. Imposes a lower bound 

on the lowest class used in the network. 

♦ A - the difference between the highest and lowest possible hierarchical 

levels of the network. Defines the range of possible classes in the network. 

D.       VARIABLES 

Four sets of variables are needed to represent the characteristics of PSTNs. 

♦    zclass - an integer variable representing the minimum class used in the 

network. Given the inverse relationship between hierarchical level and the 

class number representing them, zclass is equal to the highest level used in 

the network. 

♦ bcld - a binary variable which is 1 if node / 's class is c, and is 0 otherwise. 

♦ topi - a binary variable which is 1 if node i is at the top hierarchical level of 

the network, and is 0 otherwise. 

♦ pij - a binary variable indicating if node j is the parent of node i. This is a 

surrogate for each node's final link. 
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E.       FORMULATION 

Maximize 

ZWT - zclass - TWT ■ £toPi + PWT ■ ^bcl5i + XS50Frc/ • (bcla ) (obJ) 
i i i      c 

Subject to 

5>/d =1      VieN (1) 
c 

toPi+toPj <1       V(i,y)«A       (2) 

tOP, +   £p,y =1 ViGtf (3) 
j:(i,j)eA 

oc/c,. - ]>>/c., + pß <1       Vc, (/,;)€ A   (4) 
c':c'>c 

p,y+/;,,. <1       V(i,7)eA      (5) 

zc/ass - ^ (oc/c,. • c)        - /op, 
c 

— zclass + ^ (bclci • c)        + A • to/?. 

<-l     ViGiV (6) 

?.                                <A      VieJV (7) 

zclasse -fec/ass,..., zclass + A} 

bclci   e{0,l}Vc,/ 

fop,-   e{0,l}V/ 

oc/c/   e{0,l}.V(/,;) 

Constraints (1) require that every node be assigned a class. 

Constraints (2) implement the Top_Mesh assumption by requiring that for every pair 

of nodes not connected by an arc, at most one may be a top-level node. 

The Final_Reqd assumption is implemented by constraints (3) and (4). Each node 

must either be a top-level node, or must choose a parent. By (4), any parent must 

be at least one hierarchical level above its child. Notice (4) allows the possibility 

of a parent node being more than one hierarchical level above any children nodes. 
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Constraints (5) prevent nodes from being parents to each other. These constraints are 

logically redundant with (4), but adding them to the formulation speeds solution 

times (they are not redundant in the continuous linear program relaxation of the 

IP). 

The last two constraints identify nodes eligible or not eligible to be tops. By 

constraint (6), nodes with binary class equivalent to zclass must be tops, while (7) 

requires that nodes with class greater than zclass not be tops. Collectively, 

constraints (6) and (7) require that zclass be equal to the smallest index c used in 

the network. 

The remaining assumptions are implemented in the objective function (obj). The 

term containing ZWT rewards for fewer levels (the Min_Level assumption). The 

7WT-term penalizes the number of top-level nodes (Min_Tops), and the PWT 

term rewards for every class 5 node (More_5s). Note that in implementation, 

PWT may be absorbed into the SOFT5i data parameter. Choice of ZWT, TWT and 

PWT determine the relative importance of the MinJLevel, MinJTops, and 

More_5s assumptions, and when one assumption will overrule another. 

Soft inferences are also implemented in the objective function. The SOFT terms 

reward for class assignments commensurate with those indicated by the soft data. 

Soft inference parameters can only be used when additional information about the 

network is available to invoke the heuristic rules generating them. In the absence 

of such data, the SOFTd parameters are zero. The next section provides a full 

discussion of soft inferences. 
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F.        HARD AND SOFT INFERENCES 

Inferences are indications about the variable values based on intelligence data 

about the network, or originating from the analyst. This section describes the 

implementation of soft and hard inferences in the IP. 

1.        Hard Inferences 

Hard inferences are input by the analyst and dictate a portion of the solution. 

This introduces the possibility of model infeasibility. Using hard inferences to specify 

some portion of the solution may be desired, for example, to conduct sensitivity 

analysis on the route tables under various assumptions about the class of a switch. 

Also, an analyst may surmise the network's actual configuration is not optimal given 

the model assumptions. The use of hard inferences will allow investigation of this 

possibility. 

While the value of any variable of the model can be fixed as a hard inference, 

the model is optimized for analytical conjecture about the identity of top level nodes. 

Hard inferences can establish an additional subset and data parameter: 

♦ NT C N: A subset of N required by the analyst to be at the top hierarchical 

level of the network. 

♦ MINTOPS: A data parameter establishing the minimum number of top- 

level nodes in the network. 

To expedite the solver if MINTOPS > 0, an additional equation is added to the 

model, and the values of the topt and/?/, fixed for all / in Nf. 
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Y^toPi > MINTOPS 
i 

top i     =1 Vis NT 

Py     =0 Vie iVr 

With the top, variables either linearly constrained or fixed (which also requires that 

these nodes have no parents), the solver can take advantage of a partial solution. If the 

set NT is empty and MINTOPS = 0, these portions of the model are inactive. 

2.        Soft Inferences 

The purpose of soft inferences is to influence the formulation's solution to 

more correctly classify networks that do not entirely follow the model's assumptions. 

The premise behind soft inferences is that clues of a network's non-conformity may be 

found in various heuristic rules. This thesis implements four rules derived from the 

expert opinion of telecommunications analysts pertaining to U.S. regional networks. 

The purpose of soft inference testing in this thesis is to validate the methodology, not 

the rules specifically. Presumably, different rules would need to be developed for 

analysis of non-U.S. networks. 

Soft inference parameters are generated for the appropriate classes of a node 

when a soft inference rule is invoked. In the objective function, these parameter 

weights encourage the solver to choose the class weighted by the soft parameter. The 

soft inference rules are cumulative. If several rules apply for a particular node, any 

soft parameters applied to the same class are summed. This tactic allows several 

weaker rules to cumulatively influence the class of a node more strongly than a single, 

stronger rule. The four rule sets used in later evaluation of soft inferences are 

described briefly below. The rules are named after telecommunications acronyms 

whose precise meanings are not pertinent to this thesis. It is expected that in some 

cases, data needed to employ similar rules may be available for non-U.S. PSTNs. 
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a) CLLI Rule 

The premise behind the CLLI rule is that switches with large capacities 

are more likely to be transit exchanges (class 3 or 4 in the ATT scheme) than local 

exchanges (class 5 or 6). In ATT networks, a particular code associated with each 

switch (the "CLLI code") gives an indication of the switch's capacity. Codes ending 

in a "T" indicate a large capacity switch likely to be a tandem. When this condition is 

true for node i, the SOFTci parameters for c = 3 and 4 are increased by an appropriate 

weighting factor. 

b) NPACOCRule 

In North American networks, a code is available (the "NPACOC code") 

identifying the number of subscriber loops connected to a switching facility. If the 

code indicates there are no subscriber loops, the switch probably accomplishes trunk 

routing only, and is therefore unlikely to be a local exchange. When the condition for 

this rule is true for node /, the transit class SOFT parameters are increased by a weight 

associated with this rule. 

c) OCNRule 

The Operating Company Name (OCN) rule identifies nodes that are 

unlikely to be tandems based on the commonality of the nodes' OCN with the most 

common OCN in the network. If the most common OCN of the network is known, 

and a node's OCN is also known and is not the most common, the node is more likely 

to be a local exchange than a transit exchange. For such nodes, the SOFT parameters 

of the local exchange classes are augmented by a weight associated with the rule. 

d) Equipment Rules 

The equipment rules presuppose that certain equipment types are more 

likely to be associated with certain classes of switch. Several equipment types can 

augment soft parameters. Three of these equipment types indicate the node is most 
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likely to be a transit exchange, and when they apply, a weighting factor is added to the 

transit class SOFT parameters for the affected node. Two additional equipment types 

are associated with local exchange classes, and these rules add a weighting factor to 

SOFTsi and SOFT6i. 

These heuristics vary in the perceived quality of their diagnostic value. In the 

CLIPS node classification routine, the CLLI rule is considered the strongest indicator 

of a node's class, followed by the NPACOC and OCN rules. The various equipment 

rules are considered the weakest of the soft inference rules. In testing the efficacy of 

the soft inference implementation, this thesis will evaluate the impact of introducing 

soft inferences on solution times, and the ability of soft inferences to influence the 

solution. 
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IV.      PERFORMANCE OF THE BASELINE MODEL 

A series of preliminary tests are ran using the node classifier IP to classify a 

number of test networks. This initial testing determined the best solver options and 

identified performance characteristics of the baseline model. This chapter outlines the 

equipment, software and methodology used to test the accuracy and solution speed of 

formulation variants, and conclusions of the preliminary tests. Descriptions of the 

network (logical) topologies used in the testing are also provided. 

A.       TEST NETWORKS 

Twenty-three test networks are used to evaluate the effectiveness and accuracy 

of the basic formulation, hard and soft inference processing, and various schemes for 

accelerating solution times. Collectively, these test networks are hoped to encompass 

the range of characteristics that may be encountered when GCAT is fielded. Appendix 

A contains a table summarizing the principle characteristics of these networks, as well 

as figures depicting some of the networks. 

1.        U.S. Regional PSTNs 

Several U.S. regional PSTN physical network structures were acquired from 

open sources for testing the IP. For eight test networks (networks 1-6, and "Tracy" 

and "Bait"), the entire logical topologies are estimated from these existing PSTNs, 

some of them different logical derivations of the same physical network. Network 0 is 

built up from actual U.S. switching stations, but the logical structure is notional. This 

network was designed to provide a simple, tree-like network during the early stages of 

the IPs' development. It is also the only network derived from an actual PSTN that 

uses four levels of switches. 
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These networks range from leafy trees (network 0, Tracy and Bait) with only 

one triplet ring (completely connected node trios), through more complicated networks 

containing multiple mesh configurations and rings (nets 4, 5, 6). This range of sizes 

and configurations presumably constitutes a diverse sample of the actual PSTN 

population. Diagrams of these networks can be found in Appendix A. 

