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INTRODUCTION 

Experimental Context 

The most dangerous attribute of cancer cells is metastasis. Our objective is to determine the 
molecular mechanisms responsible for controlling breast cancer spread. The timing and location of 
nonrandom karyotypic abnormalities has provided clues regarding the genes involved in breast carcinoma 
progression. In breast cancer, structural changes frequently involve chromosomes 1, 8,11, 13, 16 and 17. 
Chromosomes 8, 13 and 17 changes generally occur early in progression; whereas, deletions and 
rearrangements of chromosomes 1,6, 11 and 16 often occur later(1). As a corollary, one would 
hypothesize that genes relevant to breast cancer progression toward metastasis are encoded on the latter 
chromosomes. To test this hypothesis, we introduced an intact, normal human chromosome 11 into the 
metastatic human breast carcinoma cell line, MDA-MB-435 using microcell-mediated chromosome 
transfer (MMCT). We showed that metastasis was suppressed by 95%, but tumorigenicity was unaffected 
(2). This finding suggested the presence of at least one human breast carcinoma metastasis-suppressor 
gene on chromosome 11. Please note: We define a metastasis-suppressor gene as blocking tumor spread. 
A tumor suppressor gene would suppress tumor growth and, by inference, metastasis as well. 

The goal of DAMD-17-1-96-6152 is to map (and hopefully clone) the gene(s) on chromosome 11 
responsible for metastasis suppression. In addition, we want to test whether similar metastasis 
suppression occurs if chromosome 11 is introduced into other metastatic human breast carcinoma cell 
lines. These technical objectives fall within the ultimate goal of understanding the mechanisms 
underlying breast cancer metastasis. 

Background 

Metastasis results from accumulated genetic changes from which a subset of late-stage cancer cells 
evolve that are no longer confined to their tissue of origin for growth. In order to successfully colonize a 
distant organ, metastatic cells must survive transport through the body, interact with a variety of host 
cells and successfully penetrate numerous barriers. If a cell cannot complete every step, it is 
nonmetastatic. The multistep metastatic cascade involves numerous genes (1;3"6). Two classes of 
metastasis-associated genes have been identified — (i) genes that drive metastasis formation, and (ii) 
genes that inhibit metastasis. However, the identities of most of these genes remain unknown. 
Correspondingly, it is not known how these genes are regulated in normal and/or cancer cells. 
Nonetheless, it is well recognized that the probability for long-term survival is extremely low if 
metastases develop. 

In addition to the findings mentioned above, we have made four observations relevant to the genetics 
of human breast cancer metastasis. (1) Transfection of KiSS-1, a novel metastasis-suppressor gene 
discovered in our laboratory(7), suppresses metastasis by at least 50% (8). (2) Expression prostate cancer 
metastasis-suppressor gene, KAI-1(9), correlates with breast tumor aggressiveness(2;10). When KAI-1 
cDNA was transfected into MDA-MB-435 cells, metastatic potential decreased significantly(U). (3) 
Expression of the delta (6) isoform of protein kinase C correlates directly with metastatic potential of 
related rat mammary carcinoma cells(I2). (4) Mutant forms of MEK1 (Map Kinase/Erk Kinase) when 
transfected into NIH3T3 cells confer not only tumorigenicity, but also metastatic potential(13;14). 

BODY 
-EXPERIMENTAL METHODS 

Rationale (Global) 

Positional cloning has been used to identify a number of tumor-suppressor genes (e.g., WT1, Rb, 
FHIT) and genes for mutations that predispose cancer susceptibility (e.g, NF1, APC) (reviewed in(15)). 
As mapping nears completion, detection of mutations among cancer families confirms a particular gene's 
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role as a tumor suppressor. Since mutations are relatively rare, equally strong evidence for a role in 
cancer etiology is required. Thus, positional cloning is reasonable if strong, well-characterized pedigrees 
are available. However, determining roles for genes in sporadic tumors or progression-associated genes 
(e.g., metastasis-controlling) is difficult because of tumor heterogeneity, genetic instability and the huge 
number of experiments necessary to prove causality. This is further complicated for multigenic 
phenotypes, like metastasis. Simply, the statistical likelihood for identifying a specific gene over the 
immense background of genetic instability typical of late-stage tumors is difficult. Thus, alternative 
approaches are required. 

MMCT (microcell-mediated chromosome transfer) has provided functional evidence for tumor 
suppressor genes when other approaches have failed(16;17). The functional data have provided the 
necessary information for successful mapping of the genes responsible (18~34). As an intermediate, some 
have utilized a modification of MMCT in which the donor chromosome has been irradiated to produce 
deletions <23;28;35-38\ This modification is based upon a loss of function (i.e., failure to suppress) associated 
with the deletion. 

The strategies we proposed for identifying metastasis-controlling genes in human breast cancer were 
based upon those listed above as well as those we used to identify novel metastasis-suppressor genes in 
human melanoma <-1''i9A2\ Basically, two concurrent approaches were outlined. First, progressively smaller 
fragments of neo-tagged human chromosome 11 were to be introduced into MDA-MB-435 by MMCT. 
By evaluating regions of overlap for chromosomal fragments present/absent in suppressed/non- 
suppressed hybrids, the location of the putative metastasis-suppressor gene(s) would be defined. The 
second approach was to use differential display(43;44) and subtractive hybridization(45;46). Once candidate 
genes were identified, transfections and testing for metastasis in appropriate animal models would 
confirm that a bonafide metastasis-suppressor gene had been cloned. 

The second major objective of DAMD-17-1-96-6152 was to demonstrate the introduction of 
chromosome 11 into another metastatic human breast carcinoma also suppresses metastasis. 

This progress report will be organized in the following manner. Each section summarizes results 
from related series of experiments. The relationship of those experiments to a particular Specific Aim is 
noted. Only new data, collected since submission of the FY96-97 progress report, is included. 

Section 1: Welch, D.R. and Wei, L.L. (1998) Molecular control of breast cancer progression and 
metastasis. Endocrine Related Cancers (In press) 

Summary of major findings: This was an invited paper in which I was asked to review briefly the 
literature about metastasis-controlling genes in human breast cancer, particularly genes which are 
hormonally regulated. However, upon reviewing the literature, I identified >8000 papers which claimed 
to present data showing association between metastasis and particular genes. This necessitated that the 
breadth of the review be expanded in order to review the role of genes in breast cancer at "all" stages of 
progression. Basically, most papers speculated on a role of genes in invasion, progression and metastasis 
but presented no data to support such claims. Additionally, the problems associated with ill-defined 
model systems (i.e., what kind of breast cancer is being studied?) was addressed. 

While not directly addressing a specific aim from the original proposal, this review was extremely 
useful for formulating and modifying my thinking about breast cancer genetics. During the writing 
process, I had to address many issues related to breast cancer metastasis research and organize them. The 
critical review also helped us focus on key issues which need to be addressed in order to accomplish the 
aims set forth for this program. 

Section 2: Introduction of chromosome 11 into MDA-MB-231 [Unpublished] 

Rationale 



WELCH, Danny R., Ph.D. 
Progress Report — 7/1/97-6/30-98 

DAMD-17-96-1-6152 
Page 7 of21  

The objective of these experiments is to determine whether introduction of chromosome 11 into 
another human breast carcinoma causes metastasis suppression. To date, only three metastasis-suppressor 
genes have been shown to suppress metastasis of human breast cancer in an in vivo model — Nm23-Hl, 
KiSS-1 and KAI-1. And regarding chromosomal location of metastasis-controlling genes, only one 
publication exists(2). All of these papers have used only once cell line, MDA-MB-435, since it is the only 
reproducibly metastatic breast carcinoma cell line. None of the papers address whether these genes or 
chromosomes are functioning in other types of breast carcinoma (i.e., not infiltrating ductal). 

Summary of major findings 

Although most human breast carcinoma cell lines were derived from metastatic lesions or pleural 
effusions, most do not metastasize in experimental animal models(47). The MDA-MB-231 has been 
reported in the literature to be metastatic(48;49). So, we obtained these cells from Drs. Garth Nicolson 
(Institute for Molecular Medicine, Irvine, CA), Robert Gillies (University of Arizona Cancer Center) and 
David Rose (American Health Foundation). Before performing MMCT, we wanted to verify metastatic 
potential. Injection of cells (up to 1 x 107) into the mammary fat pads of athymic nude mice produced the 
following results. 

Nicolson variant — no tumors (We later learned that these cells had previously been infected with 
Mycoplasma and the infection had been eliminated. Apparently, they underwent a selection and none of 
the remaining cells were metastatic. Dr. Nicolson confirmed our findings.) 

Gillies variant — only 20-30% of animals formed tumors, only 5% (1/20) of mice had a metastasis to 
the draining axillary lymph node. None had metastases in viscera. After discussions with Dr. Gillies, we 
cannot explain the differences in our results unless SCID mice are necessary to observe metastasis from 
his variant. 

Rose variant—Mycoplasma contaminated (We notified Dr. Rose and have discarded to culture. He 
has informed me (6/24/98) that the Mycoplasma has been eliminated and that the cells have been injected 
into mice. If they grow and metastasize, he will re-send another culture to us.) 

Recommendations for follow-up experiments based upon these results 

Evaluate additional breast cancer cell lines to assess metastatic potential 

1. We have also been in contact with Dr. Janet Price (U.T.-M.D. Anderson Cancer Center, 
Houston, TX) who has recently isolated a "highly" metastatic variant of MDA-MB-231, 
designated MDA-MB-231/S1. We recently received this line (May 1998) and are expanding the 
culture for freezing and expect to do injections on July 15,1998 (when space is available). 

2. We have tested SUM breast carcinoma cell lines isolated by Dr. Steven Ethier (University of 
Michigan) who has an USAMRDC Infrastructure Grant. SUM149 cells developed ipsilateral 
axillary lymph node metastases in 3/16 mice following injection of tumor cells into the mammary 
fat pad. Given that the metastases could be direct extension of the primary tumor, we decided not 
to test this line further. (Note: Based upon experience and relatively low incidence of lymph 
node metastases, we believe that it is likely that the lymph nodes were involved because the 
tumor grew directly to the node and "engulfed" it.) Dr. Ethier sent us four additional SUM cell 
lines (SUM185, SUM 190, SUM229, SUM1315M02) in June 1998 which we agreed to test in 
vivo. These lines were chosen because they have in vitro properties that are "more aggressive" 
than most of the others he is developing. The cells have been thawed and are being expanded for 
injection in mid- to late-July (due to slow in vitro growth rate). 

3. We have contacted several other investigators and have standing requests for highly aggressive 
human breast carcinoma cell lines; however, no one has yet provided any. 

4. Since MDA-MB-435 is metastatic and heterogeneous, we decided that isolation of single cell 
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clones would be helpful. We rationalized that comparison of karyotypes and sequence-tagged 
sites for clones of different metastatic potentials might provide insights into the region(s) 
involved in metastasis. Limiting dilution cloning was used to isolate single cell clones from the 
parental MDA-MB-435 population. Similar experiments were performed with pSV2neo- 
transfected and pcDNA3neo-transfected MDA-MB-435 cells. The neo-transfectant clones were 
isolated in order to control for MMCT experiments and as part of transfection experiments (See 
below). 

It has been frustrating that the metastatic potential of single cell clones has been so variable 
(inter-experimental). Most clones were tested at least twice during the past year. In general, 
trends were the same; however, there is still more variability than desired. Use of the mixed 
population, while not ideal, still represents the best option at this point. Another unexplained 
frustration is that almost all transfectants with empty vector have generally lower metastatic 
potential than the parental mean. Thus far, we have not obtained a more metastatic clone. Since 
this is a passive experiment (i.e., clones are isolated as a regular part of other experiments), we 
will continue. 

Table 1: Selection of lung colonizing variants of MDA-MB-435 

Cell Line No. Selections Incidence of 
lung 

metastases 

No. lung 
metastases per 

mouse 

Incidence of 
RLN 

metastases 

MDA-MB-435 

435-Lnl 

435-Ln2 

435-Ln3 

9/9 

15/15 

7/7 

17/17 

9±3 

71 ±20 

29 ±10 

24 ±7 

8/9 

10/15 

5/7 

17/17 

However, our 
expectations are 
rather low. 

5. We began to 
select, in a 
manner 
analogous to 
Fidler(50), 
increasingly 
metastatic 
subpopulations 
from MDA-MB- 
435. The 
rationale is that 
sequential 
selection of lung 
colonies will 
enrich for highly 
metastatic 
variants. Three 
rounds of in vivo selection have taken place and the results are shown in TABLE 1. In general, 
we see an increase in the number of lung metastases per mouse with the selections. The 
variability observed is consistent with the types of numbers seen in other selection schemes (e.g., 
B16 melanoma). Although nine (9) metastases per mouse was lower than our historical 
cumulative average (16 lung metastases per mouse), we have nearly doubled the metastatic 
efficiency with three only selections. In addition, although we are not quantifying on the basis of 
size, most lung metastases appear larger and are more readily detected. We will continue with 
this selection since it has the potential to be useful for future experiments and because it requires 
relatively little effort. 

