
AFRL-IF-RS-TR-1998-101
Final Technical Report
May 1998

^^

VIDEO ON DEMAND TECHNOLOGIES AND
DEMONSTRATIONS

Syracuse University

Marek Podgorny and Geoffrey C. Fox

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK f

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFPvL-IF-RS-TR-1998-101 has been reviewed and is approved for publication.

APPROVED:
ALAN J. AKINS
Project Engineer

FOR THE DIRECTOR:
WARREN H. DEBANY, JR., Technical Advisory
Information Grid Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFGA, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this coBeetion of information is ostinwted to tvtrago 1 hour ptr response, including the tint for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, end completing and reviewing
the coaection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information

Operations and Reports, 1215 Jefferson Oavis Highway, Suite 1204, Arlington. VA 22202-4302, end to the Office of Management and Budget, Paperwork Reduction Project {0704-01861, Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank} 2. REPORT DATE

June 1998

3. REPORT TYPE AND DATES COVERED

Final Sep 94 - Nov 96
4. TITLE AND SUBTITLE

VIDEO ON DEMAND TECHNOLOGIES AND DEMONSTRATIONS

6. AUTHOR(S)

Marek Podgorny and Geoffrey C. Fox

5. FUNDING NUMBERS

C - F30602-94-C-0256
PE -62702F
PR -4519
TA -22
WU-36

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESSIES]

Northeast Parallel Architectures Center (NPAC))
111 College Place
Syracuse University
Syracuse NY 13244-4100

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSIES)

AFRL/IFGA
525 Brooks Road
Rome NY 13441-4505

10. SPONSORINGfMONITORING
AGENCY REPORT NUMBER

AFRL-IF-RS-TR-1998-101

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Alan J. Akins/IFGA/(315) 330-7751

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words!

This effort demonstrated a functional video-on-demand (VoD) service running over a wide-area high-speed Asynchronous
Transfer Mode (ATM) network. This report presents an overview of the efforts key results and accomplishments, the
overall architecture of the video delivery service is described, including the implementation of the video search and retrieval
methodology. The video server and video client architectures are discussed in detail, describing the options and paths
chosen. Also included in the report is an overview of the hardware and network infrastructure that was built to provide the
project testbed along with the wide area network (WAN) demonstrations used during the effort. Separate areas of the report
provide information on several fundamental research issues such as Variable Bit Rate vs. Constant Bit Rate transmission,
wavelet compression technology for video, I/O support for scalable coders, and multimedia networking.

14. SUBJECT TERMS

Asynchronous Transfer Mode (ATM), digital video, network delivery, video server, video
client, video compression, multimedia networking distributed server
17. SECURITY CLASSIFICATION

OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

332
16. PRICE CODE

20. LIMITATION OF
ABSTRACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Presented by ANSI Strt 239. t8
Designed using Perform Pro, WHSI0I0R. Oct 94

Table of Contents

1. Introduction 1

2. Project Summary 3

2.1 Funding sources 7

3. Global Video-on-Demand Architecture 9

3.1 Interaction of the system components 10

3.2 Metadata concept and database back-end 12

3.2.1 Video sever asset management 13

3.2.2 Indexing and search interface 18

3.2.3 Data flow model 19

3.2.4 Contents creation service 24

4. Video Server Implementations 31

4.1 Early server designs 31

4.1.1 Network Dataflow in a VoD System 31

4.1.2 Video Server Configurations 33

4.1.3 Software Architecture of a VoD Server 34

4.1.4 Optimizing the VoD Server 35

4.1.5 Server implementation on SGI platforms 40

4.2 Production Video server at NPAC 41

4.2.1 Completion Ports in Ms Windows NT 41

4.2.2 Production version if the Windows NT Video Server 44

4.3 nCUBE2 Video Server 45

4.3.1 NCUBE2 network connectivity 47

4.3.2 Video Server Implementations on nCUBE 48

4.4 Distributed Server Architecture 52

4.4.1 Server Design Issues 55

4.4.2 Oasis Monitoring Tool 65

4.4.3 Client implementation for Oasis Media On Demand Server 74

4.4.4 Implementation status of the distributed video server 84

5. Video Client Architectures 85

5.1 Video dient for SGI platforms 86

5.1.1 Digital Media Library 86

5.1.2 MPEG1 Video Client for SGI workstations 88

5.1.3 Low bit rate, H.263 video client for SGI workstations 93

5.2 Video for Windows networked video client 95

5.2.1 Video for Windows architecture 95

5.2.2 MPEG decoders 97

5.23 Windows networking tools 98

5.2.4 Media Control Interface Optibase MPEG driver 98

5.2.5 MCI driver in "Video for Windows" architecture 99

5.2.6 Technical details of the driver 100

5.2.7 Execution Flow 101

5.2.8 Parsing metadata file 102

5.2.9 Networked Video Client application 103

5.2.10 Random access IO4

5.2.11 AVI Video Client 106

5.3 Codec independent Active Movie video client 106

5.3.1 Active Movie Technology 107

5.3.2 Video Client in Active Movie 116

5.4 Web-specific video client architectures 129

5.5 VoD versus LAN video broadcast: hierarchical multicasting video client 130

6. VoD Testbed Infrastructure I33

6.1 Video Server assets 133

6.2NPACATMLAN 134

6.2.1 Living Schoolbook Project 135

6.2.2 Rome Laboratory 136

7. Selected VoD Research Issues 139

7.1 CBR transmission of VBR encoded video compression 139

7.2 Hybrid wavelet - H.263 video compression 141

73 a continuous media file system for multi-resolution data 141

11

8. Multimedia Networking: Integrated Services Model

8.1 Introductory Multimedia Networking Module

8.2 Multimedia Networks and Integrated Services Model

8.3 Multicast and Switched Network Basics

8.4 Reservation Protocol, Parts I & II

8.5 Real Time Protocol

9. Software packages

10. Appendices

143

145

155

197

211

243

271

273

10.1 Appendix 1: CBR Transmission of VBR Encoded Continuous Media 275

10.2 Appendix 2: Hybrid wavelet-H263 video compression

10.3 Appendix 3: A continuous media file system for multi-resolution

10.3.1 Introduction

10.3.2 Traditional File System

10.3.3 The CFS file System

10.3.4 Terminology

10.3.5 Multi-resolution Support

10.3.6 Data Layout Policy

10.3.7 Data Placement Policy

10.3.8 The directory Service

10.3.9 Admission Control Policy

10.3.10 The physical Scheduler

10.3.11 Interactive Support for Continuous Media

10.3.12 Quality of Service (QoS) Support

10.3.13 Comparison of CFS and XFS

10.3.14 Conclusion

10.4 Appendix 4: Video Server Asset Management Screen Dumps

10.5 Appendix 5: Video Database Search Interface Screen Dumps

10.6 Appendix 6: Video Clients Screen Dumps

10.7 Appendix 7: Details of the Ncube2 OS network layer architecture

10.8 Appendix 8: Slides of the final project presentation

327

349

349

349

350

350

350

351

353

354

355

357

358

358

358

359

361

367

373

379

389

m

1. Introduction

This document describes the main results of the project "Video-on-Demand Technologies and

Demonstrations." It was funded by the USAF Rome Laboratory under the contract number

F30602-94-C-0256. The project's time frame was 24 months, starting in October 1994. It was

conducted at NPAC, Syracuse University, and was led by Geoffrey C. Fox and Marek Podgomy.

The main objectives of the project were (1) to develop and evaluate existing base technologies

and (2) to build a prototype video-on-demand (VoD) server to deliver digital video streams over

the NYNET regional ATM network between Syracuse University and Rome Laboratory. More

specifically, the following issues were addressed:

1) Hardware and software requirements of the video server were determined and

evaluated, including video capture, indexing, random access, searching, retrieval,

and storage.

2) Hardware and software requirements of the Video Network Service were

determined and evaluated, including

■ A. an investigation of ATM and FDDI technology to evaluate network

bandwidth and latency requirements for high resolution VoD;

■ B. evaluation of existing standard transport protocols and their suitability to

support VoD applications;

a C. evaluation of network topology to achieve optimal performance in access

to video storage, video server functions, and delivery of VoD services to

geographically dispersed users across a wide area network; and

■ D. evaluation of existing network management technology for managing VoD.

3) Evaluate parallel, distributed, and heterogeneous computing to support VoD

applications.

4) Evaluate and implement state-of-the-art user-interface technologies for VoD

applications.

5) Upgrade existing VoD demonstrations to run in an HPCC environment (parallel

servers, WAN ATM network delivery).

6) Evaluate, benchmark, and demonstrate the WAN ATM delivery of the VoD

prototype service.

This report is organized as follows:

1

Section 2 (Project Summary) presents an overview of project's main results and

accomplishments, including the logical framework of the project, a description of project progress,

explanations research direction decisions taken during the project, technical results of the effort,

and a list of project deliverables. The overview is deliberately concise but refers the reader to

appropriate technical sections of the report. Subsequent sections provide an in-depth discussion

of the research and technical issues, a presentation of the software architectures created in the

project, and a detailed discussion of the research results. After reading the Project Summary

section, the extent of the research effort should be clear to the reader. Technical sections of the

report may be read selectively, as they are largely self-contained.

Section 3 (Global Video-on-Demand Architecture) is the first of several technical sections; it

describes the overall architecture of the video delivery service and, in particular, the

implementation of the video search and retrieval methodology based on the database back-end.

Section 4 (Video Server Implementations) discusses video server implementation. Section 5

(Video Client Architectures) is devoted to video client architectures. Section 6 (VoD Testbed

Infrastructure) provides an overview of the hardware and network infrastructure built to provide a

project testbed; this section also lists the WAN demonstrations set up during the project. Section

7 (Selected VoD Research Issues) provides a summary of several fundamental research issues

addressed in the project. The subjects include Variable Bit Rate vs. Constant Bit Rate

transmission issues, wavelet compression technology for video, and I/O support for scaleable

coders. For some of these subsections, the more detailed material is presented in appendices.

Finally, Section 8 (Multimedia networking: Integrated Services Model) documents our study and

evaluation of multimedia networking issues in the form of lectures delivered at NPAC.

2. Project Summary

The main task of the project was to implement a functional video-on-demand (VoD) service

running over the NYNET wide-area ATM network. This task has been completed; and the

completed system exceeds project requirements in two aspects:

First, we have built an operational digital video service, not merely a prototype. This service has

been operated continuously by NPAC since its inception in late 1995 and remains operational.

Based on its continued availability, the service is being used by the Living Schoolbook (LSB)

project and several other ongoing projects. In addition, the service is being improved by addition

of new elements, gradual incorporation of certain theoretical ideas developed in the project but not

yet implemented, and by integration of the service into other current projects. Most noteworthy,

the benefits of the video-on-demand service are being leveraged by its inclusion in the

"Collaboration and Interactive Visualization" project sponsored by the Rome Laboratory.

Second, the project deliverables include operational software. Although not of commercial quality,

the developed software package is sufficiently robust to warrant limited distribution. Some of the

packages have been installed at LSB sites, where they are expected to go into production mode in

the near future. <The software packages for the video server, video clients, and video-server

database back-end are attached to this report.>

In spite of this successful outcome, the project had its share of difficulties. Before reviewing the

statement of work requirements and deliverables, it is useful to assess the project results in

relation to its initial goals. As perceived at the project onset, the main tasks were: (1) to build a

demonstrable, end-to-end VoD system; (2) to test the system in the context of real VoD

applications; and (3) to concentrate research efforts on the ATM aspects on the video network

delivery. Looking at this Jist after the project has been completed, we offer the following

observations:

■ A complete VoD system has been built. As indicated above, we believe this

system to exceed the initial requirement for a prototype system, as the created

software can be successfully distributed.

■ The application-level testing was minimal. All testing took place at NPAC. The

main reasons for this outcome are both technical and sociological. Technically,

stagnation of the ATM technology (see below for a broader discussion) made it

economically non-viable to provide ATM-based VoD service to the LSB testbed.

This situation improved only recently and the LSB project has moved rigorously to

take advantage of this progress. In addition, we have experienced difficulties in

stimulating broader use of the VoD technology in the LSB project. These

difficulties result largely from the number of project participants who, being new to

the Web technology and advanced multimedia technology, used limited video-

downloading procedures rather than new streaming technology. It appears that

the high bandwidth provided by NYNET actually promoted this approach and that

the advantages of a fully interactive, searchable video archive is not regarded as

critical from the point of view of curriculum designers. This situation is changing,

mostly as a result of technology demonstrations provided to the LSB teachers.

The ATM aspects of the network delivery did not play any essential role in the

project. This does not imply that we have failed to build an ATM video-delivery

service; in fact, such a service has been implemented. The main point is that,

although the project carried out an extensive evaluation of new ATM solutions,

very little creative ATM-related research has been done. The reasons for this

situation can be summarized as follows:

1) During the project time frame, there was almost complete stagnation of the

ATM technology. Classical IP and incremental improvements in ATM NICs

performance are the only progress we have seen. The seemingly endless

negotiations on standards within the ATM Forum as well as vendors'

difficulties in implementing early specifications of standards like LAN

Emulation made it impossible (or, at least, economically nonviable) to build

an extensive ATM-based VoD testbed. We discuss the ATM issues in

Section 6.2.

2) The failure to progress in ATM development has resulted in a lack of ATM

applications, i.e., the applications using the ATM Adaptation Layers and

bypassing the TCP/IP stack. The dominant mode of using ATM networks is

TCP/IP over permanent virtual circuits. Our project took identical route. Due

to the rather high bandwidth and very low load on NYNET, the ATM links

available to us provided sufficient support for the wide-area video delivery,

even for multiple streams of high bit rate codecs. The really difficult problems

in implementing the service were not related to ATM but to the software

architectures needed to feed the network and then receive and present digital

video. Further, had we decided to pursue ATM-oriented protocol research, it

would not have been possible within the project's time frame to build an

operational prototype system. The research community now recognizes these

issues as important and will soon address them.

3) In contrast to the ATM stagnation, there was an explosive development of the

multimedia-related protocols for IP networks. This work, mostly concentrated

around IETF, brought new protocols such as RTP (Real Time Protocol),

RSVP (Reservation Protocol), Protocol Independent Multicast (PIM), and

RTSP (Real Time Streaming Protocol). These protocols form a foundation for

the Integrated Services Model (ISM) of the Internet. ISM will bring quality of

service to packet-switched networks. It is not clear whether ATM will regain

its leading role as the multimedia network technology of choice. We believe

that even if this happens, the current ISM will remain an important

mechanism for applications to request quality of service. Most likely,

interfaces between the ISM protocols and ATM protocols will be built to utilize

ATM's inherent QoS support. In the course of the project, we have evaluated

extensively ISM and related protocols. This evaluation guided our

implementation of certain solutions for the VoD system., and it convinced us

that ATM-related protocol work is not a good investment of human resources

in a project that requires an operational prototype as a main deliverable.

■ Instead of the ATM research, we have made a number of theoretical contributions

to (a) the problem of efficient video-streams multiplexing, (b) the design of more

efficient, scaleable video codecs, and (c) the issue of designing an efficient file

system for multi-resolution data. This research is important to the design of

scaleable video servers.

■ Research focused on three areas: video server design, video client technology,

and use of Web technology as middleware to build a coherent, distributed digital

video library. The Web technology application for implementation of such a

system is successful and extremely efficient. In the video server and video client

research, we encountered a number of difficult problems which have been only

partly solved.

The remainder of this Section briefly outlines project results and deliverables for all the tasks

mandated in the original project. The task numbers refer to the task definitions quoted in the

Introduction.

1) We identified, developed, and integrated technology elements so as to built a

complete digital video-delivery system. The system uses the IP protocol and runs

over both broadcast and circuit-switched networks, including ATM. The system

entails the following functional modules:

■ Contents-production module: the setup provides video digitization and

encoding from multiple sources to multiple video codecs. For a description,

see Section 3.2.4.

■ Video-server module: video server software has been created for SGI SNIP

and Windows NT platforms. For a description, see Section 4.1.5-4.2. An

attempt to implement a video server for nCUBE failed due to insufficient

system performance (Section 4.3)

■ Video-client module: network video clients have been created for UNIX (SGI)

and PC platforms. We provide support for both hardware and software

decoders. Video clients have been implemented as stand alone applications,

Netscape browser plug-ins, and even as Java applets (Section 5).

■ Database back-end: the heart of the digital video library, the database back-

end supports search, random access, and asset management (Section 3.2)

The video delivery system built in this project supports automatic video indexing

via closed captioning, random access to video contents based on metadata

search, video retrieval using multiple access methods, video server monitoring,

and a video-asset management layer.

2) To implement a digital video network-delivery service, we developed and

evaluated a family of solutions for network video clients. In addition, we evaluated

current ATM support for multimedia traffic and QoS issues for the IP networks

(Integrated Services Model). For a summary of findings, see Section 6.2. In the

final phase of the project, we designed and implemented an ATM testbed for

performance benchmarking of our VoD setup (Section 6). In addition, we have

addressed the following research issues related to the future of video-on-demand

architectures:

■ Variable bit rate vs. Constant bit rate transmission (Section 7.1),

■ Wavelet compression for video (Section 7.2),

■ I/O support for scaleable coders and adaptive applications (Section 7.3).

3) We evaluated three different platforms for video server implementation, including

nCUBE2 MPP, SGI symmetric multiprocessor, and an ATM cluster of Windows

NT PC multiprocessors. We implemented video servers on Windows NT and SGI

platforms and evaluated and benchmarked different multithreaded video server

architectures. Finally, we have provided a blueprint for a low cost, scaleable,

distributed, dynamically reconfigurable cluster VoD server. For details, see

Section 4.

4) We designed, implemented, and evaluated a Web-based interface to the VoD

system. We developed an integrated video delivery system with indexed, random

access. The system entails automatic video indexing capability, relational

database back-end, a CGI-extended web server as a database access agent,

and a web browser as user interface. We also developed a variety of video-client

user interfaces. See Section 5.3.2.8 for details.

5) Demonstrations of the evolving capability of VoD were available over an ATM

network beginning almost with the project's inception. We tested and installed all

appropriate ATM software upgrades available from the vendors, and we

constantly tuned NYNET performance to deliver the video-on-demand service. In

the final stages of the project, we moved to ATM LANE topology. At present, VoD

service is delivered to participants at the Living Schoolbook Project. For details,

see Section 6.2.

6) We demonstrated video delivery over an ATM WAN on a number of occasions

and worked with ATM vendors to set up demonstrations from Syracuse to several

locations, some as remote as San Diego, Atlanta, and Washington, DC, as well

as to the Syracuse OnCenter and to Rome Laboratory.

2.1 Funcfing sources

This project was funded by the Rome Laboratory under the contract No. F-30602-94-C-0256. A

fraction of the work described was co-funded by Rome Laboratory contract No: F30602-95-0-

0273 (Collaboration and Interactive Visualization - CIV). The basic technology used in this project

supports various aspects of the CIV project and is being developed further.

7/8

3. Global Video-on-Demand Architecture

Implementation of a network digital-video delivery system is perceived as a system integration

issue. It is often assumed that the component technologies needed to built such a system are

available and the only thing that remains to be done is connecting component parts into a working

system, tn general, we do not share this view. The following parts of this report address the

implementation issues for system components such as the video server, the video client, and the

asset-management module. For the purpose of this section of the report, however, we will

assume that the basic system components exist; and we will proceed with description of our

system integration strategy.

The system we implemented is intended to support applications such as education, corporate and

military training, as well as the distribution of video information of transient value, such as news

clips. Entertainment systems are beyond the scope of this project. This focus implies that the

targeted audience is assumed to have functional expectations and technical capabilities

significantly exceeding those of an interactive program guide user. In essence, our goal was to

build a digital library of documents based on video contents. We believe that our can serve any

other stream multimedia information with equal ease.

The basic components of the network video-delivery system are:

■ Video Server: an entity capable of delivering multiple concurrent, continuous

media streams. In our approach, the video server has the following important

properties:

1) the video-server data repository holds only multimedia data streams, not the

metadata describing them;

2) the server is codec independent, i.e., the media streams are opaque to the

server. All random-access functionality is realized on the protocol level. The

server may admit and regulate stream transmissions based on the stream

bitrate defined in the client stream request;.

3) the server uses a plain file system to store video files. Video database

consistency is implemented in the Video Server Asset Management layer.

■ Video Client: a software module capable of interactive playback of the media

stream pushed by the video server. Video clients may handle multiple media

stream formats. The client is responsible for issuing the stream request,

initializing the decoder, presenting the stream, and interactive stream playback

control.

■ Database Back-end: a repository of the system metadata. The database

repository holds all data other than continuous media streams. Metadata are used

for (1) technical characterization of the stream, necessary for video clients to set

up the playback mechanism properly; and (2) storage of all contents information

related to a particular continuos media stream, such as closed captioning,

annotations, synchronized URLs, etc. (The concept of metadata will be described

in more detail later).

We used Web technology to integrate all components into a working system. Specifically, we

used Hypertext Markup Language (HTML) and other client-side programming technologies such

as JavaScript and Java to build a graphical user interface for all aspects of system operation.

Also, we used Common Gateway Interface (CGI) technology to provide linkage between the

HTTP server and the relational database back-end. For certain video clients, we use MIME

mechanisms to spawn client instances.

Current Web technology does not provide support for certain functionality necessary to implement

a complete video delivery system. For instance, there is no accepted standard for a protocol

delivering media streams. In such cases, we implemented our own solutions. Very recently, work

has been started to define such standards. We provide our view on how such standards are

applicable to our work in Section 7: Selected VoD Research Issues.

3.1 Interaction off the system components

Figure 3.1 illustrates the high-level architecture of the system.

The Video Client component communicates with two server components: Database Server and

Video Server. The Database Server is responsible for providing to the Video Client all information

necessary for the client to retrieve the video stream. Based on that information, the Video Client

sets a session with one of the Video Servers in the system. During the session, the client

interactively retrieves and presents the media stream.

The data flow model presented in Fig. 3.2 consists of two consecutive phases of user interaction

with the Video-on-Demand system. Phase 1 searches for video material and presents the user

with a hit list retrieved from the database according to the user specified search criteria. Phase 2

actually displays the selected media stream. The first phase is realized in communication between

the Video Client and the Database Server; the second is realized in communication between the

Video Client and the Video Server. The two phases are essentially independent, except that the

second phase is invoked by the first one. For videos with associated time-stamped textual data,

additional coupling exists between the two phases: each time stamp can serve as a stream

access point, allowing for interactive, indexed random access to video streams.

10

•*--»• - interactive commands
ACP - automated contents production
FS - file system
VS - video server

^|VC i

■ video data
DB - database
DS - database server
VC - video client

Figure 3.1. Basic components of the video delivery system.

Web Server
Database

Server

Meta
file

;££=?

Client

Cluster
Management

I
I

RAIE

Video Server
Cluster

Figure 3.2. Data flow in the video on demand system

11

More detailed information about system search capability is presented in later sections describing

database back-end and video client architecture.

3JZ Metadata concept and database back-end

Any data item characterizing a video clip or otherwise related to a video clip is considered

metadata.

Clip metadata can be broadly classified in two categories: clip descriptive attributes and

associated clip contents data. Clip descriptive attributes fall into the following subcategories:

1) Technical clip parameters: encoding type, frame rate, bit rate, format, frame-to-

file offset translation table, file size, VBR pattern.

2) Clip contents attributes: source, author, producer, copyright, creation date,

credits.

3) Clip statistics: availability on the server cluster, location on servers, clip usage

patterns, number of copies, insert date, expiration date, access restrictions,

access scope, downloadability, charge per one viewing session.

The main use of the clip descriptive attributes is for system administration and asset

management. Some of the attributes of type 1 and 2 above may be accessible from the user

search interface, especially the clip contents attributes. Data of the type 3 above is used for

setting up playback sessions between video clients and video servers.

Associated clip contents data may include: title, annotations (either textual or in a general for of a

URL), and closed captions with associated timestamps. This data is critical for video archive

searchability. Our video system supports fully indexed, random access to the video material via

timestamped closed captioning or annotations.

We are aware of extensive work aiming at other methods of video indexing, including attempts at

automatic patter recognition or, at least, recognition of video contents via analysis of signal and

color dynamics. Most of these methods are nonviable today. We believe that, within a year or two,

continuous speech recognition will provide a powerful video indexing methodology. When this

technology becomes available, it can be incorporated easily into our framework as either a

replacement or enhancement of indexing via closed-captioning.

As mentioned before, we store video streams in file systems on the video servers. Although

certain database vendors (e.g. Informix/lllustra) endorse using databases to store video, we

consider this solution to be technically incorrect. Databases lack support for real-time data

12

delivery. In addition, the current inability to build queries with multimedia predicates for video

contents makes the entire idea of placing video in databases a pointless exercise.

A strict division into continuous data and metadata is a fundamental feature of our design. This

division cleanly maps the logical modules of the system into separate physical components. It is

possible to build a very high performance system by distributing logical modules across multiple

workstations. In reality, the system built at NPAC uses a dozen heterogeneous workstations with

different networking infrastructures for database access and for video retrieval (see Section 4.1).

System requirements for a database server are very different than system requirements for a

video server. The modular nature of our design, based on the metadata concept, allows for very

efficient resource allocation and for construction of a high performance server from off-the-shelf

(COTS) components.

Due to the clear separation of the database and video server functionality, the two phases of the

video retrieval process described above (Section 3.1) are not only executed asynchronously but

also by physically disjoint sets of components of the VoD system. This solution has additional

significant advantages for system administration, performance tuning, and cost-effective system

design since it is much easier to tune a group of systems with simple, well-defined workload

patterns than a larger system in which each hardware component is running a number of

applications with wildly different system resource utilization.

The metadata concept creates one difficulty: video data and metadata may be inconsistent since it

is rather difficult to ensure atomicity of transactions in such a heterogeneous database. For

example, the operation of adding a clip metadata to the database takes a few seconds, while the

operation of copying a GB file from the encoder to a video server can take several minutes, even

over a fast network with spare capacities. This problem has not been practically resolved in the

current software implementation. It is possible to create a metadata record in the database

without having a corresponding video file on the indicated server. Our most recent server design,

being implemented outside of this project, will support a protocol extension specifically designed

to ensure data consistency.

3.2.1 Video server asset management
Video Server Asset Management, or VSAM, is a separate, self-contained module designed to

manipulate the metadata database. The system operates in two modes: manual and automated.

The manual mode provides a web-based GUI to all tables in the database. The GUI implements a

score of operations on the database, including creation of video server records, logical archive

records, and video clips records, as well as later modifications, update, or removal of data. Every

single attribute value in the database is editable using VSAM. The automated mode is operated

via a special daemon that supports an automated process of video contents creation. This service

is described in more detail in Sec. 3.2.4. The service automatically runs the entire process of

13

video digitization, encoding, placement on the server, and metadata creation in the database

back-end. In addition, the latest version of the video server supports a protocol extension allowing

statistics about the use of interactive video clips to be uploaded automatically to the database.

Appendix 4 contains a number of screendumps illustrating the most relevant functionality of

VSAM.

The relational database back-end supports two basic functionalities: video server asset

management and indexed video retrieval. Both functions are supported by the same relational

scheme holding all system metadata.

While using the same database, data retrieval and data management modules have separate

user interfaces. Data search and retrieval interface is designed for the system end-user. The

asset management interface is intended to be used by systems administrators and contents

creators. Access to this interface is normally protected by a password. Both interfaces are built

using Web technology. More specifically, we used following technology components:

■ Oracle relational database server.

■ CGI technology for http server - database server interface. Perl 4 was used to

implement the CGI scripts. The Oraperl Perl extension was used to facilitate

Oracle database access.

■ GUI forms were built using a combination of HTML3, JavaScript, and, to a small

extent, Java.

The following subsections contain description of the relational scheme that is used to store video

server metadata

3.2.1.1 Entity Relationship Diagram
A simplified E.R. diagram for the video server database back-end is presented in Fig. 3.3

14

DOTATIONS

KP Address j

SERVER TABL K(Sname"

• Figure 3.3. Entity Relationship for the video server database back-end.

15

3.2.1.2 Relational scheme: Tables and description
ANNOTATIONS: This table stores annotations for the video clips.

Columns Type Description

CLIPID
FRAME
DURATION
DATATYPE
DATA

NUMBER(10)
NUMBER(10)
NUMBER(10)
VARCHAR2(20)
LONG RAW

Video clip ID number
Frame number
Duration in frames
Data type of the annotation
Annotation data

CAPTIONS: Video clip captions are stored in the CAPTIONS table.

Columns Type Description

CLIPID
FRAME
TEXT

NUMBER(IO)
NUMBER(10)
VARCHAR2(2000)

Video clip ID number
Frame Number

Caption text

CLIPSERVER: This tables lists all video clips stored on a particular video server.

Columns Type Description

CLIPID
SERVERID
FILENAME

NUMBER(IO)
NUMBER(IO)
VARCHAR2(255)

Video clip ID number
Server ID number
video clip file name in a server

CLIPTABLE : Metadata for each clip is stored in this table. FRSFTLE contains contents of the
FRS file for a clip in text format (i.e., a frame - file offset lookup table).

Columns Type Description

CLIPID
TITLE
ENCODING
LENGTH
FRSFILE
FILESIZE
BITRATE
FRAMERATE
ARCHIVEID
ACCESSLEVEL
DOWNLD
FNAIL
DATEINSERT

NUMBER(IO)
VARCHAR2(255)
VARCHAR2(10)
NUMBER(IO)
LONG
NUMBER(15)
NUMBER(IO)
NUMBER(IO)
NUMBER(IO)
VARCHAR2(10)
VARCHAR2(10)
VARCHAR2(60)
DATE

video clip ID number
Video clip title
Encoding type (MPEG1.MPEG2, AVI)
Length of the clip in frames
Frame and File offset table(text)
video file size in Bytes

video clip bitrate in kpbs
video clip frame rate in fps
Archive tag
clip access restriction tag
Clip download permit tag
clip thumbnail URL
Date of insertion

16

SERVERTABLE: stores server metadata.

Columns Type Description

SERVERID
IPADDRESS
SNAME
PLATFORM

NUMBER(IO)
VARCHAR2(15)
VARCHAR2(255)
VARCHAR2(32)

Server ID number
Server IP address
Server Name
Machine model or OS name

ARCHIVETABLE: stores archive (logical clip collection) definition.

Columns Type Description

ARCHIVEID
ANAME
ADESC

NUMBER(IO)
VARCHAR2(15)
VARCHAR2(60)

Archive ID number
Archive Name
Archive description

SERVERKEY : To get unique ID for a server automatically, SERVERKEY table is used. This
table stores KEYNUM and increases its whenever a new ID is requested. New server ID is the
increased KEYNUM. SKEY is just for locking this table.

Columns Type Description

SKEY
KEYNUM
UNIQUE (SKEY)

NUMBER
NUMBER

NOT
NOT

NULL
NULL

Key for locki
Server ID to E9

be
this table
given

CLIPKEY: Similar to the SERVERKEY table, used to generate unique CLIPID.

Columns Type Description

CKEY
KEYNUM
UNIQUE (CKEY)

NUMBER
NUMBER

NOT
NOT

NULL
NULL

Key for locki
Server ID to u9

be
this table
given

ARCHIVEKEY: Similar to the SERVERKEY table, used to generate unique ARCHIVEID

Columns Type Description

AKEY
KEYNUM
UNIQUE (AKEY)

NUMBER
NUMBER

NOT
NOT

NULL
NULL

Key for locki
server ID to

ng
be

this table
given

3.2.1.3 ID generating for servers, clips, and archives
Server and clip IDs should be unique to maintain consistency. IDs are assigned automatically

rather than manually since the information is used only within the database back-end. The

simplest way is to start with a number and to increase it when a new ID is needed. The only

17

problem is the race condition. To solve this problem, we used the database as a locking method.

The tables SERVERKEY, CLIPKEY, and ARCHIVEKEY are used for this purpose. The pseudo-

code for assigning a new ID is:

PROCEDURE GET_ID
BEGIN

READ ID;
if READ_ERROR then EXIT with ERROR ; # since another

process is using it.
DELETE ID;
if DELETE_ERROR then EXIT with ERROR;
ID := ID + 1;
WRITE ID;

END;

3.2.2 Indexing and search interface
The end user can perform two types of video material searches: the category-based search and

the content-based search. In a category-based search, a property associated with a video clip is

requested. Implementation of this capability is elementary. The number of different attributes that

can be searched depends only on the extent of metadata associated with each video clip. Our

system holds a handful of such attributes. This number can be extended on the fly by adding

attributes to the database tables. In the current version of our system, video clips are grouped into

video archives that can be searched separately. The user can also search for clips with certain

technical characteristics, for instance, a user connected via a low bitrate line may be interested

only in low bitrate video clips.

The content-based searches supported by the system come in two flavors. A keyword search can

specify database fields to be searched. The metadata associated with each clip may be time-

stamped. Closed-caption information is a type of time-stamped data, while clip titles and clip

annotations (which usually contain a "script" of the story presented in the video clip) are not. Our

system allows for both kind of queries. A query acting on non-time-stamped data results in a list

of clips satisfying the query, as in a category-based search. Queries against time-stamped data

always yield, in addition to the clip list, a list of offsets associated with positions, relative to the clip

beginning, of the search keywords in the time-stamped data. In this way, our system not only

searches for video clips but also for the relevant video-stream entry points.

We believe this to be a very practical approach to video indexing. The issues of capturing and

converting closed-caption date are discussed in Section 3.2.4. As indicated above, we believe

that continuous speech recognition technology will mature sufficiently in the next few years to

make it useful for indexing. This technology, together with the approach we developed, will allow

for a rapid increase of the amount of video material available in searchable digital video

18

repositories. It should be obvious that, with minimal effort, the results of a speech recognition

process may replace current closed-caption support in our system.

It should be mentioned here that the file offsets produced by the database search engine per se

do not warrant random access to the video streams. It is still necessary to design both the video

client and the video server so that the random access requests are seamlessly handled. This is

particularly difficult in our case since we requested that the video server remain codec-

independent. Therefore, it is up to the video client to process the video stream in a way that

ensures correct playback. The methodology to do so differs from codec to codec; this matter is

discussed further in Section 5: Video Client Architectures.

The process of creating metadata, storing it in-a database, and searching through the database by

sending queries, is entirely self-contained. The only requirement for compatibility with our video

client-server architecture is a particular form of the metadata packet returned by the database

search engine. The details of the data flow between the database back-end and video client-

server module is discussed in the following subsection.

3.2.3 Data flow model
The process of selecting and playing a video clip involves a data movement pattern that is quite

complex. The entities and data streams involved in the process are illustrated in Fig. 3.2. Figures

3.4 - 3.6 illustrate the functionality of the search interface.

The process starts from a Web browser accessing the video server search interface. The HTML

form presented to the user provides a collection of buttons and type-in fields needed to compose

a query. Upon submission, the form output is sent to the Oracle RDBMS via a CGI script residing

on the HTTP server. The query is executed by Oracle and the results are returned to the browser.

The user is presented with a dynamically created HTML page with a list of available video clips. If

the search keyword has been spotted several times in the closed-caption data associated with the

clip, the user will be given a list of stream entry points. In addition, if the clip resides on multiple

servers, the user will be able to chose a video server to deliver the clip (Figure 3.5).1 In addition,

the page contains links to other content elements possibly associated with the clip, for example,

annotations. Annotations perse can contain a list of other relevant URLs, which can be examined

while the video clip is playing.

11t is planned that the list of video servers will be ordered accordingly to their load, providing the user with the opportunity
to select the server with lowest load. This selection could be automated; but if the user operates behind a firewall, there is
a benefit of being able to chose manually.

19

NPAC VIDEO ON DEMAND PROJECT

Display all the movie dips containing the following captions-
Sobmtttmg an empty query will display the list of avaflable dips.
Search Keyword»:

IjrebeceaSUBMIT | RESET |

'■ r Berlin Bob Fray Berlin, story

l~ CNN CNN News CEps

r Default Default archive (holds clips from deleted archives)

' f" Discovery Dfoew«fy,C&8d^^de^C%s'r-""'"
j r MESC VattoM staff'
; r Mätaty Mäfcwy dip archive
j P> Motion Ketures Rfflleogh movie archive

j r~ Muse Music video archive
1 r NPAC NPAC video producton

• r Reuters Beuters News Clips

Encodings

;TMPEG2'
ir AVI(Weocodecs)
IT Quicklane
l!r H26J. • ■

Figure 3.4. Front page of the video server user search interface

After selecting the clip access point, the user presses the PLAY button. Again, output from the

form is sent to the database back-end via a set of CGI scripts. The output from the database is a

multi-part HTTP document. The first part of this document contains a metafile used by the Web

browser to start the video client. Our basic video client is a helper application, although we

implemented browser plug-ins and, even, a Java applet (see Section 5.1.4). The type of the

helper application started by the browser is determined by the usual MIME mechanism. The

contents of the first segment of the multipart document is now passed as an argument to the

video client. This content enables the video client to actually establish a link to the video server,

an IP address specified in the metafile. The metafile specifies also the clip location(s) on the

server. In addition, for certain type of contents, the metafile contains a lookup table providing

translation between the frame numbers and the actual file offset on the server. This information

supports the codec-independent, random access capability of our VoD architecture.

20

NPAC VoD Database Query Results:

SEAR* FOR: Clips that certain «points like *REEECCA*
FROM ARCHIVE ID; 5 ,
ENCODING: MPEG1

Yon have searched for: REBECCA

IF this phrase has multiple occurences, you «an start video playback at any of the associated
time codes.

If «ay dip is available on more than one server, yon may select a video server to deliver the
clip.

All clips located in Motion Pictures archive
Encoding for all dips: MPEG1

Tide ^Duration:
:

j -135 mm 28 sec.

Specify; Another Search

JJ47mir>40see. WA .*

Server Action!

|Wayne 3 , PiAY 1

47 mm 42 sec
47 min 50 sec.

* ~ 49 min 32 sec
Plmas« nportproblems to NPAC 149 mm 49 sec
Martk Podgemy <mca*k®n»ae.s*r.4sdtf>
LasiMadifiedon Fti Aug 16 12U2-.S6 EDT1996

Figure 3.5. Hit list of video clips returned by the database back-end.

After the video client establishes a link with the server, video playback continues independently on

the Web browser. This flexibility is one of the reasons we prefer and recommend the helper

application model over the plug-in model for video clients. Most of the clients we implemented

support fully interactive playback, i.e., they implement VCR-like controls with PAUSE, RESUME,

and SEEK buttons. Seek functionality is supported using the offset tables mentioned above.2

The second section of the multipart document contains contents of the time-stamped document

associated with the selected video clip. This is illustrated in Fig. 3.6. The time stamping

information is preserved and can be used as an alternative method for random access. The user

might want to skip to a particular part of the video clip, based on the textual contents presented to

him by the search engine. He/she does it by clicking the link symbol next to the phrase (see Fig.

3.6). In response, the search engine returns an abbreviated metafile which is passed to the

2 For some implementations of decoders (for instance, the ActiveMovie MPEG decoder), random access is supported
even without the frame-file offset translation table. See Sec. 5.2.10 for details.

21

existing instance of the video client. The client stops the current playback, searches to the

requested stream entry point, and resumes playback from there.

22

Figure 3.6. Video client and random indexed video stream access.

23

The above description of the data flow pattern in our video server does not cover details of the

protocol used by our video clients and video servers to communicate. This subject is covered later

in the report.

3.2.4 Contents creation service
Implementation of a contents creation service for the video server was one of the explicit project

requirements. The service we created has the following features:

1) Analog video sources supported by the system include VHS and S-VHS tapes,

Betacam tapes, and a satellite link.

2) The basic encoding used by the system is MPEG1. We experimented with Motion

JPEG and proprietary SGI formats; but this work was discontinued as the position

of MPEG1 stabilized as a video encoding standard. The MPEG1 encoder we

installed is a real-time hardware solution. In addition, we have the capability for

real-time encoding to the Indeo 4 format. But although Indeo 4 is a quite popular

Intel video codec, it is not a standard.

3) For low bitrate video streams, we implemented MPEG1-to-H.263 conversion

software. Similar to MPEG1, H.263 is an international standard. We implemented

most of the H.263 codec software and the entire conversion utility.

4) The content creation system extracts closed-captions from the encoded video

stream concurrently with the encoding process.

5) The entire process of contents creation has been automated. The system is

completely distributed and, once started, performs the entire procedure of video

stream and metadata insertion into the system repositories.

Contents production is time consuming and rather tedious, consisting of tasks such as digitization

and encoding of video data, metadata creation based on video content, or copying video files to

remote file systems on Video Servers. The automation speeds up this lengthy process as well as

maintaining consistency between VoD file servers and a metadata database. The automation

begins from the capturing of the video material from live source: satellite or TV feed, video

camera or VCR. Automated contents production updates the database and a Video Server file

system each time a new video clip is digitized. Also, this process will digitize, compress and copy

a video file to a Video Server, as well as parse the video file to obtain additional metadata

information, allowing content-based searches. All metadata created during the process is inserted

into the database.

24

The modular structure of the contents production service is depicted in Fig. 3.7. The service

consists of the following modules:

CaptUTje video
2»äiä _.
t.. -«itaw»

digitizec
fVideo.."
compressoF

compressed video data

I
Video
parse

analog
video

dose -
caption
decode

close
captior
text

parser

time-to-offset fill *
Close
captior close caption fill

Figure 3.7. Block diagram of the automated contents creation service 3

Analog video sources: There are two video tape recorders (VTR) and one

satellite receiver in the system. Both VTRs are computer controlled, i.e., they

connect to a PC or UNIX workstation via a serial port. All aspects of the VTRs

operation can be controlled from the encoding workstation via special drivers.

The most basic remote control functionality includes tape movement control and

tape-counter control/retrieval. Computer control of VTRs is standardized, and the

interface is known as SONY 9 pin. The drivers for most high-end VTRs can be

purchased from a handful of companies. The driver we installed, SoftVTR from

Moonlight Enterprises, is available for both PC and UNIX platforms. The two

VTRs installed in the system are respectively JVC model BR-S822UJ for VHS/S-

VHS tape standard and SONY Betacam model BR-S822UJ for Betacam tapes.

Both VTRs are studio quality and extremely reliable. They support all the

functionality needed to provide clean analog video signal for the encoders,

including tape pre-roll.

Satellite input comes from a satellite dish installed at the Newhouse

telecommunication facility at Syracuse University. The antenna receives Galaxy V

satellite signals. The multi-transponder signal is connected to a Drake satellite

receiver model ESR 1252 installed in the Newhouse facility. Output of the

receiver is converted from coax to multimode fiber and back by a pair of the

Drake converters model 1252. A fiber link transports the video signal from

Newhouse to NPAC. The receiver signal carries only programming from one

transponder. To have the ability to switch between transponders, we installed a

25

modern connection between the encoding workstation and the Drake satellite

receiver. A simple software driver enables us to change transponders to gain

access to multiple programming channels available on Galaxy V. Galaxy V

carries, among other channels, Reuters News Service for broadcasters; thus, the

satellite link gives us access to unedited news material.

MPEG1 video encoder: The process of encoding MPEG video is so CPU

intensive that its software implementations are possible only in batch, non real-

time regime. Hardware support is necessary for real-time encoding. We tested

and evaluated a number of products before making a purchase decision. One of

the most important factors in our decision was the issue of compatibility.

Nominally a standard, MPEG1 was sufficiently immature in the early periods of

this project- to cause interoperability concerns. Consequently, we linked our

decision regarding an MPEG encoder with availability of inexpensive decoders

from the same vendor. Further, as described in Section 5 on the implementation

of a hardware-supported video client, we requested that the decoder vendor

make available to us an SDK so that we could proceed with the development of

the networked video client. The only company responsive to our requests was

Optibase, an Israeli company with a US base in Dallas, Texas. Since the

Optibase encoder is one of the most highly regarded on the encoder market, we

decided to acquire it.

The Optibase MPEG LabSuite encoder consists of three ISA cards: the video

encoder based on the C-Cube MPEG1 encoding chip, a card combining an

MPEG1 audio encoder with an MPEG1 audio and video decoder (PCMotion), and

a card for the capture of digital audio (D-5000). The hardware is driven by

Optibase integrated encoding software. Written entirely as an application (without

drivers), version 3 of the MPEG LabSuite software runs under both Windows 3.11

and Windows 95. Our setup still runs under 16-bit Windows, since this setup

proven to be stable and entirely sufficient for our needs. Optibase MPEG

LabSuite cooperates with SoftVTR MCI driver for VTR control. The encoder,

installed in a COTS Gateway 100 MHz Pentium with SCSI disk drives, supports

real-time MPEG1 encoding with stream bit rates up to 2 Mbps. Such a bitrate

corresponds to VHS quality and is sufficiently good for viewing and as a source

for low bitrate re-encoding. For higher bit rates, we observed instabilities on the

encoder operation. MPEG LabSuite software supports a batch encoding mode,

i.e., it is possible to select multiple fragments of the tape for encoding and start an

automated procedure.

26

The software environment on the encoder includes two other important elements:

the Netmanage NFS server enables us to export the encoder disks so that the

contents can be transferred easily to video servers, and the Symantec

ScriptMaker utility. The role of ScriptMaker will be described later in this section.

Closed-caption decoder: Captioning is an electronic (or manual) process which

converts the audio portion of a television program into written words. Unlike

subtitles, captions are designed specifically for the deaf and hearing-impaired;

thus, in addition to on-screen dialogue, significant sound effects and off-screen

nuances might be described.

The NTSC broadcast signal consists of 525 lines at 30 frames per second.

Individual images forming the motion picture are divided by a 21-line-wide bar

called the Vertical Blanking Interval (VBI). VBI can carry additional information,

usually used for the synchronization purposes. But Electrical Industries Associate

(an American standards body) has defined a standard for the transmission of

closed-caption characters in the 21st line of the Vertical Blanking Interval. This

service is also known as the "Line 21 service." This standard allows for two

characters to be stored for each video frame, for up to 60 characters per second.

There are 4 closed-caption channels, 4 text channels and one Extended Data

Services channel (XDS). Closed-caption channels as well as text channels may

carry characters in 4 different channels, each in a different language. Extended

Data Services have been designed to carry various kinds of information such as

weather conditions, general information about the current television program

(summaries, time to end, copyright, author, etc.). However, only one closed-

caption channel is currently used by broadcasters.

Closed-captioned video essentially carries the entire audio layer in textual form.

The contents creation service uses an industrial closed-caption decoder from

EEG Enterprises, model DE 241 DR to extract captions from the video signal and

translate them into ASCII code. Via a serial port, the captions are transferred to

the encoder machine. We implemented a software module to record the captions,

parse them into sentence-size chunks, and time-stamp them. The resulting

caption file is inserted later into the back-end database as a part of the metadata.

The process of video encoding and caption decoding is concurrent, as explained

in the next subsection.

Automation of the contents creation procedure: The elements described

above can function as separate entities. In our initial implementation, the video

encoding and closed-caption decoding processes were run sequentially. Since

27

each of these processes is real time, we found this solution to be quite inefficient.

Further, after the video has been encoded and caption extracted, it was still

necessary to manually transfer video files to the video server and to construct

metadata records in the database.3 This process was intolerably tedious and

error prone even in a research prototype. Thus, we designed an automated

system. This task was not entirely trivial since we were dealing with an extremely

heterogeneous system and with monolithic applications without any

communication capability. The solution had two parts: a ScriptMaker driver which

controls both the MPEG LabSuite and caption parser on the encoding machine,

and a UNIX-style daemon continuously running a watchdog service looking for

new digitized video files.

Symantec's ScriptMaker is a rather obscure scripting language that has the ability

to mimic Windows desktop controls typically operated by mouse and keyboard.

Any kind of API would be preferable to this solution; but in the absence of better

tools, ScriptMaker provides a methodology to start and control monolithic

Windows applications. We used it to operate concurrently the MPEG LabSuite

encoder and our own closed-caption parser. This solution, although revoltingly

inelegant, gives us the benefit of a 50% decrease in content preparation time.

Technically, the ScriptMaker interface is a simple form with fields corresponding

to typical input to the encoder and closed-caption parser. The Go button starts the

entire process of encoding, during which the original applications are invoked,

parameters set up, and the encoding process started. Upon completion of the

encoding process for each clip, the ScriptMaker utility writes a file with partial

metadata to the encoder machine's storage. Appearance of this file signals the

watchdog service to start processing the newly created files. The daemon runs

the following steps:

1) The MPEG file is run through an indexing utility. This process constructs the

frame-to-file offset lookup table. The table then becomes a part of the

metadata being prepared for the database upload.

2) The video file is copied to the designated location in the video server file

system.

3) The metadata connects to the suite of CGI scripts normally used to run the

VSAM system (see Sec. 3.2.1) and inserts the metadata into the database

back-end.

3 We attempted video encoding directly to a network disk-drive located on the video server. But this did not work well.

28

Apparently, the MPEG encoder is extremely sensitive to any delays in moving its data over the ISA bus, and the CPU
overhead involved with network transport was sufficient to destabilize it.

29/30

4. Video Server Implementations

Originally, we planned to investigate two different hardware architectures as video server

platforms. Our initial choices were nCUBE2, an MPP (Massively Parallel Processor) with

hypercube interconnect, and the SMP (Symmetric Multiprocessor) SGI server. Our first video

server implementation was written for the SGI platform. Also, we expanded the configuration of

our nCUBE machine, investing significant amounts of time and human resources in an nCUBE

prototype video server. As described in detail in Section 4.2 below, we found the nCUBE2 system

software unsuitable for supporting a video server; thus, the server implemented for this platform

did not reach application phase. We have since turned to the idea of a video server built from

inexpensive COTS components, clustered for performance. This led us to the implementation of

the video server for Windows NT platforms. Our production video server in NPAC consists of a

cluster of very high multiprocessor Windows NT servers based on the Pentium Pro CPU.

The following section is structured as follows: Section 4.1 describes the early design of the video

server for single CPU and SMP machines. This architecture was implemented on both SGI and

NT SMP platforms. Section 4.2 describes architectural changes made to the Windows NT-based

servers to improve their performance and scaleabilrty. This section also describes the architecture

and configuration of the current NPAC production video server. Section 4.3 summarizes the

design principles of our distributed video server architecture. The software for this architecture

has been implemented only in part during the project and is currently being used as a research

prototype at NPAC. Finally, Section 4.4 provides a detailed account of the effort directed towards

implementation of the nCUBE-based video server and explains the reasons for the termination of

the project.

4.1 Eariy server designs

4.1.1 Network Dataflow in a VoD System
Conventionally, dataflow in a VoD system moves from the video server to the client.4 The client

requests data from the server, which results in data being streamed from the server to the client.

There are two regimes of data being streamed from the server to the client: the pull regime and

the push regime.

■ In the pull regime of dataflow, the VoD client determines how much data is

needed and sends a request for that amount to the VoD server. The VoD server

responds with the amount of data requested. The client then receives this data in

4 A generalized video server of the future will have capability to "capture" live video streams, in which case the traffic
patterns for a video server will be more symmetrical. This capability will be added in the framework supported by the
RTSP (Real Time Streaming Protocol)

31

a variable amount of time and requests more data from the server. This cycle

continues until the whole movie is played out. The data, thus, is being pulled on

demand by the client.

■ The push regime is orthogonal to the pull model. Here, the client does not request

any data from the server; rather, the data is furnished by the server on a

continuous basis. This form of data flow is especially suitable for Constant Bit

Rate (CBR) coded movies. By this we mean that a certain amount of data is

always consumed within a certain time period. An example of this encoding is the

MPEG1 video standard. This model can be applied also to a Variable Bit Rate

(VBR) encoded stream since the server can transform the VBR stream into a

CBR stream and transmit the data at this rate.

There are fundamental differences between the push and the pull model. In the pull model, data

transfer is initiated at request of the receiver. Hence this can be classed as a receiver-initiated

mode of data transfer. The push model of data transfer, on the other hand, is sender initiated.

Here, the sender (e.g. a VoD server) determines when and how much data is to be sent.

The pull model contains a significant performance penalty since two communication transfers are

needed to transfer a unit of data: a request for the data and the actual data transfer. In a VoD

system, we are dealing with isochronous data, i.e. data which has strict limits on when it needs to

be delivered and which must preserve the timing relation contained within the data. Thus the

request-response structure of the pull model introduces an undesirable delay.

The push model, on the other hand, exploits the properties of isochronous data (i.e., data

transmitted by the server at a given rate, on the assumption that it is being consumed at the same

rate). This assumption holds for CBR encoded streams and needs to be extended to VBR

encoded data. By using the isochronous properties of the data, the push model eliminates the

traditional request-response model of data flow, thus eliminating delay and preserving network

bandwidth.

As reported in detail in Appendix 1 , we developed a methodology to efficiently transport VBR

data over CBR channels. Thus, we believe that the push regime can accommodate both CBR and

VBR traffic. In addition, we observe that the push regime is consistent with the two fundamental

components of the Integrated Services Model for Internet: multicast and Quality of Service (QoS)

support via the Reservation Protocol. For multicast, the push regime is obviously the correct

solution. For the Reservation Protocol, even though the client issues reservation requests, the

traffic descriptors must be provided by the sender. This is compatible only with the push regime of

data transport.

32

It is important to note that the push regime does not preclude interactivity and random access

capability. It is still possible to pause and randomly access the video stream. It is possible also to

extend this capability to muiticasted sessions, which is described in Section 5.5.

Consequently, all video servers designed at NPAC use the data-push regime for video data

transport.

4.1.2 Video Server Configurations
Video servers are basically large repositories for data and information which are provided on

demand to clients. The VoD server architecture can be defined by the way the data is stored

within the video server. Data can be stored locally within a server or can be distributed across a

large number of servers. Thus, two distinct methodologies exist for video server configuration:

■ Autonomous Servers: Video servers of this type can be viewed as stand-alone

entities since they store encoded streams locally to themselves and. thus, do not

require the cooperation of other servers to serve a VoD client. The actual physical

implementation and the logical implementation of the video server are relatively

the same. The server usually consists of a CPU, a storage medium (which can

consist of a standard storage hierarchy), and a network interface.

■ Distributed Servers: Instead of storing entire video streams locally, encoded

streams may be spread out among a larger number of video servers which are

usually distributed over a local (but can be a wider) area network. Thus, in order

to serve a VoD client, a set of servers need to cooperate. The client may need to

be aware of the topology of the VoD servers. The encoded bit stream can be

stored in any granularity throughout the system.

Autonomous servers suffer from a well-known problem associated with centralized processing,

i.e., the common point of failure. In this case, when an autonomous server fails, all the clients

being served by it are affected. In the case of the distributed paradigm, if we assume that some

loss of data can be tolerated at the cost of reduced Quality of Service (QoS) to the clients then

when a server fails all the clients being served by the distributed system are affected as they all

have a part of the encoded stream stored on the faulty server.

One of the driving forces behind the distributed server paradigm is the concept borrowed from

Redundant Arrays of Inexpensive Disks (RAID). In order to serve a large number of clients from a

VoD server, the server needs to have a large data bandwidth from the storage system to feed the

demand from the VoD clients. In the field of scientific computing this large demand for bandwidth

was provided by the RAID paradigm. For a VoD server, however, it does not appear that providing

a large data bandwidth will necessarily lead to a larger number of clients being serviced. This is

due to the fact that RAID was designed for a small number of large bulk data transfers which

33

achieved the higher bandwidth. A VoD system, however, must service a large number of relatively

low bandwidth requests. In the case of MPEG1 encoded video, this is typically about 1.5

Mbits/sec. Thus we might achieve better results by replicating autonomous servers to provide

service5.

The distributed system suffers also from the overhead associated with coordinating resources

which are distributed across to service a single request. This overhead could be in terms of

network bandwidth (by the use of an extra messaging protocol) or CPU usage. Alternatively, if the

client needs to be aware of the server topology, the design may be harder to port to other network

topologies. Thus, the best approach appears to be the autonomous server paradigm combined

with the optimizing of each server to provide the best service it can by itself. These servers can

then be distributed around a wider area network which can then provide service to VoD clients

more efficiently. The VoD client can find the closest server storing a specific stream and fetch it

on demand from that server.

The philosophy described above has driven our development efforts. Few generations of

autonomous servers have been implemented. Next, we moved towards the model of the clustered

autonomous server.

The server model for nCUBE2 was somewhat different. The basic difference between the nCUBE

and SMP platforms is that nCUBE can be seen a "shared disk" architecture. Such an architecture

potentially permits much more flexibility for a video server. We discuss this issue more thoroughly

in Section 4.4.

4.1.3 Software Architecture of a VoD Server
The video server must be able to service multiple client requests simultaneously. This might lead

us to investigate the potential for exploiting parallelism at the server side, which is discussed

further in later sections. A video server should be capable of pumping streams requested by

clients.. It should provide also basic interactivity, i.e., support operations such as stop, rewind, play

a video, and, possibly, provide random access to the video stream with some sort of fast-forward

preview. Thus, the video server should provide two basic functionalities:

■ A data pumping module

■ An interface to enable interactivity with the stream.

An interface is defined to enable the client to interact with the stream in a consistent manner. A

consistent interface leads to cross platform development, i.e., clients can be developed on

5 Recent research in parallel I/O systems indicates that without complete re-engineering of the underlying file system
structure, parallelization of the I/O operations more often than not does not result in any performance benefits. We
believe that the issue of file system support for video is an open research issue.

34

multiple platforms and communicate in a predictable way with servers built on multiple platforms.

This leads to transparent execution between cross-party platforms.

Concurrent Video Server

Video
Client

Video
Client

Figure 4.1. Early software architecture of the video server

The architecture of our early video server design is shown in Figure 4.1. The server contains two

distinct logical-- the data and the command ports. The data link is logically a unidirectional link

with data flowing from the server to the client. The command link is a bi-directional and is used to

implement the application level interface between the server and the client. The data link was

chosen to be unidirectional for efficiency as no parsing of packets need to be performed at the

client end.

4.1.4 Optimizing the VoD Server
Once the architecture of the video server had been decided, we needed to optimize the VoD

server. Each video server must consist of three basic elements:

■ A Central Processing Subsystem to handle requests from clients and other

management functions.

■ A Storage System to store the streams. The storage system can be flat or can be

a hierarchical storage system.

a A Network Interface used to communicate with the clients and provide the basic

service.

35

One approach to optimizing the whole VoD server is to optimize each element locally with the

hope of achieving a globally optimal solution. The following sections outline the issues involved in

optimizing each of these subsystems.

4.1.4.1 Processing Overhead
It is clear that some processing will be involved at the server end to manage the requests from the

VoD clients. The server needs to order disk and network I/O in a fair manner for the clients it is

serving. It also needs to allocate fairly and efficiently the limited CPU time it has at its disposal.

Here we must establish the fact that, because the computing power available to the server is

limited, a point will be achieved after which no further clients can be serviced without degrading

the performance of the currently active sessions. If this situation arises before the storage or the

network system is loaded, we say that the server is "computer bound." Since the server needs to

manage requests concurrently from multiple clients, it is advantageous to develop a multithreaded

server to exploit the inherent parallelism present.

Parallelism can be exploited at various levels. A VoD server can exploit parallelism ranging from

fine grained to coarse grained. Issues involved with exploiting parallelism are discussed next.

■ Fine-Grained Parallelism: In this model of parallelism, the ratio of computation

to communication is quite small. For example, in the context of the VoD server,

there might be a single thread for each of the two communication channels

between the server and the client, that is, one thread each for the data channel

and the command channel. Thus, the overall number of threads executing at the

server for N clients is (2*N)+2. There are two extra threads enabling the server

to accept a new connection. With a large number of clients, the number of

threads executing at the server will rise quite sharply.

One drawback of this approach is the context-switch overhead, which results

from the threads being scheduled. This might tend to overload the system with

the managing of threads. Thus, the VoD server may become CPU bound while

supporting only a small number of clients. It should be noted that the command

thread does relatively little work compared to the data pumping thread.

The advantage of using fine-grained parallelism is the overall reliability of the VoD

server. In the case of a runaway client, which might cause either of the data or

command threads to crash and die, the VoD server can still provide unhindered

service to the other clients.

■ Medium-Grained Parallelism: In this model, the amount of computation is

slightly more with respect to communication, etc. In the model of the VoD server,

since the command thread performs relatively little work compared to the data

36

thread, it might be sensible to have only a single thread which manages

command requests for all the clients. In addition, we have a multiple data threads,

that is, one for each client. Thus, for N clients, there will be N+3 threads executing

at the server side.

This is substantially less than the fine-grained model and will lead to a reduction

in context switches. This might lower the CPU utilization at the server, lowering

the probability of the server system being computer bound. Also, it might allow

support for more clients per server, thus raising the efficiency of the system.

However, a drawback associated with this approach is reliability. The VoD server

will not be as reliable as the fine-grained model. For example, if a stray client

issued a spurious request on the command link resulting in the server command

thread crashing, then all the clients would be affected since there is only a single

thread to manage all the clients. In the case of data thread crashing, though, the

server will still be able to provided an unhindered service to remaining clients.

■ Coarse-Grained Parallelism: In this model, the amount of communication, etc.

is relatively small compared to the computation. In the VoD server model, we

might have one data and one command thread for all the clients. Hence for N

clients, the server will consist of only 4 threads. Context-switch overhead will be

virtually eliminated compared to the other two schemes. However, this model has

some drawbacks.

The first drawback is reliability. This provides the least reliable service when

compared to other schemes because either of the threads crashing will result in a

disruption of service. Another drawback is that the complexity of implementing the

server increases. because the server needs to perform

multiplexing/demultiplexing of data and command dispatches.

Taking all these issues into account, our early implementation of the video server incorporated the

fine-grained model of parallelism. The main reason behind our decision was that reliability of

service was deemed an essential factor at the cost of a slight performance penalty. In the later

versions of the server, we moved to coarse-grain parallelism6, taking benefit of certain system-

level solutions offered by the Windows NT system.

4.1.4.2 Storage System Issues
The pros and cons of using RAID have been discussed previously in the subsection on a

distributed VoD server (4.1.2). As noted, RAID systems are not suitable for VoD systems. The

37

performance of the storage subsystems is critical to the efficient functioning of the VoD server.

The storage system needs to support multiple I/O requests and provide the data back to the

server so that it can be pumped over the network to the client.

In order to increase the bandwidth from the I/O subsystem, asynchronous I/O requests are

issued. Thus, anticipated demands for data can be queued to disk so that the data is available

when it is needed by the clients. This pre-fetching of data before it is needed results in seamless

flow of data and the effect of jitter observed by the client. This interleaving of storage and network

I/O is dealt with in later section.

Due to the fact that most of the video streams play continuously, pre-fetching is an efficient and

effective way of screening disk I/O latency. In the video servers we have implemented, we have

never observed our system to become disk I/O bound. This conclusion contrasts with the popular

belief that the video server's performance is critically dependent on I/O performance.

4.1.4.3 Network I/O
Network I/O is the last link in the chain for data to be delivered to the client. Traditionally, blocking

calls to the network were made when the server had to wait for a request to complete before

continuing execution. However, in the case of a VoD system, we are dealing with isochronous

data which has certain inherent timing relations built in. This property of isochronous data can be

exploited to perform asynchronous network I/O. This should improve further the performance of

the network I/O subsystem since the server can queue all the network requests without blocking.

A main component of the network I/O subsystem is the transport protocol. Practically this should

be a light-weight, high performance protocol. Data delivery does not have to be guaranteed, but it

should be ordered. For the early implementations of the video server at NPAC, we chose the TCP

protocol running on standard IP networks. This protocol guarantees error-free data delivery.

Although this was needed, it was chosen for simplicity in the prototype system. The TCP protocol

is a relatively heavy protocol; and it might be better to use a lighter weight protocol, like UDP.

4.1.4.4 Interleaving Disk and Network I/O
To further improve the throughput of the video server, the network and storage system I/O were

interleaved and a dual buffering scheme was used Initially, the first buffer is filled from the disk.

Then, in the next time slice, this buffer is written out asynchronously to the network while the next

block of data is fetched from the disk asynchronously into the second buffer (pre-fetching of

data). In the next time slice, the second buffer of data is written out to the network while the first

buffer is filled with the pre-fetched data.

6 More precisely, the production server has an additional independent thread handling disk I/O operations. It is also
possible to start a pool of worker threads, to take advantage of multiple processor on an SMP server.

38

This scheme improves overall throughput of the storage and network subsystem by the pre-

fetching of data and asynchronous I/O requests. Thus, the whole VoD server system supports the

asynchronous I/O model of execution.

WS; State Transition Diagram
LoadttMte

B

r-i

|\rl~>

Figure 4.1a. Stale diagram for a video server with random access capabilities

4.1.4.5 State diagram of the Video Server

We have designed all generations of our video server to handle fully interactive video playback. In

addition, if the structure of a media stream supports multiple entry points, the server is capable of

random access to such streams. As described in Section 3, our system uses this capability to

provide indexed access to the video.

A server must implement a quite complex state machine to provide random access. The state

machine of the video server is depicted on Figure 4.1a.

4.1.4.6 Performance Estimates for a PC-based server.
The VoD server with ail elements described above was implemented on the Windows NT

operating system running on a Pentium 90 PC. The configuration consisted of two Ethernet

interfaces connected to an Ethernet switch, providing a peak network bandwidth of 20 Mbits/sec.

Storage consisted of a set of four drives configured as a striped logical volume using standard

Widows NT system tools. The server was tested in this configuration with multiple client access

and was able to saturate the network with 10 clients playing MPEG1 streams. The effective

39

network usage was 15 Mbits/sec. However, the network is saturated at this level due to the

overhead associated with the TCP protocol.

CPU utilization vs. number of clients was nearly linear as the number of clients increased. This is

expected since the fine-grained model of parallelism was implemented.

At this stage of the project, there were not enough network resources available to attempt more

that 10 clients simultaneously. The implemented server provided seamless service to the clients.

The disk load was relatively light since the asynchronous I/O requests were handled by the

operating system. Standard optimization was used by the operating system to reduce the seek

time for disk accesses and to increase throughput. We estimate that the current server can

support 20 MPEG1 clients if enough network resources are available. We also estimate that the

server will be CPU bound at this level of use.

Our analysis documents that, using careful design principles with independently optimized server

subsystems, it is possible to achieve respectable performance of video servers even on COTS

equipment. The architecture described above was also implemented on the SGI platform

(described below). An improved server architecture has been implemented on Windows NT

platform as a production server for the project (see Section 4.2). We have used this relatively

stable architecture as a starting point for the design of a distributed server (Section 4.3).

4.1.5 Server implementation on SGI platforms.
We also implemented the architecture described above on the SGI platform. The port has been

relatively difficult since the IRIX operating system is not multithreaded, in spite of SGI's claim. For

SGI SMP servers, multithreading in the video server is critical for efficient system utilization and

load balancing. The server architecture described above benefits from concurrent processing. For

symmetric multiprocessors, this benefit is even higher as different threads can be executed on

physically different CPUs. Multithreading is the simplest way of implementing a truly concurrent

server. On SMP machines, we rely on the operating system's scheduling to achieve load
balancing.

As mentioned above, IRIX does not support kernel multithreading in the strict sense (as defined in

DCE). One can, however, use an SGI-specific system call which gives the developer the ability to

create a new shared group process. The sproc system call is a variant of the standard fork call.

Like fork, the sproc call creates a new. process that is a clone of the calling process. The

difference is that after a sproc call, the new child process shares the virtual address space of the

parent process rather than simply being a copy of the parent. The parent and child each have

their own program-counter value and stack pointer, but all the text and data space is visible to

both processes, as well as to multiple child processes of the same parent. The inter-process

communication (IPC) is being provided by the operating system. Thus, functionally, the sproc

40

mechanism is nearly equivalent to kernel threads, except the process switching is somewhat

heavier. This provides a basic mechanism upon which parallel programs can be built.

Using sproc, we could map the Windows NT video server architecture directly to the SGI server

architecture. However, we have encountered a number of problems in the implementation

process, the most serious being incompatibility of the SGI asynchronous disk I/O with the sproc

environment: with two -asynchronous I/O processes started concurrently in two shared s-

processes, neither returned. This has been identified as a bug in the SGI asynchronous library,

for which SGI was able to provide a system patch.

The SGI server is protocol compatible with all other servers implemented in this project. The

server is available on a 4 CPU SGI Onyx machine. Its architecture basically corresponds to the

"early design architecture" described above. No further modifications to the SGI server were made

during the project time frame.

42 Production Video server at NPAC

The production server at NPAC runs on a cluster of Windows NT machines. Before we proceed

with a description of the infrastructure, let us take a detailed look at the technical improvements

made to this server as compared to the "early" models described above. The changes were made

possible by Microsoft's introduction of the "completion ports" in their Windows NT operating

system. This facility is not available on UNIX machines yet. Note that "completion ports" are not

merely non-blocking socket calls known from UNIX and Winsock socket implementations.

4.2.1 Completion Ports in MS Windows NT

Simplicity in programming and making use of multiple CPUs simultaneously are just some of the

reasons for writing multithreaded servers. Let us consider again two models of multithreaded

servers. The models described above correspond to the high and low granularity parallelism

described above in Section 4.1.4.1, with the extension that the 4 threads in the coarse parallelism

model are replaced by a pool of available worker threads.

In the first model, the main thread creates a thread for handling each client. This way, each thread

is responsible for taking care of the state of a single client, which makes implementing the server

much simpler.

In the second model, a pool of worker threads is created to handle client requests. The main

thread then does a select on all the connected sockets and passes any new requests to the

worker threads to handle.

These two models have been used in many servers, but they do have problems. The first model

does not scale well for high number of active clients. Creating multiple threads takes advantage of

41

multiple processors but uses excessive system resources, thus causing scheduling overhead. As

the number of threads increases, the system spends too much time context-switching threads in

and out of their running state. This is one example in which a multithreaded server on a SMP

machine may prove to be more inefficient then a single-threaded server on a single processor

machine.

The second model suffers mainly from the lack of fairness in servicing clients. A very active client

may block other, less active clients. Although this problem can be solved by an application level-

scheduling algorithm, it does make the main thread and the worker threads more complicated

than they should be. The second model does not use as many system resources as the first, but it

still has to make a context-switch for every request between the main thread and a worker thread.

This is not a big problem for infrequent requests; but as the frequency of requests increase, the

overhead of context-switches could overwhelm the system.