Accompanying each test network derived from actual U.S. regional PSTNs is 

open-source data from which soft inferences may be derived, and known real-world 

node classifications. These networks are intended to test the accuracy of the 

formulation, and evaluate the model's behavior under the influence of soft parameters. 

2.        Large Notional Networks 

To better estimate the effect of model enhancements for speeding up solution 

time, large networks are needed. When solving smaller networks, it is difficult to 

assess whether differences in solution times result from normal variance or from a 

specific change in the model. Larger networks, with longer average solution times, 

accentuate the affect of changes to the model. 

The large networks used for testing in this thesis are simply aggregations of 

copies of the U.S. regional networks. The aggregations are formed by adding the links 

needed to interconnect the top-level nodes of the component networks. The largest of 

these networks is aggregated from four copies each of networks 5 and 6, and may be 

considered an extreme upper bound on the PSTN classification problem. While 

symmetric, it is also quite complex, with 212 nodes involved in various mesh 

configurations. 
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3.        Networks with Modified Longest Shortest Paths 

The non-notional PSTN logical topologies available for this thesis contain only 

three levels. In order to evaluate performance of the formulation with networks of 

four levels, networks 4, 5, and 6 are modified by appending or removing nodes on 

their longest shortest paths. The longest shortest paths of a network refer to those 

shortest paths that are among the longest in the network. These networks so modified 

are denoted "Lop" (for "Lop-sided") plus the network number and an additional suffix 

letter. Networks lacking the suffix have had a longest shortest path shortened, e.g., 

'Lop6.' The suffix 'a' indicates paths have been extended by the addition of one node; 

a 'b' indicates paths have been extended by two nodes. 

Figure 5 depicts network Lop4a. Extending the longest shortest paths in this 

network results in the addition of a hierarchical level (compared with network 4—see 

Figure 17 in Appendix A). These networks are useful in evaluating the performance 

of routines that calculate an upper bound on zclass from the network topology. 

Analysis of a network's longest shortest paths in preprocessing routines is a topic in a 

later chapter. 
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Figure 5. Example of a Network with a Modified Longest Shortest Path 
Network Lop4a is formed by adding the node marked with an asterisk to one of Network 4's longest 
shortest paths. Extending this path requires that an additional hierarchical level be added to the network 
(see Figure 17 in Appendix A to compare with the structure of Network 4).   The longest shortest paths 
are indicated by darker links. Analysis of a network's longest shortest paths is the subject of a later 
section. 

B. TESTING METHODOLOGY 

The IP is implemented in GAMS Development Corporation's Generic 

Algebraic Modeling System (GAMS), and solved using IBM's Optimization 

Subroutine Library (OSL) solver. The user-selectable options of GAMS and OSL are 

described in the GAMS Language Guide (1997). The primary test equipment used is a 
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166 MHz Pentium Personal Computer (PC) running under Windows 95. This PC is 

representative of the processing power of low-end work stations. An additional 

rationale for conducting tests on a lower-end processor is to emphasize differences in 

solution times between various model options. For certain very lengthy test runs, a 

400 MHz PC, running under Windows 95, is employed. At times during the testing, 

considerable variance was observed in solution times between runs of identical 

models. Because of the time-consuming nature of many test trials, most of the 

solution times presented in this thesis represent the results of a single trial. Whenever 

possible, a verification trial was conducted, and any large inconsistencies in solution 

times resolved with additional trials. 

When evaluating the effect of changes to the model, a baseline formulation is 

presumed, and changes to this baseline are specified. The baseline model is the 

formulation of Chapter HI. Unless otherwise specified, no hard or soft inferences, or 

preprocessing of any kind is used when solving the model. The preliminary testing of 

this chapter establishes the most effective solver options, branching strategy, and 

objective function parameter weight values; these then remain constant throughout the 

evaluation of preprocessing routines and soft inference testing of later chapters. 

For testing, a cut-off time of 600 seconds is enforced. This ten-minute limit is 

arbitrarily determined to be twice as long as the maximum tolerable solution time; i.e., 

if the optimal solution cannot be returned in five minutes, the adequacy of the 

formulation for use in an interactive application is questionable. 

The preliminary testing of this chapter requires the introduction of no 

additional data other than the logical structure of the network under study. For later 

testing, the generation of data parameters needed by preprocessing routines is assumed 

to occur prior to invoking GAMS. These data are generated by a separate JAVA 

program (modified from J. Brandeau, 1998) and stored in a file. The data files contain 
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all derived data parameters described in later chapters. Solution times reported in this 

thesis do not include parameter generation times, nor the model generation time, 

which incorporates the time needed to read the data files. For most test networks, 

these times are insignificant. Since in implementation very few of the data parameters 

need actually be inputted to the model, the solution times obtained for this thesis are 

probably consistent with those an analyst would observe with similar equipment in a 

streamlined implementation. 

C.       PRELIMINARY TESTING 

Preliminary testing determines the most effective solver options and branching 

strategies for reducing solution times. This section describes the selection of model 

parameter weights, and GAMS and solver options. These settings remain constant in 

subsequent testing of subsequent chapters. This testing also provides insight to the 

node-classifier IP's baseline performance, which is also described here. 

1.        Objective Function Weights 

The overriding performance criterion for the IP is that it must return correct 

switching station classifications. Solution speed is a secondary, although important, 

consideration. The model parameters ZWT, TWT, and PWT define the characteristics 

of the network sought, and hence determine the accuracy of the solution. 

a)        ZWT/TWT/PWT proportions for accuracy 

By choice of TWT and PWT, one determines how many nodes must 

aspire to become class 5 switches to overrule the assumption of fewest possible top- 

level nodes. The relative proportions of ZWT and TWT also define how many tops 

must aspire to non-top status before an additional level will be allowed in the network. 
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All of the test networks derived from actual PSTNs (which have known 

real-world node classifications) are formed with the fewest possible hierarchical 

levels. Consequently, assessing the best ZWT/TWT proportion is more a matter of 

possible impact on solution speed than accuracy. As long as ZWT is large enough 

relative to TWT that no possible number of nodes aspiring to be tops may overrule the 

Min_Leveh assumption, accuracy in terms of number of hierarchical levels is assured 

for the test networks derived from U.S. PSTNs. 

In the general case, the IP can be configured to seek network structures 

not necessarily adhering to the MinJLeveh assumption by appropriate selection of 

ZWT, TWT, and PWT. Suppose the rule for a certain group of PSTNs is that an 

additional hierarchical level is preferred to having four tops, but not to three. In this 

case, the ZWT/TWT proportion would be between three and four. Selecting ZWT = 

1.25, TWT = 0.5, and PWT= 0.09 configures the model to seek an additional level in 

order to avoid establishing a fourth top-level node, and top-level nodes would be 

preferred if they enable six or more aspiring class 5 node to realize their aspiration. 

Establishing values for these parameters that are not multiples of each other reduces 

the possible dilemma of multiple optimal solutions. Which of the top-level candidates 

will be elevated to a higher level depends on a somewhat complicated function of the 

numbers of nodes whose status would change if the level of a given node is elevated. 

Establishing appropriate parameter proportions for classification of networks of 

greater than four levels would require additional shaping assumptions, and perhaps 

establishing PWTC, i.e., weighting classes other than class 5s, in order to define the 

desired shape. Other than noting the DP could be modified to seek out topologies of 

more levels than required by the parentage assumptions of a hierarchy, no specific 

structures of such networks will be hypothesized. The ZWT/TWT proportion used in 

the speed trials of later chapters will be determined assuming a network is constructed 

using the minimum needed levels. 
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Given the minimum number of hierarchical levels, each test network 

has a set of nodes that must be tops because all their descendant nodes must have class 

greater than or equal to the lowest hierarchical level. For most networks, there is a set 

of nodes aspiring to become top-level nodes, but not required to be at the top level by 

depth of their descendants. Whether these nodes become tops in the solution depends 

on the TWT/PWT ratio. An aspiring node will become a top if the number of nodes 

that would become class 5, less the number of nodes already class 5 that would change 

class, is greater than or equal to TWT/PWT. Some of the actual PSTN test networks 

have no additional nodes that aspire to become tops, because of the requirement for 

complete connectivity between tops. For the networks with additional choices, Figure 

6 identifies the range for the TWT/PWT ratio within which a correct solution for each 

network will be found (in terms of correct top-level assignments). The Bait network 

has a non-mandatory top-level node with only one descendant. For this network to 

solve correctly, the formulation must either reward for additional tops, or soft 

inferences must correctly influence the solution. From Figure 6, it can be seen that the 

TWT/PWT ratio needed to provide accurate solutions in the test networks is between 2 

and 3. 

b)        Effect of varying parameter weights on solution speed 

The introduction of soft inferences into the model, in effect, varies the 

values of objective function parameter weights. Consequently, it is important that the 

model exhibit robust performance through a wide range of parameter values. Figures 

7 and 8 chart solution speeds versus various values of ZWT and TWT. Solution speeds 

for the test networks derived from actual PSTNs are relatively insensitive to the value 

of ZWT and TWT, although networks 4, 5 and 6 (containing mesh-connected portions), 

and Tracy, solve slowly at some parameter values. The larger notional networks show 

greater variability in solution times as the parameter values vary. 
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Figure 6. Range of the TWT/PWT Ratio Giving Correct Solutions 
The TWT/PWT ratio establishes the point at which the More_5s assumption will overrule the MinJTops 
assumption. In the test networks derived from actual PSTNs, the most accurate top-level assignments 
are found when this ratio is between two and three. Networks 4 and 5 are not included in the figure 
because they have no eligible top-level candidates (not already required to be tops by depth of their 
unique descendents) meeting the Top_Mesh requirement. They are therefore insensitive to the values of 
TWTand PWT. A TWT/PWT ratio between 2 and 3 provides the most accurate top-level assignments in 
the test networks. 

