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Introduction 

The Coupled Cluster Theory Electron Correlation Workshop 
"Fifty Years of the Correlation Problem" 

The Coupled Cluster Theory Electron Correlation 
Workshop "Fifty Years of the Correlation Problem" 
was held at Cedar Key, Florida, on 15-19 June 1997, 
to recognize the essential developments of one of the 
dominant topics in the quantum theory of atoms, mol- 
ecules, and solids. The meeting served simultaneously as 
a satellite of the International Congress of Quantum 
Chemistry, held in Atlanta, Georgia, from 9-14 June 
1997, and was the third in a series of coupled cluster 
workshops. The first convened at the Harvard- 
Smithsonian Center for Astrophysics in 1990 (Proceed- 
ings in Theoretica Chimica Ada, 1991, vol. 80, nos. 2-6) 
and the second at Bad Honnef, Germany, in 1994. 

The instantaneous Coloumbic interactions among 
electrons that correlate their motion (the electron corre- 
lation problem) have been the focal point of ab initio 
quantum chemistry and physics for many years. Only 
with the proper inclusion of electron correlation in 
approximate solutions of the Schrödinger (or Dirac- 
Fock) equation is it possible to provide predictive accu- 
racy for most properties of atoms and molecules. Such 
quantities include energetics (involving multiplets, dis- 
sociation pathways, and activation barriers), excited 
states and first- and second-order properties (like 
moments, field gradients, polarizabilities, and magnetic 
susceptibilities), and vibrational, electronic, EPR and 
NMR spectra, among others. 

In extended systems such as polymers and solids, cor- 
relation effects are critical to properties like cohesive 
energies, energy bands, and particularly band gaps; 
other optical properties like exciton spectra or nonlinear 
optical behaviour; and collective phenomena as in con- 
ductivity and superconductivity. Without adequate 
inclusion of electron correlation, theory cannot be pre- 
dictive. 

About 50 years after the correlation problem had 
been clearly identified, we were in a position to report 
on the remarkable progress that has been made and to 
point the way to the future. These accomplishments 
have been achieved by a combination of critical formal 
and methodological developments in the theory, such as 
coupled cluster theory, many-body perturbation theory, 
and propagator methods, and in the configuration inter- 

action methods coupled to the dramatic progress in 
computational power. Together, today, accurate appli- 
cations to molecular many-electron systems are possible, 
with polymers, surfaces, and crystals on the horizon. 
This Proceedings reports on the progress presented at 
the meeting in 23 papers. 

To achieve some historical perspective, several of the 
pioneer investigators who have made contributions to 
the correlation problem spoke at the meeting. This, in 
fact, enabled us to have representatives of the four scien- 
tific generations of investigators who have worked on 
the correlation problem. Some have contributed to this 
volume. 

The meeting was attended by 88 scientists from 25 
different countries. Thirty-seven invited presentations 
were made, augmented by 37 poster presentations. In 
a panel session, we addressed the timely topic of 
"With Density Functional Theory, Is there Any 
Future for Ab Initio Correlated Methods?" which gen- 
erated much discussion. 

We acknowledge the generous support of the US 
Army Research Office, Grant No. DAAG55-97-1-0136 
(Dr Mikael Ciftan); the Air Force Office of Scientific 
Research, Grant No. F49620-97-1-0091 (Dr Michael 
Berman); the Office of Naval Research, Grant No. 
N00014-97-1-0320 (Dr Peter Reynolds and Dr Peter 
Schmidt); the IBM Corporation (Dr Jamie Coffin); 
and the Office of Research, Technology, and Graduate 
Education at the University of Florida (Dr Karen Hol- 
brook). Dr Steve Gwaltney helped do everything, and I 
particularly appreciate his help plus that of my graduate 
students and postdocs, who were instrumental to the 
success of the meeting. I want to especially thank Mrs 
Grace Kiltie (my Program Assistant), Mrs Judy Parker 
(the Quantum Theory Project Administrative Assistant), 
and Ms Zeynep Tufecki for their essential help in 
arranging this meeting. We are appreciative of the co- 
operation of the editors and editorial offices of Molecu- 
lar Physics in making this Proceedings volume possible. 
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University of Florida 

Guest Editor 
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The history and evolution of configuration interaction 
By ISAIAH SHAVITT 

Department of Chemistry, Ohio State University, Columbus, OH 43210-1185, USA 

The configuration interaction (CI) method dates back to the earliest days of quantum 
mechanics, and is the most straightforward and versatile approach for dealing with electron 
correlation. The earliest applications typically involved 2-10 terms, while modern molecular 
CI calculations often employ many millions of configuration state functions (CSFs). In addi- 
tion to the enormous increase in computer power over the last fifty years, many theoretical 
developments have contributed to the evolution of the CI approach, including the develop- 
ment of efficient algorithmic tools for the various computational steps and the exploration and 
optimization of the choices of basis sets, orbitals, and the structure of the CI expansion. 
Among the milestones in these developments have been the introduction of efficient matrix 
eigenvalue methods, the introduction of multireference CI expansions, the formulation of 
various corrections and modifications to overcome the major fault of CI, its lack of extensiv- 
ity, and particularly the introduction of direct CI, which greatly increased the length of 
accessible CI expansions by eliminating the need to store the Hamiltonian matrix. Unitary 
group and related methods have helped make direct CI calculations particularly efficient. 
Specialized computer programs for full CI calculations have become very efficient and are 
producing benchmark results which are extremely useful for evaluating other methodologies. 
Although it has lost ground to the very attractive coupled cluster methods, CI still has an 
important role to play in quantum chemistry. 

1.    Origins 
Configuration interaction (CI) is the most straightfor- 

ward and general approach for the treatment of electron 
correlation in atoms and molecules. If we interpret the 
term in a very broad sense, as applying to any linear 
expansion of the wavefunction in which the linear coeffi- 
cients are determined by the Ritz variational approach 
[1], then the earliest ab initio CI calculations would 
probably be Kellner's 1927 calculations for He and 
Li+ [2], using a four-term expansion in functions of 
the lengths of the two vectors from the nucleus to the 
electrons and of the angle between the vectors. A similar 
11-term expansion for He was reported by Hylleraas in 
1928 [3]. This latter paper included a calculation using a 
six-term expansion in products of radial functions of the 
two electrons, presumably the first ab initio CI calcula- 
tion in a narrower sense, not involving interelectron 
coordinates. These were followed by new Hylleraas 
treatments of the He atom in 1929 and 1930 [4], using 
the interelectronic distance instead of the intervector 
angle as one of the coordinates, and the similar treat- 
ment of the H2 molecule by James and Coolidge in 1933 
[5]. The broad definition would also include some 
valence bond (VB) calculations, such as the 1933 
'VB + ionic' treatment of H2 by Weinbaum [6], which 
is equivalent to a minimal basis molecular orbital-based 
CI calculation, and the 1936 VB + ionic treatment of H3 

by Hirschfelder, Eyring, and Rosen [7]. However, in 
modern usage the name configuration interaction is 
applied only to linear expansions of the wavefunction 
in terms of Slater determinants or in terms of 'config- 
uration state functions' (CSFs), which are spin- and 
symmetry-adapted linear combinations of Slater deter- 
minants. The rest of this review deals with CI in this 
restricted sense. 

The term configuration interaction (CI) and its 
variations were introduced in atomic electronic structure 
theory to deal with electronic states which could not be 
characterized adequately by single-configuration wave- 
functions, and implied perturbation of an electronic 
configuration by neighbouring configurations. Two 
key papers with the same title, 'The theory of complex 
spectra', provided the initial framework for the treat- 
ment of atomic electronic states. The first, a 1929 
paper by Slater [8], introduced the Slater determinant 
and showed how to derive multiplet structures origi- 
nating in given electron configurations. It also showed 
how to calculate some matrix elements between Slater 
determinants, and derived electronic term energies 
expressed in terms of radial integrals. The second 
paper, by Condon [9], appeared in 1930. It completed 
the derivation of the rules (now known as the Slater- 
Condon rules) for the calculation of Hamiltonian matrix 
elements between pairs of Slater determinants con- 

0026-8976/98 $12-00 © 1998 Taylor & Francis Ltd. 
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structed from a set of orthonormal orbitals, and 
extended Slater's treatment to include the 'interaction 
of neighbouring configurations'. 

Early applications of the theory treated the Slater 
radial integrals as adjustable parameters, determining 
their values by least-squares fitting to reproduce spectro- 
scopic line positions. Two 1933 papers of this type 
included the terms 'interaction of configurations' [10] 
and 'configuration interaction' [11] in their titles. 

2.    The early years 
An early five-configuration ah initio CI calculation on 

H2, using elliptical orbitals, was reported by Nagamiya 
[12] in 1936. A two-configuration CI calculation with 
numerically determined orbitals on the excited P state 
of 0+, using the 2s22p3 and 2p5 configurations, was 
reported by Hartrce, Hartrcc and Swirlcs [13] in 1939. 
That work included the first ah initio MCSCF 
calculation, and compared the use of orbitals optimized 
specifically for the two-configuration wavefunction with 
the use of single-configuration SCF orbitals in the same 
two-configuration wavefunction. Hartree disliked the 
name configuration interaction because of its perturba- 
tion theory implications, and introduced the alternative 
name 'superposition of configurations'. 

Before the introduction and wide-spread use of 
Gaussian-type (GTO) basis functions, ah initio calcula- 
tions for polyatomic molecules were hampered by the 
difficulty of calculating multiccntrc integrals over 
Slater-type (STO) basis functions. Some rc-electron CI 
calculations were carried out with integral approxi- 
mations in the late forties and early fifties. A two- 
configuration calculation on several electronic states of 
ethylene was reported by Parr and Crawford [14] in 
1948, and included a study of the variation in the 
energy with twisting of the CH2 groups. A calculation 
on six Tc-electron states of benzene, using up to six CSFs 
per state and ignoring all multiccntrc integrals, was 
reported in 1950 by Craig [15]. A more elaborate treat- 
ment of benzene, this time using the Sklar approxi- 
mation [16] for the multiccntrc integrals, covering 14 
electronic states and using 3-12 CSFs per state, was 
reported later that year by Parr, Craig and Ross [17]. 

Fully ah initio CI calculations involving more than 
two electrons started appearing in increasing numbers 
in the fifties. In 1950 appeared the first of a series of 
papers by Boys developing general procedures for CI 
calculations and applying them to several atoms and 
molecules. The first paper [18] included the proposal 
for the use of Gaussian basis sets in molecular calcula- 
tions. The second paper in this series [19] appeared in 
the same year, and reported a calculation on the ground 
state of the Be atom using 10 CSFs with a (3slp) STO- 
basis. In 1952, following several methodological papers 

dealing mostly with procedures for vector coupling and 
matrix element calculations for atoms, appeared a paper 
by Bernal and Boys [20] reporting CI calculations on the 
ten-electron scries Na+, Ne, and F". This work used a 
quite respectable STO basis set, (5s4pld), significantly 
larger than any that had been attempted up to that time, 
and included 17 CSFs. It was followed in 1953 by two 
papers by Boys reporting calculations on three elec- 
tronic states of Be [21] using a (4s4p2d) basis and 7-13 
CSFs per state, and calculations on three states of boron 
and five states of carbon [22] using a (4s4pld) basis and 
12-18 CSFs per state. Among other atomic CI calcula- 
tions in the early fifties wc note the calculations on He 
by Taylor and Parr [23] in 1952 and by Shull and 
Löwdin [24] in 1955. The latter paper used an expansion 
in terms of natural spin orbitals. 

An early molecular CI calculation was the 1951 treat- 
ment of linear symmetric H, by Walsh and Matscn [25], 
who used a minimal STO basis and three of the four 
CSFs which can contribute to the ground state in this 
case. It was followed in 1953 by a calculation on HF 
with a minimal STO basis and 6 CSFs by Kastlcr [26], 
and a calculation on two states of the open-shell 02 

molecule by Mecklcr [27], using a minimal GTO basis 
and 9 12 CSFs. Mcckler used a computer (the Whirl- 
wind at Massachusetts Institute of Technology) for the 
solution of the matrix eigenvalue problem, but the rest 
of the work was done with desk calculators. 

Another series of atomic CI calculations was reported 
by Boys and Price [28] in 1954. These calculations, on 
ground and excited states of CI, CI", S, and S , used 
a (6s5p2d) STO basis and 23 32 CSFs per state, 
included rclativistic corrections, and obtained very 
good results for excitation energies and electron 
affinities. The electronic computer EDSAC was used 
for the calculation of the basis set integrals and the 
integral transformations. 

Reports of molecular CI calculations started 
appearing in increasing numbers in the mid fifties. 
Among these was a minimal-STO-basis calculation on 
H20 by Ellison and Shull [29] using three CSFs, and 
extendcd-STO-basis calculations on BH, H20 and H, 
reported by Boys and co-workers [30] in 1956. These 
latter calculations were fully automated, using the 
EDSAC computer for symbolic manipulations and 
formula derivations as well as numerical computations. 
Several minimal-STO-basis CI calculations were 
reported in 1957 and 1958, including an NH3 calculation 
by Kaplan [31] using 13 CSFs, a treatment of several 
states of 02 and Ot by Kotani and co-workers [32], 
full-valence CI calculations for ten electronic states of 
BH by Ohno [33], and a scries of calculations for several 
states of CH. NH and OH by Krauss and Wchncr [34], 
using 8-18 CSFs per state. 



History and evolution of configuration interaction 

We close this survey of early CI calculations by 
mentioning the landmark calculation on three states of 
CH2 by Foster and Boys, reported at the first Boulder 
conference on theoretical chemistry in 1959 and 
published in 1960 [35]. That calculation obtained 
bending potential energy curves for the 3Bb 

lAl and 
]Bi states, and was the first to show a bent ground- 
state geometry for this radical. 

3.    Infrastructure development 
A 'conventional' CI calculation involves the following 

computational steps [36]: 

(i) calculation of basis set integrals; 
(ii) determination of orbitals, e.g., by an SCF calcu- 

lation; 
(iii) transformation of basis set integrals to orbital 

integrals; 
(iv) calculation and storage of the Hamiltonian 

matrix elements; 
(v) solution of the matrix eigenvalue problem for the 

desired state. 

Also, procedures for spin- and symmetry-adaptation of 
the CSFs have to be chosen, and methods for the calcu- 
lation of Hamiltonian matrix elements between the 
CSFs have to be implemented [36]. In addition, several 
choices need to be made for each calculation [36]: 

(a) Choice of the basis set; 
(b) choice of the type of orbital to use (e.g., SCF, 

MCSCF, or natural orbitals); 
(c) choice of the configuration state functions (CSFs) 

to include in the CI expansion. 

Before ab initio CI calculations could be carried out 
efficiently and routinely, effective algorithmic tools had 
to be developed for the computational steps, and the 
various choices had to be explored and optimized. We 
shall not discuss basis set integral calculation, since it is 
common to all algebraic ab initio methods, and shall 
touch upon only aspects of basis set choice which are 
particularly relevant to correlated calculations. Matrix 
element calculation will be considered only as part of the 
issues of spin and symmetry adaptation. The other 
choices and computational steps will be discussed in 
the next few subsections. 

3.1. Structure of the configuration interaction expansion 
In the early CI calculations, such as those discussed in 

the previous section [12-35], the number of CSFs 
included in the CI expansion was very small, and these 
CSFs were generally selected individually on the basis of 
physical considerations or by trial and error. More sys- 
tematic choices became possible as computer power 
increased and theoretical methods improved. 

The ideal CI calculation would be 'full CI' (FCI), in 
which the full many-electron function space of the 
appropriate spin and symmetry generated by the basis 
set is used in the wavefunction expansion. Such a calcu- 
lation provides the most complete solution of the non- 
relativistic Schrödinger equation within that function 
space, but is rarely feasible, because the number of 
CSFs in FCI goes up factorially with the basis set size. 
Therefore in most applications it is necessary to truncate 
the CI expansion space in some way to make the calcu- 
lation practical. Nevertheless, a substantial number of 
FCI calculations of progressively increasing size have 
been reported [37-49] and are extremely useful as bench- 
marks for the assessment of various correlation 
methods. 

Most configuration interaction expansions can be 
classified as single reference (SRCI) or multireference 
(MRCI). In the first case, the expansion is based on 
one dominant CSF, usually the Hartree-Fock config- 
uration constructed from the SCF orbitals, and includes 
CSFs on the basis of their 'excitation level', i.e., the 
number of electrons occupying orbitals which are 
empty in the Hartree-Fock configuration [50, 51]. For 
practical reasons, such calculations usually are limited 
to single and double excitations (CISD, or SR-CISD), 
though higher excitations have been included in some 
cases (see, e.g., Sherrill and Schaefer [52]). In the multi- 
reference case, the expansion is based on a set of 
'reference configurations' [53-56], and again the most 
common approach is to limit the expansion to single 
and double excitations (MR-CISD), i.e., to CSFs 
which are no more than doubly excited with respect to 
at least one of the reference CSFs. In both single-refer- 
ence and multireference expansions, excitations from 
inner-shell orbitals usually are omitted ('frozen-core 
CF), since they contribute little to the description of 
chemical processes, and since a meaningful treatment 
of inner-shell correlation requires a greatly expanded 
basis set [57]. 

In early MRCI applications, very few reference CSFs 
were used, and these were chosen individually, on the 
basis of physical considerations, such as the proper 
description of dissociation or of a set of electronic 
states [56], or on the basis of their contributions to the 
wavefunction or energy, often obtained by perturbation 
estimates or iteratively in a series of CI calculations 
[53-55, 58, 59]. In later work more systematic 
approaches to reference configurations selection were 
used, mostly based on the idea of an 'active space', a 
set of orbitals having variable occupancy in the 
reference configurations. Typically, the active space is 
composed of the valence shell orbitals (corresponding 
to the molecular orbitals generated from the atomic 
valence orbitals in a minimal-basis calculation) or a 
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subset of them. The total orbital space may include all 
or some of the following subspaces: 

(i) Frozen orbitals (usually inner-shell orbitals), 
which are doubly occupied in all CSFs; 

(ii) inactive occupied orbitals, doubly occupied in all 
the reference CSFs but correlated in the MRCI 
expansion; 

(iii) active orbitals, varying in occupancy between the 
reference CSFs; 

(iv) virtual (excited) orbitals, unoccupied in any of 
the reference CSFs, but used in the MRCI expan- 
sion; 

(v) discarded orbitals, usually of very high orbital 
energy, which arc completely left out of the CI 
expansion. 

A highly desirable, but not always practical, form of 
the reference space is the 'complete active space' (CAS) 
[60], which consists of a full CI expansion within the 
active orbitals. However, when all the valence orbitals 
are included in the active space [61], the CAS is often 
quite large and generates an impractically large number 
of CSFs in the MRCI expansion. Effective alternatives 
include the 'restricted active space' (RAS) [42, 62]. in 
which occupancy restrictions arc placed on various 
subsets of the active orbitals, and the GVB-typc active 
space, generated from a generalized valence bond form 
of the wavefunction [63, 64]. 

The number of CSFs in the MRCI expansion some- 
times is reduced by systematic restrictions, such as lim- 
itation to CSFs which have nonzero Hamiltonian matrix 
elements with at least one reference CSF (interacting- 
space limitation [55, 65]), or by individual selection 
methods. An MRCI calculation with a complete valence 
active space and all CSFs with up to one electron or up 
to two electrons in the virtual orbitals space is some- 
times referred to as 'first-order CI" (FOCI) or 'second- 
order CI' (SOCI), respectively [52, 66], though these 
names are misleading, since this type of expansion 
does not consist of the set of terms that contributes to 
the corresponding order of the perturbation theory 
wavefunction or energy. Individual selection, in which 
CSFs are screened and selected on the basis of approx- 
imate energy contribution [20-22, 36, 51, 53, 54, 58, 59, 
67, 68] (usually estimated by perturbation-based 
methods) were quite common in conventional CI, in 
which the Hamiltonian matrix was computed in a sys- 
tematic order and stored before the eigenvalue compu- 
tation. In the modern 'direct CI' approach, in which 
matrix elements are calculated as part of each iteration 
of the eigenvalue determination, particularly as used on 
vector computers, individual configuration selection 
usually is not employed, because it interferes with the 
smooth flow of the calculation. 

3.2. Spin adaptation 
A variety of approaches has been used for the 

construction of complete sets of S~ eigenfunctions and 
for the calculation of Hamiltonian matrix elements 
between them. The principal approaches can be classi- 
fied as follows. 

Symmetric group methods, which were pioneered by 
Wigner [69]. Wcyl [70], Dirac [71], and Waller and 
Hartrcc [72], and developed further by Scrbcr [73], 
Yamanouchi [74], Kotani et al. [75], Matscn [76], 
Rucdcnbcrg [77], and others. 
Projection operator methods (Löwdin [78]), including 
genealogical construction (sec. e.g., Pauncz [79]) and 
the use of 'Sanibcl coefficients' (Manne [80], Smith 
and Harris [81]). 
'Bonded functions', which arc Rumcr-likc pairwisc 
spin couplings [82], introduced in molecular CI calcu- 
lations by Boys and Reeves (sec Reeves [83]) and inde- 
pendently by Suttcliffc [84] and by Cooper and 
McWeeny [85]. 
Unitary group methods, introduced in quantum 
chemistry by Paldus [86] and adapted for efficient CI 
calculations by Shavitt [87]. 

The methods in most common use today arc based on 
the unitary group approach or the related symmetric 
group approach [88], or else avoid spin adaptation and 
rely on expansions in terms of Slater determinants. 
However, it should be remembered that spin and 
symmetry adaptation arc important not just for 
increased efficiency of the calculation, but also to 
ensure that the resulting wavefunction describes an 
electronic state of the desired multiplicity and symmetry 
type and is not contaminated by contributions of the 
wrong type. 

3.3. Spatial symmetry adaptation 
Symmetry adaptation is particularly important in 

atomic calculations. The use of full spin and spatial 
symmetry in atomic CI calculations can reduce the 
length of the CI expansion by orders of magnitude 
compared with expansions in Slater determinants, and 
is important in focusing the calculation on the desired 
electronic states and in fully characterizing these states. 
The process of CSF construction for atomic calculations 
has been called 'vector coupling', and was addressed in 
the early work on multiplet structure by Wigner [69, 89], 
Slater [8]. and Condon [9], and later for ah initio CI 
calculations by Boys [90]. Ncsbct [91], Salmon and Ruc- 
dcnbcrg [92], Bunge and Bunge [93], Sasaki [94], and 
Munch and Davidson [95], among others. 

Symmetry adaptation is trivial in the case of mole- 
cules described by Abclian point-group symmetry. In 
such cases it is necessary only to use symmetry-adapted 
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orbitals in the construction of the CSFs, and to limit the 
CI expansion to terms of the desired overall symmetry. 
Taking advantage of non-Abelian point group sym- 
metry in molecular CI calculations leads to significant 
complications, and is often eschewed, settling instead for 
the use of an Abelian subgroup of the full molecular 
symmetry group. A procedure for utilizing axial point 
group symmetry (primarily for C„v and D„h) using 
complex molecular orbitals was developed by 
Gershgorn and Shavitt [96] and implemented in a 
conventional CI program by Pipano and Shavitt [97], 
but was abandoned in later direct CI programs. 
Projection operator techniques have been developed 
for the general case (e.g., Wigner [69], Nesbet [98], 
Simons and Harriman [99]), but have not seen extensive 
use. 

3.4. Basis sets 
The basis set requirements of correlated calculations 

are much more demanding than those for SCF treat- 
ments. Here we shall focus only on basis set develop- 
ments of particular interest for correlated treatments 
(for a recent review on Gaussian basis sets see Shavitt 
[100]). 

A very important advance in basis set technology 
for high-level calculations was the introduction of 
'generally contracted' Gaussian basis sets [101]. General 
contraction can produce significantly more efficient 
basis sets than the usual 'segmented' contraction, 
because generally contracted basis functions can be 
chosen to reproduce atomic Hartree-Fock orbitals or 
atomic natural orbitals, or other desired choices. Cor- 
related calculations typically expend most of their 
computational effort in the steps following the basis 
set integrals evaluation and SCF or MCSCF calcula- 
tion. Furthermore, the effort in the post-SCF stages 
increases more steeply with basis set size (typically 
with the sixth power of the number of basis functions) 
than does the integral evaluation and SCF effort (which 
is proportional at most to the fourth power). Therefore 
it is important to derive the maximum benefit from 
whatever number of contracted basis functions is used, 
e.g., by employing larger primitive Gaussian sets as well 
as general contraction, even at the cost of increased 
integral computation time. 

Two types of generally contracted Gaussian basis set 
specifically designed for correlated calculations have 
been introduced in recent years. The first type is the 
atomic natural orbital (ANO) basis sets introduced by 
Almlöf and Taylor [102]. A particularly effective varia- 
tion of this approach is the use of ANO basis sets 
generated by diagonalizing density matrices averaged 
over several electronic states of the atoms [103] 
including, in some cases, states of positive and negative 

ions [104, 105]. The other type are the 'correlation-con- 
sistent' polarized valence basis sets of Dunning and co- 
workers [106], denoted cc-pVxZ (x = D, T, Q, 5, 6 for 
double-, triple-, quadruple-, quintuple- and hextuple- 
zeta, respectively) and aug-cc-pVxZ (for basis sets 
augmented with diffuse functions). The cc basis sets 
are particularly useful for studying systematic trends 
with basis set enlargement, and facilitate extrapolation 
to the limit of a complete basis [107, 108]. 

It should be understood that basis sets designed for 
the treatment of valence-shell electron correlation 
cannot, in general, provide useful descriptions of core- 
core and core-valence correlation effects. Calculations 
attempting to correlate all electrons using such 
valence-type basis sets are not justified, and may even 
be harmful, since the fraction of core correlation con- 
tributions they recover is rather small and not mean- 
ingful [57]. Enlarged cc basis sets that include 
functions useful for the description of core-valence cor- 
relation, denoted cc-pCVxZ, have been added recently 
[109]. 

The ANO and cc basis sets provide very satisfactory 
solutions to the basis set problem, at least in situations 
in which large enough versions of these sets can be used. 
With the addition of the extrapolation capabilities it is 
now possible, in many cases, to distinguish errors due to 
basis set incompleteness from errors due to limitations 
of the correlation treatment. 

3.5. Orbital choices 
The configuration state functions in CI expansions are 

constructed from orbitals which are linear combinations 
of the basis functions. Most commonly in single- 
reference CI expansions these are the canonical SCF 
(Hartree-Fock) orbitals, both occupied and virtual, of 
the molecule in the electronic state being studied. In 
open-shell cases, restricted SCF orbitals typically are 
used, or sometimes orbitals of a closely related closed- 
shell state. (The use of different orbitals for a and ß spins 
is rarely advisable in CI calculations.) A common choice 
in multireference CI expansions are orbitals obtained in 
corresponding MCSCF calculations. 

In general, the results of a CI calculation are invariant 
to any linear transformation of a set of orbitals which 
are treated equivalently in the construction of the expan- 
sion. For example, in single-reference calculations which 
include all excitations of a given set of levels (e.g., all 
single and double excitations, CISD), separate linear 
transformations of the SCF-occupied and virtual orbi- 
tals do not affect the final wavefunction and energy. The 
same is true of frozen-core calculations with respect to 
separate linear transformations of the core, occupied 
valence, and virtual orbitals. The same is true also of 
multireference   CI   calculations   using   a   complete- 
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active-space (CAS) reference space with respect to sepa- 
rate transformations of the inactive-occupied, active, 
and inactive-virtual orbitals. However, if some of the 
orbitals are to be discarded or frozen, or if individual 
CSFs arc to be selected for inclusion in the CI expan- 
sion, then the choice of the orbital transformation can 
make a substantial difference [53, 110]. 

Most attempts to improve upon the SCF orbitals for 
use in CI calculations focus upon the virtual orbitals. 
The virtual canonical SCF orbitals arc obtained as 
eigenfunctions of a Fock operator representing an N- 
electron potential, rather than the effective (Af-1)- 
electron potential acting on the electrons in occupied 
orbitals. As a result, the lower-energy virtual orbitals 
tend to be relatively diffuse and not very effective for 
correlating the electrons in occupied orbitals [53]. In 
fact, most of the exact virtual Hartrcc Fock orbitals 
(as would be obtained in numerical calculations) are 
continuum orbitals, representing a free electron in the 
field of the neutral molecule. Modified virtual orbitals 
obtained in an (N - l)-electron potential have been used 
by Kelly [111] and by Hunt and Goddard [112], and 
correspond more closely to SCF orbitals occupied in 
excited states. Other modifications to the virtual orbitals 
have been developed by Bender and Davidson [113], 
Huzinaga and Arnau [114], Whitten [115], Luken 
[116], Cooper and Pounder [117], Bauschlicher [118], 
Adamowicz and Bartlctt [119], and others. Some 
approaches modified both the occupied and the virtual 
orbitals, as in Davidson's 'internally consistent' SCF 
orbitals [120]. 

An important class of orbital useful in CI calculations 
is natural orbitals (NOs) [121], usually obtained in a 
preliminary approximate calculation [122-124] or 
determined iteratively in a sequence of CI calculations 
[67]. An expansion in terms of NOs tends to be more 
compact, in the sense that fewer terms are needed for a 
given accuracy [110], but unless this property is 
exploited by orbital set truncation or CSF selection, 
little is gained. A particularly powerful application of 
natural orbitals ideas is the 'pair natural orbitals' 
(PNO) approach [125-129], applied most effectively 
in the 'self-consistent electron pair' (SCEP) method 
[127, 130]. 

Expansions in terms of localized orbitals [131-133] 
can lead also to compact wavefunctions [134, 135], 
particularly for larger molecules, though usually they 
entail giving up the use of spatial symmetry. 

3.6. Integral transformation 
An important step in a CI calculation (and in most 

correlated calculations) is the transformation of the one- 
electron and two-electron basis set integrals to corre- 
sponding integrals over the orbitals. While this step 

can be avoided or partially avoided in some correlated 
treatments [126 130, 136, 137], generally it is simplest to 
formulate the Hamiltonian matrix element calculation 
in terms of fully transformed orbital integrals. 

In the early work of Boys [19], Ncsbct [138], and 
others, when basis sets were very small and computer 
storage was extremely limited, it was found most con- 
venient to perform the transformation of the two-elec- 
tron integrals in a two-stage process in which the 
computational effort was proportional to the sixth 
power of the basis set size. In later work the more effi- 
cient four-stage H

5
 process was adopted [36, 139 141], 

and optimized procedures for its implementation were 
developed [142-145]. The assembly of the integral 
matrices prior to the transformation and their reor- 
dering between transformation steps were facilitated 
greatly by the bin sorting method of Yoshiminc [146] 
(sec also Bunge and Cisneros [147]). 

An interesting variation of the treatment of the inte- 
gral transformation step is due to Beebc and Lindcrbcrg 
[148] (sec also Wilson [149]). Their approach, which is a 
form of singular-value decomposition, is based on Cho- 
lesky decomposition of the two-electron integrals matrix 
followed by truncation, and was designed to deal with 
problems of near linear dependence of the basis set and 
the limited precision of the computer arithmetic. 

3.7. Matrix eigenvalue problem 
Most Hamiltonian matrices that occur in CI calcula- 

tions arc sparse and diagonally dominant. As a result, 
iterative methods employing simple clemcnt-by-clcmcnt 
updates based on perturbation theory [19, 150] usually 
arc quite effective, at least for the lowest root. Important 
advantages of such methods arc that they scale as the 
square of the matrix dimension (instead of the third 
power for direct methods), that the matrix is not 
modified, and that space in the computer central 
memory is required for only one or two vectors at a 
time. A generalization for several low roots, based on 
an improved 'optimal relaxation' algorithm involving 
minimization of the Raylcigh quotient [151], was intro- 
duced by Shavitt ct al. [152]. A constraint of these 
methods is that they require the Hamiltonian matrix 
to be read in from external storage one row at a time, 
in sequence. This constraint creates no difficulties in 
conventional CI treatments, in which the Hamiltonian 
matrix elements arc computed once, in the desired order, 
and stored on magnetic tape or disk. 

An important new approach was introduced by 
Davidson [153] in 1975. In the spirit of the Lanczos 
method [154]. the Davidson approach is based on an 
expansion of the desired eigenvector in an accumulating 
series of trial vectors but. unlike the Lanczos method, it 
exploits  the  diagonal   dominance  of the  matrix   by 
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generating the trial vectors by perturbation-based 
corrections. This method has two important advantages: 
it allows the calculation of higher roots without 
requiring the prior calculation of all lower roots, and 
it does not require that the matrix elements be provided 
in any particular order. This latter property, which is 
due to the fact that the principal computational step 
of the algorithm is simply the multiplication of the 
matrix into the current estimate of the eigenvector, is 
particularly important in facilitating direct CI calcula- 
tions, in which the matrix elements are available in an 
order dictated by the processing order of the integrals or 
by related considerations. As a result, the Davidson 
method now is the standard method for the solution 
of the matrix eigenvalue problem in CI calculations. 

The method of optimal relaxation (MOR) and the 
Davidson method have been reformulated also for the 
simultaneous calculation of several roots, resulting in 
the 'block MOR' [155, 156] and 'block Davidson' [157] 
methods. Other modifications of the Davidson method 
have been proposed [44, 158-165] (see also Davidson 
[166] and references therein). 

4.   The new age of big CI: direct CI 
An extremely important development, which opened 

the way for very large CI calculations, was the introduc- 
tion of direct CI by Roos and Siegbahn [167, 168]. The 
basic idea of direct CI is the avoidance of the formal, 
sequential calculation and storage of the Hamiltonian 
matrix, concentrating instead on the direct calculation 
of the product of the matrix into the current trial vector 
in the iterative procedure for the solution of the matrix 
eigenvalue problem. This product is calculated directly 
from the one- and two-electron integrals, using 
'coupling coefficients' which specify the nonzero con- 
tributions of each integral to the matrix elements. At 
first glance this approach may appear to be counter- 
productive, since the matrix element contributions 
have to be recomputed in each iteration. However, 
most nonzero matrix elements have nonzero contribu- 
tions from only one or two integrals, and the procedure 
lends itself to very efficient and streamlined operation, 
with few logical manipulations, resulting in a substantial 
net gain in speed over conventional CI. Furthermore, 
this method is extremely easy to adapt to vector com- 
puting. The avoidance of Hamiltonian matrix storage 
removes a significant barrier for very large CI calcula- 
tions, and the efficiency of the direct CI approach has 
made such large calculations quite practical. 

The original direct CI procedure was developed in a 
spin-adapted form for single-reference closed-shell 
CISD calculations, for which the determination of the 
coupling coefficients was quite easy [167]. Later [168] it 
was  extended  to  SR-CISD  expansions  in  a  deter- 

minantal basis for any state and to full CI for three 
electrons. Subsequent extensions to full CI in a determi- 
nantal basis made possible the proliferation of bench- 
mark full CI calculations [37-49], some of them 
employing several billion determinants [44, 46, 47]. 
Spin-adapted extensions for single-reference triplet 
states [169] and for multireference closed-shell cases 
limited to closed-shell reference CSFs [170] were 
reported also. The SCEP method [130] also can be 
considered a form of direct CI. 

Generalization of direct CI in a spin-adapted CSF 
basis to any open-shell state and to multireference CI 
expansions became possible with the introduction of the 
unitary group approach [86] (UGA), particularly in its 
graphical form [87] (GUGA). Several computer pro- 
grams applying the graphical unitary group approach 
[171-175] and variations based on the symmetric 
group [88] and other graphical schemes [176] or related 
ideas [137, 177] were developed, and together with the 
introduction of powerful supercomputers, these pro- 
grams made possible MR-CISD calculations using 
millions of CSFs (e.g., Kedziora and Shavitt [178]). In 
recent years, the introduction of parallel computers and 
the adaptation of several computer programs to take full 
advantage of their capabilities have facilitated even 
larger CI calculations. For example, a parallel version 
of the Columbus program [179] has been used recently 
to carry out MR-CISD calculations with over two 
hundred million CSFs [180]. Parallel versions of full 
CI programs have been used in full CI calculations 
with over a billion determinants [47]. 

In comparing determinantal based CI calculations 
and spin-adapted expansions it is useful to note that in 
a full CI expansion for N electrons using n orbitals, 
ignoring spatial symmetry, the number of determinants 
exceeds the number of spin-adapted CSFs by a factor of 

ndet     m + S + 1 (      m 
nCSF 2S+1 n + 1 

where m = N/2 and S is the total spin quantum number. 
This ratio is between four and five for most of the full CI 
calculations reported. For example, the FCI calculation 
on the Mg atom [44, 46], containing about 2.5 billion 
determinants in D2h symmetry, corresponds to about 
half a billion spin-adapted CSFs. 

Another important development in CI methodology is 
the introduction of 'contracted' CI methods, which gain 
increases in the scope of achievable MRCI calculations 
at the cost of reduced flexibility in the variational 
expansion and, therefore, some sacrifice in the energy 
compared with fully unconstrained expansions. Two 
different contraction approaches have been introduced, 
both aimed at reducing the number of independently 
varied coefficients and thus greatly reducing the size of 
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the matrix eigenvalue problem. The first, 'externally 
contracted' CI [181], is no longer in use today. It 
employs a perturbation procedure to fix the relative 
values of the coefficients in sets of CSFs that share the 
same internal (active-space) part. 

In the more common 'internally contracted' CI [129, 
182, 183] the multiconfigurational reference function, 
optimized in an MCSCF calculation, is treated as a 
single contracted reference configuration, and excited 
configurations are generated by the application of 
excitation operators to this contracted function. Each 
excited configuration is then a linear combination of 
many ordinary CSFs, with the linear coefficients fixed 
by the reference wavefunction. As a result, the number 
of independently varied coefficients is similar to the 
number of terms in a single-reference calculation. For 
given numbers of orbitals and electrons, the length of an 
uncontracted MR-CISD expansion is approximately 
proportional to the number of reference configurations. 
Therefore internal contraction can provide a drastic 
reduction in the length of the CI vector and allow the 
use of substantially larger reference spaces than would 
be practical in uncontracted calculations, making the 
use of complete valence active spaces more affordable. 
At the same time it should noted that the reduction in 
the computational effort is not as drastic as in the length 
of the CI vector, since the Hamiltonian matrix in con- 
tracted CI is not nearly as sparse as for uncontracted 
expansions. 

Usually energy loss due to internal contraction, com- 
pared with uncontracted MRCI, is very small [184]. and 
energy differences, such as dissociation energies, are 
reproduced well [108], but there are some exceptions 
[108], particularly in the vicinity of avoided crossings 
in potential energy curves and surfaces, for which the 
location of the avoided crossing may differ substantially 
between the reference MCSCF wavefunction and the 
corresponding MRCI wavefunction. A generalization 
which overcomes this problem by using more than one 
multiconfigurational reference function has been 
reported [185]. The power of the internally contracted 
CI method is demonstrated, for example, by a recent 
application to the calculation of a water molecule poten- 
tial energy surface [186]. 

5.   Strengths and weaknesses 
The conceptual simplicity of the configuration inter- 

action method is very appealing, and its variational 
nature is an important advantage, but its principal 
strength lies in its flexibility and generality. It can be 
applied straightforwardly to any electronic state, and 
can be spin- and symmetry-adapted relatively easily. 
Its multircfercncc formulation is straightforward, and 
applicable  readily  to  any  type  of reference  space, 

complete or otherwise. Apart from the increased size, 
and therefore increased computational requirements, 
multircfercncc CI is not notably more difficult than the 
single-reference form, and the ability to use incomplete 
active spaces can be employed to limit the computa- 
tional requirements substantially. As a result, MRCI is 
usually the method of choice for dealing with non- 
dynamic electron correlation [187] (reflecting near 
degeneracies and related effects), including the treatment 
of bond breaking and potential energy surfaces [188]. In 
particular, the reference space can be chosen to mini- 
mize bias in the description of different regions of a 
potential energy surface. 

The multircfercncc capabilities of CI contrast with the 
situation in many-body perturbation theory (MBPT) 
and coupled cluster (CC) theory, for which multircfcr- 
encc generalizations arc substantially more difficult than 
their single-reference counterparts and for which the use 
of incomplete reference spaces introduces additional dif- 
ficulties. Also, unlike multircfercncc many-body 
methods, no problems of intruder states arise in MRCI. 

The principal weakness of truncated configuration 
interaction is its lack of proper scaling with the size of 
the system. The proper scaling of a computational 
model, referred to as 'extensivity' or 'size extensivity' 
[189], is the main facet of the 'separability condition' 
[190, 191]. It can be related to its many-body diagram- 
matic representation, and is dependent on the absence 
of 'unlinked diagram' contributions in its energy 
expression (see, e.g., Paldus and Cizck [192], Bartlctt 
and co-workers [189, 193], and Harris el al. [194]). In 
an extensive model such as MBPT or CC, in which the 
energy is expressed entirely in terms of linked diagrams, 
the energy of an assembly of non-interacting identical 
subsystems is proportional to the number of subsystems, 
and the energy of a uniform system, such as an electron 
gas, is proportional to its extent. It is obvious, for 
example, that the CISD energy of a collection of non- 
interacting helium atoms docs not satisfy this require- 
ment, since it provides the full CI energy for a single 
atom but not for more than one atom. In fact, the 
CISD energy of such a collection scales as the square 
root of the number of atoms as this number becomes 
large [191, 195, 196]. The lack of extensivity also affects 
the accuracy of computed ionization potentials and 
electron affinities, unless appropriate corrections arc 
applied. 

The energy contribution associated with an unlinked 
diagram consisting of A' separate parts is proportional to 
the Arth power of the size of the system, and therefore 
such contributions must cancel if extensivity is to be 
maintained. These unlinked diagram contributions do 
cancel for the exact (full CI) energy, as well as in each 
order of Rayleigh Schrödinger perturbation theory and 
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at each excitation level of a coupled-cluster treatment. 
However, the unlinked diagram contributions at a given 
excitation level of CI are cancelled by contributions 
from other excitation levels, so that unlinked terms 
remain in a truncated CI energy, resulting in lack of 
extensivity. 

Unlike the energy, which should be additively 
separable, the wavefunction should be multiplicatively 
separable [190], and its diagrammatic expansion 
contains disconnected (but not unlinked) diagrams.f 
Such diagrams represent disconnected clusters which 
describe simultaneous independent interactions in 
smaller clusters of electrons as products of lower-level 
connected clusters [191]. The most important of these 
terms are products of double excitations. It is the lack 
in CISD (but not in its coupled clusters counterpart, 
CCSD) of the disconnected quadruple excitation contri- 
butions deriving from products of double excitations 
which is its most serious defect, and is responsible for 
most of its deviation from extensivity. It is this discon- 
nected quadruples contribution for which the various 
correction formulas for CISD try to compensate. 

Another facet of the separability condition is 'size 
consistency' [136, 197]. A computational model is size 
consistent if, when applied to a molecule dissociated into 
two or more parts, the energy of the dissociated mole- 
cule, treated as one system, equals the sum of the ener- 
gies of the subsystems computed by the same model. 
Again, truncated CI fails this test, and as a result, 
when it is applied naively, fails to provide satisfactory 
dissociation energies and some other energy differences. 
This deficiency can be reduced by the application of 
various corrections, as discussed in the next section. 
Satisfactory dissociation energies also can be obtained 
by treating the dissociated limit as a 'supermolecule', 
using the same type of CI expansion as for the bound 
system [198]. In fact, in multireference treatments, this 
supermolecule approach is the only consistent method 
for the calculation of dissociation energies and for the 
asymptotic regions of potential energy surfaces [178]. 

Extensivity and size consistency, although closely 
related, are not equivalent [189]. For example, a 
single-reference many-body correlation treatment built 
upon a closed-shell restricted Hartree-Fock reference 
function for a molecule is not size consistent with respect 

t Some of the earlier literature does not distinguish properly 
between the terms 'unlinked' and 'disconnected'. An unlinked 
diagram contains separate closed parts. A disconnected, but 
linked diagram contains separate open parts, but no closed 
parts. Unlinked diagrams cancel in both the exact energy 
expression and the exact wavefunction; disconnected diagrams 
are proper constituents of the exact wavefunction (though they 
cancel in the coupled cluster equations). 

to dissociation into open-shell fragments, yet usually it 
satisfies the extensivity criterion because of its linked- 
diagram energy expression. On the other hand, multi- 
configurational wavefunctions often can be constructed 
to be size consistent without being extensive. 

Although the use of higher than doubly-excited CSFs 
in CI expansions is easy in principle, the exponential 
increase in the size of a CI expansion with the level of 
excitation usually makes such calculations impractical. 
Also, the extension of direct CI programs to handle 
higher excitation CSFs is complicated by the increased 
complexity of the coupling coefficients determination. 
As a result of this latter factor, most attempts to include 
higher excitations [52] or to implement full CI calcula- 
tions [37-49] use a determinantal formulation. 

The difficulty of extending the CI expansion to higher 
excitations is a serious shortcoming because of its very 
slow convergence. Unlike the situation in the many- 
body methods, the connected and disconnected cluster 
contributions to each excited CSF are inextricably com- 
bined in the CI formalism. Thus it is not possible to 
separate the disconnected cluster wavefunction contri- 
butions from the connected cluster contributions at the 
same overall excitation level. From the quadruple 
excitations level and up, the disconnected cluster contri- 
butions are much more important than the connected 
terms. Because these contributions are represented by 
different diagrams, they are separated in the many- 
body formalism, where the disconnected contributions 
are much easier to compute than the connected terms, 
and appear in lower orders of perturbation theory and 
lower CC excitation levels. As a result, quadruple and 
higher excitation terms are much more important in CI 
than in CC. For example, the major CI quadruple exci- 
tation contributions that are particularly important for 
extensivity are obtained in factorizable form at fourth 
order in MBPT, at relatively low cost, and are included 
as disconnected cluster terms (as products of double 
excitations) in the double excitation CC wavefunction 
[191, 199-204]. 

The use of a multireference CISD expansion can 
account for some of the most important contributions 
arising from higher excitations in single-reference 
models, but is not sufficient to offset the intrinsic limita- 
tion of the truncated CI approach. Furthermore, as pre- 
viously noted, the length of a multireference CISD 
expansion is approximately proportional to the 
number of reference configurations, making the use of 
a theoretically desirable CAS reference space prohibi- 
tively expensive in many cases. While this difficulty can 
be reduced by the use of incomplete active spaces of 
various kinds [42, 62, 63, 178], such tactics are not 
entirely satisfactory, particularly in the treatment of 
potential energy surfaces. 
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6.    Corrections and modifications 
As discussed in the previous section, the principal 

defect of the configuration interaction method is the 
lack of extensivity and size consistency of truncated CI 
expansions. The various approaches that have been used 
to compensate for this deficiency fall into two classes: 
the first class applies post hoc corrections to CISD 
results, while the second modifies the CISD algorithm 
itself. 

The post hoc corrections often arc called 'quadruples 
corrections', because they attempt to account for the 
disconnected quadruple excitation contributions that 
are needed to cancel the unlinked diagram components 
in the CISD energy [203, 205]. They modify the CISD 
energy, but do not produce a corrected wavefunction or 
modify derived properties. The best known and most 
widely used of these are the Davidson correction [206] 
and its variations [196, 207]. The original Davidson 
formula tends to overestimate the magnitude of the 
missing disconnected quadruples contributions to the 
total energy [208], primarily because it ignores the pro- 
blem of 'exclusion-principlc-violating' (EPV) terms 
[203]. The modified corrections exacerbate the problem 
because they increase the magnitude of the correction. 
In fact, while the Davidson correction tends to over- 
estimate the disconnected quadruples contribution, 
there is nothing in its formulation to account for other 
missing terms, such as connected triple excitation con- 
tributions, and therefore the corrected CISD energy 
usually lies above the full CI limit. However, such for- 
tuitous and unsystematic cancellation of errors cannot 
be counted on reliably in the determination of binding 
energies and other energy differences. 

A scale factor that sometimes has been applied to the 
Davidson corrections is (N - 2)1 N [136, 209], where N is 
the number of electrons being correlated. It is designed 
to eliminate the correction entirely for a two-electron 
system (for which CISD is equivalent to full CI). A 
more recently proposed scale factor is (N - 2)(N - 3)/ 
[N(N - 1)] [210], which eliminates the correction for 
both two-electron and three-electron systems. 

While the Davidson correction was developed 
originally for single-reference CISD calculations, a 
straightforward generalization [209], without formal 
justification, has been applied widely to multireference 
expansions. Generally it has been successful (e.g., [39 
41, 186, 209, 211]), but the name 'full CI correction' that 
sometimes has been applied to it [209] is not appro- 
priate, since it is designed only to deal with one of the 
various types of contribution missing in an MR-CISD 
expansion. A more systematic multireference general- 
ization of the Davidson correction was proposed by 
Jankowski et al. [212]. 

Another popular extensivity correction for SR-CISD 
is the Poplc correction [136]. It was designed to produce 
exact energies for assemblies of non-interacting two- 
electron systems, and vanishes automatically for the 
two-electron case. The performance of two versions 
of the Davidson correction, with and without scaling, 
and of the Pople correction has been compared in 
calculations of binding energies of several complexes 
by Del Bcne and co-workers [198], Other interesting 
comparisons of several correction formulas were 
reported, for example, by Martin et al. [213]. 

The second type of approach for dealing with the 
extensivity defect of truncated CI involves modifications 
of the CI procedure itself. The modifications arc based 
on electron-pair concepts [129, 130, 191, 199, 200, 214 
216] deriving from coupled cluster ideas. Early attempts 
to treat pair correlations independently, in the form of 
the independent electron-pair approximation (IEPA) 
[191, 199, 200], were not very successful [126 128, 191, 
217], and gave way to several versions of the coupled 
electron-pair approximation (CEPA) [127, 128, 191, 
201, 218]. These versions range from CEPA(0) to 
CEPA(5) [219], depending mainly on the way they try 
to account for EPV diagram effects. The simplest 
version. CEPA(0), ignores the EPV problem entirely, 
and is known also as linearized coupled pair many- 
electron theory (LCPMET) [201] or the linearized 
coupled cluster method (LCCM), because it can be 
obtained by linearization of the coupled cluster doubles 
(CCD) or singles and doubles (CCSD) equations. The 
other versions arc more complicated, and include in 
their formulas pair correlation energies obtained by 
summing sets of double excitation coefficients in the 
wavefunction expansion. 

One limitation of the CEPA method and related 
approximations is that their energy expression is not 
obtained by a stationarity condition for an energy func- 
tional. While this feature is of no consequence for energy 
calculations, it is a disadvantage in the analytical cal- 
culation of energy derivatives. The alternative 'coupled 
pair functional' (CPE) [220] and 'modified CPF' 
(MCPF) [221] approximations obtain the energy by 
minimizing a modified energy functional, and have 
been tested in a number of molecular calculations 
[39 41], 

The CEPA and CPF approximations were derived for 
single-reference treatments. A multireference generaliza- 
tion of LCCM was derived by Laidig ct al. [222]. Multi- 
reference generalizations for several CEPA models were 
proposed by Fuldc and Stoll [223]. A simplified form of 
CPF applicable to multireference treatments is the 
'averaged coupled pair functional' (ACPF) of Gdanitz 
and Ahlrichs [224]. This approach uses a flexible 
functional form which can be varied to obtain a range 
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of approximations, including a multireference LCCM. 
One such variant of the functional, based on the 
Meissner scale factor idea [210], has been introduced 
recently under the name 'averaged quadratic coupled 
cluster' (AQCC) approximation [225]. A number of 
other variants have been proposed by Füsti-Molnär 
and Szalay [226], who provide interesting comparisons 
of several models. All these methods are at least 
approximately extensive in most applications. They 
maintain the functional stationarity feature of CPF, 
and thus are convenient in applications in which 
energy derivatives are to be calculated. The principal 
algorithmic effect of these various approximations is 
that they convert the matrix eigenvalue problem to a 
system of linear equations (for LCCM) or a system 
intermediate between an eigenvalue problem and a 
simultaneous equations problem. Comparisons of 
ACPF and LCCM results with other models in calcula- 
tions of binding energies of several complexes have been 
reported [198]. 

Numerous other analyses and proposed correction 
formulas and modifications for dealing with the exten- 
sivity problem of CI have been published, and only a 
subset of them can be mentioned here [205, 227-241]. 

Finally, we mention the Bk approximation [242] (see 
Shavitt [243] and references therein), in which the CSFs 
are divided into a relatively small primary set and a 
much larger secondary set, and all off-diagonal matrix 
elements between pairs of secondary CSFs are neglected. 
It is not strictly an extensivity correction, but it has been 
used in some cases to estimate triple and quadruple 
excitation contributions on top of CISD [243]. 

7.    Summary 
Configuration interaction is a very versatile and 

powerful ab initio method. Aided by the remarkable 
advances in computers in the last few decades, it has 
developed and matured to a sophisticated level applic- 
able to many problems and capable of providing useful 
answers to questions of physical and chemical interest. 
Although it suffers from some important limitations, 
notably lack of extensivity and slow convergence, and 
although it has been supplanted to a considerable extent 
by modern many-body methods, particularly coupled 
cluster theory, CI still has an important role to play in 
molecular electronic structure theory. This situation is 
likely to prevail at least until multireference coupled 
cluster methods become more standardized and acces- 
sible to the chemistry research community. 

Modified CI approaches and configuration-based 
multireference perturbation theory can also be very 
useful in the arsenal of computational quantum chem- 
istry methods. 
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A review is given of the coupled-cluster approach for a multi-reference model space. Various 
schemes of normalization are discussed, particularly the hermitian formulation. Relativistic 
many-body schemes are analysed, starting from the no-virtual-pair approximation (NVPA). 
Effects beyond NVPA are discussed in the framework of QED, and in particular the QED 
effects on the electron correlation for He-like ions are analysed. 

1.   Introduction 
Non-relativistic many-body procedures have been 

extensively used over the past 40 years and can now 
be regarded as well developed. The important linked- 
diagram expansion (LDE) was discovered by Brueckner 
and Goldstone [1] in the middle of the 1950s. The advent 
of LDE represented a great progress in the many-body 
procedure and is normally regarded as the starting point 
of many-body perturbation theory (MBPT). In the 1960s 
the procedure was further developed for open-shell sys- 
tems by Brandow, Sandars, Kelly and others and later 
also for quasi-degenerate or general multi-reference 
model space [2]. In an order-by-order expansion, like 
LDE, however, the number of terms increases drasti- 
cally with the order, and this has the consequence that 
the method becomes essentially intractable for open- 
shell systems beyond the third-order energy. 

Instead of an order-by-order expansion it is often 
more efficient to treat certain effects—like one- and 
two-particle effects—to all orders in a recursive 
manner. A particularly useful version of such a proce- 
dure is the coupled-cluster approach (CCA), where the 
wavefunction (or wave operator) is expressed in expo- 
nential form. This approach was developed in nuclear 
physics by Coester and Kümmel [3] and introduced into 
quantum chemistry by Cizek in the 1960s [4]. It was first 
developed and applied to closed-shell systems [5] and in 
the 1970s extended to open-shell systems and general 
multi-reference model space [6]. 

The multi-reference CCA (MR-CCA) is a very clean 
procedure with many nice features. It satisfies the impor- 
tant size-extensivity criterion for the energy and also the 
separability or size consistency condition for the wave- 
function [5 (b), 5 (c), 7]. In the MR-CCA it is—at least in 
principle—possible to include important mixing states 
into the model space, which will improve the accuracy 

t Invited talk at the workshop '50 Years of the Correlation 
Problem', Cedar Key, Florida, 15-19 June 1997. 

and speed up the convergence of the iterations. How- 
ever, the original formulation was limited to a complete 
model space. In practical applications such a space can 
be quite large, with the consequence that intruder states 
[8], destroying the convergence of the procedure, are 
very likely to appear. 

A well-known classical example of the intruder prob- 
lem is the Be atom. With the orbitals generated in the 
HF potential of the Is2 the core, the configurations 
ls22s2 and ls22p2 are closely degenerate and strongly 
mixed. An extended model space with the two config- 
urations contains two ' S states, of which the upper one 
is very highly excited, in fact above the 2s ionization 
limit. This means that there is an infinite number of 
other 'S states (from the ls22sns configurations) which 
will fall between the states originating from the model 
space. It was earlier observed that the standard CC 
procedure does not converge in this situation [9]. 
Later, it has been possible to circumvent the intruder 
problem in this special case by means of special tricks 
[10]. 

Normally, one is interested in only a limited number 
of states originating from a complete model space— 
usually some low-lying states—and it would then be 
desirable to work with a more limited model space in 
order to reduce the intruder problem. However, the CC 
procedures were until recently developed only for com- 
plete model spaces. For an incomplete model space the 
standard MR-CCA procedure with intermediate normal- 
ization (IN) generally leads to disconnected cluster 
operators and loss of size extensivity. It was first pointed 
out by Mukherjee and co-workers [11] that connectivity 
could be restored for very general incomplete model 
spaces by abandoning the IN. This opened up quite 
new possibilities and turned out to be one effective 
way of handling the intruder problem in MR-CCA. 

Another way of handling the intruder problem is 
the intermediate hamiltonian approach, developed by 

0026-8976/98 $12-00 © 1998 Taylor & Francis Ltd. 
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Malrieu, Durand and others [12]. Here, only a few of the 
eigenstates of the effective hamiltonian correspond to 
real states. This may give sufficient freedom in con- 
structing that hamiltonian so that the intruder problem 
could be avoided. 

It is also possible to construct a 'state-specific proce- 
dure, which is size extensive, as recently demonstrated 
by Mukherjee and co-workers [13]. 

Relativistic many-body procedures were not devel- 
oped until the 1980s. Relativistic SCF procedures 
(MCDF) were used already in the 1970s but based on 
a non-rigorous hamiltonian [14]. 

Breit had derived already around 1930 the relativistic 
corrections to the Coulomb interaction [15]. The ori- 
ginal Breit interaction, however, could be used only in 
first order and was not suitable for many-body proce- 
dures. It was demonstrated by Brown and Ravenhal! 
[16] in the early 1950s that a relativistic hamiltonian 
based upon the Coulomb interaction (with or without 
the Breit interaction) has eigenvalues that are not bound 
from below, due to the presence of the negative energy 
states. The problem with the Breit interaction was 
further emphasized by Bethc and Salpeter [17], and 
this did for a long time hamper the use of the Breit 
interaction in many-body applications. 

It was demonstrated by Sucher in 1980 [18] that the 
problem with negative energy states could be avoided by 
the use of projection operators. This leads to the so- 
called no-virtual-pair approximation (NVPA). In this 
scheme it is perfectly legitimate to iterate also the Breit 
interaction to self-consistency. There are other effects 
CQED effects') that arc of the same order as the 
second-order Breit interaction, but the important point 
here is that the Breit interaction could be treated on the 
same footing as the Coulomb interaction without any 
fear of 'falling into the Dirac sea'. 

Relativistic effects are intimately connected to 
quantum electrodynamics (QED), and an analysis of 
the relativistic many-body problem must by necessity 
start from QED. It turns out that such an analysis 
yields an interelectronic interaction that is gauge depen- 
dent. SCF calculations performed with the interactions 
derived using, for instance, the Coulomb and the 
Feynman gauges turned out to yield significantly dif- 
ferent results, and this caused confusion for some time 
[19]. 

In order to resolve the problem with the interelec- 
tronic interaction, it is necessary to consider also the 
two-photon exchange between the electrons (sec figure 
4, section 3.2). It was then demonstrated that the 
gauge dependence could be explained to first order by 
the effects left out of the two-photon exchange [20]. For 
instance, the crossed-photon diagram, entirely left out in 
any many-body procedure developed so far, is an order 

of magnitude larger in the Feynman gauge than in the 
Coulomb gauge. In fact, the Coulomb gauge turns out 
to be the optimum gauge for many-body applications, 
and this gauge leads (in the no-rctardation limit) exactly 
to the original Breit interaction. 

The NVPA, based upon the Coulomb gauge with the 
Coulomb and the Breit interactions, is a very efficient 
computational procedure for atomic and molecular sys- 
tems that are not highly charged. It has in recent years 
been applied by several groups, particularly to atomic 
problems [21]. 

The effects left out in NVPA arc referred to as QED 
effects. These arc of two kinds: (a) non-radiative effects 
(sometimes referred to as the Araki Sucher effect [22]) 
and (b) radiative effects. The former arc caused by the 
negative energy states and the retardation effects left out 
in NVPA. The radiative effects are of Lamb-shift type 
and involve self energy and vacuum polarization. 

For highly charged systems the single-electron Lamb 
shift can be comparable to the first-order Breit interac- 
tion. Since it is a single-particle effect, however, it has no 
effect upon the electron correlation. The non-radiative 
effects and the higher-order Lamb shift, on the other 
hand, do have such effects. This has recently been 
studied for He-like ions [23] and compared with experi- 
mental results [24]. The experimental accuracy is not yet 
sufficient for detecting the effects, but with only a mod- 
erate improvement of the accuracy a significant test will 
be possible. This will constitute an important test of 
QED (beyond first-order Lamb shift) at very strong 
fields. 

In the present paper we shall in section 2 review some 
recent developments in the non-rclativistic CC theory, 
particularly regarding incomplete model space and the 
hermitian formulation. Some new results will be 
reported. In section 3 we shall first analyse the gauge 
dependence of the electron electron interaction in the 
NVPA, and finally the QED effects upon the electron 
electron interaction will be discussed and some new 
results for He-like ions be reported. 

2.    Non-relativistic many-body theory 
2.1. Multi-reference model space 

As a background for the following treatment and for 
defining our notations, we will first briefly review the 
well-known non-rclativistic many-body theory for a 
general multi-reference model space. We shall apply 
the Bloch formalism, which yields a transparent relation 
between different formulations [2(i)]. 

We start from the Schrödingcr equation for a number 
of states (target states). 

HW (a) £(") y/(n) (a=l,2,...,</), (1) 
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where H is the hamiltonian and ¥ is the wavefunction of 
the system. The corresponding zeroth-order wavefunc- 
tions (ZOWF), f^ , are confined to a model space, P, 
which might contain several zeroth-order energies 
(multi-reference model space). If the model space con- 
tains all possible occupancies of the valence orbitals, it is 
said to be complete, but the treatment here holds for a 
general, incomplete model space. (For a more extensive 
discussion about the incomplete-model-space problem, 
see e.g. the review by Lindgren and Mukherjee [11 (d)]). 

We assume that a wave operator (W) transforms all 
ZOWF into the corresponding exact wavefunctions, 

f («)_ QW, («) {a = 1,2,...,d). (2) 

The ZOWF are eigenfunctions of an effective or model 
hamiltonian, H^, with eigenvalues equal to the exact 
energies 

(«) 
tfefffo 

£(«) \p(a) (a= \,2,...,d). (3) 

The explicit form of this operator depends on the nor- 
malization scheme employed (see below). 

For the following we shall partition the hamiltonian 
into an unperturbed hamiltonian, H0, and a perturba- 
tion, V, 

H = H0 + V, (4) 

and we define a corresponding effective interaction, Feff, 
by 

VeK = He(f - PH0P. (5) 

The wave operator satisfies the generalized Bloch 
equation [2 (g)-2 (i)] 

[Q,H0]P=(VQ-QVe{{)P, (6) 

where P is the projection operator of the model space. In 
intermediate normalization (IN) we have 

y(«) =p«p(o).      pQp = P- 

He{( = PHQP   and    Ve{( = PVÜP. (7) 

Other normalization schemes are discussed below. 

2.2. The linked-diagram expansion 
In   the   standard   perturbation   theory   the   wave 

operator is expanded order by order, 

Q = fl(0) + ß(1) + Q(1) + ■■■ (8) 

[A*0)= 1 in IN]. Inserting this expansion into the general- 
ized Bloch equation (6) yields 

[Q("\H0}P = (VQ-QVef{)Mp. (9) 

This equation leads to the general Rayleigh-Schrödinger 
(RS) expansion for a multi-reference model space. 

In the diagrammatic representation the RS expansion 
contains 'unlinked'' diagrams, i.e. diagrams with a dis- 
connected, closed part. Such diagrams can be shown to 
cancel, which leads to the linked-diagram expansion 
(LDE) [1,2]. The LDE can then be expressed by 
means of a 'modified Bloch equation' 

[Q,H0}P=(VQ-QVe[{\nkedP (10) 

with the order-by-order expansion 

[QW,H0}P = {va-QVel[)Z*P- 
(») (11) 

This form of the perturbation theory is very convenient 
for generating the LDE. The term ßFeff represents the 
folded or backwards diagrams [2(a), 2(f)]. 

The order-by-order expansion is usually impractical 
beyond the third-order energy due to the large number 
of diagrams appearing. For many atomic and molecular 
systems, which are not highly charged, however, third 
order is often insufficient, and more efficient methods 
have been developed. 

2.3. The all-order and coupled-cluster approaches 
Instead of an order-by-order expansion (8) we sepa- 

rate the wave operator into zero-, one-, two-,... body 
terms, defined by means of second-quantization, 

Q = Q0 + Qx + Q2 + ■ ■ ■ = Q0 + J2xKaUj} 

+ £xu{fl/fl;fl'a*} + "'- (12) 
ijkl 

Solving the corresponding partitions of the Bloch equa- 
tion iteratively to self-consistency, 

[Qn,H0}P=(VQ-QVe{f^ linked (13) 

is equivalent to treating the corresponding effects to all 
orders of perturbation theory. 

In the LDE all energy or effective-hamiltonian 
diagrams are connected. The wave-operator expansion, 
on the other hand, also contains disconnected diagrams 
with open pieces. For a single-reference model space 
such diagrams factorize into an ordinary product of 
connected diagrams. This can be generalized to the 
exponential Ansatz or coupled-cluster approach (CCA) 
[3] 

ß = expS=l + S + is2 + is3...,        (14) 

where the 'cluster operator' S is completely connected 
[4,5]. 

For open-shell systems (multi-reference model space) 
the disconnected diagrams factorize into a normal- 
ordered rather than an ordinary product. This leads to 
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the normal-ordered exponential Ansatz, proposed inde- 
pendently by Lindgrcn [6 (c)] and Ey [6 (e)] 

Q = {cxpS} = \ +S + ^{S2} +j}{S'}... .    (15) 

The cluster operator is under general conditions com- 
pletely connected also in this case and satisfies an equa- 
tion, which is quite analogous to the wave-operator 
equations (6) and (10), 

[S,H0\P = {VQ-QVaf)«mrtP. (16) 

For the following wc shall make the assumption of 
valence universality, which implies that the wave 
operator introduced above transforms the wave func- 
tions for all valence sectors, m, i.e. for all systems with 
one or several valence electrons removed or one or sev- 
eral valence holes filled (or any combination thereof). 
The Bloch cluster equation (16) is then extended to 

[S,H0)pW = (VQ-nVef()comP<m\ (17) 

for all sectors m. Here P<"') is the projections operator 
for the model space of the valence sector m. The 
assumption of valence universality makes the cluster 
operator uniquely defined by the Bloch-typc equation, 
and it leads to connectivity, using general normalization 
schemes [11 (c), 11 (d)]. 

Expanding the cluster operator in analogy with the 
wave-operator (12) and truncating after the two-body 
term 

S = S{+S2 (18) 

leads to the frequently used CCSD approximation. The 
coupled one- and two-electron equations arc in this 
approximation [2 (i), 6(c)] 

[S,, H0}P{m) = {V + VS + ±VS7
i+VSl S2 

+ ----S,FefT,}1.connP
(m\ (19a) 

[S2,H0]P{m) = {V + VS + \VS] + FS,S2 + \VS\ 

+ ----S2Ven,2---.}2xomPim).       (19 h) 

2.4. Incomplete model space 
The most frequently used normalization scheme in 

many-body theory is the intermediate normalization 
(IN) (7), which works well for a complete model 
space. Such a model space, however, can in realistic 
applications be impractically large and may likely lead 
to intruder states [8], which destroy the convergence of 
the perturbation expansion. 

In most cases only a limited number of states within a 
complete model space are of interest for the problem at 
hand.  One  way  to  avoid—or  at  least  reduce —the 

intruder problem is then to restrict the model space, 
and work with an incomplete model space. In such a 
scheme, however, the connectivity or size extensivity 
cannot be guaranteed, when the IN is employed. It 
was first demonstrated by Mukhcrjcc and co-workers 
[11] that connectivity and size extensivity can be gener- 
ally restored for an incomplete model space by aban- 
doning the IN. 

Introducing the inverse of the wave operator, oper- 
ating to the left on the model space, leads to 

P<m)Q-]QP(m) = P(m) (20) 

instead of the IN relation (7) P('")QP"n) = />""). The effec- 
tive hamiltonian then becomes 

H c(T P<m)ülHÜP (m) (21) 

In IN the effective interaction to be used in the CC 
Bloch equation (16) can be given an explicit form (6). 
This is not the case with a general normalization scheme. 
Instead, wc have here to consider the Q as well as the P 
projections as coupled equations and solve them itcra- 
tively [11(d)]. 

j(m) Q{m,[S,H0)P
fm] = Q^(VQ-xVcfr)c 

("0/ ufm) 

,fm) (m), P<m,[S.//0]P
,m> = P^(VQ - OFc(T)connP j(m) 

(22 a) 

(22b) 

with  \ = Q - \.  From  the P projection  wc get  an 
implicit expression for the effective interaction 

F« = P{m\VQ - XV($ - [S, //o])connP
(m).       (23) 

There are other ways of handling the intruder prob- 
lem, such as the intermcdiate-hamiltonian (IH) form- 
alism, introduced by Malricu, Durand and co-workers 
[12]. Here, the effective hamiltonian is defined in such a 
way that it reproduces the exact energies only for a 
subgroup of the target states. With this technique one 
can utilize the larger model space with its good repre- 
sentation of the ZOWF and simultaneously to a large 
extent avoid the intruder problem. Other schemes arc 
focusing on a single state of a multi-reference model 
space, state-specific methods, as recently analysed by 
Mukhcrjcc and co-workers [13]. Wc shall not consider 
these schemes any further here, since they will be the 
subject of special talks later at this workshop. 

2.5. Hcrmitian formulation 
The IN (as well as several other schemes) also has the 

disadvantage that the effective hamiltonian is non-hcrmi- 
tian. Several hcrmitian schemes have been developed 
and applied in many-body theory [25]. Wc shall particu- 
larly consider the scheme of Jorgcnscn [26]. Here, the 
normalization condition is 
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:o 
(a) (b) (c) (d) 

Figure 1. In the standard pair-correlation (CCSD) approach 
(19), the effective-operator diagram (a) would be gener- 
ated in intermediate normalization but not the corre- 
sponding hermitian adjoint diagram (b). Similarly, the 
wave-operator diagram (c) would be included but not 
the analogous diagram (d), which involves a triple 
excitation. In the 'symmetrized' hermitian formulation 
(29) all these diagrams would be included in the CCSD 
approach. 

p(m)=p(m)ßtßp(m)_ 

and the effective hamiltonian becomes 

H$ =Pim)Q^HQP{m\ 

(24) 

(25) 

which is manifestly hermitian. It has been shown by 
Lindgren [25(d)] that connectivity is preserved in the 
CCA also in this scheme. 

The non-hermiticity caused by IN leads to an 
asymmetry in the representation at a particular level, 
which can be illustrated by the diagrams in figure 1. 
In the CCSD procedure (19), where only single and 
double excitations are considered in the cluster operator 
(with no passive valence orbital), diagram (a) will be 
included but not its hermitian adjoint (b). The reason 
for this is that the corresponding wave-operator 
diagram (d) contains a triple excitation, before it is 
closed. 

Even with the Jorgensen condition (24), however, 
non-hermiticity can be introduced by truncations. The 
general equation for the effective interaction (23) leads 
obviously with the J0rgensen condition to hermiticity, 
when all effects are included, but not necessarily so for a 
truncated expansion [25 (d)]. 

In order to improve hermiticity for truncated 
expansions, following the procedure of Lindgren in 
[25(d)], we shall develop more symmetric expressions 
by operating on the CC Bloch equation (17) with fl' 
from the left, 

ßt[S, H0]P
(m) = flt(7fl - QV<$)connpW.        (26) 

Using x = ß ■ 
equations 

1, this leads to the P and Q projected 

Q[S, H0]PW = Q(VQ - OV™ + xhvO - QV<$ 

-[S,Ho]))connpC° (27) 

V^=P^(VQ-XV^-[S,H0) 

+ xhvQ-avW-[s,H0]))connpW. 

(28) 

The extra terms, compared to (22) and (23), vanish, 
when all effects are considered, but not necessarily so 
for truncated expansions. The extra terms may improve 
the hermiticity for truncated schemes, as will be illus- 
trated below. 

In the expressions (27) and (28) large cancellations 
occur between the terms of the right-hand side, and a 
more convenient way of expressing the relations is 

(») Q[S,H0}P(-m) = Q(VQ-QV^' 

J( fWi ■X*(VCl-QV^)+)conn. JH (29 a) 

V<$=pM(VQ-xV<$-[S,H0] 

+ xVß_flFMUonnpW      (29 b) 

where the + sign represents effects with the intermediate 
state outside the approximation employed [25(d)]. 

The extended expressions (29) reduce the non-hermi- 
ticity also with other normalizations, such as the IN. 
This can be illustrated by means of the diagrams in 
figure 1. Also with the extension terms the diagrams 
(b) and (d) will in the CCSD approximation be included 
in the effective hamiltonian and the wave operator, 
respectively. The importance of the hermitian extension 
terms was demonstrated in an early calculation on the 
sodium atom by Salomonson and Ynnerman [27]. 

The inclusion of the hermitian extension terms lead to 
a systematic extension of the CC equations. This is 
illustrated with the single-particle equation. In the case 
of a passive valence orbital it can be shown that the 
extended equations (29) in the IN lead to the complete 
random-phase approximation (RPA), with forward and 
backward loops, while the standard procedure only 
leads to the Tamm-Dankoff approximation (TDA) with 
only forward loops (see figure 2) [25 (d)]. 

The hermitized CC procedure has recently been 
applied by Salomonson et al. [28] in a calculation of 
the electron affinity of the Ca and Sr atoms. The binding 
of the last electron of the negative ion is here very deli- 
cate, and it is only recently that this quantity has been 
reliably measured [29]. The corresponding theoretical 
evaluation has also for a long time challenged the theo- 
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Figure 2. The diagram of the first row with forward loops 
only are generated in the single-electron approximation 
(with a passive valence orbital) in the standard CCA. 
The second-row diagrams with backward loops are gen- 
erated by the extension terms in (29). This represents the 
complete random-phase approximation (RPA). 

reticians [30]. The technique used by Salomonson et al. 
is based on the quasi-particle equation 

hHMr) + | d3rr (r, r', e)¥,(r,) = e^r) (30) 

with    an    energy-dependent    self-energy    potential. 
I*(t,t',e), evaluated by means of the CC procedure, 

r(t,r',e) = {t'\P(V2S2 + V2Sl+s\v2 

+ st(V2S2),)lcjamnP\t). (31) 

The rhs depends on the energy (e) of the valence orbital, 
and equations (30) and (31) arc iterated until self-con- 
sistency is reached. This procedure yields for the first 
time good agreement with the experimental results for 
Ca~ as well as Sr~ [28]. 

3.    Relativistic many-body theory and QED 
3.1. No-virtual-pair approximation 

For relativistic many-body calculations a frequently 
used hamiltonian is the Dirac-Coulomh hamiltonian 

' a 
(32) 

where the single-electron Schrödinger hamiltonian. //s. 
of the standard non-relativistic hamiltonian is replaced 
by the corresponding Dirac hamiltonian 

2       Z 
hD = co*p + ßmc  (33) 

(using Hartrec atomic units, e = m = h = 4n~G = 1). This 
hamiltonian has been used, for instance, for a long time 
in multi-configuration Dirac-Fock (MCDF) calcula- 
tions [14] and to some extent also in relativistic MBPT 
calculations. The eigenvalues of this hamiltonian, how- 
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Figure 3. The exchange of a single photon between two 
electrons (a) is compared with an effective-potential inter- 
action (b). 

ever, arc not bound from below, with the consequence 
that the eigenstates may dissolve into the negative con- 
tinuum [16]. 

A more rigorous basis for relativistic many-body 
work is the projected hamiltonian [18] 

// = /!,(£>,>+ 5>(/R (34) 

where A+ is the projection operator for positive- 
energy states, which prevents the negative-energy states 
from entering into the wave function. This is the no- 
(virtual-)pair approximation (NVPA), in which virtual 
electron positron pairs arc not allowed in intermediate 
states. 

With the form (34) of the Hamiltonian it is relatively 
straightforward to set up a relativistic CC procedure, 
following the non-relativistic procedure outlined in the 
previous section. This has been done by various groups 
during the last 5 8 years [21]. 

The form of the interclcctronic potential, V^ can be 
derived from QED, but unfortunately it turns out that 
this depends on the gauge used, and it is not obvious 
which potential is the best to use in relativistic many- 
body theory. In the next section wc shall analyse this 
problem by considering the one- and two-photon 
exchancc between the electrons. 

3.2. One- and two-photon exchange 
We consider first the exchange of a single photon 

between the electrons, represented by the Fcynman dia- 
gram in figure 3(A). We employ hound-state QED with 
the field operators 

•P = 5^fl1-01.(.v);«'t = ^flt0;(x) (35) 

and the orbitals generated in the external (nuclear) field, 
V{\), (Furry picture [31]) 

[fcr-p + ßmc2 + V{\)]4>{\) = £<f>{\). (36) 

The S-matrix for the single-photon exchange (figure 
3(A)) then becomes 
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(cd\S^2'\ab) = —2ni6(ea + eb - ec - ed) 

x (cd\a^a2e
2DFvß(x2 - xuu>)\ab),       (37) 

where DFvjX(x2 — XULV) is the Feynman photon propa- 
gator and aß = (1, —a) the Dirac operators in covariant 
form. The expression (37) can be compared with the 
corresponding expression for single potential scattering 
(figure 3(b)) 

(cd\S^\ab) = -2ni6(ea + eb - ec - Sd){cd\Vef{(u))\ab), 

(38) 

which leads to the 'effective' interaction potential 

KrffH = a^cxv
2e

2DFvß{x2 - xu uS). (39) 

This potential is energy dependent, through the energy 
parameter u, representing the energy transfer of the 
photon, and—as mentioned earlier—it is also gauge 
dependent. 

We consider particularly two gauges, the Feynman 
and the Coulomb gauges. In these gauges the unretarded 
or frequency-independent part of the interaction 
becomes 

VF
en{u 0)=-l(l-a1 

r\2 
a2) 

V^(co = 0)= — ■ j oil • a2 — - 

(40 a) 

(aiT12)(a2Ti2P 
2r2 Z

M2 

(40 b) 

known as the Coulomb-Gaunt and Coulomb-Breit inter- 
actions, respectively. 

In principle, the results of QED are gauge indepen- 
dent in each order. Nevertheless, it has been found that 
the interactions derived with the two gauges (even with 
retardation included) lead to significantly different 
results, when used in SCF or MBPT calculations [19]. 
The single-photon exchange in QED, however, involves 
energy conservation (37), and the potential derived is 
therefore strictly valid only for evaluating the first- 

X 
(a) (b) 

Figure 4. Two two-photon exchange between the electrons is 
represented by two Feynman diagrams, (a) the 'ladder' 
and (b) the 'crossed-photon' diagram. 

order energy contribution (in which case the two 
gauges yield identical results). When the potential is 
used iteratively in many-body procedures, on the other 
hand, gauge dependence appears. In order to analyse the 
gauge dependence, it is then necessary to consider the 
two-photon exchange (figure 4). 

In a many-body procedure, where a single-photon 
potential of the type (40) is used iteratively, the 
crossed-photon diagram is left out completely and the 
ladder diagram is only partly included. It can be shown 
that the parts left out are much more important in the 
Feynman gauge than in the Coulomb gauge. Therefore, 
the potential derived in the latter gauge yields more 
accurate results in a many-body procedure. In fact, the 
Coulomb-gauge potential leads to errors of the order of 
a3 hartrees, while most other gauges would cause errors 
of the order of a2 hartrees. This leads to the recom- 
mended no-virtual-pair approximation (NVPA) 

H = A+(£hD + Y,(j; + Bv))Ä+>       (41ß) 

where 

B 12 
1 

2r12 
ot\ ■ a2 + 

(a1Ti2)(a2T12) 
(41 b) 

is the Breit interaction (40 b), representing the first-order 
magnetic interaction and retardation of the (instanta- 
neous) Coulomb interaction. 

Table 1.    Two-electron contribution to the ground-state energy of He-like ions. Comparison between theory and experiment 
(in eV). 

MBPT 
Nuclear Experimental 

Marrs et al. charge First order 2nd 3rd Non-radiative Lamb shift Total theory 

32 567.1 -5.22 0.02 0.03 -0.42 562.02 (10) 562.6 ±1.6 
54 1036.56 -7.04 0.03 0.16 -1.56 1028.15 (10) 1027.2 ±3.5 
66 1347.45 (1) -8.59 0.03 0.36 -2.66 1336.59 (10) 1341.5±4.3 
74 1586.93 (2) -9.91 0.04 0.55 -3.68 1573.93 (10) 1568.9 ±15 
83 1897.56 (4) -11.77 0.04 0.86 -5.16 1881.5 (2) 1875 ±14 
92 2265.87 (10) -14.16 0.05 1.28 -7.12 2245.9 (2) 
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NVPA results 
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Figure 5. Feynman diagrams of the second-order two-elec- 
tron contribution to the binding energy of He-like sys- 
tems. The first line represents the many-body part and 
the non-radiative QED part, and the remaining lines the 
radiative contribution (screening of the Lamb shift). 

The NVPA in the Coulomb gauge is nowadays the 
standard approximation for relativistic many-body cal- 
culations. It forms the basis for the modern versions of 
the MCDF procedures [19(a), 19(b), 32] and has been 
employed in MBPT and coupled-cluster calculations 
[21]. 

3.3. QED effects 
The effects left out in the NVPA are defined as QED 

effects. They are of two types: 

(a) non-radiative effects, i.e. effects of retardation and 
of negative-energy states, 

(b) radiative effects, i.e.  self-energy and  vacuum- 
polarization or Lamb-shift effects. 

In lowest order the QED effect on the electron -elec- 
tron interaction is represented by the diagrams shown in 
figure 5. The non-radiative part, represented by the dia- 
grams of the first row, have been evaluated for the 
ground state of He-like ions by Blundell et al. [23(a)] 
and by Lindgren et al. [23(b)]. The remaining diagrams 
represent the radiative part, involving vacuum polariza- 
tion (second row) and self-energy (third row). This part 
has been estimated using various approximate schemes, 
and a full QED calculation has recently been performed 
by Persson et al. [23 (c)]. The results are shown in table 1 
together with the non-QED parts and compared with 
the experimental results from the Livermorc GSI colla- 
boration [24]. 
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Figure 6. (a) The relative size of the first- and second-order 
contributions to the two-electron part of the binding 
energy for He-like ions in the no-virtual-pair approxima- 
tion (NVPA). The contributions are related to the single- 
electron binding energy. The scale is logarithmic, one unit 
corresponding to a factor of o « 1/137. (b) Same as figure 
6(a). where the first- and second-order NVPA contribu- 
tions are compared with the two-electron Lamb shift and 
non-radiative QED contributions. Note that for large Z 
the relative first-order contribution is of order a and all 
second-order effects of order o2. Note that the QED 
effects are of the same order as the second-order NVPA 
contributions for highly charged ions. The dots represent 
the uncertainty in the experimental results. X-ray spectro- 
scopy (circular) and electron binding energy (triangular) 
[33]. 

In figure 6(a) we have illustrated the first- and second- 
order non-QED or NVPA (41) contributions to the two- 
body part of the binding energy for the ground state of 
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He-like ions. The result is normalized to the single-elec- 
tron binding energy, and the scale is logarithmic. 
Obviously, the Coulomb interaction dominates for 
light elements, but the Breit interaction becomes com- 
parable to the second-order Coulomb interaction 
already around Z=20. The second-order relativistic 
effects, Coulomb-Breit and Breit-Breit contributions, 
are quite small for light elements but are of the same 
order as the second-order Coulomb interaction for 
heavy ions. 

In figure 6(b) the corresponding NVPA and QED 
results are displayed. The second-order Lamb shift is 
for medium and highly charged ions comparable to 
the Coulomb-Breit contribution (see figure 6(a)), 
while the non-radiative contribution is considerably 
smaller and comparable with the Breit-Breit interaction. 
Note that all first-order contributions, including the 
first-order Lamb shift, for very highly charged ions are 
of the order of alpha times the one-electron binding 
energy, while all second-order effects are roughly 
another factor of alpha smaller. 

In figure 6 (b) also the uncertainty of the experimental 
results is indicated. This can be seen to be comparable to 
the two-electron Lamb shift, which means that this 
effect is now right on the verge of being detectable. 

The experimental uncertainties deduced from X-ray 
measurements (fine-structure separations) are generally 
smaller than those deduced from measurements of the 
binding-energy. In order to compare fine structure 
results with theory, however, it is necessary to make 
the evaluations also for excited states. Such calculations 
have not yet been performed but are now in progress at 
our laboratory. One problem here is that the two p 
states, piß and />3/2, are strongly mixed, and it will be 
necessary to work with an extended model space also for 
the QED calculations. However, the standard S-matrix 
procedure is based upon energy conservation (37) and 
can therefore be employed only for evaluating diagonal 
elements of the effective hamiltonian. Therefore, in 
order to be able to evaluate also non-diagonal elements, 
required for an extended model space, some modifica- 
tion of the formalism is required. 
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Generalized maximum-overlap orbitals for multi-reference-state 
theories 
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An attempt to generalize the maximum overlap or Brueckner orbitals, which are defined in the 
single-reference-state formulations of the many-electron theory, to the case of multi-reference- 
state approaches is made. The generalization is obtained by considering the orbitals that yield 
the maximum proximity of the subspace M spanned by the set of d exact wavefunctions 
considered in the MR method with the model space MQ spanned by d determinants providing 
approximations to these wavefunctions. The new orbitals are referred to as maximum-proxi- 
mity orbitals (MPOs). The general problem of defining the distance between pairs of finite 
dimensional subspaces of the Hubert space is shortly reviewed. To better understand the 
impact of the distance of the M$ and M spaces on MR-type approaches, model studies 
have been undertaken for the MBS H4 system, which offers the possibility of a simple para- 
metrization of arbitrary symmetry-adapted orbital sets. Proximity indices of 13 standard 
quantum-chemical orbital sets are compared for various degrees of quasi-degeneracy of the 
states considered. It is demonstrated that the MPOs minimize the impact of singly-excited 
determinants on the structure of the wavefunctions. The MPOs are applied in calculations 
based on MR-CC approaches of valence-universal and state-universal types. Results superior 
to those for HF orbitals are obtained. The improvement is especially evident outside the strong 
quasi-degeneracy region. 

1.   Introduction 
One-particle wavefunctions (orbitals) belong to the 

fundamental concepts of contemporary quantum 
theory of many-electron systems on two counts: First, 
orbitals are the building blocks of individual indepen- 
dent-particle models (IPM) which represent the basic 
approaches of the theory. The form of the one-particle 
functions reflects the physical or mathematical require- 
ments imposed on the model. Second, the choice of the 
orbitals determines important details of the formal 
structure as well as the computational characteristics 
of most of the many-electron theories going beyond 
the independent-particle formulations, which in physical 
terms consists in a more complete description of the 
correlation of the relative movement of electrons. 

For almost six decades the most important role has 
been played by the Hartree-Fock (HF) orbitals [1] 
which are defined by equations obtained when using 
the best-energy criterion for the wavefunction of the 
IPM. The corresponding HF picture is broadly consid- 
ered to represent the most comprehensive independent- 
particle model. Various HF results are commonly used 
as reference points in studies of electron-correlation 
effects (see, e.g. [2, 3]). HF orbitals are also routinely 
employed for the formulation of the vast majority of 
methods for the description of these effects (for details, 
see [4, 5]). 

Among the non-HF IPM approaches, considerable 
attention has been attracted by the model defined by 
the requirement that the determinantal wavefunction * 
corresponding to the exact wavefunction f is such that 

||»P-$||= min   for ||y|| = ||*|| = 1 (1) 

or, equivalently, that the overlap of these functions is 
maximum, i.e. 

(#|f)=max. (2) 

The first explicit use of the condition (1) for the defini- 
tion of the one-particle wavefunctions can be found in 
the work of Brenig [6] who was concerned with the 
problem of generalizing to finite nuclear systems 
Brueckner's self-consistent field approach formulated 
for infinitely extended nuclear matter in terms of two- 
particle reaction operators (see, e.g. [7]). The same 
author has also found that determinants <Pr

a obtained 
by single substitutions of the single-particle functions 
ipa from the set defining the optimum determinant * 
by an orbital ipr orthogonal to any function of this set 
are orthogonal to the exact wavefunction, i.e. 

(<pr
a\W)=0   for   0<a<N<r, (3) 

where N is the number of particles. 
As has been reminded by Paldus et al. [8], the idea of 

using condition (1) as a criterion of goodness of the IPM 
was actually put forward within the framework of 
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many-electron theory prior to its nuclear-physics appli- 
cation. This was done by Laforgue (sec. e.g. [9]) in an 
overlooked work based on the use of a so called fonction 
d'erreur, which corresponds to using condition (1). 
Broad attention of the quantum-chemical community 
to IPMs based on criteria of accuracy for the wavefunc- 
tions has been attracted by the work of Nesbct [10] who 
reformulated the configuration interaction (CI) 
approach in such a way that it resembles, as far as pos- 
sible, Brueckncr's formulation [7]. To achieve his aim he 
imposed on the orbital set the condition (3) which he 
called the 'Brueckncr condition'. Notice that this condi- 
tion eliminates the singly excited configurations from the 
CI expansion of the exact wavefunction. Further 
impetus to the work in this field was due to Löwdin 
[11], who assumed the best-overlap criterion (2) in his 
'exact self-consistent theory'. Primas [12] has coined the 
names: Brueckncr determinant for the best overlap 
determinant $B satisfying conditions (1) and (2), and 
Brueckncr orbitals (BO) for the corresponding max- 
imum overlap orbitals. Interesting discussion of the rela- 
tionships between the maximum-overlap IPM and other 
models can be found in the work by Kutzclnigg and 
Smith [13]. Paldus et al. [8] derived stability conditions 
for maximum-overlap independent-particle wavefunc- 
tions and applied them to the 7r-electronic model. 

The main difference between the HF and Brueckncr 
IPMs consists of the fact that, unlike the HF orbitals. 
the direct determination of the BOs requires the knowl- 
edge of the exact wavefunction. Therefore, there has 
been a rather general feeling that BOs arc more of theo- 
retical than of practical interest. They turned out to be 
especially useful in studies of the detailed structure of 
the terms of the wavefunction representing various cor- 
relation effects. However, over the years computational 
methods implying the use of BOs have been developed, 
e.g. Larsson [14] and Stolarczyk and Monkhorst [15] 
have proposed to obtain these orbitals from HF type 
equations modified by a 'correlation' potential. An 
interesting field of practical applications of BOs seems 
to be the coupled-cluster (CC) methods [16, 17]. Theor- 
etical [15] and computational [18] coupled-cluster 
studies of the applicability of these orbitals have been 
performed by several groups. Recently several inter- 
esting coupled cluster type approaches based on the 
use of BOs have been put forward and applied (for 
reviews and references see [19]). 