MDA-MB-435 cells (1 x 106) were injected into the mammary fat pads of athymic mice. When 
local tumors reached 1.3-1.5 cm mean tumor diameter, they were removed. Four weeks later, mice 
were killed and examined for presence of metastases. To obtain cell lines, large lung metastases 
were removed aseptically, rinsed 10-20 times in sterile saline, and minced with scalpels using a 
cross-cut motion. Tissue pieces were placed into culture medium and grown under standard 
conditions. Before repeating in vivo studies, cells were verified to be free from Mycoplasma 
contamination. Incidence of regional lymph node (RLN) metastases — typically ipsilateral and 
contralateral axillary nodes — was evaluated as well. 

Section 3: Evaluation of KAI-1 as a metastasis-suppressor gene in human breast cancer 

Rationale: neol l/MDA-MB-435 hybrids expressed more KAI-1 mRNA than parental MDA-MB-435 
cells. Since KAI-1 is encoded on 1 lp and since it has demonstrable metastasis-suppressor ability, it 
became a prime candidate in our studies. Two experimental strategies were undertaken to assess the rele- 
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vance of this finding. These experiments constituted the initial experiments described in Specific Aim 4. 

Summary: The first approach was to compare mRNA expression in a panel of human breast cells 
representing varying degrees of aggressiveness. We did this study in collaboration with Dr. Lisa Wei 
who was, at that time, still in Hershey. We used mRNA initially because antibodies were not available at 
that time. Briefly, KAI-1 expression inversely correlated with tumor aggressiveness(10). 

The second approach more directly tested the hypothesis. We initiated this study, but since reagents 
were not commercially available and it was highly desirable to obtain the results quickly, we worked 
closely with Drs. Barrett and Weissman. All of the in vivo assays were done by us. In short, KAI-1 
transfectants were significantly suppressed for metastasis; however, the level of suppression was not as 
impressive as by chromosome 11 itself. Eventually, we were able to obtain an antibody that recognizes 
KAI-1 protein. Western blotting showed that the interpretation is complicated by altered glycosylation 
(U). Although the data are consistent with the notion that KAI-1 is a metastasis-suppressor, we are 
dubious. This is based partially upon intuition and reports of unpublished data that Kai-1 is not 
suppressive in human prostatic carcinoma. I have reviewed eight manuscripts during the past six months 
and most show excellent correlations with metastatic potential, but few showed functional evidence of 
metastasis suppression. 

Recommendations for follow-up experiments based upon these results: We have opted to forego 
further studies of Kai-1. 

Section 4: MMCT of pieces of chromosome 11 into MDA-MB-435 [Unpublished] 

Rationale 

This results reported in this section are based upon the strategy proposed for Specific Aim 1 in the 
original proposal. The objective is to map the gene(s) on chromosome 11 responsible for metastasis 
suppression to within 5 Mb. Then we want to determine how the gene(s) work. The strategy was to 
introduce progressively smaller pieces of chromosome 11 or to introduce fragments of chromosome 11 
with overlapping deletions. 

Our primary strategy was to prepare chromosome 11 microcell donors that have deletions as a result 
of radiation damage Q5*U5i\ Deletion mutants would then be introduced by MMCT into MDA-MB-435 
followed by assessment of metastasis in athymic nude mice. With this approach, random deletions need 
not be mapped beforehand. They can be mapped following fusion based upon predetermined 
polymorphisms spanning chromosome 11. If the metastasis-suppressor gene is retained, functional 
complementation of the defect will be repaired and the cells will be nonmetastatic. If the gene has been 
deleted, suppression will not occur. Metastatic hybrids would then be evaluated for portions of the 
chromosome 11 retained. Position of the metastasis-suppressor gene can be inferred by the smallest 
region of shared deletion. This has most recently been used to clone tumor or growth suppressor genes 
for prostate cancer(37), breast cancer (38;54), glioma, and head and neck squamous cell carcinomas(26). We 
recently used this approach and verified that the PTEN/MMAC1 phosphatase gene functions as a tumor 
suppressor in some human melanoma cell lines(33). 

The second approach is to utilize MMCT donors with previously defined fragments of chromosome 
11(52;53;55). The advantage of this approach is that fully-defined DNA is introduced into the cells. While 
aesthetically pleasing, the time required to fully characterize the donor chromosome fragment can take 
months to years. 

Initially, the second approach was only to be a contingency because characterization of chromosome 
donors is highly labor intensive. However, we are taking advantage of a collaboration with Drs. Jane 
Fountain (University of Southern California), Tracy Lugo (formerly of the University of California- 
Riverside and now at NIH) and Gavin Robertson (Ludwig Cancer Center, University of California-San 
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Diego) where our objective is to map melanoma tumor suppressor genes on chromosome 11(53). 

They had prepared a panel of karyotypically defined chromosome 11 fragments. Therefore, we began 
making hybrids using fragments as donors. For unexplained reasons, transfer has not proceeded 
efficiently. Some of this is due to personnel turnover and training time, but all three labs have had 
difficulty recently. Nonetheless, some hybrids have been prepared and results are listed in Table 2. 

Summary of findings and recommendations for follow-up experiments 

Progress on Specific Aim 1 has been frustratingly slow. Part of the problem was technical— Sigma 
could not fill orders for the lectin used for MMCT. The high-activity lectin was back-ordered for almost 
5 months. We tried the lower activity lectin, but were not successful for any of the hybridizations done 
with either breast or melanoma cells. Once we obtained good lectin, we got colonies but basically the 
hybridizations were still not productive. Therefore, we have contemplated other approaches. 

After several discussions, Dr. Fountain and I have concluded that it might be worthwhile to take 
advantage of the large body of published positional cloning (loss of heterozygosity) data from clinical 
samples to map hot spots in breast cancer. This would to obtain large-insert vector forms (PI, PAC, 
BAC, YAC ...) which could then be retrofitted with selectable markers. Vectors are now available to 
retrofit PI, BAC 
or PAC clones 
(56). Based upon 
their relatively 
large average 
insert size of 
BAC/PAC/P1 
(100-200 kb), it 
has become 
feasible to 
individually 
transfect PI or 
PAC clones into 
breast carcinoma 
cells. Even with 
3 chromosomal 
regions of 1 Mb 
each (total 3 
Mb), the 
maximum 
number of 
transfectants 
would be 300. 
Although this 

Table2: Status of chromosome 11 MMCT into MDA-MB-435 

Chromosome 11 
donor 

No attempts Status Results and Interpretation 

4.S2 5 no colonies 

E53 5 no colonies 

53 3 no colonies 

1.S2 7 grew for several 
passages then died 

Two colonies frozen, PCR of early 
colonies showed that they retained the 
chromosomal fragment. We speculate 
that the chromosome fragment may 
contain a senescence moiety. 

7 4 4 colonies One colony grew very slowly in vitro 
(i.e., doubling time approximately 2 
weeks!). Upon injection into mice, a 2 cm 
tumor was present within 30 days. This 
was faster than the MDA-MB-435 parent. 
When the tumor was re-established into 
cell culture, it grew as slowly as before. 
The mouse had lung metastases. 

number is not trivial, we estimate that the quantity of work for retrofitting and transfection would be 
estimated in months rather than years for the chromosome pieces. Given that the efficiency of 
transformation with these vectors is more efficient than MMCT, the probability for success would be 
higher. In addition, the PI, BAC and PAC clones have relatively low recombination frequencies (unlike 
YAC and even chromosome fragments), making their use "safer" for introduction into mammalian cells. 
Since the chromosome pieces are generated using radiation, we always run the risk of false negative 
results because an (in)active point mutant has been introduced. Therefore, Dr. Fountain and I have 
requested the retrofit vectors and expect to begin this approach as a pilot series of experiments in July. 
Since we are both looking for genes on chromosome 11, progress should be easily accessible in the short 
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term. Once the retrofit vectors are prepared, they will be transfected into MDA-MB-435 (or other lines) 
followed by assessment of metastatic potential. 

Section 5: Use of differential display to identify metastasis-suppressor genes on chromosome 11 
[Unpublished] 

MDAMB435 

\ 
sscDNA 

neoll/435.A3+Bl+Dl 

/ 
. ss cDNA 

_J Screen 

Screen 

RTFOR 
FIRST-STRAND cDNA SYNTHESIS 

\ 
. PCR-FINGERPRINTING 

~"~-^ products on PAGE    -4—" 

\ 
Detect/ Select/Isolate 

Differentially Expressed Bands 

Re-amplify Bands ——   ~ 

Northern blot — 

I 
Gone and Restriction mapping 

Northern blot 

Sequence Candidate cDNA 

cDNA Library screen for full length 

* ^-^ * 
Southern blot       Functional studies Homolog}1     Multi-tissue Northern blot 

Figure 1: Experimental design for identifying metastasis-suppressor genes on 
human chromosome 11. 
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Rationale: In addition to the 
strategy of mapping the gene(s) on 
chromosome 11 using MMCT, we also 
proposed use of differential display 
(43;44;57> ancj subtractive hybridization 
approaches to identify genes 
differentially expressed in the 
neol l/MDA-MB-435 hybrids. The 
latter paralleled the approach we used 
to identify the human melanoma 
metastasis-suppressor gene KiSS-1(7;41). 
These strategies were outlined as 
Specific Aim 3. 

A flow chart showing the basic 
experimental design for differential 
display is shown in Figure 1. Briefly, 
differential display is repeated in 
independent reactions in order to 
minimize artifactual amplification. 
Bands are excised and PCR is performed on those bands with the same primers. Failure to re-amplify 
excluded that band from further consideration. The cDNA is then used to probe a "screening" northern 
blot which has the most metastatic and least metastatic variants. Appropriate expression (i.e., cDNAs 
expressed exclusively in nonmetastatic cells or >5-fold greater expression in the nonmetastatic cells) is 
used as a criterion for continued interest. The candidates are then tested in a more extensive panel of 
cells and continued "appropriate" differential expression is necessary for subsequent molecular 
characterization. While we originally planned to evaluate candidates whose expression was at least 10- 
fold greater in neol l/MDA-MB-435 clones, this criterion turned out to be too stringent. We believe this 
is due to the heterogeneity within the parental population. 

cDNA libraries were constructed from neol 1/MDA-MB-435.B1 (approximately 106-107 AZAPII 
plaques containing average insert size of 1.0-1.5 kb). Heteroduplexes 
prepared from first strand neol 1/MDA-MB-435.B1 cDNA and 

f liv   ft?'? t   |~*1 biotinylated MDA-MB-435.1 mRNA were reacted with streptavidin 
7*.Ü*   §§*. before extraction using phenol: chloroform. Unbound single strand 
4 f v       • « Ü* cDNA constituted the subtracted library and was used to probe 

Northern blots. No consistent differences were identified using this 
approach. Therefore, differential display was used. In the previous 
progress report, we reported identification of 11 candidate cDNAs. 
However, none of the results were consistent or reproducible. 

Therefore, a second differential display was done using the more 
stringent criteria and adaptations depicted in Figure 1. Primarily, a 
mixture of mRNAs from neol l/MDA-MB-435 clones was used, 
rather than mRNA from a single clone. A representative gel is shown 
in Figure 2. Eighteen (18) of the differentially expressed bands were 

Figure 2. Representative photograph of a 
differential display gel. Lanes 1 & 2 and 3 
&4 are different concentrations of the same 
template. Lanes 1 & 2 are from MDA- 
MB-435 and Lanes 3 & 4 are from 
equimolar mixtures from neol l/MDA-MB- 
435 clones A3, Bl andDl. 
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Figure 3: Northern blot of poly(A)-enriched 
RNA (2.5 jtg) using candidate partial cDNAs 
identified by differential display. Note: 
neol l/MDA-MB-435 clones show significantly 
higher expression than parental MDA-MB-435, 
MCF10A (near normal breast), and a subclone 
isolated from MDA-MB-435, clone 7. A negative 
control neo6/C8161.6 was included also. Equal 
loading was confirmed by GAPDH, but 
neol 1/MDA-MB-435.D1 was under-loaded 
compared to other lanes. 

re-amplified and were chosen for Northern blot screening. 

These 18 cDNA fragments were gel purified, radiolabeled 
and used to probe screening Northern blots prepared from the 
panel of cells isolated from MDA MB 435 and its nonmetastatic 
neol l/MDA-MB-435 hybrids. Only seven (7) cDNA fragments 
produced the appropriate expression pattern and the results are 
shown in Figure 3. Comparison of expression was normalized to 
GAPDH and parental MDA-MB-435 following phosphor image 
densitometry. Relative expression is graphed in Figure 4. 

Six of the seven candidate cDNA inserts were sequenced and 
homology assessed by comparing with the GenBank/ EMBL/ 
DDBJ/ PDB combined database. Three cDNAs were virtually 
100% homologous to known human genes. The remainder were 
novel (Table 3). The three novel genes (temporarily designated 
8A3, F5A3 and G1A2) were chosen for further characterization. 