We can now see the possibility that a multithreaded server could be inefficient. Therefore, to

produce optimal performance, the programmer must design the server very carefully.

Asynchronous I/O is a very powerful mechanism for any real-time application. It is favorable for a

real-time server to use asynchronous I/O when the completion of an I/O instruction may take an

undetermined amount of time. Using asynchronous I/O, a server can queue I/O (such as reading

on a socket, waiting for a request from the client) and continue processing without having to wait

for the completion of the call.

In the first model described above, use of asynchronous I/O might not be necessary; but the

design of the second model mandates that we use asynchronous I/O. We will now discuss a new

asynchronous I/O mechanism that can be used to better implement the second server model.

A mechanism called "l/O-Completion Ports" was introduced by the Microsoft Corporation in their

Windows NT 3.5 operating system. I/O completion ports are used with asynchronous I/O, better

known as "Overlapped I/O" in the MS Windows development environment. During or after the

creation of an l/O-Completion Port, one or more file handles are associated with the port handle.

After an asynchronous I/O operation completes, an I/O completion packet is queued to the I/O

Completion port associated with the file handle. At this time, if a thread is waiting for completion, it

is awakened to handle the completion of the asynchronous I/O call.

To use a completion port with a file handle, the file or socket must be created with the

FILE_FLAG_0VERLAPPED flag. This allows asynchronous calls to be made with the file handle

and allows the file handle to be associated with a completion port.

A completion port is created with a call to CreateioCompletionPortO. This function is also

used to associate an open file handle with an I/O completion port opened earlier. This allows us to

dynamically associate new file and socket handles with an I/O completion port.

42

A thread capable of handling a completion, calls the GetQueuedCompI eti onstatus () function

to wait for an I/O completion packet to be queued to the I/O completion port, rather than waiting

directly for asynchronous I/O to complete. If there are no completion packets queued at the port,

then the thread blocks and waits to be awakened by the system upon the arrival of a completion

port. Threads that block their execution on an I/O completion port are awakened in last-in-first-out

(LIFO) order, while I/O requests are serviced in first-in-first-out (FIFO) order. This means that

when an I/O completion packet is queued to the I/O completion port, the system releases the last

thread to block its execution on the port. In this way, a context-switch can be avoided, the cache is

not invalidated, and the system can make efficient use of its processing power.

One of the parameters passed to CreateloCompletionPortO is the maximum concurrency

level. This value is very important because it limits the number of runable threads associated with

the I/O completion port. When the total number of runnable threads associated with the I/O

completion port reaches the concurrency value, the system blocks the execution of the threads

until the number of runnable threads associated with the I/O completion port drops below the

concurrency value. The best concurrency value to specify is the number of CPUs on the machine

if the computation for all transaction will take the minimal amount of time. However, if most of the

transaction are computationally intensive or have to wait for other events, then a larger

concurrency value would be beneficial.

The most efficient scenario occurs when I/O completion packets are waiting in the queue, but the

concurrency limit has been reached, with possible threads being blocked. At this point, if a running

thread calls GetQueuedCompIetionstatus(), it will immediately pick up the queued I/O

completion packet. No context switches will occur, because threads are used in last-in-first-out

order.

If a concurrency value of zero is specified, the system makes an intelligent choice of the number

of threads to use for handling completions concurrently. In this case, the system will allow a

maximum concurrency of handling completions to be the total number of threads that are running.

This makes implementation easier for the programmer, who can rely on the system to

automatically increase or decrease the concurrency level.

A thread which has access to the I/O completion port can call the

PostQueuedCompletionstatusO function to queue its own special-purpose I/O completion

packets to the I/O completion port without making any asynchronous I/O calls. This is a very

useful tool for notifying worker threads of external events. For example, a worker thread, which is

executing a tight loop to handle completions, can be notified to get out of the loop and stop

execution.

An I/O completion port is freed when there are no more references to it. The port handle and

every file handle associated with the I/O completion port reference the I/O completion port. To

43

free a completion port, all the file handles must be closed along with the port handle by calling the

CloseHandleO function.

If we were to implement a multithreaded server using I/O completion ports, our main thread would

create an I/O completion port along with a pool of worker threads to wait on the port. This model is

similar to the second model discussed above, but it would be more efficient because it does not

suffer from the context-switching overhead. A worker thread waiting on the port would find a

completion and service it.

We mentioned that fairness is the main problem of the second model. In this model, fairness is

built in to the completion port mechanism, since I/O completions are satisfied in FIFO order.

4.2.2 Production version of the Windows NT Video Server
The current production version of the server has been implemented using completion ports, as

described above. The server has been tested for almost a year and has proved to be rather

stable. While its implementation is "bare bones" (no server setup and management tools), the

server has been a workhorse in the project, enabling us to work on implementation of other parts

of the system, such as video clients and the metadata database.

The current video server facility at NPAC, built as a result of this project, consists of the following

elements:

1) A small video server on which system modifications are tested before going into

production mode. This server is based on a 2 CPU Micron PC. The server is an

EISA/PCI machine with dual Pentium CPU running at 133 MHz. The memory

configuration is 64MB RAM and 512KB secondary cache. Disk storage consists

of a 2GB IDE system disk and a 5 disk array connected to an ADAPTEC SCSI

controller. The disks are SCSI2, single-ended, narrow drives with total capacity of

-18GB. They are configured into 3 logical NTSF volumes, two of them striped two

ways. Network connection is provided by a 10Mbps Ethernet EISA 3COM

controller and by an ATM adapter. The ATM card is the 155 Mbps (OC3c) PCI

card with multimode fiber interface from FORE Systems, controlled by FORE

driver version 4.0. This version of the supports only LANE 1.0 (no support for

FORE SPANS or Classical IP). The operating system on this server is Windows

NT 4.0 Workstation.

2) The main video server consists of two ALR servers, which are 4 CPU EISA/PCI

machines with 4 200 MHz Pentium Pro CPUs each. Memory configuration is 256

MB RAM and 512 KB secondary cache per CPU. Disk storage for video contents

is provided by 3 Buslogic fast/wide SCSI adapters, connecting -200GB of the

fast/wide Seagate 10GB drives. Each machine is networked two ways: via 100

44

Mbps Ethernet card and via the FORE ATM OC3 adapter, identical as the one

used in the test server. The operating system is Windows NT 4.0 Server.

For networking details, see Section 7.x.

All servers can run single or multiple copies of the video server described above. The entire

facility has been integrated after this project was formally completed. There are no performance

data available at this time. It is our intention to complete the implementation of the distributed

server (see next Section) and install it on the infrastructure just described.

43 nCUBE2 Video Server

The nCUBE2 multiprocessor was our primary target for the parallel server platform. An nCUBE2

machine has been installed in NPAC since 1993. The platform has been configured for a parallel

database server, i.e., it had significant storage and memory. External network connectivity was

weak, but we have acquired a number of network adapters to remedy this, as described below.

In theory, the nCUBE2 platform seems ideal for implementation of a video server. The salient

points of nCUBE's architecture are depicted in Fig. 4.2 below. The main processor array forms a

hypercube. Each processor sits in a vertex off a hypercube and is connected to the neighboring

vertices via a proprietary communication mesh (nCHANNEL). The nCHANNEL links in the

nCUBE2 have a nominal bandwidth of 17.5 Mbps. All processors in the main array are identical.

The NPAC machine has a 32 MB RAM per array node.

The main array does not connect directly to any I/O devices. The I/O subsystem forms an

independent hypercube with CPUs identical to the main array CPUs. Each CPU in the I/O

subsystem had 4 MB of RAM. Each I/O node was also connected to a specialized I/O controller: a

SCSI controller for the nodes serving disks and network interfaces for the nodes running the

TCP/IP stack. NPAC's nCUBE2 has 64 array nodes and 32 I/O nodes supporting SCSI

controllers. .Each I/O node was connected to two array nodes using the same nCHANNEL

technology. In addition, there were 4 I/O nodes with Ethernet adapters and 4 other I/O nodes

supporting tape backups and a VME connection to the control workstation. The 32 SCSI

controllers were connected to 96 2GB disk drives, with 3 disks per controller, for the total capacity

of nearly 200 GB.

Looking at the nominal performance numbers, this configuration is well balanced. The standard

SCSI controller is expected to pump data at 3-4 MB/s. This number corresponds nicely to the total

bandwidth of connections between the I/O node handling this data stream and the array {2*17.5

Mbps ~= 4 MB/s). The total outgoing network bandwidth was nominally too low, but it was deemed

sufficient for modest scaleability experiments. A larger number of network nodes was beyond the

fiscal capability of NPAC.

45

nCUBE Video Server Architecture

nCHANNEL:
17.5 Mbit/s EthVATM switch

/nCHi NNEL intercube intercor nect: each I/O node
V connected to two ar ay nodes

ATM client

Array nodes:
32 MB RAM

Ethernet client

I/O nodes:
4 MB RAM

Figure 4.2 Architecture of the nCUBE multiprocessor

The appeal of the nCUBE architecture is easily explained. In the preceding section we have

explained the modular structure of the video server and the asynchronous nature of connectivity

between them. On nCUBE, these server modules can be mapped onto physical processors and

made completely independent. Due to the very high level of concurrency in the video server, we

expected a significant performance from the nCUBE platform in spite of its rather outdated and

slow CPU chip. Another exciting feature was the shared disk architecture. In the distributed server

model described in Section 4.3, we worried about video contents distribution on the disk arrays

which are local to the server pumps. But, on nCUBE, multiple video-server processes running on

the array have access to all disks connected to the system. This functionality is supported via

wormhole routing of messages on the system level: the processor does not need to be directly

attached to the I/O node to be able to read its disk contents. Access to the disks is entirely

transparent. We hope that this architecture will enable us to experiment with different

configurations of the video servers and to investigate performance tradeoffs.

46

In the remainder of this section, we document the effort to realize the initial vision. The outcome

was negative since we were unable to implement a server capable of serving even one

continuous MPEG1 video stream from one network interface. We will explain in detail the reasons

for the failure in the "lessons learned" section.

4.3.1 NCUBE2 network connectivity
Our initial plan was to purchase an OC3 ATM interface that nCUBE engineers planned to feed

from 4 doubly connected I/O nodes. This plan turned out to be unfeasible because nCUBE

decided that their ATM NIC would use an ATM adaptation layer 1. This created an incompatibility

problem with our ATM infrastructure, which supports only AAL3/4 and AAL5. We have analyzed

and considered several options, including:

1) a SCSI to ATM converter. After analyzing this architecture, we dismissed it as an

ad hoc, non-scaleable solution without the mechanisms necessary to support

quality of service requirements.

2) use of a HiPPI interface and connect to NYNET via GTE switch. We found this

solution unfeasible since the GTE ATM switch only provides bridging for HiPPI

signal, whereas our project required HiPPI-to-ATM conversion.

3) use of multiple Ethernet connections to nCUBE along wfth a LAN access switch

used as a multiplexer/concentrator. We analyzed and tested the LAX20, a device

from FORE Systems and determined that, in order to have all requested

functionality, the device will need a number of improvements in software, most

notably the LAN emulation; otherwise it offers an acceptable solution which

implements server connectivity over a number of dedicated Ethernet lines

multiplexed into an ATM trunk. For this implementation, the dedicated Ethernet

lines can be seen as permanent virtual circuits with guaranteed bandwidth.

We adopted option 3 because NPAC has acquired three additional nCUBE I/O nodes with

Ethernet controllers and the add-on 4 Ethernet card for our LAX-20 device. The controllers have

been connected to the dedicated Ethernet segments that, in turn, were connected to the LAX-20

switched Ethernet ports. With the FORE company promising LANE implementation any day, we

hoped for direct nCUBE-to-ATM client connectivity. This, incidentally, has never happened since

FORE dropped the LAX-20 product without providing LANE implementation. Nevertheless, we

were able to use video clients connected to Ethernet ports of another LAX-20, with the ATM link

between them providing bridging capability.

47

4.3.2 Video Server Implementation on nCUBE
This section summarizes our efforts to implement an operational video server on nCUBE. These

efforts alone accounted for at least 30% of the total project, so we feel that a relatively detailed

report is justified.

As a first step, request-based video pump software was ported to nCUBE. The request-based

video pump denotes a TCP/IP system where the data (video file) is transferred from the server to

the client on demand, i.e. the client maintains a buffer and requests data from the server as

needed.

We have found a number of undocumented idiosyncrasies of the nCUBE system software.

Although we started from the fully functional software written for the standard UNIX platform, the

porting process went through multiple stages during which nCUBE-related difficulties were

discovered, analyzed, and, when possible, circumvented.

■ A prototype TCP-UDP/IP system was constructed to test existing protocol

performance over Ethernet channels. The initial implementation of the video

server contained a single network/disk server. Upon receiving a request, the disk

server would retrieve the data from disk and send it to the client.

Findings: This design led to "hiccup" effects at the client end (an effect of freezing

the video stream at regular time intervals). Clearly, the video decoder buffers

were starved by the server, which was unable to provide data at the requested

rate. We suspect that the disk delay at the server was responsible.

■ We then modified the server by adding a circular buffer and allowing it to pre-

fetch data immediately upon satisfying a request. In this manner, we hoped that

network latency and disk latency would be overlapped.

Findings: This design did not ameliorate the "hiccup" behavior. We found that

requests arrived with an inter-arrival time that exceeded the pre-fetch delay time.

Therefore, a further alteration was needed.

One of the hurdles in the design procedure was the inaccessibility of the nBSD

server process (nCUBE implementation of the Ethernet driver and the TCP/IP

stack). Thus, exact measurements of network latency within the nCUBE was

difficult to obtain.

■ The server was modified by separating the network and disk server functions into

separate processes running in parallel on different processors of the nCUBE.

The disk server was equipped with a pre-fetch buffer which would be kept full

constantly. The network server was equipped with a double buffer to which it pre-

fetched data from the disk server. The latency between the disk and network

48

server is low and communication takes place at about 2 MBps. All buffers are

filled during initialization (after a movie has been selected by a client); all

subsequent prefetching is done after requests are satisfied. This design offers the

minimum latency from the disk. Due to prefetching and initialization, all accesses

have delay equivalent to memory accesses (i.e., disk access times overlap

completely with other accesses).

Findings: The design change had minor effect upon the "hiccup" behavior.

Fortunately, the design facilitated the approximate measurement of network

latency on the nCUBE by separating network and disk accesses. We discovered

that network write access on the nCUBE took place at about 11.5 KBps on

average, which is much less than disk access bandwidth. This was a completely

unanticipated result. Contributing to this latency is the requirement that network

transfers be performed at 32 KB increments (the network daemon malfunctions

otherwise—this requirement is undocumented),

■ Next, we modified the client to allow it to pre-fetch data from the server. The client

would then simply send requests for data in advance of the actual use of that

data. We expected that this mechanism should reduce access times at the client-

to-memory transfer times, approximately at the expense of the kernel buffer

space allocated to a socket connection.

■ Also, we changed the protocol to one based on non-request; that is,- data is

pushed to the client on a pre-scheduled basis. (Note that this is the architecture

adopted for other servers, although at this junction of the project, the architecture

for other platforms was not defined yet). In the context of nCUBE server

difficulties, the advantage of the push approach is that almost any latency can be

hidden by increasing buffer size and by taking advantage of pipelining effects.

Findings : We have not achieved requested performance parameters. To clarify

the reasons for this failure, we have designed and implemented a number of low-

level tests that benchmark the performance of the nCUBE networking

infrastructure. These tests show that the performance problems persist even for

the simplest, low-level data transfer operations involving nCUBE implementation

- of the socket library.

These findings were inconsistent with the satisfactory performance of the Oracle Media Server

software on the nCUBE2 platform. We attempted to clarify this puzzle with nCUBE

representatives and learned that the Oracle developers have rewritten significant parts of the

nCUBE OS level software to achieve the performance necessary for a video server. nCUBE does

not own these changes and they are not being distributed with the standard operating system.

49

Based upon these findings, we decided that the nCUBE system code as currently provided will be

unable to support VoD requirements.

Given the accumulated research investment into the hypercube architecture for VoD, we have

decided not to abandon the platform but rather to improve the software performance by rewriting

the system networking code. Since system source access was necessary to implement the

improvements, we have negotiated with nCUBE a source code license for the relevant parts of the

operation system software.

After receiving and compiling the nCUBE OS source code for networking, we conducted a

detailed review of this code. The findings are summarized briefly below:

■ Network Library: The nCUBE network library consists of primarily BSD network

code (e.g., socket library) at the upper layers up to the application interface. The

lower layer of the network library architecture consists of modules of nCUBE code

which provide the glue between the lower layer of the BSD code and the nCUBE

communications library. These layers contain code to map socket descriptors,

port ids, server ids, request sequence nos., etc. into structures with some

semantic significance to the nCUBE communications library.

■ nBSD (network) Server: The nBSD server is multithreaded, supporting either

synchronous or asynchronous network I/O. The scheduling discipline has not

been completely analyzed, although we can say that it makes use of a prioritized

round-robin schedule. The nBSD server contains modules to: manage threads

and provide thread services, maintain server (system) tables which map from

socket structures to nCUBE communication structures, perform packetizing

functions, and perform low-level driver functions. The nBSD server treats all

connecting processes as socket clients. This includes both connections to

external clients and connections to the processes running on the nCUBE array

nodes. This is a highly unusual situation: the TCP/IP layer is known to introduce

performance bottlenecks due to multiple copy operations. On nCUBE, the TCP/IP

stack is accessed by the server code and twice by the nBSD code - this is two

times more than on a standard workstation. As far as we can see, no provisions

are made to optimize access for the array processes. Further, we determined that

nCUBE uses a reliable protocol (TCP) over a completely reliable link layer

(nCHANNEL). This is obviously wasteful. From this preliminary investigation, it is

clear that the network architecture results in unnecessary overhead during

communication between nCUBE array nodes and nBSD server nodes. The

overhead here is located on both ends of any such connection.

50

As a result of the above analysis, we designed a light-weight path between the nCUBE array

nodes and the nBSD server in order to decrease overhead on the nCUBE array node, but also on

the nBSD server node. We expected significant performance increases resulting from bypassing

the original nCUBE architecture.

In addition to the design of the light-weight path between the video pumps and the nBSD server,

we identified a number Of performance bottlenecks within the nBSD server itself. To remedy

these, we implemented our own version of the nBSD Ethernet driver.

Next, we inserted the light-weight communication path into the operating system layers. Although

we had access to the source of the networking layer, we had no documentation. Thus, we did not

know exactly how this layer is called by other parts of the OS. We assumed that the networking

layer routes end-to-end all messages that enter it. Unfortunately, a detailed analysis of the original

nCUBE code revealed further complications: in order to support the NFS protocol, all networking

calls are routed via the so called "virtual file system" layer. This solution supports a completely

transparent file access interface on nCUBE, but it imposes a heavy performance penalty on all

networking operations. We were unable to obtain source code for the VFS layer.

Appendix 7 contains a detailed analysis of data flow through the layers of the nCUBE operating

system.

Our continued effort to send the light-weight protocol messages through the VFS layer ultimately

failed. We were able to send and receive messages initially; but, as described in Appendix 7, the

communication process broke, with reports of state errors or the continued transmission of

corrupted messages.

At this point of the project, we became concerned with two issues: (1) the amount of work

involved in rewriting the nCUBE OS was imposing a heavy load on the project resources; and (2)

the stability of the company had been questioned recently by inside sources. The company's

survival depended clearly on their ability to introduce a new family of machines. But in either case,

the nCUBE2 platform would became obsolete. It was clear also that the company was no longer

interested in helping us solve the performance problem. As a result of this consideration and after

consulting project management in Rome Laboratory, the work on nCUBE was discontinued. The

final conclusions can be formulated as follows:

nCUBE2 architecture was an extremely appealing platform for implementation of the VoD server.

However, nCUBE2 has been built using outdated chip technology. The nCUBE2 CPU

corresponds roughly to the Intel 386 chip. CPU performance per se would not preclude using

nCUBE2 as a video server, although the cost-performance ratio is questionable. However, a

combination of its low processor performance with disastrous design of the nCUBE2 operating

system makes this platform unsuitable for implementation of a video server except perhaps for

low bit rate streams. Specifically, three most serious performance bottlenecks are:

51

1) the nBSD server treating array processes as IP clients;

2) stacked use of reliable protocols on top of each other; and

3) filtering of all network calls via a notoriously slow VFS layer7

To implement an operational video server, it is necessary to (1) write a completely new file system

on top of the existing SCSI drivers, specifically removing the entire VFS layer, and (2) rewrite the

network layer, replacing the IP over nCHANNEL links with native message passing. We felt we

could tackle the first task easily enough (in fact, we have implemented the double buffering

scheme described earlier using raw disk access); but a complete implementation of a new

networking layer, while possible, was well beyond limited goals of this project. Consequently, the

effort has been discontinued.

44 Distributed Server Architecture

As described in the previous section, our attempt to implement a scaleable video server on a

typical MPP platform failed due to poor quality of the system software. Now, we observe that the

issue of software quality has been one of the reasons that brought the federal HPCC program to

an abrupt end.. One of the lessons learned from the HPCC program is that, while it is possible to

build expensive hardware for custom HPCC applications, it is unlikely that a community of

software developers addressing a relatively small market of very sophisticated users will develop

truly robust and functional software .

The initial VoD thrust was stimulated by the telecommunication industry's desire to deliver new

kinds of service to the homes of their subscribers. The model behind this scenario is that of a

large contents provider feeding a network serving a city or a town. One example of a medium size

installation is the Time-Warner Full Service Network in Orlando, Florida, which initially served -

4,000 customers. In comparison, a small video server would serve a few hundred customers

It is our belief that the only video server applications that warrant use of the HPCC-class platforms

are the entertainment-centered, consumer networks. It is only at this scale of demand that the

expense of building a VoD service around an MPP is warranted. Moreover, the recent demise of

the Bell Atlantic VoD service, which remained operational for only few weeks and cost the

company more than $100M, suggests that even large-scale use may be unjustifiable.

For educational, intranet, or Internet applications, use of MPPs as a VoD platform is economically

unfeasible. For example, the cost of the entire nCUBE platform at NPAC - was nearly $2M. In

addition, we paid nearly $20K for three additional Ethernet nodes for nCUBE2, only to discover

7 To further verify our diagnosis we obtained and installed an implementation of the Network File System for nCUBE2.
During extensive performance tests we discovered that maximal bandwidth for NFS transfers from nCUBE never
exceeded 0.5 Mbps with transfers over Ethernet lines. This performance is easily exceeded by workstations such as low-
end PCs or Apple's Macs.

52

that these modules are unable to transmit even a single MPEG1 video stream. For the price of

this expansion alone we could have purchased 4 high-end PC machines that could easily serve

up to 80 MPEG1 streams.

Obviously, one cannot make a blanket statement that MPP machines are not useful as video

servers. On the contrary, we believe that parallelism is critical for scaleable servers. The next

generation of the nCUBE machines, series 3000, is reported to support very high performance

video servers. The main problem is not that these platforms won't scale up, but rather that they do

not scale down. The expense for a lowest-end HPCC platform, with great expansion potential but

with performance only marginally better than a COTS machine, is an order of magnitude (or more)

higher than the price of a COTS installation.

Confronted with the failure of the nCUBE effort in this project, we felt we need to propose an

alternative solution. NPAC's hardware inventory offered two other HPCC platforms: the IBM SPA

machine and the DEC Alpha cluster. We considered both and decided that both are unsuitable

because both represent the recent trend in the HPCC industry to build HPCC platforms from UNIX

workstations. In the context of video server implementation, we note the following:

1) Both the storage and network modules in the workstations use exactly the same

technology that is available for PC platforms. The performance of these modules

in UNIX and PC platforms is comparable8. In many cases, however, the cost of

disk drives and network cards from UNIX vendors is significantly higher.

2) We have observed (see Section 4.1) that video servers can become CPU bound.

As it is well known, the newest CPU technology is first implemented in midrange

servers and desktop machines. The HPCC platforms are often built from

outdated CPUs. The most notable example is the IBM SP2, IBM's HPCC

flagship, which uses four-year old CPU technology that does not match the power

of a commercial grade PC.

3) Except for the SMP platforms, architectures such as SP2 and workstation

clusters do not offer any architectural advantages over a cluster of PC machines.

For a video server, a shared disk architecture is clearly advantageous, as

discussed in Section 4.3. Although IBM Virtual Shared Disk emulates such

functionality, its setup is completely inflexible and very difficult for dynamic

performance tuning.

8 In at least one casewe found the performance of PC modules better. The early ATM interfaces on UNIX platforms offer
only a fraction of the nominal bandwidth. The first interface (hardware and software drivers) we have seen that
approached the nominal performance numbers was the FORE OC3 PCI card for Windows NT platforms, which, using the
IP protocol, exceeded a of 100 Mbps.

53

Based on the above observations and on our experience with video server implementations on

PC platforms, we decided that, given the applications targeted by this project, the only feasible

short-term solution is a distributed video server implemented on a cluster of Windows NT PC

machines. We also believe that scaleability up to the traditional HPCC range will be provided by

platforms utilizing Intel CPUs to build highly parallel machines entirely from commodity

components. Examples of such machines have been built recently in national laboratories and are

offered commercially. A good example is Parsystec's CC platform.

The architecture we propose below assumes that each instance of the server will be locally

optimized according to the lines described in Sections 4.1 and 4.2. We assume also that, for a

given hardware configuration, each instance will have defined a performance metrics that will

allow the distributed server to apply a sound admission policy and load balancing. The two basic

mechanisms for providing load balancing are the ability of the server to move client requests from

one server to another and the ability to dynamically change media contents in local server

repositories in response to statistical load analysis. The architecture we propose does not

postulate striping of media streams across multiple servers.

In the following section we describe the distributed video server architecture. This architecture

was designed in the final stage of the project, mostly as a result of the experiences we gathered

by implementing earlier versions. Prior to the end of the project time frame, we defined the overall

architecture of the distributed server and we created a detailed system specification. As for

implementation, the core of the server code has been written and tested with dummy video

clients. Other tools, like server administration and monitoring, have been partly implemented. It is

our intent to continue our research into distributed video servers and to use this architecture as

our next production server software.

The main differences between the new server and the existing implementations are:

■ the new server's data structures have been designed so that it is possible to

monitor all aspects of server operation via a remote monitoring tool, and to

administer the server by the same means

■ the new server supports security in terms of access control

■ the new server has an interface for direct interaction with the database back-end.

This interface can be used to implement more reliable data consistency

measures. In particular, the new server can respond to queries regarding the

existence of the media files in its data repository, and can store utilization data in

the database

■ a collection of new servers can act as an entity. Multiple instances of the server

can run on the same machine (especially on an SMP) or on different machines. In

54

the later case, the servers do not share a media database. The load balancing

measures allow servers either to move media requests from one server to

another (hand-off capability) or to transfer a copy of a media stream from one

server to another in order to circumvent statistically significant imbalances

between admission requests and the capacity of other servers to serve particular

contents.

a the new server has a slightly modified thread architecture as compared to the

current production server.

The new server has been code named Oasis and is referred to in this way in the remainder of this

section.

4.4.1 Server Design Issues

4.4.1.1 A Scaleable Server
As the computing age continues to mature, millions of clients will need hundreds of thousands of

servers. Most servers will be tiny, but some will need to be large. With the belief that this spectrum

of different sized servers can be built using small modular components, we decided to implement

Oasis using small modular components that work with each other, while maintaining abstraction

amongst them.

Oasis had to run on a typical home PC with a small amount of disk space, a single processor, and

possibly an Ethernet LAN connection, functioning as a personal server or as server intended to

service a small office of people . But Oasis also had to run on multiprocessor machines with

ample amount of disk space and memory and possibly multiple network interfaces, functioning as

a video server intended to service an Intranet. Moreover, if needed, Oasis had to service many

thousands of people, as in a large residential area.

4.4.1.2 A Distributed Server
One way of scaling a service is to distribute it, allowing multiple machines to work with each other

to improve the service. It was our task to allow for distribution of a single Oasis Server among

multiple machines and to make an it work cooperatively with other Oasis Servers. Oasis needed

to be configurable (1) so that parts of it could run on other machines, (2) to decrease the

computing requirements, and (3) to increase the network bandwidth for servicing the clients.

A pool of Oasis servers working together had to balance the load produced by all the clients. To

do this, an Oasis server had to pass and receive active clients from and to other Oasis servers

easily and seamlessly. In addition, an Oasis server, if needed, had to act as a proxy server

between a client and another Oasis Server that are geographically far apart.

55

Multiple Oasis servers had to be able to work together to service a single client. While a client

could initially connect to a single server, it could then request media located on other servers in

the pool.

4.4.1.3 Architectural Model

niiwit Media Object
Manager ' Managor

V
/

 V

Resource Configuration
Manager

Log
Manager Manager

v .v, \

./

/ ' \ V F. /

TTmw Database
Manager Man in

w

Configuration Manager Colls
User Manag« C alls
LogManagar Calls
Client Manager C alls

Resource Manager Cells
Media Object Manager Calls
D atabase Manager Calls

Figure 4.3 General architecture of the Oasis server.

Oasis can be broken up into seven main modules. Each of these modules provides a set of

interfaces for other modules to call. Each of the modules has a module interface and something

we call the module core. The module core contains the main functionality of the module while the

module interface is just the communication mechanism between the modules. Any installation of

Oasis that contains all the module interfaces on a single machine we call a parent Oasis server.

Any installation of a set of module cores on a machine that is not a parent Oasis server, we call a

child Oasis server. For each parent installation of Oasis, all the module interfaces must exist on

the same machine, but not all the module cores. The core of some of the modules can be

configured to reside on different machines. This gives Oasis the ability to conform to many

different types of server architectures, enabling scaling of the service. We will now outline the

general structure for a module.

56

IL JJ LL i i ±L

Interfaces to Other Modules
li^^pp^^^Mi

Internal Abstraction Layer

Module Core

Figure 4.4 Structure of the Oasis module.

As we mentioned earlier, each module has a Module Interface and Module Core. For some of the

Oasis modules, the Module Core does not have to reside on the same machine as the Module

Interface. The Interface provides a standard way for communicating with other modules, namely

by using function calls. The interface passes any received functions to the Module Core, which is

responsible for the processing requests from other modules. To allow the Interface and the Core

to reside on different machines, we have to provide an abstracting communication mechanism

between the Interface and the Core. This Internal Abstraction Layer within the Module enables

communication between the Modules' Interface and the Core over many different types of

communication media, whether it is ATM, Ethernet, or Shared Memory. Ideally, different

Abstraction Layers would be available; and, depending on the configuration of the server,

appropriate Abstraction Layers would be used.

57

et c. 1I II

arent Oasis Server i
;

n ii ii •

Interfaces to Other Modules

£. ^

Connection over
a High Bandwidth

& Low Latency
Network

ty~~~~

v Internal
/^Abstraction

Layer

Module Core

Child Oasis Server

Figure 4.5. Oasis module split to run on different machines

If the Interface and the Core reside on the same machine, then a simple Abstraction Layer

Module can be used to simply call functions between the Interface and the Core. If the Interface

and the Core reside on different machines, then the Abstraction Layer must use sockets or

possibly other protocols to communicate with its remote end. In this case, the Abstraction Layer

has to transfer possibly large chunks of data between the two machines. This tells us that some

Abstraction Layer Modules that use networks should be used over a very high speed and low

latency network; and it reminds us that administrator configuration of the system is as important

as the design and implementation of the system.

4.4.1.4 Database Manager
The database manager is responsible for managing the database needs of Oasis. The Database

Manager provides a set of interfaces for other modules to use. The Database Manager makes

use of the Internal Abstraction Layer, allowing the Core Database Module to reside on another

computer. Since the Database Manager provides a standard Interface for other modules of the

system and because of the Internal Abstraction Layer, any database, such as Oracle, Access, or

Fox Pro, can be easily integrated into the system. Below is a diagram showing the Database

Manager.

58

Interfaces to Other Modules

Internal Abstraction Layer

Database Specific Database
Module Core '-;v;-.,..,:.'-,:r*

Database

Figure 5.6 Oasis Database Manager

The Database Manager only requires an interface from a Resource Manager residing on the

system where its core is located. Please see the next subsection for the reasons why access to

the Resource Manager is so important.

4.4.1.5 Resource Manager
For any application (e.g., a. Video Server) to be stable and robust, it must monitor the system it is

running on. It must know whether any request made from the system, such as allocation of

memory from the heap, can be satisfied and whether this request will result in a less efficient state

either for the system of itself.

The task of keeping track of the system's integrity is the task of the Resource Manager, which

generates critical events, make reservations for any system resources, and reports resource

usage.

It provides a standard interface to all other modules of Oasis, through which resources can be

allocated. Other modules do resource allocation, but they are not allowed to make any resource

allocation before logically reserving it with the Resource Manager.

It is possible that at any time another application running on the system can allocate resources

such as disk space or memory which might breach the threshold of minimum free resources

warning level set by the Configuration Manager. At this time, the Resource Manager will generate

59

a critical event warning all modules. Modules respond by avoiding any further allocation of

resources and possibly reducing the amount of resources allocated.

Of course, just as resource reservations are made through the Resource Manager, resource

cancellations are also made through the Resource Manager.

4.4.1.6 Client Manager
This is the most important component of Oasis Media Server since it is responsible for accepting

connections from clients and servicing them. It allocates resources and tracks the state of each

client and the Media Objects requested by the clients. It allows for good scaling by providing

service through multiple network interfaces. The Client Manager's architecture is represented in

the figure below.

! i n M M ii I» I

: (Interfaces to Other Modules S
Client Module Core

L Network Interface Module

)

{ Figure 4.7. Oasis Client Manager module

As we can see from this figure, the Client Manager does not make use of the so-called Internal

Abstraction Layer. This is because the Core of the Client Manager Module must reside at the

parent Oasis server, whereby using the central server model in dealing with clients local to itself.

To provide service through multiple network interfaces, an Object of the Network Interface Module

is instantiated for each of the network interfaces used to service clients. A service network

interface does not have to be on the local system. To provide better scaling, the service network

interfaces can be distributed among multiple systems. This is done to increase the total amount of

network bandwidth for servicing clients and possibly help in servicing a larger geographical areas.

Each instance of the Network Interface Module is responsible for network I/O done through the

network interface it is assigned to. It is also responsible for any communication between the

parent Oasis Server and the remote system that holds the remote network interface. By

60

dynamically adding and deleting instances of Network Interface Modules for remote network

interfaces through special, high bandwidth, low latency interconnects, proxy servicing is achieved.

Parent Oasis Server |

_I_L JJL -U_ XL -U- JUU

Interfaces to Other Modules

Client Module Core

NIO

High Bandwidth
'•'"'.' Network

IT*
I

■I ;!

f i

Network
Interface
Object

Network
Interface

Object

prr^

Y: Child Oasis Server I Servicing
Network
Interfaces

< Figure 4.8. Remote network interface of the Oasis server

4.4.1.7 User Manager
The User Manager keeps an account of the users, their privileges and their activities. It provides

an interface to the Client Manager, which queries the User Manager to provide Access Control for

the system. Special User accounts are kept for special clients such as guests, auditors, content

providers, as well as monitoring and configuration clients such as Shade. Its architecture is rather

simple since it does not make use of the Internal Abstraction Layer. It requires an interface from

the Database Manager for accessing local or remote databases for adding, deleting and verifying

users.

4.4.1.8 Log Manager
It is important for a service provider to keep track of the activities of the system since this is an

important basis for improving the system, as well as a way to audit clients. The Log Manager

records anything that the other Modules want to keep track of. It keeps the logs through the

Database Manager. Its other responsibility is to filter the logs and events at the request of the

Configuration Manager. Also, it is the job the Log Manager to time stamp event logs so that more

meaningful data can be returned back to special monitoring and auditing clients. This is the

61

reason why even the Database Manager should log things through the Log Manager, although it

could easily do it so itself.

4.4.1.9 Configuration Manager

Parent Oasis Server

JJ L -U U U Li.

Interfaces to Other Modules

Configuration Module Core

^

Start Child
Configurations
Managers with

RPC

Child
Configuration

Module
Child Oasis Server

(Figure 4.9. Oasis Configuration manager

The Configuration Manager is responsible for the configuration of all modules. It instantiates, sets

up, and "starts" all other modules. Although every other module provides an interface for the

Configuration Manager, the Configuration Manager only provides an interface for the Client

Manager because Oasis allows special clients to change the configuration of the system and the

Client Manager has the task of passing configuration requests to the Configuration Manager. The

figure below shows the internal structure of the Configuration Manager.

The Configuration Manager is the only module that doesn't store its data in the Database

Manager. It uses flat files to keep its own configuration information.

The Configuration Manager is also responsible for instantiating, initializing and starting all remote

modules on child Oasis Servers. This is done by starting a copy of itself at a remote machine

using RPC, which then starts all the modules for the child Oasis Server.

62

4.4.1.10 Media Object Manager
Media Objects are stored, retrieved, and replicated at remote machines by the Media Object

Manager. It can store Media Objects as best suited, whether in flat files, within archiving media

(ex. Tape Drive), or within a local database through the Database Manager. It is responsible for

I/O required to store and retrieve Media Objects from Local Disk and archiving media, whereas

the Database Manager will handle I/O for Media Objects stored at the Database.

" it 11 " " 'V

: Interfaces to Other Modules

Media Object Module Core

Media Objects and Metadata are
stored on Database or Flat Files

\ Database Manager

< Figure 4.10 Oasis server Media Object manager

The Media Object Manager is also responsible for reporting the availability of Media Objects at the

local Oasis server. It keeps track of all available Media Objects using the Database Manager.

Media Object characteristics such as Bandwidth requirements, file size, and availability are just

some of the variables stored in the database for quick metadata retrieval.

Replications of Media Objects at other Oasis Servers are handled by the Media Object Manager

by acting as a special client, namely as a content provider.

4.4.1.11 Implementation
Our intentions were to build a sound and robust product while making sure that it would not limit

our research. It was important to use good Object Oriented Programming style during the

implementation of Oasis. We have made full use of modularity to allow easy updates and

additions to the system. This allowed us to easily plug in new code to improve sections of the

system and add new features. Modular programming also made the system much easier to debug

63

and test. We wanted to make sure that Oasis did not crash under heavy loads and that it did not

alter the integrity of the system on which it ran. This is one of the reasons why we have put a lot of

effort in monitoring the system that Oasis was to run on.

Current implementation of Oasis is somewhat limited compared to the Functional Model provided

above. The structure described above was put in place using a highly rich set of C++ virtual

classes supplemented by the writing of many derived classes to implement a working server. This

server is limited in several ways:

■ Configuration Manager: Not yet implemented to use RPC to start remote copies

of itself to enable a child Oasis server.

Client Manager: Network Interface Module needs to be expanded to allow

servicing of clients through remote Network interfaces. The Configuration

Manager must be fully implemented for this to happen. Passing clients from one

Server to another is implemented for testing purposes only following special

events generated through the user interface of Oasis.

Media Object Manager: Currently, cannot act as a content provider for

replicating Media Objects at other locations; this must be done manually at

present. Media Object Metadata is retrieved through the Database Manager; but

the addition and deletion of Media Objects and their metadata must be done

manually.

Resource Manager: Total network I/O at the Network Interface is not monitored,

though the network I/O produced by Oasis is. More resource information might be

accessible from Windows NT, but we don't know how to retrieve this information

at present.

User Manager: Interface to the Client Manager is not complete. Users cannot be

added or deleted from a client; they must be added and deleted manually from a

text file. The User Manager uses interfaces provided by the Database

Manager(which does the actual file I/O) to verify user information.

Log Manager: The log manager currently does not have any filtering mechanism.

It appends a date and time stamp to each log generated by other modules and

gives it to the database, which merely writes this data into a flat file. Retrieval of

these logs are currently done manually.

Database Manager: The Database Manager currently does not make any use of

a real database; instead, it stores everything in flat files with fields separated by

an ASCII "tab." It provides all the necessary interfaces to store and retrieve any

amount of data.

64

As development and expansion of Oasis continues, missing parts will be implemented to provide

the functionality described above in the Function Model section.

We have discussed the functionality of Oasis by breaking it up into seven modules. These

modules are used among many threads, which are used to implement Oasis. The total number of

threads are given by the following formula:

3 + f+nc+nd

One thread is used to start all other threads and then to monitor the system resources and active

clients. One thread is used to wait for a connection at a particular port. One other thread is used

by the user interface of Oasis, which currently just displays the logs generated by the Manager

Modules, f threads are used as worker threads for doing file I/O. nc + nd threads are used for

doing network I/O for command and data channels respectively, where f, nc, and nd are either the

number of processors the machine has or a concurrency level which is chosen by Windows NT.

Current implementation of Oasis consists of a project with more then two dozen C++ and header

files that were written with Visual C++ 4.2. This project generates a single executable file and two

DLLs. The executable is the core of Oasis. The two DLLs are used as plug-ins to Oasis. One of

them is a generic Internal Abstraction Layer that enables Module Interfaces to communicate with

Module Cores residing on the same machine. The second DLL is a Database Abstractor that

implements a simple, flat-file database. The use of these DLLs allows for easy expansion to the

system without recompilation.

4.4.2 Oasis Monitoring Tool

4.4.2.1 Overview
During normal execution, Oasis keeps a record of many events ranging from logging client

activities to monitoring the amount of available system in order to achieve good Quality of Service

and to maintain system integrity.

By making these system statistics and information available to Special Clients, we can make tools

for Oasis administrators. These special Monitoring Clients can be used to view and alter system

configurations, view system status and system activities, and control active sessions.

We will now look at Shade, a special client used to Monitor NPAC's Oasis Media Servers. First we

discuss the subsystems Oasis uses to track system events and resources. Then we describe

Shade and all of its capabilities.

65

Disk I/O Monitor (DM)

The DM is responsible for calculating and reporting activities of the Disk I/O subsystem. DM

keeps track of the amount of data written or read from the local disk(s) and reports average

values at specified time intervals. Only average file I/O performed for sending and receiving Media

Object data are logged. This log produced is sent to a requesting Monitoring program where it can

be reviewed and even represented graphically. Not logged are file I/O performed for

maintenance, logging, and for other system processes.

Whenever Oasis needs to know if a client request can be handled, the DM calculates the amount

of bandwidth the File I/O subsystem can handle. This information along with the information

returned from other subsystems is used to decide the acceptability of the client's request.

Although DM does not log or report the disk I/O performed by other processes, it must be aware

of the entire file I/O produced by the system in order to determine the availability of file I/O

bandwidth.

Network I/O Monitor (NM)

Just as the DM is responsible for reporting and logging information about Disk I/O, the NM is

responsible for reporting and logging information about the Network I/O of Oasis.

Oasis also requests information from NM regarding the availability of Network Bandwidth. It is

possible for NM to find all the Network I/O that is taking place at the system's Network adapter,

but presently NM can not know whether the network between the client and Oasis can handle the

bandwidth. The best solution for this would be the use of new protocols, such as RSVP, that

reserve bandwidth on the network path between the client and the server.

Resource Monitor (RM)

For every client being served, Oasis reserves buffers for both Disk and Network I/O along with

buffers for Client Accounting. One of the main jobs of the Resource Monitor is to keep track of

and report the Buffer Availability, i.e., the amount of free Memory the system has. For a system

that serves real-time data, it is important to distinguish between the amount of free real memory

and the amount of free virtual memory. It is the job of RM to report both of these.

Since Special Oasis Clients can upload data to Oasis, Oasis will also need information about the

availability of storage space. If Oasis can not reserve storage space for incoming data, the clients

request to upload data will be refused.

Media Object Monitor (MOM)

MOM is responsible for answering queries regarding the Media Objects on the system. Oasis will

query MOM for availability and status of Media Objects. MOM is responsible also for logging the

statistics about Media Objects, such as their frequency of access.

66

We should note here that just as MOM and other Monitoring subsystems have responsibilities to

Oasis, Oasis has responsibilities to the Monitoring Subsystems. For example, Oasis must notify

MOM when a Media Object is loaded.

User Monitor (UM)

Oasis makes all queries regarding clients to the UM. The UM is responsible for keeping

accounting information about the client, querying User Databases for the user's existence and

access privileges, preparing data to be retrieved by Accountant Clients, etc. Special Clients called

Accountant Clients retrieve accounting Data prepared by UM. Their job is to archive the

information logged by UM, allowing Oasis to free up storage resources.

4.4.2.2 Connecting to Oasis as a Monitoring Client
Monitoring Clients such as Shade are one of several types of Special Clients. To have monitoring

and controlling access to Oasis, the user must log in with the user name monitor or

administrator, clients who log in as "monitor" only have monitoring privileges; clients who log in

as "administrator" have both monitoring and control privileges. These two accounts are local to

each Oasis Server.

We use Monitoring Clients to refer to clients that can monitor only or clients that can monitor as

well as control Oasis. Although clients who log in with "monitor" as their userid can view all

information that administrators can, only clients who log in with "administrator" as their userid can

make configuration changes to Oasis.

Below we see the login dialog used by Shade. It contains several fields to be filled followed by a

button which will use the filled field to connect and log in to an Oasis Media Server.

SmrIPA*ttv I v^w™mmm&^'1^ 1*1
VmO r «H,*..™^,*«.«

lhaP«»>«i! 1
WÄSfESSäÄSfi"

&SÜI

'■»H WM? 1

< Figure 4-11 Login panel of the Oasis Media Server monitor

One first must-specify the IP address and port number of the Oasis connection. Then one must

specify a user id and a password, which are setup by Oasis to allow for remote system

monitoring.

After proper connection is made to Oasis, Shade presents a tabbed dialog box, as shown below.

The user selects tabs to view or edit the server configuration, server statistics, active client

67

sessions, and to edit special users such as the administrator. Let us now examine these tab

dialogs one by one.

HaReM [128.230.51.206]

NPAC Media Ssfvet | Sesson Info | Session Log« | User Configuiaton | Servei Configuration |

- Server loentificaNon -

Server Name HancM

nterfoee IP Addresses 12a23Q.51.206 - _. ... «■>•»,

Serve» Description This is just, a test Server - ' • ,•;.*;
fhere onlv exist! idd263 ," " ..%'T

p Contacts -

StNeS» E-Mail Address

1 |kemal@npac.»i».»du

HaeV. Podgäny" «issiädsil

E-Mail

E-Mad
Both

Siab»bcs —— ——■——

Server Up For 1277 |

öurrent. f «(at TWduOTui 00 |

Sj5t«l):B£S«ICSS UiSttij! % |
Idle P««rtS3i5 l |

. Nuirteralfegalflequests j 0 I
. „ . „_. ._

Statistics

NunberofAcHveSestioni | 1

Max. Simutaniout Session* F 10

Numb« of Sessions Today | 23

Number of Sessions Since Startup | 3

Numbei of Sessions To Date | 29

disconnect' ?Ifeieä- £d« Serve»

(Figure 4.12. Main dialog panel of the media server monitoring tool

When the main dialog box appears, the Oasis Info and Statistics page is shown. Within the server

identification group, one sees the name of the server, the unique Server Identifier, the IP

addresses for all of its Network Interfaces, and the Description of the Server, which contains

information regarding the Server's purpose and main contents.

The "Contacts" group contains the names and e-mail addresses of two Server maintainers or

administrators. By using one of the three buttons provided, one can send e-mail to one or both of

the contacts.

The next group displays a set of general "Statistics" maintained by Oasis. We list these statistics

with short descriptions below.

Sets: Descriptions:

■ Server Up For: This is time in

hours:minutes:seconds since Oasis

68

Current Total Throughput:

System Resources Used:

■ Idle Percentage:

■ Number of Illegal Requests:

Number of Active Sessions:

Max. Simultaneous Sessions:

■ Number of Sessions Today:

■ Number of Sessions since

Startup:

■ Number of Sessions to Date:

was started.

This is the sum of the entire average

network throughput used for each

Media Object that is being served.

This is the percentage of system

resources used by Oasis, as

reported by Windows NT.

This is the percentage of time in

which Oasis was idle with no Client

Connection.

This is the total number of non-

conformance for all clients served

since Oasis was started.

This is the current number Sessions

that are active. For a definition of a

Valid Active Session, refer to Oasis

Client Implementation.

This is the maximum number of

simultaneous sessions allowed by

Oasis.

This is the number of valid session's

established today starting at 12:00

am.

This is the number of valid sessions

established since Oasis was started.

This is the number of valid sessions

established since Oasis was setup

on this system.

69

For a graphical representation of any of the statistical information, the user can press the button

next to the field, which will display a dialog box with a graph as shown below.

HaReM 1128.230.51.2061

NPAC Meet Server Session Info | Sesrron Log« | User Configuration | Sever Conhguratian |

Time Frame Flteis Acbve/NonAcWe Fiel» Users Filters

J11 Last One Daji~fHf|Active Sessions

IlillllPffii

jljilAIIUs, ~m USJ

Session ID I UserlO Us« Name

26
Swoon Lanolh

admin Kemal Ispirii

 1
491

Session ID [_

User Name £

User E-Mail Address £

Uset Ptivaledgeiev«!:(~

Host Name (IP) £

Session State £

. Session Idle Time £

Session Stated At J"j

Session Length F

Curant Session Throughput T

'Äveta^-S^jsk»; ThiOj^itj*'(|

■:_ Number .of HegatÜeqMe^, ,:|~

Number of Timeouts j"

2S

:?Sdr«rl

:Adrr#«Uat6r:K

rmmsram
wmttm

481

0.00,

aoo

Previous Session | 'tjeüfSetstoh'; 1
* View Session L03 1

£"« Seiion |

Dels!» Session "£-':' 1
Eonftgu/e User Account J

| Send E-Mei to User \

Last fa« HequerteJ M&dia

fiisconnect ite*>w
f^#i?iÄ:

< Figure 4.13. Statistics panel of the media server

This tab along with all other tabs can be updated by pressing the Update button at the bottom the

dialog box. Pressing the Edit Server button at the bottom of this page will jump to the Server edit

page.

The next tab in Shade's main dialog box will display the "Session Logs" dialog box, which

lists three filtering mechanisms on the top of the box. The fist filter allows one to narrow the list of

sessions by selecting a time frame, such as This Hour, This Day, This Week, or For all Time. The

second filter allows one to view either active, non-active, or all sessions. The third filter allows one

select or enter a particular user.

When the List button is pressed, the filters are logically combined to produce a list of

sessions that appear in the list box. Double clicking on any of the entries in the list box returns

information that is displayed in the fields listed below.

70

HaReM [128.230.51.2061

W£CMedaSw*»l Session Wo SetsjonLog* | U««ConTguotion| Seivei Confisuataon |

TineFwnaFten Acüve/NonActive fita» UIBSF»««

SlastOneHou HUiJActive Sessions jwjAI Users 1ÜI iw I

SemonlD 1 Utei'D 1 Us« None I Session Lengöi

26 admin Kemal Ispirli 491

i-. «•,.-. r-- .-.-„• - • • •'V ' - ' -• ^ .'-'

Session Attributes

< Figure 4.14. Sessions panel of the monitoring tool

Description

■ Session ID:

■ User Name:

■ User e-mail

Address:

■ User Privileges:

■ Host Name (IP):

■ Session State:

■ Session Idle Time:

This is the unique Session Identifier assigned to

every valid Session.

The username used to log in to Oasis.

E-mail address of the user.

Privileges of the use as reported by the User Monitor

subsystem of Oasis.

IP address of the machine the client resides.

State of the session, whether the session is active or

not.

The amount of time the Session was idle.

71

Session Started At:

Session Length:

Current Session

Throughput:

Average Session

Throughput:

Number of Illegal

Requests:

Number of

Timeouts:

Date and time when the Session was started.

Length of the Session.

The amount of network resources used to serve this

client.

The average network resources used for this client

since the start of the session.

The number of client non-conformances during the

session.

The number of times the client didn't reply on a

timely manner.

Buttons on the right side of dialog box are used to end a session if active, view the sessions log,

send e-mail to the Session owner, or browse through the sessions.

1 HaReMM 28.230 .51.206]

P NPACMeo» Server Session lnta| Session Logs User Confiauiation J Reiver Configuration |

US8flO.:;r J User Narr» | -User E-Mail Address | User Pir» Level
admin
guest
kemal

Kemal Ispirli kemal@npac.syr.edu
GuestAccount
Kemal Ispirli kemal@npac.syr.edu

Administrator
Guest

Subscriber

Use. ID admin

User Password **********
User Name Kemal Ispiril

UterE* kemal@npac.syr.edu

User Privaredg» Leveiv Administrator 1
User Notes Test User...

Maybe account information
can be put here...|

fiiscorrnect ;::üpd*ä

Erswous User { Mert User-

Add New Usi

Save User Configuration

Undo Changes

OeteteUso

View User Session Info

View User Session Logs

Send t-Räräte User.

72

< Figure 4.15. User control panel in the monitoring tool

The next t.ab, "User Configuration," displays a dialog box which enables the editing of users. The

dialog box presents a list box containing the names of all local Oasis users and, underneath, a

display of the following editable fields:.

User Attributes Description

■ User ID: Unique user identifier. Identifiers 0 through 1000 are

reserved for local users.

■ User Password: Password for the User

■ User name: Name of the User

■ User e-mail address: e-mail address of the user.

■ User privileges: Privileges given to the user.

■ User Notes: Notes about the User.

The buttons on the right hand side of this page are used to browse through the list of users, add

new users, save user configurations, delete users, and to send e-mail to the user.

73

HaReM [128.230.51.2061

NPAC Meal« Server) Session Wo |Se«ior>loa»| User Configwation Server Configuration

»S*rv«;ldenlificalion -

Server Nam» HaReM

Interface IP Addresses 128.230.51.206

Server Description Test Server

'■-.'■•v*

iiX^äfi^C^f:^

Nan» E Mai Address

Kemal Isplrli j kemal@npac.syr.edu jl

MarekPodgorny 4 marek@npac.syr.edu I

WS*tiiAarMut Session» 10

j UpdateServer |
Undo Chang« |

j Stop Service |
| SlattServico |
| . Re-Start Server I

fittcannet*

(Figure 4.16. Server configuration panel of the media server monitoring tool.

The last tab, "Server Configuration," is currently used only to change simple variables such as the

Server Name and e-mail addresses of the Server Administrators.

4.4.3 Client implementation for Oasis Media On Demand Server
This section contains information needed for implementing a client for the Oasis Media On

Demand System9. The example client implemented in this document is written for the Microsoft

Windows NT/95 platforms. We discuss the following aspects of the clients:

(Network Platform/Protocols

(Responsibilities of the client

(Expectations from the server

(Buffering requirements for the client

After completion of the project, we have learnt about the new protocol designed to transport continuous media. Initially a
private submission,. Currently the protocol (RTSP) gained the status of official Internet draft. RTSP is similar to HTTP but
supports state. It is our intent to map functionality of the client protocol described below to RTSP.

74

< Application layer protocol between the Server and the Client and corresponding

Data Structures.

This document does not cover the protocol used to query Content Databases.

4.4.3.1 Network Protocol Requirements
Oasis uses TCP/IP sockets for all its connections to the client. This means that all data and

messages sent and received from the client are reliably delivered. Multicast and Unicast UDP-

based data connections will be supported in version 2.0.

4.4.3.2 Connection Procedure
To connect and establish a valid session with Oasis, the client must know the IP address and port

number at which the Oasis server listens for new clients.

The client should connect to the server with an asynchronous stream socket connection. This will

be used mainly for the sending commands to Oasis.

The first command sent to Oasis must be the MSconnectReply. This command notifies Oasis

that a Reply connection is being requested. The format of MSconnectReply is as follows:

i 32-bits : 1

MsSERVERKEY
MsTYPE

MsID
MsBODYSIZE
MsMESSAGE

MsARGUMENT
MsREPLYKEY

Message Header
Message Body _

For now, let us note that the MsREPLYKEY should be a random number used by Oasis to match

up a Reply Socket connection with a particular client.

The figure above shows that the MSconnectReply message has two parts: message header

and message body. Every message (command) sent to or from Oasis will have a Message

Header, but it will not always have a Message Body. The parts of this Message Header are

described as follows:

serverKey: This is a unique number assigned to every server. This "server

75

type:

id:

bodySize:

ID" is needed with every message. Oasis will sometimes use this

to find a valid message within a stream of bytes received from the

client.

This specifies whether the message being sent is a Request or a

Reply to a Request.

This key is used to identify the Message or Message Reply. It

should be a unique number generated by the sender of the initial

message. That is, if the client wants to send the MsStop

message, it should generate an internally unique number and set

the Message type as being MsRequest. Then Oasis will

acknowledge back with a Message type MsReply with a

Message id that is same as the message it just received.

Some messages will need a Message Body. In such cases,

bodySize should be set to the exact number of bytes that will

follow the Message Header.

message: This is a number signifying a particular message or command.

argument: This is a 32-bit number to be used with Messages that do not

need to send arguments longer then 32 bits. As an example, if a

client wanted to send an MsSTOP message, it would also need to

identify the Media Channel to stop. The client in this case should

place the MediaConnectioniD in the argument field of the

message header. This avoid unnecessary allocation and the

freeing of memory for most Messages.

After sending the MSconnectReply messages, the client should open a socket connection to

Oasis at a port that is one greater (+1) than the port it initially connected to.

After a connection is made at the Reply Port, Oasis will wait for the MsAssociateReply

Message from the Reply Port. This message should contain the Reply Connection identifier in the

argument field of the message header. Oasis will match this identifier with the identifier it had

received on the Command Port with the MsconnectReply Message. If Oasis finds that there is

no client waiting for a Reply Connection with the same RCI, it will drop this connection. If the client

fails to connect to the Reply Port with a valid RCI within a predefined time, then Oasis will drop the

client completely and free all resources allocated for that client. MSassociateReply is the first,

last, and the only Message the client should send to Oasis on the Reply Socket.

From this point on, the client will send Messages only through the Command Port and will receive

messages only from the Reply Port.

76

To establish a valid Session, the client now must log in. Before logging in, however, the client is

permitted to send the following commands:

I m Bytes 1

MsNAME

MsEMAIL

MsUSERID

MsPASSWORD

MSlogin Message Body

The process of logging in is slightly more complicated than sending an MSconnectReply

message. The client must send a Message Header with the MSlogin command, followed by a

Message Body with this structure:

i_. 32 Bits 1

MSnxSeek Message Body

The third part of the Message Body is a 20-byte character array containing a NULL terminated

string for the client's Username. The fourth part, completes the MSlogin Message Body with a

20-byte character array containing a NULL terminated string for the client's password.

77

After the dient sends a MSlogin message, Oasis will verify the client and acknowledge with a

MSloginReply containing a Message argument set to either MSloginBAD or MSloginOK for

unverifiable and verifiable login respectively. The Message Body will contain the replica of the

Message Body Oasis received with the MSl ogi n message.

If Oasis can not verify the client, it increments the Un-Conformace flag of the client. If Un-

Conformance reaches a count of five, Oasis will drop the client and free all resources allocated for

that client.

A valid session is established when Oasis verifies the client and the MSloginOK message is

received by the client.

4.4.3.3 Establishing and Closing a Media Channel
Section 4.4.2 of this report explained how to establish a valid session with Oasis. We have

described how the opening of two socket connections to Oasis and logging in are the

requirements for a valid session. The first socket connection is used to send command and reply

messages to Oasis, and the second socket connection is used to receive command and reply

messages from Oasis. These two lines of communication are reserved for passing small amounts

of control and info data between Oasis and its clients.

To send Media Data, such as video, audio, streamed text, VRML, etc., we use one or more

sockets other than the Command and Reply Sockets. We establish a new socket with Oasis for

each of the Media Objects we want to access. Currently, Oasis does not support delivery of more

than one Media Object at a time on a single Media Channel.

At any time after the client logs in, it can request the status of a particular Media Object. It is

desirable for the client to check the status of a Media Object before requesting the loading of it.

Oasis does not allow the client to establish a Media Channel until the client has been verified and

has logged in. Only then can the client send Oasis the MSwantMediaConnection message.

MSwantMediaConnection makes use of the Message Body but not the argument field. The

Message Body contains the following:

i P: IP address to which the Media Objects should be sent by Oasis.

port: The port number that the client has bound to and is listening on

for a connection from Oasis.

As we can see here, this is an unorthodox way for a client to make a connection to a server; but it

is quite versatile since it allows the client to specify any destination for the Media Object, including

a Multicast Address. Also, this method allows Oasis to serve the client from anywhere, including

from an Oasis Server located on another machine.

78

When Oasis receives a MSwantMediaConnection, it replies either with a

MSmediaConnectionRefused message containing an argument specifying the reason for the

refusal or with a MSmedi aconnecti onAl 1 owed message followed by a Message Body with the

following:

i p: The IP address Oasis will try to establish a connection with.

port: The port number that Oasis try to establish a connection with.

maxBand: The maximum bandwidth that can be reserved for this Media

Channel at this time.

After sending a MSmediaConnectionAllowed message, Oasis tries to establish a connection

with the destination specified by the client. After a new Media Channel is established, Oasis will

send a MSmedi aconnecti onReady message to the client's reply port.

From this point on, the client can start sending Media Control Messages to Oasis through the

Command Port. Media Control Messages are discussed in Section Four of this document.

Oasis will free all allocated resources, including Media Channels, at the end of a session; but this

should not stop the client from closing Media Channels when they are no longer needed. At some

intervals, Oasis will query the client for inactive Media Channels; and if the Media Channel is not

claimed by the client as being needed, Oasis then drops the Media Channel and frees all

resources allocated for it.

A client wishing to close a Media Channel should send the MScloseMedi aconnecti on

message with the Media Channel Identifier in the argument field of the Message Header. From

this point on, the client should not send or expect any more data through the specified Media

Channel.

Upon receiving a MScloseMedi aconnecti on message, Oasis closes all files associated with

the Media Channel, frees all allocated resources such as Network and Disk Buffers, and replies

with the MSclosedMedi aconnecti on message to the client. The following sub-subsection

discusses Media Control messages used by the client to send or receive streaming or non-

streaming data.

4.4.3.4 Media Control Messages
The purpose of this sub-subsection is to describe the messages available to the client for the

purposes of controlling data transfer over the Media Channels. The description, here, assumes

the existence of a valid session and a live Media Channel, as described in the preceding

subsections. The client can use a Media Channel to either send or receive streaming or non-

streaming data. In this report, we discuss only the data transfer from Oasis to the client; clients

79

that upload data to the Server (and thus fall into the category of Special Clients) will not be

discussed.

We note that, once a live Media Channel is established, it should be used only to transmit

data. All messages by the client should be sent and received through the Command and Reply

Channels respectively.

Loading of Media Objects

Before any data can be sent over the Media Channel, the client must notify Oasis of the Media

Object that is to be associated with the Media Channel. This step is accomplished by the client

sending a MSloadMediaObject message and waiting until Oasis replies with a

MSmediaObjectLoaded message.

Oasis will reply to the MSl oadMedi aObject message with one of the following messages:

MSmedi aobjectLoaded: Oasis sends this message upon successfully

opening the file associated with the Media Object

and verifying that the client has the access rights to

this Media Object. If Oasis replies with this Message,

then a Message body (as discussed below) follows

it.

MSmedi aob j ectNotFound: The specified Media Object was not found. This

Message does not have a Message Body.

MSmedi aob jectArchived: The specified Media Object is archived. This means

that the Media Object is stored in a mass storage

system. To access such a Media Object, the client

has to make an appointment, at which time the

Media Object will be ready for service. This feature

of Oasis is not implemented yet.

MSmediaObjectNoPriv:

MSmedi aObjectMi ssi ng:

The client does not have privilege to access the

specified Media Object.

This message is sent in the case of a discrepancy in

the internal content database of Oasis. That is, if

Oasis cannot find the file associate with the Media

Object even though its internal content database

shows that the Media Object exists, Oasis sends this

reply.

80

If Oasis finds that the client has access privileges to this Media Object and if the file associated

with the Media Object is successfully opened, then Oasis sends the MSmediaObjectLoaded

message with a Message Body that is the same as the MSloadMediaObject message. The

difference is that while the client is required only to fill the Media Objects ID, Oasis will fill in the

rest of the Message Body if the information it received from the client is different from the

information it had; for example, if the client has not filled in the name of the Media Object, then

Oasis fills it in when it is replying to the MSloadMediaObject message.

If the client wants to load another Media Object in place of the loaded Media Object, it needs only

to call MSloadMediaObject once again with a different Media Object Identifier. Oasis will unload

the first Media Object and attempt to load the new Media Object. This means that if Oasis cannot

load the new Media Object, the old Media Object will still be unloaded. This is one reason why the

client should always use a MSqueryMediaObject message first to check on the status and

availability of the Media Object.

Unloading of Media Objects

To unload a Media Object, the client should send MSunloadMediaObject without a Message

Body. The client needs only to specify the Media Channel Identifier in the argument field of the

Message Header. Oasis will reply with one of the following:

MSmediaObjectUnloaded: This indicates that the Media Object was

successfully unloaded and that all resources,

including I/O buffers, have been freed.

MSi nval i dMedi aPort: The specified Media Channel was invalid or was not

owned by the client.

Oasis will reply back with MSmediaObjectUnloaded regardless of any Media Object being

loaded or not, as long the specified Media Channel is valid.

NOTE: If the client only wants to change the current loaded Media Object on a Media Channel, it

does not have to call MSunloadMediaObject. See Section 4.1.

Next, we describe the messages that allow for transfer of data over the Media Channel along with

messages that affect the transfer of data.

MSmcPlayForward

The main purpose of any server/client architecture is to send data from one node to another.

MSmcPlayForward and MSmcPlayBackward are the two messages for which Oasis waits

before sending data to the client. For these messages to be successful, the client must have

loaded already a Media Object on the specified Media Channel.

81

These two messages do not have a Message Body. The client needs only to specify the Media

Channel that this message will affect in the argument field of the message. If MSmcPl ayForward

is used, Oasis will increment the file offset by n bytes each time it sends n byte chuck of data. If

MSmcPlayBackward is used, Oasis will decrement the file offset by n bytes each time it sends n

byte chuck of data.

If Oasis can send data, it will reply to a MSmcplayForward or MSmcPlayBackward with a

MSmcPlayingForward and MSmcPlayingBackward respectively and start sending the data at

the rate requested. If Oasis cannot send the data, it will reply with one of the following:

MSmcCantPl ayEoF: If the file offset is already at the end of the file when

MSmcPl ayForward is sent, Oasis returns this

Message.

MSmcCantPlayBoF:

MSmcCantPlaylnvali dMC:

MSmcCantPlayNoMO:

MSmcCantPlayNoResou re

e:

If the file offset is already at the beginning of the file

when MSmcPlayBackward is sent, Oasis returns

this Message.

If the argument field of the Message Header is not a

valid or an existing Media Channel Identifier, Oasis

replies with this message.

If the valid Media Channel does not have a Media

Object loaded, Oasis replies with this message.

If for some reason Oasis has a limited resource and

cannot deliver the data at the specified rate, then

this message is sent. In this case, the client can

either adjust the rate or wait until more resources

are available.

MSmcstop

The client can request the data transfer to stop at any time with the MSmcstop Message. Under

normal circumstances, Oasis will acknowledge a MSmcstop message with MSmcStoped even if

the state of the Media Object was already stopped. In the case of an exception, Oasis might reply

with the following:

MSmcCahtStoplnval i dMC: If the argument field of the Message Header is not a

valid or an existing Media Channel Identifier, Oasis

replies with this message.

MSmcCantStopNoMO: If the valid Media Channel does not have a Media

Object loaded, Oasis replies with this message.

82

Note: The client should be aware of the fact that, if Oasis stops sending data, there still could be

data available to read at the specified Media Channel. There could be data remaining at the

Network Buffers, which might need to be flushed.

MSmcSeek

Oasis allows clients to seek anywhere within the Media Object, allowing random access capability.

At any time while a Media Object is loaded, the client can send the MSmcSeek Message to Oasis.

Just as with all the Media Channel Control messages, the argument field of the MSmcSeek

message header should contain the Media Channel Identifier. Oasis allows several types of seek;

and, since MSmcSeek has multiple options, Seek Messages may have a Message Body. The

following figure shows all the fields that make up the MSmcSeek Message Body.

J2£ils_ H

MsMOID

MsMOTYPE

MsMORATE

MSMOTOPIC 32ByteS

MsMOSHORTNAME32By*,

MsMOLONGNAME MBytes

MSloadMediaObject Message Body

The following describes all fields within the body of the MSmcSeek message:

type:

MSseekOffset:

MSseekBlock:

n:

The type of seek to perform. The following are valid seek

types:

This tells Oasis to seek to the offset specified in the n field.

This tells Oasis to seek to the nth block in the Media Object.

Size of the block can be set with the MSmcSetProperties

Message described in the next sub-section. Block 0 indicates

the beginning of the file.

This field is used by Oasis to seek to an offset or a block

depending on the seek type that was specified. If type is

MSseekOffset, then n is interpreted as a file offset. If type is

MSseekBlock then n is interpreted as the block number and

83

Oasis will seek to file offset n*bl ocksi ze.

MSmcSetProperti es

The MSmcSetProperti es command can be sent by either Oasis or the client, allowing both to

set preferences regarding the Media Object and the Media Channel, such as the maximum

bandwidth supported by the Media Channel. The message body for MSmcSetProperti es is the

same as the message body for MsloadMediaObject. The properties will be set to the minimum

preference of the client and Oasis. For example, if the client is requesting 1.8 Mb/s, but Oasis can

only send at 1.5 Mb/s, then the lesser of the two requests (1.5 Mb/s) is chosen.

4.4.4 Implementation status of the distributed video server
In the time frame of this project, most of the server software was implemented. Limitations of the

server implementation are listed in subsection 4.4.1.11. As for global system implementation, no

operational video clients have been ported to the server to work with the Oasis server. Also, there

was no performance testing.

In the light of recent developments in the practical implementation of the Integrated Services

Model for the Internet, we believe that the Oasis server design should be modified to comply with

the protocols used in the model. This modification would include use of UDP for media streams,

RTP for multiple media stream synchronization, support for multicast, and explicit support for

Reservation Protocol.

84

5. Video Client Architectures

Video dient implementation was one of the main thrusts of the entire project. We searched for a

software environment that would allow us to write portable video applications. Such a framework

simply does not exist today. Video applications depend greatly on specialized video hardware.