At the end of these remarks on the origin and signifi- 
cance of the maximum overlap IPM as well as of the 
BOs (or maximum overlap orbitals), we would like to 
emphasize that in all the theoretical and computational 
developments in this area considerations have focused 
on one state at a time, i.e. both the maximum overlap 
determinant <P and the BOs arc defined for a specific 

exact wavefunction "/'. Moreover, one would expect 
that <!> is especially well suited for the representation 
of such wavefunctions •/' which contain in their CI 
expansion a single dominant determinant. For the 
states corresponding to these wavefunctions the correla- 
tion effects, which arc often referred to as dynamical 
[20]. arc well described in terms of singlc-rcfcrcncc- 
state (SR) methods of variational. pcrturbational and 
coupled-cluster type. 

It is well known, however, that for a large class of 
states known as quasi-degenerate ones the CI-cxpansion 
of the wavefunction contains more than one important 
configuration. The description of the electron correla- 
tion effects in such states, which include important 
non-dynamical effects [20], by means of SR methods 
encounter various difficulties. These difficulties can be 
to a large extent overcome within the framework of 
multi-rcfercncc-state (MR) formulations of pcrturba- 
tional (for details and references, sec, e.g., [21 24]) and 
CC-typc (see [22. 25 28] and references therein) 
methods. Unlike SR-typc methods, the MR ones arc 
concerned with several states at the same time. In MR 
methods one starts with a model space Mv spanned by a 
set of Slater determinants 4>, (d in number, say) and 
defines a wave operator, ß, which generates a set of d 
exact normalized wavefunctions V,- by acting upon d 
suitable linear combinations, ¥j of the tf>, determi- 
nants, i.e. 

f, = fitf (0) 

where 

<i,m 

(/=1,2,...,</) (4) 

(5) 

The space. M spanned by the d exact wavefunctions ^ 
is referred to as target space [23]. The set of <Pj is chosen 
such that it includes the dominant configurations of the 
states considered. 

From an intuitive point of view, it seems that the 
degree of complexity in constructing the Q operator 
depends on how much the model and target spaces arc 
close to each other. Therefore, it might be useful to 
establish some quantitative description of the proximity 
of the subspaccs involved. For a given M this proximity 
depends on the choice of determinants spanning MQ 

and the orbital sets used for their construction. Hence, 
if the structure of the determinants is fixed the distance 
is determined by the choice of orbital set, and it is pos- 
sible to define orbitals that correspond to maximum 
proximity of the M^ and M spaces. These orbitals 
represent a generalization of the BOs discussed above, 
and become identical with the BOs for one-dimensional 
model and target spaces. 
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In this paper we present methods useful for a quanti- 
tative characterization of the proximity of model and 
target spaces employed in MR formulations. Next, we 
employ these methods to define generalizations to the 
MR case of the BOs (or maximum overlap orbitals), i.e. 
orbitals corresponding to the maximum proximity of the 
pairs of subspaces considered. To get a preliminary 
insight into the usefulness of the methods proposed, 
calculations have been performed for the H4 model 
[29]. This model consists of four hydrogen atoms 
arranged in a trapezoidal way that is fully determined 
by a single parameter. If this parameter approaches zero 
the wavefunctions corresponding to the two lowest ener- 
gies reveal strong quasi-degeneracy (for details see [29]). 
The H4 model has been employed by several authors 
(for references see [30, 31]) for studying the performance 
of various SR and MR approaches. Since for this model 
one can specify arbitrary symmetry-adapted orbital sets 
by means of two parameters [32], the determination of 
the generalized BOs is a relatively simple task. 

2.   Distance between pairs of finite dimensional 
subspaces 

A general method for characterizing the distance of 
pairs of d-dimensional subspaces of the Hilbert space 
was proposed by one of the present authors [33]. It is 
based on the following generalization of the theorem of 
Krejn, Krasnoselski, and Milman [34]: 

Theorem: Let M and MQ be d-dimensional subspaces of 
the Hilbert space H. There exist orthonormal basis sets 
{^i},=i and {<PiYi=i m M an^ Mo, respectively, such 
that 

{A, <Pj) 

and 

MiSy 

ll/2 

(i,j= 1,2,...,d). (6) 

[l-e2(M,M0)}i/A<Mi<\    (i=l,2,...,d).    (7) 

The number 9(M,M0) = \\P - Poll is called the gap of 
the subspaces M and M0 associated with the projection 
operators P and P0, respectively. 

The M, values appearing in the theorem can be used 
to establish convenient means of precise description of a 
pair of subspaces of the Hilbert space. 

Let us also notice that the M, numbers are square 
roots of the eigenvalues of the following operators [33] 

Vl=PP0P=(PP0)(PP0)
+, 

V2 = P0PP0 = (P0P)(P0P)+ 

i.e. 

Vrfi Mfa and   V2<Pi = MJifi    (i = 1, 

(8) 

(9) 

,d) 

(10) 

Let us assume that M and Mo are spanned by arbitrary 
orthonormal basis sets {f,}f=1 and {#;}"=i> respectively. 
If M denotes the mixed-overlap matrix defined as 

(M)&. = (<TO> (11) 

then the matrix representations of Vx and V2 are: 

V! = M+M    and   V2 = MM+, (12) 

i.e. M\ can be obtained by diagonalizing the product of 
the mixed-overlap matrix and its Hermitian conjugate. 
Hence, to get the M, numbers it is sufficient to know the 
M matrix for arbitrary orthogonal basis sets. 

To provide further insight into the properties of the 
M; numbers and the eigenfunctions of V\ and V2, we 
mention the following inequalities [33]: first, if the M; 

numbers are arranged in non-increasing order, 
Mt > M,+1, then for every s, 1 < s < d, the following 
inequality holds: 

£>,> £|M„| (13) 
i=l i=\ 

Second, for the eigenfunctions of V{ and V2 and arbi- 
trary basis sets {f,}f=i and {#,}f=1 in M and M0, 
respectively one has the inequality: 

EiM-¥>.-n2<Eiiy'-*.-i (14) 
i=\ 

This inequality states that in the case when a com- 
parison of two subspaces is made by means of a least- 
squares-like study of the differences of their basis func- 
tions, a unique characterization can be obtained by 
utilizing the eigenfunctions of the Vx and V2 operators. 

The following examples of using the Mt numbers for 
defining quantities useful in the characterization of the 
proximity of the subspaces M and M0 have been given 
in [33]: 

(a) the whole set or suitably chosen subsets of the 
M; numbers; 

(b) the sum 

T = £M,, 
(c) the sum 

(d) the product 

i=\ 

D = 5>?; 
i=i 

I = \[M, 

(14a) 

(14b) 

(14c) 
i=l 

For getting close subspaces, one should maximize the 
appropriate proximity measure. Notice that for one- 
dimensional  subspaces,  d=\,  all quantities  (a)-(d), 
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lead to the same proximity criterium: 

Mi = (tf'iiy i) = maximum. (15) 

A convenient global proximity measure is given by 
(14 fr) which represents the trace of the product M+M 
or MM+, i.e. 

D = J2Mi = DM+M>« = £I<«TOI
2
 ('6) 

i=1 (=1 i,k 

According to equation (7) M\ < 1, hence 0 < D < d. 
The upper bound is reached in the case of identical 
subspaces. 

3.   Proximity of model and target spaces in multi- 
reference-state methods 

The methods of characterization of the distance 
between a pair of subspaces presented above can be 
conveniently applied within the framework of MR 
approaches. First, one may use proximity criteria to 
characterize a given model space from the point of 
view of its distance from the respective target space. 
Second, one may optimize the proximity of the model 
(.M0) and target (M) spaces by a proper choice of 
the orbital set. Notice that, according to (15) for one- 
dimensional model spaces, i.e. in the SR case, all 
maximum-proximity criteria arc equivalent to the 
maximum-overlap condition (2) which can be used for 
defining the BOs. Hence, in the MR case, the orbital of 
the set for which maximum proximity of M0 and M is 
attained can be considered as generalizations of the 
maximum-overlap orbitals or BOs. We shall refer to 
these orbitals as maximum proximity orbitals (MPO). 
Notice that the detailed form of the MPOs depends on 
the proximity criterium chosen. We denote by <^1po the 
determinants constructed from the MPOs. Then the set 
{$^p0}f=i defining M0 can be considered as a general- 
ization to the MR case of the Brueckner determinant <PB 

used in SR approaches. One might expect that the 
MPOs will play a similar role for MR-type theories as 
the BOs play for the SR ones. 

In the present work we define the proximity of M0 

and M using the index D defined by equation (14/)). 
Hence the MPOs are obtained from the requirement 

D = max. (17) 

According to equation (16) this condition is equivalent 
to maximizing the sum of squares of the magnitudes of 
the elements mixed-overlap matrix defined by the sets 
{*,}?=1 and {f ,•}?.,. 

In the SR approach for the determinant constructed 
from BOs condition (3) holds. Notice that this condition 
is equivalent to 

c£ = 0   for   0<a<N<r, (18) 

where cr
a stand for the coefficients of singly-excited (with 

respect to reference determinant tf>) configurations of the 
exact wavefunction f. Moreover, condition (18) holds 
for any normalization imposed on this function. 

Bearing in mind that the MPOs correspond to the 
BOs in SR theories, one might expect that in the case 
of maximum proximity of MQ and M in MR 
approaches, the role of singly-excited configurations 
(represented in terms of MPOs) will be minimized. The 
specific form of the conditions fulfilled by the coeffi- 
cients of singly excited configurations (with respect to 
the determinants spanning Mo) depends on the form of 
the proximity criteria. 

When formulating perturbation or CC methods of the 
SR-type it is convenient to impose on the exact wave- 
function the intermediate normalization condition 
(4>\Y) = 1, where V—the intermediate-normalization 
equivalent of Y -is obtained by the simple rcnormaliza- 
tion procedure *P = c^Y with c0 the coefficient of the 
reference configuration in the FCI expansion of Y. 
From equation (17) it is clear that for the BOs the rcnor- 
malizcd coefficients cr

a = cö^cr
a satisfy the equation 

cr
a = 0. It is well known from the cluster analysis of 

the Y function that the cr
a coefficients arc equal to the 

one-body cluster amplitudes [17]. 
In the MR case the intermediate normalization con- 

dition is generalized in the following way [26]: 

vW*> = 4i    (i,k = \,...,d). (19) 

The renormalizcd functions Yk arc obtained from their 
orthonormal counterparts Yt as 

^ElCo1],^/    (k=\,...,d) (20) 

where C0 is the matrix of coefficients cjt of the reference 
determinants in the Y{ functions, i.e. 

(21) 

where \t belongs to the orthogonal complement Mo of 
Mo- Notice that the renormalizcd wavefunctions take 
the form 

Yk = 4>k + \k    (* = !,...,</) (22) 

with \k e Mo, and can be represented as [26, 35] 

fl,.r, 

(23) 

where (<PLY''r* denotes the determinant obtained from 
V       h '«i ■■■0\ 

<Pk by the replacement of the spin orbitals «,,... ,as by 
the spin orbitals r,,...,rs. Let us mention that in MR 
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Table 1. Comparison of proximity indices for the (Mo,M) subspsaces corresponding to the 
(l'A^'A^-states and CI coefficients (cljcf) obtained for standard quantum-chemical orbitals and 
MPOs for the H4 model at a = 0.005. 

Orbitals Proximity indices (xlO6)' 

D             M,              M2 

CI coefficients 

System              Type Parameters" räi \ct\ 

H4++     HF 1.034 
0.973 

-40 -1 -20 0.0022 0.0065 

Brueckner 1.031 
0.975 

-21 -4 -17 0.0015 0.0059 

H4+       HF(la?2a,) 1.040 
0.964 

-134 1 -71 0.0036 0.0094 

HF(la?2b2) 
1.044 
0.863 

-167 3 -106 0.0047 0.0096 

H4         HF 1.038 
0.983 

0 0 0 0.0036 0.0030 

Brueckner 1.053 
0.973 

-118 12 -74 0.0074 0.0060 

Natural 1.051 
0.974 

-101 11 -64 0.0069 0.0057 

HF(la?2a?) 1.040 
0.968 

-96 4 -55 0.0037 0.0094 

MCSCF(1.0;0.0)C 1.088 
0.948 

-742 -30 -357 0.0160 0.0138 

MCSCF(0.6;0.4)C 1.045 
0.978 

-48 8 -33 0.0054 0.0045 

MCSCF(0.4;0.6)C 1.032 
0.987 

27 -9 23 0.0021 0.0018 

MCSCF(0.05;0.95)C 1.016 
0.998 

25 -49 63 0.0020 0.0014 

Kohn-Shamrf 1.070 
0.977 

-239 2 -127 0.0121 0.0043 

Maximum proximity6 1.024 
0.993 

38 -26 47 0.0001 0.0001 

" See equation (27). For each orbital xa is listed above xb. 
b Relative to the indices for the HF orbitals: D = 1.867 522, M, = 0.974914, M2 = 0.957 635. 
c The weights given in parenthesis are defined in equation (29). 
d Orbitals for the BLYP potential. 
e Defined by condition (17). 

approaches the intermediately normalized wavefunc- 
tions (22) are the basis for the cluster analysis of the 
set of exact wavefunctions [26, 35], e.g. the cr

a(k) coeffi- 
cients are equal to one-body cluster amplitudes. For this 
reason, the renormalized form seems to be the most 
natural one also for MR perturbational approaches to 
the wavefunctions. Therefore, when studying the signifi- 
cance of the singly-excited configurations in the FCI 
form of the exact wavefunctions our attention will be 
focused on the renormalized coefficients cr

a{k). 
Concluding this section, we observe that when using 

equations (16) and (21), condition (17) defining the 
MPOs can be re-expressed as 

Ei "ß\ = max. (24) 

4.    Results of pilot applications 
4.1. Model 

We shall present results of numerical studies for the 
H4 model [29] in which the trapezoidal arrangement of 
the four hydrogen atoms is fully specified by a single 
parameter a defining the angle <j> = air if the nuclear 
separation between the nearest neighboring atoms is 
fixed (in our case at 2au). Varying continuously the 
parameter a from 0 to 0.5, we proceed from a very 
strongly quasi-degenerate regime to an almost non- 
degenerate situation. Although the model system con- 
sidered is relatively small, it is known to epitomize many 
of the essential difficulties encountered in quantum-che- 
mical computations. The four MOs of the H4 MBS 
model are labelled according to their C2v symmetry spe- 
cies. One has two orbitals of a^ symmetry species, which 
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Table 2.   Comparison of proximity indices for the (M0,M) subspaccs and CI coefficients obtained for standard quantum-chemical 
orbitals and MPOs for the H4 model at o = 0.5. 

(1'A, ,2'A,) stal :es (I'A, .3' A,) si latcs 

Proximity indices'1 C\d Proximity ind iccsr CIrf 

Orbitals (xlO4) coefficients (xlO4) coefficients 

System Type              Parameters" D A/, M, l?'ll?2l D M, M2 I'll I'll 

H4++ HF 3.354 
0.786 

-406 0 -348 0.3046 
0.0561 

191 12 132 0.0165 
0.0473 

Brueckner 2.914 
0.803 

-320 2 -275 0.2777 
0.0527 

192 19 122 0.0393 
0.0444 

H4+ HF(la?2a,) 
3.737 
0.479 

-539 37 -526 0.3178 
0.1549 

-115 -136 120 0.0083 
0.1442 

HF(la?2b2) 2.220 
0.842 

-155 3 -135 0.2195 
0.0449 

152 21 98 0.0897 
0.0378 

H4 HF 
1.626 
0.823 

0 0 0 
0.1426 
0.0541 

0 0 0 
0.1598 
0.0484 

Brueckner 1.683 
0.793 

-18 3 -20 
0.1510 
0.0620 

15 3 8 
0.1522 
0.0560 

Natural 
1.682 
0.793 

-18 3 -20 
0.1509 
0.0620 

15 3 8 0.1523 
0.0560 

HF(la?2a?) 3.737 
0.437 

-574 29 -548 0.3168 
0.1709 

-190 -172 116 0.0095 
0.1599 

MCSCF(1.0;0.0)'' 1.897 
0.727 

-84 12 -90 0.1801 
0.0796 

54 4 37 
0.1260 
0.0728 

MCSCF(0.6;0.4)' 
1.700 
0.794 

-33 5 -35 0.1537 
0.0616 

6 0 4 
0.1498 
0.0552 

MCSCF(0.4;0.6)' 
1.535 
0.862 

24 -6 30 
0.1281 
0.0442 

-35 -8 -16 0.1731 
0.0390 

MCSCF(0.05;0.95)' 
0.820 
1.407 

-118 7 211 
0.0436 
0.0669 

-973 -300     - -321 0.3403 
0.0661 

Kohn -Shamr 2.006 
0.699 

-118 15 -124 0.1932 
0.0874 

62 1 48 0.1144 
0.0801 

Maximum proximity9 1.167 
0.965 

76 -45 135 0.0542 
0.0216 

223 25 138 0.0081 
0.0032 

: 0.6024. 
: 0.6248. 

"Sec equation (27). For each orbital xa is listed above xh. 
* Relative to the indices for the HF orbitals: D = 1.3351, Af, = 0.9860. M2 
"Relative to the indices for the HF orbitals: D = 1.3630, Af, = 0.9862. M2 
dCoefficients \c]\ are listed above |?4|. 
""The weights given in parenthesis re defined in equation (29). 
f Orbitals for the BLYP potential. 
"Defined by the condition (17). Parameters for the (1'A,,3'A,) states: xa = 3.462.x,, = 0.953. 

can be written in terms of Gaussian functions \k, 
centred at atom k as 

tf=c?(x.+X4) + tf(X2 + X3)    (i=l, 2)        (25) 

and two orbitals of b2 symmetry species 

V^cKxi-xJ + JiiXi-X))    (I-=1,2).       (26) 

We assume that i = 1 for the orbital corresponding 
to the lower expectation value of the one-electron 
Hamiltonian. Since we are concerned with the three 
lowest 'Ai states, the nodeless tp\ orbital is included in 
all model-space determinants. The normalization and 

orthogonality conditions mean that for each symmetry 
species all four coefficients in equations (25) and (26) can 
be expressed in terms of a single parameter. For the 
reference functions employed in this work it is con- 
venient to use the parameters 

xa = <*i/f|    and    xh «I/O (27) 

for the ai and b2 symmetry species, respectively. Varying 
these parameters in the range (0, oo) allows one to define 
a vast variety of orbital sets for the H4 model. It is 
convenient to represent every orbital set as a point on 
the (xa,X(,)-plane. 
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Table 3.   Proximity indices D and M, for the (M0,M) subspaces and renormalized CI coefficients {c\,c\) obtained for the MPOs 
and HF orbitals for various geometries of the H4 model. 

(l'A^'A,) states (l'Aj^'AO states 

Orbital        Orbital 
type       parameters0 D M \~J\ \c\f 

Orbital 
parameters D M, tfl \ci\' 

0.005 

0.010 

0.050 

0.100 

0.200 

0.500 

MPO 

HF 

MPO 

HF 

MPO 

HF 

MPO 

HF 

MPO 

HF 

MPO 

HF 

1.024 
0.993 
1.038 
0.983 
1.047 
0.986 
1.071 
0.968 
1.185 
0.953 
1.322 
0.874 
1.251 
0.949 
1.506 
0.835 
1.228 
0.969 
1.637 
0.804 
1.167 
0.965 
1.626 
0.823 

1.86756 

1.86752 

1.86406 

1.86394 

1.82225 

1.81982 

1.71685 

1.71164 

1.47979 

1.47157 

1.34270 

1.33505 

0.97489 

0.97491 

0.97450 

0.97459 

0.97379 

0.97515 

0.97560 

0.97828 

0.97869 

0.98285 

0.98151 

0.98596 

0.0001 
0.0001 
0.0036 
0.0030 
0.0002 
0.0002 
0.0061 
0.0058 
0.0020 
0.0016 
0.0300 
0.0264 
0.0073 
0.0054 
0.0536 
0.0396 
0.0275 
0.0164 
0.0993 
0.0618 
0.0542 
0.0216 
0.1426 
0.0541 

4.26510'' 
0.340 
1.038 
0.983 
2.948105 

0.351 
1.071 
0.968 

60.74 
0.400 
1.322 
0.874 

12.28 
0.496 
1.506 
0.835 
5.177 
0.775 
1.637 
0.804 
3.462 
0.953 
1.626 
0.823 

1.12275 0.98063 

0.95089 0.97490 

1.10636 0.98091 

0.95150 0.97454 

1.08133 0.98764 

0.99041 0.97540 

1.15902 0.99086 

1.09749 0.97901 

1.30807 0.98898 

1.27640 0.98329 

1.38532 0.98869 

1.36302 0.98620 

0.4983 
0.1453 

19.11 
9.390 
0.4888 
0.1530 
8.8828 
1.8639 
0.2346 
0.0886 
1.0012 
0.4872 
0.0437 
0.0136 
0.3741 
0.1488 
0.0024 
0.0002 
0.2050 
0.0050 
0.0081 
0.0032 
0.1598 
0.0484 

aSee equation (27). For each orbital xa is listed above xb. 
b\c]\ is listed above \c\\. 

In this work we define the model space M0 as 
spanned by two determinants: 

$! I    a—a    b—b \ 
and   <P2 = \va\Va\V2<pa

2\ (28) 

The MPOs for Mo spanned by the determinants (28) 
consisting of orbitals defined by the xa and xb values can 
be easily obtained. Notice that for these orbitals the 
FCI coefficients are also functions of xa and xb, i.e. 
Cji = Cß(xa,xb), and by value of (24) the condition 
defining the MPOs can be written as D(xa,xb) = max. 
The maximum of D(xa, xb) with respect to xa and xb has 
been found numerically using the downhill simplex 
method included in Numerical Recipes [36]. 

4.2. Proximity of Mo and M for standard orbital sets 
To get an idea about the proximity of the model and 

target spaces .Mo and M in calculations based on 
various orbitals, we have calculated the proximity 
parameters for several orbital sets employed so far in 
quantum-chemical calculations. A common feature of 
these orbitals is that they have been obtained as a 

result of some optimization procedure. We consider 
the HF orbitals for the 1 af 1 b| and la?2a? configura- 
tions, the 'exact' BOs obtained for the FCI function, 
the natural orbitals (NO) and the Kohn-Sham orbitals 
[37]. The BO, NO, and Kohn-Sham orbitals have been 
generated for the ground state by means of the 
GAUSSIAN 92 system of programs [38]. Moreover, 
we consider the MCSCF(w1,w2) orbitals which mini- 
mize the weighted sum 

E = W[£i + w2E2 (29) 

of eigenvalues Ex and E2 (in increasing energy order) of 
the Hamiltonian matrix corresponding to the configura- 
tions 1 a11 b2 and lai2a? defining the multiconfigura- 
tional state. Notice that the MCSCF(1.0;0.0) orbitals 
are just the standard MCSCF orbitals for the ground 
state. The MCSCF orbitals for (wl,w2) equal to 
(0.6; 0.4) and (0.4; 0.6) might be expected to provide a 
balanced description of both members of the pair of 
states considered. All MCSCF orbitals have been 
obtained by means of the GAMESS electronic structure 
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Table 4. Comparison of the proximity parameters, D, and differences of the VU-CCSDT" and FCI energies. 
<5£, and <5E-,, for the l'A, and 31 Aj states, respectively, calculated for the H4 model when using MPO 
and HF orbital sets. 

MPO HF 

xa,xh D 6E 6E} Xa.X), D 6E 6E> 

0.2 

0.3 

0.5 

5.177 
0.775 
3.977 
0.915 
3.462 
0.953 

1.308 -4.641 15.60 

1.345 -2.090 12.79 

1.385 -1.266 13.53 

1.637 
0.804 
1.642 
0.812 
1.626 
0.823 

1.276 -8.256 53.09 

1.320 -3.042 33.50 

1.363 -1.867 29.28 

" For details sec [40]. 
h Orbital parameters xa are listed above xh. 

Table 5. Comparison of the proximity parameters, D, and differences of the SU-CCSD" and FCI energies. «■SE, 
and SE2, for the l'A, and 2'A, states, respectively, calculated for the H4 model when using MPO and HF 
orbital sets. 

MPO HF 

x„,xh D 6E,,6ES S? X„. X/, D 6E,,fiES S? 

0.005 

0.01 

0.05 

0.1 

0.2 

0.5 

1.024 
0.993 
1.047 
0.986 
1.185 
0.953 
1.251 
0.949 
1.228 
0.969 
1.167 
0.965 

1.867 56 

1.86406 

1.822 

1.717 

1.480 

1.343 

0.035 
0.005 
0.022 
0.008 
0.008 

-0.017 
-0.110 
-0.678 
-0.845 
-3.824 
-1.656 
-6.073 

2 x 10"4 

3 x 10"4 

0.002 

0.007 

0.027 

0.052 

1.038 
0.983 
1.071 
0.968 
1.322 
0.875 
1.506 
0.835 
1.637 
0.804 
1.626 
0.823 

1.867 52 

1.863 94 

1.820 

1.712 

1.472 

1.335 

0.035 
0.007 
0.020 
0.021 

-0.045 
0.051 

-0.218 
-0.685 
-1.101 
-4.440 
-2.015 
-7.093 

0.004 

0.006 

0.030 

0.054 

0.100 

0.141 

"For details sec [41]. 
''Orbital parameters xa arc listed above xh. 
c Energy differences <5E, are listed above 6E2 

package [39]. In addition to the orbitals for H4, wc have 
considered several orbitals defined for the H4+-t and 
H4+ systems. The latter are in VU-typc approaches 
the predecessors of the former system in the valence 
universal hierarchy [26]. 

The proximity indices obtained when using various 
standard orbital sets for denning M0 are compared 
with the indices obtained for the MPOs defined by equa- 
tion (17). We have also calculated the renormalized 
coefficient cr

a(k) of the singly excited configurations in 
the FCI wavefunctions. Let us notice that for the 'A] 
states of our model there do not exist singly-excited 
determinants with respect the determinant <P2 defined 

in (28). Therefore, we may omit the index of the refer- 
ence determinant in the coefficient and write cr

a instead 

ofr^l). 
The orbitals discussed arc obtained for two geome- 

tries of our model system defined by the following 
values of o: (a) o = 0.005 corresponding to the strong 
quasi-dcgcncracy region, (b) o = 0.5 corresponding to 
the weak quasi-degeneracy case. 

The results of our calculations arc collected in tables 1 
and 2. In the former table one can sec that in the strong 
quasi-degeneracy region from among the standard orbi- 
tals the MCSCF(0.05;0.95) ones entail the largest proxi- 
mity of the M0 and M spaces. By far the smallest 
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proximity is attained for the MCSFC(1.0;0.0) orbitals. 
This situation is certainly related to the small value of 
M2, which seems to be a consequence of the fact that for 
strong quasi-degeneracy the MCSCF(1.0;0.0) overesti- 
mates the role of the $2 configuration, with respect to 
the $1 one, in the description of the ground state. Notice 
that in the strong quasi-degeneracy region the 
Brueckner and natural orbitals generate MQ spaces of 
smaller overlap with M than the HF orbitals. Perusing 
the magnitudes of the CI coefficients one can see that 
they decrease with increasing proximity index D. These 
coefficients are extremely small for the MPOs. 

In table 2 we compare the proximity indices and cr
a 

values obtained for the case of weak quasi-degeneracy. 
We consider the pairs of subspaces corresponding to the 
pairs of states (l'Aj, 2'AJ) and (l'Aj, 3'AJ). Notice 
that for these states the D values are rather close and 
are significantly smaller from their counterparts for the 
(l'Ai, 2'Ai) pair corresponding to a = 0.005. This fact 
indicates that the MR description of the two former 
pairs of states based on the orbital sets considered is 
more difficult than for the latter one, which is in fact 
the case (see e.g. [30-32]). On the other hand, for 
a = 0.5 one would expect that the MR description of 
both pairs will be of comparable quality, which has also 
been demonstrated (see e.g. [30-32]). One can see in the 
table that for the (l'Aj, 2'A[) pair maximum proximity 
for standard orbitals is attained for the HF orbitals, 
whereas in the case of the (l1 Al5 3'A]) pair for the 
HF orbitals of H4++ and H4+ and the BOs of H4++. 
For the latter pair the D index is especially small for the 
MCSCF(0.05;0.95) orbitals, which is a consequence of 
the fact that, according to equation (29), these orbitals 
are determined from the requirement that the second 
energy be minimum, which results in a relatively better 
description of the 2!A[ state than the 3'Aj one. Com- 
paring the magnitudes of the cr

a coefficients one can see 
again that for all but one orbital sets their magnitudes 
decrease with increasing proximity of the M0 and M 
spaces, and that the minimum participation of the singly 
excited determinants in the FCI function takes place for 
the MPOs. 

To shed more light on the effectiveness of the MPOs 
in reducing the significance of singly-excited configura- 
tions in MR-type representations of the wavefunctions, 
we compare in table 3 the proximity indices and cr

a 

coefficients obtained for the MPOs determined for the 
pairs of states (l'Aj, 2'A]) and (l'A^ 3'A^ with those 
obtained for HF orbitals. Let us recall that the cr

a coeffi- 
cients correspond to one-body amplitudes in MR-CC 
methods. The results correspond to states of various 
degrees of quasi-degeneracy. For completeness, we 
have included in the table the results for the (l1 At, 
3!A]) pair obtained in the strong quasi-degeneracy 

regime {a = 0.005,0.050) where the determinants (28) 
are inadequate for the description of this pair of 
states. It is apparent from the table that the magnitudes 
of the CI coefficients obtained for the MPOs are in all 
cases considerably smaller than for the HF orbitals. The 
reduction of these magnitudes is especially pronounced 
in the strong, quasi-degeneracy regime. When pro- 
ceeding to the region of intermediate and weak quasi- 
degeneracy this reduction is less pronounced. One can 
also see from the table that in this region the reduction 
of the CI coefficients is much larger for the (l'A^ 3]A]) 
pair than for the (l'A^ 2^!) one. Comparison of the 
M\ values obtained for the MPOs and HF orbitals 
reveals that for the latter pair, proceeding from the 
HF orbitals to MPOs results in an increase of M\, 
whereas for the former pair one can find the opposite 
situation. At present, we cannot give any convincing 
rationalization of this behaviour. 

The results just discussed provide an indirect way of 
assessing the impact of using MPOs on the formal struc- 
ture of the MR-CC description. Let us now present two 
examples of direct applications of MPOs in MR-CC 
approaches. 

In table 4 we present the energies of the l'Aj and 
3'Ai states obtained when using the VU-CCSDT 
[26, 31] method based on the MPOs and HF orbital 
sets for such geometries of H4 for which the determi- 
nants (28) provide a reasonable model space. The MPOs 
are determined from the requirement of maximum 
proximity of the model and target spaces at the two- 
valence-electron level (for details see [40]). We note 
from the results of the table that when employing 
MPOs in the calculation instead of HF orbitals the mag- 
nitudes of the differences between VU-CCSDT and FCI 
energies, which represent the exact results, decrease. The 
improvement of the energies is especially pronounced 
for the 3'Aj state. Notice that the (xa,xb) parameters 
of the MPOs are significantly different from those of the 
corresponding HF orbitals and the other standard orbi- 
tals listed in table 1. 

The second example concerns the direct applications 
of MPOs in calculations based on SU-CCSD methods. 
In table 5 we show the differences of the SU-CCSD and 
FCI energy for the l'Aj and 2'A] states obtained in an 
extensive study of the impact of the choice of orbital sets 
on the performance of SU-CC methods [41]. Orbital 
parameters and D values are also included. For compar- 
ison, we present the results for HF orbitals. One sees 
from the table that the energy differences 8EX and 6E2 

are considerably smaller for the MPOs than for the HF 
orbitals. The difference is larger for the weakly quasi- 
degenerate states (e.g. a = 0.5), where the differences of 
the values of the overlap index D are larger. The only 
exception can be found for a = 0.005 and 0.01 where 
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6E\ is slightly smaller for the HF orbitals than for the 
MPO ones, whereas the opposite is true for SE2. Notice, 
however, that for these »-values the D indices for the 
two orbital sets considered are very close indeed. 

As may be seen in table 5 the S"J amplitudes obtained 
for the MPOs are significantly smaller than for the HF 
orbitals, e.g. in the intermediate and weak quasi-degen- 
eracy regions these amplitudes differ by one order of 
magnitude. It is also interesting to note that the magni- 
tudes of the Si amplitudes obtained in the SU-CCSD 
calculation are very close to those of the c] coefficients 
of the FCI wavefunctions given in table 3. Since these 
coefficients are equal to the exact Si amplitudes, one can 
see that the approximations involved in the SU-CCSD 
approach have little effect on the one-body CC ampli- 
tudes considered. 

5.    Concluding remarks 
In this work we make an attempt to generalize the 

maximum overlap orbitals or BOs, which are defined 
in the SR-state formulations of the many-electron 
theory, to the case of MR-state approaches that are 
concerned with several states at once. The subspace M 
spanned by the exact wavefunctions of these states is 
referred to as target space, whereas the subspace 
spanned by the indepcndent-particle-model (i.e. determi- 
nantal) approximations to these wavefunctions is termed 
model space Mo- It seems to us that a natural general- 
ization of the BOs to the MR case is obtained by con- 
sidering the orbitals that yield the maximum proximity 
of M and M0. These orbitals are referred to as max- 
imum-proximity orbitals (MPOs). We have shortly 
reviewed the general problem of defining the distance 
between pairs of finite dimensional subspaccs of the 
Hubert space. Employing one of the possible proximity 
parameters, we have defined the set of MPOs. In an 
attempt to better understand the impact of the distance 
of the model and target space in MR-typc approaches, 
model studies have been undertaken for the MBS H4 
system [29]. This model offers the unique possibility of 
defining arbitrary symmetry-adapted orbitals in terms of 
two parameters xa and xh, which greatly alleviates the 
generation of MPOs. 

It has been found that the differences of the proximity 
indices for Mo and M obtained for various standard 
quantum-chemical orbitals increase considerably when 
proceeding from the strong, quasi-degeneracy region to 
the intermediate, or weak, quasi-degencracy ones. We 
have also calculated the renormalizcd coefficients cr

a of 
singly excited configurations in the FCI expansion of the 
wavefunctions considered. These coefficients are equal 
to one-body cluster amplitudes in full MR-CC theories. 
They also provide a characterization of the importance 
of singly-excited determinants for the description of the 

set of wavefunctions considered. Let us recall that in the 
SR case the use of BOs eliminated these determinants 
from the FCI expansion. The results of our calculations 
employing standard orbitals indicate that in almost all 
cases considered the magnitudes of cr

a decrease with 
increasing proximity. Exceptions arc found for weakly 
quasi-degenerate states associated with relatively small 
differences of proximity indices. For all cases consid- 
ered, it is found that for the MPOs the cr

a indices arc 
considerably smaller than for the standard quantum- 
chemical orbitals, which indicates that the MPOs in 
fact minimize the impact of singly-excited determinants 
on the structure of the wavefunctions considered. 
Hence, the MPOs play in the MR-casc a similar role 
as do the BOs in the SR approaches. 

To directly study the impact of using the MPOs on the 
results of MR-CC methods, we have performed calcula- 
tion based on the VU-CCSDT [26, 40] and SU-CCSD 
[28, 30] approaches. It has been found that in both cases 
the MPOs yield more accurate results than the HF orbi- 
tals. This is especially true outside the strong-quasi- 
degencracy regime. Therefore, one might expect that 
by employing orbital sets similar to the MPOs it is pos- 
sible to extend the range of state quasi-dcgcncracics for 
which individual MR-CC methods give highly accurate 
results. 

In this work we have employed one of many possible 
criteria of proximity of the Mo and M spaces. The 
problem of finding proximity criteria better suited for 
the characterization of the subspaccs encountered in 
many-electron theories is still an open one. 

The results of this work seem to indicate that MPOs 
may play in MR-typc approaches a similar role as do the 
BOs in the SR case. The MPOs can be used to set up 
standards for comparison of different methods, espe- 
cially for the results dependent on the singly excited 
configurations. They also proved to be well suited for 
defining basis sets for MR-CC approaches applicable to 
states whose quasi-dcgcncracy is expected to vary in a 
relatively wide range. 

The authors would like to thank the referee for pro- 
viding them with [19(b)(c)] and Dr Leszek Mcissncr for 
providing them with his SU-CCSD program. 
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Unitary group based open-shell coupled cluster method with 
corrections for connected triexcited clusters. 

II. Applications 
By XIANGZHU LI and JOSEF PALDUSf 

Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, 
Canada N2L 3G1 

The performance of several non-iterative, perturbative accounts of triply excited connected 
clusters in the unitary group based coupled cluster method with singles and doubles spanning 
the first order interacting space (UGA-CCSD(is)) is examined for a number of open shell 
systems. These approaches can account for genuine triples or only for the so-called pseudo- 
doubles. The latter case (CCSD{f}) represents an approximation to UGA-CCSD employing 
the full single and double excitation manifold (CCSD(f)), while the remaining approaches 
account for genuine triple excitations as well, and differ in the way in which they include 
singly excited clusters (CCSD{T}, CCSD[T] and CCSD(T) methods; see Li X. and Paldus J., 
1998, Int. J. quantum Chem., in the press). We explore the range of applicability of these 
approaches by considering both the equilibrium and stretched geometries for the systems 
involving one [OH], two [NH2] or three [CH3] single bonds, or one multiple bond [CN]. A 
sensitive test is provided by examining harmonic vibrational frequencies in both the ground 

1.   Introduction 
The coupled cluster (CC) methods exploiting the unit- 

ary group approach (UGA) [l^t] are attractive techni- 
ques for studying open-shell (OS) systems. The singles 
and doubles (SD) approximation, even at the minimum 
interacting space (is) level, already provides useful and 
reliable results in various applications [5-7]. Higher 
order theories can be developed by accounting for 
higher order clusters, such as triples, in either iterative 
or non-iterative ways. In a preceding paper [8] (Part I), 
we outlined a non-iterative, perturbative account of 
triply excited connected clusters. This formalism enables 
us to estimate the contribution of pseudo-doubles (i.e. 
three body double excitations) and of genuine triples 
(three body triple excitations) to the total CCSD(is) 
energies as perturbative effects. 

The first problem to explore is to examine how this 
approach accounts for pseudo-doubles (pDs), which are 
explicitly considered in our UGA-CCSD(f) method that 
employs the full SD space. We recall that pDs do not 
contribute directly to the energy, but only indirectly via 
their interaction with standard singles and doubles. 
Thus, instead of solving iteratively for pDs together 
with standard SDs when computing CCSD(f) energies, 

tAlso at: Department of Chemistry and (GWC)2— 
Waterloo Campus, University of Waterloo, Waterloo, 
Ontario, Canada N2L3G1; presently at: Max-Planck-Institut 
für Astrophysik, Karl-Schwarzschild-Str. 1, 85740 Garching 
bei München, Germany. 

we first restrict the CCSD problem to the first order 
interacting space SDs, obtaining the CCSD(is) energy, 
which we subsequently correct for pDs using the pertur- 
bative type approach outlined in Part I [8] and referred 
to as CCSD{f}. We recall that although both CCSD(f) 
and CCSD(is) methods scale in the same way with the 
size of the basis set, since both Ds and pDs involve four 
inactive or external orbital labels, the latter method is 
several times more efficient since it uses a considerably 
smaller excited state manifold. Since the perturbative 
estimate of the pD energy contribution is non-iterative, 
the CCSD{f} approach requires the same effort as a 
single CCSD(f) iteration. It is thus worthwhile to com- 
pare the performance of the iterative CCSD(f) and non- 
iterative CCSD{f} methods. 

The importance of connected triples for achieving 
highly reliable and quantitative results is nowadays gen- 
erally recognized [9]. Nonetheless, the computational 
effort required by fully iterative CCSDT method pro- 
hibits its wider applications. Viable schemes accounting 
for connected triples in a non-iterative way and using 
converged CCSD amplitudes rely on perturbative 
approaches. 

The most often used schemes in the spin-orbital or 
closed shell cases are the so-called CCSD(T) [10] and 
CCSD + T(CCSD) or CCSD[T] [11] methods, which 
generally provide excellent results in the vicinity of equi- 
librium geometries. For example, a series of benchmark 
calculations on spectroscopic constants by Dunning and 

0026-8976/98 $1200 © 1998 Taylor & Francis Ltd. 
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co-workers found that 'CCSD(T) performed very nearly 
as well as (internally contracted multirefcrcnce config- 
uration interaction) CMRCI at a much reduced compu- 
tational expense' [12]. Unfortunately, all perturbativc 
approaches eventually break down away from the equi- 
librium (cf. e.g. figure 4 of [13]). 

In Part I of this series [8] we have formulated three 
versions of a triple correction scheme for UGA based 
CC approaches, differing in the account of the single 
triple interactions. These schemes are very similar to 
those proposed for the spin orbital based CC methods 
[10,11], except that they employ spin-adapted UGA 
formalism. We also note that although we employ a 
different set of triple excitation operators (see Part I) 
than the one given in [4], both sets arc mutually equiva- 
lent. 

The account of triples via a non-iterative perturbativc 
scheme is computationally affordable, but has its limita- 
tions. Of course, the first assumption for its use is that 
the CCSD method itself converges. In fact, the rate of 
convergence of the CCSD procedure is indicative of the 
quality of the perturbativc estimate of triples: when 
CCSD performs well and provides highly accurate ener- 
gies, the triple corrections arc small and their pcrturba- 
tive estimate reliable. In the case of a poor performance 
of CCSD, the triple (and most likely higher) corrections 
are significant, and their perturbativc treatment may not 
be satisfactory. This is invariably the case far away from 
the equilibrium geometries. With these restrictions in 
mind, we will explore the performance of three types 
of triple corrections by computing potential energy sur- 
faces (PESs) and harmonic vibrational frequencies in 
representative systems. 

In examining the effectiveness of perturbativc pseudo- 
double and triple corrections, we thus first consider var- 
ious bond breaking situations for simple OS doublet 
states, representing the ground or excited states of sev- 
eral radicals. To complement our earlier UGA-CCSD 
results [6], we examine the following radicals in order 
to model various bond breaking situations: OH, model- 
ling the breaking of a single bond, NH2 and CH3 for the 
simultaneous breaking of two and three single bonds, 
respectively, and CN to study the stretching of a mul- 
tiple bond. For these systems we have already explored 
[6] the performance of the interacting and full CCSD 
methods relative to the exact full CI (FCI) or highly 
accurate large scale limited CI benchmarks. In this 
study, we provide even larger limited CI benchmarks 
in cases where FCI is not available. 

As a very sensitive test of the correct shape of the PES 
in the vicinity of the equilibrium geometry we also com- 
pute harmonic vibrational frequencies. In this case only 
small changes in the geometry and the total energy arc 
involved, so that we can expect a good performance of 

our perturbativc estimates. For example, when choosing 
as a step size in the bond distance the value of 0.005 A, 
the corresponding energy changes arc of the order of 

-6, 10 au. Thus, a microhartrcc (10 hartrcc) error in 
the total energy could lead to a larger than lOcirT1 

error in computed frequencies. In an earlier paper [7], 
wc have carried out a systematic study of vibrational 
frequencies and equilibrium geometries in both ground 
and excited states of the first row diatomics using the 
UGA-CCSD method and 6-31G(d) basis sets. This 
study comprised 48 distinct electronic states (most of 
them open shells) of 9 diatomic hydrides and 18 di- 
atomics. including both neutral and charged species, 
and employed different kinds of MOs. In all instances 
we found a very satisfactory agreement with the avail- 
able experimental data, independently of whether the 
ground or excited states, high or low spin states, or 
the so-called 'well-behaved' or 'difficult' cases were 
involved. In this paper, wc consider two isoclcctronic 
systems, namely N2 and C2. In our earlier study wc 
found the largest difference between the computed and 
experimental u)c values for the B~EU* state of N2. More- 
over, the computation of vibrational frequencies for 
these multiply bonded systems provides us with a very 
sensitive test of the importance of pseudo-double and 
triple clusters. 

Following a brief overview of the corrections for the 
connected triply excited clusters for the UGA based 
CCSD methods in section 2. wc present and discuss 
the results of our calculations for the PESs of OH, 
NHi, CH, and CN in section 3, and of the vibrational 
frequencies of N2 and C2 in section 4. The final section 5 
draws appropriate conclusions. 

2.    Method and computational details 
To account pcrturbativcly for pDs and triples in our 

UGA CCSD(is) approach, wc employ the formalism 
outlined in Part I of this series [8]. Here we only recall 
that the required non-iterative corrections AE to the 
CCSD(is) energies have always the following general 
form 

AE(*) = -    E      E      E    AKtitjHIKHJK, 
A-'cfi^(A') lei)i(X) JcQj(X) 

(1) 

where t, designates CCSD(is) amplitudes, HIK = 
{0>i\H\$k) the corresponding CI matrix elements and 
Af1 the denominators given by the differences of the 
diagonal Fock matrix elements corresponding to the 
particle and hole states defining the configuration |tf>;). 
Thus, when \<P,) = WtfZ), then A, = (F\'> - F''\) + 
(F',',l - FJJ;) + • • •. The summation ranges QL{X) then 
extend over appropriate configuration state functions, 
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Table 1. Summation ranges QL(X) appearing in equation (1) 
for the non-iterative pseudo-double (pD) and triple (T) 
cluster corrections leading to the UGA-CCSDX methods. 

Method aK(x) 0,(X) Qj(X) 

CCSD{f} (0 pD SD(is)a SD(is) 
CCSD{T} {T} T SD(is) SD(is) 
CCSD(T) (T) T SD(is) D(is) 
CCSD[T] [T] T D(is)6 D(is) 

" SD(is): the first order interacting space singles and doubles. 
D(is): the first order interacting space doubles. 

depending on the approximation designated by X. 
When accounting perturbatively for pD states 
(X = {/}), we obtain CCSD{f} energies, while the 
three approximations that we use to account for triples 
(and, automatically, for pDs) are designated as 
CCSD{T}, CCSD(T) and CCSD[T], with X= {T}, 
(T) and [T], respectively. The corresponding summation 
ranges for each case are summarized in table 1. 

The required codes generating CI matrix elements Hu 

are based on our sequence of programs for an auto- 
mated implementation of various UGA-CCSD 
methods, as described in [3]. We also use the 
GAMESS [14] package to carry out SCF and various 
limited CI or FCI computations for the sake of compar- 
ison, namely CISD(is) (CI interacting space singles and 
doubles), CISD+ (the superscript ' +' indicates that the 
wave function contains an unspecified number of higher 
than SD excited configurations, since UGA-CI cannot 
be efficiently truncated by the excitation order [14]), as 
well as CISDT+, CISDTQ+, etc. 

For the 2II state of OH, the % and 2B, states of 
NH2, the 2A2 state of CH3, and the 2E+ and 2II states 
of CN, we employ the same basis sets as in our earlier 
study [6], namely a double-zeta (DZ) and a double-zeta 
plus polarization (DZP) bases. We refer to [6] for further 
details. 

For the 2n state of the OH radical we use the equili- 
brium bond length Re = 1.832 bohr. Calculations are 
performed for R = Re, as well as for the three stretched 
geometries with the O-H internuclear separation 
R = l.25Re, R = l.5Re and R = 2i?e. In the case of the 
A{ and 2B[ states of NH2, we again consider equili- 

brium geometry, as well as distorted geometries with 
both N-H bonds stretched to 1.5i?e and 2Rt, while the 
bond angle ZHNH is kept unchanged. We also investi- 
gate a special geometry with the H-H bond distance 
equal to the H2 equilibrium value and the N-H distance 
about twice the Re value for NH2. This geometry, 
denoted as N- • H-H [15], models the dissociation of 
NH2 into N and H2. The Cartesian coordinates defining 
these geometries may be found in [15]. The geometry of 

CH3 is assumed to have always the D3h symmetry [16] 
with Re = 2.06 bohr, although only the C2v subgroup is 
exploited in actual CC and CI calculations. Computa- 
tions are also performed for geometries in which all 
three C-H bonds are simultaneously stretched to l.5Re 

and 2Re. Finally, to examine the breaking of multiple 
bonds, we consider the 2E+ and 2n states of CN, with 
experimental equilibrium bond lengths 1.1718 A and 
1.2333 A [17], respectively. We perform calculations 
for both the Re and 1.5i?e geometries. 

For non-degenerate electronic states, we employ the 
ROHF orbitals in the same way as in [6]. A slightly 
different approach is used in the case of degenerate II 
states (OH or CN). Due to the current implementation 
of perturbative corrections for triples, in which a simple 
Fock matrix for half-closed shell state is used, n orbital 
degeneracy is not enforced at the self-consistent field 
(SCF) level. Consequently, the resulting SCF w orbitals 
are non-degenerate, yielding lower SCF and correlated 
energies, and leading to a symmetry breaking at the SCF 
orbital level: we obtain b{ and b2 orbitals instead of irx 

and iTy orbitals. This causes no problem at the correlated 
level, since the degeneracy of the total electronic state 
can be retained if different orbitals are used for different 
components of the degenerate state. For example, for 
the 2II state of CN, the SCF orbitals optimized for the 
configuration [(core) lb2 lb2], instead of [(core) l7r2 l7rj,], 
have lower lbj orbital energy. However, if we use SCF 
orbitals optimized for the configuration [(core) lb2 lb2] 
for the 2B2 state, and SCF orbitals optimized for the 
configuration [(core) lb2 lbj] for the 2Bj state, then 
2Bi and 2B2 become degenerate, i.e. we in fact obtain 
2nx and 2ny. Of course, in actual calculations, only one 
component needs to be considered. 

When considering the vibrational frequencies of N2 

and C2 , we employ a 6-31G(d) basis set, as in our earlier 
work [7], as well as Sadlej's [5s3p2d] basis [18] (for Nj 
only) and an atomic natural orbital (ANO) basis set 
[5s4p2dlf] of Widmark et al. [19]. The latter one is 
obtained from the ANO [6s5p3d2f] basis set [19] by 
deleting functions from the right hand side of the 
tables given in [19]. For both systems, we always 
employ the ROHF orbitals optimized for the state con- 
sidered. Inner shell Is correlation is not important for 
the equilibrium bond lengths and vibrational frequen- 
cies (e.g. they change uie by less than 10cm_1). However, 
to facilitate the comparison with other results, all elec- 
trons are correlated when using the 6-31G(d) basis. On 
the other hand, to simplify computations, we correlate 
only the valence electrons (i.e. two core Is orbitals are 
kept frozen) when larger [5s3p2d] or ANO [5s4p2dlf] 
basis sets are used. The force constants, and thus the 
vibrational harmonic frequencies, are obtained by a 
twofold numerical differentiation of energies with the 
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step-size of 0.005 A. Typical errors arising from the 
numerical differentiation using at least 5 points do not 
exceed a few wave numbers. 

To avoid possible confusion when presenting our 
results, we briefly recall the acronyms for various 
methods and their features. CCSD(is) designates the 
CC method with interacting space singles and doubles, 
i.e. with those singly and doubly excited states that are 
produced by one- and two-electron promotion from the 
reference and have a non-vanishing CI matrix element 
with the reference. The CCSD(is) represents a basic 
method of the UGA-CC series, requiring the smallest 
computational effort and, consequently, is most often 
used. Thus, unless the confusion could arise, we simply 
refer to it as CCSD. When the full SD space is adopted 
and we solve for all singly and doubly excited cluster 
amplitudes, including pDs, the method is designated as 
CCSD(f), i.e. the UGA-CC method with the full SD 
space. The CCSD(f) calculations are several times 
more expensive than the CCSD(is) ones. For example, 
for a general high-spin state of total spin S, the CCSD(f) 
method requires about (S + ^)(S + 2)-times as many 
amplitudes as CCSD(is). Moreover, the CCSD(f) 
codes are more extensive and complex than the 
CCSD(is) ones. It is thus advantageous to handle the 
pseudo-doubles pcrturbativcly, and the resulting 
method is referred to as CCSD{f} [8]. The computation 
and assessment of the CCSD(f) and CCSD{f} energy 
differences is one of the goals of this paper. 

The three different pcrturbative corrections for triples, 
having the general form 

AE = '£Ai>(>Pcc\V\4>K)(<PK\V\'Pcc), (2) 

where the linearized CC wave function is given as 
l^cc) = 5Z/(/l*/)> w'tn (I*/)} representing the inter- 
acting SD excited state manifold, lead to equation (1) 
and table 1. Since we always employ the converged 
CCSD(is) amplitudes when correcting for triples, we 
do not include the abbreviation 'is' in designating the 
corresponding CC methods. The different triple correc- 
tion schemes depend on whether only doubly excited or 
both doubly and singly excited cluster amplitudes arc 
employed. When both the bra and ket fCc are chosen 
to involve all the configurations contained in the inter- 
acting space for CCSD(is), we get the CCSD{T} 
approach. When both involve only doubles, we have 
the CCSD[T] scheme. Finally, when one *FCC involves 
singles and another one docs not, we get the CCSD(T) 
approach [8]. 

3.    Potential energy surfaces for OH, NH2, CH.i and 
CN 

We first consider PESs, or symmetric cuts of PESs, 
corresponding to a simultaneous breaking of one, two 
or three single bonds, as well as of a single multiple 
bond. The emphasis is on the difference between the 
CCSD(f) and CCSD{f} energies and on the perform- 
ance of various corrections for triples. The merits of 
CCSD ('is' or T) over limited, low order CI (such as 
CISD) were examined in our earlier study [6], and will 
not be discussed here. To roughly assess the similarity in 
the shape of the computed cuts of the PESs, wc use the 
so-called 'non-parallelism error' (NPE) defined as the 
difference between the maximal and minimal deviations 
of the total energy of a given method from FCI over the 
range of geometries considered. 

3.1.  The OH radical 
We will start by considering the OH radical, repre- 

senting a model for breaking of a single bond. The 
total energies for the degenerate 2II state of the OH 
radical, obtained with both DZ and DZP basis sets, 
are given in table 2. In our earlier study [6], the degen- 
eracy of 7T MOs was enforced by using the C4v sym- 
metry. As already mentioned, only the C2v subgroup is 
used in the present study, and the resulting symmetry 
breaking at the SCF level is not expected to cause any 
problems at the correlated level. As shown in table 2, 
very little difference is found at the CCSD(is) level when 
different MOs arc used, even though the broken sym- 
metry orbitals lead to a slightly lower energy that is 
closer to FCI. The difference between the CCSD(f) 
and CCSD{f} methods is found to be small, both re- 
ducing the CCSD(is) error by about a tenth of a milli- 
hartrcc (mhartrce) at Rc and by about 2-3 mhartrce at 
2Re. This leads to better CCSD(f) and CCSD{f} poten- 
tials with the NPEs smaller than the CCSD(is) one by 
about 2-3 mhartrce. 

Considering next the performance of various Tj cor- 
rection schemes and using a larger DZP basis as an 
example, we sec that all corrections ovcrcorrcct the 
FCI results. The absolute errors range from less than 
0.5mhartrec at Rc and l.5Rc. to 2-5mhartrce at 2RC, 
which must be compared with the CCSD(is) errors ran- 
ging from 2 5mhartrce at Rc and ].5RC to almost 
13 mhartrce at 2RC. At Rc, the performance of the 
three correction schemes can be ordered as CCSD{T} 
> CCSD(T) > CCSD[T]. At 1.25KC- 1.5RC, the ordering 
becomes CCSD(T) > CCSD{T} > CCSD[T], while at 
2RC another ordering, namely CCSD(T) > CCSD[T] > 
CCSD{T}, applies. The performance of various Tj cor- 
rections is better measured in terms of NPEs of the 
resulting PESs. For example, in the case of a DZP 
basis, the CCSD(is) and CCSD(f) NPEs arc about 10 
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Table 2. Total energies, reported as -(£ + 75) hartree, and energy differences relative to FCI, AE = E - £(FCI), obtained with 
various methods using both DZ and DZP basis sets for the 2IT state of OH at four internuclear separations 
R = Re, l.25Re, 1.5Re and 2Re; Re = 1.832bohr. Non-parallelism errors" (NPEs, in mhartree) are given in the last row. 

-(£ + 75)/au 

R, 

A£ = £- 

1.25Ä, 

- E(FCI) /mhartree 

1.5Ä.           2Re 
Method Re 1.25i?e 1.5Re 2Re NPE" 

DZ [4s2p/2s] basis/C4v symmetry 
CCSD(is)0 0.479995 0.460256 0.420935 0.367113 1.229 1.759 2.755 5.646 4.417 
CCSD(06 0.480042 0.460 347 0.421 176 0.369150 1.182 1.668 2.514 3.609 2.427 
DZ [4s2p/2s] basis/C2v symmetry 
CCSD(is) 0.480028  ' 0.460298 0.420986 0.367113 1.196 1.717 2.704 5.646 4.450 
CCSD{f} 0.480076 0.460 394 0.421252 0.369 196 1.148 1.621 2.438 3.563 2.415 
CCSD{T} 0.481 056 0.461 836 0.423 758 0.376953 0.168 0.179 -0.068 -4.194 4.373 
CCSD(T) 0.481224 0.461 985 0.423 757 0.374787 0.000 0.030 -0.067 -2.028 2.058 
CCSD[T] 0.481511 0.462 368 0.424313 0.375 949 -0.287 -0.353 -0.623 -3.190 2.903 
FCI 0.481224 0.462015 0.423 690 0.372759 0.000 0.000 0.000 0.000 0.000 

DZP [4s2pld/2slp] basis/C4v symmetry 
CCSD(is)" 0.565 531 0.535 566 0.486989 0.419894 2.484 3.360 5.111 12.751 10.267 
CCSD(Ofc 0.565 659 0.535 784 0.487482 0.422908 2.356 3.142 4.618 9.737 7.381 

DZP [4s2pld/2slp] basis/C2v symmetry 
CCSD(is) 0.565 575 0.535 621 0.487054 0.419946 2.440 3.305 5.046 12.699 10.259 
CCSD{f} 0.565 719 0.535 858 0.487 562 0.422653 2.296 3.068 4.538 9.992 7.696 
CCSD{T} 0.568216 0.539 122 0.492497 0.438 174 -0.201 -0.196 -0.397 -5.529 5.333 
CCSD(T) 0.568250 0.539083 0.492 168 0.434991 -0.235 -0.157 -0.068 -2.346 2.278 
CCSD[T] 0.568 520 0.539438 0.492647 0.435 743 -0.505 -0.512 -0.547 -3.098 2.593 
FCI 0.568 015 0.538926 0.492 100 0.432645 0.000 0.000 0.000 0.000 0.000 

" The non-parallelism error (NPE) for a given potential is denned as the difference between the maximal and minimal deviation 
from the FCI potential. 

b Reference [6]. 

and 7 mhartree, respectively. With (T) or [T] correction 
schemes these NPEs are reduced to about 2 mhartree (in 
absolute terms), even though the {T} correction gives a 
slightly larger NPE of about 5 mhartree. It should be 
noted, however, that the resulting PESs in the vicinity 
of the equilibrium geometry differ by an almost constant 
shift from the FCI PES. The NPEs for the region from 
Re to 1.25i?e are 0.005 (= -0.196 + 0.201; see table 2), 
0.078 and 0.007 mhartree for {T}, (T) and [T] correc- 
tions, respectively. These are considerably smaller than 
the NPEs obtained with the CCSD(is), (f) or {f} 
schemes in the same region, which range from 0.8 to 
0.9 mhartree. This indicates that various T3 corrections 
provide excellent results in the vicinity of the equili- 
brium geometry. 

3.2. The NH2 radical 
We next consider the NH2 radical, for which we 

explored both the 2B[ ground state and the lowest 
excited, totally symmetric 2A[ state. The total energies 
obtained for the 2A] and 2Bj states of NH2 with various 
CC methods using a DZ and a DZP basis sets are given 
in tables 3 and 4, respectively. The FCI results [15] are 

included for comparison. Consider first the 2A] state. 
We see that CCSD(f) provides a better approximation 
than CCSD = CCSD(is), as does CCSD{f}. In fact, it 
makes very little difference whether we treat pseudo- 
doubles iteratively or non-iteratively: the differences 
between the CCSD(f) and CCSD{f} energies are 0, 
0.044, 0.825, and -0.040 mhartree at the equilibrium, 
50% stretched, 100% stretched, and N- • H-H geome- 
tries, respectively. Similar situation is found with a DZP 
basis, the differences being, respectively, 0.010, 0.108, 
0.493 and -0.018 mhartree. In the case of the 2B, 
state, we find similar results, except that with a DZ 
basis set neither CCSD(is) nor CCSD(f) converges at 
2Re. Again, we find that the differences between the 
CCSD(f) and CCSD{f} energies are very small. 

We next assess the performance of various corrections 
for triples. At the equilibrium geometry and for both the 
2A[ and 2P>! states, the CCSD(is) errors are about 
1.3 mhartree for a DZ and 3 mhartree for a DZP basis. 
The errors of all three T3 correction schemes are less 
than 0.1 mhartree for a DZ basis and -0.5 mhartree 
for a DZP basis. Thus at Re, all T3 corrections are 
very similar. An almost identical performance of the 
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Table 3. Total energies, reported as -(£ + 55) hartrcc. and energy differences relative to FCI. AE = E - E(FCI), obtained with 
various methods using both DZ and DZP basis sets for the 2A, state of NH: at the equilibrium and stretched geometries (sec 
the text for details). 

-(£ + 55) /au AE = E -E(FCI)/mhartrcc 

Method Rc 1.5KC 2RC N    H2 Rc 1.5RC 2RC N---H, NPE" 

DZ [4s2p/2s] basis 
CCSD(is) 0.602126 0.444 781 0.339 515 0.454 784 1.278 5.065 16.251 7.335 14.973 

CCSD(0 0.602203 0.445157 0.341 375 0.454 892 1.201 4.689 14.391 7.227 13.190 
CCSD{f} 0.602203 0.445 201 0.342 200 0.454 852 1.201 4.645 13.566 7.267 12.365 
CCSD{T} 0.603 254 0.449 709 0.353 871 0.459 355 0.150 0.137 1.895 2.764 2.627 
CCSD(T) 0.603 297 0.449 550 0.352 876 0.459 328 0.107 0.296 2.890 2.791 2.783 
CCSD[T] 0.603 437 0.449 825 0.354716 0.459 344 -0.033 0.021 1.050 2.775 2.808 

FCI'' 0.603 404 0.449 846 0.355 766 0.462 119 0.000 0.000 0.000 0.000 0.000 

DZP[4s2pld/2slp] basis 
CCSD(is) 0.685 728 0.509 736 0.389 703 0.523 390 3.034 7.878 25.430 12.691 22.396 

CCSD(0 0.685946 0.510310 0.393 984 0.523 540 2.816 7.304 21.149 12.541 18.333 
CCSD{f} 0.685956 0.510418 0.394477 0.523 522 2.806 7.196 20.656 12.559 17.850 

CCSD{T} 0.689067 0.517670 0.412087 0.531885 -0.305 -0.056 3.046 4.196 4.501 
CCSD(T) 0.688 956 0.517370 0.409 885 0.531738 -0.194 0.244 5.248 4.343 5.442 

CCSD[T] 0.688 982 0.517463 0.412279 0.531711 -0.220 0.151 2.854 4.370 4.590 
ROHFCCSDr 0.685 713 0.509 696 0.390 892 3.049 7.918 24.241 21.192 

ROHFCCSD(T)f 0.688 212 0.515408 0.403 733 0.550 2.206 11.400 10.850 
UHFCCSD(T)f 0.688 230 0.515422 0.405 106 0.532 2.192 10.027 9.495 
UHFCCSDTr 0.688 539 0.516 803 0.413 640 0.223 0.811 1.493 1.270 
FCI'' 0.688 762 0.517614 0.415 133 0.536081 0.000 0.000 0.000 0.000 0.000 

" The non-parallelism error (NPE) is defined as the difference between the maximal and minimal deviation from FCI. 
h Reference [15]. 
r Reference [9]. 

Table 4.   Total energies, reported as -(£ + 55) hartrec. and energy differences relative to FCI. AE = £ - E(FCI), obtained with 
various methods using both DZ and DZP basis sets for the 
the text for details). 

B) state of NHi at the equilibrium and stretched geometries (sec 

-(£ + 55) /au A£ = £ -£(FCI)/mhartrcc 

Method Rc 1.5KC 2RC N    H2 Rc 1.5K,. 2RC N    H3 NPE 

DZ [4s2p/2s] basis 
CCSD(is) 0.644689 0.530 372 a 0.469 990 1.339 4.437 2.756 

CCSD(0 0.644 826 0.530 886 a 0.470077 1.202 3.923 2.669 
CCSD{f} 0.644 819 0.530 897 0.470 044 1.209 3.912 2.702 
CCSD{T} 0.646024 0.536 085 0.472425 0.004 -1.276 0.321 
CCSD(T) 0.646024 0.535 754 0.472421 0.004 -0.945 0.325 
CCSD[T] 0.646113 0.536185 0.472488 -0.085 -1.376 0.258 
FCI'' 0.646028 0.534 809 0.449427 0.472 746 0.000 0.000 0.000 0.000 

DZP[4s2pld/2slp] basis 
CCSD(is) 0.739 353 0.596 240 0.486 051 0.538 385 3.267 8.969 19.473 6.175 16.206 
CCSD(f) 0.739605 0.597 205 a 0.538 533 3.015 8.004 6.027 
CCSD{f} 0.739609 0.597152 0.494 238 0.538 515 3.011 8.057 11.286 6.045 8.275 
CCSD{T} 0.743 160 0.606 831 0.526134 0.543 559 -0.540 -1.622 -20.610 1.001 21.611 
CCSD(T) 0.742987 0.606059 0.519488 0.543 423 -0.367 -0.850 -13.964 1.137 15.101 
CCSD[T] 0.742994 0.606 389 0.521051 0.543 441 -0.374 -1.180 -15.527 1.119 16.646 
FCI'' 0.742620 0.605 209 0.505 524 0.544 560 0.000 0.000 0.000 0.000 0.000 

" Not able to converge using the ROHF orbitals. 
b Reference [15]. 
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three different T3 corrections is also found for the 
N- • H-H geometries. They always provide a great 
improvement over CCSD(is), reducing its error from 
7.3 to 2.8mhartree (2Ai/DZ), 12.7 to 4.3mhartree 
(2Ai/DZP), 2.8 to 0.3mhartree (2B,/DZ) and 6.2 to 
l.lmhartree ^BJDZP), with a very little difference 
between them. Once the bond is stretched to l.5Re, the 
CCSD(is) errors are about 4-5 mhartree for DZ and 8- 
9mhartree for DZP basis. When the T3 corrections are 
applied, these errors are reduced to less than 
0.3 mhartree for the 2A; state and both DZ and DZP 
basis sets. For the 2B, state, the CCSD{T}, CCSD(T) 
and CCSD[T] errors are -1.3, -0.9 and -1.4 mhartree 
for DZ, and -1.6, -0.9 and -1.2 mhartree for DZP 
basis, respectively. When the bonds are further stretched 
to 2Re, we face certain complications. For the 2A[ state, 
the CCSD{T), CCSD(T), and CCSD[T] schemes reduce 
the CCSD(is) errors relative to FCI from 16.3 mhartree 
to 1.9, 2.9 and 1.1 mhartree for a DZ basis, and from 
25.4 mhartree to 3.0, 5.2 and 2.9 mhartree for a DZP 
basis, respectively. However, for the 2B] state and a 
DZP basis, the CCSD(is) error amounts to 
19.4 mhartree, while the T3 corrections grossly over- 
shoot, with the errors amounting to -20.6, -14.0 and 
-15.5 mhartree for the {T}, (T), and [T] approxima- 
tions, respectively. We may thus conclude that 
CCSD{T}, CCSD(T) and CCSD[T] give similar results 
for a moderate bond stretching of two single bonds. 
When these bonds are severely stretched, these methods 
may overcorrect. If they do not overcorrect, CCSD{T} 
and CCSD[T] yield similar and better energies than 
CCSD(T). When they do overcorrect, CCSD(T) may 
be better since it overcorrects less. In any case, we 
cannot expect these methods to work when we are far 
away from the equilibrium geometries, just as in CS 
cases. 

The above described performance of various T3 cor- 
rections can be better assessed using the NPEs of the 
resulting PESs. Consider, for example, the results 
obtained with a DZP basis set. For the 2A, state, the 
NPEs of various CCSD approximations are about 
20 ± 2 mhartree. With T3 corrections, these NPEs are 
reduced to about 5 ± 0.5 mhartree, i.e. they are nearly 
75% smaller than those obtained with the CCSD(is), (f) 
or {f} methods. For near equilibrium geometries (from 
Re to 1.5i?e), the NPEs of various T3 correction schemes 
are less than 0.5 mhartree in absolute terms, that is an 
order of magnitude smaller than the CCSD NPEs 
(which are about 4.4-4.8 mhartree) for the same 
region. The situation for the 2B] state is more compli- 
cated due to the convergency difficulties encountered at 
2Re. Nonetheless, considering PESs between Re and 
1.5i?e, the NPEs with triple corrections are less than 

l.lmhartree. In comparison, the CCSD(is), (f) and {f} 
NPEs are about 5-6 mhartree. 

Both states of the DZP model of the NH2 radical 
considered above were also extensively treated in [9] 
using various ROHF and UHF based CC approaches 
involving triples, including CCSDT. For the sake of 
easier comparison, we include in table 3 a few typical 
results from this reference for a DZP model of the 2A[ 
state. Not surprisingly, the ROHF CCSD results [9] are 
very close to our UGA CCSD(is) ones. When triples are 
handled perturbatively, both the ROHF- and UHF- 
based results [9] (which are in fact very similar) are 
inferior to ours. Although we do not find much of a 
difference at the equilibrium geometry, already at 
l.5Re the (ROHF, UHF)-CCSD(T) errors are an 
order of magnitude larger than the UGA CCSD(T), 
[T] or {T} ones (2.2 mhartree versus at most 
0.2 mhartree). At 2Re, these errors increase to about 
10-11 mhartree [9], while those of the UGA-based per- 
turbatively corrected triples are only 3-5 mhartree. 
Clearly, different formulations of triple corrections 
may lead to significant differences at severely stretched 
geometries. 

As might be expected, the computationally 
demanding full UHF CCSDT method [9] performs 
better than any perturbatively based estimate at larger 
internuclear separations (NPE for the 2Aj state is 
1.270 mhartree). Surprisingly enough, this is not the 
case in the immediate neighbourhood of the equilibrium 
geometry (up to l.5Re), where any of our estimates (i.e. 
CCSD(T), [T] or {T}) is better than the full UHF 
CCSDT. 

The results in [9] for the 2B[ state are much more 
complicated. For example, there are two UHF solu- 
tions, either of which can be employed as a reference. 
However, not all CC methods converge when these two 
UHF references are employed. For instance, CCSDT 
converges neither with ROHF nor with one of the 
UHF references. The spin contamination also appears 
to be much more serious in this case. For all these 
reasons we do not include these results [9] for the 2Bj 
state in our tables and the interested reader is referred to 
the original paper for more details. 

3.3. The CHs radical 
We next consider a simultaneous breaking of three 

single bonds. Total energies obtained for the 2A^' state 
of the CH3 radical, using CCSD plus various T3 correc- 
tions are given in table 5. At the equilibrium geometry, 
the difference between the CCSD(f) and CCSD{f} ener- 
gies is very small, both improving CCSD(is) by about 
0.2-0.3 mhartree. Relative to the FCI values, the 
CCSD(is) energies deviate by about 1 mhartree for a 
DZ basis and by about 2.8 mhartree for a DZP basis. 
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Table 5. Total energies, reported as -(£ + 39) hartree. as well as energy differences relative to FCI. AE = E - E(FCI), obtained 
with various methods using both DZ and DZP basis sets for the 2A" state of CH, at the equilibrium (Rni = R, = 2.06bohr) 
and stretched (Ral = 1.5KC and 2RC) geometries. 

-(E + 39)/au AE = = £-£(FCI)/n lhartrcc 

Method Rc \.5Re 2Re Rc \.5RC 2RC NPE 

DZ [4s2p/2s] basis 
CCSD(is) 0.643420 0.423 891 0.228 724 1.253 6.773 34.292 33.039 

CCSD(0 0.643 593 0.425060 0.232434 1.080 5.604 30.582 29.502 

CCSDjf} 0.643 576 0.424927 0.231340 1.097 5.737 31.676 30.579 

CCSD{T} 0.644750 0.431 121 0.269 606 -0.077 -0.457 -6.590 6.513 

CCSD(T) 0.644700 0.430965 0.269148 -0.027 -0.301 -6.132 6.105 

CCSD[T] 0.644 718 0.431 404 0.269 784 -0.045 -0.740 -6.768 6.723 

FCI 0.644673 0.430664 0.263016 0.000 0.000 0.000 0.000 

DZP [4s2pld/2slp] basis 
CCSD(is) 0.718 378 0.473 724 0.264401 2.834 9.129 38.731 35.897 

CCSD(0 0.718 649 0.474 829 0.267 553 2.563 8.024 35.579 33.016 

CCSD{f} 0.718 636 0.474 762 0.266990 2.576 8.091 36.142 33.566 

CCSD{T} 0.721 570 0.483 692 0.309 721 -0.358 -0.839 -6.589 6.231 

CCSD(T) 0.721 392 0.483 261 0.308 951 -0.180 -0.408 -5.819 5.639 

CCSD[T] 0.721375 0.483 671 0.309 734 -0.163 -0.818 -6.602 6.439 

ROHFCCSD" 0.718 363 0.474010 0.265 810 2.849 8.843 37.322 34.473 

ROHFCCSD(T)" 0.720694 0.480 740 0.292148 0.518 2.113 10.984 10.466 

UHFCCSD(T)" 0.720713 0.480184 0.332040 0.499 2.669 -28.908 29.407 

ROHF CCSDT" 0.721934 0.482 991 0.298 730 -0.722 -0.138 4.402 5.124 

UHF CCSDT" 0.721956 0.482961 0.3014 -0.744 -0.108 1.732 2.476 

FCI* 0.721212 0.482 853 0.303 132 0.000 0.000 0.000 0.000 

" Reference [9]. 
* Reference [16]. 

These errors are reduced to less than -0.1 mhartrec (DZ 
basis) and (-0.2H-0.4) mhartrec (DZP basis) with all 
three T3 corrections. When the three C-H bonds are 
stretched by 50%, CCSD(f) or CCSD{f} reduce the 
CCSD(is) errors (amounting to 6.8 mhartrec for DZ 
and 9.1 mhartrec for DZP basis) by about 1.1 mhartrec 
with either basis set, while the T3 corrected values arc 
still less than -0.8 mhartrec in error. The differences 
between the FCI and CCSD(is) energies arc consider- 
ably larger at 2RC (34.3 mhartrec for DZ and 
38.7 mhartrec for DZP basis). Using the full SD space 
in CCSD(f) or CCSD{f} approaches, these errors arc 
reduced by about 3^4 mhartrec. The T3 corrected 
values arc about (-6)-(-7) mhartrec in error at 2RC. 
It is again difficult to establish a definite ordering of 
the performance of T3 corrections. At the equilibrium 
geometry, CCSD(T) and CCSD[T] give similar and 
better results than CCSD{T}, while at stretched (\.5RC 

and 2RC) geometries, CCSD{T} and CCSD[T] arc 
similar and poorer than CCSD(T). This suggests that 
CCSD(T) performs best in most cases. Nonetheless, 
the differences between different 73 correction schemes 
are less than 1 mhartrec in all cases, so that this ordering 
is not very significant. In terms of the NPEs of the 

resulting PESs, we find again a substantial reduction 
from about 33-36 mhartrec for various CCSD methods 
to about 6 ± 0.4 mhartrec for the T3 corrected methods. 
Also, the NPEs of T3 corrected PESs in the vicinity of 
the equilibrium geometry arc very small. 

The CH3 system was also examined in [9] using the 
same DZP basis set. For the sake of comparison, we 
included the ROHF-bascd CCSD, CCSD(T), and 
CCSDT results, as well as the UHF-bascd CCSD(T) 
and CCSDT results, in table 5. We sec again that the 
ROHF CCSD results [9] arc very close to those obtained 
with UGA CCSD(is). However, both pcrturbativc 
CCSD(T) approaches [9], based on either the ROHF 
or the UHF reference, give much poorer results in this 
case than our UGA based triply corrected CCSD: NPEs 
for these results [9] are 10.466 and 29.407 mhartrec (for 
the ROHF and UHF based CCSD(T), respectively), 
while those for UGA based approaches do not exceed 
6.4 mhartrec (sec table 5). In fact the errors of pcrturba- 
tively corrected methods at 2RC seem to be very sensitive 
to the formulation employed. Thus, the ROHF- 
CCSD(T) error at 2RC is 11 mhartrec, while the UHF- 
CCSD(T) error has an opposite sign and equals 
-29 mhartrec [9]. The errors of UGA based pcrturbativc 
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Table 6. Total energies obtained with various methods 
using both DZ and DZP basis sets, reported as 
-(£ + 92) hartree, for the 2E+ state of CN at equilibrium 
(ft = 1.1718Ä) and stretched (R = 1.5ft.) geometries. 

-(£ + 92)/au A£ "/mhartree 

Method ft 1.5ft ft 1.5ft, 

DZ [4s2p] basis 
CCSD(is) 0 
CCSD(f) 
CCSD{f} 
CCSD{T} 
CCSD(T) 
CCSD[T] 
CISDT+ 
CISDTQ+ 
nFCI0 

DZP [4s2pld] 
CCSD(is) 
CCSD(0 
CCSD{f} 
CCSD{T} 
CCSD(T) 
CCSD[T] 
CISDT+ 
CISDTQ+ 

358 931 
359796 
359992 
370649 
368 867 
373971 
356 309 
367643 
368 894 

basis 
0.479111 
0.480710 
0.481 537 
0.502494 
0.498 247 
0.502770 
0.471 554 
0.492431 

0.190620 
0.191860 
0.193155 
0.240413 
0.239228 
0.280212 
0.187069 
0.218131 
0.226281 

0.279037 
0.280764 
0.282653 
0.346369 
0.337 801 
0.373118 
0.272978 
0.310050 

9.963 
9.098 
8.902 

-1.755 
0.027 

-5.077 
12.585 

1.251 
0.000 

13.320 
11.721 
10.894 

-10.063 
-5.816 

-10.339 
20.877 

0.000 

35.661 
34.421 
33.126 

-14.132 
-12.947 
-53.931 

39.212 
8.150 
0.000 

31.013 
29.286 
27.397 

-36.319 
-27.751 
-63.068 

37.072 
0.000 

" A£ is E - E(nFCI) and £ - £(CISDTQ+) in the case of 
DZ and DZP basis sets, respectively. 

nFCI = (near FCI) = CISDTQQS+. 

approaches are around — 6mhartree, being roughly in 
the middle between the ROHF-CCSD(T) and UHF- 
CCSD(T) ones. 

We can also compare our results with the full treat- 
ment of triples given in [9]. In this case the authors [9] 
obtained the CCSDT results with both the ROHF and 
UHF references. The latter result gives the smallest NPE 
(2.476 mhartree), about a factor of two smaller than the 
ROHF CCSDT NPE (5.124mhartree), which is of the 
same order of magnitude as the NPEs of our pertur- 
batively corrected results (ranging from 5.6 to 
6.4mhartree). This is very gratifying in view of the 
great difference between the computational demands 
of the approaches involved. 

3.4. The CN radical 
We have chosen the cyanide radical, CN, to examine 

the breaking of a multiple bond, in both its ground 2E+ 

and excited 2n states. This is a demanding system since 
the correct description of its separated limit requires 
sixfold excitations. We thus examine only R = Re and 
R = l.5Re geometries. Total energies obtained for the 
2S+ and 2n states of CN with the CCSD and various 
T3 corrected methods, for both DZ and DZP basis sets, 

Table 7.   Total   energies   obtained   with   various   methods 
using   both   DZ   and   DZP   basis   sets,   reported   as 
-(£ + 92) hartree, for the 2II state of CN at the equili- 

brium (Re 

tries. 
1.2333 A) and stretched (R = 1.5ft) geome- 

-(£ + 92)/au A£° /mhartree 

Method ft 1.5ft ft 1.5ft 

DZ [4s2p] basis/C4v symmetry 
v°       0.305519       0.193791 

0.305653 
CCSD(is)' 
CCSD(fy 0.199093 

DZ [4s2p] basis/C2v symmetry 
CCSD(is) 0.305702       0. 
CCSD{f} 
CCSD{T} 
CCSD(T) 
CCSD[T] 
CISDT+ 
CISDTQ+ 
nFCI' 

0.305 869 
0.312093 
0.312392 
0.313424 
0.302814 
0.312250 
0.312952 

193 423 
199290 
249456 
243992 
280037 
178484 
202114 
210941 

DZP [4s2pld] basis/C4v symmetry 
CCSD(is)0       0.444664       0.284816 
CCSD(f)0        0.445036       0.289096 

DZP [4s2pld] 
CCSD(is) 
CCSD{f} 
CCSD{T} 
CCSD(T) 
CCSD[T] 
CISDT+ 
CISDTQ+ 

basis/C2v symmetry 
0.444778       0.284628 
0.445278 
0.456 133 
0.455943 
0.456675 
0.440296 
0.454012 

0.289996 
0.352 342 
0.352343 
0.362780 
0.277049 
0.308 397 

7.433 
7.299 

7.250 
7.083 
0.859 
0.560 

-0.472 
10.138 
0.702 
0.000 

9.348 
8.976 

9.234 
8.734 

-2.121 
-1.931 
-2.663 
13.716 
0.000 

17.150 
11.848 

17.518 
11.651 

-38.515 
-33.051 
-69.096 
32.457 

8.827 
0.000 

23.581 
19.301 

23.769 
18.401 

-43.945 
-43.946 
-54.383 
31.348 
0.000 

a A£ is £ - £(nFCI) and £ - £(CISDTQ+) in the case of 
DZ and DZP basis sets, respectively. 

Reference [6]. 
c nFCI = (near FCI) = CISDTQQS+. 

are given in tables 6 and 7. The FCI values are not 
available for either basis set. For a DZ basis, the largest 
CI we can carry out is CISDTQQS+ with ~ 420 000 
configurations, which can be regarded as a 'near FCF 
(nFCI) result. For a DZP basis, we performed 
CISDTQ+ with ~ 680 000 configurations. This gives us 
better benchmarks than those used in our previous study 
[6]. Nonetheless, CISDTQ"1" is still not a good enough 
benchmark for the CN radical. As we can see in the case 
of a DZ basis for the 2S+ state, nFCI decreases the 
CISDTQ+ energies by about 1 mhartree at Re, and 
about 8 mhartree at 1.5fte. Similarly, for the 2U state, 
the nFCI energy is lower than the CISDTQ+ by about 
9 mhartree at 1.5fte. 

For the 2E+ state of CN at ft = fte, the CCSD(is) and 
CCSD(f) or CCSD{f} energy differences amount to 
about 1 and 1.5 mhartree for a DZ and a DZP basis 
sets, respectively. These differences moderately increase 
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to 1.3-2.6 mhartrcc for a DZ basis and to 1.7- 
2.6mhartrcc for a DZP basis once the C-N bond is 
stretched by 50%, the CCSD{f} energies being about 
1 mhartree better than the CCSD(f) ones. The actual 
CCSD(is), CCSD(0 and CCSD{f} energies lie between 
the CISDT^ and CISDTQ+ ones at both R = RQ and 
\.5RC. Relative to nFCI (DZ basis), the CCSD(is). 
CCSD(0 and CCSD{f} errors arc about 10 mhartrcc 
at Rc and 36mhartree at \.5RC. However, as we have 
mentioned earlier, no proper benchmarks arc available 
for our DZP basis, since the nFCI is already 8 mhartrcc 
lower than CISDTQ+ at \.5RC for a DZ basis. Further, 
the inclusion of T3 corrections significantly improves the 
results in most cases. At R = Rc and a DZ basis, the 
CCSD{T}, CCSD(T) and CCSD[T] errors relative to 
nFCI arc -1.8, 0.03 and -5.1 mhartrcc, respectively. 
Since nFCI is still not FCI, the actual CCSD(T) error 
will be larger and the ovcrcorrcction by CCSD{T} and 
CCSD[T] smaller. At 1.5KC, the CCSD{T}, CCSD(T) 
and CCSDfT] schemes ovcrcorrcct the nFCI result by 
14.1, 12.9 and 53.9 mhartrcc. It is notable that the 
CCSD[T] error at ].5RC is quite large, while the perfor- 
mance of CCSD{T} and CCSD(T) is very similar. 
Although CCSD(T) may appear to give a slightly 
better result than CCSD{T}, the errors relative to the 
Rc energies moderately favour CCSD{T} (12.4 versus 
13 mhartrcc). Nonetheless, lacking an appropriate 
benchmark, we cannot be certain if these observations 
arc true for a larger basis as well. For example, in the 
case of a DZP basis, CCSD(T) appears to be better than 
CCSD{T}. 

Finally, wc consider the results for the degenerate 2n 
state, given in table 7. We observe again that the use of 
broken symmetry n MOs leads to only a small difference 
in the resulting CCSD(is) energies. Both CCSD(f) and 
CCSD{f} perform similarly, and the energy differences 
between CCSD(is) and CCSD(f) or CCSD{f} arc much 
smaller than for the 2£4 state at R = Rc (0.1-0.2 and 
0.3-0.5 mhartrcc for DZ and DZP bases, respectively), 
but increase much faster once the C-N bond is 
stretched: at R = \.5RC, these differences arc 4.3- 
5.8 mhartrcc. At either geometry (RQ or 1.5KC), the 
CCSD(is), CCSD(f) and CCSD{f} energies lie between 
the CISDT+ and CISDTQ+ energies. Different T3 cor- 
rections yield similar results at Rc: the absolute errors of 
the three corrections relative to nFCI are less than 
1 mhartrcc for the DZ basis. They overshoot CISDTQ+ 

by 2-3 mhartrcc in the case of a DZP basis, but those CI 
results may still be above FCI by 1-2 mhartrcc. At 
l.5Rc, T3 corrections certainly overshoot by a sizeable 
amount: for a DZ basis, the CCSD{T}, CCSD(T), and 
CCSD[T] schemes ovcrcorrcct nFCI by 38.5, 33.1 and 
69.1 mhartree respectively. This indicates that the T3 

correction schemes give worse results than the simple 

Table 8. Non-parallelism error (NPE. in mhartrcc) for the 
region ranging from Rc to \.5Re obtained with various 
methods using a DZP basis for OH. NH2 and CH3. 

Method OH(2n)    NH/A,)     NH:(
2B,)      CH,(2A") 

CCSD(is) 2.606 4.844 5.702 6.295 
CCSO(f) 2.262 4.488 4.989 5.461 
CCSD{f} 2.242 4.390 5.046 5.515 
CCSD{T} 0.201 0.249 1.082 0.481 
CCSD(T) 0.167 0.438 0.483 0.238 
CCSD[T] 0.042 0.371 0.806 0.655 

CCSD{f} or even CCSD(is) method when a multiple 
bond is severely stretched. 

3.5. Performance in the vicinity of the equilibrium 
geometry 

We conclude this section by illustrating the perform- 
ance of various T3 corrections in the vicinity of the 
equilibrium geometry. We present in table 8 the non- 
parallelism errors of the resulting PESs for the region 
ranging from Rc to \.SRQ for OH, NH2 and CH3. Only 
the results obtained with DZP basis sets arc included. 
These data clearly show that the NPEs of various T3 

corrected schemes arc about an order of magnitude 
smaller than those obtained with various CCSD approx- 
imations. 

4.    Harmonic vibrational frequencies of N2 and C2 

We next address the computation of molecular har- 
monic vibrational frequencies, wc, which arc known to 
provide a rather severe test of any method. Our earlier 
study [7] of 48 distinct electronic states of 9 diatomic 
hydrides and 18 diatomics, using the UGA-CCSD 
method and 6-31G(d) basis sets, nicely demonstrates 
the power of this method in reproducing experimental 
vibrational frequencies. For diatomic hydrides, for 
example, the mean absolute deviation in the bond 
length and harmonic frequencies amounted to 0.013 A 
and 55 cm-1, respectively. Similarly, for diatomics these 
average deviations were 0.012 A and 73 cm"1, respect- 
ively. 

However, wc also found several examples for which 
the difference between the computed and experimental 
OJC values was considerably larger. For example, the lar- 
gest difference between the computed and experimental 
UJC values for diatomics, which amounts to 203cm""', is 
found for the B2E„ state of Ni, a value almost three 
times the mean absolute deviation. Similarly, the differ- 
ence between the computed and experimental wc for the 
B2E„ state of the isoclectronic C7 radical is 132cm-1, 
nearly twice the mean absolute deviation. Clearly, these 
two systems deserve a closer examination. 
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Table 9. Equilibrium bond lengths Re (in A) and harmonic vibrational frequencies we (in 
cm-1) of the ground and excited states of Nj obtained with UGA CCSD(is) method 
and various basis sets. The differences are defined as ARe = Re(cal.) - .Re(exp.) and 
Ao;e = we(cal.) — we(exp.). 

State Method Basis RJA ARt /mÄ we/cm ' Awe/cm ' 

B2E+ CCSD(is) 6-31G(d) 1.082 8 2623 203 
[5s3p2d]a 1.084 10 2572 152 
ANOfc 1.065 -9 2646 226 

Exp.c 1.074 2420 
A2n+ CCSD(is) 6-31G(d) 1.184 9 1988 84 

[5s3p2d]a 1.191 16 1943 39 
ANO6 1.172 -3 1988 84 

Exp.c 1.175 1904 
X^£+ CCSD(is) 6-31G(d) 1.129 13 2267 60 

[5s3p2d]a 1.133 17 2220 13 
ANO6 1.115 -1 2274 67 

Exp.c 1.116 2207 

" Reference [18]. 
6 [5s4p2dlf] ANO basis from [19]. 
c Reference [17]. 

In order to find out whether these rather large dis- 
crepancies are due to the limitations of the basis sets 
employed or due to the approximations involved in 
the   methods   used,   we   first   consider   three   states 

2V+ A2n„ B E„) of NT, using the interacting (XZE^ 
space UGA-CCSD method and three basis sets, 
namely a 6-31G(d) basis, a [5s3p2d] basis [18] and an 
atomic natural orbital (ANO) basis of the [5s4p2dlf] 
type [19]. The results are given in table 9. The [5s3p2d] 
basis yields slightly longer bond lengths and smaller 
frequencies (about 45-50 cm-1 smaller) than those 
obtained with the 6-31G(d) basis. The agreement with 
the experimental values is thus better by the same 
amounts. Even so, for the B2Eu state, the discrepancy 
amounts to 152 cm"1. When using yet a better ANO 
basis set, a kind of a basis set that is highly versatile 
and gives generally very accurate results, the computed 
bond lengths are slightly shorter than the experimental 
ones, while the computed coe are roughly identical and 
even slightly poorer than those obtained with the 6- 
31G(d) basis. Clearly, use of a better basis set does not 
necessarily improve the computed frequencies and we 
must use better methods to reduce the discrepancies. 

