
ARMY RESEARCH LABORATORY 

Performance of the Miniature 
Airborne GPS Receiver 

by Tom Van Flandern and Thomas B. Bahder 

ARL-TR-1739 July 1998 

r^o QUAINT INSPECTED 1 

Approved for public release; distribution unlimited. 



The findings in this report are not to be construed as an official Department of 
the Army position unless so designated by other authorized documents. 

Citation of manufacturer's or trade names does not constitute an official 
endorsement or approval of the use thereof. 

Destroy this report when it is no longer needed. Do not return it to the originator. 



Army Research Laboratory 
Adelphi, MD 20783-1197 

ARL-TR-1739 July 1998 

Performance of the Miniature 
Airborne GPS Receiver 
Tom Van Flandern and Thomas B. Bahder 
Sensors and Electron Devices Directorate 

sponsored in part by 

U.S. Army Aviation and Missile Command 
Redstone Arsenal, AL 35898-5240 

Approved for public release; distribution unlimited. 



Abstract 
At a fixed, well-surveyed location, position determinations from a MAGR 
(Miniaturized Airborne Global Positioning System Receiver) averaged 
over a six-week period were correct to within 0.5 m. However, the stan- 
dard deviation of an individual position determination was 56 m. Almost 
20 percent of the individual position determinations had errors exceeding 
20 m. One in every 300 position determinations had an error exceeding 
0.5 km. This anomalously large error distribution tail raises questions 
about the MAGR's suitability for some Army-critical functions, such as 
precision guidance. 
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Introduction 
From mid-October 1996 to mid-January 1997, a Rockwell Miniature 
Airborne GPS (Global Positioning System) Receiver (MAGR) was placed 
at a fixed, well-surveyed site: the NASA Goddard Space Flight Center 
(GSFC) Geophysical and Astronomical Observatory (GGAO) in 
Greenbelt, MD. Useful data were recorded during the six-week period 
from early December 1996 to mid-January 1997. Continual position 
determinations were recorded at 1-s intervals at every opportunity during 
that period. We report here the results of a study of the accuracy of those 
position determinations. In general, results in field use would be expected 
to be poorer than those given here, because of receiver motion and a 
continually changing environment. 

The site in question was surveyed on 24 May 1995, and placed on the 
WGS 84 geodetic system. The surveyed site coordinates (X0, Y0, Z0) are 
shown in table 1. 

Over the six-week test span, the MAGR made continuous estimates 
(XjV Y,-, Z,), i = 1,..., N, of the site position in the same reference system at 
1-s intervals during the periods when it was active. Because the volume 
of data at that fine time spacing was quite large, and because the indi- 
vidual position determinations were changing so little on that time scale, 
this study employed 30-s sampling of the total data set, except where 
otherwise noted. This left N = 8573 individual sampled position determi- 
nations on which to base our analysis. From those, we compiled a number 
of plots and statistics to illustrate the accuracy of these measures. 

Table 1. WGS 84 
surveyed coordinates 
of MAGR at GGAO. 

Site 
coordinate 

Surveyed 
value (m) 

X, ■o +1,130,774.372 
^,831,255.014 
+3,994,200.505 



Mean Position 
First, we formed differences between the individual MAGR position 
determinations and the surveyed position, which we call "position 
errors": 

AX.-X.-XQ, AYf = Yf-Y0, AZ.-Z.-ZQ. 

Then we computed simple arithmetic means of the position errors: 

(AXf) = i .f AX,-, (AYf) = 1 .£ AY,-, (AZ,) = £ .£ AZZ . 

The mean position errors and their standard deviations are shown in 
table 2. We note that the mean position errors are zero to within one 
standard deviation, indicating that the MAGR apparently had no serious 
long-term bias problems as great as 0.5 m. However, the standard devia- 
tions are surprisingly large for such a large value of N. We show the 
reason for this shortly when we examine the detailed behavior. 

Table 2. Position 
errors of MAGR at 
GGAO. 