8A3-A22 

Human 
GAPDH 

Mouse cells 

Figure 6: Northern blots showing expression pattern 
for 8A3 and cDNA clones isolated from a human 
placental cDNA library. Lanes 1 & 2 are mouse cells: 
A9 (cell from which chromosome 11 donor was 
obtained) and the chromosome 11 donor cell line. 
Lanes 3-9 are human cell lines. Lane 3, C8161.8 
(human melanoma); Lane 4, MDA-MB-435; Lane 5, 
neol 1/MDA-MB-435.D1; Lane 6, neol 1/MDA-MB- 
435.B1; Lane 7, neol 1/MDA-MB-435.A3; Lane 8, 
MDA-MB-231; and Lane 9, MDA-MB-435. 

Table 3: Differentially expressed cDNAs isolated from 
neo11/MDA-MB-435 hybrids 

cDNA Size % Gene Size on 
(bp) homology RNA blot 

A1 387 99 GALNS1 8 

1 370 99 APRT2 4.4 

8A33 506 — novel 1.2 

F5A33 229 — novel 1.5 

G1A23 691 — novel 1.3 

G1B5 725 97 HHII4 3.2 

1 N-acetylgalactosamine 6-sulfatase; 2 Adenine 
phosphoribosyltransferase;3 Candidates chosen for further 
analysis; 4 Hexokinase II 

MD4J5       MCFI0A      MD4J5.7      VCSI6I.6     U/435.A3   1I/4U.B1        I1M35.DI 

Figure 4: Relative expression of candidate metastasis- 
suppressor genes. Relative expression is normalized to 
GAPDH and MDA-MB-435. 

Since the novel cDNA fragments were isolated from 
cancer cells and were partial length, we wanted to 
determine whether they were expressed in normal tissues 
in order to minimize the probability that a mutant gene 
product was being pursued. Also, this information would 
be useful in determining which libraries were most suitable 
for obtaining full-length cDNAs. Highest level expression 
was observed for all three candidates in kidney (Figure 5). 
Since we had a placental library on hand and since 
expression was high for 8A3 in this tissue, we started 
isolations of full-length 8A3 first. 
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Figure 5: Expression of novel candidate genes in normal human tissue Northern blot. 

Colonies were obtained and evaluated by Southern and Northern blots. Of six colonies, four pro- 
duced the same size band in a Northern blot (1.2 kb). Although the loading is awful in this blot, the 
results show that the cDNAs are more highly expressed in neol l/MDA-MB-435 clones (Figure 6). 

All of the cDNA clones were sequenced and aligned with the original 8 A3 fragment as well as with 
each other. Four of the six clones matched 8 A3 sequence completely and were larger, representing both 
the 5'- and 3'- flanking regions including the stop codon and poly (A) tail. Clones Al and A2 were 
identical; however, the other two may be alternative splice variants of 8 A3. As of July 13th, none of the 
four clones represent complete cDNA sequence (i.e., start codon with flanking Kozak sequence). The 
largest clone, to date, is 1.1 kb. Thus we appear to lack about 100 bp based upon Northern band size. 

We recently began 5'-RACE to obtain the remaining cDNA. Gene specific primers were designed 
and using the placental cDNA library as a template, PCR was performed to amplify the 5'- end of the 
gene. Three PCR products were obtained, gel purified and transferred to a membrane and probed with 
8A3 variants. A band of approximately 500 bp showed strong hybridization signal with the gene specific 
probe. Sequencing is currently underway. 

A kidney cDNA library has been purchased and attempts have begun to isolate full-length F5A3 and 
G1A2. 

Summary of findings and recommendations for follow-up experiments: Differential display represents 
the greatest "home run" approach; therefore, we will continue with this strategy. In year 1, Dr. Cheol 
Kyu Hwang did a lot of work on this project. However, none of his candidates panned out. Dr. Jabed 
Seraj re-started the differential display. Although progress has been slower than anticipated, he has 
identified three novel candidate cDNAs. By later 1998, we expect to have full-length cDNAs in hand for 
all three. To his credit, Dr. Seraj has overcome many of the previously unanticipated technical problems 
associated with this aim. 

Section 6: KiSS-1 is not overexpressed in neol l/MDA-MB-435 hybrids 

Since we previously showed that KiSS-1 is not expressed in parental, metastatic MDA-MB-435 cells 
and that KiSS-1 could suppress metastasis when transacted into these cells, we asked whether 
neol l/MDA-MB-435 cells express KiSS-1. Using Northern blotting, we found that the neol l/MDA-MB- 
435 cells do not express detectable levels of KiSS-1 mRNA. It is possible that the gene(s) product(s) 
encoded on chromosome 11 is acting downstream of KiSS-1; however, additional experiments will be 
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required to assess this possibility. 

Section 7: Overexpression of MEK1 transforms NIH3T3 cells and induces metastasis 

When presenting a talk at a Gordon Conference on our melanoma work, Dr. Alessandro Alessandrini 
noticed that KiSS-1 might contain a phosphorylation site of MEK1. Without presenting the year-long 
discussions that led to a formal collaboration, it became conceivable that MEK1 might be involved in 
controlling some aspects of metastasis. Briefly, the following observations led to this concept — (1) 
transfection of activated Ha-ras (upstream of MEK1 in many signaling schemes) into NIH3T3 cells 
renders them tumorigenic and metastatic; (2) transfection of MEK1 into NIH3T3 cells causes 
morphologic transformation; (3) variants of MEK1 with differential ERK activation potential are equally 
transforming in vitro; and (4) MEK transfectants express high levels of cathepsin L (a proteinase). The 
latter suggested that we ask whether the MEK1 transfectants are metastatic in vivo. Indeed, they were 
highly metastatic (abstracts appended). Moreover, we have apparently defined more completely the 
pathway(s) involved in activated ras-induced metastasis. 

Section 8: Protein kinase C 6 potentiates growth in metastatic mammary cell lines 

After meeting at study section, Dr. Sue Jaken and I initiated a collaboration to study the role of 
protein kinases in breast cancer metastasis. This collaboration takes advantage of our respective 
experiences. Initially, we screened a series of rat mammary adenocarcinomas with varying metastatic 
potentials and found the most impressive change was increased expression/activity of the delta isoform. 
Two experiments were initiated to test the importance of this finding — transfection of PKC6 into poorly 
metastatic variants and determine whether metastatic potential increases and transfection of a dominant 
negative construct into highly metastatic variants and determine whether metastasis decreases. We are 
putting the finishing touches on the manuscripts but the predictions were correct within the 13762NF 
model system. Two manuscripts have been prepared (the first is appended). And we are following-up 
these observations using the human breast cancer models we have in hand. 

PROGRESS AS RELA TED TO STA TEMENT OF WORK 

Objective #1: Map the gene(s) responsible for suppressing metastasis of MDA-MB-435 to within 5 
Mb by using MMCT with radiation-deletion variants of chromosome 11 

Task 1-1     (Months 1-12): Identify polymorphic markers distinguishing MDA-MB-435 and 
donor chromosome 11 

We have identified more than 30 polymorphic markers 
Task 1-2     (Months 6-18): Prepare deletion variants of chromosome 11 

Several chromosome 11 donors with deletions are in hand (Section 4) 
Task 1-3     (Months 7-19): Prepare microcell hybrids with radiation deletion variants 

This task has been initiated. Progress has been slower than expected. (Section 4). An 
alternative approach using PAC and BAC transfections is being considered as an 
alternative. The technician responsible for this objective has been replaced by a 
postdoctoral fellow. 

Task 1-4     (Months 8-24): Confirm hybrids actually contain added chromosome 11 material by 
multiple criteria 

This task has been initiated with the hybrids in -hand (Section 4). 
Task 1-5     (Months 12-24): Test hybrids for metastasis in orthotopic metastasis model 

One of the hybrids was tested. No suppression was observed in limited experiment 
(Section 4, Table 2) 

Task 1-6     (Months 24-48): Repeat above in independent series 
Task 1-7     (Months 24-26): Map deletions in hybrids (1st set), prepare map of overlapping 
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regions 
Task 1-8     (Months 36-48): Map deletions in hybrids (2nd set), prepare map of overlapping 

regions 

Objective #2: Stably introduce intact neo-tagged human chromosome 11 into MDA-MB-231 cells by 
MMCT 

Task 2-1     (Months 1 -6): Expand MDA-MB-231 cultures, verify pathogen-free (Mycoplasma 
free) 

Completed first round of experiments, but none of the MDA-MB-231 variants were 
metastatic. Alternative strategies to obtain metastatic human breast carcinomas 
initiated. (Section 2) 

Task 2-2     (Months 6-12): Prepare chromosome 11 hybrids 
Not done, see below 

Task 2-3     (Months 10-18):Confirm hybrids actually contain added chromosome 11 material by 
multiple criteria 

Task 2-4     (Months 8-24):Test hybrids for metastasis in orthotopic metastasis model 
Task 2-5     (Months 12-24): Prepare chromosome 6 and chromosome 15 hybrids, repeat 

metastasis study 
Task 2-6     (Months 24-36):Confirm hybrids actually contain added chromosome 11 material by 

multiple criteria 
Task 2-7     (Months 24-36): Test hybrids for metastasis in orthotopic metastasis model 

Tasks 2-2 through 2-4 could not be done due to lack of appropriate models. We are 
attempting to obtain metastatic human breast carcinoma models in order to 
accomplish this important aim. 

Objective #3: Identify metastasis-associated genes in neol l/MDA-MB-435 cells using differential 
display and/or subtraction hybridization 

Task 3-1     (Months 6-12): Prepare cDNA library from neol 1/435.B1 cells, Prepare "screening" 
RNA blots 

Completed, additional libraries were prepared from mixtures of the neol l/MDA-MB- 
435 cells for use in subtractive hybridizations/differential display. 

Task 3-2     (Months 6-9): Perform random primer amplification and repeat amplification for 
differential display 

Completed. Initial experiments identified areas of concern using the human breast lines 
that were unanticipated. Therefore, pooling mRNAs to "normalize" the 
neol l/MDA-MB-435 were initiated. 

Task 3-3     (Months 9-12): Perform "screening" Northern blots with probes from differential 
display 

Completed four cycles. Six candidate genes identified and partial cDNA fragments 
sequenced. Follow-up with 3 novel cDNAs is proceeding. 

Task 3-4     (Months 12-18): Sequence positive sequences, determine novelty, obtain full-length 
Completed four cycles. Partial cDNAs sequenced and three novel genes were identified. 

Library screening has been done to identify a potential source for obtaining full- 
length cDNAs. Candidate cDNAs of appropriate length have been obtained for one 
of the three novel cDNAs. Sequencing is in progress. Library screening for the two 
other genes is in progress. 

Task 3-5     (Months 18-24): Repeat Northern blots with longer probes for specificity 
Completed four cycles and the pattern of expression warrants further study. Only the 

results which "make sense" are included in this report since many false positives 
were eliminated at prior stages. 
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Task 3-6     (Months 9-18): Prepare subtraction library 
See Tasks 3-1 and 3-2. Subtraction library approach has been put on hold for now. 

Task 3-7     (Months 18-30): Probe Northern blots with subtraction library 
See Task 3-3 

Task 3-8     (Months 36-48): Obtain full-length sequence for genes expressed in subtraction 
library 

Progress has been slightly slower than anticipated. However, we are generally on target 
for the time line proposed. A new postdoctoral trainee has taken over this project 
and is making significantly better progress. We anticipate that transfection and 
evaluation of the candidate gene(s) will begin by 4Q98 or 1Q99. 

Objective #4: Determine whether specific genes (such as KAI-1) is a metastasis-suppressor gene in 
MDA-MB-435 and MDA-MB-231 cells 

Task 4-1     (Months 1 -6): Prepare transfectants with KAI-1 
Completed 

Task 4-2     (Months 6-8): Select transfectants with increased KAI-1 expression 
Completed 

Task 4-3     (Months 9-18): Evaluate transfectants in orthotopic metastasis assay 
Completed 

Task 4-4     (Months 18-48): Prepare and evaluate transfectants prepared from genes isolated in 
Technical Objectives 1 and 3 above. 

All four tasks have been completed and manuscripts published. This was made possible 
through collaborations with Drs. Barrett, Wei and Weissman, with whom we allied to 
study Kai-1 in breast cancer. We anticipate that at least one of the candidate genes 
identified in Objective 3 will be evaluated in vivo during 1Q99-3Q99. 

CONCLUSIONS 

Our preliminary data suggests that chromosome 11 encodes at least one human metastasis-suppressor 
gene. Our objective is to map and clone the gene(s) using parallel approaches. Approach 1 is to introduce 
pieces of chromosome 11, establish metastatic potential of the chromosome 11/breast cancer hybrids, 
map the gene(s) by regions of overlap. From July 1996-June 1998, we have established several baseline 
parameters necessary for completing this aim (i.e., identification of 30+ polymorphic markers that 
discriminate MDA-MB-435 and donor chromosome 11) and availability of characterized chromosome 11 
donors with defined deletions). Unfortunately, the efficiency of MMCT has been horrible. 