To calibrate the performance of various methods, we 
carried out a series of CI and CC calculations using a 
relatively small basis set for which the FCI results are 
available. Unfortunately, we do not have computational 
resources to carry out FCI calculations with the 6- 
31G(d) basis. Instead, we used a smaller DZV [3s2p] 
basis set [20], which yields the results given in table 10. 
We must emphasize, however, that due to the absence of 
polarization functions, these results are of a purely 
methodological value and cannot be used for a compar- 

ison with the experiment. We should also point out that 
the errors in computed we relative to FCI found with a 
DZV basis cannot be used to infer the size of the errors 
for larger basis sets, particularly for the B2E„ state, 
since for larger basis sets the errors of any approxima- 
tion relative to FCI will be smaller. This can be illu- 
strated, for example, on the SCF method. For the 
B2E+ state, the ROHF u>e is almost 1000 cm"1 larger 
than the FCI u>e when using a DZV basis. We carried 
out a series of calculations using the SCF method with 
increasingly larger basis sets [21]. Our estimate for the 
ROHF cüe in the basis set limit is 3090 cm-1, 670 cm"1 

larger than the experimental value (which should be 
equivalent to the FCI result in the basis set limit). 
Hence, the error in computed ROHF we for the B2Ey 
state in the basis set limit is about 330 cm"1 smaller than 
the error with a DZV basis. 

As shown in table 10, the errors of the SCF result with 
a DZV basis (relative to FCI) are very large, in parti- 
cular for uje: these errors are 465, 737 and 997 cm"1 for 
the X2E+, A2nu and B2E+ states, respectively. The 
error for the B2E„ state is by far the largest. Even at 
the CISD level, the errors in ujt remain sizeable, 
amounting to 212, 219 and 595 cm"1, respectively. At 
the CISDT and CISDTQ levels, these errors are still 
about 200 and 100 cm"1. These results clearly show 
the challenge in computing of vibrational frequencies. 
Turning our attention to the CC methods, the errors 
of the CCSD we are 88,  118 and 348 cm"1 for the 
X2E A2n„ and B E„ states, respectively. This 
explains why the maximum error was found for the 
B2Eu state of Nj in our earlier calculations [7]. When 
corrected perturbatively for pseudo-doubles (i.e. three- 
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Table 10. Equilibrium bond lengths Rc (in A) and harmonic vibrntional frequencies 
wc (in ctrT1) of the ground and excited states of Nj obtained with DZV [3s2p] 
basis set and various methods. Differences from the FCI values arc given in 
parentheses. 

X2Ef
+ A2nu B 2rl 

Method Rc wc Rc U)Q Rc U)c 

FCI 1.173 1948 1.249 1591 1.137 1991 
SCF 1.115 2413 1.171 2328 1.055 2988 

(-58) (465) (-78) (737) (-82) (997) 
CISD+ 1.150 2160 1.223 1810 1.095 2586 

(-23) (212) (-26) (219) (-42) (595) 
CISDT+ 1.159 2100 1.229 1761 1.124 2170 

(-14) (152) (-20) (170) (-13) (179) 
C1SDTQ+ 1.170 1981 1.246 1617 1.133 2051 

(-3) (33) (-3) (26) (-4) (60) 
CCSD(is) 1.163 2036 1.235 1709 1.113 2339 

(-10) (88) (-14) (118) (-24) (348) 
CCSD{f) 1.164 2033 1.236 1700 1.125 2094 

(-9) (85) (-13) (109) (-12) (103) 
CCSDfT} 1.174 1932 1.245 1622 1.137 1859 

(1) (-16) (-4) (31) (0) (-132) 
CCSD(T) 1.174 1930 1.246 1607 1.140 1811 

(1) (-18) (-3) (16) (3) (-180) 
CCSD[T] 1.177 1899 1.249 1580 1.145 1711 

(3) (-49) (0) (-11) (8) (-280) 

body double excitations), the CCSD{f} wc are slightly 
improved for the X2E^ and A2I1U states, but change 
dramatically for the B 2E„ state, reducing the error from 
348 to 103 cm"1. Thus, at the CCSD{f} level, the com- 
puted LJC values arc already better than the CISDT ones. 
The T3 correction brings further improvement for the 
better behaving states X 2Eg and A 2I1U, where the abso- 
lute errors are now within 50 cm-1, but not for the diffi- 
cult B2Eu state, where the errors arc -132, -180 and 
-280cm-' for the CCSD{T}, CCSDfT) and CCSD[T] 
correction schemes, respectively. 

The results given in table 10 imply two interesting 
tendencies. First, for the states such as X E^ and 
A2nu, in which the T3 clusters arc of lesser importance, 
the T3 corrections always improve the CCSD(is) result, 
while for difficult systems such as B2E„, in which triples 
play a significant role, the T3 corrections are likely to be 
excessive and will thus lead to large negative errors. 
Second, the computed wc values arc larger when singly 
excited states play a greater role in the correction, i.e. the 

*  j       >   u A    ■ CCSD{T}  ^      CCSD(T) ^ computed wc s have an ordering wc > OJC > 
WCCSD[T] §jnce the j3 corrections have a tendency to 

overcorrect in difficult systems, this explains why 
CCSD{T} gives a better result than CCSD(T), which 
in  turn  is better than  CCSDfT].  Finally,  we  must 

emphasize again that due to the lack of polarization 
functions, the above results arc only of a qualitative 
methodological value. With large basis sets, these ten- 
dencies arc likely to remain valid, while the absolute 
errors of any method with respect to FCI should be 
smaller. 

In table 11 we finally present the computed equili- 
brium bond lengths Rc and vibrational frequencies uc 

for both Nj and Ci in their ground and several excited 
states, obtained with the standard 6-31G(d) basis set. 
Although this basis set is only of a moderate size, it 
reproduces the frequencies exceptionally well, while pro- 
ducing slightly longer bond lengths. Wc sec that 
CCSD{f} gives a significant improvement over the 
CCSD(is) method, reducing the errors from 203 to 
131cm""1 for the B2E+ state of Nj and from 132 to 
97cm"1 for the B2E+ state of C:. Of course, this 
improvement is less remarkable than in the case of a 
DZV [3s2p] basis. For the other well-behaved states, 
the correction due to pseudo-doubles makes little differ- 
ence. The T3 corrections give better results in most 
cases, particularly for the B2E,1 state of both N| and 
CT, bringing errors to within 100cm"1, although they 
arc probably overcorrccting in several cases. Again, wc 
find CCSD{T} to be better than CCSD(T), which is in 
turn better than CCSD[T]. 
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Table 11. Equilibrium bond lengths Re (in A) and harmonic vibrational frequencies o>e (in cm" ) of the 
ground and excited states of Nj and C^ obtained with 6-31G(d) basis and UGA CCSD(is) method 
with various triple corrections. The experimental values and the differences between the calculated 
values and experiment are also shown for easier comparison. 

System State Method Äe/Ä ARe/mÄ ujjcm ' Awe/< /cm 

Nt B2S,t 

A2lti 

X2EJ 

B2S,t 

X2E+ 

CCSD(is) 1.082 8 
CCSD{f} 1.085 11 
CCSD{T} 1.098 24 
CCSD(T) 1.099 25 
CCSD[T] 1.102 28 
Exp." 1.074 
CCSD(is) 1.184 9 
CCSD{f} 1.185 10 
CCSD{T} 1.195 20 
CCSD(T) 1.196 21 
CCSD[T] 1.197 22 
Exp.a 1.175 
CCSD(is) 1.129 13 
CCSD{f} 1.130 14 
CCSD{T} 1.141 25 
CCSD(T) 1.141 25 
CCSD[T] 1.143 27 
Exp.a 1.116 
CCSD(is) 1.228 5 
CCSD{f} 1.232 9 
CCSD{T} 1.245 22 
CCSD(T) 1.246 23 
CCSD[T] 1.248 25 
Exp." 1.223 
CCSD(is) 1.274 6 
CCSD{f} 1.274 6 
CCSD{T} 1.284 16 
CCSD(T) 1.284 16 
CCSD[T] 1.287 19 
Exp." 1.268 

2623 
2551 
2365 
2349 
2311 
2420 
1988 
1980 
1881 
1875 
1859 
1904 
2267 
2261 
2132 
2135 
2129 
2207 
2101 
2066 
1952 
1942 
1918 
1969 
1854 
1850 
1785 
1785 
1770 
1781 

203 
131 

-55 
-71 

-109 

84 
76 

-23 
-29 
-45 

60 
54 

-75 
-72 
-78 

132 
97 

-17 
-27 
-51 

73 
69 

4 
4 

-11 

Reference [17]. 

5.    Conclusions 
We have examined the performance of non-iterative 

pseudo-double and triple corrections for both the equi- 
librium and highly stretched geometries, as well as for 
the calculations of vibrational frequencies. We focus on 
OS doublet states, representing the ground and excited 
states of many radicals. The following general observa- 
tions can be made. 

The CCSD{f} method always represents an improve- 
ment over CCSD(is). There is very little difference 
between the iterative CCSD(f) and non-iterative 
CCSD{f} energies, and the latter are in fact slightly 
closer to the FCI values. While CCSD(f) is computa- 
tionally much more demanding than CCSD(is), 
CCSD{f} requires only marginally increased computa- 
tional effort over that of CCSD(is). In fact, the com- 

puter time required by CCSD{f} is equal to that for 
CCSD(is) plus the time required for a single CCSD(f) 
iteration, which in turn is equal to the time required for 
a few more CCSD(is) iterations. In addition, the 
CCSD{f} codes are much simpler than the CCSD(f) 
ones. All these features make CCSD{f} the method of 
choice for many applications. 

Various T3 corrections provide excellent results in the 
vicinity of the equilibrium geometry and, in this region, 
the resulting potential energy surfaces show a much 
better parallelism to the FCI potential than do those 
obtained with various CCSD approximations. Often, 
the T3 corrected methods also provide good results for 
systems with moderately stretched bonds. 

Concerning the relative performance of approxima- 
tions investigated in this paper, we find that various 
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T3 corrected schemes perform differently in different 
situations and it is hard to conclude with certainty 
which one is better, even though it seems that CCSD{T} 
and CCSD(T) arc to be favoured. The situation is par- 
ticularly inconclusive when studying the bond breaking 
or stretching in OH, NH2, CH3 and CN. Taking an 
overall point of view, we observe that in 24 cases (invol- 
ving different systems, different states, and different 
basis sets), CCSD(T) gives the best performance, while 
both CCSD{T} and CCSD[T] do so in only 8 cases. 
Regarding the vibrational frequencies, we observe the 
following general ordering of the computed frequencies: 

CCSD(T)  ^      CCSD(T) ^      CCSDIT]   u ,, . ,     . u>c > wc > wc . However, this ordering 
according to the size of the computed LOQ does not imply 
the quality of the performance of the individual T3 cor- 
rections. For well-behaved systems, when the T3 cor- 
rected values may still be above the FCI ones, 
CCSD(T) or CCSD[T] are likely to be the best. For 
the 'difficult' systems, where the T3 corrections have a 
tendency to overcorrect, CCSD{T} is to be preferred 
over CCSD(T), which in turn is better than CCSD[T]. 

In general, any pcrturbativc T3 correcting scheme 
cannot be expected to perform satisfactorily far away 
from the equilibrium geometry. In order to extend the 
CC methodology to such highly quasidegenerate situa- 
tions, while avoiding theoretically and computationally 
demanding multi-reference approaches, we currently 
examine the so-called externally corrected CCSD 
schemes [22], in which the higher than pair clusters are 
first obtained by the cluster analysis of some relatively 
simple, a priori available or easily accessible wave func- 
tion, and are then subsequently used to correct the 
CCSD equations, thus effecting a more appropriate 
decoupling of the full CC chain of equations at the 
pair cluster level. The exploitation of this scheme in 
the UGA-CCSD(is) method was described in [23], and 
is applied to the same systems studied here in [24]. 
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The recently developed orthogonally spin-adapted linear-response coupled-cluster theory with 
singly and doubly excited clusters (LRCCSD) has been applied to calculate the dipole moment 
function of HF. Using an accurate potential energy function derived from spectroscopic data 
and a dipole moment function obtained in LRCCSD calculations, the effective dipole moment 
values in individual vibrational states and the corresponding vibrational transition dipole 
moments have been determined over a wide range of values of vibrational quantum numbers. 
The calculated matrix elements of the dipole moment have been found to be in good agree- 
ment with the available experimental and theoretical data, indicating the suitability of the 
LRCCSD approach for such calculations. 

1.    Introduction 
Molecular electric properties, including dipole 

moments, exhibit an appreciable dependence on nuclear 
geometry [1]. The knowledge of the corresponding 
property functions describing this dependence is essen- 
tial for the understanding of the role of vibrational and 
rotational contributions to properties [2-16]. 

The dipole moment functions are particularly impor- 
tant in spectroscopy. They provide a basis for calcula- 
tions of transition probability coefficients and radiative 
lifetimes involving rovibrational states [17], which are in 
turn essential for the determination of internal energy 
distributions in the products of chemical reactions and 
for the understanding of chemical laser performance, 
where overtone emission from the vibrationally excited 
molecules, including hydrogen fluoride, plays a central 
role [18]. 

The dipole moment function of hydrogen fluoride 
continues to be a topic of vigorous experimental and 
theoretical studies. Since the pioneering studies of 
Weiss [19] and Muenter and Klemperer [20], who used 
a molecular beam electric resonance method to deter- 
mine the dipole moment of HF in the ground (v = 0) 
vibrational state, and Lovell and Herget [21], who used 

absorption spectroscopy to determine the off-diagonal 
matrix element of the dipole for the fundamental 
1 <— 0 transition, a number of experimental studies of 
the dipole moment function of HF have been reported 
in the literature [22-28]. All of them carefully analyse 
the vibrational dependence of the dipole moment of HF 
and the corresponding transition moments, which we 
designate as 

ßz (v ,J ;v ,J) = (v ,J \fj,z\v ,J ), (1) 

or 

tf\vn,v') = vf(v",0;v',0), (2) 

if rotationless quantities are discussed. Here, fiz = /zz(r) 
is the dipole moment function of HF (i.e. its non- 
vanishing z component along the internuclear axis), r 
designates the H-F internuclear separation, and \v,J) 
are the rovibrational (radial) wave functions. The 
dipole moment function, ßz(r), is extracted from the 
spectroscopic data by representing it as a power series 
in the internuclear distance r around the equilibrium 
geometry r = rt and by performing mathematical ana- 
lysis, which allows extrapolation of the results outside 
the range of internuclear distances covered by experi- 

0026-8976/98 $12-00 © 1998 Taylor & Francis Ltd. 
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merit [24, 28, 29]. The most extensive information about 
vibrational matrix elements of the HF dipole moment 
can be found in [24], where the authors measured the 
emission intensities for the fundamental through fifth 
overtone bands for all transitions from « < 9 for HF 
and v < 12 for DF. 

The dipole moment function of HF has also been 
investigated theoretically. For example, Werner and 
Meyer [4] evaluated the vibrational v — 0 correction to 
the electronic dipole moment of HF using the coupled 
electron pair approximation (CEPA) and the configura- 
tion interaction (CI) methods. Similar electronic struc- 
ture methods were used earlier by Meyer and Rosmus 
[3], who calculated the dipole moment function //.(r) 
over a wide range of r values and the selected vibrational 
matrix elements of the dipole, such as //" (r, r),« = 0,1, 
and fi]'h(0, «), v = 1 - 3. In a more recent study [5], 
Werner and Rosmus used CEPA and MCSCF (multi- 
configurational self-consistent field) approaches to cal- 
culate (iz(r), ßfh(v,v), « = 0-8, fif(0,v), «=1-5, 
and nv.lh(v -k,v), v = 2 - 8, k=\,2. Both papers [3, 
5] point out the importance of electron correlation and 
discuss difficulties in balancing the role of various elec- 
tronic configurations in ah initio calculations of dipole 
moment functions. This is particularly evident at the 
MCSCF level, which does not account for the dynamic 
correlation effects. Earlier MCSCF studies of the dipole 
moment function of HF include the 2-configurational 
SCF calculation by Lie [30] and the 8-configurational 
MCSCF calculations by Krauss and Ncuman [31] and 
Amos [32]. The most accurate study to date is the recent 
calculation of p.(r) and fiVh(v",«'), «',«" = 0-20 
(« = 19 is the highest experimentally observed level 
[33]) by Zemke et al. [34], who used a multi-reference 
(MR) CI method with singles and doubles (MRCISD), 
CASSCF (complete active space SCF) orbitals, and a 
very large [6s5p3d2f/4s3p2d] atomic natural orbital 
(ANO) basis set consisting of 73 contracted functions. 
The authors used an approach, in which the ab initio 
MRCISD/CASSCF dipole moment function was com- 
bined with the potential function derived from the avail- 
able spcctroscopic data [33] by using the Rydbcrg 
Klein-Rees (RKR) method [35]. A similar strategy 
was used by us in our recent studies of quadrupole 
moment functions of HF [15], N2 [15], and NH, [16]. 
We use this combined RKR/ab initio approach in the 
present paper as well. 

The purpose of the present work is the determination 
of the vibrationally averaged dipole moments fiVh(v,v) 
and various transition moments fiv.'h(v",v') of the HF 
molecule, over a wide range of vibrational quantum 
numbers, using the dipole moment function obtained 
in the linear-response coupled-cluster (LRCC) calcula- 
tions. Some representative values of fi.(r) that we use in 

this paper were reported earlier in [36]. In generating 
^_(r), we use the LRCC formalism suggested by Mon- 
khorst [37] and further developed and implemented by 
us [36, 38] using the orthogonally spin-adapted (OSA) 
formulation [39] of the single-reference (SR) CC theory 
[40]. Thus, the present study represents the next step in 
our exploration of the capabilities offered by the SRCC 
theory of molecular electronic structure, in particular, 
by the LRCC approach to molecular properties. 

Let us mention that CC theory [40] offers several 
advantages that arc important in the determination of 
property functions. Thanks to the use of the exponential 
ansatz for the wave function. CC theory describes bulk 
of correlation effects, even at a relatively low level of 
approximation, and. unlike limited CI, is size extensive. 
The latter feature is particularly essential, since the gen- 
eration of property functions of the type discussed in 
this paper requires electronic structure data for geome- 
tries that are far away from the equilibrium one. In 
addition, the LRCC formalism allows one to define 
one-electron properties, such as //-(r), without resorting 
to the direct determination of the expectation value, e.g. 
<V|//-(r)|f)/<V|y/)' with thc cc wavc function |V). 
This expression would be very difficult to handle at thc 
CC level of theory (cf. [36, 38] for discussion). Instead, 
thc components of LRCC multipolc moments are 
defined as first derivatives of thc energy of a molecule 
with respect to the field components, even though 
numerical differentiation as used in thc finite-field 
approaches [41] is entirely eliminated from thc proce- 
dure and all differentiations of energy arc carried out 
analytically by solving linear systems of equations [36, 
38], This is crucial for thc application discussed in this 
paper, since thc finite-field approach becomes expensive 
if thc entire property function is to be generated (at least 
a few values of thc energy, converged to very high pre- 
cision, would have to be calculated at each geometry). 
Moreover, thc numerical differentiation of thc energy 
with respect to field components may become unstable 
at stretched geometries due to significant reduction of 
thc radius of convergence of the power scries expansion 
describing thc energy of a molecule in an electrostatic 
field [42] (sec also [36]). Thc LRCC theory eliminates all 
those drawbacks of thc finite-field and similar 
approaches and allows one to obtain highly accurate 
(5 decimal digits or more) and stable property values 
at any geometry and at relatively low cost. Unlike in 
the finite-field procedure, thc precision of thc LRCC 
property calculations can be easily increased if thc fitting 
of property values to an analytic function so requires 
(calculations reported in this paper arc based on a fitting 
of this type). Thc advantages of thc OSA formulation of 
CC theory used in this study were discussed in a number 
of places [36, 38, 39]. 
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Our primary goal is to compare the LRCC results for 
fiz(r) and fillh(v",v') with the earlier calculations of the 
dipole moment function of HF and experimental data. 
We demonstrate that LRCC theory is capable of produ- 
cing high-quality spectroscopic data, including transi- 
tion dipole moments for overtone bands, at relatively 
low cost. 

The paper is organized as follows. In section 2, we 
outline the methodology and describe computational 
details. Section 3 describes and discusses the results, 
which are then summarized in section 4. 

2.    Synopsis of theory and computational details 
According to equation (1), in order to calculate the 

rovibrationally averaged dipole moments fif((v, J; v, J) 
and the corresponding transition dipole moments 
/4ff(v", J"; v', J'), we must first generate the radial rovi- 
brational wave functions i[)vj(r) = (r\v,J). They are 
obtained using the procedure described in [15]. Let us 
thus only mention that we solve the eigenvalue problem 
for the radial Hamiltonian, 

H 
2H Ar2 V(r) 

2/xr 
■J(J+\).. (3) 

by numerical integration. We use a grid of 3000 values 
of r from the interval [/-[, r2] and follow the Numerov- 
Cooley procedure [43]. We assume the boundary condi- 
tions W(ri) = Vvfo) = 0 and choose the interval 
[r\,r2] to be large enough to provide energies of the 
highest evaluated rovibrational states with an accuracy 
better than 0.1 cm-1. The potential energy function V(r) 
that defines H is represented by the power series 

7(r) = $>y, (4) 
i 

where the variable y is defined as 

v= 1 -exp[-a(r-re)]. (5) 

The coefficients Ff (we use 10 terms in expansion (4)) 
and the parameters a and re are obtained by a least 
squares fit to the RKR potential, which for the HF mol- 
ecule in the X 'E+ state has been determined in [33]. 

Once the RKR radial wave functions \v,J) are avail- 
able, we evaluate matrix elements ^(v", J";v', J') by 
numerical integration (cf. [44]). Clearly, we have to find 
a suitable analytical representation of the dipole 
moment function ßz(r), whose selected values are gen- 
erated in ab initio LRCC calculations (see the discussion 
below). As in our earlier study of the quadrupole 
moment function of HF [15, 45], we represent /xz(r) as 
a power series of the form 

Table 1. Parameters defining the dipole 
moment function fiz(r) (cf. equation 
(6)) of HF obtained by the least 
squares fit of the LRCCSD data. The 
coefficients //, and the standard 
deviation of the fit, a, are in eo0 
(lea0 = 2.541 766 D). 

Parameter Parameter value 

re/A , 0.924212° 
a/A-1 1.13 
A»o 0.703661 
ß\ 0.516815 
M2 0.240628 
ß3 -0.430194 
M4 -2.213088 
ßs 5.535 609 
ß6 12.872 106 
M -42.060 172 
M8 -17.398065 
A*9 84.207629 
Mio -41.961465 
a 0.0024 

Vz(r) = '^2niy', (6) 

"The equilibrium bond length in HF 
obtained in CCSD calculations [45]. 

where y is given by equation (5). Of course, a different 
value of a than the one used in equation (4) must be used 
in equation (6). The coefficients fit and the parameter a 
are obtained by a least squares fit to the LRCC values of 
jtxz(r). The final values of /J,-, a, and re corresponding to 
ab initio data generated in this study (cf. also [36]) are 
listed in table 1. We note that for the parameter re we 
simply use the equilibrium bond length in HF obtained 
in the CCSD (CC singles and doubles) calculations 
reported in [45]. The final numerical integration of the 
expression Vvy M x ßz(r) x Vv.j'f/) over r> which 
defines matrix elements /4 (v",J";v',J') (cf. equation 
(1)), is performed on the same grid of 3000 points used 
to generate the wave functions ipvj(r). 

The LRCC calculations of ßz(r) were performed using 
the CCSD approximation. This means that the 
zero-order cluster operators defining the wave function 
of HF in the absence of an electric field, and their 
first-order counterparts describing the response of 
the system to an applied electric field, were approxi- 
mated by their singly and doubly excited com- 
ponents relative to the restricted Hartree-Fock (RHF) 
reference (see [36, 38] for details). The corresponding 
LRCCSD values of fj,z(r) used for the fitting (cf. 
table 1) and for the subsequent numerical evaluation 
of /iff(t/', J";v', J') are listed in table 2 and compared 
with other results in figure 1. Differences between dipole 
moment values obtained in ab initio LRCCSD calcula- 
tions and the corresponding values of the dipole 
resulting from the fit (6) are listed in table 2 as well. 
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Table 2. The LRCCSD values of the dipole moment of HF 
[z —component ft:(r), in ea0] used for the fitting according 
to equation (6) and differences between LRCCSD and 
fitted values (also in ea0). The internuclear separation r 
is in bohr (1 bohr = 1 a0 = 0.529 177 249 Ä). 

f:(r) LRCCSD - fit (6) 

1.039 349 
1.12632 
1.2996 
1.5 
1.6 
1.732 8" 
1.8 
1.95 
2.166 
2.36 
2.5992 
2.7 
2.83 
2.9 
3.0324 
3.1 
3.21 
3.3 
3.4656 
3.6 
3.7 
3.8 
3.9 
4.0 
4.1 
4.2 
4.332 
5.1984 
6.9312 
8.664 

10.396 8 
12.1296 

0.4938 
0.5176 
0.5672 
0.6276 
0.6585 
0.6995 
0.7200 
0.7648 
0.8246 
0.8707 
0.9123 
0.9230 
0.9295 
0.9293 
0.9211 
0.9129 
0.8934 
0.8720 
0.8204 
0.7683 
0.7248 
0.6784 
0.6300 
0.5808 
0.5318 
0.4839 
0.4236 
0.1563 
0.0269 
0.0102 
0.0083 
0.0096 

0.0139 
-0.0055 

0.0037 
-0.0001 
-0.0000 

0.0001 
-0.0002 
-0.0003 

0.0011 
0.0023 
0.0011 

-0.0002 
-0.0016 
-0.0020 
-0.0020 
-0.0015 
-0.0004 

0.0009 
0.0027 
0.0032 
0.0027 
0.0016 

-0.0003 
-0.0026 
-0.0050 
-0.0073 
-0.0098 
-0.0034 

0.0110 
0.0012 

-0.0031 
-0.0031 

"The experimental equilibrium bond length. 

We converged the LRCCSD equations until 5-6 decimal 
figures for the dipole, and 4-5 decimal digits for the 
corresponding first-order cluster amplitudes, became 
stable in the iterative procedure. 

As in our earlier LRCCSD calculations [15, 16, 
36, 45], we used Sadlej's polarized [5s3p2d/3s2p] basis 
set [46], which is a medium size basis set of triple zeta 
plus two sets of polarization functions (TZ + 2P) quality, 
designed for calculations of electric properties (all 6 
Cartesian components of the fluorine d functions were 
included). In consequence, several dipole moment values 
listed in table 2 arc identical to their analogues reported 
in our earlier paper [36]. We added, however, several 
new points to the previously published list of nuclear 
geometries. As explained in the introduction, wc used 
the OSA formulation of the LRCCSD theory described 
in detail in [36, 38], and the calculation was performed 
using our own computer codes [36, 38] (for a description 
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Figure 1. Dipole moment function, //.(r), of the HF 
molecule. The solid line represents our LRCCSD results, 
while the short-dashed line gives the MRCISD results of 
Zemke et al. [34]. The open circles represent the SCEP/ 
CEPA values of Werner and Rosmus [5]. The experi- 
mentally derived values of Silco and Cool [24] arc repre- 
sented by solid circles. The experimental equilibrium 
geometry and selected leftmost (rightmost) turning points 
for the RKR vibrational states |i,0) arc designated by rc 
and r,._ (rr)), respectively. The interval [r9 ,r9l] repre- 
sents the limited region of geometries for the Silco Cool 
[24] and Werner Rosmus [5] results. 

of the corresponding SRCCSD codes, sec [47]; for a 
description of the algorithm used to converge CC equa- 
tions, see [48]). The only exceptions were generation of 
the RHF molecular orbitals (MOs) and transformation 
of one- and two-electron integrals from atomic orbital 
(AO) to MO basis, which wc performed using GAMFSS 

[49]. Our own codes, however, were used to calculate 
one-electron integrals involving the dipole moment 
operator. 

In the initial SRCCSD calculations (needed to gen- 
erate the zero-order cluster amplitudes for LRCCSD 
calculations) and in the LRCCSD calculations of the 
first-order cluster and dipole moment components, the 
lowest core MO was kept frozen. The SRCCSD equa- 
tions were converged until  10 decimal digits for the 
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energy, and 9 decimal digits for the zero-order cluster 
amplitudes, stabilized (we could use less tight criteria, 
but the calculations were so fast that we could afford a 
slightly higher precision than required). 

3.   Results and discussion 
The final results of this study are presented in tables 

3-5. Table 3 lists the effective dipole moment values (cf. 
equation (2)) ^(v) = pf'fav]) = ßf (D,0;D,0) in the 
vibrational states \v,0), v = 0 - 19 (recall that v = 19 is 
the highest experimentally observed vibrational level 
and the highest v value considered in the RKR study 
[33]) and the vibrationless value of the dipole, /ie, calcu- 
lated at the experimental equilibrium geometry. In addi- 
tion, we list in this table the purely vibrational (J = 0) 
term values G(v) corresponding to RKR (experimental) 

and CCSD electronic potentials V(r), even though the 
only potential that we used in this study to generate 
\v,J) states is the RKR potential of Coxon and Haji- 
georgiou [33]. Table 4 lists the vibrational transition 
moments (absolute values) ßf>(v",v') for the vibra- 
tional quantum number v' < 9, so that a comparison 
can be made with the experimental data of Sileo and 
Cool [24]. The remaining transition moments with 
v' = 10 - 19 are presented in table 5. In the latter 
case, we can only compare our results with the 
MRCISD/CASSCF calculations of Zemke et al. [34], 
who considered all transition moments with v' < 20. 
In presenting transition dipole moments, we focus on 
the fundamental (AD = v" - v' = -1) and first overtone 
(At; = -2) bands, even though we evaluated all transi- 
tion moments with v',v" < 19 (results not presented are 

Table 3. The CCSD vibrational term values G(v) relative to RKR (in cm-1) and the vibrational dependence of the dipole moment 
of HF in the XXT,+ state. A comparison of calculated (ab initio, theory) and experimental (exp) results. ßfiv) (inea0) 
designates diagonal matrix element nv

z
,h(v, v) (rotationless value; cf. equation (2)) and pe (also in eaQ) is the vibrationless dipole 

moment corresponding to the equilibrium geometry. 

G(v) 

ß? '(y) (ab initio) 

/if (v) (theory/exp) 

fif(v) (exp) 

Werner Sileo Muenter 
and Zemke and Bass and Gough Barnes 

V RKR"    CCSD" LRCCSDf Rosmus et al.e Ogilvie^ Cool9 et alh Klemperer' et al.' et al.k 

0 2050.8 1 0.7083 0.7109 0.7174 0.7186 0.7156 0.718 621 0.718605 
1 6012.2 3 0.7256 0.7278 0.7361 0.7372 0.7337 0.737 162 0.7365 
2 9801.6 8 0.7423 0.7444 0.7544 0.7553 0.7511 0.7566 0.7548 
3 13423.6 15 0.7584 0.7601 0.7720 0.7728 0.7684 0.7717 
4 16882.4 25 0.7740 0.7751 0.7885 0.7893 0.7845 
5 20181.8 38 0.7888 0.7888 0.8034 0.7994 
6 23 324.6 50 0.8024 0.8006 0.8163 0.8128 
7 26313.1 61 0.8143 0.8109 0.8266 0.8238 
8 29 148.9 67 0.8236 0.8171 0.8335 0.8313 
9 31832.4 66 0.8296 0.8361 0.8345 

10 34362.9 57 0.8315 0.8335 
11 36738.4 37 0.8282 0.8246 
12 38954.9 3 0.8187 0.8079 
13 41006.6 -46 0.8014 0.7819 
14 42884.4 -116 0.7747 0.7446 
15 44576.1 -212 0.7361 0.6937 
16 46064.2 -345 0.6819 0.6263 
17 47325.7 -527 0.6061 0.5383 
18 48 328.5 -779 0.4980 0.4239 
19 49026.5   - -1134 0.3353 0.2722 

Me 0.6995 0.7011 0.7080 0.7092 0.7066 0.709 38 0.7068 0.7093 0.7090 

"From [33]. The dissociation energy is De = 49 362 ± 5cm    (see [34] and references therein). 
From [15]. The OSA CCSD calculation using the same basis set as employed in this study. 

c Present work. 
''From [5]. SCEP/CEPA calculation. 
e From [34]. MRCISD/CASSCF calculation. 
1 From [29]. 
g From [24]. 
* From [27]. 
''From [20]. y = 0 and 7 = 1. 
' From [25]. 
k From [28]. 
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Table 4. Transition dipolc moments fiVh(v",v') (absolute values, in ea0) for the fundamental (Ar EE V" - v' = -1) and first 
overtone (AD = -2) bands of HF with the vibrational quantum number r' s£ 9. Results for the higher overtone bands include 
the off-diagonal matrix elements of the dipole moment with r" — 0 and v' = 3,4 (matrix elements with r' > 4 arc smaller in 
absolute value than 10"4 ea0). 

Ah initio Experiment 

Werner and Zemke Silco and Bass Lovell and         Pine Spcllicy 
v" v' LRCCSD" Rosmus* el alc Coolrf el ale Hergct'          el al.g Meredith''        el al.' 

0 1 0.0377 0.0370 0.0402 0.0388 0.0392 0.0388          0.0392 
0 2 0.0050 0.0049 0.0051 0.0050 0.0049 0.0049 
0 3 0.0007 0.0007 0.0007 0.0007 0.0006 0.0006 
0 4 0.0001 0.0001 0.0002 0.0001 0.0001 

1 2 0.0524 0.0515 0.0562 0.0543 
2 3 0.0629 0.0618 0.0676 0.0653 
3 4 0.0710 0.0688 0.0760 0.0736 
4 5 0.0772 0.0736 0.0818 0.0795 
5 6 0.0814 0.0763 0.0851 0.0834 
6 7 0.0836 0.0759 0.0858 0.0846 
7 8 0.0834 0.0736 0.0833 0.0830 
8 9 0.0802 0.0775 0.0779 

1 3 0.0090 0.0088 0.0093 0.0090 
2 4 0.0131 0.0129 0.0137 0.0131 
3 5 0.0173 0.0174 0.0184 0.0176 
4 6 0.0216 0.0222 0.0236 0.0224 
5 7 0.0263 0.0273 0.0293 0.0276 
6 8 0.0314 0.0325 0.0354 0.0334 
7 9 0.0370 0.0420 0.0397 

"Present work. 
6 From [5]. SCEP/CEPA calculation. 
rFrom [34], MRCISD/CASSCF calculation. 
d From [24], 
e From [27]. 
•''From [21]. 
9 From [26]. 
* From [22]. 
' From [23]. 

available from us upon request). We also focus on the 
rotationless values. The results for the higher overtone 
bands that we report in this paper arc limited to transi- 
tion dipole moments with v" = 0 and |Ar| < 4 (sec table 
4). As noted in [34], the fundamental and first overtone 
transition probabilities for emission are largest for 
v' < 15, so that \Av\ < 2 transition moments arc repre- 
sentative of the entire set of n]>b(v", v') values. More- 
over, the number of the available significant digits is 
largest for the transition dipole moments corresponding 
to |Ai;| < 2 bands (we must realize that the number of 
decimal digits in the calculated transition dipole 
moments is determined by the accuracy of the computed 
dipole moment function). As a result, the comparison of 
the LRCCSD transition dipole moments obtained in 
this study with the results obtained by other authors is 
most meaningful for |AP| < 2. 

Before discussing the results collected in tables 3-5, let 
us notice that the LRCCSD dipole moment function is 
in a very good agreement with the dipole moment func- 

tion derived from experiment by Silco and Cool [24] (sec 
figure 1). There is also an excellent agreement between 
the singlc-rcfcrcncc LRCCSD results reported here and 
very accurate ah initio results reported in [34], where the 
authors used a significantly more expensive multi-refer- 
ence approach. The ah initio dipole moment function of 
Werner and Rosmus obtained using the SCEP/CEPA 
approach [5] is also quite good, but in worse agreement 
with experiment than our curve, particularly near the 
region where fi.(r) approaches its maximum value. It 
must be emphasized that the basis set employed in our 
study is significantly smaller than the basis sets used by 
Werner and Rosmus [5] and Zemke et al. [34] (our basis 
set, in spite of the use of all Cartesian components of 
fluorine d functions, consists of only 35 orbitals, com- 
pared to 73 orbitals used in [34]). In particular, our basis 
set lacks fluorine f functions, which were included in the 
calculations reported in [5, 34], 

For   r>3.0bohr   (1 bohr= \a0 = 0.529 177249 Ä), 
our results begin to deviate from the results reported 
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Table 5. Calculated transition dipole moments fi?b(v",v') 
(absolute values, in ea0) for the fundamental (Av = 
v" — v'= — 1) and first overtone (Av = — 2) bands of 
HF with the vibrational quantum number v' = 10 — 19. 

v" v' LRCCSD" Zemke et al.b 

9 10 0.0736 0.0678 
10 11 0.0632 0.0536 
11 12 0.0485 0.0346 
12 13 0.0290 0.0102 
13 14 0.0044 0.0197 
14 15 0.0253 0.0547 
15 16 0.0598 0.0935 
16 17 0.0976 0.1325 
17 18 0.1341 0.1638 
18 19 0.1549 0.1682 

8 10 0.0431 0.0489 
9 11 0.0495 0.0558 

10 12 0.0558 0.0624 
11 13 0.0614 0.0678 
12 14 0.0651 0.0709 
13 15 0.0656 0.0697 
14 16 0.0606 0.0614 
15 17 0.0471 0.0424 
16 18 0.0215 0.0090 
17 19 0.0181 0.0362 

a Dresent work. 
' From [34]. MRCISD/CASSCF calculation. 

in [34]. This deviation grows as r increases, even though 
the overall shape of both dipole moment functions is 
pretty much the same. In view of the observed differ- 
ences between both dipole moment functions, we can 
expect that the quality of the effective dipole moments 
and the corresponding transition dipole moments 
obtained in this study will deteriorate for higher values 
of v (we assume that the MRCISD calculation reported 
by Zemke et al., who used twice as large basis set and a 
multi-configurational reference space, is more accurate 
and can serve as a benchmark for us). We should expect 
a significant worsening of the LRCCSD results for 
v > 9, since the rightmost turning point corresponding 
to v = 9 RKR state, r9+, and turning points corre- 
sponding to v > 9 states, are greater than 3.0 bohr (cf. 
figure 1, r9+ = 3.0874 bohr [33]). The fact that the 
LRCCSD dipole moment function does not seem to 
vanish asymptotically (as it obviously should [45] and 
as Zemke et a/.'s MRCISD dipole moment function 
does [34]; cf. figure 1) is probably of slightly lesser 
significance, since the rightmost turning point corre- 
sponding to the highest vibrational level discussed 
here, i.e. v = 19, is in the region where both MRCISD 
[34] and LRCCSD dipole moments are still 
significantly positive (see figure 1; r]9+ = 5.4181 bohr 
[33]). Moreover, the LRCCSD values of the dipole 
moment are very  small for r approaching oo  (for 

r = 7re = 12.1296bohr, the LRCCSD dipole is less 
than 0.01 au; cf. table 2; 1 au= lea0 = 2.541 766D). In 
order for the LRCCSD dipole moment function to 
vanish asymptotically, we would either have to replace 
the RHF orbitals by the UHF ones or to use the RHF 
orbitals and include connected tri-excited clusters, at 
least of the so-called semi-internal type [50]. The con- 
nected tri-excited clusters are also needed to eliminate 
a small gap between the RHF-based CC and full 
CI potential energy curves of HF at infinite H-F 
separations [51]. 

In principle, the results in tables 3-5 confirm our 
expectations, although there are cases in which the 
LRCCSD approach performs better than we expected. 
For v < 10 — 12, differences between dipole moment 
mean values /z™ (v) obtained in this study and fiw

z
l (v) 

values reported by Zemke et al. [34] are very small and 
do not exceed 1-2% (see table 3). These differences 
become much larger when v > 12 (they increase from 
2.5% for v = 13 to 23.2% for v = 19). This is a clear 
indication of the failure of the closed-shell SRCCSD 
formalism at very large H-F separations and, to a 
lesser degree, of our fitting procedure, which was 
designed to produce best results primarily for lower v 
values. We note that the LRCCSD dipole moments are 
best reproduced by our fit (6) for 1.2 bohr 
<r< 3.3 bohr (cf. table 2). 

Our results for ^v
z
!h(v) are comparable to those 

obtained by Werner and Rosmus [5] who, as mentioned 
above, used a larger basis set than the one employed 
here. There is, however, one feature which, we believe, 
makes our results somewhat better. Differences between 
the SCEP/CEPA values of /4h{v) reported in [5] and the 
corresponding experimental values of /i™ (v) reported 
by Sileo and Cool [24] vary with v. They increase from 
0.005 au for v = 0 to 0.014 au for v = 8. Similar differ- 
ences formed with our nl>h(v) values are practically inde- 
pendent of v, and for v < 8 we obtain an almost 
constant difference of ca. 0.008-0.010 au between our 
and Sileo and Cool's values of ßf'ip). In that sense 
our results are very similar to the most accurate /J-Vz'

h(v) 
values reported in [34] (in which case, differences with 
experimental values reported by Sileo and Cool vary 
between 0.002 and 0.004 au), even though the accuracy 
of the experimental data reported by Sileo and Cool 
may not be sufficient to draw such conclusions [29]. As 
a matter of fact, the newer results reported by Ogilvie 
[29], who based his theoretical analysis of the dipole 
moment function of HF on more recent and more accu- 
rate experimental data (published, for example, in [26, 
27]) differ from the results for ^(v) reported by Sileo 
and Cool by 0.002-0.005 au. The same applies to the 
experimentally derived nl>b(v) values reported in [27, 
28]. The agreement between ab initio results reported 
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by Zemke et al. [34] and these newer //"b(c) values is 
most impressive. Our fj~h(v) values differ from those 
resulting from Ogilvic's analysis of experimental data 
[29] by ca. 0.010-0.015 au (sec table 3). It should be 
pointed out, however, that it would be surprising to 
obtain perfect agreement between experimental and ah 
initio values of fiv:'

h(v) on the basis of nonrclativistic ah 
initio calculations relying on the Born Oppcnheimcr 
approximation, which is an approximation used in our 
and all earlier ab initio studies of the HF dipole moment 
function. We believe that a constant difference of ca. 
0.008-0.010 au between our and Silco and Cool's 
values of nl>h(v) for v < 8 is caused primarily by the 
fact that the LRCCSD calculations reported in this 
paper underestimate the experimental value of the vibra- 
tionlcss dipole moment //c by 0.0071-0.0099 au. A much 
better agreement between the LRCCSD and experi- 
mental value of /v,c should be obtained with a larger 
basis set. The calculation by Zemke et al. [34] is more 
accurate in this respect, even though the question of 
what degree of accuracy can be achieved by using non- 
relativistic Born-Oppcnhcimcr theory remains. 

The results in table 3 indicate that we can rely on the 
LRCCSD estimates of //Yib(c) for c< 10-12. This is 
consistent with the ability of the closed-shell CCSD 
approach to describe the first 10-12 vibrational term 
values. The reliability of the CCSD procedure to accu- 
rately reproduce G(v) values for v > 13 is questionable, 
as is the reliability of the LRCCSD data for /;!ib(r) 
obtained with Sadlej's basis set (cf. [15]). 

A similar pattern is observed for the rotationless tran- 
sition dipole moments /4'b(c",c'), even though in this 
case the LRCCSD approach performs significantly 
better, which supports our observation that a small 
constant shift of our dipole moment function might be 
sufficient to improve the LRCCSD values of the diag- 
onal matrix elements //"b(c) (a constant shift of the 
dipole moment function would not affect the off- 
diagonal n*ib(v",v') elements). The LRCCSD values 
of ßVb(v", v') arc clearly superior when compared to 
the SCEP/CEPA results obtained by Werner and 
Rosmus [5]. For the fundamental (Ar = r" — v' = —\) 
transitions with v' < 9, differences between LRCCSD 
and experimental [24] data do not exceed 2-4% and 
can be as small as 0.5%, a very impressive result (sec 
table 4). The analogous //,!'b(c", v') values reported by 
Werner and Rosmus [5] differ from the corresponding 
experimental values reported by Sileo and Cool [24] by 
5-11%. A similar statement applies to fi]lh(v", c') values 
characterizing first overtone bands. For v' =2-4 (or 
v" — 0-2), the agreement between the LRCCSD and 
experimental results is better than 10~4au. However, 
the SCEP/CEPA results of Werner and Rosmus [5] 
become slightly better for v' = 6-8 (sec table 4). 

The quality of the LRCCSD results for the transition 
dipole moments with r' < 9 is comparable to the quality 
of the MRCISD results reported in [34], which we and 
many others regard as the most accurate ah initio calcu- 
lations to date. In fact, our results for first overtone 
transitions seem to be noticeably better than those 
reported in [34], at least with respect to agreement 
with the data published by Silco and Cool [24]. Wc do 
not think, however, that the same remark applies to our 
transition dipole moments with r' > 10 (sec table 5). In 
this case, differences between our results and those 
reported by Zemke et al. [34] arc quite large. Since wc 
do not use the large basis set employed in [34] and since 
wc only rely on a SR formalism and a simple CCSD 
approximation, our results arc probably less reliable 
than those obtained by Zemke et al. Wc base this 
remark on the significant differences between the 
dipole moment functions reported in this study and in 
[34] for r>r9l. Interestingly enough, in spite of the 
observed differences, both calculations lead to similar 
behaviour of the transition dipole moments for 
r'>10. For example, the LRCCSD \tifh(v",v')\ 
values corresponding to fundamental (Ac = — 1) 
bands, which wc obtained in this study, decrease with 
increasing r' to reach the minimum for c' = 14. For 
v' > 14, they increase with c'. A similar pattern is 
observed in the calculations reported by Zemke et al. 
[34] (sec table 5). The behaviour of the LRCCSD 
approach is even better when wc look at the 
|//;lb(i",t')| values characterizing first overtone bands 
(Ac = -2 case). In this case, differences between our 
LRCCSD values and the corresponding values pub- 
lished in [34] do not exceed 12% and can be as small 
as 1%, as long as 10 < c' < 17. In fact, the LRCCSD 
values of |//"b(c'- 2, c')| seem to display a somewhat 
more regular dependence on c' for c' > 10 than the 
MRCISD values published in [34] (cf. the 
|//rib(r' - 2.c')| values for c' = 18 in table 5). 

We can certainly conclude that the overall perform- 
ance of the LRCCSD approach is very good, in spite of 
its inherent SR nature and the absence of highcr-than- 
bi-excited clusters in the formalism. Let us thus sum- 
marize the results. 

4.    Summary and concluding remarks 
We used the recently developed OSA LRCCSD 

approach [36, 38] to study the dipole moment function 
of HF. The effective dipole moment values in individual 
vibrational states and the corresponding vibrational 
transition dipole moments were calculated. This was 
accomplished by combining the LRCCSD dipole 
moment function with the RKR potential function 
reported in [33]. All vibrational states included in the 
RKR study [33] were considered. 
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A comparison was made with earlier ab initio calcula- 
tions, including the recent MRCISD study reported in 
[34] and the seminal study by Werner and Rosmus [5] 
who used the SCEP/CEPA approach. We also com- 
pared the LRCCSD results with the available experi- 
mental data, including the extensive data for 
ß?h{v",v') published by Sileo and Cool [24]. 

The overall behaviour of the LRCCSD formalism was 
found to be very good. The diagonal and off-diagonal 
matrix elements fivz

,h(v",v') resulting from LRCCSD 
calculations are excellent up to v",v' < 10. They are 
more accurate than the SCEP/CEPA values [5] and 
comparable in accuracy to the values published in [34], 
in spite of the fact that we used only a medium-size basis 
set lacking fluorine f functions, which were present in the 
calculations reported in [5, 34]. We believe that we could 
obtain even better results, should we decided to test our 
method with a larger basis set. As shown in our earlier 
papers (cf. for example [36, 38]), the LRCCSD results 
have a tendency to systematically improve with the size 
and quality of the basis set. It would be interesting to 
examine the performance of LRCCSD approach using 
the basis set employed in [34]. This would allow us to 
determine whether an approximately constant 0.008- 
0.010 au difference between the diagonal matrix ele- 
ments fivz'

b(v) obtained in this study and their counter- 
parts reported in [24] is primarily due to a slight 
inaccuracy in the calculated value of /ie, as suggested 
in this paper. 

The LRCCSD results for the matrix elements 
l£b(v",v'), characterizing the X!S+ state of HF, dete- 
riorate when v",v' > 10, even though some transition 
moments (e.g. for first overtone bands) turn out to be 
very good. This must be related to the absence of tri- 
excited cluster components in the LRCCSD formalism. 
They could be included by using, for example, the state- 
selective (SS) CCSD(T) method (SSCCSD method with 
semi-internal tri-excited clusters) of [52]. As shown in 
[50], inclusion of tri-excited cluster components 
improves the description of the dipole moment function 
of HF at very large internuclear separations. 

The LRCC results reported in this paper are most 
encouraging. We plan to explore the potential of the 
LRCC theory further by studying other molecules and 
by analyzing the ro-vibrational dependence of higher- 
order properties, such as first and second hyperpolariz- 
abilities ß and y. 
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The energy expectation value of coupled-cluster theory can be formulated as the sum of the 
energy expression of traditional coupled-cluster (TCC) theory plus a correction term. The latter 
is simplified if the stationarity conditions of TCC hold. It is then of 0(S4), where S is the 
coupled-cluster amplitude. The leading error contribution agrees with the leading term of the 
difference between the TCC energy and the energy expression of extended coupled-cluster 
(ECC) theory. It is suggested to evaluate this routinely at the end of any TCC calculation 
as a check of the reliability of the latter. The error of the ECC energy expression with respect 
to an expectation value is of 0(S6). The error of traditional CCSD with respect to an expecta- 
tion value is not affected by the inclusion of triple excitations in CCSDT. Approximations to 
CCSDT are also discussed. A hierarchy of approximations starting from TCC and ending at 
variational coupled-cluster (VCC) theory, alternative to the previously proposed improved 
coupled-cluster (ICC) method is presented. 

1.    Introduction 
A drawback of the otherwise so successful traditional^ 

[1, 2] coupled-cluster (TCC) theoryj [3-5] is that it is not 
variational. This means that the traditional coupled 
cluster energy £TCC is not an upper bound to the exact 
energy, further that no hypervirial relations hold, which 
makes the calculation of properties somewhat non- 
trivial [6]. Variational variants of coupled cluster 
theory (VCC) have been known for some time, but 
they are so much more complicated that they have 
never been competitive. A comparison of various 
coupled-cluster (CC) approaches can be found in [1]. 

The coupled-cluster ansatz for the wave function of a 
closed-shell state, that to zeroth order can be approxi- 
mated by a single Slater determinant $, is [7,8] 

f = exp (S)0;        S = S{k) 

Si = Saat; S2 = 

= Si + S2 + • • • S, k) (1) 
(2) 

We choose <P normalized to unity. Labels ij, k refer to 
spin-orbitals occupied in <P, a, b, c to virtual spin-orbi- 
tals. The af,afj etc. are excitation operators, namely 
one-particle and two-particle operators, respectively. 
The corresponding de-excitation operators are a'a and 
al,

ab. The S'a etc. are the expansion coefficients (ampli- 
tudes) of S. The Einstein summation convention is 
implied [9] . We shall use the symbolic notation a], a2 

fThe name traditional coupled cluster (TCC) has been 
coined in [1]. It appears preferable to the name normal CC, 
used by Arponen et al. [2], since to call something normal 
usually implies that it has some distinctive features, which 
are hardly recognized here. 

% For an older review see [3], for more recent ones [4] and 
[5]. 

for any of the a" or af, respectively, and correspond- 
ingly a\, a\ for the da or a\h; a and a* mean any ak or a\ 
for arbitrary excitation rank k. 

In the earliest formulation of traditional coupled 
cluster theory (TCC) [7,8] one inserts (1) into the 
Schrödinger equation and projects from the left by (4>| 
or (<£|a* (this is often called the method of moments): 

<<2>|H exp(S)|<P> = ETcc<<*>l exp(S)|*> = ETCC, (3) 

($\tfH exp (S)|*> = Ercc(<P\tf exp (S)\<P). (4) 

Note that (<P| exp(S) = (<P|. 
An alternative, but equivalent formulation [10] is now 

generally accepted. One constructs the Hamiltonian 

L = exp(S)H exp(S) = H + [H,S] + \[{H,S]S] + ... 

(5) 

obtained from H by means of a similarity transforma- 
tion with exp(S). One then considers the Schrödinger 
equation for this transformed Hamiltonian (which is not 
hermitian) 

L0 = exp (-S)H exp (S)<Z> = ETCC$ (6) 

and projects it to the left as in (3) and (4) 

(#|L|*> 

{$\tfL\0) = 0, 

TCC) (7) 

(8) 

with JETCc the same in (3) and (7). 
The  operator  L  has  the  nice  property  that  its 

0026-8976/98 $12-00 © 1998 Taylor & Francis Ltd. 
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Hausdorff expansion terminates at 0(S4) 

L = H+[H,S}+{ [[//, S], S] +1 [[[//, S], S], S] 

+ Jj[[[[H,S],S]1S])S] 

= H + (HS)C + \ (HSS)C +1 (HSSS)C + £ (HSSSS)C, 

(9) 

where c stands for connected. One uses here, of course, 
that that commutators arc necessarily connected and 
that S on the left of H cannot connect with H. L as 
given by (9) is at most a (4k - 2)-particle operator, 
more precisely a (4k - 2)-fold excitation operator, with 
k defined via (1)- Inserted into (7) and (8) the expansion 
(9) terminates even earlier. 

The advantage of (7) and (8) over (3) and (4) is that in 
(8) £ does not appear, and that from (8) it is more 
directly obvious that only connected terms are present. 

TCC is exact, i.e. equivalent to full CI in the same one 
electron basis, provided that S =S(n) for an n-electron 
system. For S = S^ with k < n it is approximate (sec 
later). 

Equations (7) and (8) can be interpreted as conditions 
for stationarity of the Arponen functional [1,2] with 
respect to variation of S* 

F(S,St) = (*|(l+St)L|*> (10) 

with £ = F(S,&) at the stationary point. 
The oldest form of variational coupled cluster theory 

(VCC) is based on the expectation value (sec e.g. [3]) 

(<P\exp(tf)Hexp(S)\<P) 
£ = 

<<P| exp(St)exp(S)|0) 1) 

that is then made stationary with respect to variations of 
S and S\ Not only are the stationarity conditions com- 
plicated coupled equations, even the evaluation of (11) is 
very tedious. In the power series expansion of exp (S) 
one has to go up to (l/n!)S" if S contains S,, otherwise 
to [(n/2)\]~rSn/2. 

An alternative to (11) is 

E=(0\exp{tf)Hexp(S)\4>)L, 12) 

where L stands for linked. This means essentially con- 
nected, but including all exclusion-principle-violation 
(EPV) terms with repeated identical indices. This is 
essentially equivalent to 

£ = (<J>| exp (Sf)//exp (S)|<7>) 

xll + ^lexp^exp^ltf-)-!)]-1 

= (<P| exp(St)Hexp(S)|$) 

x{l -((<P|exp(St)exp(S)|^)- 1) 

+ «<Z>|exp(St)exp(S)|<f>)-l)2 + -..}    (13) 

after cancellation of disconnected terms. Both (12) and 
(13) have the disadvantage that the expansion in powers 
of S is infinite, and usually very slowly convergent 
[1,3,11]. As to a detailed discussion of expectation 
values for coupled-cluster wavefunctions sec [12]. 

The aesthetically most appealing variational approach 
is unitary coupled cluster (UCC) theory [1,3]. It is based 
on 

E=(*|exp(-ff)//exp(ff)|#);        a = T - T]    (14) 

with T expanded like S in (1) and (2). The transformed 
Hamiltonian exp(-<r)//exp(<r) is unitary at variance 
with the non-unitary L defined by (5). Unfortunately 
the Hausdorff expansion of (14) in powers of a docs 
not break off and we have an infinite expansion as in 
(12) or (13), but a much faster converging one [1,3]. 

To make \CC or UCC practically manageable it is 
recommened to truncate the expansion in powers of S or 
a. This leads to variants like VCC-SD(0 [1], where / 
indicates the power of S at which one truncates. Then 
one loses either the upper bound property or the sizc- 
extensivity or possibly both. Truncating (13) or (14) at a 
finite order in S or a preserves the sizc-cxtensivity, but 
docs not yield an upper bound. Truncating (11) consist- 
ently in numerator and denominator yields an upper 
bound, but £ is not size-extensive. There has also been 
some controversy on whether in truncating one should 
only care about orders of S (or a) [1] or whether one 
should (in the spirit of perturbation theory) treat H0 and 
V differently, including higher orders in powers of S 
together with H0 than together with V [13]. There arc 
arguments in favour of either choice. 

Anyway the chances for \CC or UCC (full or trun- 
cated at some power of S) to beat TCC with respect to 
accuracy arc very low, especially if one compares the 
cost performance ratio. 

In this paper we start from the paradigm that TCC is 
rather good already, and we try to formulate a hierarchy 
of approximations of which TCC is the first step and 
which ends at \CC. Depending on the circumstances 
one may stop at any appropriate level in this hierarchy. 
When we refer to VCC we shall always mean that expec- 
tation values are evaluated exactly, with no truncation 
in powers of S—but. of course, with a truncated expan- 
sion of Sat S{k). 

A hierarchy of this kind has already been proposed in 
[1] under the name improved coupled cluster (ICC) in 
terms of an asymmetric expectation-value like expres- 
sions starting from 

(<P\(\+S])Hcxp(S)\<l>) 

<<J>|(l+St)cxp(S)|*) 
[15) 
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via 

E = 
(<P\{l+tf + \Sn)Hexp(S)\$) 

($|(l+St+ISt2)exp(S)|$> 
(16) 

ending at (11). 
Here we consider an alternative hierarchy that passes 

by extended coupled-cluster (ECC) theory [2]. Both TCC 
and VCC are separable and hence size-extensive and 
expressible in terms of connected diagrams only. This 
does not necessarily hold for the steps in between, 
unless certain precautions are taken, about which we 
are not going to worry, since this is not necessary in 
the present context. 

2.   Relation of the variational coupled cluster (VCC) to 
the traditional coupled cluster (TCC) approach 

We start from the expectation value (11), but we insert 
the identity 1 = exp (S) exp (-S). 

r     <*I*L|#> 
(<Z>|X|<£) ' 

X = exp(S+) exp(S), 

(17) 

(18) 

with L denned by (5). Although XL is hermitian, one 
may choose an alternative in which the hermiticity is 
more directly manifest 

($\XL\$)     (<P\XL + lJx\<P) 
£ = Re 

(<P\X\4>) 2(*|jr|*> 
(19) 

We are led to VCC if we make (17) stationary with 
respect to variations of S*. The stationarity conditions 
are: 

($\6rfX(L-\)\$)=0. (20) 

It is much simpler to interpret (17) as an Arponen func- 
tional, with X/{$\X\$) = 1 + S and to make it sta- 
tionary with respect to variations of X. Then one has 
to satisfy 

(<P\6X(L - \)\<P) = 0, (21) 

where A (like A in equation (20)) is a Lagrange multi- 
plier. Equation (21) is, of course equivalent to the TCC 
equation (4) or (8). The expansion of (21) in powers of S 
terminates at 0(S4) at variance with that of (20), where 
the termination depends on the particle number n. 

If (21) holds for all de-excitation operators 6X = a}, it 
follows that 

0= (<2>|X(L-A)|<Z>) (22) 

*     (Ä - A - W\*)- (23) 

The Lagrange multiplier A in (21) is then equal to the 
expectation value (17), which is the energy expression of 
TCC theory, and which is easily evaluated. 

We only need those contributions to X, which do not 
vanish when applied to the left on tf>, i.e. which contain 
only de-excitation operators, conjugate to those in (2). 
We expand 

(<P\X = 5>l4> (24) 

XI = X0 = (*|X|*> = 1 + [sis, + (S\ + \S\2) 

x(S2+\S2
2)]fc + - (25) 

*{=S, + [$+Isns,]fc 

+ [(S\ + S\S\ + \sf)(S2 + IS?)]fc + • • • = AV4 (26) 

X\ = S\ + [(S\ + S\S\ + isl3)S,]fc + ■ • • = Xfal       (27) 

Here fc means fully contracted, e.g. 

(Sis2)fc = S£sM<)fc = S?^ 
-Sf^-Sys^flf + Sfsfjflf.     (28) 

Not fully contracted parts (e.g. normal products of ex- 
citation and de-excitation operators) are neither pure 
excitation nor de-excitation operators and have either 
($\X = 0 or X\$) = 0. Note the difference between 
contracted and connected. 

Let us now make no assumptions on fulfilled statio- 
narity conditions and let us just assume that the wave 
function is of the form (1). The expectation value (11) or 
(17) can then always be rewritten as 

E= (<Z>|L|<2>) 
($\(X - X0)L\$) 

xn 

($\(x - x0) = w^xl. 

(29) 

(30) 
m=l 

The second term on the right hand side of (29), which 
represents the error of (<P\L\<P) with respect to an expec- 
tation value, is simplified considerably, if stationarity 
conditions of the type (8) are satisfied. It would be 
ideal if (8) would hold for all X]„ in the sum (30). 
Then the correction term would vanish and (<P|L|<P) 
would be equal to an expectation value. A necessary 
condition for this is that the number of conditions to 
be satisfied is not greater than the number of parameters 
to be determined. 

This is, of course, the case for an untruncated expan- 
sion, i.e. for S = S^"' (n always means the number of 
particles) but not for S = S^' with k < n. Let us now 
assume that S = S^ and that S has been obtained from 
the condition that (21) is satisfied for 6X = a]„, 
m = 1,2,... k, i.e. from TCC. Then (30), when inserted 
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into (29), reduces to 
M 

{4>\(X - X0) = (*| J2 X»>'<        M = min(Mfc - 2). 
m-k-\ 1 

(31) 
At this point three stategies are possible. 

(a) One evaluates the sum (31) in (29) exactly and 
obtains a rigorous upper bound to the energy, 
that will be slightly above the best variational 
energy. In fact (29) is an expectation value irre- 
spective of any stationarity conditions satisfied. 
So if (31) holds, we can insert this into (29) and 
this will remain an expectation value, although 
it is, of course, not stationary with respect to 
variation of the S^k\ This procedure is rather 
tedious, as already has been mentioned, since 
there is no automatic n-independent termination 
of the expansion in powers of S. 

(b) One evaluates only the leading term of the cor- 
rection and gets so an estimate of how far the 
TCC energy is off an upper bound and one is 
able to judge the quality of the TCC energy. 

(c) One tries to find an alternative functional and 
the corresponding stationarity conditions, such 
that the error of this functional at the stationary 
point is smaller than that of TCC. 

We illustrate the situation for two simple cases, 
namely for S = S2, i.e. for CCD (CC with doubles) in 
section 3, and for S = S(3), i.e. CCSDT (CC with singles, 
doubles, and triples) in in section 4. We then come back 
to the general case in section 5. 

3.    Coupled-pair theory 
Let us now consider that S = S2, then 

x\ 
(32) 

(33) 

(34) 

(35) 

(36) 

r,=St+i(St2S)rc+1L(St3S2)fc + -..1 

X\ = \sK + l(SVS)k + ±(^S\ + ---, 

xl = i^ + ^4s)k + ^(^s\ + -- 
L is given by (9). This is at most a 6-particlc operator, 
hence 

(0|äJ(L-A)|*) = O for*>6. (37) 

Since 6X\ = SXT, = 0, the conditions (21) that we want 
to satisfy in order to have a variational approach arc 

<*|flJ(L-A)|*) = (*|^L|*> = 0, (38) 

(*|flt(L-A)|*> = (*|alL|*> = 0, (39) 

(*|flt(L-A)|*) = (*|fliL|<P>=0. (40) 

It is obviously not possible to satisfy (38) to (40) 
simultaneously. In TCC one satisfies (38) which leads 
to a condition for the expansion coefficients of S = S2. 
There is no more freedom left. Let us now compare the 
expectation value £ given by (17) for this TCC wave 
function and the TCC energy A given by (23). We 
have, starting from (17) and using (38) 

C_W(X0 + X\ + X\ + XI)L\4>) 

= <*|L|*> + 
(»M + 4)L|fl) 

(41) 

The deviation of the TCC energy from an upper bound 
is hence 

x(// + [//,S]+£[[//,S],S]+ ••■)!*} 

= Xö,I(*|(St2 + ISt,S-r---)rc 

x[[//,S],S]+ ■••!*} (42) 

plus a similar contribution due to X6. Note that H and 
[H, S] have no 4-particlc-excitation contributions and 
can hence not contract with X\. The correction term 
(42) is dominated by something of 0(S4). The term 
involving x\ even starts with 0(S1). The leading term 
of the error is obviously of 0(S4), i.e. the TCC energy is 
correct to 0(S*), which has, of course, been known 
before [1]. The leading contribution to the error 

LA(4>\S?2[[H,S\,S\\4>) (43) 

is a measure of the quality of the TCC-D approach and 
should be evaluated routinely. The relevance of this cor- 
rection term, although not derived as shown here, has 
also been realized previously [6.14]. 

Alternatively to only satisfy (38) but to ignore (39) 
and (40) we can start from (41) and insert X\ and X\ 
explicitly, which is rather tedious since the expansion in 
powers of S docs not terminate automatically. 

In order to get a more accurate, but still simple, func- 
tional than that of TCC we can proceed in the following 
way. Rather than to require that (38) holds, which cor- 
responds to minimizing the functional (S is implicit in L) 

FTCC(S.tf) = (*|(1+ Sf)L|*> (44) 

with respect to variation of S\ we consider the func- 
tional 

FECC(S,St) = (*|(1 + ^+iSt2 + ISt,)L|*) 

= (*|exp(S,)L|*). (45) 

The label ECC stands for extended [1,2] coupled cluster. 
We make the functional (45) stationary with respect to 
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variation of S\ with the condition 

(*|4(1 + Sf +\S]2)L\<I>) = ($\a\ exp{tf)L\$} = 0 

(46) 

which implies 

(<P|(Sf + St2 + ±St3)L|<Z>) = ($|Sf exp (5f)L|$) = 0, 

(47) 

AECC = F^ctf) = ($|(1 +f tf +ltf2)L\<P),    (48) 

where, of course, L is different from that discussed 
before, because S is different. We do not consider the 
conditions for stationarity with respect to variation of S. 

As we shall demonstate in section 5 the leading term 
of the error is now of 0(S6). 

4.    CCSDT theory 
Let us now choose S = S® — S\ + S2 + S3, i.e. 

CCSDT. The expressions for the x\, generally given 
by (25) to (27) are no longer of the simple form (32) 
to (36) as for CCD theory. Nevertheless the first condi- 
tion of the type (38) to (40) not satisfied at TCC-SDT 
level is (39) just as for TCC-D. The condition with 
highest m not satisfied automatically is that for 
m = 4k — 1 = 11. The leading contribution to the error 
of TCC with respect to TCC is again that given by (43). 
This is not changed by the presence of S] and S3. The 
inclusion of Si and S3 does not automatically improve S2. 
This is only achieved to a large extent if one includes S4 

and satisfies the corresponding stationarity conditions as 
well. 

In TCC-SDT one does take care of the 'coupling' of 
S2 to Si and S3, but not to sf, which is probably no less 
important. The question arises whether it is really con- 
sistent to update S2 'in the field of S3, if one does not at 
the same time update it 'in the field of sf, for which 
ECC-SDT would be required. Applications of ECC in 
quantum chemistry have, so far, not been too successful 
[15]. 

In most approximate variants of TCC-SDT, as in 
CCSD(T) [16] or CCSD[T] [17], the stationarity condi- 
tion, that involves a\, is not satisfied exactly. The error 
due to this approximation can, of course, be evaluated 
as 

V<*I4L|*> = Xö
1
(<P\(S\ + \S2

2
SI + ...)tc([H,S\ 

+ i[[H,S},S] + ---){c\0). (49) 

It is probably a good check of the validity of these 
approximations, and by the way, also of so-called quad- 
ratic CI [18], to evaluate the leading term of the correc- 
tion (49). To renounce on exact stationarity, but to 
estimate the correction to VCC might be a serious 
alternative to the standard procedure. 

5.   ECC as the next step in a coupled-cluster hierarchy, 
and beyond 

Let us go back to the general case, and let us start 
again from the expectation value (17). We rewrite it as 

_     (<P|exp(St)L|<P> + (*|[X]L|*)- 

1 + <*|[*P> 
[X] = [exp(St),exp(S)]. (50) 

If we now argue that [X] is of 0(S2), and hence smaller 
than the other terms, we can (noting that 
exp (-5^1$) = \<P) ) approximate E (50) by 

£ECC = <*| exp(St)L|$) = ($| exp(St)L exp (-tf)!*) 

= <*|L|*> (51) 

and regard 

L = exp {S])L exp (-Sf) 

= exp (Sf) exp (-S)ff exp (S) exp (-Sf)    (52) 

as a Hamiltonian to which two consecutive similarity 
transformations have been applied. Of course this can 
also be regarded as a single similarity transformation 
with exp (S) exp (—S*). This is the basis of the extended 
coupled-cluster theory of Arponen and co-workers [2].f 
The transformed Hamiltonian (52) is still not hermitian, 
but closer to hermitian than is L. 

Compare 

L-L* = [H,S + St) + 0(S2) 

L-D = [H, [S,5f 0(53). 

(53) 

(54) 

To analyse the error of the ECC functional (51) we 
introduce the operator 

Y = exp (Sf) exp (S) exp (-Sf) 

= 1 + exp (Sf)S exp (-Sf) 

+ iexp(Sf)S2exp (—S*) H  

= exp^ + ßt, exp(S)] 

+ i[St,[St,exp(5)]] + ---. (55) 

Now we can reformulate the expectation value E as 

EJ*^={*\L\*) + <*^M^      (56) (<P\Y\<P) <*|r|*> 

tIn the original reference to ECC [2] S' is replaced by S> 
with S not necessarily equal to S. In fact, independent station- 
arity conditions for variation of S and S' lead to different 
optimum S and S. We consider here a simplified version, 
where S = S is imposed and only stationarity with respect to 
variation of S' is required. 
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with 

y0 = (*|y|*> = x0 (57) 

In analogy to (24) wc can expand Y (applied to the left 
on <P) as 

<0|y = 5>|y!. (58) 

Stationarity condition for the ECC functional (51) with 
repect to variation of S+ is 

(*|flU|*) = 0;        »1=1,2,...,*. (59) 

If we satisfy these conditions, i.e. determine the Sk from 
the ECC mcthodf, the sum (58) in (56) can be replaced 
by 

M 

<*l(y-y„) = <*l£ YI M = min(«,4*-2).   (60) 

To show that the error is now much smaller than for the 
Sk determined from the TCC method, we consider again 
the case of CCD, i.e. S = S2. The counterpart of (32) to 
(36) is 

YQ — x0, 
A V1 7

3 Y\ = ■ • • = o, 

yt = i[sM^s]] + 1L[st,[sMst,s2]]] + 

yt = i[st)[s
t
)[s

t,s]]] + o(s6), 

yt = i[sUst,[sU<>+,s]]]] + o(sR). 

(61) 

(62) 

(63) 

(64) 

(65) 

The error of the ECC energy with respect to the VCC 
energy is dominated by 

Yöl(*\Y\L\0) =\Yö](<P\(S»S)k(HSS)k\<P) = 0(S"). 

(66) 

Compared to TCC the error with respect to VCC has 
been reduced by two orders in powers of S. 

It is easy to see how one could go successively from 
ECC to VCC. Actually ECC is obtained from VCC by 
replacing Y by the first term in the second expression 
on the right hand side of (55), i.e. by 1. The next 
approximation would be to replace y by 

y(,) = 1 + exp(Sf)Sexp (-S1) (67) 

One would again 'win' two orders in S. Whether the so- 
defined hierarchy has any practical chances, remains to 
be seen. One should then also worry about size-consist- 
ency. As long as the potential of ECC has not been 
exploited, there is little interest in going beyond it. 

t Sec footnote on page 69. 

One should not forget that there is an alternative 
hierarchy from TCC to VCC via ICC (improved 
coupled-cluster) defined in [1], as mentioned at the end 
of section 1. 

If wc regard ECC as an important first step on the 
way from TCC to VCC, it may not really be necessary - 
in order to improve on TCC—to care for stationarity of 
the ECC functional. It may be sufficient to evaluate the 
ECC functional with S obtained from stationarity of the 
TCC functional. Wc can write 

Ercc = EJCC + \ <4>I(S12 + \& + • • -)^l*).       (68) 

where we have taken care of the stationarity condition 
(8). It is not surprising that this agrees with the expres- 
sion for the leading term of the error of £TCC with 
respect to Evcc. 

There is another way to relate ECC to VCC or rather 
to UCC, that we only sketch very briefly. Wc note that 

exp (S) exp (-Sf) = exp (S - Sf + J \S\S\ 

-±[[tf,S\,S + tf} + 0(S*)) 

= txp(S-Sl)(\+±{S\S) + 0(S*)) (69) 

exp (S1) exp (-S) = exp (S1 - S - \ [S\S\ 

+ 1L[[St,S],S + St) + 0(S4)) 

= exp(St-S)(l-i[S\S] + 0(S')). (70) 

Hence EfCc differs from a UCC-likc energy expression 
by something of 0(S~). The next step on the way from 
the double similarity transformation of ECC theory to 
the unitary transformation of UCC theory would be to 
replace the left hand side of (69) by 

exp(S)exp(-Sf)(l -i[S1,S])= exp(S - Sf) + 0(Sy). 

(71) 

6.    Conclusions 
The traditional reluctance of the coupled-cluster com- 

munity to care for a variational formulation of the 
theory is somewhat puzzling. The arguments currently 
put forward to justify this reluctance arc: 

(a) VCC calculations arc so much more tedious 
than TCC ones, and TCC is already computa- 
tionally very demanding, such that one can 
usually not afford more than just TCC. If one 
has not exhausted one's resources it is usually 
regarded as preferable to include higher Sm or 
to increase the basis rather than try to improve 
TCC calculations towards VCC. This is certainly 
valid as to routine calculations, but docs not 
preclude     benchmark     studies.     Surprisingly 
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enough TCC versus VCC calculations (untrun- 
cated in powers of S) have—to the author's 
knowledge—not even been performed at bench- 
mark level. If one can do full CI one should 
certainly be able to do VCC-SD or VCC-SDT. 

(b) TCC^ is a member of a hierarchy that even- 
tually becomes exact (i.e. equivalent to full CI) 
if one lets k go to n. In practice, however, one 
hardly goes beyond k = 4 or even k = 3. The 
convergence of the entire hierarchy has never 
been tested, neither at TCC nor at VCC level. 
All that exists are comparisons for k = 2,3, (4) 
with full CI. The present study indicates that the 
error of the TCC-SD energy with respect to an 
expectation value is not basically affected if one 
goes from CCSD to CCSDT. So even an 
improvement in this way is not necessarily a 
measure of the quality of the' TCC-SD calcula- 
tion. 

There is a third argument that is usually not admitted so 
frankly: 

(c) The non-variational behaviour of TCC can give 
rise to a fortunate and welcome error compensa- 
tion and make the TCC energy closer to the full- 
CI counterpart than a VCC energy might be. In 
other words, the extra effort in going from TCC- 
SD to VCC-SD may not pay, in the sense that it 
may yield a poorer-looking, i.e. higher energy. 

We have pointed out here that the energy change from 
TCC-SD to VCC-SD may contain important informa- 
tion on the reliabilty of the CC method in general, and 
that it deserves to be studied more than has been the 
case. 

It is not the purpose of this paper to convince the CC 
community to switch from TCC to VCC, or at least to 
approximate VCC. Before one decides on such a change 
of paradigm one should first investigate to what extent 
TCC and VCC differ numerically. One will find this out 
if one evaluates more or less routinely the leading cor- 
rection terms to TCC. If these turn out to be appreci- 
able, e.g. if the the corrections to TCC-SD are of the 
same order of magnitude as the improvement due to 
inclusion of triple excitations in TCC-SDT, one has cer- 
tainly to reconsider the matter. 

Let us stress again that the standard argument that if 
CCSD is not good enough, one should go to CCSDT 
may need to be reconsidered. If TCC-SD is too far from 
its VCC-SD counterpart, this defect remains at the 

TCC-SDT level and only disappears if one goes to 
TCC-SDTQ. 

Approximations to TCC-SDT such as CCSD(T) or 
CCSD[T] have so far mainly been proposed and dis- 
cussed in terms of arguments from perturbation 
theory. The non-perturbative framework of this paper 
may offer an interesting alternative for finding balanced 
approximate treatments. 

The author is indebted to D. Mukherjee and J. Noga 
for constructive comments. 
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An ab initio coupled cluster theory of quantum spin lattices and their 
quantum critical behaviour 
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Strongly interacting quantum spin-lattice models exhibit a wide variety of phases with diverse 
and subtle magnetic ordering properties. Their detailed description within a unified micro- 
scopic framework poses a real challenge for the many-body theorist. By specific application to 
the spin-^ anisotropic Heisenberg model on a square lattice, we show how the ab initio coupled 
cluster method, which has already been very successfully applied to a wide variety of quantum 
many-body and field-theoretic systems, may be very efficiently and systematically implemented 
for spin-lattice models. Results for such local properties as the ground-state energy and 
sublattice magnetization are thereby obtained which are on a par with those from the best 
of the available alternative methods. Furthermore, we demonstrate explicitly how the coupled 
cluster method now also provides an effective and fully microscopic tool to yield systematic 
and accurate estimates of the zero-temperature quantum phase transition boundaries between 
states of different quantum order, as well as of the critical behaviour of the system in the 
vicinity of the transition points. 

1.    Introduction 
In recent years the ab initio techniques available for 

treating the properties of quantum-mechanical many- 
body systems at the fully microscopic level have 
become increasingly refined and accurate. The inexor- 
able rise in the power of modern computers has also 
allowed the techniques to be applied to systems of 
ever-increasing complexity, whether these be larger or 
more complicated molecules or infinite systems with 
more subtle ordering properties. 

One such method which stands to the fore in this 
regard is the coupled cluster method (CCM) [1-9]. The 
CCM, already very well known to the quantum chem- 
istry community [2, 8], has also become widely recog- 
nized throughout the theoretical physics community as 
providing one of the most powerful, most widely applic- 
able, and most accurate at attainable levels of practical 
implementation, of all available ab initio microscopic 
techniques of quantum many-body/field theory. 

Despite the many achievements of the CCM and 
other techniques of modern quantum many-body 
theory (such as the method of correlated basis functions, 
which provides a systematic means of improving upon 
the variational results using such popular trial correlated 
wave functions as those used in Jastrow theory), the use 
of these techniques has been largely limited up until now 
to a local description of the properties of the system 
under consideration, rather than to its global behaviour. 
Thus, until very recently, most of these fully microscopic 
calculations had been restricted to calculations of such 

local properties as the ground-state energy, the excita- 
tion spectrum, and such other properties as the relevant 
order parameters and correlation functions. By contrast, 
very little progress had been made on using the same 
techniques to make contact at the microscopic level 
with the otherwise quite disparate corpus of work 
which relates to the study of phase transitions in infinite 
systems and to related (e.g. shape) transitions in finite 
systems. This situation is now beginning to change in 
fundamental ways, due largely to recent results obtained 
using the CCM which we describe in this article. 

In order to set the scene for the results to be pre- 
sented, we note that there are now many physical sys- 
tems which are characterized by novel ground states 
which display quantum order in some regions of the 
relevant parameter space. Such regions are delimited 
by critical values which mark the respective quantum 
phase transitions. Very often, the critical phenomena dis- 
played by the quantum systems differ profoundly from 
their corresponding classical counterparts (where they 
exist). The subtle correlated quantum-mechanical states 
usually cannot sensibly be viewed within the traditional 
language of Landau's theory of Fermi liquids, for 
example, or of other comparable phenomenological 
approaches which have been so useful in the past for 
so many conventional quantum many-body systems. 
Examples of systems or phenomena which fall into the 
unconventional (or novel) class include heavy fermions, 
the fractional quantum Hall effect, new quantum states 
in the condensed phases of helium, confinement/decon- 
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finement phase transitions in gauge field theories, 
high-temperature superconductors and other strongly 
correlated electronic systems, and various phases of 
(antiferro)magnctic materials and low-dimensional 
quantum spin lattices. 

The standard many-body techniques, such as pertur- 
bation theory, mean-field theories, and variational cal- 
culations, which have been successfully developed and 
applied for conventional systems, typically fail com- 
pletely for these unconventional systems characterized 
by novel quantum order. One of the key challenges for 
modern quantum many-body theory is now to develop 
and exploit microscopic techniques which arc capable of 
describing both these novel and the more conventional 
systems. A prime objective of our own recent work on 
quantum lattice systems [10-18] has been to show that at 
least one such modern technique, namely the CCM, is in 
fact already able to bridge these two classes of systems. 

We note that the CCM has been applied over the last 
five or so years to a variety of lattice Hamiltonian sys- 
tems [15, 16], including spin lattices of interest, for 
example, in magnetism [10-14, 19 26] and the solid 
phases of 3He [19]; electron lattice models of interest, 
for example, in the cuprate high-temperature supercon- 
ductors (e.g. the Hubbard model) [17, 27]; and lattice 
gauge theories, such as the Abclian (7(1) model [18] 
and the non-Abelian SU{2) model [28]. In all cases the 
CCM may readily be implemented to high orders of 
approximation by the use of computer-algebraic techni- 
ques. Values for ground-state (and, increasingly, also 
excited-state) properties arc thereby obtained which 
arc fully competitive with those from other state-of- 
the-art calculations, including the much more computa- 
tionally intensive quantum Monte Carlo techniques. 
What we now further demonstrate, by a specific applica- 
tion to the spin-j anisotropic Heisenberg model on the 
two-dimensional (2D) square lattice, is that the CCM 
can also provide information on the quantum order 
and quantum criticality inherent in this model. We 
believe that this example illustrates how the CCM is 
now well placed to study in a very systematic and 
unbiased manner the quantum phase transitions of the 
novel non-Fermi-liquid systems discussed above. 

In section 2 below we briefly describe the fundamen- 
tals of the CCM as it is applied to quantum spin lattices, 
and in section 3 we describe its application in detail to 
various phases of the 2D spin-i XXZ (or anisotropic 
Heisenberg) model on a square lattice. The results arc 
discussed in section 4, with special emphasis both on 
their accuracy and their ability to predict phase transi- 
tions and to describe the ensuing critical behaviour at 
the transition points. We conclude in section 5 with a 
discussion of possible extensions of the method and its 
potential  for use with  other  systems  which  exhibit 

quantum phase transitions between states of different 
quantum order. 

2.   The CCM for quantum spin lattices 
Although detailed descriptions of both the general 

CCM formalism [1-9] and its application to specific 
spin lattice models [10 14] have been given elsewhere, 
we highlight here such of the essential general ingredi- 
ents as arc required for present purposes. Our aim in this 
section is to be as general as possible. 

In the so-called single-reference version of the normal 
(as opposed to the extended [5, 7]) variant of the CCM, 
to which we restrict ourselves here, wc first require the 
choice of a suitable single model or reference state |<f>), 
in terms of which a quantitative and systematic descrip- 
tion of the many-body (i.e. in the present case, multi- 
spin) correlations or fluctuations may be given. Wc defer 
until later the important question of how to choose |<f>) 
in practice, but simply recall now that it is required only 
to be a cyclic vector with respect to two well-defined 
Abclian subalgcbras of multi-configurational creation 
operators {Cj} and their Hcrmitian-adjoint destruction 
counterparts {CJ = (C/)*}. Thus, |tf>) plays the role of 
a vacuum state with respect to a suitable set of (mutually 
commuting) many-body creation operators {Cj }, 

c/-|*> = o,      V//0, (1) 

with C0 = /, the identity operator. These operators arc 
also complete in the many-body Hilbcrt (or Fock) space, 

(2) 

The choice of the operators {C/} clearly depends on 
the choice of \<l>}, but for spin lattice problems in gen- 
eral C/ will involve products of the basic SU(2) spin 
operators {sjJVvj^sjJ} on different lattice sites k, which 
obey the fundamental commutation relations, 

(3) [si.st} = ±st6kl:        [st,sT] = 246kh 

where sf = si ± is[. The set-index / will thus generally 
incorporate the indices for a set of lattice sites. Wc dis- 
cuss particular choices of {\<P),CJ} in more detail below 
in the context of a specific example. 

The exact ground-state energy eigenket and eigenbra 
vectors, |V) and (7'| respectively, of a many-body 
system described by a Hamiltonian //, satisfy the 
Schfodingcr equations. 

H\¥) = Ee\V);        {V\H = Ee(V\. (4) 

Wc have introduced the tilde notation on the bra state, 
(V'l, to remind ourselves of the fact that although the 
exact {T\ is self-evidcntly related to |V) by Hcrmiticity, 
the CCM paramctrizations of |V') and (*/'| do not mani- 
festly  preserve  this  Hcrmiticity  as  explained  below. 
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Furthermore, the tilde notation also serves to recall that 
even if the exact Hermiticity holds, (W\ differs from 
(If))* by a normalization constant, as discussed below. 

The ket and bra states are now specified within the 
single-reference normal CCM as, 

|y>=exp(S)|*>; S = J2^jCl, 

(5) 

where the tilde notation on the operator S is not 
intended to convey any direct mathematical relationship 
between S and S. Rather, equation (5) defines the opera- 
tors S and S. We note that the correlation operator S is 
decomposed entirely in terms of the multiconfigura- 
tional creation operators {C/}, and similarly for S in 
terms of the destruction operators {CJ}. We further 
note that although the manifest Hermiticity, ((!P|)* = 
|f)/('?'|f}, is lost, the intermediate normalization 
condition, (!P|!P) = (<P|!P) = ($|<P) = 1 is imposed. 
Furthermore, the correlation coefficients {SJ,SJ} are 
regarded as being independent variables, even though 
formally we have the relation, 

(*|S = 
(^|exp(Sf)exp(5) 

(<Z>|exp (St) exp(S) ]<*>}' (6) 

In particular, the full set of coefficients {SJ,SJ} provides 
a complete CCM description of the many-body ground 
state. For example, an arbitrary operator A has a 
ground-state expectation value, 

A = {V\AYP) = (<2>|Sexp(-S),4exp(S)|<2>) 

= A({ShS,}). (7) 

We note that the specific parametrization of equation 
(5) for (W\ is consistent with the Hellmann-Feynman 
theorem [5], even though it does not manifestly preserve 
the Hermiticity relation with \W). Furthermore, and 
very importantly, this parametrization for {W\ is actually 
derivable from the Hellmann-Feynman theorem if one 
chooses the specific functional form for the energy, 
£g = (<P|exp(-S)J?exp(S)|<P), which immediately fol- 
lows from equations (4) and (5). 

As is by now well known, the exponentiated form of 
the ground-state eigenket parametrization of equation 
(5) ensures both the proper counting of the independent 
fluctuations of excited multi-spin configurations 
(described by the set-index /) with respect to |<P), 
which are present in the exact ground state \W), and 
the exact incorporation of the linked cluster theorem 
of Goldstone. The latter, in turn, guarantees the size- 
extensivity of all relevant physical quantities, and thus 
allows us to work in the CCM directly in the thermo- 

dynamic limit, N —» oo, where N is the number of lattice 
spins. 

By taking appropriate projections of the ground-state 
bra and ket Schfbdinger equations (i.e. with states 
Ci\$) and ($\CJ, respectively), we obtain coupled sets 
of equations which may be solved to obtain the coeffi- 
cients {Sj} and {Si}. Completely equivalently, the 
correlation coefficients {<S/,<S/} may be determined 
variationally by requiring that the ground-state energy 
functional H({SJ,SJ}), defined as in equation (7), is 
stationary with respect to variations in each of the (inde- 
pendent) variables of the full set. The following coupled 
sets of equations are thereby easily derived, 

6H/SS, = 0 =^ (<P\CJ exp (-S)tfexp (S)\<P) = 0, 
W^O;    (8) 

SH/SSj = 0=> ($|Sexp (S)[H, C,+]exp (S)|<2>) = 0, 

VJ ^ 0.    (9) 

Equation (8) also ensures that the ground-state energy 
at the stationary point has the simple form 

£g = Eg({S,}) = <*| exp (-S)Hexp (S)|<P),       (10) 

which also follows simply by projecting the ground-state 
ket equation (4) with (3>| exp (-S). We note that this bi- 
variational formulation does not, however, lead to an 
upper bound for Eg when the summations over config- 
urations {/} in equation (5) for S and S are truncated in 
specific approximations, since the exact Hermiticity 
between \W) and (W\ will thereby be lost. On the other 
hand, it is important to note that the Hellmann- 
Feynman theorem is preserved in all such approxima- 
tions, and for many purposes this may be of greater 
usefulness than the variational bound on the energy. 

Equation (8) clearly represents a coupled set of non- 
linear multinomial equations for the c-number correla- 
tion coefficients {5/}. The well-known nested 
commutator expansion for the similarity-transformed 
Hamiltonian, 

H = exp(-S)tfexp(S) 

= H+[H,S\+^[{H,S},S] (11) 

taken together with the fact that all of the individual 
components of S in the sum in equation (5) commute 
with one another, imply that each element of S in equa- 
tion (5) is thus directly linked to the Hamiltonian in each 
of the non-vanishing terms in equation (11). Each of the 
coupled set of equations (8) is hence of linked cluster 
type. What is more, each of these equations is also of 
finite length when expanded using equation (11), since 
this otherwise infinite series will actually terminate at a 
finite order here, provided only that each term in the 
Hamiltonian H contains a finite number of single-site 



76 R. F. Bishop and D. J. J. Farncll 

spin operators, as is usually the case. The CCM para- 
mctrization thus leads in a very natural way to a work- 
able scheme, which can also be efficiently implemented 
as described in more detail below. It is also important to 
realize that the similarity transformation lies at the heart 
of the CCM and is one of its most vital ingredients. It 
may be contrasted with its unitary transformation 
counterpart in a standard variational formulation in 
which the bra state (Vy| is manifestly taken as being 
proportional to the Hermitian adjoint of \V'}, as in equa- 
tion (6). 