And, although there is a strong movement towards standardization of many elements, such as

video codecs and multimedia protocols, the actual implementation tools for networked video

applications have no cross-platform common denominator. For instance, the fact that the

structure of the MPEG1 system stream is strictly defined does not imply that there are

commonalties in the way the stream is presented to MPEG decoders on different platforms. It is

important to understand that compliance with certain standards does not imply much for cross-

platform multimedia development. Consider, as an example, a family of standards such as H.320

or T.12X. These protocols ensure application interoperability. The H.32X family declares an

application compliant if it can handle an H.261 video stream. Yet such an application, when

implemented on a PC and a UNIX platform, will use vastly different programming environments.

Another, perhaps more suggestive example, is the situation with hardware MPEG decoding cards.

Microsoft defined a programming environment known as Video for Windows (VfW). This

environment (described in detail below, 5.2) ensures that the drivers for such third-party cards will

respond to a set of standardized commands, known as Media Control Interface (MCI).

Unfortunately, this command set is of such a high level that it does not deal with the critical issue

of a standardized interface to video encoders and decoders. Since VfW does not deal with

network video at all and does not support video playback from a user space buffer, the net result

is that even with this environment in place it is necessary to obtain an independent SDK from each

and every MPEG decoder card vendor to be able to implement a video client. This situation

almost led to a revolt among developers of video game software. We have faced the same

difficulty during the entire project.

Historically, when the project started, there were no machines among PCs and desktop class

workstations able to play a smooth MPEG1 video stream. Further, for most UNIX brands, there

was no meaningful system software support to write network video applications. The notable

exception was Silicon Graphics, and we initially, concentrated on this platform. Later, we moved

towards PC platforms, mostly because it was economically unfeasible to expect that we would be

able to install video laboratories for the Living School Book project or even at Syracuse University,

with dozens of video clients using SGI workstations. As the performance of PC platforms was too

low initially to support software video playback, we concentrated on the hardware solutions. We

used the VfW environment to implement a high-end networked video client using the hardware

MPEG1 decoder from OptiBase. The project establishes the feasibility of such a solution, but this

85

solution was limited to just one hardware board. Lack of the standardized hardware drivers

rendered this work a research curiosity. We describe this effort in detail in Subsection 5.2.

During the final stage of this project, Microsoft introduced a new technology, code-named

ActiveMovie. We gained early access to the technology, by becoming a beta-tester site for this

product. ActiveMovie goes a long way toward providing a uniform interface to video coders. Prior

to the end of the project and before ActiveMovie was officially released to the public, we

implemented a completely new, software-based video client for our systems. This software can

run on any decent PC and is being currently deployed in the Living School Book testbeds.

Although we have not achieved portability across PC and UNIX platforms, we believe that we

have provided a viable video client solution for inexpensive educational installations, mostly using

PC workstation. Details of this work are described in Subsection 5.3

The remaining challenge of "grand unification" will be resolved soon. This will happen by

completely switching multimedia development to Java. In section 5.4 we describe our early Java

implementation of the H.263 video client. This software is entirely cross-platform. Given the rapid

maturation of Java technology, we predict that this language will be used for 90% of all multimedia

development two years from now.

5.1 Video client for SGI platforms

We implemented both MPEG1 and H.263 video clients for SGI workstations. Both modules were

implemented using SGI Digital Media Library.

5.1.1 Digital Media Library
Most of our UNIX work in the project has been done on SGI platforms. SGI offers a relatively

coherent development environment for digital media. This environment is encapsulated in the so-

called Digital Media Library (hereafter referred to as DML).

The overall design structure of the Digital Media Library is an interesting case as it represents one

of the advanced industrial attempts to provide a comprehensive API to the multimedia functionality

of a UNIX workstation. The entire library consists of 4 major parts: audio library, video library,

compression library, and movie library. Audio and video libraries provide an API to the proprietary

SGI audio and video hardware functions, like device initialization, control of audio and video

channels on the dedicated devices, etc. These two parts are, per definition, not portable and can

only be used on SGI workstations. The compression library is a collection of algorithms for both

audio and video compression and for providing access to the memory structures used to store

and forward the audio and video streams. This part of the library is crucial for our work since it

enables us to implement a network delivery framework. Finally, the movie library provides

mechanisms for audio/video synchronization and for the random access to the audio/video

("movie") material.

86

On the first glance, DGI's DML appears to be a complete and well-designed framework.. The bast

parts of the library are the audio and video modules. Handling of multimedia hardware on SGIs is

much more robust, stable, and straightforward compared to the PC platforms. The Audio library

provides support for full duplex transmissions and for multiple concurrent streams. The video

library allows for rather easy access to the digitized video, while the digitization functionality is

almost completely hidden from the programmer. Audio library supports, among other things, the

following basic functionality:

■ configuration of audio hardware and management of audio-related I/O between

the applications and hardware

■ support for many popular file formats, such as AIFF/AIFFC, .au, .wav, etc.

■ automated creation of the audio library data structures

■ support for CD players and DATs as audio source, as well as full support for MIDI

The Video library is a collection of device-independent C calls working on top of the SGI video

device drivers. The most relevant functionality includes

■ support for video display on the computer screen

■ support for video input and digitization devices

■ support for blending different video streams.

Note that the Video Library does not deal with video compression or even with different digitized

video representations. The basic functionality of the library deals with getting video streams in and

playing them out. Anything in between must be handled by the application. To aid developers, SGI

provides a compression library and a movie library.

Unfortunately, the good initial impression quickly shatters upon closer inspection. The problem

with the current version of the DML is that it was implemented by four separate teams of

programmers with little coordination. As a result, the data structures used in different parts are

incompatible, and the actual information flow along the audio/video - compression - movie path

is not really supported. One could expect that the movie library will be able to access the

decompressed audio/video streams, synchronize them, and send them to a display device.

Conversely, the compression library should be able to receive a request from the movie library to

deliver a particular part of the compressed audio/video and serve it. This model is clearly used

within the SGI application software but the API and data structures providing this functionality is

not published. As a result, there is a discontinuity between the compression and movie library: it is

possible to display either audio or video streams directly from the compression library, but there is

no support for streams synchronization. The movie library internally supports synchronization but

is unable to read from the data structures supported by the compression library. As a result, the

87

crucial functionality needed to implement network video is not only not supported, but actually

carefully hidden.

The movie library requests a file descriptor as input. We have attempted to bridge the gap

between the compression and movie libraries by using FIFOs (named pipes). This attempt failed:

while the FIFO file descriptor is accepted as input, the movie library does not support the

additional parameters necessary to handle dataflow in the pipe.

We were able to confirm our assessment in a conversation with the SGI developers, who

admitted conceptual fractures in the design of the DML. According to SGI, a major effort is

underway to rewrite the library. We will receive incremental upgrades to the software as the

rewrite process progresses. But it was not until the end of the project that we received a version of

the DML that would support explicitly network video.

5.1.2 MPEG1 Video Client for SGI workstations
To ensure project progress, we implemented a client-server architecture supporting network

delivery of the audio/video streams from the server to a client operating on the level of the

compression library. We designed and implemented the framework that moves data from the

network buffers to the user buffer space, demultiplexes the audio/video stream, feeds the streams

to appropriate decoders, collects the output, and submits it to the audio and video library routines

for presentation. This process does not use the high-level movie library at all.

The entire architecture of the SGI video client revolves around the Compression Library (CL).

SGI's CL supports the following relevant functionality:

■ it supports quite flexible and extensible software interface for compressors and

decompressors of the audio, video, and still-image data;

■ for video, CL supports MPEG1 and a few of SGI proprietary compression

schemes (these schemes are of little relevance as they are neither standard not

particularly advanced);

88

Ring Buffer for
Mux. MPEG Stream

MPEG System
Demultiplexer

Ring Buffer for
Denn. Audio Stream

Figure 5.1. Architecture of the Video Client for SGI workstations. Z1

■ it allows installation of new compression algorithms;

■ it is binary compatible across all SGI platforms.

The figure above illustrates the high-level architecture of the SGI video client

The video client is multi-threaded. Technically, multi-threading is implemented using the sproc

mechanism described in Subsection 4.1. The four threads of the video client serve the following

functions: network I/O handler, Audio and Video decompression handlers, and User Interface

handler. The client uses compression, audio, and video libraries from the DML and the IRIS GL

library to handle screen display. The client is capable of random access.

The network I/O thread of the client reads blocks of the MPEG1 system stream from the network

interface and places them into a ring buffer. Ring buffers are used throughout the client to ensure

full asynchronicity. The ring buffer concept is different than double buffering. It is one contiguous

segment of memory which is wrapped around. The producer process writes at the buffer tail

pointer and moves the pointer to the first free memory location in the buffer. The consumer

process reads data starting at the head pointer and updates it to the location of the first unread

memory locations. Pointer arithmetic is encapsulated in the ring buffer data structures and is

transparent entirely to the producer and consumer processes.

89

The data from the network ring buffer is demultiplexed into separate audio and video streams

(MPEG1 system streams interleave audio and video). The demux process is implemented using

CL support. Then both media streams are written in two other ring buffers. These buffers are read

asynchronously by the audio and video decompression threads.

The audio and video decompression threads are similar. Both read the circular buffers into

respective decompressors provided by CL. The decompressed data is submitted to either an

audio port (using Audio Library) or to the GL routines for screen display. If hardware accelerators

are available, they will be used automatically.

VKi^V^v

Figure 5.2. SGI MPEG1 video client

The GUI thread of the video client is built using Motif and SGI widgets. This interface (depicted

below) supports VCR-like controls, a scrollbar to control random access to the stream, and a text

area to display close captions. In addition, the interface supports so called "video marks" to

facilitate marking video segments of interest. The GUI thread communicates with all other video

client threads using signals.

90

Figure 5.3. SGI video client: performance monitoring panel and video marks panel.

Since we could not use the Movie Library, we needed to resolve the audio/video synchronization

problem. For MPEG1. The audio/video stream is interleaved. Thus, in principle, it should not be

91

difficult to achieve synchronous playback. Two situations arise that require attention: first, there

may be insufficient network bandwidth. For non-adaptive applications playing interleaved streams,

there nothing can be done to remedy this problem. Insufficient bandwidth starves the decoder,

which stops playing. Whether audio and video are synchronized during intermittent playback is of

little relevance - the stream is unusable. However, with sufficient bandwidth, we often have a

problem of insufficient CPU power to decode the video stream. Two solutions are possible: one is

to stop playing audio and play all frames of the video stream in a kind of slow motion, the other is

to skip portions of the video stream to keep up with the average bitrate. In systems which push the

data at a constant bit rate, as our server, only the second solution is acceptable. Thus, there is no

problem of audio/video sync, but rather a problem of gracefully degrading video playback by

smoothly skipping video frames as needed when the CPU falls behind. Now, this problem is

resolved (to a degree) in the native SGI applications using Movie Library; but it is a difficult to

solve using the tools provided in DML.

We determined that the SGI software MPEG decoder performs quite poorly. Clearly, it has not

been optimized. As a result, an average SGI workstation (say, a 150-MHz MIPS 4400 Indy) is

unable to play MPEG video streams at full bitrate. We discovered that, if only video is being

handled, CPU utilization tends to saturate, at which point the DML MEG1 decompressor simply

fails (i.e., it displays garbage). Now, to relieve the CPU load, we devised an algorithm that skips B

or PB frames when falling behind. Implementation is rather difficult since the CL does not provide

any tools to recover presentation time stamps from the MPEG1 system stream. However, the

main stumbling block was the fact that the CL routines, when asked to skip frames and go to an I

frame ahead in the stream, do not return promptly! As a result, instead of gaining ground on the

incoming video stream, the CPU utilization drops to -50% yet the control does not return to the

application - it is like the MPEG decoder, asked to skip a frame, sleeps internally for the time that

would otherwise be needed to play the frame. As a result, the decoding process does not use all

available CPU time while maintaining poor visual performance.

We were unable to correct this behavior.10 The best playback quality we managed to achieve is

marginal, at best. The playback quality of our player is slightly worse than the quality of the

indigenous SGI movie player (which, nota bene, is not a networked application). Apparently,

access to a non-published API helped SGI developers to write a slightly better implementation, but

even this implementation provides mediocre MPEG1 playback.

Another annoying problem is the inability of the Audio Library to support random stream access.

Basically, in spite of the manuals stating otherwise, AL dumps the core when presented with an

MPEG1 audio stream that is off by as much as 1 bit. We achieved a functional but less than

10 The most recent version of the DML (coming IRIX 6.3) simply removed the capability to skip frames from the library,
i.e., SGI developers made a bad situation worse.

92

robust implementation by keeping the initial audio header in memory and trying to localize a valid

entry point to the audio stream corresponding to the Group of Pictures (GOP) mark.

In conclusion, the networked video client for the SGI workstation was implemented, but its

performance and robustness are not satisfactory. As outlined above, a way around the difficulties

is to implement a high-performance MPEG1 decoder from scratch. The time frame and level of

funding of this project precluded such a solution.

5.1.3 Low bit rate, H.263 video client for SGI workstations
In the case of the low bit-rate video client, we implemented all the decoders from scratch. We still

used the DML framework by adding the H.263 decoder to the library, following the compatibility

rules defined by SGI. Because we had full control over the decoder source, we did not experience

performance problems as those described above for the MPEG1 decoder. The H.263 player

handles video streams with bit rates in the range of 28.8 - 384 kbps. Because H.263 is a video-

only standard, we modified the video server to serve two synchronous streams (the problem of

multiple synchronicity has been addressed in a more general fashion in the Oasis server). The low

bit rate H.263 video client recognizes audio streams coded in either GSM 6.1 or ADPCM format.

The client supports QCIF and CIF file formats, and it enables one to play the movie, to stop it, and

to randomly access the stream.

For a description of the H.263 codec, please refer to Appendix 9.2.

GSM 06.10 audio codec

GSM is a telephony standard defined by the European Telecommunications Standards Institute

(ETSI). The GSM 06.10 compressor models the human-speech system with two digital filters and

an initial excitation. The linear-predictive short-term filter, which is the first stage of compression

and the last during decompression, assumes the role of the vocal and nasal tract. It is excited by

the output of a long-term predictive (LTP) filter that turns its input -- the residual pulse excitation

(RPE) -- into a mixture of glottal wave and voiceless noise. The GSM encoder compress 160 16-

bit voice samples into 264-bit GSM frame. GSM 06.10 is faster than code-book lookup algorithms

such as CELP. It offers 13kbps bandwidth.

Intel/DVI ADPCM

The ADPCM compression algorithm uses the correlation between adjacent audio samples to

reduce bit rate. It transmits only the differences between samples and their predicted values,

which have less a dynamic range than the samples themselves. Predictor coefficients and

reconstruction levels are calculated dynamically using coded signals. This enables a reduction of

the bandwidth but make this adaptation technique more susceptible to transmission errors. There

93

are a few ADPCM standards, e.g. Intel/DVI and G.721. Intel/DVI provides good quality, even for

music, even though it is not computationally intensive.

Synchronization

Synchronization is based on the internal SGI Audio Library mechanisms. Procedure sending audio

samples to the speaker port blocks until all previously sent samples are processed. It is therefore

enough to send audio portion and then decode video frame to achieve the synchronization and

keep the frame rate. The only problem is that this mechanism requires single video frame

decoding which moves the responsibility of single frame reading from the decoder to the AV client.

To support this sync mechanism, the following changes/enhancements were necessary both at

the decoder and client side:

■ the original H.263 decoder was transformed into a library that allows the decoder

to initialize and then decode single frames passed as a function argument;

■ a special function for detecting ends of H.263 frames was implemented and used

in the single-frame reading procedure;

■ a system of ring buffers was implemented to make independent the process of

taking a single H.263 frame from data being read from a socket.

Random access

Since audio portions are always the same size, there is no problem finding the beginning of an

audio segment. However, the situation differs in H.263 video compression. First, H.263 frames

have different lengths. Second, because H.263 is a predictive encoder, only INTRA frames can be

accessed this way. Thus, a way to offset a H.263 stream is needed.

The H.263 system is intended as a preview tool for MPEG movies. Hence, H.263 sequences are

created by converting MPEG files. It is rather important for a preview tool to have random stream

access. This requires the generation of offset files.

To obtain offset files, it was necessary to add new features to the H.263 encoder:

■ the ability to encode an INTRA frame every fixed number of frames (only INTRA

frames can be accessed randomly);

■ the ability to write an offset file with the number and stream position of every

INTRA frame.

All these modifications have been implemented. The offset files are created by the MPEG1- H.263

re-encoding tool.

94

sFigure 5.3. SGI H.263 client playing a video clip in the Museum of Science and Technology in Syracuse

&2 Video for Windows networked video client

This section describes the architecture and implementation of the video client developed for the

Windows 3.1 environment. As discussed above, it was not possible to achieve acceptable quality

MPEG1 playback using software decoders until very recently. Now, however, we have started

implementing video clients for PC machines using hardware MPEG1 decoders. The software

development framework was provided by so called Video for Windows (VfW) architecture. The

following section briefly describes this framework then details the design and implementation of

the video client using the Optibase MPEG1 hardware decoder.

Although the Window 3.1 OS is somewhat obsolete, we continue to use the Optibase video client

in NPAC because the playback quality is superior.

5.2.1 Video for Windows architecture
The Microsoft Video for Windows (VfW) architecture was designed to provide developers with

services for developing video capture, editing, and playback applications. It contains a set of

application programming interfaces (APIs) necessary to create these types of applications, as well

as audio and video compression and decompression (codec) drivers and video-capture drivers.

The VfW development kit includes C window classes, Visual Basic programming system custom

controls, sample code, debugging tools, and the VidCap and VidEdit video capture and editing

tools.

The VfW DK is designed for developers who are implementing

■ end-user tools for video processing,

■ device drivers for audio and video data capture and compression, and

95

■ content applications that incorporate video sequences.

The VfW architecture provides the following components:

■ A data container. The VfW uses the Audio Video Interleaved(AVI) file format for

applications that capture, edit, and play back audio-video sequences. In general,

AVI files contain multiple streams of different types of data, though multiple

streams of any data type are supported. A simple AVI file might contain an audio

voice stream, a MIDI stream, and a video stream. A file containing two audio

streams, each in a different language, is an example of a single file that serves a

dual purpose.

■ A set of APIs. Other functionality that might be included in an application is

provided by APIs that enable the manipulation AVI files, that create and work with

audio and video codecs and capture device drivers, and that communicate with

Media Control Interface (MCI) devices.

■ Predefined classes and controls. The VfW architecture provides C window

classes and Visual Basic custom controls for creating capture and playback

applications. For example, the functions in the AVICap window class provide

features that appear in the VidCap tool. The MCIWnd window class functions

provide features that appear in the playback window of the VidEdit tool. A

subset of the features provided by the AVICap and MCIWnd classes appears in

their related Visual Basic controls, CAPWNDX.VBX and MCIWNDX.VBX.

VfW architecture is designed to be extensible. Developers can expand VfW run-time capabilities

by adding their own custom stream and file handlers that incorporate new types of data into the

AVI file format. Audio and video codecs can be added to provide additional options for software

compression and decompression. New capture device drivers can be incorporated to take

advantage of advances in hardware development.

The main drawback of this architecture is its lack of modularity. Although it is possible to add an

entire new codec to the framework, the codec itself has to handle both the data source and the

actual decoding process. Technically, what is missing in the VfW architecture is the codec handle:

it is not possible to simply call a decoder on behalf of the data in a user space buffer.

Consequently, there is no simple way to expand the VfW architecture to networked video. In our

case, two project requirements were (1) to play video over the network, and not from local disk

drive, and (2) to use a hardware MPEG1 decoder. Since an installable codec in the VfW

framework must handle both data source and the decoder, there was very little we could reuse

from the VfW except for the GUI of the popular Media Player. The Optibase MPEG1 decoder card

did not have an MCI (i.e. VfW compliant) driver until late 1995; but, even if it had, there would

96

have been no way to integrate low level data handling and high level MCI (Media Control

Interface) within the VfW framework. We have implemented the entire installable driver for the

Optibase card using three software ingredients: (1) our own code for the client network interface,

MCI commands handlers, and decoder control, (2) Optibase development kit to submit MPEG

data to the decoder, and (3) Microsoft Media Player GUI to control the client.

5.2.2 MPEG decoders
MPEG (Moving Pictures Experts Group) is a group that meets under the leadership of the

International Standards Organization to generate standards for digital video (sequences of images

in time) and audio compression. The MPEG standard defines a compressed bit stream, which

implicitly defines a decompressor. Implementation of the compression algorithm itself is up to the

individual manufacturer, and that is where proprietary advantage is achieved within the scope of a

publicly available international standard. MPEG itself is a nickname. The official name of the

standard is ISO/IEC JTC1 SC29 WG11.

The hardware decoder used for our Video Client is a PCMotion board manufactured by Optibase,

Inc.

This decoder was compatible with

■ the ISOMPEG1 standard (the world standard for digital compression),

■ industry-standard PC/AT computers, and

■ the MPEG1 system layer files.

The PCMotion board is an ISA card inserted into the PC workstation. The following illustration

shows hardware elements interacting with the board.

PCMofioiT

Hard Drive,
Network Server,

or CD-ROM Drive

The decompressor is able to decode a MPEG1 system layer file in real-time at 30 frames per

second. The board could also encode and decode MPEG1 audio layer files. The PCMotion card

97

produces either composite or Y/C signals that can be connected to a TV monitor. There is no

provision to display decoded video on the computer screen. This functionality can be obtained by

adding a TV card to the machine and looping back the PCMotion video output to the TC card's

input.

The PCMotion card comes with an optional software development kit. The SDK includes DOS

libraries (not used), a Windows DLL, and a sample source code. The API to. the DLL was

delivered in the form of a poorly commented header file. The Optibase product was not designed

to decompress files obtained from the network, and its API focuses on local disk files access.

Nevertheless, the API supported playback from the user space buffer. We uses this critical

capability to implement the networked MCI driver for this card.

We also evaluated another hardware decoder manufactured by OptiVision. This card cooperates

with the VGA display by using a so-called VGS feature connector. Specifically, the decoded video

is overlaid with the VGA output in a window on the workstation screen. This technology is

appealing as it removes need for a TV card. However, the VGA feature connector does not have

the bandwidth to handle decompressed video, and the resulting quality is rather poor. Optivision

provided us with an SDK that was somewhat more sophisticated than the Optibase product; but

we abandoned software development for this card because of the poor quality of MPEG playback,

the complicated card installation procedure, and buggy drivers that often crashed the entire

system.

5.2.3 Windows networking tools
The Windows 3.1 environment originally did not include TCP/IP protocol suite. For many years,

this market niche was exploited by companies providing third-party products. In general,

installation and maintenance of a TCP/IP layer on Windows 3.1 machines was a major pain.

For this project, we tested some products, including packages for Microsoft, FTP, Sun (PC-NFS),

and Trumpet (public domain shareware). Because we were interested primarily in development, it

was important to find a Windows Socket implementation that was truly compatible. We

determined that the Trumpet package is the most stable and robust.

5.2.4 Media Control Interface Optibase MPEG driver
The main objective of creating a driver for the Media Control Interface (MCI) was to enable

development of a user interface for a video client working with Optibase MPEG hardware. The

general function of all MCI drivers is to provide a high-level interface to control various media

devices through generalized commands such as play, pause, and stop. We used specific

commands sets of MCI to control different device types in the Microsoft Windows system.

However, the basic commands are the same for all device drivers. We decided to build such an

98

MCI device driver in order to blend our video client into the Windows multimedia environment. A

properly implemented MCI driver can be loaded by the Microsoft Media Player, which is included

in the standard Windows Accessories program set. Media Player is commonly used to control the

playing of video files or audio wave forms from the disk, to control a VCR connected to the

computer, as well as CD-Audio or CD-i. To make such control possible, each of these devices

has its own MCI driver that handles the messages sent to it by Media Player. These messages

are sent by Media Player in response to the user operating elements of the graphical interface. A

properly implemented MCI driver must properly handle all MCI commands. The benefit of a

standardized interface is that one can build hardware-independent multimedia applications in the

Windows environment. Knowing only the general specifications of the MCI command set for this

type of device, a developer can easily replace Media Player with a custom application. Typically,

such applications are created using Visual Basic.

5.2.5 MCI driver in "Video for Windows" architecture
In the architecture we have described, all responsibility for the hardware-dependent aspects of

developing multimedia applications remains with the MCI driver developer. The MCI driver we built

dealt with two hardware interfaces: the network interface and the MPEG decoder interface.

The graph above displays the architecture of the MCI driver for the Video Client in VfW

framework.

99

5.2.5.1 MCI driver in Video Client architecture
We designed a three-layer structure of the Video Client architecture. The top level is the end user

application, including GUI and interacting directly with the user. (As mentioned, this application

could be either the Media Player or another, custom application.) The intermediate layer is just the

MCI driver that is loaded by the upper application as a dynamic link library (all MCI drivers are

Windows DLLs). This layer implements the MCI interface. Finally, the bottom layer is the Video

Client application that was responsible for networking and for dealing with decompressor board.

This architecture separates the MCI driver's DLL from the network and decoder layers. This is

important in the case porting the driver to other hardware decoders. Another reason for this

partitioning is the synchronization of events generated by the user, Media Player, sockets, and the

decoder.

The most difficult part of the implementation process involved the non-preemptive nature of

Windows 3.1. The driver architecture is, in fact, multithreaded; but such a model does not fit well

with the message-driven Windows 3.1 architecture. Another set of problems involves mutual calls

between two different DLLs, which is possible only when all pointers used in the data structures

are 32 bit.

5.2.6 Technical details of the driver
We adopted the MCI AVI commands set as the most appropriate solution for digital video

playback. The command set that the MCI driver must handle belong to two categories: (1) the

general Windows driver set and (2) the MCl-specific driver set. We provided handles for loading,

freeing, opening, closing, installing, and de-installing the Windows driver. We also generated an

oemsetup.inf script that enables an automatic install of the driver, e.g., from a diskette in

Windows 3.1 operating system.

The set of MCI specific commands that was handled and tested in the overall VoD architecture

includes open, close, capability, play, play from, stop, pause, resume, status length, status mode,

status position, status Startposition, status time format, seek to, seek to start, set time format, set

audio all on/of.

The Status message was generated periodically (1-2 times per second) by Media Player to obtain

internal driver information about its current mode (playing, stopped, seeking, ...), the current

position of media (to update Media Player random access bar), as well as the length of the media.

It took some experimenting with the Media Player to learn its behavior, e.g., timing of generated

messages, to properly synchronize it with behavior of Video Client (depending on network and

MPEG decoder).

The Set message is generally used to change time format of MCI driver (corresponding to Media

Player time format option). Media Player requires only two basic time formats (milliseconds and

100

frames) to be provided by MCI driver; but other end user applications, according to specification of

MCI, may require other formats. We developed the Optibase MPEG MCI driver to support all

possible MCI time formats. We also added audio volume functionality to the MCI driver, and

adequately updated the video client application by using the decoder's API.

5.2.7 Execution flow
The video client architecture requires seamless interaction among the following software

components:

■ Media Player or other top-level media control application,

■ the MCI driver's DLL,

■ the networked video client application (the code handling the network and

controlling the decoder),

■ the Optibase MPEG decoder's DLL,

■ the Windows Sockets DLL,

■ the application that activates TCP/IP stack (Trumpet Winsock), and

■ Netscape browser.

Netscape browser executes Media Player after it receives the metafile from the database back-

end. This is done automatically, thanks to Netscape's MIME extension mechanism that allows

Media Player to be designated as a helper application for the metadata file type. The same

mechanism transmits the metadata file from Netscape browser to Media Player. Next, Media

Player opens the appropriate MCI driver (Optibase MPEG driver in this case), i.e., it loads its DLL

This process is controlled by the information registered in Windows .ini files (win.ini, system.ini,

mplayer.ini). While opening the MCI driver, the Video Client application is executed by the driver.

Again, the metadata file is presented to the Video Client application. The Video Client application

establishes connection with the Video Server daemon according to information provided in the

metadata file.

101

r-

I. ßPPß^ML !?y§L _sLa2^?.?i MCJ
ssajJ88 ^notification

translatedcojMing customMßf multimedia driver level
mosRflnotf'^ moccsxioc

^^■m^^^^^^^^^^H . network events ^H
^■■BIHHI^HH noimcauon

■ codfic API fnnrtions
^^^^^^^^^^^^^™B™i" data requests

i networking/decompressor level

The Video Client application loads the DLLs handling the decoder and Windows Sockets.

Windows Sockets use the TCP/IP stack which must be activated before loading the Sockets DLL.

However, since the TCP/IP stack also needs to be activated before using Netscape browser, the

driver code assumes that the stack DLLs are loaded and active.

Communication between MCI driver and the Video Client application is enabled by Windows 3.1

API (Findwindow function). The MCI driver handle is transmitted to the Video Client application

in the initialization phase. This allows the application to send driver messages back to the MCI

driver.

5.2.8 Parsing metadata file
The metadata file needs to be parsed to retrieve the following information:

■ Video Server IP address;

■ pointer to the movie clip location in Video Server file system;

■ file offset to the requested frame of the clip;

■ video clip length in frames;

■ indexing information (it is done for MPEG format files). This is a simple lookup

table, translating frame numbers to file offsets. This information is needed since,

102

as mentioned, our server is codec independent. The indexing information is

sorted by frame numbers. For MPEG, only indexes for first frames of the GOPs

are provided, i.e., the stream access resolution is 15 frames, or one-half second.

We found that certain MPEG decoders fail when fed a stream segment other than

a GOP header.

5.2.9 Networked Video Client application
The basic functionality of the Video Client application is to load and stream MPEG files to the

Optibase hardware decoder. MPEG files are received in real-time from the network and the

application uses Windows Sockets to perform this task.

The Optibase decoder's API allows developers to use the user-space buffer to feed the decoder.

The remainder of the API was designed to work with local files, but the initial, tests that we

performed with this API demonstrated that it is possible to use these functions to set the decoder

for a networked playback. Unfortunately, decoder behavior in this kind of situation was

undocumented, so we were forced to proceed by trial and error.

Communication with the decoder is set by implementation of a callback function

(GetSystemBuffer) belonging to the decoder. This function is called by the decoder's DLL

whenever the decoder needs new video data to decompress. It is responsibility of the Video Client

application to provide the decoder with the user-space buffer containing valid video data.

The user-space buffer is being written to while the Video Client application is notified of a network

event (i.e., new data came to the data socket). The Video Client application uses asynchronous

sockets, i.e., every network event causes Windows Sockets DLL to send appropriate message to

the application's message queue. Like the majority of Windows applications, the Video Client

application dispatches these messages (and other Windows messages) to their respective

handlers in a continuous loop.

The Video Client application supports the following operations:

■ handling of interactive playback protocol messages (voDPlay, VoDStop,

VoDSeekToOffset, voDAckStop);

■ handling the internal state to the Video Client application, and synchronization of

. its states with modes of the MCI driver; and

■ translation of the MCI protocol to the video server protocol.

Details of the data flow in the video client application are illustrated in the diagram below.

103

MCI DRIVER VIDEO CLIENT

flaying
Wing buffers]}

tforiacki

w[ekjng>

Wog ;-:~i
Wg buffers]']

hing buffers)
iminatinq

VODLoadMovie
VODPlav

VODStop
„ VODAckStoD

VODSeekToOffset^
VODPlay

VODEof

VODTerminate
Connection

5.2.10 Random access
Implementation of the random stream access for networked video is somewhat tricky. We could

not use the random access functions of Optibase API since they were implemented strictly for

local disk access. Instead, we reinitialized the decoder's DLL every time a random stream access

was being performed. For this operation to work, we keep a copy of the MPEG header file in the

Video Client buffer and attached it to the beginning of each MPEG stream segment sent to the

decoder after a random seek operation. It is also necessary to flush completely all decoder

buffers, to avoid the annoying effect of the decoder playing a few seconds of the old sequence

before jumping to the new position. The operation of the buffer flush is undocumented and does

not always work properly.

104

Netscape - [Video Server Asset Management]
File £dit View £o Bookmarks Options Directory Window Help

EE

NPAC VoD Database

SEAROiED FOR: Afl clips
IROM ARCHIVE ID: 2,
ENCODING :M types

If any clip is available on more than
deliver the clip.

All clips located in CNN archive

Title

Comment on
cnrrent situation in <
Bosnia

Computer Inside

Duration playback Codec Server
at' ';;■'• ^^•^:■;*"■'■'■:;-■^■■■'

Action!

2 min 22 the
/sec beginning

2 min 46 ; the

MPEG1

MPEG1

Wayne |*| 1 PLAY |

{ Hardware supported MPEG video client. A video window is placed on the workstation screen via an
auxiliary TV card displaying analog video produced by the hardware decoder.

In the current implementation of the video client, there is a 3-to-5 second delay in performing the

random access, independent of the bandwidth limitations of the network. The cause of this delay

is the size of user-space buffers required by the Optibase decoder. Their total size is 1 MB; and it

appears that the Optibase MPEG decoder needs to read a significant portion of these buffers to

be able to start the playback. Our tests show that the decoder is not able to ignite with smaller

buffers and that this bug is an internal feature of the MPEG decoder.

The random access operations are not completely stable for this version of the video client.

Implementation of a more stable version would require better documentation of the decoder API

and, possibly, access to the lower level of the decoder mechanics.

105

5.2.11 AVI Video Client
Due to the modular structure of the MCI video client, it is not very difficult to extend its functionality

to AVI files. AVI files can be decoded by software codecs delivered with Windows. This is quite

useful since Intel's recently introduced Indeo Video Interactive 4.1 codec has parameters

comparable to MPEG decoders.

The graph below represents the Video Client architecture for AVI. The developed MCI driver and

networking part of the Video Client application do not require significant changes. The Optibase

API has to be replaced with VfW codecs API.

parsing and
demultiplexing
data in buffer
according to
AVI RIFF
specification

We have partly implemented such an AVI player. This implementation involved writing our own

parser of the RIFF file format (AVI is a derivative of RIFF) such that all data structures that need

to properly initialize software decoders are correctly retrieved from the video stream. This work

was discontinued when the ActiveMovie architecture (see next subsection) made the AVI format

obsolete.

The existing Video Client dealing with the Optibase decoder can be ported to 32-bit environment

(Windows 95, Windows NT). The 32-bit Optibase decoder API is currently available.

5.3 Codec independent Active Movie video client

This section describes the video client architecture based on Microsoft's ActiveMovie technology.

As indicated in Section 2, one of the project goals was to provide a hardware independent video

client. The client based on the ActiveMovie technology meets this basic requirement at least for

the PC-based workstations.

In the following subsections we summarize the salient features of the ActiveMovie technology and

present a detailed discussion of the video client implementation.

106

5.3.1 ActiveMovie Technology
The following section is based on Microsoft documentation. It contains extensive citations. The

quoted material has been selected so as to make it possible for the reader to understand the

implementation of the ActiveMovie client for our VoD system.

5.3.1.1 General overview
ActiveMovie is an architecture that controls and processes streams of multimedia data. It is also a

runtime that uses this architecture to enable users to play digital movies and sound encoded in

various formats, including MPEG1.

ActiveMovie playback capability makes use of video and audio hardware cards that support

Microsoft's DirectX set of application programming interfaces (APIs). ActiveMovie also plays

movie files in audio-video interleaved (.avi) or Apple QuickTime (.mov) format.

The ActiveMovie architecture defines how to control and process streams of time-stamped

multimedia data by using modular components called "filters" connected in a configuration called

a "filter graph." An object called the "filter graph manager" is accessed by applications and

controls how the filter graph is assembled and how data is moved through the filter graph.

The filter graph manager provides a set of Component Object Model (COM) interfaces to allow

communication between the filter graph and the application. Applications can directly call the filter

graph manager interfaces to control the media stream or retrieve filter events, or they can use the

ActiveMovie ActiveX (formerly OCX) control for higher-level programming.

ActiveMovie is the architecture to use for most new multimedia applications for Windows 95 or

Windows NT. With a few exceptions, it replaces multimedia playback services, APIs, and

architectures provided by Microsoft in earlier versions of the Windows Software Development Kit

(SDK). The first release of ActiveMovie does not provide a corresponding replacement for each

and every solution found in the previous multimedia technology. For example, there is no video

capture capability built into the runtime. In these cases, ActiveMovie gives developers an

opportunity to use its architecture to provide custom solutions.

ActiveMovie can be accessed through the following interfaces: the COM interface, the

ActiveMovie ActiveX control, or Media Control Interface.

107

Application

nr~x I
ActiveMovigj^ / COM N

Control p^.interfacesf

P

MeSäCSantn

Source
filter

jiFilter graph manager
Transform!

Because of the flexible, modular design of ActiveMovie architecture, there are many potential

uses and applications for filter graphs. Some examples include filter graphs that implement video

capture, control remote devices such as VCRs, sequence animation, and MIDI recording and

editing.

5.3.1.2 Component Object Model in ActiveMovie
All components of the ActiveMovie filter graph architecture are implemented as COM objects.

This includes the filters through which data is passed and filter components that serve as a

connection between filters or allocate memory. Each object implements one or more interfaces,

each of which contains a predefined set of functions, called methods. An application calls a

method, or other component objects, to communicate with the object exposing the interface.

Filter graph architecture uses COM interfaces because they have the following properties:

■ COM interfaces are publicly defined. This means that any filter that implements

the correct predefined interfaces will work in a filter graph without any knowledge

about the other filters since all filters are built with the same interface

specifications.

■ COM interfaces do not change after definition. A base set of interfaces are

guaranteed to work; additional interfaces may be introduced to cover additional

services. This definition prevents version problems.

■ COM interfaces must have all methods implemented by any object that exposes.

This assures that calling a method on the interface of an object will not generate

an error.

108

■ COM interfaces are discoverable. All COM objects support a method called

Querylnterface that enables an external component to discover whether an

interface is present and to retrieve a pointer to it.

COM interfaces are implemented by the object that exposes the interface (they do not contain an

implementation themselves). The interface is essentially a contract for the functionality. Objects

like the filter graph manager, or Microsoft filters, have implemented interfaces that can be

accessed. A developer must implement the interfaces on custom-build filters.

Microsoft ActiveMovie provides a framework that simplifies the creation of Component Object

Model (COM) objects.

ActiveMovie components are supplied as inprocess servers (that is, servers that run in the same

address space as your application). They are packaged in a single dynamic-link library (DLL),

quartz.dll. Developers can use the COM framework of ActiveMovie to build their own inprocess

COM servers which they can package in their own DLL(s).

Typically, a single C++ class implements a single COM class. The ActiveMovie COM framework

requires that C++ classes that implement COM objects conform to a few simple rules, and that

the developer provides a class factory template for each such class. The class factory template

contains information about the class that is vital to the framework.

COM objects are created by their class factories, are reference counted during their lifetimes, and

self-destruct when their reference count drops to zero. COM objects may be created in isolation,

or may be aggregated with an already existing COM object. In this second case, the existing

object (referred to as the outer object) maintains the reference count. The created object (referred

to as the inner object) is not reference counted, but will be destroyed by the outer object during

the destruction of the outer object. (The application cannot directly manipulate COM objects; an

application can only invoke the methods that the object chooses to expose through its interfaces.

Typically, COM objects make several interfaces available. All COM objects must support the

IUnknown interface that is responsible for the reference count.

The concept of a class factory is not specific to ActiveMovie; it is a common design that appears

when the underlying type of the object being created is not known to the client that requests its

creation. With COM objects, clients request interface pointers but know little about the underlying

objects that implement that interface.

5.3.1.3 Filter Graphs
A filter graph is composed of a collection of filters of different types. Most filters can be

categorized into one of the following three types:

109

■ a source filter, which takes the data from some source, such as a file on disk, a

satellite feed, an Internet server, or a VCR, and introduces it into the filter graph;

■ a transform filter, which takes the data, processes it, and then passes it along; or

■ a rendering filter, which renders the data; typically this is rendered to a hardware

device, but could be rendered to any location that accepts media input (such as

memory or a disk file).

For example, a filter graph whose purpose is to play back an MPEG-compressed video from a file

would use the following filters:

■ a source filter to read the data off the disk,

■ an MPEG filter to parse the stream and split the MPEG audio and video data

streams,

■ a transform filter to decompress the video data.

■ a transform filter to decompress the audio data,

■ a video renderer filter to display the video data on the screen, and

■ an audio renderer filter to send the audio to the sound card.

The following illustration shows such a filter graph:

MPEG
sputter
filter

MPEG
video decornp.

transform
filter

Video
1 renderer

filter •

MPEG audio j 1
decompression f ^ I

transform 1 |
filter I 1

Audio
renderer

filter

Filter graphs stream multimedia data through filters. In the media stream, one filter passes the

media downstream to the next filter. An upstream filter describes the filter that passes data to the

filter; a downstream filter describes the next filter in line for the data. This distinction is important

because media flows downstream, but other information can go upstream.

To make a filter graph work, filters must be connected in the proper order, and the data stream

must be started and stopped in the proper order. The filter graph manager connects filters and

controls the media stream. It also has the ability to search for a configuration of filters that will

110

render a particular media type and build that filter graph. Filter graphs can also be pre-configured,

in which case the filter graph manager does not need to search for a configuration.

5.3.1.4 Stream architecture
Stream architecture defines objects and interfaces that exchange streams of time-based data. In

particular, it defines interfaces for the following requirements:

connecting filters to other filters,

negotiating data types,

transporting data between filters,

synchronizing presentation of data, and

graceful degradation of rendering in cases of insufficient resources (that is,

quality-control management).

The two basic components used in the stream architecture are filters and pins. A filter is a COM

object that performs a specific task, such as reading data from a disk. For each stream it handles,

it exposes at least one pin. A pin is a COM object created by the filter that represents a point of

connection for a unidirectional data stream on the filter, as shown in the following illustration:

Source
filter

\

Output pin

Input pins accept data into the filter, and output pins provide data to other filters. A source filter

provides one output pin for each stream of data in the file. A typical transform filter, such as a

compression/decompression (codec) filter, provides one input pin and one output pin, while an

audio output filter typically exposes only one input pin. More complex arrangements are also

possible.

Reference clock synchronization is accomplished by implementing the iReferenceClock

interface on any filter that has a reference clock. For example, because sound cards are

predominantly used for reference clocks, the audio renderer filter implements this interface, which

essentially allows any caller to register for the receipt of time notifications.

The ActiveMovie stream architecture provides for graceful adaptation of media rendering to

overloaded or underloaded media streams. The iQualityControl interface is used to send

quality-control notifications from a renderer filter either upstream, eventually to be acted on by

111

some filter in the graph, or directly to a designated quality control manager. The base classes

implement the passing of quality control notifications upstream by providing the

IQualityControl interface on the output pins of filters. Quality control notification uses a

Quality structure, which indicates whether the renderer is overloaded or underloaded. A filter

capable of, say, discarding samples to relieve and overloaded condition, can then act on this

notification. This is typically done by a source filter but could be done by other filters. For example,

the ActiveMovie AVI Decoder filter skips samples until the next key frame when it receives a

quality control notification.

The stream architecture allows applications to communicate with the filter graph manager; it also

allows the filter graph manager to communicate with individual filters to control the movement of

the data through the filter graph. Using the stream architecture, filters can post events that the

application can retrieve, so. an application can, for example, retrieve status information about a

special filter it has installed.

The filter graph manager exposes media control and media positioning interfaces to the

application. The media control interface, iMediaControl, allows the application to issue

commands to run, pause, and stop the stream. The positioning interface, iMediaPosition, lets

the application specify what section of the stream to play.

Individual filters expose a media control interface so that the filter graph manager can issue the

run, pause, and stop control commands. The filter graph manager is responsible for calling these

methods in the correct order on all of the filters in the filter graph. (The application should not do

this directly.)

The position commands are handled less directly. The filter graph manager gets called by the

application, for example, to play a specified length of the media stream starting at some specified

stream time. However, unlike the media control interface, only the renderer filter exposes a media

position interface. Therefore, the filter graph manager calls only the renderer filter with positioning

information. The renderer then passes this position control information upstream through media

position interfaces exposed on the pins, which simply pass it on. The positioning of the media

stream is actually handled by the output pin on the filter that is able to seek a particular position

(for example, a file source filter) because pins are responsible for the data transport mechanism.

Position information is passed serially upstream because there may be filters between the

renderer and the source filter that require position information. Consider a transform filter that is

written to perform some video or audio modification only during the first 10 seconds of a video clip

(for example, increasing the volume or fading in the video). This filter probably requires

information about where the stream is starting so it can determine its correct behavior. For

example, it should not perform if the start time is after the first 10 seconds, or it should adjust

accordingly if the start time is within this duration.

112

5.3.1.5 COM Interfaces
The ActiveMovie COM interfaces comprise the schematic of an architecture for streaming time-

stamped media. The filter graph, through which media flows, is composed of objects, such as

filters, pins, media samples, allocators, and enumerators, that work together. COM interfaces are

implemented on these objects and are called by other objects with which they interact. The filter is

the only filter graph COM object that has a CLSID; all other objects in the filter graph support

COM interfaces and are created as needed by the filter. Filters and their supporting object must

implement their COM interfaces and a class library is available for help in that task. The filter

graph manager, on the other hand, has a CLSID and supports several fully implemented

interfaces

The ActiveMovie COM interfaces can be categorized as follows:

■ Filter graph manager interfaces, which are fully implemented and used by

applications to create, connect, and control filter graphs and by filters within the

filter graph to post event notifications and to force reconnections when needed.

■ Filter and pin interfaces, which must be implemented by the filter. They comprise

the methods exposed by filters for communicating with the filter graph manager,

connecting with other filters, passing data downstream (from source filter to
4 Tenderer filter) and passing quality control and media positioning information

upstream (from renderer to source).

■ Enumerator and media sample interfaces, which are interfaces on objects

created temporarily for passing information.

■ Control interfaces, which are exposed by filters and the filter graph manager to

enable the starting, stopping, and positioning of media in the stream. The control

interfaces on the filters must be implemented when writing a filter, whereas they

are already implemented on the filter graph manager.

The filter is the main COM object and has a class ID (CLSID) and name registered in the registry.

Filters must provide access to their pins and otherwise communicate with the filter graph. They

must also allow the filter graph manager to manage the data flow by accepting state change

messages.

At a minimum, a filter exposes the iFilter interface. This interface provides methods that allow

the enumeration of the pins on the filter and return filter information. It also provides the inherited

methods from iMediaFilter; these methods allow control of state processing (for example

running, pausing, and stopping) and synchronization and are called primarily by the filter graph

manager.

113

Pins do not normally have registered class identifiers and are usually created by the filter object

on which they reside. They are exposed externally by the filter, which includes a method

(iFilter: :EnumPins) to hand out pointers to the iPin interfaces of its pins, normally to the

filter graph manager. The filter graph manager is responsible for connecting pins by calling an

iPi n method on one of the pins with a pointer to the other pin. Once pins are connected, each pin

holds a pointer to the pin to which it is connected.

Media sample and enumerator interfaces are temporary objects created to pass information or

data between objects. They do not have class identifiers.

The media sample interface is created from the memory allocator, which uses the media sample

object as its unit of exchange. It has no class identifier. It is the unit of media data that is passed

from one filter to the next via the memory allocator shared by two connected pins.

Enumerators in ActiveMovie are based on the OLE EnumXXX interfaces. They include the Next

and Prev methods, which tell the enumerator what item or items to return; the Skip method, which

skips one or more items; and the Clone method, which makes a copy of the enumerator.

Enumerators are used to present lists of items such as filters in a filter graph, pins on a filter, or

media types that are preferred by a pin.

Control interfaces allow the filter graph manager to coordinate the activities of the data stream

with filters. They are exposed by the filter graph manager, filters and pins.

5.3.1.6 Dataflow
Data flow in the filter graph occurs in the following ways:

■ Media sample data flows from one filter to the next-originating at a source filter

and terminating, eventually, at a Tenderer filter.

■ Control information, such as end-of-stream and flushing notifications, travels with

the media data stream from filter to filter.

■ Notification events flow from the filters to the filter graph manager and, optionally,

to the application.

■ Filter graph control data flows from the application to the filter graph manager and

finally to the filters themselves.

■ Quality control data originates in the renderer and flows upstream through the

filters until it finds a filter capable of cutting back or increasing the media data

flow. It may also flow directly to a quality control manager if one is registered.

ActiveMovie filters pass media data downstream, that is, from the output pin of one filter to the

input pin of the next filter. The flow and control of the data is effected by the interfaces on those

114

pins and the filters themselves. Data streaming activity is serialized by the filters; all data

streaming calls for a given pin are explicitly serialized and usually originate from a single thread.

Data is passed from the output pin of one filter to the input pin of the next. The two connected pins

agree upon a common method of exchanging data, called a transport. The most common

transport is the local memory transport. This transport is implemented if the input pin supports the

iMeminputPi n interface. The ActiveMovie class library base classes assume this transport.

Filters must follow protocols in order to pass and receive media samples. The connected pins

must agree upon the allocator to be used, must have a means of passing the data, and must

follow the correct procedure for holding onto a sample or releasing it back to the sender. Media

samples are data objects that support the iMedi asampl e interface. They are obtained from an

allocator, most likely represented by an object supporting the iMemAl 1 ocator interface.

An output pin typically exposes the following interfaces:

■ IPin methods are called to allow the pin to be queried for pin, connection, and

data type information, and to send flush notifications downstream when the filter

graph stops.

■ IMedi aPosi ti on allows information about the stream's duration, start time, and

stop time to be relayed from the Tenderer. The renderer passes the media

position information upstream to the filter (typically the source filter) responsible

for queuing the stream to the appropriate position.

■ iQualityControl passes quality-control messages upstream from the

renderer to the filter that is responsible for increasing or decreasing the media

supply.

An input pin typically exposes the following interfaces:

■ iPi n allows the pin to connect to an output pin and provides information about

the pin and its internal connections.

■ IMeminputPi n allows the pin to propose its own transport memory allocator, to

be notified of the allocator that an output pin is supplying, to receive media

samples through the established allocator, and to flush the buffer. This interface

can create a shared memory allocator object if the connected pin does not supply

a transport memory allocator.

The standard transport interface, IMeminputPi n, provides data transfer through shared memory

buffers, although other transport interfaces can be used. For example, where two components are

connected directly in hardware, they may connect to each other by using the IPin interface and

115

then seek a private interface that can manage the transfer of data directly between the two

components.

Control data originates at the application and is passed to the filter graph manager. At the COM

level, this is handled by filter graph manager interfaces in the control.odl type definition library.

Examples of control data are calls to the IMediaControl interfaces, such as

IMediaControl: :Run, IMediaControl::Pause, and IMediaControl:.:Stop. The

iMediaPosition and iMediaSelection interfaces provide access to moving forward or

backward in a media stream.

The most important thing to understand about the flow of control data is that it should always pass

through the filter graph manager first. This is because there is usually an order that must be

followed in controlling the filters in the filter graph to avoid deadlocks and other problems. The

filter graph manager is dedicated to handling these conditions.

5.3.2 Video Client in ActiveMovie

5.3.2.1 Filter graph design
We designed the video client for Windows 95/NT to use extensively the ActiveMovie architecture.

The part of the Video Client encompassing most of ActiveMovie's functionality is the filter graph.

In our video client, we replaced the functionality of the ActiveMovie file source filter with a new

source filter that reads video data from the network. The first filter graph we built using the Video

Client source filter worked with the Microsoft software MPEG1 decoder. The figure below presents

the network MPEG filter graph.

MPEG
video decomp.

transform
filter

Video
renderer

filter Video
Client
source
filter

. MPEG ■
splitter
llltef :■,;:,■;/. MPEG audio

decompression
transform

filter

Audio
renderer

filter CO
VOD\ \
nmands \ ^

\
\ data\

/ Video
Server

\

In this filter graph, all filters are provided by ActiveMovie architecture, except for the source filter.

116

The Video Client source filter connects to Video Server, initiates video data streaming and

interacts with the Video Server through a custom VoD protocol. The MPEG1 stream is then

copied to video data buffer, in order to eliminate effects of "burstiness" of network streaming in

displaying video data (i.e., video or audio breaks). The video data buffer can store a few seconds

of video. It is read by the filter to which the Video Client source filter connects. In this filter graph,

this is MPEG splitter filter. The MPEG splitter filter is responsible for the demultiplexing of the

MPEG1 system stream coming from the Video Client source filter. Later, two separated streams-

MPEG 1 Video and MPEG1 Audio-are transmitted from the parser filter to their respective

decompressor filters. Finally, video and audio renderer filters perform tasks of video and audio

playback.

In this model, the Video Client filter connects to two other components in significantly different

ways. It connects to the Video Server, which has nothing to do with ActiveMovie architecture - the

custom VoD protocol supports control and data flow. To connect to an ActiveMovie parser filter,

the Video Client source filter must implement ActiveMovie COM interfaces and must conform to

connection and data flow mechanisms of ActiveMovie (the MPEG splitter filter is actually such a

parser filter since it parses the MPEG1 system stream to retrieve video and audio streams).

Like every ActiveMovie filter, the Video Client may own pins that will be responsible for

communication between neighboring filters. The Video Client has one neighbor filter, a parser

filter; therefore, it has to provide one output pin to connect with the input pin of the parser filter.

The major COM interface enabling communication between the parser filter and the Video Client

source filter is the lAsyncReader interface, exposed by the output pin of the Video Client source

filter. Parser filters request multimedia streams from a source filter using the lAsyncReader

interface. The MPEG splitter invokes lAsyncReader interface methods on the Video Client

source filter. The same interface is invoked on the source filter by AVI parser filter as well as

QuickTime parser filter. The last two filters use a subset of lAsyncReader methods other than

MPEG, as well as another communication model. The Video Client source filter implements the

entire lAsyncReader interface and implements both communication models. Therefore, the

Video Client source filter can be connected to and work with AVI and QuickTime filter subgraphs

of ActiveMovie architecture.

117

AVI
viueo uccornp.

transform
filter

Video
renderer

filter Video
Client
source ;V

filter

AVI >
parser
filter , AVI audio

decompression
transform

filter

Audio
renderer

filter
COI

VOD\ \
Ttmands \ ^

\
\ da !i\

/ Video
. Server

\

The graph above is similar to the previous one. The Video Client source filter uses the same

network communication process. The communication of the source filter with the AVI parser filter

is slightly different in that it uses other methods of the lAsyncReader interface. The MPEG

stream processing functionality in downstream filters of the network MPEG filter graph is

duplicated by AVI stream processing functionality in the network AVI filter graph.

5.3.2.2 Video Client Source Filter classes
The construction of two objects is necessary for incorporating networking functionality in

ActiveMovie filter graphs. The first object is the Video Client source filter; the second object is the

Video Client output pin. The Video Client source filter is responsible for initialization tasks, state

management, and handling media control messages sent to it by the filter graph manager. The

source filter must be registered in the Windows 95/NT system as an inprocess server. The Video

Client output pin is not registered in the system because its existence is strictly related to

existence of the Video Client source filter. When the filter graph manager constructs the designed

network filter graph, it adds all required filters to the graph, including the Video Client source filter.

Then, the source filter creates a Video Client output pin object. The Video Client source filter is a

COM object and a class implementing it must conform to COM specifications. The Video Client

source filter has to handle its reference count and provide interface to other objects to do it. In

such a way, the Video Client output pin can exist as an internal part of the source filter, without its

own reference count but, instead, using the reference count of the Video Client source filter.

When the Video Client source filter has to provide functionality of the COM object, the Video

Client output pin is responsible for data streaming.

An implementation of the Video Client source filter and output pin provides the following classes:

118

(CMemReader, the Video Client source filter class. The object of the class

creates a worker thread with the sole responsibility of maintaining the socket

window and the socket window procedure. The window procedure handles

network event notification messages being sent to the window. Handling of a

READ DATA event copies data from the data socket to the video data buffer.

The buffer critical section is locked while copying to the video data buffer.

< CAsyncReader, base class for CMemReader, implements iFilter

interface.

(CAsyncOutputPin, the Video Client output pin class, implementing

lAsyncReader interface. The pin provides its own allocator if connecting

transform filter does not support it.

< CAsynclO, a class responsible for queuing and processing of asynchronous

requests for multimedia data from parsers. The object of this class creates a

worker thread to enable asynchronous request handling. The class provides

Video Client source filter with two lists: requests list and idle list. The first list

consists of requests actually performing reading or writing operations. The

idle list represents available resources (i.e., not in actual use) of the common,

source, and parser allocator (number of available media samples). Lists are

manipulated by request and completion events. A communication between

threads of the class uses shared memory and events.

(CAsyncRequest, a class representing a single parser request for block of

data. Used by CAsynclO class.

(CMemStream, a class representing the multimedia stream and providing

methods to access the stream. The stream is implemented in the class as a

circular video data buffer. Virtually it is seen as a whole multimedia stream.

The CMemStream: :SetPointer method is responsible for seeking a

position in the stream and for determining whether the Seek command has to

be sent to Video Server. If the Seek command is sent to the Video Server,

the method does not return until there is enough data in the video data buffer

to resume displaying or a time-out occurs. The CMemStream:: Read method

provides a way of transparent reading from the video data buffer. The buffer's

critical section is locked for the time of accessing of the buffer.

5.3.2.3 lAsyncReader interface
lAsyncReader is the most important interface supported by Video Client ActiveMovie objects. It

enables the connection and communication between the asynchronous source filter and parsers.

119

The Video Client output pin implements this interface while parsers are calling messages of the

interface to read multimedia data from it. The lAsyncReader interface allows multiple

overlapped reads from different positions in the media stream. The lAsyncReader interface has

to be implemented if a filter reads data of media type MEDIATYPE_Stream from some source.

The Video Client source filter is such a filter.

lAsyncReader supports two modes of data transfer: synchronous and asynchronous.

lAsyncReader::SyncRead and lAsyncReader::SyncReadAligned are methods of

synchronous mode. A pair of lAsyncReader::Request/ lAsyncReader: :waitforNext

messages implements asynchronous mode.

lAsyncReader interface consists of the following methods:

(Unknown methods

Querylnterface

: AddRef

'' Release

Description

Returns pointers to supported interfaces.

Increments the reference count.

Decrements the reference count.

lAsyncReader methods

RequestAllocator

.' Request" \i

, aitForNext i^l

' SyncReadÄiigned \

^.;'^SyricReaä.';,''
Length B§

, BeginFtush

"•• EndFfush

Description

Retrieves the actual allocator to be used.

Queues a request for data.

Blocks until the next sample is completed or the time-out
occurs.

Performs an aligned synchronized read.

Performs a synchronized read.

Retrieves the total length of the stream, and the currently
available length.

Causes all outstanding reads to return.

Ends the flushing operation.

5.3.2.4 Connection process
The Video Client source filter connects to various parser filters. The connection model used by a

parser filter at its input is totally different from the standard connection model found in

ActiveMovie. This difference accounts for the inability of the Video Client source filter and output

pin to inherit from the base classes of ActiveMovie: CSource and CSourceStream. They may

inherit only from the most generic CBasexXX classes.

In the standard connection model, the source filter invokes the providing of new data to the filter

graph. Because of this, it influences the states of downstream filters. Therefore, the source filter is

the best place to create a worker thread that queues and processes control requests from the

graph manager. The source filter is "pumping" data to a downstream filter. The source filter calls

120

iMemlnputPin interface methods of the downstream filter to deliver data. This model is similar

to the "server-push" model in CGI programming.

The following illustration represents the filters, pins, and interfaces (not all of them) taking part in

the standard source filter connection with a downstream filter.

lUnknown

IFilter

lUnknown

IFilter

o-

IPIn ^ _ IPin oo

?
Transform

filter

IMemlnputPin

lUnknown lUnknown

Contrary to the standard connection model, the parser filter invokes the providing of new data to

the filter graph. Therefore, the parser filter is the best place to create a worker thread which

queues and processes control requests from the graph manager. More precisely, the worker

thread is created on the input pin of the parser filter. Also, the input pin of a parser is completely

different from the standard input pin implementation. The Video Client output pin implements an

lAsyncReader interface which is used by the parser input pin. The parser input pin may request

data anytime it wants, and from different positions. This is why the parser input pin is called a Pull

Pin. This model is similar to the "client-pull" model in CGI programming.

lUnknown

IFilter IFilter

IPin Ä Ä IPin
 OO

lAsyncReader

lUnknown

?
Parser

filter

(Unknown lUnknown

121

5.3.2.5 Video-On-Demand protocol
The custom Video-on-Demand protocol was implemented to provide an end user with interactive

Video-on-Demand. The protocol handles data and control flow over the network. Data flow is

unidirectional, i.e., the multimedia data streaming goes only from Video Server to Video Client.

Data flow can have high network bandwidth requirements. In case of MPEG1 streams sent over

the network, the required bandwidth is 1.5 Mbit/s of MPEG1 stream data rate plus the overhead of

network protocol. Research has shown that the TCP/IP protocol requires 15-20% overhead when

transporting multimedia data. Contrary to the data flow, control flow in the VoD protocol is bi-

directional and does not have high bandwidth requirements. In case of control flow, its reliability is

crucial-the control commands sent from and to the Video Client cannot be lost or reordered.

Current implementation of data and control flow uses sockets. Because both Video Server and

Video Client are implemented on Windows platforms, they make use of Windows sockets. There

are two sockets created: one to handle the data flow, one to handle the control flow. There is a

video data buffer in Video Client supporting the data flow. In the current implementation, the

control flow commands are

■ from the Video Client: Load Movie, Play, Stop, Seek to Offset, Terminate

Connection;

■ from the Video Server: Stop Acknowledgments, End of File notifications;

As can be seen, more control capabilities reside on Video Client side. These controls enable the

end user to interact with movies being sent from Video Servers. The video protocol on Video

Client side is implemented using asynchronous mode of Windows Sockets. There is a callback

window created that is responsible for handling of all network (socket) events. The handle to the

window is passed to Windows Sockets DLL, together with set of message values that the window

would like to obtain as a result of some network events. Generally, there are three types of events

that concern the Video Client:

■ a portion of multimedia data that has come on the data socket and can be read;

■ Windows Sockets are able to send some command to the Video Server, control

socket can be written;

■ an acknowledgment or notification has come on the control socket and can be

read.

While initializing sockets, the Video Client informs Windows Sockets what events it is interested in

and what messages Windows Sockets should send to the callback window. In this way, I/O

122

operations on data and control sockets can be performed asynchronously. The callback window

procedure will handle network events when they occur, but the Video Client does not have to poll

for them.

5.3.2.6 Video data buffer
The video data buffer was built to minimize video and audio blocking effects when network

delivery service is bursty. A size of the buffer may differ depending on the bitrate of video stream,

i.e., the video data buffer should be smaller for H.263 video streaming than MPEG video

streaming. For an MPEQ1 system stream, the size of video data buffer is 1-2 Mbytes,

corresponding to 5-10 seconds of an MPEG1 compressed movie. The buffer of the same size

could store up to 10 minutes of H.263 compressed video clip. There is no need for such a large

buffer in case of H.263. Moreover, for video clips less than 10-minutes long, the Video Client

could download all the movie before actually displaying it.

The video data buffer is a circular buffer, with read and write position pointers. The video data

buffer has few thresholds, indicating how much the buffer is full or empty. There are three

important thresholds:

■ video pending threshold: this threshold represents the number of bytes that have

to be read from the network and written to the video data buffer before video

displaying is activated. The higher the threshold, the longer an end user has to

wait for video display started. The lower the threshold, the more likely the Video

Client will have to stop displaying video due to lack of new data (remember bursty

character of traditional network traffic). Therefore, the threshold must be a

tradeoff between these two conditions.

■ network inactivating threshold: if the number of bytes in the video data buffer

exceeds the threshold, the Video Client should stop reading video data from

Video Server. The situation could happen if network connection was faster than

required. This threshold eliminates the danger of overloading the video data

buffer. The threshold has to be bigger than the video pending threshold,

otherwise the video would never start playing.

■ network reactivating threshold: this threshold should be little less than the network

- inactivating threshold. The difference should not be too small, otherwise it will
result in frequent network activating and inactivating procedures, which could

impact the CPU (utilize CPU time for initialization and un-initialization functions).

■ video pausing threshold: this threshold is needed when video data is not received

on the data socket for a long time, and the video data buffer is almost empty. The

threshold should cause the Video Client to stop video displaying before video

123

data buffer is empty. The Video Client should still try to read from sockets for

some time; and if video pending threshold is reached before a time-out occurs,

the Video Client should resume displaying the video material. This threshold is

the smallest of all video data buffer thresholds.

The thresholds can be adjusted according to network or CPU conditions. They could be changed

dynamically, based on a history showing utilization of the video data buffer. However, in current

implementations of Video Clients for the PC, they are fixed.

There is one important difference between the video data buffer implementations for Video Client

source filter in ActiveMovie and for Video Client with PCMotion MPEG hardware decoder the

ActiveMovie architecture often requires small readjustments of video position, especially while

pausing video streaming. It is not very efficient to send Seek message to the Video Server each

time the architecture wants to move few video frames back or forward, especially when this could

be improved by redesigning the video data buffer. The Video Client for Windows 3.1 has the

network inactivating threshold at 95% of buffer size. The Video Client in ActiveMovie has

increased the buffer size but lowered the threshold to 60%. By this operation, the circular video

data buffer has 40% of "memory," i.e., the video data that was already read by decompressing

and rendering filters is still being stored in the buffer. Now, when ActiveMovie architecture moves

several frames back (for 1.2 Mbytes buffer it can move back up to 2.5 seconds), the Video Client

is able to restore the old state of video data buffer and does not need to perform the lengthy seek

operation.

5.3.2.7 Video Client flow of execution
The user interaction with the NPAC VoD system starts with the search interface provided in an

HTML page display by Netscape browser. Once the search results are generated, the user can

choose which video material to display. By choosing a result, an end user sends an URL to a CGI

script of the Database Server, which makes the Database Server generate the metadata file

about a video clip. This metadata file is sent via HTTP from the Database Server to Netscape

browser on user's computer. The custom MIME type of the metadata file (vod/nvs) makes

Netscape launch the Video Client application. To choose the application, Netscape checks its

configuration database; thus, the relation between MIME type and Video Client application must

be pre-configured in Netscape.

The Video Client application is written in Visual Basic and has following goals:

■ to display the ActiveMovie OLE Control with media control buttons and position

slider enabled;

■ to pass the metadata file to the ActiveMovie OLE Control; and

124

■ to start displaying from a particular position in the movie, based on the Offset field

of metadata file.

Thus, Visual Basic makes initial parsing of metadata file.

When the ActiveMovie OLE control is created, the flow of control conforms to ActiveMovie

architecture. First, the ActiveMovie OLE Control activates the filter graph manager object. The

filter graph manager starts creating a filter graph by choosing a source filter able to handle the

input file. The input file for ActiveMovie OLE Control was the metadata file. The metadata file has

a header 'NVSID' which is registered in ActiveMovie registry tree. This header is associated there

with Video Client source filter. In this way, the filter graph manager knows that it has to add the

Video Client source filter. After the source filter is added , the filter graph manager adds Video and

Audio Renderer filters to the filter graph and tries to connect them intelligently with the source

filter, using different combinations of transform filters between them.

When the Video Client source filter is added to the filter graph, the filter graph manager asks it for

the iFileSourceFilter interface. The Video Client source filter has to support this interface if

it wants to make use of the metadata file. Using this interface, the filter graph manager passes the

metadata file to the Video Client source filter.

Now the Video Client source filter can parse the metadata file and retrieve the Video Server IP

address as well as the path to the video file on the remote file system. From the extension of the

remote file name, the Video Client source filter decides what type of media it is supporting. This

media type is presented to transform filters, which the filter graph manager tries to add to the filter

graph. The connection is negotiated between the Video Client source filter and transform filters

until a filter supporting the remote file media type is found. In this way, remote MPEG1 files will be

streamed from the Video Client source filter to the MPEG splitter and further, AVI files will be

streamed to AVI parser, and so on.

There is another COM interface that the Video Client source filter could implement to have more

influence on building custom filter graphs, IStreamBuilder. When the interface is implemented, the

filter graph uses it to build the filter graph. It could be useful when the filter graph manager itself

creates a filter graph slowly because of lack of knowledge about custom filter graph that a

developer possesses. However, the interface did not result in a performance increase. Finally, the

interface was removed in order to preserve more flexibility.

When the filter graph is created, the metadata file is parsed, and the connection to a Video Server

established, the Visual Basic Video Client application performs an initial seek to the requested

starting position. The control moves from the top-level application to the Video Client source filter

which sends the Seek command to the Video Server. Beginning from the particular offset, the

video data is streamed and the display starts when the video data buffer is full enough.

125

The figures illustrating the functionality described above can be found in Subsection 3.2.3, Figures

3..4 - 3.6.

5.3.2.8 Interaction with web browsers
The current Video Client cooperates with Netscape browser. A sequence of HTML pages

generated by CGI scripts provides an end user with a search interface for the metadata database.

This is a basic WWW functionality and could be represented by any WWW server and browser.

After the uses selects a video clip, a CGI script generates a multipart HTML document, consisting

of two sub-documents of two different MIME types: vod/nvs and text/html. The first document is

the metadata file, the second document is a HTML page to be displayed in the browser with close-

caption text. The close-caption text page provides a useful interface for searching video data

material. This functionality enables the end user to move to a particular position in the video clip

just by clicking on the close-caption text. The close-caption text is time-stamped and this is why

the synchronization between the close-caption text and the video is possible.

The seeking functionality of the close-caption text page in Netscape is again implemented through

a CGI script and a helper application. The CGI script generates a frame offset related to a close-

caption text sentence. The offset is put into the file sent to the Netscape browser, with a vod/ofs

MIME type. The seeking application associated with the MIME type uses a Windows API to

perform the actual seeking of the required position in the movie. The seeking application

simulates movement of the slider on the AetiveMovie OLE Control. But the presented solution is

not very elegant. To enable direct communication between the Netscape's user interface and the

Video Client application, a Netscape plug-in must be built.