Approach 2 is to identify differentially expressed genes by differential display and/or 
representational differential analysis. Three rounds of screening using subtractive hybridization and 
differential display have been done. Three novel candidate genes have been identified and are being 
characterized. 

Candidate genes identified using the approaches outlined above were then to be evaluated for their 
ability to suppress metastasis. Kai-1 was tested and found to inhibit metastasis, but the level of 
suppression did not instill confidence for follow-up. We showed that KiSS-1 could suppress metastasis 
of human breast carcinomas, but that KiSS-1 is apparently not a mediator of the chromosome 11 
suppression. 

Another objective was to determine whether our preliminary observations could be extended to other 
human breast cancer cells. Our plan was to introduce chromosome 11 by MMCT into MDA-MB-231 
Unfortunately, the MDA-MB-231 cells, thus far, have not been metastatic. This was totally unexpected. 
Therefore, we are evaluating other variants of MDA-MB-231 as well as other human breast carcinoma 
cell lines. 
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The bottom line is that we have made progress toward completion of all four specific aims. Aim 4 
was completed faster than expected, but progress on Aims 1-3 has been slower than anticipated. 
Nonetheless, we are continuing to make progress that approximates the time line proposed in the original 
proposal. 
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APPENDICES 

Transfection with constitutively active Mekl confers tumorigenic and metastatic potential to NEH- 
3T3 cells 

Alessandro Alessandrini and Danny R. Welch* 
Massachusetts General Hospital, Charleston, MA 02129 and Jake Gittlen Cancer Research Institute, The 
Pennsylvania State University College of Medicine, Hershey, PA 17033 

Cell growth and differentiation are regulated by a variety of extracellular signals that are mediated 
by a family of serine/threonine kinases termed MAP (Mitogen Activated Protein) kinases or Erks 
(Extracellular-signal Regulated Kinases). Some components of the MAP kinase pathways, such as gip2, 
Ras, and Raf cause oncogenic transformation when constitutively active. Constitutively active Ras can 
confer metastatic potential upon some cells (58). 

Activation of MAP kinases requires phosphorylation of both Thr and Tyr in a conserved "TEY" 
region of the catalytic domain. A family of dual-specificity kinases, called Meks (MAP kinase/Erk 
Kinase), are responsible for this phosphorylation. Mekl is activated by phosphorylation at Ser218 and 
Ser222 by Raf. Mutation of these two sites to acidic residues, particularly [Asp218], [Asp218, Asp222] and 
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[Glu218, Glu222], results in constitutively active Mekl. 
Using these mutant variants, we have previously shown that transfection of NIH/3T3 or Swiss 3T3 

cells increases growth on soft agar (59). We also showed that growth of the [Asp218] mutant did not 
correlate with Erk or Raf activity— [Asp218] lines activate Erkl/2 but yield fewer colonies on soft agar. 
Even when dominant-negative Ras was introduced, Erk and Raf activities were not greatly affected. 
However, the same dominant negative construct introduced into v-src- or [Asp218, Asp222]-transformed 
cells caused severe reversion of src-expressing cells, but mild reversion of [Asp218, Asp222]-expressing 
cells. These data suggest that maintenance of in vitro transformation by Mekl occurs through a Ras- 
independent pathway, and that the degree of transformation is independent of Raf 1 and Erkl activity. 

NIH3T3 cells transfected with the [Asp218] or [Asp218, Asp222] were tested for metastatic potential 
following intravenous injection into athymic mice. Parental cells formed no tumors grossly or 
histologically. However, all Mekl mutant transformants formed macroscopic metastases. Thus, like Ras, 
Mekl can confer both tumorigenic and metastatic potential upon NIH3T3 cells. These results refine the 
mechanism through which ras could confer tumorigenic and metastatic potential — i.e., the critical 
determinants of tumorigenic and metastatic potential are downstream of Mekl. 

References: 
Alessandrini, A., Greulich, H., Huang, W., and Erikson, R.L. (1996). Mekl phosphorylation site 

mutants activate Raf-1 in NIH 3T3 cells. J. Biol. Chem. 271, 31612-31618. 
Chambers, A.F. and Tuck, A.B. (1993). Ras-responsive genes and tumor metastasis [Review]. Crit. 

Rev. Oncogenesis 4, 95-114. 
Supported by: grants from the American Heart Association (AA), PHS R01-CA62168 (DRW), the 

U.S. Army Medical Research and Materiel Command DAMD-17-96-6152 (DRW) and the National 
Foundation for Cancer Research (DRW). 
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Constitutively active MEK1 induces metastatic potential in NIH-3T3 cells 

Alessandro Alessandrini and Danny R. Welch 
Massachusetts General Hospital, Charleston, MA and Gittlen Cancer Research 
Institute, Pennsylvania State College of Medicine, Hershey, PA 

Growth and differentiation are controlled by many extracellular signals, many of which activate the MAP 
kinase or Erk kinase families. Components of the MAP kinase pathways (e.g. gip2, Ras, Raf) cause 
oncogenic transformation in their constitutively active forms. However, MAP kinase activation occurs 
concomitant with PC 12 differentiation induced by NGF. 
MAP kinase activation requires the phosphorylation of both Thr and Tyr in the catalytic domain. A 
family of dual-specificity kinases called Meks (MAP kinase/Erk Kinase), are responsible for this 
phosphorylation and activation of MAP kinases. Mekl is activated by phosphorylation on Ser 218 and 
222 by Raf. Mutation of the serines, [Asp218] and [Asp218, Asp222], activates Mekl constitutively. 
Stable expression of the constitutively active Mekl mutants causes neuronal differentiation of PC 12 cells 
and oncogenic transformation of fibroblast cell lines. 
NIH 3T3 and Swiss 3T3 clonal cell lines expressing [Asp218] and [Asp218, Asp222] Mekl mutants 
were made (Alessandrini et al., J Biol Chem. 1996. 271: 31612). Activated Mekl causes transformation 
but is not correlated with Erk activity, i.e., [Asp218]-clonal lines yield fewer colonies on soft agar, yet 
exhibit constitutively active Erk 1/2. The data suggest that maintenance of transformation by Mekl 
mutants occurs through an ERKl/2-independent pathway, and that the degree of transformation is 
independent of Erk 1 activity. Furthermore, these MEK1-infected NIH-3T3 clonal cell lines were 
metastatic to lungs following intravenous injection into athymic mice. Induction of metastatic also 
potential appears to be independent of Erk 1/2 activity. 

Support: Am. Heart Assoc, CA62168, the U.S. Army Med. Res & Materiel Cmd DAMD-17-96-6152, 
and Natl. Fndn. Cancer Res. 
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Introduction 

Breast cancer is the most common malignancy and a major cause of cancer-related deaths among 

women in the United States and Western Europe (American Cancer Society 1998; Wingo, etal. 1998). 

Most women succumb to breast cancer if their tumors metastasize but cures are more likely if the cancers 

remain localized (Harris, et al. 1992a; Harris, et al. 1992b; Harris, et al. 1992c; Walker, et al. 1997). 

Thus, a greater understanding of the metastatic process in human breast cancer should translate into 

substantial improvements in therapeutic outcome for breast cancer patients. Toward that end, we will 

review and summarize the literature about, and begin to develop a working model for, the genetics of 

human breast cancer metastasis. There have been great strides in recent years with regard to our overall 

understanding of metastasis. Yet our apparently straightforward objective — to define cause-effect 

relationships for genes in breast cancer— was difficult because of four issues. First, many reports fail to 

distinguish between oncogenesis and progression or invasion and metastasis when reporting data. 

Second, there is a failure, by some, to recognize that breast cancer is not a single disease, but a collection 

of diseases. This is particularly apparent in the genetics literature. Third, it is difficult to evaluate the 

relative importance of correlative data, particularly as it relates to mechanistic control of steps in the 

metastatic cascade. Fourth, there is a tremendous noise-to-signal ratio for genetics of late-stage, 

metastatic breast cancers resulting from genotypic instability, phenotypic drift and tumor heterogeneity. 

There are several assertions in the literature claiming a role for genes in controlling progression 

and/or metastasis of breast cancer. Out-of-hand dismissal for some of those claims was possible because 

the studies lacked necessary controls. For other genes, the data were more preliminary or correlative. And 

for an extremely small number of genes, functional data demonstrating regulation of breast cancer 

metastasis was available. The text of this review will focus on the latter; however, we decided that the 

utility of this article would be maximized if we summarized the known role(s) of individual breast 

cancer-associated genes, clearly discriminating the genes that regulate oncogenesis from those that 

control metastasis. The most effective method to accomplish this goal was to create tables that 

summarize the references providing evidence for a particular role(s) of genes in human breast cancer. 

Table 1 is designed to be used as a resource. Putative role(s) of individual genes in breast cancer are 

separated into two categories - oncogenesis and progression/metastasis - where key references are 

given to substantiate/refute a role. Although we attempted to be thorough and inclusive, the extensive 

historical literature combined with the rapidly evolving breast cancer genetics field limit the 

completeness of this review. We apologize to those whose work was not included because of space 
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considerations or whose papers were inadvertently omitted. However, we hope that this review fulfils our 

fourfold objective: (1) to highlight the genes for which roles in late-stage human breast cancer and/or 

metastasis have been functionally demonstrated; (2) to distinguish those genes from the more numerous 

oncogenic or tumor suppressors involved in breast cancer; (3) to evaluate the literature in order to 

identify needs for the field of breast cancer metastasis research to move to the next level; and (4) to 

propose a working model for the genetics of human breast cancer progression, focusing on the genes that 

have demonstrable metastasis-regulatory activity. 

Breast cancer is a collection of diseases 

Invasive breast cancers are a histologically and biochemically heterogeneous set of diseases. Lesions 

are typically categorized on the basis of histologic appearance, resembling either ductal or lobular 

components of the healthy breast. Most studies suggest that the majority of tumors arise in the terminal 

ductal unit of the breast, perhaps in a single type of "target" cell (Goehring & Morabia 1997; Russo & 

Russo 1997). By far, the most common type of breast cancer is infiltrating ductal carcinoma. This class 

of tumors represents nearly three quarters of all human breast cancers. Infiltrating lobular carcinomas 

account for 5-10% of breast carcinomas and are often characterized by multicentric tumors in the same or 

contralateral breast. Both ductal and lobular carcinomas have a predisposition for metastases to draining 

axillary lymph nodes, but each has differential predisposition for bone or visceral metastasis (Coleman, 

et al. 1998; Harris, et al. 1984). The molecular basis for these differences are mostly unknown. There are 

numerous other special types of invasive breast carcinomas. The most common are medullary, tubular 

and mucinous carcinomas. Medullary accounts for 5-7% of all breast carcinomas and are frequently well- 

circumscribed and exhibit lymphocytic infiltration (Fisher, et al. 1990). Mucinous (or colloid) 

carcinomas account for 1-3% of breast carcinomas and are characterized, as their name implies, by 

accumulation of mucin around the tumor cells. Overall prognosis for mucinous tumors is better than 

ductal or lobular carcinomas. 

Based solely on their clinical behaviors, these are distinct types of breast carcinoma. It is likely that 

different genes are involved in controlling development and progression of each type. Yet most 

discussions of breast cancer genetics have not, for the most part, discriminated between each type of 

carcinoma. This is even more apparent when discussing the genetics of late-stage breast cancer. Since 

infiltrating ductal carcinomas are the most prevalent breast carcinoma type, most of the published results 

probably apply to ductal carcinomas, but this is not necessarily a good assumption (Afify, et al. 1996; 
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Larsson, et al. 1990; Nishizaki, et al. 1997; Toikkanen, et al. 1997). There is fortunately a recent trend 

towards studying cancer genetics using more refined pathologic criteria; however, more effort is 

required. 

Further complications occur because of the use of cell lines which have been maintained in culture 

or passaged in animals for several years. The cells have probably undergone genotypic and phenotypic 

drift as well as selection pressures so that resemblance of the cell lines to the original tumor may be 

minimal. Sadly, though most breast carcinoma cell lines were derived from metastatic lesions, most no 

longer retain this ability in experimental systems (i.e., metastasis from mammary fat pads in 

immunocompromised (athymic or SCID) mice). This limitation severely hinders the ability of 

investigators to directly assess the metastasis-regulatory effects of individual genes. Given these caveats, 

any generalizations should be viewed with healthy skepticism. Nonetheless, certain patterns emerge and 

allow us to make a reasonable first approximation for a model of the molecular underpinnings of breast 

cancer progression and metastasis. 

Oncogenesis and tumor progression are linked, but distinct, phenotypes 

One area of confusion relates to terminology. Sloppy use of, and dual meanings of, some terms 

(depending upon one's specialization) are prevalent in the literature. Of particular relevance to this 

review are the distinctions between tumorigenesis vs. tumor progression and malignant vs. metastatic. 