We turn now to the choice of \4>) and the operators 
{Cf} for spin-lattice problems. To be specific we restrict 
ourselves henceforth to spin— quantum antiferromag- 
nets in regions where the corresponding classical limit 
is described by a generalized Nccl-like ordering in which 
all spins on each sublattice arc separately aligned in the 
coordinates of a global spin quantization axis and cor- 
responding global spin axes. In such cases it is a simple 
matter (and sec section 3 for specific details in the case 
considered here) to introduce a different local quantiza- 
tion axis and spin coordinates on each sublattice. by a 
suitable rotation in spin space, so that the corresponding 
Necl-like state becomes a fully aligned ('ferromagnetic') 
state in the local axes. This 'ferromagnetic' state is 
chosen as the uncorrclated CCM model state, \<P), in 
which all spins point, say, along the respective negative 
z axis of the corresponding local frames. 

|<£) = ($?) | |)(;in the local quantization axes.     (12) 

Thus, in the local spin coordinates, 

'+££*, ;i4/>) 
n-l it 

4I*> = -£!*>, (13) 

for any arbitrary site k. 
The correlation operator S of equation (5) may now 

be decomposed wholly in terms of sums of products of 
single spin-raising operators, sjf", again defined with 
respect to the local quantization axes. Thus, we may 
write, 

'I I'I .': 

(14a) 

1=1 I'I-i« 

where S,-,/,...;,, arc the corresponding (symmetric) spin- 
correlation coefficients specified by the sets of site 
indices {iu i2, ■ ■ ■, <„} on the regular lattice under consid- 
eration. The corresponding expansion for the operator S 
of equation (5) is given by 

The coefficients {Sh...,„,<5„..,,-j« = 1,2,..., TV} are thus 
what we denoted gcncrically by the set {i!>;,S,} pre- 
viously. Equation (8) thus yields the specific set of 
coupled nonlinear CCM equations, 

(«HVv •••sI;exp(-S)//cxp(S)|*> =0, (15) 

to determine the correlation coefficients {«5?,,,.,.../_}. 
We note that we may map the sets of coefficients 

{<$,,.,„} and {<$,,...,„} onto sets {Xr} and {Xr} respect- 
ively, where r labels the independent or fundamental 
configurations, i.e. only those that arc incquivalcnt 
under the lattice symmetries (namely, translations, rota- 
tions, and reflections) of the Hamiltonian and under 
permutations of the indices. The sets {Xr} and {Xr} 
are thus defined to count the independent correlation 
coefficients associated with each fundamental configura- 
tion once and once only. Generally speaking there will 
be Nvr{nr)\ equivalent configurations on the lattice asso- 
ciated with each fundamental configuration, where nr is 
the number of sites in the rth configuration and (nr)\ is 
the combinatorial factor associated with permutations 
of the nr indices, the factor TV arises from the transla- 
tions, and the factor vr is the replication factor of the rth 
configuration associated with the point symmetry group 
(or sub-group) of transformations on the lattice which 
preserve the Hamiltonian. In particular, we need only to 
consider one of the 7Vj/r(«,)! equivalent sets of equations 
(15) associated with each independent coefficient Xr. 

At this point we need to consider approximation 
schemes whereby the expansions of S and S in equations 
(14 a) and (14/)) may be truncated to some finite or 
infinite subset of the full set of independent (funda- 
mental) multi-spin configurations. The three most com- 
monly employed schemes have been: (1) the SUB/; 
scheme, in which all correlations involving only n or 
fewer spins arc retained, but no further restriction is 
made concerning their spatial separation on the lattice; 
(2) the SUBn-wi sub-approximation, in which all SUB»i 
correlations spanning a range of no more than m adja- 
cent lattice sites arc retained: and (3) the localized 
LSUBm scheme, which retains all multi-spin correla- 
tions over all possible distinct locales on the lattice 
defined by m or fewer contiguous sites. For the results 
reported below we adopt only the LSUBHI scheme here. 

The practical implementation of the CCM thus now 
consists of first enumerating all distinct multi-spin cor- 
relation configurations retained in the selected approx- 
imation, and then generating the corresponding set of 
CCM equations. The first stage is essentially a problem 
in graph theory, whereas equation (15) shows that the 
second stage involves two distinct computational aspects 
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in the calculation of all possible non-zero contributions 
to the matrix element on the left-hand side of this equa- 
tion. Thus, the first step is to calculate the similarity- 
transformed Hamiltonian, H = exp(-S)if exp(S), and 
hence H\<P); while the second is to select those terms of 
H\<P) which match exactly the string of spin-lowering 
operators represented by the set of site indices 
{I'I , i2,..., i„}, and which hence give a non-zero overlap. 
Clearly, the former problem is intrinsically related to the 
non-commutative nature of quantum spin operators, 
and relies only on the algebraic relations of equation 
(3); while the latter problem is intrinsically related to 
the geometric properties of the spatial lattice under con- 
sideration, and is essentially a problem of pattern- 
matching. We have shown elsewhere [29] how each of 
the above stages may very efficiently be implemented 
computationally to very high orders, to yield a set of 
coupled CCM ket-state equations which may then be 
solved by standard Newton-Raphson techniques. The 
bra-state equations are also handled in an analogous 
fashion. 

In the following section the power of the CCM is 
illustrated by application to the spin-j anisotropic 
Heisenberg (or XXZ) model on an infinite 2D square 
lattice. 

3.    The spin-i XXZ antiferromagnet on the 2D 
square lattice 

3.1. The Hamiltonian 
The XXZ Hamiltonian is specified in terms of global 

spin coordinates as follows, 

H = ^ysJ + s^ + A^s]], (16) 
<<y> 

where the sum on (i,j) runs over all nearest-neighbour 
pairs and counts each pair once only. We note that on 
the 2D square lattice this model has no exact solution, 
unlike its ID chain counterpart which has been shown 
to be exactly integrable (and hence solved) using the 
Bethe ansatz. The XXZ model appears to have at least 
three distinct regimes: an Ising-like phase for sufficiently 
large values of the anisotropy parameter A, which is 
characterized by non-zero Neel order wherein nearest- 
neighbour spins in the ground-state wave function align 
antiparallel along the z axis; a planar-like phase in which 
the spins in the ground-state wave function are believed 
to lie in the xy plane; and a ferromagnetic phase. 

Barnes and his co-workers [30] have performed a 
Monte Carlo study of the 2D XXZ model on a square 
lattice. They observed that while the staggered magneti- 
zation is non-zero in the z direction for A > 1, it appears 
to fall to zero below A = 1. They conclude that there is a 
phase transition at or very near to the Heisenberg point 
A = 1, exactly as in the ID case. Kubo and Kishi [31] 

have also investigated the ground state of the 2D square 
lattice XXZ model by making use of exact sum rules. 
They found that the ground state possesses an off-diag- 
onal long-range order similar to that of the XY model at 
small values of the anisotropy parameter, 0.0 < 
A < 0.13. They also found that for values A > 1.78 the 
system possesses non-zero Ising-like long-range order. 
Finally, at A = -1 there is a first-order phase transition 
to a ferromagnetic phase which exists for all A < — 1 for 
this model. Although there are no exact proofs avail- 
able, it is widely believed that the model has a phase 
(or perhaps more than one phase) with planar-like 
order for -1 < A < 1, and an Ising-like phase with 
Neel-like antiferromagnetic order along the z axis for 
A>\. 

The isotropic Heisenberg point {A = 1) is thus 
expected to be a critical point marking the transition 
between states of different quantum order. We shall 
use it here as a specific example to test the ability of 
the CCM to predict phase transitions and its potential 
to discuss the critical phenomena (e.g. the critical 
indices) at this point. For the sake of later comparisons 
we note that Runge [32] has performed the most accu- 
rate Monte Carlo simulations available up until now for 
the square-lattice spin-j isotropic Heisenberg antiferro- 
magnet. By performing simulations on lattices up to size 
16 x 16, and by extrapolating to the infinite lattice limit, 
N —> oo, he finds a value for the ground-state energy 
per spin of EJN = -0.669 34 ±0.000 04, and a value 
for the sublattice magnetization, M+, which is 
(61.5 ±0.5)% of the classical value. By comparison, 
linear spin-wave theory (LSWT) [33] gives a value of 
E$/N = -0.658 and a value for M+ which is 60.6% of 
the classical value. 

3.2. Choice of CCM model state 
There is never a unique choice of model state |$). Our 

choice should usually be guided by any physical insight 
available to us concerning the system or, more specific- 
ally, that particular phase of it which is under considera- 
tion. In the absence of any insight into the quantum 
many-body system one may sometimes be guided by 
the behaviour of the corresponding classical system. 
The XXZ model under consideration provides just 
such an illustrative example. Thus, for A > 1 the clas- 
sical Hamiltonian of equation (16) on the 2D square 
lattice (and, indeed, on any bipartite lattice) is mini- 
mized by a perfectly antiferromagnetically Neel-ordered 
state in the z direction, whereas for — 1 < A < 1 it is 
minimized by a correspondingly ordered state with 
spins antiferromagnetically aligned along any direction 
in the xy plane, say along the x axis. Thus, we see that 
even for the same spin model and lattice, different 
choices of model state may be preferable, depending 
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on the particular regime of parameter space in which we 
are interested. For present purposes wc shall utilize both 
of these classical Necl states, namely the z-aligncd Neel 
state and the x-aligncd Necl state (with the latter hence- 
forth denoted as the planar model state), for two sepa- 
rate sets of corresponding CCM calculations. In both 
cases we now set up different local sets of spin axes on 
both sublattices so that in the local coordinates all spins 
in both model states point in the negative z direction, as 
discussed above in section 2 (and sec equation (12)). 

For the z-aligned Necl state wc simply perform a 
rotation of the axes of the up-pointing spins by 180" 
about the y axis, such that 

-s —s (17) 

The Hamiltonian of equation (16) may now be written 
in these local axes as 

H* = -~ £ [4 s! + sis7 + 2Att\, (18) 

where the superscript z on Hz reminds us that the 
Hamiltonian is written in the local spin coordinate 
axes appropriate to the z-aligncd Necl model state. 

In order to produce a 'ferromagnetic' model state, as 
in equation (12), for the planar model state in the local 
frames, we rotate the axes of the left-pointing spins (i.e. 
those pointing in the negative x direction) in the planar 
state by 90° about the y axis, and the axes of the corre- 
sponding right-pointing spins by -90° about the y axis. 
(Note that the positive z axis is defined here to point 
upwards and the positive x axis is defined to point right- 
wards.) Thus, the transformations of the local axes arc 
described such that 

s , (19) 

for the left-pointing spins, and such that 

sx-*-sz,        sv->sv,        /-»s* (20) 

for the right-pointing spins. The transformed Hamil- 
tonian of equation (16) may now be written in these 
local axes as 

(ij) 

+ (A-\)(sis-+sTsf) + 4ttf},       (21) 

where, again, the superscript p on Hv reminds us that 
the Hamiltonian is written in the local spin coordinate 
axes appropriate to the planar model state. It is import- 
ant to recall that since the Hamiltonians H, H~', and Hr 

of equations (16), (18), and (21) differ only by similarity 
transformations their eigenvalue spectra are identical. 

3.3. Enumeration of the independent correlation 
configurations 

The first step in the practical implementation of the 
CCM at the LSUBm level of approximation discussed in 
section 2 is to enumerate all of the distinct multi-spin 
configurations or correlated clusters, which wc shall 
henceforth call fundamental configurations, {/,, i2,..., /„} 
with n < m, which arc retained at the LSUB/H level. 
Only those configurations which cannot be obtained 
from one another using the lattice symmetries (namely, 
translations, rotations and reflections) shared by the 
Hamiltonian arc to be counted as distinct. For the 
square lattice under consideration there arc four rota- 
tional operations. (0°,90°, 180°,270°), and four reflec- 
tions (along the x and y axes, and along the lines 
y = ±x), which preserve the symmetries of both the 
lattice and the Hamiltonian. Each such fundamental 
configuration is associated with two single independent 
correlation coefficients Xr and Xr associated with the 
cluster operators S and S respectively, as discussed in 
section 2. Each correlated cluster may be either a con- 
nected cluster of size m (also known as a 'lattice animal' 
or 'polyomino') or a connected or disconnected subset 
of it. We note that the enumeration of the number of 
lattice animals of size »i on a regular lattice as m 
becomes large remains an open problem in combina- 
torial graph theory. However, efficient algorithms for 
their enumeration for m < 20 have been developed in 
such fields as cell growth and percolation theory. 

We also note that although Hv and H: arc fully 
equivalent to one another, the number of fundamental 
LSUBm configurations at each level m > 2 is greater for 
Hv than for H~~ due to other constraints which arise 
from symmetries of the Hamiltonian. Thus, firstly, wc 
note that both Hr and H: contain only even products of 
spin-flip operators (plus a single term containing two sz 

operators). Repeated application of either Hamiltonian 
to the model state |tf>) will thus only create states with an 
even number of spin flips with respect to it. Since the 
exact ground state may be obtained as a linear combina- 
tion of states obtained by repeated application of the 
Hamiltonian to \<P), assuming only that \<!>) is not ortho- 
gonal to the exact ground state, wc may hence restrict 
ourselves to LSUBm fundamental configurations which 
contain an even number of spin flips, i.e. to coefficients 
5,-,-,...,; where n is even. 

Secondly, we note that the number of fundamental 
configurations can be further reduced for //". Thus, H: 

has the additional feature that when applied to |#) it 
produces states with the same number of spin flips on 
both sublattices. and hence wc can further restrict the 
fundamental configurations to those which preserve this 
feature. This symmetry is related to the fact that the 
original Hamiltonian. and hence also Hr and //", com- 
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mute with the z component of the total uniform mag- 
netization, sf = J2i sl (where sz is defined with respect to 
the original global quantization axis, and the sum over 
the index i runs over all N —> oo lattice sites). However, 
whereas the z-aligned Neel model state is an eigenstate 
of sf, the planar model state is not. Hence, for the z- 
aligned Neel model state one may explicitly conserve sf 
(as zero for the antiferromagnetic sector) by restricting 
the fundamental configurations to those which produce 
no change in sf (= 0). We note the number of funda- 
mental configurations up to the LSUB8 level of approx- 
imation for both model states in table 1. The actual 
calculations reported below are performed up to this 
level for Hz, but only up to LSUB6 level for Hp due 
to the increased number of fundamental configurations 
in the latter case. 

We note also that Hp and Hz become identical at the 
Heisenberg point A = 1. In the actual calculations this is 
reflected by the fact that the additional cluster correla- 
tion coefficients at a given LSUBm level included for Hp 

beyond those included for Hz become zero at this point, 
A —> 1". Further details of the enumeration of the inde- 
pendent configurations is contained in [29]. 

3.4. The CCM ket-state equations 
In order to evaluate the CCM ket-state equations 

(15), we first require the similarity-transformed Hamil- 
tonians, Hz and Hv, defined as in equation (11). By 
making use of the fundamental SU(2) commutation 
relations of equation (3) it is straightforward to show 
that after letting Hz act on |<P), as needed in equation 
(15), we have 

Hz\$) = exp (-S)tfzexp (S)\<P) = (H\ +HZ
2 + Hz

3)\&), 

(22) 

where 

1 
ä

I = -ö
4
E(W 

+
 
G

*».)
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*
S

» 
kp 

-iE[1 + (f*)W+4nn,GL 
kP 

+ 2(GL)2Rs+, (23) 

kp 

+^E(F^+2G^)(f^+f™s™)> (24) 
kp 

H\ = -\Y}A+WkFz
m + Gz

km)], 
kp 

(25) 

and where k runs over all lattice sites, and m = k + p 
such that p runs over all 4 nearest neighbours to k on 
the lattice. The operators Fk and Gkm are defined gener- 
ically as follows, 

1=1      i'l ■■•[•,_! 

'1-1' 
(26) 

Gkm = £/(/- 1) 53 Skmh..,,_2s+ • • • s+2,    (27) 
1=2 'l-'l-l 

and F\ and Gkm are the particular cases where «S,-,...,- —> 
<Sfr..,n, namely the cluster correlation coefficients 
obtained by use of the present z-aligned Neel state and 
Hz. Equation (25) shows that the ground-state energy 
for the z-aligned Neel model state is simply given in 
terms of x\ = Sktk+p, the nearest-neighbour two-body 
cluster correlation coefficient obtained by using Hz and 
the z-aligned Neel model state, as 

*    >i + 4- (28) 

We note that x\ = Skk+p is independent of k and p 
by the translational and rotational symmetries of the 
lattice. 

The equivalent relations  for Hp  are obtained as 
follows, 

Äp|$) = exp(-S)Hpexp(S)|$> = (Hp + HP + HP)|$), 

(29) 

where 

x[(Fp)2 + (Fp)2]|s+s+ 

-i(zl + l)^[l + (Fp)2(Fp)2+4FpFpGp
m 

(30) + 2(Gpjte, 

kp Z 

+ l(A + \)J2(2Glm + FlFl){F\st + Fls+
m),   (31) 

kp 

nl = 4D1 + (A + l)W + GL)]- (32) 
kp 

The operators F\ and Gp
m are again defined as in equa- 

tions (26) and (27), but with the cluster correlation co- 
efficients S^ ...i —> Sp...;  obtained by use of the present 
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planar model state and Hv. Equation (32) immediately 
yields, 

(33) ^=-I[2x^ + l) + l], 

where x^ = 5^+ , the nearest-neighbour two-body cluster 
correlation coefficient obtained by using Hv and the 
planar model state. 

In both cases the corresponding LSUBm equations 
arc obtained by evaluating all non-zero contributions 
to equation (15). There is one such (coupled nonlinear) 
equation for every fundamental configuration retained, 
and hence NF equations in Ny coefficients, for each level 
of approximation. The actual derivation of the ket-state 
equations from equation (15) and equations (22)—(25) or 
equations (29)-(32) is thus seen to reduce essentially to a 
pattern-matching exercise, and we describe elsewhere 
[29] its efficient computational implementation. The 
bra-state equations can also be derived in an analogous 
fashion. 

4.    Results 
4.1. Ground-state energy 

Results for the ground-state energy using the two 
model states are illustrated in figure 1 at the LSUB4 
and LSUB6 levels of approximation, where they are 
compared with the Monte Carlo results of Barnes et 
al. [30]. The highest approximation that we have under- 
taken for the planar model state case is LSUB6, which 
contains 131 independent cluster configuration coeffi- 
cients and which yields an energy per spin. Es/N = 
-0.66700 at the Heisenberg point (A = 1). Due to the 
reduced number of independent configurations for the 
case of the z-aligncd Nccl model state we have also been 
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Figure l. Results for the CCM ground-state energy of the 
spin-j XXZ model on the 2D square lattice, using the 
LSUBm approximation with m = 4,6 based on both the 
planar and z-aligncd Nccl model states, compared to the 
Monte Carlo results of [30]. LSUBm critical points. 
A\:, AA and A"A, arc indicated by the boxes. 

able to solve the higher LSUB8 approximation in this 
case. The 1287 coupled equations in this case yield a 
value of the energy per spin. Es/N = -0.668 17 at 
A = ]. The results for the Heisenberg model (which 
arc identical using both model states for this case) arc 
summarized in table 1, and ground-state energies arc 
also shown in table 2 for a range of values of A, and 
for calculations using both model states as CCM refer- 
ence states. 

In order to compare our results with those cited in 
section 3.1 from other methods, we attempt a simple 
heuristic extrapolation of our LSUBm results to the 
limit HI -» oc at the isotropic Heisenberg point 
(A = 1). As has already been found elsewhere [11], our 
results seem to extrapolate well to their asymptotic value 
with a leading ni-dcpcndcnt correction that scales as 
??r2. In this way we obtain an extrapolated value for 
the ground-state energy per spin of £g/N = -0.66968. 
This compares very well with the best Monte Carlo 
simulation value [32] of -0.669 34 ± 0.00004, and is 
very much more accurate, by comparison with this 
Monte Carlo value, than with the linear spin-wave 
theory (LSWT) result [33] of EJN = -0.658. 

Figure 1 and table 2 illustrate that at a given LSUBm 
level of approximation the CCM result for the ground- 
state energy using the z-aligncd Nccl model state lies 
lower than its counterpart using the planar model state 
for A > 1, and vice versa for A < 1. This result is pre- 
cisely as would be expected classically, as discussed 
above in section 3.2. and it illustrates the power of 
being able to employ different CCM model states 
which are specifically geared to different possible 
phases. If we were simply to take that solution with 
the lower energy for each value of A (for which we 
note, however, that there is no real justification), we 
would infer that there is a phase transition at A = 1 
between a phase with Ising-like order at A > 1 and a 
planar-like phase for A < 1. 

We note, furthermore, and much more importantly, 
that each separate calculation also yields evidence of 
such a phase transition. Thus, we find that beyond cer- 
tain critical values, Ac, of the anisotropy parameter there 
exists no physically reasonable solution to the LSUBm 
CCM equations for m > 4, as is illustrated for the cases 
HI = 4,6 in figure 1. In previous work [II] we have 
related this characteristic breakdown of the CCM equa- 
tions at certain critical points to actual phase transitions 
of the real system, and we explore this further in section 
4.2 below. A useful means to detect phase transitions 
within the LSUBm scheme is to calculate the so-called 
anisotropy susceptibility. \.A, 

X» 
d2(Ef/N) 

dA2   ' 
(34) 
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Table 1. Results obtained for the spin-± XXZ model on the 2D square lattice using CCM LSUBm approximations (m = 2,4,6,8). 
iV£ denotes the number of fundamental configurations for the planar model state, which are further decomposed in terms of 
connected and disconnected ones respectively, and NZ

F denotes the number of fundamental configurations for the z axis Neel 
model state. The ground-state energy per spin, EJN, and the sublattice magnetization, M+, at the isotropic Heisenberg point 
{A = 1) are shown, as well as extrapolated results in the limit m -> oo. Various critical anisotropy parameters are also given. A\, 
and AA indicate the LSUBm critical points for the planar model state corresponding to the ferromagnetic and antiferromag- 
netic phase transitions. A\ indicates the critical point for the z-axis Neel model state corresponding to the antiferromagnetic 
phase transition. Note that there are no terminating points in the LSUB2 approximation. 

Np
F Ni h 

N 
M+\ 4 < 

2 1(1+0) 1(1+0) -0.648 33 0.8414 — — — 
4 10(6 + 4) 7(5 + 2) -0.663 66 0.7648 -1.250 1.648 0.577 
6 131(41+90) 75(29 + 46) -0.66700 0.7273 -1.084 1.286 0.7631 
8 2793(410 + 2383) 1287(259 + 1028) -0.66817 0.7048 ? ? 0.8429 
00 — — -0.66968 0.62 -0.95 1.00 0.96 ± 0.04 

Table 2. Results for the ground-state energy per spin of the 2D spin-AXXZ model on the square lattice using both the planar and 
z-aligned Neel model states, compared with the Monte Carlo results of [30]. The '—' symbol indicates values of A which lie 
outside the range, defined by the A^,A\, and A\ critical points, in which there exists a physically reasonable solution to the 
LSUBm CCM equations for m ^ 4. The '**' symbol indicates points at which a Monte Carlo solution has not yet been 
determined. 

CCM results based CCM results based 
or the planar Neel state 

Monte 

on the z-aligned Neel state 

A LSUB2 LSUB4 LSUB6 Carlo LSUB8 LSUB6 LSUB4 LSUB2 

-1.0 -0.5 -0.5 -0.5 ** — —   -0.8483 
-0.5 -0.5103 -0.5145 -0.5151 ** — — — -0.5885 

0.0 -0.5403 -0.5473 -0.5483 ** — — — -0.4472 
0.5 -0.5874 -0.5959 -0.5975 ** — — — -0.4885 
0.71429 -0.6120 -0.6222 -0.6242 -0.624 — — -0.5891 -0.5480 
0.833 33 -0.6267 -0.6385 -0.6408 -0.641 — -0.6199 -0.6116 -0.5875 
0.90909 -0.6364 -0.6496 -0.6523 -0.652 -0.6415 -0.6390 -0.6338 -0.6144 
0.95238 -0.6420 -0.6562 -0.6591 -0.661 -0.6535 -0.6518 -0.6477 -0.6304 
1.0 -0.6483 -0.6637 -0.6670 -0.669 -0.6682 -0.6670 -0.6637 -0.6483 
1.05263 -0.6554 -0.6723 -0.6762 -0.687 -0.6856 -0.6848 -0.6821 -0.6686 
1.11111 -0.6634 -0.6823 -0.6871 -0.704 -0.7062 -0.7056 -0.7035 -0.6917 
1.17647 -0.6726 -0.6940 -0.7005 -0.729 -0.7303 -0.7298 -0.7282 -0.7180 

1.25 -0.6830 -0.7082 -0.7189 -0.759 -0.7585 -0.7582 -0.7570 -0.7482 
1.5 -0.7201 -0.7680 — ** -0.8611 -0.8610 -0.8604 -0.8550 
2.0 -0.8000 — — ** -1.0833 -1.0833 -1.0831 -1.0806 

Since the CCM equations are known analytically, xa 

and all other derivatives may also be calculated directly 
(i.e. from analytic equations). We find that xa diverges 
at the critical points. 

More specifically, we find that for the CCM calcula- 
tions based on the planar model state xa diverges at 
critical values A^ = A\ and A\, corresponding to the 
ferromagnetic and antiferromagnetic phase transitions 
respectively, for all LSUBWJ approximations with 
m > 2. These results are illustrated in table 1, which 
also displays the single critical point at AQ = AZ

K for 

the CCM calculations based on the z-aligned Neel 
model state, and which again corresponds to the anti- 
ferromagnetic phase transition. As one might hope, the 
position of the critical point A\ becomes closer to the 
true ferromagnetic phase transition at A = — 1 as the 
approximation level is increased. Also, both AP

A and 
AZ

A appear to converge with increasing LSUBm index 
m, and for a given value of m always bound the point 
A = 1 at which the true antiferromagnetic phase transi- 
tion is believed (by symmetry arguments) to lie. We have 
shown elsewhere [11] how the corresponding SUB2-m 
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results for A\ seem to approach the full SUB2 value as 
nT2, and the same rule fitted to the LSUBHI results 
yields the corresponding predictions for the extrapolated 
antiferromagnetic point indicated in table 1, namely 
A\ «0.96 ±0.04, and A\ « 1.00. Both predictions are 
compatible with each other and with the expected value 

4.2. Sublaltice magnetization 
In order to discuss the phase transition further it is 

necessary to consider the degree of quantum order 
inherent in the CCM wave functions obtained at the 
various LSUBwi levels of approximation, and based on 
both model states. The simplest such order parameter is 
the sublattice magnetization, M+ = -2{sz), which is 
defined as the average over the entire lattice of sz in 
the local (rotated) spin coordinates, or, equivalcntly 
over a single sublattice of the corresponding unrotatcd 
component of the spin in the original global coordinates. 
Thus, M+ = 1 for both model states, with perfect anti- 
ferromagnetic alignment along the global z axis for the 
z-aligncd state and along the global x axis for the planar 
state. Quantum fluctuations (i.e. multi-spin correlations) 
present in the exact interacting ground state arc 
expected to reduce M+ below unity. We would expect, 
a priori, that a phase transition would be marked by M+ 

becoming zero (or, in an approximate calculation, sin- 
gular) at some critical value of the coupling parameter, 
namely A for the present XXZ model. 

By inserting the CCM parametrizations of equation 
(5) we find, 

M+ = -wE^i'<i^ 
k=\ 

= -AI>|Sexp(-SKexp(S)|0),     (35) 
k=\ 

where s2. is in the local coordinates of each sublattice. In 
the notation of equation (26) we find 

k=\ 

= i-£l>!)£V<A N 
(36) 

n=1 

The sum in equation (36) may be rewritten in terms of 
the independent correlation coefficients Xr and Xr asso- 
ciated with the Nf fundamental configurations of a 
given LSUBni approximation, which were introduced 

M+ 

1.2 

1.0 

0.8 

0.6 

04 

0.2 

——~- 'z'-aligned Neel model state- LSUB4 
 'z'-aligned Moot model state LSUB6 
 planar model state LSUB4 
 planar model state LSUB6 

0.0 
-1.5 

Figure 2. Results for the CCM sublattice magnetization M' 
of the spin-1 XXZ model on the 2D square lattice using 
the LSUBm'approximation with m = 4,6 based on both 
the planar and z-aligncd Neel model states. The results 
indicate non-zero long-range order in the AT plane for 
— \<A<\, and along the z axis for A > 1. 

in section 2. to give the LSUB/n estimate for M+, 

r=\ 

= 1 -2£nf(«f!).vr.vr, (37) 
r--| 

where nr is the number of spin flips with respect to \Q) 
for the rth fundamental configuration, and where we 
have introduced the notation xr = Xr and xr = 
(nr\)i'rXr. For the square lattice considered here vr = 4 
or 8 for all allowed fundamental configurations. 

Evaluation of the sublattice magnetization requires 
both the ket- and bra-state cluster correlation coeffi- 
cients. We have described the computation of the kct- 
state coefficients in broad outline above. The bra-state 
coefficients are calculated similarly, by making use of the 
generic linear equations (9), once the kct-state coeffi- 
cients arc known. The actual procedure is straightfor- 
ward, and is also described in more detail elsewhere [29]. 

Results for M+ for the spin-^ 2D XXZ model on the 
square lattice using both CCM model states arc shown 
in figure 2. Table 1 also summarizes the results at the 
isotropic Heisenberg point. A = 1. We note again that 
the corresponding LSUBHI results for M4 at a given 
truncation level m are identical at A = 1. Wc sec clearly 
that over the entire range -1 < A < 1 our results seem 
to converge well to a non-zero in-plane long-range 
order, with a non-zero planar sublattice magnetization, 
whereas for all A > 1 wc have comparable non-zero 
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long-range order along the spin z axis and a non-zero z 
component of sublattice magnetization. 

We also note the divergence in M+ near the critical 
points A\ and A\, which strongly reinforces our inter- 
pretation of these points as reflecting a phase transition. 
As we approach one of these antiferromagnetic critical 
points for a given LSUBm approximation, we typically 
find that at least one of the CCM correlation coefficients 
xr becomes very large, and hence M+ diverges from 
equation (36). 

We once again attempt a simple heuristic extrapola- 
tion of our LSUBm results for M+ at the Heisenberg 
point (A = 1) to the limit m —► oo, in order to compare 
our results with those from other calculations. As has 
been found elsewhere [11] the results for M+ extrapolate 
well to their asymptotic value with a leading correction 
that scales asm-1. As shown in table 1 we thus obtain an 
extrapolated value, M+ = 0.62. This compares ex- 
tremely well with the best available Monte Carlo simu- 
lation value of Runge [32], M+ = 0.615 ±0.005, and 
with the value M+ = 0.62 ± 0.02 from series expansion 
techniques [34]. 

4.3. Critical properties 
We have demonstrated so far that CCM calculations 

using the LSUBm approximation scheme based on dif- 
ferent model states are well able to describe both the 
Ising-like phase for A > 1 and the planar-like phase 
for -1 < A < 1 of the spin-± 2D XXZ model on the 
square lattice. The results are not only extremely accu- 
rate for such quantities as the ground-state energy and 
sublattice magnetization as functions of A, but calcula- 
tions based on each model state separately give accurate 
results for the critical values Ac which delimit the regime 
in A in which that model state is apposite. These critical 
values clearly mark (at the level of approximation con- 
sidered) the physical phase boundaries. In this context it 
is natural to ask now whether our CCM formalism also 
has the power to predict the critical behaviour of the 
physical observables near such phase transitions, i.e. 
whether we can extract from the LSUBm results useful 
information on critical indices. We show below, by spe- 
cific application to the same spin-1 square-lattice XXZ 
model, that this question can firmly be answered in the 
affirmative. 

Thus, the critical index for the singular (non-analytic) 
term in E%/N near an LSUBm critical point Ac(m) can 
first be obtained, for example, by direct examination of 
the anisotropy susceptibility, Xa = -^(Eg/ty/dA2, of 
equation (34). For m > 2 we find, 

x?W- >x™ \A-Ac(m)\-a°;        A - Ac(m).     (38) 

Direct calculation for the LSUBm approximations using 
both the z-aligned and planar Neel model states shows 

that for m > 2 we have o0 « 1.500 ± 0.005. However, 
the prefactors Xa in equation (38) are themselves 
strongly dependent on the truncation index m. We 
may now use a variant of the so-called coherent 
anomaly method (CAM) of Suzuki [35], to extract 
further information. Thus, we attempt to fit Xa with 
the coherent anomaly form, 

Xa ■K\Ac(oo)-Ae(m)\"\        A^Ae(oo),      (39) 

where K is a constant. Thus, as explained by Suzuki [35] 
one may intuit or prove that the exact Xa(^) has the 
critical form, 

Xi(A)^K\A-Ac(oo)\-at+v;   A^Ae(oo) = Ac, (40) 

where K is a constant. 
A CAM analysis along these lines of the LSUBm 

results based on the z-aligned Neel state gives v « 1.25 
using the A\(A) and A\{6) data, and v K, 0.97 using the 
AZ

K(€) and A\(8) data. We thus obtain a singular term in 
Eg/N near A\ with a critical exponent 2 - aQ + v « 
1.50-1.75. This may be compared with the corre- 
sponding value of 3/2 for both the mean-field-like 
CCM SUB2 approximation (in which all 2-spin-flip cor- 
relation terms are retained, however far apart on the 
lattice) and linear spin-wave theory (LSWT). A corre- 
sponding analysis may also be carried out on the 
LSUBm results based on the planar model state near 
A\. We again find a0 K, 1.500 ±0.005 for both the 
LSUB4 and LSUB6 results, and a corresponding critical 
anomaly based on these of v « 1.27. We thus obtain a 
singular term in Eg/N near A\ with a critical exponent 
2 — a0 + v « 1.77. These preliminary data are clearly 
compatible with the hypothesis that the critical exponent 
in the energy is the same on both sides of the antiferro- 
magnetic phase transition AA. 

Similar CAM analyses can also be performed for the 
ground-state energy near the corresponding ferromag- 
netic critical point A\, and for such other properties 
as the sublattice magnetization M+ near any of these 
critical points. 

5.    Conclusions 
Our aim in the present paper has been to show that 

the well-known and much used coupled cluster method 
of microscopic quantum many-body theory may be used 
to great advantage to study quantum spin-lattice 
models at a level which includes the quantitative identi- 
fication of zero-temperature quantum phase transition 
points between states of different magnetic ordering, and 
the various critical indices which describe their beha- 
viour in the vicinity of these transitions. The CCM is 
now in the position of being virtually the only fully 
microscopic method available which can yield very ac- 
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curate results for both local ground-state properties and 
the global critical behaviour of these highly non-trivial 
systems. 

We note that for spin-lattice models with nearest- 
neighbour interactions on bipartite lattices, such as the 
XXZ model considered here, quantum Monte Carlo 
results are also available. These arc practicable for 
these models since the infamous 'minus-sign problem' 
which bedevils Monte Carlo simulations can be circum- 
vented by mapping the models onto equivalent bosonic 
problems or, equivalently, by utilizing the Marshall sign 
rule [36] concerning the phase relations between the pro- 
jection coefficients of the ground-state wave function 
onto a complete set of spin configurations. We have 
seen that our own CCM formalism can now be effect- 
ively implemented computationally to levels where the 
results are comparable in accuracy to the best Monte 
Carlo results for these cases. 

By contrast, for frustrated models (e.g. models with 
both nearest-neighbour and next-nearest-neighbour 
interactions [12, 24, 25], or the same XXZ model con- 
sidered here but on a 2D triangular lattice [13]) Monte 
Carlo simulations arc much more difficult to implement 
(e.g. see [37] for the typical case of the isotropic spin-j 
Heisenberg model on a triangular lattice). On the other 
hand, as we have shown elsewhere [12, 13, 24, 25], the 
CCM is no more difficult to implement, either in prin- 
ciple or in practice, for such frustrated systems. In par- 
ticular, there is now a real hope that the CCM results 
can be used to guide more ambitious fixed-nodc-type 
Monte Carlo simulations of such systems, by providing 
better trial wave functions whose nodal surface structure 
can be taken from CCM LSUBm results. 

Further extensions of our CCM formalism may also 
be envisaged. For example, LSUBm calculations on spin 
lattices where the spins have quantum number s > \ 
present no real difficulty [10(0]- Thus, one merely gen- 
eralizes to the case of 'multiple occupancy' of the sites 
{i,,...,i„} in the retained fundamental configurations, 
where each site can now be 'occupied' up to 2s times (i.e. 
since the spin-raising operator si on site k can act on the 
'ferromagnetic' model state \4>) in the local spin co- 
ordinates up to 2,s times before it annihilates |4>)). We 
are also hopeful that our general methodology can be 
applied to other unconventional (non-Fermi-liquid- 
type) systems of the sort discussed in section 1. Systems 
which seem particularly ripe for further application of 
the CCM techniques considered here include the 
valence-bond solids [24, 26] and lattice models with elec- 
tronic degrees of freedom, such as the Hubbard model 
[17, 27]. 

Finally, we note that it would be of great interest to 
extend the CCM treatment of all of the above models, 
including the XXZ model considered here, to finite tem- 

peratures. One obvious way to do this would be to 
extend the formalism by utilizing the general framework 
of thermoficld dynamics [38]. In the same context wc 
also note that Mukhcrjcc [39] and others have suggested 
alternative ways to extend the CCM to incorporate a 
thermal averaging procedure. 

We thank J. B. Parkinson. Y. Xian, and C. Zcng for 
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and Physical Sciences Research Council (EPSRC) of 
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Theoretical descriptions of the spectrum of electronic excitations in real metals have not yet 
reached a fully predictive, 'first-principles' stage. In this paper we begin by presenting brief 
highlights of recent progress made in the evaluation of dynamical electronic response in 
metals. A comparison between calculated and measured spectra—we use the loss spectra of 
Al and Cs as test cases—leads us to the conclusion that, even in 'weakly-correlated' metals, 
correlation effects beyond mean-field theory play an important role. Furthermore, the effects 
of the underlying band structure turn out to be significant. Calculations which incorporate the 
effects of both dynamical correlations and band structure from first principles are not yet 
available. As a first step towards such a goal, we outline a numerical algorithm for the self- 
consistent solution of the Dyson equation for the one-particle Green's function. The self- 
energy is evaluated within the shielded-interaction approximation of Baym and Kadanoff. 
Our method, which is fully conserving, is a finite-temperature scheme which determines the 
Green's function and the self-energy at the Matsubara frequencies on the imaginary axis. The 
analytic continuation to real frequencies is performed via Pade approximants. We present 
results for the homogeneous electron gas which exemplify the importance of many-body self- 
consistency. 

1.    Introduction 
Most properties of metals are strongly influenced by 

the electron-electron interactions [1]. For example, these 
interactions are responsible for the existence of collec- 
tive excitations, such as plasmons and spin waves; 
without exchange and correlation there would be no 
metallic cohesion, or magnetism in the 3d transition 
metals, etc. 

The theoretical treatment of correlation has tradition- 
ally been restricted to 'simple models' which, by design, 
isolate some of the features of the problem which are 
deemed to be important. Now, approximations at two 
different levels are actually built into the models. First, a 
compromise is made in the description of the underlying 
band structure. In the jellium model, the band structure 
is simply ignored altogether—the electrons propagate in 
plane-wave states. This model has played a time-hon- 
oured role in the study of correlation in simple metals. 
In the opposite end we have the Hubbard model [2], 
which corresponds to a tight-binding description of the 
band structure, in which, e.g. the hybridization of sp and 
d orbitals at the Fermi surface is neglected. This model 
was originally proposed for the study of transition-metal 
magnetism, and has been much-invoked in recent years 
for the study of highly-correlated electrons (e.g. in the 
cuprate high-temperature superconductors). 

t Corresponding author; e-mail: eguiluz@utk.edu. 

Second, a 'model' or an approximation is introduced 
for the actual description of dynamical correlations. 
Thus, in the case of electronic excitations in jellium, 
the Coulomb interaction is often treated in a mean- 
field sense, such as the random-phase approximation 
(RPA) [1]. Short-range correlations are usually added 
on in simplified ways [3]. In the case of the Hubbard 
model, recent progress has been made in the treatment 
of correlation processes beyond mean-field theory. 
These include self-consistent diagrammatic approaches 
[4-6]—which, in fact, provide motivation for our work 
described below—and non-perturbative treatments of 
the Coulomb interaction via quantum Monte Carlo 
methods [6], and exact diagonalization of the Hamil- 
tonian for small clusters [7]. However, the long-range 
aspects of the Coulomb interaction are typically ignored 
in these schemes, which allow the electrons to interact 
only when they encounter each other at a given atomic 
site with opposite spin projections. 

Of course, if the compromise contained in the above 
models at the level of the band structure is considered to 
be unreasonable for the problem at hand, one still has 
available the powerful method of density functional 
theory (DFT), which has the great appeal that the elec- 
tronic structure is dealt with in a very realistic way [8,9]. 
However, in typical implementations of DFT the corre- 
lation problem is basically 'taken for granted', in the 
sense that one assumes the validity of the local-density 
approximation (LDA), or gradient corrections thereof. 

0026-8976/98 $12-00 © 1998 Taylor & Francis Ltd. 
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At the level of the LDA we rely on an available approx- 
imate solution of the correlation problem for electrons 
in jellium. While the DFT method has proved extremely 
successful over the last two decades [10 12], its realm is 
basically confined to ground state obscrvables which arc 
obtainable from a knowledge of the total energy of the 
system. 

In the first part of this article we briefly discuss 
some key results of recent work on the spectrum of 
elementary excitations of sp-bonded metals such as Al 
and Cs [13,14]. The theoretical work goes beyond the 
simple-model stage in the sense that the electrons arc 
allowed to propagate in the 'actual' band structure of 
the metal [13-21] (the band structure is, of course, that 
obtained in the LDA). However, the treatment of 
correlation is still at the mean field level, and there is 
no attempt at self-consistency. Nonetheless, the fact 
that the band structure is dealt with realistically allows 
us to establish a useful interplay with the results of 
modern spcctroscopic measurements on these systems 
[22,23]. The end result is that we actually learn new 
physics and pose new questions. For example, it 
becomes clear that the effects of the band structure 
can be significant, even for these otherwise jellium-like 
systems [13-18,20]. In particular, this interplay has led 
to the experimental determination of the so-called 
many-body local field factor of Al [23,24]. This quantity 
condenses the effect of correlations beyond the RPA; its 
measured value [23] differs from theoretical predictions 
for wave vectors #~2kj., where A> is the Fermi wave 
vector. 

Thus, even for weakly-correlated, 'jellium-like' 
metals, a complete treatment of the excitation spectrum 
must include not only the effects of the band structure, 
but it must also incorporate the effects of correlation on 
the same footing. Little is known quantitatively about 
this joint problem beyond the description contained in 
the LDA. 

In the case of semiconductors, a rather large volume 
of work has been devoted to a description of the impact 
of dynamical correlations on the fundamental band gap 
and quasi-particle energy-shifts of the one-electron band 
structure [25-29]. As is well known, the energy difference 
between the lowest unoccupied and the highest occupied 
Kohn-Sham eigenvalues deviates from the experimental 
value of the band gap by 50-100%. This problem has 
been addressed in recent years at the level of the so- 
called GW approximation [26 29], which yields results 
in apparent quantitative agreement with experiment. 
(We note that some of these calculations contain one 
or more ad hoc approximations—such as the neglect of 
the damping processes contained in the imaginary part 
of the self-energy, and the use of a plasmon-polc 
approximation; furthermore, the many-body require- 

ment that the propagators must be dressed fully sclf- 
consistently with the self-energy has typically been 
neglected.) Recent calculations [30] have included the 
actual frequency dependence of the polarizability in 
the evaluation of the GW self-energy, with equal 
degree of success—as measured by agreement with the 
experimental band gap. Some work along similar lines 
has been performed for metals. For example, the self- 
energy effects in the occupied bandwidth of simple 
metals [31] and the exchange splitting of the magnetic 
bands of Ni [32] have been calculated: the agreement 
with experiment in this case is not as good as it is in 
the case of semiconductors. 

With the above material as background and 
motivation, we move on to discuss ongoing work 
which constitutes a first step towards a realistic 
description of correlation in metals. We report results 
of a fully conserving solution of the Dyson equation for 
the one-particle Green's function within the shicldcd- 
intcraction approximation [33]. That the solution is 
conserving means that it obeys important microscopic 
conservation laws [33,34]; technically, the propagators 
are dressed self-consistently with the self-energy. We 
find that many-body self-consistency is important. We 
illustrate this conclusion with numerical results for 
the spectral function, the quasi-particle weight at the 
Fermi surface, and the density of states. Of course, the 
shiclded-interaction approximation ignores additional 
correlation effects (e.g. renormalizcd vertices). More 
general self-energy functional will be addressed else- 
where. 

In this preliminary account of our method for the 
treatment of correlation in metals vvc confine the discus- 
sion to the homogeneous electron gas. or jellium model. 
However, our finite-temperature many-body techniques 
arc applicable for realistic band structures. In fact, the 
calculations reported in this article correspond to an 
'empty-lattice' treatment of the band structure, since 
we sample wave vector space over a discrete three- 
dimensional mesh. Calculations for actual metals arc 
in progress. 

Accurate results for the Green's function, 
polarizability, self-energy, etc., arc obtained by the 
implementation of a procedure which efficiently 
minimizes the impact of the frequency cutoff in the 
evaluation of the Green's function for imaginary 
times. The polarizability for imaginary times is then 
obtained as a product of two Green's functions (in 
wave vector space we perform a convolution), and is 
subsequently fast-Fourier transformed to the Matsu- 
bara frequencies. The analytic continuation of the self- 
energy to real frequencies is performed via Padc approx- 
imants [35]. 
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2.   Dynamical response in real metals: a brief 
'status report' 

The latest generation of calculations of dynamical 
electronic response in metals has reached a new level 
of sophistication [13-21]. Indeed, it is now possible to 
account for the effects of the one-electron band structure 
(as produced by the LDA) in great detail. In conjunction 
with significant developments on the experimental front 
(greatly enhanced energy and momentum resolutions 
have become available; improved sample-preparation 
techniques have made possible the realization of experi- 
ments yielding much 'cleaner' data) the new theoretical 
algorithms allow us to delve into the physics of the 
excitations to a degree which was not possible until 
recently. As a result of this feedback between theory 
and experiment, new physical mechanisms are coming 
to the fore, as we sketch briefly next. 

The comparison between measured and calculated 
cross sections for the inelastic scattering of, e.g. elec- 
trons and X-rays, can be conveniently formulated in 
terms of the dynamical structure factor [1] 

S(q;w) = -2nfiJVImxG=o,G'=o(<i;w)> (1) 

where \ is the dynamical density-response function. In 
the ab initio work performed so far [13-21], which is 
basically 'RPA-like', the response function is given by 
[24] 

P«»{l-„(l-G)P(0)}-\ X (2) 

where v is the bare Coulomb interaction. In equation (2) 
we have used symbolic notation; in the present discus- 
sion, aimed at simple metals, it should be thought of as a 
matrix equation in the Fourier representation which 
arises naturally in the scattering problem implicit in 
equation (1). In equation (2) we have introduced the 
many-body local-field factor G(q;w) [24] which (fol- 
lowing the early work of Hubbard) is defined such 
that it accounts for all the effects of exchange and 
short-range correlations [36]. The Fourier transform of 
the non-interacting polarizability P(0) entering equation 
(2) is given by the well-known formula 

C'ta") 
J. 
QN 

BZ 

EE Jk,n     Jk+q,n' 

Ek,„ - -Ek+q,«' + fi(w + i??) 

x(k,n|e-i(q+G)-*|k + q,n') 

x(k + q,n'|ei(q+G,)-*|k,n), (3) 

about which we will have more to say later on. (In 
equations (1) and (3) QN denotes the volume of the 
periodically-repeated 'cluster' on whose sides we apply 
Born-von Karman periodic boundary conditions). 
Equations (l)-(3) form the basis of several recent stu- 

Figure 1. Measured many-body local field factor, G(q; o>), for 
Al [23]. The full (empty) symbols correspond to the real 
(imaginary) part of G, respectively. The local-field factors 
calculated (for jellium) in [38] (UI), [39] (RA), [40] (BDL), 
and [41] (MCS) are also shown, as is the corresponding 
LDA result. 

dies. Here we shall only touch on two test cases, which 
have proved quite instructive. 

2.1. The many-body local-field factor of Al 
An enormous number of calculations of the many- 

body local field factor have been reported in the litera- 
ture over the years. Most calculations refer to the static 
limit, in which the exchange-correlation hole—whose 
physics is accounted for by the presence of G(q;o>) in 
the response function given by equation (2)—is assumed 
to adjust instantaneously as its 'parent' electron propa- 
gates through the system. 

The availability of ab initio results for the non-inter- 
acting polarizability P__,(q;a;) given by equation (3), 
computed for the LDA band structure, suggests that a 
measurement of the loss spectrum (which is basically 
given by Imx, according to equation (1)), followed by 
an 'inversion' of the data, would lead to an experimental 
determination of G(q;w) via equation (2) [13]. Because 
of error-propagation in the data inversion, both the 
experimental measurements and the calculated values 
of the polarizability must be of high quality. This pro- 
cedure was implemented recently by Larson et al. [23], 
who performed measurements of S(t\; u) for Al over a 
large wave vector domain, with particular emphasis on 
the crucial regime q « 2kF. 

The experimental result for G(q; ui) is shown in figure 
1. For illustration purposes, we compare the measured 
local-field factor with a small subset of the available 
theoretical results for this quantity (its zero-frequency 
limit) calculated for jellium with the average density of 
Al,   rs = 2.07;  these  are,   the  many-body  results  of 
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Vashishta and Singwi (VS) [37], Utsumi and Ichimaru 
(UI) [38], Richardson and Ashcroft (RA) [39], and 
Broscns, Devrccsc and Lemmcns (BDL) [40], as well 
as the local-density approximation (LDA) [16], and the 
recent Quantum Monte Carlo simulations of Moroni. 
Ceperley and Senatorc (MCS) [41]. (The experiment- 
ally-determined (7(q;w) turns out to be predominantly 
real, and largely frequency-independent, over a rather 
wide energy interval, 10 < hu) < 40 eV; thus, the com- 
parison with static local-field factors is reasonable, 
even if preliminary.) 

Clearly, the theoretical values of the many-body local- 
field factor are in good agreement with experiment up to 
qK \.5kv. The data of Larson et al. [23] arc also consis- 
tent with the plasmon dispersion relation calculated by 
Quong and Eguiluz [15] in a time-dependent extension 
of local-density functional theory (TDLDA). (That is, 
the local-field factor implicitly built into the dispersion 
relation of the Al plasmon obtained in [15] agrees with 
the measurements of Larson el al. [23] for the wave 
vectors for which the response of the electrons is pre- 
dominantly collective.) However, for the larger wave 
vectors for which the electronic response is incoherent, 
in particular, for q —>2A>-, the experimental G(t\.uS) dif- 
fers significantly from —it becomes much larger than - 
the theoretical predictions. 

(Although, as seen in figure 1, the result of BDL [40] 
agrees closely with the measured G(q:w) up to q&2ky, 
the significance of this agreement (which does not sub- 
sist beyond 2k y) is not obvious, since the calculations of 
BDL did not account for the screening of the exchange 
ladders. Furthermore, a dynamical G(q:u/) obtained by 
the same group [40] differs markedly from experiment.) 

The above finding is indicative of the existence of 
significant many-body correlations in this prototype of 
'simple and weakly-correlated metal' behaviour —and it 
highlights the fact that theory still docs not have pre- 
dictive power in the treatment of dynamical correlations 
in metals, particularly at large wave vectors. Additional 
work along similar lines [42] further reinforces the mes- 
sage that correlation must be tackled on the same 
footing with a realistic description of the underlying 
band structure, i.e. a simple model like jellium does 
not suffice. And neither docs the simple LDA descrip- 
tion of correlation, even if its adoption allows the use of 
realistic band structures. 

2.2. The plasmon dispersion relation in Cs 
The dispersion relation of the plasmon in the heavy 

alkali metal Cs, measured by vom Felde et al. [22] via 
high-resolution electron energy loss spectroscopy, is in 
qualitative disagreement with textbook physics [1]. The 
RPA for the density-response function, which corre- 
sponds to equation (2) with (7 = 0, is expected to be 

accurate in the small-wave vector limit, in which the 
bubble diagrams dominate the polarizability. This 
mean-field approximation yields a quadratic dispersion 
relation for small <7's (of course, with positive curvature), 
in qualitative accord with experiments performed over 
the years for many sp-bonded elements -which, to a 
good extent, accounts for the popularity and usefulness 
of the RPA for these systems. However, in the case of 
Cs, the dispersion relation of the plasmon turns out to 
have a negative slope for small wave vectors [22]. More- 
over, for large wave vectors the dispersion relation is 
quite flat, in sharp contrast with the strong dispersion 
predicted by available theories of correlation for elec- 
trons in jellium with the bulk density of Cs, rs 

= 5.6. 
The original interpretation of the experiment of vom 

Felde et al. [22] was that it provided a signature of the 
presence of strong electron -electron correlations. Since 
the restoring force for the plasmon is related to the 
compressibility of the electron gas. the negative disper- 
sion appeared to raise the issue of the stability of the 
system —a possible scenario would be a tendency 
towards Wigner-crystal formation. Of course, since Cs 
has the lowest valence-electron density of all elemental 
metals, the question of the importance of correlation 
suggests itself a priori. 

As we now know [14], short range correlations do 
play a role in the present problem, but the same is 
different from the initial conjecture [22]. Indeed, the 
negative slope of the plasmon dispersion in Cs has 
been shown to be a band-structure effect [18]. More 
specifically, this effect has been traced to the contribu- 
tion to the polarizability P(QG,(q:u>) from one-electron 
transitions to a complex of final states which arc nearly- 
degenerate with the plasmon energy (~3cV) [14]. Since a 
pedagogical discussion of this effect has been given else- 
where [36], and in keeping with the theme of this article, 
we move on to sketch the way in which the effects of 
correlation are contained in the experimental data. 

Figure 2 shows calculated dispersion curves for the Cs 
plasmon. It is significant that the polarizability given by 
equation (3) was obtained from an LDA band structure 
in which the 5p orbitals were treated as valence states. 
(To this end an ah initio pscudopotcntial was con- 
structed for the ionic configuration 5p6, 6s0.7 [14].) 
The left panel of figure 2 shows the plasmon dispersion 
curve obtained from a scalar version of equation (2), in 
which we only keep the G = G' = 0 element of Z**0*. Such 
solution ignores the 'crystal local fields', i.e. the contri- 
bution to the screening from density fluctuations of 
wavelengths comparable with the lattice constant. For 
small q's the effect of the many-body local field, or 
'vertex correction' /xc = -i>G, is negligible. This is as 
expected, since, as recalled above, in this limit the 
bubble diagrams dominate the response. The agreement 
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Figure 2. Plasmon dispersion relation in Cs for small wave 
vectors along the (110) direction [14]. The 5p semi-core 
states were treated as valence states. Right (left) panel 
includes (ignores) the crystal local fields. Theoretical 
curves are labelled by the vertex correction used in the 
respective calculation—see text. 

with the experimental data shown in figure 2 is excel- 
lent—in fact, it is 'too good', as we indicate momenta- 
rily. 

The very inclusion in the polarizability of spatially- 
localized orbitals—and these semicore states do contri- 
bute to the calculated plasmon dispersion for small wave 
vectors—immediately prompts the question of whether 
the crystal local fields can really be ignored. They 
cannot. Dispersion curves computed in the presence of 
the crystal local fields are shown on the right panel of 
figure 2. Three sets of calculations are actually repre- 
sented (as was the case on the left panel), corresponding 
to different approximations for the treatment of the 
electron-electron correlations. These are, respectively: 
(i) RPA, for which /xc = 0, (ii) TDLDA, for which 
fxc = Jd3xexp(-iq-x)dFxc(x)/d«(x), where Vxc(x) is 
the exchange-correlation potential obtained in the 
LDA ground-state calculation, and (iii) Vashishta- 
Singwi (VS), who obtained an approximate vertex func- 
tion from a decoupling of the equation of motion for the 
electron-hole pair density-fluctuation operator [37] (this 
vertex was already considered in figure 1). It is quickly 
apparent that figure 2 (right panel) presents us with a 
surprise: the calculated dispersion relation contains a 
sizable correlation effect for small wave vectors. 

The explanation of this result is as follows. The loss 
spectrum S^qjw) (whose main peak defines the energy 
position of the plasmon for a given wave vector) is 
obtained upon inverting the matrix (1— v(\-G)P®^)~1. 
The inversion of this matrix gives rise to a 'feedback' 
between large wave vector arguments q + G in P(0) and 
the small wave vector q of the plasmon (we recall that 
Pj}

Q,(q; w) = P(0)(q + G, q + G'; w)). At the level of the 
RPA this crystal local-field effect shifts the energy of the 
plasmon upwards. This is a purely kinetic-energy (or 

electron-gas pressure) effect. By contrast, the introduc- 
tion of a vertex correction fxc = — vG in equation (2) 
induces a downward shift of u>p; this is a physical con- 
sequence of the weakening of the screening due to the 
presence of an exchange-correlation hole about each 
screening electron. Note that the reason that this 
mechanism becomes operative for small q's is the feed- 
back induced by the crystal local fields, which ultimately 
originates in the contribution from the localized semi- 
core charge to the dynamical polarizability. 

We emphasize that, while we are in the presence of a 
correlation effect for small wave vectors, the same is 
quite different from the initial assumptions about the 
origin of the negative plasmon dispersion in Cs [22]. 
This example illustrates again the importance of ab 
initio calculations of dynamical response. Without a 
realistic description of the effects of the band structure, 
the interpretation of the experimental data becomes 
clouded by built-in assumptions (or 'prejudices') stem- 
ming from simple model descriptions (e.g. electrons in 
jellium). 

Note also that the above treatment of correlation, via 
'off the shelf many-body local field factors, is far less 
than 'fundamental'. The merit of the above procedure is 
simply that it illustrates the fact that both in the present 
problem, and in the case of the large-wave vector 
response of Al, correlation effects play a quantitatively 
important role. In both problems, an accurate, first- 
principles theory of dynamical correlations for electrons 
propagating in the actual band structure of the system 
has yet to be developed. 

3.    Back to the beginning: self-consistent solution of the 
Dyson equation 

A rigorous formulation of the many-body problem of 
interacting electrons starts out from the Dyson equation 
for the one-particle Green's function [24,33], which we 
write down as 

G ](q;iw„) = G0
l(q;\bjn) - £xc(q;iw„), (4) 

where we have Fourier-transformed the space- and time- 
dependence of all quantities. We use the finite-tempera- 
ture Matsubara formalism [24], in which the Green's 
function for imaginary-times is Fourier-analysed 
according to 

G(q;iw„)=       dTexp(iw„T)G(q; 
Jo 

(5) 

where ß=l/kBT and u„ = (2n+l)n/ßn, n being an 
integer (positive, negative, or zero); for boson-like quan- 
tities,   such   as  the  polarizability  introduced   below, 
ujn = 2nn/ßh. 
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In equation (4) G0(q;iwn) denotes the Green's func- 
tion for non-interacting electrons; the same is given by 
the equation 

G0(q;iw„) = ; , (6) 

where the 'band energies' arc given by the equation 

hujq = h2q2/2m - //, (7) 

/x being the chemical potential. In equation (4) we have 
also introduced the self-energy rxc(q; iw„), which can be 
thought of as (the Fourier transform of) the non-local, 
time-dependent 'potential' in which a 'real' (i.e. inter- 
acting) electron propagates. Wc emphasize that the 
notation employed in equations (4) and (6) is appro- 
priate for a spatially-homogeneous medium (jellium), 
in which all physical quantities are scalars. Our notation 
also reflects the fact that, for the homogeneous electron 
gas, the 'tadpole' diagram [43] vanishes (this is why one- 
electron potentials—e.g. the Hartrcc potential, or the 
Kohn-Sham one-electron potential [9] —arc not included 
in either the G0 given by equation (6) or in Ixc, which 
here is entirely due to exchange and correlation. For 
electrons in a periodic crystal, the Dyson equation, 
equation (6), and equations (8) and (9) below, arc 
replaced by matrix equations in either configuration 
space or in an appropriate basis spanning the Hubert 
space of the system; also the tadpole must be accounted 
for. This more general case is discussed in a forthcoming 
publication [44]. 

A key point about equation (4) is that the self-energy 
is a functional of the Green's function G [33,34]. Physi- 
cally, this means that the particle whose propagation we 
follow contributes sclf-consistcntly to the dynamical 
'potential' in which it moves. Mathematically, this 
means that equation (4) must be solved self-consistcntly, 
i.e. in a 'loop' which starts out from the computation of 
Exc in terms of G0, followed by a recomputation of the 
self-energy from an updated Green's function G 
obtained from equation (4), and so on, until conver- 
gence is achieved to a desired accuracy. As noted in 
the introduction, equation (4) has been solved self-con- 
sistently in recent years for Hubbard-like models with 
short range interactions [4,5]. This self-consistency has 
traditionally been ignored for systems with long-range 
interactions. (A partial degree of self-consistency for 
electrons in jellium has been reported very recently 
[45,46]; in the case of semiconductors, self-consistency 
in the search for the real part of the quasi-particlc ener- 
gies has also been implemented approximately [26,27].) 

We consider the simplest non-trivial self-energy func- 
tional which includes the effects of dynamical screening, 
namely the shieldcd-intcraction approximation (SIA) of 
Baym and Kadanoff [33], in which 

Exc(q:u,,„) = - —£ 

x ^SG(q " k;iw'"" M1)^s(k;'w„), (8) 

where the shielded (or screened) Coulomb interaction Ks 

is given by 

"(q) 
Ps(q:i">„) (9) l-,/(q)P(q:iW„)' 

in terms of the dynamical polarizability, which in the 
present approximation is of RPA form, 

P(q:r) = 2^G(q + k:r)G(k:-r). (10) 
k 

Equations (4), (6), (8) (10) define a self-consistent 
problem, whose solution yields (implicitly) the self- 
energy as a functional of the Green's function, £XC[G], 
within the SIA. It should be recognized that the diagram 
for the SIA given by equation (8) corresponds to the GW 
or screened-Hartrcc Fock approximation for the self- 
energy [47,48]. 

In equation (10) wc have written down the polariz- 
ability for imaginary times, as this is the representation 
in which we actually calculate this function first. This 
may seem to be a roundabout way to proceed, in view of 
the fact that from the Dyson equation wc obtain an 
update for G(q: iu;„), not G(q; r), and, furthermore, it 
is the Fourier transform of the polarizability, P(q;iw„), 
which is required in the screened interaction given by 
equation (9). However, the direct evaluation of 
P(q: \JJ„) as a frequency convolution of two G's 
(obtained by Fourier-transforming equation (10)) con- 
verges quite poorly as a function of the frequency cutoff 
which must necessarily be imposed [49]. Thus, wc actu- 
ally use equation (10) as it stands. Formally, wc generate 
the Green's function for imaginary times via the inverse 
of equation (5), i.e. 

G(q:T) =—^exp(-iu;mr)G(q:ia;„1).       (11) 

Unfortunately, a direct numerical evaluation of the 
frequency sum in equation (11) is not feasible [49] - 
this problem is traced to the slow 1/w decay of the 
Green's function for large frequencies [50]. Wc have 
solved this difficulty by implementing the following phy- 
sically-motivated procedure. Wc add and subtract from 
the argument of the sum in equation (11) the Fock 
Green's function Gx, i.e. the Green's function which 
corresponds to a bare-exchange treatment of the elec- 
tron electron interactions; Gx is of the form of equation 
(6). except that the single-particle eigenvalues arc shifted 
by a frequency-independent exchange self-energy £x(q). 
Since the energy-position of the pole of Gx is known, wc 
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can evaluate its Fourier transform (equation (11)) in 
closed form. We then have that 

G(q;r) =— ^exp(-iwmr){G(q;io;m) - GJC(q;iwm)} 

Self-energy on the imaginary-frequency axis 

-exp[-(wq + 2x(q))T] 

1- 
1 

exp [ßh(uq + Zx(q))] + 1 
(12) 

where the second term corresponds to the contribution 
from Gx. Of course, the sum in equation (12) is evalu- 
ated with a finite cutoff; however, since GX^G for large 
frequencies—physically, this is the case because correla- 
tion becomes inoperative at high excitation energies— 
this sum converges rapidly [49]. Equation (12) is central 
to our numerical algorithms. From the knowledge of 
G(q;r) we obtain P(%T) according to equation (10), 
and the required Fourier coefficients P(q; iw„) are sub- 
sequently obtained via Fast-Fourier-transform tech- 
niques. 

Finally, we note that the chemical potential \i (which 
was introduced into the above scheme through equa- 
tions (6) and (7)) is not known a priori, since its value 
is affected by the electron-electron interactions (and the 
effect is not negligible, as our numerical results show). 
The renormalization of the chemical potential is self- 
consistently determined through the implicit equation 

Q 

2      i 
XI At Ylexp t1^) G(k; 1UJ"' \v)> <ßH 

(13) 

where n is the electron density. Equation (13) is solved 
for each iteration of equation (4). The notation used in 
equation (13) is meant to emphasize the fact that the 
updated Green's function G depends on the current 
(updated) value of ^. Of course, as was the case with 
equation (11), we cannot solve equation (13) as it stands. 
Rather, we manipulate the right-hand-side of equation 
(13) in the same way as done above for equations (11) 
and (12)—this yields a rapidly converging sum over the 
Matsubara frequencies. Further details will be presented 
elsewhere [49]. 

It is instructive to note that, even at just the level of 
the evaluation of the polarizability, the present 
approach contains significant advantages relative to 
the conventional representation given by equation (3), 
which was the basis of the recent progress summarized 
earlier in this paper.f First, because of the pole structure 

f We recall that equation (3) is obtained from equation (10) 
upon setting G = G0 (this corresponds to the zeroth-order step 
in the iteration loop) which, by virtue of the simple pole struc- 
ture of equation (6), makes possible a closed-form evaluation 
of the internal frequency convolution. 

15 20 25 
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Figure 3. Electron self-energy ZM(q;iwn) for q = 0.99kF, 
plotted as function of the continuous variable \LJ. The 
figure refers to a first evaluation of the self-energy, i.e. 
£xc = ■S'xclGo], for rs = 5. 

of equation (3), an accurate sampling of the Brillouin 
zone typically requires substantially denser meshes than 
are required with the present method [49]; this is a major 
practical advantage, which should become even more 
relevant in the treatment of more elaborate self-energy 
functionals. Second, there is no direct generalization of 
equation (3) once the propagators are dressed by the 
self-energy (which is the case for all iterations of equa- 
tion (4) beyond the zeroth order, G = G0). 

We turn next to a presentation of selected results 
obtained by the self-consistent implementation of the 
above scheme. We confine our discussion to the homo- 
geneous electron gas, and consider the case rs = 5; for 
this low-density 'metal' the effects of correlation are 
more easily visualized. All the results presented below 
correspond to a temperature T = 800 K. The restriction 
to the jellium model has the conceptual advantage that it 
allows us to isolate system-independent, or universal, 
features of the solution of equation (4), which, to a 
greater or lesser extent, should be relevant for all metals. 

In figures 3 and 4 we show characteristic results for 
the self-energy, plotted as function of frequency, for a 
wave vector which lies very close to the Fermi surface. 
The fact that this wave vector does not equal kF exactly 
may seem surprising. However, as a preamble to the 
implementation of our methods for real crystals [44], 
we have actually solved equation (4) over a discrete 
mesh of wave vectors, which are required to satisfy 
Born-von Karman periodic boundary conditions. 
Thus, in essence, we have performed 'empty lattice' cal- 
culations. (In order to facilitate the comparison with the 
case of potassium, discussed elsewhere [44], whose bulk 
density is comparable to the one used in the present 
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Figure 4. Analytic continuation of the electron self-energy of 
figure 3 to real frequencies. It is instructive to compare the 
sharp spectral features observed in this figure with the 
smooth frequency dependence shown in figure 3. 

calculations, wc have assumed a bec Bravais lattice.) 
The wave vector q = 0.99A}- happens to be the closest 
one to the Fermi surface in our numerical mesh. 

Now figures (3) and (4) refer to the initial evaluation 
of the self-energy in terms of the non-interacting Green's 
function G0, i.e. rxc[G0]. This corresponds to the level of 
the calculation of the self-energy of the homogeneous 
electron gas reported over the years by many authors, 
starting from the pioneering work of Quinn and Ferrcll 
[47], Hedin [48], and Lundqvist [51]. For the most part, 
such work has been carried out on the basis of the 
ground-state (7= OK) formalism, which yields all phys- 
ical variables directly on the real-frequency axis. In our 
case, the data displayed in figure 4 were obtained from 
the data of figure 3 via Pade approximants [35]. Basic- 
ally, the self-energy evaluated over the Matsubara fre- 
quencies is fitted to a ratio of polynomials (whose degree 
is typically of the order of 30, in the calculations 
reported herein); this allows us to 'stretch' the domain 
of definition of the self-energy elsewhere in the complex 
frequency plane. In particular, we can perform the ana- 
lytic continuation to points just above the real axis 
(lOmeV above the real axis, in the present calculations), 
and obtain the retarded self-energy shown in figure 4, 
which agrees well with previous work [48,51,52]. (A 
detailed discussion of the impact of various numerical 
parameters on the analytic continuation will be pre- 
sented in [49].) 

Figures 3 and 4 arc meant to illustrate a point which 
provides strong motivation for the method we have 
implemented: While the self-energy is a smooth function 
of frequency on the imaginary axis, its analytic conti- 
nuation has sharp structures on the real axis—due, in 
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Figure 5. Spectral function for one-particle excitations, 
A(q:uj), for ^ = 0.99ä( . The figure shows the spectral 
function obtained from a first evaluation of the self- 
energy (dashed line), from the third iteration of the solu- 
tion of equation (4) (dashed-dotted line), and from the 
self-consistent solution of equation (4) (solid line). 

this case, to resonant coupling to the plasmon [51]. The 
same qualitative remark applies to all other dynamical 
quantities, including the polarizability. It is then rather 
self-suggestive that, as noted above for the particular 
case of the polarizability, our finitc-tcmpcraturc 
scheme lends itself to a more efficient sampling of the 
Brillouin zone than the ground-state methods (relatively 
coarse meshes yield accurate results [49]). Of course, in 
applications to simple metals, the use of a finite tempera- 
ture method is not essential: rather, as just noted, wc 
find it to be very practical. On the other hand, in the 
case of, e.g. magnetic response of transition metals, the 
temperature plays an essential physical role, which our 
method is designed to incorporate. 

An important physical quantity related to the one- 
particle Green's function is the spectral function 
A(q.uf), which gives the probability that an added par- 
ticle with momentum fiq will find an eigenstate of the 
interacting (TV + l)-particlc system with energy huj [24]. 
The one-particle spectral function is defined by the 
equation 

A(q;uS) = --IniG(q;w), 
K 

(14) 

which wc evaluate from the knowledge of the self- 
energy. Figure 5 shows the spectral function for the 
same wave vector considered in figure 4. The prominent 
quasi-particle peak at the Fermi surface (energies arc 
measured from the chemical potential), and the well- 
known satellites which arise as a feedback of the 
plasmon resonance onto the one-particle spectrum, arc 
clearly observed. 
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The main point about figure 5 is that it illustrates the 
impact of self-consistency in the solution of the Dyson 
equation. The dashed line corresponds to the evaluation 
of A(q;cj) from the knowledge of the self-energy 
obtained in terms of the non-interacting Green's func- 
tion, i.e. IXC[G0]; this non-self-consistent result agrees 
well with previous calculations [48,51,52]. The dashed- 
dotted line is the spectral function obtained after three 
iterations through equation (4). It is apparent that the 
spectral weight of the satellites has been substantially 
reduced. Since the integrated spectral weight is con- 
trolled by the sum rule 

Density of one-particle states 

du>A(q;u>) = 1, (15) 

whose fulfilment is essential for the probability interpre- 
tation of the spectral function, the weight lost by the 
satellites must go to the quasi-particle—it does. Our 
numerical solution of equation (4) (its analytic continua- 
tion) fulfils equation (15) to within 0.1%. We note, in 
passing, that the first-frequency moment sum rule [51] is 
also fulfilled by our results (in this case, to within 1%); 
this clearly serves as a powerful check of the overall 
quality of our numerical solution of the Dyson equa- 
tion. Finally, the solid line in figure 5 shows the spectral 
function for the converged, self-consistent, Green's 
function (which, on the scale of the figure, corresponds 
basically to the sixth iteration of the solution of equa- 
tion (4)). Clearly, the trend noted above for the inter- 
mediate (third iteration) step holds all the way to 
convergence. 

We can quantify the reduction in the weight of the 
satellite structure brought about by the self-consistency 
by noting the related increase in the weight of the quasi- 
particle state at the Fermi surface, Zk [24]. The latter is 
given by the area under the central peak in figure 5; 
Zk = 1 corresponds to a strict delta-function peak, 
which is only realized for the non-interacting system. 
For the three iteration steps considered in figure 5 we 
have, respectively, Zk = 0.60—which reproduces the 
'canonical' value reported by Hedin [48] for rs = 5—, 
Zk = 0.73, and Zk = 0.74. Clearly, the effect of self-con- 
sistency is to make the quasi-particles more Sommer- 
feld-like. 

It is also of interest to consider the density of one- 
particle states, defined by the equation 

pM = ö-I>(k;w)- (16) 

Now, because of the presence of sharp structures in 
A(k;u>) (while figure 5 displays the spectral function as 
a function of frequency, A (k; u>) also contains consider- 
able structure as a function of wave vector), the sum 
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Figure 6. Density of one-particle states, p(uj), for rs = 5. The 
figure shows the p{ u) which corresponds to a first evalua- 
tion of the self-energy, i.e. Zxc = EXC[G0], and to the con- 
verged, self-consistent solution of equation (4). For 
reference, the p(ui) for non-interacting electrons is also 
shown. 

required in equation (16) must be performed over a 
dense k-mesh—much denser than the one for which 
we need to solve equation (4) to obtain converged results 
for, e.g. the quasi-particle weight, or the chemical poten- 
tial. This computational requirement was handled by 
performing a cubic-spline interpolation of the (real- uS) 
self-energy from the coarser k-mesh for which we solve 
the self-consistency problem to the denser k-mesh 
required by equation (16). (We would like to mention, 
in passing, that this procedure required an 'automated' 
use of Pade approximants for the entire mesh for which 
equation (4) was solved; fortunately, this caused no 
problems, despite the notorious 'instabilities' associated 
with Pade methods.) 

The calculated density of states is shown in figure 6. 
The dashed-dotted line is the p(w) which corresponds to 
the initial computation of the self-energy, ZXC[G0]; this 
curve agrees well with Lundqvist's original GW results 
[51] (the slight rounding of features in the satellite struc- 
ture compared to the corresponding curve in [51] is due 
to the analytic continuation via Pade). The solid line 
represents the converged result, obtained from the self- 
consistent result for spectral function shown in figure 5. 
For reference, in figure 6 we also show the density of 
states for non-interacting electrons. The large reduction 
of the weight of the satellite structure in p{uS) observed in 
figure 6 is consistent with the results for the spectral 
function, and the quasi-particle weight, discussed above. 

A related feature of the calculated p(w) needs to be 
addressed. This is the widening of the occupied band- 
width observed in figure 6 (note that the zero of energy 
is the renormalized chemical potential for the corre- 
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sponding solution of equation (4)). This result, which is 
intimately connected with the reduction in the weight of 
the satellites brought about by self-consistency, seems to 
be contrary to observation [53]; note, however, that 
there is no clear experimental evidence for the existence 
of intrinsic many-body satellites in simple metals. A 
related issue is the fact that, for small wave vectors, 
the renormalizcd polarizability P differs qualitatively 
from the bare polarizability Pm for frequencies in the 
plasmon region; this question will be discussed in more 
detail elsewhere [49]. It is, of course, possible that the 
inclusion of vertex corrections—which at least to low 
order in perturbation theory have been shown to 'coun- 
teract' the effect of the self-energy insertions [54] -will 
alter the above results, yielding, for example, a reduction 
in the occupied bandwidth, and a concomitant increase 
in the weight of the satellites. We will explore more 
general self-energy functionals in future work. Nonethe- 
less, our present results indicate that a self-consistent 
treatment of the interactions is required in order to 
obtain quantitatively reliable results. 
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Note added in proof:—Higher resolution X-ray measure- 
ments and further analyses (in progress, [42]) indicate 
some reduction in the strength of the measured 
G(q;w) near 2kv; however, G(q:uj) remains substan- 
tially above available theory. 
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Dissociative recombination: 
an electronic correlation problem 

By JAN LINDERBERG 

Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark 

A recent application of propagator theory to very low-energy electron-molecule scattering 
provides information on the basic mechanisms in dissociative recombination. Current experi- 
ments in storage rings reveal that carbonium ions (CH3") recombine and fragment into three 
parts equally often as into just two. An analysis of the possible resonances between free 
electron and bound electron states for the ions requires a detailed examination of the correla- 
tion effects plus the coupling to nuclear degrees of freedom, and thus is an ideal problem for 
the propagator approach. 

1.    Initial observations 
Electronic correlation was a problem under intense 

scrutiny when I joined Per-Olov Löwdin and the 
Uppsala Quantum Chemistry Group in 1957. A preli- 
minary exposure to the problem was provided by Löw- 
din's eight o'clock lectures in the Chemistry auditorium, 
where he gave a rapid tour of Hubert space and its 
associated operator structures, followed by a description 
of the method of superposition of configurations, and it 
was overwhelming to be subjected to such a wealth of 
formalism presented at high speed and with meticulous 
blackboard management by an expert. 

It was in August 1957 that my formal employment 
started. Löwdin had secured a contract with US Air 
Force Office of Scientific Research and was in a position 
to hire associates 'with an interest in numerical calcula- 
tions'. I was given the month of August to absorb Schiff 
[1] and also Eyring, Walter and Kimball [2], after which 
it was time for Fock space. Löwdin was well aware of 
the development taking place in the mid-fifties with 
regard to the use of field theoretical approaches to the 
electron correlation problem in the electron gas. 
Feynman's path integral formulation of quantum 
mechanics [3], Bethe's approach to the elimination of 
certain infinities in quantum electrodynamics [4], and 
the Gell-Mann and Brueckner calculation for the elec- 
tron gas [5] brought together an exciting alternative to 
the often awkward wavefunction and variational 
approach. Thus Löwdin directed me towards the 
method of second quantization through the Jordan- 
Wigner paper [6] and the thorough exposition by Fock 
[7]. The concepts of creation and annihilation operators 
for electrons, photons, and quanta of other kinds settled 
in my mind even though I had but marginal apprecia- 

tion of their particular advantages and difficulties. It was 
then time to return to configuration space. 

Löwdin's comprehensive review [8] of the correlation 
problem and the associated bibliographical survey [9] 
represent the state of knowledge at this time. It was 
appreciated that in the isoelectronic sequence including 
atomic helium and in molecular hydrogen there was a 
correlation energy of about 1 eV for a pair of electrons, 
whereas for the atomic ion Al+3 the pairs from the 2p- 
shell contributed some 2.4 eV each, when the relativistic 
corrections were allowed for [10]. The first fact was 
accounted for by the Hylleraas perturbation expansion 
in powers of the inverse nuclear charge [11]. Open shell 
degeneracies in the atomic systems with four or more 
electrons led Shull and myself to the conclusion that 
the constant correlation energy per pair of electrons 
was not a general feature [12], and that the failure of 
the Hartree-Fock approximation to accommodate near 
degeneracies leads to correlation energies increasing lin- 
early with the nuclear charge. 

Multitudinous experiences with Hilbert, Fock, and 
configuration spaces allowed me to go to Florida as a 
space scientist [13] in 1960. There I was once more 
brought in contact with the field theoretical approach 
to the many-electron problem through the lectures by 
Stig Lundqvist [14] at the first Winter Institute at the 
Quantum Theory Project. Such was the impact of 
Lundqvist's presentation that I became convinced that 
here was an area where progress could be made towards 
the correlation problem in general. I was assigned the 
problem 'cohesive properties of some rare gas crystals' 
upon my return to Uppsala in the fall of 1961. Löwdin 
proposed that I should base my study on the evaluation 
of the expression 
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4>o H + H 
E-H 

M ^u 

with the zero-order wavefunction 0O being the closed 
shell state formed from the free atom SCF orbitals. 
Overlaps should be dealt with according to the expan- 
sion method [15] pioneered in 1948. The reduced resol- 
vent in the second term was to be constructed from the 
orthogonal complement represented by the projection 
operator P and some means to solve for the inverse 
operator. A principal part of the correlation energy for 
a molecular crystal is the so-called dispersion energy, 
which is associated with the van der Waals interaction. 
It is derived conveniently from the frequency dependent 
polarizability [16] as formulated for the extended system 
by means of the dielectric formulation. My first under- 
standing of this approach and its application came from 
Nozieres and Pines [17] and gave the incentive to pursue 
this further [18]. Response functions, propagators, and/ 
or Green functions became part of my theoretical 
arsenal and proved to be the vehicles that allowed me 
to address the thesis problem effectively [19], and which 
opened the way towards my very rewarding collabora- 
tion with Yngve Öhrn. 

2.    Propagators 
Use of Green functions was coming to the fore in 

many-electron theory in the late fifties. A proper histor- 
ical account would far exceed the space at my disposal 
and I will concentrate on some events of particular sig- 
nificance to the development as I see it. Hubbard gave a 
thorough treatment of the homogenous electron gas [20] 
which utilized the propagator and self-energy concept 
elegantly and effectively. This development gave 
renewed interest in earlier work by Lindhard [21], who 
had calculated the dielectric response function for an 
electron gas in the Hartrce approximation. Lindhard's 
function describes the plasmon excitations that are 
prominent features for extended systems, and provides 
a good estimate of the correlation energy through the 
dielectric formulation [17]. Translational symmetry was 
an essential simplification in the development, and the 
transcription of the theory to reduced symmetries 
proved to be something of a struggle. Ehrenreich and 
Cohen [22] and Goldstone and Gottfried [23] gave the 
proper form of the equations for the linearized time- 
dependent form of the Hartrce Fock theory originally 
put forward by Dirac [24]. The first molecular applica- 
tion was given by Ball and McLachlan [25] with a cal- 
culation for a two-electron, two-orbital model. 

Hubbard [26] published in 1963 the first in a series of 
papers where he addressed the problem of itinerant 
versus localized magnetism. He suggested the Hamilto- 
nian form that has carried his name since then. It is a 

form with great similarities to the then well established 
model for the electronic properties of conjugated sys- 
tems by Pariser and Parr [27] and by Poplc [28]. 
Yngve Öhrn and 1 embarked on a project to adapt 
and develop the Green function approach within the 
Hubbard model. We could build on the work by 
Coulson for the Hückcl model [29, 30] and enjoyed 
some initial success [31, 32]. 

Stig Lundqvist and Lars Hedin spearheaded other 
approaches towards the determination of propagators 
in electronic systems. Hedin introduced a Coulomb- 
hole-screcned-exchangc approximation [33] which has 
a number of attractive features such as long range polar- 
ization contributions to the self-energy. There have been 
only a few applications of this scheme [34]. The difficul- 
ties associated with the construction of consistent 
approximations beyond the self-consistent field arc con- 
siderable, and the appearance of the Hohcnbcrg and 
Kohn [35] paper seemed to drain away the interest 
from the functional analysis formulation of the dynamic 
treatment. 

Algebraic methods arc more direct for molecular 
applications based on localized representations in 
terms of atomic orbitals. Various equation-of-motion 
calculations were favoured in the late sixties, with or 
without reference to propagators or response functions. 
A step forward came about when it was realized that 
some ad hoc decouplings employed in the truncation of 
hierarchies of propagator equations could be justified by 
means of systematic calculations of matrix elements in 
an operator algebra. Öhrn and I contributed to this by 
suggesting a procedure that could be made self-consis- 
tent and include a certain amount of correlation [36]. 
Further developments along this line were soon forth- 
coming [37], and the supcropcrator approach seems to 
reign supreme today [38]. 

Propagators carry information on relative energies 
between many-electron states through their spectral 
representations. The electron propagator has been 
used extensively to study the binding energies of photo- 
electrons [39] and to determine electron affinities [40]. It 
has been useful also in the study of coupling to nuclear 
displacements and spins [41]. The total electronic energy 
of a system can be derived from the electron propagator. 
A difficulty occurs when the approximation method is 
such that certain sum rules are violated. The result is an 
ambiguity where two formally equivalent expressions 
give different results. It is often not possible to conclude 
which of the alternative ground state energy expressions 
is variationally acceptable [42]. Similar complications 
are associated also with the polarization propagator 
[43]. The search for additional conditions continues, 
but partial results have been established [44, 45]. 
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A particularly important sum rule is satisfied by cer- 
tain approximations to the polarization propagator. It 
holds that the dipole length and dipole velocity forms of 
the oscillator strength for an electronic transition are 
equal, even in the linearized time-dependent Hartree- 
Fock or random phase approximation, provided that 
the operator truncations do not violate the basic 
quantum mechanical commutation rule. Such trunca- 
tions can themselves be consistent at some level of 
approximation, as discussed some time ago [46, 47]. 

3. Dissociative recombination 
ASTRID, the Aarhus STorage Ring in Denmark, has 

been used to study electron collisions with molecular 
ions at very low energies. The ions are circulating in 
the ring and electrons are injected parallel to the beam 
of ions at the same velocity. Recombination to neutral 
molecules or radicals takes place and results in dissocia- 
tion when the surplus energy is disposed of. It was found 
that carbonium and oxonium ions fragmented into three 
parts equally often as into two. This rather unexpected 
result requires a somewhat detailed study of the elec- 
tronic process, and it is interpreted here as a correlation 
effect. 

A simple approach towards a characterization of the 
relevant electronic states in the recombination process is 
offered by the electron propagator equations. It is of 
concern to examine possible resonances in the electron 
scattering process, and thus to examine the nature of the 
poles of the electron propagator. We use the standard 
notation [48, 49] to define the Green functions in terms 
of electron annihilation {ar} and creation {a\} opera- 
tors. Thus we define 

Grs(E) = ({ar;at))E (1) 

in the energy representation, where r and ^ relate to 
elements of a basis of spin orbitals. The equation of 
motion [49] obtains as 

EGrs(E) = ([ar;at}+) + (([ar,H];at))E, (2) 

where H denotes the Hamiltonian of the system. 
Presently the treatment is restricted to an electronic 
Hamiltonian (no other degrees of freedom are consid- 
ered) of the form [49] 

H = Yl hrs4as + \^{pq\rs)a\a\aqas, (3) 

and the average values involved in definition (1) and in 
the expectation values are evaluated for a reference state 
chosen as the Hartree-Fock ground state. The parti- 
cular molecular ions under scrutiny have closed shell 
ground states, well separated from excited states. A 
basis of canonical, normalized, Hartree-Fock spin 
orbitals is chosen so that 

[ar,a\]+ = 5„, {a\ar) = nr8rs, ([[ar,H],al]+) = erbrs, (4) 

with occupation numbers nr equal to zero or one for 
virtual or occupied spin orbitals, respectively. The resi- 
dual operator [an H] — srar is orthogonal to the primary 
operators in the sense expressed in equation (4) and is 
expressible in terms of an auxiliary set of operators as 

[an H] - erar = ^([[an H] - eran a\a\ap]+)a\aqas 

= 5^{(MI«) - (ps\rq)}alaqa5 

{[a\aqas,a\,,a\,,ap,}+) 

(nq-np)(ns-np). (5) 

■q''    P 

= 8 pp 
&qq'      §«s' 

Only distinct operators are included in the sum. It is 
clear that a chain of equations will result from iterations 
of the basic form (2), where increasingly complex 
operator products will appear. The truncation pro- 
cedure suggested in 1967 [36] requires the calculation 
of the expectation values such as 

{[[a\aqas,H\,a\,a\,ap.}+) 

= (eq + es - £P)(Wvaqas, a\,aq,ap,)+) 

+ bpp.{(ss'\qq') - (sq'\qs')} 

+ ?>qq'{(sp\p's')-(ss'\p'p)} 

+ ZsA(qp\p'q')-(qq'\p'p)} 

- ?>sA(qp\p's') - (qs'\p'p)} 

- ZqA(sp\p'q') - (sq'\p'p)}, (6) 

for np = np* = 1, nq = nq' = ns = ns' = 0. A simple inter- 
pretation of this expression is offered by the ordinary 
rules for matrix elements between configurations of two 
electrons and one hole relative to the reference Hartree- 
Fock ground state. 

The superoperator [37, 50] formulation provides a 
matrix representation where the auxiliary set of opera- 
tors form a column vector h, a unit metric matrix is 
given as 

<[h,ht]+)=I,, 

and a general dynamic matrix as 

([[h,H],ht]+) = H,. 

(7) 

(8) 

An approximate Green function equation is obtained as 

(E - er)Grs(E) = 5„ + ]T Mrp(E)Gps(E) 

with 

Mrp(E) = {[[anH],tf}+){EIh -Hh}-
l([[h,H],aP}+). 

(9) 
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The poles of the Green function represent energy levels 
of states where an electron has been added or removed 
from the reference state [49]. A certain inconsistency is 
related to the development. Expectation values calcu- 
lated from Green function (9) are not the same as 
those used to construct the equation. Forms like expres- 
sion (9) have been used with advantage for numerous 
problems [39-41], and for resonances it has proved 
useful in the dilatation transformation method [51]. 

Presently the aim is to interpret the possible nature of 
transitions from free electron states at near zero energy 
to bound states. Thus we are looking for the coupling in 
the Green function between the free and the bound 
states. We examine a simple approximation to the self- 
energy where only a single intermediate state is used: 

M„{E) = c, 
E - a ' 

(10) 

so that the solution to the Green function equation is 

8„ 1     „  ,~     1 
Grs(E) = ■ ■ + ■ -Tn(E)- (11) 

E - er    E - er E - es 

with the elements of the T-matrix given by the equations 

Tn(E) = cr 
1 

E - a{E) 
d(£) = a + Y, \Cr\ 

(12) 

The previous discussion indicates that the structure of 
the self-energy is related closely to the spectrum of two 
electrons and one hole and to the one-electron and two- 
hole configurations of the reference system. We consider 
the former case and use the diagonal form of expression 
(6) to write, as an estimate for the parameter o, 

a = eq + £, - ep + (ss\qq) - (sq\qs) + (sp\ps) 

- (ss\pp) + {qp\pq) - (qq\pp) 

■■ {eq -ep- (qq\pp)} + £s + (™\w) ~ (SS\PP) 

+ {sp\ps) + (qp\pq) ~ (sq\qs). ;i3) 

The second form indicates that the first term expresses 
an approximation to a triplet state excitation energy 

from the reference, the next is the added electron 
energy, corrected by the next terms for change in the 
Coulomb interaction, and the last three together express 
the exchange contributions. A proper spin analysis to 
pure doublet states will modify these slightly. Similarly, 
we estimate the amplitudes as 

cr = (pq\rs) - {ps\rq) = \dxu'r(x) X)fp.qs{x) (14) 

from form (5) and the implication of a single inter- 
mediate state. 