Figure 7, and Table 9 in Appendix B, show that for TWT and PWT 

fixed at 0.5 and 0.2 respectively, lower values of ZWT provide the overall best solution 

times. For example, at ZWT = 4,14 of the networks are solved with solution times 

within 20% of the best time attained for any value of the parameter. However, these 

low values of ZWT are too small to enforce the MinJLevels assumption in the 

aggregated networks. For ZWT large, the selected choice is ZWT = 60. Also from 

Table 9, the speediest choice of TWT is also in the range providing accurate solutions 

with the PWT value used; hence, the values used in subsequent testing are TWT = 0.5, 

and PWT =0.2. 
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2.        GAMS/OSL Settings and Branching Priorities 

During preliminary testing, the solver options selecting how OSL conducts 

branch-and-bound preprocessing (bbpreproc) are varied. Also varied are options for 

selecting variables for branching (strategy), and performing model reduction prior to 

starting the optimization procedure (presolve). Twenty different combinations of these 

settings are evaluated, using the parameter weights determined in the previous section, 

and with all other OSL options remaining at their default values. Preliminary testing 

also includes evaluating the effect of specifying a branching priority. Branching 

priorities specify for the solver the relative order in which variables should be selected 

for branching. Nine different branching priorities were evaluated. For this phase of 

the testing, a derived integer variable (sumtops), equal to the number of top nodes, is 

added to the formulation. This variable was ultimately found not helpful, and is not 

present in the model during later testing. 

From this empirical testing, the best settings and branching priorities are 

selected. These choices remain constant throughout the subsequent tests of later 

chapters. The complete results of this testing are contained in Tables 10 and 11 of 

Appendix B. In summary, the selected combination of solver settings prompt OSL to 

use regular branch and bound during preprocessing (bbpreproc = 2), heuristically 

compute pseudo-costs during simplex branching (strategy = 8), and perform model 

reduction only by removing redundant rows (presolve = 0, the OSL default). Other 

presolve options provide results on a par with presolve = 0 (see Table 5 in Appendix 

B); however, these more elaborate model reduction schemes can occasionally fail 

(GAMS Language Guide, 1997). The best branching priority assigned zclass a high 

branching priority, and all other variables the same low branching priority.   These 

priorities solved 15 (of 23) networks with solution times within 10% of the best 

attained (see Table 11 in Appendix B). Branching first on the variables with the 

greatest impact on the objective function value is a common approach (Winston, 
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1993). Given zclass" considerable impact on the objective function value with ZWT 

overwhelmingly large, the superiority of priority branching on zclass is not surprising. 

The effect on solution time of varying settings other than branching priorities is 

subtle. The outcomes of most trials are inconclusive—improvements in solution times 

for certain networks are offset by worsened times for others. While certain solver 

options and branching schemes seem more universally helpful than others, the effect 

of a good selection is not sufficient to reduce solution times to acceptable levels. 

However, a poor selection of settings can dramatically worsen solution times. 
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Figure 7. Effect on Solution Time as ZWT Varies 

For these trials, TWT and PWTare constant at .5 and .2, respectively. Values at 600 seconds indicate no 
optimal solution was attained. Test networks that could not be solved within 600 seconds at any value 
of the parameter are omitted from the plots. A 400 MHz PC was used to collect this data. At large 
values of ZWT (relative to PWTand TWT), solution times for the networks derived from actual PSTNs 
are relatively stable. ZWT= 4 provides the most solution times within 20% of the best attained for each 
network. However, this value of ZWT returns some of the worst times recorded for the lopsided 
networks, and also is insufficiently large to prevent the larger aggregated networks from adding a 
hierarchical level. Table 9 in Appendix B contains the data depicted in this figure. 
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Figure 8. Effect on Solution Time as TWT Varies 

For these trials, ZWTand PWT are constant at 100 and .2, respectively. Values at 600 seconds indicate 
no optimal solution is attained. Test networks that are not be solved within 600 seconds at any value of 
the parameter are omitted from the plots. A 400 MHz PC is used to collect this data. Overall speediest 
solution times are attained at low values of TWT, also in the range providing most accurate top-level 
assignments for the selected value of PWT. Data displayed in this figure is in Table 9 of Appendix B. 
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D.       CONCLUSIONS FROM THE PRELIMINARY TESTS 

Complete results of the pilot study are in Appendix B. The pilot study does not 

evaluate all possible combinations of solver settings, objective function parameter 

values, or branching priorities. But, from the sampling done, a number of conclusions 

can be drawn. 

The most important initial observation is that the formulation can accurately 

classify nodes for the U.S. regional PSTNs. With ZWT= 100, TWT = .5, and PWT= 

.2, all the networks derived from actual PSTNs, excepting Bait, solve with correct top- 

level node assignments and number of hierarchical levels. Bait's ground-truth 

structure violates the MinJTops assumption that the fewest possible tops will be used 

to construct the network. Networks 4 and 6 have class 6 leaf nodes connected directly 

to class 4 tandems. Nodes in this configuration violate the More_5s assumption and 

are incorrectly classified as class 5 end offices. Both these types of errors point out 

that the assumptions of the model are not universally true, at least for U.S. PSTNs. 

Errors caused by class-skipping nodes are of little concern, since the class assigned a 

leaf node has no impact on route tables. Misclassifications at the top level of the 

network can cause errors in the route tables, and ultimately, the route predictions 

generated by later GCAT methods. 

The second most important observation is that the solution speed of the 

unsophisticated baseline model is only marginally acceptable for inclusion in GCAT. 

Figure 9 shows the results often of the trial runs, in this case devoted to determining 

the effect of solver options on solution times. Observe in Figure 9 that some test 

networks could not be solved in 600 seconds of processing, regardless of choice of 

solver settings. While five minutes is arbitrarily chosen as the upper limit on 

acceptable processing time, a much faster solution is preferred. Solution times are also 

unpredictable as model attributes vary; even networks that typically solve quickly 

occasionally require excessive processing time with some choices of solver options. 
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The performance of the node-classifier IP depicted in Figure 9 is typical ofthat 

observed throughout the preliminary testing. The GAMS model will need to 

incorporate tactics to speed solution time if it is to be acceptable as a method in 

GCAT. 
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Figure 9. Solution Speeds Attained During Selected Trials 
The solution speeds attained with various combinations of OSL solver options are depicted in this chart. 
Notice that several networks are not solved in ten minutes of processing on the 166 MHz PC, regardless 
of choice of solver options. The solution times for the baseline model are relatively insensitive to 
choice of solver options, although certain options perform very poorly for some networks. This is 
consistent with the behavior observed during other phases of the preliminary testing. Identification of 
the specific solver options used in the series presented in this chart, and during all the trial runs of the 
preliminary testing, is available in Appendix B. 

37 



38 



V.       PREPROCESSING 

This chapter describes methods for reducing solution time through 

preprocessing of the input data. Preprocessing refers to those operations accomplished 

to improve a formulation by fixing or tightening bounds on variables, reducing or 

simplifying equations, and similar tactics (e.g. Nemhauser and Wolsey, 1988). 

Because GCAT is intended to be an interactive application, solution times of the 

baseline formulation of Chapter II are inadequate. The baseline formulation has, 

through extensive experimentation, been constrained to the extent found helpful in 

reducing solution times. Still, for many problems the branch and bound process is 

quite lengthy. This chapter evaluates several routines that analyze the input node-node 

adjacency matrix representing the logical structure of the network, and use insights 

gained to fix or eliminate variables or equations, or emphasize critical features for the 

solver. While these routines are quite effective in reducing solution times, they require 

making additional assumptions about the network. These additional assumptions may 

restrict the ability of soft inferences to influence the solution. In the interest of later 

brevity, each proposed preprocessing routine is assigned a shorthand name. 

A.       LEAF PLUCKING 

The simplest of these routines considers nodes of degree one, i.e., nodes with 

one emanating arc. Some conclusions about any such node / can be immediately 

drawn: 

top i     = 0      V i: degree of i = 1 

Py       =1       V i: degree of i=1,;': (i, j) e A 

A leaf node is not a top-level node of any non-trivial network. Also, we can 

safely assume the node adjacent to a leaf is parent to the leaf node. This preprocessing 

routine is termed Leaf_Pluck for short. 
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From the earlier description of switching station functional types, it is also 

apparent that a leaf node must be a local office, rather than a transit office. With only 

one trunk, the node must be an interface for subscriber loops. Leaf nodes therefore 

could safely be restricted in the model to be local exchanges. From the perspective of 

route table generation (the ultimate goal), the actual class assigned a leaf is of little 

consequence since there is only one route out of the node. Restricting classes assigned 

leaf nodes would be of marginal utility in terms of reducing solution time. A more 

powerful assumption is the converse: restrict assignments to the lowest hierarchical 

level to leaf nodes, as described next. 

B.       RESTRICTING CLASSIFICATIONS AT THE LOWEST 
HIERARCHICAL LEVEL 

The number of customers able to connect to an end office is limited by the 

switch's capacity for connecting subscriber loops. When populations form discrete 

enclaves, as in small rural communities, it often makes sense to concentrate the traffic 

of the enclave to preserve resources at the main facility. Many subscribers may have 

dedicated loops at a concentrator, and be serviced using far fewer switches at the end 

office, with no significant degradation of service quality. This makes more efficient 

use of the limited allocations for subscriber loops at the main switch of the end office 

serving the area (Freeman, 1989). 

In GCAT's model of U.S. PSTNs, these satellites are referred to as "class 6" 

nodes. In a sense, they are merely extensions of a parent facility. By assuming remote 

concentrators do not provide a trunk (or non-local) routing function, but only 

concentrate traffic for the parent, the model can be further constrained by the 

requirement that only leaf nodes may be classified at the lowest hierarchical level, i.e., 
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be class 6 nodes, in the GCAT nomenclature. This assumption essentially removes an 

entire hierarchical level from the network, a significant assist to the solver. The 

shorthand name for this routine is ClassjS: 

f{0}    if c - 6 and i: degree of / > 1 
bclci e < 

[{0,1}   ifc = 6 and/: degree of i = l 

All eight test networks derived from U.S. regional PSTNs follow this rule. The 

only test network violating this assumption (i.e., having class 6 nodes with degree > 1) 

is network 0, which is notional. 

C.       LONGEST SHORTEST PATHS ANALYSIS 

The Longest Shortest Paths (L-S Paths, for brevity) of a network refer to those 

paths of minimum length (number of links) between any pair of nodes which are 

among the longest in the network.   The L-S Paths can be used to establish an upper 

bound on zclass, and heuristically can give strong indications to the identity of the top- 

level nodes. 