Coordinate MAGR-WGS84(m) 
(mean)    (st dev) 

<AX,) 
(AYt) 
<AZ,) 

+0.282   ±   0.491 
+0.264   ±   0.342 
-0.087   ±   0.234 



Individual Position Errors 
For our first inspection of the individual position errors, we simply 
plotted AY,- against AX,-, as shown in figure 1. It was immediately evident 
that something serious was wrong, because errors exceeding 30 m ought 
to be rare for any authorized receiver capable of 10-m or better accuracy. 
Yet not only were 30-m position errors common, some errors even 
reached the 1-km level. Figure 2, which plots AZ,- against AY,-, shows that 
the third dimension has similar behavior, although with a somewhat less 
extreme range of ±400 m in AZ,-. 

The computed standard deviation of a single AX,- value is 45 m; for a 
single AY,- value it is 32 m; and for a single AZ,- value it is 22 m. The math- 
ematical reason for these unexpectedly large deviations is simply that a 
single error of 1000 m contributes more to the standard deviation than do 
8000 "normal" observations with errors of order 10 m each. So we see that 
the error distribution is so far from a normal distribution that it cannot be 
accurately represented by a standard deviation. For the same reason, we 
do not attempt to compute other such customary error measures, such as 
"circular error probable" (CEP)1 and its three-dimensional counterpart 
"spherical error probable" (SEP), inasmuch as they too would be 
misleading. 

Figure 3 plots AX- against time, showing the distribution of problem 
points over the six-week data span. Time is measured in hours from 
December 1,1996, which is the beginning of a GPS week. It is blocked 
into 1-week groups over the 6-week span of data collection, beginning 40 
hours into the first GPS week. 
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Figure 1. MAGR (X, Y) position errors. 
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Figure 3. MAGR (X, 1) 
position errors. 
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Figure 4 shows successively closer views of the center of the (AX,-, AY,)- 
position error distribution, similar to figure 1, revealing more details for 
the smaller errors. 

For further study, it is useful to compute the magnitude of the position 
error vector (AX,-, AY,-, AZ,) at each observation: 

AK,- = v/AX? + AY? + AZ? . 

Figure 5 is a histogram showing the distribution of AR, in our 8573 
sampled data points. Table 3 gives the statistics that actually describe the 
error distribution, and which were used to plot the histogram. For ex- 
ample, 1583 (18.46 percent) of the 8573 AR,- values lie in the range from 10 
to 15 m. 

Note that 56 percent of the measures lie within a nominal 10-m error 
sphere. This result is consistent with MAGR error descriptions in other 
reports, which have led to such conclusions as "The probability that the 
error lies within a 9.5-m sphere is 50 percent, and the MAGR therefore 
meets specifications." However, as the table shows, that statistic is highly 
misleading, since many more large errors exist than it would normally 
imply. Because the error distribution is not even approximately a normal 
distribution, no valid conclusions could be drawn about MAGR position 
errors in general from any single summary statistic. A histogram such as 
figure 5 would be needed for a proper assessment of reliability. However, 
if the customary error parameters had been supplemented with the 
standard deviation of an individual position error (56 m for our MAGR 
data), appropriate alarms would have been raised from the start. 



Figure 4. MAGR 
(X, Y) position errors 
at successively closer 
views. 
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Figure 5. Histogram of 
position errors. 
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Table 3. Error Range bins   Number of Percentage 
distribution statistics. (m)      position errors     of total errors 

in bin 

0-1 11 0.13 
1-2 49 1.74 
2-3 406 4.73 
3-4 594 6.93 
4-5 625 7.29 
5-6 679 7.92 
6-8 1293 15.08 
8-10 1040 12.13 
10-15 1583 18.46 
15-20 599 6.98 
20-30 512 5.97 
30-40 235 2.74 
40-60 278 3.24 
60-80 166 1.94 
80-100 111 1.29 
100-200 193 2.25 
200-500 70 0.82 

500-1200 29 0.34 



Anomalies 
Figure 6 shows high time-resolution detail for one of the largest position 
error excursions. AX,- is plotted against time in hours over a 39-minute 
span. Points are at 1-s intervals (rather than the usual 30-s sampling), and 
individual blocks are six minutes wide. (The structure of other anomalies 
is usually similar.) Although the anomaly is slow to build and slow to 
terminate, the sudden jump in the middle takes place in just two minutes. 
During that interval, our stationary site at GSFC would register a velocity 
approaching 80 km/hr if MAGR position determinations were taken 
literally. 