Equation (11) demonstrates that the total cross- 
section for electron scattering in a state r derives the 
imaginary part of the T-matrix according to the optical 
theorem [51]. This depends on the imaginary part of 
6(E) which is the principal value integral over the 
basic spectrum and involves the spectral density func- 
tion of the Hartrcc Fock approximation propagator. 
Various methods have been designed to construct a con- 
tinuous spectrum from a finite basis set Hartrcc Fock 
approximation [51]. The precise argument is not signifi- 
cant in the following. It is observed here that for a 
bound state characterized as (p, qs) the amplitude func- 
tion fpq, is decaying exponentially towards a large 
distance from the system. Thus we expect the numeri- 
cally largest amplitudes cr for the low energy part of the 
free spectrum. A large scattering cross-section requires 
that the real part of 6(E) equals £. The conclusion of 
these considerations is that a substantial recombination 
rate occurs when there is a bound electronic state of the 
kind introduced above close in energy. This argument 
does not invoke energy transfer to nuclear modes of 
motion. 

An example of dissociative recombination according 
to the argument presented here is given by the carbo- 
nium ion CH3. Orbital energies have been obtained for 
the equilibrium geometry, D3h symmetry, as well as the 
lowest triplet excitation energies. These results arc listed 
in table 1, where the numbers show that it is reasonable 
to assume that there is a two-electron, one-hole state 
available to absorb a low energy free electron, and 
that it involves a hole in a degenerate e'-typc orbital. 

Table 1. Orbital energies and triplet excitation energies, with symmetry notation for the carbonium ion CH{ at 
the equilibrium D3h conformation with the C—H bond length 1.092 au. Calculations were performed with 
the suite of programs created by T. Helgaker, H. J. Aa. Jensen. P. Jorgcnsen. J. Olsen. H. Agrcn. K. L. Bak. 
V. Bakken, P. Dahle, H. Heibcrg. D. Jonsson. R. Kobayashi. H. Koch. K. V. Mikkclsen. P. Norman. 
K. Ruud, P. R. Taylor, and O. Vahtras: 'ABACUS, a second-order MCSCF molecular property program', 
using a moderately large basis set. 

Orbital symmetry Triplet symmetry 

a[ e' a2 a\ 
3£"                    V 

Energy -1.275£h -0.949 £h -0.284 Eh -0.130£h 0.191 £h             0.336 Eh 
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The energy of the neutral bound states can be esti- 
mated from the required integrals to be at — 0.023 Eb 

and at 0.074 £h for the [(le')3(la£')2]2E' and the 
[(le')3(la2)(3ay)]2E", respectively. Thus it is clear 
that there are states of this nature in near resonance 
with free electron states at very low energy. Symmetry 
requirements from the coupling elements of equation 
(14) show that it will be the p wave component for the 
free electron that can generate transitions to the 2E' 
state while the d wave is required for the 2E" state. It 
is to be expected that the first will give rise to the largest 
transition probability. 

According to the Jahn-Teller theorem there cannot be 
a stable degenerate state under regular D3h geometry, 
and it follows that there will be a distortion of the 
nuclear framework upon the recombination of the free 
electron and the ion. The two spatial components of the 
E' state will split under E' type nuclear displacements. 
There are two kinds of these, stretch and bend modes, 
and the calculations show that a combination of these 
gives the largest gradient on the triplet surface. Infinite- 
simal distortions give equal and opposite energy shifts 
for the two components, while finite distortions have 
second-order contributions and differentiate the two. 
Preliminary calculations show that the most effective 
distortion for lowering the energy is a superposition of 
some 25% stretch and 75% bend and that it involves the 
lengthening of one C—H bond and the decrease of the 
opposite HCH angle. The opposite distortion which 
shortens a C—H bond and opens up the opposite 
HCH angle provides a somewhat smaller decrease in 
energy for the same magnitude displacement. 

Measurements of the propensity of the various frag- 
ment channels in dissociative recombination of carbo- 
nium ions [52] show that some 30% of the total appears 
as C + H2 + H, while 16% comes as CH + H + H. The 
remainder is found as CH + H2 (14%) and CH2 + H 
(40%). The processes seem to follow the pattern that 
the favoured motion of distortion splits off one 
hydrogen and continues to fragment almost half of 
the time into C + H2. Alternatively, H2 is separated 
and it dissociates with a probability of about 0.5. 
These suggestions should be corroborated by more 
detailed calculations on the motions on the triplet 
energy hypersurfaces. 

4.    Conclusion 
Electronic correlation problems have been studied 

since the inception of quantum mechanics but the 
theme, '50 years of the electronic correlation problem', 
was an inspiration for me to review the development as 
I have experienced it during the last forty years. The 
particular emphasis that I give propagator theory 
derives from the very direct relation between the concept 

and the observable features. Wavefunction and state 
vector concepts dominate the chemical applications of 
quantum theory, though the applications in condensed 
matter theory presents a more balanced picture. Tradit- 
ional objections to approximations in the calculation of 
Green functions derive from the lack of certification of 
N-representability [53] and the variational principle for 
the ground state energy. The latter deficiency is shared 
with the currently flourishing development of the 
method of coupled clusters [54]. Combined use of 
response function ideas and coupled cluster type repre- 
sentations has provided possibilities for accurate deter- 
minations of molecular properties. 

Many manifestations of electronic correlation phe- 
nomena do not require large scale numerical calcula- 
tions for their interpretation. The example of the 
fragmentation of carbonium ions upon dissociative 
recombination illustrates well that the coupling between 
a free electron state and an excited state causes substan- 
tial changes in the properties of an electronic system. 
These are identified readily through a low order 
approach to the electron propagator form. 

It is a pleasure to thank Professor Rodney J. Bartlett 
for the invitation and the opportunity to give a 
presentation. My mentor, Professor P. O. Löwdin, 
deserves my thanks for the introduction to the correla- 
tion problem and continued inspiration and support. It 
has been of great benefit to have the inspiration and 
support of Professor S. O. Lundqvist, long time per- 
sonal friendship and collaboration with Professor 
Yngve Ohrn, as well stimulation and challenge by 
Poul Jorgensen and Jens Oddershede. I am grateful to 
Asger Halkier and Mark Roberson for calculations 
related to dissociative recombination and to Professor 
Torkild Andersen for giving the direction to this 
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Explicitly correlated coupled cluster calculations of the dissociation 
energies and barriers to concerted hydrogen exchange of (HF)W 

oligomers (n = 2,3,4,5) 
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The electronic dissociation energies and barriers to concerted hydrogen exchange of (HF)„ 
oligomers with n = 2,..., 5 are computed by means of a many-body decomposition of the 
total electronic energy. The one- and two-body terms are obtained from explicitly correlated 
coupled cluster calculations including singles, doubles, and a perturbative triples correction 
(CCSD(T)-R12), in a large Gaussian basis set consisting of 276 contracted atomic functions. 
The three-body term is computed at the conventional CCSD(T) level in a basis set containing 
228 functions. The four- and five-body terms are obtained from explicitly correlated second- 
order perturbation theory calculations (MP2-R12), using basis sets with 305 (tetramer) and 
380 (pentamer) functions. Since the many-body terms are computed using the same basis set 
(i.e. the basis of the largest fragment) for all fragments and subfragments, our calculations 
implicitly include a counterpoise correction. The results of the calculations are compared with 
semi-empirical one-, two-, and three-body potentials, and new best estimates of the electronic 
dissociation energies and barriers are inferred. For (HF)2, (HF)3, (HF)4, and (HF)5, respect- 
ively, we obtain for the electronic dissociation energies into monomers 19.1(2), 64(2), 116(3) 
and 158(4) kJmoP1, and for the electronic barriers to concerted hydrogen exchange 175(10), 
85(10), 60(10) and 65(10)kJmol_1. The results are shown to be consistent with NMR line 
broadening data within the framework of transition state theory. 

1.    Introduction 
The thermodynamics and kinetics of the fundamental 

processes of hydrogen bond dynamics in hydrogen 
bonded clusters are of wide ranging importance in chem- 
istry, physics and biology. The first step in our theor- 
etical understanding of such processes is provided by a 
good characterization of the most important parts of the 
electronic potential hypersurfaces for such systems [1], 
prototypes being clearly (HF)„. These clusters show 
rearrangements of the three basic types, illustrated 
here for the dimer [2, 3]: 

(i) Hydrogen bond dissociation 

H 

H—F ^ HF + HF (1) 

(ii) Hydrogen  bond  switching  or  concerted  ex- 
change between bonding and free positions 

§ Present address: Institut für Physikalische Chemie, 
Universität Göttingen, Tammannstr. 6, D-37077 Göttingen, 
Germany. 

HO' 

F  ...  H(2)—F ^ F—H(1)   •••  F (2) 

^ V2> 
(iii) Concerted hydrogen exchange between binding 

sites 

H(D 

7(3) H<2)— F(4) ^ F(3)—H(2) 

H(D 

p(4) (3) 

These processes being exemplified here for the dimer 
occur in a similar fashion also for larger complexes 
(HF)„ with n ^ 3. Whereas at least for the dimer 
(HF)2 there is considerable experimental and theoretical 
work available for the first two processes (i) and (ii), 
little is known about process (iii), and much less is 
known in general about all three processes in the 
larger clusters (HF)n>3 (see [1] and references cited 
therein). Some initial theoretical work to fill this gap 
has been carried out recently [4]. It is the aim of the 
present investigation to provide a more detailed ab 
initio investigation of the important properties of the 
electronic potential, particularly for the processes (i) 

0026-8976/98 $1200 © 1998 Taylor & Francis Ltd. 
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and (iii) which arc perhaps competitive in the larger 
clusters (HF)„. In essence we aim for the highest possible 
level of electronic structure calculation which is cur- 
rently practical for the (HF)„ system. These results 
should thus provide a benchmark for simpler theoretical 
approaches and should also be useful for testing and 
improving empirical potential hypcrsurfaccs for the 
larger clusters, somewhat similar in spirit to our inves- 
tigation on (HF)2 [5]. 

Cohesion in molecular solids and liquids is often 
described as a superposition of all individual molecular 
pair interactions, thus neglecting any cooperative effects. 
For electrostatic forces represented by the Coulomb law 
between point particles, this would be rigorously true. 
Given the success of electrostatic models for hydrogen 
bonding [6], pairwisc additive approaches may therefore 
seem to be quite appropriate for this important class of 
intermolecular interactions. Hydrogen fluoride (HF) 
provides an interesting test case. Its charge distribution 
is highly polar and very compact, with only ten strongly 
bound electrons and a correspondingly small polariz- 
ability. Since important cooperative interaction mechan- 
isms are proportional to the polarizability [7] (induction) 
or even to its cube [8] (dispersion), one might expect the 
pairwise additive approximation to be excellent for clus- 
ters of this molecule. The opposite is true. Upon aggre- 
gation, the molecular charge distribution is significantly 
distorted. As a consequence, the FH-F bond geo- 
metry, energetics, and dynamics vary over a wide 
range with increasing cluster size [4, 9-19]. Rather 
than trying to interpret these changes in terms of 
mechanistic contributions to the hydrogen bond, such 
as exchange or covalent terms, we will adopt the more 
formal approach of many-body decomposition. 
Regarding HF as the building block, we will evaluate 
which fraction of the total interaction energy can be 
reduced to pairs, triples, etc. of these molecular units. 

A further reason to study hydrogen fluoride is that 
clusters of four to seven molecules are more abundant 
in the vapour phase of HF than in any other known 
gaseous hydrogen bonded system [18] under ordinary 
pressure and temperature conditions. A remarkable fea- 
ture of this vapour phase is the coalescence of the 
'H-

,9
F spin-spin coupling doublet in NMR spectra 

down to the lowest pressures that have been investigated 
[20, 21]. This means that beyond rapid cluster dissocia- 
tion/association processes, there must be an exchange of 
hydrogen atoms among the fluorine atoms [12. 22] on a 
microsecond or even shorter timescale [21]. Given the 
large dissociation energy of monomeric HF (De = 
590.5kJmol"'), more efficient paths have to be present 
in the clusters. It is now well established by theoretical 
calculations  [4,   12,   19,  22-25]  that  these pathways 

involve a concerted cyclic hydrogen exchange, repre- 
sented schematically as 

r: ..^ 

•s>~ ./ n ^ 

^        i "N   (4) 
* ^ 

for the cyclic HF tetramcr. The key quantities for an 
understanding of these thermodynamic and kinetic 
anomalies of the HF vapour arc cluster dissociation 
energies Dc and hydrogen exchange barriers AE as a 
function of size. The main objective of the present 
study is to compute these quantities by means of a 
many-body decomposition of the total interaction 
energy. An optimal coverage of electron correlation con- 
tributions in these extended hydrogen bond systems is 
achieved by using different electronic structure 
approaches for the various fc-body terms in the spirit 
of [16, 26]. 

2.    Computational details 
2.1. Geometries 

In the present study, we apply a many-body decom- 
position of the total electronic energy of the HF oligo- 
mers [15] and employ different levels of ah initio theory 
and one-particle basis sets to compute the individual 
many-body terms. The use of a variety of computational 
methods is a key ingredient of our approach, and there 
is no fundamental difficulty in computing analytical first 
and second derivatives of the total energy with respect to 
the nuclear replacements, as these derivatives can be 
evaluated separately for each energy that contributes 
to a given many-body term. Thus, at least in principle, 
it is straightforward to optimize the geometries or, if 
desired, to compute the harmonic vibrational frequen- 
cies at such a mixed level of theory. At present, however, 
we have at our disposal neither the computational tools 
to carry out these optimizations nor, more importantly, 
the computing resources to do so at the very high levels 
of calculation that are applied in the present study. 
Therefore, due to the technical limitations, wc concen- 
trate on the computation of the total electronic energy 
of the HF oligomers at fixed geometries. These geome- 
tries are sketched in figure 1, and the corresponding 
geometrical parameters arc given in table 1. The geome- 
tries correspond to the 'best estimates' derived by 
Maerker et al. [1, 4], except for the minimum energy 
structure of the trimcr, which is taken from table 2 of 
[1]. This exception was made because the trimcr struc- 
ture of [1] has already served as a point of reference in 
previous ah initio investigations by Tschumpcr et al. 
[27]. The difference between the two trimcr structures 
of [4] and [1] is so small that it is irrelevant for the 
purpose of the present study. The structure of [1] is 
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Figure 1. Superimposed representation of the minimum energy structure (upper) and the concerted hydrogen exchange saddle 
point structure (lower) of the cyclic (HF)„ oligomers (n = 2,..., 5). The corresponding geometrical parameters [1, 4] were kept 
fixed in the present study and are given in table 1. 

Table 1. Geometrical parameters of the (HF)„ oligomers. All 
parameters were kept fixed in the present study. Given are 
the F-F internuclear separation and the H-F bond length 
and H-F-F bond angle of the H atom engaged in the 
hydrogen bond. For the dimer, the H-F bond length 
and H-F-F bond angle of the 'free' H atom are given 
in parentheses. 

Symmetry i?FF/pm iWpm        ZHFF/0 

(a) Minimum energy structures 
1 C 
2 Cs 273.5 
3 C3h 257 
4 C4h 251 
5 C5h 248 

91.7 
92.3 (92.0) 7 (68) 
93.3 23 
94.4 12 
94.8 6 

(b) Concerted hydrogen exchange saddle points 
2 D2h 206 118 
3 D3h 224 115 
4 D4h 226 113.5 
5 D5h 226 113 

based on semi-empirical one-, two-, and three-body 
potentials, and is supposed to be rather accurate. 
Based on the semi-empirical potential energy hypersur- 
face, harmonic vibrational frequencies have been com- 
puted [1], and a detailed comparison with corresponding 
ab initio CCSD(T) results is found in [27]. 

2.2. Many-body decomposition 
The quantity En(k), with k < n, is defined as the total 

(adiabatic) electronic and internuclear energy of the 
(HF)j( fragment of the oligomer (HF)n for a given, 
fixed nuclear structure. This energy is obtained from 
an ab initio calculation of the fragment, taking as 
nuclear coordinates the positions of the nuclei in the 
(HF)„ oligomer. In terms of these fragment energies, a 
many-body decomposition of the total energy can be 
carried out in the usual manner (cf. [1]). Due to the 

high point group symmetry of the (HF)„ structures in 
the present study, the oligomers contain many equiva- 
lent fragments, and the m-body contributions can be 
expressed in terms of relatively few fragment energies 
En(k), with k ^ m. The final expressions are displayed 
in table 2. Throughout the present study, all fragment 
energies En(k) that contribute to the m-body term Vm of 
the oligomer (HF)„ were computed employing the same 
basis set for all fragments (HF)fc with k = 1,..., m. The 
basis set used corresponds to the basis of the (HF)m 

fragment itself or of the whole (HF)„ oligomer. Any 
difference between these two choices will vanish in the 
limit of an infinite basis. Thus, the counterpoise proce- 
dure [28] is incorporated automatically in all our calcu- 
lations, and in the present study, we report only 
counterpoise corrected m-body terms. The basis sets 
used for the computation of a many-body term Vm are 
denoted as (HF)r'basis', where / > m and 'basis' is 
either DZP, T/Q, or Q/5 (cf. section 2.4). 

The high symmetry of the oligomers cannot be 
exploited when the calculations are carried out in a 
basis set of a fragment smaller than the oligomer itself. 
For example, when the three-body term F3 of the pen- 
tamer is computed using for all calculations the basis set 
of the trimer fragment of interest, the three calculations 
of the monomer units within the trimer fragment are no 
longer equivalent because the one-particle basis set is 
different for the three monomer units. This also applies 
to the calculation of the dimer fragments within the 
trimer fragment, and thus, the determination of a 
three-body term of the pentamer involves seven elec- 
tronic structure calculations when the trimer fragment 
basis set is used (1 trimer, 3 dimer, and 3 monomer 
calculations). Using the whole pentamer basis set, the 
number of calculations is only four (1 trimer, 2 dimer, 
and 1 monomer calculations). 

We emphasize that a meaningful discussion of many- 
body   contributions   to   cluster   interaction   energies 
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Table 2. Many-body decomposition of the total electronic 
energy of (HF)„ oligomcrs in terms of many-body contri- 
butions Vm, where E"(k) is the energy of the (HF)i, frag- 
ment in the geometry of the (HF)„ oligomer. For the 
geometries considered in the present study, the dimcr con- 
tains two different HF monomer fragments (hydrogen 
bond donor and acceptor, denoted as 1 and 1'), the tetra- 
mer contains two different (HF)2 fragments, denoted as 2 
and 2', and the pentamer contains two different (HF): as 
well as two different (HF)3 fragments, denoted as 2/2' 
and 3/3', respectively. The k fragments refer to structures 
where one monomer unit is not neighbouring the other 
monomer unit(s). Sec also figure 1 of [1], 

2 K, = £2(1) + E2(l') -2E'(1) 
F2 = E2(2)-E2(l)-£2(l') 

3 F, = 3[£3(1)-£'(1)] 
K2 = 3[E3(2)-2E3(1)] 
F3 = E3(3)-3E!,(2) + 3£3(1) 

4 ^^(IJ-E'M)] 
V2 = 4[E4(2)-2E4(1)] 
^ = 2[E4(2')-2E4(1)] 
V} = 4[E4(3) - 2E4(2) - E4(2') + 3E4(1)] 
V4 = E4(4) - 4E4(3) + 4E4(2) + 2E4(2') - 4E4(1) 

5 Vl=S[E5(\)-E\])] 
V2 = 5[E5(2)-2E5(1)] 
F2 = 5[E5(2')-2E5(1)] 
Vi = 5[E5(3) - 2E5(2) - £5(2') + 3E5(1)] 
V'i = 5[E5(3') - £5(2) - 2E5(2') + 3£5(1)] 
V4 = 5[£5(4) - 2£5(3) - 2£5(3') + 3E5(2) 

+ 3E^(2')-4£5(1)] 
V5 = £5(5) - 5E5(4) + 5£5(3) + 5£5(3') 

-5E5(2)-5£5(2') + 5E5(l) 

requires realistic and uniform geometries due to the 
strong dependence of these contributions on the cluster 
structure. Comparison of dimcr-derived geometries [29] 
or among different minimum structures for various elec- 
tronic structure levels [30] are less useful. 

Finally, the many-body decomposition of the total 
electronic energy of the oligomers is not completely 
straightforward for the concerted hydrogen exchange 
saddle points. In these structures, the monomer frag- 
ments lose their identity. Nevertheless, we decompose 
the energies in the same manner as for the equilibrium 
structures. This would not be a problem, if the structure 
is displaced infinitesimally from the symmetric structure, 
anyway. 

2.3. Electronic structure calculations 
The main objective of the present work is to compute 

the electronic dissociation energies Dc and the barriers 
to concerted hydrogen exchange AE as close as techni- 
cally possible to the limit of a complete one-particle 
basis set, preferably to the highest level of electronic 

structure calculations that is currently available and 
affordable. 

For the one- and two-body terms, we employ the 
CCSD(T)-R12 method. This method is identical to the 
usual CCSD(T) model, but exploits many-electron basis 
functions that depend explicitly on the intcrclcctronic 
coordinates r,-,-. In contrast to the CCSD(T)-R12 
method, conventional ah initio calculations employ 
many-electron basis functions that consist of (anti- 
symmctrized) products of one-electron orbitals. The 
explicitly r^-depcndcnt basis functions solve the inter- 
electronic cusp problem, and yield a significantly 
improved convergence to the limit of a complete one- 
particle basis set for the computed energy. The 
CCSD(T)-R12 theory, as developed by Noga, Kloppcr 
and Kutzelnigg [31 34], has been applied very recently 
in the framework of benchmark coupled cluster calcula- 
tions of the ten-electron systems CHj [35] and H20 [36], 
demonstrating its great potential with respect to the 
quantitatively accurate computation of absolute energies. 

For the three-body terms, we employ the conventional 
CCSD(T) method, that is, without explicit ^-depen- 
dence. Using an aug-cc-pVTZ/aug-cc-pVQZ-typc basis 
set. these calculations represent presumably the most 
accurate level of ah initio theory that can be applied 
today for the computation of the three-body terms. 

Finally, for the four- and five-body terms, we employ 
explicitly correlated second-order Mollcr Plessct pertur- 
bation theory (MP2-R12) using the same aug-cc-pVTZ/ 
aug-cc-pVQZ-typc basis set. 

The Is core orbitals of the F atoms were not corre- 
lated in any of the electron correlation treatments 
applied in the present work. This is in contrast to pre- 
vious MP2/DZP calculations, where the core orbitals 
were included [16]. 

The SCF calculations of all fragments up to the pen- 
tamer were performed with the SORE program [37] on 
the Cray Origin 2000 of the University of Bergen. Sub- 
sequently, this program was run on the NEC SX-4 
supercomputer of the Swiss Center for Scientific Com- 
puting (CSCS/SCSC) to provide the corresponding MP2 
and MP2-R12 second-order correlation energies. The 
CCSD(T)-R12 calculations of the monomer and dimcr 
fragments were carried out with the DIRCCR12-95 
program [38] on the IBM RS/6000 workstations cluster 
of the University of Oslo. The conventional CCSD(T) 
calculations using the T/Q basis set (sec section 2.4) of 
the dimcr and trimcr fragments were performed with the 
Gaussian 94 program [39] on the NEC SX-4 of the 
CSCS/SCSC computing centre. The corresponding cal- 
culations of the monomer fragments as well as all calcu- 
lation with the DZP basis set were obtained with the 
same program on the DEC 8400 5/300 Alpha servers 
of the ETH Zürich (C4 project). 
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2.4. Basis sets 
Three basis sets have been used in the present study. 

The first basis set is the DZP basis set that was used in 
previous calculations of the three-body potential of 
(HF)„ clusters [1, 16]. These calculations led to the 
HF3BG potential, which is an anaytical fit to about 
3000 counterpoise corrected MP2/DZP points, without 
further adjustments [1]. 

The second basis set is the aug-cc-pV(T/Q)Z basis set 
(abbreviated as T/Q) that was used in previous calcula- 
tions of the two-body potential [5]. Employing this basis 
set, counterpoise corrected MP2-R12 calculations were 
performed for 3284 points on the six-dimensional hyper- 
surface of the HF dimer. Applying empirical adjust- 
ments, the analytical two-body potentials SC-2.9 and 
SO-3 were derived [5, 40]. 

The third basis set has been constructed for the pres- 
ent CCSD(T)-R12 study. It is denoted as aug-cc-pV(Q/ 
5)Z basis (abbreviated as Q/5), and has been constructed 
in analogy with the T/Q basis. The Q/5 basis set for the 
F atom is 15s9p4d3f2g contracted to 10s7p4d3f2g. The 
s- and p-type primitive functions were taken from the 
aug-cc-pV5Z basis and contracted to 10s7p by the seg- 
mented contraction scheme (6111111111) for s and 
(3111111) for p, using the contraction coefficients of 
the innermost aug-cc-pV5Z orbitals. The 4d3f2g polar- 
ization functions were taken from the aug-cc-pVQZ 
basis. The Q/5 basis set for the H atom is 9s4p3d2f 
contracted to 7s4p3d2f. The s-type primitive functions 
were taken from the aug-cc-pV5Z basis and contracted 
to 7s by the segmented contraction scheme (3111111). 
The 4p3d2f set was taken from the aug-cc-pVQZ basis. 

For completeness, the exponents and contraction 
coefficients of the three basis sets are given in table 3. 
All the parameters of the aug-cc-pVXZ (X = T, Q, 5) 
basis sets [41^43] were downloaded from the EMSL 
basis set database [44]. Only the pure spherical harmonic 
components of the basis functions (5d, 7f and 9g) were 
used in the calculations carried out in the course of the 
present work. Note that in our previous MP2/DZP cal- 
culations, six d-components were used [16]. 

As noted before, the fragment basis sets are denoted 
as (HF)r'basis'. For example, the (HF)3-DZP basis set 
contains 60, the (HF)3-T/Q basis set contains 228, the 
(HF)2-Q/5 basis set contains 276, and the (HF)5-T/Q 
basis set contains 380 basis functions. 

3.   Results 
Table 4 displays the computed many-body decompo- 

sition of the total energy of the (HF)„ oligomers for the 
minimum energy structures (a) and the concerted 
hydrogen exchange saddle points (b). This table collects 
our most accurate results, which are compared with the 
semi-empirical one- and two-body potentials [40] and 

the analytical fit (HF3BG) to the MP2/DZP-level 
three-body terms [16]. 

The CCSD(T)-R12/HF-Q/5 calculations of the one- 
body or monomer relaxation [45, 46] term agree ex- 
cellently with the generalized Pöschl-Teller (GPT) 
monomer potential [40]. For the minimum energy struc- 
tures, the difference between the ab initio computations 
and the GPT values is not larger than 0.05kJmol_1 per 
HF monomer fragment, and for the saddle points, this 
difference is not larger than 0.1 kJmor1 per fragment. It 
is very satisfactory to find that the CCSD(T)-R12 calcu- 
lations describe the monomer potential so accurately, 
especially in view of the substantial HF bond elongation 
(by 20-25%) in the saddle point stuctures. 

Concerning the two-body term, it is apparent that the 
semi-empirical SO-3 potential cannot be used to 
describe the two-body term of the saddle point struc- 
tures. The very short FF distances in these structures 
lie outside the range of distances where the potential is 
valid. In contrast, the two-body terms V2 for the inter- 
action between two non-neighbouring monomer frag- 
ments as present in the tetramer and pentamer agree 
well with the ab initio calculations, as do the SO-3 
values for the minimum energy structures. Comparison 
of the MP2-R12, CCSD(T)-R12 and SO-3 results for V2 

in table 4, part (a) suggests that the empirical modifica- 
tion of the SO-3 potential relative to the raw MP2-R12 
ab initio potential is generally a refinement in the vicinity 
of the minimum energy structures. In conclusion, the 
SO-3 potential can be employed to describe the 
minimum energy structures, but not the saddle points. 
For the dimer the range of validity is expected to extend 
to about lOOkJmoP1 above the minimum, still far 
below the exchange saddle point in this case. For the 
higher oligomers, the range of validity is restricted to 
even smaller total energies for some hydrogen exchange 
configurations. 

Similar conclusions can be inferred from the compar- 
ison of the three-body terms. The HF3BG fit [16] of the 
MP2/DZP calculations fails for the saddle point struc- 
tures, as no configurations near these structures had 
been incorporated into the fitting procedure. This is 
due to fundamental limitations of the current analytical 
V2,V3 expressions for situations where chemical bonds 
and hydrogen bonds are of comparable length [1]. In 
fact, the analytical surfaces are by design too repulsive 
in this situation, so that adiabatic symmetrization 
schemes [1, 47] can in principle be applied for refine- 
ment. In contrast, the inaccuracy of the HF3BG fit for 
the relatively small F3' three-body term (where one 
monomer fragment is not neighbouring the other two) 
of the minimum energy structure of (HF)5 is within the 
expected error bars of the analytical fit (which has a rms 
deviation of 1.8kJmol_1, to be multiplied by 5 due to 
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Table 3.   Gaussian basis sets used in the present study. C, is the exponent of the basis function and c is the coefficient of the 
segmented contraction of the normalized primitive Gaussians. 

s P d f g 

c c c c C C C 
DZP 

Fluorine 9994.790 0.002017 44.355 50 0.020 868 1.200000 
1 506.030 0.015295 10.082 00 0.130092 

350.2690 0.073110 2.995 900 0.396 219 
104.0530 0.246420 0.938 300 0.620 368 
34.843 20 0.612 593 0.273 300 
4.368 800 0.242489 

12.21640 
1.207 800 
0.363 400 

T/Q 
74530.00 0.000095 80.39000 0.006 347 3.107000 1.917000 
111 70.00 0.000 738 18.63000 0.044 204 0.855 000 0.724000 
2543.000 0.003 858 5.694000 0.168514 0.292 000 

721.0000 0.015926 1.953000 
235.9000 0.054 289 0.670 200 
85.60000 0.149513 0.216 600 
33.55000 0.065 680 
13.93000 
5.915000 
1.843 000 
0.712400 
0.263 700 
0.085940 

Q/5 
211400.0 0.000026 241.9000 0.001 002 5.014000 3.562 000 2.376000 
31660.00 0.000 201 57.17000 0.008 054 1.725 000 1.148 000 0.924000 

7 202.000 0.001 056 18.13000 0.038 048 0.586000 0.460 000 
2040.000 0.004432 6.624000 0.207000 

666.4000 0.015 766 2.622 000 
242.0000 0.048112 1.057000 
95.53000 0.417600 
40.2300 0.157400 
17.72000 0.055 000 
8.005 000 
3.538 000 
1.458 000 
0.588 700 
0.232400 
0.080600 

DZP 
Hydrogen 19.24060 

2.899200 
0.653 400 
0.177600 

0.032 828 
0.231208 
0.817 238 

1.000000 

T/Q 
82.64000 0.002 006 1.407000 1.057000 
12.41000 0.015 343 0.388 000 0.247 000 
2.824000 0.075 579 0.102000 
0.797 700 
0.258100 
0.089 890 
0.023 630 

Q/5 
402.0000 0.000 279 2.292 000 2.062 000 1.397000 

60.24000 0.002165 0.838 000 0.662 000 0.360000 
13.73000 0.011201 0.292 000 0.190000 
3.905 000 0.084 800 
1.283 000 
0.465 500 
0.181 100 
0.072 790 
0.020700 
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Table 4. Computed and semi-empirical m-body contributions Vm to the electronic dissociation energy for 
minimum (a) and saddle point structures (b) with respect to fragmentation of (HF)„ oligomers into separate 
monomers. The two- and three-body terms are decomposed into two contributions: F2/F3 from structures 
with neighbouring monomer units, and V2/V} from structures where one of the monomer units is not 
neighbouring the other(s). All energies are given in kJmol-1. 

vm n = 2 n = 3 n = 4 n = 5 Method Basis" 

(a) Minimum energy structures 
Vi 0.11 2.07 7.79 12.75 CCSD(T)-R12 HF-Q/5 

0.13 2.17 7.98 13.02 GPTh 

v2 -19.07 -50.21 -64.21 -70.99 CCSD(T)-R12 (HF)2-Q/5 
-19.21 -51.66 -66.89 -74.96 SO-3c 

-18.22 -46.74 -60.25 -66.63 MP2-R12 (HF)„-T/Q 
vl -14.47 

-16.06 
-26.09 
-26.24 

CCSD(T)-R12 
SO-3c 

(HF)2-Q/5 

-15.17 -26.09 MP2-R12 (HF)„-T/Q 
^3 -14.66 -38.98 -52.02 CCSD(T) (HF)3-T/Q 

-14.98 -36.86 -53.39 HF3BGrf 

vi -10.53 
-4.95 

CCSD(T) 
HF3BG'' 

(HF)3-T/Q 

v4 -3.60 -8.43 MP2-R12 (HF)„-T/Q 
V5 -0.66 MP2-R12 (HF)„-T/Q 

(b) Concerted hydrogen exchange saddle points 
Vy 225.80 282.22 339.56 409.35 CCSD(T)-R12 HF-Q/5 

225.59 282.27 339.78 409.68 GPT* 
v2 -66.72 -31.28 -8.66 13.65 CCSD(T)-R12 (HF)2-Q/5 

101.08 12.53 21.02 48.37 SO-3c 

-72.02 -40.08 -17.90 2.73 MP2-R12 (HF)„-T/Q 
v2 -35.21 

-32.64 
-55.99 
-51.29 

CCSD(T)-R12 
SO-3c 

(HF)2-Q/5 

-36.12 -57.77 MP2-R12 (HF)„-T/Q 
V3 -226.35 -310.39 -318.95 CCSD(T) (HF)3-T/Q 

-105.28 -263.72 -313.62 HF3BGrf 

v\ -58.31 
-25.92 

CCSD(T) 
HF3BGrf 

(HF)3-T/Q 

v4 -35.05 -75.08 MP2-R12 (HF)„-T/Q 
Vs -0.54 MP2-R12 (HF)„-T/Q 

" The notation (HF)„-'basis' indicates that the particular m-body term is obtained from a series of calculations 
of different fragments that all use the composite basis set of the whole (HF)„ oligomer, centred as its coordinates. 

b Generalized Pöschl-Teller oscillator [5, 40]. 
c Semi-empirical pair potential [5, 40]. 
d Three-body term fitted to MP2/DZP results [16]. 

the fivefold occurrence of the same three-body inter- 
action in F3 of (HF)5). 

To gain insight into the basis set effects, second-order 
correlation effects, and higher-order correlation effects 
on the three-, four-, and five-body terms, we have com- 
puted these many-body terms using the DZP and T/Q 
basis sets in the framework of the SCF, MP2, and 
CCSD(T) methods. The results of these calculations 
are collected in table 5, and can be used to assess the 
accuracy or reliability of the three- and higher-body 
terms in table 4. 

For the three-body term of the tetramer and pen- 
tamer, we have employed either the basis set of the 
trimer fragment of interest for all the calculations of 
this particular fragment and subfragments (denoted as 
(HF)3-DZP or -T/Q), or the basis set of the whole (HF)„ 
oligomer (denoted as (HF)„-DZP or -T/Q). For the T/Q 
basis set, the differences between the results obtained 
with the (HF)3- and (HF)„-type basis sets are very 
small, with a maximum for the saddle points of ca. 
0.4kJmol_1 at the MP2 level, but for the DZP basis 
set,  we  observe  relatively  large  differences,  up  to 
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Table 5. Comparison of three-, four-, and five-body contributions obtained from different methods and basis sets. The term Vy 
denotes the three-body contribution from a structure where one monomer unit is not neighbouring the other two units. All 
energies arc given in kJmol-1. 

n = 3 « = 4 n = 4 « = 5 n = 5 H=5 « = 5 
Method Basis" Vi Vy v* Vj V'i v, v, 
(a) Minimum energy structures 
SCF (HF)rDZP -13.48 -37.39 -52.05 -9.47 
MP2 (HF),-DZP -14.49 -39.04 -53.77 -9.52 
CCSD(T) (HF),-DZP -14.44 -38.98 -53.85 -9.46 
SCF (HF)„-DZP -13.48 -38.83 -2.72 -52.60 -10.30 -6.56 -0.40 
MP2 (HF)„-DZP -14.49 -40.30 -3.22 -54.67 -10.76 -7.71 -0.54 
CCSD(T) (HF)„-DZP -14.44 -40.27 -3.32 -54.78 -10.68 -7.87 -0.57 
SCF (HF)rT/Q -14.43 -38.79 -52.09 -10.60 
MP2 (HF),-T/Q -14.86 -39.18 -51.90 -10.66 
CCSD(T) (HF),-T/Q -14.66 -38.98 -52.02 -10.53 
SCF (HF)„-T/Q -14.43 -38.83 -3.16 -52.12 -10.63 -7.44 -0.51 
MP2 (HF)„-T/Q -14.86 -39.24 -3.63 -51.96 -10.73 -8.50 -0.66 

MP2-R12 (HF)„-T/Q -14.83 -39.17 -3.60 -51.89 -10.73 -8.43 -0.66 

(b) Concerted hydrogen exchange saddle points 
SCF (HF),-DZP -239.05 -324.86 -343.64 -57.79 
MP2 (HF),-DZP -237.18 -322.06 -335.87 -55.91 
CCSD(T) (HF),-DZP -244.72 -330.15 -344.10 -56.02 
SCF (HF)„-DZP -239.05 -330.74 -32.66 -347.73 -62.14 -68.31 0.11 
MP2 (HF)„-DZP -237.18 -331.08 -34.68 -342.75 -62.45 -77.61 1.19 
CCSD(T) (HF)„-DZP -244.72 -339.43 -36.26 -351.16 -62.45 -81.64 1.60 
SCF (HF)3-T/Q -230.08 -315.66 - 329.05 -60.18 
MP2 (HF),-T/Q -219.80 -302.98 -310.82 -58.36 
CCSD(T) (HF),-T/Q -226.35 -310.39 -318.95 -58.31 
SCF (HF)„-T/Q -230.08 -315.82 -33.42 -329.21 -60.29 -68.37 -0.93 
MP2 (HF)„-T/Q -219.80 -303.38 -35.37 -311.24 -58.65 -75.93 -0.51 
MP2-R12 (HF)„-T/Q -218.69 -302.35 -35.05 -310.56 -58.63 -75.08 -0.54 

"The notation (HF)j-'basis' indicates that the three-body term is obtained from calculations using the basis set of the correspond- 
ing (HF)3 fragment that is part of the (HF)„ oligomcr. 

UkJiriol-1 for the minimum energy structures and up 
to «lOkJmoP1 for the saddle points. 

A comparison of the DZP and T/Q results reveals that 
the four- and five-body terms are not very sensitive to 
the quality of the basis set, neither for the minimum 
energy structures, nor for the saddle points. The effects 
are of the order of l-2k.Tmor'. This is in sharp con- 
trast to the three-body term, in particular for the saddle 
point structures. For these structures, for example, the 
CCSD(T) values obtained from the two different basis 
sets differ by as much as 20 30kJmol~'. 

The difference between the MP2 and CCSD(T) values 
is very small for the many-body terms of the minimum 
energy structures. For the saddle point structures, how- 
ever, the magnitude of the K3 terms increases by as 
much as 7-8kJmor' from MP2 to CCSD(T). Interest- 
ingly, exactly the same increase due to higher-order 
correlation effects is observed for both basis sets, indi- 
cating that this effect is not very basis set dependent. A 
moderate  increase  in  magnitude  with  higher  order 

correlation   contributions  is  also   found   for  the   F4 

terms. 
Based on the above observations, we conclude the 

following: first, the three-body terms of the minimum 
energy structures computed at the CCSD(T)/(HF)3-T/Q 
level arc accurate to within lk-Imol"1, or perhaps 
2k.Tmol _1 for the pentamcr. Second, noting the small 
difference between the MP2 and CCSD(T) results for 
the four- and five-body terms of the minimum energy 
structures at the DZP level, we conclude that the MP2- 
R12'(HF)„-T/Q values arc our most accurate four- and 
five-body terms, probably to within Ik.Tmor1. Third, 
the accuracy of the three-body terms of the saddle point 
structures remains quite uncertain. It appears that these 
terms, which arc up to an order of magnitude larger 
than the pair attractions, arc the most critical contribu- 
tions. Owing to their uncertainty, we will not be able to 
reduce the error bars on our previous best estimates of 
the barrier to concerted hydrogen exchange significantly 
below lOkJmor1 [4]. 
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Table 6. Electronic dissociation energies and barriers to concerted hydrogen exchange 
of cyclic (HF)„ oligomers (n = 2,..., 5). All energies in kJmol"1. The dissociation 
energies in the upper part of the table refer to fragmentation into monomers. 
Stepwise dissociation energies can be obtained as the difference between adjacent 
De values and are explained and shown in figure 2. The values in brackets [...] do 
not include the four- and five-body terms and correspond to relaxed geometries in 
the respective potential. 

(a) Electronic dissociation energy 
SQSBDE|HF3BG [3, 16, 48] 
GPT|SC-2.9|HF3BG [1] 
GPT|SO-3|HF3BG 
B3LYP/6-311 + +G(3df, 3pd) [4] 
MP2/6-311 + +G(3df, 3pd) [4] 
MP2/[8s6p2d/6s3p] [16] 
MP2/aug-cc-pV(T/Q)Z" 

CCSD(T)/aug-cc-pV(T/Q)Z" 

CPF/[3s2pld/3slp] [23] 
CCSD(T)/[4s3p2dlf/3s2pld] [24] 
'QCISD(T)/6-311+G(3df, 2p)' [49] 
CCSD(T)/TZ2P(f, d) [50] 
CCSD(T)/TZ2P(f, d) [27] 
CCSD(T)/aug-cc-pVQZ [51] 

CCSD(T)/aug-cc-pVTZ [52] 

Extrapolated CCSD(T) limit [51] 
De (ab initio),0 present work6 

De (semi-empirical)/ present work6 

Previous best estimate [1, 4, 5] 
New estimate, present work 

(b) Barrier to concerted hydrogen exchanj 
B3LYP/6-311 + +G(3df, 3pd) [4] 
MP2/6-311 + +G(3df, 3pd) [19] 
MP2/aug-cc-pV(T/Q)Z° 

CCSD(T)/aug-cc-pV(T/Q)Z" 

CPF/[3s2pld/3slp] [23] 
CCSD(T)/[4s3p2dlf/3s2pld] [24] 
CCSD(T)/aug-cc-pVTZ [52] 
'QCISD(T)/6-311+G(3df, 2p)' [49] 
CCSD(T)/6-311+G** [4] 
AE (ab initio),e present work6 

Previous best estimate [1, 4, 5] 
New estimate, present work 

" With respect to the fixed geometries of table 1. 
b Corrected for the BSSE by the counterpoise procedure. 
c De (ab initio) = -(F1:2j2-[CCSD(T)-R12/(HF)12-Q/5] + V3 3-[CCSD(T)/(HF)3-T/Q] 

+ F4,5LMP2-R12/(HF)„-T/Q]).' 
d De (semi-empirical) = -(K,[GPT] + F2r[SO-3] + V3 3,[CCSD(T)/(HF)3-T/Q] 

+F4,5[MP2-R12/(HF)„-T/Q]).' 
e AE = AFli2i2-[CCSD(T)-R12/(HF)l2-Q/5] + AF3,3,[CCSD(T)/(HF)3-T/Q] 

+AF4i5[MP2-R12/(HF)„-T/Q]'. 

18.7 61.3 [113.6] [152.9] 
19.1 64.3 [111.6] [147.0] 
19.1 64.5 [112.0] [147.4] 
20.2 66.3 125.6 173.5 
20.7 64.7 

60.9 
121.7 168.1 

18.8 61.4 114.6 158.1 
17.8h 58.3* 108.66 149.06 

19.2 62.8 
18.26 59.86 

20.8 64.6 
60.2 

120.8 

20.5 65.8 
19.8 
20.7 67.9 
19.7 
18.8h 

66.2 
60.16 

19.2 
19.0 62.8 113.5 156.0 
19.1 64.2 117.6 159.8 
19.1(2) 63(3) 117(4) 161(5) 
19.1(2) 64(2) 116(3) 158(4) 

157.8 69.6 43.6 40.8 
167.4 78.2 53.1 52.7 
169.1 77.3 51.6 52.9 
173.7* 85.2A 61.4* 64.36 

176.8 84.6 
180.96 91.96 

185 86.6 
75.3 
81.9 

61.9 

186.4 95.4 
102.0 75.8 

178.0 87.4 63.7 70.1 
170(10) 80(10) 55(10) 50(10) 
175(10) 85(10) 60(10) 65(10) 
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4.    Discussion 
4.1. Dissociation energies 

Our final results for the potential energies of the rele- 
vant high energy stationary points with respect to global 
minima arc displayed in table 6. The electronic dissocia- 
tion energies (Dc) computed in the present study are 
compared with other ah initio calculations and with 
our previous best estimates of Dc = 19.1(2) lcTmol"1 

for the dimer, De = 63(3)kJmor' for the trimer, Dc = 
117(4)kJmor1 for the tetramcr, and £>c = 161(5) 
kJmoP1 for the pentamer [1,4]. 

Concerning the HF dimer, there is little doubt that the 
value obtained from the analytical GPTjSO-3 potential 
is very close (i.e. within 0.2kJmor') to the true elec- 
tronic dissociation energy. Our GPT|SO-3 value is con- 
sistent with the CCSD(T) limit of 19.2k.Jmor1 

extrapolated by Peterson and Dunning [51] and with 
the corresponding CCSD(T)-R12/(HF)2-Q/5 value of 
19.0k.Fmor1. With respect to the ah initio calculations 
we note that it is crucial to employ the counterpoise 
procedure to avoid spurious BSSE effects. The 
««corrected ab initio calculations in table 6 yield a 
much too large Dc ranging from 19.7 to 20.8k.Tmor1. 
Considering the BSSE, it is worth noting that the two 
almost identical CCSD(T)/TZ2P(f,d) calculations of [50] 
and [27] differ by as much as 0.9kJmor' for Dc. This 
difference is mainly due to the calculations of [50] having 
been performed in a basis set that included all Cartesian 
components of the basis functions (6d, 101), whereas the 
calculations of [27] employed only the spherical har- 
monic components (5d, 70- It appears that the BSSE 
due to the spherical harmonic basis set (sa2.5k.Jmor1) 
is roughly 1 kJmol"1 larger than for the basis set with 
Cartesian components (wl.5k.Jmor1). In view of the 
BSSE, we also note that the counterpoise correction 
for the aug-cc-pVQZ basis set amounts to l.OkJmol"1 

[51]. Thus, the corrected CCSD(T)/aug-cc-pVQZ result 
is £>e = 18.8k.Jmor1, about OJkJmoP1 below the esti- 
mated limit [51]. These findings confirm that BSSE and 
other basis set incompleteness effects remains a chal- 
lenge for traditional correlated treatments of hydrogen 
bonded systems [53]. 

For the HF trimer, we have computed an electronic 
dissociation energy of Dc (ab initio) — 62.8k.Jmol~ . As 
the magnitude of the computed two-body interaction is 
about 1.5kJmor' smaller than the value obtained from 
the SO-3 potential (cf. table 4, part (a)), the computed 
value might be too low by a similar amount. We may 
safely assume that the ah initio computed dissociation 
energy represents a lower bound to the true limit, not 
only for the trimer, but also for the other oligomers, 
including the dimer. Thus, assuming that the 
CCSD(T)-R12/(HF)2-Q/5 level of theory still under- 
estimates the magnitude of the pair interaction by a 

few per cent, we obtain a very realistic value of 
Dc(semi-empirical) = 64.2k.!morl by replacing the 
CCSD(T)-R12/(HF)rQ/5 one- and two-body terms by 
the GPT SO-3 potential. In any case, both results arc 
well within the uncertainty of the previous best estimate 
of £>c = 63 ± 3k.Jmor'. From the present calculations, 
we infer a new estimate of Dc = 64 ± 2k.Jmor', which 
is only a small change with respect to our previous esti- 
mate. This value is also in good agreement with an 
unpublished geometry minimization at CCSD(T)/aug- 
cc-pVTZ level [52], which yields 60.lk.Jmor1 with 
and 66.2k.Tmor1 without counterpoise correction. 
Based partly on a fortuitous cancellation of the BSSE 
and (other) basis set truncation errors, the results of the 
other ah initio calculations displayed in table 6 arc close 
to our new estimate. Only the CCSD(T) value of 60.2 
kJmol"1 obtained by Kormonicki et al. [24] is surpris- 
ingly low. These authors employed a [4s3p2dlf/3s2pld] 
basis set of atomic natural orbitals (ANO). If we were to 
correct their value for the BSSE by means of the 
counterpoise correction, the dissociation energy would 
be reduced further, notably by more than 6k.Jmor' 
[24]. Thus, the corresponding counterpoise corrected 
CCSD(T)/[4s3p2dlf/3s2pld] value would be in error 
by about lOk-JmoP1 or roughly 20%. As already antici- 
pated by Komornicki et al, this large error is presum- 
ably due to the lack of an appropriate augmentation of 
the ANO basis set. 

Our previous estimates of the dissociation energies of 
the HF tetramcr (117(4)k.Jmol1) and pentamer (161(5) 
kJmor1) arc well confirmed by the present caculations 
(113.5 117.6 and 156.0 159.9kJmol1, respectively), 
and there is little reason to revise these estimates. Never- 
theless, we infer new estimates of 116(3) for the tetramcr 
and 158(4)k.Jmor' for the pentamer. Again, previous 
ah initio calculations [4, 23] yielded too large dissocia- 
tion energies. The contribution of four- and five-body 
terms to the binding energy of (HF)4 and (HF)5 is 
notable, but smaller than (and opposed to) the contribu- 
tion from monomer non-rigidity (F,). 

If we take a best estimate of the anharmonic zero 
point energy difference between (HF)4 and 4 HF of 
about 29(2)k.Tmor' [16] and combine this with the 
experimental bounds for dissociation of a single HF 
from (HF)4 (AD0 = 42 43k.Jmor') [18], for dissocia- 
tion of a single HF from (HF), (AD„ = 29 32 
k-Tmol"1) [54], and for dissociation of (HF)2 

(D0 = 12.70(2)kJmor1) [55], all in the sense of equa- 
tion (1), we obtain £>C((HF)4) « 111 to 119k.Jmor\ 
fully consistent with the present theoretical result. The 
new results support our previous conjecture [56] that 
(HF)4 should be stable with respect to dissociation 
upon HF stretching fundamental excitation, rendering 
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a reinterpretation [56, 57] of recent predissociation-scat- 
tering experiments [58] quite likely. 

4.2. Barriers to concerted hydrogen exchange 
The computation of the barriers has proven to be 

significantly more difficult than the calculation of the 
dissociation energies. In fact, it is not possible to identify 
individual monomer fragments in the saddle point struc- 
tures, and many-body decompositions and counterpoise 
corrections are not well defined. In any case, however, it 
is guaranteed that the procedure adopted in the present 
work will lead to the correct answers when the ab initio 
methods and basis sets are subsequently improved. 
Moreover, we are convinced that the calculations of 
the present work provide results that are as close to 
the true barriers as is achievable today from a computa- 
tional point of view. 

For the dimer and trimer, the computed barriers 
(178.0 and 87.4kJmoi_1, respectively) are 7-8kJmol_1 

higher than our previous estimates. This is a satisfactory 
agreement in view of the large error bars of lOkJmoP1, 
which result from the very slow and counterpropagating 
convergence of this quantity with basis size and elec- 
tronic structure level [4]. Thus, our best estimates for 
the barrier are coincidentally close to earlier DZP 
MP2 predictions [4, 16], while improvement of the 
basis set or the correlation treatment alone would lead 
to larger discrepancies. For the trimer, an unpublished 
full CCSD(T)/aug-cc-pVTZ saddle point optimization 
[52] confirms our structure assumption and yields a 
BSSE uncorrected barrier of 81.9kJmol_1 (table 6). 

More pronounced changes in the same direction are 
obtained for the tetramer and in particular for the pen- 
tamer. We find considerably larger barriers for these 
oligomers than anticipated in our earlier investigations. 
Note that there is a sizeable correlation contribution 
even for the four- and five-body terms. This contribu- 
tion is not fully captured at MP2 level, but we can esti- 
mate the higher order effects from the DZP results. 
Thus, in the present study, we find that the tetramer 
may have a slightly lower barrier to concerted hydrogen 
exchange than the pentamer. There are only a few ab 
initio calculations available for comparison. Liedl et al. 
[19] and Maerker et al. [4] have performed MP2 and 
density functional calculations using a 6-311-1—1- G(3df, 
3pd) basis set, but the barriers computed with this basis 
set suffer from noticeable basis set limitations, as 
expected [4]. To illustrate the order of magnitude of 
the basis set effects, we include in table 6 our MP2 
results obtained with the T/Q basis set, which is roughly 
comparable with the 6-311++G(3df, 3pd) basis set, even 
if it is slightly larger. For the dissociation energies, we 
observe counterpoise corrections of 6.0kJmol_1 for the 
tetramer and 9.1 kJmoP1 for the pentamer. Due to the 
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Figure 2. Dissociation energy {De(n), stars, full line) for frag- 
mentation of (HF)„ into n HF molecules, hydrogen bond 
dissociation energy of (HF)„ into (HF)„_! and HF 
(AZ)e(n) = De(n) - De(n - 1), stars, dashed line), energy 
barrier (AE(n), circles, full line) for the concerted hydro- 
gen exchange between binding sites (see equation (4)), and 
energy barrier (AR(n), triangles, dashed line) for hydro- 
gen bond switching (see equation (2)), all as a function of 
cluster size n. Beyond n = 3, the simultaneous hydrogen 
exchange in the cluster becomes more facile than complete 
cluster dissociation into monomers, but dissociation of a 
single HF from the cluster requires less or comparable 
energy. Asymptotically, for large ring clusters, both 
De(n) and AE(n) should become proportional to n, 
whereas ADe(n) will approach a finite, constant value. 

much shorter FF distances in the saddle point struc- 
tures, we expect a larger BSSE for these structures 
than for the minimum energy structures. Indeed, the 
corresponding counterpoise corrections for the saddle 
points—assuming that they can be computed in the 
usual manner—are 15.8 and 20.5kJmoP1, respectively. 
Thus, the barriers are increased by as much as 9.8 and 
11.4kJmor' by the counterpoise correction. At this 
point, of course, we do not consider changes in the 
geometries due to the BSSE, but without doubt, a cor- 
rection of ca. lOkJmoP1 is a reasonable estimate for the 
order of magnitude of the 6-311+-(-G(3df, 3pd)-related 
BSSE at the MP2 level. Figures 2 and 3 provide a sum- 
mary of various energies computed here, in a suitable 
graphical representation. 

Despite the current uncertainty of the electronic bar- 
riers, an analysis of the unimolecular isomerization pro- 
cess in terms of simple transition state theory is useful 
[4]. In this framework, the thermal rate constant k^(T) 
corresponding   to   the   process   of  equation   (3)   is 
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Figure 3. As figure 2, but now including zero point energy 
contributions to the dissociation energy into monomers 
(D0), to the dissociation energy of a single monomer 
(AD0), to the barrier for hydrogen transfer (AE0, esti- 
mated harmonically) and to the barrier for hydrogen 
bond switching (AR0, estimated harmonically, sec. how- 
ever [59], where the harmonic approximation for this 
quantity was shown to be poor). 

given by 

kTql H,)(T)=^^cxp(-AE0/RT). 
"   <7int 

(5) 

The ratio of internal partition functions qint = q%^qT0J<J 
between the Dnh transition state (J, symmetry number 
<r* = In) and the C„,, ground state (without superscript. 
a = n) can be estimated in the harmonic approximation 
from ab initio calculations. For the experimentally rele- 
vant temperature range of 250-330K, qmJqm\ is found 
to be 0.04 ± 0.02 for the tetramcr and 0.02 ± 0.01 for the 
pentamer, based on MP2 DZP [16], B3LYP and 
BHHLYP calculations [4]. A more significant uncer- 
tainty is inherent in the zero-point energy corrected 
transition state barriers, which we estimate to be 
AE0 = 40± lOkJmor1 for both the tetramcr and the 
pentamer of HF (figure 3). These estimates arc based on 
the best available electronic barriers derived in this work 
together with harmonic zero-point energy contributions 
at MP2 DZP [16] and density functional levels [4], which 
agree within ±10%. 

Very little is known experimentally about these con- 
certed hydrogen exchange barriers in cyclic HF clusters. 
From the absence of a spin-spin coupling doublet in the 
vapour NMR spectra, Mackor et al. [21] concluded 
within the framework of simple transition state theory 
(neglecting differences in the partition functions for the 

Figure 4. Decadic logarithm of the unimolecular hydrogen 
transfer rate A(1) in HF tetramers and pentamers from 
transition state theory without tunnelling (thick lines, 
the hatched region marks the theoretical uncertainty, 
which is dominated by the error bar for the barriers) as 
a function of reciprocal temperature 1/T. For compari- 
son, an experimental lower bound obtained in the gas 
phase at 299 K (independent of pressure) [21] is shown 
(triangle, the lower bound character is marked with 
dashes). Tunnelling will increase the rate by allowing 
transmission coefficients ->., > 0 on each channel for ener- 
gies E < £() (and < channel maxima) but will also lead to 
a contribution decreasing the rate because of ->,, < 1 for 
E > E0 (and ^ channel maxima), say, in the framework 
of the adiabatic channel model [61]. Recent calculations 
by Loerting et al. [25(b)] seem to indicate tunnelling cor- 
rections of about two orders of macnitudc. 

Dnh and Cnh structures) that A£0 <48k.Imorl. Given 
the small ratio of D„h to C,,/, partition functions for 
(HF)4 and (HF)5 (vide supra), this upper bound is prob- 
ably overestimated [4], although quantum tunnelling 
[25] may in part compensate for the partition function 
contribution even at room temperature [60] and anhar- 
monic contributions represent a sizeable additional 
uncertainty [59]. Figure 4 compares experimental [21] 
and theoretical (equation (5)) results for the thermal 
rate constant k(^(T). It is seen that the tetramcr and 
the pentamer exhibit quite comparable exchange rates, 
which arc close to the experimental lower bound of the 
gas phase rate at 299 K [21], namely 5 x 104s"'. Both 
larger [4] and smaller clusters will contribute much less 
to the exchange rate (see figure 3). Given the progress in 
NMR spectroscopy over the last three decades [62, 63], 
our results suggest that a reinvestigation of the vapour 
NMR spectra at lower temperatures (and pressures) 
might permit a detailed characterization of the spin 
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coupling doublet coalescence. This would provide 
important experimental information on this proto- 
typical hydrogen transfer process and on the subsequent 
cluster dissociation kinetics. As shown in figures 2 and 3, 
the latter two processes have similar activation energies 
for (HF)„ (with n = 4 and 5). Hydrogen exchange in 
collisional complexes between HF oligomers 
(2 < n < 5) and HF molecules is thus already feasible 
at low collisional energies without quantum tunnelling 
contributions [25]. At very low vapour pressures, the 
collision process itself may become rate limiting, thus 
allowing for a study of the cluster association/dissocia- 
tion kinetics. This might be feasible with modern high- 
field NMR spectrometers but is also within reach of 
current IR spectroscopic methods. 

Two restrictions apply to our prediction of a micro- 
second or only slightly faster timescale for the loss of 
monomer integrity in clustered HF vapour at moder- 
ately low temperatures, (a) There could be sizeable 
quantum tunnelling [64] corrections to the transition 
state rate. A recent investigation [25] does not seem to 
support rate enhancements over many orders of magni- 
tude for the temperatures and cluster sizes considered 
here, although large-curvature corrections seem to con- 
tribute about two orders of magnitude [25 (b)]. The cur- 
rent uncertainty in the exchange barrier height 
(±10kJmol_1) may still dominate the overall uncer- 
tainty in the exchange rate, but in contrast to tunnelling 
contributions, it can increase or decrease the rate. 
Clearly, tunnelling is not efficient enough to lead to 
easily detectable splittings in the IR spectra [57], but a 
nanosecond exchange timescale would not be excluded 
by current experimental evidence, (b) There might be 
other tunnelling pathways with even lower barriers pres- 
ent in larger clusters, e.g. via ionic intermediates [49]. 
Strictly speaking, the existence of such competitive path- 
ways cannot be rigorously excluded, although the enor- 
mous three-body enhancement (see table 4, part (b)) of 
the concerted process renders competitive non-concerted 
mechanisms rather unlikely. The fact that NMR spin- 
doublet coalescence can be suppressed in carefully neu- 
tralized liquid HF [21] would also tend to exclude such 
pathways. 

In this context, one should note that hydrogen bond 
switching processes such as the well-characterized 
donor-acceptor hydrogen bond exchange (equation 
(2)) in the dimer [2, 59, 65] fully conserve monomer 
integrity. In figures 2 and 3, the barriers for these pro- 
cesses are given for the dimer and for the trimer [1], as 
obtained for the SO-3 potential energy hypersurface in 
combination with the HF3BG three-body potential. The 
barriers (AR) lie below the lowest dissociation thresholds 
(AD) for (HF)„ with n = 2 and 3 but may in principle be 
larger for n ^ 4. However, one should note that sequen- 

tial single monomer dissociation and association path- 
ways for hydrogen bond switching are almost barrierless 
on the association side [16,18], in particular including 
zero-point energy. Therefore, a likely hydrogen bond 
switching scenario for larger ring clusters is the forma- 
tion of the next smaller ring with a monomer loosely 
attached to it [18, 56, 66]. These attached monomers 
have a high peripheral mobility and can insert into the 
ring at another position, after which the next monomer 
can go to the periphery, etc. Such a sequential 
mechanism for hydrogen bond switching is unlikely to 
have a barrier AR significantly above the lowest disso- 
ciation threshold AD. In contrast, concerted hydrogen 
bond rearrangements tend to be become disfavoured for 
larger rings due to the strengthening of the hydrogen 
bond. Finally, there is obviously more than one result 
of concerted rearrangements for n > 3, giving rise to 
different saddle points. These will be studied in more 
detail elsewhere together with several dozens of local 
cluster minima which we have characterized on the ana- 
lytical potentials for n = 4-8 [16]. 

5.    Conclusion 
The potential hypersurfaces for hydrogen bonded sys- 

tems govern some of the most important chemical pro- 
cesses, from inorganic vapour condensation and 
evaporation phenomena to biochemical DNA replica- 
tion reactions and dynamics of enzymes. The coopera- 
tive nature of hydrogen bonding presents a substantial 
challenge to high level quantum chemistry approaches 
due to their unfavourable scaling with the number of 
atoms involved. Quantitative insights have been 
obtained here for the simple and well studied prototype 
system (HF)„ through judicious decomposition into 
separately calculated many-body contributions. An 
important result is the rapid decline of n-body contribu- 
tions with increasing n after the three-body term, 
whereas two- and three-body terms are both essential 
for a description of the hydrogen bond in larger HF 
clusters. The detailed convergence pattern naturally 
depends on the investigated quantities, the geometries 
and the required accuracy. For a cluster of size n > 3, 
there will usually be special conformations for which 
even the highest (i.e. n-body) term is important, but in 
general these conformations will not be relevant for the 
hydrogen bond dynamics. Truncation after the three- 
body term is often found to be satisfactory for the 
hydrogen bond geometry and energetics, while hydrogen 
transfer barriers and some vibrational frequencies 
demand four-body contributions as well. 

From (HF)2 to (HF)5, the electronic binding energy 
per hydrogen bond increases by 65%, the contribution 
of the pair potential to the hydrogen bond falls from 100 
to about 60%, the three-body contribution rises from 0 
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to 40% and the concerted hydrogen exchange barrier 
per hydrogen drops to about 15% of its value in 
(HF)2. Inclusion of zero-point energy further enhances 
some of the changes. The failure of density functional 
methods to describe the hydrogen exchange process 
turns out to be even more pronounced than expected. 
Further refinements on the cluster binding energies 
should include an explicit geometry optimization. The 
present results support previous IR spectroscopic ana- 
lyses [56] and suggest that state of the art NMR gas 
phase studies should be able to quantitatively analyse 
the hydrogen exchange dynamics, whereas other types 
of kinetics studies would also be useful to investigate 
exchange processes in various mixed isotopomcrs 
[(HF)„(DF)J, etc. 
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Adiabatic electron affinities of PF5 and SF6: a coupled-cluster study 
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FL 32611, USA 

Adiabatic electron affinities (-Eea ad) of the PF5 and SF6 molecules, notoriously difficult for 
modern density-functional-based methods, are computed at the coupled-cluster method with 
all singles and doubles and non-iterative inclusion of triple excitations (CCSD(T)) level with 
rather large basis sets. Our CCSD(T) estimates of 1.02 and 0.92eV for the £eaad of PF5 and 
SF6, respectively, are in good agreement with the corresponding experimental values of 
0.75 ±0.15 and 1.0±0.1eV. The computed vertical detachment energy of 3.13 eV of the 
SF^" anion is to be compared to the experimental value of 3.16eV. 

1.   Introduction 
The SF6 molecule is a well-known electron scavenger 

[1] and finds a wide range of technological applications 
[2]. Much experimental and theoretical effort has been 
expended towards the evaluation of the adiabatic elec- 
tron affinity (£ea,ad) [2,3] of the SF6 molecule and the 
vertical detachment energy (£Vd) of the SFg anion [4,5]. 

The experimental £ea ad of SF6 has been measured to 
be 1.0±0.1eV [6-9], which is in fortuitously good 
agreement with the first ab initio estimate of 1.03 eV 
obtained at the self-consistent field (SCF) level with a 
rather small basis set [10]. Further extensions of the 
basis have resulted in disagreement with the experiment, 
since the SFg anion has been found [11] to be unstable 
by -0.36 eV with respect to the neutral parent. 

Moreover, the octahedral configuration of SFg pre- 
sents a transition state on the potential energy surface 
obtained at the SCF/6-31 + G(d) level [12], according to 
the results of the vibrational analysis. Other calculations 
performed with different bases and levels of theory [13- 
18] have shown a rather wide range of computed values 
for the Eea.ad of SF6 (f°

r comparison of different results 
see [19]). 

Unexpectedly, the local spin density (LSD) approxi- 
mation with gradient corrections [20] led to an over- 
estimated value of 3.44eV [16] for the £ea,ad of SF6, 
although this approximation generally provides rather 
reliable estimates of molecular £ea>ad's [21,22], Such a 
failure has stimulated some detailed studies [19,23] 
of the dependence of the computed £ea,ad of SF6 with 
modern density-functional-theory (DFT) exchange- 
correlation potentials and basis sets. The £eaad of SF6 

has been found to exhibit unusually strong variations 

f Also at: Institute of Chemical Physics at Chernogolovka of 
the Russian Academy of Sciences, Chernogolovka, Moscow 
Region 142432, Russian Federation. 

(from 6.15 to 1.38 eV) [19] depending upon the basis 
and exchange-correlation functionals used in calcula- 
tions. The best estimates of 1.61 eV [23] and 1.38 eV 
[19] have been obtained without any zero point energy 
(ZPE) corrections whose inclusion would further 
increase the discrepancy with experiment. 

Phosphorus pentafluoride is widely used as an 
intercalant and a dopant [24,25] because of its elec- 
tron-acceptor properties. The first theoretical study 
[27] performed with the Xa method has provided an 
estimate of 0.6 eV for the £ea,ad °f PF5> which is in 
nice agreement with the recently obtained experimental 
value of 0.75 ±0.15 [26]. However, the LSD approach 
with Becke's gradient corrections [28] has provided an 
overestimated value (by « 1 eV) of the £ea,ad of PF5. In 
order to test if there is an improvement when using 
recently introduced (DFT) schemes, Tschumper et al. 
[29] have performed a series of calculations with dif- 
ferent bases and exchange-correlation functionals incor- 
porated into the GAUSSIAN92/DFT program system 
and has obtained values ranging from 0.94 to 1.66 eV. 

Since the infinite-order coupled-cluster method with 
all singles and doubles and non-iterative inclusion of 
triple excitations (CCSD(T)) appears to be reliable in 
estimating the £ea,ad's °f complicated systems [30,31], 
it is interesting to perform an evaluation of the £ea,ad's 

of the SF6 and PF5 molecules at the CCSD(T) level with 
reasonably large basis sets. 

2.    Computational details 
The present calculations have been performed with 

the ACES II suite of programs [32] at the (CCSD(T)) 
[33-35] and HFDFT [36-39] levels of theory. The latter 
differs from most Kohn-Sham self-consistent DFT cal- 
culations in that a HF density is first obtained and then 
inserted in a DFT functional like BLYP or B3LYP to 
provide an estimate of the correlation correction. 

0026-8976/98 $1200 © 1998 Taylor & Francis Ltd. 
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Table 1. Geometrical parameters and total energies of SF6 and SF6 along with vibrational fre- 
quencies calculated at the MBPT(2) level with a 6-311 + G(2df) set on sulphur and 6-311 •+ (2d) 
sets on fluorines" together with the experimental data for SF6. Total energies (£„„) arc in 
hartrces, bond lengths are in A. vibrational frequencies are in cm'1, and the zero-point energies 
(Z) arc in kcalmoP1. 

Level Species «c(S F) 2S CCSD(T) £„„ 

CCSD(T)/6-311+G(2dOr 

CCSD(T)/6-311+G(3df) 
CCSD(T)/6-311+G(2dOr 

CCSD(T)/6-311+G(3dO 

SF„ 

SF. 

1.5651" 1.0 -996.036 302 
1.5651' 1.0 -996.396 350 
1.7167 2.004 -996.065 358 
1.7167' 2.004 -996.423113 

Mode SF„ 

W(f2„) 

w(fllfl) 

Z 

SF(; 

This work       Experiment [43]       Experiment [45] This work 

346 344 347 237 
519 522 524 336 
611 614 614 306 
655 639 643 447 
779 769 775 626 
965 940 939 722 

13.46 13.31 13.35 9.05 

0 Optimized bond lengths at this level arc 1.5721 and 1.7164 for SF6 and SF6, respectively. 
b For evaluation of spin sec [42]. 
c With 10 frozen core MOs. 
d Experimental KC(S F)= 1.564 and 1.5622(7), see [43] and [44]. respectively. 
' Optimized at the preceding level. 

Several basis sets have been employed, namely, 6- 
311 +G(2d), 6-311+G(2dQ, and 6-311+G(3df) [40] 
for SF6 and SF^. For PF5 and PFJ we employed com- 
bined bases: 6-311 + (2d) at fluorines and 6-311 + G(3d) 
at P as well as Dunning's correlation-consistent aug- 
mented PVTZ basis set at fluorines and a PVTZ basis 
at P [41]. These bases will be referred to as 6-311 + (2d)* 
and PVTZ*, correspondingly. The optimizations were 
carried out until the RMS gradients fall below the 
threshold value of 0.1 x 10~\ 

The adiabatic electron affinity (£eil.ad) measures the 
energy gain due to the attachment of an additional elec- 
tron and is defined as the difference in the total energies 
of the anion and parent ground states. Within the Born 
Oppcnheimcr approximation, one can define the Ecaaa 
as 

£ca.ad = £tot(N, Rc) + ZN - £tot(A, RQ ) - ZA 

= AEcl + AEnuc, (1) 

where Rc and R^ denote the equilibrium geometrical 
configurations of the neutral molecule (N) and the 
anion (A), respectively. The zero-point vibrational ener- 
gies (Z) can be estimated within the harmonic approx- 
imation. 

The vertical detachment energy (Evc0 of an anion is 
the minimal energy required for a sudden detachment of 

an extra electron. It can be defined as the difference in 
the total energies of the anion and its parent at the 
equilibrium geometry of the anion 

£vd = £lot(N, R;) + ZN - £lot(A, R;) - ZA 

= A£cl + AEmlc. (2) 

Since the geometry changes due to the attachment of 
an additional electron arc generally moderate, one can 
use the Z's estimated for the neutral ground states, i.e. 
to use the same AEmic as in equation (1). 

3.    Results and discussions 
Optimizations of the SF6 and SF6 bond lengths 

within Oh symmetry constraints have been performed 
at the CCSD(T)/6-311+G(2df) level with 10 frozen 
core MOs on a Cray-C90. Frequencies arc calculated 
at a lower MBPT(2) level with a 6-311 +G(2df) set on 
sulphur and the 6-311 + (2d) sets on fluorines. Compar- 
ison of the results of our computations with the experi- 
mental data known for the SF6 molecule presented in 
table 1 shows very good agreement. As can be seen from 
tables 4 and 11 of [19], the bond lengths in both SF6 and 
SF6 depend strongly on exchange-correlation func- 
tional and basis sets used in DFT calculations and 
make changes up to 0.2 A. At the highest DFT level of 
theory (B3 + Pcrdew Wang gradient corrections and a 
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Table 2. Adiabatic electron affinity of SF6 calculated according to equation (1) and the 
vertical detachment energies (£vd) of SFJ calculated according to equation (2) with 
AZ = 0.19eV (from table 1) at the CCSD(T)/6-311 +G(2df) optimized geometry. All 
values are in eV. 

■^ea,ad ■Evd 

Level 6-311+G(2df) 6-311+G(3df)fl 6-311+G(2df) 6-311 +G(3df) 

HF -0.76 -0.97 2.91 2.84 
MBPT(2) 1.02 0.98 3.04 3.17 
CCSD 0.68 0.58 3.07 3.16 
CCSD + T'' 1.04 0.98 3.04 3.14 
CCSD(T) 0.965 0.92 3.03 3.13 
Exp. 1.0±0.1c 3.16' ( 

" HFDFT results (corrected at the AZ = 0.19) with this basis and the CCSD(T)/6-311 + (2d) 
bond lengths are 0.92, 1.70, 2.57, and 1.94 for the XQ, LDA, BLYP, and B3LYP exchange- 
correlation functionals, respectively. 

h CCSD + T means the CCSD + T(CCSD) method [34]. 
c See reference [7]. 
d See reference [5]. 

Table 3. Results of calculations for PF5 and PFJ performed with the Dunning PVTZ* and 6-311 + (2d)* basis sets. Geometries are 
optimized at the MBPT(2) level and the CCSD(T\ total energies are computed at the MBPT(2) equilibrium geometries. Total 
energies (Em) are in hartrees, bond lengths are in A, bond angles are in degrees, frequencies are in cm"1, Z's are in kcalmol-1, 
intensities (available at the MBPT(2)/PVTZ + level only) are in kmmol. 

Basis 

PVDZ* 
6-311 +(2d)* 
Experiment0 

PVDZ* 
6-311+(2d)* 

Mode 

Species Kax(P-F) 

PF5 

PF5 

PF5 

PFJ 
PF5- 

1.6185 
1.5857 
1.576 
1.6485 
1.6101 

PF< 

PVTZ* 6-311 +(2d)* 

w(e') 163[0.2] 175 
w(0 460[0.0] 507 
u{e') 489[41] 531 
"(«:) 526[50] 568 
w(a[) 657[0.0] 637 
w(fl[) 767[0.0] 800 
uifll) 970[416] 949 
wie1) 1005[270] 1011 

10.22 10.58 

See references [46-48]. 
For evaluation of spin see [42]. 

Kea(P-F) 

1.5858 
1.5468 
1.530 
1.7081 
1.6670 

ZF  PF° L1 ax1 1 eq 

90.0° 
90.0° 
90.0° 
90.60° 
90.96° 

Mode 

(2s + r 
1.0 
1.0 

2.005 
2.000 

PF< 

PVTZ* 

CCSD(T) Eu 

-839.323084 
-839.837878 

-839.375 105 
-839.872389 

6-311+(2d)* 

w(b2) 207[0.0] 226 
u{e) 285[0.01] 315 

Oj(b,) 368[0.0] 407 
u{e) 435[1.3] 474 

u){ax) 478[31] 493 
u)(b2) 514[0.0] 514 
w(fli) 568[8] 560 
io(e) 758[555] 746 
w(ai) 803[177] 808 

8.43 8.69 

specially fitted basis set consisting of 406 functions) [19], 
the bond lengths are close to those obtained in the pres- 
ent work, however, their vibrational frequencies are in 
rather poor agreement with experiment, e.g. the devia- 
tion attains 104 cm"1 for the lowest o;(tlu) mode. 

Table 2 presents the £ea ad of SF6 and the £vd of 

SF^ computed at the CCSD(T) optimized geometries. 
The £ea ad is negative at the HF level, which reflects the 
importance of correlation contributions. At the 
CCSD(T)/6-311 + G(2df) optimized geometry, the 
MBPT(2), CCSD(T), and CCSD(T) levels provide 
estimates of the £ea,ad and Evi, which are in nice agree- 
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Table 4. Adiabatic electron affinity of PF5 calculated according to equation (1) and the 
vertical detachment energies (Evd) of PF5 calculated according to equation (2) with 
AZ = 0.08eV (from table 3) at the geometries and with the basis sets described in 
table 3. All values are in eV. 

f 
ad £„, 

Level PVTZ* 6-311+(2d)*" PVTZ* 6-311+(2d)*" 

HF 0.93 0.46 3.34 3.55 

MBPT(2) 1.43 1.00 2.99 3.21 

CCSD 1.45 0.99 3.14 3.37 

CCSD + T'' 1.52 1.03 3.02 3.21 

CCSD(T) 1.50 1.02 3.04 3.25 

Experiment0 0.75± 0.15   

" HFDFT results (corrected for AZ = 0.08) with this basis and HFDFT(BLYP)/6- 
311+(2d)* bond lengths arc 0.25. 1.21. 1.33, and 1.34 for X„. LDA. BLYP, and B3LYP, 
respectively. 

h CCSD + T means the CCSD + T(CCSD) method [34]. 
c Sec reference [26] 

ment with experiment. The results of our HFDFT cal- 
culations at the CCSD(T)/6-311 + G(2df) optimized geo- 
metry arc presented in a footnote of table 2. 
Surprisingly, the simplest X„ approach provides an 
£caad matching the £eaad value obtained at the 
CCSD(T) level. The HFDFT(B3LYP) approach gives 
an £ca ad almost twice as large. 

Having one fluorine atom fewer, the PF5 molecule is 
more difficult for computations because of the lower Cs 

computational symmetry. Therefore, the geometry opti- 
mizations and computations of vibrational frequencies 
have been performed with smaller basis sets (PVTZ* and 
6-311 + (2d)*) at the MBPT(2) level of theory and the 
total energies have been recomputed at the CCSD(T) 
level. As is seen from table 3, the PVTZ* basis provides 
rather poor bond lengths compared to the experimental 
values, and the 6-311+(2d) basis makes a significant 
improvement in the calculated bond lengths. A similar 
strong dependence of the bond lengths on basis sets in 
both PF5 and PFJ has been observed in the HFDFT 
calculations as well [29]. Only the lowest vibrational 
frequencies are presented in [29], namely, 149 cm"1 for 
PF5 and 177 cm"1 for PF^. These values have to be 
compared to our values of 175 and 226 cm"1, respect- 
ively. 

A similar dependence on the basis set has been found 
for the £caad of PF5 as well [29]. As is seen from table 4, 
the PVTZ* value of the £ea ad appears to be overesti- 
mated by more than 0.5 eV, whereas the CCSD(T)/6- 
311 +(2d) £eaad value is close to the upper limit of the 
experimental estimate of 0.75 ±0.15 [26] A footnote to 
table 4 shows the results of our HFDFT/6-311 +(2d) 
calculations of the £caad of PF5. The B3LYP level pro- 
vides a somewhat overestimated value for the £caad of 

PF5, however, the discrepancy with the CCSD(T) value 
seems to be smaller than in the case of SF6. 

4.    Conclusion 
The CCSD(T) approach is shown to be reliable in 

estimating the adiabatic electron affinity of the SF6 

molecule with reasonably large basis sets, which is a 
difficult case for DFT-bascd approaches. Our computed 
value of 0.92 eV is in nice agreement with the experi- 
mental value of l.OiO.leV. The vertical detachment 
energy of SF6 has been measured to be 3.16cV in very 
good accord with our computed value of 3.13eV. 

The PF5 molecule presents a less 'pathological' case 
for DFT-based approaches, which overestimate the 
£ca ad of PF5 to a lesser extent than in the case of SF6. 
Our value of 1.02eV obtained at the CCSD(T)/6- 
311 +(2d) level should be compared to the recently 
obtained experimental value of 0.75 ± 0.15 eV. 

This work was supported by the Office of Naval 
Research Grant number N00014-95-1-0614 and in part 
by a grant of HPC time from the DoD HPC Center. 
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Characterization of shape and Auger resonances using the dilated 
one electron propagator method 
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Some representative results from applications of the second order, diagonal 2ph-TDA and 
quasi-particle decouplings of the biorthogonal dilated electron propagator based on a complex 
scaled bivariational SCF to the investigation of 2P Mg~, 2B2gC2H4 shape and 2S (Is-1) Be+ 

Auger resonances are presented. These results demonstrate the effectiveness of the dilated 
electron propagator in calculation of energies and widths as also in unravelling of the mechan- 
istic details of resonance formation and decay. The Feynman-Dyson amplitudes are shown to 
effectively isolate the LUMO as the resonant orbital. 

1.   Introduction 
The electron propagator theory [1,2] has provided an 

effective route to the calculation of electron detachment 
[3-6] and attachment [7,8] energies and is well estab- 
lished as a powerful tool for the correlated treatment 
of electronic structure [9] and dynamics [10-12]. The 
dilated electron propagator [13] where electronic coordi- 
nates have been scaled by a complex scaling [14-16] 
factor (77 = a exp (i#)) has emerged as a convenient 
method for the direct calculation of energies and width 
of shape resonances in electron-atom [17-23] and elec- 
tron-molecule scattering [24-26]. 

The spectral representation of the matrix-dilated elec- 
tron propagator 

Gsr(£)= jirn^ 
N+lwiV+1 I  J I JV+1 

')< 41 r) 
£_(£N+1_£N) + i£ 

+ 
t I JV-lwJV-1 >r 01 

£-(£?-£? -i)+ie (1) 

provides for the simultaneous calculation of both the 
energy (real part) and width (twice the imaginary part) 
of electron detachment Auger (E$ — £^_1) and electron 
attachment shape resonances (£^+1 - £0') from its 
appropriate poles. The pole structure of the dilated 
electron propagator has been discussed in detail 
elsewhere [17,18,27] but it is obvious from (1) that 
since resonant eigenvalues (Er - ir/2) have a negative 
imaginary part to account for their finite lifetime [28,29] 
and the target ground state energy EQ is completely real, 
the poles corresponding to the Auger resonances will 
have a positive imaginary part and their trajectory as 
a function of variations in the scaling parameter a or 

6 will move in the first quadrant of the complex energy 
plane. The complex poles in the first quadrant 
displaying quasi-stability with respect to variations in 
77 have therefore been associated with Auger resonances 
[27,30,31]. The quasi-stable complex poles in the fourth 
quadrant of the complex energy plane are similarly 
associated with electron attachment (£s+1 - EQ) 

shape resonances. 
The metastable nature of resonances affords consider- 

able interaction between the target and the decaying 
electron and reliable treatment of resonances calls for 
the incorporation of higher order or renormalized 
decouplings in the construction of the dilated electron 
propagator. Considerable experience with the real 
propagator calculations has shown that the diagonal 
and full 2ph-TDA decouplings being infinite order 
renormalized summation of the most important ring 
and ladder diagrams, offer enhanced level of correlation 
in the treatment of ionization energies and electron affi- 
nities [3,5,6] and the diagonal 2ph-TDA has been rou- 
tinely utilized as an economic means to improve upon 
the second order decoupling. 

To attend to all these concerns and afford greater 
correlation with effective economy in the treatment of 
resonances, we have recently grafted the diagonal 2ph- 
TDA [23,32] , second order and quasi-particle decoup- 
lings [33] on the dilated electron propagator technique 
as well. The results of our methodological developments 
and their applications to atomic and molecular shape 
and Auger resonances have been reviewed in detail 
recently [34]. It is our purpose in this paper to offer a 
brief summary of the method and some illustrative 
results which demonstrate its effectiveness. 

0026-8976/98 $12-00 © 1998 Taylor & Francis Ltd. 
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The rest of the paper is organized as follows. In the 
following section we collect the main equations. 
Section 3 presents some demonstrative results from 
our calculations on 2P Mg-, 2B2gC2HJ and 2S (Is-1) 
Be+ Auger resonances. A brief assessment of the 
strengths and shortcomings of the present level of devel- 
opment in this area concludes this paper. 

2.    Method 
The Dyson equation for the bi-orthogonal matrix 

electron propagator G(?;, E) may be expressed as [19] 

G-\v,E) = Gö](7hE)-'L(i1.E), (2) 

where G0(r],E) is the zcroth order propagator for the 
uncorrelated electron motion, here chosen as given by 
the bi-variational self-consistent field (SCF) approxima- 
tion [35-39]. The self energy E(?/, E) matrix contains the 
relaxation and correlation effects. 

Solution of the bi-variational SCF equations for the 
N-electron ground state yields a set of occupied and 
unoccupied spin orbitals. In terms of these spin orbitals 
the matrix elements of Gö'(77, £) are 

(Go1 fa, £)),;, = (E-e,)fy, (3) 

where E\ is the orbital energy corresponding to spin 
orbital i. Through the second order of electron interac- 
tion, the elements of the self-energy matrix arc 

<iit || ^»»><r»i ||yfc> mv,E)=^Nt kfm 
' k,t,m 

{E + ek -E(-e„ (4) 

where 

Nkfm = («*) - («*}("<) - K)("i»> + (»/)("»,)        (5) 

with (nk) being the occupation number for the kXh spin 
orbital and the antisymmetric two-electron integral 

(i/||*/)=»/-,|^(lM(2)[(I-P,2)/r,2] 

x V^(l)^/(2)d.v,dx2. (6) 

The lack of complex conjugation stems from the bi- 
orthogonal set of orbitals resulting from bi-variational 
SCF being complex conjugate of each other [35]. For the 
diagonal 2ph-TDA [3,5,6] decoupling of the dilated 
electron propagator [23] 

^-™\r1,E)=^Nkfm 
(ik\\tm)(tm\\jk) 

'k,r.i 
(E + £k-£(- E„ A' 

(7) 

where 

A = \(mf || m(){\ - («,„> - <n,» - (km || km)((nk) 

-{nm))-(kf\\kf)((nk)-(n<)). (8) 

The usual dilated electron propagator calculations pro- 
ceed by iterative diagonalization of 

Lfo,E) = e + Efa,E) (9) 

where E is the diagonal matrix of orbital energies and L 
is the self energy matrix. The propagator pole £ is 
obtained by repeated diagonalizations such that one of 
the eigenvalues {£„(77. £)} of Lfa. E) fulfils the condition 
E= £„(r),E) [18]. The quasi-particle approximation for 
dilated electron propagator results from a diagonal 
approximation to the self-energy matrix £(7/, E) with 
poles of the dilated electron propagator given by 

E(r,) = ei + Zii(r).E) (10) 

which are determined iterative])' beginning with E = e( 

and E„ may correspond to any pcrturbativc (E~) or 
renormalizcd decoupling like E2ph 1DA. 

3.    Results and discussion 
We have applied the different decouplings of the 

dilated electron propagator in the investigation of P 
Be , 2P Mg", 2P Ca , 2n CO-, 2ILN,, 2

B1EC2HJ 

and S (Is ) Be Auger resonances. The findings 
from our applications to these atomic and molecular 
resonances have been presented in detail elsewhere 
[34]. The results from e-Mg 2P, e-C2H4 

2B2t, shape and 
(Is-1) Be+ Auger have offered some new insights about 
the strengths and weaknesses of our methods for the 
treatment of resonances and arc briefly summarized in 
the following subsections. 

3.1. e-Mg 2P shape resonance 
While the P Be- shape resonance has served as the 

most popular test case [18 20,30,36], due to the toxic 
nature of Be. there arc no experimental results for this 
system. The P shape resonance in e-Mg scattering is 
well characterized [40] and the extensive literature on 
this resonance utilizing many different theoretical tech- 
niques [22.41 45] makes it an excellent arbiter of the 
efficacy of different theoretical techniques for the treat- 
ment of resonances. 

The resonant 6 trajectories from different decouplings 
for the e-Mg 2P shape resonance arc plotted in figures 1 
and 2. Though the complex scaling theorems prescribe 
total invariance to further changes in the complex 
scaling parameter, once the resonance has been uncov- 
ered, in finite basis set calculations only a quasi-stability 
is observed. The real part of the pole at the point of 
quasi-stability is associated with the resonance energy 
and the imaginary part with the half width (T/2) The 
results obtained for e-Mg scattering arc presented in 
table 1. While the calculated values for the energy and 
the width arc in excellent agreement with the experi- 
mental results, the real merit of our work stems from 
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Figure 1. Theta trajectories for the e-Mg 2P shape resonance 
from the second order (£2) decoupling of the dilated elec- 
tron propagator, using 4s,7p basis set. 

Energy and width of the 2P shape resonances in 
e-Mg scattering. 

Method/Reference Energy/eV Width/eV 

Experiment [40] 
Static exchange phase shift [42] 
Static exchange plus polarizability [42] 

phase shift 
Static exchange phase shift [43] 
Static exchange plus polarizability [43] 

phase shift 
Static exchange cross section [43] 
Static exchange plus polarizability [43] 

cross-section 
CI [44] 
S-matrix pole (Xa) [46,47] 
Complex ASCF [48] 
Dilated electron propagator based 

on real SCF [22] 
Second order bi-orthogonal dilated 

electron propagator [33] 
Diagonal 2ph-TDA bi-orthogonal 

dilated electron propagator [33] 

0.15 0.13 
0.46 1.37 
0.16 0.24 

0.46 1.53 
0.14 0.24 

0.91 2.30 
0.19 0.30 

0.20 0.23 
0.08 0.17 
0.51 0.54 
0.14 0.13 

0.15 

0.15 

0.13 

0.13 

the light it sheds on the parallelisms [22,48-51] between 
the complex scaling and the stabilization method 
[50,52,53] for the treatment of resonances. A notable 
feature of the stabilization method is that at the point 
of optimal stabilization of the resonant root there is an 
avoided crossing with another nearly degenerate root 

which descends from above and replaces the stabilized 
root when further changes in the stabilization parameter 
(number of configurations as in [19] or scale parameter a 
as in [40,44,45,48,49,54]) are effected. 

The details of the stabilization method, especially, the 
superseding of a previously resonant root by a non-reso- 

Figure 2. Theta trajectories 
for the e-Mg 2P shape 
resonance from the second 
order (E2) and diagonal 
2ph-TDA (E2Ph-TDA) de- 
couplings of the dilated 
electron propagator, using 
4s,9p basis set. 