1.        Establishing a lower bound on the number of hierarchical levels 

The length of the L-S Paths imposes an upper bound on zclass, since the 

lengths of these paths determine the minimum number of levels required to form a 

hierarchical network. At a minimum, one hierarchical level is required for every two 

trunks in the L-S Paths, as shown in Figure 10. Therefore, subtracting a proportion of 

the number of trunks in the L-S Paths from the maximum class used in the network 

establishes the maximum value zclass may attain: 

.       .       , .     length(L-SPath) 
zclass < max(c) - 
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Figure 10 displays all possible configurations for L-S Paths in the ATT scheme. The 

expression above establishes an upper bound on zclass (i.e., the minimum possible 

levels) in every case. 

L-S Path=3 L-S Path=4 L-S Path=5 L-S Path=6 L-S Path=7 

Figure 10. Possible Configurations of L-S Paths 
The L-S Paths of a network establish a lower bound on the number of levels required to form a 
hierarchy. Notice that top-level nodes must be in central positions in the L-S Path, while nodes at either 
end of the path cannot be tops. Figure 5 shows that extending a L-S Path can require adding a 
hierarchical level to the network. 
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2.        Fixing the number of hierarchical levels in a loop 

Since an upper bound for zclass is easily established from the input data, a 

strategy for reducing the scope of the problem presented to the solver is to fix zclass at 

its upper bound and make consecutive calls to the solver, decrementing zclass with 

each subsequent call. If the MinJLevels assumption is strongly enforced (i.e. ZWT is 

large enough relative to TWT that under no circumstances would an unnecessary level 

be added to the network), the loop may be exited as soon as an optimal solution is 

found. With ZWT large, there can be no better solution found by adding a hierarchical 

level. For purposes of automating the formulation, the solver loop may be exited upon 

attaining an optimal solution if ZWT/TWT > O.hW. This quite conservative rule 

allows the possibility of finding a better solution with more than the required number 

of levels if the magnitude of TWT with ten percent of the networks' nodes being tops 

is sufficient to overrule the Min_Levels assumption. The pseudocode for the routine 

we shall term ZJLoop is: 

zclass' = zclass + A ■ 
length(L-SPath) 

2 

bestSoln value = —°° 

while(zclass' > zclass { 

solve MIP with zclass = zclass' 

bestSoln value = max(bestSoln, currentSolri) 

if {Feasible Solution AND (ZW%wr)> 0.1-1N l){ 

zclass = -oo      (exit) 

} 
else{ 

zclass' = zclass'-\ 

} 

} 
display bestSoln 
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The only additional assumption of this routine is implicit in the condition for 

exiting the while statement (the network will be constructed using the fewest possible 

levels), which can be made as conservative as desired. If the solution with the fewest 

levels is overwhelmingly preferred, this strategy is likely to find a solution with one 

relatively quick iteration of the loop. This strategy also can provide alternative 

solutions using more than the minimum required number of levels. 

D.       IDENTIFYING TOP-LEVEL NODES 

The parameters described below are all functions of the input data; i.e., the 

node-node adjacency matrix defining the logical network topology. Each parameter 

has some diagnostic value in predicting whether a node is at the top level of the 

network: 

degree, - S» 
j:UJ)eA 

(8) 

minhop tj = length of the shortest path between nodes i and j 

totalhop i = 2^ minhop tj (9) 

maxhop , = max {minhop„ ) 
j 

(10) 

centrality, 
j-.totalhopj <totalhopi 

(11) \N 

(8) A node adjacent to many other nodes is more likely to be a top-level 
node than one with links to fewer nodes. 

(9) The parameter totalhop of node / is the sum of the hops necessary to 
travel from i to each node j, where eachy is a terminating node of the 
path (i.e., intermediate nodes k in a path are not considered visited). 
Nodes with low totalhop are the more central nodes in the network (and 
hence more likely to be at the top level). 

(10) Maxhopi is the maximum number of trunks needed to form a path from 
node / to any other node of the network. A node whose maximum 

44 



minimum-distance from any other node is small is more likely to be a 
top-level node than one with a larger maximum minimum-distance. 

(11) Centralityi is node Vs totalhop percentile. The most central node in the 
network, with lowest totalhop parameter, will have a centrality value of 
0. The centrality of the most remote nodes will be near 1. 

The data parameters degree» totalhopi, maxhopi, centralityi, and positions on 

the L-S Paths can be used to identify likely top-level nodes. Appendix C shows the 

values of these parameters for the test networks derived from actual PSTNs. As 

heuristics, these parameters are quite good at diagnosing top-level status. Because of 

the requirement for top-level nodes to be completely connected, the identity of one 

top-level node is a powerful clue to the identity of the other tops, i.e., any node not 

connected to the identified top cannot be at the top level. 

The most powerful heuristic indication of a node's top-level status is the 

centrality parameter. Because top-level nodes must be interconnected, as a group they 

are the minimum distance from all other nodes in the network. The node i with 

centralityi = 0 is the most central node in the network. Nodes j with centralityj close to 

one (i.e., having many nodes more central than they) are unlikely to be at the top level. 

The Min_Hop(a) routine fixes the minimum centrality node to be a top, and fixes 

nodes i with centralityi > a to non-top-level status: 

topj =1 V /: centrality, = 0 

topt=0 Vi:centrality j>a 

The centralityi statistic is a proportion, between zero and one. When the a >1 is 

selected, all nodes will remain eligible to become tops. Min_Hop{0.1), for example, 

represents a routine in which all nodes i with centralityi greater than 0.1 are prevented 

from being tops. Typically, there will be only one node with a centrality of zero. In 

the symmetric, aggregated networks of this thesis, there will be several. 
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E.       REDUCING MODEL SIZE 

Many of the previously described routines restrict the model by fixing the 

values of variables prior to solving. The elimination of variables can result in 

constraints becoming superfluous. These constraints can be removed from the model. 

♦ Constraints (2) become superfluous for any (i,j) e A for which the 

LeafJPluck or Min_Hop(a) preprocessing routines have fixed the value of 

topi to 0. 

♦ The same preprocessing operations also cause constraints (7) to become 

superfluous for any / whose top, variable is fixed to 0. 

Notice that constraints (6) are still needed, even with top, fixed to 0, to prevent fs 

class from being equal to zclass. A single routine, with shorthand name NoJEqn, 

eliminates from the model the superfluous constraints described above. This routine is 

only applicable in concert with LeafJPluck or Min_Hop(a) preprocessing. 
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VI.      TESTING OF PREPROCESSING ROUTINES 

While the additional assumptions mandated by some of the preprocessing 

routines may be unsuitable for all applications of the IP, the routines are quite effective 

in reducing solution times. The intent of this chapter is to demonstrate the general 

effectiveness of the preprocessing routines, under the premise that similar routines 

could be adopted if necessary for networks with different characteristics. 

Data required by the preprocessing routines are generated by a JAVA-language 

preprocessor adapted from the thesis work of J. Brandeau (1998). Preprocessing time 

is insignificant for most networks, generally under one second. Processing the larger, 

aggregated networks can take up to 20 seconds on a 400 MHz PC. While this time is 

perhaps not negligible, each network need be processed only once. In a production 

implementation, fewer data parameters would be needed than are generated for this 

thesis, likely reducing the preprocessing time even further. Consequently, 

preprocessor time is not considered in evaluating the effectiveness of the 

preprocessing routines. 

The effectiveness of preprocessing routines may appear in two ways.   First, the 

amount of time spent in branch and bound may be diminished. This is the overriding 

evaluation criterion—preprocessing that appears beneficial in other regards, but 

extends solution time, is not helpful in the model. 

Second, preprocessing may reduce the integrality gap. Integrality gap refers to 

the difference between the IP's objective function value and the objective function 

value of the linear program obtained by relaxing the IP's integrality requirements. A 

tighter (smaller) integrality gap is better because the size of the feasible region the 
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solver must explore is reduced, along with the amount of time spent in branch and 

bound. 

Preprocessing can also improve performance of a model by tightening bounds 

on variables and eliminating redundant or slack constraints (Nemhauser and Wolsey, 

1988).   The ZJLoop and No_Eqn preprocessing routines employ these tactics. The 

number of equations removed from a model by NoJEqn preprocessing may be an 

indicator of the effectiveness of the routine. 

This second test phase analyzes the benefit of preprocessing routines against 

these metrics. Unless noted otherwise, the solution obtained by the node classifier IP 

with preprocessing applied is identical to that obtained from the baseline model. This 

chapter also discusses the accuracy of the solutions found by the IP relative to the 

actual node classes of the U.S. regional PSTNs.   The term ground truth refers to the 

true class of the switching station represented by the node. 

A.       BOUNDS ON VARIABLES 

A factor contributing to the extended solution times of the baseline IP is the 

size of integrality gap (see Figure 11, and Table 7 in Appendix D). In some cases, the 

relaxed objective is 40% larger than the optimal integer-constrained objective. Figure 

11 charts the reduction in the integrality gap resulting from implementation of some of 

the proposed preprocessing routines, and Figure 12 shows the associated reduction in 

solution times. 

The most dramatic improvements come from implementing Min_Hop(1.0) and 

Min_Hop(0.1). Identifying a top-level node is a significant assist to the solver—the 

relaxed objective equals the optimal objective value in eight of the test networks, and 

all the networks, with the exception of Huge, solve in about a minute or less. By 
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fixing the value of top{ to 0 for nodes i with centralityt > 0.1, the integrality gap is 

practically eliminated for all networks (see Figure 11). However, there is no obvious 

improvement in solution speed attained by identifying non-tops (see Figure 12). 

Furthermore, fixing topt variables for nodes i with centralityt < 0.1 (e.g. 

MinHop(0.05)) results in the proliferation of classification errors, since the topi 

variables of some ground truth top-level nodes are fixed to 0. For example, in network 

6, centrality37 = 0.0714, and node 37 is a top-level switch, per ground truth. A 

consequence of applying Min_Hop{0.07), for example, to network 6 is the fixing of 

top37 = 0, and an incorrect solution is dictated. 