We define the fraction of individual position errors within a sphere of 
radius R as n(R), where 0 < w(R) < 1, R2 = X2 + Y2 + Z2, and <5(X) is the 
Dirac delta function: 

n(R) = i fR 4xR2 dR £ S(X - AX,-) S[Y - AY,-) S[Z - AZ,- 

The value of R that yields n(R) = 0.5 is the traditional SEP performance 
parameter. Figure 7 shows a plot of 100 n(R), the percentage of individual 
position errors AR,- within a sphere of radius R, versus Log10 R. The 
logarithm of radius in meters was used so that errors over such a large 
range can be seen in one plot. The ordinate is just the percentage of 
individual position errors for which AR,- < R. As an example, the plot 
shows that 90 percent of the individual position errors have Log10 AR,- < 
1.6, which corresponds to errors less than 40 m; 10 percent of the errors 
are above 40 m. 

Figure 6. MAGR (X, T) 
position errors at high 
time resolution. 
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Figure 7. Percentage of 
position errors within 

a sphere of radius R. 
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Conclusions 
The size of the anomalies, when they occur, seems fairly random. We note 
that most short MAGR runs would show a much smaller standard devia- 
tion. The longer the data span considered, the larger the standard devia- 
tion seems to become. It is not at all clear that we have sampled its worst 
behavior, and runs longer than six weeks might catch still poorer perfor- 
mance. But it seems clear that this anomalously large error distribution 
tail raises questions about the MAGR's suitability for some Army-critical 
functions, such as precision guidance. 



Discussion 
A draft copy of this report was circulated to interested parties. We have 
had the following feedback. 

Rockwell Corporation has written a white paper (MAGR Technical 
Direction Note, June 15,1998) discussing a MAGR anomaly that can occur 
during satellite acquisition. This feature remains in the MAGR software 
through Link 10. The GDOP (geometric dilution of precision) gives no 
hint of a problem in connection with this type of anomaly. However, the 
anomalies we see are not confined to acquisition or the other circum- 
stances documented by Rockwell. 

Joe Clifford of Aerospace Corp. notes the similarity of the detailed 
anomaly in figure 6 to a "constellation singularity," where the fourth 
satellite being tracked goes through the plane of the other three. He 
wondered if our MAGR might have been inadvertently set in "hover 
mode" or some other setting that freezes the constellation (private com- 
munication). Brian Baeder of MICOM, who set up the MAGR at GSFC, is 
quite certain no such settings were made, inadvertently or otherwise. We 
do agree, however, that the signature of the anomalies is like that of a 
constellation singularity. 

Paul Olson of CECOM writes with some data from another MAGR at the 
Starfire Optical Range (SOR). In eight runs of roughly four hours length 
each, over a four-day span in October to November 1996, he also reports 
one large anomaly with a similar character to that in our figure 6, but 
cautions that other sampled data had 50-percent CEP values ranging 
between 3.9 and 8.1 m, with 95-percent CEP values between 7.0 and 
20.7 m. He questions whether the anomalies can be as frequent as we 
report. He further notes that the GDOP did deteriorate during the 
anomaly, beginning with a MAGR constellation change, going off-scale 
with a second change, and then gradually recovering as the GDOP fell 
again to values that are more reasonable. He notes that good constella- 
tions were available to the MAGR during the anomaly, but were not used. 
He suggests this might be related to the characteristics of the Ashtech 
antenna used with the MAGR for their and our runs, perhaps inhibiting 
the MAGR from locking onto low-elevation satellites (private communi- 
cation). 

Olson's report led us to check the time distribution of our anomalies 
again. We noted that we also had only one large anomaly and a few much 
smaller ones in our first half-week of operation. During that period, our 
50-percent CEP was 4.2 m, and our 95-percent CEP was 18 m, figures in 
the range of those seen at SOR. Then things got much worse. This lasted 
until an 8-day break over the Christmas-New Year's holidays, following 
which the MAGR was again well-behaved for several days, performed 
worse for the next several days, and then performed poorly for almost 
every run. This suggests a problem that worsens with the length of time 
that the MAGR has been in continuous operation—a matter of definite 
interest and concern to the Army. 
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