0.00- 
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-o;o4 
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nant root may be likened to the behaviour of rotated 
scattering roots neighbouring a resonance in the com- 
plex E plane. If through enough rotation, a scattering 
root passes by the resonance, it will uncover the neigh- 
bouring resonance and lose its previous scattering char- 
acter. Our trajectories from figures 1 and 2 demonstrate 
this feature. It is worthwhile to note that the roots por- 
trayed in figures 1 and 2 approach the same resonance 
from the opposite directions and that root II starts out 
as a typical scattering root. The pair of roots depicted in 
figure 1 have entirely different orbital genealogy initially 
and are described by a different linear combination of 
the SCF orbitals. This feature persists until the root II of 
figure   1,   for   example,   has   been   rotated   through 
# = 016rad at which stage this root changes to one 
portrayed by root I. Thereafter the two are identical. 
The presence of more than one resonant root is a 
basic feature of all bi-orthogonal dilated electron propa- 
gator calculations for e-Mg pa scattering with different 
basis sets [27,33]. All of these roots show substantial 
contributions from more than one orbital (even for 
# = 00rad). This is understandable, since if the reso- 
nance is to be described as a wave packet localized by 
the polarization and centrifugal potentials induced in 
the target, the packet is made up of not just one wave 
but from all those with energies falling within the width 
of the so-called packet centre [50,55]. As such, orbital 
bases of the kind employed here with nearly degenerate 
orbital energies in close proximity to the resonance 
energy will give rise to different roots describing dif- 
ferent parts of the wave packet whose width is deter- 
mined by the width of the widest root. Normal 
scattering roots a la complex scaling will emerge only 
when the poles of G arc sought outside this energy 
region. The optimal results from different bases for the 
e-Mg 2P shape resonances are in excellent agreement 
with the experimental results for the 2P shape resonance 
in e-Mg scattering, which along with the results from 
other calculations are collected in table 1. 

Due to the non-hermiticity of the complex scaled 
Hamiltonian, there is no orthonormality among the 
orbitals themselves, but there exists a bi-orthonormality 
j{ij'*{r, 9,4>))*ij)j(r, 6, <f>) AT = 6tj between the orbitals and 
their complex conjugate obtained from the bi-varia- 
tional SCF procedure [37,39,49] and a plot of 
4Ttr2|V'2(r)l furnishes an appropriate measure of the 
magnitude of the radial charge density at distance r 
from the nucleus. For ease of differentiation between 
the radial charge density plots from the zeroth (bi-varia- 
tional SCF orbital) and higher order (second order/diag- 
onal 2ph-TDA) Feynman-Dyson (FD) amplitudes, even 
though only the radial part of t{> (orbital) or x (FD 
amplitude) is plotted, we retain the symbol for the full 
orbital/FD amplitude.The factors affecting the forma- 

24 32 
r{a ü ) 

Figure 3. Radial charge density plot for the resonant FD 
amplitude in e-Mg scattering. For a = 0.75 considered 
here, only the root labelled I is resonant. The role of 
optimal theta (Öor, =0.12 rad) in accumulation of elec- 
tron density near the nucleus is evident. 

Figure 4.    Radial charge density plot for the 3s orbital in Mg. 
The rma, is at 2-55 au. 

tion and decay of shape resonances arc examined by 
plotting the radial charge density [56] using the 
Feynman Dyson Amplitudes (FDAs) corresponding to 
the resonant poles identified earlier [19,20,23,27,33] in 
figures 3-5. 

The maximum in the radial charge density (rmax) for 
the outermost valence orbital for each target atom is 
taken as a rough guide for the radial extent of that 
atom and the extent of penetration of the impinging 
electron may be established by determining the rmax 

for the electron density plot from the corresponding 
resonant FDA. To account for any effect of the devia- 
tion of oopt from 1.0 on the localization of the impinging 
electron, the valence orbital for Mg is also plotted at the 
same oor, value as that for which the pole corresponding 
to the resonant orbital/FD amplitude shows the requi- 
site quasi-stability [20,23,27,33,57]. The number of 
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Figure 5. A plot of the charge density obtained from a linear 
combination of all the resonant amplitudes in e-Mg scat- 
tering with x(r) = Xi(r) + Xii(r) + XmW» where the di- 
vidual amplitudes are considered to describe different 
parts of the same resonant wave packet. The nodal pat- 
tern for 9 = 0.0 favours its identification as the lowest 3p- 
type unoccupied orbital of Mg. The role of optimal theta 
(#opt =0.12 rad) in shifting the electron density near the 
nucleus is clearly seen. 

nodes in the radial charge density plots for the resonant 
FD amplitudes reveal the principal quantum number of 
the p-type target orbital/FD amplitude involved in the 
resonance formation. The difference between the radial 
charge densities from the uncorrelated zeroth order 
orbital and the correlated (second order/diagonal 2ph- 
TDA) FD amplitude(s) may be used to investigate the 
effect of correlation/relaxation in the formation and 
decay of shape resonances. Similarly, the role of the 
complex scaling parameter may be investigated by 
examining the difference between radial charge densities 
from orbital/FD amplitudes calculated for 9 = 00 and 
6 = 6opi. The results for the magnesium atomic system 
investigated in this fashion are discussed below. 

For the 2P shape resonance in e-Mg scattering, no 
orbital energy has the requisite theta trajectory to class- 
ify it as a resonant orbital [57] and even at the level of 
second order and diagonal 2ph-TDA decouplings, there 
are three different roots which fall within the width of 
this resonance [33,57] becoming resonant for different 
values of the radial scale factor a. The corresponding 
FDAs have large mixing components from different 
orbitals. All these features have been taken to indicate 
that the three roots describe various parts of the same 
resonant wave packet [57]. The root which becomes 
resonant at a = 0-75 (root I) is seen to have a large 
charge density near the nucleus in figure 3, where the 
role of the optimal 9 in enhancing the charge density 
near the nucleus is clearly seen. The charge densities 
from other resonant roots peak far away from the 
nucleus providing a mechanism for decay, i.e. the three 
roots seem to act in tandem to achieve metastability. 

None of the roots has a nodal pattern in the charge 
density plot which has any semblance with that expected 
for a conventional p-type orbital and buttresses an ear- 
lier conjecture about a lack of single orbital picture for 
this resonance [57]. In view of the competing demands in 
the formation and decay of metastable resonances, root 
I may be taken to provide for formation and the other 
two roots for the decay of the shape resonance. A com- 
parison of figures 3 and 4 once again establishes that the 
charge density distribution does permit the captured 
electron to be localized close to the rmax for the valence 
3s orbital. 

The basis set employed here is the (4s9p) Mg basis 
used earlier for calculation of 2P shape resonance 
energy and width by Donnelly and Simons [18] and 
Mishra et al. [57]. Among many basis sets used in 
these investigations, we have selected the results from 
the (4s9p) basis since this gives resonance energy and 
width in almost complete agreement with the experi- 
mental results [40]. 

Since all the three resonant roots fall within the width 
of the same resonance, in figure 5 we display a plot of 
charge density from the linear combination 
X(r) = Xi(r) + Xn(r) + Xm{r) where the subscripts 
label the resonant roots identified in figure 3. Surpris- 
ingly, for 9 = 00, the resultant radial charge density plot 
is indeed characteristic of a 3p type orbital (the lowest p- 
type orbital)! The accumulation of charge density near 
the nucleus, as also shown at large r values for 0opt in 
figure 5, indicates large correlation and relaxation effects 
in the formation and decay of this shape resonance. This 
also elucidates the critical role of the complex scale para- 
meter in catering to the inherently contradictory 
demands of metastability, requiring a route for both 
the formation and decay of these resonances. 

3.2. e-CiHa, 2B2g shape resonance 
The HOMO-LUMO based reactivity theories are at 

the heart of mechanistic pictures in organic chemistry 
[58] and the simplest prototypical representative with 
well established pictures of HOMO and LUMO is the 
ethylene molecule for which Hückel theory calculations 
are routine in characterizing its frontier orbitals. While 
qualitative correlations abound [59,60], a rigorous 
quantitative investigation of this simple prototypical 
polyatomic molecule is specially significant [61,62] and 
results from our own calculations are discussed below. 

The resonant ^-trajectories from different decouplings 
are plotted in figure 6. The energy and the width for this 
resonance from different decouplings and those 
obtained by experiment and other methods are collected 
in table 2. That there is a cross-systemic validity to our 
explanations is made clear by figure 6 where just like in 
the case of N2 and CO [34], the decouplings devoid of 
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Figure 6. Resonant trajectories from different decouplings 
for C2H4. The lowering of LUMO energy by the decoup- 
lings incorporating orbital relaxation (E2 and E2ptl TDA) 
is seen for this system as well. 

Table 2.    Energy and width of the   B2t C2H4 shape 
resonance. 

Method/Reference Encrgy/eV  Width'eV 

Experiment [58] 
Complex Kohn [63] 
Second order dilated electron 

propagator (real SCF) [26] 
Zeroth order, quasi-particle second 

order and quasi-particle diagonal 
2ph-TDA bi-orthogonal 

dilated electron propagator [61] 
Second order bi-orthogonal dilated 

electron propagator [61] 
Diagonal 2ph-TDA bi-orthogonal 

dilated electron propagator [61] 

1.78 0.70 
1.84 0.46 
1.71 0.08 

1.93 

1.86 

1.89 

0.19 

0.18 

0.18 

orbital relaxation (E°,E2
1,£

2
1
ph TDA) clump together 

and maximum lowering of the HOMO-LUMO gap is 
offered by the second order self energy approximation. 
The resonance energy from different decouplings is quite 
reasonable but the calculated widths are much narrower. 

While both HOMO and LUMO are well defined in 
approximate parametric SCF theories like the Huckcl 
and the extended Hückcl methods, in the ah initio 
SCF method used routinely now, only the occupied 
orbitals are invariant and well defined. The orbital ener- 
gies and amplitudes for all the unoccupied orbitals are 
arbitrarily dependent on the underlying basis and with 
basis-set saturation, the LUMO orbital energy may be 
brought arbitrarily close to zero. The concept of LUMO 
in reactivity theories is thus made deficient in rigour and 
an additional mechanism for an unequivocal identifica- 
tion of the LUMO becomes necessary. Extensive success 
in  the  analysis  of molecular  shape  resonance  data 

through a qualitative correlation between the resonant 
orbital in which the impinging electron is temporarily 
trapped [59,60] and the LUMO of the target molecule 
leaves little doubt that such an association is well 
founded. This intuitive notion may be investigated 
through identification and portrayal of the resonant 
orbital by using the FDAs as correlated orbitals as 
done earlier for Mg. The resonant poles for C2H4 

have already been identified in figure 6. 
The resonant FDAs for C2H4 are plotted in figure 7. 

The FDA from the E~ decoupling on the real line has 
been plotted in figure 7(a). This displays the familiar 
nodal pattern of the K* LUMO of the ethylcnc molecule. 
Those from the En, and T,2p'' TDA have identical fea- 
tures and we explore the role of correlation by plotting 
the difference between resonant FDAs from the 
E~ and E° decouplings in figure 1(b). In the case of 
C2H4 the reduction of antibonding nature of the n* 
LUMO through depiction of small amounts of prob- 
ability amplitude away from the C-H a bond region 
and its accumulation near the C-C bond seems to be 
the major contribution from the correlated decouplings. 

That the major role perhaps is that of relaxation is 
indicated by figure 7 (c) where the real part of the reso- 
nant FDA from the E" decoupling for 6 = #opl has been 
plotted. The most striking feature is that the optimal 
value of the complex scaling parameter has turned it 
into a diffuse anionic orbital preparing it for the mcta- 
stable electron attachment. 

Differences in the description of the 2B2i, C2H4 shape 
resonance by the E~ and the En decouplings may be 
probed by plotting the difference between the values of 
the resonant FDAs from these decouplings. These 
results show that the major effect of correlation and 
relaxation incorporated by the E2 and E2ph TDA de- 
couplings is through greater diffusion of both the real 
and imaginary parts of the resonant amplitude. 
Although the imaginary part of the resonant FDA is 
two orders of magnitude smaller than the real part 
and is not depicted here, it is responsible for accumula- 
tion of electron amplitude in the intcrnuclcar region. 
The complex scaling and correlation effects again seem 
to act in tandem to turn an antibonding LUMO for 9 = 
0.0 into a diffuse anionic orbital for 0 = 0or,. 

3.3. 2S Auger resonance 
As discussed earlier, the spectral representation of the 

matrix dilated electron propagator provides for the 
simultaneous calculation of the energy (real part) and 
the width (twice the imaginary part) of electron detach- 
ment Auger (EQ - £S

N
 '(/;)) resonances as well. For 

Auger resonances, since resonant eigenvalues 
(Er - ir/2) have a negative imaginary part to account 
for their finite lifetime [28,64,65] and the target ground 
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Figure 7. (a) Resonant FDA from the E2 decoupling for the C2H4 molecule on the real line (6 = 0.0). (b) Difference between the 
resonant FDAs from the E2 and the E° decouplings for C2H4 on the real line. The real part of the diffuse resonant FDA at 
# = #opt is plotted in (c). 

state energy EQ is completely real, the poles will have a 
positive imaginary part and their trajectory as a function 
of variations in the scaling parameter a or 6 will move in 
the first quadrant of the complex energy plane and the 
complex poles in the first quadrant displaying quasi- 
stability with respect to variations in rj may be asso- 
ciated with Auger resonances [27,30]. Application of 

the second order, diagonal 2ph-TDA and quasi-particle 
decouplings to the treatment of electron detachment 
(Is-1) Auger resonance in Be+ therefore offers a com- 
plementary test for the comparative effectiveness of 
these decouplings of the dilated electron propagator. 

Results  from  our calculations  [31]  using various 
decouplings of the dilated electron propagator discussed 
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Figure 8. Theta trajectories for the Bc+ (Is-1) Auger pole 
from the zeroth (bi-variational SCF), second order (E~), 
quasi-particle second order (Eq), diagonal 2ph-TDA 
(E2ph TDA) and quasi-particle diagonal 2ph-TDA 
(£qph~TDA) decouplings of the dilated electron propaga- 
tor. The disparity between the theta trajectories for the 
SCF and propagator poles makes apparent the magnitude 
of correlation and relaxation effects attending the Auger 
resonance formation. 

Table 3.    Energy and width of the Be+ (Is ') 2S Auger 
resonance. 

Method/Reference Encrgy/eV   Width'eV 

Experiment [66,67] 
Many body perturbation theory [68] 
Electron propagator with 

siegert boundary condition [27] 
Second order dilated 

electron propagator [30] 
quasi-particle second order 

dilated electron propagator [31] 
Diagonal 2ph-TDA dilated 

electron propagator [31] 
quasi-particle diagonal 2ph-TDA 

dilated electron propagator [31] 
Zeroth order dilated 

electron propagator [31] 

123.63 — 
— 0.09 

125.47 0.02 

124.98 0.05 

124.98 0.05 

125.43 0.02 

127.90 0.54 

128.80 0.24 
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Figure 9. Same as figure 8 but without the zeroth order 
decoupling. The diagonal 2ph-TDA results predict higher 
energy and smaller width for the Auger resonance. A 
magnified version of the second order (£"), and the 
quasi-particle second order (Eq) trajectories is displayed 
in the inset. 
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Figure 10. 6 trajectories for different values of o for the 
quasi-particle diagonal 2ph-TDA (E2,ph TDA) decoupling. 
Because of multiple points of quasi-stability for many 
trajectories, the quasi-stable value of the resonant pole 
is elicited from the corresponding o trajectory in figure 11. 

earlier are portrayed in figures 8 and 9. The marked 
disparity between the theta trajectories for the uncorre- 
lated SCF and propagator poles makes apparent the 
magnitude of correlation and relaxation effects 
attending the Auger resonance formation. From 
figure 9 it is seen that the diagonal 2ph-TDA approx- 
imation predicts higher energy and smaller width (longer 
lifetime) for the Be+ (Is"1) 2S Auger resonance. The 
choice of basis set and the optimal a value (0.85) are 
those from an earlier study [27]. The theta trajectories 

for the quasi-particle diagonal 2ph-TDA for this 
optimal alpha shows multiple inflection points and 
cusps and therefore theta trajectories for other nearby 
alpha values have also been plotted in figure 10. 

Because of multiple regions of quasi-stability in many 
of these trajectories, the quasi-stable value of the Auger 
pole for this decoupling has been elicited from the alpha 
trajectory for 6 = 017 rad, the angle for which there is a 
clear stability in the only regular trajectory (n = 0-75) 
from this decoupling. The theta trajectories for other a 
values also display some stability for 0opl = 017 rad in 
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Figure 11. a trajectory for 6 = 0-17 rad for the quasi-particle 
diagonal 2ph-TDA (Ejph~TDA) decoupling. The distances 
narrow as a = 0.85 is approached and then increase 
again. The quasi-stable value of the pole at this alpha 
value is therefore taken to be the best estimate of the 
energy and width of the Auger resonance from this de- 
coupling. 

the sense of more rapid decrease in AE as a function of 
the same uniform Ad stepsize (i.e. numerical stability at 
least to first order). This alpha trajectory for the quasi- 
particle 2ph-TDA decoupling is displayed in figure 11 
where the distances narrow as we approach a = 0.85 
and then increase again. This quasi-stable value in the 
alpha trajectory has been taken as the best estimate of 
the resonant Auger pole from this decoupling [31]. The 
values for the energies and widths of the Be+ (Is-1) 2S 
Auger resonance from these calculations along with 
experimental and other theoretical results are collected 
in table 3. 

It is clear from figures 8-11 and table 3 that results 
from both the the diagonal 2ph-TDA and quasi-particle 
diagonal 2ph-TDA seem to move away from the second 
order results towards those from the uncorrelated zeroth 
order bi-variational SCF calculations. Instead of being 
an improvement on the second order results, they 
deviate even more from the experimental [66,67] and 
other more reliable theoretical calculations [69]. This 
behaviour of the diagonal 2ph-TDA where they offer 
little or no improvement on the second order results 
has also been observed in our molecular shape reso- 
nance calculations [23,29,33,61]. The Auger decay is a 
correlated event and its description at the SCF level is 
not meaningful, and the energy and widths from bi-var- 
iational SCF are included only to assist in assessing the 
role of correlation and relaxation in the characterization 
of the Auger resonance, as well as to highlight the rela- 

tively poor quality of diagonal and quasi-particle diag- 
onal 2ph-TDA results for this case. 

The diagonal 2ph-TDA is an appealing approxima- 
tion for reasons mentioned earlier and discussed in 
much greater detail elsewhere [5,6]. However, it is also 
well known that though it is consistent up to second 
order, it is incomplete in third and higher orders. This 
has led to a somewhat mixed result where the diagonal 
2ph-TDA does not always offer an improvement over 
second order results. The imbalance is compounded by 
the use of an uncorrelated reference state since many 
important third and higher order diagrams which 
should have been non-zero become zero in such calcula- 
tions [3]. This imbalance has been noted by von Niessen 
et al. [6] and Ohm and Born [5] have reviewed this with 
many numerical examples. A similar imbalance in the 
diagonal 2ph-TDA approximation even in the case of 
dilated electron propagator calculations is also seen and 
therefore care must be exercised in its use. This imbal- 
ance in the diagonal 2ph-TDA approximation seems to 
be aggravated by the quasi-particle approximation to 
this decoupling. The problem with quasi-particle diag- 
onal 2ph-TDA could be again due to the inconsistent 
way in which non-diagonal diagrams which contribute 
to both the initial (2p-h term) and final (2h-p term) state 
correlations are excluded. This seems to lead, in this 
case, to a requirement of large rotation pushing the 
resonant pole higher into the complex energy plane 
thereby increasing its width in this approximation. The 
ADC(3) type consistent extended 2ph-TDA decouplings 
offer obvious advantages but are much more computa- 
tionally demanding. 

4.   Concluding remarks 
Our basic purpose in this brief review is to summarize 

some representative results from our attempts to harness 
the electron propagator theory for the investigation of 
electron-scattering and Auger resonances. The bi-ortho- 
gonal approach to the construction of the dilated elec- 
tron propagator does lead to the same formulae as in the 
case of the unsealed real propagator and all the approx- 
imations from the real electron propagator formalism 
may be implemented using the formal and computa- 
tional strategies adopted earlier [5,6,70,71]. The use 
of a bi-variational SCF permits easy apportioning of 
relaxation and correlation contributions in the forma- 
tion of shape resonances. Relaxation effects seem to be 
the most important in the formation and decay of 
atomic shape resonances, since there is no resonant 
root for Mg at the bi-variational SCF level and the 
values obtained for Be and Ca from the zeroth order 
approximation (bi-variational SCF) are much larger 
than that from second order and diagonal 2ph-TDA 
self energy approximations [34] . 
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The use of a complex scaled electron propagator for 
the treatment of molecular resonances [24-26] has 
shown extreme sensitivity to even minor variations in 
the scaling parameter, making the search for the reso- 
nant root much more demanding. We have speculated 
earlier [14,15,72,73] that this may be due to the second 
order self energy approximation being employed in the 
investigation [24-26]. Later results, however, show that 
not much improvement may be had by employing the 
somewhat more demanding diagonal 2ph-TDA approx- 
imation. Molecular shape resonances are critically 
dependent on orbital mixing and quasi-particlc approx- 
imations offer little improvement to the description 
obtained at the level of the bi-variational SCF itself. 
Maximum lowering of the HOMO LUMO gap through 
the lowering of the antibonding nature of the LUMO is 
offered by the second order decoupling and the more 
demanding diagonal 2ph-TDA decoupling does not 
seem to be worth the extra effort involved in the com- 
putation of the denominator shift A in equation (7). 
Also, clear isolation of a single virtual orbital of the 
p/n-type from the whole manifold of all unoccupied 
orbitals, both for the 2P e-Mg and the 2B2g e-C2H4 scat- 
tering shape resonances lends credence to the unoccu- 
pied orbital based mechanistic picture of shape 
resonances [52,59,60]. 

The orbital picture is at the core of quantum-chemical 
thinking [74] and a rigorous probe of this picture is 
clearly desirable. Although an orbital picture of reso- 
nance formation has persisted for long [59,60] in the 
absence of a simple and unequivocal mechanism to iden- 
tify the resonant orbital, its portrayal had not been poss- 
ible earlier. Examination of radial charge density plots 
from resonant orbitals and Feynman-Dyson amplitudes 
for the 2P shape resonances in e-Mg scattering has pro- 
vided a preliminary outline with mixed results. The 
dominant features do point to the resonant orbital 
being the lowest p-type orbital, albeit with strong 
input from other orbitals in the same symmetry block. 
The competing demands of initial penetration and final 
decay are best served by a higher p-typc orbital near the 
top and narrow end of the centrifugal barrier. On the 
other hand, temporary binding will be facilitated by the 
lower energy orbital(s) at the deeper and wider end of 
the barrier. These inherently contradictory attributes for 
the formation and decay preclude a simple orbital pic- 
ture for the metastable states. In fact, the complex struc- 
ture in charge density plots indicates that description of 
resonances will be extremely sensitive to the coordinate 
space span of the primitive basic set. The prevalent basis 
sets are biased in favour of occupied orbitals and our 
results emphasize the need for incorporation of GTOs 
which will provide sufficient flexibility to be able to cater 

for the competing demands of resonance formation and 
decay. 

The complex scaling parameter is seen to play a criti- 
cal role in providing a mechanism for the accumulation 
of electron density close to the target nucleus. The exten- 
sive correlation effects witnessed in the stabilization of 
shape resonances seems to indicate that the orbital pic- 
ture for even the simplest of shape resonances investi- 
gated here needs to be interpreted judiciously. Optimal 
complex scaling is seen to turn the compact C2H4 

LUMO on the real line into an anionic diffuse orbital 
preparing it for metastable electron attachment. That 
these trends persist for diverse systems like N2 [34], 
CO [34] and C2H4 molecules generates faith in the 
ability of the bi-orthogonal dilated electron propagator 
to unmask molecular shape resonances and to unfold 
descriptive insights with cross-systemic validity. 

Some limitations of the results obtained so far need 
sharper focus and the first and foremost is the inade- 
quacy of the basis sets devoid of d-functions which 
might have assisted in a better description of the polar- 
ization effects. The initial applications with emphasis on 
complementary analysis of the molecular shape reso- 
nances through the hitherto unexplored resonant 
FDAs which alone can furnish mechanistic insights 
has necessitated the expediency of utilizing computa- 
tionally convenient basis sets with proven effectiveness 
in the unmasking of these resonances. However, study 
of the basis set effects needs urgent and comprehensive 
attention. Furthermore, while the calculated energies arc 
plausible, the calculated widths for all molecular reso- 
nances explored with the dilated electron propagator are 
much narrower than the experimental width for all the 
systems investigated here. The experimental widths have 
been obtained by fitting the cross-section data using 
empirical optical potential [75]. The larger experimental 
widths have been contested [76] as being due to the 
inadequacy of the empirical optical potential. The nar- 
rowness of the widths calculated using the dilated elec- 
tron propagator technique may also be due to 
insufficiency of the primitive basis sets and/or the 
amount of correlation and relaxation incorporated by 
the decouplings employed here. The need for a compre- 
hensive study of the basis set effects has been stressed 
earlier and an incorporation of the higher order decoup- 
lings like the third order, quasi-fourth order [9,77] or 
balanced renormalizcd decouplings such as the algebraic 
diagrammatic construction (ADC(3)) [6] is an obvious 
extension of this technique. 

The single equilibrium bond length calculation for 
molecules also needs to be extended by allowing bond- 
stretching and calculating £rcs(K) = jk7

K,(R) as a 
function of the bond length R. One could then employ 
the    Chandra    [78.79]    approximation    E^]{R) = 
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EQ(R) +5 fe^es (R) in conjunction with semi-classical/ 
quantal wave packet dynamics [80] on this complex 
•Eres^'W to unravel the vibrational structure in 
attending electron attachment resonances without 
having to employ empirical optical potentials. 

All in all, the bi-orthogonal dilated electron propa- 
gator offers a simple extension of the real electron pro- 
pagator technique and with the incorporation of higher 
order decouplings like the £3,£^ ADC(3) etc. and sui- 
tably large and flexible basis sets should offer same 
power and effectiveness in the treatment of metastable 
anions and cations as done by its real counterpart for 
stable bound systems. An effort along these lines is 
underway in our group. 

We gratefully acknowledge the support from the 
Department of Science and Technology, India. 
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Reliable evidence is presented which shows that the C3II state of SO, previously thought to be 
mostly repulsive, does in fact have a relatively deep potential. As a result of an avoided 
crossing around 3.9 a0, this state does have, for large internuclear distances, the repulsive 
nature experimentalists have agreed upon, and which has somehow been incorrectly extended 
to shorter distances; its supposed repulsive nature may have discouraged theoreticians from 
exploring excited states other than A3IT, B3E", and 3A. As a consequence of the findings of 
this work, all existing experimental data on the excited states of B3E~ and part of A3IT will 
necessarily have to be reanalysed to properly take into account the perturbations caused by 
these new 3n states and other lower lying 3E+ and 3A states on the spectra of SO. The 
theoretical predictions of this work were based on a state averaged complete active space 
self-consistent/internally contracted multireference configuration interaction (CASSCF/ 
CMRCI) calculation using averaged natural orbitals expanded in terms of the cc-pVQZ set 
of atomic functions. The following spectroscopic constants characterizing these new states 
have been found: Re = 3.177 o0, Te = 5.46 eV, AG(u+ 1/2) = 704, 681, 655, 634, 616, 607 and 
622cm"1 O = 0-6), we = 747 cm"1, wexe = 21.06cm"1, ueye = 1.114cm"1, Rmax = 3.914a0, 
£max=0.64eV for what we now call the C3II; and Ke = 3.883a0, Te = 6.15eV, 
AG(i/+l/2) = 817, 752, 641 and 152cm"1 (i/ = 0-3), u;e = 838cm"1, wexe = -2.04cm"1, 
weye = -7.702 cm"1, i?max = 4.394 a0, £max = 0.42 eV, for what we now call the C'3n state. 
The very anharmonic nature of the latter state is obviously manifested in the vibrational 
constants. 

1.   Introduction 
The molecular radical SO is a species of considerable 

chemical and physical interest. In interstellar chemistry 
[1], its role in the formation of molecular clouds is a 
subject of current research [2], as well as its participation 
in the photochemistry of sulphur compounds on Jupiter 
[3] and on the atmosphere of its satellites [4]. For the 
Earth atmosphere and troposphere, as a member of a 
class of sulphur oxides, its role in the acid rain cycle [5] is 
also an issue of global environmental interest. Spectro- 
scopically, SO can be used as a monitoring species in the 
photodissociation [6-12] or combustion [13] of more 
complex sulphur-containing molecules, and also as a 
lasing system [14-17]. 

Experimentally, a considerable amount of spectro- 
scopic data has been accumulated for the ground state 
(X3£"), and excited (A3n,B3S") states [18-27]. Evi- 
dence for an excited 3A state has also been put forward 
by Tevault and Smardzewiski [28] and Colin [29]. Singlet 
states have also been characterized in investigations car- 
ried out by Colin [21] (b'E+), Lee and Pimentel [30] 
(c'S^a'A), Barnes et al. [31] (a'A), and Burkholder 
et al. (a1 A). 

The analysis of perturbations in the B3E" 
band system carried out by Martin [24] early in 1932 led 

X3XT 

that author to propose the existence of a nearly totally 
repulsive C3n state crossing the state B3E~ close to 
v' = 3 and v' = 15. Although Abadie and Herman 
[32] have derived approximate constants for the per- 
turbing state, Colin [20] stresses that there has been no 
definitive conformation that it is in fact a 3n state. We 
note, however, that an implicit assumption of the exis- 
tence of a repulsive 3II state has been propagated from 
one investigation to another. 

On the theoretical side, the number of accurate studies 
on this system has been surprisingly small [33-39], and, 
with the exception of the early work of Swope et al. [39], 
it has been limited to the investigation of only a few 
states. A less rigorous pseudopotential investigation by 
Dixon et al. [40] has described twenty one electronic 
states of the SO molecule. 

Recently, Fülscher et al. [33] have described both the 
X3XT and A3II states and computed the radiative life- 
times of the A 3n state at a high level of correlation 
treatment. In this work, we have followed a similar 
approach but have used a larger active space and a 
more extended atomic basis set, since we wanted to explore 
other electronic states dissociating into excited state atoms. 

Following a common procedure in our investigations 
of extracting from the Hamiltonian matrix the eigen- 

0026-8976/98 $12-00 © 1998 Taylor & Francis Ltd. 
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values associated with most of the states correlating with 
the first dissociation channel, and a few others corre- 
lating with higher lying dissociation channels, we have 
been surprised by the fact that the potential energy 
curves obtained in this calculation revealed a completely 
new picture of the 3n states which had been unsuspected 
in any of the previous experimental and theoretical 
studies. 

This new finding invalidates several arguments used in 
the analysis of perturbations observed in transitions 
from both A3n and B3E~ states and discussed in pre- 
vious experimental works, and calls for a rcanalysis and 
a reassessment of the existing experimental data on the 
states A3n, B3E~, and C3IL In view of this new evi- 
dence, our main purpose in this work is to present a 
highly accurate theoretical characterization of this new 
state thus providing reliable data that cannot only shed 
new light on the analysis of the existing experimental 
data but also provide new insights into the rich and 
complex spectroscopy of the SO molecule. 

2.    Methodology 
Direct application of the Wigner-Witmcr rules [41] 

shows that correlating with the first dissociation 
channel, S(3Pg) + 0(3Pg), the following molecular 
states E+(2), XT, 11(2), and A, with singlet, triplet and 
quintet multiplicities, arc theoretically realizable; for the 
second dissociation channel, the allowed symmetries are: 
E+, E~(2), n(3), A(2) and $. Considering now the region 
for which experimental data arc available, it is clear that 
if one wants to describe these states within the C2v point 
group symmetry representations, it more than suffices to 
calculate the first four eigenvalues of the A[(E+, A), and 
A2(E~,A) symmetries, and three eigenvalues of the B) 
symmetry; for the singlet states, two of each A| and A2 

symmetries and only one of the ß) symmetry are needed 
in fact to be extracted from the hamiltonian matrix. 

Concerning the atomic basis sets used in the present 
investigation, our choice has been the correlation-con- 
sistent polarizcd-valencc quadruple-zcta (cc-pVQZ) 
basis functions developed by Dunning and collaborators 
[42, 43], symbolized as (12s, 6p, 3d, 2f, lg)/[5s, 4p, 3d. 2f, 
lg] for oxygen, and (16s, 1 lp, 3d, 2f, lg)/[6s, 5p, 3d. 2f, 
lg] for sulphur. The total number of contracted func- 
tions amounts to 114 and, as implicit in their definition, 
spherical gaussians are used in all calculations. 

In the construction of the n-particle basis, we have 
employed a set of natural orbitals generated through 
the diagonalization of a state-averaged density matrix. 
The state-averaging process involved first a complete 
active space self-consistent field (CASSCF) calculation 
in which twelve electrons were distributed in ten active 
orbitals, denoted (4330) in C2v point group symmetry; 
this space includes the 2s (3s) and 2p (3p) valence orbi- 

tals, respectively, plus one correlating orbital in each of 
the b| and b2 symmetries. Core (Is) and inner-shell (S2s 
and 2p) orbitals were kept doubly occupied in all calcu- 
lations. In this process, a common set of molecular orbi- 
tals was constructed by optimizing an average energy 
which included the four lowest states of each A, and 
A2 representations, and three of the B, and B2 represen- 
tations, with equal weights for all states [44, 45]. The 
CASSCF calculation generated sets of configuration 
state functions of dimensions 5154(A:), 5196(A2), and 
5220(B,). 

To account for the dynamic correlation effects, a new 
set of reference configurations was constructed by 
selecting all those occupations from the CASSCF wave 
function which gave rise to at least one configuration 
state function (CSF) with a coefficient greater than 
0.025 in absolute magnitude; next all single and double 
excitations were generated from this new reference set. 
The choice of this threshold has been amply demon- 
strated by Taylor [46], and also by Partridge el al. [47], 
to yield very reliable results. To make this study viable, 
we have made use of the internally contracted multi- 
reference configuration interaction (CMRCI) [48, 49] 
approach as implemented in the Molpro-96 suite of pro- 
grams [50]. which reduced the dimension of the CSF 
space from about 10 14 million terms to less than a 
million. 

Vibrational energies and wavefunctions were com- 
puted with the 'intensity' program [51] based on the 
Numcrov Cooley numerical solution of the radial 
Schrödingcr equation. Spcctroscopic constants were 
obtained by standard fitting procedures [41, 52-57]. 

3.    Results and discussion 
Total energies for the two lowest 3D states correlating 

with the first dissociation channel. S(3P) + 0(3P), and 
for a third 3n state correlating with the fragments of the 

second dissociation channel. S('D) + 0('P), arc col- 
lected in table 1; the corresponding potential energy 
curves are displayed in figure 1. For the sake of com- 
pleteness, we have also displayed in figure 1 the potential 
energy curves of other triplet states of relevance to the 
present discussion. Concerning the energies, it is worth 
pointing out that they have been corrected for quad- 
ruple excitations using Langhoff and Davidson's 
method [58]. As already pointed out by Fülschcr et al. 
[33], this correction turns out to be important, specially 
for the A 3I1 state because of the very shallow minimum 
of its potential energy function. Spcctroscopic constants 
arc collected in table 2. 

As to the whole manifold of low-lying singlet and 
triplet states, we note that a thorough discussion of 
most of the singlet and triplet states correlating with 
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Table 1. Energies (in au) for the lowest-lying 3n states of the SO molecule. The energies are given relative to 
Distances are given in bohr. 

- 472.0 au. 

A3n CTI c'3n R A3n c3n c'3n 
2.20 -0.446 876 -0.335712 -0.201119 3.25 -0.675189 -0.651729 -0.585 388 
2.25 -0.490083 -0.386291 -0.247 851 3.30 -0.675152 -0.650646 -0.591106 
2.30 -0.525962 -0.429 517 -0.285682 3.40 -0.674753 -0.647 875 -0.600970 
2.35 -0.558179 -0.469215 -0.323146 3.50 -0.673 725 -0.644321 -0.609064 
2.40 -0.581286 -0.500122 -0.348 823 3.60 -0.672487 -0.640606 -0.615683 
2.50 -0.619722 -0.552687 -0.389741 3.70 -0.670941 -0.636 569 -0.621122 
2.60 -0.642669 -0.588 815 -0.433413 3.80 -0.669244 -0.632 591 -0.625454 
2.65 -0.650819 -0.602 757 -0.454016 3.90 -0.667086 -0.628 778 -0.627335 
2.70 -0.656779 -0.614108 -0.471651 3.95 -0.666013 -0.629 590 -0.625906 
2.75 -0.661612 -0.623 606 -0.487759 4.00 -0.664912 -0.631612 -0.623 501 
2.80 -0.665 367 -0.631481 -0.502364 4.10 -0.662496 -0.635141 -0.621445 
2.85 -0.668225 -0.637332 -0.515488 4.20 -0.660304 -0.637806 -0.616317 
2.90 -0.670379 -0.642127 -0.527416 4.50 -0.656981 -0.645250 -0.614394 
2.95 -0.671880 -0.645 722 -0.538166 5.00 -0.657 554 -0.652652 -0.615452 
3.00 -0.673 041 -0.648490 -0.547948 6.00 -0.660162 -0.668 638 -0.616686 
3.10 -0.674501 -0.651472 -0.565021 7.00 -0.660 517 -0.653 389 -0.618963 
3.15 -0.674902 -0.652068 -0.572333 8.00 -0.660328 -0.653 219 -0.618 701 
3.20 -0.675127 -0.652016 -0.579104 
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Table 2. Spectroscopic constants for the low-lying 3n states 
of SO. Unless otherwise indicated, all constants are given 
in cm-1. 

1.5     2.0    2.5     3.0     3.5    4.0    4.5     5.0    5.5     6.0    6.5 

Distance (a0) 

Figure 1.   Potential energy curves for selected states of the SO 
molecule. 

the first and second dissociating channels of the SO 
molecule will appear in a forthcoming paper. In this 
work, as already pointed out, our main focus is to pro- 
vide a reliable description of the as yet unknown facet of 
the C3II state which can be of help in the reinterpreta- 

A3n c3n c'3n 
This Experi- This This 
work [33] ment work work 

RJa0 3.249 3.214 3.041 3.177 3.883 
Te/eV 4.83 4.85 4.77 5.46 6.15 
AG(l/2) 372 344 416 704 817 
AG(3/2) 374 360 407 681 752 
AG(5/2) 374 369 404 655 641 
AG(7/2) 373 - 401 634 152 
AG(9/2) 371 - 397 616 - 
AG(ll/2) 370 - 392 607 - 
AG(13/2) 369 - 382 622 - 
AG(15/2) 368 - 338 - - 
we 371 332 413 747 838 
U}fXe 1.06 6.4 1.6 21.06 -2.04 
^eJe -0.129 - - 1.114 -7.702 

tion of existing data on the emission and absorption 
spectra of the SO molecule. 

Before describing the new features of the C 3n state, 
and discussing its implications, a few comments on the 
experimental evidence leading to its proposal are worth 
making. The evidence is mostly inferred from the ana- 
lysis of perturbations in some emission and absorption 
bands of the B3£~~ <-> X3£~ transition. Martin [24] was 
the first to report an abrupt termination of the bands 
O-i/", l-i/", 2-i/", and 3-u" at the rotational levels 
N' = 66, 53, 39, and 6, respectively, which have been 
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interpreted as a clear indication of a prcdissociation. 
Also, the increasing diffuseness in bands for u' > 8 
and which reaches its maximum at v' = 14 and 15 are 
taken again as an indication of the setting of a second 
predissociation. Also, of relevance to our discussion is a 
strong vibrational perturbation near v' = 16, and small 
displacements of several other levels, specially v = 3, 7 
and 11. The 7-0 band, in particular, presents a triple 
head, assumed as probably due to an anomalously 
large splitting of the three components of the upper 
state. From the emission data involving the levels 
v' = 0-3, the existence of a very shallow well 
(«1600 cm"1) with a minimum at «7.5a0 was inferred 
by Martin as characteristic of this perturbing 3n state. 
As to the second predissociation of the B3E~ state near 
i/ = 14 and 15, it is supposed to be due to an avoided 
crossing of the B3XT state now with the repulsive part 
of a higher lying 3E" state. Summarizing these data, an 
almost totally repulsive potential energy curve crossing 
the B3XT state at v' = 3 and 15 has been used in the 
literature as characteristic of the C U [14]. 

As clearly depicted in figure 1, the new theoretical 
data on the C3n state reported in this work does not 
support the above interpretation of perturbation effects 
in some of the bands of the B3XT state, and the above 
description inferred for the C3n state. This study reveals 
the existence of another bound 3n state with an equi- 
librium internuclear distance of 3.177 a0 lying at 5.46 eV 
(Te) above the ground state and correlating diabatically 
with the second dissociation channel; also another 
higher lying 3n state (Te = 6.15eV) which correlates 
diabatically with the first dissociation channel was 
found to have a repulsive nature for distances shorter 
than ~3.9a0.At this point, an avoided crossing between 
these two states changes their characters and gives rise 
to a hump in the lower state with a maximum energy of 
0.64 eV relative to its bottom. As a consequence of this 
avoided crossing, the minimum of the lower lying n 
state turns out to be located at 0.09 eV above its adia- 
batic dissociation limit, and a new minimum at 3.883 a0 

arises for the higher-lying 3n state; for this latter state a 
small hump of 0.42 eV relative to the bottom of the well 
was computed. Solution of the radial Schrödinger equa- 
tion for these new bound states allowed us to predict the 
existence of at least eight and five vibrational states for 
the lower and higher of these 3II states, respectively. 

Concerning the new features of the 3n states, it is 
worth calling attention to the sharpness of the avoided 
crossing between the C and C' states with an energy 
splitting of 0.002251 au. In this region, the adiabatic 
electronic wavefunctions change character in a rather 
sharp and drastic manner, and as a consequence, one 
expects a strongly peaked coupling matrix element 
between the adiabatic states near the internuclear dis- 

tance where the diabatic curves cross. As discussed by 
Lefebvrc-Brion and Field [59], a sharply peaked change 
in the coupling function is an indication of a preference 
for a diabatic picture of the dynamics of the system. 

As a consequence of the strong coupling between the 
states, radiationless transitions between the adiabatic 
states arc likely to occur. In fact, by making use of the 
Landau -Zener [60] expression and the approximations 
defined in [61]. a rough estimate of 80% was obtained 
for the transition probability between the adiabatic 
states. It is well known that radiationless transitions 
lead to a decrease in the lifetime of a given level, and 
in the absence of any other relevant effect, the lincwidth 
of transitions to that level arc expected to increase. 

To better analyse the various crossings of the poten- 
tial energy curves, we have redrawn in figure 2 a rcscalcd 
version of figure 1 in which only the curves of the states 
A 3n, B 3E , and the two new 3n states arc shown. Also, 
to provide a more accurate relative position of the vibra- 
tional levels, we have rescaled our theoretical Te values 
to match the experimental ones. We note that our pre- 
diction of Tc for the B3E" state is underestimated by 
423cm"', whereas that for the A3I1 state is overesti- 
mated by 475 cm"1; the new 3n states have been rcscalcd 
similarly to the A3n state. With this rescaling, one can 
notice that the setting of the continuum in the A 3I1 
occurs just above vibrational level 1 of the B" XT state. 
A closer look at the positions of the vibrational levels of 

2$   28   30   32   34   38   38   40   42  44   46   48   50 

Distance (a0) 

Figure 2. Amplified view of the potential energy curves for 
selected states of the SO molecule, including calculated 
vibrational levels. 
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the B E~ state shows, however, that the crossing with 
the C 3II state occurs between levels 8 and 9, and not at 
v' = 3, as experimentally inferred. Similarly, the experi- 
mentally supposed crossing of the repulsive sides of both 
C 3n and B 3XT states does not in fact occur at v' = 15, 
but just below v' = 0. Clearly, these findings urge for 
other arguments in the explanation of these perturbative 
effects in the spectra. 

On the basis of this new picture, the increasing 
diffuseness in bands for v' > 8 of the B3E~ state 
arises not only because of the crossing of this state by 
the external repulsive side of the C3n state between 
levels 8 and 9, but certainly are also reflecting the 
strong interaction between the upper lying 3n states. 
Note that for v' > 10, these vibrational levels lie in the 
continuum of the new C 3n state and a predissociation 
of type I as discussed by Herzberg [41] is also likely to 
occur. The type of predissociation observed here is illus- 
trative of a heterogeneous perturbation, and an increase 
in diffuseness is expected to occur with increasing N 
values, as well as a shift of the dissociation limit to 
higher energy values. 

If the experimental spectra are really an indication of 
predissociation, how can one account for a mechanism 
of predissociation of the levels 0, 1, 2 and 3 of the B3£~ 
state? Apparently, one alternative involves a possible 
favourable overlap of some rotationally excited states 
of these low-lying vibrational levels with the continuum 
of the A state. However, as discussed by Herzberg [41] in 
the case of the 2n states of the NO molecule, the present 
situation is a typical one where quite low Franck- 
Condon factors would be expected to occur. A rough 
estimate of this expectation has been carried out by 
computing the Franck-Condon factors between the 
pairs of levels 0-9 and 1-10 of the A and B states for 
several combinations of the rotational quantum number 
which turned out to be practically zero. The other poss- 
ible alternative to consider basically assumes that the 
experimental data are not actually reflecting a predisso- 
ciation but rather a heterogeneous rotational perturba- 
tion by the new bound C3n state on B3XT close to 
3.1 a0. We recall that an abrupt termination of the 
bands 0-v', \-v', 2-v', and 3-v' occur at the rotational 
levels N' = 66, 53, 39 and 6, respectively. Guided by 
these numbers, we computed the location of the rota- 
tional states, relative to the bottom of the B state poten- 
tial, which could most closely reproduce the observed 
rotational quantum numbers. Our results, 65(2344), 
53(2361), 39(2370) and 15(2364), where the numbers in 
parentheses are the energies in cm-1 relative to the 
bottom of the well, clearly indicate the existence of 
four vibro-rotational states within 20 cm"1 of each 
other which are directly affected by the curve crossing 
close to 3.1 a0. On the basis of these data, we are 

X3E" 

strongly inclined to accept this latter alternative as pro- 
viding a more viable mechanism to explain the diffuse- 
ness in the spectra. 

We also note that there is no mention of a (9-z/') or a 
(lO-i/") band in Colin's [20] investigation of the A-X 
transition, but in this case, besides the expected low 
Franck-Condon factors, an additional effect contributes 
to the diffuseness of the lines, and it has to do with a 
predissociation by rotation (Herzberg's case III) which 
is expected to increase with increasing rotational 
quantum number. A further point to note in these 
potential energy curves is the close proximity of some 
vibrational levels of the B3S~ state to those of the C3Ü 
state. An unambiguous experimental determination of 
these states is clearly needed. 

In the case of the (7-0) band of the B 3£~ 
transition, which is reported to have a triple head, what 
one may be observing is in fact a transition from levels 3 
and 4 of C3n and 7 of B3E~. We recall that the three 
AG(v+ 1/2) values approximately inferred for v = 7 
differ by as much as 62 cm""1. Additionally, if one 
takes into account that transitions from the new C3n 
state can also be composed of three subbands, the band 
system in this region of the spectrum will certainly pre- 
sent a rather complex appearance. 

Although a characterization of all low-lying singlets 
and triplets of SO will be presented in detail in a forth- 
coming paper, we can ,however, anticipate some points 
of relevance to the present study. We first recall that 
Colin [20] reports an anomalous behaviour on both 
extremities of his observed A-X spectrum, and notes 
that for v' = 2, 3 and 4, the AG(i/+ 1/2) values are 
quite regular. If we look closely at figure 2, we can 
note that the A3n state curve is crossed by the 3A 
and 3E+ states near v' = 5, which might be acting as 
perturbing states. The supposed existence of a nearby 
singlet perturbing the A 3n state has also been consid- 
ered by some investigators. We note, however, that our 
calculation has found a *E~ state lower in energy than 
the A3n, but with a potential energy curve running 
almost parallel to that of the 3A state and displaced a 
little bit to shorter internuclear distances. 

Concerning the characterization of the A 3n state, one 
important point still deserves some attention. The equi- 
librium distance predicted by Fülscher et al. [33] 
(3.214 OQ) and that computed in this work (3.249 a0) 
differ from experiment by about 0.2 a0, a result unex- 
pectedly too large for this level of correlation treatment. 
For the ground state, theory and experiment differ by 
less than about 0.02 a0, and for the B3E" state the dif- 
ference amounts to 0.04 a0. Another indicator of the 
existence of difficulties in the characterization of this 
state, either theoretically or experimentally, is reflected 
in the values of AG(l/2),  AG(3/2)  and AG(5/2). 
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Experimentally, they arc reported to be 416, 406 and 
404 cm-1; theoretically, Fülscher et al. obtained 344, 
360 and 369 cm-1, whereas in this study our values 
turned out to be 372, 374 and 374 cm-1. Although our 
results represent an improvement over that of [33], the 
errors in AG are significantly larger than the ones for the 
ground state (14, 12 and 12CITT'). Clearly, this issue 
needs further investigation, but these differences do 
not affect the results and discussion we have presented 
for the new 3I1 states. 

4.    Conclusion 
This work has provided reliable spcctroscopic data 

which predict the existence of new bound 3n states in 
the spectra of the SO molecule. It invalidates previous 
inferences made by experimentalists in the interpretation 
of perturbations of various bands in the spectra of the 
B3XT - X3XT transition. It is our hope that it cannot 
only guide spectroscopists in the analysis of the complex 
spectra of this molecule, but also motivates new theore- 
tical and experimental investigations on this system. 
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and their iso-analogues 
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We present the prediction of the MBPT(2)/DZP structures, CCSD + T(CCSD)/DZP and 
CCSD + T(CCSD)/cc-PVTZ energetics for 1,1-dicyanodiborane, ?ra/w-l,2-dicyanodiborane 
and n,u(C,C)-dicyanodiborane as well as for the diisocyano counterparts. The molecules 
with three-centre-two-electron (3c2e) bonds exhibit higher thermodynamic stability with 
respect to the H2BCN or H2BNC monomers than the u,u-isomers (cyano bridging) which 
are significantly less stable. Another possible reaction channel comprising the exchange reac- 
tion B2H6 + 2HCN —► C2H4B2N2 + 2H2 exhibits even more enhanced differences between 1,1-, 
1,2- and n,u(C,C) isomers, respectively, and related isocyano molecules. The effects of electron 
correlation are analysed for complexation reactions, isomer ordering and for various CN/NC 
isomerization reactions. Bonding analysis in terms of SCF and MBPT(2) bond orders is 
presented. Possible candidates for BNC-polymer modeling are also suggested on the basis 
of these molecular calculations. 

1.   Introduction 
In the course of other work [1] on cyclic and chain 

dimers of H2BCN we have suggested also the other 
possible structure (la) corresponding to C2H4B2N2 
isomer with non-classical, i.e. 3c2e boron bonds [2]. 
However, this is only one of several conceivable isomers 
of cyanoborane dimer. Depending on the position of the 
CN-group and/or the arrangement of carbon and 
nitrogen atoms one can consider also other isomers of 
C2H4B2N2: (Hb denotes bridging, Ht terminal hydrogen 
atom, respectively) lb, 2a, 2b. 

la 

C 

y 

H\/H^B  

y 

Ht\ xHK  N  
N^BXHb

X\t 

, C 

2a 2t> 

Ht,      /Hb\     ,.C 
""ET       XB'" "VH% * 

,c 

\K 

r/   XHb^  \. 
V 

Of course, there could be even more isomers of cyano- 
borane dimer than selected in this paper (e.g. civ-1,2- 
dicyanodiborane). However, we are primarily interested 

§ Author for correspondence. 

in extreme cases for which one can observe the effect of 
the substituent on the isomers ordering, their thermo- 
dynamic stability and, eventually, B-B bonding. 

The geometry of the B-C-N and B-N-C linkage in 
the cyano-bridged dimers is an interesting feature. One 
would expect these to be linear by the 'textbook' tenets 
of VSEPR and relatedly, in the absence of any 
constraints, one would expect linear B-C-N-B (and 
B-N-C-B) units as well. By the rules of geometry, 
both B-C-N-B (and B-N-C-B units) cannot be linear 
and form a six-membered ring. (The sum of the internal 
angles of planar hexagon equals 720° and so the local 
C-B-C, C-B-N and N-B-N angles would have to be 0°, 
an obvious impossibility.) Furthermore, we recognize 
these C2H4B2N2 species as isolectronic to the unreason- 
ably strained cyclohexa-l,4-diyne 

and so the B-C-N-B units must contain bent B-C-N 
and/or B-N-C subunits. If the local C-B-C, C-B-N 
and N-B-N angles were roughly tetrahedral, i.e. ca. 
109°, then the remaining angles would have to equal 
ca. 125°. Alternatively, one can form species with 4- 
membered B-C-B-C or B-N-B-N rings with concomi- 
tantly exocyclic -N and -C, respectively. Given other 

0026-8976/98 $12-00 © 1998 Taylor & Francis Ltd. 
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long-known heteroatom bridged diboranes with 4-mem- 
bered rings, we chose in this study to include also these 
latter small ring alternatives (3a and 3b). 

2a 

u N 
Ht.      /Cv    „,Ht 

2b 

"B ,B" 

Hf Ht 

For the sake of comparison of present isomers with our 
previous study [1] we include in our tables also the non- 
planar ring l,4-diaza-2,5-diboracyclohexadiene (4) (for 
simplicity, we intentionally avoid drawing of multiple 
bonds). 

H-- 

Since CN is an electron withdrawing substituent, its 
position can significantly reduce the electron density 
between boron atoms (i.e. affect the B-B bonding), 
alter the 3c2e-bonding network and, consequently, influ- 
ence the stability of the resulting isomer. An interesting 
aspect of the relative dimerization energies of H2BCN 
and H2BNC when compared to the parent BH3 refers to 
the description of B2H6 as a self-donoracceptor complex 
of two BH3's. That is [3], the first BH3 donates from one 
of its B-H a bonds into the vacant n orbital of the 
second BHS, while the BH bond of the second BH, 
donates into the n orbital of the first one. By replacing 
one non-bridging H by CN or NC the donating power 
of the B-H a bond is expected to decrease because these 
groups are electron withdrawing. However, the 
accepting power of the borane is expected to increase 
for the same reason. It is therefore not obvious what is 
the ordering of the relative dimerization energies of 
BH3, H2BCN and H2BNC. 

We anticipate that some of these isomers can serve as 
good starting points for the models of BNC polymers, 
either acyclic or containing four-membcred rings 
(similar to, e.g. polyaminosquaranines [4]). Depending 
on the arrangement of B, C and N atoms and on the 
presence of a suitable substituent one can tune up the 
electric properties of such a polymer with the aim of 
obtaining the most favoured band gap, comparable 
with that of polyacetylene or polyaminosquaranine. 

2.   Methods and computational details 
Since one of the goals of this paper is to compare the 

new results for cyanoborane dimcrs with our preceding 
study, we have adopted the same computational strategy 
as in [1]. Therefore, the full details of the computational 
procedure will not be repeated here. Briefly, it consists of 
geometry optimizations at the level of second-order 
many-body perturbation theory, MBPT(2) [5, 6] and 
the harmonic frequencies calculation for each stationary 
point to confirm the minimum on the potential energy 
surface, followed by the evaluation of reaction energies 
using the single-point higher-level coupled cluster (CC) 
calculations [7-11]. Both MBPT(2) geometries and the 
CC single-point energies, CCSD (coupled cluster with 
singles and doubles) [8] and CCSD + T(CCSD) (CCSD 
with non-iterative triple-excitation correction) [9], have 
been obtained from the ACES-II program [12]. In the 
single point MBPT(2) and coupled-cluster calculations 
the inner- as well as the corresponding outer-shell Orbi- 
tals for heavy atoms were left uncorrclatcd. We note 
that we have also calculated the CCSD(T) energies 
(the approximation which adds to CCSD + T(CCSD) 
one fifth-order term) [10, 11] but the energy differences 
were negligible, so we will present only CCSD + 
T(CCSD) data. 

In order to analyse the changes in 3c2c-nctwork intro- 
duced by substituents (and thus compare diboranc with 
our isomers), we have calculated also the overlap popu- 
lations and bond orders [13] from MBPT(2) first-order 
wavefunction. The GAMESS [14] program system was 
used in these calculations. 

Three Gaussian basis sets were used. For the pre- 
liminary optimizations and initial guess of the hessians 
the DZ basis was selected [15]. Final geometry tuning 
and the single-point CC calculations were performed 
with the DZP basis set [16 (a)]. To compare the per- 
formance of DZP basis set and to describe better the 
(possible) intricacies of higher order dynamic correla- 
tion effects in relative energies, namely, in the isomers 
ordering and the formation from cyanoborane mono- 
mers, we have repeated the single-point coupled cluster 
calculations for H2BCN, H2BNC, la, lb, 2a, 2b, 3a, 3b 
with the cc-PVTZ basis set [16 (b)]. 

3. Results and discussion 
The optimal MBPT(2)/DZP geometry parameters for 

C2H4B2N2 molecules arc listed in table 1 (full descrip- 
tion of Z-matriccs for ACES-II as well as the geometries 
of subsystems arc available from I.C. upon request). The 
overlap populations and bond orders for BB, BH„ and 
BHh bonds in the 3c2e network arc collected in table 2. 
Total and relative energies arc in tables 3-6. All the data 
obtained with cc-PVTZ basis set arc in italics in tables 
3-6. The effects of electron correlation and basis set on 
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Table 1.   Geometries of C2H4B2N2 isomers and related subsystems (bond lengths in A, angles in degrees). 

la    (C2h): BB=1.7748, BHt=1.1872, BHb=1.3272, BC=1.5537, CN=1.1890, BHbB = 83.92, ZHbBHt= 109.53, 
ZHtBC= 121.51, ZBCN= 179.10 

lb    (C2h): BB= 1.7836, BHt= 1.1863, BHb= 1.3314, BN= 1.4582, NC= 1.1972, ZBHbB = 84.11, ZHbBHt= 109.81, 
ZHtBN= 121.52, ZBNC= 178.58 

2a    (C2v): BB= 1.7770, BHt= 1.1877, BHb= 1.3383, B'Hb= 1.3174 (B' is bound to CN), BC= 1.5556, CN= 1.1893, 
ZB'HbB = 84.00, ZHbBHt= 107.84, ZCBC= 118.58, ZBCN= 179.79 

2b    (C2v): BB= 1.7753, BHt= 1.1875, BHb= 1.3201, B'Hb= 1.3401 (B' is bound to NC), BN= 1.4567, NC= 1.1978, 
ZB'HbB = 83.72, ZHbBHt= 107.29,ZNBN= 118.01, ZBNC= 179.93 

3a    (D2h): BB = 2.0063, BH= 1.1897, BC= 1.7050, CN= 1.1880, ZHBH = 125.84, ZCBC= 107.92, ZHBC= 105.54, 
ZBCN= 143.96, ZHBCN = 67.54 

3b    (D2h): BB = 2.2455, BH = 1.1889, BN= 1.6437, NC= 1.2096, ZHBH= 124.13, ZNBN = 93.83, ZHBN= 108.66, 
ZBNC= 136.92, ZHBNC = 68.83 
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Table 2.   MBPT(2)/DZP overlap populations (S) and bond orders [Mayer] (BO) for selected bonds". 

molecule B-B S BO B-H, S BO B-Hb S BO 

B2H6 1.781 0.268 0.585 1.192 0.856 0.971 1.323 0.398 0.465 
la 1.775 0.232 0.587 1.187 0.828 0.983 1.327 0.374 0.450 
lb 1.783 0.203 0.543 1.186 0.800 0.934 1.331 0.344 0.453 
2a 1.777 0.197 0.554 1.188 0.824 0.950 1.338 

1.317 
0.422 
0.280 

0.460 
0.440 

2b 1.775 0.180 0.508 1.188 0.830 0.954 1.320 
' 1.340 

0.452 
0.185 

0.497 
0.399 

3a 2.006 0.198 0.268 1.190 0.822 0.923 
3b 2.246 0.101 0.098 1.189 0.796 0.931 

" Data for B-Hb in italics refer to B bound to cyano/isocyano group (cf. B' in table 1). 

isomer ordering and on various CN/NC isomerization 
reactions are depicted in figures 1-4. 

The nature of 3c2e double bridges in diborane and 
systems isoelectronic with B2H6 was the subject of 
studies done recently by Trinquier et al. [17]. Their 
main conclusion for B2H6 is that each BHbB bridge is 
halfway between an allyl-like cation with two electrons 
in three Orbitals in BH and HB bindings and cyclopro- 
penyl-like (aromatic) cation with almost equivalent BH, 
HB, BB interactions [18]. Let us analyse briefly our 
results in terms of Mullikan overlap populations and 
Mayer bond orders. Presumably, Trinquier et al.'s 
results imply that one can expect the bond orders for 
the bridges to be approximately half of those for the 
terminal BH bonds. 

Our MBPT(2)/DZP B-B bond lengths for H-bridged 
isomers lie between 1.77-1.78 A, very close to 1.781 A, 
which is the MBPT(2)/DZP B-B bond length in 
diborane. Note that it is longer by 0.018 A than the 
experimental value, 1.763 Ä [19], but MBPT(2)/DZP is 
known to overshoot slightly the bond lengths for the 
first-row atoms [20]. Thus the B-B bond itself is not a 
very sensitive measure of the substituent effect in this 
case. The Mullikan B-B overlap populations correlate 

loosely with the bond orders and, in general, show 
decrease of electron density from la to 2b. The strongest 
electron 'pumping' towards CN/NC groups occurs in 
1,1-position and CN isomers are slightly less electron 
withdrawing than NC ones. This is reflected also by 
non-equivalent B-Hb bonds in the B-Hb-B bridges 
(last three columns in table 2). In 2b, both bond order 
and overlap population are lower for the B-Hb bond 
adjacent to B attached to the isocyano group than the 
corresponding indices in 2a (B attached to the cyano 
group). On the other hand, they are almost identical 
for 'normal' B-Ht bond. It seems that these simple 
bond indices are fairly sensitive to small B-Hb-B 
bond-length fluctuations introduced by the cyano/iso- 
cyano-substituents. 

To summarize a bit, the 3c2e bonding spreads over 
the whole BHbHbB four-membered ring and is fairly 
stable (insensitive to change) also for substituted species. 
The geometrical changes in B-Hb-B bonding introduced 
by the CN groups are small, approximately ±0.015 Ä 
with respect to B2H6. However, putting CN (or NC) 
into this ring in place of bridging hydrogens destroys 
the BB bonding almost completely. It would be also 
interesting to have only one CN/NC group in the 
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Table 3.   Total energies (in hartrees) and ZPV corrections (inkJmol '). Rows in italics refer 
to cc-PVTZ basis set. 

-SCF -MBPT(2) -CCSD -CCSD+T(CCSD) ZPV 

la 236.328532 237.085591 237.117646 237.152273 167.1 
236.372317 237.285757 237.304598 237.356366 — 

lb 236.335293 237.055457 237.100372 237.134090 168.0 
236.378764 237.251812 237.284286 237.333242 

2a 236.323959 237.083200 237.114458 237.149371 166.5 
236.367496 237.283401 237.301310 237.353432 

2b 236.334969 237.055808 237.100406 237.134380 166.9 
236.378110 237.252321 237.284427 237.333658 

3a 236.267162 237.035659 237.079918 237.124473 161.9 
236.308729 237.233383 237.249529 237.305773 

3b 236.298457 237.013052 237.073159 237.110082 160.1 
236.340211 237.205596 237.241233 237.290254 

4a 236.347257 237.071432 237.113627 237.149339 176.3 
HB(CN)2 209.905944 210.539854 210.554260 210.585039 74.1 
HB(NC)2 209.929713 210.517057 210.545125 210.574127 74.6 
H2BCN" 118.161428 118.520515 118.539986 118.556109 73.7 

118.177118 118.613775 118.627744 118.651411 — 
H2BNC 118.167339 118.512309 118.537689 118.553419 74.3 

118.186461 118.604451 118.624592 118.646978 — 
HCN 92.883142 93.172389 93.179790 93.192439 41.3 

92.901051 93.251236 93.253723 93.273391 — 
HNC 92.870418 93.143342 93.157007 93.169589 41.5 

92.887916 93.222801 93.231481 93.250417 — 
B2H6 52.820091 53.037072 53.081420 53.087563 168.5 

52.834917 53.096664 53.133661 53.143225 — 
BH, 26.393117 26.485964 26.509800 26.511221 70.3 
H2 1.130983 1.158418 1.166716 1.166716 27.4 

1.132968 1.164644 1.172332 1.172332 — 

" Taken from [1]. 

Table 4.    Formation (k.T mol ') of dicyanodiboranc isomers via exchange reactions (data 
in italics refer to cc-PVTZ basis set): 

B2H6 + 2HCN -> C2H4B2N2 + 2H2 (ja. 2a. 3a) 
B2H6 + 2HNC -»C2H4B2N2 + 2H2 (lb. 2b, 3b) 

(la) (lb) (2a) (2b) (3a) (3b) 

SCF -10.8 -95.4 1.2 -94.5 150.3 68.1 
-3.2 -89.1 9.4 -87.4 163.7 81.1 

MBPT(2) -54.0 -127.4 -41.1 -128.4 77.1 136.4 
-41.8 -102.0 -35.6 -103.3 95.7 168.7 

CCSD -26.5 -100.7 -18.1 -100.8 72.6 90.3 
-21.4 -84.9 -12.8 -85.2 123.2 145.0 

CCSD + T(CCSD) -34.8 -107.1 -27.2 -107.8 38.2 75.9 
-28.9 -88.9 -21.2 -90.0 103.9 144.6 

AZPV -29.2 -28.7 -29.8 -29.9 -34.4 -36.2 

AH298K -55.1 -129.9 -48.3 -129.5 13.2 50.3 

-BHbCNB- ring but respective molecule was beyond tbc 
scope of the present paper. We will postpone this ques- 
tion to our next paper [21], together with the harmonic 
vibrational spectra of the present molecules. Another 
interesting feature is the influence of the CN/NC posi- 

tion in la. lb, 2a. 2b on the geometry BHhB bridge. 
Nitrogen has higher electronegativity than carbon and 
this is manifested in the slight decrease of bond orders in 
the 3c2e moiety, most visible for the non-equivalent BHh 

bonds in 2a 2b isomers (tables 1 and 2). 
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Table 5. Formation of C2H4B2N2 isomers from two cyanoborane (4, la, 3a) or two isocyano- 
borane (lb, 3b) molecules. Data in italics refer to cc-PVTZ basis set. For comparison, 
2BH3 —► B2H6 complexation energies are given in the last column. 

4 la lb 3a 3b B2H6" 

SCF -64.1 -14.9 -1.6 146.2 95.1 -88.9 
— -47.5 -15.3 119.5 85.9 — 

MBPT(2) -79.8 -117.0 -81.0 14.1 30.4 -171.0 
— -152.8 -112.7 -15.3 8.7 — 

CCSD -88.4 -98.9 -65.6 0.1 5.8 -162.3 
— -128.9 -92.2 15.6 20.9 — 

CCSD + T(CCSD -97.5 -105.2 -71.6 -32.2 -8.5 -171.0 
— -140.6 -103.1 -7.7 9.7 — 

AZPV 28.8 19.7 19.5 14.4 11.6 27.9 
A.H298K -79.5 -90.7 -57.1 -22.4 1.8 -150.9 

" Experimental enthalpy of complexation (—146-=- —167), other recent theoretical values 
are -156.5 (CCSD + T(CCSD)/6-311G**), -148.1 (CCSD + T(CCSD)/DZP) [33], -165.7 
(MBPT(4)/6-311G+ +(3d,f;3p,d) [32] and -166.9 kJ/mol (B3LYP/TZ2Pf) [34]. 

Table 6.   Formation of 1,1-isomers (2a, 
2b) from BH3 and HB(CN)2/HB(NC)2. 

2a 2b 

SCF -65.4 -31.9 
MBPT(2) -150.7 -138.6 
CCSD -132.3 -119.4 
CCSD + T(CCSD) -139.4 -128.7 
ZPV 22.1 22.0 
A//298K -122.9 -112.3 

We now will attempt to rationalize the relative cyano/ 
isocyano isomer stabilities. It appears that electroposi- 
tive substituents aid the isocyano form, RNC, over the 
cyano form RCN. For example, it is known that ionic 
cyanides show effectively spherical or isotropic anion 
behaviour suggesting the two isomers are of comparable 
stability [22]. Likewise, LiCN is well known to be a 
floppy molecule [23] and indeed the LiNC isocyano 
form is more stable than the cyano one, LiCN. The 
calculations [24] (including ours) show HCN with the 
much more moderate electropositive hydrogen is some 
öOkJmol-1 more stable than HNC. This is in very good 
agreement with 66kJmol_1 obtained from ICR experi- 
ments [25]. Explosion calorimetry experiments show 
CH3CN to be 99kJmol~1 more stable than CH3NC 
[26], a finding consistent with the higher electronega- 
tivity of C than H [27]. The electronegativity of B (cf. 
BH2) is somewhat less than H and so we expect the 
H2BCN/H2BNC enthalpy of formation difference to 
be less than the oOkJmoP1 for H. Our calculations 
corroborate this and suggest the difference is now 
reduced to 6Akimo\'x. What about the case of 1,2- 
boranediyl derivatives, i.e. those of -HB(H)2BH-? If 
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Figure 1. Relative energies of C2H4B2N2 isomers with 
respect to rra«5-l,2-dicyanodiborane (DZP basis set). 
The isomers are sorted according to the order of 
CCSD + T(CCSD) energies (diagram with the thick line). 

the two cyano groups do not interact, then one might 
think the cyano/isocyano difference would be the same 
as its BH2 monomer. A fortiori, because the two boron 
species lack vacant n orbitals we expect the NC to even 
more strongly gain stability. 

The only complication is whether the two CN groups 
electronically interfere with each other. Consider the 
case of the dicyanoethylene, NCCH=CHCN, which 
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(like our choice of dicyanodiborane to which it is iso- 
electronic) has the two cyano groups trans and so there 
is no steric interaction. If the cyano groups were electro- 
nically innocuous, then we would expect the isodesmic 
reaction 

to be thcrmoneutral —indeed, the related methyl reac- 
tion 

2CH2=CHCH, -> CH ,CH^=CHCH, + C2H4      (2) 

is thcrmoneutral to within l kJmol"' using enthalpies of 
formation from our standard thcrmochcmical archive 
[28]. From data in this same source, we find reaction 
(l) is exothermic by 20k.lmol-1 or some lOkJmoP1 

per cyano. The dicyanodiborane is expected to have a 
smaller cyano/cyano interaction because the C-C dis- 
tance in the dicyanoolcfin is ca. 1.33 A while the corre- 
sponding distance in the diboranc is calculated to be ca. 
1.78 A. We thus deduce that the cyano/isocyano differ- 
ence for the 1,2-disubstitutcd diboranc should be less 
than 15kJmol_1 (per cyano) and indeed, the difference 
is -25k.Tmol ' for DZP basis set and -30kJmor' for 
cc-PVTZ one (figures 1 and 2). 

What then about the 1,1-boranediyl derivatives with 

H%/HKB ' 

The effect of one cyano group on the other is expected to 
be much larger here; said differently, the group electro- 
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negativity of H2B(H)2B(CN) may well be larger than 
BH2. To illustrate the destabilizing effect of one cyano 
on the other, we should like to consider isodesmic reac- 
tions involving 1,1-dicyanoethylene. However, the 
desired enthalpy of formation of this latter organic sub- 
stance is absent. One approach is to consider the iso- 
desmic reaction 

2CH3CN -»CH2(CN)2 + CH4 (3) 

Accepting the heat of formation of the monocyano com- 
pound from [29] this reaction is seen to be endothermic 
by 45kJmoi_1 while the corresponding methyl reaction 

2CH3CH3 -> CH2(CH3)2 + CH4 (4) 

is exothermic by 11 kJ mol . Alternatively, consider the 
isodesmic reactions 

CH2=CHCN + NCCH=CHCN -» 

NCCB=C(CN)2 + C2H4   (5) 

CH2=CHCH3 + CH3CH=CHCH3 -+ 

CH3CH = C(CH3)2 + C2H4   (6) 

The first reaction is endothermic by yet another 
54kJmol_1, while the second is again thermoneutral 
to within 1 kJmol-1. From either set of isodesmic reac- 
tions ((3) and (4), or (5) and (6)), we conclude that the 
two cyano groups more seriously interact in the 1,1- 
isomer than in the 1,2-isomer. We would thus expect 
to preferably favour the cyano isomer over that for 
the 1,2-case although we cannot say whether the 1,1- 
dicyano isomer will be preferred over the isocyano 
isomer. Our calculations show that the cyano com- 
pounds (la, 2a, 3a) now, in fact, are more stable than 
their isocyano counterparts (lb, 2b, 3b) by 20- 
25kJmol~1 per cyano group for DZP and 20- 
30kJmor' for cc-PVTZ basis sets. 

Let us proceed through electron correlation effects in 
the energetic features of the various C2H4B2N2 forms. 
First of all, we will analyse briefly the resulting CCSD 
wave function of all the studied isomers in terms of the 
largest T\ and T2 amplitudes to indicate possible import- 
ance of the non-dynamical correlation effects. T\ ampli- 
tudes lie below |0.05| for all systems and both basis sets. 
The T2 amplitudes are small for all hydrogen-bridged 
isomers, not exceeding 0.05 in absolute value, for both 
DZP and cc-PVTZ basis sets. The largest T2 amplitudes 
for cyano/isocyano-bridged dimers are slightly higher in 
DZP (-0.1602 and -0.08608) but still fairly low in cc- 
PVTZ basis set (-0.069 54 and -0.04467). Thus, the 
single-reference CC approach is sufficient for the present 
isomers. 

The formation of la, lb, 2a, and 2b from diborane 
and HCN is predicted to be an exothermic process with 
moderate to large stabilizing correlation effects. Triple- 

excitation contribution plays marginal role here. The 
most exothermic is the reaction leading to lb, giving 
approximately -HOkJmor1 (based on AH29&K) per 
one B-N bond (or -64kJmor' at MBPT(2)). These 
quantities nicely bracket the result for -N3 substitution 
calculated by Benard et al. [30], their MBPT(2)/6- 
31+G* reaction heat for the experimentally observed 
process [31] B2H6 + 4HN3 -> (N3)2B(H)2B(N3)2 + 4H2 is 
-306.9 kJ mol-1 which gives —76.7 kJ mol-1 per one B- 
N bond. Note that the tetra-azidodiborane is similar to 
our system lb via B-N bonding. The reactions leading 
to 3a and 3b isomers are endothermic and electron cor- 
relation is slightly destabilizing for 3b. For these pro- 
cesses, MBPT(2) (compared to CC data) is quite 
irregular and thus unreliable. The extension of the 
basis to cc-PVTZ set reduces the exothermicity of 
these reactions by 6kJmol_1 (for la and 2a), 
18 kJ moP1 (for lb and 2b) and increases endothermicity 
for 3a and 3b by 66 and 69kJmol_1, respectively 
(CCSD + T(CCSD) energies). 

Data in table 5 monitor the changes in dimerization 
energies (with respect to B2H6) introduced by substi- 
tution, la being the most stable isomer for DZP basis 
set. First, let us mention the estimate of the experi- 
mental dimerization energy of diborane (-146 to 
-167 kJ mol-1) suggested by Page et al. [32], which 
matches quite well with our AH29&K, as well as the pre- 
vious theoretical results [32-34]. This gives additional 
credibility to the highest computational level used in 
our calculations. The order of dimerization energies 
from table 5 is as follows: BH3 > H2BCN > H2BNC. 
Thus, the donating power of the BH a bond and the 
accepting power of the borane are almost balanced in 
la (cf. section 1), while the lower dimerization energy of 
lb signals that the decrease in the donating power of BH 
prevails over the (weaker) increase of the accepting 
power of the borane. The electron correlation contri- 
butes significantly to the stabilization of C2H4B2N2 

(the trend already noticed in [1]), however, in 3c2e sys- 
tems the correlation effects seem to be even more impor- 
tant and, in the complexation of la, lb, 3a and 3b, the 
role of triples is by no means negligible. Though 
H,H(C,C)-dicyanodiborane and its iso-cyano analogue 
are less stable than 1,1- or 1,2-isomers, the planarity of 
their BCBC (BNBN) rings and the presence of n system 
makes them attractive targets for future polymer simu- 
lations. The formation of 1,1-isomers (2a, 2b) from BH3 

and HB(CN)2/HB(NC)2 (table 6) is also exothermic and 
exhibits similar trends but the role of triples is very 
small. Interestingly, although the SCF complexation 
energy of lb is almost zero, the corresponding AH298K 

is competitive with that of B2H6, the stability of lb is 
attributed exclusively to correlation contribution (note 
that MBPT(2) is just half of CCSD + T(CCSD) result). 
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While the cc-PVTZ dimcrization energies arc lower for 
la (by 35kJmol_1) and lb (by 32kJmo1 '), they arc 
higher for 3a (by 25 kJmoP) and 3b (by 18.5k.Imol"1). 

The ordering of individual isomcrs (figure 1) reveals 
few additional features of the electron correlation 
effects. While the SCF pattern exhibits significant irre- 
gularities compared to the best levels of the theory, the 
MBPT(2) one indicates quite uniform overshooting with 
some serious quantitative deviations from the more 
elaborated CCSD and CCSD + T(CCSD) levels. The 
differences between CCSD and CCSD + T(CCSD) 
ordering are less significant but still above the assumed 
threshold of chemical accuracy, indicating importance 
of the triples. The ordering of isomers obtained with 
DZP and more polarized and diffuse cc-PVTZ basis 
set shows basically the same pattern (figures 1 and 2). 
The correlation effects arc negligible for the change in 
the position of cyano/isocyano group (i.e. 1,1- or 1,2- in 
la, 2a, lb, and 2b), while the change in the NC/CN 
bonding (or insertion to u,u- position, 3a and 3b) is 
accompanied with larger ones. The results obtained 
with cc-PVTZ basis indicate that the improvement in 
the wavefunction has almost no effect on SCF relative 
energies, little effect on MBPT(2) ones, but is accompa- 
nied by a moderate destabilizing effect (+60k.lmor') of 
higher order excitations for 3a and 3b with respect to la. 

Finally, let us comment on the correlation effects that 
can be observed in the CN/NC isomcrizations (figures 3 
and 4). In the DZP basis set, the HCN/HNC isomcriza- 
tion the SCF is at least qualitatively correct (although it 
amounts approximately to one half of the total reaction 
energy) but this is not the case for H2BCN<^H2BNC 
reaction. The la/lb process is optically similar to 
HCN/HNC, except that the signs are reversed and 
the MBPT(2) fails very badly to fit into the pattern. In 
the remaining two isomcrizations 2a 21) and 3a/3b the 
correlation contributions destabilize NC isomcrs in a 
similar way. From the present results, it follows that 
for the boranes the SCF approximation erroneously 
favours the NC isomcrs, while the correlation reverts 
this order, the corresponding effects arc regular and 
relatively large, ranging from +60 to + 120kJmor'. 
The extension of the basis set has little (destabilizing) 
effect on the isomcrization energies, we can sec that 
the cc-PVTZ results are almost identical with DZP ones. 

4.    Conclusions 
In this study wc have predicted some properties of 

a few new hypothetical C2H4B2N2 isomcrs. Although 
the calculations utilize moderate level of theory 
(CCSD + T(CCSD)/DZP and CCSD + T(CCSD) cc- 
PVTZ), wc consider it to be sufficient for our goals, 
since the primary aim of this study was to investigate 
the trends within the group of substituted boranes. They 

arc sound for both basis sets. The most stable isomer 
appears to be f/w;v-l,2-dicyanodiboranc which exhibits 
some structural and energetic similarities with BiH6. 
The substitution of H, by CN (or NC) in B2H6 (in 
terms of bond orders) results in weakening of the 
double bridge 'through-space' interactions, while the 
substitution of Hh practically destroys the B B bonding. 
However, the respective u.u-isomcrs posses the planar 4- 
membcred ring with -CN (NC) cxocyclic group (n 
system) which makes them interesting for further in- 
vestigations and or polymer simulations. For the DZP 
basis set wc have found strong and stabilizing effect of 
electron correlation (in some cases is comparable or 
even larger than SCF reaction energy) in the formation 
of the 3c2e-moleculcs and also strong and destabilizing 
correlation effects for the isomcrizations. In accord with 
our previous studies [1] the performance of MBPT(2) for 
this type of molecules was found to be very poor. The 
use of the more flexible cc-PVTZ basis yielded a smaller 
effect of electron correlation in exchange reactions (table 
4) and confirmed large correlation effects in dimcriza- 
tion reactions (table 5), the ordering of the present iso- 
mcrs and CN/NC isomcrizations arc less basis set 
sensitive. 
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We present in this paper a state-specific coupled cluster method based on a reference function 
composed of determinants spanning a complete active space (CAS). The method treats all the 
reference determinants on the same footing and is hence expected to provide a uniform 
description over a wide range of molecular geometries. The combining coefficients are deter- 
mined by diagonalizing an effective operator in the CAS and are thus completely flexible, and 
not constrained to pre-assigned values. The method uses a separate cluster operator for 
exciting to virtual functions from each reference determinant. The linear dependence implicit 
in this choice of cluster operators is eliminated by invoking suitable sufficiency conditions. The 
choice is dictated to ensure size-extensivity. The use of a CAS also guarantees size-consistency. 
Illustrative applications to the H8 model system and ground state potential curve for Li2 
indicate both the accuracy of the method and its ability to bypass intruders. 

1.    Introduction 
The coupled cluster (CC) approach has turned out 

over the last two decades as one of the most powerful 
theoretical tools for treating electron correlation for 
small to medium-sized molecules to a high accuracy. 
The exponential representation of the wave-operator 
provides in a powerful and efficient manner the desirable 
property of size-extensivity [1] (and often size-consist- 
ency [2]) of the computed energies. The most extensively 
used version of the CC approach is the single-reference 
coupled cluster method (SRCC) [2-5] which is ideally 
suited to describe closed-shell states. With the advent 
of more and more powerful computers in the last 
decade, the SRCC method has emerged as a predictive 
tool for high precision calculations for closed-shell states 
around equilibrium geometry—evolving from the trun- 
cation scheme employing single- and double-cluster 
operators (CCSD scheme) [6], to the more elaborate 
approximate [7] or exact inclusion of triples [8, 9] or 
even full inclusion of quadruples [10]. The SRCC 
method has thus steadily grown in power and degree 
of sophistication over the years. As a routine tool, the 
CCSD with an approximate inclusion of triples [7] pro- 
vides satisfactory energies. The performance of the 
SRCC becomes poorer, however, for even the closed- 
shell states which are away from the equilibrium geo- 
metry, as one obtains in the dissociative or curve- 
crossing regions. In both these situations, there are func- 
tions which tend to become quasi-degenerate with the 
reference function. The three- and higher-body cluster 

t Author for correspondence. 

operators then become very prominent and the trunca- 
tion schemes at low cluster-ranks become progressively 
inaccurate with the increase of the degree of quasi- 
degeneracy. In addition, many excited or ionic states 
of molecules possess pronounced multi-reference char- 
acter. This motivated a search for multi-reference 
coupled cluster (MRCC) methods. 

Most of the early MRCC formulations were inspired 
by the formal developments of multi-reference many- 
body perturbation theory (MRMBPT) [11] and were 
based on the concept of effective hamiltonians. The 
reference determinants comprising the so-called model 
space provide the starting reference functions written as 
their combinations. Over the last two decades there have 
appeared in the literature several variants of MRCC 
theories, which can be broadly classified into two 
categories. One of them, now known as the valence- 
universal CC methods, uses a single wave-operator to 
describe not only the functions generated from the 
parent model space with a given number of occupancies 
but also from all the functions of model spaces with 
fewer valence occupancies [12-16]. If the functions gen- 
erated from a model space of fixed valence occupancy 
are considered, the MRCC methods are said to belong 
to the valence-specific variety [17-22]. The valence-uni- 
versal methods are more suited to study spectroscopic 
energy differences such as excitation energy, ionization 
potential or electron affinity etc., while the valence-spe- 
cific methods are more suited to study several excited 
states of a molecule simultaneously, or for computing 
potential energy surfaces (PES). In both versions, size- 
extensivity is guaranteed by choosing the model space to 
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be complete. Although there were some initial doubts, it 
was found possible to maintain size-extensivity even for 
incomplete model spaces, provided one chooses the nor- 
malization of the wave-operator and the attendant 
decoupling conditions for it in an appropriate manner 
[23]. MRCC formulations starting from incomplete 
model spaces for both valence-universal [23-26] and 
valence-specific [27, 28] categories have appeared in 
the literature. For some recent reviews, we refer to 
[29-32]. 

A serious limitation of the effective hamiltonian-based 
many-body methods is the appearance of intruder states 
[33, 34]. Methods with complete model space almost 
always suffer from convergence problems because of 
intruders. With incomplete model spaces, intruders are 
somewhat less threatening. They can, in fact, be almost 
completely avoided for states computed at fixed nuclear 
geometries or around a limited area of the PES, as at the 
dissociation region and real or avoided crossings [26, 
29-32]. The main stumbling block for a divergence- 
free performance of MRCC methods for studying PES 
seems to be the inability to discern a unique as well as a 
stable model space throughout the entire region of the 
PES, for there are different intruders in the different 
regions of the PES [35]. This is the reason behind the 
widespread interest in recent years to formulate state- 
specific MRCC formulations which focus on only one 
specific state of interest, rather than generating many 
states in a blanket manner from an effective hamilton- 
ian, some of which may be poorly described by the 
chosen model space. If one could abandon the require- 
ment that all the roots of the effective hamiltonian are 
the eigenvalues of the parent hamiltonian, then one can 
exploit this to advantage for generating only those roots 
as the eigenvalues of H which are untrammcled by intru- 
ders and not impose the constraint that the other roots, 
affected by intruders, arc eigenvalues of H. 

Such a possibility was first exploited by Kirtman [36], 
who partitioned the model space into a main and an 
intermediate buffer subspacc. The intermediate subspace 
interacts strongly with intruders while the main sub- 
space does not. The functions of the main model space 
are allowed to mix with the functions of the orthogonal 
virtual complement via the wave operator but those in 
the intermediate subspacc are allowed to remain uncor- 
related. This strategy avoids intruders. This was general- 
ized by Malricu et al. [37], who provided a systematic 
method of 'intermediate hamiltonians' using the above 
partitioning concept. They also put forward a general 
scheme for determining the pseudo-wave operator which 
generates the eigenvalues of H for functions dominated 
by the reference determinants of the main model space. 
Unlike Kirtman [36], Malrieu et al. [37] allowed the 
intermediate functions to mix with the virtuals, but 

not as dictated by Bloch equation. This mixing was 
brought in only to enhance the convergence of the 
pseudo-wave operator contribution for the main roots 
(which arc eigenvalues of H). Other roots arc arbitrary. 
Although the preliminary results were encouraging, the 
formalisms were not size-extensive. Some later variants 
[38-40] also had the same limitations. 

Size-extensive intermediate hamiltonians in the 
coupled cluster framework were systematically devel- 
oped in our group [41, 42]. These formulations essen- 
tially made use of projectors to ensure that the equations 
determining the main roots arc consistent with 
Schfbdingcr equations for these roots, while those for 
the extraneous roots have shifts in the definition of 
unperturbed energies for the intermediate reference 
determinants to avoid intruders. Koch [43] also pro- 
posed a many-body version of an intermediate hamil- 
tonian using shifts for the intermediate functions, but 
could not prove size-extensivity of his formulation. 
Another size-extensive formulation was proposed by 
Datta et al. [44] by transcribing the MRCC equations 
into CI-like pseudo-eigenvalue equations in the union 
space of the model determinants and the virtuals 
reached by the cluster operators. The roots of the 
dressed hamiltonian defined in this union space then 
generate both the roots of the hamiltonians targeted 
by the MRCC formalism and the 'excited' roots as 
extraneous roots. With suitable root-homing proce- 
dures, the method obviates the convergence difficulty 
of the traditional MRCC formulations. This same 
strategy was also exploited by Malricu et al. [39] in 
their drcssed-CI formulation of intermediate hamil- 
tonians. 

There is a formal difficulty in a straightforward devel- 
opment of a state-specific MRCC formalism. If the 
cluster operators are chosen to excite from all the refer- 
ence determinants to all the virtual functions, there arc 
redundancies in the cluster operators [29]. Two strate- 
gics have been put forward to resolve this 'redundancy 
problem'. In one. the linearly dependent cluster opera- 
tors are excluded. In the other, they arc deliberately 
retained and auxiliary equations to determine them arc 
supplied as sufficiency conditions. Approximate state- 
specific versions using the first strategy were suggested 
by several authors [45 47] who avoided the redundancy 
problem by a prc-selcction of the cluster operators. This, 
however, raises the question of the uniqueness of the 
choice, since powers of cluster operators would generate 
different multiply excited virtual functions depending on 
the selection. For an early discussion of this aspect, we 
refer to [29]. Recently Meiler et al. [48] proposed a 
cluster expansion approach to generate a specific state, 
starting with a multi-dcterminantal reference function. 
They used all the possible excitations from the model to 
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the virtual determinants in their cluster operator. The 
redundancy in the cluster amplitudes was eliminated by 
postulating reasonable sufficiency conditions, hence 
this method uses the second strategy. These authors 
also showed the size-consistency of their formulation 
using localized representation of the orbitals. Since 
they discussed only the leading terms of their working 
equations, it is difficult to discern how a manifestly size- 
extensive general formulation would emerge from their 
sufficiency conditions. Datta and Mukherjee [49] and 
Sinha Mahapatra et al. [50] suggested two versions of 
an explicitly size-extensive state-specific MRCC theory 
via the use of sufficiency conditions which amounted to 
separation of dynamical and non-dynamical correlation 
effects. There is a pre-eminence of one reference deter- 
minant in this formulation which defines the dynamic 
correlation, and in this sense the method is not tailored 
to treat the more general cases where the importance of 
the reference determinants change drastically over the 
entire region of the PES. Very recently, we have devel- 
oped another state-specific MRCC theory [51], where all 
the reference determinants are treated on the same 
footing. Appropriate sufficiency conditions were posited 
with an eye to a strict maintenance of size-extensivity. 
Unlike the conditions used by Meiler et al [48], the 
conditions used by us guarantee size-extensivity in a 
natural and transparent manner. In all these MRCC 
formulations, an essential step is the setting up of an 
eigenvalue equation for generating the combining coeffi- 
cients via the diagonalization of an effective operator. 
The combining coefficients are thus completely flexible 
and not constrained to remain fixed at some pre- 
assigned values. We want to call this type of state-spe- 
cific formulation as using a 'decontracted' or 'relaxed 
coefficients' mode of description. 