126

Fj ActiveMovie Stream Page - Microsoft Internet Explorer

Pa £dt Vjaw So Favorites tJelp

BBC

Back* -Fw^a*<J Stop Refresh Home Search Favorites Print Font : -:WäB-."." KSä-

I Ad*«* j | Link» j3| Bau of the Web f3| TodayVUnks . f3| W«b GaBety [3] Pwduet News |3| Microsoft

Playing video clip "Beatles about Elvis Presley"

Durin dick on text buttons to jump to corresponding parts of the
video clip.

■3

tbey woUdnl allow lock-'n'-rolL

it was frowned upon |

i remember being in school when i was a kid | .

«omebody had a picture in one of the muacal paper»

i-thkikjtwa« an advert tor heartbieak hotel J ,

oldvn.j

A simpler solution is possible using Microsoft's Internet Explorer browser. The ActiveMovie OLE

Control is an ActiveX object and can be incorporated within an HTML page. ActiveX uses the

standard OBJECT tag to insert ActiveX objects into the HTML page, and Internet Explorer is able

to activate and display the Control because it was designed as ActiveX container. There is no

need for additional plug-in software, and all user interfaces can be included in one HTML page.

Moreover, they can talk to each other using Visual Basic Script or Java Script, as illustrated in the

preceding figure.

5.3.2.9 Designed Extensions to Video Client
The Video Client in the ActiveMovie architecture is easily extensible. It can make use of new

hardware and software codecs incorporated in the ActiveMovie architecture as transform filters.

There is a new MPEG software decoder available at NPAC, which will be ported to ActiveMovie;

127

and the new network MPEG filter graph will include the transform filter of this decoder. Actually,

the new MPEG solution could be inserted into ActiveMovie by replacing one, two, or three filters of

the filter graph. The filter that will be replaced is the MPEG video decoder filter. The MPEG audio

decoder filter and MPEG parser filter could remain unchanged since replacing them cannot

improve the quality of decompression or shorten decoding time significantly. But each of those

two filters could be also replaced with new ones. The only condition is that they should always

conform to standard COM interfaces specified by ActiveMovie.

Another, more interesting extension of Video Client in ActiveMovie is building a H.263 video

decompression transform filter and constructing such a filter graph that will perform

synchronization tasks between H.263 video and associated audio. We already have the H.263

video decompression transform filter working with Video Client source filter. The next step is

building an audio decompression transform filter that will handle the appropriate audio

compression format. The best solution would use the audio codecs already installed in the

Windows system.

VOD or File
source

filter

H.263 video
decompression

transform
filter

Video
renderer

filter

VOD or File
source
filter

Audio
decompression

transform
filter

Audio
renderer

filter

The synchronization of H263 video with audio is possible due to the iReferencedock interface

exposed by the standard audio renderer filter. The video renderer filter synchronizes to the audio

renderer filter simply by calling methods of the IReferencedock interface on the audio

renderer filter. The audio renderer is generating timer events which are distributed to all filters in

the fiiter graph that asked for the iRef erencecl ock interface.

We designed the Video Client to enable multiple copies of itself running simultaneously in

ActiveMovie. It can build the network H.263 filter graph with synchronized audio using two Video

Client source filters. One Video Client source filter is streaming video data, the other is streaming

audio data. They may, but do not have to, stream video and audio from two different Video
Servers.

128

hput
iMiiöüMäref:-

The figure above illustrates the ActiveMovie filter graph playing an H.263 video stream from the

NPAC video server.

5.4 Web-specific video client architectures

The video client implementations described above follow the model of the Web browser "helper

applications." This is not the only model one can implement. Video playback applications can also

be implemented as both browser plug-ins and even as Java applets.

Video client implementation as a Netscape plug-in is perfectly possible. We have implemented the

H.263 decoder in this form. Two implemented versions of the plug-in have played video from the

NPAC video server and from the web server streaming video over an HTTP link. For low bit rate

codecs and in situations where interactivity is not essential, video streaming from an HTTP server

to a viewer implemented as a plug-in is perhaps the simplest solution. We have observed that it is

rather difficult to implement tightly controlled real-time playback in plug-in video clients. Plug-in

code executes within Netscape browser, and the browser controls scheduling. It is therefore very

difficult to effectively implement critical sections. We would not recommend this mode for CPU-

intensive decoders.

Another rather interesting variation is a video client implemented in Java. The main challenge for

this solution is performance: Java code is significantly slower than C code. However, with advent

of Just-in-Time (JIT) compilers, the performance gap is closing, especially on PC platforms (e.g.,

Java run-time support on Microsoft Internet Explorer is almost as fast as native C code). This

development opens new possibilities for multimedia programming. For a video client, Java is

tremendously important since its virtual machine guarantees platform independence. At present, a

full Java implementation of a video client playing synchronized audio and video is quite

challenging, since the Java support for audio and video is limited. In particular, the Java VM only

129

knows how to play audio from .au files; user space buffer playback is possible only through an

unsupported package from Sun. However, these difficulties are being remedied very quickly. Java

1.1 SDK already supports media interface with much more advanced capabilities. We fully expect

that within a year it will be possible to re-implement the entire system we have described in this

report entirely in Java, including video server and video clients, as well as the database access.

To demonstrate feasibility of this approach we have implemented an H.263 video client in Java:

Bit View Go Bookmarks Options Directory Window Hefy>

Back| forward) Home[Reteadj load Images} Open,) Prifit-[Hnd„.| Stop

Location: http: //www. npac. syKedu/users2iö*ek^h263; html

The Netscape browser above plays an H.263 stream using a Java applet. The applet

communicates with the NPAC server in this case, but it can also receive the H.263 stream from

the web server over HTTP. The applet is able to play up to 4 frames per second within Netscape

and up to 10 fps within Internet Explorer (because of lE's support of the JIT Java compiler, which

Netscape 3 does not support). 10fps is the full frame rate for the streams we have used in

experiment, so it is clear that Java can play low bit rate streams such as H.263 at full speed

already.

5.5 VoD versus LAN video broadcast: hierarchical multicasting video client

Another very important technology that continues to gain support and popularity is multicast. Our

current release of the video server uses TCP/IP and hence does not support multicast. In general,

multicast is more useful for broadcast type applications than for on-demand architectures.

However, educational applications of the video server could benefit from multicast. Imagine an

130

application in which teacher wishes to present a video clip in the virtual class. The teacher wishes

to retain interactive control over the stream but would like students to see the same video material

in real time. Conventionally, on-demand and LAN TV servers are different and support different

protocols. However, we believe this is am unnecessary complication. The architecture we have

implemented consists of an enhanced ActiveMovie video client which, in addition to its fully

interactive playback, also acts as a retransmission agent. The video stream from the server to the

enhanced client is delivered in unicast mode. The client re-packetizes the video stream and

multicasts ft. The simplified video clients on student machines tune themselves to the session

multicast address and play the incoming video stream. When the teacher pauses the stream or

selects parts through random access, the students can follow. The entire ensemble is a part of a

larger collaborative environment being developed in the CIV project. This functionality is

completely implemented. We would like to note that the multicasting video client closely follows

the RTP model for a translator entity.

131/132

6. VoD Testbed Infrastructure

6.1 Video Server assets

4CPUNT*mr

:VoD infrastructure

(Figure 6.1. NPAC video server assets

The main assets of the NPAC video server consist of the following items:

• ALR servers, 4 CPU each, Pentium Pro 200, 128 MV RAM, 3 SCSI channels,

-100 GB HD each machine, connected via OC3 ATM link to the ATM LAN

■ 1 Micron 2 CPU Pentium 133 MHz, 64 MV RAM, 1 SCSI channel, -20GB HD,

connected via OC3 ATM link the ATM LAN

■ 10 PC Pentium 166 MHz to Pentium Pro 200 MHz workstations, attached via

either 25 Mpbs or 155 Mpbs ATM links to ATM LAN

133

&2 NPACATMLAN

On October 22, 1996, FORE Systems officially announced implementation and support of LAN

Emulation (LANE) version 1.0 in its products. LANE enables existing LAN protocols to operate

over an ATM network.

LANE enabled us to create virtual LANs~a logical association of clients sharing a common

broadcast domain. An intelligent Broadcast and Unknown Server (BUS) reduces unnecessary

broadcast traffic and implements multicast. LAN Emulation Server (LES) maps native LAN

addresses to ATM addresses. With the release of ForeThought v4.0 internetworking software,

FORE implemented all the baseline features of ATM Forum LANE 1.0 giving us an opportunity to

create an ATM-based infrastructure required for video- server/clients interaction. To proceed with

the project, we purchased all required ATM equipment (switches, adapters, hubs) and seamlessly

integrated our local ATM network with existing LANs. This equipment offered immediate and

significant improvements in performance, flexibility and maintainability. It is a pity that this

improvement was delivered only after the project was concluded.

The current ATM infrastructure at NPAC consists of

■ ATM switch ASX200/U Software ForeThought 4.1.1

■ ATM switch ASX200 Software ForeThought 4.0.1_1.20

■ ATM switch ASX200WG Software ForeThought 4.0.2

■ ATM switch ASX200WG Software ForeThought 4.0.2

■ PowerHub 7000 (ATM, FDDI, Fast Ethernet, switched Ethernet).

The LAX20, which is still used to support Internet access for the Living Schoolbook Project, will be

replaced by an ESX3810 installed in Syracuse University's School of Education.

Currently, NPAC's ATM LAN includes 27 ATM client workstations:

■ 8x UltraSparc2 , OC3c/mm fiber

■ 3x SGI Indy, GIA200 OC3c/mm fiber

■ 6x G6-166/200, PCI-LE ATM25 (25.6 Mbps, UTP5)

■ SGI Onyx, VMA200 OC3c/mm fiber

■ SGI lndigo2, ESA200 OC3c/mm fiber

■ SGI Challenge, VMA200 OC3c/mm fiber

■ 5xP5-166,PCA200 OC3c/mm fiber

■ 2x 4 CPU ALR, PCA200 OC3c/mm fiber

134

On top of this physical infrastructure, we implemented three instances of Emulated LANs with

LES/BUS servers installed on one of ASX200 switches. We also implemented three instances of

Classical IP over ATM (RFC 1577) in NPAC, between NPAC and the Museum of Science and

Technology, and between NPAC and the Maxwell School. For the NYNET connections we use

RFC 1483 encapsulation of bridging over PVCs, as the CO Fujitsu switch does not support LANE.

NPAC delivers ATM connection for other University Departments including the CASE center, the

Maxwell School, and the School of Education. The integration capability is supported by the

efficient networking of geographically remote computers by interfacing NPAC's internal LAN to the

NYNET high-speed network. In near future we plan to obtain connectivity to vBNS, the very high

speed Backbone Network Service.

6.2.1 Living Schoolbook Project
The Living Schoolbook Project (LSB), a prototype of the Education Infrastructure of the Future,

has been operational in the 24x7 mode for almost 2 years. It is an ATM-based network

interconnecting Fowler High School, Rome Free Academy and Whitesboro Middle School with

NPAC and the School of Education. The current network operates in the bridge mode on a few

LAX20s interconnected via a complex mesh of PVCs. The network shows rather low

performance, not acceptable for time-sensitive applications. A new LSB infrastructure is being

built in collaboration with SUED and Rome Laboratory, and is design as state-of-the art

information and collaboratory network to deliver video, images, and text to the classroom.

Currently we are in the process of upgrading the infrastructure, which will enable us to run an

Emulated LAN network. In order to change the infrastructure, NPAC implemented 'Isb' ELAN on

our equipment, and the School of Education purchased a FORE ESX 3810 Ethernet workgroup

switch with 24 RJ45 Ethernet ports and an ATM uplink.

The same type of equipment will be installed at the schools. NYNEX pjans to replace their Fujitsu

switch with an ASX200. After these changes are implemented, the LSB network will operate in IP

over an ATM environment using the LANE 1.0 emulation standard.

135

6.2.2 Rome Laboratory

(Figure 6.2. Architecture of NYNET for the NPAC - Rome Laboratory connection

Connection from NPAC to Rome Laboratory is provided via two FORE ASX switches. The

connection uses one OC3 SM fiber, going over Fujitsu switch at NYNEX central office. Logically,

PVC connectivity is used. PVCs between Rome Laboratory and NPAC are terminated not on the

switches but on the routing workstations. These workstations, as routers and as gateways,

provide packet translation between ATM and broadcast LANs. This solution will be upgraded to

full LANE as soon as all elements are in place on both sites.

We provided demonstrations of the VoD service between NPAC and Rome Laboratory. The

testbed used in these demonstrations is illustrated in Fig. 6.3.

During the project time frame, we conducted the following demonstrations of our VoD system over

WAN ATM links:

1) Supercomputing '95, December '95, San Diego, running over NYNET and the

vBNS backbone

2) HPDC-4, August '95, Pentagon City, running over NYNET, WilTel, and Bell

Atlantic links

3) Interop, March '95, Atlanta, running over NYNET and WilTel links

136

4) HPDC-5, August '96, Syracuse, running over NYNET

5) Rome Laboratory, April '96, running over NYNET

6) Rome Laboratory, November '96, running over NYNET

Routing Workstation

Video on Demand
Demonstration Setup

10 00000000000001
iooooooooooooo"51

ATM Switch

Routing Workstation/
Video Client

Video Client/
HW Decoder

Video Client/
SW Decoders

NPAC, Syracuse University. Updated 11/1/96

(Figure 6.3. Video on demand demonstration setup between NPAC and Rome Laboratory.

Ail these demonstrations were quite successful. Full system functionality has been demonstrated

in all cases, proving viability of the VoD over ATM WAN concept.

137/138

7. Selected VoD Research Issues

This Section of the report presents the results of our research into network video transmission,

scaleable video coders, and video server architectures supporting adaptive applications. These

results are largely theoretical, although some of the described algorithms have been

implemented. None of the software was actually used in the implementation of VoD service. The

work described in Subsections 7.1 and 7.3 is important for large VoD installations serving

hundreds or perhaps thousands of video streams concurrently. The work on hybrid video coders

is a proof that implementation of scaleable coders is possible even if today's CPUs are still too

slow to decode such streams in real time.

Technically, the results described in Sec. 7.1 are a deliverable for Item 2 (Network Video

Services) of the SoW. Results described in Sections 7.2 and 7.3 are deliverables for Item 1 (Video

server architectures).

7.1 CBR transmission of VBR encoded video streams

In evaluating network performance, a consideration of the expected network traffic characteristics

is of paramount importance. Much research work has been devoted to the study of video

transmission using ATM networks {Ott:92},{Heeke:91}, {Heyman:91}, {Ramamurthy:90},

{Morrison:90}, {Shino:90}, {Sen:89}, {Nomura:89}, {Maglaris:88}, {Verbiest:88}*The primary issue

addressed in the present project concerns the performance benefits and trade-offs of using

variable bit rate (VBR) encoding schemes versus constant bit rate (CBR) encoding schemes.

In CBR-encoded video sources, picture quality parameters are adjusted to maintain a constant

requirement for delivery. As a result, although the video traffic can be transmitted via a fixed,

reserved bandwidth, degradation of picture quality often occurs during encoding. In VBR

encoding, the video source is encoded with a constant picture quality. This results in a variable

number of bits from frame to frame.

To maximize the efficient use of network bandwidth, it is necessary to multiplex several video

sources onto the same transmission channel. ATM is an attractive choice as a variable bit rate

transport mechanism because of its ability to provide variable bandwidth dynamically (through

statistical multiplexing). Obviously, multiplexing several VBR sources by simply reserving the

maximum bandwidth required by each source results in a very inefficient use of the network

bandwidth. However, problems start to arise when VBR sources are multiplexed without peak

bandwidth reservations for each. Under these conditions, the source bandwidth requirements and

available network bandwidth fluctuate independently of each other over time. Such fluctuations

result in congestion at the network switches which, in turn, cause cells to be queued, then

delayed, and sometimes dropped. Furthermore, because the fluctuations (and thus the degree of

* These references can be found on pages 277, 294-296, and 325-326.

139

congestion) occur randomly over time, the switch delay, aside from causing overall end-to-end

delay, also results in increased jitter (variations in end-to-end delay) in the transmitted video

stream. Although cell loss is undesirable because it leads directly to picture degradation, it can be

tolerated to some extent. However, real-time video sources are extremely delay-sensitive and

have very strict bounds on delay tolerance. Jitter leads to choppiness in the output as well as

possible loss of synchronization for phase sensitive streams.

A measure of the effectiveness of VBR transmission schemes has been formulated by Heeke

{Heeke:91 }1and is called the statistical multiplexing gain; it is defined as the ratio of the number of

multiplexed VBR sources to the number of multiplexed CBR sources while maintaining an

equivalent subjective picture quality. Finding a solution to the problem of multiplexing VBR signals

over a single transmission channel remains an active area of research. Several solution

approaches have been taken, including multilayer bandwidth allocation {Hui:88}, switch-level error

control and multiplexing {Dempsey:94}, "smoothing" of the video source {Lam:94},{Ott:92},

{Dagnino:91},{Knightly:94}, and stream rate adjustment

{Panchalnfocom:92},{PanchaGlobecom:92}, {PanchaTR:92}.*

Delivering VBR encoded video streams at other than variable bit rates requires some measure of

buffering at either the server or client processors. In a recent experiment {Hsieh:94}*a large VoD

storage server was designed to contain up to 768 MBytes of main memory, and RAID storage

devices. Although the storage system could support delivery of up to 86% of the maximum

theoretical number of concurrent streams, the reported number of concurrent streams supported

reached only 30% of the theoretical maximum due primarily to server memory space limitations.

An alternative approach {delRosario:94b}*employs buffering at the client process to achieve CBR

transmission of VBR data. This strategy increases the maximum number of streams that can be

multiplexed by a factor of 4.6 to 9.9 times. However, most of the buffering is placed at the client

process. In a set of sample video streams, it was shown that from 3.7 to 14.6 Megabytes of buffer

memory may be required. For multimedia PCs, currently being marketed with 64, and 512

Megabytes of RAM, the required buffer sizes amount to between 5.7% to 22.9%, and 0.65% to

2.9%, respectively, of the available memory. Although these buffer sizes may seem reasonable

for larger capacity display devices such as workstations or PCs, they are still expected to greatly

exceed the storage resources likely to be available in the first generation of set-top boxes.

Our preceding discussion makes clear that any strategy for video delivery in video on-demand

systems must incorporate expressions for both transmission rate and buffer size components.

Motivated by these issues, we propose a framework for providing end-to-end delivery of variable

bit rate encoded continuous media in VoD servers.

The detailed discussion of the results of this research effort are presented in three articles. All

three papers are integral part of this report and they have been placed in Appendix 1. Two of the

* These references can be found on pages 277, 294-296, and 325-326.

140

papers deal with VBR-to-CBR conversion and client-side buffer optimization. The third paper

presents a more advanced scheme, m-frame granular transport. M-frame transport assumes

variable quality of service and additional buffering on the server side.

7-2 Hybrid wavelet-HJ263 video compression

In the Integrated Services Model, applications are capable of constantly monitoring network

conditions and adapting its own behavior in relation to these conditions. Future adaptive

applications will demand a new family of video codecs. Multi-resolution embedded codecs are

particularly important since they capable of providing for graceful degradation by enabling the

application to respond to deteriorating network conditions by sending video stream of a lower

quality but with significantly lower bandwidth. In Subsection 7.3 we discuss the architecture of a

file system supporting such a codec. This section is concerned with a feasibility study of

implementing a scaleable codec using hybrid wavelet - H263 technology. Wavelet compression is

inherently scaleable and multi-resolution, but is a poor choice for motion compensation. The

hybrid scheme takes the best features from the two different compression methodologies and

combines them. We have designed and implemented such a codec and have demonstrated that

the quality of the resulting video stream is superior to the H.263 quality at the same bit rate. This

finding is valuable per se since H.263 is one of the best available video codecs. We have also

analyzed the performance of the codec and found it slower than the H.263. However, expected

increases in CPU speed will make this codec a viable alternative in very near future.

The detailed report describing results of this research effort is enclosed as Appendix 2.

7.3 A continuous media file system for multi-resolution data

Currently, video server design is regarded as a system integration issue where diverse

components are haphazardly plugged together. In reality, video servers are complex entities that

must address the requirements of individual video streams as well as system-wide requirements.

The storage subsystem constitutes a major component of any media server. Yet the file system

support for continuous media is, at present, quite limited.

The traditional approach of Quality of Service issues is network-centric. Adaptive applications (i.e.,

applications that change their behavior in response to changing network conditions) are being

proposed. We observe, however, that without architectural changes in the media, the potential

benefit of adapfivfty is limited. Consider, for instance, a video server capable of adjusting bitrate of

outgoing media streams by sending only a part of the video stream encoded by a multi-resolution

coder. Using the current file system architectures, the server will have to read the entire stream

from the disk before discarding the information that is not being sent. In this section we present an

141

idea of a video server architecture that provides end-to-end support for such an adaptive

application. The proposed Continuous File System (CFS) also provides explicit support for

isochronous data.

A full text of this report is attached in Appendix 3.

142

8. Multimedia Networking: Integrated Services Model

In the preceding sections, we have mentioned on several occasions the Integrated Services

Model for packet networks, which provides a blueprint for delivery of multimedia information over

packet networks. This model introduces the notions of Quality of Service, resource reservation,

stream synchronization, and multicast. We studied these issues very thoroughly during the project

time.

The elements of the Integrated Services Model were not mature enough to be incorporated in

actual implementation of the VoD infrastructure. However, when designing elements of the

system, we have had in mind the future architecture of the Internet for multimedia transport. We

believe that our entire system can easily be enhanced to support protocols such as RSVP and

RTP, as well as to use multicast. As a matter of fact, the multicasting agent described in an

earlier section uses multicast and is, in itself, an example of the RTP translator.

Our study and evaluation of the multimedia networking issues has been documented in a series of

lectures that have been delivered in NPAC in form of internal seminars, as well as during the

quarterly progress meetings with the Rome laboratory personnel. These lectures form a self-

contained unit that presents and discusses the most important features of the integrated services

model. The following section contains the slides of all the relevant presentations developed during

the project.

The following modules are included in this section:

1) Introductory multimedia networking module (elementary level)

2) Multimedia networks and Integrated Services Model

3) Multicast and switched network basics

4) Reservation Protocol, parts I and II

5) Real Time Protocol.

143/144

8.1 Introductory Multimedia Networking Module

Multimedia Networking:
Elementary Introduction

Basics of the Data Networking
Marek Podgorny

marck@11pBu7r.edu, (315) 443-4879 http://trarLnpaasyr.edu

Data Networking
♦ Data networking term refers to exchange of digital

information between remote systems
• Data can be exchange between any kind of devices

♦ Computer networkingis a special case of data
networking
• While communication between computer components
- over a bus is clearly a case of digital data transmission,

this is not considered data networking example

♦ Differentiating factors: media, parallel vs. serial,
distance, protocol standardization

Marek Podgorny NPAC. Syracuse University '

145

Physical Data Transmission

♦ Terrestrial media: metallic cables and optical
fibers
• metallic cables: coaxial cables and twisted pair cables

• carrier: electrical pulses
• problems: signal attenuation, noise, bandwidth and length

limitations, price

• optical fiber
• carrier: modulated light
• problems: expensive end optic
• advantages: high bandwidth, sleuth-resistant, long distance

Marek Podgomy NPAC. Syracuse University

Physical Data Transmission

♦ Aerial systems: surface transmission and satellite
transmission
• both less reliable (higher error rates) as compared to

cable/fiber

• high latency (-540 msec) for satellite transmission
lines

• limited frequency domain and, hence, global
transmission capacity

• significant chunk of global capacity assigned to analog
transmission

Marek Podgomy NPAC, Syracuse University 4

146

Baseband vs. Broadband

♦ Baseband transmission
• Electrical signal applied directly between the wires

• example: Ethernet technology

• Basic limitation: only one bit can be transmitted at any
given time

• Overall efficiency increased by Time Division
Multiplexing (TDM)

• Why? Idle time costs money....
• TDM flavors: synchronous and asynchronous

• Signal attenuation is a big problem for baseband
networks

Marek Podgomy NPAC. Syracuse University

Time Division Multiplexing

♦ Synchronous TDM: moderately efficient

Input A

InpirtB

Input C

Urne

Output line

Asynchronous TDM: more flexible and efficient

■■■■l ■ Tune
—►

Output line
NPAC, Syracuse University

147

Broadband Transmission
♦ Signal is sent by modulating a carrier
♦ Applicable over both cable and fiber
♦ Amplitude and frequency modulation
♦ In data transmission world, Frequency Division

Multiplexing (FDM) term is used
♦ Using narrow band filters, receivers are able to

separate multiple signals
♦ Using FDM, multiple transmissions may be

concurrently sent over a single cable/fiber
♦ Example: a modem
Marek Podgomy NPAC, Syracuse University

Circuit vs. Packet Switching
♦ Circuit Switching Networks

• Originally, a connection was set up by physically
connecting segments of physical wire to form a
continuous electricai circuit.

• At present, the circuit is formed using TDM in the
synchronous mode

• Circuit switched network guarantees the bit rate and,
usually, constant, predictable latency.

• Downside: cost of the connection depends on the
reserved bandwidth, not on actual amount of data
transferred over the circuit. No statistical multiplexing.

• Examples: phone lines, ISDN lines
Marek Podgomy NPAC, Syracuse University

148

Circuit vs. Packet Switching
♦ Packet switching networks

• Multiplex several data streams more efficiently over
single wire/fiber/switch

• Information chopped into small units (packets) sent
one a time

• Many sources of packets can coexist attached to one
transmission medium

• Multiplexing is statistical and network behavior is not
entirely predictable

• Packets carry their destination addresses in headers
• Examples: Ethernet, FDDI, Frame Relay, IP

MarekPodgorny NPAC, Syracuse University

Are the examples right?!!!

♦ Ethernet and IP both listed as packet switching
networks - is this right?

♦ YES - the are both packet switching albeit in
different layers!

♦ This leads us to the concept of the layering
♦ Networks run on top of other networks; protocols

run on top of other protocols.
♦ Layering is used to separate network functionality

into logical entities.

MarekPodgorny NPAC, Syracuse University 10

149

Layering - an example

♦ Secretary-assisted phone conversation
• Need phone set with right connectors and internal

electronics. This is layer 1 - physical/electrical

• Need microphone (voice to electrical signal) and
forwarding mechanism to pass voice generated
electrical signal end to end. This is layer 2 - link

• Need keypad/rotary and a way to setup connection.
This is layer 3 - network

Marek Podgomy NPAC, Syracuse University 11

Layering - an example
♦ Need secretary to get another secretary, to agree

on the language for their conversation and to
request your interlocutor. This is layer 4 -
transport

♦ Need a common language for your own
conversation. This is layer 6 - presentation

♦ Now you can talk business - this is layer 7 -
application

♦ Each layer depends/rides on top of other layers.

Marek Podgomy NPAC, Syracuse University 12

150

Connection vs. Connectionless

♦ Packet vs. circuit switching determines how
information is routed once inside the network

♦ Connection mode determines under what
condition data can be accepted

♦ Connection-oriented networks are aware about
two systems communicating. The network must
admit a communication stream before data
exchange starts

♦ Connectionless network has no idea that two
systems communicate. Connection is never
refused

MarekPodgomy NPAC. Syracuse University 13

Connection vs. Connectionless

♦ Connection-oriented network
• Implementation: virtual circuits, signaling protocols
• Advantages: more predictable traffic
• Disadvantages: need call set-up which introduces

delay; wastes network resources

♦ Connectionless networks
• Implementations: addresses in packet headers
• Advantages: no call set-up delay, no busy signal
• Disadvantages: difficult to reserve resources

MarekPodgomy NPAC. Syracuse University 1*

151

Confusing?

♦ Very much so. The features listed above can be
combined in every possible way, leading to an
extremely complex topologies and interdepen-
dences

♦ It is possible to have connectionless and circuit
switched network, as well as connection oriented
packet switching network

♦ It is possible to have asynchronous services
running over synchronous carriers (ATM)

♦ It is possible to combine multiple contradictory
features over the same physical medium

MarekPodgomy NPAC. Syracuse University 15

Popular Network Topologies

♦ Star/tree/mesh topologies.
• Used mostly for circuit switched networks (then...)
• Also used to interconnect broadcast networks (now...)
• Support packet switching layers....

♦ Bus networks - shared media
• All connected workstations see all information

♦ Ring networks - shared media
• Use broadcast but assign time slots differently

♦ Internetworks connect all of the above

Marek Podgomy NPAC, Syracuse University 16

152

Case study: Ethernet
♦ Bus topology, connectionless, baseband, packet

switching
♦ CSMA-CD {Carrier Sense Multiple Access -

Collision Detection) principle - contention protocol
• Only one station can send at any given time
• Automatic signal detect (remember baseband?)
• Attached stations send at randomized intervals

♦ Fixed-length frames (1516 bytes)
♦ Very unpredictable. CSMA-CD leads to

exponential saturation.

MarekPodgomy NPAC, Syracuse University ™

Case study: Token Ring
♦ Ring, packet switching, connectionless, baseband
♦ Unidirectional transmission, token circulates at

full speed
♦ Token may be either free (no data) or busy (data

attached)
♦ Station wishing to transmit waits for a free token.

It sets it to busy and attaches data with header
♦ The addressee copies the data and sets "data

copied" bit
♦ Originating station sets token to free and removes

data
MarekPodgomy NPAC, Syracuse University *«

153

Case study: FDDI
♦ Ring, connectionless, packet switching.
♦ FDDI tokens are "captured" and "reissued"
♦ Multiple frames can be in transit concurrently
♦ "Token holding time" may support priorities
♦ "Token rotation time" limits ring latency
♦ FDDI uses larger frames (4kB) and supports

bandwidth of 100 Mbps (in practice, -60 Mbps)
♦ Token ring protocols are "non-contention" and do

not suffer from exponential saturation.

Marek Podgomy NPAC, Syracuse University \9

154

8.2 Multimedia Networks and Integrated Services Model

Network Architectures for
Multimedia Delivery

Networked Multimedia
Applications and their Impact on

the Network Services
March 1996

Marek Podgorny
NPAC

Syracuse University
111 College Place

Syracuse
New York 13244-4100

MMNetworks marakenpaasyr.edu http://www.npac.syr.edu 315.443.4879

Abstract of Network Architectures for
Multimedia Delivery

• Review of the networked multimedia presentations

• Requirements for the networking infrastructure
supporting multimedia applications

- Application categorization

- Relevant network performance parameters

• Network technologies supporting multimedia delivery

- Multicast

- Switching technologies
- Quality of service guarantees (integrated services)
- ATM networks and multimedia

Marek Podgorny marekenpaaAyr.edu http://tnjrl.npacsyr.edu, (315) 4434879 2

155

Networked multimedia applications
» Electronic documents with attached voice and
video annotations

- (multimedia electronic mail, workgroup applications).
1 Desktop conferencing:

- two or more participants connected through the
(inter)network,

- using audio/video, whiteboard, shared applications...

' Distance-learning courses offered as live
broadcasts

- or as video-on-demand, supported by

- On-line textual material, on-line assignments, shared
project areas etc.

MarekPodgomy marekenpacsyr.edu http://tnatnpac.syr.edu, (315) 443-4879 3

local-area networks

Networked multimedia applications
(Continued)

• Television broadcasts over lo<
(LANs).

• Interactive kiosks with multimedia product
information and demonstrations.

• Multimedia databases that store traditional text
as well as images, audio, and video clips.

- Fully searchable digital libraries with instant
delivery.

• 3D navigation in real and abstract landscapes.

• Simulation on demand with direct graphical
output and interactive input.

MarekPodgomy marek@npac.syr.edu http://trurt.npacsyr.edii, (315)443-4879 4

156

Multimedia Application Industry -1
Hierarchical structure of the MM industry:

- Multimedia content providers: news industry,
television industry, entertainment industry,
multimedia CD-ROMs manufacturers.

• All these companies seek ways to deliver their
products over the net.

- Multimedia application developers: distance
learning, desktop videoconferencing,
workgroup collaboration, multimedia kiosks,
entertainment, imaging, video on demand.

• All these applications need network support.

Marefc Podgomy marekenpacjyr.edu http:fftrtMl.npac.syr.edu, (315) 443-4879 5

Multimedia Application Industry (Continued)
Multimedia platform builders: Of the computers sold
in 1995,80% was multimedia capable!
Multimedia capable network infrastructure
providers:

- Networking of multimedia is expected to initially
occur in businesses over the private networking
infrastructure (IntraNets).

- In 1996, a large demand is expected for
multimedia applications across public networks
such as the Internet for home, education,
business, and entertainment.

» Our conclusion: Nearly all multimedia industry gears
up to switch to networked applications.
Marek Podgomy marekenpacsyredu http-Jftrurljqiac.syr.edu, (315) 443-4879 6

157

Categories of Net MM Apps --1
• As shown on next foil, for delivery over an

internetwork, multimedia applications can be grouped
into categories according to

- Their sensitivity to delay and the number of simultaneously
connected network nodes.

• Applications that use stored data streams are not
delay-sensitive.

• Applications that involve real-time interactivity are
sensitive to network delay.

• Point-to-point applications involve communication
between a single pair of network nodes.

• Multipoint applications typically involve a broadcast
to many network nodes.
Marek Podgomy marek@npac.syr.edu http://trurt.npac.syr.edu, (315) 443-4879

Categories of Net MM Apps - II
Pictorial Representation of Time Sensitivity in Applications

Dlversf levels of Tjme-SensiHvffy cnsong fflöhimedia Applications

Multipoint

PainMo-Point

IAN TV

Multimedia Mail
Multimedia Notes

Desktop Conferencing ;
Corporate Broadcasts

llll

i«k! ilpi

Self-Poced Training
Interactive Retail Kiosks

Marek Podgomy

Playback Realtime friiferaii%e

marek@npac.syr.edu http://trurl.npac.syr.edu, (315) 443-4879 8

158

Multimedia Kiosks -1
• Multimedia kiosk is an important business

application!
- The financialindustry wants to use multimedia

kiosks at banks to provide detailed information
about financial services.

- The retail industry wants to use kiosks in stores to
help customers locate merchandise and find out
additional information about merchandise.

• Stand-alone kiosk are expensive to maintain.
Networking is an operational necessity.

Hank Podgomy marekenpacjyr.edu http-.Mrurl.npac.syr.edu, (31S) 443-4879 9

Multimedia Kiosks - II
• The entertainment industry wants to use

kiosks as
- points of sale and to provide
- advertising for scheduled entertainment events

such as the theatre, concerts, plays, etc.
• The entertainment Industry is also interested

in multimedia kiosks that allow multi-person
video games to occur over networks.

• Highway authorities plan kiosks with tourist
information

Marsk Podgomy mai*#nriac.»yr.«dto http:fflruri.npacjyr.edu, (315)443-4879 10

159

Multimedia Network Requirements -1 - Overview

• To provide a decent multimedia delivery infrastructure
the network must provide three operational
characteristics at an acceptable level:

- Bandwidth

- Consistent quality of sen/ice

- Efficient multipoint packet routing and delivery

• Two latter requirements are specific to multimedia
network traffic. In the past, MM traffic was very limited.

- With MM revolution just around the corner, the network
providers and corporate IS departments face the task of
general system reengineering.

• Fortunately, the technological solutions are available.
Marek Podgomy marekenpac.syr.edu http://lrur1.npac.syr.edu, (315) 443-4879 11

Multimedia Network Requirements
r> _,_.._ - H - Bandwidth

• Bandwidth requirements

- BW requirements differ widely from application
to application.

- Type of applications and the requested quality
are main differentiating factors.

- Typical examples are shown on following foil

• Typical workstation on a corporate LAN has today
available BW of 50 -100 Kbps

• This bandwidth is only sufficient for simple MM
applications

• Solution: switched broadcast networks - will be
discussed later.

Marek Podgomy marekenpac.syr.edu http://trurl.npac.syr.edu, (315) 443-4879 12

160

Multimedia Network Requirements - 111 -
Bandwidth (Continued)

• Some Examples
of Needed
Network
Bandwidth

Phone quality
audio

8 Kbps

HiFi quality audio 64 Kbps

Application
sharing

~100Kbps

Videoconferencing 128 Kbps-1Mbps

Low bit rate video 28 Kbps(!)- 128 Kbps

VHS(MPEG1)
video

1.2-3 Mbps

HDTV (MPEG2)
video

4-6Mbps

Imaging 8-100 Mbps

3D rendering, VR 100Mbps+

Marek Podgomy marekenpaosyr.edu http://trurl.npac.syr.edu, (315) 443-4879 13

Multimedia Network Requirements - IV -
Bandwidth Scenarios

Typical scenarios for deficient bandwidth:

-1: Desktop machines running MM applications

• In this environment the most effective way of
alleviating the bandwidth problem is network
segmentation.

• However, if there is significant server-related
traffic, segmentation is ineffective and a
higher BW carrier is needed

Marek Podgorny marekenpacsyr.edu http://trurl.npac.syr.edu, (315)443-4879 14

161

Multimedia Network Requirements - V
- Bandwidth Scenarios (Continued)

• Typical scenarios for deficient bandwidth-Contd:
• II: Campus backbone

- For the campus backbone the only solution is a
high-speed carrier. Current leading technology is
FDDI but its position is being challenged by ATM.

• Taking this path is a very risky decision, though!

• III: Wide area network

- Very expensive (recurring cost!). Eventual solution:
bandwidth on demand (ATM, but also inverse
multiplexing of more traditional channels).

Marek Podgorny marekenpac.syr.edu http://trur1.npac.syr.edi], (315)443-4879 15

Multimedia Network Requirements - VI - Quality of Service

• Three major components in Quality of Service requirements:

- Guaranteed bandwidth (note this is different from available
bandwidth)

- End-to-end latency

- Jitter (i.e. deviation from the average packet arrival time)

• None of these factors was a design parameter of today's
packet networks.

• Different applications running concurrently over the
networks may have different service requirements: this
imples need for an integrated service network able to handle
data and stream applications.

• QoS support is sometimes referred to as integrated
services.

Marek Podgorny marek@npac.syr.edu http://trurl.npac.syr.edu, (315) 443-4879 16

162

Multimedia Network Requirements - Vil- Quality of
Service (Continued)

» Guaranteed bandwidth requirement: how good are
packet-switched networks for different types of applications?

- Constant bit rate applications

• Difficult on packet networks. With deficient BW they break,
surplus BW not useful. Large buffers on client side about
the only remedy if QoS absent.

- Variable bit rate applications

• Via statistical sharing VBR applications are more efficient
on packet networks than on circuit switched networks.

• QoS requirements only help with sophisticated
application-level network resource scheduling.

- Available bit rate applications

• Packet networks are ideal transport for ABR apps. ABR
apps adapt to the momentarily available bandwidth.

Marek Podgorny marekenpatsyredo httpJftruri.npacÄyrÄlu, pi5) 443-4879 17

Multimedia Network Requirements - VIII - Latency

• For MM applications network latency requirements
are in general less stringent than for compute
intensive applications.

- Compute Intensive often requires short round trip
times

- The latency is measured on the time scale of
human perception.

- Latency is of little relevance for one-way
transmissions (up to a certain limit...) but is a
potential nuisance for teleconferencing and for
shared applications.

- For these applications the latency should be kept
below 0.5 sec.

Marek Podgorny marekenpac3yr.edu MpiCfairl.npac.syr.edu, (315) 443-4879 18

163

Multimedia Network Requirements -
IX - Latency (Continued)

• Latency issue is almost entirely under control (or
lack thereof) of the networking gear vendors.

- Almost every operation on a packet contributes to
the total latency.

- Technologies such as cut-through (instead of store
and forward) forwarding attempt to decrease the
latency.

• More heterogenous networks usually induce
higher latency due to packets
encapsulation/header changes or segmentation
and reassembly.

Marek Podgorny marekenpac.syr.edu http:fftrurl.npacsyr.edu, (315) 443-4879 19

Multimedia Network Requirements - X - Jitter
• Jitter - audio quality killer

- Due to statistical factors, packets do not arrive in evenly
spaced intervals. Instead, arrival time displays Guassian
variation.

- Jitter is a problem for both audio and video streams.

- For audio, jitter may cause "hiccup" which is extremely
annoying and adversely affects comprehension.

• For video, packets that arrive too late require complex logic
in the decoder.

• Dropping the late packets may cause header loss and
decoder confusion.

• Processing the late packets compounds the synchronization
problems.

• Remedy: network buffers, Bandwidth reservation, packet
priority handling, etc.
Marek Podgorny marek@npac.syr.edu http://trurl.npac.syr.edu, (315) 443-4879 20

164

Multimedia Network Requirements - X I
- Jitter (Continued)

• Typical Jitter Distribution

Tm'ijnlimrro Tinrta

Ptqrbask Point

Elapsed Tims sku» Tttnsniseian

Marek Podgomy marekenpac.syr.edu http://trur1.npac.syr.edu, (315) 443-4879 21

Multimedia Network Requirements -
XII - Multipoint Packet Delivery

One-to-many and many-to-many applications are
extremely expensive in terms of both network bandwidth
and processing power on both workstations and on the
routers. Typically, unicast and broadcast mechanisms are
used:

- Unicast: the sending computer can send out a different
copy of the data for each recipient.

• Very wasteful of bandwidth, terrible scaling properties.

- Broadcast the sending computer can send out a broadcast
packet. The networking devices need to forward these
packets to all portions of the network in order to ensure that
they reach their intended recipients.

• Also very wasteful of bandwidth.
marekenpac.syr.edu httpVArui1.npacjyr.edu, (315) 443-4879 22 Marek Podgomy

165

Multimedia Network Requirements -
XIII - Multipoint Packet Delivery

(Continued) - Multicast
• Multicast: the sending computer can send out a
multicast packet that is addressed to all the intended
recipients. The network will replicate the packet when
necessary.

- It is a very efficient process.

- In order for multicast to work, the networking devices
need to know which computers need to receive multicast
traffic, and they need to be able to dynamically build
efficient paths to all destinations.

- Collective communication algorithms on parallel
computers use this approach (if they are any good!)

Mart* Podgorny marekenpac.syr.edu http://trurl.npac.syr.edu, (315) 443-4879 23

Multimedia QoS Support --
Introduction

• Global solution of the multimedia QoS problem
requires broad consensus of the network gear
vendors on how to implement necessary
protocols and measures.

• All networking devices carrying the multimedia
traffic must support the same set of
mechanisms.

Marek Podgorny marek@npac.syr.edu http://trurl.npac.syr.edu, (315) 443-4879 24

166

Multimedia QoS Support - General
Mechanisms

• Among the mechanisms discussed for QoS Support,
the most elementary are:

• Priority queuing: today's packet networks are truly
democratic and egalitarian -

- FIFO is about the only packet forwarding strategy.
- Priority queuing could alleviate jitter problems.

• Custom queuing: this is a bandwidth reservation
mechanism.

- It is less drastic than priority queuing as it
schedules MM packets based on the specified
jitter upper bound, not on the absolute priority.

Marek Podgorny narekenpaasyr.edu http://trurt.npacjyr.edu, (315) 443-4879 25

QoS - ATM and Integrated
Services Network

Two possible solutions:
ATM networking technology - QoS is a build-in
feature for this type of transport. This is probably a
solution for tomorrow's Gil backbone. Will it work in
near future?

-100% ATM network will never happen.
- ATM far more expensive than broadcast networks;
' new fiber/UTP cable plant needed,
- Serious management and maintenance problems

unsolved.
- ATM QoS does not provide global QoS support.

Marek Podgorny inarek«»npacjyr*duWtpJ/triirt4»riac^yredu. (315) 443-4879 26

167

ATM versus Integrated Services Network
ATM Technology - problems!

- ATM standards still in flux, implementations more
so, LANE not universally available.
Consequently, QoS mostly works on the paper.

- There is no API to the ATM QoS mechanisms.
Hence, applications do not have any way to
request such services.

Solution - Integrated services over the packet
switched networks

- A new architecture on top of the current IP layer
as opposed to ATM low level approach

Marek Podgomy marek@npac3yr.edu http://trurl.npac.syr.edu, (315) 443-4879 27

Integrated Services for the Internet
• In the following, we will discuss the emerging architecture

implementing so called integrated services running on top of
the existing Internet infrastructure.

• The integrated services infrastructure complements two
other enabling technologies:

- Client multimedia hardware: many modern workstations now
come equipped with built-in multimedia hardware, including
audio codecs and video frame-grabbers, and the necessary
video gear is now inexpensive.

- IP multicasting: while not yet commonly available, it makes
its way into Internet infrastructure. Integrated services
architecture assumes multicast as a sine qua non component
of future multimedia Internet

Marek Podgomy marek@npaasyr.edu http://trurl.np3C.syr.edu, (315) 443-4879 28

168

Integrated Services: Additional
Rationale - Bandwidth Allocation -1

Real-time QoS is not the only issue for a next
generation of traffic management in the
Internet: network operators are requesting the
ability to control the sharing of bandwidth on a
particular link among different traffic classes.

- They want to be able to divide traffic into a few
administrative classes and assign to each a
minimum percentage of the link bandwidth under
conditions of overload, while allowing "unused"
bandwidth to be available at other times.

MarekPodgoniy marekenpac.syr.edu http://tnii1.npac.syr.edu, (315) 443-4879 29

Integrated Services: Additional
Rationale - Bandwidth Allocation II

»These network administration classes may
represent different user groups or different
protocol families, for example.
- Such a management facility is commonly

called controlled link-sharing.
• Therefore, in the following, the term

integrated services (IS) for an Internet
service model includes best-effort service,
real-time service, and controlled link
sharing.

MarekPodgomy marekenpac.syr.edu MtpJftruriJipac3yr.edu, (315) 443-4879 30

169

Integrated services: Architecture Elements -1
• The fundamental service model of the Internet, as

embodied in the best-effort delivery service of IP,
has been unchanged since the beginning of the
Internet research project.

• Integrated services postulate a major change.

- From an academic viewpoint, changing the service
model of the Internet is a major undertaking;

- However, its impact is mitigated by the fact that we
wish only to extend the original architecture.

• The new components and mechanisms to be
added will supplement but not replace the basic IP
service.

Marek Podgomy marek@npac.syr.edu http://trurl.npac.syr.edu, (31S) 443-4879 31

Integrated services: Architecture Elements - II

• The proposed architectural extension is
comprised of two elements:

- An extended service model, called the IS model,

- A reference implementation framework, which
provides a set of vocabulary and a generic
program organization to realize the IS model.

• It is important to separate the service model,
which defines the externally visible behavior,
from the discussion of the implementation,
which will evolve during the life of the service
model.

Marek Podgomy marek@npac.syr.edu http://trurl.npac.syr.edu, (315) 443-4879 32

170

Integrated Services Model -1

• The IS model includes two sorts of service targeted
towards real-time traffic: guaranteed and predictive service.

- It integrates these services with controlled link-sharing,

- and it is designed to work well with multicast as well as
unicast.

• We now discuss several basic assumptions of the model:

• Resources (e.g., bandwidth) must be explicitly managed in
order to meet application requirements.

- This implies that "resource reservation" and "admission
control" are key building blocks of the service.

- An alternative approach is to attempt to support real-time
traffic without any explicit changes to the Internet service
model.

Marek Podgomy marekSnpaixsyr.edu hBp7ftrurLnpac3yr.edu, (315) 443-4879 33

Integrated Services Model - II - Basic
assumptions of the model

• It is desirable to use the Internet as a common
infrastructure to support both non-real-time and
real-time communication.

- One could alternatively build an entirely new,
parallel infrastructure for real-time services,
leaving the Internet unchanged.

- With this approach one would lose the significant
advantages of statistical sharing between real-time
and non-real-time traffic, and it would be much
more complex to build and administer than a
common infrastructure.

Marek Podgomy marekenoac.8yr.edu http:Wrurl.nDacsyr.edu, (315) 443-4879 34

171

Integrated Services Model - III - Basic
assumptions of the model (Continued).

There is a unified protocol stack, employing a single
Internet-layer protocol for both real-time and non-real-time
service.

- The IS model proposes to use the existing Internet-layer
protocol for real-time data.

- Another approach would be to add a new real-time protocol
in the Internet layer.

- Unified stack approach provides economy of mechanism,
and it allows one to fold in controlled link-sharing easily.

- It also handles the problem of partial coverage, i.e., allowing
interoperation between IS-capable Internet systems and
systems that have not been extended, without the
complexity of tunneling.

Marek Podgomy marekenpac.syr.edu http://tnirl.npac.syr.edu, (315) 443-4879 35

Integrated Services Model - IV - Basic
assumptions of the model (Continued)

• There should be a single service model for the
Internet.

- If there were different service models in different
parts of the Internet, it is very difficult to see how
any end- to-end service quality statements could be
made.

- Single service model does not necessarily imply a
single implementation for packet scheduling or
admission control. It is possible to implement
different mechanisms that will also satisfy the
service model.

Marek Podgorny marek@npac.syr.edu http://truri.npac.syr.edu, (315) 443-4879 36

172

Integrated Services Model:
Unnecessary? -1

Arguments have been raised against an integrated
service model based on the assumptions we outlined.

In particular, the following arguments have been
presented against the necessity of a complex
reservation model:

- "Bandwidth will be infinite."

• This will be impossible in the short term and
unlikely in the medium term.

• While raw bandwidth may seem inexpensive,
bandwidth provided as a network service is not
likely to become so cheap that wasting it will be the
most cost-effective design principle.

Unreif Podgorny marekenpaosyr.edu http://trurl.npac.syr.edu, (315) 443-4879 37

Integrated Services Model:
Unnecessary? -II

"Bandwidth will be infinite." (Continued)

- Even if low-cost bandwidth does eventually become
commonly available, it is unlikely that it will be
available "everywhere" in the Internet.

- Hence, unless the network management provides for
the possibility of dealing with congested links, then
real-time services will simply be precluded in those
cases.

- In military applications, assume need for "Theater
Extensions" with low bandwidth in major areas of
activity linked to high bandwidth Global Information
Infrastructure

ttarek Podgorny marek@npac3yr.edu httpJ/lrurl.npac.syr.edu, (315) 443-4879 38

173

Integrated Services Model:
Unnecessary? - III

• Arguments against integrated services (continued):

• "Simple priority is sufficient."

- While it is true that simply giving higher priority to real-time traffic
would lead to adequate real-time service at some times and under
some conditions, priority is an implementation mechanism, not a
service model.

- If we define the service by means of a specific mechanism, we may
not get the exact features we want.

- In the case of simple priority the issue is that as soon as there are
too many real-time streams competing for the higher priority, every
stream is degraded.

- Restricting the service to this single failure mode is unacceptable.

- In some cases, users will demand that some streams succeed while
some new requests receive a "busy signal".

Marek Podgomy marekenpac.syr.edu http://trurl.npacsyr.edu, (315) 443-4879 39

Integrated Services Model:
Unnecessary? - IV

People argue that: "Applications can adapt." However...

- The development of adaptive real-time applications does
not eliminate the need to put an upper bound on packet
delivery time.

- Human requirements for interaction and intelligibility limit
the possible range of adaptation to network delays.

- It can be shown in real experiments that, while an
application can adapt to network delays of many seconds,
the users find that interaction is impossible in these
cases.

Marek Podgorny marek@npac.syr.edu http://trurl.npac.syr.edu, (315) 443-4879 40

174

Integrated Services Model:
Reservations -1

• There is an inescapable requirement for routers to be able
to reserve resources, in order to provide special QoS for
specific user packet streams, or "flows".

- This in turn requires flow-specific state in the routers,
which represents a fundamental change to the Internet
model: the Internet architecture has been founded on
the concept that all flow-related state should be in the
end systems.

- Designing the TCP/IP protocol suite on this concept of
end system flow control led to a robustness that is one
of the keys to its success.

- Adding flow state to the routers threatens Internet
robustness!

Marek Podgomy marekenpaosyr.edu http7ftrur1.npacjsyr.edu, (315) 443-4879 41

Integrated Services Model-
Reservations -II

Therefore, the flow state added to the routers for
resource reservation in the integrated services model is
designed to be "soft", i.e., it is maintained by periodic
"refresh".

Since reservation implies that some users are getting
privileged service, resource reservation needs
enforcement of policy and administrative controls.

This in turn calls for authentication of both users and
packets.

- Incidentally, these issues are not unique to "IS":
commercialization and commercial security are leading to
the same requirements.

Marek Podgomy inarek@npac.syr.edu htlpJAnirlJipac.syr.edu, (315)443-4879 42

175

Reference Implementation
Framework Overview I

• The implementation framework includes four
components:

- The packet scheduler,

- The admission control routine,

- The classifier,

- And the reservation setup protocol.

• The first three items will be discussed in the following
foils.

• The reservation protocol will be discussed is a
separate presentation.

Marek Podgomy marek@npacsyr.edu http-inrurl.npaasyr.edu, (315) 443-4879 43

Reference Implementation
Framework - Overview II

• It is important to understand that the
implementation framework discussed below
is essentially an example of how the IS
model can be realized.

• The framework is not a part of any proposed
standard!

• This notwithstanding, the framework reveals
the actual working model of the future
Internet....

Marek Podgomy marek@npacsyr.edu http://truri.npac.syr.edu, (315) 443-4879 44

176

Reference Implementation
Framework -flow

The "flow" is a distinguishable stream of related datagrams
that results from a single user activity and requires the same
QoS.

- A flow might consist of one transport connection or one
video stream between a given host pair.

- A flow is the finest granularity of packet stream
distinguishable by the IS.

- A flow is assumed to be simplex, i.e., to have a single
source but N destinations. Thus, an N-way
teleconference will generally require N flows, one
originating at each site.

Marek Podgomy marek@npac.syr.edu http://tnirl.npac.syr.edu, (315) 443-4879 45

Reference Implementation
Framework - Router Function

For integrated services, a router must implement an
appropriate QoS for each How, in accordance with
the service model.

- The router function that creates different qualities of
service is called "traffic control".

- Traffic control in turn is implemented by three
components:
• The packet scheduler,
• The classifier,
• And admission control.

Marek Podgomy marekenpaosyr.edu http-J/trurl.npac.syr.edu, (315) 443-4879 46

177

Reference Implementation
Framework - Packet Scheduler I

► The packet scheduler manages the forwarding of
different packet streams using a set of queues and
perhaps other mechanisms like timers.

1 The packet scheduler must be implemented at the point
where packets are queued; this is the output driver level
of a typical operating system, and corresponds to the
link layer protocol.

The details of the scheduling algorithm may be specific
to the particular output medium.

- For example, the output driver will need to invoke the
appropriate link-layer controls when interfacing to a
network technology that has an internal bandwidth
allocation mechanism.

Marek Podgomy marekenpac.syr.edu http://trurl.npac.syr.edu, (315) 443-4879 47

Reference Implementation
Framework - Packet Scheduler II

► There is another component that could be
considered part of the packet scheduler or as
a separate piece: the estimator.
- This algorithm is used to measure properties of

the outgoing traffic stream

- To develop statistics that control packet
scheduling and admission control.

- This presentation will consider the estimator to
be a part of the packet scheduler.

Marek Podgorny marek@npac.syr.edu http://trurt.npac.syr.edu, (315) 443-4879 48

178

Reference Implementation
Framework — Classifier I

• For the purpose of traffic control (and
accounting), each incoming packet must be
mapped into some class; all packets in the same
class get the same treatment from the packet
scheduler.

• This mapping is performed by the classifier.
Choice of a class may be based upon the
contents of the existing packet header(s) and/or
some additional classification number added to
each packet.

Marek Podgomy marefcenpaosyr.edu http:fftrurl.npac.syr.echj, (315) 443-4879 49

Reference Implementation
Framework - Classifier II

> A class might correspond to a broad category of
flows, e.g., all video flows or all flows attributable to a
particular organization.

- A class might also hold only a single flow.

> A class is an abstraction that may be local to a
particular router; the same packet may be classified
differently by different routers along the path.

- For example, backbone routers may choose to map
many flows into a few aggregated classes, while
routers nearer the periphery, where there is much less
aggregation, may use a separate class for each flow.

Marek Podgomy marekSnpao8yr.edu http^ftrurljipac^yr.oou, (315) 443-4879 50

179

Reference Implementation
Framework - Admission Control I

Admission control implements the decision
algorithm that a router or host uses to determine
whether a new flow can be granted the
requested QoS without impacting earlier
guarantees.
Admission control is invoked at each node to
make a local accept/reject decision, at the time a
host requests a real-time service along some
path through the Internet. The admission control
algorithm must be consistent with the service
model, and it is logically part of traffic control.

Marek Podgomy marek@npacjsyr.edu http://lrur1.npac.syr.edu, (315) 443-4879 51

Reference Implementation
Framework - Admission Control II

Admission control is sometimes confused with policing or
enforcement, which is a packet-by-packet function at the
"edge" of the network to ensure that a host does not violate
its promised traffic characteristics.

- Packet level policing is considered to be one of the functions
of the packet scheduler.

In addition to ensuring that QoS guarantees are met,
admission control will be concerned with enforcing
administrative policies on resource reservations.

- Some policies will demand authentication of those requesting
reservations.

Finally, admission control will play an important role in
accounting and administrative reporting.

Marek Podgomy marek@npac.syr.edu http://trufl.npae.syr.edu, (315) 443-4879 52

180

Integrated Services Router - Diagram

Routing

Agent

Reservation Management

Agent j Agent

Admission

Control

Routing DB Traffic Control DB

Input
Driver

Internet
Forwarder

c

 H
Packet , .
Scheduler r"**—'

D-J
Output Driver

• The router has two broad functional divisions: the
forwarding path below the double horizontal line, and the
background code above the line.

marek6npacAyr.edu http^/trurLnpac^yMdu, (315) 443-4879 53 MarekPodgomy

Integrated Services Router - Forwarding Path
► The forwarding path of the router is executed for every packet
and usually involves a hardware assist.

► The path is divided into three sections: input driver, Internet
forwarder, and output driver.

- The Internet forwarder interprets the internet working protocol
header appropriate to the protocol suite.

- For each packet, an Internet forwarder executes a
suite-dependent classifier and then passes the packet and its
class to the appropriate output driver.

- The output driver implements the packet scheduler.

- It now has two distinct sections: the packet scheduler that is
largely independent of the detailed mechanics of the interface,
and the actual I/O driver that is only concerned with the nitty
gritty details of the hardware.

- The estimator lives somewhere in between.
Marak Podgomy marek«npac.syr.edu http-Vrtniri.npaasyr.edu, <315) 4414879 54

181

Integrated Services Router -
Background Routines

The background routines create data structures that
control the forwarding path.

- The routing agent implements a particular routing
protocol and builds a routing database.

- The reservation setup agent implements the protocol
used to set up resource reservations.

• If admission control gives the "OK" for a new request, the
appropriate changes are made to the classifier and packet
scheduler database to implement the desired QoS.

- The network management agent must be able to
modify the classifier and packet scheduler databases to
set up controlled link-sharing and to set admission control
policies.

Man* Podgomy marek@npaasyr.edu http://tnjrt.npacsyr.edu, (315) 443-4879 55

IS : Host Model and Routing Changes -1
• The implementation framework for a host is generally similar

to that for a router, with the addition of applications.

- Rather than being forwarded, host data originates and
terminates in an application.

- An application needing a real-time QoS for a flow must
somehow invoke a local reservation setup agent.

- The best way to interface to applications is not
determined yet.

- For example, there might be an explicit API for network
resource setup, or the setup might be invoked implicitly
as part of the operating system scheduling function.

- The IP output routine of a host may need no classifier,
since the class assignment for a packet can be specified
in the local I/O control structure corresponding to the
flow.

Marek Podgorny marek@npac.syr.edu http://trurl.npae.syr.edu, (315) 443-4879 56

182

IS : Host Model and Routing Changes - II

► In routers, integrated service will require
changes to both the forwarding path and the
background functions.

- The forwarding path, which may depend upon
hardware acceleration for performance, will be
the more difficult and costly to change.

- It will be vital to choose a set of traffic control
mechanisms that is general and adaptable to a
wide variety of policy requirements and future
circumstances, and that can be implemented
efficiently.

Marek Podgomy marek8npBCjyr.edu http://trurl.npac.syr.edu, (315) 443-4879 57

Integrated Service Model: Core Services -1

• A service model is embedded within the network
service interface invoked by applications to define
the set of services they can request.

- For compatibility reasons, this service interface
must remain relatively stable
• (or, more properly, extensible; adding new services in the

future should be possible but it is expected that it will be
hard to change existing services).

-• Because of its enduring impact, the service
model should not be designed in reference to any
specific network artifact but rather should be
based on fundamental service requirements.

Marek Podgomy marekenpatsytedu Wlp-7ftrurljjpac.syr.edu, (31S) 443-4879 58

183

Integrated Service Model:
Core Services - II

• The core service model addresses those
services which relate most directly to the
time-of-delivery of packets.

- Services as routing, security, or stream
synchronization are subject of other
standardization venues.

• Multicast - Send one packet to bunch of places
• RTP - real Time Protocol
• RSVP - reservation Protocol
• will be discussed in later foilsets

Marek Podgorny marek@npac.syr.edu httpJArurljipacjyr.edu, (315) 443-4879 59

;

Integrated Service Model:
Core Services - III

• A service model consists of a set of service commitments:
in response to a service request the network commits to
deliver some service.

- These service commitments can be categorized by the
entity to whom they are made: they can be made to
either individual flows or to collective entities (classes
of flows).

- The service commitments made to individual flows are
intended to provide reasonable application
performance, and thus are driven by the ergonomic
requirements of the applications; these service
commitments relate to the quality of service delivered to
an individual flow.

Marek Podgorny marek@npac.syr.edu httpJArurljipac.syr.edu, (315) 443-4879 60

184

Integrated Service Model:
Core Services - IV

The service commitments made to collective entities are
driven by resource-sharing, or economic, requirements;
these service commitments relate to the aggregate
resources made available to the various entities.

- In the following, we will explore the service requirements
of individual flows and describe a corresponding set of
services.

- We then discuss the service requirements and services
for resource sharing.

- Finally, we conclude with some remarks about packet
dropping.

MarekPodgomy marak6npauyr.edu http:«rurl.npaasyr.*du, (315) 443-4879 61

Integrated Service Model:
Core Services- QoS -1

For QoS requirements, the core service model is
concerned almost exclusively with the
time-of-delivery of packets.
Per-packet delay is the central quantity about
which the network makes quality of service
commitments.
Strictly speaking, the only quantity about which
a quantitative service commitments can be made
are bounds on the maximum and minimum
delays.

MarekPodgomy marakenpac^ytedu http:Mrifl1.npacAyr.edu, (315) 443-4879

185

62

Integrated Service Model:
Core Services- QoS - II

' The degree to which application performance depends on
low delay service varies widely, and one can make several
qualitative distinctions between applications based on the
degree of their dependence.

- One class of applications needs the data in each packet by
a certain time and, if the data has not arrived by then, the
data is essentially worthless - these are real-time
applications.

- Another class of applications will always wait for data to
arrive; these are "elastic" applications.

The taxonomy of applications into real time and elastic is
neither exact nor complete. It is only used to guide the
development of the core service model.

Marek Podgorny marek©npac^Ätu http:fltnm.npacsyr.edu, (315) 44&-48T9 63

Integrated Service Model: Core
Services Playback Real-Time Apps -1

An important class of such real-time applications:
"playback" applications.

- In a playback application, the source takes some
signal, packetizes it, and then transmits the packets
over the network.

- The network inevitably introduces some variation in
the delay of the delivered packets.

- The receiver depacketizes the data and then attempts
to faithfully play back the signal. This is done by
buffering the incoming data and then replaying the
signal at some fixed offset delay from the original
departure time;

Marek Podgorny marekenpacsyr.edu http://truri.npac.syr.edu, (315) 443-4879 64

186

Integrated Service Model: Core
ServicesPlayback Real-Time Apps - II

• The term "playback point" refers to the point in time
which is offset from the original departure time by this
fixed delay.

• Data arriving after the playback point is essentially
useless.

• In order to choose a reasonable value for the offset
delay, an application needs some "a priori"
characterization of the maximum delay its packets will
experience.

• This "a priori" characterization could either be provided
by the network in a quantitative service commitment to
a delay bound, or through the observation of the delays
experienced by the previously arrived packets.

MarekPodgorny marekenpac.syr.edu http ://tnirt.npaasyr.edu, (315)443-4879 65

Integrated Service Model: Core
ServicesPlayback Real-Time Apps - 111

The performance of a playback application is measured
along two dimensions: latency and fidelity.

- Some playback applications, in particular those that
involve interaction between the two ends of a
connection such as a phone call, are rather sensitive
to the latency;

- Transmitting a movie or lecture is not.
- Similarly, applications exhibit a wide range of

sensitivity to loss of fidelity.
• Intolerant applications require an absolutely faithful

playback,
• Tolerant applications can tolerate some loss of fidelity.

MarekPodgorny marekenparisyr.edu nttpJftrurlJipacayr.edu, (315) 443-4879 66

187

Integrated Service Model: Core Services
Playback Real-Time Apps - IV

• Vast majority of audio and video applications wilt
be tolerant.

• One can however envision applications, such as
circuit emulation, that are intolerant.

• Web based Computing is likely to be intolerant if
synchronizing many nodes on a single application
as delays at one point, will delay all nodes

• It is important to note that late packets always
decrease fidelity, even if the applications has
clever "adaptive" ways of dealing with them

Marek Podgomy marek@npacsyr.edu http://trurl.nixKXsyr.edu, (315) 443-4873 67

Integrated Service Model: Core Services
Playback Real-Time Apps - V - intolerant

• Hence, intolerant applications must use a fixed offset
delay.

- For a given distribution of packet delays, this fixed
offset delay must be larger than the absolute
maximum delay, to avoid the possibility of late
packets.

- Such an application can only set its offset delay
appropriately if it is given a perfectly reliable upper
bound on the maximum delay of each packet.

• A service characterized by a perfectly reliable upper
bound on delay is called "guaranteed service".

• This is the appropriate service model for intolerant
playback applications.

Marek Podgorny marek@npac.syr.edu http://trurl.npac.syr.edu, (315) 443-4879 68

188

Integrated Service Model: Core
Services Real-Time Apps - Tolerant -1

• In contrast, tolerant applications do not need to
set their offset delay greater than the absolute
maximum delay.

- They can also attempt to reduce their latency by
varying their offset delays in response to the
actual packet delays experienced in the recent
past ("adaptivity").

• For tolerant applications, the "right: service
model is "predictive service" which supplies a
fairly reliable, but not perfectly reliable, delay
bound.

Marek Podgomy marek©npae.syr.edu httpjftrur1.npac.syr.edu, (315) 443-4879 69

Integrated Service Model: Core
Services Real-Time Apps -

Tolerant/Predictive Service - II
• For "predictive service" the bound is not based on

worst case assumptions on the behavior of other flows.
• Instead, this bound might be computed with properly

conservative predictions about the behavior of other
flows.

• If the network turns out to be wrong and the bound is
violated, the application's performance will perhaps
suffer, but the users are willing to tolerate such
interruptions in service in return for the presumed lower
cost of the service.

Marek Podgomy m«^enpac.syr.eauh1rpj/trurtjipacjtytedii, (315)443-4879 70

189

Integrated Service Model: Core
Services Real-Time Apps -

Guaranteed v. Predictive Services
Why two different services?

- The key consideration here is efficiency:

- When one relaxes the service requirements from
perfectly to fairly reliable bounds, this increases the
level of network utilization that can be sustained, and
thus the price of the predictive service will presumably be
lower than that of guaranteed service.

- The predictive service class is motivated by the
conjecture that the performance penalty will be small for
tolerant applications but the overall efficiency gain will be
quite large.

Marek Podgomy marek@npacsyr.edu htfpjftnjri.npac.syr.edu, (315) 443-4879 71

integrated Service Model: Core
Services - Adaptive Real-Time Apps - \

Let us discuss accommodation of the "true" adaptive
applications in the service model

- A fundamental point of the overall IS architecture is
that traffic characterization and admission control are
necessary for these real-time delay bound services.

- So far one assumed that an application's data
generation process is an intrinsic property unaffected
by the network.

- However, there are likely to be many audio and video
applications which can adjust their coding scheme
and thus can alter the resulting data generation
process depending on the network service available.

Marek Podgomy marekenpacsyr.edu httpjftrurl.npac.syr.edu, (315) 443-4879 72

190

Integrated Service Model: Core Services
Adaptive Real-Time Apps - II

• This alteration of the coding scheme will present a trade-off
between fidelity (of the coding scheme itself, not of the
playback process) and the bandwidth requirements of the
flow.

• Such "rate-adaptive" playback applications have the
advantage that they can adjust to the current network
conditions not just by resetting their playback point but also
by adjusting the traffic pattern itself.

• For rate-adaptive applications, the traffic characterizations
used in the service commitment are not immutable.

• One can thus augment the service model by allowing the
network to notify (either implicitly through packet drops or
explicitly through control packets) rate-adaptive applications
to change their traffic characterization.

marekenpac3yr.edu http://trurLnpacjyr.edii, (315)4434879 Marek Podgomy 73

Integrated Service Model: Core
Services - Elastic Applications -1

Elastic applications will always wait for data to arrive.
- Elastic application typically uses the arriving data

immediately and will always choose to wait for the incoming
data rather than proceed without it. These applications do
not require any a priori characterization of the service in
order for the application to function.

- For a given distribution of packet delays, the perceived
performance of elastic applications will depend more on the
average delay than on the tail of the delay distribution.

Categories of elastic applications:
interactive burst (Telnet, X, NFS),
interactive bulk transfer (FTP), and

■ asynchronous bulk transfer (electronic mail, FAX).
Marek Podgomy marek©npac*yr.edu rffip://trurl.npacxyr.edu, (315) 443-4879 74

191

Integrated Service Model: Core
Services - Elastic Applications - II

• The delay requirements of elastic applications vary from rather
demanding for interactive burst applications to rather lax for
asynchronous bulk transfer, with interactive bulk transfer being
intermediate between them.

• An appropriate service model for elastic applications is to
provide "as-soon-as-possible", or ASAP (=best effort) service.

• One should offer several classes of best-effort service to reflect
the relative delay sensitivities of different elastic applications.

• This service model allows interactive burst applications to
have lower delays than interactive bulk applications, which in
turn would have lower delays than asynchronous bulk
applications.

• Applications using this service are not subject to admission
control.
Marek Podgomy marek@npac.syr.edu http://trurl.npac.syr.edu, (315) 443-4879 75

Integrated Service Model: Core
Services - Analysis of Taxonomy -1

Although the applications taxonomy was rather crude,
the core service model should be judged on its ability to
adequately meet the needs of the entire spectrum of
applications.