The effectiveness of the Min_Hop{a) routine mainly results from fixing 

top, = 1 for the node(s) i with centralityj = 0. The identity of a top-level node is clearly 

helpful to the solver. In concert with constraints (2), this single node / with topt = 1 

eliminates all non-adjacent nodes from the pool of top-level candidates. However, 

experiments in which the topj variables are fixed to 0 for all nodes j not adjacent to the 

minimum centrality node(s) achieves no significant improvements in model 

performance. 

Variables topi are also set to 0 by Min_Hop(a) when centralityt > a. But, as 

described above, this variable fixing for "non-tops" has little effect on the model for 

a > 0.1. Table 13 in Appendix D shows no additional reduction in the optimality gap 

over that attained by Min_Hop(1.0), until a = 0.1. From Table 14 in Appendix D, the 

solution times seem unrelated to the value of a. 

The Leaf-Pluck routine is quite helpful for certain networks (see figures 11 and 

12). For the star-configured networks (Bait, Tracy, and Net-3), this routine alone is 

sufficient to reduce the integrality gap to 0. Leaf_Pluck reduces solution times 

dramatically for some networks, and all but one are solved within 600 seconds. 
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ClassjS restrictions also reduce the optimality gap and accelerate solution 

times. With this restriction active in the model, all the test networks can be solved 

within 600 seconds. The major drawback to the ClassjS preprocessing is apparent in 

test network 0, which gains seven classification errors. This network's topology has 

two connected class 6 concentrators, which violates this preprocessing routine's 

assumption (see Figure 15 in Appendix A). While the logical topology for this 

network is notional, the technology probably exists or soon will exist to economically 

give concentrators a routing function. Consequently, the longevity of this assumption 

and its applicability outside the U.S. is questionable, and this preprocessing routine 

may be unsafe for incorporation in the IP. 
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Min_Hop(1.0 
Min_Hop(0.i; 
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Figure 11. Effect of Preprocessing on the Relaxed Objective Function Value 

This chart plots the absolute reduction in the integrality gap resulting from the preprocessing routines. 
The "Baseline" series represents performance of the baseline model, with no preprocessing. Pre- 
processing routines are not combined. All the preprocessing routines are effective at reducing the 
integrality gap over that of the baseline model. The Min_Hop(0.1) preprocessing nearly eliminates the 
gap for all the test networks. Data depicted in this chart is in Table 13 of Appendix D. 
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B. EQUATION REDUCTION 

To see the effect of eliminating superfluous equations from the model, two trial 

runs are conducted using the Leaf_Pluck and Min_Hop{0.1) preprocessing routines. In 

one of the trials, the NoJEqn routine is also implemented. Table 2 presents the 

difference observed between the two trials. The number of equations eliminated by 

this simple tactic can be quite significant when solving larger networks. No reduction 

in solution time is apparent until the networks are large (HugeB and larger). However, 

the preprocessing routines being applied in this trial are quite effective, perhaps 

leaving little room for improvement in the smaller networks. 

Equations are made superfluous by the fixing of variables, so No_Eqn is only 

applicable in the presence of certain other preprocessing. Equation reduction is a 

model enhancement with no obvious drawbacks, but also with no dramatic benefit in 

terms of reducing solution times. The efficacy of No_Eqn might be more noticeable in 

conceit with less effective preprocessing routines (e.g. Min_Hop(0.5)). 

C. LOOPING ON ZCLASS 

In order to evaluate the characteristics of the Z_Loop routine, trials are run 

using the looping strategy, in concert with various combinations of preprocessing 

routines. For some of these trials, the range of possible classes is set to be {0, 6}, and 

solutions sought for all feasible values of zclass. Figure 13 shows the percent 

improvement in solution times and relaxed objective function value attained by the 

Z_Loop routine (with no other preprocessing). The improvements reported in Figure 

13 are for the first attained solution. 
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Network 

Reduction 
in 

equations 
% 

reduction 

Reduction in 
solution time 

(seconds) 
Net-0 206 44.5 0.10 
Net-1 342 47.8 0.17 
Net-2 688 55.8 0.11 
Net-3 550 54.9 0.23 
Net-4 543 50.9 0.44 
Net-5 795 59.8 0.67 
Net-6 1251 69.6 2.62 
Tracy 4263 83.8 0.50 
Bait 5650 87.1 2.19 
Lop4a 260 23.4 0.01 
Lop4b 173 14.9 -1.53 
Lop5a 386 27.9 -1.86 
Lop5b 421 29.4 -1.32 
Lop6 723 41.4 0.77 
Lop6a 705 38.1 1.93 
Lop6b 579 30.4 1.59 
Net-5 6 2726 59.0 1.25 
Net-4 6 5832 69.3 5.88 
Net-3 6 10072 75.0 5.83 
HugeC 6681 67.6 -0.16 
HugeB 11191 73.1 8.19 
HugeA 23643 80.0 90.01 
Huge 45290 82.6 95.28 

Table 2. Equation Reduction in the Model 
When employed in concert with the Leaf_Pluck and Min_Hop(0A) preprocessing routines, the NoJEqn 
routine removes a significant number of superfluous equations from the models. However, No_Eqn has 
no obvious affect on solution time for most of the networks. 
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Figure 13. Improvement in Solution Time and Relaxed Objective Function Value 
The benefit of fixing zclass prior to solving the model is significant when no other preprocessing is 
applied. Reduction in solution time to the first feasible solution is over 50% for most networks. 
Solution time of the baseline formulation was taken to be 600 seconds if no solution was attained; 
therefore, in some cases the percent improvement in solution time may be better than indicated in the 
chart. Networks HugeA and Huge could not be solved even with the Z_Loop routine applied, therefore 
the solution-time improvement is 0 for these networks. Considerable variance in solution times is 
observed across several runs of this trial, so improvements of less than 20% are probably not significant. 
Improvement to the relaxed objective function value is relative to the baseline model's relaxed objective 
(not the integrality gap). Data depicted is in Table 15 of Appendix D. Test machine is a 166 MHz PC. 

Fixing zclass at the highest feasible value reduces the size of the feasible 

region for all of the test networks, as indicated by the reduction in the relaxed 

objective function value. Reduction in solution time to the first feasible solution is 

also significant for most networks in the absence of other preprocessing. However, 
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solution times in this naive formulation increase exponentially as zclass is fixed 

further from its maximum feasible value (see Table 15 in Appendix D). With the 

addition of the Min_Hop(0.1), Leaf_Pluck, and No_Eqn preprocessing routines, 

solution times became relatively constant, regardless of zclass' value. However, the 

time to first solution for the same preprocessing routines, without using Z_Loop, is 

about the same (see Figure 14). 

In conclusion, the Z_Loop strategy appears quite helpful in reducing solution 

times to the first solution in the absence of other preprocessing (see Figure 13 and 

Table 15 in Appendix D). The exponential increase in solution times with increasing 

zclass suggests additional preprocessing will be needed to explore network structures 

using more levels than required. When preprocessing routines are applied, however, 

the solution times for each value of zclass become reasonable—most of the test 

networks can be solved four or five times with varying values of zclass in less than 

200 seconds. 
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VII.    TESTING SOFT INFERENCES 

Soft inferences may only be incorporated into the model when appropriate 

rules have been devised, and when data applicable to the rules is available. From the 

standpoint of intelligence collection, it may be very difficult to acquire the needed 

data. Therefore, it is important to know how effectively soft inferences can influence 

solutions found by the node-classifier IP. There is little sense in expending resources 

collecting data to which the model is insensitive. This chapter evaluates the effects of 

soft inferences on solution times of the model, and at what values the soft inference 

weights begin to affect the solutions found. Also evaluated is a strategy whereby soft 

inferences are applied to the topi variables, in addition to the bclCi variables. 

For this series of tests, the soft inference rules described in Chapter HI are 

implemented, and the models solved at various values of soft parameter weights. 

Table 3 identifies the various values of the parameter weights used in this testing 

phase. 

Rule 

Scale 

1 1.5 2 2.5 3 5 7.5 12 20 

CLLI 
NPACOC 
OCN 
Equip "ESS" 
Equip "DCO" 
Equip "DMS250" 
Equip "DMS100" 
Equip "DMS10" 

0.750 1.125 1.500 1.875 2.250 3.750 5.625 9.000 15.000 
0.600 0.900 1.200 1.500 1.800 3.000 4.500 7.200 12.000 
0.400 0.600 0.800 1.000 1.200 2.000 3.000 4.800 8.000 
0.580 0.870 1.160 1.450 1.740 2.900 4.350 6.960 11.600 
0.025 0.038 0.050 0.063 0.075 0.125 0.188 0.300 0.500 
0.360 0.540 0.720 0.900 1.080 1.800 2.700 4.320 7.200 
0.020 0.030 0.040 0.050 0.060 0.100 0.150 0.240 0.400 
0.400 0.600 0.800 1.000 1.200 2.000 3.000 4.800 8.000 

Table 3. Soft Parameter Weights Used in Testing 

This table identifies the parameter values used in evaluating the effect of introducing soft inferences into 
the model. Values at a scaling of 1 are inherited from the CLIPS AI. The weights are scaled in order to 
maintain their relative proportions. Equipment rules "ESS," "DCO," and "DMS250" apply weights to 
the transit classes (3 and 4) of the node. "DMS100" and "DMS10" apply weights to the local exchange 
classes. Remaining rules are as described in Chapter III.  When scaled by a factor of 20, most of the 
rules are sufficiently weighted to overrule any model assumption except Top_Mesh and Min_Level. 
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A.       IMPACT OF SOFT INFERENCES ON SOLUTION TIME 

Because soft inferences are heuristics, these rules may provide incorrect and 

contradictory indications of the actual class for some nodes. The preliminary testing 

of the baseline formulation shows that the IP's solution times are sensitive to the 

values of objective function parameter weights (see Figures 7 and 8). This section 

assesses the impact on solution times of inputting soft inference weights. How well 

each rule predicts the ground truth class of a node is not germane to this thesis—the 

rules will probably change as GCAT is implemented. Rather, the behavior of the 

model when contradictory and possibly infeasible inferences are applied is of interest. 