There is an alternative mode of description, proposed 
long ago by Silverstone and Sinanoglu [52], where a 
multi-reference cluster expansion is performed from a 
combination of functions. Virtual functions were 
added to the reference functions by a cluster expansion 
with respect to each reference determinant. The prior 
fixing of the combining coefficients in this formulation 
confers a 'contracted' or 'frozen coefficients' description 
to the full function generated by the cluster expansion. 
Silverstone and Sinanoglu overcame the problem of 
redundancy by postulating what is called the anon- 
ymous parentage approximation. This imposed severe 
unphysical restrictions to the working equations and 
the method was not very successful. An essential mod- 
ification of this approach in the perturbative context was 
suggested by several workers where either the redun- 
dancy is eliminated by the Gram-Schmidt [53, 54] pro- 
cedure or the components of the wave operator are 
obtained by projecting only on the distinct virtual 

functions [55, 56]. We should also mention in this con- 
text that several MR versions of coupled electron pair 
theories also use a frozen description of the coefficients 
of the reference function [57-59]. 

An MRCC formulation of the 'frozen coefficients' 
variety was proposed recently by Mukherjee [60-62]. 
He developed the notion of normal ordering and the 
associated reordering theorem with respect to the 
entire multi-determinant function, and postulated an 
exponential type of wave-operator in this new normal 
order to generate the full function. The cluster operators 
in this formulation were also defined with respect to the 
entire reference function. This method may be rightly 
viewed as one specific coupled cluster type realization 
of the perturbative versions of [53, 54]. We have dis- 
cussed in [51] the relative efficacies of this method vis- 
fl-vw the 'relaxed coefficients' theory. An alternative way 
to look at the reordering problem, along with a peda- 
gogic presentation of the background, was suggested by 
Kutzelnigg and Mukherjee [63]. 

We want to present in this paper the first molecular 
applications of the MRCC theory formulated in [51]. In 
section 2, we will give a self-contained exposition of the 
method. This will serve both to introduce the relevant 
concepts and notations and also to provide a perspective 
regarding the relation of the method with other allied 
formulations. Section 3 will discuss the algorithmic con- 
siderations and truncation schemes needed for imple- 
menting the method, as well as the pilot results. 
Section 4 will contain the concluding remarks. 

2.   A state-specific coupled cluster theory with a 
relaxed reference function 

The formulation of a state-specific coupled cluster 
theory that we are going to describe would utilize a 
relaxed description of the multi-determinantal reference 
function. This implies that the combining coefficients of 
the reference determinants constituting the reference 
function would not be fixed at some pre-determined 
values, but would be iteratively updated along with the 
cluster amplitudes themselves. We shall start with a set 
of reference determinants which ensure a proper disso- 
ciation of a molecular state into appropriate fragments. 
Several physically motivated choices of such reference 
functions are possible, depending on the degree of ela- 
borateness incorporated in the reference description. 
The most common choices are (a) a complete active 
space (CAS) reference function, of either a simple CI 
form (a CAS-CI) or of the more elaborate CAS-based 
multi-configuration self-consistent field (CAS-SCF) 
variety, (b) a CI or a MCSCF function on a quasi-com- 
plete active space (QCAS), a convenient incomplete 
active space respecting size-extensivity of its energy, 
studied by Lindgren [64] and others [23, 25, 28], or 
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(c) a strongly orthogonal generalized valence-bond (SO- 
GVB) function. Following the traditional convention of 
quasi-degenerate many-body nomenclature, we shall 
term the doubly filled orbitals as inactive 'core' orbitals, 
the partially filled occupied ones as active 'valence' orbi- 
tals and the virtual orbitals not contained in the refer- 
ence function as inactive 'particle' orbitals. We shall 
designate the core orbitals by the Greek indices 
a,ß,... etc, the valence orbitals by English letters u, v, 
w, ... etc, and the virtuals by p, q, r,.. .etc. Arbitrary 
orbitals will be denoted by a,b,... etc. In all three 
choices for the model space mentioned above, the 
energy obtained from the reference function is size- 
extensive, and the functions support dissociation of the 
molecular state into fragments describablc by orbitals 
obtained by a localizing transformation of the 'core' 
orbitals and the 'valence' orbitals onto the fragment 
components. Consequently, in all three choices, a cluster 
expansion decomposition of the combining coefficients 
of the reference determinants always leads to connected 
clusters. This property would turn out to be very crucial 
for guaranteeing both sizc-extensivity [1] and size-con- 
sistency [2] of our formulation. Considerable simplifica- 
tion is achieved in our formalism when the reference 
space is complete and we shall develop the present for- 
mulation with this choice (i.e. choice (a)). Formulations 
with more restricted choices for the reference space (i.e. 
of the types (b) and (c)) will form the topic of a future 
communication. 

A CAS-CI or a CAS-SCF type of reference function 
V>o can be expressed as a combination of reference deter- 
minants (/>/('s 

^o = 2^ A' 0) 

where the set {</>,,} contains all the determinants of the 
CAS space. As we emphasized earlier, the combining 
coefficients for such a function can be generically repre- 
sented in terms of a cluster expansion involving con- 
nected cluster amplitudes, using any <f>tl acting as the 
pivotal function for effecting the cluster expansion: 

c„/f„ = (^|exp(tr/J)|(^//). (2) 

ip0 can thus be written in terms of the pivotal function as 

V;0 = exp (a,,)^,,, (3) 

The clusters at, in equation (3) arc manifestly connected. 
The operators in afl involve excitation from the active 
orbitals of <j>lt to all other active orbitals defining the 
determinants </>„, with v ^ //. «7,,'s may thus be looked 
upon as 'internal' cluster operators. 

In our formulation, we shall generate the exact func- 
tion ij) as a cluster expansion in the manner advocated 
by Silverstone and Sinanoglu [52] but, unlike in their 
formulation, we shall allow our coefficients r   to relax 

to their exact values as a result of the mixing of the 
virtual functions. Transcribed into the many-body lan- 
guage, this amounts to the use of a separate exponential 
operator for each <fy,, with 'external' cluster operators Tf, 
exciting from the corresponding <^,'s to all the virtual 
determinants. Thus, we shall posit the following Ansatz 
for rjr. 

V' = $>xp(T")0„<y (4) 

V involves annihilation operators which delete elec- 
trons from <f> and creation operators for orbitals gen- 
erating virtual determinants. There is no need to use 
'spectator' orbitals. Also, we exclude from V all such 
operators whose action on (/>,, is trivially zero. This 
implies that we exclude from V all such operators 
which try to either excite from active orbitals not occu- 
pied in (j>fl, or excite into active orbitals already occupied 
in (/>,,. Such a cluster expansion representation is also 
reminiscent of the effective hamiltonian based multi- 
root approach of Jeziorski and Monkhorst [17], who 
used this same cluster expansion to convert all the N 
reference functions that can be constructed from the N 
reference determinants. In our state-specific formula- 
tion, we shall confine our attention to just the function 
of our interest, namely ?/'. as m equation (4). This same 
Ansatz has also been used recently in a state-specific 
context by Meiler et al. [48], Since each T1' excites to 
all the virtual functions from <f>in we necessarily 
encounter redundancy of the cluster amplitudes. As 
explained in section 1, we shall resolve the redundancy 
by invoking sufficiency conditions which would be 
physically appealing and would guarantee extensivity 
of the cluster amplitudes in a natural manner. 

Since each <j> has different sets of active orbitals, 
any specific corc-to-particle excitation would lead to a 
different virtual determinant from each </y It then 
follows that the cluster operators of the form 
{pq- ■ -\t''\afi ■ • -)a^pa\- ■ ■ atia„, inducing core to particle 
excitations arc all linearly independent. This is however 
not so for excitations involving active orbitals. For 
example, if two determinants <j> and (f>„ differ by a set 
of active orbitals, excitations from these sets in (/>,, and 
<f>,, to a common set of particle orbitals would generate 
the same virtual determinant. Thus, we would encounter 
redundancy only for the cluster operators involving 
active orbitals, and would need to take care of the 
redundancy only for such cluster operators. We will 
invoke suitable sufficiency conditions to resolve the 
redundancy problem. 

V' satisfies the Schrbdinger equation with the eigen- 
value E: 

//V' = //x;«p(7'")V/. = £V'-      (5) 
II 

The coefficients cf, for a CAS-CI or a CAS-SCF based r/> 
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can be determined by projecting equation (5) onto the 
reference determinants: 

^<^|ffexp(r)|^)C,, = £C/i. (6) 

Evaluation of the matrix elements of H exp (Tv) between 
4>ß and <f>v, is particularly convenient if we rewrite H in 
normal order with respect to </>„ as vacuum. This simpli- 
fication of computation of matrix elements was first 
used in the context of perturbation theory by Hose 
and Kaldor [65]. This was carried over to MRCC by 
Jeziorski and Monkhorst [17] and has since then been 
exploited by many workers [18, 27, 28]. Since Tv has 
only excitations out of <j>„, it has only hole-particle 
creation operators defined with respect to <f>v and con- 
sequently exp (Tv) is in normal order with respect to <j>u. 
Using Wick's theorem, we then find 

tf exp (r) = {tfexp (I") exp (r)},, 

= exp(r){JJexp(r")}„. 

(7) 

(8) 

The connected entity {Hexp {Tv)}v denotes all terms 
obtained by joining the operators in H with those of 
T". The notation {•••}„ signifies that the operator 
inside the curly bracket has been written in normal 
order with respect to <j>v as the vacuum. Equation (8) 
follows from equation (7) because Tv has no annihila- 
tion operators in the hole-particle form and hence can 
be taken out of the normal ordered term of equation (7) 
from the left. Since Tv always excites </>„ to the virtual 
manifold, it follows that, for a CAS-CI or a CAS-SCF 
type of reference function r/>0, 

<^|tfexp(r)|4v) = <^|{Jfexp(T")}„|&,).     (9) 

From now on, we shall denote the above matrix-element 
by the symbol H^. H^ is clearly a connected term if the 
operator T" is connected. We shall prove later the con- 
nectivity of 7""s. 

Using equations (6) and (9), the equation determining 
the eigenvalue E is given by 

/   j "fiyCy — bC/i- (10) 

To generate the equations determining the cluster ampli- 
tudes, we rewrite equation (5) in normal order, taking 
each (j>ß as the vacuum, and evaluate Hexp (Tß). Using 
equations (7) and (8), we then obtain 

^exp(T"){Hexp(^)}M|^)C// = £^exp(^)|^)c,. 
P P 

(11) 

Inserting the resolution of identity 

in equation (11), where Q is the projector onto the vir- 
tual space spanned by the set {%/}, the sum ]£ \<t)ß){4>^\ 
is the projector P onto the space of reference deter- 
minants, and using equation (9), we find that 

5>P (nßitfexp^i^+£>p (m&jjv,, 
p p," 

= £$>P(r")l^>V    (13) 

Due to the presence of linearly dependent cluster ampli- 
tudes, equation (13) would generate an insufficient 
number of equations for determining all the cluster 
amplitudes. This under-determinedness was recognized 
earlier by several workers. The most relevant among 
them in the present context are the works of Meiler et 
al. [48] and Mahapatra et al. [50] who used various 
sufficiency conditions for generating the cluster ampli- 
tudes in their development of state-specific MRCC 
formalisms. Although explictly demonstrated only for 
the leading terms, the conditions used by Meiler et al. 
[48] amount to equating the g-projection of the right- 
and left-hand sides of equation (12) for each ß. These 
then produced as many equations as the number of 
cluster amplitudes. Mahapatra et al. [50] adopted an 
alternative strategy of separating the dynamical from 
the non-dynamical correlation effects, and used a 
single vacuum for generating the cluster equations. 
While it is difficult to discern from [48] what form the 
working equations will take for the complete expansion, 
Mahapatra et al. [50] spell out the general structure of 
their working equations. In either case, however, a gen- 
eral proof of the connectivity of the cluster operators as 
well as of the energy E is somewhat awkward. This has 
prompted us to look for simpler and more convenient 
sufficiency conditions. 

We have developed in [51] precisely such a set of 
alternative sufficiency conditions for which the proof 
of the extensivity of the theory is particularly trans- 
parent, and in this sense, is more natural. We give 
below a succinct summary of these conditions and the 
aspects of size-extensivity implied by them. 

In order to arrive at the sufficiency conditions, we 
interchange the dummy indices fi and v in the second 
term on the right side of equation (13): 

£ exp (nßitfexpd*)}^)^ + £exp (D^H^ 
P p,v 

= £;r>PfT")l^>V   (14) 
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We note that, instead of using the traditional form of the 
resolution of identity of equation (12), we can invoke a 
completely equivalent expression of the form 

J = exp(T")[ß + P]exp(-T"). (15) 

In this resolution our projection manifold consists of the 
set {<X/|exp(-T")} and {(^|exp(-T") = (cf>x\} which 
has exactly the same number of functions {{\/|}, {(<£AI}* 
and are linearly independent and complete. They are, 
however non-orthogonal, whose dual bra vectors has 
been chosen as a bi-orthogonal complement with the 
sets exp(T''){\xi)} and exp (T''){|<^A)}. We also note 
that for each \i there is a corresponding resolution of 
identity. Using this new resolution of identity, we can 
write equation (14) as 

£exp (T")[ß + P] exp (-T") exp (T")Q{tf exp (T")},»,, 
/' 

+ £exp (T")[Q + P) exp (-T") exp {r)\^)H,vcv 

= £^exp(r)[ß + P]exp(-r")exp(r)|^)r/,. 
v- 

(16) 

We now posit the sufficiency conditions that the terms in 
equation (16) containing exp {T'')Q for each // are equal: 

exp(T")Q{Hexp(T»)}ll\<l>tl)cl) 

+ J2^P (nöexp (-T") exp {T'^^H^c,, = 0. 

(17) 

Using the form ß = 2/ |x/)(x/l a"d the linear indepen- 
dence of each {\t\, we then deduce that 

<X,|{Hexp(T")»„>c,( 

+ £<x/l exP (~T") exP (T'M»)"?•><■» = ° v'->'• 
(18) 

The above set, equation (18) are our stipulated working 
equations for determining the cluster amplitudes of V. 
It is straightforward to verify that the remaining part of 
equation (14), containing P, would also be equal and 
would generate equation (10), which indicates the con- 
sistency of our sufficiency conditions with respect to 
equation (10). 

We now prove the connectedness of the cluster ampli- 
tudes from equation (18). The matrix elements 
(Xi\{Hexp (V)} ](/>!,) and H)t„ are connected entities 
joining H and exp (T1') by construction and arc exten- 
sive quantities if V itself is connected. If we now mul- 
tiply equation (18) through by c"1 ar>d use the explicit 

cluster representation for c,, from equation (2), we get 

(Xl\ {//exp(r«)},M,> + $>,| exp (-T") exp (T")|^> 

x//„,/(<A„|exp(fx„)|</v) = 0.    (19) 

Ht„, depends explicitly on the indices of all the active 
orbitals which distinguish <j>„ and <f>ir This is because 
the operator {Hexp(T')}„ in Ht„, causes a transition 
from <f>v to 4>ir Since (<A,,|exp(rr/,)|(/)/,) also depends 
explicitly on the indices of all the active orbitals distin- 
guishing <f>v and (/>,,, each afl contributing to 
((/vl exp (a,,)|</>,,) has at least one active orbital distin- 
guishing <f> and <f>„. Since each afl is a connected 
operator because V'o 's a CAS-type function, it implies 
also that //,,„ (<f>„\ exp (^)|^,) is then a connected quan- 
tity if //,„, is connected. The proof of the connectivity 
will be complete, if wc can show that the entire second 
term in equation (19) is connected. 

An apparent complication in proving the extensivity 
of a many body formalism using multiple vacua was first 
recognized by Jeziorski and Monkhorst [17] and since 
then by others [27, 28]. The complication lies in dis- 
cerning the connectedness of composites which arc not 
joined explicitly by creation/annihilation operators. 
Connectedness, if any, of such composites has thus to 
be inferred by noting whether the amplitudes of the 
operators comprising the composite have common 
orbital labels or not. Thus, when using many-body 
formalism employing multiple vacua, we have to take 
care not only of the labels of creation/annihilation 
operators explicitly appearing in the components of a 
composite, but also of the functional dependence of 
the amplitudes of the operators of the components on 
the various orbitals. This complication of proving the 
size-extensivity exists in our present formalism also, as 
will be apparent as wc progress. 

To continue, we focus on the the second term of 
equation (19) and rewrite the product exp(-T'')exp(T") 
using the Baker Campbell Hausdorf formula: 

exp(-T")exp(T") = exp[(T" T'') + \[T",T''} 

+ ±[{T",T"},T"} 

_1L[[r,T"],T"] + ---]- (20) 

Apart from the difference (V - V), all other entities 
in the exponential on the right-hand side of equation (20) 
appear as commutators. Since the commutators [T',V'} 
are non-vanishing only when one of the T's in the pair in 
(T'\T'') has some creation operators of active orbitals 
and the other has the corresponding annihilation opera- 
tors, they must involve the active orbitals which distin- 
guish the determinants 4>fl and 0,,; for in one operator in 
the pair  (T',V)  these  belong to  the  occupied  set 
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(appearing in the annihilation operator) and in the 
other, to the unoccupied set (appearing in the creation 
operator). To make this point clear, we take an illustra- 
tion. Let us consider the case where $ß and <f>v have two 
active Orbitals (u,v) and (u,x) respectively. For compon- 
ents of Tß and T" of the types (pq\tß\ua) a\a\aaau and 
(rs\f\uß) a\a\aßau, au always appear as annihilation 
operator since this is occupied in both <j>ß and </>„ and 
thus these terms commute. On the other hand, the com- 
ponents of TM and T" of the types (px\f\au)a\axauaa 

and {pq\f\ax)a\a\axaa do not commute since the 
orbital x is occupied in <f>„ but unoccupied in <f>ß. There 
is thus ax in the Tß component but ax in T". Hence all 
the terms from the expansion of the exponential on the 
right-hand side of equation (20) involving commutators 
will have at least some active orbital labels distin- 
guishing </>„ and </>M, and thus will have common orbitals 
with H/ll,((pl/\exp(aIJ)\<f)lj) appearing in equation (19)— 
the latter being explicitly labelled by all the active orbi- 
tals distinguishing <f>v and cfiß. 

But T" and T'' in general may involve creation/anni- 
hilation operators for active orbitals common to both <pv 

and cf>ß; or they may not even involve any active orbitals 
at all. Thus the individual terms from the expansion of 
the exponential involving powers of the difference 
(jv-T**) multiplying HßV(<t>v\eyQ{<Tß)\4>ß) may not 
involve common orbital labels in their creation/annihi- 
lation operators and one may imagine that this would 
lead to disconnected terms. To see whether they are 
really so, we have to focus now on the functional depen- 
dence of the amplitudes of Tß and Tv on the labels 
on the various active orbitals. In fact, we prove now 
that, although, the individual terms such as 
TvHflI/((j)l/\exp(afl)\(j)ß) etc. may be disconnected, the 
amplitude part of the difference (Tu -Tß), such as 
powers of (Tv — Tß) have functional dependence on 
active orbitals which are common with 
Hßv(<f>v\ exP (<T/i)l^) and hence are connected. 

We have to consider two possibilities: (a) the case 
when both T" and Tß can excite from cf>ß to the given 
Xi, and (b) when Tß can excite from </>M, but there is no 
T" with the same orbital labels. This comes about 
because the active orbitals involved are such that T" 
with these labels acting on 4>v gives zero. For the poss- 
ibility (a), the proof follows from the fact that Tß and T 
in the exact, untruncated, formulation are treated on the 
same footing, and hence their amplitudes should have 
the same functional form, differing in their explicit 
dependence only on the labels of active orbitals present 
in </>M and </>„. Hence on taking the difference, the expres- 
sion for the difference of the amplitudes of (Tv - Tß) 
have only those terms surviving which are different for 
T" and TM, i.e. those involve active orbitals present in <f>u 

and ^. Thus (T" - Tß) depends functionally on some 

active orbitals distinguishing </>„ and ^ and hence prod- 
ucts of powers of {Tv-T») with Hß„(<f>v\exp(<Tß)\<f>ß) 
have common orbital labels and hence are connected. 
For the possibility (b), the active orbitals involved in 
Tß exciting to xi from cpß must be such that it is not 
possible to induce this excitation on </>„. This happens 
when their role of being occupied and unoccupied in 4>ß 

is reversed in <j>v. In this case, creation/annihilation 
operators involving the active orbitals in Tß itself will 
have some active orbitals distinguishing <f>ß and 0„. The 
powers   of  the   difference   (Tß - Tv)   multiplied   to 
JJ/u/(<Ai/lexP(CT/x)l</v) will tnen again be a connected 
entity. 

It thus follows from equation (19) that there exists one 
set of solutions for Tß's where all the cluster amplitudes 
are connected. Hence H^'s are also connected. Since the 
reference determinants span a CAS, it also follows that 
the energy obtained as the eigenvalue of equation (10) is 
also size extensive. Since the CAS spanned by the refer- 
ence determinants is invariant under localizing transfor- 
mations separately among the holes and active orbitals, 
the extensivity of the energy also implies correct separa- 
tion into fragments generated from the active orbitals, 
and hence size-consistency. 

Let us now note carefully that our proof rested on the 
assumed exactness of the formulation, i.e. we have made 
no truncation in our equations. In practice, we shall 
invoke some truncation scheme for the cluster opera- 
tors. Also, the series in equation (20) involving the dif- 
ference of Tß and T" and their commutators has to be 
truncated after some powers. For our proof to go 
through, even for truncated versions, there should be 
essentially separate sets {xf} f°r projections for the 
equation for T^. The functions {xi} now have an 
implicit /x-dependence in the sense that they are the vir- 
tual functions reached by the components of TM from 
4>ß. Moreover, once a given xi is generated by a TM 

operator of a given rank in a truncation scheme, it is 
essential to include this excitation in all T^'s—provided 
that such excitations acting on ^„'s are non-zero. This is 
automatically guaranteed if we truncate the cluster 
operators at a given rank, and truncate the powers of 
the difference (T^ - T") after any given power. We shall 
come back to this aspect once again in section 3.2. 

We should also mention here that in practice we will 
solve equation (18) for the cluster amplitudes. The tran- 
scription of equation (18) to equation (19) is only for the 
purpose of proving the connectedness of the clusters. We 
shall never need to use aßs anywhere for the actual 
application of our formalism, and all the (f>ßs are treated 
on the same footing. 

Let us note that in solving the equations for the 
cluster amplitudes, equation (18), the knowledge of the 
coefficients cM's is required.  The two  sets are thus 
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coupled. In section 3, we shall discuss practical iteration 
algorithms for efficient solutions of the coupled MRCC 
equations. From the very mode of formulation of the 
theory, it is clear that the combining coefficients are 
iteratively updated to their values they should have in 
exact state i/>, and hence our formulation provides com- 
pletely flexible relaxed coefficients. The development, 
however, has the additional advantage that we are not 
obliged to change the combining coefficients if we do not 
deem it to be necessary. In the illustrative applications of 
our formalism, we shall study the relative efficacies of 
both the frozen and relaxed modes of description. 

We conclude this section with some comments per- 
taining to the related formulations of Meiler et al. [48] 
and Mahapatra et al. [50] which were mentioned earlier. 
The method of Meiler et al. uses the equality of Q-pro- 
jections of equation (13) for each fi as sufficiency con- 
ditions. This seems like the most straightforward 
sufficiency conditions to be invoked, but the proof of 
the connectivity of T'"s becomes quite laborious and 
has not been shown for the general case. They show 
the size-consistency of their formulation only under cer- 
tain approximations. Mahapatra et al. [50] posit another 
type of sufficiency condition, which follows from the 
assumption that the total energy £ is a sum of dyna- 
mical (Ed) and non-dynamical (£nd) correlation ener- 
gies. There is a pivotal function with respect to which 
the dynamical correlation is defined. The dynamical 
correlation energy stems from the virtual functions 
which are reached by cluster operators acting on the 
pivotal function. The cluster operators acting on the 
other reference determinants generate contributions to 
the non-dynamical correlation energies. The sufficiency 
conditions in [50] arc thus different from those in [48]. In 
contrast, the present development follows from a rear- 
ranged form of equation (13). We have shown that the 
resulting working equations lead to connected cluster 
amplitudes V in a rather straightforward manner for 
the general case. The entire exercise hinges on the con- 
nectedness of exp (-T'') exp (T")^,,)//,,,,^! exp ((T,,)|<^,) . 
Since we also use multiple vacua to represent the wave- 
operator, there are no spectator orbitals. 

Recently Adamowicz and his co-workers [66, 67] sug- 
gested a state-specific formulation where a special role is 
played by one reference determinant which is more 
dominant than the rest. The entire cluster expansion is 
performed with respect to this determinant. The non- 
dynamical correlation is brought into the formulation 
by including in the cluster operator three- and four- 
body terms with at least one active orbital different 
from those present in the dominant determinant. Their 
results are encouraging. There is also a closely related 
formulation by Stolarczyk [68]. Since all the cluster 
operators are defined with respect to a pivotal deter- 

minant, these formulations are not really based on an 
MRCC approach. Moreover, the presence of three- and 
four-body operators makes the organization of the 
equations rather complex. Our present formulation 
docs not warrant the presence of a dominant determi- 
nant in the reference function. In this sense it is more 
general and involves fewer sets of diagrams to achieve 
similar accuracy. 

3.    Numerical implementation and truncation schemes 
3.1. Algorithmic considerations 

The MRCC formulation described above contains 
two different sets of variables, T'"s for all //, and the 
coefficients cfl. These variables appear in a coupled 
manner, as is evident in equation (18). A careful organ- 
izing strategy for their solution is essential for an effi- 
cient implementation of the method. After several trials, 
wc have found that the following scheme provides a fast 
convergent and stable mode of solution. The solution is 
carried out in a nested iterative loop. In the outer loop, 
the coefficients r arc updated by solving the eigenvalue 
problem, equation (10). It is imperative to home to the 
desired root, since the correct choice of the relative signs 
of the mixing coefficients is essential to ensure conver- 
gence of the global iteration scheme. With the current 
set of the coefficients, wc enter the inner loop where the 
cluster amplitudes V arc determined. Since a simul- 
taneous updating of all the amplitudes for all // would 
require very large computer memory, wc initiate the 
inner loop to update each set {T1'} for a fixed //, keeping 
the rest of the amplitudes {V}, v ^ //, frozen. The inner 
loop runs over all //'s until converged amplitudes for all 
//'s arc obtained. The amplitudes are then used to con- 
struct the matrix of H defined in equation (9). The 
updating of the coefficients cfl begins by moving out to 
the outer loop. The iteration is initiated by diagonalizing 
the Hamiltonian matrix in the space of reference deter- 
minants. In the first loop of the inner iteration, wc start 
with all the amplitudes initialized to zero. Wc use the 
preconditioned conjugate gradient method of [69], 
which is equivalent to the method of [70], for solving 
the nonlinear equations for the amplitudes. The contri- 
butions from the frozen V amplitudes, v ^ //, in the 
equations are incorporated by clubbing them to the con- 
stant terms, while the quadratic and higher powers of V 
arc added to the linear term to achieve an efficient quasi- 
lincarization. 

As emphasized in section 2, the advantage of the pre- 
sent MRCC formulation is in the flexibility of using the 
method in either a frozen or a relaxed mode for the 
coefficient of the reference determinants. The algorithm 
proposed above pertains to the decontracted mode. For 
the contracted mode, wc initiate the iteration by diag- 
onalizing the matrix of H in the reference space, and 
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keep these values frozen throughout the iteration pro- 
cess. Thus in this case the outer iteration loop is not 
operative. 

3.2. Truncation scheme for the cluster operators 
In our applications, we shall invoke a CCSD trunca- 

tion scheme. This is the least elaborate truncation 
scheme which possesses most of the important features 
of correlation. As we have indicated in section 2, while 
proving the size-extensivity of our formalism, the con- 
nectedness of the composite exp(-T^)exp(Tv)\4>ß)Hßl/ 

was crucial to prove the size-extensivity of the form- 
alism. This implies that if there is one operator in a 
particular Tß exciting from a ^ to a xi, the corre- 
sponding excitation must be included in all Tu,s, v ^ fi 
unless the action of this component of T" on cj>v is zero. 
As we emphasized in section 2, this is achieved in any 
truncation scheme where all cluster operators up to a 
given excitation rank are included. 

The MRCCSD equations generally involve high 
powers of cluster operators in the term containing 
(x,|exp(-r")exp(:r|^>HM!/ in equation (18). We 
have truncated this term after the quadratic power in 
the applications reported in this paper. This truncation 
scheme for the molecules studied by us seem to be quite 
accurate, as will be evidenced by the benchmark results. 

3.3. Results and discussions 
As illustrative numerical applications of our MRCC 

method, we have studied two molecules at various geo- 
metries which typically display quasi-degeneracy of two 
determinants at one point but progressive loss of quasi- 
degeneracy as the geometery changes. One is the model 
H8 system and the other is the Li2 molecule in the 
ground state over a wide range of internuclear separa- 
tion. In both the systems studied by us, there are two 
active orbitals which respectively remain doubly occu- 
pied in the two determinants which become quasi-degen- 
erate at one point. Since these two orbitals belong to 
different symmetries, the two-dimensional space 
spanned by these two determinants is a CAS. As men- 
tioned in section 3, we use an SD-truncation of the 
cluster operators. 

3.3.1. The H% model system 
This has been widely studied by several workers [22, 

71-74] using both an effective hamiltonian-based 
MRCC method and other SR-based state-specific the- 
ories. Two sets of H2 molecules with H-H bond length 
fixed at 2.0 au are placed perpendicular to each other but 
parallelly in each set as shown in figure 1. One parallely 
oriented pair is shifted away from each other symmetri- 
cally from the most symmetric arrangement where the 
degeneracy is encountered. The distortion is usually 
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Figure 1.   The geometrical arrangement of the four H2 mole- 

cules in the H8 model problem. 

characterized by a parameter a which is just the shift 
from the most symmetrical arrangement. The larger 
range of a corresponding to non-degeneracy of the 
reference determinants and the possibility of encoun- 
tering intruders for the higher lying determinants. The 
molecule possesses D2h symmetry at all the values of a. 
At the degenerate point the fourth and fifth orbitals tend 
to become degenerate. We take as our active space the 
two determinants where these two orbitals are doubly 
filled. Since these orbitals belong to different symme- 
tries, this two-dimensionsal model space is a CAS. 

We have performed two sets of calculations on H8, 
taking the minimal basis on each H. In one set, SCF 
orbitals of the determinant a2

gb\ub\ua
2

g 
are used to gen- 

erate all the determinants. Both contracted and decon- 
tracted MRCC results are displayed in table 1, which 
also lists the SCF energies, the SR-CCSD results. The 
benchmark full CI (FCI) results are also shown for 
assessing the performance of the various methods. The 
results with the 'relaxed coefficients' are generally closer 
to the FCI values and always lie below them. The 
description with 'relaxed coefficients' are higher in 
energy as compared to the FCI result. The SR-CCSD 
works quite well in the non-degenerate regions, 
though—as expected—its performance goes down 
around the quasi-degenerate region (a < 0.1). 

In another set of calculations, we have used the CAS- 
SCF orbitals obtained from the CAS-SCF calculation 
on the two-determinant active space, consisting of the 
determinants a2

gb\ub
2

ua
2

g and a2
gb\ub

2
ub

2
g. The second 

determinant becomes quasi-degenerate with the first 
one around a < 0.1. The results of calculations are dis- 
played in table 2, and the trend of the results is very 
different. Here, although the starting energy of the func- 
tion ipQ is lower, the overall correlation effect after the 
virtuals are brought in is not necessarily more pro- 
nunced. Moreover, the results are now more sensitive 
on the relaxation of the coefficients cß. This is presum- 
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Table 1.   Comparison of the SRCCSD and SSMRCC ground state energies of H8 with the FCI 
results. All entries in au. SCF orbitals are used. 

SSMRCC SSMRCC 
a SCF SRCCSD (frozen) (relaxed) FCI 

0.0001 -4.065562 -4.199764 -4.203496 -4.206361 -4.204803 

0.001 -4.065828 -4.199880 -4.203465 -4.206444 -4.204886 

0.003 -4.066418 -4.200143 -4.203850 -4.206836 -4.205075 

0.01 -4.068474 -4.201095 -4.204373 -4.207545 -4.205769 

0.03 -4.074276 -4.204081 -4.206349 -4.210337 -4.208036 

0.06 -4.082780 -4.209146 -4.209955 -4.213558 -4.212169 

0.08 -4.088316 -4.212815 -4.213155 -4.216389 -4.215336 

0.10 -4.093745 -4.216648 -4.216640 -4.219924 -4.218763 

Basis and geometry: 1985, Int. J. quantum Chan., 28, 931. a = 2.0 au. 

Table 2.   Comparison of the SSMRCC ground state energies of H8 with the FCI 
results. All entries in au. CAS-SCF orbitals are used. 

SSMRCC SSMRCC 
a CAS-SCF (frozen) (relaxed) FCI 

0.0001 -4.082773 -4.207991 -4.206407 -4.204803 
0.001 -4.082831 -4.208015 -4.206427 -4.204886 
0.003 -4.082973 -4.208178 -4.206633 -4.205075 
0.01 -4.083624 -4.208242 -4.206921 -4.205769 
0.03 -4.086493 -4.209255 -4.210288 -4.208036 
0.06 -4.092300 -4.211601 -4.214243 -4.212169 
0.08 -4.096630 -4.214225 -4.217165 -4.215336 
0.10 -4.101131 -4.217343 -4.220310 -4.218763 

Basis and geometry: 1985, Int. J. quantum Chan., 28, 931. a = 2.0au. 

ably due to the optimization of both the orbitals and the 
coefficients in the CAS-SCF function which tends to 
attach more weight to the less important of the two 
active determinants. Inclusion of the virtual determin- 
ants should lead to scaling down of its importance in a 
relaxed description, which is not possible when the coef- 
ficients arc frozen. We surmise that the use of CAS-SCF 
orbitals may not necessarily be the best starting point, 
but more studies arc necessary to get a definite picture. 

In figures 2 and 3 we give a plot of the difference 
energies for both the contracted and decontracted 
descriptions with respect to the FCI results for the 
SCF and CAS-SCF case, respectively. In both the set 
of calculations, the results arc very encouraging, leading 
credence to the performance of the MRCC method. 

3.3.2. The Lh ground-state potential curve 
This serves as a natural test-case for studying the 

efficacy of a state-specific theory. There is a wealth of 
low-lying excited states at different regions of the inter- 
nuclear separation R. Especially around the equilibrium 
geometery, there exists several low-lying excited states 

./—» 

-FCI-SRCCSD 
- FCI-SSMRCC(Frozen) 
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Figure 2. The differences of the SSMRCC energies with 
respect to the FCI values plotted against a. SCF orbitals 
have been used. 
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Figure 3. The differences of the SSMRCC energies with 
respect to the FCI values plotted against a. CAS-SCF 
orbitals have been used. 

which tend to mix strongly with the active 2<rM-orbital 
which lies much higher than the other active counter- 
part, the 2ag orbital, la2 \a\ 2a2

g and \c?g\o\ \a\, are the 
two reference determinants in the active space. Around 
i? = 9.0au, there are avoided crossings which should 
affect a smooth performance of a state-specific method 
unless it is very accurate. Beyond R = 11.0 au, the two 

active orbitals 2og and 2<r„ tend to become prominently 
quasi-degenerate. 

We have chosen a 6-31 IG** basis on each Li with an 
additional cartesian d function (exponent = 0.2) to study 
the potential curve. The same basis had been used earlier 
by Krishnan et al. [75]. Since FCI results for the poten- 
tial curve for this basis is not available, we have per- 
formed a CISDTQ for providing a benchmark. Again 
we have performed our calculations with two sets of 
orbitals: SCF orbitals from the \o-\Xa\ 2a2

g determinant, 
and the CAS-SCF orbitals for the two-determinant 
ground state. Again it is observed that the effect of 
decontraction is more pronunced for the CAS-SCF 
orbitals than for the SCF orbitals. A comparison with 
the CISDTQ results indicates that the numerical per- 
formance of the relaxed version of MRCC version is 
very good and it succeeds quite well to avoid intruders. 

Results for both frozen and relaxed versions of 
MRCC are listed in tables 3 and 4 for the SCF and 
CAS-SCF starting functions, respectively. We have 
also performed an SRCCSD calculation for both func- 
tions and listed it alongwith the SCF values and the 
CISDTQ results in the table. A comparison shows that 
in both cases the relaxed description works better, being 
closer to the CISDTQ values than the frozen one. For 
the CAS-SCF case, the values are closer to the CISDTQ 
results. As expected, the SRCCSD performs quite well 
for the smaller values of R where no intruders are pres- 
ent but falls short at the near degenerate positions. 

In figures 4 and 5 we have plotted the PES for the 
ground state of Li2 for the SCF and CAS-SCF cases, 
respectively. The results obtained by the CAS-SCF cal- 
culation were found to be closer to the CISDTQ values 

Table 3.    Comparison of the SSMRCC ground state energies for Li2 with various methods. All 
entries in au. SCF orbitals are used. 

SSMRCC SSMRCC 
JR SCF SRCCSD (frozen) (relaxed) CISDTQ 

3.5 -14.826445 -14.895177 -14.895075 -14.895177 -14.895765 
4.0 -14.851662 -14.917176 -14.917080 -14.917178 -14.917659 
4.5 -14.864822 -14.927754 -14.927719 -14.927793 -14.928159 
5.0 -14.869984 -14.930968 -14.930884 -14.930973 -14.931332 
5.1696 -14.870482 -14.930938 -14.930901 -14.930981 -14.931294 
5.5 -14.870147 -14.929756 -14.929672 -14.929768 -14.930105 
6.0 -14.867314 -14.926089 -14.926065 -14.926163 -14.926447 
7.0 -14.857338 -14.916214 -14.916106 -14.916290 -14.916656 
8.0 -14.845660 -14.907197 -14.907029 -14.907382 -14.907812 
9.0 -14.834456 -14.900914 -14.900766 -14.901337 -14.901762 
10.0 -14.824495 -14.897231 -14.897138 -14.897879 -14.898314 

11.0 -14.815949 -14.895311 -14.895328 -14.896140 -14.896573 

12.0 -14.808740 -14.894351 -14.894422 -14.895229 -14.895743 

16.0 -14.790017 -14.893387 -14.893964 -14.894513 -14.894989 

Basis: 6-31 IG** and a cartesian d function ( = 0.2). 
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Table 4.   Comparison of the SSMRCC ground state energies for Lii with various methods. All 
entries in au. CAS — SCF orbitals are used. 

SSMRCC SSMRCC 
R CAS-SCF SRCCSD (frozen) (relaxed) CISDTQ 

3.5 -14.833801 -14.895149 -14.893313 -14.895209 -14.895764 
4.0 -14.858778 -14.917176 -14.915743 -14.917273 -14.917659 
4.5 -14.872463 -14.927755 -14.926467 -14.927861 -14.928159 
5.0 -14.878710 -14.930969 -14.929616 -14.931023 -14.931332 
5.1696 -14.879686 -14.930938 -14.929586 -14.930995 -14.931294 
5.5 -14.880438 -14.929756 -14.928399 -14.929825 -14.930105 
6.0 -14.879633 -14.926087 -14.924795 -14.926204 -14.926447 
7.0 -14.875097 -14.916209 -14.915093 -14.916441 -14.916656 
8.0 -14.870507 -14.907191 -14.906550 -14.907553 -14.907813 
9.0 -14.867406 -14.900895 -14.900924 -14.901517 -14.901763 
10.0 -14.865694 -14.897205 -14.897780 -14.898080 -14.898315 
11.0 -14.864857 -14.895276 -14.896164 -14.896316 -14.896575 
12.0 -14.864478 -14.894288 -14.895370 -14.895457 -14.895745 
16.0 -14.864211 -14.893306 -14.894642 -14.894706 -14.894991 

Basis: 6-31 IG** and a cartesian d function ( = 0.2). 

than those obtained by the SCF starting function. It is 
seen that around the equilibrium geometry, the con- 
tracted description with the CAS-SCF orbitals is some- 
what poorer, presumably again due to the enhanced 
importance of the 2<r2 configuration in the reference 
CAS-SCF function. Around this internuclear distance, 
the effect of relaxation of the coefficients is more pro- 
nounced with the CAS-SCF orbitals than with the SCF 
orbitals. As can be seen from the plot, our present 
MRCC method obviates the problem of intruders effec- 
tively in the region of avoided crossing as mentioned 
earlier. 

In figures 6 and 7 we again give a plot of the difference 
energies for the contracted and decontracted descrip- 
tion, with respect to the CISDTQ values, for the SCF 

and CAS-SCF starting functions respectively to sec the 
efficacy of our present formulation. To get a feeling for 
the efficiency of the present MRCC theory wc also plot 
the difference energies for the SRCCSD with respect to 
the CISDTQ values. The performance of the SRCCSD, 
as is expected, becomes increasingly poorer with 
increasing internuclear distance. 

4.   Summary 
Wc have presented in this paper a state-selective 

multi-reference coupled cluster approach which resolves 
the intruder problem in a manifestly size-extensive 
manner. The formalism uses a CAS-CI or a CAS-SCF 
function as the reference function V'o- and uses a relaxed 
mode of description in the sense that the combining 
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—•— SSMRCCfFrozen) 

—*— SSMRCC(Relaxod) 
—•* -CISDTQ    

 ■ 
 » 

14 90 - 
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Figure 4. SSMRCC results plotted against R for Li2. SCF 
orbitals are used. SRCCSD and CISDTQ results are 
also plotted for comparison. 

Figure 5. SSMRCC results plotted against R for Li2. CAS- 
SCF orbitals arc used. SRCCSD and CISDTQ results arc 
also plotted for comparison. 
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Figure 6. The differences of the SSMRCC energies with 
respect to the CISDTQ values plotted against R. SCF 
orbitals have been used. 
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Figure 7. The differences of the SSMRCC energies with 
respect to the CISDTQ values plotted against R. CAS- 
SCF orbitals have been used. 

coefficients cM of the reference determinants <f>ß com- 
prising ip0 are iteratively relaxed—eventually leading to 
the fully relaxed values of the coefficients in the exact tp. 
The method is flexible in the sense that we can use it also 
in a frozen mode, where we deliberately do not update 
the combining coefficients of </y's forming tp0. 

In our formulation, we retain the linearly dependent 
(redundant) cluster amplitudes in the wave operator, but 
invoke suitable sufficiency conditions which not only 
provide the extra equations needed for their determina- 
tion but also ensure in a natural manner that the cluster 
amplitudes are manifestly connected. The method treats 
all the reference determinants on the same footing and is 
thus well suited to describing wide ranges of molecular 
geometry. Preliminary numerical applications to the 
model H8 system and the ground state Li2 potential 

curve clearly demonstrate the accuracy of the method 
as well as its ability to avoid intruders. 
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Single-root multireference Brillouin-Wigner coupled-cluster theory. 
Rotational barrier of the N2H2 molecule 
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Recently developed single-root multireference Brillouin-Wigner coupled-cluster (MR BWCC) 
theory, which deals with one state at a time while employing a multiconfigurational reference 
wave function, is applied to study the rotational barrier of the N2H2 molecule. The method 
represents a brand new coupled-cluster (CC) approach to quasi-degenerate problems which 
combines merits of two approaches: the single-reference CC method in a nondegenerate case 
and the Hilbert space MR CC method in quasi-degenerate case. The method is able to switch 
itself from a nondegenerate to a fully degenerate case in a continuous manner, thus providing 
smooth potential energy surfaces. Moreover, in contrast to the Hilbert space MR CC theory, it 
does not contain the so-called coupling terms and in a highly nondegenerate case it reduces to 
a standard single-reference CC method. In order to better judge the abilities of our new 
approach, we study the rotation barrier of the N2H2 molecule at the CCSD level and the 
results are compared with the single-reference CCSD and Hilbert space MR CCSD methods. 
The rotation of the N2H2 molecule from a trans- to c«-conformer represents a typical two- 
state problem in which the weights of reference configurations can change from 0 to 1 in a 
continuous manner and, in contrast to the H4 models, it represents a real system. 

1.   Introduction 
In the past two decades, the single-reference coupled- 

cluster (CC) method, based on the exponential expan- 
sion of the wave function, has become one of the most 
efficient and reliable methods to account for electron 
correlation in the closed-shell nondegenerate ground 
states of atoms and molecules [1-9]. Nevertheless, its 
extension to a multireference case, that is necessary 
when handling quasi-degenerate or general open-shell 
systems, has proven by no means an unambiguous and 
easy task. Existing multireference coupled-cluster 
(MR CC) methods can be roughly divided into two 
groups; namely the valence universal or Fock space 
approach which employs a single (valence universal) 
exponential wave operator [10-21] and the state uni- 
versal or Hilbert space approach based on the exponen- 
tial ansatz of Jeziorski and Monkhorst [22] who 
represent the wave operator as a superposition of ex- 
ponential operators, one for each configuration span- 
ning the reference space. 

One of the main reasons why existing MR CC 
methods as well as related multireference Rayleigh- 
Schrödinger many-body perturbation theory 
(MR MBPT) cannot be considered as standard or rou- 
tine methods is the occurrence of intruder states or, in 
general, convergence problems. As is well known, both 
MR MBPT/CC theories are built on the concept of the 
effective Hamiltonian, introduced by Bloch [23], that 
acts in a relatively small model or reference space and 

provides us with energies of several states at the same 
time as its eigenvalues. In order to warrant size-exten- 
sivity, both theories prefer the complete model space 
formulations; however, too large model spaces are 
more likely to be plagued by intruder states and even 
singularities may appear on the potential energy sur- 
faces. This situation is more pronounced for 
MR MBPT where the use of various shifting techniques 
at the level of the zeroth-order Hamiltonian becomes 
necessary in order to get rid of singularities. To date, 
the bulk of the MR MBPT applications exploits an 
averaging of orbital energies in the active space as pro- 
posed by Freed and co-workers; see for example [24]. 
Such a shifting technique does not destroy size-exten- 
sivity and is denoted as a forced degeneracy parti- 
tioning. On the other hand, in the case of the MR CC 
methods, one has to solve a system of nonlinear equa- 
tions which may be cumbersome to converge; especially 
when the model space does not contain all the necessary 
configurations to describe all states. Thus, a worsened 
description of one state due to the insufficient reference 
space may worsen the convergence of other states or 
even destroy the convergence at all. 

Therefore, instead of a simultaneous treatment of sev- 
eral states within existing MR CC approaches based on 
the Bloch theory (referred to as 'multi-root' approaches 
in the next section) it is highly desirable to develop 
such alternative methods which would aim at one state 
while employing a multiconfigurational reference and 
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assuming that the size-extensivity is not significantly 
violated. These approaches are often denoted as one- 
state or state-selective or state-specific or single-root 
methods. The first state-selective CC methods were pro- 
posed by Harris [25], Paldus et al. [26] and Nakatsuji 
and Hirao [27]. The next group is based on the multi- 
configurational self-consistent-field (MC SCF) wave 
function see [28-33], and, finally, we should mention a 
size-extensive, spin-free open-shell CC theory based on 
the unitary group approach (UGA) formalism devel- 
oped by Li and Paldus [34] and successfully applied to 
several open-shell systems, see e.g. [35]. Needless to say, 
a great deal of state-selective CC methods are not size- 
extensive which seems to be an inevitable price paid for 
their conceptual simplicity [36]. 

In our recent articles [36,37] we formulated the multi- 
reference Brillouin-Wigner coupled-cluster (MR 
BWCC) theory, which deals with one state while 
employing a multiconfigurational reference wave func- 
tion. We start from the multireference Brillouin-Wigner 
perturbation theory (MR BWPT) and construct a 
state-specific wave operator expressed in terms of the 
Brillouin-Wigner resolvent; however, instead of a pcr- 
turbative treatment, we exploit an exponential ansatz 
for the state-specific wave operator. Such an approach 
is denoted as a single-root MR BWCC method. Using 
the Hubert space approach to the wave operator, the 
single-root MR BWCC method has several advantages 
over the existing 'multi-root' Hubert space MR CC 
approaches: (i) it does not contain the so-called coupling 
terms, (ii) equations for cluster amplitudes do not mix 
various sets of amplitudes and (iii) it is relatively very 
simple; all necessary diagrams are already present in the 
standard single-reference CC theory (iv) in a highly non- 
degenerate case the method reduces to the standard 
single-reference CC method. On the other hand, the 
method is not fully size-extensive due to the fact that 
it does not work with a 'genuine' Bloch equation for the 
wave operator. The size-extensivity of this method will 
be the subject of further work. 

In the single-reference case, the BWCC theory was 
shown to be fully equivalent to the standard CC 
theory [38-40]. Although the single-reference BWCC 
theory does not employ the Baker-Campbcll-Hausdorff 
(BCH) formula, it is a size-extensive method since the 
disconnected diagrams are cancelled out by the iterative 
procedure. The single-root MR BWCC method does not 
have such an analogy within the standard MR CC 
theories due to the fact that it works with a state-specific 
wave operator in the Brillouin-Wigner form explicitly 
dependent on one exact energy. In this regard, the 
single-root MR BWCC method represents a brand 
new approach. 

So far, we have applied our single-root MR BWCC 
method to the ground state and first excited state of the 
trapezoidal H4 model system using a two-determinant 
model space spanned by two closed-shell type configura- 
tions at the level of the CCSD approximation; i.e. the 
CC method truncated at the single and double excitation 
level [37]. In the case of the ground state, the method 
provides the best approximation to the FCI energies of 
all tested multireference methods with a balanced 
description in the quasi-degenerate and nondegencrate 
regions. Moreover, it does not suffer from intruder 
states. Further, we applied this method to the ground 
state of the F2 molecule exploiting a two-determinant 
model space [41]. We found that the single-root 
MR BWCCSD is devoid of the intruder state problem 
and provides a balanced description of the potential 
energy curve with a correct shape over the whole 
region of internuclcar distances. 

Another important class of reactions which should be 
treated by multireference methods arc processes in 
which the crossing of occupied and unoccupied orbitals 
of different symmetries occurs. The simplest example of 
these processes, which arc forbidden according to the 
Woodward Hoffman rules, are rotations around the 
double bond in ethylene or in the N2H2 (1,2-diimidc) 
molecule. The diimide (1,2-diazcne) molecule has been 
the subject of various experimental and theoretical stu- 
dies; see e.g. [42-44], Theoretical studies were mostly 
focused on studying the relative energies of trans- and 
eis- isomers and the isomcrization pathways. The N2H2 

molecule is metastable relative to dissociation to N2 and 
H2 by about öOkcalmol"1. For this reason, diimide is 
widely used as a reagent in stercospccific hydrogenation 
of double bond. The mechanism of hydrogenation 
requires isomcrization from the more stable trans-con- 
former to m-conformcr, which is believed to be the rate 
determining step. Since our ambition is not to find an 
exact rotation barrier, but to compare our single-root 
MR BWCC method with standard single-reference and 
MR CC methods, we use a scarce double zeta (DZ) basis 
set. Likewise, no geometry optimization is carried out. 

The rigid rotation of the N2H2 molecule represents a 
typical two-state problem in which the weights of refer- 
ence configurations can change from 0 to 1 in a contin- 
uous manner and, in contrast to the previously studied 
H4 model, it represents a real system. Needless to say, 
the true trans-cis isomcrization path for the N2H2 mole- 
cule is not via double bond rotation but as in-plane 
inversion or via partial dissociation into a N2H radical 
[45]. Using different theoretical methods it was found 
that the double bond rotation is not favourable isomcr- 
ization pathway since the energy barrier about 
67kcalmor! is too high [45]. 
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2.   Single-root formulation of the MR BWPT 
As is usual in perturbation theory, let us assume that 

the exact Hamiltonian H can be split into two parts, 
namely 

H = HQ + V, (1) 

where H0 is a zeroth-order Hamiltonian and V is a 
perturbation. Our task is to find a solution of the 
Schfbdinger equation for the exact Hamiltonian H 

HV„ F   <P '■'a x at (2) 

while we know the solution of the characteristic problem 
for the zeroth-order Hamiltonian H0 

(3) fl0 *„ = £„*„• 

In general, we do not need to know the whole energy 
spectrum, but we are interested in several low lying 
states. To this end, let us assume that we are interested 
in one state, say, for simplicity, the ground state !P0 and 
let us further assume that the most important contribu- 
tions to this state are provided by d configurations <Pß 

represented by Slater determinants in a spin-orbital 
form. Given dominant configurations span the so- 
called model or reference space. To simplify our deriva- 
tion, we use Greek indices a,ß to denote exact wave 
functions, indices /J,, v for configurations spanning the 
model space and the Latin index q for configurations 
from the complementary space. If we separate the com- 
plete configuration space into the rf-dimensional model 
space P and its orthogonal complement Q, the projec- 
tion operator associated with the model space will have 
the form 

p = Ei^)(^i = Ei^)W-       (4) 

Within the multireference BWPT [46], the exact wave 
function f0 can be expanded in the Brillouin-Wigner 
(BW) perturbation series as follows 

W0 = (l+B0V + B0VB0V + ...)^, (5) 

where ¥Q is a projection of the exact wave function onto 
the model space 

n = PVO ■ 
B0 is the BW type of propagator 

*o = £ 

(6) 

(7) 

and £0 *s the exact energy of the ground state. If we 
introduce a new operator Q, acting on states from the 
model space, in the following way 

the exact wave function (5) can be expressed in the form 

!Po = Ö(P«Po) = ß9'o, (9) 

which implies that the operator Q has the property of a 
wave operator (it transforms the projection of the exact 
wave function into the exact wave function). However, it 
should be stressed that our wave operator Q is a 'state- 
specific' or 'single-root' wave operator since it converts 
just one projected wave function into the corresponding 
exact wave function in contrast to the so-called Bloch 
wave operator [23] that transforms several projected 
wave functions W^ into corresponding exact states. So, 
in order to avoid any confusion with the Bloch wave 
operator, we use a tilde for our state-specific wave 
operator. As is well known, the Bloch wave operator 
obeys the so-called Bloch equation [23, 46-49]. From 
definition (8) it is immediately seen that our wave 
operator Q obeys the operator equation 

Ü = 1 + BQVQ (10) 

that may be viewed as an analogue of the Bloch equa- 
tion for the state-specific wave operator. 

The 'effective' Hamiltonian Heff, which acts within the 
model space, is defined in the same way as in the Bloch 
theories, i.e. 

(11) 

O = 1 + B0V + B0VB0V + ... (8) 

He{{ = PHQP . 

Employing equation (9), we get 

HefffJ = PHV0 = 50< (12) 

which implies that the exact energy of the ground state is 
obtained as one of the eigenvalues (roots) of the effective 
Hamiltonian and, likewise, the projected wave function 
WQ is obtained as one of the eigenvectors of Heff. The 
remaining eigenvalues and eigenvectors are uniquely 
determined by a definition of the state-specific wave 
operator (8), even though they do not represent any 
physical meaningful solution. While in both 'multi- 
root' as well as 'single-root' approaches the effective 
Hamiltonian acts within the same d-dimensional refer- 
ence space, within the Bloch or 'multi-root' approach all 
roots of the effective Hamiltonian are physically mean- 
ingful in contrast to the 'single-root' approach where 
just one root has physical meaning. This is why we 
prefer the notation 'multi-root' and 'single-root' 
approaches in order to better distinguish between 
them. In addition, using the name 'single-root' we 
would like to emphasize the fact that the weights of 
the model space configurations are not a priori fixed as 
is often done in the case of prediagonalization based 
MR techniques. 

In order to obtain the wave operator Q in a form 
suitable for practical calculations, we project 
equation (10) onto configurations from the Q and P 
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subspaces which brings us a system of equations for 
H = \,2,...,d 

e0 <<P,|ß|*„> = <*,|HO|*„) 13) 

that can be viewed as a matrix analogue of the Bloch 
equation for the single-root wave operator. In contrast 
to multi-root theories, such a system of equations is 
dependent on the exact energy of interest and must be 
solved simultaneously with the eigenvalue problem for 
the effective Hamiltonian. 

3.    Single-root MR BWCC theory—Hilbert space 
approach 

So far, we have specified the wave operator ß in the 
Brillouin-Wigner form. If we adopt an exponential 
ansatz for the wave operator ß, we can speak about 
the single-root MR BWCC theory. The simplest way 
to accomplish the idea of an exponential expansion is 
to exploit the Hubert space exponential ansatz of 
Jeziorski and Monkhorst [22] 

ß = X>p(r")|<*>„)<<M (14) 

where T'1 is a cluster operator defined with respect to the 
/ith configuration involving, in general, one-body (T'(), 
two-body (T2') up to the JV-body (T1^,) cluster compon- 
ents 

v = T'l + r; +... + T1
' (15) 

with N being the total number of electrons. We limit 
ourselves to a complete model space formulation 
which implies that amplitudes corresponding to internal 
excitations (i.e. excitations within the model space) arc 
equal to zero. Using the Hamiltonian in the normal- 
ordered-product form, i.e. 

H = <<Mtf|<*V> + HN(P) = H,,, + HA.(//)        (16) 

the matrix elements of the effective Hamiltonian (11) can 
be expressed in the form 

Pt*, = <*„|Hß|*„> =HI,I,SI,I, + (^\HN(I>) exp (T")|*„>, 
(17) 

where the /xth configuration plays the role of a Fermi 
vacuum. Diagonalization of the effective Hamiltonian 
provides us with several eigenvalues; the lowest one is 
taken as a new exact energy £0, while the remaining ones 
are thrown away. As concerns cluster amplitudes, sub- 
stituting the exponential ansatz (14) into equation (13), 
we get a system of equations 

(£„-«„„) <*,l ^p (F')|*„> = (*,|fM/i) exp (7")|*„) 
(18) 

that can be used for the calculation of cluster amplitudes 
in the single-root MR BWCC theory. Wc recall that wc 
did not use the BCH formula! As one can sec, these 
equations do not mix various sets of cluster amplitudes 
(i.e. amplitudes belonging to various reference config- 
urations) and the coupling among them is provided 
indirectly through the exact energy £0. Within the 
single-root MR BWCCSD approximation (i.e. with the 
cluster operators V being approximated by their singly 
and doubly excited cluster components), the singly 
excited amplitudes in a spin orbital form arc given by 
[37] 

(£0 - ftfi,)tt(,<) = «Pt(tl)\HN(fl) exp (T")|*/(>c, 
(19) 

where the subscript C denotes a connected part. In gen- 
eral, for the doubly excited amplitudes wc can write [37] 

(e0-itf!MB+ &?-&!)„ 
= «U')\Hs(l') exp (F')|*„>c 

+ ruVAB[tt(fl){^(fl)\Hs(fl) exp (T")\*„)c\ (20) 

where V/j is an antisymmcrization operator with respect 
to its indices. The computational cost of the method 
scales as the number of reference determinants times 
the cost of one single-reference CCSD calculation. For 
a special case of a two-determinant model space, corre- 
sponding to two active orbitals of different symmetry, 
the above equation simplifies to 

(£0 - /O rf/Oi) = (KB(t<)\Hs(n) exp (T")\4>„)c 

+ (£0 KMM- rf'iV (21) 

The principal property of the single-root MR BWCC 
method is its ability of a continuous transition between 
the single-reference and multirefcrcncc approaches. In a 
nondegencrate case the coupling between the reference 
configurations is weak which implies that the off-diag- 
onal elements of //cfT arc negligible and the difference 
(£0 - H^,) vanishes for the ground state configuration 
<P/(. Thus equations (19) and (21) reduce to the standard 
nondegencrate CCSD equations for the ground state. As 
the quasi-degeneracy increases, the coupling between the 
reference configurations is getting large and these equa- 
tions switch to a multirefcrcncc regime. 

4.    Results and discussion 
In order to better judge abilities of our single-root 

MR BWCC method, we study the rotational barrier of 
the N2H2 molecule at the CCSD level and the results arc 
compared with the single-reference CCSD and Hilbert 
space MR CCSD methods. Rotation of the N2H2 mol- 
ecule from a trans- to m-conformer represents a typical 
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Figure 1. Potential energy curves for the ground and first 
biexcited states for the rigid rotation of the N2H2 mole- 
cule obtained by various coupled-cluster methods. 

two-state problem in which the weights of reference con- 
figurations can change from 0 to 1 in a continuous 
manner. In order to obtain a qualitatively correct poten- 
tial energy curve, two closed-shell-type configurations 
have to be included in the reference space: the first con- 
figuration is a ground state for the cw-conformer (di- 
hedral angle = 0°) and the second one is a ground 
state for the ?ra«.?-conformer (dihedral angle =180°). 
The ground state configuration for the cw-conformer 
represents a doubly excited configuration with respect 
to the ground state for the Jraws-conformer and vice 
versa. 

Since the main goal of this article is to compare the 
behaviour of the single-root MR BWCCSD method 
with standard CC approaches, we confine ourselves to 
a scarce Gaussian (9s,5p) basis set contracted to [4s,3p] 
according to Dunning [50]. We employ a fixed geometry 
for the molecule; i.e. remaining internal coordinates are 
fixed at the values: rNN = 2.573 bohr, rNH = 1.930 bohr 
and 6HNN = 106.2°. These values were optimized at the 
CASSCF level (two electrons in two orbitals) for a 
twisted (90°) conformation. 

Molecular orbitals are taken from the restricted 
Hartree-Fock (RHF) calculations for the ground state. 
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Figure 2. Close-up view of the rotational barrier for the 
N2H2 molecule obtained by various coupled-cluster meth- 
ods. Note different behaviour for the Hilbert space 
MR CCSD and single-root MR BWCCSD methods in 
the nondegenerate region around the cis-conformer (di- 
hedral angle = 0°). 

It is very interesting that two RHF solutions are possible 
over the whole range of dihedral angles. The first one, 
denoted as a RHF1 solution, represents a ground state 
for dihedral angles from 0° to 95°. Using the C2 point 
group, the highest occupied molecular orbital (HOMO) 
has the B symmetry while the lowest unoccupied mole- 
cular orbital (LUMO) has the A symmetry. The second 
solution, denoted as a RHF2 solution, represents a 
ground state for dihedral angles from 95° to 180° with 
HOMO of the A symmetry and LUMO of the B sym- 
metry. We performed calculations for both sets of mol- 
ecular orbitals and they are distinguished by the 
presence of the suffix RHF1 or RHF2 behind the 
name of the method. 

In figure 1, we present potential energy curves for the 
ground state obtained by the single-reference CCSD, 
Hilbert space MR CCSD and single-root 
MR BWCCSD methods as well as potential energy 
curves for the first bi-excited state. For a better distinc- 
tion, we plot potential energy curves for dihedral angles 
from 50° to 130°. A detailed view of the ground state 
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(from 0° to 120°) is shown in figure 2. The model space 
consists of two closed-shell-typc configurations and cor- 
responds to the active orbital space spanned by two 
active orbitals: HOMO and LUMO. In view of a dif- 
ferent spacial symmetry of active orbitals the model 
space is complete and one can exploit equation (21) 
for doubly excited cluster amplitudes. For a twisted con- 
formation (about 90°) we observe a configurational 
degeneracy; that means the weights of both configura- 
tions become equal. The orbital HOMO LUMO degen- 
eracy is not observed, even though the orbital 
degeneracy alone is of less concern in the CC 
approaches. 

As one can see, differences between the use of RHF1 
and RHF2 orbitals arc almost negligible and not sub- 
stantial for the behaviour of the method. As expected, 
the single-reference CCSD method provides a reliable 
description of the ground state in the nondegenerate 
region (in the case of the RHF1 orbitals from 0° to 
70"), but completely fails in regions where the ground 
state configuration is no longer a dominant configura- 
tion. 

The Hubert space MR CCSD method gives the cor- 
rect shape of the potential energy barrier almost over the 
whole range of the dihedral angles, but fails in a highly 
nondegenerate region (in the proximity of 0° and 180°). 
Such a failure of the Hubert space MR CCSD method is 
very often and may be attributed to the model space 
deficiency. Even though our model space contains all 
relevant configurations to describe the ground state, it 
may not be sufficient for the excited state. One must 
keep in mind that both states are treated simultaneously, 
so the insufficient description of one state (due to the 
reference space or truncation of the cluster operator) 
may worsen the convergence of the other state or 
even, alone, destroy the convergence. Probably, this 
explains why the Hubert space MR CC method is not 
used to calculate potential energy surfaces and, on the 
other hand, why it is useful to develop such approaches 
which would aim at one state. 

The single-root MR BWCCSD method provides us 
with a smooth potential energy barrier of correct 
shape for all dihedral angles. In the nondegenerate 
region, the single-root MR BWCCSD potential energy 
curve becomes identical (flows together) with the single- 
reference CCSD one, while in the quasi-degenerate 
region it approaches the Hubert space MR CCSD 
curve. It is worth mentioning that the single-root 
MR BWCCSD and Hubert space MR CCSD approx- 
imations do not become identical even in the case of a 
full configuration degeneracy since they work with dif- 
ferent wave operators. Nevertheless, their difference can 
serve as a rough estimate of the size-extensivity error of 

our method. We sec. that it is rather small (at least in 
this case). 

For completeness, we also performed the single-root 
MR BWCCSD calculations for the excited state (sec 
figure 1). It is remarkable that the differences from the 
Hubert space MR CCSD method in the quasi-degen- 
erate region arc comparable with those observed for 
the ground state; so the single-root MR BWCC 
method can also be successfully applied to excited 
states: even though, in general, we arc not able to 
exclude convergence difficulties. One can thus conclude 
that the single-root MR BWCC method appears as a 
viable and promising approach and should deserve our 
attention. 

This work was supported by the grant 1/1334/94 of 
the Slovak Grant Agency and the COST Action D3 
project. 
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The relativistic coupled-cluster method, which incorporates relativistic terms through second 
order in the fine-structure constant a and correlation effects summed to all orders of the one- 
and two-electron excitations, is described. An application to the transition energies of bismuth 
and eka-bismuth (element 115) is described. A large basis (34s26p20dl4f9g6h4i) is used to 
solve the Dirac-Fock-Breit equations, and the external 37 electrons of each atom are then 
correlated. Good agreement with experimental values is obtained for Bi, with an average error 
of 0.05 eV. Two bound states are predicted for the Bi~ anion. The trend of transition energies 
upon going from Bi to eka-bismuth shows a relative stabilization of the pi/2 orbital and 
destabilization of p3/2 in the heavier element, by 1.5-1.9 eV per electron. 

1.   Introduction 
The structure and chemistry of a light atom or mol- 

ecule may be investigated by means of the pertinent 
Schrödinger equation. This equation may be solved to 
a good approximation by the methods of modern 
quantum chemistry. Relativistic effects are not very 
large for the first few rows of the periodic table. When 
knowledge of these is required, e.g. to understand the 
fine structure of atomic spectra, they may be calculated 
by perturbation theory [1]. This approach is not satis- 
factory for heavier atoms, where relativistic effects 
become too large for perturbative treatment, changing 
significantly even such fundamental properties of the 
atom as the order of orbitals. The Schrödinger equation 
must then be supplanted by an appropriate relativistic 
wave equation such as Dirac-Coulomb or Dirac- 
Coulomb-Breit. Approximate one-electron solutions to 
these equations may be obtained by the self-consistent- 
field procedure. The resulting Dirac-Fock or Dirac- 
Fock-Breit functions are conceptually similar to the 
familiar Hartree-Fock functions; the Hartree-Fock 
orbitals are replaced, however, by four-component vec- 
tors. Correlation is no less important in the relativistic 
regime than it is for the lighter elements, and may be 
included in a similar manner. 

Methodology for high-accuracy calculations of sys- 
tems with heavy and super-heavy elements is described 
here. The no-virtual-pair Dirac-Coulomb-Breit Hamil- 
tonian, which is correct to second order in the fine-struc- 
ture constant a, provides the framework of the method. 

Correlation is treated by the coupled cluster (CC) 
approach. The relativistic coupled-cluster (RCC) 
method is applied to bismuth and eka-bismuth; the 
main properties of interest are transition energies (ioni- 
zation potentials, excitation energies, electron affinities). 

2.   Methodology 
2.1. The relativistic Hamiltonian 

The relativistic many-electron Hamiltonian cannot be 
written in closed form; it may be derived perturbatively 
from quantum electrodynamics [2]. The simplest form is 
the Dirac-Coulomb (DC) Hamiltonian, where the non- 
relativistic one-electron terms in the Schrödinger equa- 
tion are replaced by the one-electron Dirac operator hD, 

HDC^MO + E
1
/' y' (1) 

t<j 

with 

hD = c<t • p + ßc2 + Vnac . (2) 

a and ß are the four-dimensional Dirac matrices, and 
Fnuc is the nuclear attraction operator, with the nucleus 
modelled as a point or finite-size charge. Only the one- 
electron terms in the DC Hamiltonian include rela- 
tivistic effects, and the two-electron repulsion remains 
in the non-relativistic form. The lowest-order correction 
to the two-electron repulsion is the Breit [3] operator 

B\2 = -\[*i • <x2 + («i • ri2) • («2 • ri2)Al2]Al2 ,      (3) 

yielding the Dirac-Coulomb-Breit (DCB) Hamiltonian 

0026-8976/98 $1200 © 1998 Taylor & Francis Ltd. 
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#DCB = $>D(0 + £(1A<, + ^)- (4) 
'</ 

All equations are in atomic units. 
Neither the DC nor the DCB Hamiltonians are 

appropriate starting points for accurate many-body 
calculations. The reason is the admixture of the nega- 
tive-energy eigenstates of the Dirac Hamiltonian by the 
two-body terms in an erroneous way [4,5]. The no- 
virtual-pair approximation [6,7] is invoked to correct 
this problem: the negative-energy states are eliminated 
by the projection operator /1+, leading to the projected 
Hamiltonians 

Hnr = A   HnrA 'DC 

or 

/rt DCB = A+HDChA
+ 

(5) 

(6) 

#DCB >s correct to second order in the fine-structure 
constant a, and is expected to be highly accurate for 
all neutral and weakly-ionized atoms [8]. Higher 
quantum electrodynamic (QED) terms are required for 
strongly-ionized species. A comprehensive discussion of 
higher QED effects and other aspects of relativistic 
atomic physics may be found in the proceedings of the 
1988 Santa Barbara program [9]. 

2.2. The one-electron equation 
The no-pair DCB Hamiltonian (6) is used as a starting 

point for variational or many-body relativistic calcula- 
tions [10]. The procedure is similar to the non-relativistic 
case, with the Hartrec Fock orbitals replaced by the 
four-component Dirac-Fock-Breit (DFB) functions. 
The spherical symmetry of atoms leads to the separation 
of the one-electron equation into radial and spin- 
angular parts [11]. The radial four-vector has the so- 
called large component PnK in the upper two places 
and the small component Q„K in the lower two. The 
quantum number K (with |K| =;'+ 1/2) comes from 
the spin-angular equation, and n is the principal 
quantum number, which counts the solutions of the 
radial equation with the same K. Defining 

4>„K = 
'cP„K(r)' 

k QnK(r) , 
(7) 

the DFB equation has the form 

FK(t>„K = e„K(()nK, (8) 

where the one-electron DFB operator FK is [12-16] 

, sni + u] 

LL cnK + u LS 

SL vnvc + u SS      2c2 (9) 

and 

nK = -d/dr + K/r 

77+ =d/dr + */r. 

(10) 

(11) 

Knuc is the nuclear attraction potential. In the uniform 
charge distribution model used here, the charge of a 
nucleus of atomic mass A is distributed uniformly over 
a sphere with radius R = 2.2677 x 10~5/Tl/3. The 
nuclear potential for a nucleus with charge Z is then 

v   -\-Z,r 
Knuc

     \-{Z/2R)(3-r 2/R7) 

forr>R 

forr^R. 
(12) 

The terms (7LL etc. represent the one-body mean-field 
potential, which approximates the two-electron inter- 
action in the Hamiltonian, as is the practice in SCF 
schemes. In the DFB equations this interaction includes 
the Breit term (3) in addition to the electron repulsion 

The radial functions P„K(r) and Q„K(r) may be 
obtained by numerical integration [17,18] or by expan- 
sion in a basis [19]. Since the Dirac Hamiltonian is not 
bound from below, failure to observe correct boundary 
conditions leads to 'variational collapse' [20-27], where 
admixture of negative-energy solutions may yield ener- 
gies much below experimental. To avoid this failure, the 
basis sets used for expanding the large and small com- 
ponents must maintain 'kinetic balance' [24,25]. In the 
non-relativistic limit (r -+ oo), the small component is 
related to the large component by [20] 

Qm:(r) = (2c)-]n+
KPm:(r). (13) 

where 77^ is defined in (11). The simplest way to obtain 
kinetic balance is to derive the small-component basis 
functions from those used to span the large component 
by 

Vs. = 77+vL. 
A.KJ " K  A KJ (14) 

with 

Ishikawa and co-workers [16,23] have shown that G- 
spinors, with functions spanned in Gaussian-type func- 
tions (GTF) chosen according to (14), satisfy the kinetic 
balance for finite c values if the nucleus is modelled as a 
uniformly-charged sphere. 

2.3. The Fock-space coupled-cluster method 
The coupled-cluster method is well-known by now, 

and only a brief account of aspects relevant to our appli- 
cations is given here. 

The Dirac-Coulomb Breit Hamiltonian 77^CB may 
be rewritten in second-quantized form [6,16] in terms 
of normal-ordered products of spinor creation and anni- 
hilation operators {r*s} and {r+s+w?}, 
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H = H+CB-(0\H+CB\0) 

= ^/„{r+5} +^(rS||fM){r+
S

+
Mt},      (15) 

where 

and 

Irs \\tu) (rsltu) {rs\ut} (16) 

{rs tu) = |dx1dx2'P;(x1)
,P:(x2)(rr2

1 +Bl2)Vt(xl)tl>u{x2). 

(17) 

Here/„ and (rs||*u) are, respectively, elements of one- 
electron Dirac-Fock and antisymmetrized two-electron 
Coulomb-Breit interaction matrices over Dirac four- 
component spinors. The effect of the projection opera- 
tors A+ is now taken over by the normal ordering, 
denoted by the curly braces in (15), which requires anni- 
hilation operators to be moved to the right of creation 
operators as if all anticommutation relations vanish. 
The Fermi level is set at the top of the highest occupied 
positive-energy state, and the negative-energy states are 
ignored. 

By adopting the no-pair approximation, a natural and 
straightforward extension of the non-relativistic open- 
shell CC theory emerges. The multireference valence- 
universal Fock-space coupled-cluster approach is 
employed [28], which defines and calculates an effective 
Hamiltonian in a low-dimensional model (or P) space, 
with eigenvalues approximating some desirable eigenva- 
lues of the physical Hamiltonian. The effective Hamil- 
tonian has the form [29] 

HefT = PHQP (18) 

where Q is the normal-ordered wave operator, 

ß = {exp(S)}. (19) 

The Fock-space approach starts from a reference state 
(closed-shell in our applications, but other single-deter- 
minant functions may also be used), correlates it, then 
adds and/or removes electrons one at a time, recorre- 
lating the whole system at each stage. The sector (m, n) 
of the Fock space includes all states obtained from the 
reference determinant by removing m electrons from 
designated occupied orbitals, called valence holes, and 
adding n electrons in designated virtual orbitals, called 
valence particles. The practical limit is m + n < 2, 
although higher sectors have also been tried [30]. The 
excitation operator is partitioned into sector operators 

*=££* (m,n) (20) 
mSsOnääO 

This partitioning allows for partial decoupling of the 
open-shell CC equations. The equations for the (m, n) 

sector involve only S elements from sectors (k, I) with 
k ^ m and / ^ n, so that the very large system of coupled 
nonlinear equations is separated into smaller subsys- 
tems, which are solved consecutively: first, the equations 
for Sm are iterated to convergence; the S(1,0) (or Sm) 
equations are then solved using the known S^0'°\ and so 
on. This separation, which does not involve any approx- 
imation, reduces the computational effort significantly. 
The effective Hamiltonian (18) is also partitioned by 
sectors. An important advantage of the method is the 
simultaneous calculation of a large number of states. 

Each sector excitation operator is, in the usual way, a 
sum of virtual excitations of one, two,..., electrons, 

?(™.n) £* (m,n) (21) 

with / going, in principle, to the total number of elec- 
trons. In practice, / has to be truncated. The level of 
truncation reflects the quality of the approximation, 
i.e. the extent to which the complementary Q space is 
taken into account in the evaluation of the effective 
Hamiltonian. In the applications described below the 
series (21) is truncated at 1 = 2. The resulting CCSD 
(coupled cluster with single and double excitations) 
scheme involves the fully self-consistent, iterative calcu- 
lation of all one- and two-body virtual excitation ampli- 
tudes and sums all diagrams with these excitations to 
infinite order. As negative-energy states are excluded 
from the Q space, the diagrammatic summations in the 
CC equations are carried out only within the subspace 
of the positive-energy branch of the DF spectrum. 

The Heft diagrams may be separated into core and 
valence parts, 

eff — -"eff   +-Heffj \11) 

where the first term on the right-hand side consists of 
diagrams without any external (valence) lines and 
describes core electron correlation. The eigenvalues of 
Heir will then give directly the transition energies from 
the reference state, with correlation effects included for 
both initial and final states. The physical significance of 
these energies depends on the nature of the model space. 
Thus, electron affinities may be calculated by con- 
structing a model space with valence particles only 
[(0,n) sectors, n > 0], ionization potentials are given 
using valence holes [(n, 0) sectors, n > 0], and both 
valence types are required to describe excitations out 
of the reference state [(m, n) sectors, m,n> 0]. 

3.   Application to atoms 
Different ways of implementing the relativistic 

coupled cluster (RCC) method are known. A numerical 
procedure for solving the pair equation has been devel- 
oped by Lindgren and co-workers [31] and applied to 
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two-electron atomic systems [32]. Other approaches use 
discrete basis sets of local or global functions. This 
makes the application of the projection operators onto 
the positive-energy space much easier than in the numer- 
ical scheme; one simply ignores the negative-energy 
branch of the one-electron spectrum. A technique 
based on local splines was developed by Blundell and 
co-workers [33], while the Göteborg group introduced 
another type of local basis, obtained by discrctizing the 
radial space [34]. The first relativistic coupled cluster 
calculation in a global basis [35] appeared in 1990, but 
was limited to s orbitals only, both in the occupied and 
virtual space. A more general and sustained implemen- 
tation started two years later, with pilot calculations for 
light atoms in closed-shell [36] and open-shell [37] states. 
The method has since been applied to many heavy 
atoms, where relativistic effects are crucial to the correct 
description of atomic structure. Calculated properties 
include ionization potentials, excitation energies, elec- 
tron affinities, fine-structure splittings, and for super- 
heavy elements—the nature of the ground state. The 
additivity of relativistic and correlation effects was also 
studied. Systems investigated include the gold atom [38], 
few-electron ions [39], the alkali-metal atoms Li-Fr [40]. 
the Xe atom [41], the f2 shells of Pr3+ and U44 [42], the 
ytterbium [43], lutetium [43], mercury [44], barium [45], 
radium [45], and thallium [46] atoms, and the super- 
heavy elements lawrencium [43], ruthcrfordium [47], 
111 [48], 112 [44], 113 [46], and 118 [49]. Applications 
to bismuth and eka-bismuth (element 115) are described 
below. 

The spherical symmetry of atoms, which leads to 
angular decomposition of the wave function and 
coupled-cluster equations, is used at both the Dirac- 
Fock-Breit [16] and RCC [38,40] stages of the calcula- 
tion. The energy integrals and CC amplitudes which 
appear in the Goldstone-typc diagrams defining the 
CC equations arc decomposed in terms of vector- 
coupling coefficients, expressed by angular-momentum 
diagrams, and reduced Coulomb Breit or S matrix ele- 
ments, respectively. The reduced equations for single 
and double excitation amplitudes are derived using the 
Jucys-Levinson-Vanagas theorem [29] and solved itera- 
tively. This technique makes possible the use of large 
basis sets with high / values, as a basis orbital gives 
rise to two functions at most, with j = I ±1/2, whereas 
in Cartesian coordinates the number of functions 
increases rapidly with /. Typically we go up to h 
(I = 5) or i (/ = 6) orbitals. To account for core-polar- 
ization effects, which may be important for many sys- 
tems, we correlate at least the two outer shells, usually 
20-40 electrons. Finally, uncontracted Gaussians are 
used, since contraction leads to problems in satisfying 
kinetic balance and correctly representing the small 

components. On the other hand, it has been found 
that high-energy virtual orbitals have little effect on 
the transition energies we calculate, since these orbitals 
have nodes in the inner regions of the atom and corre- 
late mostly the inner-shell electrons, which we do not 
correlate anyway. These virtual orbitals, with energies 
above 80 or lOOhartrcc, are therefore eliminated from 
the RCC calculation. 

Bismuth is the heaviest non-radioactive element. Few 
theoretical investigations of its spectrum have been pub- 
lished. Keller et al. [50] calculated properties of all group 
15 elements, including eka-bismuth, by the Dirac Fock 
Slater (DFS) method; the ionization potentials of Bi had 
errors of ~1 eV. Rose et al. [51] obtained multi-config- 
uration Dirac Fock (MCDF) excitation energies in the 
6p3 manifold of Bi, with an accuracy of 0.15 0.4 eV. 
Bieron et al. [52] added configuration interaction to cal- 
culate oscillator strength for some transitions in Bi4. 
Dzuba et al. [53] calculated transition energies within 
the Bi 6p3 configuration by relativistic many-body per- 
turbation theory. 

The Fock-space scheme used to obtain states of bis- 
muth and its ions started from Bi+. The spin orbit split- 
ting of the 6p orbitals is sufficiently large to make the 
6s26p2/2 ground state of Bi4 a closed shell. Electrons 
were added in the 6p,/2 orbital to obtain the ionization 
potential and electron affinity of Bi, or removed from 

.■2-1 »:'-»• the 6s and 6p,/2 orbitals to yield slates of Bi    and Bi 
excited states of Bi4 were calculated by both adding and 
removing one electron from the reference state: 

Bi+(0,0) —^ Bi(0,1) 

Bi24 (1,0) 

Bi"(0,2) 

Bi3t(2,0) 

Bi4*(l,l). (23) 

A similar scheme was used for eka-bismuth. 
The universal basis set of Malli et al. [54] is employed. 

It consists of Gaussian-type orbitals, with exponents 
given by the geometric series 

C = ox/?(" l},        o = 106111395.371615, 

ß = 0.486 752 256 286. (24) 

The basis included 34 s functions (n = 1-34), 26 p 
(n=9-34), 20 d (H = 13-32). 14 f (n = 17-30), 9 g 
(n =21-29), 6 h (« =24-29), and 4 i orbitals (n =25 
28). The orbitals were left uncontracted. Virtual orbitals 
with energies higher than 80hartrcc were omitted. The 
atomic masses taken were 208.980 for Bi and 277 for 
eka-bismuth. The external 36 electrons were correlated 
(4f,45s25p85dl06s26p2 in the case of Bi4, corresponding 
shells for El 15+). All computations were carried out at 
Tel Aviv University. 
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Table 1.   Transition energies of Bi and its ions (eV). 

Transition Experiment [55,56] RCC + Breit 

BilP: 6Pl/26P3/2   S3/2 -» 6Pl/2   P0 7.289 7.183 7.183 
BiEA: 6Pl/26P3/2   S3/2 -* 6p1/26p3/2   P2 0.95 1.031 1.034 

-» 6p2
/26p2

/2 3P0 0.179 0.180 
Bi+ IP: 6Pl/2 3Po -+ 6Pl/2 2-fl/2 16.688 16.684 16.655 
Bi+ EE: 6Pl/2  po -> 6p1/26p3/2  P] 1.652 1.692 1.672 

-+ 6p1/26p3/2 P2 2.111 2.153 2.133 
Bi2+ IP: 6s26p1/2,2P1/2-*6s21S0 25.563 25.562 25.570 
Bi3+ EE: 6s21S0->6s6p1/2

3P0 8.798 8.762 8.781 
-+6s6p1/2

3P, 9.414 9.493 9.510 

Table 2.   Transition energies of eka-bismuth (element 115) and its ions (eV). 

Transition RCC + Breit Reference [50] 

El 15 IP: 7p /2^P3/2   $3/2 ~* 7Pl/2   P0 5.579 5.583 5.2 
E115EA: 7p ßlPiß S3/2 —> 7p1/27p3/2 P2 0.383 0.378 
El 15+ IP: 7Pl/2 -> 7Pl/2   Pl/2 18.232 18.168 18.1 
El 15+ EE: 7p2/2

3Po^7p1/27p3/2
3P1 5.252 5.194 5.6 

-> 7p1/27p3/2 3P2 5.663 5.605 
E1152+ IP: 7s27p1/2-+7s21S0 27.542 27.456 27.4 
E1153+ EE: 7s21S0^7s7p1/2

3P0 10.264 10.294 
^7s7p1/2

3P, 11.205 11.232 

4.   Results and discussion 
The calculated ionization potentials (IP), electron 

affinities (EA), and excitation energies (EE) of the bis- 
muth atom and cations are presented in table 1. As in 
previous cases, good agreement with experiment [55,56] 
is obtained, with an average error of 0.05 eV and a 
maximum error of 0.1 eV. Inclusion of the Breit term 
has little effect on the transition energies. Of particular 
interest is the prediction of more than one bound state 
of the anion. The lowest electronic configuration of Bi~, 
6pf/26p3/2, yields two states with j values of 0 and 2; 
both are bound. These states correspond in LS coupling 
to 3P0 and 3P2; the 3P] state, on the other hand, can 
only be obtained from the excited 6p!/26p3/2 configura- 
tion. The P2 state in isoelectronic polonium is 0.93 eV 
above the ground 3P0 state, close to the Bi- calculated 
value of 0.85 eV. The Po 3PX excitation energy is 2.09 eV, 
so the corresponding Bi- state is not expected to be 
bound. 

Results for eka-bismuth (element 115) are shown in 
table 2. Differences relative to bismuth can be assigned 
to the stronger binding of 7p!/2 and weaker binding of 
7p3/2 compared to 6p analogues. The first IP of eka- 
bismuth, representing the ionization of a p3/2 electron, 
is lower by 1.6 eV than the corresponding Bi IP; the IPs 
for the first and second p[/2 electrons are higher by 1.5 

and 1.9eV than for the lighter atom. A similar trend is 
observed in the excitation energies. Finally, it should be 
noted that the empirically corrected Dirac-Fock-Slater 
values of Keller et al. [50] are in reasonable agreement 
with our data. 

5.   Summary and conclusion 
The relativistic coupled-cluster method includes 

simultaneously relativistic terms through second order 
in the fine-structure constant a and correlation effects 
summed to all orders of the one- and two-electron 
excitations. In atomic systems, where spherical 
symmetry allows the use of large basis sets, the 
method makes possible calculation of large numbers of 
heavy-atom states with unprecedented accuracy, and 
gives reliable predictions for superheavy elements. The 
largest remaining source of error is probably the 
omission of triple virtual excitations. The method is 
applied here to bismuth and eka-bismuth (element 
115). Comparison with experimental values for Bi 
shows good agreement, within 0.1 eV, with an average 
error of 0.05 eV. The trend of transition energies upon 
going from Bi to eka-bismuth shows a relative 
stabilization of the p^2 orbital and destabilization of 
P3/2 in the heavier element, by 1.5-1.9 eV per 
electron. 
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Low-lying singlet and triplet states of all-fraffs(10-s-cw)-2,4,6,8,10- 
undecapentaen-1-al: a theoretical determination 
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Ab initio results for the electronic spectra of all-?ran.s(10-s-c«)-2,4,6,8,10-undecapentaen-l-al 
are presented. Apart from its intrinsic interest, the system is a reasonable truncated model of 
alWrans-retinal. This paper includes geometry determination of the ground state and the low- 
lying valence singlet and triplet excited states. Vertical, emission, and non-vertical excitation 
energies have been computed using multiconfigurational second-order perturbation theory by 
means of the CASPT2 method. The most intense feature of the computed spectrum is due to 
the expected strongly dipole-allowed rot* transition, placed in vacuo at 3.77 eV. The singlet jut* 
state is above the singlet nn* and the Ag-like states by only 0.22 eV. The lowest 0-0 singlet- 
singlet transition energy corresponds to the Ag-like state, at 2.48 eV. The calculated fluores- 
cence maxima from the nrc* and the Ag-like states are found in a similar energy range, at 
1.87 eV and 2.06 eV, respectively. The lowest triplet state is of nn* character, placed vertically 
at 1.74eV, adiabatically at 1.07 eV, with a predicted phosphorescence maximum of 0.75 eV. 
On the other hand, Rydberg states play a minor role in the description of the low-energy 
region of the spectra. The results are consistent with available experimental data of the system 
and related compounds in solution. 

1.    Introduction 
The spectroscopy of retinals is of interest both intrin- 

sically and because of their role in many biological pro- 
cesses of fundamental importance. We have reported an 
ab initio study on the low-lying excited states of retinal, 
and its truncated model 3-methyl-all-?ra«s(10-s-c«)- 
2,4,6,8,10-undecapentaen-l-al, in connection with the 
ll-cis- into a\\-trans-retinal photoisomerization [1]. 
The theoretical description of the vertical excited states 
is consistent with experimental evidence, except for the 
placement of the Ag-like state, which has been vertically 
computed ~1 eV higher than the maximum observed in 
the two-photon absorption spectrum. Such deviation 
could be related to the non-vertical nature of the 
observed band. On the order hand, the three lowest 
vertical singlet states are close in energy. The relative 
ordering in the emission spectra and in the 0-0 transi- 
tion energies are issues worth addressing from a theore- 
tical point of view. In order to get further insight into 
the relative energy ordering of the low-lying excited 
states of long polyenals, results on the vertical, emission, 
and non-vertical transition energies are examined in the 
present contribution for a\\-trans(lO-s-cis)-2,4,6,S, 10- 
undecapentaen-l-al (UND), which contains the same 
number of double bonds as retinals (figure 1). For this 
purpose, the study includes geometry determination of 
the corresponding excited states at the CASSCF level, in 
addition to the ground-state geometry characterization 
of the system. The use of flexible basis sets, including 

diffuse functions for the spectral investigation, also 
allows determination of the first Rydberg transition. 

The excited states of interest are denoted as: 
1,3A"(n7r*), essentially described in a good approxima- 
tion by a single excitation from a lone-pair orbital of the 
heteroatom to a n* orbital; 1,3A'(7i7i*), mainly charac- 
terized by one-electron promotion from the highest 
occupied molecular orbital (HOMO) to the lowest un- 
occupied molecular orbital (LUMO); and ' A'(TT — diex), 
with a multiconfigurational character and non-negligible 
contributions of doubly excited configurations. In terns 
of the C2h idealized point group of even polyenes, the 
'A^TTJC*) and 'A^Tt-diex) states can be denoted as Bu- 
and Ag-like states, respectively. 