Tumorigenesis and oncogenesis refer to the ability of cells to proliferate continuously in the absence of 

persistent stimulation by the triggering agent(s). Tumor progression is the evolution of already 

tumorigenic cells (populations) towards an increasingly autonomous state (i.e., decreased dependence 

upon host-derived growth factors and/or increased resistance to negative regulatory molecules). The 

distinction between oncogenesis and progression is crucial when asking whether a gene is important in 

controlling steps associated with malignancy, as compared to whether that gene is involved in tumor 

formation. 

The distinctions between malignant and metastatic are more subtle. Attributes of malignant cells 

include (but are not limited to) less differentiated morphology, less differentiated cytology, level of 

vascularity, level of necrosis, mitotic index, aneuploidy, nucleancytoplasmic ratio. The incontrovertible 

hallmarks of malignancy are invasion of cells though a basement membrane and/or metastasis. All other 

characteristics used to label a tumor (and the cells within it) as malignant have exceptions (Pfeifer & 

Wick 1995). For example, morphologically indolent cells may be behaviorally malignant and vice versa. 
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Clearly, parameters associated with pathologic examination are invaluable when estimating the 

probability for local, regional or distant recurrence in a clinical setting. Nonetheless, subjectivity leads to 

ambiguity when trying to assign responsibility for a phenotype (i.e., metastasis). 

Metastasis is defined as the formation of secondary tumor foci discontinuous from the primary 

tumor. The metastases can be nearby or at distant sites. Metastases can form following dissemination of 

cells via lymphatic, hematogenous, coelomic cavities or epithelial cavities. Since they are, by far, the 

most common routes for metastatic spread of human breast cancer, lymphatic and hematogenous 

metastasis will be the focus here. In order to metastasize, cells must complete every step of a complex 

cascade. Malignant cells invade adjacent tissues and penetrate into the lymphatic and/or circulatory 

systems. Then tumor cells detach from the primary tumor and disseminate. During transport, cells travel 

individually or as emboli composed of tumor cells (homotypic) or tumor cells and host cells 

(heterotypic). At a secondary site, cells or emboli either arrest because of physical limitations (e.g., too 

large to traverse a capillary lumen) or by binding to specific molecules in particular organs or tissues. 

Once there, tumor cells then proliferate either in the vasculature or extravasate into surrounding tissue 

(Chambers, et al. 1995; Koop, et al. 1996). To form macroscopic metastases, cells must then recruit a 

vascular supply (Ellis & Fidler 1995; Folkman 1995; Kohn & Liotta 1995; Weinstat-Saslow & Steeg 

1994a) and respond appropriately to the tissue's environmental milieu (Nicolson 1994; Radinsky 1995). 

Fewer than 0.1% of cells that enter the vasculature survive to form clinically detectable, macroscopic 

metastases (Fidler 1970; Tarin, et al. 1984). At which step(s) of the metastatic cascade circulating tumor 

cells commonly succumb is debatable (Chambers, et al. 1995; Koop, etal. 1995; Koop, et al. 1996). 

In the context of a multistep, multigenic cascade, it is critical to recognize that the terms 

invasiveness and adhesion are not equivalent to metastatic propensity. Both invasion and adhesion are 

necessary, but not sufficient for metastasis. Cells that are efficient at either or both — but which lack the 

ability to complete any other step of the metastatic cascade — are nonmetastatic (Fidler & Radinsky 

1990). Therefore, correlations of genetic expression to a particular step in the metastatic cascade may 

lead to erroneous conclusions. 

Taken together, these points emphasize the importance for distinguishing mwior-suppressor and 

metastasis-suppressor genes. The former dominantly inhibit tumor formation when wild-type expression 

is restored in a neoplastic cell. By definition, then, metastasis would also be suppressed (since the cells 

are nontumorigenic). Metastasis-suppressor genes, on the other hand, block only the ability to form 

metastases. Restoring expression of a metastasis-suppressor would yield cells which are still tumorigenic, 
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but are no longer metastatic. 

At diagnosis, breast carcinomas are typically mixtures of genotypically and phenotypically distinct 

cells despite having arisen from a single cells (Fujii, et al. 1996a; Fujii, et al. 1996b; Rebbeck, et al. 

1996; Shows, et al. 1997; Welch & Tomasovic 1985). One of the earliest detectable changes in 

transformed (anchorage independent, not contact inhibited, immortal but not necessarily able to form a 

tumor in an appropriate host) cells is a several-fold increase of genomic instability compared to normal 

cells (Ling, et al. 1985; Tlsty 1997; Tlsty, et al. 1993; Cheng & Loeb 1993). Karyotypic and genomic 

instability is present in transformed cells even before they acquire tumorigenic potential (Jonczyk, et al. 

1993; Otto, et al. 1989; Tlsty 1990; Tlsty, et al. 1993). Thus, genomic instability appears to be the 

driving force by which cells acquire the cumulative genetic defects necessary to be fully tumorigenic. 

Likewise, the development of heterogeneity, coupled with selective pressures results in continued 

evolution of the tumor population, usually toward increasing autonomy from the host (Foulds 1954; 

Heppner 1984; Heppner & Miller 1997; Welch & Tomasovic 1985; Welch & Tomasovic 1985). 

Eventually, some subpopulations of cells within the mass are amply self-sufficient that they have the 

ability to metastasize. This does not imply that metastatic cells do not respond to host-derived growth 

signals. Rather, it means that they do not necessarily require them. In conclusion, oncogenesis is a 

prerequisite for metastasis formation. In other words, metastatic cells represent a subset of tumorigenic 

cells. 

One measure of genetic instability is microsatellite instability. Several reports have suggested that 

microsatellite instability is a useful prognostic indicator for breast cancer (Patel, et al. 1994; Paulson, et 

al. 1996; Yee, et al. 1994); however, a role in development of metastasis has not been established. 

Recently, another means for developing genetic instability in non-HNPCC colorectal cancers was 

described (Cahill, et al. 1998). Defective segregation machinery results in unequal partitioning of 

chromosomes in daughter cells, leading to aneuploidy. While it is common for breast carcinomas to be 

aneuploid, it has not yet been determined whether a similar mechanisms is taking place in breast. 

Regardless of mechanism, genetic instability has practical consequences with regard to our ability to 

isolate and characterize metastasis-associated genes — key genetic changes is sometimes clouded by 

background "noise" due to heterogeneity. Techniques such as tissue microdissection are now being 

utilized to minimize this problem (Zhuang, et al. 1995). 

Therefore, the ability to establish a role for a given gene in breast cancer metastasis is complicated 

by a variety of factors. The following discussion will focus on those genes for which genetic 
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manipulation has been utilized to establish a role in controlling metastasis. Largely, the results are based 

upon experimental systems. Combined with clinical correlations, there is substantial evidence for 

controlling the metastatic potential of breast carcinoma. 

The use of knockout and transgenic mice to study various aspects of breast cancer biology has been 

increasing in recent years (reviewed in (Amundadottir, et al. 1996; Bennett & Wiseman 1997; Clarke 

1996; Li, et al. 1998; Thomas & Balkwill 1994)). The use of such models has focused on tumor 

development rather than the latter stages of tumor progression and metastasis. And while improvements 

are occurring at a rapid rate, the models are still limited by relatively poor mimicry of the pathogenesis of 

human breast cancer. 

Metastasis-controlling genes in breast carcinoma 

Since a working model for tumorigenesis involves mutations of key genes that control cell growth 

and/or death, it appears plausible that metastasis will also be controlled by a select set of genes 

controlling key steps in the cascade. Based upon this presumption, we will focus on genes that appear 

likely to be important in either the suppression (or promotion) of breast cancer metastasis. In this regard, 

the genetic basis of metastasis would parallel the genetics of tumor formation. Evidence shows that 

metastasis involves numerous genes (Chambers & Matrisian 1997; Fidler & Radinsky 1990; Price, et al. 

1997; Welch & Goldberg 1997) that fall into two categories — (1) genes that drive metastasis formation, 

and (2) genes that inhibit metastasis (De La Rosa, et al. 1995; Dear & Kefford 1990; Dong, et al. 1995; 

Lee, et al. 1996; Lee & Welch 1997c; Phillips, et al. 1996; Welch, et al. 1994). The number of identified 

metastasis-associated genes are growing rapidly. However, their mechanisms of action, their regulation in 

normal and/or cancer cells, and the universality of function in cancers of different origin remains largely 

unknown. 

The best characterized dominantly acting metastasis gene (i.e., met-oncogene, drives conversion 

from benign to malignant is the activated ras oncogene (Chambers, et al. 1990; Collard, et al. 1987; 

Phillips, et al. 1990). Transfection and constitutive expression of nonsenescent rodent fibroblasts with 

activated Ha-ras leads to development of tumorigenic and metastatic properties (Egan, et al. 1987; 

Muschel, et al. 1985). However, complete induction of metastasis does not occur in all cell lines or cell 

types (Chambers, et al. 1990; Jessell & Melton 1992; Tuck, et al. 1990), nor is retention of ras oncogene 

expression necessary to maintain the metastatic phenotype (Schlatter & Waghome 1992). In human 

breast cancer, overexpression of normal or mutant ras in human breast cancer has been associated with 
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increased malignant properties (e.g., reduced responsiveness to estrogens, increased invasiveness, 

morphological abnormalities (Fromowitz, et al. 1987; Lundy, et al. 1986; Theillet, et al. 1986)), but 

association with metastatic potential has not been unequivocally demonstrated. Mutations of ras, per se, 

are relatively uncommon in human breast cancer; so, the importance of ras in controlling breast cancer 

metastasis is not completely understood. 

The prototypical metastasis-suppressor gene, Nm23, was first identified in the murine K.1735 

melanoma using subtractive hybridization and its expression is inversely correlated with lung 

colonization (Bevilacqua, et al. 1989; Steeg, et al. 1988); but, there are exceptions (Radinsky, et al. 

1992). The human homolog, M«23-H1 [also known as NME1], exhibits decreased expression in late- 

stage, metastatic human breast, endometrial, ovarian, melanoma and colon cancers (reviewed in (Freije, 

et al. 1996)). However, long-term prognostic value has been questioned in some studies (Kapranos, et al. 

1996; Russell, et al. 1997). Nonetheless, NME1 is a bonafide metastasis-suppressor gene in human 

breast carcinoma since transfection of metastatic MDA-MB-435 cells resulted in a significant 

suppression of metastasis from the mammary gland in experimental mouse models (Leone, et al. 1993). 

The mechanism of action for NME1 remains unknown (De La Rosa, et al. 1995), but motility of the 

transfectants was significantly suppressed (Kantor, et al. 1993). NME1 is homologous to Drosophila awd 

and encodes a 17 kDa protein. NMEl's nucleoside diphosphate kinase homology (Biggs, et al. 1990) and 

function (Steeg, et al. 1991) have recently been dissociated from its metastasis-suppressor function (De 

La Rosa, et al. 1995; MacDonald, et al. 1993; Royds, et al. 1994). Some recent reports suggest that 

NME1 may be involved in controlling cell cycle progression (Cipollini, et al. 1997) and histidine- 

dependent protein phosphorylation reactions (Freije, et al. 1997). 

The story for Nm23 becomes more complicated because three additional family members (Nm23- 

H2/NME2, Nm23-DR, Nm23-H4) have recently been identified and cloned. NME2 has transcriptional 

regulatory properties for c-myc (Berberich & Postel 1995; Ji, et al. 1995; Postel, et al. 1993; Seifert, et 

al. 1995). Some studies have shown that NME2 can suppress metastasis (Engel, et al. 1993; Mandai, et 

al. 1994; Marone, et al. 1996); whereas, others have not (Arai, et al. 1993; Baba, et al. 1995; Tokunaga, 

et al. 1993; Yamaguchi, et al. 1994). Nm23-DR is differentially expressed during myeloid differentiation 

(Venturelli, et al. 1995) but association with metastatic potential has not yet been tested in either clinical 

samples or experimental systems. Nm23-H4 differs structurally from the other homologs in that it 

appears to have additional N-terminal basic amino acid residues (Milon, et al. 1997). However, its 

mechanism of action and relevance to breast cancer biology have not yet been reported. 
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A recent study even suggests that expression levels of Nm23-Hl in human breast cancer cell lines 

(HT115 and MDA-MB-231) can be influenced by diet. Increased consumption of linoleic and 

arachidonic acids reduced expression whereas linolenic acid increased expression (Jiang, et al. 1998). 

These conditions lowered invasiveness as measured by in vitro invasion assays. While a significant 

amount of work needs to be done to determine whether dietary regulation of metastasis is mediated 

through modulation of Nm23, dietary fat intake has been shown to control breast and mammary tumor 

metastasis (Hubbard & Erickson 1987; Rose, etal. 1994; Rose, et al. 1995). 

KAI1 (also known as CD82 or C33, members of the TM4SF superfamily of adhesion molecules) 

was recently discovered as a prostate cancer metastasis-suppressor gene on the p-arm of chromosome 11 

(Dong, et al. 1995). Other members of the TM4SF family, namely MRP-1/CD9 and CD63/ME491, have 

been associated with metastatic potential of non small-cell human lung carcinomas (Ikeyama, et al. 1993) 

and early stage melanomas, (Hotta, et al. 1988), respectively. Thus, a role for KAI1 in breast cancer 

metastasis was possible. To test this hypothesis, we measured KAI1 mRNA expression in a panel of 

human cell lines representing a continuum from nearly normal breast cells (MCF10A) to highly 

metastatic cells (MDA-MB-435). KAI1 mRNA expression decreased with increasing invasive and 

metastatic potentials (Yang, etal. 1997). 