Table 4 presents the correctness of an implementation of the soft inference 

rules described in Chapter HI. A soft inference data point is "correct" if the associated 

rale applies a weight to the ground truth class of the node. Notice from Table 4 that 

many of the inferences generated by the soft rales incorrectly infer the actual class of 

the switching stations. While not obvious from Table 4, in many cases the various 

rules are contradictory, indicating a node is both a transit, and a local exchange. 

"Incorrect" soft inferences may or may not cause classification errors—the next 

section describes the effect of soft inferences on the solution. 

The introduction of soft inference weights increases the IP's solution times. In 

the baseline model, the effect is considerable, in one case pushing solution time past 

the 600 second cut-off. In most cases, the worst effects are at high scaling values. 

Preprocessing routines greatly reduce this negative effect (see Table 5). 
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Network 
CLLI NPACOC OCN Equip 

Correct Incorrect Correct Incorrect Correct Incorrect Correct Incorrect 

Net-0 1 2 0 1 9 2 4 6 
Net-1 1 0 - - 2 0 14 1 
Net-2 1 2 - - 5 0 17 3 
Net-3 2 0 - - 22 1 27 7 
Net-4 2 0 - - 22 1 28 6 
Net-5 1 2 - - 16 2 1 3 
Net-6 3 0 - - 16 2 11 7 
Tracy 2 2 1 11 26 1 - - 

Bait 3 3 2 9 9 0 - - 

Table 4. Accuracy of an Implementation of Soft Inference Rules. 
This table identifies the number of times soft inference rules correctly and incorrectly influence the class 
of nodes for the test networks derived from U.S. regional PSTNs. A "-" indicates no data was available 
for a particular soft inference rule. This implementation of soft inferences introduces many "incorrect" 
inferences into the model. 

Network 
Net-0 
Net-1 
Net-2 
Net-3 
Net-4 
Net-5 
Net-6 
Tracy 
Bait 

Solution time in seconds 
Baseline Model A / yiodelB 

No Softs Worst StdDev No Softs Worst StdDev No Softs Worst StdDev 
2.64 3.3 0.46 0.66 0.77 0.07 3.29 1.15 0.19 
7.19 12.79 2.59 0.71 0.83 0.06 0.6 1.54 0.25 

18.13 29.11 4.14 0.71 0.99 0.06 0.65 0.98 0.07 
5.5 9.06 0.96 0.77 0.77 0.04 0.65 1.65 0.25 

11.48 13.3 1.37 1.48 1.48 0.13 1.15 1.21 0.13 
36.52 124.96 33.47 1.05 17.58 4.54 1.04 5.71 1.11 
16.15 402.88 120.05 1.49 2.31 0.15 2.36 2.58 0.26 
50.2 230.58 65.98 1.32 1.64 0.13 1.15 1.38 0.11 

59.59 >600 165.53 1.27 1.7 0.11 1.26 2.09 0.17 

Table 5. Model Behavior with the Introduction of Soft Inferences 
This table shows the variations in solution times as soft inference are introduced into three IP model 
variants. Each model is solved twice at each scaling of the soft inference weights identified in Table 3. 
"Model A" employs the LeafJPluck, Min_Hop(l.0), ZJLoop and NoJEqn preprocessing routines. 
"Model B" uses Min_Hop(0A), LeafJPluck, and ZJLoop.   The "No Softs" column displays the worst of 
the two times obtained with no soft inferences introduced in the model. The "Worst" and "StdDev" 
columns display the worst solution time and standard deviation of the solution times obtained with the 
introduction of soft inference weights, for both trials and across all nine scalings of the soft parameters 
(n=18). Notice the solution times of the baseline model are worsened considerably by the introduction 
of soft parameters. The application of preprocessing routines greatly reduces the worst observed 
solution times and moderates the variance. 
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B.   ABILITY OF SOFT INFERENCES TO INFLUENCE THE SOLUTION 

Soft inferences influence the solutions at relatively low weights. Table 6 

indicates which network solutions are influenced by the introduction of soft inferences, 

and at what scaling value. Considering the relatively large parameter weights injected 

into the objective function, most network solutions are very resistant to change—an 

indication that the hierarchical structure of PSTNs is largely dictated by the inviolate 

Top_Mesh and MinJLevels considerations. Several insights about the behavior of the 

IP are gained: 

Network 

Scaling at which solution changes 

Baseline Model A Model B 

Net-0 3 3 3 

Net-1 2 
Net-2 2 2.5 
Net-3 
Net-4 
Net-5 2.5 2.5 7.5 
Net-6 
Tracy 1 1 1 
Bait 1 1 1 

Table 6. Scaling of Soft Inference Weights Yielding Alternate Solutions 
Shown is the minimum scaling for soft parameters at which the solution found by the IP is modified. 
The values of the weights can be seen in Table 3 by referring to the appropriate "Scale" column. Notice 
the relatively low magnitudes at which soft inferences can influence the solution. The type of 
preprocessing affects how soft inferences influence the solutions found. The interaction of soft 
inferences and preprocessing is discussed in detail in.the text. 

♦   Soft inferences and the preprocessing routines interact. Net-1, with no 

preprocessing applied, is influenced by soft weights (equipment rule 

DMS250, specifically) to solve with node 5 at top-level status (see Figure 

15 in Appendix A). Yet node 5 is ä leaf node, and with the LeafJPluck 

preprocessing applied, this solution is prevented in models A and B. The 

situation with Net-2 is similar—leaf node 34 is influenced by an equipment 

rule to become a top-level node in the baseline model, a situation prevented 
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in models A and B. However, at higher scaling, soft weights influence 

node 31 to become a top in model A. Since centrality3i - .32, the 

Min_Hop(0.l) preprocessing option of model B prohibits this solution. 

This illustrates that the solution speeds attained by the preprocessing 

routines are paid for with a loss of model generality. Restricting the model 

from finding solutions with top-level leaf nodes is probably a small price to 

pay for the speed advantage gained. However, when soft inferences seem 

to suggest an improbable hierarchy, it may be a clue that the logical 

topology, inferred from a physical network prior to invoking the IP, is 

incorrect. Over-restricting the model via preprocessing routines will 

obscure evidence of this nature. 

♦   The soft inferences perform as envisioned. When contradictory inferences 

exist, stronger rules or combinations of rules overwhelm weaker ones, and 

soft inferences may over-rule model assumptions. At a weighting scale of 

1, solutions for networks Bait and Tracy change. Tracy and Bait are both 

essentially trees, each with only one trio of nodes connected in a ring (see 

figures 20 and 21 in Appendix A). For Tracy, node 58 (the sole member of 

the triplet ring that is not a top) fires the CLLI, NPACOC, and OCN rules. 

The cumulative effect of this weighting is to force node 58 into top-level 

status (introducing a classification error, in this case). An analogous 

situation occurs in Bait—node 87, the sole non-top member of the triplet 

ring, is pushed to top-level status by the CLLI rule (correcting a 

misclassification of the baseline model). Notice that for Tracy's node 58, 

the soft inferences are contradictory. The rules suggesting this node is a 

transit exchange (CLLI and NPACOC) successfully overwhelm the OCN 

rule suggesting node 58 is a local exchange. The "ground-truth" 

configuration of Bait's node 87 violates the models' MinJTops assumption. 
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The only way a correct classification of this node can occur is through the 

intervention of soft inferences. The soft inferences perform exactly as 

hoped in these networks. 

♦   Soft inferences are able to effect considerable change in the IP's solution. 

The changes to the Net-5 solutions as a result of soft inferences are quite 

dramatic. At relatively low scale factor in the baseline and A models, soft 

inferences influence node 25 to attain top-level status (see Figure 18 in 

Appendix A). Because of the Top_Mesh requirement, for this to occur an 

existing top (node 21) must diminish to class 5 status, and fourteen 

descendents further diminish to class 6. This solution is prevented in 

model B, again because of node 25's high centrality. However, at 

sufficiently high scaling of the soft parameters in model B, node 21 is 

demoted anyway, primarily a result of the OCN rule. The structures 

resulting from soft inferences are quite unlikely, with fourteen added class 

6 nodes, most in mesh configurations. 

C.       SOFT WEIGHTS FOR TOP-LEVEL NODES 

The soft rules described previously operate on the surmised class(es) of a node. 

This section briefly evaluates an alternate method of implementing soft inferences by 

weighting the topi variable for nodes i deemed to be at the top-level of the network. 

The implementation is simple, using just one additional soft data parameter in the 

objective function. 

♦   CTOPi — a soft inference weight applied to influence the top-level status of 

node i in the IP's solution. Adding this weight modifies the objective 

function as shown: 
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Maximize 

ZWT ■ zclass - TWT ■ ^top-, + PWT ■ ^bcl5i + 
i i 

Y£S0FTd • (bclti)+ CTOP, ■ top, (12) 

Using model A previously described, Net-6 (previously insensitive to soft 

inferences) is successfully induced into an alternate structure by introducing CTOP is = 

3 and CTOP19 = 3 into the model (all other soft inferences are also introduced, at a 

scale factor of 1).   As a more compelling example case, inspection of Net-5's 

topology shows it would not be unreasonable to expect node 24 to be at the top level 

of the network. Adding CTOP24 = 1.1 (less, with a conflicting OCN rule weight 

removed) is sufficient to effect this change. 

The simple CTOPi tactic adds a potentially useful tool to soft inferences. In 

fact, the soft rules implemented for this testing do not provide an inference about the 

actual class of a node, but rather suggest whether a node is a transit or local exchange. 

These rules must therefore apply weights to multiple classes for each node, since a 

transit node could be either class 3 or class 4. Weighting the topt variable for such 

nodes could simplify or augment soft rules addressing the surmised class of a node. 
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VIII.   CONCLUSIONS AND RECOMMENDATIONS 

The node classifier IP is suitable for service within GCAT. The IP produces 

acceptably accurate classifications for the U.S. regional PSTNs, and with the 

application of preprocessing, also returns timely solutions. The formulation is flexible 

enough to be tuned to seek a variety of potential hierarchical PSTN variants. This 

chapter describes the model recommended for implementation in GCAT. We close 

with a discussion of work still needed and a comparison with the alternate node- 

classification algorithm. 