- Not all real-time applications are playback
applications;

- for example, one might imagine a visualization
application which merely displayed the image
encoded in each packet whenever it arrived.

- However, non- playback applications can still use
either the guaranteed or predictive real-time service
model, although these services are not specifically
tailored to their needs.

Marek Podgorny marek@npac.syr.edu http://trurl.npac.syr.edu, (315) 443-4879 76

192

Integrated Service Model: Core
Services - Analysis of Taxonomy - II

Similarly, playback applications cannot be neatly
classified as either tolerant or intolerant, but rather
fall along a continuum.
Offering both guaranteed and predictive service allows
applications to make their own trade-off between
fidelity, latency, and cost.

• Despite these obvious deficiencies in the taxonomy,
there are reasons to believe that it describes the
service requirements of current and future
applications well enough so that the Integrated
Service model core services can adequately meet
essentially all application needs.
Marek Podgomy mvek«npac*yudu MlpJftnirt.npacsyr.edu, (315) 443-4879 77

Integrated Service Model: Core
Services - Resource Sharing -1

The quantity of primary interest in resource-sharing is aggregate
bandwidth on individual links.
"link- sharing" component of the service model addresses the
question of how to share the aggregate bandwidth of a Ijnk among
various collective entities according to some set of specified
shares.

• Multi-entity link-sharing
- A link may be purchased and used jointly by several organizations,

government agencies or the like.
- They may wish to insure that under overload the link is shared in a

controlled way, perhaps in proportion to the capital investment of
each entity.

- At the same time, they might wish that when the link is underloaded,
any one of the entities could utilize all the idle bandwidth.

Uarek Podgomy marak0npac*yr,edu http-Jftruitripaciyr.edu, (315) 443-4879 78

193

Integrated Service Model: Core
Services ~ Resource Sharing - II

Multi-protocol link-sharing

- In a multi-protocol Internet, It may be desired to
prevent one protocol family (DECnet, IP, IPX, OSI,
SNA, etc.) from overloading the link and excluding the
other families.

- Note that different families may have different
methods of detecting and responding to congestion,
and some methods may be more "aggressive" than
others.

- This could lead to a situation in which one protocol
backs off more rapidly than another under
congestion, and ends up getting no bandwidth.

Marek Podgomy marek@npac.syr.edu http://lrur1.npacjsyr.edu, (315) 443-4879 79

Integrated Service Model: Core
Services - Resource Sharing - III

Multi-service sharing

- Within a protocol family such as IP, an administrator
might wish to limit the fraction of bandwidth allocated to
various service classes.

- For example, an administrator might wish to limit the
amount of real-time traffic to some fraction of the link,
to avoid preempting elastic traffic such as FTP.

In general terms

- The link-sharing service model is to share the
aggregate bandwidth according to some specified
shares.

- A hierarchy of shares is possible.
Marek Podgomy marek@npac.syr.edu http://tnjrl.npac.syr.edu, (315) 443-4879 80

194

Integrated Service Model: Core
Services - Resource Sharing - IV

• Definition of a service supporting efficient link-sharing is
difficult

• There is a number of research models, including the
idealized fluid model of instantaneous link-sharing with
proportional sharing of excess where at every instant the
available bandwidth is shared between the active entities
in proportion to the assigned shares of the resource.

• This fluid model exhibits the desired policy behavior but is
an unrealistic idealization.

• The actual service model should be to approximate, as
closely as possible, the bandwidth shares produced by
the ideal fluid model.

• Actual implementation may be difficult!
Harek Podgorny raarekenpacxsyr.edu htJpVftrurl.npac.syr.edu, (315) 443-4879 81

Integrated Services: Outstanding Issues
• There is a number of issues that have not been discussed but

are quite important:
- impact of packet dropping on the proposed core services
- Usage feedback (to prevent abuse of network resources)

- Reservation model (will be covered)

- Detailed traffic control mechanisms for
• packet scheduling, controlled packet dropping, packet

classification, admission control
- Combination of the traffic control mechanisms to ensure

• guaranteed delay bounds, link sharing, predictive real time
service

- Implementation of the soft state for the routers
• For these, access to the original literature is recommended

Marek Podgorny marek6npac.syr.edu htlpdllrurtnpacsyr.edu, (315) 443-4879 82

195/196

8.3 Multicast and Switched Network Basics

Multicast
Rationale, Technology,

Perspectives

Marek Podgorny
NPAC

Syracuse University
111 College Place

Syracuse
New York 13244-4100

Marek Podgorny marekenpac.syr.edu http://frurt.npac.ayr.edu 315.443.4879

Abstract of Multicast - Rationale, Technology,
Perspectives

• This module covers basics of the multicast technology
• It also introduces switching technology for traditional

broadcast networks
• For multicast, the focus is on the multicast routing

protocols
• The MBONE is not discussed but will be included later

Marek Podgorny marefcOnpac.8yr.edu http:WrurlJipacjyr.edu 315.443.4879

197

Multimedia and Multicast

• Multimedia streams tend to require higher bandwidth
compared to text-based applications

• Some MM applications require one-to-many
connectivity

- Desktop conferencing (many-to-many), LAN TV,
collaborative computing, corporate broadcast)

• Unicast method does not scale even on LANs

• Broadcast does not scale on complex LANs and on
WANs

• Multipoint connectivity also benefits traditional
applications (example: e-mail, news distribution,
electronic journals)

Marek Podgorny marek@npacsyr.edu http://trurl.npac.syr.edu 315.443.4879

Multipoint Transmission Methods
• Unicast:

- Application sends a copy of each packet to each
member of the multicast group. Simple to
implement, but does not scale for large groups. It
also requires extra bandwidth as the same
information has to be carried multiple times even
on shared links.

• Broadcast:

- Application sends a copy of each packet to a
broadcast address. Even simpler than unicast to
implement. However, the network must either stop
broadcasts at the LAN boundary or send the
broadcast everywhere. Sending the broadcast
everywhere is a waste of network resources if only
a small group actually needs to see the packets.

Marek Podgorny marek@npac.syr.edu http://truri.npac.syr.edu 315.443.4879

198

Multipoint Transmission Methods (Continued)

• Multicast:
- Application sends one copy of each packet and

addresses it to the group of computers that want to
receive it. Multicast addresses packets to a group
of receivers rather than to a single receiver, and it
depends on the network to forward the packets to
only these networks that registered as receivers.

MarekPodgomy inarekenpac.Byr.edu http://trurlJipac.syr.edu 315.443.4879

Multicast support on LANs

• Most popular LAN technologies support multicast at
their data link layer: Ethernet, FDDI, Token Ring. They
however use different technologies to achieve the
same functionality

- An individual computer can listen to a unicast
address, several multicast addresses, and the
broadcast address on Ethernet and FDDI segments.

- Token Rings have functional addresses that can be
used to address groups of receivers.

• Many multipoint applications are valuable precisely
because they are not limited to a single LAN.

• On internets using mixed data link technologies and
other networking technologies, multicast must be
implemented at the network layer.

MarekPodgomy marekenpacsyr.edu http://trurl.npae.syr.edu 315.443.4879 <

199

Multicast Technology Components

Addressing:

- There must be a network-layer address that is used
to communicate with a group of receivers rather
than a single receiver. There must be also a
mechanism for mapping this address onto data-link
layer multicast addresses where they exist.

Dynamic registration:

- There must be a mechanism for the computer to
communicate to the network that it is a member of
a particular group. Computers must register to let
the global network know which local networks need
to receive traffic for each group.

Marek Podgorny marekenpac.syr.edu http://trui1jipac.syr.edu 315.443.4879

Multicast Technology Components (Continued)

Multicast routing:

- The network must be able to build packet
distribution trees that allow sources to send
packets to all receivers. Packet distribution trees
need to ensure that each packet exists only one
time on any given network - if there are multiple
receivers on a given branch, there should only be
one copy of the packets on that branch.

Marek Podgorny marek@npac.syr.edu http://lrurl.npac.syr.edu 315.443.4879

200

IP Multicast Design

Addressing:

- The IP address space is divided into four pieces:
Class A, Class B, Class C, and Class D. Class D is
reserved for multicast traffic. Class D addresses
are allocated dynamically.

Dynamic Registration:

- RFC 1112 defines the Internet Group Membership
Protocol (IGMP). IGMP specifies how the host
should inform the network that it is a member of a
particular multicast group.

Marek Podgorny marek©npaasyr.edu http://trurl.npac.syr.edu 315.443.4S79

IP Multicast Design (Continued)

Multicast Routing:

- RFC 1075 defines the Distance Vector Multicast
Routing Protocol (DVMRP).

- RFC 1584 defines the Multicast Open Shortest Path
First (MOSPF) protocol - OSFP extension to OSPF
supporting IP Multicast.

- PIM is a multicast protocol that can be used in
conjunction with all unicast IP routing protocols.
Relevant IETF drafts:

• Protocol-Independent Multicast (PIM): Motivation and
Architecture

• Protocol-Independent Multicast (PIM): Protocol
Specification.

Marek Podgorny marek©npac.syr.edu http://trurl.npac.syr.edu 315.443.4879 10

201

IP Multicast Routing Protocols: DVMRP

► DVMRP uses Reverse Path Forwarding. When a router
receives a packet, it floods the packet out of all paths
except the one that leads back to the packet's source.
Data stream reaches all LANs (possibly multiple times). If
a router is attached to a set of LANs that do not want to
receive a particular multicast group, the router can send a
"prune" message back up the distribution tree to stop
subsequent packets from traveling where there are no
members.

Since new hosts may want to join the multicast group at
any time, DVMRP must periodically re-flood. This creates
a scaling problem, especially if pruning not effective or not
implemented.

Marek Podgorny marekenpac.syr.edu httpjrtrurl.npac.syr.edu 315.443.4879 11

IP Multicast Routing Protocols: DVMRP
(Continued)

► DVMRP implements its own unicast routing protocol
(similar to RIP) to determine which interface leads
back to the source of the data stream. The path that
the multicast traffic follows may not be the same as
the path that the unicast traffic follows.

• DVMRP has been used to build the MBONE by building
tunnels between DVMRP-capable machines.

DVMRP is state of the art today.

Marek Podgorny marek@npac.syr.edu httpjrtrurl.npac.syr.edu 315.443.4879 12

202

IP Multicast Routing Protocols: MOSPF

• Multicast OSPF (MOSPF) was defined as an extension to
the OSPF unicast routing protocol. OSPF works by having
each router in a network understand all of the available
links in the network. Each OSPF router calculates routes
from itself to all possible destinations.

• MOSPF works by including multicast information in OSPF
link state advertisements. An MOSPF router learns which
multicast groups are active on which LANs.

• MOSPF builds a distribution tree for each
source/group pair and computes a tree for active
sources sending to the group. The tree state is
cached, and trees must be recomputed when a link
state change occurs or when the cache times out.

Marek Podgomy marek©npac.syr.edu httpVftrurl.npac.syr.edu 315.443.4879 13

IP Multicast Routing Protocols: MOSPF
(Continued)

• MOSPF works only in internetworks that are using
OSPF.

• MOSPF is best suited for environments that have
relatively few source/group pairs active at any given
time. It will work less well in environments that have
many active sources or environments that have
unstable links.

• OSPF is not widely used —

Marek Podgomy marek©npae.syr.edu http://truri.npac.syr.edu 315.443.4879 14

203

IP Multicast Routing: PIM

PIM (Protocol-Independent Multicast):

- Works with all existing unicast routing protocols.

- Supports two different types of multipoint traffic
distribution patterns:

• Dense-mode PIM: uses Reverse Path Forwarding
and looks a lot like DVMRP. However, dense-mode
PIM is that PIM works with whatever unicast protocol
is being used

MarekPodgorny marekenpac.syr.edu http://trur1.npac.syr.edu 315.443.4879 15

IP Multicast Routing: PIM (Continued)
• Sparse-mode PIM: optimized for environments where

there are many multipoint data streams with each data
stream goes to a relatively small number of the LANs
in the internetwork.

- Reverse Path Forwarding wastes bandwidth for
such traffic pattern.

- Sparse-mode PIM works by defining a Rendezvous
Point. Senders send data to and the receivers
receive data from the Rendezvous Point..

- For each data stream the routers in the path will
optimize the path automatically to remove any
unnecessary hops.

- Sparse-mode PIM assumes that no hosts want the
multicast traffic unless they specifically ask for it.

• PIM can concurrently support both modes
MarekPodgorny marek@npac.syr.edu http:fftrurt.npac.syr.edu 315.443.4879 16

204

IP Multicast Routing: PIM (2)
Dense Mode PIM routing is useful when:

- Senders and receivers are in close proximity to one another.

- There are few senders and many receivers.

- The volume of multicast traffic is high.

- The stream of multicast traffic is cons

Marek Podgorny marek©npac.syr.edu http://trurl.npac.syr.edu 315.443.4879 17

IP Multicast Routing: PIM (3)
Sparse Mode PIM routing is useful when:

- There are few receivers in a group.

- Senders and receivers are separated by WAN links.

- The type of traffic is intermittent.
Protosol-independeat Sluhitos!—Spars« Mode, Step I

I* Prototoi-IndepeiKfetri Mülii«st—Sparse Mode, Step 2

Dalai:

Marek Podgorny marek@npac.l*5; ik4f>.J<ltl MtWtfrfWV.Wflli«'«**"

205

IP Multicast Services in the Workgroup

• LAN switches are a natural bandwidth enhancement
tool able to improve the performance of time-critical
or bandwidth-intensive multimedia applications.

• In order for multicast applications to work in the LAN,
both switching and routing systems must support IP
multicast capabilities.

• As bandwidth enhancement and multicast are both
critical, LAN switches must have sufficient
internetworking intelligence to forward multicast traffic
only to those workgroup segments that will use this
traffic. Otherwise, multicast traffic will be
indiscriminately broadcast to all workgroup segments,
needlessly robbing network bandwidth from other
users' applications.

Marek Podgomy marek@npae.syr.edu http://trur1.npac.syr.edu 315.443.4879 19

Switched Networks

Transition from routed to switched networks

ATU Wort^oip arkh

r0dtnr*)%tigCiDMf

Marek Podgomy marek@npac.syr.edu http://trurl.npac.syr.edu 315.443.4879 20

206

Switched Networks

Why the transition?

- Switched internetworks integrate switching devices
into existing shared-media networks to optimize
the benefits of both routing and switching.

- Switched networks provide users with new
services and capabilities, such as virtual LANs
(VLANs), multimedia support, and more efficient
tools for network management.

- Higher bandwidth to the desktop
(microsegmentation) is one of the main driving
forces, directly related to multimedia applications.

Marek Podgorny mafekenpac.syr.edu httpJftrurl.npac.syr.edu 315.443.4879 21

Switched Networks (Continued)

Switches (unlike hubs and routers) can (a) forward
traffic quickly and directly to its destination; (b)
provide non-blocking services and concurrent
connections

fn addition, switches allow to de-couple the physical
and logical network layouts: they enable virtual LANs

* Switches, in general, have better scalability than
bridges and routers.

Marek Podgorny marek©npac.syr.edu http://trurl.npac.syr.edu 315.443.4879 22^

207

Switched Networks - Evolution (1)

• Phase one: the microsegmentation
phase. Companies retain hubs and
routers but insert a LAN switch to
enhance performance.

• Phase two: ATM technology and routing
between switches. LAN switches perform
switch processing and provide dedicated
bandwidth to the desktop and to shared-
media hubs. Backbone routers are
clustered by ATM switches to increase
backbone bandwidth, matching the
increased bandwidth in the wiring
closet.

23 Marek Podgorny marekenpac.syr.edu http://tnjrl.tipac.syr.edu 315.443.4879

Switched Networks - Evolution (2)
• Phase three connects the ATM core

switch directly to LAN switches in the
wiring closet and to centralized or
distributed ATM routers. The network
backbone is now ATM-centric, with all
other devices at the periphery. Multilayer
switches have the intelligence to forward
packets between the different VLANs
locally, or layer 2 switches, or a
combination of both.

• Phase four is the end-to-end switching
with integral VLAN and multilayer
switching capability. Route and Switch
Processors are distributed over the
ATM fabric.

Marek Podgorny marekenpae.syr.edu http://trurl.npac.syr.edu 315.443.4879 24

208

Switched Networks

What are the challenges?

- Interoperability: legacy (hub/router) networks have
to coexist with switched networks

- Switching capabilities must be implemented at both
layer 2 and layer 3 of the OSI model (multilayer
switching)

- LAN emulation must become commonplace - it isn't
now

- Or, network layer protocols must be modified to
operate directly over ATM in native (AAL) mode
(RFC 1577). This, BTW, would make ATM native
QoS guarantees available for higher level protocols

Marek Podgorny marek@npacsyr.edu http://truri.npacsyr.edu 315.443.4879 25

Switch Networks (Continued)

• At present, neither LANE nor RFC 1577 exploit ATM
QoS capabilities

• RSVP must be implemented on both routers and
switches

• Multicast routing protocols must be extended to
switching platforms

• New network management methodologies and tools
are required for switched networks to exploit their
flexibility

Marek Podgorny marek@npac.syr.edu http://trui1.npac.syr.edu 315.443.4879 26

209/210

8.4 Reservation Protocol, Parts I & II

RSVP: Reservation Protocol

Supporting Quality of Service
over Packet Networks

Marek Podgorny
NPAC

Syracuse University
111 College Place

Syracuse
New York 13244-4100

Based on Internet Draft: RSVP-SPEC-10

Marek Podgorny marekenpacjyr.edu http://lrurt.npac.syr.edu 315.443.4879

Abstract

This module discusses details of the
Reservation Protocol (RSVP)
RSVP is a part of the Integrated Services
Model for Internet
RSVP is a tool to establish Quality of
Service over traditional packet networks

D-e—\/-»i-_ o_.. __ ■,£*__ — ~...~M.. uu-./i. ^.. OIC<«O«PTO

211

What is RSVP
RSVP is a network control protocol that will allow Internet
applications to obtain special qualities-of-service for their
data flows.

- This will generally require reserving resources along the data
path(s).

- RSVP is a component of the future "integrated services''
Internet, which will provide both best-effort and real-time
qualities of service

- When an application in a host requests a specific QoS for its
data stream, RSVP is used to deliver the request to each
router along the path(s)'of the data stream and to maintain
router and host state to provide the requested service.

- Although RSVP was developed for setting up resource
reservations, it is easily adaptable to transport other kinds of
network control information along data flow paths.

fclarek Podgorny marekenpac.syr.edu http://trurl.npac.syr.edu 315.443.4879

RSVP Basic Functionality
1 RSVP supports multicast or unicast simplex data delivery.
RSVP is fundamentally designed for multicasting as well as
unicasting, and it treats data flow as one directional, it
distinguishes the roles of data sender (e.g., hosts H1, H2)
from data receiver (hosts H3, H4, H5), although in many
cases the same application will play both roles.

fckarek Podgorny tnarekenpac.syr.edu http://trurl.npac.Byr.edu 315.443.4679 zi-

212

RSVP: A Receiver-Oriented Protocol

• RSVP is receiver-oriented.

- To efficiently handle heterogeneous receivers and
dynamic group membership, RSVP makes receivers
responsible for requesting resource reservations. Each
receiver can request a QoS that is tailored to its
particular requirement, by sending RSVP reservation
messages upstream towards the senders.

niarek Podgomymarek© npac.syr.edu httpVftrurt.npac.syr.edu 315.443.4873

RSVP: A Receiver-Oriented Protocol
(Continued)

RSVP reservation messagesffowing upstream. Just as
thedata branches out in routers R1, R3, and R4, so the
reservation messages going upstream are "merged". A
single reservation message need only flow upstream
until it is merged with another reservation.

fclarek Podgomy marekenpac.syr.edu httpJrtrurtnpae.syr.edu 315.443.4879

213

RSVP Basic Functionality
• RSVP handles heterogeneous receivers.

- Different hosts on the same multicast delivery tree may have
different capabilities and therefore need different QoS.

• RSVP adapts to changing group membership as well as
changing routes.

- For dynamic adaptability and robustness, RSVP maintains
"soft state" in the routers. The only permanent state is in the
end systems, which periodically send their RSVP control
messages to refresh the router state. In the absence of
refresh, RSVP state in routers will time out and be deleted.

• RSVP is not a routing protocol.
- The RSVP daemon consults the local routing protocol (s) to

obtain routes. RSVP is designed to operate with existing and
future unicast and multicast routing.protocols. A host sends
IGMP messages to join a multicast group, but it uses RSVP
messages to reserve resources along the delivery path(s)
from that group.

MarekPodgomy marekenpac.syr.edu http://trui1.npac.syr.edij 315.443.4879 |7

RSVP Operational Principles
• A QoS request from an application is passed to the local RSVP implementation
(user daemon). RSVP passes the request to all the nodes along the reverse
data path to the destination.

- RSVP provides transparent operation through routers that do not support it.

o Soft state => robustness

o Receiver reservations => scaling

Host

App RSVP'

•ir

>-*■ Queues

MULTICASTING
Receiver 1

Receiver 2

Router...

«Jarek Podgomy marek@npac.syr.edu r>ttp://rrurf.npac.syr.edu 315.443.4879

214

RSVP Operational Principles (Continued)

• At each node, RSVP applies a local decision procedure
(admission control) to the QoS request

- If admission control succeeds, it sets the parameters to
the Classifier and Packet Scheduler to obtain the desired
QoS. If admission control fails at any node, RSVP
returns an error indication to the application.

• Each router in the path capable of resource reservation
will pass incoming data packets to a Packet Classifier
and then queue them in a Packet Scheduler.

- The Packet Classifier determines the route and the QoS
class for each packet. The Scheduler allocates a
particular outgoing link for packet transmission.

fckarek Podgomymarekenpac.syr.edu http://tnirl.npac.syr.edti 315.443.4879

RSVP Operational Principles (Continued)

For QoS-active link-layer media the packet scheduler is
responsible for negotiation with the link layer to obtain
the QoS requested by RSVP.

- Mapping to the link layer QoS may be accomplished in a
number of possible ways; the details will be
medium-dependent. On a QoS-passive medium such as
a leased line, the scheduler itself allocates packet
transmission capacity. The scheduler may also allocate
other system resources such as CPU time or buffers.

lularek Podgomy marek@npac.syr.edu http://trurl.npac.syr.edu 315.443.4879 10

215

RSVP Operational Principles (Continued)

• RSVP is designed to scale well for very large multicast
groups.

- Since both the membership of a large group and the
topology of large multicast trees may change with
time, the RSVP design assumes that router state for
traffic control will be built and destroyed
incrementally. Hence, RSVP uses "soft state" in the
routers, i.e., RSVP sends periodic refresh messages
to maintain the state along the reserved path; in
absence of refreshes, the state will automatically time
out and be deleted.

liarek Podgomymarekenpacjyr.edu http://tnirl.npac.syr.edu 315.443.4879 11

RSVP Operational Principles (Continued)

• RSVP reserves resources for simplex data streams,
i.e., it reserves resources in only one direction on a
link

- A sender is logically distinct from a receiver. However,
the same application may act as both sender and
receiver.

• RSVP mechanisms provide a general facility for
creating and maintaining distributed reservation state
across a mesh of multicast delivery paths.

- RSVP transfers reservation parameters as opaque data
(except for certain well-defined operations on the data),
which it simply passes to admission control and to the
Packet Scheduler and Classifier for interpretation.

Üarek Podgomy marekenpac.syr.edu http://trurl.npac.syr.edu 315.443.4879 12

216

RSVP Data Flows

• RSVP defines a "session" as a data flow with a particular
destination and transport-layer protocol.

- The destination of a session is generally defined by
DestAddress, the IP destination address of the data packets,
and possibly by DstPort, a "generalized destination port".
RSVP treats each session independently.

- DestAddress is a group address for multicast delivery or the
unicast address of a single receiver. DstPort could be defined
by a UDP/TCP destination port field, by an equivalent field in
another transport protocol, or by some application-specific
information.

lUarek Podgomy marek@npac.syr.edu http://tnjrl.npac.syr.edii 315.443.4879 13

RSVP Data Flows (Continued)
• For unicast transmission, there will be a single destination

host but there may be multiple senders; RSVP can set up
reservations for multipoint to single point transmission.

• Multicast distribution forwards a copyof each data packet
from a sender S. to every receiver R.; a unicast distribution
session has a single receiver R. Each sender S, may be
running in a unique Internet host, or a single host may
containmultiple senders, distinguished by generalized
source ports.

S.
Distribution
mesh
created by
multicast
routing.

liarek Podgomy marek© npac.syr.edu http://trurt.npac.syr.edu 315.443.4879 U14

217

RSVP Reservation Model

• An elementary RSVP reservation request consists of a
"flowspec" and a "filter spec"; this pair is called a "flow
descriptor".

- The flowspec specifies a desired QoS. It is used to
set parameters to the node's packet scheduler,
assuming that admission control succeeds.

- The filter spec, together with a session specification,
defines the set of data packets - the "flow" - to
receive the QoS defined by the flowspec. Filter spec
is used to set parameters in the packet classifier.

Marek Podgomy marek@npac.syr.edu http://trurl.npac.syr.edu 315.443.4879 15

RSVP Reservation Model (Continued)

• Data packets that are addressed to a particular
session but do not match any of the filter specs for
that session are handled as best-effort traffic.

• Please, note "upstream" and "downstream"
convention!

Upstream
Previous hop \ / Next hop

Outgoing Incoming
interface interface

«iarek Podgomy marekenpac.syr.edu http://trurl.npae.syr.edu 315.443.4879 16

218

RSVP Reservation Model (Continued)

The f lowspec in a reservation request will generally
include a service class and two sets of numeric
parameters:

- An "Rspec" (R for reserve') that defines the desired
QoS,

- A "Tspec" (T for traffic') that describes the data flow.

- The formats and contents of Tspecs and Rspecs are
determined by the integrated service model, and are
generally opaque to RSVP.

MarekPodgomy marek6npac.syr.edu htlp:/Ärurl.npac.syr.edu 315.443.4879 17

RSVP Reservation Model (Continued)
Filter specs may select arbitrary subsets of the packets in a
given session.

- Subsets might be defined in terms of
• Senders (i.e., sender IP address and generalized source port),

• A higher-level protocol

• Any fields in any protocol headers in the packet

- Example: filter specs might be used to select different subflows in a
hierarchically-encoded signal by selecting on fields in an application-layer
header.

- Current RSVP software does not yet support this option.

- Because the UDP/TCP port numbers are used for packet
classification, each router must be able to examine these

• fields.

18 Marek Podgorny marek@ npac.syr.edu http-V/trurl.npac.syr.edu 315.443.4879

219

RSVP Reservation Model (Continued)

• RSVP reservation request messages originate at receivers
and are passed upstream towards the sender. At each
intermediate node, two general actions are taken:

- Make a reservation

• The request is passed to admission control and
policy control.

- If either test fails, the reservation is rejected and RSVP
returns an error message to the appropriate receiver.

- If both succeed, the node uses the flowspec to set up
the packet scheduler for the desired QoS and the filter
spec to set the packet classifier to select the
appropriate data packets.

liarek Podgomy marefc@npacjyr.edu httpJ/lruil.npac.syr.edu 315.443.4879 19

RSVP Reservation Model (Continued)

• Forward the request upstream

- The reservation request is propagated upstream towards
the appropriate senders. The set of sender hosts to which a
given reservation request is propagated is called the "scope"
of that request.

• Forwarded reservation request may differ from the request
that it received from downstream:

- Reservations for the same sender from different
downstream branches of the tree are "merged" as
reservations travel upstream; a node forwards upstream
only the reservation request with the "maximum" flowspec.

- Reservation might be purposefully modified by traffic
control.

Marek Podgomy marekenpac.syr.edu http-7ArurlJipacjyr.edu 315.. 443.4879 20

220

RSVP Reservation Model (Continued)

• The receiver sending a reservation request can request a
confirmation message.

- A successful reservation request propagates upstream
along the multicast tree until it reaches a point where an
existing reservation is equal or greater than that being
requested.

- At that point, the arriving request is merged with the
reservation in place and the node may then send a
reservation confirmation message back to the receiver.

- Note that the receipt of a confirmation is only a
high-probability indication, not a guarantee, that the
requested service is in place. This uncertainity results
from possible security policies.

liarek Podgomymarek@npac.syr.edu httpjftrurl.npac.syr.edu 315.443.4879 21

RSVP Reservation Model (Continued)

The basic RSVP reservation model is "one pass":

- This scheme provides no easy way for a receiver to find out
the resulting end-to-end service.

- RSVP supports an enhancement to one-pass service
known as "One Pass With Advertising" (OPWA)

- With OPWA, RSVP control packets are sent downstream to
gather information that may be used to predict the end-
to-end QoS. The results are delivered by RSVP to the
receiver hosts. The results may then be used by the
receiver to dynamically adjust the reservation request.

tiarek Podgomy marek@npac.syr.edu http://trurl.npac.syr.edu 315.443.4879 22

221

RSVP Reservation Styles (Continued)

A reservation request includes a set of options which
are collectively called the reservation "style".

- Distinct or shared: the treatment of reservations for
different senders within the same session: establish a
"distinct" reservation for each upstream sender, or else
make a single reservation that is "shared" among all
packets of selected senders.

tfarekPodgomymarek©npac.syr.edu http-Jrtnjrl.npac.syr.edu 315.443.4679 [23

RSVP Reservation Styles (Continued)

Senders' selection: an "explicit" list of all selected
senders, or a "wildcard" that implicitly selects all the
senders to the session.

- Explicit sender-selection reservation: each filter spec
must match exactly one sender

- Wildcard sender-selection: no filter spec is needed.

Sender
Selection

Explicit

Wildcard

Reservations
Distinct

Fixed-Filer
(FF Style)

X

Shared
Shared-Explicit (SE)

Style
Wildcard-Filder (WF)

Style

riarek Podgomymarekenpac.syr.edu http:Mrurl.ripac.8yr.edu 315.443.4S79 24

222

RSVP Reservation Styles (Continued)

Wildcard-Filter (WF) Style
- The WF style implies the options: "shared"

reservation and "wildcard" sender selection.
- WF-style reservation creates a single reservation into

which flows from all upstream senders are mixed.
This reservation may be thought of as a shared
"pipe", whose "size" is the largest of the resource
requests from all receivers, independent of the
number of senders using it.

Kkarek Podgorny marelt© npae.syr.edu http://trurl.ripac5yr.edu 315.443.4879 25

RSVP Reservation Styles (Continued)

• A WF-styte reservation is propagated upstream
towards all sender hosts, and automatically extends
to new senders as they appear.

• Symbolically, a WF-style reservation request is
represented by:

• WF(*{Q})
• Where the asterisk represents wildcard sender

selection and Q represents the flowspec.

]26 hkarek Podgorny marek® npac.syr.edu httpjftrurt.npac.syr.edu 315.443.4879

223

RSVP Reservation Styles (Continued)

Fixed-Filter (FF) Style

- The FF style implies the options: "distinct" reservations an
"explicit" sender selection.

• An elementary FF-style reservation request creates
a distinct reservation for data packets from a
particular sender, not sharing them with other
senders' packets for the same session.

• The total reservation on a link for a given session is
the total of the FF reservations for all requested
senders. On the other hand, FF reservations
requested by different receivers R. but selecting the
same sender S, must be merged to share a single
reservation.

MarekPodgomymarek@npac.syr.edu http-7ftrurl.npac.syr.edu 315.443.4879 27

RSVP Reservation Styles (Continued)

• Symbolically, an elementary FF reservation request is
represented by:

• FF(S{ Q})

• Where S is the selected sender and Q is the
corresponding flowspec; the pair forms a flow
descriptor.

- RSVP allows multiple elementary FF-style reservations
to be requested a the same time, using a list of flow
descriptors: FF(S1{ Q1}, S2{ Q2},...)

MarekPodgomy marek@npac.syr.edu http7ftrurl.npac.syr.edu 315.443.4879 28

224

RSVP Reservation Styles (Continued)

Shared Explicit (SE) Style
- The SE style implies the options: "shared" reservation and

"explicit" sender selection.
• An SE-style reservation creates a single reservation

into which flows from all upstream senders are
mixed. However, like the FF style, the SE style
allows a receiver to explicitly specify the set of
senders.

- We can represent an SE reservation request containing a
flowspec Q and a list of senders S1, S2,... by:

SE((S1,S2,...){Q))

nkarek Podgomymarek@tqiac.syr.edu httpJAtrurt.npac.syr.edu 315.443.4879 29

RSVP Reservation Styles

• Both WF and SE styles create shared reservations,
appropriate for those multicast applications whose
properties make it unlikely that multiple data sources will
transmit simultaneously.

- Packetized audio is an example of an application suitable for
shared reservations; since a limited number of people talk at
once, each receiver might issue a WF or SE reservation
request for twice the bandwidth required for one sender (to
allow some over-speaking).

- The FF style, which creates independent reservations for the
flows from different senders, is appropriate for video signals.

ftlarek Podgomy marek©npac.syr.edu http://trurl.npac.syr.edu 315.443.4879 30

225

RSVP Reservation Styles (Continued)

The RSVP rules disallow:

- Merging of shared reservations with distinct
reservations, since these modes are fundamentally
incompatible.

- Merging explicit sender selection with wildcard sender
selection, since this might produce an unexpected
service for a receiver that specified explicit selection.

- Therefore, WF, SE, and FF styles are all mutually
incompatible.

IjarekPodgorny marekenpacjyr.edu http://trurl.npac.syr.edu 315.443.4879 31

RSVP Reservation Styles (Continued)

Is it possible to simulate the effect of a WF reservation
using the SE style?

- When an application asked for WF, the RSVP daemon on
the receiver host could use local path state to create an
equivalent SE reservation that explicitly listed all senders.

- However, an SE reservation forces the packet classifier in
each node to explicitly select each sender in the list, while a
WF allows the packet classifier to simply "wild card" the
sender address and port. When there is a large list of
senders, a WF style reservation can therefore result in
considerably less overhead than an equivalent SE style
reservation. For this reason, both SE and WF are included
in the protocol.

Uarek Podgomy marek@npac.syr.edu http://trurt.npac.syr.edu 315.443.4879 32

226

Examples of Reservation Styles

L A CJ

RSVP capable
router

l_

si ' *
,l1

°2» °3 * ^R2R3
r—*

• Two incoming interfaces (A and B) through which data
streams will arrive

• Two outgoing interfaces (C and D) through which data will be
forwarded

• Three upstream senders (S1 - S3). Packets from sender S1
(S2 and S3) arrive through previous hop A (B, respectively).

nkarek Podgorny marek@npac.syr.edu http://lrurt.npaasyr.eciu 315.443.4879 33

Examples of Reservation Styles (Continued)

• Three downstream receivers. Packets bound for R1 (R2
and R3) are routed via outgoing interface C (D,
respectively).

• It is furthermore assumed that R2 and R3 arrive via
different next hops.This illustrates the effect of a
non-RSVP cloud or a broadcast LAN on interface D.

• Multicast setup: data packets from each Si are routed to
both outgoing interfaces

liarek Podgorny marek@npac.syr.edu httpj/trurl.npac.syr.edu 315.443.4879 34

227

Examples of Reservation Styles

Example of the WF style

- Two possible merging situations.

• Each of the two next hops on interface D results in a
separate RSVP reservation request.

• These two requests are merged into the effective
flowspec 3B, which is used to make the reservation on
interface D.

tlarek Podgomy marek@npacsyr.edu http-Jrtrurl.npac.syr.edu 315.443.4879 35

Examples of Reservation Styles (Continued)

To forward the reservation requests upstream, the
reservations on the interfaces C and D are merged; as a
result, the larger flowspec 4B is forwarded upstream to each
previous hop.

- B is an arbitrary QoS parameter in all following examples

Send Reserve Receive

WF('{4B}) <=A C * {4B} C<=WF(*{4B})

WF(*{4B}) <=B D * {3B} Ü<—WFC{3B})
<=WF(*{2B})

fctarek Podgomy marekenpacjyr.edu httpVrtrurl.npac.syr.edu 31S.443.4879 36

228

Examples of Reservation Styles
Fixed-Filter (FF) style reservations.

- The flow descriptors for senders S2 and S?, received from
outgoing interfaces C and D, are packed into the request
forwarded to previous hop B.

- The three different flow descriptors for sender S-, are merged
into the single request FF(S^ 4B}), which is sent to previous
hop A.

- For each outgoing interface, there is a separate reservation for
each source that has been requested, but this reservation is
shared among all the receivers that made the request.

Send

FF(S1 {4B})

FF(SZ{5B},S3{B}) <=
B

Reserve

C S1 {4B}
S2 {5B}

D S1 {3B}
S3{B}

Receive

C <= FF(S1 {4B}, S2 {5B}
)

0<=FF(Si{3B},S3{B})
<= fFfS1 {B})

liarek Podgomy marek© npacjsyr.edu http://trurl.npac.syr.edu 315.443.4879 37

Examples of Reservation Styles

An example of Shared-Explicit (SE) style reservations.

- When SE-style reservations are merged, the resulting filter
spec is the union of the original filter specs.

Send Reserve Receive

SE(S^ {3B})<=A C (S1.S2) {B} c<=SEf(si,S2HB;;

SE((S2,S3){3B}) <=
B

D (S1,S2,S3)
{3B}

D<=SE((S1,S3)f3Bj;
<=sEfS2f2s;;

klarek Podgomy marek@npaG.syr.edu http://trurl.npac.syr.edu 315.443.4879 38

229

Examples of Reservation Styles
The three earlier examples assumed that data packets from
S17 S2, and S3 are routed to both outgoing interfaces.

- Let's assume that data packets from S2 and S3 are not
forwarded to interface C, e.g., because the network topology
provides a shorter path for these senders towards Rv not
traversing this node.

- The table below shows WF style reservations under this
assumption. Since there is no route from B to C, the
reservation forwarded out interface B considers only the
reservation on interface D.

Send Reserve Receive

WF('{4B})<=
A

C * {B} C <= WF('{4B})

WF('{3B})<=
B

D * {3B} D<= WF(*{3B})
<== WF('{2B})

Marek Podgorny marek@npac.syr.edu http://trui1.npac.syr.edu 315.443.4879 39

RSVP: A list of outstanding issues

We have only discussed the principal features of the RSVP
protocol. We have not discussed any actual implementation
details and we have also omitted the following important
architectural issues:

- Rules for Merging Flowspecs

- Router Soft State description

- Teardown of connections

- Support for local Policy and Security

- Automatic RSVP Tunneling

- Description of the Host Model

All these details can be found in the Internet Draft
documents.

fttarek Podgorny marek@npac.syr.edu http:Zrtrurl.npac.syr.edu 315.443.4879 40

230

Reservation Protocol - Part It

marek@npatsyr.edu, (315) 443-4*79 http://www.iipacsyr.edii

RSVP - Part II

♦ This module covers details of the Reservation
Protocol ommitted from in the first module, he
following issues are addressed:
• basic RSVP messages, the meaning of flow

specification elements (Rspec and Tspec), and the
nature of the "contracf between the data flow and the

service
• router's soft state, flowspec merging, RSVP tunneling,

reservation confirmation, reservation teardown, and the

host model

Marek Podgorny NPAC, Syracuse University 2

231

RSVP Protocol Mechanisms

♦ RSVP Messages
• Two basic RSVP message types: Resv and Path.

• Each receiver host sends RSVP reservation request (Resv)
messages upstream towards the senders.

• Resv messages must follow exactly the reverse of the routes
the data packets will use, upstream to all the sender hosts
included in the sender selection.

• Resv messages are delivered to the sender hosts themselves
so that the hosts can set up appropriate traffic control
parameters for the first hop.

Marek Podgomy NPAC, Syracuse University

RSVP Protocol Mechanisms
♦ RSVP Messages

• Two basic RSVP message types: Resv and Path.
• Each RSVP sender host transmits RSVP Path messages

downstream along the uni-/multicast routes provided by the
routing protocol(s), following the paths of the data.

• Path messages store "path state" in each node along the way.
This path state includes at least the unicast IP address of the
previous hop node, which is used to route the Resv messages
hop-by-hop in the reverse direction.

Marek Podgomy NPAC, Syracuse University

232

RSVP Messages

Path messages are sent with the same source
and destination addresses as the data, so that
they will be routed correctly through non-RSVP
clouds.
Resv messages are sent hop-by-hop. Each
RSVP-speaking node forwards a Resv message
to the unicast address of a previous RSVP hop.

Marek Podgorny NPAC. Syracuse University

 RSVP Protocol Messages
♦ Path message: additional information:

• Sender Template
• Sender Template describes the format of data packets that the

sender will originate. This template is in the form of a filter
spec that could be used to select this sender's packets from
others in the same session on the same link.

• at present, only the sender IP address and optionally the
UDP/TCP sender port can be specified

• Sender Tspec
• (Required) Sender Tspec which defines the traffic

characteristics of the data stream that the sender will generate.
Tspec is used by traffic control to prevent over-reservation or
unnecessary Admission Control failure on upstream links.

Marek Podgorny NPAC, Syracuse University (

233

 RSVP Protocol Messages
• Adspec: a Path message may optionally carry a

package of OPWA advertising information.
• An Adspec received in a Path message is passed to the local

traffic control, which returns it updated
• The updated version is then forwarded in Path messages sent

downstream.
• Sender Tspec is never changed, Adspec may be changed by

intermediate nodes
• Adspec includes both parameters describing the properties of

the data path (availability of specific QoS services) and
parameters required by specific QoS control services to
operate correctly.

• Adspec is finally passed to the application via RSVP API.

Marek Podgomy NPAC, Syracuse University ;

 RSVP Protocol Messages

♦ Resv Messages anatomy
• Flow descriptor consists of flowspec and filter spec

• Flow is defined a set of packets traversing the network

all of which are covered by the same request for QoS

• Flowspec consists of two sets of parameters: Rspec

and Tspec

• Rspec defines desired QoS

• Tspec describes the data flow

• Hmmm - what is this supposed to mean?

Marek Podgomy NPAC, Syracuse University

234

RSVP Protocol Messages

♦ Tspec and Rspec (Traffic and Reservation Specs)
• Tspec has two incarnations: Receiver_Tspec in Resv

messages and Sender_Tspec in Path messages
• Tspec is is a description of the traffic pattern for which

service is being requested
• Tspec is one side of a "contract" between the data flow

and the service.
• Service module agrees to provide a specific QoS if and

only if the flow's data traffic remains conformant to the
Tspec

• Example: upper bound on the peak rate

Marek Podgomy NPAC. Syracuse University 9

RSVP Protocol Messages

♦ Sender and Receiver Tspec
• Receiver Tspec is a basis for the "contract" between

the flow and the service
• Sender Tspec is used to verify Receiver Tspec to avoid

excessive reservations

♦ Rspec - Reservation Specification
• Usually invokes a particular service class
• Contents of the request depends on the service and is

of little interest to RSVP (but not in general!)

Marek Podgomy NPAC, Syracuse University 10

235

Merging Flowspecs
• a single physical interface may receive multiple

reservation requests from different next hops for the
same session and with the same filter spec

• RSVP should install only one reservation on that
interface. The installed reservation should have an
effective flowspec that is the "largest" of the flowspecs
requested by the different next hops

• Similarly, a Resv message forwarded .to a previous hop
should carry a flowspec that is the "largest" of the
flowspecs requested by the different next hops

• in certain cases the "smallest" is taken rather than the
largest.

Marek Podgomy NPAC, Syracuse University u

Merging Flowspecs
• Flowspec merging requires calculation of the "largest" of

a set of flowspecs.
• Flowspecs are generally multi- dimensional vectors (they may

contain both Tspec and Rspec components, each of which may
itself be multi-dimensional), it may not be possible to strictly order
two flowspecs.

• For example, if one request calls for a higher bandwidth and
another calls for a tighter delay bound, one is not "larger* than the
other. In such a case, instead of taking the larger, RSVP must
compute and use a third flowspec that is at least as large as each.

• Flowspecs, Tspecs, and Adspecs are opaque to RSVP.
Therefore, calculations above are actually performed by traffic
control. The definition and implementation of the rules for
comparing flowspecs are outside the definition of RSVP

Marek Podgomy NPAC, Syracuse University 12

236

RSVP's Soft State
♦ RSVP soft state is created and periodically

refreshed by Path and Resv messages.
• The state is deleted if no matching refresh messages arrive

before the expiration of a "cleanup timeout" interval.

• State may also be deleted by an explicit "teardown" message.

• At the expiration of each "refresh timeout" period and after a
state change, RSVP scans its state to build and forward Path
and Resv refresh messages to succeeding hops.

• When a route changes, the next Path message will initialize
the path state on the new route, and future Resv messages
will establish reservation state there

♦ the state on the now-unused segment of the route will time out.
Marek Podgorny NPAC, Syracuse University 13

RSVP's Soft State
♦ RSVP sends its messages as IP datagrams with

no reliability enhancement:
• Periodic transmission of refresh messages by hosts and

routers is expected to handle the occasional loss of an RSVP
message.
♦ If the effective cleanup timeout is set to K times the refresh

timeout period, then RSVP can tolerate K-1 successive RSVP
packet losses without falsely erasing a reservation.

♦ The state maintained by RSVP is dynamic:
• To change the set of senders Si or to change any QoS

request, a host simply starts sending revised Path and/or Resv
messages. The result will be an appropriate adjustment in the
RSVP state in all nodes along the path.

Marek Podgorny NPAC, Syracuse University 14

237

RSVP's Soft State

♦ In steady state, refreshing is performed hop-by-
hop, to allow merging.

• When the received state differs from the stored state, the
stored state is updated.

• If this update results in modification of state to be forwarded in
refresh messages, these refresh messages must be
generated and forwarded immediately, so that state changes
can be propagated end-to-end without delay.

• Propagation of a change stops when and if it reaches a point
where merging causes no resulting state change.

♦ This minimizes RSVP control traffic due to changes and is
essential for scaling to large multicast groups.

MarekPodgorny NPAC, Syracuse University 15

Teardown
♦ Two types of RSVP teardown message:

• PathTear message travels towards all receivers downstream
from its point of initiation and deletes path state, as well as all
dependent reservation state, along the way.

• ResvTear message deletes reservation state and travels
towards all senders upstream from its point of initiation.

♦ A teardown request may be initiated either by
sender or receiver, or by a router as the result of
state timeout.

• State change will be propagated immediately to the next node,
but only if there will be a net change after merging. As a
result, an ResvTear message will prune the reservation state
back (only) as far as possible.

MarekPodgorny NPAC, Syracuse University 16

238

Confirmations
♦ To request a confirmation for its reservation

request, receiver Rj includes in the Resv
message a confirmation request object containing
Rj's IP address.
• At each merge point, only the largest flowspec and any

accompanying confirmation-request object is
forwarded upstream.

• If the reservation request from Rj is equal to or smaller
than the reservation in place on a node, its Resv is not
forwarded further

• If the Resv included a confirmation-request object, a ResvConf
message is sent back to Rj.

Marek Podgomy NPAC, Syracuse University 17

Confirmations
♦ Confirmation mechanism implications:

• A new reservation request with a flowspec larger than any in
place for a session will normally result in either a ResvErr or a
ResvConf message back to the receiver from each sender. In
this case, the ResvConf message will be an end-to-end
confirmation.

• The receipt of a ResvConf gives no guarantees:
♦ Assume the first two reservation requests from receivers R1 and R2

arrive at the node where they are merged.
♦ R2, whose reservation was the second to arrive at that node, may

receive a ResvConf from that node while R1's request has not yet
propagated all the way to a matching sender and may still fail.

♦ Thus, R2 may receive a ResvConf although there is no end-to-end
reservation in place. R2 may also receive a ResvConf followed by a
ResvErr.

Marek Podgomy NPAC, Syracuse University 18

239

RSVP Tunneling
♦ RSVP must provide correct protocol operation

across an arbitrary "cloud" of non-RSVP routers.
• If such a cloud has sufficient capacity, it may still

provide acceptable realtime service.

• RSVP automatically tunnels through non-RSVP clouds
since routing and reservation functions are independent

• When a Path message traverses a non-RSVP cloud, it carries
to the next RSVP-capable node the IP address of the last
RSVP-capable router before entering the cloud. This effectively
constructs a tunnel through the cloud for Resv messages, which
can then be forwarded directly to the next RSVP- capable router
on the path(s) back towards the source.

MarekPodgorny NPAC, Syracuse University ' 19

RSVP's Host model

♦ Before a session can be created, the session
identification, comprised of DestAddress and
perhaps the generalized destination port, must be
assigned and communicated to all the senders
and receivers by some out-of-band mechanism.

♦ How this is done is not part of the RSVP
specification
For multicast sessions, IGMP may be used ♦

Marek Podgorny NPAC, Syracuse University
20

240

RSVP's Host model
♦ When an RSVP session is being set up, the

following events happen at the end systems.
1. A receiver joins the multicast group specified by

DestAddress, using IGMP.
2. A potential sender starts sending RSVP Path

messages to the DestAddress.
3. A receiver application receives a Path message.

4. A receiver starts sending appropriate Resv messages,
specifying the desired flow descriptors.

5. A sender application receives a Resv message.
6. A sender starts sending data packets.

Marek Poögomy NPAC, Syracuse University 21

RSVP's Host Model

♦ 1. and 2. may happen in either order.
♦ Suppose that a new sender starts sending data (6) but

there are no multicast routes because no receivers have
joined the group (1).
• The data will be dropped at some router node until receivers(s)

appear.
♦ Suppose that a new sender starts sending Path

messages (2) and data (6) simultaneously, and there are
receivers but no Resv messages have reached the
sender yet.
• The initial data may arrive at receivers without the desired QoS.

The sender could mitigate this problem by awaiting arrival ot the
first Resv message (5); however, receivers that are farther away
may not have reservations in place yet.

Marek Poögomy NPAC, Syracuse University 22

241

RSVP's Host Model

♦ If a receiver starts sending Resv messages (4) before

receiving any Path messages (3), RSVP will return error
messages to the receiver.

♦ The receiver may simply choose to ignore such error

messages, or it may avoid them by waiting for Path

messages before sending Resv messages.

♦ A specific application program interface (API) for RSVP is

not defined in its protocol spec since ft may be host
system dependent.

Marek Podgomy NPAC, Syracuse University 23

242

8.5 Real Time Protocol

RTP: Real-time Transport
Protocol

Synchronizing Media Delivery on
Packet Networks

Marek Podgorny
NPAC

Syracuse University
111 College Place

Syracuse
New York 13244-4100

Marek Podgorny marek® npac.syr.edu http://trurl.npac.syr.edii 315.443.4879

RTP: Basic Functionality
Provides end-to-end delivery services for data with real-time
characteristics, such as interactive audio and video.
The services include payload type identification, sequence
numbering, timestamping and delivery monitoring.
Primarily designed to satisfy the needs of multi-participant
multimedia conferences.

• May be used with any suitable underlying network or
transport protocols.

» Supports data transfer to multiple destinations using
multicast distribution if provided by the underlying network.

» RTP is an application level protocol. It is not implemented in
the OS kernel.

• RTP is extensible: it provides for the profile specific
extensions to the protocol headers.
Marek Podgorny marek©npac.syr.edu http://trurl.npac.syr.edu 315.443.4879

243

RTP: Basic Functionality

• RTP itself does not provide any mechanism to ensure timely
delivery or provide other quality-of-service guarantees, but
relies on lower-layer services to do so.

- It does not guarantee delivery or prevent out-of-order
delivery, nor does it assume that the underlying network is
reliable and delivers packets in sequence.

- However, the sequence numbers included in RTP allow
the receiver to reconstruct the sender's packet sequence.
The sequence numbers might also be used to determine
the proper location of a packet, for example in video
decoding, without necessarily decoding packets in
sequence.

Marek Podgorny marek@npac.syr.edu http://trurl.npac.syr.edu 315.443.4879 3

RTP: Basic Functionality (Continued)

Applications typically run RTP on top of UDP to make use of
its multiplexing and checksum services.

RTP design follows the principles of application level
framing and integrated layer processing:

- RTP is intended to be malleable to provide the information
required by a particular application and will often be integrated
into the application processing rather than being implemented
as a separate layer.

"- RTP is a protocol framework that is deliberately not complete.
RTP can be tailored for any desired profile through
modifications and/or additions to the headers as needed.

Marek Podgorny marek@npac.syr.edu http://trurl.npac.syr.edu 315.443.4879

244

RTP: Basic Fuctionality

RTP consists of two closely-linked parts:
- The real-time transport protocol (RTP), to carry data that

has real-time properties.
- The RTP control protocol (RTCP), to monitor the quality of

service and to convey information about the participants
in an on-going session. The latter aspect of RTCP may be
sufficient for "loosely controlled" sessions, i.e., where
there is no explicit membership control and set-up, but it
is not necessarily intended to support all of an
application's control communication requirements.

Marek Podgorny marekenpac.syr.edu http://trurl.npac.syr.edu 315.443.4879

RTP: Basic Fuctionality (Continued)

• As RTP is extensible, a complete specification for a particular
applications requires one or more accompanying documents:

- A profile specification document, which defines a set of
payload type codes and their mapping to payload formats
(e.g., media encodings). A profile may also define extensions
or modifications to RTP that are specific to a particular class
of applications. Typically an application will operate under
only one profile. A typical profile, for audio and video data, is
subject of an associated Internet draft (1890).

- Payload format specification documents, which define how a
particular payload, such as an audio or video encoding, is to
be carried in RTP.

Marek Podgorny marek©npac.syr.edu http://trurl.npac.syr.edu 315.443.4879

245

RTP: Rationale

Why do we need a protocol like RTP?

- Synchronization of multiple media streams is an absolutely
fundamental property of multimedia delivery. There is no
multimedia without sync.

- There is currently no standard to provide media
synchronization. Instead, there are a three dozen+ of
proprietary, non-interoperable solutions:

• Audio on Demand: RealAudio, Streamworks, IWave,
TrueSpeech, Voxware, Accousting Player

• 'Live' Audio Products: RealAudio 2.0, Streamworks,
Cyber Radio 1

• 'Live' Video Products: Streamworks, FreeVue, Video
Mosaic

Marek Podgorny marek@npac.syr.edu http-yArurt.npac.syr.edu 315.443.4879

RTP: Rationale (Continued)

Video on Demand: VDOLive, Streamworks
Video Conferencing: FreeVue, VidCall, CU-SeeMe

Other Multimedia Tool: InSoft, Phylon, PlayLink, Voyager
CDLink, Play Inc's - Snappy, l-Animate, Asymetrix Web 3D,
Publishers Depot

MANY OTHERS! (MPEG, QuickTime, Video for Windows....)

Marek Podgorny marek©npac.syr.edu http://trurl.npac.syr.edu 315.443.4879

246

RTP: Rationale (Continued)

Can we use existing protocols to achieve media
synchronization?

- Absolutely! - see the previous slide....

- For delivering audio and video for playback, TCP may be
appropriate. Also, with sufficiently long buffering and
adequate average throughput, near-real-time delivery
using TCP can be successful, as practiced by the
Netscape WWW browser.

Marek Podgorny marekenpac.syr.edu http^trurl.npac.syr.edu 315.443.4879

RTP: Rationale (Continued)
Why can't we just use TCP for audio and video?

- For real-time delivery of audio and video, TCP and other
reliable transport protocols such as XTP are inappropriate. The
three main reasons are:

• 1. Reliable transmission is inappropriate for
delay-sensitive data such as real-time audio and video.

- By the time the sender has discovered the missing packet
and retransmitted it, at least one round-trip time has
elapsed. The receiver either has to wait for the
retransmission, increasing delay and incurring an audible
gap in playout, or discard the retransmitted packet,
defeating the TCP mechanism. Standard TCP
implementations force the receiver application to wait, so
that packet losses would always yield increased delay.

Marek Podgorny marek©npac.syr.edu http://trurl.npac.syr.edu 315.443.4879 10

247

RTP: Rationale (Continued)

Three TCP deficiencies- continued

- 2. TCP cannot support multicast.

- 3. The TCP congestion control mechanisms decreases the
congestion window when packet losses are detected ("slow
start"). Audio and video, on the other hand, have "natural"
rates that cannot be suddenly decreased without starvinq the
receiver.

Marek Podgorny marekenpaasyr.edu http://tnjrl.npac.syr.edu 315.443.4879 11

RTP: Rationale (Continued)

• Standard PCM audio requires 64 kb/s, plus any header
overhead, and cannot be delivered in less than that.

» Video could be more easily throttled simply by slowing the
acquisition of frames at the sender when the transmitter's
send buffer is full, with the corresponding delay.

• The correct congestion response for these media is to
change the audio/video encoding, video frame rate, or video
image size at the transmitter, based on feedback received
through RTCP receiver report packets.

Marek Podgorny marekenpac.syr.edu http://lrurl.npac.syr.edu 315.443.4879 12

248

RTP: Rationale (Continued)

Additional problems with reliable protocols:
- The reliable transport protocols do not contain the

necessary timestamp and encoding information needed by
the receiving application, so that they cannot replace RTP.
(They would not need the sequence number as these
protocols assure that no losses or reordering takes place.)

- While LANs often have sufficient bandwidth and low
enough losses not to trigger these problems, TCP/XTP
does not offer any advantages in that scenario either,
except for the recovery from rare packet losses. Even in a
LAN with no losses, TCP/XTP would suffer from the initial
slow start delay.

Marek Podgorny raarekenpac.syr.edu http://trurl.npac.syr.edtj 315.443.4879 13

RTP: Rationale (Continued)

RTP has no protocol state by itself and can thus be used
over either connection-less networks, such as IP/UDP, or
connection-oriented networks, such as XTP, ST-II or ATM
(AAL3/4 or AAL5). Many real-time multimedia applications
use multicast with a large fan-out, e.g., several hundred to
thousands for a lecture or concert. Connection-oriented
protocols like XTP have difficulty scaling to such a large
number of receivers.

- TCP and XTP headers are larger than a UDP header (40
bytes for TCP and XTP 3.6, 32 bytes for XTP 4.0, compared
to 8 bytes).

Marek Podgorny marek®npac.syr.edu httpJrtrurl.npac.syr.edu 315.443.4879 14^

249

RTP: General Architectural Features

• RTP is a transport protocol:

- RTP has important properties of a transport protocol: it
runs on end systems and it provides demultiplexing.

- RTP differs from transport protocols like TCP in that it
does not offer any form of reliability or a protocol-defined
flow/congestion control. However, it provides the
necessary hooks for adding reliability, where appropriate,
and flow/congestion control (application level framing).

- Although RTP so far has been mostly implemented within
applications, this has no bearing on its role. (TCP
implemented as part of an application rather than the
operating system kernel would still be a transport
protocol!)

Marek Podgorny marekenpac.syr.edu http://trurl.npac.syr.edu 315.443.4879 15

RTP: General Architectural Features
(Continued)

• RTP is real-time as much as it can be:

- No end-to-end protocol can ensure in-time delivery. This
always requires the support of lower layers that actually have
control over resources in switches and routers. RTP provides
functionality suited for carrying real-time content, e.g., a
timestamp and control mechanisms for synchronizing different
streams with timing properties.

Marek Podgorny marek@npac.syr.edu http-JArurl.npac.syr.edu 315.443.4879 16

250

RTP: General Architectural Features
(Continued)

Is RTP a reliable or an unreliable protocol?
- RTP does not currently define any mechanisms for

recovering for packet loss.
• Such mechanisms are likely to be highly dependent on the

packet content.
• For example, for audio, one might add low-bit-rate

redundancy, offset in time.
• For other applications, retransmission of lost packets may

be appropriate. This requires no additions to RTP as the
protocol probably has the necessary header information
(like sequence numbers) for some forms of error recovery
by retransmission.

Marek Podgorny marekenpac.syr.edu http://trurl.npac.syr.edu 315.443.4879 Y7_

RTP: General Architectural Features
(Continued)

• RTP can run over both IPng and ATM AAL
- RTP contains no specific assumptions about the capabilities of

the lower layers, except that they provide framing. It contains
no network-layer addresses, so that RTP is not affected by
addressing changes.
• Any additional lower-layer capabilities such as security

or quality-of-service guarantees (RSVP!) can be used
by applications employing RTP.

• There are several implementations of video tools that
run RTP directly over AAL5.

Marek Podgorny marek@npac.syr.edu httpJArurl.npac.syr.edu 315.443.4879 18^

251

RTP: Related Standardization Efforts

There is a number of multimedia-centered standardization
efforts:

- Conference control, application and data sharing:

• T.I 20: Introduction to the audiographics and
audiovisual conferencing recommendations.

• T.121: Generic application template.

• T.122: Multipoint communication service for
audiographics and audiovisual conferencing service
definition

• T.123: Protocol stack for audiographics and
audiovisual teleconference applications.

Marek Podgomy marek@npac.syr.edu http:Zftrurl.npac.syr.edu 315.443.4879 19

RTP: Related Standardization Efforts
(Continued)

• T.124: Generic conference control.

• T.125: Multipoint communication service protocol
specification.

• T.126: Still image protocol specification.

• T.127: Multipoint binary file transfer protocol.

Marek Podgomy marek@npac.syr.edu httpVftrurl.npac.syr.edu 315.443.4879 20

252

RTP: Related Standardization Efforts
(Continued)

For conferencing over ISDN:
- H.221: Frame structure for a 64 to 1920 kbit/s channel in

audiovisual teleservices.
- H.320: Framework for transmitting audio and video over circuit-

switched digital networks (primarily ISDN).

- H.323: H.320 over LAN.

> Media formats:
- G.711: Audio encoding at 64 kb/s (mu-law and A-law).

- H.261: Video encoding.
- H.263: Video encoding, improved version of H.261.

- H.324: Audio and video over POTS at less than 20 kb/s.

Marek Podgomy marekenpac.syr.edu http://trurl.npac.syr.edu 315.443.4879 21^

RTP Use Scenarios

Audio conference over Internet
- The conference coordinator must obtain a multicast

address and two port numbers. This information must be
distributed to conference participants

- The audio conferencing application sends audio data in
small chunks. Each chunk of audio data is preceded by an
RTP header; RTP header and data are in turn contained in
a UDP packet. The RTP header indicates type of audio
encoding contained in each packet so that senders can
change the encoding during a conference.

Marek Podgorny marek@npac.syr.edu http://trurl.npac.syr.edu 315.443.4879 22^

253

RTP Use Scenarios (Continued)

• The Internet occasionally loses and reorders packets and
delays them by variable amounts of time. RTP header
contains timing information and a sequence number that
allow the receivers to reconstruct the timing produced by the
source, so that chunks of audio are contiguously played out
the speaker. Timing reconstruction is performed separately
for each source of RTP packets in the conference. The
sequence number can be used be the receiver to estimate
how many packets are being lost.

Marek Podgorny marekenpac.syr.edu http://trurl.npac.syr.edu 315.443.4879 23

RTP Use Scenarios (Continued)

» Conference can be joined or abandoned as it proceeds, it is
useful to know who is participating at any moment and how well
they are receiving the audio data. Hence, each instance of the
audio application in the conference periodically multicasts a
reception report plus the name of its user on the RTCP (control)
port. The reception report may be used to control adaptive
encodings.

Marek Podgorny marek@npac.syr.edu http7Arurl.npac.syr.edu 315.443.4879 24

254

RTP Use Scenarios (Continued)

• Audio and Video Conference
- If both audio and video media are used in a conference, they

are as separate RTP sessions. RTCP packets are transmitted
for each medium using two different UDP port pairs and/or
multicast addresses. There is no direct coupling at the RTP
level between the audio and video sessions, except that a
user participating in both sessions should use the same
distinguished (canonical) name in the RTCP packets for both
so that the sessions can be associated.

- One motivation for this separation is to allow some participants
in the conference to receive only one medium if they choose.
Despite the separation, synchronized playback of a source's
audio and video can be achieved using timing information
carried in the RTCP packets for both sessions.

Marek Podgorny marek@npac.syr.edu http://trurl.npac.syr.edu 315.443.4879 25

RTP: Mixers

Heterogenous networks: different sites wish to obtain data in
different formats

- Assume a user with a low-speed link to the majority of the
conference participants connected via a high-speed
network. Instead of enforcing a lower-bandwidth audio
encoding, an RTP-level relay called a mixer may be
placed near the low-bandwidth area.

Marek Podgorny marekenpac.syr.edu httpr/Arurl.npac.syr.edu 315.443.4879 26

255

RTP: Mixers (Converted)

• This mixer resynchronizes incoming audio packets to
reconstruct the constant spacing generated by the sender,
mixes the reconstructed audio streams into a single stream,
translates the audio encoding to a lower bandwidth one and
forwards the lower- bandwidth packet stream across the
low-speed link.

• These packets might be unicast to a single recipient or
multicast on a different address to multiple recipients. The
RTP header includes a means for mixers to identify the
sources that contributed to a mixed packet so that correct
talker indication can be provided at the receivers.

Marek Podgorny marek@npac.syr.edu http://trurl.npac.syr.edu 315.443.4879 27

RTP: Translators
Sites not supporting multicast

- Some of the intended conference participants might not
be directly reachable via IP multicast. For example, they
might be behind an application-level firewall that will not
let any IP packets pass. For these sites, a translator may
be used.

- Two translators are installed, one on either side of the
firewall, with the outside one funneling all multicast
packets received through a secure connection to the
translator inside the firewall. The translator inside the
firewall sends them again as multicast packets to a
multicast group restricted to the site's internal network.

Marek Podgorny marek@npac.syr.edu http://trurl.npac.syr.edu 315.443.4879 28

256

RTP: Translators (Continued)

• Mixers and translators may be designed for a variety of
purposes:

- Video mixer that scales the images of individual people in
separate video streams and composites them into one video
stream to simulate a group scene.

- Connection of a group of hosts speaking only IP/UDP to a
group of hosts that understand only ST-ll, or the
packet-by-packet encoding translation of video streams from
individual sources without resynchronization or mixing.

Marek Podgorny marek@npac.syr.edu http://trurl.npac.syr.edu 315.443.4879 29

RTP Components

RTP packet:
- A data packet consisting of the fixed RTP header, a

possibly empty list of contributing sources, and the
payload data. Some underlying protocols may require an
encapsulation of the RTP packet to be defined. Typically
one packet of the underlying protocol contains a single
RTP packet.

• RTCP packet:
- A control packet consisting of a fixed header part similar

to that of RTP data packets, followed by structured
elements that vary depending upon the RTCP packet type.
Typically, multiple RTCP packets are sent together as a
compound RTCP packet in a single packet of the
underlying protocol.

Marek Podgorny marek@npac.syr.edu httpJftrurl.npac.syr.edu 315.443.4879

257

30

RTP Components (Continued)

Transport address:

- The combination of a network address and port that identifies a
transport-level endpoint, for example an IP address and a UDP
port.

RTP session:

- The association among a set of participants communicating
with RTP. For each participant, the session is defined by a
particular pair of destination transport addresses (one network
address plus a port pair for RTP and RTCP). In a multimedia
session, each medium is carried in a separate RTP session
with its own RTCP packets. The multiple RTP sessions are
distinguished by different port number pairs and/or different
multicast addresses.

Marek Podgomy marek@npac.syr.edu http://trurl.npac.syr.edu 315.443.4879 31

RTP Components (Continued)

Synchronization source (SSRC):

- The source of a stream of RTP packets, identified by a
32-bit numeric SSRC identifier carried in the RTP header
so as not to be dependent upon the network address. AH
packets from a synchronization source form part of the
same timing and sequence number space, so a receiver
groups packets by synchronization source for playback.

- Examples of synchronization sources include the sender
of a stream of packets derived from a signal source such
as a microphone or a camera, or an RTP mixer.

Marek Podgorny marek@npac.syr.edu http7Arurl.npac.syr.edu 315.443.4879 32

258

RTP Components (Continued)

A synchronization source may change its data format, e.g.,
audio encoding, over time. The SSRC identifier is a randomly
chosen value meant to be globally unique within a particular
RTP session. A participant need not use the same SSRC
identifier for all the RTP sessions in a multimedia session;
the binding of the SSRC identifiers is provided through
RTCP. If a participant generates multiple streams in one RTP
session, for example from separate video cameras, each
must be identified as a different SSRC.

Marek Podgorny marekenpac.syr.edu http://triirl.npac.syr.edii 315.443.4879 33

RTP Components (Continued)

Contributing source (CSRC):
- A source of a stream of RTP packets that has contributed

to the combined stream produced by an RTP mixer. The
mixer inserts a list of the SSRC identifiers of the sources
that contributed to the generation of a particular packet
into the RTP header of that packet.

- An example application is audio conferencing where a
mixer indicates all the talkers whose speech was
combined to produce the outgoing packet, allowing the
receiver to indicate the current talker, even though all the
audio packets contain the same SSRC identifier (that of
the mixer).

Marek Podgorny marek©npac.syr.edu http://trurl.npac.syr.edu 315.443.4879 34

259

RTP Components (Continued)

End system:

- An application that generates the content to be sent in RTP
packets and/or consumes the content of received RTP
packets. An end system can act as one or more
synchronization sources in a particular RTP session, but
typically only one.

Mixer:

- An intermediate system that receives RTP packets from one or
more sources, possibly changes the data format, combines the
packets in some manner and then forwards a new RTP packet.
Mixer will make timing adjustments among the streams and
generate its own timing for the combined stream.

Marek Podgorny marek@npac.syr.edu http://trur1.npac.syr.edu 315.443.4879 35

RTP Components (Continued)
Translator:

- An intermediate system that forwards RTP packets with their
synchronization source identifier intact. Examples of
translators: devices that convert encodings without mixing,
replicators from multicast to unicast, and application- level
filters in firewalls.

Monitor:

- An application that receives RTCP packets sent by
participants in an RTP session, in particular the reception
reports, and estimates the current quality of service for
distribution monitoring, fault diagnosis and long-term statistics.
The monitor function is likely to be built into the application(s)
participating in the session, but may also be a separate
application that does not otherwise participate and does not
send or receive the RTP data packets. These are called third
 party monitors.