Lower KAI1 expression in metastatic breast cancers correlated well with previous findings that 

chromosome 11 deletions are common in late-stage breast carcinoma (Devilee & Comelisse 1990; 

Devilee & Comelisse 1994a; Mars & Saunders 1990; Negrini, etal. 1995; Trent, etal. 1995). To directly 

test whether changes on chromosome 11 were responsible for suppressing metastatic potential, we 

introduced a normal chromosome 11 into metastatic MDA-MB-435 breast carcinoma by microcell- 

mediated chromosomal transfer. Chromosome 11 significantly reduced the metastatic properties without 

affecting tumorigenicity (Phillips, et al. 1996). Since KAI-1 expression was higher in the chromosome 11 

hybrids, we hypothesized that KAI1 is the gene responsible for suppressing metastasis. Expression of 

another TM4SF family member, TAPA-l which is also encoded on chromosome 11, did not correlate 

with metastatic potential. Transfection and stable constitutive expression of KAI 1 in MDA-MB-435 cells 

suppressed metastasis from tumors following injection into the orthotopic site - mammary fat pad 

(Phillips, et al. 1998). However, the cell lines did not maintain transgene expression levels following in 

vivo growth. This complicated interpretation. Preliminary studies using a panel of human breast 

specimens of varying grade indicate that KAI1 protein staining was related inversely to grade of disease 

(Wang & Wei, unpublished observations). Nonetheless, KAI1 appears to meet the criteria described 
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above for metastasis-suppressor gene in human breast cancer. 

Chromosome lq deletions occur with variable frequency in late-stage human breast carcinomas. 

Since the recently discovered melanoma metastasis-suppressor gene, KiSS-1, maps to chromosome lq32 

(Lee, et al. 1996), we tested whether K.iSS-1 could suppress metastasis of the human breast ductal 

carcinoma cell line MDA-MB-435. Parental MDA-MB-435 cells did not express KiSS-1; but 

nonmetastatic MDA-MB-231 breast carcinoma cells did. Transfection of a full-length, constitutive 

mammalian expression construct suppressed metastasis of MDA-MB-435 from the mammary fat pad of 

athymic mice; whereas, vector-only transfectants were unaffected (Lee & Welch 1997c). 

The mechanism of action for KiSS-1 has not yet been determined although its ability to suppress 

metastasis has been demonstrated in six independently-derived human cancer cell lines of melanoma and 

breast origin (Lee, et al. 1997a; Lee & Welch 1997b; Lee & Welch 1997c). Based upon the cDNA 

sequence, the predicted K.iSS-1 protein would be a hydrophilic, 164 amino acid protein with molecular 

mass of 15.4 kDa. The sequence is novel, having no strong homology to any known human cDNA 

sequences. Four regions within the predicted K.iSS-1 protein match consensus as phosphorylation sites 

for protein kinase C, protein kinase A and a tyrosine kinase (Lee, et al. 1997a). These sequences suggest 

that KiSS-1 is a phosphoprotein and our working hypothesis is that it functions within a signal 

transduction pathway. Thus far, K.iSS-1 expression has never been detected in any cells that have 

metastatic potential. However, all studies have measured mRNA expression since antibodies are not yet 

available. This deficiency limits our ability to measure clinical correlations, although this is certainly a 

high priority goal. 

Other metastasis-promoting or invasion-promoting genes have identified in a variety of human and 

rodent tumor models. The genes include — TIAM-1 (Habets, et al. 1994), mtsl (Grigorian, et al. 1994), 

mtal (Toh, et al. 1994),TI-241 (Ishiguro, et al. 1996), fibroblast growth factor-4 (Dickson & Lippman 

1992; McLeskey, et al. 1996), and cathepsin D (Rochefort, et al. 1990a; Rochefort, etal. 1990b). 

Transfection of these genes into experimental cell systems (usually fibroblasts) is reported to increase 

invasiveness and metastasis. Again, definitive roles of these genes in mammary or breast cancers are not 

well-defined. 

Protein kinase C (PK.C) activities are important for several physiological processes relevant to 

mammary tumor promotion and progression (e.g., proliferation, motility, anchorage-independent growth, 

responses to growth factors, etc.). In collaboration with Drs. Susan Jaken, Sue Kiley and Daniel Medina, 
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we recently compared PKC isoenzyme levels in mouse and rat mammary tumor cell lines (Jaken, et al. 

1997; Kiley, et al. 1996; Kiley, et al. 1998). Of particular relevance to this review, 13762NF mammary 

adenocarcinoma cell clones that have low, moderate and high metastatic potentials were evaluated for 

expression of PK.Cs a, 8, e and C- All isoforms were expressed in each of the cell lines; however, PKCÖ 

was significantly greater in highly metastatic compared to poorly metastatic cells. To determine whether 

this correlation was physiologically relevant, transfections were done to increase (full-length PKC8 

cDNA in constitutive and inducible expression constructs) or decrease (dominant negative PKCÖ 

regulatory domain (RDö) in inducible expression constructs) PKCS expression. Increased expression of 

PKC6 enhanced clonogenicity in soft agar and metastatic potential, but did not affect anchorage- 

dependent growth. Expression of the RDÖ inhibited metastasis when cells were injected into syngeneic 

rats. Moreover, induction of the RDö with doxycycline (which induces the tetracycline-inducible 

promoter) caused a significant reduction in metastatic potential. Taken together, our results strongly 

imply that PKCÖ is an important regulator of mammary tumor metastasis. Experiments are underway to 

determine relevance of RDÖ in controlling human breast cancer metastasis. 

Chromosomal changes in breast cancer may predict the location of metastasis- 

controlling genes 

As alluded above, consistent, non-random rearrangements, deletions and/or amplifications have 

been instrumental in identifying oncogenes and tumor-suppressor genes involved in the development of 

human cancer. Over 56 distinct regions of loss of heterozygosity (LOH) have been identified in breast 

cancer {Kerangueven, Noguchi, et al. 1997 ID: 9924}. The frequency of involvement of each ranges 

from <20% to >50% depending upon the study, tumor type and markers used. Unfortunately, as tumors 

progress, they accumulate changes, leading to complex karyotypes. Structural or numerical aberrations 

for virtually every chromosome have been described in human breast cancer (See Table 2 for an 

example). Experience has told us that some of the chromosomal changes occur at a frequency higher than 

could be explained on a random mutational basis. These findings increase the probability that genes 

associated with tumor progression will be encoded at those sites. LOH has been found in the following 

chromosomal regions correlating with parameters associated with breast cancer progression/metastasis 

— lp and nodal status (Borg, etal. 1992b); Iq21-q24 and stage (Devilee, et al. 1991); 3p21-p25 and 

LOH on 1 lp, 17p, 17q and aneuploidy (Devilee, etal. 1994b); 7q23 and metastasis-free overall survival 

(Bieche, et al. 1992); 8p21.3-p23 in low grade DCIS (Anbazhagan, et al. 1998); 9q and LOH on lq, 17p, 

18q (Devilee, et al. 1994b); 1 lpl5 and ER tumors, grade HI tumors, and distant metastasis (Ali, et al. 
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1987); 1 lp 15 and lymph node status (Takita, et al. 1992); 13ql2-ql4 and ER content (Devilee, et al. 

1994b); 13ql2-ql4 and ductal carcinoma tumor size (Andersen, et al. 1992); 13ql2-ql4 and aneuploidy 

and S-phase fraction >12% (Borg, et al. 1992b); 16q24 and ER content (Devilee, et al. 1994b); 17ql2- 

q24 and c-erb-B2 amplification (Sato, et al. 1991); 17ql2-q24 and age of onset (Devilee, et al. 1994b); 

and 17ql2-q24 and c-erb-B2 amplification / post-menopausal status (Andersen, etal. 1992). To 

emphasize the point made above — i.e., that different types of breast cancers exhibit different 

chromosomal changes — Nishizaki and colleagues used the comparative genomic hybridization technique 

to compare lobular and ductal carcinomas. Lobular carcinomas had increased copies of DNA from 

chromosome Iq in 79% of patient samples and losses of chromosome 16q in 63%. The lobular 

carcinomas showed higher frequency of 16q loss than ductal carcinomas and lower frequency of 8q and 

20q gains (Nishizaki, etal. 1997). 

In metastases vs. primary tumors, karyotypic abnormalities of chromosomes 1, 6, 7, and 1 lare 

particularly prevalent. Among the more common cytogenetic changes in metastases from breast is 

amplification in the region surrounding band ql3 on chromosome 11. The amplicon includes the 

following genes: int-2 gene (which is syntenic to a site of frequent mouse mammary tumor virus 

(MMTV) insertional mutagenesis in mice (Lee, et al. 1995) but the protein is not usually expressed in 

human breast tumors); hst (which is a member of FGF family but this is not expressed at mRNA level 

(Nguyen, et al. 1988; Theilet, et al. 1989)); bcl-1 (which was discovered by involvement in 

chromosomal translocations in some lymphomas (Theillet, etal. 1990; Tsujimoto, etal. 1984)); and 

PRAD-1 (which was initially discovered in parathyroid adenomas(Motokura & Arnold 1993; Motokura, 

et al. 1991), but subsequently found to be cyclin Dl (Motokura & Arnold 1993; Motokura, et al. 1991)). 

Amplification in this region is associated with poor prognosis (Lidereau, et al. 1988; Tsuda, et al. 1989), 

presence of lymph node metastases (Adnane, et al. 1991; Theilet, et al. 1989; Zhou, et al. 1988), ER and 

PR status (Borg, et al. 1991; Fantl, et al. 1990; Theilet, et al. 1989). While these correlations are 

compelling, definitive association of 11 q 13 amplification with metastatic potential has not been 

demonstrated. 

As mentioned above, microcell-mediated chromosomal transfer of chromosome 11 reveals that there 

exists a metastasis suppressor activity on chromosome 11. However, these types of experiments are 

complicated because results vary according to the experimental models used. Microcell transfer into 

MCF7 breast cancer cells revealed that BrCa-1- and p53-independent growth inhibitors (i.e., inhibitors of 

tumorigenicity) are encoded on chromosome 17 (Casey, et al. 1993; Plummer, et al. 1997; Theile, et al. 
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1995). Additional growth inhibitors have been described on chromosomes 6 and 11 (Negrini, et al. 1994; 

Shows, et al. 1997; Theile, et al. 1996). Interestingly, transfer of chromosome 11 suppresses growth in 

culture and tumor formation in the MDA-MB-231 and MCF7 models, but neither phenotype was 

significantly, nor consistently affected in MDA-MB-435. These data clearly show that extrapolation 

based upon data from a single model is ill-advised. However, this problem is not easily solved because of 

the problem mentioned above- lack of relevant metastatic models of human breast cancer. 

Inadequate models exist to study breast cancer metastasis 

Despite the fact that the majority of human breast cancer cell lines have been derived from 

metastatic lesions, only MDA-MB-435 reproducibly forms macrometastases when evaluated in athymic 

or SCID mice (Price 1996; Price, et al. 1990). This is a serious limitation for investigators wishing to 

study metastasis of human breast cancer. Several investigators have found that MDA-MB-231 will form 

lung metastases following injection into the mammary fat pad (Price, et al. 1990; Rose, et al. 1994) or 

bone metastases following intracardiac injection (Guise 1997; Mbalaviele, et al. 1996). Interestingly, 

none of the models currently available metastasize to bone following tumor growth in the mammary fat 

pad, despite this being the most common site for metastasis in clinical breast cancer (Coleman 1997). 

Three points deserve emphasis. First, lung colonization efficiency is generally lower in MDA-MB-231 

than from MDA-MB-435. If metastasis suppression is the desired biological endpoint, it is important that 

baseline levels be as high as possible. Second, as with MCF7 cells, there are several different sublines of 

MDA-MB-435 and MDA-MB-231 that have been artificially selected over the years in may different 

labs. Some of these cells are no longer tumorigenic in immunocompromised mice. Therefore, it is 

incumbent upon each investigator to verify metastatic potential in his/her laboratory. Third, the 

distribution of metastatic lesions in immunocompromised mice does not completely mimic the clinical 

situation. While not inappropriate, the models are somewhat lacking in this regard. 

Breast cancer metastasis is not solely due to genetic changes 

A heritable component of the metastatic phenotype has been demonstrated numerous times by 

experimental isolation of metastatic and nonmetastatic clones as well as selection of increasingly 

metastatic variants from heterogeneous tumor populations. For cells to successfully metastasize, they 

must also interact with a variety of host cells and their secreted molecules and respond appropriately. 