A.       OPTIMAL FORMULATION 

The node-classifier formulation recommended for implementation in GCAT is 

the IP incorporating the Leaf_Pluck and Min_Hop(1.0) preprocessing routines. We 

also recommend retaining an ability to implement the ZJLoop strategy. Leaf_Pluck 

and Min_Hop(1.0) are powerful routines, the primary agents responsible for reducing 

solution times to acceptable levels. The Minjiop variant selected does not 

incorporate variable-fixing for non-top-level nodes because addition of this feature 

does not discernibly improve solution times. This feature does, however, add 

assumptions to the model that may restrict soft inferences from influencing the 

solution. The recommended model achieves swift solution speeds with minimum loss 

of model generality. Employing these preprocessing routines requires accepting only 

that a node with centrality = 0 is at the top network level, and that leaf nodes cannot be 

tops. 

We recommend retaining the ZJLoop strategy, perhaps via a user-selectable 

switch, for several reasons. In cases where the fewest levels is overwhelmingly 

preferred, and the Min_Hop(l.O) and Leaf_Pluck routines are acceptable, the looping 

strategy is not necessary. However, the Min_Hop(l.Q) or Leaf_Pluck routines may be 
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inappropriate, either in general for certain PSTN families, or because of their 

interaction with soft inferences. It also may be desirable to investigate alternate 

network structures with the MinJLevels assumption less strongly enforced. For these 

occasions, Z_Loop should be in place to speed solution times in the absence of the 

other routines, or to present alternative solutions for consideration by the analyst. In 

these cases, allowable values of zclass may be limited, if desired. In the absence of 

other preprocessing, Z_Loop significantly reduces solution time when seeking the 

solution using the minimum possible levels (see Table 15 in Appendix D). In concert 

with the other recommended preprocessing routines, ZJLoop can quickly present 

solutions over a range of zclass values (see Figure 14). The Z_Loop strategy adds 

considerable flexibility to the formulation. 

Table 7 compares solution times of the recommended model (including 

ZJLoop) with those of the baseline formulation. Accepting the few additional 

assumptions of the preprocessing routines seems reasonable when weighed against the 

considerable improvement in solution times. These solution times, under three 

seconds for most networks, are clearly acceptable for a GCAT method. 

B.        CONTRAST WITH THE INTELLIGENT ENUMERATION 
ALGORITHM 

The "Intelligent Enumeration" (IE) algorithm of J. Brandeau (1998), 

introduced in Chapter I, is a competitive solution technique to the node classification 

problem. In summary, this algorithm employs an all-pairs shortest path algorithm to 

identify all possible combinations of top-level nodes that could be present in a network 

formed with the fewest possible levels. It then uses a top-down classification scheme 

to assign node classes based on a node's minimum distance from the nearest top-level 

node. The optimal solution is determined by evaluating each classification scheme 

against an objective function similar to the IP's. 
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Network 

Solution Time (seconds) 

Recommended 
Formulation 

Baseline 
Formulation 

Net-0 0.73 3.54 
Net-1 0.61 9.06 
Net-2 0.82 19.12 
Net-3 0.77 10.11 
Net-4 1.19 11.48 
Net-5 1.17 41.83 
Net-6 1.38 19.06 
Tracy 2.01 50.75 
Bait 2.01 59.59 
Lop4a 1.40 45.79 
Lop4b 1.45 8.18 
Lop5a 1.43 18.73 

Network 

Solution Time (seconds) 

Recommended 
Formulation 

Baseline 
Formulation 

Lop5b 0.97 - 

Lop-6 1.79 17.96 
Lop6a 2.07 - 

Lop6b 2.39 - 

Net-5 6 3.57 107.43 
Net-4 6 8.43 432.76 
Net-3 6 11.87 511.30 
HugeC 5.68 - 

HugeB 12.47 - 

HugeA 21.85 - 

Huge 63.40 - 

Table 7. Solution Times of the Recommended Model 

Solution times for the formulation incorporating Leaf_Pluck, Min_Hop(l.O), and ZJLoop are in the 
column labeled "Recommended Formulation." The tabled values are the average value of three trials. 
For these trials, the ZJLoop routine exits upon obtaining the first solution, so times presented represent 
time to the first solution. For comparison, solution times of the baseline model are also presented. 
A "-" indicates no solution was obtained in 600 seconds. The test machine is a 166 MHz PC. 

In comparing the mathematical programming and enumerative approaches, the 

clear speed advantage is to the IE algorithm. The speedy preprocessor code used in 

this thesis derives from the IE algorithm. Another advantage of the JAVA-language 

IE algorithm is that it does not require its users to own GAMS or the OSL solver. The 

IE algorithm can quickly present an analyst with many alternate solutions, rank- 

ordered using any conceivable fitness function. The IP can also present alternative 

solutions, but only at the expense of additional processing time. Lastly, the 

enumeration algorithm can implement non-linear soft inference functions, should any 

ever be devised. 
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However, the enumeration algorithm is very specifically coded to seek 

solutions of the fewest possible levels and with the fewest possible top-level nodes. In 

other words, it probably lacks flexibility in comparison with the IP. At this stage of 

GCAT's development, the node classification problem is not well defined, and the 

assumptions and requirements for the PSTN node classifier model are likely to evolve. 

A key concern about implementing the enumeration algorithm is that its workings are 

not as analytically accessible as the IP's, and a requirement to revise its 

implementation in the future may prove difficult or impossible. 

C.       SHORTCOMINGS AND SUGGESTIONS FOR FURTHER RESEARCH 

The main shortcoming of this thesis is the small sample size—only nine test 

networks derived from real-world PSTNs. The IP is intended for use in analyzing 

networks not of U.S. origin, yet no logical topologies of overseas networks are 

included in the testing. Given the extensive experimentation done to optimize the IP's 

performance on this small PSTN sample population, it is quite possible the model is 

over-optimized. A clear requirement exists to re-validate the models' assumptions on 

the actual target population, non-U.S. PSTNs. 

The modest number of test networks actually derived from real PSTNs also 

affects the quality of the soft inference testing. The test PSTNs solve more-or-less 

correctly without the application of soft inferences. Most errors present in the 

solutions of the baseline formulation are not addressed by any surmised soft rule. 

Consequently, the introduction of soft parameters into the model for these networks 

can only diminish the accuracy of the solutions found. Without a sizable sample of 

test networks that require soft inferences to solve "correctly," the conclusions about 

the performance of soft inferences are incomplete. 
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A further shortcoming of the IP in this application is that some form of 

preprocessing is required to speed solution times to acceptable levels. The added 

assumptions required for implementing the preprocessing routines of this thesis may 

be unsuitable in some applications. In particular, performance of the IP in the absence 

of the Min_Hop(1.0) would be marginally acceptable (see Figure 12). Finally, the 

selection of objective function weights and other model attributes are clearly tailored 

for classification of U.S. regional PSTNs. When the node classifier is applied to other 

families of PSTN, it is likely that these attributes will need to be revalidated. This 

implies a requirement for some baseline knowledge of the PSTNs being analyzed to 

establish appropriate penalty weights and develop or validate solution-accelerating 

enhancements. In other words, the IP is not "on-size-fits-all." It is unlikely this 

formulation can correctly classify foreign PSTNs without some adjustment of its 

parameters. 
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APPENDIX A.    CHARACTERISTICS OF THE TEST NETWORKS 

Contained within this appendix are descriptive characteristics of the test 

networks, and figures depicting the networks derived from U.S. region PSTNs. 

- 

Network Location 
#of 

Nodes 
#of 
Arcs 

#of 
Triplet 
Rings 

# 
of Leaf 
Nodes 

# Nodes 
in Triplet 

Rings 

Max 
Node 

degree 

Longest- 
Shortest 

Path 

Lowest 
Class 
used 

Networks derived from U.S. regional PSTNs 

Net-0 Notional 21 21 1 9 3 3 6 3 

Net-1 Baltimore area 27 32 6 15 12 21 4 4 

Net-2 Baltimore area 38 47 10 20 18 30 4 4 

Net-3 Georgia 34 38 4 20 7 10 5 4 

Net-4 Georgia 34 46 16 17 13 12 5 4 

Net-5 D.C and N. VA 34 79 101 8 26 17 4 4 

Net-6 D.C and N. VA 42 96 125 13 27 16 5 4 

Tracy California 90 90 1 70 3 31 5 4 

Bait Baltimore area 103 103 1 87 3 66 5 4 

Large Notional Networks 

5_6 Aggregation 76 183 242 22 53 21 5 4 

4_6 Aggregation 110 247 321 39 66 24 5 4 

3_6 Aggregation 144 320 472 56 79 27 5 4 

HugeC Aggregation 118 313 485 36 78 25 5 4 

HugeB Aggregation 152 402 664 44 106 27 5 4 

HugeA Aggregation 220 575 1290 78 132 33 5 4 

Huge Aggregation 304 948 2912 88 212 39 5 4 

Networks with modified Longest-Shortest Paths 

Lop4a Modified Net-4 .35 47 16 17 13 12 6 3 

Lop4b Modified Net-4 36 48 16 17 13 12 7 3 

Lop5a Modified Net-5 35 81 101 8 26 17 5 4 

Lop5b Modified Net-5 36 82 101 8 26 17 6 3 

Lop6 Modified Net-6 41 95 125 14 27 16 5 4 

Lop6a Modified Net-6 43 97 125 14 27 16 6 3 

Lop6b Modified Net-6 44 98 125 14 27 16 7 3 

Table 8. Test Network Characteristics. 
These summary statistics are intended to give a snapshot view of the key characteristics of the test 
networks. A "triplet ring" refers to a trio of nodes that are completely connected. The number of triplet 
rings and nodes involved in triplet rings are intended to provide an indication of the degree to which a 
network contains mesh topologies. Generally, solution times increase as the number of nodes, arcs, and 
number of nodes involved in mesh configurations, increases. 
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13    > I Class 3 

ilöi Class 4 

Class 5 

f||       I Class 6 

Figure 15. Logical Structures of Test     Networks 0 and 1 

Network-0's topology is notional, and the configuration of nodes 16 and 17 (interconnected class 6) is 
atypical. Network-1 is derived from a Bell Atlantic regional PSTN in Maryland. 
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@       1   Class 6 