Marek Podgorny marek@npac.syr.edu httpJrtrurl.npac.syr.edu 315.443.4879 36

260

RTP Components (Continued)

• Non-RTP means:
- Protocols and mechanisms that may be needed in addition to

RTP to provide a usable service. In particular for multimedia
conferences a conference control application may distribute
multicast addresses and keys for encryption, negotiate the
encryption algorithm to be used, and define dynamic mappings
between RTP payload type values and the payload formats
they represent for formats that do not have a predefined
payload type value. For simple applications, electronic mail or
a conference database may also be used.

Marek Podgorny marek@npac.syr.edu http://trurl.npac.syr.edu 315.443.4879 37

RTCP: RTP Control Protocol
The RTP control protocol (RTCP) is based on the periodic
transmission of control packets to all participants in the
session, using the same distribution mechanism as the data
packets.

- RTCP performs four functions:
• (1).The primary function is to provide feedback on the

quality of the data distribution.
- The feedback may be directly useful for control of

adaptive encodings. Sending reception feedback reports
to all participants allows one who is observing problems to
evaluate whether those problems are local or global.

- With a distribution mechanism like \P multicast, it is also
possible for an entity such as a network service provider
who is not otherwise involved in the session to receive the
feedback information and act as a third-party monitor to
diagnose network problems.

Marek Podgorny marek@npac.syr.edu http://trurl.npac.syr.edu 315.443.4879 38

261

RTCP: RTP Control Protocol (Continued)

(2) RTCP carries a persistent transport-level identifier for an
RTP source called the canonical name or CNAME.

- Receivers require the CNAME to keep track of each
participant. Receivers also require the CNAME to associate
multiple data streams from a given participant in a set of
related RTP sessions, for example to synchronize audio and
video.

Marek Podgorny marek@npac.syr.edu http://trurl.npac.syr.edu 315.443.4879 39

RTCP: RTP Control Protocol (Continued)

• RTCP functions, continued:

- (3) The first two functions require that all participants send
RTCP packets, therefore the rate must be controlled in order
for RTP to scale up to a large number of participants. By
having each participant send its control packets to all the
others, each can independently observe the number of
participants. This number is used to calculate the rate at which
the packets are sent.

Marek Podgorny marek@npac.syr.edu http://trurl.npac.syr.edu 315.443.4879 40

262

RTCP: RTP Control Protocol (Continued)

(4) A fourth, optional function is to convey minimal session
control information, for example participant identification to
be displayed in the user interface.

- This is most likely to be useful in "loosely controlled" sessions
where participants enter and leave without membership control
or parameter negotiation. RTCP serves as ä convenient
channel to reach all the participants, but it is not necessarily
expected to support all the control communication
requirements of an application.

Marek Podgorny marek@npac.syr.edu http://trurl.npac.syr.edu 315.443.4879 41

RTCP: RTP Control Protocol (Continued)

• Functions 1-3 are mandatory when RTP is used in the IP
multicast environment, and are recommended for all
environments.

- RTP application designers are advised to avoid mechanisms
that can only work in unicast mode and will not scale to larger
numbers.

Marek Podgorny marek©npac.syr.edu http://trurl.npac.syr.edu 315.443.4879 42

263

RTCP: RTP Control Protocol (Continued)

RTCP Transmission Interval

- RTP is designed to allow an application to scale automatically
over session sizes ranging from a few participants to
thousands.

• Note that the data traffic is inherently self-limiting: only
one or two people will speak at a time, so with
multicast distribution the data rate on any given link
remains relatively constant independent of the number
of participants.

Marek Podgorny marek@npac.syr.edu http://trurl.npac.syr.edu 315.443.4879 43

RTCP: RTP Control Protocol (Continued)

The control traffic is not self-limiting. If the reception reports
from each participant were sent at a constant rate, the control
traffic would grow linearly with the number of participants.

For each session, the data traffic is subject to an aggregate
limit called the "session bandwidth" to be divided among the
participants.

The control traffic should be limited to a small and known
fraction of the session bandwidth: small so that the primary
function of the transport protocol to carry data is not
impaired; known so that the control traffic can be included in
the bandwidth specification given to a resource reservation
protocol, and so that each participant can independently
calculate its share.

Marek Podgorny marek@npac.syr.edu http-7Arurl.npac.syr.edu 315.443.4879 44

264

RTP: Translators and Mixers

An RTP translator/mixer connects two or more
transport-level "clouds".

- Typically, each cloud is defined by a common network and
transport protocol (e.g., IP/UDP), multicast address or pair
of unicast addresses, and transport level destination port.
One system may serve as a translator or mixer for a
number of RTP sessions, but each is considered a
logically separate entity.

• Each of the clouds connected by translators and mixers
participating in one RTP session either must be distinct from
all the others in at least one of these parameters (protocol,
address, port), or must be isolated at the network level from
the others.

Marek Podgomy marekenpac.syr.edu http://trurl.npae.syr.edu 315.443.4879 45^

RTP: Translators and Mixers (Continued)

• Hence, there must not be multiple translators or mixers
connected in parallel unless by some arrangement they
partition the set of sources to be forwarded.

• Similarly, all RTP end systems that can communicate through
one or more RTP translators or mixers share the same SSRC
space, that is, the SSRC identifiers must be unique among all
these end systems.

• There may be many varieties of translators and mixers
designed for different purposes and applications. Some
examples are to add or remove encryption, change the
encoding of the data or the underlying protocols, or replicate
between a multicast address and one or more unicast
addresses.

Marek Podgorny marek©npac.syr.edu http://trurl.npac.syr.edu 315.443.4879 46^

265

RTP: Translators and Mixers

• Translators and mixers: a translator passes through the
data streams from different sources separately; a mixer
combines them to form one new stream:

- Translator: Forwards RTP packets with their SSRC
identifier intact. This makes it possible for receivers to
identify individual sources even though packets from all
the sources pass through the same translator and carry
the translator's network source address. Encoding
changes will result in change of the RTP data payload
type and timestamp. If multiple data packets are
re-encoded into one, a translator must assign new
sequence numbers to the outgoing packets. Receivers
cannot detect the presence of a translator.

Marek Podgorny marek@npac.syr.edu http://trurl.npac.syr.edu 315.443.4879 47

RTP: Translators and Mixers (Continued)

• Mixer: Receives streams of RTP data packets from one or
more sources, possibly changes the data format, combines
the streams in some manner and then forwards the
combined stream. Mixer will make timing adjustments among
the streams and generate its own timing for the combined
stream, so it is the synchronization source. Thus, all data
packets forwarded by a mixer will be marked with the mixer's
own SSRC identifier. To preserve the identity of the original
sources contributing to the mixed packet, the mixer should
modify appropriate elements of the RTP headers.

Marek Podgorny marek@npac.syr.edu http://trurl.npac.syr.edu 315.443.4879 48

266

RTP over other transport protocols

The following rules should be observed:
- RTP relies on the underlying protocol(s) to provide

demultiplexing of RTP data and RTCP control streams.

• For UDP and similar protocols, RTP uses an even port
number and the corresponding RTCP stream uses the next
higher (odd) port number. If an application is supplied with
an odd number for use as the RTP port, it should replace
this number with the next lower (even) number.

- RTP data packets contain no length field or other
delineation, therefore RTP relies on the underlying
protocol(s) to provide a length indication. The maximum
length of RTP packets is limited only by the underlying
protocols.

Marek Podgorny marek@npac.syr.edu http://trurl.npac.syr.edu 315.443.4879 49

RTP over other transport protocols
(Continued)

If RTP packets are to be carried in an underlying protocol that
provides the abstraction of a continuous octet stream rather
than messages (packets), an encapsulation of the RTP
packets must be defined to provide a framing mechanism.

- A profile may specify a framing method even when RTP is
carried in protocols that do provide framing in order to allow
carrying several RTP packets in one lower-layer protocol data
unit, such as a UDP packet. Carrying several RTP packets in
one network or transport packet reduces header overhead and
may simplify synchronization between different streams.

Marek Podgorny marek@npac.syr.edu httpJftrurl.npac.syr.edu 315.443.4879 50

267

RTP Profiles and Payload Format Specifications

A complete specification of RTP for a particular application
will require one or more companion documents: profiles and
payload format specifications.

- RTP may be used for a variety of applications with
somewhat differing requirements.

• The flexibility to adapt to those requirements is provided by
allowing multiple choices in the main protocol specification,
then selecting the appropriate choices or defining
extensions for a particular environment and class of
applications in a separate profile document.

Marek Podgorny marek@npac.syr.edu httpVArurl.npac.syr.edu 315.443.4879 51

RTP Profiles and Payload Format
Specifications (Continued)

Typically an application will operate under only one profile
so there is no explicit indication of which profile is in use. A
typical profile is the profile for audio and video applications.
The second type of companion document is a payload format
specification, which defines how a particular kind of payload
data, such as H.261 encoded video, should be carried in RTP.

- These documents are typically titled "RTP Payload Format for
XYZ Audio/Video Encoding". Payload formats may be useful
under multiple profiles and may therefore be defined
independently of any particular profile. The profile documents
are then responsible for assigning a default mapping of that
format to a payload type value if needed.

Marek Podgorny marek@npac.syr.edu http://trurl.npac.syr.edu 315.443.4879 52

268

Research Efforts
Multicast address allocation:

- Eventually many thousands of multicast sessions may exist concurrently. Currently the IPv4
multicast address space is very limited and thus requires careful global allocation to avoid
collisions. The IPv6 multicast address space is much larger, supporting administrative scoping
and may allow random allocation.

• Scalable multicast routing:

- Multicast routing needs to work for both a very large number of small groups and a smaller
number of large groups; without routers not on the multicast tree having to know about groups.

• Compensating for packet toss:

- For the foreseeable future, the Internet will have areas and times of high packet loss (1% to
10% and higher).

• Playout delay compensation:

- End systems need to compensate for network delay variations.

• Synchronization of different media:

- Several audio and video streams coming from one or, less commonly, several sources need to
be synchronized (lip sync).

• (Semi)reliable multicast for (near) real-time services:

- In some circumstances, such as near-real-time video and audio on demand, it may be possible
to improve quality by retransmission,

Marek Podgorny marek@npac.syr.edu http://trurl.npac.syr.edu 315.443.4S79 53

Research Efforts

• Internet integrated service models:
- It is not clear yet how many different services beyond the

current best effort model are needed to support a wide variety
of real-time and near real-time services.

• Making use of ATM quality-of-service features:

- It is desirable if Internet services can make use of the
quality-of-service guarantees offered by subnetworks.

• New conference control mechanisms:

- Different modes of establishing one-on-one and group
communication are being explored.

Marek Podgorny marek@npac.syr.edu http://trurl.npac.syr.edu 315.443.4879 54

269

Research Efforts (Continued)

Composition of multimedia applications:

- Rather than having a single application that handles all media,
it may be preferable to compose conferencing and other
multimedia applications from reusable building blocks.

Integration of real-time services with WWW:

- Both delivery and interactive multimedia services need to be
more closely woven into the World Wide Web.

Interoperation with POTS, ISDN, T.120,...:

- For at least the next year, the Internet will not replace the
telephone network for voice calls. Thus, interoperability with
plain old telephony, ISDN and some of the ITU-defined
circuit-switched video conferencing equipment is needed.

Marek Podgorny marek@npac.syr.edu http://trurl.npac.syr.edu 315.443.4879 55

270

9. Software packages

The software packages developed during the course of this project include:

1) Video server for NT workstations (production version)

2) Video server for the SGI workstation

3) Oasis video server software

4) Video client for the Optibase PCMotion M PEG decoder, Windows 3.1

5) ActiveMovie video client (Windows 95, Windows NT)

6) A packet of routines implementing database back-end interface.

271/272

10. Appendices

10.1 Appendix 1: CBR Transmission of VBR Encoded ContinuaasMedia

This Appendix presents three articles that have resulted from our research on optimized VBR

stream transmission over CBR transmission lines. The papers are:

1. CBR Transmission of VBR Encoded Continuous Media in Video on Demand

Servers, by M. Del Rosario and Geoffrey C. Fox (presented at the 2nd

IASTED/ISMM International Conference, Palo Alto, California, August 9s);

2. Constant Bit Rate Network Transmission of Variable Bit Rate Continuous Media

in Video on Demand Servers, by M. DelRosario and Geoffrey C. Fox, published in

Multimedia Tools and Applications 3, 215-232 (t996); and

3. m-Frame granular transport and buffer requirements for VBR encoded media in

VoD servers, by M. DelRosario, M. Podgorny, and Geoffrey C. Fox, NPAC-

Technical Report SCCS-733, March 1996.

273/274

Appendix 1(1)

CBR Transmission of VBR Encoded

Continuous Media in Video On-Demand Servers

Juan Miguel del Rosario* Geoffrey Fox *

Presented at The Second IASTED/ISMM International Conference Distributed

Multimedia Systems and Applications, Palo Alto, California, August 1995.

Northeast Parallel Architectures Center

111 College Place, RM 3-201, Syracuse University, Syracuse, NY 13244-4100

Abstract

We present an algorithm for determining the min-
imum buffer requirement for avoiding overflow or under-
flow at the tlient video display process, allowing the net-
work scheduler at the VOD server to enforce a constant
bit rate delivery of variable bit rate encoded media. Initial
results indicate that buffer requirements for typical video
streams range from 3.5 to 20.6 Megabytes. Further, we
show that this approach increases the number of streams
that can be multiplexed by a factor of 4-6 to 9.9 times
when compared to peak and 90%-of-peak bandwidth allo-
cation strategies.

Keywords: multimedia, video server, real-time
scheduling, video-on-demand

1 Introduction
In a VOD environment, geographically dispersed clients
interactively access continuous media streams from a re-
mote server. This type of service is an essential compo-
nent to providing multimedia educational and entertain-
ment material to the classroom and the home.

Much research has been devoted to the study of
video transmission. A key issue has been whether or
not using variable bit rate (VBR) encoding schemes offer
a performance advantage over constant bit rate (CBR)
encoding schemes. In CBR encoded video sources, pic-
ture quality parameters are adjusted to maintain a con-
stant rate requirement for delivery. In VBR encoding,
the video source is encoded with a constant picture qual-
ity. This results in a variable number of bits from frame
to frame. A measure of the effectiveness of VBR trans-
mission schemes has been formulated by Heeke [1] and is

'This work was sponsored in part by the US Airforce un-
der Rome Laboratory contract # F30602-94-C-0256. An ex-
tended version of this paper is available from the authors: email
mrosario@npac.syr.edu.

*ECE Dept., Syracuse University
lCIS Dept., Syracuse University

vbr: variable bit rale
cbr: constant bit rate
vfr: variable frame rale
cfr: constant frame rate

secondary storage
and video "pump"

Figure 1:

network manager client display

VOD transmission model

1.0e+O5

8.5e+04 -

6.9e+04 -

5.3e+04 •

3.6e+04

2.06+04
(bits)

iüiiilii.L.JIll ii
.UliJiZUiiiuiiiLüu

0.0 121.7 243.3 365.0 486.7 608.3 (frames)

Figure 2: Sample VBR source

called the statistical multiplexing gain; it is denned as the
ratio of the number of multiplexed VBR sources to the
number of multiplexed CBR sources while maintaining an
equivalent subjective picture quality. When VBR sources
are multiplexed without peak bandwidth reservations for
each, the source bandwidth requirements and available
network bandwidth fluctuate independently of each other
over time, resulting in congestion (causing overall end-to-
end delay) and in increased jitter. Although cell loss can
be tolerated to some extent, real-time video have limited
delay tolerance with very strict bounds.

In this paper we describe how selected information
from an encoded video source can be used to determine
buffer size bounds which enable VBR sources to be de-
terministically transmitted as CBR streams.

2 Transmission Model
Our model for transmitting a VBR video source as CBR
traffic is illustrated in Figure 1. An example of the bursty
nature of such a stream is exemplified in Figure 2.

Consider a video stream being transmitted from the

275

9 Frames 8 Fram :s 6 Frame 10 Frames

•••••' :• | ::::

slot rij slot ni+. slot ni+2 s!otni+,

X

Figure 3: Variable frame rate / Constant bit rate

network manager, the server, to a remote display device,
the client. Each video stream is composed of a finite
amount, Nfr, frames of varying sizes; the size of each
frame in bits is denoted by X,-. Such a video stream is
naturally subdivided into time slots, where each slot, n,- (i
€ {0,1,2,3, ,NS}), refers to the time interval [<,-,ij+i] in
the video stream transmission p.eriod. This is illustrated
by Figure 3.

For any given video stream, s, its total length in bits

is given by L' = J2i=i ^* • Assuming a desired playout
rate in frames/sec of R'F, the playout time in seconds

for the entire stream is T' — -^f-, and the corresponding

average bit rate requirement is R\ = ^f.

Let Tc represent the cycle time in seconds for the
server scheduler; this is the time it takes for the sched-
uler to service every supported stream once in a round-
robin schedule. At each cycle the scheduler must deliver
B'c = R'bxTc bits of data. If the scheduler allocates to
each stream some portion, tsc, of Tc, the server must de-
liver B* bits of data in time t*c. Hence, the bandwidth

requirement is equal to R'b = f£ = Rtjf-. At the client,

the video stream is buffered and displayed at the appro-
priate constant frame rate.

Our objective is to make Rb constant in order to
achieve maximum network transmission efficiency. In this
paper, we assume the simplest possible scheduling algo-
rithm; the time, t'c, allocated to each stream by the server
is fixed for each stream.

2.1 Buffer Allocation Requirements

Let C(rii) be the number of frames consumed by the client
in slot n,- (e.g., 30 frames for 1 sec for full motion video).
Let B{rn) be the number of frames in the buffer at the
beginning of slot n,- (i.e., at time U), and let -A(n.) be the
number of frames arriving during slot rij. Then, for each
of the N, time slots, the number of frames remaining in
the buffer is given by the equation, Vi € {0,1,2,...., N,}

B(n,+i) = B(m) + A(m) - C(n.) (1)

Since we transmit the video stream at a constant bit
rate and the size of each frame, X{, may vary, so that
A(rii) is not constant. This is illustrated in Figure 3. For
a given time slot, if A(rii) < C(n.) we call the slot an
underflow slot; if A(rn) > C(rn), we call it an overflow
slot; if A{rii) — C(n,), we call it an even slot. During the

playout of a video stream, there will be a combination of
overflow, underflow and even slots and the display will be
interrupted if the buffer is ever empty for any of the time
slots. Thus we have,

&M + J2 A(n') + J2 A(n') ~ Y, C(n') > ° (2)
JEM, i£M„ i€M,uM„

where MU,M0, and Me are the set of underflow, overflow,
and even slots respectively, and |M„| + \M0\ + \Me\ — M,
where M € {0,1,2,...,NS}. Two conditions must be
accounted for in buffering, buffer underflow, and buffer
overflow.

2.1.1 Buffer Underflow Condition

A buffer underflow condition comes about when for some
time slot, the total number of frames that have arrived is
less than that required for display (consumed). Therefore
for equation 2 to hold, we require VM,

B(n0) >]T>(«.-)-C(n0) (3)

Hence, to prevent the buffer underflow condition, we
need to transmit a number of frames into the client buffer
before initiating the display. In a true implementation,
the video stream will comprise a combination of overflow
and underflow slots for each segment, NM , of the stream.
Therefore, since equation 3 must be true for all M, we let
F be defined as,

F = "J^E^M - C("'))) (4)
»=<3

The underflow buffer requirement will now be given as

B(n0) = \:F iff<° (5) v ; \ 0 otherwise y '

Note that we compute the buffer size here in units of
frames because consumption is in terms of frames (i.e.,
VBR/CFR) independent of individual frame size.

2.1.2 Buffer Overflow Condition

For the buffer overflow condition, we consider buffer re-
quirements in terms of bits rather than frames because
the arrival of data is in bits (CBR/VFR.) and we want
to buffer against over-arrivals. We define M^, M'0 and
M'e to be analogous to Mu, M0, and Me respectively, but
it units of bits. We assume the initial underflow buffer,
B(n0), is computed as discussed above. During overflow,
for some time slot, NM>, where M' - \M'U\ + \M'0\ + \M'e\

B(n0) + 2 Ä{m)+ ^2 Mm) ~ J2 ^(B*') > ° (6)

which is equivalent to equation 2 above but in units of
bits rather than frames. To prevent buffer overflow we
require that VM'

J,Af'

Bmal > B{n0) + max(^(i(n.) - C(n,))) (7)

276

Table 1: Bit rate reg. forCBR strategy vs. VBR delivery

Since it. is important not to alter the arrival stream's
overflow/underflow characteristics, the evaluation must
be conducted at the same time slot boundaries as those
used for underflow computation, we make the following
modifications. Define nB(no) as the number of the last slot
occupied by the underflow buffer frames. Let V(nB(no))
be the number of frames from B(n0) in its last slot,
nB(n0)- Then, the amount of overflow for the first slot
of overflow computation is given by

W{nB(na)) = Ä(nB(no)) - V(nB(no)) - C(nB(no)) (8)

where V(nB(n<t)) is V(nB(n<>)) in units of bits.

Finally, calculating for the overall overflow condi-
tion we have, for all M',

Bmax > B{n0) + max{W(nB(no))

Movies
(MPEG-1)

Req. Bit-rate (xiO6 bps) Multiplexing Gain

Peak 0.9xPeak Ave. Peak 0.9xPeak

Jurassic 12.386 11.147 1.915 6.46 5.81

Speed 12.781 11.503 2.478 5.16 4.64

MTV 22.385 20.146 2.257 9.92 8.93

NBA 21.099 18.989 4.105 5.14 4.63

M'

■Nv

+ J2 (^n*) - ^n,))}

'="B(i..)+'

where B(n0) is B(n0) in units of bits, and Bmax defines
the maximum buffer allocation requirement for the video

stream.

The primary difference between previous work and
our own is that in previous work the assumption is made
that no knowledge of the video source characteristics is
available a priori. For VOD servers, complete a priori in-
formation about each video source is available. All com-
pressed file formats which accommodate frame indexing
will contain the necessary frame size information, and can
be made subject to this strategy.

3 Preliminary Results
A recent experiment [2], a large VOD storage server was
employed with up to 768 MBytes of main memory, and
RAID storage devices. The storage system could support
delivery of up to 86% of maximum theoretical number
of concurrent streams, but utilization reached only 30%
due primarily to memory space limitations. Our approach
requires a negligible amount of buffer memory at the video
server because the CBR delivery can be made to match
that of the storage device.

Table 1 illustrates the degree of variation that ex-
ists between the maximum and average bandwidth allo-
cation requirement for four video sources encoded with
an MPEG-1 variable bit rate encoder [3]. The gain in
multiplexing here is simply taken as the ratio of the VBR
requirement over the average bandwidth requirement.

We present in Table 2 some preliminary results for
analyses conducted on the same four videos presented in
Table 1 above. The table shows the buffer requirements
computed by our algorithm for both the overflow and un-
derflow conditions. Note that the overflow requirements

Table 2: Buffer req. for CBR delivery strategy

Movies
(MPEG-1)

Part. Overflow Req. Underflow Req. Total

Mbytes Frames Mbytes Frames Mbytes

Jurassic 3.280 315 0.593 91 3.873

Speed 3.391 299 0.159 18 3.549

MTV 4.882 291 1.869 220 6.751

NBA 14.682 462 5.964 301 20.683

excludes the J3(nn) term in equation 5. The jump in
buffer size requirements between the first two movies and
the last two is a result of the higher resolution determined
by the quality factor.

4 Conclusion
We have described a transmission strategy for the con-
stant bit rate delivery of VBR encoded continuous media.
A theoretical framework was presented for determining
buffer requirements at the client end; we have shown that
by properly computing the size of such a buffer, CBR de-
livery can be accomplished in a deterministic, real-time
fashion. We have shown that this strategy shows promise
in being able to generate significant statistical multiplex-
ing gains. Finally, preliminary results indicate that buffer
requirements are acceptable for workstations and for cur-
rent multimedia PC configurations making it useful for a
number of projects such as those currently being under-
taken jointly by researchers in the education and multi-
media communities. One such project is the Living Text-
book 3 project whose objective is to deliver real-time
multimedia information on demand for use in classroom
instruction; the project will use the NYNET 4 regional
commercial ATM network to link several K-12 schools in
the New York state area.

References
[1] H. Heeke. "Statistical Multiplexing Gain for Variable Bit

Rate Video Codecs in ATM networks". In 4th Interna-
tional Packet Video Workshop, Tokyo, Japan, March 1991.

[2] J. Hsieh and M. Liu and J.C.L. Liu and H.C. Du and
T.M. Ruwart. "Performance of a Mass Storage System
for Video-On-Demand". Technical report, University of
Minnesota, 1995.

1A collaborative effort involving the NYNEX Corporation, Syra-
cuse University, Columbia Teacher's College, and Northeast Parallel
Architectures Center.

2 NYNET is owned by the NYNEX Corporation.

277

[3] University of California, Berkeley. Berkeley MPEG-1

Video Coder, March 1994.

278

Appendix 1(2) Multimedia Tools and Applications 3, 215-232 (1996)
© 1996 Kluwer Academic Publishers. Manufactured in The Netherlands.

Constant Bit Rate Network Transmission
of Variable Bit Rate Continuous Media
in Video-On-Demand Servers
JUAN MIGUEL DEL ROSARIO* mrosario@npac.syr.edu, http://www.npac.syr.edu
GEOFFREY FOXf gef @ nova.npac.syr.edu, http://www.npac.syr.edu
Northeast Parallel Architectures Center, 111 College Place, RM 3-201, Syracuse University, Syracuse, NY 13244-

4100

Abstract. Multimedia computing is rapidly emerging as the next generation standard for human-computer
interaction. One class of multimedia applications that has been gaining much attention is the real-time display of
continuous media data such as video and audio, commonly known as Video-On-Demand (VOD) service. Although
advances in computer and network technologies have made VOD service feasible, providing guaranteed quality,
real-time video delivery still poses many technical challenges. One such challenge involves the transmission of
continuous media traffic over high-speed networks.

In this paper, we present an algorithm for determining the minimum buffer requirement for avoiding overflow
or underflow at the client video display process, allowing the network scheduler at the VOD server to enforce
a constant bit rate delivery of variable bit rate encoded continuous media. This strategy results in reduced
congestion and cell loss at the network switch, and in simplified admission control parameters. Initial results
indicate that buffer requirements for typical video streams range from 3.7 to 14.6 Megabytes, which is acceptable
by today's multimedia PC standards. Further, we show that this approach increases the number of streams that
can be multiplexed by a factor of 4.6 to 9.9 times when compared to peak and 90%-of-peak bandwidth allocation
strategies.

Keywords: multimedia, video server, buffer, real-time scheduling, video-on-demand

1. Introduction x

A significant amount of research effort is currently being directed towards expanding the
dimensions of human-computer interaction in an endeavor to bring computers to use in
more commonplace aspects of everyday life. In this effort, multimedia computing is a
rapidly emerging application area that is being promoted by many as the next generation
standard for human-computer interaction. One class of multimedia applications that has
been gaining much attention lately is the real-time display of continuous media data such
as video and audio. This is commonly known as Video-On-Demand (VOD) service. In a
VOD environment, geographically dispersed clients interactively access continuous media
streams from a remote server. This type of service is an essential component to provid-
ing multimedia educational and entertainment material to the classroom and the home.

*ECE Dept., Syracuse University.
tCIS Dept., Syracuse University.

279

DEL ROSARIO AND FOX

Combined advances in computer and communication technologies such as secondary mass
storage, video compression standards, and high speed networks serve as the foundation for
enabling and supporting large-scale VOD service. Although these technological advances
have made VOD service feasible, providing guaranteed quality, real-time video delivery
still poses many technical challenges. One such challenge involves the transmission of
continuous media traffic over high-speed networks.

Fiber-optic and high-speed packet switched technology form the basis of future integrated
services networks. The Asynchronous Transfer Mode (ATM) protocol, which is based
on fixed sized packets called cells, is evolving as the underlying transport mechanism
for such networks. One of the primary uses to which ATM networks will be put to, as
envisioned by researchers and telecommunication companies, is the delivery of real-time
VOD applications. VOD applications generate extremely delay-sensitive network traffic
that, in addition, has high-bandwidth requirements, and may sometimes have stringent
loss requirements. ATM networks seem to be the most suitable of the available network
technologies to be used for this purpose; however, questions still remain as to whether
they are capable of satisfying the strict performance requirements demanded by VOD
applications, and to what degree large-scale VOD applications (i.e., very large numbers of
video streams) can be supported (multiplexed) by them.

/./. Constant and variable bit rate encoding

In evaluating network performance, an important consideration is the type of network
traffic that is expected. Much research work has been has been devoted to the study of
video transmission using ATM networks [20, 8, 9, 27, 18, 30, 29, 19, 17, 31]. The key
issue that needs addressing here is whether or not using variable bit rate (VBR) encoding
schemes offer a performance advantage over constant bit rate (CBR) encoding schemes.

In CBR encoded video sources, picture quality parameters are adjusted to maintain a
constant requirement for delivery. As a result, although the video traffic can be transmitted
via a fixed, reserved bandwidth, degradation of picture quality often occurs during encoding.
In VBR encoding, the video source is encoded with a constant picture quality. This results
in a variable number of bits from frame to frame.

To maximize the efficient use of network bandwidth, it is necessary to multiplex several
video sources onto the same transmission channel. It is ATM's ability to provide vari-
able bandwidth dynamically (through statistical multiplexing) that makes it an attractive
choice as a variable bit rate transport mechanism. A measure of the effectiveness of VBR
transmission schemes has been formulated by Heeke [8] and is called the statistical mul-
tiplexing gain; it is defined as the ratio of the number of multiplexed VBR sources to the
number of multiplexed CBR sources while maintaining an equivalent subjective picture
quality.

Multiplexing several VBR sources can be accomplished very simply by reserving the
maximum bandwidth required by each source. Obviously, this results in very inefficient
use of the network bandwidth. Problems start to arise however when VBR sources are
multiplexed without peak bandwidth reservations for each. Under these conditions, the
source bandwidth requirements and available network bandwidth fluctuate independently

280

CONSTANT BIT RATE NETWORK TRANSMISSION

of each other over time. Such fluctuations result in congestion at the network switches
which, in turn, cause cells to be queued, and consequently delayed, and sometimes dropped.
Furthermore, because the fluctuations (and thus the degree of congestion) occur randomly
over time, the switch delay, aside from causing overall end-to-end delay, also results in
increased jitter (variations in end-to-end delay) in the transmitted video stream. Although
cell loss is undesirable because it leads directly to picture degradation, it can be tolerated
to some extent. However, real-time video sources are extremely delay-sensitive and have
very strict bounds on delay tolerance. Jitter leads to choppiness in the output as well as
possible loss of synchronization for phase sensitive streams.

1.2. Related work

Finding a solution to the problem of multiplexing VBR signals over a single transmission
channel is an active area of research. The problem of resource allocation for broadband
networks is addressed by Hui [11], who uses a multilevel congestion evaluation mecha-
nism to determine statistical congestion characteristics. A multilayer bandwidth allocation
algorithm is then employed which uses these measures to perform resource allocation.

The problem of VBR traffic packet multiplexing and error control are addressed by
Dempsey et al. [7]. Here the problem of congestion, delay and cell loss is dealt with at the
level of the network switch. Issues dealing with packet congestion and traffic characteristics,
and scheduling algorithms are addressed.

Several researchers have studied the problem of VBR transmission from the level of
the scheduler at the video source. Most of these schemes employ some type of predictive
method to allow for some sort of "smoothing" of the video source. In [20], an exponential
forecast function is used to smooth teleconferencing video streams with the objective of
reducing cell loss probabilities. Simulation results show a reduction of cell loss probability
average from 2.076 x 10~3 down to 7.8 x 10-7. It remains to be shown what the equivalent
cell loss probabilities will be for full-motion video where scene changes play a significant
role in determining traffic characteristics. Initial results presented in [24] indicated that,
based upon techniques in [20], the effects of smoothing on intraframe coding (used during
scene changes) was almost imperceptible. In [28], Rodriguez-Dagnino et al. present a stra-
tegy for predicting bit rate characteristics of encoded video from the uncompressed source.
Knightly et al. [12] devise a method for empirically characterizing the video source called
the empirical envelope. This characterization model is then used along with an earliest-
deadline-first packet scheduler to provide deterministic service of VBR video traffic. Their
results show an 18% to 38.3% utilization is achievable, but only under ideal conditions.
Pancha and El Zarki [23,21,22], employ a simple predictive scheme along with prioritized
partitioning of the video source to modulate the allocation of network bandwidth to the video
source. For trial cases examined (which employed MPEG compressed video sources), a
maximum cell loss percentage of between 18% to 49% and an average of between 1% to
3% is observed:

In this paper we describe how selected information from an encoded video source can
be used to determine buffer size bounds which enable VBR sources to be determinis-
tically transmitted as CBR streams. We focus here on its application to the network

281

DEL ROSARIO AND FOX

scheduler at the VOD server. (The subject of disk scheduling and retrieval will be ad-
dressed in a subsequent paper.) The rest of the paper is organized as follows. In
Section 2, we describe our transmission model and our algorithm for determining buffer
requirements. In Section 3 we describe the video source information necessary for CBR
transmission. Section 4 describes our scheduling strategy, stream multiplexing, and
admission control parameters. Section 5 presents preliminary results and Section 6
concludes.

2. Transmission model

Our model for transmitting a VBR video source as CBR traffic is illustrated in figure 1.
As shown, the video source is assumed to have been stored as a VBR stream in secondary
storage. An example of the bursty nature of such a stream is shown in figure 2. This video
stream is retrieved in segments and placed into a buffer for the network manager.

Consider a video stream being transmitted from the network manager, which we will
call the server, to a remote display device which we call the client. We assume that each
video stream is composed of a set of frames of varying sizes, and that it has a finite amount,
Np, of these frames; the size of each frame in bits is denoted by X,. Such a real-time
video stream is naturally subdivided into time slots, n, for i € {0,1,2,3,..., Ns} where
Ns is the number of slots in the video stream. Each slot, n, refers to the time interval
[f/.*i+i] in the video stream transmission period. This representation is illustrated by
figure 3.

VBR: Variable Bit Rate
CBR: Constant Bit Rate
VFR: Variable Krame Rate
CFR: Constant Frame Rate

VBR/CFR
Encoded

L Video J
Secondary Storage
and Video "pump"

Client Display
Client Display

Round-Robin
Scheduling VFR/CBR

<+ •»
Network Manager Client Display

Figure 1. VOD transmission model.

Figure 2. Sample VBR source. 282

CONSTANT BIT RATE NETWORK TRANSMISSION

9 Frame* ft Frames 6 Fruna 10 Frames

'.' '.' •; ■'.■ !•:
■■!•■;*

■■.•■
•;;••;•;; ::::::-

:•::•::-::-::•: ;;. ■'.■'.■'.■'.'.

-;•; :-; : -x • • v.;. V >;-X*;

slotn: sloti^i slot nj+2 slot ni+3

X

Figure 3. Variable frame rate/constant bit rate.

For any given video stream, 5, its total length in bits is given by If = 2_,/=f, X,. Assuming
a desired play out rate in frames/sec of RS

F, the play out time in seconds for the entire stream

is Ts = ^f, and the corresponding average bit rate requirement is Rl = £.
KF

. Let Tc represent the cycle time in seconds for the server scheduler. We define the cycle
time as the time it takes for the scheduler to service every supported stream once. The
server employs a round-robin schedule to transmit the video stream. During each cycle of
the scheduler, a pre-determined time slot is allocated to each stream. Due to the real-time
and continuous nature of a video stream, at each cycle the scheduler must deliver a sufficient
amount of video data to satisfy consumption for the entire cycle, Tc; that is, it must deliver
Bs

c — Rs
bx Tc bits of data per cycle. Suppose that the scheduler allocates to each stream

some portion, tsc, of Tc. In order to satisfy the client's consumption requirement per cycle,
the server must deliver Bs

c bits of data in time tsc. Hence, for each stream, the bandwidth
DJ T

requirement for delivering the video stream is equal to Rs
br = -fi = Rs

b-p-, a constant bit
rate. At the receiving end (the client), the video stream is buffered and displayed at the
appropriate constant frame rate.

Note that the delivery strategy we propose is dependent upon the assumptions we make
about the scheduling algorithm. Our objective is to make Rs

bc constant in order to achieve
maximum network transmission efficiency. In this paper, we assume the simplest possible
scheduling algorithm; we make the assumption that the time, t*c, allocated to each stream
by the server is fixed for each stream. In this case, f* can be a fixed constant for all streams
(in which case Rs

b will vary for each), or it can be made proportional to R*b (in which case
the value of Rb will be independent of the stream). Future papers will investigate the use
of more complex scheduling algorithms which will allow f£ to be dynamically adjusted
resulting in a reduction in buffer size requirements.

2. /. Buffer allocation requirements

The ability to transmit a VBR source as CBR streams depends upon buffering at the client
end. In this section, we quantify the buffer requirement for a given video stream.

Consider the client process. Let C(n,) be the number of frames consumed by the client
in slot n,; this value is a constant and is equivalent to the playout frame rate (e.g., 30 frames/
sec for full motion video). Let ß(n,) be the number of frames in the buffer at the beginning
of slot n, (i.e., at time r,), and let A(n,) be the number of frames arriving during slot n,.
Then, for each time slot, the number of frames remaining in the buffer is given by the

283

DEL ROSARIO AND FOX

recursive equation

B(ni+l) = B{nt) + A{n() - C(m), Vi e {0, 1, 2 Ns)

Consider the frame arrival rate, A{n{), at the client process. Since we transmit the video
stream at a constant bit rate and the size of each frame, Xit may vary, there is a variable
frame arrival rate (i.e., A(n,) is not constant). This is illustrated in figure 3. Note that
in each slot we count only the number of complete frames within the slot; thus from the
figure, the last frame in the third slot is counted towards the fourth slot. Since the number of
incoming frames for any slot may be less than that necessary for consumption, we cannot
rely on incoming frames to satisfy the current slot consumption requirements. Therefore,
we have to satisfy the current display requirements solely from the buffered frames, display
will be interrupted if the buffer is ever empty for any of the time slots. Hence, we have the
requirement

B(ni+l) = Birii) + A(m) - C(«,) > 0 Vi € {0, 1,2 Ns)

Since this is true for all slots «,, without loss of generality it is true for some slot nm.
Then, the recursive formula above for the buffer requirement can be written as

w—1 m-1

!>(».•>-£
;=o i=o

B(nm) = B(n0) + J2Mni)-Y^C(ni)>0 Vm € {0, 1,2,..., Ns] (1)

Thus, for any point throughout the transmission of the video stream (from beginning to
end), the client buffer must never underflow (i.e., it must never be less than zero).

2.2. Flow conditions

For a given time slot, without considering the amount buffered, if the number of frames that
arrive in that slot is less than the amount consumed (i.e., A(n,) < C(n{)) we call this slot
an underflow slot; if it is greater than the amount consumed (i.e., A(n() > C(n,)), we call
it an overflow slot; if it is equal to the amount consumed (i.e., A(nt) = C(nt)), we call it
an even slot. We make the assumption that data for a given slot will arrive at the client and
be buffered prior to the start of its consumption.

During the playout of a video stream, there will be a combination of overflow, underflow
and even slots. Thus we have

M

Y A{m) = Y, A(n{) + J2 A{m) + J2 A{m) (2)
«=0 ieM„ ieM0 jeAf,

where Mu, M0, and Me are the set of underflow, overflow, and even slots respectively and
\MU\ + \M0\ + \Me\ = M, where M e {0,1,2 N,.}.

284 I

CONSTANT BIT RATE NETWORK TRANSMISSION

From Eqs. (I) and (2) we have, VAf 6(0,1,2,..., /V,}

M

B(n0) + J2 A(m) + Yl A(m) + H A{ni) " HC(n,) - °
ieMu ieM0 i€Me i=0

<=> B(n0) + Yl Aim) + H AM + H Ato) - H C("'>
i€Mu i€M0 ieM, ieMuUM„

i€Me

B(no)+YtMni)+YlA(ni)- 2] C(m) > 0 (3)

where, by definition, Aim) < Cim) Vj e M„ and Aim) > C(n,-)V/ e M„.
There are now two conditions which must be accounted for in buffering. The first is the

buffer underflow condition which describes the situation where, during some point in the
video transmission, the buffer runs empty and there is nothing for the client to display.
The second condition is the buffer overflow condition which describes the situation where
the buffer is full and can not accommodate the incoming frames for the current slot. We
address these two cases below.

2.2.1. Buffer underflow condition. Consider the case where the video stream is transmit-
ted to the client without prefetching a few frames into the client buffer. That is, at the start
of display at time f0> the buffer is empty (i.e., B(n0) = 0). Then, the buffer underflow
condition comes about when for some time slot during the transmission of the video, the
total number of frames that have arrived is less than that required for display (consumed).
Thus we have, for some time slot, NM, where M = \MU\ + \M0\ + \Me\

J2A(ni)+YlA<ni)< J2 C^

£ Aim) + 23 Aim) - Y, C(n,)<0
ieM« ieM0 ieM„UMo

Therefore for Eq. (3) to hold, we require

VM, 5(rt0) > 23 A(m) + 23 A(m) - 23 C{m)

J2 Aim) - 23 dm) + 23 Aim) - 23 Cim)
i€Mu l'€*fB

J2(A(m) - Cim))
i=0

ieMa ieM0

(4)

(5)

where Eq. (5) follows from (4) because Y,ieMe A(tii) = Y.ieMe
c(m) by definition. Hence,

285

DEL ROSARIO AND FOX

to prevent the buffer underflow condition, wc need to transmit a number of frames into the
client buffer before initiating the display. Since Eq. (5) must be true for all M,

B(no) = max
M

Nto

J^iMni) - C(n,-))
i=0

(6)

gives the required number of frames to buffer prior to display in order to avoid buffer
underflow. Note that we compute the buffer size here in units of frames because consumption
is in terms of frames (i.e., VBR/CFR) independent of individual frame size.

To facilitate the discussion above, assumptions were made about the nature of the frame
sequence with regards to generating underflow within a segment. In a true implementation,
the video stream will comprise a combination of overflow and underflow slots for each
segment, NM, of the stream. Therefore, Eq. (6) is modified as follows. We let F be defined,
for all M, as

/ J _
F = min Z^Afo> - cfo»

i=0

where the difference term, A(n,) - C(n,), above is derived from the second and third
terms of Eq. (1) which becomes negative for underflows. Thus, the maximum underflow
condition will be represented by the most negative value of F. We can now define the
underflow buffer requirement as

m . \-F ifF<0
5("o) = (o otherwise (7>

2.2.2. Buffer overflow condition. The buffer overflow condition is similar to the underflow
case but the initial condition is now slightly different. The buffer overflow condition
comes about when for some time slot during the transmission of the video, the difference
between the total number of frames that have arrived and those consumed is greater than
the amount containable in the buffer. Unlike the underflow condition, here we consider
buffer requirements in terms of bits rather than frames because the arrival of data is in
bits (CBR/VFR) and we want to buffer against over-arrivals. To do this we modify our
definitions of Mu, M0, and Me into M'u, M'0 and M'e where M'u is the set of slots for which
the number of bits arriving is less than the number of bits consumed; M'0 and M'e follow
analogously. To minimize the overflow buffer requirement, we assume the initial underflow
buffer frames to exist (i.e., 5(n0) is given by Eq. (6)). Thus we have, for some time slot,
NM.t where M' =\M'J + \M'J + \M'e\

B(no) + J^A(ni)+YlMni)- £ C(n,-) > 0 (8)
i£M'u i&M'0 i£M'uUM'0

which is equivalent to Eq. (3) above with the difference that A(nj), B(m), and C(n,) are
A(fii), B(ni), and C(«,) respectively, in units of bits rather than frames. (Note that C{ni)

286

CONSTANT BIT RATE NETWORK TRANSMISSION

represents a variable bit consumption rate.) Similarly, it follows that

£ A(#i.-) + £ A(n,-) > J2 C(«i)
ieMJ ieM'0 ieM'uVM'B

i€M'u i£M'0

Therefore Eq. (8) holds. But, to prevent buffer overflow we require that

VM' Bmax > ß(n0) + £ Aim) + J2 Mni) - £ C (/!,■)

> ß("o) + £ Mni) ~ J2 C(n,-) + X! A(n,-) - £■ Cfo) (9)
ieM'„ ieM'u ieM'„ iew;

NM'

>B(n0) + Jl(A(ni)-C(ni)) (10)
j=0

again Eq. (10) follows from Eq. (9) because £ieW, A{nt) = £/eW, C(n,) by definition.
Since Eq. (10) is must be true for all M',

ßmax > ß("o) + max I £(Ä(/i,-) - C(/i,-)) J (11)

gives the required buffer size to avoid overflow.
Note that in Eq. (11) we begin computing the overflow buffer at i = 0. In order to

minimize buffer allocation, an additional bit of computation is required. Since it is important
not to alter the arrival stream's overflow/underflow characteristics, the evaluation process
for overflow buffer requirement must be conducted at time slot boundaries. This guarantees
that the associated overflow computations hold by assuring that they begin at the same time
slot boundaries as those used for underflow computation. Therefore, instead of beginning
at the first time slot (i.e., i = 0), we first round the number of frames given by Eq. (7) to
the nearest time slot worth of frames, then, we begin overflow evaluation at the start ofthat
time slot. Further, we subtract from the computation for the starting time slot the number
of frames that are to be included in the underflow buffer. We describe this algorithm more
formally in the following.

Define nBW as the number of the last slot occupied by the underflow buffer frames. Let
y (nB(no)) be the number of frames from B(n0) in its last slot, nB(n„)- Then, the amount of
overflow for the first slot of overflow computation is given by

^(«B(no)) = ^ ("*(«<>)) - V{nB(n0)) ~ C(rtß(„n))

where V (n B(„0)) is V (nfi(„(l)) in units of bits. The general idea of the formulation is illustrated
in figure 4.

287

DEL ROSARIO AND FOX

B(no) A("l)(no))

s|Ol»H(m,).2

^(nn(„.,)) C(nH(no)) W(nM(no))

Figure 4. Overflow buffer computation—first slot.

Finally, calculating for the overall overflow condition we have, for all M',

Smax > B(n0) + max
M'

N»

W(nß(„„))+ Y, (Mii)-C(ni))
'=nß(nn)+i

(12)

where B(nQ) is B(nQ) in units of bits, and B^ defines the maximum buffer allocation
requirement for the video stream.

3. Required video source information

The primary difference between previous work and our own is that in previous work (with
the exception of [12] and [20]) the assumption is made that no knowledge of the video
source characteristics is available a priori. In the case of Ott et al. [20], the information
that is assumed (the size of each frame and the amount arriving per time period) is used
only to clarify the exposition. In their model, a true implementation would need to forecast
these values. In the case of Knightly et al. [12], video trace information (i.e., exact frame
sizes and their arrival times) is assumed to be present. This information is used to create a
traffic characterization "envelope" producing the results mentioned in Section 1.2.

For VOD servers, complete a priori information about each video source is available. In
our transmission model, we assume that the video sources have been encoded via MPEG [34]
or JPEG [35] standard compression algorithms. However, the algorithm truly only requires
that the encoded output possess some frame header information (or its equivalent) which
permits the extraction of frame size data. All compressed file formats which accommodate
frame indexing during playback will contain such information, and can be made subject to
this strategy. Obtaining the information necessary to implement our strategy is surprisingly
simple. By collecting a frame size trace of the given video source, we can completely
characterize the source for purposes of scheduling and transmission. In an implementation,
this can very simply be done (off-line) as the video source is placed into secondary or tertiary
storage. For JPEG, and MPEG compressed sources this is computationally inexpensive and
can be accomplished by reading the frame headers (without decoding the frame images).
Then, by examining Eqs. (7) and (12) we determine the exact buffering requirements.

288

CONSTANT BIT RATE NETWORK TRANSMISSION

4. Scheduling algorithm

Once proper information is available, deterministic CBR scheduling is uncomplicated.
When a request is initiated by a client, and the admission control checks (discussed below)
have been passed, the scheduler begins to transmit the video source at a constant bit rate
until the amount buffered, B(n0), is equal to the maximum underflow state value given by
Eq. (6). At this point, the client process can begin real-time display of the video stream.
Since we have buffered in anticipation of the maximum underflow state, underflow can no
longer occur. Likewise, for the overflow case, after allocating the buffer space required by
Eq. (12), we are guaranteed that overflow situations will not occur, so CBR delivery can
continue without frame loss after the initial buffering has been accomplished.

4.1. Stream multiplexing

Consider the case where multiple streams are being delivered. For an additional stream to
be scheduled, the algorithm in figure 5 is used. We assume that the time slot duration, t*c, is
fixed. The number of streams that can be admitted is dependent upon the overall available
bandwidth and the current amount of slack time available.

The bandwidth requirement for a VBR stream transmitted at a constant bit rate equivalent
to the streams average bit rate requirement is considerably less than allocations for peak or
close-to-peak bandwidth. Therefore, considerable gains can be made in multiplexing. This
will be discussed further in Section 5 below.

4.2. Admission control parameters

The admission control parameters are greatly simplified by our CBR transmission strategy.
The following is a list of the primary admission control parameters required.

1. Total remaining bandwidth (or slack time).
2. Required playback rate (frames/second).
3. Required per-cycle network transmission rate for the current stream.
4. Client buffer size requirement for the current stream.

1. Compute the required video stream bit rate: R\.
2. Compute the required scheduler per-cycle network transmission rate.

Given by: R\m - R\\
3. Admission control check (includes bandwidth requirements).
4. If admission control passed, transmit video stream.

Figure 5. Stream Multiplexing Algorithm.
289

DEL ROSARIO AND FOX

5. Preliminary results and discussion

The CBR transmission strategy we have proposed was motivated by a number of problems
associated with existing approaches to VBR scheduling and transmission. Among these is
the problem of cell loss and delay at the network switches caused by variable bandwidth
utilization profiles. Transmitting video sources in CBR fashion should greatly reduce the
degree of switch congestion (and consequently its negative effects) by simplifying admission
control and policing requirements. This section presents some preliminary results and
discusses implications for some of the other significant problems that have motivated our
development of this strategy.

5. /. Server memory requirement

Another major concern is the memory requirement at the video server. In a recent experiment
[10], a large VOD storage server was designed which contained up to 768 MBytes of
main memory, and RAID storage devices. Although the storage system could support
delivery of up to 86% of maximum theoretical number of concurrent streams, the reported
number of concurrent streams supported reached only 30% of the theoretical maximum due
primarily to memory space limitations. Our approach reduces the amount of buffer memory
necessary at the video server. In a VBR delivery scheme, at every cycle of the scheduler, a
constant number of frames (variable number of bits) must be delivered. Reduced memory
requirement is made possible by our strategy because constant bit rate delivery precludes
any need to anticipate (through excess buffer allocation) time slots with extremely large
frames and thus increases the limit on supportable concurrent video streams.

5.2. Multiplexing gain

One of the principal advantages of the CBR strategy is the statistical multiplexing gain that
is achieved. In one experiment, we analyzed a 10,000 frame MPEG-1 VBR encoded video
stream. The average bit rate requirement from this stream was 1.92 Mbps. For the same
quality parameters, a CBR encoding would require an average bit rate of 12.38 Mbps. Thus,
using our strategy, we are able to multiplex up to 6 more video streams compared with the
usual CBR transmission of the CBR encoded source.

Thus, the bandwidth requirement for a VBR stream transmitted at a constant bit rate which
is equivalent to the stream's average bit rate requirement is considerably less than allocations
for peak or close-to-peak bandwidth. Table 1 illustrates the degree of variation that exists
between the maximum and average bandwidth allocation requirement for four video sources
encoded with an MPEG-1 variable bit rate encoder [33] (the encoding procedure employed
is described further below). The entry for "Average" bandwidth represents the bandwidth
requirement for the CBR strategy where the frame average has been selected as the constant
bit rate for transmission. The two rightmost column of values show the gain in multiplexing
obtained from using the average bandwidth versus the peak and 90% of peak bandwidth
requirements respectively. The gain in multiplexing here is simply taken as the ratio of the
VBR requirement over the average bandwidth requirement.

290

CONSTANT BIT RATE NETWORK TRANSMISSION

Table I. Bandwidth requirement for proposed CBR strategy vs. VBR delivery.

Req. bandwidth (x 106 bits/sec) Multiplexing gain vs.
Movies
(MPEG-1) Peak 90% of peak Average Peak

6.46

90% of peak

Jurassic park 12.386 11.147 1.915 5.81

Speed 12.781 11.503 2.478 5.16 4.64

MTV music videos 22.385 20.146 2.257 9.92 8.93

NBA basketball 21.099 18.989 4.105 5.14 4.63

8. io-50

10

io-

,-6.0

,-7.0

10

10

i-I.O

9.0

»■[■»■■■»»■■I

90*ofpe«k:-20.1.

io-lO0fj SB IÖ3 1*0—SfiT
a) MTV Ille ^MbPs^

Figure 6. Negative pdfs for VBR encoding of Jurassic Park and MTV samples

5.0 10.0 15.0
b) Jurassic Park rate ^^

It is interesting to note the effects of transmitting at 90% of peak. Figure 6 shows the
negative cumulative distribution functions for both MTV and Jurassic Park for required
transmission bit-rates. The ordinate axis represents the probability that a given bit rate is
exceeded and is proportional to the cell loss probability for the multiplexed signal (i.e.,
F(x) = Pr{X > x} where F(x) isthecdf of the signal). The figures show that transmitting
at 90% of peak will result in a probability between 10"3 ° and 10~40 and that a greater
bit rate will be required. If the system is unable to support this need for higher bit rates,
unacceptable data loss will occur. Thus, this situation results in extremely poor reliability
when measured against typical transmission reliability requirements of F(x) < 10-80. On
the other hand a constant bit rate transmission, as is suggested in this paper, will appear on the
graph as a vertical line at the point on the x-axis equivalent to the constant transmission rate.

5.3. Client memory requirement

The primary drawback of our CBR approach is that it requires the client to satisfy the buffer
memory requirement as an admission control parameter. Further, the memory requirement

291

DEL ROSARIO AND FOX

Table 2. Buffer requirements for CBR delivery strategy.

Movies
Partial overflow Req.

MBytes Frames

Underflow Req.
Total

Megabytes (MPEG-1) MBytes Frames

Jurassic park 3.112 315 0.593 91 3.705
Speed 3.555 299 0.159 18 3.714
MTV music videos 3.700 291 1.869 220 5.569
NBA basketball 8.686 462 5.964 301 14.650

is a function of the video source and may greatly vary. However, there are a number of
mitigating factors that offset this drawback. First, alternative schemes likewise impose
memory requirements, except that these requirements are made on the video server. Such
memory requirements become more demanding of the system when we consider that the
video server needs to allocate one buffer per video stream that it concurrently supports.
Second, multiplexing congestion and cell loss are likely to be considerably diminished by
our approach. Third, we view memory devices as commodity items whose price is only
expected continue to decrease, and whose quantity we expect will greatly increase in typical
work stations or multimedia display devices; on the other hand, network bandwidth is a
very expensive and scarce resource.

To give some sense of what the magnitudes are like for the buffer requirements imposed
by this algorithm, we present in Table 2 some preliminary results for analyses conducted on
the same four videos presented in Table 1 above. The table shows the buffer requirements
computed by our algorithm for both the overflow and underflow conditions. Note that the
overflow requirements listed exclude the amount buffered for underflow (i.e., it excludes
the B(n0) term in Eq. (7)).

The video sources comprise a 10,000 frame (approx. 15 mins.) segment of the full
movies and were captured using a MultiVideo1 card and were later compressed to MPEG-1.
Jurassic Park and Speed were captured with aMultiVideo ß-factor of 105, and the MTV and
Basketball videos had a ß-factor of 50 (the higher the ß-factor, the lower the resolution)2.

MPEG compression was performed at the same quality factors for all the videos. The
jump in buffer size requirements between the first two movies and the last two is a result of
the higher resolution determined by the ß-factor. The basketball film showed the largest
buffer requirement due to its many scene changes.

From the results in Table 2, buffer size requirements range from 3.705 to 14.650
Megabytes. For multimedia PC's, currently being marketed with 64,256 and even over 512
Megabytes of RAM, this buffer requirement has a corresponding memory consumption in
the range 5.7% to 22.9%, 1.4% to 5.7%, and 0.65% to 2.9% respectively.

In order to reduce the buffer size requirement further, transmission rates other than the
average bit rate can be used. In the following table, Table 3, we show the buffer sizes
obtained using the optimal bit rates for the sample video streams. The optimal bit rates
were found by varying the average bit rate by plus or minus some fraction of the standard
deviation, referred to as "std. dev. factor" in the table (i.e., optimal bit rate = average rate -f
(averageratexstd. dev. factor)). Note that all buffer size figures are in units of MegaBytes.

292

CONSTANT BIT RAT1: NKTWORK TRANSMISSION

Ttihlr .v Buffer requirements using optimal transfer rates.

Movies
(MPEG-1)

Ave. bit rate Optimal hit rate

Underflow Total Std. dev. Underflow Total
req. (MBytes) (ßma.O factor req. (MBytes) (ßma*)

Jurassic park 0.593 3.705 +0.23

Speed 0.159 3.714 -0.07

MTV music videos 1.869 5.569 -0.81

NBA basketball 5.964 14.650 +0.93

0.194

0.272

2.485

1.579

3.295

3.650

3.665

10.084

9994.0 i < i

Consumed Frames

710.0

! 591.7

! 4733

355.0

236.7

118.3

Display begins Frames arrived
(consumption begins) N.

1.0 56.3 111.7 167.0 222.3 277.7 slot

Figure 7. Buffer usage profile.

Prc-dispjjy
Buffering

Frames consumed

Pre-display buffered
frames arc consumed

Slot

In figure 7 we show on the left the buffer utilization profile for the Jurassic Park sample.
Although the buffer may come very close to being empty at some points (e.g., around time
slot 300) it never completely does so. The graph on the right is a macro view of the first
20 frames; it shows that the amount buffered prior to display is quickly used up but that it
provides sufficient delay to allow arriving frames to develop a wide enough gap between
the consumption profile and the arrival profile.

Initial tests on a one hour sample of an MTV video resulted in a buffer requirement
of about 8 MBytes. Although this provides some indication that the approach extends to
longer video streams, the fact that the one hour MTV segment requires more buffer than
the 15 minute segment simply highlights the dependence of this approach on the profile of
a given stream.

6. Conclusion and future work

We have described a transmission strategy for the constant bit rate delivery of VBR encoded
continuous media. A theoretical framework was presented for determining buffer require-
ments at the client end; we have shown that by properly computing the size of such a buffer,
CBR delivery can be accomplished in a deterministic, real-time fashion. We described how
our strategy can potentially reduce congestion and cell loss at the network switch, and how
it greatly simplifies admission control. We have shown that this strategy shows promise in

293

DEL ROSARIO AND FOX

being able to generate significant statistical multiplexing gains. Finally, preliminary results
indicate that buffer requirements are acceptable for workstations and for current multimedia
PC configurations making it useful for a number of projects such as those currently being
undertaken jointly by researchers in the education and multimedia communities. One such
project is the Living Textbook3 project whose objective is to deliver real-time multimedia
information on demand for use in classroom instruction; the project will use the NYNET4

regional commercial ATM network to link several K-12 schools in the New York state area.
Our plan for future work in this area includes: exploration into the use of more complex

scheduling algorithms and alternative delivery strategies; a detailed characterization of a
more comprehensive set of video source samples of varying compression parameters to
obtain more statistically accurate bounds on buffer size requirements [5]; exploration of
scheduling schemes for cases with bounded buffers [6]; detailed analyses on congestion
effects arising as a result of using this strategy versus other existing approaches.

' Acknowledgment

This work was sponsored in part by the US Airforce under Rome Laboratory contract
F30602-94-C-0256. A condensed version of this paper was presented at the Second
IASTED/ISMM International Conference on Distributed Multimedia Systems and Appli-
cations.

We would like to thank Mahesh Subramanyan and Marek Podgorny for many interesting
discussions, and for their helpful comments and suggestions.

Notes

1. Multi Video is a trademark of Parallax Graphics, Inc.
2. The manufacturer recommended ß-factor for general use is 150.
3. A collaborative effort involving the NYNEX Corporation, Syracuse University, Columbia Teacher's College,

and Northeast Parallel Architectures Center.
4. NYNET is owned by the NYNEX Corporation.

References

1. C. Blondia and O. Casals, "Performance Analysis of Statistical Multiplexing of VBR Sources " IEEE INFO-
COM '92, pp. 828-838, 1992.

2. A. Burchard, J. Liebeherr, Y Oh, and S.H. Son, Assigning Real-Time Tasks to Homogeneous Multiprocessor
Systems, University of Virginia, No. CS-94-01, January 1994.

3. B. DeCleene, P. Pancha, M. El Zarki, and H. Sorensen, "Comparison of Priority Partition Methods for VBR
MPEG," IEEE Infocom 94, Toronto, Canada, May 1994.

4. J.M. del Rosario and G. Fox, "Constant Bit Rate Network Transmission of Variable Bit Rate Continuous Media
in Video-On-Demand Servers," No. SCCS-677, Northeast Parallel Architectures Center (NPAC), Syracuse
University, December 1994, Submitted to: Second IASTED/ISMM International Conference on Distributed
Multimedia Systems and Applications.

5. J.M. del Rosario, M. Subramanyan, and G. Fox, "Spectral Analysis of MPEG-1 and MPEG-2 Variable Bit Rate
Encoded Video Streams with Implications for ATM Network Transmission," Northeast Parallel Architectures
Center (NPAC), Syracuse University, December 1994 (in preparation).

294

CONSTANT BIT RATE NETWORK TRANSMISSION

6. J.M. del Rosario, M. Podgorny, and G. Fox, "Scheduling Transmission of VBR Encoded Continuous Me-
dia in Bounded Buffer Environments (in preparation)," Northeast Parallel Architectures Center at Syracuse

University, 1995.
7. B.J. Dempsey, J. Liebeherr, and A.C. Weaver, "A Delay-Sensitive Error Control Scheme for Continuous

Media Communications," University of Virginia, No. CS-93-45, October 1993.
8. H. Heeke, "Statistical Multiplexing Gain for Variable Bit Rate Video Codecs in ATM networks," 4th Interna-

tional Packet Video Workshop, Tokyo, Japan, March 1991.
9. D. Heyman, A. Tabatabai, and TV Lakshman, "Statistical Analysis and Simulation Study of Video Telecon-

ference Traffic in ATM Networks," IEEE Global Telecom. Conference, December 1991.
10. J. Hsieh, M. Liu, J.C.L. Liu, H.C. Du, and T.M. Ruwart, "Performance of a Mass Storage System for Video-On-

Demand," University of Minnesota, Submitted to: Journal of Parallel and Distributed Computing—Special

Issue on Multimedia Processing and Technology, 1995.
11. J. Y. Hui, "Resourse Allocation for Broadband Networks," IEEE Journal on Selected Areas in Communications,

Vol. 6, No. 9, pp. 1598-1608, December 1988.
12. E.W. Knightly, D.E. Wrege, J. Liebeherr, and H. Zhang, "Fundamental Limits and Tradeoffs of Providing

Deterministic Guarantees to VBR Video Traffic," University of Virginia, temp, 1994.
13. S.S. Lam, S. Chow and D.K.Y. Yau, "An Algorithm for Lossless Smoothing of MPEG Video," ACM SIG-

COMM '94, August 1994.
14. D. LeGall, "MPEG: A Video Compression Standard for Multimedia Applications," Communications of the

ACM, Vol. 34, No. 4, pp. 305-313, April 1991.
15. J. Liebeherr and D.E. Wrege, "Design and Analysis of a High-Performance Packet Multiplexer for Multiservice

Networks with Delay Guarantees," University of Virginia, No. CS-94-30, July 1994,
16. J. Liebeherr, D.E. Wrege, and D. Ferrari, "Exact Admission Control for Networks with Bounded Delay

Services," University of Virginia, No. CS-94-29, July 1994.
17. B. Maglaris, D. Anastassiou, P. Sen, G. Karlsson, and J.D. Roberts, "Performance Models of Statistical

Multiplexing in Packet Video Communications," IEEE Trans. Commun., Vol. Com-36, No. 7, pp. 834-843,

July 1988.
18. D.G. Morrison, "Variable Bit-Rate Video Coding for Asynchronous Transfer Mode Networks," British Tele-

com. Tech. Journal, Vol. 8, No. 3, pp. 70-80, July 1990.
19. M. Nomura, T. Fujii, and N. Ohta, "Basic Characteristics of Variable Bit Rate Video Coding in ATM Envi-

ronment," IEEE J. on Select. Areas Commun., Vol. SAC-7, pp. 752-760, June 1989.
20. T. Ott, TV. Lakshman and A. Tabatabai, "A Scheme for Smoothing Delay-Sensitive Traffic Offered to ATM

Networks," IEEE INFOCOM '92, pp. 776-785, 1992.
21. P. Pancha and M. El Zarki, "Modeling of Video Sources for BISDN;" Third International Packet Video

Workshop, Morristown, NJ, March 1990,
22. P. Pancha and M. El Zarki, "Bandwidth Allocation Schemes for Variable Bit Rate MPEG Sources in ATM

Networks," University of Pennsylvania, 1992.
23. P. Pancha and M. El Zarki, "A Look at the MPEG Video Coding Standard for Variable Bit Rate Video

Transmission," IEEE INFOCOM '92, Florence, Italy, May 1992.
24. P. Pancha and M. El Zarki, "Prioritized Transmission of VBR Video Traffic," IEEE GLOBECOM '92, Orlando,

Florida, pp. 1135-1139, December 1992.
25. P. Pancha and M. El Zarki, "Bandwidth Requirements of VBR Video Coders in ATM based BISDN," IEEE

Transactions on Circuits and Systems for Video Technology, June 1993, Vol. 3, No. 3, pp. 190-198, Appeared
in part in Proceedings of IEEE Infocom 93, San Francisco, CA, March 1993.

26. P. Pancha and M. El Zarki, "A Study of MPEG Coding for Variable Bit Rate Video Transmission," IEEE

Communications Magazine, May 1994.
27. G. Ramamurthy and B. Sengupta, "Modeling and Analysis of a Variable Bit Rate Video Multi-

plexer," 7th Specialist Seminar, International Teletraffic Congress, Morristown, New Jersey, October

1990.
28. R.M. Rodriguez-Dagnino, M.R.K Khansari, and A. Leon-Garcia, Prediction of Bit Rate Sequences of Encoded

Video Signals, IEEE Journal on Selected Areas in Communications, 1991.
29. P. Sen, B. Maglaris, N. Rikli, and D. Anastassiou, "Models for Packet Switching of Variable Bit-Rate Video

Sources," IEEE J. on Select. Areas Commun., Vol. SAC-7, pp. 865-869, June 1989.

295

DELROSARIOANDFOX

30. H. Shino et a!., "Analysis of Multiplexing Characteristics of Variable Bit Rate Video Signals," Third Interna-
tional Workshop on Packet Video, Morristown, New Jersey, March 1990,

31. W. Verbiest, L. Pirmoo, and B. Voeten, "The Impact of the ATM Concept on Video Coding," IEEE J. on
Select. Areas Cominun., Vol. SAC-6, No. 9, December 1988.

32. G.K. Wallace, "The JPEG Still-Picture Compression Standard," Communications of the ACM, Vol. 34, No.
4, April 1991.

33. Berkeley MPEG-1 Video Coder, University of California, Berkeley, March 1994.
34. Committee Draft of Standard ISOl 1172: ISO/MPEG 90/176, Coding of Moving Pictures and Associated

Audio, December 1990.

35. ISO 10918, JPEG Digital Compression and Conding of Continuous-Tone Still Images, Draft, 1991.

Juan Miguel del Rosario is a Ph.D. candidate with the department of Electrical and Computer Engineering at
Syracuse Univerisity, and is a research assistant at the Northeast Parallel Architectes Center (NPAC). He earned
an M.S. degree in Computer Science in 1992 and a B.S. degree in Mathematics, Physics, and Chemistry in 1988,
both from the University of San Francisco. Prior to attending Syracuse Univeristy, he worked at nCUBE where he
played a key role in designing and was principal implementor of one of the first parallel file system's for distributed
multiprocessors, The "Video Cm-Demand Technologies" group at NPAC, of which he is a member, concentrates on
the development of technologies necessary for the construction of large scale, parallel multimedia servers for use
in education. His research interests include: image compression and related transmission and detection problems;
high-speed communications; and parallel I/O.

Geoffrey Charles Fox is Director of NPAC and Professor of Computer Science and Physics and an internationally
recognized expert in the use of parallel architectures and the development of concurrent algorithms. He leads a
major project to develop prototype high performance Fortran (Fortran90D) compilers with language independent
runtime. He has always emphasized the role of applications in driving and validating technology. This is illustrated
by his recent book "Parallel Computing Works" which decribes the use of HPCC technologies in 50 significant
application examples. Fox directs InfoMall, which is focused on accelerating the introduction of high speed
communications and parallel computing into New York State industry and developing the coorresponding software
and systems industry. Much of this activity is centered on NYNET with ISDN and ATM connectivity throughout the
state including schools where Fox is leading developments of new K-12 applicatons that exploit modem technology.

296

Appendix 1(3)

m-Frame granular transport and buffer requirements

for VBR encoded media in VOD servers *

Juan Miguel del Rosariof Marek Podgorny* Geoffrey Fox§

NPAC Technical Report SCCS-733

Northeast Parallel Architectures Center
111 College Place, RM 3-201

Syracuse University
Syracuse, NY 13244-4100

Mar. 16, 1995

Abstract

Combined advances in computer and communication technologies such as secondary mass storage,
video compression standards, and high speed ATM networks have served as a foundation for enabling and
supporting large-scale video on-demand (VOD) service. However, although these technological advances
have made VOD services feasible, providing guaranteed quality, real-time video delivery still poses many

technical challenges.
In this paper, we describe a framework for the transmission of smoothed VBR streams in video on-

demand servers called m-frame transport. Our model allows for the specification of varying degrees of
smoothing in the video source signal and provides formulae for computing the required buffer sizes for
both the network server and the client.

We show that by a proper selection of the m-frame transport parameter (smoothness value), apprecia-
ble statistical multiplexing gains can be achieved. Further, we show that for a given range of smoothness
values minima exist such that buffer size requirements can be reduced greatly, as compared to full CBR
transmission, without significant loss in statistical multiplexing gain. Video transmission can then be
accomplished in a deterministic, real-time fashion, without frame loss.