Thus, any discussion of factors controlling metastasis must include an evaluation of exogenous regulators 
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of the process (or its component steps). Normal breast tissue growth, differentiation and regression after 

lactation are all exquisitely controlled by hormones. Indeed initiation, promotion and progression of 

breast carcinomas are strongly regulated by endocrine mechanisms (Dickson, et al. 1993; Kaufmann 

1997). 

Hormone contribute to breast cancer development and metastasis 

Hormones have long been implicated for playing roles in the initiation, development, and 

progression of breast cancer. Numerous epidemiological studies spanning almost two decades have 

established that, excluding a genetic predisposition, the reproductive history of a women is an important 

risk factor associated with the development of breast cancer. Early menarche and late menopause have 

been shown to be associated with an increased risk of breast cancer. Epidemiological studies also show 

that early pregnancy provides a protective effect against breast cancer, but that the protection declines as 

the age of first pregnancy increases. Taken together, these studies suggest that the length of time between 

menarche and menopause or menarche and first pregnancy are contributing factors toward the risk or 

likelihood of breast cancer oncogenesis (Henderson, et al. 1991; Key & Pike 1988; Staszewski 1971). 

The two principal hormones involved in both the onset of menarche and in menopause are the 

female sex steroids, estrogen (specifically 17ß-estradiol) and progesterone. It is well-established that 

estrogen promotes breast cancer by stimulating cell division. Although the main source of estrogen is 

ovary in premenopausal women, estrogen can also be synthesized directly in adipose tissue and breast 

cancer cells via the enzyme aromatase {Yue, Wang, et al. 1998 ID: 11029}. Aromatization is typically 

thought to be the predominant source of estrogens in post-menopausal women (Brodie & Santen 1994; 

Harvey 1997; Kaufmann 1997). More controversial is the role that estrogens or estrogen metabolites can 

have in causing or initiating breast cancer. Recent findings suggest that metabolites of 17ß-estradiol may 

be among the culprits leading to DNA damage and subsequently for initiation of breast cancer (Cavalieri, 

etal. 1997; Fishman, et al. 1995; Lavigne, et al. 1997; Zhu & Conney 1998). However, this 

interpretation is debatable and additional research will be required to establish this definitively. 

Nonetheless, there is little doubt that estrogens play a key role in promoting initiated human breast cancer 

to grow and to progress. 

A role for progesterone in breast cancer development is less clear than for estrogen. At one time, it 

was generally accepted that progesterone was a natural antagonist of estrogen action — suggesting that it 

would inhibit or block growth promoting effects of estradiol on breast cells (normal and tumor). This 
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paradigm was based upon findings in the uterus in which progestins reduced or eliminated the risk of 

estrogen-induced endometrial cancer. Recently, the effect of progesterone (analogs) on normal breast 

epithelial cells has been re-examined. The mitotic index of normal breast epithelial cells parallels 

changes in hormone levels during the menstrual cycle. In cycling women, serum estrogen levels are 

highest during the follicular phase with a secondary resurgence in the secretory phase. The mitotic index 

of endometrial cells parallels serum estrogen levels. In contrast, breast epithelial mitoses are greatest 

during the secretory phase when serum progesterone levels are maximal (Going, et al. 1988; Masters, et 

al. 1977; Meyer 1977). The latter raises the possibility that progesterone may have growth promoting 

effects on breast epithelial cells. This supposition is further supported by the following lines of evidence: 

(1) progestins are mitogenic for established breast cancer cell lines in vitro (Hissom, et al. 1989; Hissom 

& Moore 1987; Manni, et al. 1991); (2) progestins promote growth of established mammary tumors 

(Huggins 1965; Huggins & Yang 1962; Robinson & Jordan 1987); (3) progestins stimulate expression of 

mitogenic growth factors and/or their receptors (Dickson & Lippman 1988; Lanari, et al. 1989; Murphy 

& Dotzlaw 1989; Murphy, etal. 1988; Papa, et al. 1991); and (4) anti-progestins induce apoptosis in 

experimental mammary tumor models (Michna, et al. 1989; Schneider, et al. 1989). Thus, progesterone 

exposure may be a contributing factor toward the development of breast cancer. 

Estrogen and progesterone exert their cellular effects through interactions with nuclear receptor 

proteins called the estrogen receptor (ER) and progesterone receptor (PR), respectively. The recognition 

that these receptors are the primary mediators of estrogen and progesterone action and that their presence 

within a tumor specimen can help predict the responsiveness of human breast cancer to hormonal therapy 

is particularly useful. Today, the measurement of ER levels is standard practice and is a useful prognostic 

marker in determining which patients are most likely to respond to estrogen antagonist therapies such as 

the antiestrogen, Tamoxifen (also known as Nolvadex). Since PR is an estrogen-induced product, 

simultaneous detection of PR in the presence of ER from a single tumor is indicative of a functional 

estrogen receptor pathway and further improves the ability to predict response to antiestrogen therapy. 

Alternatively, the absence of ER and PR is associated with early recurrence and poor survival of the 

breast cancer patient. 

The ER mentioned above refers to the alpha ER (ER-a). Recently, a second ER form has been 

cloned (ER-ß) (Kuiper, et al. 1996). ER-a and ER-ß both bind 17ß-estradiol in traditional binding 

assays. However, current data suggest that the amount of ER-ß relative to ER-a in breast cancer cells is 

minor (Kuiper, et al. 1996; Petersen, et al. 1998). In the normal mammary glands of mice, ER-ß is 
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undetectable (Couse, et al. 1997). Whether ER-ß will play an important role in breast cancer biology or 

etiology remains to be determined; although there have been reports of ER-ß mutants in breast cancer 

cells (Dotzlaw, et al. 1997; Vladusic, etal. 1998). 

Since almost all breast cancers progress from a hormone-responsive state to a hormone-resistant or 

hormone non-responsive state, the possibility was raised that mutations in the ER-a (the predominant 

form of ER is breast cancers) could be a factor leading to antiestrogen resistance in breast cancer. Several 

investigators pursued this line of thought and have shown that mutant ER exist in some breast cancer cell 

lines and tumor specimens (Fuqua, et al. 1992; Fuqua, et al. 1991a; Graham, et al. 1990; Scott, et al. 

1991; Wang & Miksicek 1991). Moreover, mutations of ER can lead to variant estrogen receptor activity 

which, in turn, may explain estrogen resistance (Fuqua, etal. 1991a) (Fuqua, etal. 1992). Furthermore, 

these and other studies that have focused on ligand-receptor interactions, it is apparent that variations in 

ER structure and ligand specific (estrogen versus antiestrogen) interactions with ER may lead to altered 

and unexpected biological responses (Katzenellenbogen 1996; Levenson, etal. 1997; Mclnerney & 

Katzenellenbogen 1996; Montano, et al. 1996). This is further complicated by promoter and cell-specific 

factors (Katzenellenbogen 1996; Yang, et al. 1996). Although the existence of mutant ER is very 

appealing, their actual contribution to disease progression, particularly antiestrogen resistance, appears to 

be small. Furthermore, most of the variant ER data to date has been found at the mRNA level. It is still 

not known whether they are translated into proteins (Dowsett, et al. 1997; Murphy, et al. 1997a; Murphy, 

et al. 1997b; Tonetti & Jordan 1997). 

Although less research has been dedicated toward the identification of variant PR, there are several 

papers reporting the existence of variant PR mRNA and protein (Leygue, et al. 1996a; Wei, et al. 1990; 

Wei & Miner 1994; Yeates, et al. 1998). One variant PR protein form is N-terminally truncated 

compared to the previously reported A- and B- PR isoforms. This third form, the so-called C-receptor, 

has unique transcriptional enhancing properties when in the presence of the two larger PR isoforms and 

ligand (Wei, et al. 1996). From this work and the abundance of other studies, it is becoming apparent 

steroid-regulated growth and gene expression involves multiple regulatory factors, of which the steroid 

receptor is but one component, and that the eventual biological outcome is dependent upon the 

interaction of steroid receptors with non-receptor proteins (i.e., adaptors) (Glass, et al. 1997; 

Katzenellenbogen, et al. 1996; Shibata, et al. 1997). Several proteins to date have been associated with 

gene transcriptional enhancing properties such as SRC-1 (Onate, et al. 1995; Spencer, et al. 1997), AIB-1 

(a member of the SRC-1 family) (Anzick, et al. 1997) and RIP 140 (Cavailles, et al. 1995). Likewise, 
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transcriptional repressor proteins have been identified (Chen & Evans 1995). Steroid regulated gene 

expression is further complicated by the finding that some neurotransmitters and growth factors (e.g., 

epidermal growth factor) can mimic steroid hormone action by a ligand-independent mechanism 

(Gangolli, et al. 1997; Ignar-Trowbridge, et al. 1992). Collectively, these studies indicate that steroid- 

driven gene activation is modulated by multiple factors of which only one component is the receptor. So, 

although estrogen and progesterone are key hormones in the regulation of breast cancer tumor growth, 

there are many additional contributory factors (i.e., growth factors and co-factors) that also regulate 

breast cancer proliferation. 

Although steroid hormone receptor levels can be used as a markers to assess extent of tumor 

progression toward malignancy, few studies directly demonstrate a functional role in this regard, 

especially with regard to metastasis. The most direct test was by Garcia et al. who transfected the ER- 

negative MDA-MB-231 breast carcinoma cell line with estrogen receptor (ER-a) and then treated the 

transfectant cells with estrogens and anti-estrogens. Experimental metastatic potential following 

intravenous inoculation of cells was inhibited 3-fold by estradiol whereas the antiestrogen Tamoxifen 

had little effect (Garcia, et al. 1992). Estradiol also increased the invasive capabilities of these 

transfectants in an in vitro invasion assay using Matrigel; antiestrogens inhibited these effects. 

Interestingly, in contrast to the typical stimulatory effect of estradiol on ER-positive breast cancer cell 

growth, estradiol inhibited the cell proliferation of ER-transfectants. These results must be viewed 

cautiously until further experiments are done to explain this phenomenon or the experiments are 

replicated in another cell line. 

Endocrine regulation does not act independently to regulate breast tumor cell behavior. The 

biochemical changes resulting from modified ligand and receptor expression and activation, combined 

with interrelationships with other growth factors and intracellular signaling pathways, reveal a byzantine 

regulatory machinery. Abnormal tissue growth is due to a disruption of the balance between stimulated 

proliferation and inhibition of cell death. Transformation and progression can be due to: (1) increased 

production of growth-promoting factors; (2) decreased synthesis of growth-inhibitory factors; (3) 

decreased responsiveness to growth-promoting factors; or (4) decreased sensitivity to growth inhibitory 

signals. The latter two mechanisms can be direct because of alterations in receptors or via modifications 

in the downstream signaling pathways. For purposes of this review, only selected growth factors will be 

presented to provide examples as to the complexities of growth regulation of breast cancer growth and 

progression. 
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Transforming growth factors 

Transforming growth factors (TGFs) were identified initially and named based on their ability to 

transform selected cell types. This family of growth factors has expanded extensively and is now known 

to consist of several families of polypeptides (Hartsough & Mulder 1997). These are produced and 

secreted by normal and cancerous cells. TGF expression can be regulated by steroids as well as by other 

growth promoting factors, thereby leading to an intricate and complex of negative and positive pathways 

modulating cell cycle progression or homeostasis. TGF-a and TGF-ß represent two distinct families of 

growth factors that are structurally and functionally distinct. 

TGF-a and EGF families 

Many members of the TGF-a family compete with epidermal growth factor (EGF) for binding to the 

EGF receptor. Like EGF, TGF-a binding results in receptor dimerization, activation of tyrosine kinase 

activity and eventually leads to stimulation of cell proliferation or differentiation (Derynck 1988; 

Massague 1983; Todaro, et al. 1990). Other members of this family include amphiregulin, heparin- 

binding EGF, cripto-l, and a subfamily of heparin binding proteins called heregulins (the human 

homolog) (Bates, et al. 1988; Higashiyama, et al. 1991; Todaro, et al. 1990). Heregulin does not appear 

to bind the classic EGF receptor, but initially was thought to bind instead to a related EGF receptor 

protein called erbB-2 (HER-2/neu) (Bargmann, et al. 1986; Coussens, et al. 1985; Schechter, et al. 1985; 

Schechter, et al. 1984; Stern, et al. 1986; Yamamoto, et al. 1986). Studies now indicate that heregulin 

does not directly bind erbB-2, but rather to two related receptor forms, erbB-3 (Kraus, et al. 1989; 

Plowman, et al. 1990) and erbB-4 (Carraway, et al. 1994; Plowman, et al. 1993). All four receptor forms 

(EGF receptor, erbB-2, -3 and -4) have been reported present in human breast cancers. In about 30% of 

human breast cancers, erbB-2 is amplified or overexpressed; this is associated with poor patient 

prognosis and maintaining the malignant phenotype (Allred, et al. 1992; Slamon, et al. 1987). 