.^^H% fo 

Figure 16. Logical Structures of Test Networks 2 and 3 
Network 2 is derived from a regional PSTN serving the Baltimore, Maryland, region. Network 3 is 
located in rural Georgia. 
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Figure 17. Logical Structure of Test Network 4 
This network is derived from a portion of the Southern Bell regional PSTN located in rural, southeastern 
Georgia. It is derived from the same physical network as test network 3. Node 8 solves incorrectly as a 
class 5 because it violates the models' More_5s assumption. 
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Figure 19. Logical Structure of Test Network 6 

This network is an alternate derivation of the PSTN from which test network 5 was derived. Nodes 31, 
39, and 41 solve incorrectly as class 5 (they violate the MoreJSs model assumption). 
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Series 
Network A B C D ...   ■ E F G H -&mi 

Net-0 1.80 1.77. 2.8 1.871 2.63 1.87| 2.69 1.98 3.23 
Net-1 8.79 8.85 9.89 9.12 13.51 7.2| 11.04 11.32 9.18 
Net-2 17.13 16.05 17.14 16.15 14.39 15.331 16.15 16.04 15.98 
Net-3 5.38 5.6 5.44 5.66 4.89 5.27J 5.61 5.6 5.23 
Net-4 11.15 11.25 11.26 11.26 10.16 10.431 14.39 11.64 10.43 
Net-5 43.17 69.1 78.1 133.57 - 27.31' 103.48 46.57 46.46 
Net-6 
Tracy 

16.86 
52.84 

93.82 
72.39 

142.26 
91.73 51.9 

- 115.29 16.58 
52.01 § 

17.41 
54.87 

4.34 
62.39 51.08 53.17 

Bait 62.78 64.97 100.13 63.11 59.82 61.29 62.18 63.33 14.72 
Lop4a 50.26 50.2 49.37 52.01 41.69 40.211 94.47 51.19 *   - 
Lop4b 4.61 4.66 4.78 ,   4.73 3.68 3.961 7.63 4.67 64.98 
Lop5a 15.54 15.87 18.02 15.71 10.65 11.041 28.5 15.49 87.55 
Lopöb 42.62 - ÜIÄI111 - 50.53| - 67.88 42.4 469.39 
Lop-6 
Lop6a 

12 86 70.48 85.02 
_ 

- ■ 12.97 
505.7 

26.48 
602 

13.351 140.73 
- 50.15 

Lop6b 
Net-5_6 

582.38 161.26 
416.17      - 

192.46 
303.02 

JilltlPÄ P§t§§liP?% 516.52 
85.63 

iÜSHill tmmiii 60.74 
:-•----_ ':' ;-. 

Net-4_6 267.33 263.38 384.14 265.24 257.66 262.54 264.08 268.471 - 
Net-3_6 528.38 541.18 585.06 528.11 513.11 549.311 JKllfBllii - 
HugeC - - -    \ - 529.921 - JlSlflllll 

# of values 
within 10% of 7 3 0 3 9 15 3 4 6 
best attained 

Series           Priority 
A GAMS default (none) 
B sumtops, top 
C sumtops, top, p 
D p, top, sumtops, zclass 
E p, top, bcl3, bcl4, bcl5 

F zclass 
G sumtops 
H P 
I zclass, sumtops, top 

Table 11. Effect of Branching Strategy on Solution Times. 

Unshaded values in the table indicate the solution time is within 10% of the best attained by any strategy 
on that network. A "-" indicates an optimal solution was not found in 600 seconds. In the legend, read 
the "Priority" column from left to right, e.g., for series C, sumtops was assigned the highest branching 
priority, followed by topi, etc. 
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APPENDIX C.    PARAMETER VALUES OF TOP LEVEL CANDIDATE NODES 

Network 
Top-level 

Candidates 
Degree 
Ranking 

TotalHop 
Ranking Centratity MaxHops 

In a Center Position 
onaL-SPath? 

NetO 13 Highest Minimum 0.000 3 Yes 

Neil 14 Highest Minimum 0.000 2 Yes 

Net 2 14 Highest Minimum 0.000 2 Yes 

Net 3 9 
28 

Highest 
2nd Highest 

Minimum 
2nd Minimum 

0.000 
0.029 

3 
3 

Yes 
Yes 

Net 4 7 
9 

28 
32* 

2nd Highest 
2nd Highest 

Highest 
10th Highest 

3rd Minimum 
2nd Minimum 

Minimum 
3rd Minimum 

0.059 
0.029 
0.000 
0.088 

3 
3 
3 
4 

Yes 
Yes 
Yes 
Yes 

Net 5 21 
31 

27* 

2nd Highest 
Highest 

4th Highest 

2nd Minimum 
Minimum 

4th Minimum 

0.029 
0.000 
0.088 

3 
2 
3 

No 
Yes 
Yes 

Net 6 6 
15 
19 
37 
18* 

3rd Highest 
2nd Highest 

Highest 
4th Highest 
6th Highest 

2nd Minimum 
2nd Minimum 

Minimum 
4th Minimum 
5th Minimum 

0.024 
0.024 
0.000 
0.071 
0.095 

3 
3 
3 
3 
3 

Yes 
Yes 
Yes 
No 
Yes   " 

Tracy 20 
81 

58* 

4th Highest 
Highest 

14th Highest 

2nd Minimum 
Minimum 

5th Minimum 

0.011 
0.000 
0.056 

3 
3 
3 

Yes 
Yes 
No 

Bait 68 
84 
87 

2nd Highest 
Highest 

7th Highest 

2nd Minimum 
Minimum 

3rd Minimum 

0.010 
0.000 
0.019 

3 
3 
3 

Yes 
Yes 
No 

Table 12. Parameter Values of Top-level Candidate Nodes 

This table presents the parameter values of nodes that are top-level candidates in the test 
networks derived from actual PSTNs. Nodes not in reality at the top-level are asterisked. A 
node enters the set of candidates if it is of highest degree in the network, has minimum totalhops, 
is on a position in a L-S Path which would indicate a top if the path were symmetric, or is one of 
the set of minimum maxhop nodes. 
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Network 

zclass Baseline 

(NoZ_Loop) 4 3 2 1 

Net-0 NA 1.43 5.98 13.07 3.54 
Net-1 1.43 9.28 62.45 420.62 9.06 
Net-2 2.64 16.76 552.45 - 19.115 
Net-3 3.24 13.46 27.62 267.38 10.11 
Net-4 3.89 54.43 149.78 - 11.48 
Net-5 2.75 65.31 - - 41.825 
Net-6 7.03 26.15 - - 19.055 
Tracy 46.31 41.91 106.83 113.03 50.75 
Bait 13.07 51.13 - 223.22 59.59 
Lop4a NA 39.6 - - 45.785 
Lop4b NA 7.47 227.89 - 8.18 
Lop5a 4.12 34.55 342.35 - 18.73 
Lop5b NA 34.71 172.97 - - 

Lop-6 6.38 9.33 309.78 - 17.96 
Lop6a NA - - - - 

Lop6b NA 317.25 - - - 

Net-5_6 22.08 44.05 - - 107.43 
Net-4 6 72.77 - - - 432.76 
Net-3 6 160.99 - - - 511.295 
HugeC 160.99 - - - - 

HugeB 137.75 - - - - 

HugeA - - - - - 

Huge - - - - - 

Table 15. Solution Times for ZJLoop Strategy in the Baseline Formulation 
This table depicts the solution times (in seconds) attained for each value of zclass between class 4 and 
class 1 using ZJLoop with no additional preprocessing. "NA" indicates that the value of zclass is 
infeasible for the network. A "-" indicates no optimal solution was attained in 600 seconds of 
processing. For the naive implementation, the solution times appear to increase exponentially as zclass 
is fixed farther from its maximum feasible value. The time to the first solution is considerably improved 
over the naive formulation without implementing the ZJLoop routine. 
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CPU seconds 
Network zclass=4 zclass=3 zclass=2 zclass=1 zclass=0 No ZJLoop 

Net-0 NA 2.03 1.04 0.99 1.05 1.38 
Net-1 0.88 0.82 0.83 0.82 0.76 1.37 
Net-2 2.09 1.05 1.76 1.1 2.85 1.59 
Net-3 2.09 1.04 1.1 1.04 1.1 1.48 
Net-4 1.7 2.25 1.27 3.19 1.26 2.36 
Net-5 2.25 1.98 1.7 2.25 1.87 2.47 
Net-6 3.46 2.42 2.04 1.92 1.81 4.34 
Tracy 2.74 2.47 1.98 2.53 1.87 2.02 
Bait 3.13 3.02 3.24 3.23 2.53 2.31 
Lop4a NA 1.81 3.07 3.84 3.74 2.02 
Lop4b NA 1.87 3.57 3.4 3.85 2.04 
Lop5a 1.92 1.7 1.7 1.76 1.59 2.04 
Lop5b NA 1.86 1.81 1.86 1.65 2.25 
Lop-6 3.35 2.19 2.14 1.82 2.15 3.73 
Lop6a NA 3.46 1.97 2.31 4.34 3.57 
Lop6b NA 3.74 2.14 2.31 8.84 3.84 
Net-5 6 8.68 16.87 9.95 4.61 5.16 6.49 
Net-4 6 13.13 23.12 21.15 9.88 29.11 10.33 
Net-3_6 21.53 49.88 34.54 35.59 43.61 16.53 
HugeC 21.31 51.9 9.78 32.73 38.77 13.57 
HugeB 29.05 43.23 19.28 16.2 14.5 40.59 
HugeA 60.75 87.44 77.39 91.51 104.02 44.22 
Huge 139.4 254.63 188.5 65.19 84.86 102.72 

Table 16. Solution Times for the ZJLoop Strategy with Additional Preprocessing 
This table shows the solution times obtained by Min_Hop(0.l), Leaf_Pluck, and No_Eqn preprocessing, 
in concert with Z_Loop. "NA" indicates the value of zclass is infeasible for the network. 
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