•This work was sponsored in part by the US Airforce under Rome Laboratory contract # F30602-94-C-0256.
*ECE Dept., Syracuse University
lNPAC, Syracuse University
5CIS Dept., Syracuse University

297

Contents

1 Introduction 2

1.1 Constant and variable bit rates 2

1.2 Server/client buffering 3

1.3 Contribution of this paper 3

2 m-Frame transport model 4

2.1 Scheduler assumptions 5

2.2 Time slots 6

2.2.1 Network server 6

2.2.2 Video server 7

3 Buffer requirements 7

3.1 Video to network server 8

3.1.1 Flow conditions 9

3.1.2 Buffer underflow ' 10

3.1.3 Buffer overflow n

3.1.4 Simplified algorithm 11

3.2 Network server to client 13

3.2.1 Flow conditions 13

3.2.2 Buffer underflow 14

3.2.3 Buffer overflow 15

4 Experimental results 16

4.1 Statistical multiplexing gain 16

4.2 Buffer requirements 24

4.3 Discussion 27

5 Conclusion 28

298

1 Introduction

Combined advances in computer and communication technologies such as secondary mass storage, video

compression standards, and high speed ATM networks have served as a foundation for enabling and sup-

porting large-scale video on-demand (VOD) service. However, although these technological advances have

made VOD services feasible, providing guaranteed quality, real-time video delivery still poses many technical

challenges.

The problem of providing real-time scheduling and delivery mechanisms for VOD servers is often decom-

posed into two smaller, component problems. One deals with the problem of secondary storage allocation,

and real-time scheduling and retrieval of continuous media. Another deals with scheduling and transmission

of continuous media over networks (often, ATM networks). In reality, these components are interdependent

and design or operational decisions for one will limit options available for the other. This situation is par-

ticularly true of factors involving transmission rate characteristics and buffer size requirements between the

video server, network server, and client.

1.1 Constant and variable bit rates

In evaluating network performance, a consideration of the expected network traffic characteristics is of

paramount importance. Much research work has been has been devoted to the study of video transmission

using ATM networks [19], [7], [3], [6], [4], [8], [16], [12], [1], [20]. The primary issue being addressed here

revolves around the performance benefits and trade-offs of using variable bit rate (VBR) encoding schemes

versus constant bit rate (CBR) encoding schemes.

In CBR encoded video sources, picture quality parameters are adjusted to maintain a constant require-

ment for delivery. As a result, although the video traffic can be transmitted via a fixed, reserved bandwidth,

degradation of picture quality often occurs during encoding. In VBR encoding, the video source is encoded

with a constant picture quality. This results in a variable number of bits from frame to frame.

To maximize the efficient use of network bandwidth, it is necessary to multiplex several video sources

onto the same transmission channel. It is ATM's ability to provide variable bandwidth dynamically (through

statistical multiplexing) that makes it an attractive choice as a variable bit rate transport mechanism.

Obviously, multiplexing several VBR sources by simply reserving the maximum bandwidth required by each

source results in very inefficient use of the network bandwidth. However, problems start to arise when VBR

sources are multiplexed without peak bandwidth reservations for each. Under these conditions, the source

bandwidth requirements and available network bandwidth fluctuate independently of each other over time.

Such fluctuations result in congestion at the network switches which, in turn, cause cells to be queued, and

consequently delayed, and sometimes dropped. Furthermore, because the fluctuations (and thus the degree

of congestion) occur randomly over time, the switch delay, aside from causing overall end-to-end delay, also

results in increased jitter (variations in end-to-end delay) in the transmitted video stream. Although cell loss

is undesirable because it leads directly to picture degradation, it can be tolerated to some extent. However,

real-time video sources are extremely delay-sensitive and have very strict bounds on delay tolerance. Jitter

299

leads to choppiness in the output as well as possible loss of synchronization for phase sensitive streams.

A measure of the effectiveness of VBR transmission schemes has been formulated by Heeke [7] and is

called the statistical multiplexing gain; it is defined as the ratio of the number of multiplexed VBR sources to

the number of multiplexed CBR sources while maintaining an equivalent subjective picture quality. Finding

a solution to the problem of multiplexing VBR signals over a single transmission channel is an active area

of research. Several solution approaches have been taken including multilayer bandwidth allocation [11],

switch level error control and multiplexing [2], "smoothing" of the video source [18], [19], [17], [5], and

stream rate adjustment [13], [15], [14].

1.2 Server/client buffering

Delivering VBR encoded video streams at other than variable bit rates require some measure of buffering at

either the server or client processors. In a recent experiment [9], a large VOD storage server was designed

which contained up to 768 MBytes of main memory, and RAID storage devices. Although the storage system

could support delivery of up to 86% of maximum theoretical number of concurrent streams, the reported

number of concurrent streams supported reached only 30% of the theoretical maximum due primarily to

server memory space limitations.

An alternative approach proposed in [10] employs buffering at the client process to achieve CBR trans-

mission of VBR data. This strategy results in an increase in the maximum number of streams that can be

multiplexed by a factor of 4.6 to 9.9 times. However, most of the buffering is placed at the client process.

In a set of sample video streams, it was shown that from 3.7 to 14.6 Megabytes of buffer memory may be

required. For multimedia PCs, currently being marketed with 64, and 512 Megabytes of RAM, the required

buffer sizes amount to between 5.7% to 22.9%, and 0.65% to 2.9%, respectively, of the available memory.

Although these buffer sizes may seem reasonable for larger capacity display devices such as workstations or

PCs, they are still expected to greatly exceed the storage resources which is anticipated will be available in

at least first generation set-top boxes.

1.3 Contribution of this paper

From the preceding discussion, it is clear that any strategy for video delivery in video on-demand systems

must incorporate expressions for both transmission rate and buffer size components. Motivated by these

issues, we present in this paper a framework for providing end-to-end delivery of variable bit rate encoded

continuous media in video on-demand servers. Our model allows for arbitrary degrees of variability in the

transmission rate and provides formulae for computing buffer requirements, for any given transmission rate,

at both the server and client end-points.

The rest of this paper is organized as follows. Section 2 contains a description of the m-Frame transport

model. Section 3 derives the formulae for resolving buffer requirements for m-Frame transport. In section 4

we present some experimental results and we conclude with section 5.

300

VBR/CFR
Encoded
Video
Sources

Secondary Storage
and Video "pump"

Network Manager Client Display

Figure 1: m-Frame transport model

m=12

|—i
r3

rl r4 —

■fV T
m <o m, ni2 1 %

Figure 2: m-Frame granular stream

2 m-Frame transport model

A video on-demand server comprises three components: a video server which stores and retrieves video files

from long-term storage devices, a network server which receives the video stream data from the video server

and injects it into the network, and a client display process; and transmission connections between these as

illustrated in Figure 1. The connection between the video and network servers (labelled A in the figure) is a

local one (i.e., within the server machine) and the connection from the network server to the client (labelled

B in the figure) is a remote one. We assume that the video source has been stored as a VBR encoded

stream in secondary storage as shown. Further, we make the assumption that the network server to client

connection has transmission properties similar to ATM networks in the sense that it is capable of providing

variable bit rate transmission service.

Consider a typical VBR encoded video stream1 being transmitted from the video server to the network

server, or from the network server to the client. The stream is composed of a finite number, Nj, of frames of

varying sizes; the size of each frame in bits is given by X,-. Given such a VBR encoded video stream, let the

stream be divided into a set of sequences of some integral number of frames, 1 < m < Nj, the last sequence

of which may or may not have less than m frames. We call each sequence in the set an m-frame sequence and

the video stream so divided an m-frame granular stream. Further, we say that an m-frame granular stream

possesses m-frame granularity.

An m-frame granular stream is illustrated in Figure 2. In this case, m = 12. Note that each m-frame

sequence is composed of variable size frames. We can define a transmission rate to be associated with each

m-frame sequence as follows.
1 In actuality, the frame sizes in an MPEG encoded stream depends upon the encoder implementation. It is possible for a

CBR encoded stream to have variable frame sizes although with much greater periodicity than VBR encoded streams (e.g., a

20:4:1 bit ratio for frames I, P, and Q has been used for CBR encoding).

301

Take an arbitrary m-frame sequence, m;, from an m-frame granular stream, s. Let / be the number of

frames in the m-frame sequence. (In general, / < m, with equality holding if mi is not the last sequence in

s). Let Rj represent the overall required frame playout rate. We define

Rb
>(m-) - R'T!,-,

as the sequence rate for the ith m-frame sequence in s. The sequence rate for an m-frame sequence is the

constant bit rate (i.e., average bit rate for the m-frame sequence) corresponding to the constant frame rate

playout requirement for the stream. In Figure 2, the labels rl through r4 represent the sequence rate for

the m-frame sequences shown.

The transmission rate profile for an m-frame granular stream is determined by the source video stream

profile and the granularity of the m-frame granular stream (i.e., the size of the m-frame sequence determined

by the magnitude of m). An 1-frame granular stream corresponds to CBR2 transmission (i.e., the rate is

averaged over the entire video stream). An Nj-frame granular stream corresponds to fully VBR transmission.

Magnitudes of m between 1 and Nj describe various degrees of smoothing. For these values of m, transmission

rates are still variable, but the period of variation has increased to m times the full VBR case (the frequency

also decreases proportionately).

Thus, given a video stream, we can view the stream as being divided into a set of sequences each of

which is composed of the same fixed number of frames (except possibly the last sequence) with an associated

constant bit rate; each sequence can then be delivered at its associated constant bit rate. With such a

construction, it is possible to describe the transmission of a video stream for a full range of bit rates from

CBR to full VBR.

The significance of using m-frame granular transport is that it provides a means for controlling the degree

of variability in the VBR video source stream. This is equivalent to specifying the degree of smoothing applied

to the stream, which has a direct effect upon achievable statistical multiplexing gain and buffer requirements.

Experimental results which demonstrate the effects m-frame transport on both these quantities will be

presented below.

2.1 Scheduler assumptions

Let Tc represent the cycle time in seconds for the server scheduler. We define the cycle time as the time

it takes for the scheduler to service every concurrently supported stream once. We assume that the server

employs a round-robin schedule to transmit the video stream and that during each cycle of the scheduler,

a pre-determined time slice t'e < Tc is allocated to each stream, s, as illustrated in Figure 3. The delivery

framework we propose is dependent upon these assumptions about the scheduling algorithm. Note that

for this paper we have assumed the simplest possible scheduling algorithm - we assume that the time, t'e,

allocated to each stream by the server is fixed for all streams. Future papers will investigate the use of more

complex scheduling algorithms which will allow t'c to be dynamically adjusted.

2 For the remainder of this paper, the term CBR will refer to transmission at the constant bit rate defined by the required

playout rate in frames/sec.

302

Scheduler Input l/\ Scheduler Output

S = Slack Time

Figure 3: Round-robin scheduler

2.2 Time slots

A real-time video stream can be naturally subdivided along the temporal dimension into time slots, where

each slot, n; : i G {0,1,2,3, ... ,NS}, refers to the time interval [ti,ti+1] in the video stream transmission

period. This representation is illustrated by Figure 4 where r represents some constant time interval for

each time slot.

2.2.1 Network server

Theoretically, the network server is capable of transmission at rates associated with any m-frame sequence

granularity. A number of possible configurations may occur in dividing a given m-frame granular stream

into time slots of some arbitrary length. Figure 5 illustrates some of the possible options. For all diagrams

in the figure, each pattern identifies a distinct m-frame sequence with its associated sequence rate.

In general, there may be any number of m-frame sequences within an arbitrary time slot. Without

loss of generality, suppose that a time slot contains k m-frame sequences3{mi, m2,..., m,-,..., mk} where

l>k>Nf, and mi and mk are contained either wholly or partially. The total number of bits contained in

such a time slot, m, for a stream, s, is given by the sum

C(n,) = aiX^ + Q2*
(m2) + • • • + a*X<m*> (1)

where X^mi) represents the size in bits of m-frame sequence m, and a{ denotes the fraction of each

m-frame sequence, m,-, that is contained in the time slot, rij.

Alternatively, we can view time slots in terms of frames of the video stream. Let C{jii) be the number

3The number of m-frame sequences in each time slot is dependent upon the sequence rate profile of the m-frame granular

stream, which in turn is dependent upon the frame size profile of the video source.

9 Frames 8 Frames 5 Frames 10 Fn lmes

.g •■ ;;
;■; ;S | S;

■M—
slot n; slot ri; t-i slo tni+ 2 slo tnL+3

Figure 4: Video stream time slots

303

m-frame

in-frame

BIBpl|lliullll:|lllS|llllllill|

slot 11;
X

Figure 5: m-Frame granular stream and time slots

of frames contained in time slot n,-. C(rii) can be determined by a modification of equation 1 into

.(mi) C(ni) = ß1Xp> + p2xp> + ■■■ + ßkx
(; r(mk)

(2)

where X™' represents the size in frames of m-frame sequence mt-, and /?; denotes the number of frames

from each m-frame sequence, m,, that is wholly contained or terminates in the time slot, n,-. This is illustrated

in Figure 4, the m-frame boundaries are not shown for simplicity. Note that in each slot we count only the

number of complete frames within the slot; thus from the figure, the last frame in the third slot is counted

towards the fourth slot.

In an actual implementation, the network interface unit usually transmits data at some constant bit

rate greater than or equal to the required maximum transmission rate. Under this condition, the varying

sequence rate (induced by m-frame granularity is) is effected by regulating the duration in transmission time

per slot. This results in an idle network during portions of the allocated time slot. Alternative scheduling

algorithms may be used to take advantage of this condition and allow for an increase in the number of

streams servicable. We are currently investigating the use of such scheduling algorithms.

2.2.2 Video server

A fundamental contraint is imposed on our system by the fact that video streams are stored in secondary

storage devices. By nature, such devices are restricted to providing constant bit rate service. Therefore

our model must accommodate this limitation. In accordance with this, we view the video stream as being

divided into time slots of equal size in bits, ignoring frame sizes and boundaries as illustrated previously in

Figure 4.

3 Buffer requirements

Any departure in transmission rates from full VBR. transmission is constrained by the real-time property of

motion video to require buffering. In this section, we quantify the buffer requirement for any given video

304

stream with some arbitrary m-frame granularity. Two different cases must he considered, first, transmission

from the video server to the network server, second, transmission from the network server to the client.

3.1 Video to network server

In this section, we describe the nature of data flow from the video server to the network server, and analyze

the buffer size requirement at the network server for an arbitrarily selected m-frame granularity.

A video server transfers data at a constant bit rate. We assume that the network server transmits data

into the network at a variable bit rate whose profile is determined by an associated m-frame granularity.

In other words, we assume that the network server views the video stream as an m-frame granular stream

and transmits each m-frame sequence at its associated sequence rate, resulting in an overall variable bit

rate transmission for the video stream. Buffering is performed at the network server in proportion with the

degree of variability in the network server transmission rate.

For any given video stream, s, its total length in bits is given by U = Ylidi X{. Assuming a desired

playout-rate in frames/sec of Rj, the playout time in seconds for the entire stream is T" = ^-, and the

corresponding average bit rate requirement is fij = ^-. We assume that the video server transfers data to

the network server at this constant bit rate.

Due to the real-time and continuous nature of a video stream, at each cycle of the video server scheduler,

the video server must deliver a sufficient amount of video data to satisfy the network server consumption

for the entire cycle time, Tc. That is, it must deliver Ä = RbxTc bits of data per cycle. We assume, as

mentioned previously, that each stream gets allocated some portion, t'c, of Tc by the video server scheduler.

In order to satisfy the network server's consumption requirement per cycle, the video server must deliver A

bits of data in time tsc. Hence, for each stream, the bandwidth requirement for delivering the video stream

is equal to Rt,c = p- = Rbjf--

The rate of consumption at the network server is equivalent to its rate of transmission. From section

2.2.1, the number of bits contained in a given time slot, n;, for a given stream, s, is given by equation 1. Let

B(rii) be the number of bits in the network server buffer at the beginning of slot n,- (i.e., at time U), and let

Ä(rii) be the number of bits arriving at the network server buffer during slot n,-. Then, for each time slot,

the number of bits remaining in the buffer is given by the recursive equation

B(ni+l) = B(ni) + Ä(ni)-C(ni), Vt € {0,1, 2,..., N,}

Consider the arrival rate, Ä(n;), at the network server. Since we transmit the video stream at a constant

bit rate and the size of each frame, X{, may vary, there is a variable frame arrival rate. Since the number of

incoming bits for any slot may be less than that necessary for consumption, we cannot rely on incoming data

to satisfy the current slot consumption requirements. Therefore, we have to satisfy the current transmission

requirements solely from the buffer, network transmission will be interrupted if the buffer never underflows

for any of the time slots. Hence, we have the requirement

305

B(ni+1) = B(tii) + Ä(m) - C(rii) > 0 Vie {0,1,2,...,^,}

Since this is true for all slots ?i,:, without loss of generality it is true for some slot nk. Then, the recursive

formula above for the buffer requirement can be written as

Jfc-i ft-i

B(nJ0 = £(n0) + £J4(ni)-£C'(n,-)>0 V* € {0,1,2 TV,} (3)
t=0 i=o

Thus, for any point throughout the transmission of the video stream (from beginning to end), the network-

server buffer must never underflow.

3.1.1 Flow conditions

For a given time slot, if the number of bits or frames that arrive in that slot is less than the amount consumed

(e.g., A(rii) < C{rn)) we call this slot an underflow slot; if it is greater than the amount consumed (e.g.,

A{ni) > C(n,-)), we call it an overflow slot; if it is equal to the amount consumed (e.g., i(n,) = C(n,-)), we

call it an even slot. (Whether bits or frames is the metric currently being used will be made clear from the

context.) We make the assumption that data for a given slot will arrive at the client and be buffered prior to

the start of its consumption. During the playout of a video stream, there will be a combination of overflow,

underflow and even slots. Thus we have

K'

£i(n,-) = £ Ä(m) + £ Mm) + £ Ä(m) (4)
i=° ietfi i£K'0 i£K^

where K'u, K'0, and K'e are the set of underflow, overflow, and even slots respectively, and \K'U\ + \K'0\ +

\K'e\ = K', where A" e {0,1,2,...,N,}.

From equation 3 and 4 we have, VA' G {0,1,2,..., N,}

K'

B(n0) + £ Mm) + £ Mm) + £ Ä(m) - £ C(m) > 0
ieK'„ ieK'0 i£K'c i=0

*=> B(n0) + J2 Mm) + £ Ä(m) + £ Mm) - £ C(m) - £ C{nr) > o
'€Ki i€A'i i£K'c i£K'„UK'0 i£K>c

B(n0) + £ i(n<)+ £i(n<)- £ C(n,-) > 0
«e/fi i£K'a i€K'uuK'0

(5)

where, by definition, Ä(rii) < Cfn,-) Vj € K'u and Ä(ni) > C(n.) V? € K'0.

There are now two conditions which must be accounted for in buffering. The first is the buffer underflow

condition which describes the situation where, during some point in the video transmission, the buffer runs

empty and there is nothing for the network server to transmit. The second condition is the buffer overflow

condition which describes the situation where the buffer is full and can not accommodate the incoming bits

for the current slot. We address these two cases below.

306

3.1.2 Buffer underflow

Consider the case where the video stream is transmitted to the network server without prefetching a few

frames into its buffer. That is, at the start of transmission at time t0, the huffer is empty (i.e., D(n0) = 0).

Then, the buffer underflow condition comes about when for some time slot during the transmission of the

video, the total number of bits that have arrived is less than that required for tranmission (consumed). Thus

we have, for some time slot, N'K>, where K' = \K'U\ + \K'0\ + \K'e\

Y Mm)+ Y Mm) < Y
iZK'uK'

C(n{)

J2 A(m) + J2 Aim) - Y CM < 0
i£Ki i€K'Q i€K'uuK<e

Therefore for equation 5 to hold, we require

VA", B(n0) > £i(n,-)+X;i(n.-)- Y CM
«eKi itK'o iCK'uK'

>

>

Y Mm) - Y CM + Y Mm) - Y °M
ieK'u «Gifi i€K'0 i£K'0

Y(Mm) - c(ni))
t=0

(6)

(7)

where equation 7 follows from 6 because £i(EK< Mni) = ^2ieK'c
c(ni) by definition. Hence, to prevent

the buffer underflow condition, we need to transmit a number of frames into the client buffer before initiating

the display. Since equation 7 must be true for all K',

B(no) — max(
' K'

Nr,

Y(Mni) ~ COO)
«=o

(8)

gives the required number of bits to buffer prior to network transmission in order to avoid buffer underflow

at the network server.

To facilitate the discussion above, assumptions were made about the nature of the stream with regards to

generating either overflow or underflow conditions. In a true implementation, the video stream will comprise

a combination of overflow and underflow slots for each segment, NK-, of the stream. Therefore, we need to

modify equations 8 to accommodate this situation. Equation 8 is modified as follows. We let F be defined,

for all K', as

*N„ F = min(£r=W(«i)-C(«.-)))
K

307

where the maximum underflow condition will be represented by the most negative value of F. We can

now define the underflow buffer requirement as

B(no) = 1 n «i ■ (9) [U otherwise v '

3.1.3 Buffer overflow

The buffer overflow condition is similar to the underflow case but the initial condition is now slightly different.

The buffer overflow condition comes about when for some time slot during the transmission of the video, the

difference between the total number of bits that have arrived and those consumed is greater than the amount

containable in the buffer. To minimize the overflow buffer requirement, we assume the initial underflow bits

to exist in the network server buffer (i.e., B(n0) is given by equation 9). It follows for the overflow condition

that

E Ä{m) + Y, Mm) > E ö^)

*=> E Mm) + E Mm)- ■ E CM > °

Therefore equation 5 holds. But, to prevent buffer overflow we require that

VA" Bmax > B(n0) + E Mm) + E A(m) - E C(n,-')
i€K'u i£K'0 i€K'uUK'0

> B(n0) + E Mm) ~ E ö(m) + E Mm) - E ö(m) (10)
<€*; i€K'u itK'o ieK<

N K1

> B(n0) + J2(Mm)-C(ni)) (ii)
«=o

again equation 11 follows from equation 10 because £,-eir, A{ni) = £,€K, C(n,-) by definition. Since

equation 11 is must be true for all K',

Bmax > B(n0) + max(E(^("«') - C(m))) (12)
K'

i-0

gives the required buffer size to avoid overflow.

3.1.4 Simplified algorithm

A simple algorithm for performing a computation equivalent to that defined by equation 12 is given below.

308

bits 1 ..-

Mi) + |Unow| y' y .--'''

..-•'■ /r^—C(t)

,.-' '/
^' Ä(t) - C(t)

|Uflowf

..-' >^-'

|°flow|
time

1 -

Figure 6: Video to network server buffer overflow and underflow limits

Nf For each m-frame sequence m;, z = {1,2,..., ^ }

Compute the size of m,- in bits from C(m') = £«=i -^<-

?(«".) Compute the playout duration for m, by Vv '' - ^77, where R\ '' is the

sequence rate for m,-.

For the same duration, compute the equivalent number of bits for delivery

at the constant arrival rate, Rb, by A^m'> = Rbtp' .

Compute difference in arrival and consumption quantities by D = ^(m0 - C^mi\

If (D < Ujiow) Ufiow = D. Store underflow buffer requirement.

If (D > Ojiow) Of tow = D. Store overflow buffer requirement.

End for.

Return buffer requirement BmaT = Ujiow + 0;iow.

This algorithm capitalizes upon the cumulative nature of equations 9 and 12. To describe the main

idea, we define an accumulation function, C(t), which returns the sum in bits of all the m-frame sequences

that would be consumed (either wholly or partially) in the time interval [0,i] when each is transmitted at

its sequence rate. We further define the number of arriving bits in the interval [0,t] assuming a constant

bit rate Rb as A = Rbt. As illustrated in the diagram of Figure 6, for each time point, U, we can compute

the difference D - A - C(t). The minimum value (the most negative) of D will give the underflow buffer

requirement; similarly, the maximum value will give the overflow buffer requirement as shown in the figure.

309

anes

Notice that superimposing time slot intervals over the diagram and computing for D at lime slot bound-

would, in effect, represent equations <) and 12. However, since C(t) is piece-wise linear according to

m-frames, we can simplify the operation by computing for D at m-frame sequence boundaries rather than

at time slot boundaries, and still arrive at the same results; this is the basis for the above algorithm.

3.2 Network server to client

In this section, we describe the nature of dataflow from the network server to the client display process, and

analyze the buffer size requirement at the client process for a stream delivered with some arbitrarily selected

m-frame granularity. Assumptions made in the section above regarding the network server transmission

properties remain the same. On the client side, we assume that the display process consumes data at some

constant frame rate.

Consider the client process. Let £(n,-) be the number of frames consumed by the client in slot n,-; this

value is a constant and is equivalent to the playout frame rate (e.g., 30 frames/sec for full motion video).

Let D(m) be the number of frames in the buffer at the beginning of slot m (i.e., at time U). Let C{TH) be

the number of frames arriving during slot n,-; this is the frame arrival rate at the client process. C{n,i) is

determined by equation 2 from section 2.2.1.

As in the video to network server case, we have the requirement

D(ni+1) = D{m) + C(rn) - E{m) > 0 Vi e {0,1,2,..., Ar,}

Since this is true for all slots n{, without loss of generality it is true for some slot nm. Thus, we have

D(nm) = D(n0) + Y,C(ni)-^2E(ni)>Q VJfc € {0,1,2,.. .,#,} (13)
t=0 i=0

3.2.1 Flow conditions

For the following discussion, underflow, overflow, and even slots are determined from units of frames rather

than bits. That is, the case C{ni) < E(n{) defines an underflow slot, the case C{m) > E(rn) defines an

overflow slot, the case and C(ni) = £(n.) defines an even slot. As before, there will be a combination of

overflow, underflow and even slots during the playout of a video stream, and we make the same assumption

with regards to having slot data arrive at the buffer prior to its scheduled consumption. Thus we have

K

J2C(ni) = Y c(m) + Y C{n{) + Y, C(m) (14)
<=o iefc. .gK0 ieKc

where Ku, K„, and Ke are the set of underflow, overflow, and even slots respectively, and |.A'U| + \K0\ +

\Ke\ = K, where K G {0, 1, 2,..., Ns).

From equation 13 and 14 we have, VA' G {0,1,2 , Ns}

D(n0) + Y,
c("«) + E c(ri'-) + E c(n') - E E^ Z 0

«€A*. i€K0 i£A'c i = o

310

D{n0) + Y, C^ii) + E C^ + E C^ - E E^ - E E(n-) ^ ° ■
igA'„ ieA'o «e/v, «GA'.uA'o ie/C

<=>D(n0) + X) C(ni) + E C'(n') - E ß("0>0 (15)
:"€K„ '6A'„ ie/l',U/C

where, by definition, C(n,) <-£,(ni) Vj G A'u and C'(»t) > A(«<) Vj G A„.

3.2.2 Buffer underflow

Consider the case where the video stream is transmitted to the client without prefetching a few frames into

the client buffer. That is, at the start of display at time t0, the buffer is empty (i.e., D(n0) = 0). Then, the

buffer underflow condition comes about when for some time slot during the transmission of the video, the

total number of frames that have arrived is less than that required for display (consumed). Thus we have,

for some time slot, NK, where K = \KU\ + \K0\ + \Ke\

C(m) + Y, c(ni) <

Y c(n«) + E c^ - E £("*) < °

iEK„uK,
E(m)

Therefore for equation 15 to hold, we require

VA, D(n0) >

>

>

Ec(n')+Ec(n')- E E
M

i€A'„ i£K„ ieif»Uif„

j2 c(n,-)- E £("■)+ E c«>- E E^)
t'6A-„

NK

i€K, i€K„ i€K0

J2(Mm) ~ C(n,-))
t=0

(16)

(17)

where equation 17 follows from 16 because £),-eÄe C(n«) = J2ieKc
E(n0 bv definition. Hence, to prevent

the buffer underflow condition, we need to transmit a number of frames into the client buffer before initiating

the display. Since equation 17 must be true for all A,

D(no) = max(
NK

£(C(nO - E(m))
i=0

(18)

gives the required number of frames to buffer prior to display in order to avoid buffer underflow. Note that we

compute the buffer size here in units of frames because consumption is in terms of frames (i.e., VBR/CFR)

independent of individual frame size.

As we had done previously for the video to network server buffer computations (section 3.1.1, equation 9),

we modify equation 18 to accommodate the general case for a true implementation. We let F be defined, for

all A, as

311

where the maximum underflow condition will be represented by the most negative value of F. We can

now define the underflow buffer requirement as

n/ . / -F if F<0
D^=\ n otherwise (19)

3.2.3 Buffer overflow

The buffer overflow condition here is analogous to that computed in section 3.1.1 which resulted in equa-

tion 12. In this case we have, for all K'

N„,

Dmax > D(n0) + max(^(C(nO - E(m))) (20)
t = 0

as the required buffer size to avoid overflow.

An additional bit of computation is required for this overflow case. Since it is important not to alter the

arrival stream's overflow/underflow characteristics, the evaluation process for overflow buffer requirement

must be conducted at time slot boundaries. This guarantees that the associated overflow computations hold

by assuring that they begin at the same time slot boundaries as those used for underflow computation. In

order to minimize the buffer allocation, instead of beginning at the first time slot, we first round the number

of frames given by equation 19 to the nearest time slot worth of frames, then, we begin overflow evaluation at

the start ofthat time slot. Further, we subtract from the computation for the starting time slot the number

of frames that are to be included in the underflow buffer. We describe this algorithm more formally in the

following.

Define nD(ne) as the number of the last slot occupied by the underflow buffer frames. Let V{nD^no)) be

the number of frames from D(n0) in its last slot, nß(no). Then, the amount of overflow for the first slot of

overflow computation is given by

W(nD(no)) = C{nD{no)) - V{nD{no)) - C{nD{n<>))

where V{nD^n<>)) is V(n.D(„0)) in units of bits. The general idea of the formulation is illustrated in Figure 7

Finally, calculating for the overall overflow condition we have, for all K',

Dmax > D(n0) + ma.x{W(nD{no)),]jT (C(n.) - E(ru))} (21)
'="D(n,)+l

where D(n0) is D(n0) in units of bits, and Dmax defines the maximum buffer allocation requirement for

the video stream.

312

B(no) A('ll)(no))

sIot nB(no)-l Slot Hi B(no)

-*►=*—■ »►:-*-

C(nß(no))

sl°l n»(iK.)+i slot 11 li(no)+2

V(nB(no)) C(nB(no)) W(nB(no))

Figure 7: Overflow buffer computation - first slot

4 Experimental results

In this section we present some results for two sample video encodings, one for Jurassic Park and another for

MTV. The video sources comprise a 10,000 frame (approx. 15 mins.) segment of the full movies and were

captured using a MultiVideo4 card and were later compressed to MPEG-1. Jurassic Park was captured

with a MultiVideo Q-factor of 105, and MTV had a Q-factor of 50 (the higher the Q-factor, the lower the

resolution) 5. MPEG compression was performed at the same quality factors for both videos.

4.1 Statistical multiplexing gain

Figure 8 and Figure 9 show the pdf's for the original VBR encoding of Jurassic Park and MTV respectively.

Figure 10 shows the pdf for MTV with m = 100, and Figure 11 shows the pdf for the MTV source with

m = 500.

The effects of m-frame transport on statistical multiplexing gain is illustrated for MTV in Figures 12

, 13, and 14. Figure 12 shows the statistical multiplexing gain for the original VBR encoding of MTV (i.e.,

m = 1) for various n-fold multiplexed signals. Figures 13 and 14 show the statistical multiplexing gain for

the MTV sample with values m = 500 and m = 1000 respectively. The graphs are obtained by computing

the pdf of the n-fold convolution of the individual source signal at each m value. The pdf's are displayed as

the negative cumulative distribution of each n-fold pdf; this represents the probability that a given bit rate

is exceeded and is proportional to the cell loss probability for the multiplexed signal. For all the graphs, we

have assumed that the sources are independent and that the queue lengths and maximum bandwidth are

unlimited [20].

From the figures we notice that significant statistical multiplexing gain can be obtained versus the original

source signal (i.e., m — 1), and that the statistical multiplexing gain obtained for m = 500 and m = 1000

are comparable in magnitude. To better compare the statistical multiplexing gain obtainable as a function

of m, we examine Table 1. The tables show the rate requirement and statistical multiplexing gain for each

channel of 32 multiplexed signals (i.e., m = 32) versus the original VBR signal (i.e., n = 1 and m = 1).

Further, Table 2 shows the gain for a single signal (i.e., n = 1) as a function of m. Note that the gains

4 MultiVideo is a trademark of Parallax Graphics, Inc.
5The manufacturer recommended Q-factor for general use is 150.

313

prob.

u.uti - 1 i i ' 1 1 1 ■ 1— 1 1

0.034 - 1 -

0.027 - -

• •

0.020 - \ -

■ •

0.013 ■ -

■ •

0.007 ■ \ J -

nnnn - . , . , . ™u., . _.-■ i
0.0 2.0 4.0 6.0 8.0 10.0 12.0

rate (Mbps)

Figure 8: pdf for VBR encoding of Jurassic Park sample

314

0.005

0.000, 15.0 20.0
rate (Mbps)

Figure 9: pdf for VBR encoding of MTV sample

315

prob.
0.08 f- ~nn—■ 1~

0.06

0.04

0.02

o.oo
-1.0 0.0 1.0 2.0 3.0 4.0

rate (Mbps)

Figure 10: pdf for MTV sample with m = 100

316

prob.

Figure 11: pdf for MTV sample with m = 500

317

prob.

15.0 20.0
rate (Mbps)

Figure 12: Statistical multiplexing for MTV with m = 1

318

prob.

3.0
rate (Mbps)

Figure 13: Statistical multiplexing for MTV with m = 500

319

prob.

10°"

10-'

10

I0";

10"

io-=

10"c

10-'

10!

10s

r2.0

10"' 10.0 '■■■■■ ■ ■ i ■
0.0 1.0 2.0 3.0

rate (Mbps)

Figure 14: Statistical multiplexing for MTV with m = 1000

320

Table 1: Statistical multiplexing gain as a function of?», for n = 32, and for probability < 10 8 (required

rate for (m,n) = (M) is 'nA MbI>s for MTV, and 12.4 Mbps for Jurassic Park)

111 MTV Jurassic. Park

Rate Gain Rate Gain

1 3.707895 6.04 3.309433 3.75

20 2.825029 7.92 2.387502 5.19

30 2.796902 8.01 2.357813 5.26

40 2.743774 8.17 2.340624 5.30

50 2.745336 8.16 2.324998 5.34

100 2.650018 8.45 2.270307 5.46

200 2.612516 8.58 2.224992 5.58

300 2.596890 8.63 2.185927 5.68

400 2.584389 8.67 2.143737 5.79

500 2.565638 8.73 2.162488 5.74

1000 2.526573 8.87 2.104672 5.89

2000 2.457819 9.12 2.031230 6.11

3000 2.342187 9.56 2.057794 6.03

4000 2.346874 9.55 1.995291 6.21

5000 2.432817 9.21 2.031230 6.11

6000 2.337499 9.58 2.012479 6.16

7000 2.362500 9.48 2.043731 6.07

8000 2.357813 9.50 1.959354 6.48

9000 2.339061 9.58 1.949979 6.36

10000 2.446881 9.15 1.949979 6.36

shown in Table 2 are guaranteed and result from the smoothing effects of the m-frame scheme, they are not

dependent upon any statistical averaging as are the results from the previous table for n = 32.

The table shows that significant additional statistical multiplexing gain can be obtained from the smooth-

ing effects of m-frame transport although the incremental gain is expected to diminish as m approaches the

size of the video stream.

4.2 Buffer requirements

Figure 15 describes the buffer requirement for Jurassic Park at various values of m; Figure 16 shows the

equivalent results for the MTV source. The graphs represent buffer requirements for the network server to

client segment of the transmission path (i.e., m-frame transport for transmission, and VBR for consumption).

From the figure it is clear that varying the values of m can result in significant reductions in the client side

buffer requirement. For instance, from Figure 15 we see that the maximum buffer requirement approaches

approximately 4 Megabytes as one approaches the average transmission rate (i.e., as m —>■ 10, 000). However,

there is a minumum at around m = 3000 which results in a buffer requirement of only about 1.5 Mbytes.

Further, from the discussion above we have seen that there is not a significant loss in statistical multiplexing

gain in going from m = 10, 000 to m = 3000.

321

Bits

3.0e+O7

2.5e+07

2.0e+07

1.5e+07

.Oe+07

5.1e+06

I.4e+05

maximum
(overflow+underflow)
buffer requirement

2 2002 4002

Figure 15: Jurassic Park: Buffer requirement at various m values

322

Bits
5.0e+07

4.2e+07

3.4e+07

2.5e+07

1.7e+07

8.6e+06

2.5e+05

maximum
(overflow+underflow)
buffer requirement

2 2002 4002 6002 8002 10002

Figure 16: MTV: Buffer requirement at various m values

323

Table 2: Guaranteed multiplexing gain as a function of m, for n = 1, and for probability < 10-8

m MTV Jurassic Park
Rate Gain Rate Gain

1 12.35 1 22.35 1
20 4.35 2.84 4.85 4.60
30 3.85 3.20 5.25 4.25
40 3.65 3.38 4.65 4.80
50 3.45 3.57 4.30 5.19
100 3.25 3.80 3.50 6.38
200 3.10 3.98 3.35 6.67
300 2.70 4.57 3.30 6.77
400 2.55 4.84 3.30 6.77
500 2.60 4.75 3.30 6.77
1000 2.20 5.61 3.30 6.77
2000 2.05 6.02 2.65 8.43
3000 2.10 5.88 2.35 9.51
4000 1.95 6.33 2.35 9.51
5000 2.00 6.17 2.65 8.43
6000 2.00 6.17 2.30 9.71
7000 2.05 6.02 2.35 9.51
8000 1.95 6.33 2.35 9.51
9000 1.90 6.50 2.25 9.93
10000 1.90 6.50 2.65 8.43

4.3 Discussion

Notice from Figures 15 and 16 that in general, there is an increase in buffer size requirement as a function

of m, which agrees with intuition. This indicates that in order to minimize the buffer size requirements for

a segment, it is necessary to minimize m; this occurs however at the expense of statistical multiplexing gain.

Moreover, both segments of transmission, video server to network server and network server to client will

have their own functional dependencies for buffer requirement as a function of m. These will tend to be

contradictory since the video server transfers data at constant bit rate to the network server which consumes

the stream according to the selected m-frame granularity. This implies that the buffer requirements for the

video server to network server segment will tend to vary inversly as a function of m (i.e., minimum buffer

requirement exists when going from constant a bit rate data transfer at the video server to constant bit rate

consumption by the network server). Therefore, the buffer requirement will tend to shift from the client to

the network server with decreasing m values. Note however, that these are only general tendencies since the

actual functional profile for buffer requirement as a function of m depends upon the source signal profile

which is a stochastic process.

In an implementation, a VOD server can divide the range of m values for a given video stream into

regular intervals. The minimum buffer requirement for each interval can then be stored as metadata along

with the video stream. An admission control procedure can then be formulated where client buffer capacity

and an acceptable range of m values (derived from bandwidth or acceptable cell loss probability limits) are

324

supplied by the user as quality of service parameters.

5 Conclusion

In this paper, we have described a framework for the transmission of smoothed VBR streams in video on-

demand servers. Our model allows for the specification of varying degrees of smoothness in the video source

signal and provides formulae for computing the required buffer sizes for both the network server (within the

VOD server) and the client.

We have shown that by a proper selection of m-frame granularity, buffer size requirements can be reduced

greatly (as compared to full CBR transmission) without much loss in statistical multiplexing gain. Video

transmission can then be accomplished in a deterministic, real-time fashion without frame loss.

Plan for future work include: exploration into the use of more complex scheduling algorithms; storage

and resource allocation and hierarchy management in parallel machine implementations of video on-demand

servers.

References

[1] B. Maglaris and' D. Anastassiou and P. Sen and G. Karlsson and J.D. Roberts. Performance models of

statistical multiplexing in packet video communications. IEEE Trans. Commun., Com-36(7):834-843,

July 1988.

[2] B.J. Dempsey and J. Liebeherr and A.C. Weaver. A Delay-Sensitive Error Control Scheme for Contin-

uous Media Communications. Technical Report CS-93-45, University of Virginia, October 1993.

[3] D. Heyman and A. Tabatabai and T.V. Lakshman. Statistical Analysis and Simulation Study of Video

Teleconference Traffic in ATM Networks. In IEEE Global Telecom. Conference, December 1991.

[4] D.G. Morrison. Variable bit-rate video coding for asynchronous transfer mode networks. British Telecom

Tech. Journal, 8(3):70-80, July 1990.

[5] E.W. Knightly and D.E. Wrege and J. Liebeherr and H. Zhang. Fundamental Limits and Tradeoffs

of Providing Deterministic Guarantees to VBR Video Traffic. Technical Report temp, University of

Virginia, 1994.

[6] G. Ramamurthy and B. Sengupta. Modeling and Analysis of a Variable Bit Rate Video Multiplexer. In

7th Specialist Seminar, International Teletraffic Congress, Morristown, New Jersey, October 1990.

[7] H. Heeke. Statistical Multiplexing Gain for Variable Bit Rate Video Codecs in ATM networks. In S,th

International Packet Video Workshop, Tokyo, Japan, March 1991.

[8] H. Shino and et. al. Analysis of Multiplexing Characteristics of Variable Bit Rate Video Signals. In

Third International Workshop on Packet Video, Morristown, New Jersey, March 1990.

325

[9] J. Hsieh and M. Liu and j.C.L. Liu and H.C. Du and T.M. Ruvvart. Performance of a Mass Stor-

age System for Video-On-Demand. Journal of Parallel and Distributed Computing: Special Issue on

Multimedia Processing and Technology, page , 1995.

[10] J.M. del Rosario and G. Fox. Constant Bit Rate Network Transmission of Variable Bit Rate Continuous

Media in Video-On-Demand Servers. Technical Report SCCS-677, Northeast Parallel Architectures

Center (NPAC), Syracuse University, Dec. 1994. Submitted to: Second IASTED/ISMM International

Conference on Distributed Multimedia Systems and Applications.

[11] J.Y. Hui. Resourse Allocation for Broadband Networks. IEEE Journal on Selected Areas in Communi-

cations, 6(9):1598-1608, December 1988.

[12] M. Nomura and T. Fujii and N. Ohta. Basic characteristics of variable bit rate video coding in ATM

environment. IEEE J. on Select. Areas Commun., SAC-7:752-760, June 1989.

[13] P. Pancha and M. El Zarki. A Look at the MPEG video coding standard for variable bit rate video

transmission. In IEEE INFOCOM '92, Florence, Italy, May 1992.

[14] P. Pancha and M. El Zarki. Bandwidth Allocation Schemes for Variable Bit Rate MPEG Sources in

ATM Networks. Technical report, University of Pennsylvania, 1992.

[15] P. Pancha and M. El Zarki. Prioritized transmission of VBR video traffic. In IEEE GLOBECOM '92,

pages 1135-1139, Orlando, Florida, December 1992.

[16] P. Sen and B. Maglaris and N. Rikli and D. Anastassiou. Models for packet switching of variable bit-rate

video sources. IEEE J. on Select. Areas Commun., SAC-7:865-869, June 1989.

[17] R.M. Rodriguez-Dagnino and M.R.K Khansari and A. Leon-Garcia. Prediction of Bit Rate Sequences

of Encoded Video Signals. IEEE Journal on Selected Areas in Communications, (), 1991.

[18] S.S. Lam and S. Chow and D.K.Y. Yau. An Algorithm for Lossless Smoothing of MPEG Video. In

ACM SIGCOMM '94, August 1994.

[19] T. Ott and T.V. Lakshman and A. Tabatabai. A Scheme for Smoothing Delay-Sensitive Traffic Offered

to ATM Networks. In IEEE INFOCOM '92, pages 776-785, 1992.

[20] W. Verbiest and L. Pinnoo and B. Voeten. The Impact of the ATM Concept on Video Coding. IEEE

J. on Select. Areas Commun., SAC-6(9), December 1988.

326

10.2 Appendix 2: Hybrid wavelet-H263 video compression

This Appendix contains a report on the application of wavelet compression to video coding.

327 /328

NPAC Research Report
Hybrid wavelet-H.263 video compression

Tomasz Major
Northeast Parallel Architectures Center

111 College PL, Syracuse, New York 13244
toma@npac.syr.edu

October 1996

In 1995, ITU-T established the H.263 draft standard to be used for very low
rate video coding at less than 64kb/s. H.263 is based on the blocked discrete
cosine transform (DCT) for intra-frame coding, and block motion compensation
for inter-frame coding, thus continuing the traditional approach to compression
strategies known from JPEG, MPEG-1, MPEG-2, and H.261 standards. At the
same time, new compression schemes mature and are being considered by ISO-
MPEG as possible compression strategies in the MPEG-4 standard to come.
Among them, wavelet-based compression has recently received considerable at-
tention.

This report describes the idea of applying discrete wavelet transform (DWT)
in intra-frame coding within the overall H.263 scheme. The hybrid codec has
been designed, implemented, and tested on CIF- and QCIF-sized sequences. The
codec produces reconstructed frames of the quality superior to standard H.263
at the same bit rate. The main drawback of using wavelets is high computa-
tional cost. The method seems to be promising because of additional features
of wavelet schemes, interesting from the point of view of scalability, robustness,
watermarking.

1 Introduction

Digital video compression is one of the key issues in video coding, enabling
efficient interchange and distribution of visual information. One of the most
recent video coding standards, ITU-T H.263, is the state of the art in video
coding for very low bit rates. However, today's networks do not provide a
guaranteed quality of service or sufficient bandwidth. Many CPUs commonly

329

used today cannot perform decoding operations at the desired frame rate. Areas
that still need improvement include:

• robust video transmission,

• scalable video coding,

• even lower bit rates.

Similar requirements have been successfully met by a family of wavelet-based
technologies in several government and commercial applications [3]. We belive
that wavelet-based schemes have potential to prove useful in video coding too.
Thus, pointing into the future, we have chosen relatively immature wavelets to
enhance H.263 recommendation. The following paragraphs provide a rationale
for this choice.

Wavelet-based compression has a number of important advantages over other
approaches. One of the most complex problems in block based techniques is
that the energy in the blocks may differ after quantization, causing a quilted
appearance in the regenerated image. This is quite a severe drawback because
of the properties of the human visual system: the eye is constructed to detect
very fine variations in luminance intensity. Quilting is especially detrimental
in video applications because the eye is an integrator, any effect that may be
corrected and effectively invisible on a frame-by-frame basis can prove to be
severe overall.

With wavelets, there is a very gradual degradation of the compressed image
quality as the compression rate is increased. The entire image is transformed
and compressed as a single data object rather than block by block, allowing for
an uniform distribution of compression error across the entire image and at all
scales.

The extension of wavelet-based image compression to wavelet-based video
compression may be done by changing the 2-D wavelet transform to a 3-D
wavelet transform. The wavelet transform structure allows for scalable frame
rate. There is no motion compensation required because of efficient representa-
tion of transient phenomena by wavelets. Higher compression can be attained
by using a deeper temporal transform, but the pipeline delay.is unacceptable in
many applications. One major advantage of using a spatial transform is that in
the same way as the still-image geometric relationships are preserved, the 3-D
wavelet transform-based video compression cannot produce motion artifacts.

One report [1] describes the use of multiresolution motion estimation in
wavelet domain but these results have not as yet been independently con-
firmed [21].

The wavelet transform structure that creates a multiscale representation
allowing scalable access lends itself to efficient channel coding by allowing allo-

330

cation of error correction bits to critical scales of data.

Although the positive aspects of using wavelets in video compression are
potentially many, the scope of the present experiment is constrained to the
application of wavelet still image compression to intra-frame coding. We take
advantage of existing software implementing H.263, where we merely change
intra-frame coding from blocked DCT to DWT. This software is described in
the section 5. Experiments and their discussion follows in the section 7. Sections
2- 4 give an introduction to the technologies used: first H.263 is outlined, then
DCT-based and wavelet-based compression are described as they apply to this
work.

2 The H.263 video coding scheme

The H.263 video coding standard [4] is a descendant of the motion-compensated
DCT methodology prevalent in several existing standards such as H.261, MPEG-
1 [22], and MPEG-2. H.263 focuses on the very low bit-rate (below 64kb/s).

The basic configuration of the H.263 video source coding algorithm is based
on the ITU-T recommendation H.261 and is a hybrid of inter-frame prediction
to utilize temporal redundancy, and transform coding of the remaining signal to
reduce spatial redundancy. The source coder can operate on five standardized
picture formats: sub-QCIF (128x96), QCIF (176x144), CIF (352x288), 4CIF
(704x576) and 16CIF (1408x1152).

The codec has half-pixel motion compensation capability. Variable length
coding (VLC) is used to encode motion vectors. In addition to the basic video
source coding algorithm, four negotiable coding options are included for im-
proved performance:

• Unrestricted Motion Vectors: motion vectors are allowed to point outside
the picture. The edge pixels are used as prediction for the non existing
pixels. With this mode, a significant gain is achieved if there is a movement
across the edges of the picture, especially for the smaller picture formats.

• Syntax-based Arithmetic Coding: arithmetic coding is used instead of
variable length coding. The reconstructed frames are the same, but fewer
bits are produced. Routines for arithmetic coding are listed explicitly in
the standard as well as constant models to be used with them in pertinent
contexts. The routines are the same as those presented in the pioneering
work of Witten, Neal, and Cleary [5].

• Advanced Prediction: overlapped block motion compensation is used for
the luminance part of P-pictures. Four 8x8 vectors instead of one 16x16
vector are used for some of the macroblocks in the picture. The encoder

331

has to decide which type of vectors to use. This results in less blocking
artifacts giving a subjective gain in quality.

• PB-frames: A PB-frame consist of two pictures being coded as one unit:
one P-picture which is predicted from the last decoded P-pictüre and one
B-picture which is predicted from both the last decoded P-picture and the
P-picture currently being decoded. With this coding option, the frame
rate can be increased considerably without increasing the bit rate much.

All these options can be used together or separately except for the Advanced
Prediction mode which requires the Unrestricted Motion Vector mode to be used
at the same time. The video bit rate is variable and no constraints on it are
given. Error handling should be provided by external means.

The pictures are coded as luminance and two color difference components:
Y, Cb and Cr. These components are defined in CCIR Recommendation 601.
There is 4 times less samples of each chrominance component as compared to
the luminance component.

Each frame is divided into groups of blocks, a group of blocks comprises of
k*16 lines, where k depends on the picture format. Each group of blocks is
divided into macroblocks. A macroblock relates to 16 pixels by 16 lines of Y
and the spatially corresponding 8 pixels by 8 lines of Cb and Cr.

The prediction is inter-frame and may be augmented by motion compensa-
tion. The coding mode is called "inter" when prediction is applied or "intra"
when no prediction is used. This can be determined at the frame level or at the
macroblock level in predicted frames. Both horizontal and vertical components
of the motion vectors have integer or half integer values restricted to the range
[-16,15.5].

Encoded blocks are DCT-transformed and resulting coefficients are subse-
quently quantized (see section 3). Finally, the variable length coding or syntax
arithmetic coding (SAC) is applied. ITU-T did not specify either a unique
forward or a unique inverse DCT algorithm in its proposed standard.

H.263 is a very attractive video coding scheme as far as the picture quality
and generated bit rate are concerned. The improvements in H.263 compared
to H.261 are mainly obtained by improvements to the motion compensation
scheme [6]. Still, new improvements are being tested [2]. The method remains
limited by the underlying block-based compression approach.

3 DCT technology

Since DCT methods are well docummented [14], we limit ourselves to a very
brief review.

331

3.1 DCT Transform

At the input to the discrete cosine transform, source image samples are grouped
into 8x8 blocks, shifted from unsigned to signed integers, and input to the for-
ward DCT. The following equations are the idealized mathematical definitions
of the 8x8 DCT:

F(u,v) -C(u)C(v)
V-V^r/ x (2X+1)UTT (2y+l)vir
E E /(*. y) *cos ^~i6—cos —re—
r=0y=0

/(*. v) = i E E C{u)C{v)F{u, v) cos i ^— cos
u=0«=0

where: C(u), C(v) = -^ for u,v = 0;
C{u), C(v) = 1 otherwise.

The DCT is related to the Discrete Fourier Transform. Some simple intuition
for DCT-based compression can be obtained by viewing the forward DCT as
a harmonic analyzer and the inverse DCT as a harmonic synthesizer. Each
8x8 block of source image samples is effectively a 64-point discrete signal which
is a function of the two spatial dimensions x and y. The forward DCT takes
such a signal as its input and decomposes it into 64 orthogonal basis signals.
The DCT coefficient values can thus be regarded as the relative amount of the
two-dimensional spatial frequencies contained in the 64-point input signal. The
coefficient with zero frequency in both dimensions is called the DC coefficient
and the remaining 63 coefficients are called the AC coefficients.

Many different algorithms for computation of the forward and inverse DCT
have been devised [15]. No single algorithm is optimal for all implementations.

3.2 Quantization and zig-zag sequence

In principle, the DCT introduces no loss to the source image samples; it merely
transforms them to a domain in which they can be more efficiently encoded.
This section describes the quantization of DCT coefficients in H.263 standard.

Because sample values vary slowly from point to point across an image, the
forward DCT processing step lays the foundation for achieving data compres-
sion by concentrating most of the signal in the lower spatial frequencies. For
a typical 8x8 sample block from a typical source image, most of the spatial
frequencies have zero or near-zero amplitude and need not be encoded. After
output from the DCT coefficients are uniformly quantized and ordered into the

333

"zig-zag" sequence. This ordering helps to facilitate entropy coding by placing
low-frequency coefficients (which are more likely to be nonzero) before high-
frequency coefficients. Then, nonzero coefficients and runs of zeros are encoded.
Most common cases are variable-length coded.

4 Wavelet technology

4.1 DWT Transform

The discrete wavelet transform used in this work is identical to a hierarchical
subband system, where the subbands are logarithmically spaced in frequency
and represent an octave-band decomposition. To begin the decomposition, the
image is divided into four subbands and critically subsampled. Each coefficient
represents a spatial area corresponding to approximately 2x2 area of the original
image. The low frequencies represent a bandwidth approximately corresponding
to 0 < \u>\ < |,.whereas the high frequencies represent the band § < |w| < TT.

The four subbands arise from separable application of vertical and horizontal
filters as shown in Fig. 1.

LL_3 HL_3
HL_2

HL_1
LB_3 HB_3

LH_2 HH_2

LH_1 HH_1

Figure 1: A three-scale wavelet decomposition

The subbands labeled LHi, HLX and HHi represent the finest scale coef-
ficients. To obtain the next coarser scale of wavelet coefficients, the subband
LL\ is further decomposed and critically sampled. The process continues until
some final scale is reached. Note that for each coarser scale, the coefficients
represents a larger spatial area of the image but a narrower band of frequencies.
At each scale there are three subbands; the remaining lowest frequency subband

334

is a representation of the information at all coarser scales. The issues involved
in the design of the filters have been discussed by many authors [19].

4.2 Zerotree quantization

Here we present the zerotree algorithm of Shapiro [9], which we use in this
work. Nonetheless, other methods of quantization of wavelet coefficients have
been devised [20].

In a hierarchical subband system, with the exception of highest frequency
subbands, every coefficient at a given scale can be related to a set of coefficients
at the next finer scale of similar orientation as shown on Fig. 2.

Figure 2: Parent-child dependencies of subbands

A wavelet coefficient x is said to be insignificant with respect to a given
threshold T if |x| < T. The zerotree is based on the hypothesis that if a wavelet
coefficient at a coarser scale is insignificant with respect to a given threshold T,
than all coefficients of the same orientation in the same spatial location at finer
scales are likely to be insignificant with respect to T.

A coefficient x is said to be an element of a zerotree for threshold T if it itself
and all of its descendants are insignificant with respect to T. The positions of
significants, assuming certain scanning order, can be represented in three-symbol
alphabet:

• zerotree

• significant

335

isolated zero

Significants are scanned in subsequent passes n with thresholds Tn = 2^1. The
values of coefficients are encoded bit by bit in so called refinement passes.

5 H.263 software

The source code of the H.263 codec was obtained from Bulawa [7], who improved
the public domain software available from Lillevold [8]. The wavelet compression
was implemented by the author. Integration of wavelet routines with H.263 code
has been done by Bulawa and the author.

5.1 Lillevold's codec

Telenor R&D has contributed greatly to the methods and improvements used
in H.263. Telenor's codec is fully compliant with H.263 Recommendation and
has all negotiable coding options implemented.

Fast DCT routines follows "two dimensional" Chen-Wang algorithm [16].
They are implemented in 32-bit integer arithmetic (8 bit coefficients). IEEE
1180 reference (64-bit floating point, separable 8x1 direct matrix multiply)
Inverse Discrete Cosine Transform may be optionally chosen.

Since the recommendation does not define a policy for determining whether
a frame shall be inter- or intra-coded, only the first frame is intra-coded, every
next picture can be encoded only as P or PB frame. This obviously reduces the
generated bit rate but is very inconvenient when any data loss occurs during
transmission in the network. Every P or PB frame is decoded on the basis of
the previous frame and if any frame in the video sequence is lost, the rest of it
can not be decoded properly.

The motion estimation is based on full search which is very CPU time con-
suming but gives a very good picture quality.

5.2 Bulawa's codec

The following enhancements were made by Bulawa [7]:

• interfaces to some useful routines have been created in order to facilitate
future experiments;

• periodical intra-frames generation has been implemented. This allows for
random access capability to the video sequence and recovery from lost or

336

corrupted part of stream while significantly increasing required bandwidth
- about 40% when every 10th frame is intra-coded. The gap between two
consecutive intra-frames in a video sequence is to be specified by a user;

• full motion vector search has been replaced (optionally) with logarithmic
search in order to increase the encoding speed;

• the most CPU time consuming routines have been partially optimized.

Bulawa's coder runs on IRIX platforms. Encoding time has been reduced by
more than factor of 3 in comparison with Lillevold's coder and varies from 3 to
15 frames per second for R10000/195MHz. Further improvements are possible
by modifications of the source code, especially by elimination of time-consuming
memory read/write operations, for and while loops optimization etc. [7].

The codec operates in the real-time domain which allows it to be deployed
in collaboratory applications. This in turn, in conjunction with a very low bit
rate and relatively good quality of encoded pictures, makes such a solution one
of the most advanced in the current state of Web technology.

6 Wavelet software

Wavelet routines were written by the author and successfully used in stand-alone
codec for still image compression [11].

6.1 Wavelet transform

The wavelet transform is performed separately in the vertical and horizontal
direction, recursively on the low-pass subband of dyadic decomposition. The
following filters are used:

• low-pass filter for decomposition:
0.037829, -0.023849, -0.110624, 0.377403, (0.852699), 0.377403, -0.110624,
-0.023849, 0.03782

• high-pass filter for decomposition:
-0.064539, 0.040690, (0.418092), -0.788485, 0.418092, 0.040690, -0.064539

• low-pass filter for reconstruction:
-0.064539, -0.040690, 0.418092, (0.788485), 0.418092, -0.040690, -0.064539

• high-pass filter for reconstruction:
-0.037829, -0.023849, 0.110624, 0.377403, -0.852699, (0.377403), 0.110624,
-0:023849,-0.037829

337

Bands edges are mirrored to allow the convolution of filter taps with extremal
pixels. Since high pass decimation must be preceded by a one-sample delay,
which means that the high- and low-pass kernels must be staggered with respect
to each other by one pixel, the central filter taps are not always in the filter
symmetry center. Hence, mirroring is done in different way for different filters:

• either towards the extreme pixels ;

• or towards the hypothetical image boundary just outside extreme pixels.

6.2 Quantization

Zerotree quantization based on the paper of Shapiro [9] is used. Some modifi-
cations to the original algorithm have been made:

• only one symbol is used for both positive and negative significant and sign
is encoded separately;

• reordering of significants after each dominant pass does not improve the
coder properties, and therefore this part of the original algorithm is not
used;

• coding of the (n+l)'th dominant pass is done before of the coding of the
n'th refinement pass

Zerotree quantization is embedded in the sense that the encoder can termi-
nate encoding at any point thereby allowing a target rate to be met exactly.
Also, given a bit stream, the decoder can cease decoding at any point in the bit-
stream and still produce exactly the same image that would have been encoded
at the bit rate corresponding to the truncated bit stream.

6.3 Entropy coding

Lossless entropy coding is done by using an arithmetic coder similar to the one
of Mark Nelson [10], but working much faster. The codec works with three
statistical models: for zerotree symbols on the decomposition levels from 2
to the highest, for zerotree symbols on the 1st decomposition level, and for
binary symbols increasing the coefficients accuracy. All of them are adaptive
0-order models, initialized with Is. Codec speed may be substantially improved
if models are non-adaptive. This would require smart initialization based on
training data, nonetheless coding efficiency would be reduced.

338

6.4 Color pictures compression

Color pictures are compressed as a concatenation of the three substreams: one
for luminance and two for chrominances. The substreams are independent from
each other and the spectral redundancy is' exploited solely by the fact that
chrominances are already a differential signal.

Proper balance between the amount of data for luminance and two chromi-
nances is achieved through the notion of passes [17], inherent in the wavelet
scheme. For a given image size, the same number of passes, rather than the
compression ratio, results in similar quality of images. The number of passes
for luminance and chrominances is a parameter to the wavelet codec.

Since the all of the information about color components are placed one after
another this format is not embedded. The straightforward extension of this
format may be easily implemented to accommodate for the embedded format
by interleaving color components on a pass-by-pass basis.

7 Experiments

7.1 Testbed

Telenor's H.263 codec as improved by Bulawa has been further enhanced by
the option of coding intra-frames using wavelets. The source code has been
compiled in three versions:

• standard H.263 (org) - intra-frames encoded with DCT;

• standard H.263 with Syntax Arithmetic Coder option (orgSAC) - intra-
frames encoded with DCT, coefficients coded with arithmetic coder;

• hybrid H.263 with wavelets (wav) - intra-frames encoded in wavelets.

The three experimental programs were tested on CIF and QCIF format
images with intra-frame insertion every tenth frame. The codec which uses
wavelet compression also has the capability of coding intra-frame with a specified
quality defined in terms of the number of passes of the zerotree algorithm.

7.2 Luma-chroma balance

The human visual system is most sensitive to the luminace, which determines
sharpness, shows artifacts and contours. Chrominance information, as com-
pared to the the luminace information, can be significantly reduced without

339

noticeable loss of quality. We started experiments from determining the bal-
ance between luminace and chrominance components in wavelet compression.
Subjective quality tests have been conducted in three categories, characterized
by the difference of number of passes used for luminace and chrominance com-
ponents: 1-, 2- and 3-pass difference. Resulting experiments will be denoted as
wavNM, where N stands for number of passes for luminace, and M - number
of passes' for chrominances. The following experiments have been carried out:

• group 1: wav87, wav76, wav65;

• group 2: wav86, wav75, wav64;

• group 3: wav85, wav74, wav63.

It turned out that once a good subjective color rendition is obtained, further
nominal increase in color quality does not improve the perception. Consequently,
group 1 and 2 results in similar perceived quality while group 3 is unacceptable.
Obviously, group 2 has been chosen for further experiments as it gives higher
compression ratios then group 1. Two-pass difference distributes bytes among
luma and chromas in proportions 80-84%:8-ll%:7-10% on average for "akiyo"
sequence.

7.3 Results for I-frames

The basic difficulty in carrying out tests within our testbed is the lack of scala-
bility quality/compression ratio in org experiments. Although scalability men-
tioned in wav experiments is only stepwise, it allowed us to interpolate results in
a very predictable manner as the wavelet technology we use scales very well [17]
when applied to smarter stream formats.

Five experiments has been made in both CIF and QCIF format: org,
orgSAC, wav86, wav75, wav64. The results are plotted on the Fig. 3.

It can be seen from comparison of org with orgS AC that using an arithmetic
coder improves H.263 intra-frame coding efficiency by 11.3% for QCIF, and
11.9% for CIF. However with wavelets we achieve even higher compression and
higher quality at the same time. Our wavelet-based codec outperforms the DCT
based algorithm with SAC option engaged by 0.75dB for QCIF, whereas for CIF
the difference is as large as 1.5dB. The price of this gain is high however. The
interpolated decoding time for wavelet-based technology is about twice as large
as the time of DCT based technology. Decoding times for MIPS R4400, 200MHz
SGI workstation are given in the Table 7.3.

It must also be mentioned that H.263 may be used without arithmetic coding,
at which time it operates 3 times faster with percent loss in compression lying

340

5 37

 !
H263+WV QCIF -♦—j

H263 QCIF + ;

 ! —T ;

I wave 6 i

H263 CIF X 1 / ,B

S \ y'' X X

wav75 1

orgSAC org

s '■ + +
1 a''

j

wav6 4 ,~' \

""" 1 i ■ '

2000 3000
number of bytes

4000 5000 6000 70

Figure 3: Average quality of the T-frame versus average number of bytes used
to encode the I-frame for the sequence of "akiyo"

Table 1: Decoding time of I-frame on a 200MHz MIPS4400 SGI workstation

QCIF
CIF

org
0.018
0.066

orgSAC
0.058
0.175

wav86
0.178
0.384

wav75
0.137
0.307

341

only in the teens. On the other hand, wavelets, as implemented for the purpose
of this work, would lose about 50% in compression when deprived of the use of
arithmetic coding. There are works [18] that claim the use of "analysis based
coding" as a substitute for arithmetic coding without loss in quality/compression
performance, but we do not know about the speed of these method.

7.4 Discussion on the frame size

In fact the CIF and QCIF sequences used in this experiment are very similar
and do not differ much in the amount of detail but rather in their magnifica-
tion. Accordingly, one would expect that they should be encoded with a similar
number of bits. Results shows that wavelets are closer to this reckoning than
DCT.

The explanation of the higher gain of wavelet methods over DCT methods
for larger size images is the following: The DCT algorithm always operates on
8x8 blocks and subsequently overlooks larger scale correlations. DWT treats
the image as a whole thus exploits these correlations. In CIF format, DWT
performs one more decomposition than in QCIF and creates longer trees which
can be better compressed by the zerotree algorithm. In other words, DCT uses
4 times more blocks to encode a magnified detail, while wavelets always use the
same tree to describe a particular feature, independently of the magnification.

7.5 Quality of P-frames

In the experiments described in chapters 7.1- 7.4 we solely changed the compres-
sion algorithm of the I-frame. Now, we will describe the impact of the I-frame on
the successive frames. We will also show how it is possible to controll P-frames'
quality in order to balance the I- and P-frame qualities.

The figure 4 shows the average changes of quality in the succession of I- and
P-frames. Each plot is made of the three sections:

• the I-frame;

• the P-frame immediately following the I-frame;

• all other P-frames.

It can be seen that for the original algorithm, org[SAC], that the quality de-
teriorates after the I-frame. This fact is due to the replacement of the original
liner search with the logarithmical search in Bulawa's codec [7].

In experiments in which wavelet-compression were used, the I-frames impact
the quality of succesive frames: the better the quality of the I-frame, the better

342

% 37

171 J J

 1 ;' ■ ; r • l

-ss^n:
^"•••.■>-». | |

y

~—~-_ '■

III;

I brg[SAC]|

/ : ; Uav86-09=
Wav86-10l
Wav75-10i

i wav64-10j

/ ■ i 1

■ ' —' i i i i
5 6

frame number

Figure 4: Average quality changes in IPP... succesion of 10 frames for the CIF
sequence of "akiyo"

343

the quality of P-frames. Although wavNM encodes P-frames the same way as
org[SAC] does, some blocks of P-frames are not encoded as they contain no
motion. These blocks are replicated in successive P-frames with the quality of
the I-frame. On the other hand, the blocks which are coded, are encoded with
the quality with which they were also encoded in org[SAC]. Thus the quality of
P-frames in wavNM experiments tends to converge to the level of the quality
of P-frame from the org[SAC] experiment.

To reduce this tendency of P-frames, which is negative for I-frames com-
pressed with better quality than I-frames in org[SAC] experiment, we change
the quantization step of AC-coefficients in P-frames. The results for three quan-
tization steps, equals to 8, 9, and 10, are shown in the picture 4. The corre-
sponding experiments are denoted as wav86-08, wav86-09 and wav86-10
respectively. The experiments previously referred to as wavNM are eqivalent
to wavNM-10.

Lowered quantization step reduces compression of P-frames significantly
from 20% for wav86-09 to 38% for wav86-08. However, a P-frames itself uses
as little as 5-10% of bytes needed to encode an I-frame, thus additional bytes
for P-frames do not add relatively much to the total stream size. Exact number
of bytes are given in the table 7.5.

Table 2: Average number of bytes used to encode I- and P-frame, and total
number of bytes for 300-frames CIF sequence of "akiyo"

Experiment org orgSAC wav86-10 wav86-09 wav86-08
I-frame 6409 5648 5719 5719 5719
P-frame 314 315 308 371 425

proportion [%] 4.9 9.1 5.4 6.5 7.4
total 274646 252358 254985 273475 290146

In wav86-XX experiments, for CIF-sized sequence of "akiyo", the quality
of P-frames is worse than the quality of I-frames. For this, and for P-frames are
more numerous than I-frames, the quality of P-frames can be safely thought as
the overall quality of the sequence. Figure 5, therafter, shows the superiority of
the wav86-XX codec over the org[S AC] codec in terms of quality/compression
efficiency.

8 Conclusion

We decided to integrate H.263 encoder with wavelet compression scheme to
obtain the very first hybrid video encoder. This novel approach marries the tra-

344

36.5 1

uav86-0fl

wav86-1
waves -•—

oro ♦

♦ orgSÄC ♦ orff

250000 260000 270000 280000 290000 30000C
nuDber at bytaa

Figure 5: Average P-frame quality versus total number of encoded bytes for the
300-frames CIF sequence of "akiyo"

ditional approach with relatively immature technology. However, our solution
increases quality and reduces bit rate significantly, especially for bigger frame
size, where the gain is 1.5dB. The drawback of wavelet compression is its speed.
Decoding time is prohibitive for real-time operation on most systems, though
it may be acceptable on the fastest ones. This problem may be soon over-
come because algorithms used for wavelet compression are getting faster due to
enormous research effort all over the world. The advantages of using wavelet
schemes, as proven by this work, lays a foundation for further experimentation
with scalable video codecs, and possibly 3-D compression.