Overexpression of HER-2/neu and its relationship with other prognostic factors change during the 

progression of/« situ to invasive breast cancers 

Overexpression of erbB-2/HER-2/neu and its relationship with other prognostic factors change 

during the progression of/« situ to invasive breast cancer (Allred, et al. 1992; De Potter, et al. 1990; 

Gusterson, et al. 1992; Paik, et al. 1990; Toikkanen, et al. 1992; Van de Vijver, et al. 1988). Because of 

this, erbB-2 overexpression was thought to be a key factor that increased the invasive potential of breast 
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cancer cells; however, studies examining comedo-type intraductal carcinomas showed that a higher 

proportion overexpressed erbB-2 protein compared to invasive cancer, thereby indicating that though 

erbB-2 overexpression may play a role in invasion, it does not singly lead to increased invasiveness (Van 

de Vijver, et al. 1988). The roles of erbB-3 and -4 in breast cancer invasion and metastasis are not 

known. 

TGF-ß family 

The TGF-ß family of polypeptide growth factors is comprised of several related gene products that 

form either homodimers or heterodimers. TGF-ß isoforms are found in both normal mammary epithelium 

and in breast tumors. The interactions of these various isoforms is further complicated by the presence of 

specific binding proteins (Butzow, et al. 1993; Chefietz, er a/. 1988; Murphy-Ullrich, etal. 1992; 

Wakefield, et al. 1992). In addition, two TGF-ß receptors (type I and type II) have been identified. Four 

type I receptors have been cloned (Wang, et al. 1994). Type I and type II receptors can heterodimerize. 

Because there are a wide variety of receptor combinations as well as the existence of multiple TGF-ß 

forms, a diverse number of pathways appear available to regulate breast cancer growth and 

differentiation. 

Most normal epithelial cells are growth inhibited when exposed to TGF- ß (Arteaga, et al. 1996). 

Restoration of TGF-ß receptors in nonresponsive MCF7 cells renders the cells less tumorigenic and 

proliferative when grown in the presence of TGF-ß (Sun L., et al. 1994). Because of this, studies on the 

role of TGF-ß in cancer biology have mostly focused on this factor's effect on growth regulation and 

tumor formation. However, there is accumulating evidence that TGF-ß plays a critical role in tumor 

invasion and metastasis. 

TGF-ß overexpression in breast tumors has been associated with a more malignant phenotype 

(Dickson & Lippman 1996). A specific role in invasion and metastasis was demonstrated when Welch 

and colleagues first showed that exposure of mammary adenocarcinoma cell lines to picomolar 

concentrations of TGF-ß 1 or TGF-ß2 induced production of metalloproteinases with a corresponding 

increase in invasiveness and experimental metastatic potential (Welch, et al. 1990). At these 

concentrations, growth inhibition was not observed. Similar findings have been reported for the 

metalloproteinases as well as the urokinases (Agarwal, et al. 1994; Dong-Le, et al. 1998; Reiss & 

Barcellos-Hoff 1997; Sehgal, et al. 1996; Walker & Dearing 1992; Walker, et al. 1994). It is important to 

note that the source of the TGF-ß can be the tumor cells themselves or nearby host cells. Indeed TGF-ß 
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can increase stromal cell secretion of urokinase (Hildenbrand, et al. 1998). Thus, tumor cells which 

produce TGF-ß could manipulate stromal cells to assist in their malignancy. This concept is substantiated 

by the known roles of TGF-ß in angiogenesis and immunosuppression (De Jong, et al. 1998a; De Jong, et 

al. 1998b;Enenstein,efa/. 1992; Reif, et al. 1997). 

Interestingly, TGF-ß expression was originally correlated with increased bone colonization by 

Walker 256 carcinosarcoma cells (Orr, et al. 1993). Since bone is the most common site for breast cancer 

metastasis, organotropism may be partly explained by differential expression of TGF-ß. This hypothesis 

is at least partially supported by Guise and colleagues who showed that TGF-ß can alter expression of 

parathyroid hormone-related protein (PTHrP) which is, in rum, involved in bone resorption. Expression 

of PTHrP ± exposure to TGF-ß regulates bone colonization by MDA-MB-231 cells (Guise 1997). Still, it 

must be emphasized that a role for TGF-ß in bone colonization by breast cancer has still not been 

definitively established. 

Other growth factors 

In addition to the EGF and TGF-ß families, numerous other growth factor families have been 

identified and found in breast cancer cells. These include the insulin-like growth factors (IGF-1 and IGF- 

2), fibroblast growth factors (FGFs), platelet-derived growth factors (PDGFs), and vascular endothelial 

growth factor (VEGF) (Ferrara, etal. 1992; Goustin, et al. 1986; Heldin & Westermark 1984; Sporn & 

Roberts 1986). The expression of many of these growth factors can be regulated by estrogen and 

progesterone (Dickson & Lippman 1996). 

Thrombospondin is a 450 kDa adhesive glycoprotein present in high concentrations in the platelet 

alpha-granule. It is also synthesized by other cells and is incorporated into extracellular matrices. The 

role of thrombospondin in breast cancer biology is checkered (Qian & Tuszynski 1996; Roberts 1996; 

Volpert, et al. 1995; Walz 1992). Transfection experiments suggest that it can promote cell adhesion, 

invasion and/or metastasis in some tumor models (Amoletti, et al. 1995; Incardona, et al. 1995; Pratt, et 

al. 1989; Tuszynski, et al. 1987a; Walz 1992; Wang, et al. 1996); whereas, it is suppressive in others 

(Qian & Tuszynski 1996; Weinstat-Saslow, etal. 1994b; Zabrenetzky, etal. 1994). Metastasis-promoting 

effects are often attributed to changes in adhesion whereas, the suppressive effects can be, at least 

partially, explained by the anti-angiogenic effect of thrombospondin (Dameron, et al. 1994a; Dameron, et 

al. 1994b; Volpert, etal. 1995; Weinstat-Saslow, etal. 1994b). Interestingly, thrombospondin expression 

is regulated by progesterone in the endometrium (Iruela-Arispe, et al. 1996), opening the possibility that 
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analogous regulation could occur in breast. Also, TSP-1 expression appears to be regulated by p53 

(Dameron, et al. 1994b), which itself has been implicated in breast tumorigenesis (See TP53 in Table 1). 

Thus, there are a multitude of interrelated growth factors, receptor types, and steroid hormones in 

the normal mammary epithelium that tightly regulate and coordinate cell proliferation and differentiation. 

In breast cancer cells, the intricate balance is perturbed. Invasive and metastatic cells further circumvent 

the regulation by overexpression or downregulation of growth factors and/or their receptors. Aberrations 

of downstream signaling cascades further contribute to cellular delinquency. Delineation of these 

pathways and their impact on angiogenesis, immune response, growth, invasion, and metastasis will 

require new models. 

Immune regulation of breast cancer metastasis 

There is clearly evidence that breast cancer metastasis is based upon the inherent genetic makeup of 

the tumor cells. However, tumor cells do not exist in isolation and their biological properties are not fully 

self-determined. Examples are described above. But there is one more that merits mentioning. The role 

of the immune system in cancer is usually considered to be elimination of tumor cells. But because 

metastatic cells and activated leukocytes share many properties, including the ability to attach to 

endothelium (Hoover & Ketcham 1975; Yong & Linch 1993) as well as degradation of and penetration 

of basement membranes (Wright & Gallin 1979; Klotz & Jesaitis 1994), it was suggested that, under 

certain conditions, tumor cells might exploit normal leukocyte function to increase metastatic efficiency 

(Gorelik, et al. 1982; Aeed, et al. 1988). 

Rats injected with syngeneic 13762NF mammary adenocarcinoma cell clones developed 

neutrophilia proportional to the metastatic potential of the primary tumor (Aeed, et al. 1988). We showed 

that the metastatic tumor variants did so by secreting granulocyte-macrophage colony-stimulating factor 

(GM-CSF) and/or interleukin-3 (IL-3) in proportion to their metastatic propensity (McGary, et al. 1995). 

More importantly, tumor-elicited neutrophils increased metastatic potential and invasiveness 2- to 25- 

fold when co-injected intravenously (Welch, et al. 1989); whereas, normal circulating neutrophils, 

proteose peptone-elicited and phorbol ester-activated neutrophils did not. Alone, these findings may have 

been merely an experimental curiosity. However, anecdotal clinical data suggest that these types of 

observations are not altogether uncommon. Leukocytosis (Sawyers, et al. 1992), granulocytosis (Suda, et 

al. 1980; Hughes & Higley 1952), eosinophilia (Sawyers, et al. 1992) and neutrophilia (Lee, et al. 1987) 
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have been described in patients with advanced neoplasms of multiple histologic types. This could not be 

explained by infection or tumor necrosis (Aeed, et al. 1988). In experimental models, the evidence 

predominantly supports secretion of factors that stimulate bone marrow precursor cells. Lee and 

colleagues have shown that GM-CSF levels may be correlated with more advanced mammary tumors, 

(Lee & Baylink 1983; Lee, et al. 1987; Lee & Lottsfeldt 1984). Factor(s) produced by other tumor cell 

types that elicit bone marrow proliferation vary by tumor type, stage and size (Asano, et al. 1977; Fu, et 

al. 1991; Mano, et al. 1987; Nitta, et al. 1992; Sawyers, et al. 1992; Wu, et al. 1979). Takeda et al. found 

that 7/14 metastatic transplantable tumors produced GM-CSF mRNA and/or detectable GM-CSF 

activity; whereas, the nonmetastatic tumors did not (Takeda, et al. 1991). Taken together, these results 

demonstrate that breast cancers may modulate their metastatic potential, in part, by manipulation of the 

immune system. 

A molecular genetic model for breast tumor progression 

The collection of neoplastic breast diseases are sufficiently distinct that it is unlikely that a single 

model could describe the genetic changes leading to metastasis. At the root of any model must be a clear 

understanding of the cell type from which a particular neoplasm developed. Notwithstanding, the 

majority of evidence suggests that cells from the terminal ductal structures are the cells of origin. 

Insufficient biochemical and molecular markers allow for more refinement than that with regard to 

cellular origin. It is believed that the conversion to neoplasia has an intermediary atypical hyperplasia in 

which the cells have lost some aspects of growth control, but still retain vestigial response to growth 

controlling signals. During the proliferative phase, cells are responding to the usual milieu of positive 

and negative endocrine, paracrine and juxtacrine signals. During this hyperproliferative phase, breast 

epithelial cells accumulate mutations in oncogenes and tumor suppressor genes so that they appear even 

less "normal" or differentiated and are classified as carcinomas in situ. Further proliferation results in 

accumulation of mutations, increasing malignant characteristics (i.e., invasion, aneuploidy, angiogenesis, 

etc.) so that eventually, a subset of cells is no longer confined to the breast. 

Over 150 genes and genetic loci have been associated with breast cancer development. Of those 

changes, this review summarizes evidence implicating a role in progression to malignancy for over forty 

different genes. The magnitude of these numbers highlight the tremendous complexity of breast cancer as 

a family of diseases. The good news is that all of these markers have been identified in spite of the 

extraordinary heterogeneity that exists within breast neoplasms at diagnosis. The bad news is that these 
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changes are only the tip of the iceberg. How, then, can one determine which changes are essential and 

which are ancillary? 

For oncogenes and tumor suppressor genes, the data in breast cancer oncogenesis is relatively 

mature. While there is still plenty of room for further study, correlative data are often corroborated by 

functional studies (i.e., transfection with wild-type cDNA followed by bioassay). Mechanism of action is 

not always known; however, the biological endpoints are unambiguous. The situation is less clear with 

regard to genes/loci involved in breast tumor progression, invasion and/or metastasis. Only four genes 

(Nm23-Hl, KiSS-1, KAI1 and TSP-1) have been demonstrated to suppress metastasis of human breast 

carcinoma cells following orthotopic implantation of tumor cells into immunocompromised mice. Of 

those, only one, NME1 has been studied adequately in the clinical arena to warrant serious consideration 

as having prognostic value. KAI1 suppressed metastasis at a level comparable to Nm23, but KiSS-l was 

more potent than any of the other genes tested with regard to reduction in metastasis incidence burden. 

To claim TSP-1 as a metastasis-suppressor gene may be a misnomer since tumor growth was also 

inhibited. Nonetheless, the tumor cells still expressed the transgene, allowing TSP-1 to still qualify by the 

criteria listed above. 

Considering the number of papers claiming to study metastasis of breast cancer, the number of bona 

fide functionally-tested metastasis-suppressor genes is surprisingly small. In part, this is due to the 

paucity of models which allow testing in vivo. Indeed most of the functional studies were done using the 

MDA-MB-435 model. Validation in other models has not been done. Certainly, testing in other breast 

tumor types has not been attempted. Thus, for the breast cancer metastasis field to advance further, more 

and better models will be required. 

Despite the discovery of and identification of four (and probably more) metastasis-suppressor genes, 

several questions remain regarding control of the metastatic phenotype in human breast cancer. Do the 

identified genes represent rate-limiting steps? Are these genes functioning in a single pathway or 

convergent pathways of metastasis control? What are the signals that control these genes? Are the key 

controlling signals among the correlations already established for breast cancer progression (i.e., 

hormonal or growth factor control)? While much has been learned, more still remains to be found. 
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