9 Acknowledgements

We are grateful to professor Czeslaw Jedrzejek for the idea of the hybrid codec.
Janusz Bulawa is thanked for his pioneering implementation.

The research work presented in this document was funded by US Department
of Defense grant, Rome Lab. Contract No. F30602-95-C-0273, PR No. C-5-
2293/4.

References

[1] Sohail Zafar, Ya-Qin Zhang, Bijan Jabbari: "Block-Classified Bidirectional
Motion Compensation Scheme for Wavelet Decomposed Digital Video"

345

[2] G. Bjontegaard, F. Azadegan, T. K. Tan, Gwang-hoon Park, Atul Puri:
"Core experiment on improved intra coding"

[3] "Gray Scale Fingerprints Image Compression Status Report", FBI Systems
Technology Unit, Nov. 1991

[4] ITU-T Recommendation H.263: "Video Coding for Low Bitrate Commu-
nication" (Draft), December 1995

[5] Ian H. Witten, Radford M. Neal, John G. Cleary: "Arithmetic coding for
data compression", Communications of the ACM, June 1987, vol.30, no.6

[6] Bernd Girod, Khaled Ben Younes, Reinhard Bernstein, Peter Eisert, Niko
Färber, Frank Härtung, Uwe Horn, Eckehard Steinbach, Klaus Stuhlmüller,
Thomas Wiegand: "Recent advances in video compression", to appear in
proceedings ISCAS-96

[7] Janusz Bulawa: "Integration of multimedia colaboratory environment with
Web browser" (Master Thesis), Sep 96

[8] Karl Olav Lillevold: "TMN" software (H.263 codec), http://www.nta no/-
brukere/DVC/

[9] Jerome M. Shapiro: "Embedded image coding using zerotrees of wavelet
coefficients", IEEE Transactions on Signal Processing, vol.41, no.12 Dec
1993, pp.3445-3462

[10] Mark Nelson: "The Data Compression Book", M&T Books, San Mateo
CA 94402

[11] Tomasz Major: "Wavelet project description", http://deneb.npac.syr.edu:-
32831/overview.html

[12] King N. Ngan, Douglas Chai, Andrew Millin: "Very Low Bit Rate Video
Coding Using H.263 Coder", IEEE Trans, on Circuits and Systems for
Video Technology, Vol.6, no.3, June 1996

[13] Steven McCanne, Van Jacobsonvic: "vie: A Flexible Framework for Packet
Video", Lawrence Berkeley Laboratory

[14] Gregory K. Wallace: "The JPEG Still Picture Compression Standard",
submitted in Dec. 91 for publication in IEEE Transactions on Consumer
Electronics

[15] K. R. Rao, P. Yip: "Discrete Cosine Transform - Algorithms, Advantages,
Applications", Academic Press, Inc. London, 1990

[16] Chen-Wang: (inverse two-dimensional DCT algorithm), cf. IEEE ASSP-32
pp. 803-816, Aug. 1984

346

[17] Tomasz Major: "Passes", http://deneb.npac.syr.edu:32831/research/-
passes/pass.[ps|gif]

[18] V. Ralph Algazi, Robert R. Estes, Jr.: "Analysis based coding of image
transform and subband coefficients", CIPIC, UC, Davis

[19] E. H. Adelson, E. Simoncelli, R. Hingorani: "Orthogonal pyramid trans-
form for image coding", SPIE vol.845 Visual Communications and Image
Processing II (1987), pp.5-58

[20] Amir Said, William A. Pearlman: "A new fast and efficient image codec
based on set partitioning in hierarchical trees", IEEE Transaction on Cir-
cuits and Systems for Video Technology, vol.6, no.3, June 1996

[21] Herve Murret-Labarthe: (internship), EFP, Poznan, PL

[22] ISO/IEC MPEG, International standard ISO/IEC 11172: "Information
technology - Coding of mowing pictures and associated audio for digital
storage media at up to about 1,5 Mbit/s", Dec. 1991

347/348

10.3 Appendix 3: A continuous media file system for multi-resolution data

10.3.1 Introduction
Currently, video server design is regarded as a system integration issue where diverse

components are haphazardly plugged together. In reality, video servers are complex entities that

must address the requirements of individual video streams as well as system-wide requirements.

The storage subsystem constitutes a major component of any media server. Yet, today, file

system support for continuous media is very limited.

The traditional approach to Quality of Service issues is network-centric. Adaptive applications (i.e.,

applications that change their behavior in response to changing network conditions) are being

proposed. We observe, however, that the potential benefit of adaptivity is limited without

architectural changes in the media. Consider, for instance, a video server that is capable of

adjusting the bitrate of outgoing media streams by sending only a part of the video stream

encoded by a multi-resolution coder. Using current file system architectures, the server will have

to read the entire stream from the disk before discarding the information that is not being sent. In

this section we present an idea of the video server architecture which provides end-to-end support

for such an adaptive application. The proposed Continuous File System (CFS) also provides

explicit support for isochronous data.

10.3.2 Traditional File Systems
Traditional file systems have not been designed to support continuous data streams. In the media

server context, standard file systems suffer from the following problems:

(There is no support for isochronous data. Continuos media requires support for

disk scheduling so that data is read in time. Thus there are hard limits posed on

delivery of data.

(There is no support for varying quality of services. In a heavily loaded file server,

all the streams being served see lower throughput and higher response times.

For continuous media this may lead to annoying jitter at the client. Support for

admission control is needed to avoid this.

(Continuos media places strenuous demands on the file system for data

movement. MPEG-2 movies require on average 6 Mbits/sec per stream for

commercial quality video. For a 1000 stream video server this translates to 750

Mbytes/sec. Traditional file servers have throughput well under 10 MBytes/sec.

349

10.3.3 The CFS File System
File systems with support for continuous media will be at the heart of the next generation

of video servers for Interactive TV. A video server primarily consists of three components: a

control component that responds to client requests, a communication component that moves data

across the network connection between the client and the server, and a file system component

that manages the storage and retrieval of data from blocks. CFS provides for an Applications

Programming Interface (API) whereby any application can interact with the underlying CFS file

system.

10.3.4 Terminology
Data are transferred from the disk in units called transfer blocks. The file system needs to be

configured during setup for a given transfer block size. The size of the transfer block is dependent

on the kind of files being served from the disk array. The transfer block size can be used to tune

the,file system for a given stream characteristic. There is, however, no limitation on streams with

varying characteristics residing within the file system. If the file system is serving high-rate

streams such as MPEG-2, then the transfer block size can be coarser compared to a lower rate

stream, such H.263.

We define retrieval block as a logical data unit which is provided to the application on a periodic

basis. Thus for video, this could be 1 second worth of video data. For a retrieval block to be

fetched and delivered to the application, multiple transfer blocks might need to be read from the

disk array below. This is managed by the file system and is transparent to the application.

We define data layout as the placement of transfer blocks on a disk array i.e., the methodology

used to write a block of data onto a physical disk or disk array. Data layout deals with the

methodology for writing a given retrieval block onto the disk array.

We further define data placement as the placement of multiple retrieval blocks onto the disk array.

The data placement policy encapsulates the data layout policy for each block.

10.3.5 Multi-resolution Support
The file system supports multi-resolution data. Each stream can consist of any number of user

defined resolutions. Resolutions are specified by mapping to corresponding bit rates, i.e., a higher

resolution will map to a higher bit rate. The owner of the stream decides the rate and the

resolution allocation on a per retrieval block or stream basis. For resolution allocation on a stream

basis, all retrieval blocks within stream consist of resolution for specified bit rates.

The file system provides adaptivity of resolution allocation at retrieval block level. For variable bit

rate coding schemes such as H.263 and MPEG-2, the rate from the encoder varies significantly

overtime. Scenes with relatively little motion can be represented with fewer bits without degrading

350

the picture quality. This is converse for scenes with large motion which require more bits to be

represented. Wavelet video coders are inherently multi-resolution. Video coding applications can

use the adaptivity at the retrieval block layer to map fewer resolutions to lower bit rate while using

more resolutions for higher bit rates.

10.3.6 Data Layout Policy
The problem of data layout can be defined as follows: Given a block of data, what is the optimal

way to write it onto the disk array? Much research has gone into data layout policy in general.

Keeton and Katz have evaluated data layout policies on disk arrays for multi-resolution data. The

data layout policy on the disk array determines the transfer block size from the disks. RAID

involves striping a data block across multiple physical disks to improve the overall throughput of

the disk subsystem. Hence, it has been argued that for continuos media data a similar approach

should be taken to maximize the throughput from the disk subsystem.

Forcontinuous media data such as video, faster throughput from the disk subsystem translates to

faster response time from the file system. However, data is eventually played out to the screen in

a deterministic manner. Thus, for media such as video, it is not the throughput but the overall

number of supported streams that matters. For a RAID subsystem, retrieval blocks can be striped

across multiple disks or stored on a single disk. Each retrieval block consists of all the user

defined resolutions. 1Disk and the 3Disk striping by Keeton and Katz are illustrated in the

following figures. They simulated various client request loads and retrieval block sizes.

Performance for the 1 Disk case was better for heavy loads and large retrieval block sizes. CFS

implements the 1 Disk striping methodology.

351

f

Figure 10.3.1.1 disk striping (top) and 3 disk striping (bottom)

We define Parallelism P, as the number of disks taking part to fulfill a given client request, and

Concurrency C, as the number of requests which can be serviced at a given time. Then for the

3Disk case we have a parallelism of 3 and concurrency of 1 as only a single request can be

serviced at a time. Similarly, for the 1Disk case, the parallelism is 1 and concurrency 3. A higher

concurrency value is needed to support the maximum number of stream from the disk subsystem.

352

10.3.7 Data Placement Policy
The data placement policy is based on the XFS file system from Silicon Graphics. In XFS, data is

read/written to the disk in retrieval block size. Since CFS provides for variable rate data, the size

of the retrieval block can vary over time for a given stream. In the XFS file system for the VoD

mode, retrieval blocks for a given stream are placed in a round robin manner onto the physical

disks in the array. The size of retrieval blocks on the XFS are constant for all streams on the VoD

partition. The retrieval block size is decided when the partition is created. We feel that this is a

limiting aspect to the XFS scheme. For variable rate data (such as MPEG-2) this poses problems

for streams exceeding the retrieval block size. Furthermore, this scheme leads to a great deal of

disk fragmentation where multiple bitrate streams exist on the same partition.

CFS reduces the disk fragmentation by splitting the retrieval block into multiple transfer blocks.

The transfer blocks do not need to be arranged continuously on the disk. The transfer block size

is defined when the CFS partition is set up. It can be dynamically configured to optimize for

various bit rate streams being stored on the partition.

Retrieval blocks are placed in a cyclical manner on the disk array. A given disk will contain the

data wholly for a retrieval block. This placement policy lets us map the scheduling policy for

retrieval block fetches to the disk array. In addition, the cyclical placement algorithm provides an

implicit load balancing between multiple disks. This however can not be guaranteed for variable

rate data. For constant rate data, this leads to a well load-balanced disk subsystem.

353

10.3.8 The Directory Service
Metadata is stored for each stream existing on the CFS partition. The metadata can exist on the

CFS partition, or could exist on a conventional partition such as NFS or NTFS. The metadata

structure for each stream is shown in the figure below.

16 Bits

Logical

32 Bits 32 Bits 32 Bits

List of
Transfer

Number of
Resolutions

Rj Bytes/sec %

32 Bits

R,

(Track,
Sector)
(Track,
Sector)
(Track,
Sector)

Figure 9.32. Metadata entry for a stream

Each metadata consists of the stream header. The header consists of core information such as

the stream name, the access rights associated with the stream, the owner of the stream and the

creation date. Following the header is a chunk of data associated with each retrieval time unit for

the data called metachunks. For video this could be for every second of data. There are variable

number of metachunks for each stream depending on the logical length of the stream. Each

metachunk consists of the logical time unit this metachunk represents. It contains the number of

resolutions of data for the current logical time along with the bit rates for each of the resolutions.

In addition, a list of transfer blocks is maintained in a list. The transfer blocks are stored in the list

in (track, sector) pairs. The transfer blocks are ordered such that sequentially reading the blocks

will reconstruct the data. Metadata allows us to deterministically schedule the access to transfer

blocks. Metadata is extensively used by the admission control policy described later to guarantee

a certain resolution or data rate from the disk subsystem.

In addition to managing the metadata structure, the CFS file system exposes the Directory API.

This API allows applications to view the streams existing on the system along with their access

rights, creation date and owner. It also provides the ability to query the average bit rate for a given

354

resolution (since bitrates may vary over time per resolution). Additional information can be queried

as the metadata stored for each stream is extensive.

10.3.9 Admission Control Policy
An admission policy is needed to determine if a new stream can be serviced at the required QoS

parameters without affecting the service of other streams. CFS uses a benchmarking scheme to

approximate the throughput for each of the disks in the disk array. The benchmarking scheme

calculates the minimum number of transfer blocks which can be read from a given disk. This is

used as a conservative limit to guarantee that we can deliver the requested throughput for all the

streams.

A logical scheduler is used to schedule transfer of data at retrieval block level. The admission

control is implemented at this level. For each of the disks in the array we define Mini as

Min, = The minimum number of transfer blocks disk i can read.

For each of the disks in the array, we need to construct an access graph. The access graph

signifies the total number of transfer blocks read for a disk at a given time.

The access graph is constructed using the function D„, for each of the disks in the array by

varying the time t. The access graph with the overload function is shown in the figure below.

Access
Count
Mm= Access

Overload
Function A

Fig. 9.3.3 Access Graph and Overload Function

355

r
The simplest admission criteria for admission of a new stream can be to look at the overload

function assuming the stream is admitted into the system at a given resolution. A stream is denied

admission if

i=0 im=0

Here we assume that if the access function D,,, exceeds the minimum number of transfer blocks a

disk can read we reject the request. For constant rate data, this scheme provides a reasonably

good admission control policy. However, for variable rate data, it is likely that the access load on

the disks will be in bursts with sudden demand for data. Hence the access graph will be peaky.

This approach can unnecessarily reject a stream in this scenario where we exceed the threshold

for a short duration. However this approach provides a simple and elegant solution for admission

control. In order to maximize the number of streams the disk array can support, a more complex

policy needs to be defined.

We define a new admission policy based on prefetching of transfer blocks at times when the

access load is high. Blocks are prefetched when the access load on the disk is lower. We can

thus aim to maximize the throughput from the disk subsystem by optimizing the fetch patterns of

the blocks.

Prefetching of transfer blocks is done via an iterative algorithm. The number of blocks to be

prefetched for time t are given by the overload function at time t. We maintain an access list at

time t. The access list is a set consisting of the tuple

AL,, i = (M, t, Start Block, End Block, Current Req.).

The start block and the end block are extracted from the metadata. The current request

•parameter indicates whether the block fetches are for the current scheduling cycle or are being

prefetched for later. The algorithm tries to minimize the prefetch interval for a stream. Blocks

which are marked to be prefetched at time t are removed from the access list and added to a

prefetch list at time t-1. The prefetch list consists of the tuple

PL,.,, i = (M, t, Start Block, End Block).

The prefetch list is added to the access list at time /-/ marking the current request entry as

prefetch. Blocks marked for access as current request at time t are given priority to move to the

prefetch list at time t-1. All the transfer blocks can be moved for a given stream from the access

list to the prefetch list or only some. The access list at time t is updated accordingly. This leads to

the access lists being modified for t and t-1. The overload function is recalculated for the new

stream with the new access lists. The overload function for time t, should be 0 as 0(7, i) blocks are

356

moved from AL,, to PL,.,.;. This iterative algorithm proceeds till the start of the stream is reached.

The start of the stream is given by Rim. The admission policy for the new stream then is to admit if

or all i, we have 0(R,m, i) - 0

Thus, the stream is admitted if the overload function is 0 at the start of stream playback. This

scheme is more complex and intricate to interpret. However, the benefits over the simpler

approach should be significant..

10.3.10 The Physical Scheduler
Once a stream has been admitted into the system, the physical scheduler uses the

metadata for each stream to transfer blocks from the disk in an ordered manner. Many of the

SCSI drivers in the market already optimize disk head movement. The physical scheduler is

responsible for constructing the retrieval block from multiple transfer blocks. Hence it maintains a

list of blocks currently read into a buffer. This problem is compounded with the transfer blocks

being prefetched for some stream well before they are needed. The overall architecture of the

CFS is shown below

User
Request

Generation

Disk String Pairs

Physical
Scheduler

Admission
Control

Logical
Scheduler

Fig. 9.3.4. Underlying architecture of the CFS

357

f
10.3.11 Interactive Support for Continuous Media
It is clear from the design that CFS is a viable design for non-interactive streaming of continuous

media. Recently there has been a spurt of such applications which utilize non-interactive

streaming data on the WWW. However, CFS can implement rudimentary interactivity. If the

application wishes to stop reading data from the disk, the stream entry can be removed by the

logical scheduler. This will result in the transfer blocks not being fetched by the physical

scheduler. Once the stream resumes playback, CFS will attempt to admit the stream as a new

stream. On success, the stream can continue as before. If the system has become loaded and

admission is denied, the admission policy can iterate to determine the earliest time the stream can

begin playback. Hence there is no guarantee that the stream can be reinstated but a best effort is
made.

10.3.12 Quality of Service (QoS) Support
CFS provides for multiple quality of services. An application can dynamically request a newer

quality of service from the disk subsystem but the request may be denied. Varying levels of QoS

can be specified via using the resolution index of the stream i.e. Specify a given resolution to be

played at. This results in variable amount of data being fetched per scheduling cycle if the data is
variable over time.

An application may also specify a constant bit rate from the disk subsystem. This may lead to

multiple resolution levels being fetched over time for the stream due to the variable nature of the

data. A request for lowering the resolution to be served, or lowering the bit rate will always be

accepted. The access graph needs to be recalculated for all the disks in the array. For a higher

resolution request or increase in bit rates, the request may be denied and the stream can continue

to be serviced at current QoS parameters.

10.3.13 Comparison of CFS and XFS
CFS is based on the XFS file system from SGI. However in many respects it aims to and does

alleviate many of the shortcomings of the XFS file system. XFS provides for a constant retrieval

block size. This is a constraint as one needs to know before hand the stream characteristics to be

stored on the XFS partition. This is not a constraint with the CFS file system as it allows for

dynamic retrieval block sizes. Hence varying bit rate streams can coexist on the same partition.

CFS explicitly supports multi-resolution data sets. The XFS was designed for a single resolution

data set. Single resolution data set can be visualized as a multi-resolution data sets with a single

resolution. Hence standard MPEG1 streams can be supported by CFS. It is envisioned in the near

future that multi-resolution compression schemes for video will dominate over convention DCT

based schemes as MPEG. Hence CFS is geared for the change.

358

Increasingly with the integration of networking into application, the notion of varying QoS is

growing. CFS allows for dynamic QoS support for a stream. Applications can use this to

dynamically match the available bandwidth on the network. XFS does not support QoS

parameters.

10.3.14 Conclusion
In this section, we have described a novel file system which provides explicit support for continuos

media such as video. CFS design tries to address a host of problems conventional file systems

such as NFS face. Its dynamic support for QoS, along with hierarchical data storage support and

guaranteed rate QoS should make it useful for applications dealing with isochronous data with

hard deadlines. *

359/360

10.4 Appendix 4: Video Server Asset Management Screen Dumps

This Appendix contains screen dumps of the Video Server Asset Management interface.

361/362

£K Netscape - [Video Server Asset Management]
0e fidft ¥** £o Bookmarks Options Bjrectory afmdow jjelp

HHEI

toa^"-|h^:^kav^nPacsvredu:5578^new^vsamframehtml 3

Video Clips Video Archives Video Servers Search Interface

N^C^ideo ^ew&^ata^ase Server,

User Qiieirv Interface

?>

'r-

NPAC^Tideo ServeV^set Managern^

\ :, 7 Enter password: j r
::> / Submit | Reset [

and press submit button:

•/

Please report problems to NPAC VoD Group
Mareh Pod^rmi!marekSMac:s»r.teäu>r-
iast&bayiedo^^aAugJ91S:67i4&^^1996^^^^^^^^^i

^/^V \ ^./'M :-,^^P^:^^ ■-/ - ■■■/

-c/

r" -?/

^d

FJ?^51 |Documrt OÖne"

363

i»K Netscape - [Video Server Asset Management]
File Edit View Qa Bookmarks Options directory Window Help

Locoticm:|ht^7/kayaJ<.npac.syr.edu:S578/new/vsar)iframe.html

Servo- Management

List Sewers

Add Server

If edify Server

Delete Server

Add a server to Video News DataBase

Current servers (Name : IP address : Platform)

1. Wayne : 166.101 20.33 : 2-way Pentium PC, NT, ATM int.
2. Wayne-eth: 128.230.162.33 : Windows NT, ethemet interface
3. Sandman: 166.101 20.17 SGI Onyx, IRIX, ATM interface
4. Sandman-em : 128.230 162.17 : SGI DUX ememet interface
5. Bogart-eth: 128.230.162.113 :WindowsNT, etfaemetmterfäce

New Server

Server r
Name •

Server
rp |
Address

Platform |"

AE)D SERVER | RESET |

364

S(Netscape - [Video Server Asset Management]
file j&tt Jtfew £o Bookmarks Options Qjrectory afwdow üelp

HEE

^] yKafa»:|^://^y^nPacsyredu;6578/new^vscmfrcmeh,ml n

Clip Management

S«Ieet Archive

> v^Stfqi»"!;;-

done Clip

MoAfyCn?

Rename Cup

Delete €9p

Select Archive

ALL ARCHIVES
Berlin : Bob Fray Berlin story
CNN : CNN News Clips
Default: Default archive (holds clips from deleted archives)
Discovery : Discovery Channel Video Clips
MISC : Various stuff
MOST : Museum of Science&Technology Clip Collection
Military : Military clip archive
Motion Pictures : Full lenqth movie archive

I Music : Music video archive d

JAII operations will be performed on clips belonging to selected archiv

f SELECTED f

j-id

365

Ifc Netscape - [Video Server Asset Management]
Eile Edit \ßem Qp Bookmarks Options Directory ffiindow jjelp

Locafem:|h«p://kayak-npac.syr.edu:657B/new/vs am frome.html

BED!

CBp Management

Select Anttve

AtUCHp

MeAfyCHp

RAJ CBp

Delete CBp

Basic CBp Data:

Tide: |Computer Inside

•frsfie: J/project/K136/VOD/CP/frs/???.frs

a?e J/fingernails/dummy.gif usi

CHpID 81

Encoding JMPEG1 j

J03-MAR-96
Date
inserted:

Streun Attributes:

Clip length (frames):

Frame rate (fps):

{5000 CBp file size (bytes):

Bit rate (Kbps):

|Autc

\uto

CBp Access Attributes:

Archive: JCNN "3 Access level JALL 21 D°«ral<»daMe: JNO J

Currently available on the following servers):

* Sannnan
- Way»
J J

366

10.5 Appendix 5: Video Database Search Interface Screen Dumps

This Appendix contains screen dumps of the Video Database search interface.

367/368

369

Netscape: pfayclip.nvs (Unfitted) ja
FHe Edit View Go Bookmarks Options Directory Window Help

location: j http: //kayak, npac. syr. edu: 6578/cgi-bin/playclip. nvs

Caption script associated with clip "Lady Di in Argentina"

During playback, clkk on the »> symbol to jump to a corresponding part of the
video clip. Initial playback offset: 0

Q >y> the tabloids continue to dish out the royal gossip in the wake of princess diana's tv
 interview last week.

206 >»the london "mail" says prince Charles' long-time love, Camilla par ker bowles,
encouraged him to marry diana, because she believed diana was no threat to her.

480 >» bewies' former brother-in-1 quotes her as saying, "i've always said she was loopy,
*^ pretty half- witted and possibly ought to be locked up".

720 >» the princess is on her way back to london, after agoodwill trip to argentina
873 >» reporter bill neely has the story on a trip that was met with mixed reviews.
989 >>> it was a fitting end.
1156 >» the princess escorted by an ar general teen officer" who had fought in the war.
1351 >» the end of a four-day visit it was billed as private and unofficial.
1507 »> it was anything but.
1541 2£^she is heading for talks about buckingham's palace.
1666 >»1press advisor she didn't seek this month is heading for the palace too, but not to work
 for her anymore.

1858 »>the P1""10033 has attracted intense interest here, the scramble reaching the home of
argentina's president for him and for her the visit was a boost.

2122 222. i think it has been successful for her.
2212 222. nevertheless, i think that argentina's government is going to use it.
2348 >» she came saying she wants to be a queen of hearts and a roving ambassador.
2494 >>> one ar argentina newspaper said this was not the most sensible place to start.
2682 >>> memories of a bitter war is still fresh and the princess stirred them.
2846 >» no more than a few hundred ar general tinz saw her and paid for the privilege.
3065 >» she is ending one of her most high profile visits, in the polls and in the front pages.
3311 >» argentina setls down to life without the princess.
3387 >>> she setls in for talks with the palace about life after marriage.
3529 >» bill kneely, buenos aires.

Plav Another Clip / Specify Another Search

Please report problems to NPAC VoD Group
Marek Podgomy <mar ekjGbnpac.syr.edu >

mil

370

: Netscape - INPAC Video News Database Setverl

Fie £dk Vie» go gpokmariu fipfan* fijrectarji Üßndbm Hefc

HBE3

4»
Back

^
■■<**>■■ Print

Sj Locator |h^./ykaiwk.npac.syr edu:G578/cgi4iin/vnsqueijifam 3

Display all the movie dips eantaiöing the following captioas: •:';.*
SabmxttiBg an empty qoerf tvS display the ist of available clips.. ,;;■-.■ i' ; v
Search Keywords: -";;;'. • v ''.'•'• -•'•., • /;,; '.':'■•, -■. ;'* ■: _4'-:^v--'•••!;• V \. ..;<;" f
jrebecca ; SUBMIT \ <'ftESET.-|-rv' ^■/:,':c:-"-..,r:

;üü>.;o': ":•';.'Serrers/-:v 'Ü--Ü .A:::'-,;^ ■: ■:-V^«s*4iNp*./;;/'■' ■'•■':•■

r Berim „, Bob Fray Berfin story , . \ v ' ■
r CNN CNNNewsCfcs ' ' i

Tpf&iiit' >•' .:-}I>s6iiltareÖTC^oldj<^s.firom deleted arehwes) t '^f ..'^ - , j \ .
: r Discovery y "'I^o^-Ch^^V£&orCSps ' ': >••■"".'/ ';i:. ^/^?C?i.; y/;.%; •'-: *?
'«-",«.„ ' '« • ,» r MPEG2 -1 >■' PMESC-v-^- vVaraws stuff. <P<-^,,^->-^ ; .^-.c;:-;"-v >■"■ •"'.;> '^-rW/f'J.'": '•:.*_ A-!'•'•■•' ••••- -v v :-;.■•• .-.-..-■■'/.••■• -:-r--.-^ --*;'':'-.' .'*' AVI yhdeo codecs) (-/'

: ;P Motwa Pictures Futtfa^mowarc^ •. ,;T" H263' ■'■' , ;;.
■:' f Music - c Muac wdeo archwe ' '

. T.iReuters ^^i'VVRw^N^wC^s-^^Ä^ ..* •. ' " .rv; .; '•;:.." '>." ' .. ■■/": ■?: .ii

371

7-~t Netscape - [NPAC VoD Database seaich results]

-— -1* Y»w §o Sookroarks .Options fiirectory Window Help

Back ■ » IKMnQ Reload
m $5. as

OP« Print Rnd

^ Looa^jhttpV/kayaknpac.syr.^

V/hat'sNew? j A^that'tCooT? j itertindions j| jietSearcn"! Jfeqpte { Software f
d

NPAC VaD PatebasSQuäryi^^ti: " "

SEARCHEDFOR: C%s that contain eaptiims Hke "REBECCA'
FROMARCHIVEiDrS, > - :
ENCODINGzMPEGl - •'•■•<'■' - »\\: :v. -A <,^*\

Yon have searched fon REBECCA

If this phrase lias multiple occurences, yon can start video playback at any if the associated
tone codes.

•"'■.'•' ■ ■■ :: '•" ;7—;^;7?'l^
If any chp is available on more than one server, you may select a video server to defiver the
cüp. '■./ '■'■■< ''■■:.;. .'-'.7.ft:.':; \-::'-''''~i- ""-':i- ■■■ V :- ."■ ..•:•'- .'.'v-'. .V''.':"/ '; -'3'.:*''' ".'■"•'■••:!!.: "■. ■

All chps located in Motion Futures archive .'"r.:'W- .- ., ><■:;•;';. ''•<>.; U>.>>;:'•■ <0
Encoding for'all ;efys:'Mr^ , > W ' v^W-< 'VVOM^- A V^'VA <•'•'.:

Tide Duration Start playback at ^Server' vAction!

ABens ;, 135'am28;sec ;>v!f^? min 40 sec. j\ y'f;fj Wayne jrj V^£•;• flJCtf

Specify Another Search
^47 min 42 sec.

47 min 50 sec.
49 min 32 sec.
49 min 49 sec. Phase report problems ta NFAC

Marek fodxorm <mvvkfriihicJtteäit>. v 7 ,.>

'fSSff {Docum«*-Done ;;^'.n'"//C- :\r;:'•■vV-''^-;.v;^-.:;^;':t: :v^

372

r
10.6 Appendix 6: Video Clients Screen Dumps

This Appendix contains screen dumps showing video clients in operation.

373 /374

375

Netscape - [Video Server Asset Management.]
1

File Edit View Go Bookmarks Options Directory Window Help

Buck Home Reload Open find

Location: http://kayak.npac.syr.edu:6578/newMantframe.html s
What'» HowT] What'» Cool | Handbook. Net Search~| Net Director» [Software

NPAC VoD Database C

SEARCHED FOR: M dips
FROM ARCHIVE ID: 2,
ENCODING: AD types

IT any cup is available on more than
deliver the cup.

AH dips located in CNN archive

Tide Duration playback Codec Server Action!
at

Comment on <■>•<■>«■> j. ^———• / mm ?? mo
MPEG1 current situation in

Bosnia

Computer Inside

sec beginning

2 mm 46 the
sec. beginning

Wayne PLAY

MPEG1 W^ne PLAY

376

i

377

371

10.7 Appendix 7: Details of the nCUBE2 OS network layer architecture

This Appendix provides details of the nCUBE2 OS network iayer implementation.

379 /380

p
H
U
w

s
U
es

o

z

n
P
S

• 4

-a o

o

Array Node
11

i'

£
t-i

x> •^*
J
<u
00
ed
CO
CO
Q

1 r 2
<D

#* > #* •r-4 ^^^\ •4—»
\M/ «$
.s £

CTj

>•

CO

4> .s

i k
2

t
CO D

 a
nd

 A
T

T

C
P/

IP

en
ta

tio
n

C3

■♦->

w
CQ

U Fu
ll

B
S

so
ck

et
,

im
pl

em

nC
U

B
E

in

te
rf

ac
e

, i

<'

JU9ip 9}0UI3>[

381

H

u

us
ess o

z
a n

e

e *

c

u £

<D

- 8

cr
- 18
.2 1
o »5
CO ^
GO ff"
cd £

CO ft>

o.S
£3

8
co 4)

<D >

O F-H

Art
^ o t2 *
o ^
£ o

G .
«+-1 «>

Q CO
O CO
e « a s
CO j_,

X CO

co a*

O ■*-■»

% «S
> '5

CO >

cd
co
CO
0)

■g
<p ^ CO

E2
Ö
<L>
CO
O
CO u

O
co O

P co

fa o

a.a

co C

§ &

4)

5 ° > CO

co Q

•£ffl

! «

II
£2

co o

0 o
• i-H

cd
a
4>

f—H
ex

«SS
<jj cd

CO .^

^ S
4> CX,

o a o <g
a 8

T2 .S
C 4)

«S OH

i^
ll
o 22
CO P
O co
CO •!-«

382

P
H
U w

u

«

O

H
W
Z

pa
P u
c

41

4>

09

O

o o
CO

1

CO

O
c o

• 1—t
■*—» a o

CO
O s
CO
C
O

•Ö
ctf +-»
C

a

O
G
.2
ccj
c

JO .

•■-4 CL
co ST
3 H

.S3 PQ

d c3
co co
"- G
Pk Q

co a
es <£
o •*->
o 2
5^ €

<L)

co

O
O
co

£
£

O

'S
j
a

e
CO

t
CO

I
00

o
U

a 00

PQ

U
c

Q
co

a

I—*
r—•
CO

CO

<L>
00
co

■*-»

G <u
B

3 ig1

II
CO <D

£> +-.
4—» CCj

'S. to

o

bO^T

73 co
a PQ

s G

9W
ä PQ

2 G

383

H
U a
H

u

o
H
z
a

U c

et
w

or
k

ic
ti

on
s

ra
ry

/"-\ G<3 CO CÜ^ J

o
4-»

a V-i nC
U

B

lib
ra

ry

«5

c3
o

4*3
co r—1 s

i—H

<

>*>
to
4)

s
•a

Q
CO

•a

br
ar

y
ns

PQ
D U

2 D >

> SÄ
B

SD

fu
nc

t

cö
55

C
ea

o
CO

1

co « o o
co ,c3
si «£

Su

1°
CO
4>

S <D

•a §
* a s ä
s &
> CO

CO «TH

X» ~

-°^^i

W ^ & a & g
U O C4-I ceo

£

CO

11
c o

jö i

bO-a
cd *
CO o
CO +-*

W ^

u 3
o O
> "2

£ Ö

384

C

M
H
U
H
H
53
U
C*

M
O

H
Ed
Z
a
pa
& u e

0)

0)

cd

«4

O

«3 . »

CO -p
•f* »-4

CO

3 oo P

o

« e «

a.
CO

O

t £

co -p__

co "* a> M
•I»* o

7 ü ü

o a* CU

X co <U

g * 8

•s-S
O
a

o
G
co
6
a>
CO

,U 5tl
53

6
B
o
a

PQ
PQ

U c
Q

CO

+ *- r?

S o

§•§ .54 QL,

3.2
S 5p

7? co
'S ü

ä s
« is
'S T3
co C

at *■«

T3 >

o o
<L> ö
8"s

o •£
co H-

c« >

'53 o

It
^* Ci>

»_ ITS +-»
o So
-£ £.8

385

H
U
W
H
s

O

H
W z
w
n
p

CO

w
PQ

u
3 2

ll &

*F !
• « a
c

CO

if

Q
CO
PQ a
2
<u
cd
CO
CO

CO

CO g

! &
©8
8 * 3 co
Cr (u

T3 O

Z CO

X u

•
o (1) c 3
o a*

T3 o
O CO

c cd
cd •o
CO

.3 §
cd CO *-• a o S u £»

»—«

■8
• rH •—(

öS

CL O

O S
t» £

o> o

o t>o
co

?*
£5 CO
o £
£ 6

386

et
P
H
P
W
H
» u
et
<

as
O

H
W

W
«

P
P e

«

(ft i

«2

c

a

a

ö 8

•«
O

■8
CO

S3

•a
cd

CO

o

00 £*
3> £
5

^ 'S

4>

Ü

o

8

£
CO

<D
>
cd

.3 JC
00 jo

U
ss o X) c
Ü »-

C 4P

S 32 a ago
o =s ■•-»
£2S

o

CO

■8
O o

CO
C o

■*->

cd

cd
■4—»
CO

C+-1
O

CO

J .52

T3 ccj
cd O

11
Ä o

e &
CO <t>

"-< >

Ei cd
& e

o
C
CD

2

I
e o

co

I
0

■8
§
p ü

IS
o 2

3 8
C C4-H 5 o
Ui2

JJ

o s £<§

387

H
U w
H
K

o

u

6

o
a.

o

G

I" o o
a>

00
G
co /^->
SO
ed flQ

Cd "
G

CO
cd

o

ß
CO
ed

o
CO

6
»—I

Ig
rG >

t-H

fc

CO
PQ

o *o «- o
G Ö

l§
*0 cö

fcl3
eg 5
B °
£ 8

g
ex

J3

•a
+-»
3
CO
CO a) o

I
5 Si

8 o
G .0 ^ «) . £ °
31 " rt ~ " J§ .5 G

Q «s
8

1

IBB
ü G 3

O > *_
08 ~ £ co cd 4)
cd ö co

£11 PQ 'S c3

co 3
<D ?£
cd ■♦-»

G ü

«a *
.. co
G O

I SP

£8

5 SP;

S 5.
<D

6 S *- S

»rl Cd

CO

»53 t« G
Q ^

cd jd ss
<u

ft* PQ ^ § 2

388

10.8 Appendix 8: Slides of the final project presentation

389/390

r "*

CO CD 8

o
O
a.

09

a CO
CD

F
co
a»

5 O CO 3 c CO §

Z
o
■a

c
g>
ö
o

id
eo

 c
lie

nt
 f

ar
ch

ite
ct

ur
e to

CD o
>
CD
CO

n

CD
c

■a
CD
x: o

CO

a.
o
>. &-
CD
>

3
E
rr
CO
>
OJ

CD >
c
o
TJ
CD
XI

> u
">

> - ■a
CD

CD
■a

c 4-*
CO
CD

s
£

o
■

10
3
(0

*
CD

13

C 0)
CO =
TJ O

E ■a
c

■a
c
CO
JZ

o

8
c

o
o CO >

C i_
CD CD
Q.JC
CD 'S

3

E
u
CO
Q.

CO

CO
CD

5 ■te
8 i

> c CO ■a ° o o
c

CO <o . 5

UJ x:
u
0

CD C CD

cS a-
O
O

co
*■»
a C CD

CD 3
1

** CD Ü o o a. CD E « a co I c ** Ü ■a 3 Cl CL o U
(0 c

2 c§

II
CD O

n n ** c ■s

Q.
O
0)
>

2
"5
o
CD

■a

>

CO o
E
TJ
CD
"3
3

CO
CD

a>
O
o r

3
CO

S

■o

3
CO

(0
O
O
•a

CO
3
O *c
CO
>
TJ

o u
3
CD
c

■o
CD

si
gn

ed
 a

nd
 i

m
p

rv
ic

e
sc

al
ab

ili
ty

 8

*
I

Q .X CO x: n ^ CD CD CD a. §

k2
:

vi
ce

O
3

ä CD c 2 £ a. a
3
co

CO
3

a

CO
3

co

•
m

1
0) > > > a> a O o>

1 (0 <D
z UI m UI a is Q co

F CO • • •

>

<D
CO

o o

>

3
(0
>
til
TJ
c
(0
a o
<D
>
©
Q

»2

c

o
3
CD mm

CO
C~ n

E 3 o
u u

c
CO
TJ E
CD en
c CO
CD >.
E CO
CD *D
a c
E p

1«
CO c
TJO
CD O
£.«
'S. >

2?

CO
CD

2
3
o
CO

Q.

3

E
E
g

O)
c

TJ
O
U
c
CD
T-l CO

b CD

c o 2°
*8
sl

CO

IS a. 2
CO CD

*l CD c

CO O
2 TJ
O CD

«s
> xi
E ö
CD -C
£2
£,£
c S ■= CD

S s
T3 >

- 2
CD oj

.5>^ »

CD
u

« co
=5©

O TJ

CD

c
CO CD
TJ E o § £ s> CD CO

E §
3 e
CD "K § 8
5 "° a. c
S co

if
« S 3 O

CD §
i= C- "5 ®

■ C CO

i o o
! CD CD

TJ TJ

■Q CD
"co p
c O
2 E
X .-
CD CO

= -Q
'■P TJ

c
co

TJ
c
CO —

>< 2 C5 »7 »
CO C CD
CD O "O

3 ■= '^
c o 2
c5 -Q °-

.._«)>;

CP Q.Ö

X

E
CD

2
co
3

■g

CO u
■a
c
CO
w_
CD

£
CD
CO

x: *^
o
x>

O) CD
= TJ
x: >-
a) i5

a. cz
3 x:
(O Ü
c 2
o>

co 28 5 5
E g CD >
e t-o>
CO

W

o

Q.

3
E

Ü

»

I

I

I
1
8

391

<D
U >. O) T3
CO d) c CD

03 S CO *

E * S

to
CD

+■> •o a> >
c

co
3

o
CD
XI
>

XJ
CD

2 o>E

c -£ to
»So
E *- to

o

CD
CO

D

O
CO
CD -^
c

c
CD c 2 » CD J3 to fll

CD

E
CD

Q. c E co o

CO > to ill
CD ■ C

o
CD
Ü
co

Ü
O
CD

■D
>

£ ». n to "P o
to 5 S5
co 2 to
o t; <D

t o
o c CD >*

"o Q 3 2 c _CD

c O g-o
S 0)

tu co »-
CD
rn

CO
(0 > T3 to TJ >
<D w

c 2 o s
0 c

"> ffl £ 3 .c co
+* <> ^ a - n y X)
(0 «*- CD % CD

£ 5 «J
CD CO CD

3 CO c — c 0 c to
^BB

.2
"5>

*" £ 2 2 5
C X) CD
®^=5

T5 CD w CD CD
CO
>

UJ
TB Ä

2 E

Ä >>

C
CD E

CD CD o Q. m "D o a a. CD

o
c
r

fc^E to E c
o E|

to o Q v>

»2 0)

1

I
i
e
s

CO
E

2 a.
O
U a.

CO
0)

CO a
CO u
CD CO
m ® § i>

■a Z > <u
UJ CO

CO p

2 o

0) >
0)
CO
o
CD

>

CO
E
o
*:
a
a.
c
CD
k.
CD

XI
CD c
So
4* CO
XI c
CD CD

« E
CO Q.

.2.1

o
E
CD
E
XI
£ to

5 §

u. O
O CO
0} to
10 CD
CD U
o
o

s s
CO XI
-n CO

1 £
CO JZ

t s
co

o
XI
c

£ » ^ £ o CO .*: i_
o

1-

03

-I
O XI

E|5

CD to CD

c CO ö

c
o
CO
I-
0) >
CD
10
O
CD
XI
>
XI
CD

M © o

I«

3
E
*^
c
CD
a

XI
XI
CD

■x co
(öS
E2
c o
cs
CD £

22
xi a
E *- CO CD

■o £
0> CD
m »
3 O

II
UJ >

CD >
(0 <|)
xi «o
CD CD
ES
co £
3 co
o u
3 CO
JE xi

° A O O

E m
<n CD

co *^
CO o

Xi c
«CD
Of
o *-
co o)
■o =
CD **

S, o =
— a..??
«» a."35
© 3 CD
Q CO T3

c

CD CO w a,
3 XI

^E •s a)

XI >,

s ®
CO A
co 2
Jr 3

II
Hi
XI ss

■a 8 0) ^
2 E
> 5
o E
a. xi

2

I o
cc

I
I

392

2
<
z
<
5
Q)
£
+■■
O
E
0) n
Q o
TJ >
r «^
(Q u

(0 0)
3 >
CO "3 >
Ui

l_
to o
JC 5
(0 +■»

.(0 <D
H C

:* ^
c
:= i

s o S

< c
03
CD U 1

Z.2 L) c cc

< % c u

s
ov

er
 W

w

in
g

lo
c<

CO

co
in

CD

a
c
o
n

u
a

b
c
o
DJ
CO

c

<

m
0)

c
CD

3

C O n 'S — to <?•
o = F CO

a e 3
u
2 >.

CO

•
—> o
co *-

CD
O
CD n

CO >
•D
C

c
CD a. 1

s

z
>
z
o >
o

CO

c
CO

3
■o
c

CO
Oi

e
!

I?

1 n

in-
en

c

o.

m
1-
Ul
z >- z
>
0

m
C5

+-»
CO
3
O)
3
<

in

.e

CO

lil
z
>-
z
a >
o

CD
03

a5
3
Ol
3
<
in

Ul
z
>■ z
a >
o

Q.
<
Er
o

o

1-
Ul
z >- z
kB
a >
o

o

!
i

E o c •tf
O!
c

5 CS
c C

J-l
co

i

a
c $

<U *"*■ fi c c c I»
Q C

Q.

c
3 u

Q
n

c
3 S

CD *-•

c
3

O
Q
a.

c
3

<D

E o

c
3 s

CO • X • C • X • X • I
•11
•

(0
c
o
*■<

CO
l_
+■•
(0
c
o
E
0) +*
TJ c
Q
o

CD

E
> c

o o> 1_

c >
** c
to CD
X 2
a>

■a 5
CO Z
O) a 1
3 c
in c
.* 3
(0 i_

£ o

c
3

c
o o
>. (0 CO
*rf r a.
c o CO
(0

0) co
c ** <
o
u

CO
c 5

CD o
E
CD
TJ

?
CD

3
TJ

i a
O

CD

-1

(0 > D) *-
CO o c

o
o co

CD
*J CO T) c
CD c

■>
E TJ
ex CD
o o —
CD
>
Al

>
CD

m

co
CO
c

■o sz

< 2

■c o a. a.
3
CO

CD
Ü c
CO

E
o
t
CD a.

if
^^
< .i:
"a 3-

2£

?1 co 5

co Q
c o < >

I

I
1
s

393

1

u o
"o
I-
0.
o

O
(0
0 u

c

UJ

1 °
CD o>

Eg
Is- |8

5 Eg
° §s

c « o
(9 « «
co j- o
_ O O
CO «) O

O TS 13 "
c
o Ö..2 £ o x p <S
I- in V«5

CO
T>
ai
E

E

o

CD
C

•o
c
CO
o
a>

>
To >•
S O)
D> O

■O O
O C

%2%

— o
CO £S

O i-
V S
a> .5
CD — w a>
U. 13

0)
c
CD

c
■o
c
a
>"

O
co
o
o

&
hi u
c
a>
OIUJ

8f
■ g Ä o
O) o
Q JQ

T3
0)
E
3
E

o
o
o
CO

I'

co

5S w

2 s a) o
1 1 3 O

CO
CD

O S.
0 x 1 I
1 £
XI >
3 a» S > ö a
°1 2
it* 55 JT <o
°§! S
Q.~ U
X 0) «Ü

UJ -a z

I
1

8
:

w

(0
a>

u
a)
'o
i_
o.
0) >

a
o
O
u
0)

"5*

3 c
o o

o a

2
5

•o
01
k.
CD
>
"5
x>

s
0) >
co z

co
c
_g
4-rf
(0
o
CO
D.
X
CD

"Jo

E £

*&
n S
9 • p a

* I c C
a o

2 •
£ £
•S *
2 2 »
c a
O 3
E 13
a cs
•D O

c 2

I 1
o E

2 £
> 0

o n
w a a ill
II fs

E •
• 5? •= TO
a. jc

..CO
T3 - S
® 'S «

afl

f. s -
"ä E E

• =
CO a) T3

o
•o

« I i
■S o •

11
I

m =
i S
a <

S » H e i. c c o a f ■= eg o ■> B

E g E ff |

• S

I

394

<0
'■5
o
E

TJ
CD
x:
u
co
to

c
CD
3
(D

c

>»
Ö»
O
O c
u

5

S o

°- 2
Q.

es a>

1!
iii

z
<

Q.

LU
«
n
o
a.

UJ TJ

jo -Q
w o o *-
£ = TJ <D
CD 'S

o .2 as 3 e a-
(0 CD

if 8
c o
Co £ ^j a.
,2 CM i •
E &

UJ UJ

§3

■ ■ a

(0 p

TJ n

I B I 5
£ S
tr g
O w
O 0
O- 3
3 p

£ ?
s g EQ

IL

CD *:
O O a

°- E
«9 »•

ID .a
9 Sc?

tig

a
TJ

2 c
en 3
o -"

s i o &
« o Q £
: a — t a —

c ■ as
■ s
S 2
o o z z

32
„-.£

TR n

** Co

S>
< a

§ .2 =
= Co E
ä. «> o

5 •

I 8t t ** a

j? o a. • ** °- U >> 3 > 5»
a CD m

€ Sä
5 «£
§ 8.?

o E
• IM O

z*=

e
i

I

I

>

Q
(0

^5
0)
E

10
M
CO

a>
o

CO
o

c
Ö)
to
O
c
to
a
3
o

5
Q.
3
O)
c
*s
CD
to

E
3

5

O)

T3
C o >.
(D

TJ
O

TJi?

■S a.

o i-

^ CO

II o J!
■O Ul c 5 IS,
1 § 1 3 « 1

CO n

co

S a

Ü
O

in ^
a» ^

o
o
£
u

s

co "s
CO c
CD C
>> o

o

(0
CD k-

o
o S 5.
Is

= o

-> to

c?iS
> U3

<n
<n

■a en a u.
D)
O

u UL
to
o 2 *• CD
LU N
7 •*-*
1 V) o

h
• cd

E^
(D CD

Ci- «0
E <»

C 3
J£ o
9 xi 3 co

= I «
Ul 1 1

f IS
o 5
s ~
o .

s ?

5 TJ
E »
£ o.
E ©

Is
II
3 CO

* «5
a o
. «- t^-
' CD CO

A to
E S
3 OJ
C O

< 5.

8
J

395

1

re

0)

E

x»
c
(0
(0
1_
o

z

(0

o
Q.
0)
x:

0)
>
o
> .
«I «j

3* T> CO
o -o

o u.
^t CD =
0)-o
T3 «
At T?

CD
a.
co
o
to

CO

Ü

CD
u
c
co
03

c
o

8 g

0.
> Ä w sr
£ i-
o ~~^

o 8
P o

Ü 2
co *-
S CO

A a
S 8
D> U
© a

co .y
3

5= Q. 2 a.
CD
E

„ a. *; ü ST«

co
£

fi §
n> o

5 £
o *- a °-
'"' O) j^
CO C *r •- •= o
a> co -i
cm®
O ä Z
a w CD
E <D>
O C «0

«F8
o> — ™
c co g>
™ es 2
E? CC CL
CD

c
o

"to
CO
CD

CO
Ö
CJ
o
e
Q.

c
CD
fc a.
CD

CO
o
CO

J_ n
CO
5 2

O
CD
U

CO
c
CD O

C1

C
2
o o i_

Ü 0.
CD Ö
Q. ♦*

E c
o

CO u

I

i
I

""5
0)
£
3

O)
o
o c

JZ
o
|2

fe

a>
*s
CD
(0
c
3

CO
e>
co

CO
"D
C
co
co

a
o

CO CO

O CD
T3 E

co

-I 0) CL

1!
3 W
c o
< E

cc E
< CD

0 >

i ?
_ CO

i «2
9 o
1 ''S
1 &
CD CO

—' CO
>«t3
C CD
O OL
.. to

i.8§
CO CO to

3
Ü

I
CD

D)

0.
>
CO
£E
CD

_CD
O
Ü
o
o
Q.

CO
O

■c O
o •_
CL —
3 -C
CO O

5 S
Q = u.

CO

c

? P
CD

X3

CD
CD
E
co
co
CL

~ U.
Ill
»- o
2

0)

£ co
2 S

CO

co
E

CO

LU <
O
D.

CO
O _

°.€
g 8.
< %

i ®

JS CO
co 2

11
H 2

co

CO "S a c

fc to o co

co
XJ

<" co *
CD Jfe ^

3 7B i.

o n. 8
» n 1

CD

O «5

>. CO
r: CD
0. £E

o a a
a 3
* co

CD CD

= O
J= s £ Q.
> X > 0

I

396

©

■©
Q

O
3
© z
o
©

■o
>

c
CO

o
©
■o
>
"5

5

0)
>
o
<

T3
CD
O
ffl
Q.
ID

2
co
3
o

o
5
ID
c
a

o
x:
a
a.
E
a

£ 5
o »-
3
0)
E
CO

c
0)
E
a
o
<D
>

Q

It
»£
3 S
a »-

©. 8 £
3 tt^

<D »«
■*-» ^ jo
£ ot>

2 1 P ö
© >= «
O o 3 a
> <6~

03
E

c
u.

T3
C
CO

c
CD
E
a.
o
CD
>
CD

T3

c?
co

CO
T3
CD

1 °
! B 1

1=1
CD
CO •

CD
E

5
o

a
CD
Q. 2
CX >
< <

U_

O
T3
CD
■c o
CX a.
3
CO

CD CD
LU .a'
D_ O
k m
f"
<1> ■u
n CD

O :>
co
E

CD
Ü
s

CO o

CO I
© i

2 1
CD I

a 1

©
>

©
Q

i_
O

©

o
©
■a

c
CO

o
©

■a

CO

"5>
Q

CO

c o
si o>

2 £
CD CD

a >,

•E cö
>.©
O) u
o c

T« O

O CD

© o

■'S«
4- I-
C CO
CD "a

IS ex *^
O CO
a, >,

«1
co a-
> -
co £
O CD

a-'S
x SS

CD
co
-C
CO
*-»
CD .*:
i—
co
E
>.
in
co

c
"co
a>
o *-»
CO
Q.
E
CD CO

CO 3

>>"5
-a 2
c ex
CD —

IS <-> CO
CO 3

© =T ü T3

CO
CO
c
CD
CD
(O

CO
c
g
3
O
CO

ffl a>

•1 £
ex co
o o

CO
3

X3
c

c
CD
CD

r>
•a
CD
CO
o
ex
o

CX a)

■a co
cö E
-o •-
c o
co —
CO CO

■A ex

>> o

a£

c

8 S

«_ o
O CD

c >
© fe o o ._ *- «^ ^_^
"c c
O) CD
CO 03

P x
o «"

•fc >«

2 o

o ©
co o
•° S
H CD
O CO
co J£
CO 5»

Ü
CO CD

•ft r CD

253
52 = %
> S '=
<= > 2
CD CD ©

SI

S I
CD CD

CX
X
CD
>.
CD

ja
'co
ca
CD

!i
= s:
ca o
.y a.
CO CO

E 2
CD CX
E co
CX.C
O *"

o P
© T3
ex c
.i co

3 M

E o

2

1

!
1
s

I

397

c
o
*!

c
o
£
a.
E
(0
0) u
>
1_
<u

CO
Q

TJ C

= o

co £
i_ <->
cn*-
a» o

■**

.5 ■

CO 53
» i.

TJ O
0) Q.

C 3 CD 3

o> E

JI3.
. CO

I?
8|

TJ Q
a> 5 « > o w
5 o o

> > co

O

$ s
. o

co 5
TJ
O

g X
» -g
c .E o

N <0
S= TJ
D) (0

TJ CD
t-

C o *-<
m

c
CD

n
b
CD
O) u CO

(D c <-. u a) CD
> P CO fc co
m fS -° *—• & « □> CO CO o CO TJ

CO

CD
>
o

c
CD

Ü
O
CD
TJ
">

E
CD

CD
CO

o
CD

l£
£>t5
CD CD
> Ä

o
Q.
D.
3
CO

o
3=
ro
Q.
i

3
E

TJ

c
CD

b

Q.
CD CJ

«I |l
JD >,
C CO

S I

CO
CD

TJ
'>
p

O o
.-2 I
.C CD
o CO

tö "5 CD
CO 3

O .CO
Q) TJ

£ S
"o 3
CO H—

c co

8*
«"co
3 TJ

TJ C
O 3 E°

»

f
i

I
I
I

398

o
Q.
*-<
3
Q.

•*—i

3
o

o
CO
CO

CQ
CO -s

U

0)
CO
c _o
+3
(B
0)
i_
Ü
(0
c
c o
Ü

0
■o
o
o
c
0
c
o

Q.
CD
O
T3
0
(0
O
o

■o
B
co
O)
0>

(0

05

C S

2 O

IS
2 1

o S
(0 a>

CO
C
<D *-•
X
<D
O)
c

'co
3

85
CO £

e S
.2 S
-i— CX
Q.
CO
O •

= I o «
ca o

2 >
> o
o £
£ o

li

I g
0B O
CO O

si
• ä w CO
IS *>

S c

° E 9 3

c
T3
eg »
O c
— o
CO 1
Q |

c
o

OTJ

•= P

0 <s
«•2

 IQ T3 C
2. ^ - a
S »2 •

a s s
S C
a c

■o a

o o

i8
Jj 3

5 E

I §
= E
6 o
u a

I «
s &
CD U

"3 5

(0
N
*3
a
E o
3
a

CD _

1 8
U «
'ts «
2 E
6 2
O 3

co o

1 Er •

a S a „-E n
e « 2

■c o

• o
a OL
TJ <s
■a C

E S

I

CD
CO
CO

(0
CO
Q

Q. m
a. s

SI
CO »
o
(3 ♦

SE ?
So 2£ Pi

• i
t>
s

a> u

(0
c o
"^
(0
o
o
(0
c

c
o o

o
0

>
0)
E

ra

o «•—
a>
i«
co
3

■o

CO

E
CO
o
CO

■♦-*
CD m
c
co

(6
X
>

CO"
X
>

CD
p

• §1

I-

o z
£ o

2: o

£ a
a >

si«
go £
§Eg

5

o
o
o

=> a.
£ O
.- P.

!

- « S = 5 co g

a
«
<o -^
Sä

O U
w ^
"go»

D>0
0 U
IS

3

o =

'^
^ CO

Si

S E
3 P a- ~
E
o
u

w j —
Ocw

c °£
S>*
»- a o
c»o a
= |2
•2 S * m O w >»

= issl
= =-o £ a
s ssfS

CC 3 » ■ g
I- a a cS
> CO m on

a *

CO
CO
E

If
° e
3 ö
> 5
2 |

T8 "
O a.
g:s
.3
co •

a. o

» " I c
1 o
^ 2-

1? a
8 ui

?2

CO fi .2 I

E I c s
0 -8
0 i
ö I
2 8,
R I
E 1 o I
o S

•i - + § £

o
Q.
Q.
3
(0

I

399

CO
o *-*

"O
0) *—• w

<1>
CO

(!)

is
i_ CO
OTJ
D)S

N fc

Q.
0) u
c
o o
CO
4-1
(0

■Ö
CO *-

■o
(0

U

(0
c
o

E u
tu CO

"™

(0 u
CO Ü

■o o

1

•o

o

«
•c

£ ■ e
a.

_, _ o>
— a £
c c
a» "

so

E 5 -
cö |f
a- la
o gg
to 'O-

11

S3 B

C EC
XT » O
Ü

» en
c c
SS K ai
a *
O 0}
en CL

S-3 2 »

■ ■ i

TJ
C
O

UP
> a
o

t o- § o
£ ä e »
a) oi

i S
• o _

1?
IS
! E

en e O
|S »
2 S" CD
a S C
»SO
£ * 33
- 5 co
€ 2"5
* 5

_S »

— 2
2
a

TJ

£ a Hi

SW£

II 3 .of I 5 3 - -K = a

es
<>

_ x»

• co

Ü

CO

T3

O
c
S
•8-D
.-Is«

CO J3

» s a.

= B Q. S

en g a
g ? ü
*- c *- ■ a co
Q S CD

± I»

c

C0.O
o — ™

m O
C0 0) 0

I

I

1
I

O
U

"^ -c

C
<]>

E
0)
o>
c
CO
2
*-•
a)
<o
co
<

0)
>
<u
en
o
a>

■a
>

co —
'S ■=

0> A

> __
O a

s I MB in

CD a

a £
a. <-
CD
co

a
D.

>.
C
O

TJ ~ s
«° co ; ..-BO
a> cu
Q.E,

So
1*

a r
II
O 3

3 ffl

o v

S g
So "»
a Q. _i

1 o - a>
S 23
o >
a _.
e CO

£ 2
>• <o
° co x> *-
S © co
O *» —

2 - P

> s

x co

P Is
= •

Jo

32 ■

TJ O
D 01
c a
a »-
5 -a
o a
TJ a
. a

a> jL
> U

1 E

SI

5-£

c
a
E
a>
O)
a
c
a
E
a
a

TJ
TJ
C
a
ra

_c
TJ

TJ
01

■C o a a.

j» o
c

3 1"
c
o
u

3
o
c
a
en
o

CD •— -«—

Ti o- c

E • g
i: O)

- S co
< £

3 <D c
._, ^ - ETJ o

0) ~
E ~
e

■C 3 _
p ^o o

a TJ 2

52
S 3

■a. o J3 o 5 S

S o

«

i
r

= I 0) *■ £ I
s i

400

E
o
(0 (0

*■»

> c co 0)
■ c
a o

Q.
3

4-1 E
o o
0) o
£ <u
u CB
< •a
"Ö v.
c (B
(0 X
E TO
9) C
Q (0
C o
o (0
o %
<D **

>
o

CO

CO
5
CD
Q
CC

g o
.2 - ö
tJ.|o
c S «

<*- o> *r
** « 2
(0 > Q.
O « Q.

E - =
w. s w
O 3 (O

°" IS

o|S
p 5 o
5 £ a ffl • m 4» a CD
CO • >
«jC ffl

CO
i_ e ,.
• O m CO » § 5 f £
o °- ©

I I

■o
c
a>
u

- to
0 .□
? CD
-* t: a n
CO TJ
TJ (0

1 «
is o

15 o o a. i:
a> O.
TJ _
2 CO
<= o
c a>
€ E
§ E a. o
§ O
c ■• il

ffl £ CQ «
£ ■ Q C - a. oc to

• ■£ O

S 2 o >

o
ra

i. a.

•> y S °-
p TJ

a
X

e i
11

f S
= %

II
2 *» Q. c
a «
« ><
•o E
0 —
5 5
1"
1 5
a 2
O ffl ..

• is
S B. c
.2 e ffl u .5 := a. o

U
• o • •

CD
TJ

c 3
S O

o
a
a o

n

TJ
O E
F a

CC E o >
■c a
o
a
a.

01

3 TJ
CO

o" O

TJ
> a

E >. 3
a C

a
I

I

«">
CM

TJ ffl s CO CO
c u
tD o ac

c CO
CO co" §

o
u
a
a
TJ

CO
ffl u

co

1' o
a:

TJ CD
4^

■c CO c
CO . £ co i

o a»
E o >.E ?

a. 0 = CO 1
a c T» 3 ffl ü

3 o > co to 1
(0 TJ

CD a
ffl

JC Is
CO o

e

1
1

O)
C
'5

CO
CO
XI
CO

at
TJ
o
a.

IS

p
ti

o
n

in
g

tr
ie

ve
s

bo
th

 t

in
/o

bj
ec

t

<D

c
0)

ffl

a
a.

m
CD

n

c
TJ
o
u
c

O

to

x: TJ
B =
CO «
ffl o
to «-

t
8
I

(0 co a ffl 5 S 2» ÜJ C w

(0 u *3 UJ .2 2

2 «J

ffl o
CO T3
O C

Ü S

Si
CO

Q
o
o

■o

O
w
CO
CD
co
i_
o>
CO
Z3

CO
.c
H
to
CD
CO

>
.c
a
a

w
c ffl
c
o
o .

 t

it
le

s

.

 a

n
n

o
ta

.

 c

lo
se

d

E
ac

h
se

ar
ch

in

fo
rm

at
io

n
i

I
1
!■' u

I
> 1

401

5 o
u.
CO

CO
Q

V
l_
3
*■«

U
o

'JE
u

c
(0
E
0) •

c o 5 o
O 0)

li

c

F ü 0 = rat a 5
co a x c a

(D 13 u o a
CD

"SI 3 3 o CO
CO
I.
QJ
.C
4*

e
o
to
m a

£5 oo
^ c a —

5 ^ o a

O o
o c
CO

o E
o

CO Q)
C CO
S ä

CO 0
E-°

co a» S c ~
CO
CD
U

c
o
CO

<0 Q)
(0 £

CO
CD k.

8} C r

«So a c =
Ü
(0 o CD ■SI

3
CO a

S o c
S o = ■ >r

CO a 3 o-ri CD sz« 0)
3
O"
at

>

o
E

c a

O
CD
■

.C
U
k.

a —

■3.2
so

E
>» u c
CD

- o i

CO > 3
a
E
k.

E c a Sis CO 2~£
<o
<

o
4 5 o

So
55 E

CO c 25»
> CO T3 a> £ o w

HI
• CO

CD
■o

• u
2

•

±z o i= CO
CD a (A D

e
i

i

o
LL
<0
+■■
re
Q

a>
V.

3
U

!E
u
<

c
CO
E
a
c
o __
O <D
0) T3
■a o
> 2

o

>
5

i
c
CO
CO
CD
3

JO
'LZ

co
Q.

Ö
O
CD

>
o
0)
CD
0)

Eo *-
O .O 's
to Ö

is S
— 3 2"
^ o C

si E >fi co
£ a «D
i: o> is
SS m

•2-x ">»
§Sfi
— co C

JL ft

5-2 o
of
« E "O — B c o - -

S o
Z CO
C O
0) CO
CO (0

3 a
c»

co

«
Q.
O

o *s ra
■D— c «co
o o o
c «s
»•5

«i — CO CO

p«g
to .2
o o >

|lo

£|1

ufu

°S » — S c j £X CO C

»SU a? >.
u c «
O ■ £

il^
u o

CD
a
CD
JC

^r°-SS wo £5 S-CD Q.

Ü

O
0)
CD
(0

D.T3 P

c
CD -^
— *■*

ö o

>5
CD _-

«= U

ox t! • >«>

8 6,
CO CL

« o

o) o

1 Is
_ go
co '-'O
2 ?> *-• «•

S. g:
c t 2*5
a c S c

2 >
T3
C
CO

C *- CO • c 2_
"2 S. «JC
g-c? 2S
o c a c
ö E £"3
P ■ - 2
Fi Uc

. m — R
• s S^ • m — S
%% °r P co o i

■" O T3 m at 5 *
-S 2 «>

■M o CO

• -5

c~ -5 ö
e

5 ■ S O
J2o gg So > — ■5 S-
o 5 « .
"2 o oS
O _ — O
"| «'
>< c o 2- o o c —

0> CO 2 a
oi.
*- Q.
ID co

ü
O
CD

>

I»
II k. CO

I
s
s

402

(0
Im

>
v.
<D

</)
o
o

■o
>

■a
c
«j

E
0)
Q
c
o
o
O
TJ

« 8

c
0
0>
X>
0 >
0

0- >
0)
(0

■D
o
E
13

TJ
C
OS

E
_ 0
O Q
o .-

S <D I

3 °

o a> ..
■o «
> c
«. 0
o E
0) ~
C 0
O Q.
«5 X
<o UJ

c a
O TJ
3: o
a c
(1 w

£ E |
3 O "

O) t
c <

°- ■$ O i

9 £ s

P 5 S

SÄ

.9-S

If

o o
S £
Q. O

.SS.

«JOS
c c «

1 = 8
i = S'
■5 I 8
c — c

>. Q.
" E •

a o
2 a
a- 0
0) Q

1 Q
(0 o

£ äi
0) Q.

eo ü
JC C
(0 z
eo Q.

1.1
a 0

E i>

■i S
= c
< 3

c
o
o

0

O § «

£ o <B
n c 0

am P
£* O 5f ?
c S <a
o 5 k-

So3

- « 8 ■.raw

2 5 O
O > ««-
CO (B 4^

• 8.
a.
3
(0

1
8
S

I

<D

u o

u

c

E
a>
o
c
o
o
a>

>

w
3
O
0
*■•

x: u

•o
0
0
o a.
o w
Q.
0

a
o

LL

ca

©
TJ
TJ

co
0

TJ
0
co
3

Cfl
0
5
0

= 0

> =

H 0 5s

0 <

0) T3
Q. 0
0 N

Hg
0 E
£ o
0

3 2t-E 2h

0
0 k_

. ®

>- 0

£^ Q. (D

C aj
0 (1)

ls
Q. (0

E.2

— ®

§"(Ö 5. s
T3 OL
0 i-
(0 0
0 >
XJ 0

if

CO 0 «,
>>x: 0

© ffl O)

0 3 0
3= T3 JC
— ~ O

X
0

3 <5 XJ

^ 0 0

=R Q

^2
> 3
SB
CO CD

x: 0

SS
5 CD

*E
J3 0
0 Q-

O ^
CL.E

0
Q.
Q.
3
i «
0 O
o ~
0 CD
0 «0
0 CO
0 O

II
0 x:

>• 5S CO 0
© o
£E •ss
C0

E 0
CD CO

" s
0 >

CM

"3 ^
0 ü

0

® "5 0

COQxi

Q.
O

c
o

■o
0
Q.
_o
0 >
0

x>
0
ja
>.
0
E
CO
c
o
*= p
o S
"^ w 9- >< Q. 0
« &
§ 0

0 -o
.. O
0 0
52
x >
0 0

TJ
0

TJ
0

s £
0
0

■° 4

o f •■

^ «I 0 cQ

Q si
o . tS s

3 ES
— t-gl
0 a°
C So.
.2 5j5
.ti «o 5 ?f
0 £
•• £*

g 5
0 8

"5< i ai ?
V)

-L'.S. GOVERNMENT PRINTING OFFICE: 1998-610-130-81008 403

c
CM co

o c
o
0

o
4-rf
(0

"O **
</) > CD *-•
c
(!) J3

E
CD

CO a.
o r

o
E a>
•- 0)

o a
■a
>

a

c
■o
c

§ o
O CO
CD CD

~ E
CO o

■ 0) o o

c
Q.

■o
5 co
~ E

es
E

c
Ü

SI o
co co

o
Q o

m "5. CD
> »

c
o

u
to

UJ 5
o CO

o
O •

c

o
CD

>

CO

§■»
5 CD
»- CO

2 2
CD .o

^-°

C3
CO

09
S
o

■a n
<o a
1 o
5 S c C3

? S » to §
E. ö "X = 1^ ö
c « o <o
«5 x u —

IS-
c

t!
"SS ' '
CO g

£ <= CD o

8 = - « o a o

f! CD CO
Q. CD

III =

•o *
o S _ _
E z z <

D.

c
CD

E
c
o

CO '>

,>» CD

81

e-i
CD O

o .E

BE
IS ° t:
w ©

CD —
= CO
U CD
O 'o>
CD O
23 > c
i_ x:
3 o
O 3

• S
i i
8 *

if s
§
s

404