The absorption maxima of dodecapentaenal have 
been located at the energy range 3.2-3.3 eV in different 
solvents [2]. The most intense band in all-rra/w-retinal 
also has been observed at a similar energy interval [3,4]. 
On the other hand, the 'Ag-like state has been placed in 
all-rrara'-retinal at 2.90 eV in solution (EPA, 77 K) by 
two-photon spectroscopy [3]. The fluorescence max- 
imum of dodecapentaenal occurs around 2.2 eV. This 
feature has been assigned by Becker et al. [2] to the 
transition from the 'A'(7t-diex) to the ground state. 
The study of the lowest triplet state has been hampered 
by the absence of phosphorescence for these systems. 
The lowest triplet state (of nn* character) has been 
located at 1.37 eV above the ground state (assigned to 
the 0-0 transition) from a singlet-triplet absorption 
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Figure 1.    all-/(W(9(10-s-nV)-2.4,6,8.10-lJndecapentaen-l-a1 atom labelling. 

spectrum of dodecapcntacnal [5]. The present theoretical 
findings confirm the overall experimental picture, 
bringing also results for the singlet and triplet nrr* 
states, where no direct experimental estimate is avail- 
able. 

The spectroscopic study has been performed within 
the framework of multiconfigurational second-order 
perturbation CASPT2 theory [6, 7]. The successful per- 
formance of the CASPT2 method in computing differ- 
ential correlation effects for excitation energies has been 
illustrated in a number of earlier applications (sec. e.g. 
[8, 9]). 

2.    Methods and computational details 
Geometry optimizations have been carried out at the 

CASSCF level using the generally contracted basis sets 
of the atomic natural orbital (ANO-S) type obtained 
from the C,O(10s6p3d)/H(7s) primitive sets [10]. The 
contraction scheme C,0[3s2pld]/H[2s] has been used 
in the present study, which represents a total of 192 
basis functions. A full geometry optimization has been 
performed assuming a planar molecule with Cs sym- 
metry (45 degrees of freedom). In order to include in 
the spectral study the lowest Rydbcrg state, the basis 
set has been supplemented with two s- and p-typc diffuse 
functions (see exponents in [11, 12]), placed at the charge 
centroid of the ground state, for computation of the 
vertical transition energies (200 basis functions). When 
calculating the non-vertical transition energies, the dif- 
fuse functions have been located at the corresponding 
charge centroid of the optimal geometries for the states 
considered. 

The low-lying states have been computed by using 
multiconfigurational second-order perturbation theory 
through the CASPT2 method [6, 7]. The complete 
active space SCF (CASSCF) procedure [13] determines 
the multiconfigurational single-reference function 
employed in the perturbational treatment. The mole- 
cular orbitals for the excited states have been obtained 
from state average CASSCF calculations, where the 
averaging includes all states of interest of a given sym- 

metry. The number of states included in the state 
average CASSCF calculations, the number of configura- 
tions in the CASSCF wavefunction, details on the active 
spaces used, and the type of state computed arc given in 
table 1. 

With the molecule placed in the xy plane, the closed- 
shell Hartrce Fock description of the C||H,20 system 
has (37-6) occupied orbitals of symmetry (a'-a"). The n 
orbitals belong to the a" irreducible representation of 
the point group Cs. For the singlet and triplet states of 
A' symmetry the 7t-valencc active space (0-12) has been 
employed (12n active orbitals with \2n active elec- 
trons). An active space comprising all valence n orbitals 
is the natural choice for a polycne chain. For the nn* 
states the lone pair of the hctcroatom behaves as an 
inactive orbital. The occupation number is close to 2.0 
when it is treated as active. The same active space (11 
active electrons) has been used to determine the vertical 
ionization potential to the l2A"(n-holc) state. The active 
space was enlarged to (1-12), with an additional orbital 
of a' symmetry, to describe the 'A"(rc —> 3s) Rydbcrg 
state (12 active electrons). In both cases the remaining 
orbitals (37-0) were kept inactive. For the 1,3A"(njr*) 
states the active space comprises the lone-pair on the 
oxygen atom plus the most important n orbitals (1-10) 
with 14 active electrons, (36-0) inactive orbitals. When 
exciting away from the lone-pair orbital, the highest 
unoccupied 7t* orbitals for the nrc* excited state have a 
low occupation number and can be moved safely into 
the virtual space. The same active space (13 active 
electrons) has been employed to compute the vertical 
ionization potential to the l2A'(n-hole) state. The 
energy of each excited state is referred to a ground- 
state energy computed with the same active space. 

For the singlet excited states of A' symmetry, intruder 
states weakly interacting with the corresponding JI- 

CASSCF reference function were detected. Level shift 
corrected perturbation (LS-CASPT2) theory [9, 14, 15] 
was employed to check their effect on the computed 
excitation energies. Calibration calculations using level 
shifts in the range LS = 0.1 0.4 au showed the stability 
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Table 1. CASSCF wavefunctions with (number of active orbitals") and (number of active electrons) 
employed to compute the vertical, adiabatic, and emission electronic transtions of all-?ra?w(10-s- 
c«)-2,4,6,8,10-undecapentaen-l-al and its vertical ionization potentials. 

Wavefunction States No. Config.fc N       c 1' states 

CASSCF(0-12)(12) 1!A', 2!A', 3'A' 4'A' 226 512 4 
CASSCF(0-12)(11) l2A"(n-hole) 339768 
CASSCF(1-10)(14) l'A" 13 860 
CASSCF(1-10)(13) l2A'(n-hole) 34650 
CASSCF(1-12)(12) rtPJXiüs) 339768 
CASSCF(0-12)(12) 13A' 382239 
CASSCF(1-10)(14) 13A" 23100 

" Within parentheses the number of active orbitals of symmetry a'-a" of the point group Cs 
b Number of configurations in the CASSCF wavefunction. 
c States included in the average CASSCF calculation. 

of the computed excitation energies for the singlet A' 
states with respect to the standard CASPT2 results 
(LS = 0.0 au). Therefore only the CASPT2 results with 
no level shift are reported here. In all the cases, CASPT2 
calculations have been performed using the full Fock 
matrix representation of the zero-order Hamiltonian 
[7]. All electrons except the cores were correlated at 
the CASPT2 level. 

The transition dipole moments have been computed 
by means of the CASSCF state interaction (CASSI) 
method [16, 17]. In the formula of the oscillator strength 
the excitation energy computed at the CASPT2 level was 
employed [8, 9]. 

Calculations have been performed using Molcas-3 
quantum chemistry software [18]. 

3.   Results and discussion 
In this section we shall present and discuss the results 

obtained for UND. The present findings will be com- 
pared with the available experimental data on the UND 
system and previous theoretical results of related 
compounds. The study of all-fraftt(10-s-cw)-2,4,6,8,10- 
undecapentaen-l-al is particularly relevant as a trun- 
cated model for the all-frans-retinal molecule. 

Geometry determination of ground-state UND and 
of its low-lying excited states is considered first and 
the vertical excitation energies of UND are analysed 
next. Then the results of the emission and non-vertical 
transition energies are presented. The computed results 
are discussed within the framework of the earlier 
photochemical and photophysical properties of large 
polyenals. 

3.1. Geometry determinations 
Characterization of the ground-state geometry of 

UND  and  the  geometries  of the low-lying excited 
states 'A'fn-diex), lA"(nn*), 3A'(7ut*), and 3A"(mt*) 
to be employed in the spectral study is considered in this 

section. All the geometry optimizations have been per- 
formed at the CASSCF level, using the active spaces 
described in the previous section, with the ANO-S 
type C,0[3s2pld]/H[2s] basis set. The computed bond 
distances and bond angles obtained for the corre- 
sponding states are collected in table 2. 

The most pronounced effect of the non-dynamic rt 
electron correlation on the ground-state geometry of 
UND occurs for the double bonds. The Hartree-Fock 
C=0 and C=C optimal distances are underestimated 
by 0.02 A with respect to the n-CASSCF results. Single 
C—C bond lengths and bond angles are, however, 
similar at both levels of theory. Such a situation has 
been found previously in long polyenes like octatetraene 
[19]. As discussed in the next section, the computed 
vertical excitation energies can be expected to be sensi- 
tive to the geometry employed for the ground state. It is 
due to the different topology of the ground-state surface 
of UND compared with the excited-state surface. The 
geometry determined at the TI-CASSCF level for the 
ground state of UND has been employed in the calcula- 
tion of the vertical excitation energies. 

The carbonyl bond length increases by 0.13 A with 
respect to the ground-state bond distance for the 
1,3A"(n7t*) excited states, in accordance with their elec- 
tronic nature. In order to better visualize the changes on 
the carbon-carbon bonds, figure 2 shows the bond dis- 
tances of the polyene backbone for the lA"(nn*) and 
3A"(nn*) excited states, together with those for the 
ground state. The polyene chain presents bond alter- 
nation of single and double bonds with respect to the 
ground state mainly for the bonds nearest to the 
carbonyl group, in both the singlet and the triplet mr* 
excited states. A similar comparison is performed in 
figure 3 among the ground state, the 'A'(7i-diex), 
and the 3A'(7trc*) excited states. As expected, the 
lengths of the double bonds in the excited states 
'A^Ti-diex)  and 3A'(7T7i*)  increase, while the single 



192 R. Gonzälez-Luque and M. Mcrchän 

Table 2. Geometrical parameters" for the low-lying excited states of the all-7/ww(10-s-r/Y)-2.4,6,8,10-undccapcntaen- 
1-al molecule computed at the CASSCF level (sec active space in table 1) using the ANO-S type C.O[3s2pld]/H[2s] 
basis set. For comparison, results obtained at the Hartrce Fock level for the ground state arc included (data within 
parentheses). Calculations have been performed within the constraints of Cs symmetry. 

Parameter Ground state 'A'(it-dicx) 'A"(mi*) 3A'(7nt*) 3A"(mt*) 

r(C,-0) 1.205(1.190) 1.216 1.337 1.210 1.336 
r(C,-C2) 1.475(1.474) 1.450 1.327 1.464 1.328 
r(C2-C3) 1.353(1.335) 1.426 1.461 1.388 1.458 
r(C3-C4) 1.458(1.458) 1.383 1.370 1.402 1.373 
r(C4—C5) 1.356(1.336) 1.439 1.426 1.437 1.422 
r(C5-C6) 1.456(1.458) 1.394 1.409 1.367 1.412 
r(C6-C7) 1.357(1.336) 1.423 1.385 1.457 1.383 
r(C7-Cg) 1.457(1.458) 1.394 1.447 1.366 1.448 
r(C8—C9) 1.355(1.334) 1.443 1.338 1.440 1.338 
r(C9—C,0) 1.474(1.477) 1.393 1.423 1.415 1.473 
r(C,0-C„) 1.350(1.329) 1.416 1.350 1.382 1.350 

Z(H,C,0) 120.1(120.4) 119.6 111.1 119.8 111.1 
Z(H,C,C2) 116.1(115.0) 116.9 123.4 116.5 123.6 
Z(H2C2C,) 116.8(116.9) 117.1 119.2 116.9 119.2 
Z(H2C,C,) 121.6(122.2) 120.4 118.3 121.0 118.3 
Z(H3C3C2) 118.7(118.8) 117.5 117.2 117.8 117.2 
Z(H3C3C4) 116.8(116.4) 118.3 119.0 117.7 119.0 
/(H4C4C3) 117.1(117.1) 118.4 118.3 118.4 118.3 
/(H4C4C5) 119.4(119.9) 117.5 117.3 117.9 117.3 
/(H5C5C4) 119.0(119.1) 117.5 118.1 117.2 118.0 
Z(H5C5C6) 116.9(116.6) 118.5 118.1 118.7 118.2 
^(HöQCS) 117.0(116.9) 118.3 117.4 118.8 117.4 
^(Hf,C6C7) 119.2(119.6) 117.6 118.1 117.1 118.0 
Z(H7C7C6) 119.0(119.2) 117.4 118.9 117.1 118.9 
Z(H7C7C8) 116.9(116.7) 118.3 117.3 119.0 117.3 
Z(H8C8C7) 116.5(116.4) 118.1 116.5 118.1 116.5 
Z(H8C8C9) 120.1(120.4) 118.7 119.8 118.2 119.7 
Z(H9C9C8) 117.7(117.8) 116.5 117.7 116.7 117.7 
Z(H9C9C]0) 115.4(115.1) 117.2 115.3 117.1 115.3 
^(HinCinC9) 115.0(114.8) 116.4 114.9 115.7 114.9 
^(H|nC|nCn) 117.7(117.8) 116.7 117.6 116.9 117.6 
Z(HuCnC|o) 120.5(120.5) 120.2 120.5 120.4 120.5 
^(Hi2CnC|n) 122.5(122.6) 122.3 122.6 122.5 122.6 

" Bond distances in A and bond angles in deg: see figure 1 for atom labelling. 

bond distances decrease with respect to the ground state. 
Moreover, the bond alternation decreases in 
the alternate character of single and double bonds 
towards the centre of the molecule for the 'A'^-dicx) 
state, but increasing for the 3A'(7ur*) state. No big 
changes are noted for the bond angles of the excited 
states, with respect to the ground-state geometry, 
except for the angles involving the oxygen atom of 
the ''3A"(n7i*) states. The reported geometries opti- 
mized at the CASSCF level for the excited states 
have been used in the computation of the emission 
and non-vertical transition energies implying the states 
of interest. 

3.2.  Vertical transition energies 
Using  the  optimized  CASSCF  geometry  for  the 

ground state of the molecule, listed in table 2, and 

the basis set including diffuse functions, the vertical 
low-lying singlet singlet and singlet triplet transitions 
from the ground state minimum have been studied. 
In addition, the first Rydberg state arising from the 
excitation out of the HOMO to the 3s diffuse orbital 
has been characterized. The results for the vertical 
excitation energies computed for UND arc collected 
in table 3, where the first column identifies the different 
states, the second and third columns give the vertical 
transition energies obtained by the CASSCF and 
CASPT2 calculations, respectively, and then come the 
dipole moment //, computed at the CASSCF level (in 
debye). and the oscillator strengths. 

The l'A"(n7r*) and 2lA'(7r-dicx) states arc found to 
be energetically very close, at the CASPT2 level placed 
at 3.55eV and 3.58eV, respectively. The 3'A'(7i7r*) state 
is slightly above, at 3.77 eV, with a computed oscillator 
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1.48 

10-11 

Figure 2.   Optimal bond distances of the polyene chain, computed at the CASSCF level, for the ground state (full line), the 
3A"(nrc*) (dashed line), and the lA"(nn*) (dotted line) excited states of all-?ran.y(10-s-rä)-2,4,6,8,10-undecapentaen-l-al. 

Table 3. Computed excitation energies (in eV) and other properties of the vertical excited states of all- 
fran.s(10-s-cw)-2,4,6,8,10-undecapentaen-l-al. The optimal ground-state geometry computed at the 
Jc-CASSCF level has been employed. The ANO-S type C,0[3s2pld]/H[2s] enlarged with diffuse 
functions has been used in the spectral study. 

State CASSCF CASPT2 Osc. str. 

Ground state (l'A') 

Singlet states 
l'A'^nn*) 
21A'(7t-diex) 
3lA'(nn*) 
n'A"(7i3s) 

Triplet states 
\3A'(nn*) 
l3A"(nji*) 

3.793 

3.98 3.55 0.743 0.0000 
4.16 3.58 3.746 0.0003 
5.96 3.77 7.115 0.9177 
5.42 5.20 6.068 0.0003 

2.26 1.74 3.882 
3.76 3.32 0.683 

' Dipole moment (CASSCF) in debye. 
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Figure 3.   Optimal bond distances of the polyene chain, computed at the CASSCF level, for the ground state (full line), the 
'A'(jt-diex) (dashed line), and the 3A'(7tn*) (dotted line) excited states of a11-//wiv(10-s-n.?)-2,4,6,R,10-undccapcntacn-l-al. 

strength of 0.9. The 'A'(JUI*) corresponds to the fourth 
root of the average CASSCF performed for the singlet 
states with the same spatial symmetry as the ground 
state. Indeed, the number of roots in the average 
CASSCF calculation for the 'A' states was systemati- 
cally increased to reach the expected intense transition 
to the TtTt* state. Not until the number of roots was four 
was the strong optically allowed transition found. Due 
to the large contribution of the dynamic correlation for 
this transition, about 2.2 eV, it becomes the third 
singlet-singlet transition at the CASPT2 level. The 
extra root computed (not shown in table 3) is placed 
around 4.5 eV at the CASPT2 level, 0.7 eV lower than 
at the CASSCF level. It corresponds to a weak transi- 
tion. On the other hand, the results of the vertical triplet 
states certainly confirm the nn* nature of the lowest 

triplet state, placed at 1.74eV. The l3A"(nn*) state is 
computed to be 1.58eV above the l3A'(n7t*) state. The 
singlet-triplet splittings are calculated 0.23 eV (nn*) and 
2.03 eV (TTTT*), in agreement with a larger penetration of 
the orbitals involved in the latter. It leads to a larger 
exchange integral between the n and n*, that is, to a 
larger predicted stabilization of the nn* triplet state 
within a simple molecular orbital model. As occurs 
with a number of systems and rationalized elsewhere 
[1], for the UND system also we note that twice the 
energy of the 3A \nn*) vertical excitation energy 
(1.74eV) gives in a good approximation (within 
0.1 eV) of the computed vertical excitation energy of 
the 'A'(jt-diex) state (3.58 eV). 

The lowest vertical ionization potentials with a rc-hole 
and an n-holc arc computed to be 7.43(7.54) eV and 
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8.49(9.17) eV at the CASSCF(CASPT2) levels. Accord- 
ingly, the lowest singlet Rydberg state corresponds to 
the A"(7t3s), with a very weak CASPT2 transition 
energy of 5.20 eV. Dynamic correlation has little influ- 
ence for this transition, decreasing the CASSCF excita- 
tion energy by only 0.22 eV. Therefore Rydberg states 
play a minor role in the description of the low-energy 
region of the singlet-singlet spectrum. Transition to 
the lowest singlet Rydberg state is located more than 
1 eV above the most intense feature of the absorption 
spectrum. 

The nature of the valence excited states is similar 
to the corresponding electronic states studied for 3- 
methyl-all-?/-an^( 10-s-c/s)-2,4,6,8,10-undecapentaen-1 -al, 
discussed elsewhere [1]. On the other hand, as expected, 
the A"(n3s) state is described mainly by the 
HOMO —> 3s singly excited configuration, which has a 
weight in the CASSCF wavefunction of 77%. To a good 
approximation, the l2A"(;i-hole) and l2A'(n-hole) 
states of the cationic UND system also are described 
well by a single configuration, with weights in the corre- 
sponding CASSCF wavefunctions of 78% and 85%, 
respectively. 

The computed vertical excitation energies should be 
compared with the observed gas-phase data. As far as 
we know, such experimental data are not available for 
UND. The absorption spectrum measured in solution 
has been reported, however [2]. The computed results 
can be compared with the Franck-Condon maxima of 
the correspondings bands. Apart from the solvent 
effects, which can easily affect the band maxima with 
respect to the theoretical results performed in vacuo, 
one has also to keep in mind that the isomer studied 
might not have to be the most stable in solution. How- 
ever, taking into account the dependence of the spectro- 
scopic properties on the all 16 isomers of retinal [20], a 
minor deviation can be expected between the theoretical 
and experimental findings for this reason. In the one- 
photon spectrum of dodecapentaenal the maximum is 
located in the energy range 3.22-3.31 eV depending on 
the solvent [2]. Considering the expected bathochromic 
character for the most intense transition in solution, the 
CASPT2 result, 3.77 eV, is consistent with the experi- 
mental data available. 

It is interesting also to compare the present results for 
UND and those for its 3-methyl homologue reported 
earlier [1]. Small differences, within 0.02 eV, are found 
between the vertical transition energies corresponding to 
the lA"(nn*), 3A"(n7i*), and lA'(nn*) states of the two 
systems. The transition energies to the 'A'(7t-diex) and 
3A'(nil*) states are, however, decreased for the UND 
system by 0.31 eV and 0.22 eV, respectively. Such a dif- 
ference could be related to the absence of the methyl 
group in UND. Nevertheless, it does not seem to be 

the most likely factor responsible for the additional sta- 
bilization of those states, given its small influence on 
three of the computed transitions. On the other hand, 
the basis set has been enlarged with diffuse functions in 
the calculations for UND. However, a minor influence 
on the computed valence states can be expected from the 
diffuse functions since the corresponding Rydberg states 
of the same symmetry lie higher up in energy. Actually, 
the 1A'(7C7c*) state, where a similar effect due to the 
diffuse functions could be expected, has a similar place- 
ment in both systems. Moreover, the geometry of 
ground-state UND has been determined at the 
CASSCF level, whereas an optimized Hartree-Fock 
structure was employed for its 3-methyl homologue. 
The relevance of doubly excited configurations in the 
singlet Ag-like state leads to a higher degree of bond- 
order reversal, more pronounced than expected for the 
singlet Bu-like state, as occurs for octatetraene [19]. The 
computed vertical excitation energy to the 'A'(7r-diex) 
state is then more sensitive to the geometry employed 
for the ground state. Similar arguments can be applied 
to rationalize the additional stabilization for the 
3
A'(TT7I*) state of UND with respect to its methyl 

homologue. 

3.3. Emission and non-vertical transition energies 
Knowledge of the energy hypersurfaces of the ground 

and low-lying excited states of polyenals is essential for 
the determination of their static and dynamic properties, 
which are particularly relevant in an ample group of 
biologically active chromophores [21-24]. The basic 
understanding of the spectroscopic behaviour of these 
compounds requires not only the accurate computation 
of the vertical states but also the characterization of the 
emission and non-vertical transition energies. 

The basis set (including diffuse functions) and active 
spaces are the same as those used for the vertical transi- 
tions. Then a consistent comparison can be performed 
between the computed absorption and emission spectra. 
As described in section 2, the geometries for the ground 
state and excited state minima have been optimized at 
the CASSCF level. The computed transitions here 
involve the energy differences between the minima of 
the ground state and the excited state (0-0 absorption 
transition) and the vertical emission, from the excited 
state minimum vertically to the ground state potential 
surface (maximum of fluorescence or phosphorescence 
in the emission band). The study includes determination 
of the 0-0 transition and emission maxima for the two 
lowest singlet, 'A"(n7t*) and 'A^ji-diex), and triplet, 
3A"(n7t*) and 3A'(rot*) states. Attempts to optimize 
the geometry for 1A'(7t7t:*) have failed due to conver- 
gence problems. Geometry optimizations are restricted 
to a given root; no state average is implemented in the 
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Table 4. Vertical, adiabatic. and emission electronic transitions (in eV) computed for the a\\-trans(\Q-s-ci.i)- 
2,4,6,8,10-undecapcntacn-l-al molecule. Geometries have been optimized at the CASSCF level (see table 2). 
The ANO-S type C.O[3s2pld] H[2s] enlarged with diffuse functions has been used in the spectral study. 

Vertica ab *orption 0 0 transi tion Emission max. 

State CASSCF CASPT2 CASSCF CASPT2 CASSCF CASPT2 

Singlet singlet spectra 
'A"(n7t*) 3.98 3.55 3.04 2.63 1.58 1.87 
'A'(jt-dicx) 4.16 3.58 3.09 2.48 2.30 2.06 

Singlet triplet spectra 
3A'(jut*) 2.26 1.74 1.49 1.07 0.75 0.75 
3 A "(nit*) 3.76 3.32 2.99 2.60 1.58 1.85 

available gradient codes of the software employed [18]. 
Considering that the 'A'(it7t*) state appears as the 
fourth root of the valence CASSCF calculation, the 
convergence problems arc easy to understand in such a 
complex hypcrsurfacc. However, based on the octate- 
tracne results [19], the 0-0 transition and emission 
maximum involving the 'A'(itit*) state can safely be 
predicted to occur at higher energies than those corre- 
sponding to the 'A'(Tu-dicx) state of UND. For octate- 
traenc, owing to symmetry restrictions, the state 
described mainly by the HOMO —> LUMO configura- 
tion is the lowest root of Bu symmetry and. therefore, its 
geometry optimization has been achieved. The 0-0 
transition and the emission maximum to/from the 
l'Bu state were found to be about 0.1 eV and 0.3 eV, 
respectively, below the corresponding vertical transition 
of the polycne. A much pronounced decrease was, how- 
ever, obtained for the 2!Ag state of the same polycne: 
0.8 eV (0-0) and 1.4eV (emission maximum) with 
respect its vertical excitation energy. As can be deduced 
from table 4, where the results arc collected, the energy 
differences between the vertical excitation and the 0 0 
transition (« 1 eV) and with respect to the emission 
maximum («1.5eV) for the 'A'(it-dicx) state of UND 
have a similar order of magnitude as those for the 2]Ag 

state of octatctraene. 
A weakly allowed state has been observed to be the 

lowest excited singlet state in the one-photon absorption 
and excitation spectra of dodccapcntaenal. On the basis 
of the fluorescence quantum yields and intrinsic lifetime 
data, it has been assigned of Ag-like character by 
Becker, Das and Kogan [2]. The absorption spectrum 
of the compound shows, for instance, at 77 K in EPA, a 
weak but distinctly separated absorption band in the 
2.76-2.85 eV region, on the low-energy side of the 
main absorption band system. This weak absorption 
band becomes even more clearly visible in the excitation 
spectrum. The 0-0 transition for the absorption to the 
'A'(Tt-dicx) state has been computed at 2.48 eV, consis- 
tent with this energy range. The 0-0 transition involving 

the 'A"(n7r*) state is also close, at 2.63eV (CASPT2 
results). Both states therefore arc plausible candidates 
for the observed weak feature in solution, although ;';; 
vacuo the lowest 0 0 transition implies the Ag-likc state. 
On the other hand, the emission maximum (EPA at 
77 K), accordingly assigned to be of Ag-likc character, 
has been observed at 2.19eV [2]. The present result for 
the 'A'(it-diex) state has located the fluorescence max- 
imum at 2.06 eV, in apparent agreement with the experi- 
mental result. Note, however, that the emission 
maximum for the 'A"(nit*) state, at 1.87eV, is predicted 
as the lowest in vacuo. With such a small energy differ- 
ence the ordering of the states can be affected readily by 
the nature of the solvent. The situation is similar for all- 
f/wiv-rctinal. where there has been no unequivocal 
assignment of the lowest excited state (sec recent discus- 
sion in [25]). Evidence based on fluorescence quantum 
yields suggests, however, that the S| state of a\\-frans- 
rctinal is nit* in aliphatic hydrocarbons and Ag-likc in 
hydrogen-bonding solvents [3,22], The present results /;; 
xacuo support that suggestion. 

Table 4 lists also the vertical, adiabatic, and phos- 
phorescence maxima for the triplet nit* and Ttit* states. 
The lowest triplet state clearly corresponds to the 
l3A'(itit*) state. The lowest 0 0 singlet triplet transition 
has been located at 1.07eV, consistent with the 0 0 
assignment in the singlet triplet absorption bands 
induced by oxygen at high pressure reported by Evans 
[5]. The phosphorescence maximum from the 1'A'(itit*) 
state is predicted as about 0.8 eV. 

As stated in the introduction, one of the main pur- 
poses of this study has been to achieve a better under- 
standing of the behaviour of the Ag-likc state, which is 
vertically located well above its 0 0 transition. With the 
0 0 transition and emission maximum energies to hand 
one is tempted to derive the vertical transition from 
these data. Let us assume a perfect mirror rule, that is, 
equal forms for the potential energy surfaces of the 
ground and the 'A'(it-diex) states. Using the CASPT2 
result for the 0 0 transition. 2.48 eV, and the fluorcs- 
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cence maximum, 2.06 eV, one might expect the vertical 
excitation at 2.90 eV, with perfect mirror rule behaviour. 
However, it is 0.68 eV below the computed vertical exci- 
tation energy, at 3.58 eV. The key point is that the 
hypersurfaces of the ground and excited states are 
quite different, and therefore the mirror rule is not ful- 
filled. The 'A'(Tr-diex) state relaxes by 1.1 eV from the 
ground-state geometry to the geometry of its minimum, 
while the ground state relaxes by 0.42 eV from the geo- 
metry of the excited state to its optimal one. It leads to a 
deviation of 0.68 eV from the ideal mirror rule. The 
topology of the two hypersurfaces is intrinsically dif- 
ferent. Small changes in the geometry of the ground 
state yield significant variations in the computed vertical 
transition energy. 

4.    Summary and conclusion 
We have presented results for the excitation and emis- 

sion transitions of the all-?ra«s(10-s-c/,s)-2,4,6,8,10-unde- 
capentaen-l-al molecule, by using the CASSCF/ 
CASPT2 method, which is a well established approach 
for accurate calculations of electronic spectra of organic 
compounds. The study includes geometry optimization 
for the ground state and the excited states 'A'(Ti-diex), 
^"(nn*), 3A"(n7i*), and 3A'(7T7r*) at the CASSCF 
level. An ANO-type basis set of split-valence plus polar- 
ization quality was employed for the geometry optimi- 
zations. It was enlarged with diffuse functions for 
computation of the spectroscopic properties. 

Vertical excitation energies using the optimized 
ground-state geometry have been computed for the 
low-lying valence states. The \xA"(nn*) and 
21A'(7r-diex) appear nearly degenerate, at 3.55eV and 
3.58 eV, respectively. They are below the 3iXK'{n%*) 
state, computed at 2>.llc\, which is related to the 
most intense feature of the absorption spectrum. The 
result is consistent with the absorption maximum 
observed in the absorption spectra in solution. The 
placement of the lowest Rydberg state at 5.20 eV indi- 
cates that Rydberg states have a minor role in the 
description of the low-energy part of the spectrum in 
vacuo. 

The optimized minima for the 'A'^-diex) and 
'A"(n7t*) excited states have been used to compute the 
0-0 absorption and vertical emission transitions. The 
lowest 0-0 transition corresponds to the 'A^Ti-diex), 
at 2.48 eV, and the lowest emission comes from the 
'A'^nTr*) state, at 1.87 eV. Owing to the small energy 
difference between the two states in both features, the 
0-0 absorption and the fluorescence maximum, the 
nature of the solvent may easily reverse the predicted 
state ordering in vacuo. Indeed, the computed fluores- 
cence maximum for the 'A^Ti-diex), 2.06 eV, is in 
agreement with the observed emission maximum in an 

alcoholic solvent (EPA at 77 K) at 2.19 eV and, there- 
fore, supports the assignment of the observed feature. 
The findings also give further support for the mi* state 
of free all-Zrans-retinal, or in aliphatic hydrocarbons, as 
the lowest, while the Ag-like state becomes the lowest in 
hydrogen-bonded solvents. On the other hand, the com- 
puted singlet-triplet absorption and emission spectra 
reveal the lowest triplet state to be of nn* character. 
The l3A'(7i7i*) state is vertically placed at 1.74eV, 
with a singlet-triplet 0-0 transition of 1.07 eV, and a 
predicted phosphorescence maximum of 0.75 eV. 

Similar spectroscopic characteristics can be expected 
for the corresponding Schiff base of the UND system. 
Apparently, the lack of mt* states in the low-energy 
region might simplify the study. A parallel investigation 
of the simplest protonated Schiff base of UND, together 
with the corresponding potential energy surfaces along 
the biologically active twisting coordinates, is currently 
under way at the same level of theory. 

The research reported in this paper has been per- 
formed within the framework of the DGICYT Project 
No. PB94-0986 of Spain and of the European Commis- 
sion TMR network contract ERB FMRX-CT96-0079 
(Quantum Chemistry of the Excited State). Technical 
assistance by W. Diaz is gratefully acknowledged. 
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Complete active space SCF (CASSCF) calculations followed by second order perturbation 
calculations (CASPT2) are performed for the ground state and for some low lying excited 
states of the S2 molecule di-cation and tri-cation. Spectroscopic values of the S2 parent 
molecule and its ions, Sj, S2

+, and S2
+ are calculated from the potential energy curves. The 

performance of the active space selected for CASPT2 and the ANO (atomic natural orbitals) 
basis set is verified by coupled cluster CCSD(T) calculations for ionization potential and 
spectroscopic constants of the S2 molecule and its Sj cation as well as for ionization potentials 
of the sulphur atom. Due to a multireference character of the potential energy curve of the 
doubly and triply charged S2 cations the performance of CCSD(T) deteriorates at longer 
distances from the minima and is thus not applicable over the whole surface. The stability 
of the title ions is discussed in terms of the barrier height and half-widths together with the 
tunnelling lifetimes for the metastable electronic states. It is shown that the metastable S2

+ and 
S2

+ cations are the ground states for the respective ions (the closed shell !£g state and the 2II 
state, respectively) and that repulsive curves are far from their low vibrational levels. That 
means that the depletion mechanism through predissociation is improbable. It is shown that 
especially the S2

+ ion is able to release a considerable amount of energy, 6.97 eV, after its 
decay. For the S2

+ ion it is 1.24eV. The barrier for dissociation is 2.73 eVfor S2 and 0.66 eV 
for S2

+. The lifetimes for both metastable cations are predicted for a few vibrational levels. 
For both ions, S2

+ and S2
+, we have also detected additional (excited) metastable states: The 

3E+, 3AU and 3IIg states for S2
+ and the 2E+ state for S2

+. The stability of the excited 
metastable states is expected, however, to be lower since they exhibit a lower barrier in 
comparison to the ground states of both ions. Their eventual experimental detection still 
appears to be possible. 

1.   Introduction 
This work was primarily inspired by the experimental 

work of Cornides and co-workers [1] who used spark 
source mass spectrometry to detect rather unusual S\+ 

and other related small molecular ions. At first sight, 
this triply charged species should readily undergo 
destruction due to a 'coulomb explosion'. To a lesser 
extent this also applies to the S2;4" ion to which we also 
paid attention. This doubly charged species is, however, 
expected to exist [2] since it is more-or-less valence iso- 
electronic with the known oxygen di-cation, studied 
both experimentally and theoretically [3-7]. In analogy 
to Ol+, there is also a triple bond in the Sl+ ion since 

two electrons are removed from the antibonding ng orbi- 
tals of the ground state of the parent S2 molecule during 
ionization. This consideration leads to a possibility of 
the existence of this species. The bond lengths and the 
energies of the Sj and S^+ ions relative to the sulphur 
molecule were calculated at the correlated level by 
Balaban et al. [2]. They did not present any information 
about the barrier preventing the dissociation of either 
S\+ or any other spectroscopic states. The triple charged 
cation, Sl+, which is of central interest to this work, 
seems not to have been investigated by any theoretical 
method. Yet this is important, since the mass spectro- 
metry experiments only give information about the very 

0026-8976/98 $1200 © 1998 Taylor & Francis Ltd. 
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existence of this species and not about its structure, 
barrier to dissociation, possible depletion mechanisms, 
energy obtained after the decay, etc. 

All multiply charged ions which we have mentioned 
so far are metastable. The metastabilty in AB"+ arises 
from the existence of a local minimum due to the inter- 
action between an attractive channel A + B"4 and repul- 
sive channels Ap+ + B9+, p + q = n, or, in other words, 
from a competition between an ordinary chemical bond 
and an essentially electrostatic repulsion. Recent excel- 
lent reviews present an overview of both experimental 
and theoretical developments in this field [8,9]. The rela- 
tive asymptotic energy (see, for example [10,11]) is esti- 
mated by relative ionization potentials of the fragments 
A and B. In, for example a specific case of p,q = 1, 
AE = E[A + B2+] - £[A+ + B+] = IP(B+) - IP(A). If 
such a double charged diatomic cation should have a 
possibility to show metastability, the second ionization 
potential of either A or B should be larger than the sum 
of first IPs of the components, IP(A) + IP(B). In fact, 
the original idea dates from 1933, when Pauling [12] 
predicted the existence of the metastable He24 ion. 
Thus, a general chemical and theoretical interest in 
understanding the unusual chemical phenomenon of 
metastability is another motivation for this work. In a 
broader perspective one can mention that metastable 
molecules are potential candidates as energy storage 
and energy transfer devices [8,9,13]. Understanding of 
related phenomena at the molecular level with some 
relation to novel technological applications is in this 
respect of great potential interest. In general, the meta- 
stable species may have energies very much in excess of 
the global minima corresponding to two separated spe- 
cies (with a lower charge as a metastable molecule). For 
example, energetical aspects of the He2+ ion were dis- 
cussed by Nicolaides [14] who describes its ground state 
as a 'volcanic' state. He presents a series of possible 
chemical reactions capable of releasing enormous pro- 
pulsive energies in the range 230-1000 kcal moP1. 
Finally, metastable cations have large oxidation power. 

In general, the investigation of metastable multiply 
charged cations is difficult both experimentally and the- 
oretically. Experimental work encounters difficulties in 
producing relatively high concentrations of these short 
living species, and at the same time in detecting them. 
Due to the experimental difficulties, most of the infor- 
mation about these systems arose from theoretical cal- 
culations, even if progress in experimental techniques 
changes this situation gradually [3,8,9]. A theoretical 
description is difficult as well, and can fail even qualita- 
tively [4,8-9,15]. To obtain accurate results the use of 
multireference techniques is highly desirable in a 
description of a phenomenon in which a substantial 
characteristic is a curve crossing. An extended basis set 

is another requirement. In any reasonable theoretical 
description one also has to consider that the mechanism 
of depletion can be based on thermal decomposition, 
non-radiative transition (i.e. tunnelling through the 
potential barrier), predissociation resulting from the 
bound-repulsive crossing, as well as by radiative transi- 
tions (for metastable but electronically excited states). 
These mechanisms were discussed, for example by 
Bruna and Wright [16] and Lundquist et al. [3]. Thus 
a combination of both theoretical and experimental 
techniques is very often the most advantageous 
approach. More general considerations can be found 
in the literature, sec for example [8,9,16], Other related 
homonuclear diatomics are, for example, B24 [10], CV 
[17], N24 [18]. F2,4 [19]. Some of the above species arc 
reported as possible ionospheric molecules (e.g. N24). 
Triply charged homonuclear diatomics arc very rare, 
see e.g. Ali4 [16]. Even more highly charged diatomics 
were investigated [20] but usually without any detailed 
consideration of their potential energy curves, stability, 
and energetics. Interestingly, relativistic effects arc 
observed in the hcteroatomic metastable HBr24 and 
DBr24 [21]. 

2.   Methods and computational details 
All calculations performed within the present study of 

the S2 molecule and its ions were carried out with all 
electrons taken into account. The electronic wave func- 
tions are expressed in terms of contracted sets of Gaus- 
sian-type orbitals (GTO/CGTO). After some pilot 
calculations with a series of smaller sets we arrived at 
the ANO(17sl2p5d3f) primitive set contracted to the 
spherical [7s6p4d3f] set [22], i.e. altogether 132 basis 
functions. The computational point group was D2|,. 
The computer program MOLCAS-3 [23] was used 
throughout for all CASPT2 calculations [24]. 

The CASPT2 calculations rely on the CASSCF wave 
function which serves as a reference for the second order 
perturbation theory treatment of the dominant effect 
from the dynamical correlation whilst the CASSCF 
wave function itself should be capable of covering all 
the multireference aspects of the electronic structure, 
or, in other words, all near-degeneracy effects. These 
arose in the present case primarily from the effects of 
the sulphur 3p orbitals. By far the largest CI coefficient 
in the CAS expansion for both S24 and Si4 is the double 
excitation from the bonding 2rcu orbital to the anti- 
bonding 2ng orbital. Its weight, of course, depends to 
a large extent on the interatomic distance: near equili- 
brium it is relatively small, e.g. for S}4 at R = 1.95 A it is 
0.044. 

The ground electronic state of S2 is 3E~ with the 
electron   configuration   expressed   as   la2lo22a22o2 
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3CTg3cTuln:ul7rg 4ag4a„5ag ITC^ITC^. After removing the 
two antibonding electrons from the 2rcg orbital we 
arrive at the formally triple (2.5) bond in the S^+ (and 
S|+) cation, respectively. In all CASSCF/CASPT2 cal- 
culations the electrons in Iaglau2c7g2au orbitals were 
frozen. Corresponding electrons were left uncorrelated 
in all subsequent PT2 calculations as well. The best 
selection of the active space for the CASSCF calculation 
would be the (20002000-11101110-42214221) space 
with ten (nine) active electrons for Sl+ (Sl+). The nota- 
tion means (frozen-inactive-active) orbitals with the full 
CI wave function being created from all possible elec- 
tron configurations of active electrons distributed in 
active orbitals which correspond to a desired spectro- 
scopic state. The remaining effects of the dynamical cor- 
relation arise from excitations from/to inactive and 
active orbitals to remaining secondary orbitals and are 
treated by the second order perturbation theory with the 
multireference CASSCF zeroth order wave function 
[24]. The above mentioned active space includes all 
dominant near-degeneracy effects, and also orbitals 
dominated by all five sulphur d-orbitals, which appeared 
in some cases to be relatively important (their occupa- 
tion numbers approached a value of 0.02). The only 
inactive ones are the 3ag3aul7tul7tg which arise from 
the sulphur 2p orbitals. This active space was, unfortu- 
nately, not applicable at the CASPT2 level with the 
computer resources available to us. It lead to more 
than a million reference Configuration Space Functions 
(CFSs). We used it in some comparative calculations for 
S2+ at the CASSCF level only. Other active spaces 
which we have examined were the (20002000- 
11101110-21102110) space (the smallest possible one), 
followed by the (20002000-11101110-31103110) active 
space and the (20002000-21102110-32213221) space. 
The (31103110) active space has an advantage of con- 
sidering the 4ag4au orbitals as active but it treats only 
the two (3d0 and 3d2+) sulphur correlating d-orbitals, in 
contrast to the (42214221) active space. Finally, we used 
the (32213221) active space, applicable in all cases of 
interest. It exhibits some similar characteristics as the 
largest (42214221) space but at the price of shifting the 
4cTg4au orbitals among the inactive and thus reducing 
the number of active electrons by four. The corre- 
sponding excitation coefficients from these 4agM orbitals 
appear not to be dangerously large in the PT2 treatment, 
and the corresponding denominators are in most cases 
larger than 1.0. The shorthand notation including the 
active orbitals will only be used in the subsequent text 
and tables. 

The relatively high weight of the dominating reference 
determinant in the vicinity of the (local) minima of the 
sulphur molecule and its cations allows the use of the 
highly sophisticated coupled cluster (CC) calculation in 

this region. This method in its single reference form is 
not applicable over the whole potential curves and thus 
the CC calculations only serve for test purposes of the 
more generally applicable CASPT2 method. The reason 
for using CC is that it is supposed to provide a more 
dynamical correlation and thus more accurate results in 
cases where the strongly dominating single determinant 
reference can be defined [25-27]. We used it at a level in 
which the single and double excitations (CCSD) [28] and 
perturbative (non-iterative) corrections for triple excita- 
tions from the unrestricted SCF HF reference function 
[29] were included. The particular version of perturba- 
tive corrections (T3(CCSD)) to CCSD energies 
employed in the present study includes an additional 
fifth order singles-triples term [30] and is referred to 
by the acronym CCSD(T). All electrons with the excep- 
tion of the innermost eight Iallctl2al2al electrons 
were explicitly correlated 

The computer program ACES II [31] was used 
throughout for UHF-CC calculations. 

The potential energy curves were used to solve the 
Schrödinger equation for rotational-vibrational 
motion of the nuclei by Numerov-Cooley integration 
[32]. The metastable states arising in the S2

+ and S2
+ 

ions were treated by using the methodology introduced 
by LeRoy and co-workers [33]. We used the Airy func- 
tion criterion for the wave function to find the position 
of minima and maxima and a semiclassical approach to 
calculate their widths and lifetimes. The energy levels 
were fitted to provide standard spectroscopic constants 
of S2

+ and S2
+. Rotational and vibrational states 0,0- 

0,20 were usually used in calculations of Be and states 
0,0-0, vmax were used in calculations of we and uexe. Of 
course, vmax is not the same for different states and 
changes with the well depth. We have considered all 
possible vibrational states with the exception of the 
highest few which would worsen the final fit. 

3.   Spectroscopic characteristics and ionization 
potentials of the sulphur atom and the sulphur molecule 

3.1. Spectroscopic characteristics 
It was not the purpose of the present paper to produce 

as accurate as possible spectroscopic constants of the 
parent S2 molecule. Instead we only want to show that 
the basis set and methods used in this study are capable 
of providing reliable results at least in cases where 
experimental values are available. This can partly 
demonstrate the predictive power of applying the 
methods to multiply charged ions whose properties are 
not experimentally known. Still the very good agreement 
of spectroscopic constants with experiment for S2 and 
S^, see table 1, does not guarantee the quality of the 
active space and the capability of the CASPT2 method 
to describe correctly the most difficult region around the 
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Table 1. Energy values and spectroscopic constants for the Si molecule in the ground state. (3Ef), and its Sj ion in the II state. 
Interpolated total energies (+ 195 for Si and + 194 for Sf) in au. dissociation energies in eV, equilibrium distances in l(Tinni, 
other values in cm-1. 

Re D" U)c UJcXe B, AG,/2 AG.,/2 AGi/2 

S2 molecule 
RASSCF-3221 1.890 0.255920 4.173 1AA 2.51 0.2953 738 733 727 
CASPT2-3221 1.892 0.574230 4.575 

(4.530) 
730 2.60 0.2946 725 720 714 

CCSD(T) 1.892 0.602465 4.594 735 2.66 0.2945 730 724 719 

Selected reference results 
MRCI + Q[34] 1.900 0.456 77 4.261 719 2.84 0.292 
CI-SDQ(S) [35] 1.895 3.82 728 724 718 
Experimental [36] 1.8892 4.414 726 2.844 0.2955 720 714 709 

Sj ion 
RASSCF-3221 1.827 0.930142 5.506 820 2.03 0.3161 817 809 802 

CASPT2-3221 1.831 1.231 109 5.314 
(5.265) 

796 2.44 0.3146 791 785 778 

CASPT2-3110 1.833 1.233051 5.214 793 2.43 0.3139 787 782 775 
CCSD(T) 1.827 1.261252 5.468 812 1.62 0.3159 808 803 797 

Selected reference results 
CI-SDQ(S) [35] 1.827 4.65 818 812 806 
Experimental [36] 1.825 5.42 790 

The ZPE correction is 0.045 ev for the S: molecule and 0.049 eV for the S4 ion. Numbers in parentheses include ZPE. 

maximum on potential energy curves for the metastablc 
species. Very good agreement of CASPT2(32213221) 
spectroscopic constants for S2 and S^ with CCSD(T) 
results (in this case CCSD(T) is perfectly applicable) 
also confirms the reliability of our approach. The 
quality of the basis set can be assessed from the compar- 
ison with recent benchmark calculations by Woon and 
Dunning [34] who used the multiconfiguration CI and 
the correlated consistent cc-pV5Z basis set of valence 
quintuple zeta quality. The accuracy of present results, 
as deduced from the comparison with experiment, is 
essentially the same as that obtained in Woon and Dun- 
ning's study. Good agreement with the experimental 
values is also found for spectroscopic constants of the 
S4" ion. The difference of the dissociation energy from 
experiment is, similarly as with the parent molecule, 
about 0.1 eV which is considered to be satisfactory for 
the present purposes. Both the bond distance and. espe- 
cially, the harmonic vibrational frequency are in excel- 
lent agreement with experimental results. 

3.2. Ionization potentials 
The capability of obtaining reasonable ionization 

potentials is another critical test of the methods used 
in the investigation of metastablc molecules. IPs for 
the sulphur atom arc experimentally known to a high 
accuracy, while in the S2 molecule only the first ioniza- 

tion potential is reliably available from experiment. 
Table 2 shows that again, as with the spectroscopic con- 
stants, our methods at the level in which they account 
for a sufficient fraction of the dynamical correlation (i.e. 
CCSD(T) and CASPT2) arc mutually consistent. The 
deviation from experiment at the CASPT-32213221 
level is largest for the first IP of the sulphur atom, 
0.242eV, i.e. it differs from experiment by about 2.4%. 
At the CCSD(T) level it is only slightly smaller 
(0.205 eV). Because ionization potentials with quite dif- 
ferent methods arc similar, the error must reflect the 
basis set effect. The second and third atomic IPs arc 
accurate to within 0.07 and O.lOeV, respectively, 
which is very satisfactory. The first IP for the sulphur 
molecule deviates from experiment by only 0.02 eV, 
which must be considered an excellent but fortuitous 
agreement. The second IP of the molecule is only esti- 
mated [2] and can hardly serve as a test of the method. 
Where experimental data arc available, the agreement of 
the calculated and experimental values may be consid- 
ered to be good, at least for the present purposes. 

4.   The metastability of the S*4 ion 
We have investigated altogether five electronic states 

of S;4. Three of them, the ground state 'S4, (... 5aj;27t*) 

and the two low excited states, the 3E„ (... Sa^Ti^n^,) 
and the 5E+ (... 5CT|27TU27I|) dissociate into two sulphur 
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Table 2.   Ionization potentials of the sulphur atom and adiabatic ionization potentials 
of the sulphur molecule (eV) ". 

Starting/final species Experiment* CASSCF CASPT2 CCSD(T) 

Sulphur atom (3P) 
S/S+(4S) 10.360 9.742 10.118 10.159 
S+/S2+(3P) 23.33 23.25 23.40 23.31 
S2+/S3+(2P) 34.83 34.40 34.73 34.72 

Sulphur molecule (3Eg~) 
s2/s2

+ (2ng) 9.36 8.865 9.337 9.285 

S2
+/S2+ ('£+) 16.6C 16.377 16.873 16.845 

s2+/s3+ (2nu) — 29.171 29.246 29.279 

" RASSCF and CASPT2 results with the (32213221) active space. UHF-CCSDT(T) 
with Is and 2s electrons frozen. Bond lengths as defined in table 2. 

b Atomic data from [37]; molecular data from [36]. 
c Estimate taken from [2]; vertical ionization potential given in [36] is 15.58 eV. 

;2+ Table 3. Metastable spectroscopic states of the S2 ion and their barrier characteristics: the position of the minima and maxima 
jRmin, i?max (in 10~'° m), the barrier height Vb and the dissociation energy De related to the respective fragments (in eV), and 
spectroscopic constants (in cm-1). 

Method/State ■"min -*Mnax K If* We wexe Be AG,/2 AG3/2 AGc
5/2 

'Eg, the ground state 
CASSCF-31103110 1.809 2.747 2.25 2.05 808 5.45 0.322 796 786 776 
CASPT2-31103110 1.793 2.861 2.62 1.36 828 5.18 0.328 816 807 797 
CASSCF-32213221 1.781 2.767 2.73 1.59 871 5.14 0.332 859 850 840 
CASPT2-32213221 

3EU
+ 

CASPT2-32213221 

1.789 2.888 2.73 1.24 833 5.19 0.329 822 812 802 

2.037 2.817 0.70 3.37 493 6.44 0.253 481 467 454 
CASPT2-31103110 0.63 3.51 494 6.21 0.251 481 470 456 

CASPT2-32213221 
3ng 
CASPT2-32213221 

2.002 

1.885 

3.002 

2.486 

1.33 

0.85 

2.54 

3.78 

559 

641 

5.64 

6.84 

0.262 

0.295 

548 

628 

535 

612 

524 

599 

" Includes the ZPV correction which is 0.052 eV for the 'E+ ground state; 0.031 eV for the 3E„ state; 0.035 eV for the 3AU state 
and 0.040 eV for the 3IIU state with the CASPT2-32213221 method. 

b Dissociation products are S+(4S) + S+(4S) for '£+ and 3E+ states; for the 3AU and the 3IIg states the products are S+(4S) + 
S+(2Z>). 

c The potential energy curve supports 37 vibrational levels of the 'Eg state, 14, 25, and 13 vibrational levels of the 3E„, 3AU, and 
3nu states, respectively (CASPT2-32213221 data). 

S+ ions in their ground state, i.e. the 4S state. The 'Eg 
and 3Eu states are metastable. Metastability also exhibit 
the 3AU state (... 5c7g27tu2ttg) which dissociates into the 
S+(4S) and S+(2D) fragments and the 3IIg state 
(... 5CTg27i427rg) with the same dissociation limit. The 
characteristics of all metastable states are collected in 
table 3. The potential energy curves are presented in 
figure 1. Energy characteristics in table 3 show only 
marginal differences between CASPT2-31103110 and 
CASPT2-32213221 results. CASSCF results between 
the two active spaces differ much more, as could be 
expected. To be more specific, CASSCF-31103110 and 

CASSCF-32213221 barrier heights and dissociation 
energies both differ by 0.5 eV between the two active 
spaces, but the difference at the CASPT2 level is reduced 
to 0.1 eV. All AG(n+ 1/2) vibrational levels differ by 
63-64 cm"1 at the CASSCF level between the two 
active spaces and are reduced by an order of magnitude 
to 5-6 cm-1 at the CASPT2 level. These differences can 
be considered as the error bars of our results for a spe- 
cific quantity. 

The ground state of the S2
+ ion with its electronic 

configuration ... 5CTg27t4 forms a triple bond. It is then 
not surprising that its bond length is shorter than that of 
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Figure 1. Potential energy curves for the Si4 cation in its 'E4 

ground state and four low lying excited states with the 
CASPT2-32213221 method. 

the parent molecule, S2 (compare data in tables 1 and 3), 
by about 0.103 A at the CASPT2 level. The barrier for 
the ground state is sufficiently high to allow detection 
since, in adddition to a predicted stability towards the 
tunnelling (the lifetime in the ground vibrational state is 
enormously large) it is also not crossed by any other 
repulsive curve which would lead to decay via prcdisso- 
ciation. Similarly as the ground state the 3E4 

excited state is also not crossed by any repulsive curve. 
Even if its barrier is much lower than that for the 
ground state, it still should be sufficiently stable. 

A comparison of our calculations with experimental 
work and theoretical calculations for the valence isoelec- 
tronic 02

+ ion is interesting. Lundquist et al. (see [3] and 
references therein) combined an experimental observa- 
tion of a Doppler free energy release spectrum with 
sophisticated MR-CI theoretical calculations, but 
experimentally could describe only the 3AU excited 
state and higher states. Also the work by Fournier et 
al. [7] is a combined experimental/theoretical treatment. 
Let us start with a comparison of states dissociating to 
X+(4S) + X+(4S) fragments (X = 0 or S). For this dis- 
sociative channel a comparison of S2

4 and 02
4 ions is 

more accessible when theoretical results are used for 

both 02
4 [3-7] and S2

4 ions. The ground state for 
both molecules is *E+, and exhibits mctastability. The 
5E4 is repulsive in both cases (for S2

4 we observe a 
shoulder, but definitely no local minimum), while the 
3Eu state is metastablc in S;4 but repulsive (with a 
shoulder on the potential energy curve) in the 02

4 ion. 
This is the most striking difference between the two ions. 
There was a long lasting discussion about the possibility 
of the existence of a local minimum for the 3E+, state of 
02

4. Finally this possibility was definitely excluded [5]. 
It is difficult to speculate about the reason for the exis- 
tence of the metastablc character of the same state in 
Si4. The non-existence of the mctastability in 02

4 was 
discussed [7] on the basis of the mixing of the 3E„ state, 
...3cTgl7t3l finery with the much higher state of the 
same symmetry and multiplicity but with the domi- 
nating configuration .. .3agl7tul?tg3ai which is strictly 
repulsive. The 5au orbital in S2

4 is analogous to the 
'critical' 3ou orbital. We found only small occupation 
of this orbital (0.05 in the final CASPT2 wave function) 
in S;4 at a distance of 2.0 A. To circumvent a possibility 
of an artefact due to a necessarily limited active space we 
also present in table 3 calculations with our alternative 
active space. 31103110, in which 4a4,4ou orbitals arc 
included in the active space (but not all orbitals to 
which the sulphur d-orbitals contribute significantly). 
Energy values obtained with this active space -the bar- 
rier height and the dissociation energy -differ from the 
32213221 active space by 0.1 eV, but an artefact in our 
finding of mctastability due to the limitation of the 
active space is definitely excluded. Due to the high 
quality and the size of the ANO basis set which wc 
used the basis set effect also can be excluded. 

Returning to the 'E4/ ground state, wc can note that 
the barrier is 2.73 eV for S;4 compared to a barrier of 
3.59 eV for 02

4 and the dissociation energies arc 1.24 
and 3.92 eV, respectively, for the two ions. The har- 
monic vibrational frequency for 02

4 is 2147cm-1, i.e. 
much higher than is our value from table 3 (we present 
here values from [5] for 02

4), but this is a natural con- 
sequence of the different atomic masses of the two 
atoms. 

The 3AU state of S2
4 can be compared with the same 

state observed in 02
4 experimentally and theoretically 

[3]. Both are metastablc with 25 vibrational levels sup- 
ported in S2

4 for this state and three levels for 02
4. The 

release energy is 2.54 eV in S2
4 and 6.89 eV in 02

4, the 
barrier is 1.37 in S2

4 and substantially lower, 0.146eV in 
02

4. The 3AU state is crossed by the 5E* state in both 
ions (in 02

4 actually at the r = 0 level) but no prcdis- 
sociation is observed since the two states do not interact 
[3]. 

The 3ng state is also metastablc in both, S2
4 and 02

4 

di-cations.  Normally  they would  dissociate  to  their 
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Figure 2. Potential energy curves for the S\+ cation in its 2ITU 
ground state and four low lying excited states with the 
CASPT2-32213221 method. 

respective X+(4S) and X+(2D) fragments, but due to 
crossing with the 5S^ state predissociation occurs if 
the spin-orbit coupling is considered. The final products 
then are the lowest electronic states of the two X+(4S) 
ions. This is experimentally observed [3] in 02+ and can 
certainly be expected in S2+ as well. The 3ng curve of 

S2
+ is crossed by the repulsive 5£g curve very close to its 

minimum, see figure 1. 

5.   The metastability of the S|+ ion 
Also for this multiply charged molecular ion we have 

investigated several electronic states, five altogether. 
Four of them, the ground state 2nu (... 5al2%\) and 
the three low excited states, the 2T^ (... 5crl27i4), the 
4ng (... 5CT

2
27C

2
2T4), and the 4£+ (... 5CT^2<2^) dis- 

sociate into the sulphur S+(4S) and S2+( P) ions, i.e. 
their ground states. The 4AU state dissociates into the 
S+(4S) + S2YD) ions. 

The ground state 2nu and the 2S^" states are meta- 
stable. The characteristics of both metastable states are 
collected in table 4. The potential energy curves are 
presented in figure 2. In figure 3 we present a compar- 
ison of CASSCF, CASPT2 curves with three different 
selections of the active space and the CCSD(T) curve. 
The CCSD(T) procedure did not converge for distances 
longer than 2.8 A. For distances a bit shorter there were 
observed symmetry broken solutions. The fact that 
single reference MBPT and CC methods, normally 
very powerful, are not applicable in investigations of 
the metastable molecules where the truly multireference 
description is needed, is well known [4,15]. All three 
CASPT2 curves show very similar (even if not identical) 
behaviour and even the CASSCF-32213221 curve is 
qualitatively correct. The energy characteristics in 
table 4 demonstrate little sensitivity to the selection of 
the active space and agree to within 0.02 eV in the bar- 
rier height and to within 0.09 eV for the dissociation 
energy. The vibrational spacing AG(n+l/2) values 
agree less satisfactorily in the two larger active spaces 
which, however, does not change the overall picture 
dramatically.  For example,  both  CASPT2-32213221 

Table 4. Metastable spectroscopic states of the S^+ ion and their barrier characteristics: the position of the minima and maxima 
•Kmin. -Kmax (in 10~10 m), the barrier height Vb and the dissociation energy De related to the respective fragments (in eV), and 
spectroscopic constants (in cm-1). 

Method/State -*^min "max K Df We wexe Be AG1/2 AG3/2 AG§/2 

2nu, the ground st. 
CASSCF-31103110 
CASPT2-31103110 
CASSCF-32213221 
CASPT2-32213221 

^g 
CASPT2-32213221 

2.033 
2.001 
1.970 
2.005 

1.891 

2.780 
2.782 
2.773 
2.818 

2.402 

0.54 
0.68 
0.80 
0.66 

0.36 

7.15 
7.06 
7.06 
6.97 

7.82 

474 
509 
558 
479 

549 

7.23 
6.63 
7.47 
6.71 

14.12' 

0.254 
0.262 
0.270 
0.261 

0.293 

459 
495 
543 
473 

520 

445 
482 
529 
448 

493 

431 
470 
514 
436 

463 
a The difference of energy between products and the respective local minimum. Includes the ZPV correction which is 0.031 eV for 

the 2nu ground state and 0.034 eV for the 2E+ state with the CASPT2-32213221 method. In fact with all other methods very similar 
values are obtained. 

2s b Dissociation products are S+(4S) + S2+(3P) for both metastable, 2IIU and 2E+ 
-   ■ ■ ■ in- 

states. 
the potential energy curve supports 14 vibrational levels of the ZUU state and" 6 vibrational levels of the   Eg state (CASPT2- 

32213221 data). 
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Figure 3. A comparison of the potential energy curves for 
the 2nu ground state of the S}4 cation using the 
CASSCF and CASPT2 methods with different selections 
of the active space and with the CCSD(T) curve. 

and CASPT2-31103110 curves do support 14 vibrational 
levels in the 2IIU ground state potential well. 

There is no similar triply charged positive homonuc- 
lear diatomic molecule known to us with which our 

results for S,+ could be compared. Possibly the most 
closely related ion is Al'4 [16]. This tri-cation, however, 
exhibits mctastability in highly excited states, which arc 
crossed by dozens of repulsive curves. Its ground state is 
fully repulsive, in contrast to SV. Also, the ground state 
of SV is well isolated from any other curve and is not 
crossed by any repulsive curve considered in the present 
study. Considering the electronic structure of the nu 

ground state one can hardly expect any other curve 
with energies low enough to be able to cross the Ilu 

curve at sufficiently low vibrational states. The lifetime 
(formally more than 1060 s for the v = 0 vibrational level) 
should be long enough to allow its spcctroscopic inves- 
tigation. The mass spectroscopy detection [1] was suc- 
cesfully performed long ago, but the experimental 
investigation of the properties of the mctastable states 
of Si+ is still missing. Even the low lying mctastable 2£g 
state may possibly be detected, although its barrier is 
much lower and correspondingly the lifetime is much 
shorter than for the ground state. 

We present in table 5 lifetimes for selected mctastable 
states as calculated from the halfwidth of the barrier 
following the standard procedure [33]. We note that 
the lifetime for, e.g. the 'E4 state of S24 is larger than 
10ins up to the vibrational quantum number 31, and 
similarly, for its 3AU state up to the vibrational quantum 
number 19. We stress that the lifetimes presented here 
are lifetimes with respect to a spontaneous non-radiative 
dissociation. They are often enormously high and have 
no direct relation to experimentally observed lifetimes. 
In experimental investigations the stability (and hence 
the halfwidth) is influenced by phenomena perturbing a 
mctastable state, such as radiative broadening and colli- 

Table 5.    Lifetimes (in seconds) for selected spcctroscopic states"   of mctastable S' . 

Vibration quantum number s^£u
+) S;4(3n^) S^4 (2nu) sV(2K) 

0 b b b b 
1 b b b b 
2 b b b 0.99 x 10s 

3 b b b 0.32 xlO3 

4 b b b 0.40 xl0~2 

5 b b b 0.19 xlO'6 

6 b b b 
7 b b b 
8 b 0.38 xlO7 b 
9 0.90 x 10y 0.69 xlO2 0.10 xlO" 

10 0.19 x 10s 0.30 xlO^2 0.37 xlO4 

11 0.92 x 10 0.35 xlO-6 0.25 xlO 
12 O.lOx io-( 0.13 xlO-9 0.34 xlO^4 

13 0.27 x io-; 0.11 xlO-7 

" Lifetimes for the S24 'Eg and 3A„ states for lowest 14 vibrational levels arc larger than 
1010 seconds and are not presented. 

* Only lifetimes smaller than 10in seconds arc presented. 
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sional  broadening.  Evaluation  of these effects  goes 

beyond the scope of the present paper. 

6.    Conclusion 

The electronic ground states of the S^'Eg) and 

S2+(2II) ions are metastable. For S\+ this confirms the 

experimental evidence of its very existence, even if prop- 

erties of this ion remain experimentally unknown. Con- 

sidering all deficiencies related to approximations 

involved in our calculations of the lifetimes for these 

species we believe that they are stable enough to allow 

a detailed experimental investigation of their properties. 

This view is supported by a comparison with a similar 

species, the 02+ cation, which is experimentally well 

known. We also conclude that metastable excited 

states of S2+, namely 3E„, 3AU and 3ng states, exibit 

sufficiently high barriers to dissociation. Energy curves 

support enough vibrational levels (14, 25 and 13, respec- 

tively), and estimated lifetimes appear to be sufficiently 

large to allow experimental detection and investigation 

of excited metastable states as well. The S3,4" cation also 

exhibit metastability not only in the ground state but 

also in its 2E* state. We believe that for metastable 

states of S2 , similarly and on the basis of the same 

arguments as with S2+, the experimental investigation 

is possible as well. 

The methods used in the present study are considered 

to be reliable enough to encourage an experimental 

study of a variety of the electronic states of both S2+ 

and S3,4" cations. 
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A statistical multireference state-specific dressing of configuration 
interaction matrices: application to Heisenberg Hamiltonians 
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For an arbitrary (truncated or selected) configuration interaction (CI) space and from a 
specific eigenvector, one may extract statistical and state specific amplitudes of elementary 
excitations. These amplitudes are used for the evaluation of the coefficients of the outer-space 
determinants, leading to a state specific dressing of the CI matrix. The process is repeated to 
self-consistency. Numerical applications to ground and excited states of a Heisenberg 
Hamiltonian for conjugated molecules illustrate the efficiency of the method. 

1.    Introduction 
Recently, a simple procedure labelled size-consistent 

self-consistent (SC)2CI [1], has been proposed. It con- 
sists of the definition of a dressing which makes size- 
consistent the lowest eigenvalue of any CI matrix. This 
dressing is of coupled electron pair approximation 
(CEPA) type [2^1] and exactly treats all exclusion 
effects. A specific determinant, the Hartree-Fock (HF) 
ground state one, plays a special role, i.e. the dressing 
is of single reference nature, even when the CI space 
is multireference (for instance a MRSDCI or a 
CASSDCI). A direct transposition of this technique to 
Heisenberg Hamiltonians has proved to be efficient [5], 
although the reference determinant <j>0, which is a Neel- 
type determinant (without any spin frustration), has a 
very small coefficient, while being the largest one. Never- 
theless this method can only be applied to alternant 
(spin non-frustrated) molecules. 

The excited roots of the (SC)2CI matrix have recently 
been shown to be very accurate for atoms and molecules 
[6], especially when the CI is a MRSDCI where refer- 
ences are the leading singly (or doubly) excited config- 
urations. This result may be rationalized [7] but it would 
be convenient to define specific dressing for excited 
states. The concept of a multireference dressing appears 
as a desirable task, even for the ground state. For 
instance, in the case of Heisenberg Hamiltonians, the 
treatment of spin-frustrated systems requires a multire- 
ference dressing since the less frustrated determinants 
are numerous. 

The attemps to define MR-CEPA [8-11], MR-ACPF 
[12] and MR-AQCC [13] procedures are numerous and 
follow different strategies. A state-specific MR(SC)2CI 
method which appears to be promising from numerical 
tests [14] has been recently presented [11] by our group, 

but it remains quite difficult to implement. In the present 
paper, a very simple procedure to define a state-specific 
dressing for any CI is proposed. It exploits the eigen- 
vector of interest to define statistical pseudo-amplitudes 
for the double excitation operations. These pseudo- 
amplitudes are used to obtain an estimate of the coeffi- 
cients of the outer-space. The procedure must be iterated 
to self-consistency. The present paper gives a few 
exploratory calculations on Heisenberg Hamiltonians, 
concerning both some non-alternant hydrocarbons, for 
which the traditional (SC)2 single reference dressing is 
not conceivable and the excited states of alternant and 
non-alternant hydrocarbons. Comparison to the full CI 
results shows the efficiency of the proposed self-consis- 
tent statistical state-specific dressing. 

2.   A statistical state specific dressing 
2.1. The ground state (SC)2 single reference dressing 
We would like to generalize an idea which has been 

exploited for the ground state when a single determinant 
0o prevails in the wave-function, and which has led to 
self-consistent size-consistent dressing of CI matrices 
((SC) CI method [1]), the principle of which will be 
briefly recalled here. 

Consider a CI space S of determinants </>,-. This space 
may be truncated to a certain level of excitations with 
respect to a single determinantal ground state (closed- 
shell) reference <f>0; it may be a CASSDCI or even a 
selected CI space. Let Ps be the projector on this space S 

£IW,-I- (i) 

The diagonalization of the corresponding CI matrix 
gives a zero-order description T0 of the ground state 

0026-8976/98 $1200 © 1998 Taylor & Francis Ltd. 



210 N. Guihcry et al. 

eigenvector f0 and of a zero order estimate £0 of the 
exact energy E0 

PsHPs\V0) = ~E0\r0). (2) 

The method consists of the definition of amplitudes of 
coefficients of double excitations from the CI wave-func- 
tion for the ground state. 

V0 = C%<k + 52$<l>r (3) 

<t>0 is supposed to satisfy Brillouin's theorem, there is no 
contribution of the single excitations to the energy and 
the coefficients of singly excited determinants are weak, 
and hereafter single excitations will be omitted. 

For a double excitation Df = a^a^aaab where the 
orbitals a and b are occupied and r and s are empty in 
<j>0, one writes 

fi   = c° (4) 

where C^ and Cp*0o are respectively the coefficients of 
determinants c/>0 and DjVo in the ground state ¥V This 
expression may be seen as the amplitude relative to the 
double excitation D,+ in the single reference coupled 
cluster expansion for the ground state 

|«P0> = expS|^o) (5) 

since the products of single excitations do not signifi- 
cantly contribute to the coefficient CD^. Then one 
approximates the effect of the outer-space determinants 
(j>n obtained from the determinants <j>, by a double exci- 
tation £>j\ The quantity X^SW,0C^ appearing in the 
eigenequation relative to <j>t 

£Hydj + (H„ - £)C? + £"ioC = 0       (6) 
jes a<?S 

only concerns the determinants <f>0 obtained from </>, 
through double excitations 

<A<> = Dt4>h 

5>hC° = £ »/.D;/C°D;(,        (7) 
a$S I, such as D* lyO.D,' i<?S 

where Dfi is a compact notation for D~[<f>„ and the cru- 
cial approximation consists in writing C^ as 

C°„ =^C?. (8) 

This evaluation of C^ is partial, it includes the part of 
the complete expansion which is necessary to suppress 
unliked diagrams. Scheme 1 gives a diagrammatic trans- 
position of this expression where the closed horizontal 
line represents the multiple excitations leading from |0) 
to |;>. 

r 
|ce> 

^ 

:tlHtlt   . U_U 
|o> D; 

Scheme 1 

From these assumptions and noting that for double 
excitations, HiDU = H, = (ah\rs), i.e. is independent of 
<j>t, one may see that 

a?S ysuchasn('i/0./)('iyS / 

This summation may be treated by a proper diagonal 
energy shift of the CI matrix 

(10) Hu = Ha + A,, 

A„ = £ Hif?. 
/such as/)/ iyn.D('iys 

(11) 

The method presented above is a single reference 
dressing (with respect to 4>u) of a CI matrix which may 
be a MRCI. The ground state solution is size consistent. 
Excited roots have shown to be very accurate although 
they do not strictly satisfy the size extensivity require- 
ments. 

2.2. Multircfercnce generalization 
One may desire to conceive a more consistent proce- 

dure, which would be appropriate for the calculation of 
multircfercnce states, and in particular excited states, i.e. 

(i) in which the amplitudes of the double excita- 
tions arc extracted from the desired excited 
state wave-function. 

(ii) which would accept a multircfercnce zeroth 
order function (as compulsory for most excited 
states, but often desirable too for ground state 
problems). 

Such requirements are already fulfilled by a previously 
proposed MR(SC)2 [11,14] and some later CC [15,16] 
type versions. The method proposed here is a simpler 
alternative. The variational space is supposed to include 
all singles and doubles on these references. The interest 
of the state specificity appears already for an excited 
state m involving a single determinantal single reference 
I, such as a S- = 1  triplet singly excited state. The 
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amplitudes of double excitations on this reference single 
determinant have no reason to be strictly equal to those 
appearing in the singlet ground state expansion. It is 
obvious that the physically meaningful references 
change from one state to another. Such a state specific 
extraction of amplitudes is not computationally more 
demanding than for the ground state. In this case, the 
amplitude of the double excitation D+ will be calculated 

matrix 

as 

./'in 

Cf (12) 

Let us consider now a multiple reference problem, invol- 
ving several reference determinants I. This reference 
space might for instance be a complete active space 
(CAS), involving n electrons in p active orbitals. The 
information will be extracted from the relevant eigen- 
vector Vm of the MRSDCI matrix. The list of the 
double excitations Df is different from one reference 
to another, although in the case of a CAS, the inactive 
double excitations are the most numerous and possible 
on all references. Moreover the values of the ratios /™ 
have no reason to be identical for the same operation D/" 
and different references I. It is tempting to consider a 
reference-independent mean ratio/,"1. 

Ji 
J_ 

E fvicf)2 

ißti^o 

where NY is a normalization factor 

N] = E (c? 

(13) 

(14) 

running on all references I on which the operation D/" is 
possible, i.e. gives a non-zero result. The averaging takes 
care of the relative weights of the various references in 
the wave function. The variance of the distributions of 
fhe/f s around their mean value 

(4/n2=^ E (Jfj-fn2(cT)2    (is) 
itftyo 

indicates whether the weighted ratios are weakly refer- 
ence dependent. 

The quantities/1" will replace the ratios/0 used in the 
single reference {SC)2 dressing. The dressing will con- 
cern the MRSDCI matrix where the non-reference 
determinants will be labelled \i), as before. This new 
dressing will be obtained by approximating the coeffi- 
cient of the outer-space determinants \a) interacting 
with \i) and such that \a) = D/~|i) by 

Cm   /'in /-in 
a  — Jl   ci (16) 

K =       E       H'f? 
/suchasD/"iyO,D,+igS 

(17) 

which may be seen as a generalization of the ground 
state (SC) dressing (equation (11) using statistical 
state specific amplitudes. 

2.3. Specification to Heisenberg Hamiltonians 
Let us consider a molecular frame with n centres 

(1,..., i,j,... ,n) and n electrons (half-filled band situa- 
tion). The Heisenberg Hamiltonian may be written [17] 
as 

H = E Rij + 9ij\ij ~ ij)(i) ~ ij\- (18) 

This result is a state specific diagonal dressing of the CI 

The term Ry is a spin-independent scalar function of the 
distance r,-, between i and; and gy represents the effective 
exchange between adjacent atoms. It is also a function 
of ry. A precise determination of these functions for the 
treatment of w electrons of conjugated hydrocarbons 
may be found in [17]. Other parametrization may be 
found in [18]. The Hamiltonian is an effective 
Hamiltonian, concerning only neutral valence bond 
(VB) structures. The dimension of the Full CI space 
which grows as C?/2, becomes too large to be handled 
on a workstation when n reaches 20. A previous work [5] 
has proposed an energy-based truncation of the CI 
space, keeping only the spin distributions which present 
up to a threshold number m of spin frustrations on the 
bonds. This truncated CI has to be dressed to avoid size- 
inconsistency, and the (SC)2CI procedure has proven to 
be very efficient, since it divides the error with respect to 
full CI by a factor about 60 and gives accurate results 
even when very limited CI spaces are considered [5]. 

For such a local Hamiltonian, one needs only to 
determine the amplitudes of the spin exchanges D/" on 
each bond / which increase the energy (i.e. the number of 
spin frustrations). This means that the transition energy 
is positive 

A£M = (Z>/-i|/f |D/-i> - (i\H\i) > 0. 

As a refinement, we have taken into account the value of 
A£,,-, since a spin exchange on a given bond / may 
increase the number of spin frustrations by 1,2,...,«,, 
where n, is the number of bonds adjacent to bond /. We 
have therefore extracted different amplitudes for each 
bond according to the various energy increase A£,, 
characteristic of the various spin environments of the 
bond /. We therefore must extract from the variational 
function a few quantities/(A£) for each bond. In this 
precise problem there is no need to identify the minimal 
number of references I, it is possible to calculate the 
mean ratio/,"1 given by equation (13) where the summa- 
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tion runs over the whole set of determinants such that 
Dfl belongs to the model space. 

3.    Numerical tests 

3.1. Mean amplitudes and variances of the jj^ ratios 
On the linear problem C|2H]4 with equal bond 

lengths the mean values of the ffi ratios and their var- 
iances have been calculated for each bond and for the 
three lowest states. These calculations have been done 
for three levels of truncations, namely 4, 6 and 10 (full 
CI) frustrations. Results arc reported in table 1, bond 
numbers are given in scheme 2. For a given state the 

statistical amplitudes f™ vary considerably from one 
bond to another but are weakly dependent on the level 
of truncation of the CI. Variances arc quite small and 
they scale on the amplitudes//11. Another very important 
feature concerns the changes of the/,"1 amplitudes when 
going from one state to another for the same bond. This 
result explains the improvment brought by the state 
specificity of the amplitudes as illustrated below. 

3.2. Multircfcrcnce ground-state systems 
We have then applied the statistical dressing to the 
research of the ground state of non-alternant hydro- 
carbons, for which there is no Necl (spin-non-frustrated) 
determinant. For instance, in the /wra-di-cyclopcntadic- 
nyl-benzcne (scheme 3) the minimal number of frustra- 

Schcmc 3 

tions is two; 26 determinants have the minimal energy 
and should be considered as references. Some of the 
determinants obtained by the action of Hamiltonian 
on these references have up to 6 frustrations, so that it 
is necessary to start from this minimal number of 
frustrations to define the smallest reasonable CI space. 
The bare and dressed CI lowest eigenvalues obtained for 
the optimized geometry of the ground state appear in 
table 2 for increasing sizes of the CI space (sec also 
figure 1). The benefit of the dressing is of the same 
order of magnitude as for the single-reference dressing 
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Figure 1.    Bare (dashed line) and state specifically dressed (solid line) CI energies obtained for the six lowest eigenvectors of the 
pora-di-cyclopentadienyl-bcnzene as functions of the number of spin frustrations (n) accepted in the CI space. 
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Table 2. Errors (in eV) of the lowest eigenvalue of the trun- 
cated bare and dressed CI matrices for the para-d\-cydo- 
pentadienyl-benzene as a function of the number n of spin 
frustrations accepted in the CI space. 

Dimension of the Error of the Error of the 
n CI space bare energy dressed energy 

6 2 376 1.26 -0.024 
7 4264 0.61 7 x 10"3 

8 6546 0.22 -6 x 10~3 

9 9034 0.056 -1 x 10"3 

10 10870 0.012 -7x 10"4 

11 11998 1 x 10"3 -2x 10"4 

FCI 12870 0 0 

for alternant hydrocarbons [5], 
error by a factor 60. 

i.e. a reduction of the 

3.3. Quality of excited roots of the groimd-statc-dresscd 
CI matrix 

We have calculated the ground state and the three 
lowest excited states of the linear polyene C|2HI4 in its 
ground state optimized geometry. For further compar- 
ison with the method proposed here, the dressing of the 
CI was first performed according to the (SC) method, 
i.e. considering the Neel determinants as references for 

the dressing as in [5]. Computations have been per- 
formed for several truncations, increasing the number 
n of spin frustrations accepted in the selected space. 
Results are given in figure 2. The comparison between 
eigenenergies of the bare and dressed CI matrices show 
that, as occurs for ah initio calculations [6], the dressing 
greatly improves the accuracy of the excited roots but is 
somewhat poorer than that of the ground state, due to 
the following factors: 

the dressing is defined on the ground state vector, 
if the two fully alternant determinants <f>0 and </>/, have 
the largest coefficients in the 'Ag singlet ground state 
and the lowest 3Bu triplet state, the two upper triplets 
cannot be considered as generated from these deter- 
minants. Their main components arc on determinants 
having at least two spin frustrations. The CI space 
including only determinants having up to 4 spin frus- 
trations is therefore minimal. 

3.4. Improved excited roots from state-specific dressings 
The efficiency of the state specific dressing proposed 

here has been checked on the same C|2HI4 chain. Actu- 
ally the error to the exact energies is reduced by at least a 
factor three with respect to the ground state dressing (cf. 
figure 2). 
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Figure 2. CI energies computed for the ground state and the three lowest excited states of the C|2H14 linear polyene as functions of 
the number of spin frustrations (n) accepted in the CI space. The results obtained using the statistical dressing proposed here arc 
represented by the solid line, the bare energies are represented by thin dashed lines and the energies obtained using the (SC)2 

ground state dressing are represented by thick dashed lines. 
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Figure 3.   Bare (dashed line) and state specifically dressed (solid line) CI energies obtained for the ground state and the three lowest 
triplet states of the C16H18 linear polyene as functions of the number of spin frustrations (n) accepted in the CI space. 

In order to see whether these conclusions were valid 
for larger systems, the Ci6H18 linear polyene has been 
studied. The results obtained for this molecule are given 
in figure 3 for the ground state and the three lowest 
excited states. The errors for the smallest CI space (4 
spin frustrations, 1290 determinants, instead of 12870 
in the FCI) is lower than 0.005 au (~0.1 eV) after dres- 
sing and for n = 6 the deviations from the FCI roots are 
smaller than 0.001 au, i.e. below the accuracy which one 
may expect from such a semi-empirical Hamiltonian. 
Actually our statistical dressing insures the same quality 
for the excited states as the one obtained for the ground 
state by a single-reference (SC)  dressing [5]. 

The triplet states have been approached from the 
Sz = 1 CI space using the same procedure. For the 
same truncation threshold, the roots for Sz = 0 and 
Sz = 1 are significantly different before dressing (notice 
that such a truncated CI cannot give S2 eigenfunctions), 
but the dressing insures the near degeneracy of the two 
estimates of the triplet state energies. The largest discre- 
pancy (cf. table 3) is lower than 0.004 au for n = 4 after 
dressing instead of 0.033 au before dressing for the third 
triplet state, and for n = 6 the difference between Sz — 0 
and Sz = 1 is lower than 1.10-3 au. 

The same type of accuracy is obtained for the excited 
states of the non-alternant molecule (cf. figure 1). The 

third and fourth eigenvectors are strictly degenerate, as 
well as the fifth and sixth ones. The truncation maintains 
the degeneracy, which is not destroyed by the dressing. 
The statistical dressing reduces dramatically the error on 
the excited states energies, and performs as efficiently as 
it does on the ground state. 

The original (SC)2 dressing extracted the amplitudes 
_/jm from the coefficients of <fr0 and of the D/~0 determi- 
nants. Our definition off™ uses the full vector given by 
the truncated CI diagonalization. Between these two 
extreme procedures, one might extract the quantities 
f™ from a reduced subspace of the CI, which concern 
only the determinants below another threshold n' < n. 
We have verified that increasing n' from 2 to n improves 
the dressed energy, and our statistical definition of the 
amplitudes seems to be optimal. Finally one should 
recall that when the error on the total energy is lower 
than 0.001 au, the error on the optimized bond lengths 
are negligible [5]. 

4.    Conclusion 
The so-called (SC)2 dressing of the CI matrices was 

initially proposed for the calculation of the ground state. 
The dressing is a single reference one, since one determi- 
nant plays a special role, and is ground-state specific. It 
has been observed that the lowest excited roots are quite 
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Table 3. Errors (in eV) of the bare and dressed CI eigenva- 
lues computed for S. = 0 and S. = 1, for the three lowest 
triplet states of the linear polyene C|6H|8; n is the number 
of spin frustrations accepted in the CI space. 

Bare energy Dressed energy 

S. =0 S. = 0 

First triplet state 
n = 4 
n = 5 
M = 6 
n = l 
n = 8 
n = 9 
n= 10 

3 
1.5 

1.25 
0.53 
0.15 
0.03 
x 10" 
x 10" 
0 

Second triplet state 
n = 4 
n = 5 
n = 6 
n = 7 
« = 8 
n = 9 
M= 10 

1.49 
0.52 
0.18 
0.03 

4x 10" 
2x 10" 

0 

Third triplet state 
n = 4 
n = 5 
n = 6 
n = 7 
n = 8 
n = 9 
«=10 

1.36 
0.69 
0.17 
0.05 
x 10" 
x 10" 
x 10" 

2.15 
0.88 
0.28 
0.05 
x 10" 
x 10" 
0 

2.19 
0.9 
0.29 
0.06 
x 10" 
x 10" 
x 10" 

2.24 
0.99 
0.32 
0.08 
x 10" 
0 
0 

-0.13 
-0.04 
-0.02 

-4x 10 
-7x 10 
-8x 10 

0 

-0.12 
-0.06 
-0.01 

-4x 10 
-7x 10" 
-8x 10" 

0 

-0.17 
-0.04 
-0.01 

-4x 10" 
-6x 10" 
-8x 10" 

0 

-0.18 
-0.08 
-0.03 

-9x 10" 
-2x 10" 
-1 x 10" 

0 

-0.12 
-0.04 
-0.02 

-6x 10 "-1 

-1 x 10 ^ 
-1 x 10" 

0 

-0.06 
-0.04 
-0.01 

-4x 10 
-8 x 10 
-8 x 10 

0 

accurate. In this approximation the amplitudes of the 
double excitations arc taken as equal to those of the 
ground state single reference expansion. A gcneraliza- 
tion of the (SC) type dressing has been proposed 
here. It is both state-specific and multircfcrcnce. The 
method appears to give more accurate results than the 
ground state dressing technique. It is very simple and the 
test studies presented here, concerning intrinsically mul- 
tircfcrcnce states, show its remarkable efficiency, at least 
for Heisenberg Hamiltonians. This promising strategy 
will be applied in the near future to ah initio Hamilto- 
nians. It will be shown that the dressing of each deter- 
minant may be calculated easily through the storage of 
partial summations, as already done in the (SC) tech- 
nique [1] preserving the computational simplicity of the 
procedure. The connection with rigorous MR(SC)2 

[11,14] and MR CC methods [15,19 27] will be estab- 
lished later on. A recent paper [16] has shown that one 
may extract CC amplitudes from the eigenvectors of any 
CI matrix, and express the MRCC method as a self- 
consistent dressing of this CI matrix. The present 
paper has presented a much simpler way of extracting 
information from a truncated CI vector and to use it in a 

132, 

and 

and 

and 

definition  of diagonal  self-consistent  dressing which 
approximately restores the si/c-extensivity. 
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Cumulant approach and coupled-cluster method for many-particle 
systems 
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Germany 

Cumulants represent a natural language for expressing macroscopic properties of many-body 
systems. The most important property of cumulants is that of size consistency, i.e. a cumulant 
expression for an extensive variable scales with the size of the system, independent of possible 
further approximations used in the evaluation procedure. Cumulants can be considered as a 
generalization of linked diagrams known from diagrammatic technique of many-body theory. 
In this paper we outline a recently introduced method based on cumulants in order to derive 
expressions for zero-temperature properties of many-particle systems, i.e. the ground-state 
energy, static expectation values and dynamical correlation functions. This cumulant formal- 
ism allows one to describe weakly and strongly correlated systems along the same lines. We 
show that the coupled-cluster method known from quantum chemistry can be derived from 
our cumulant approach. Finally, we demonstrate the usefulness of the cumulant method by 
applying it to examples from solid-state physics and quantum chemistry. 

1.    Introduction 
For the investigation of the ground state of many- 

particle systems the ground-state energy E0 plays a 
central role. One basic property of energy is its size 
consistency, i.e. the energy of two well-separated, but 
otherwise identical systems equals twice the value of a 
single system. Each approximation which is used to 
evaluate £0 must preserve this property. In diagram- 
matic approaches size consistency is guaranteed by the 
fact that in any physical quantity only linked diagrams 
enter. Usually, a diagram technique is based on Wick's 
theorem. For time-dependent problems, i.e. the calcula- 
tion of Green's functions, the use of Wick's theorem is 
greatly simplified if the unperturbed Hamiltonian is a 
single-particle Hamiltonian. Therefore, in practice stan- 
dard diagrammatic approaches are restricted to weakly 
correlated systems. An alternative approach to evaluate 
statical and dynamical properties at zero temperature 
was recently proposed [1-3] and is based on the intro- 
duction of cumulants. Cumulants have been known for 
a long time in mathematical statistics and in probability 
theory. Kubo has been pivotal in demonstrating and 
emphasizing their usefulness in diverse branches of phy- 
sics. Cumulant expressions preserve size consistency, i.e. 
a cumulant expression for an extensive variable scales 
with the size of the system (provided that the associated 
reference function is product-separable) independent of 
further approximations. 

The cumulant method presented here is based on a 
perturbational approach, i.e. the Hamiltonian is split 

into H0 and Hi with eigenvalues and eigenvectors of 
H0 known. One starts from eigenstates of H0 and 
includes the effect of H\ by an exponential ansatz. The 
unperturbed part H0 is not restricted to be a single- 
particle operator. This favours the cumulant method 
especially for the description of strongly correlated sys- 
tems though it may be applied as well to weakly corre- 
lated systems. 

Another approach which avoids the size-consistency 
problem is the coupled-cluster method [4] which has 
been used in quantum chemistry and also in solid-state 
physics. Within the coupled-cluster method the full 
ground state is written as an exponential operator 
applied on an reference state which is usually the 
ground state of an uncorrelated problem (e.g. the 
Hartree-Fock solution of the Hamiltonian under con- 
sideration). However, also correlated reference functions 
have been used, see e.g. [5]. 

This paper is organized as follows. In section 2 we 
summarize the cumulant method for calculating 
ground-state properties of many-body systems. In 
section 3 we compare this method with standard varia- 
tional calculations and with the coupled-cluster method 
known from quantum chemistry. To demonstrate the 
applicability of the method we show applications to 
the the 2D Hubbard model at half-filling and to the 
method of increments used in quantum chemistry. A 
discussion and concluding remarks are put in the last 
section. 

0026-8976/98 $1200 © 1998 Taylor & Francis Ltd. 
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2.    Cumulant method for ground-state properties 
In this section we shortly present the cumulant 

method for calculating ground-state properties of 
many-body systems. For more details sec [1-3,6]. The 
method starts from the definition of the function 

/(A) - In (0o| exp [-A(//0 + //,)] exp (Atf0)|«/>0),    (1) 

where H0 is the unperturbed Hamiltonian H0 with the 
ground state |<^0) known, i.e. H0\<j>ü) = e0\<f)0). In the 
following we assume that the ground state of H0 is 
non-degenerate, for a discussion of the case of degen- 
eracy see Appendix A. The aim is to calculate the 
ground-state energy £0 of the full system, 
H\i/>0) = £olV;o)- The shift of the ground-state energy 
6EQ — E0 - e0 due to the perturbation //i can be derived 
in a straightforward way. Introducing the Liouvillian L0 

which is defined by L0A = [H0, A] for any operator A, 
equation (1) is formally transformed into 

/(A) = ln(0o|exp[-A(H1+Lo)]l|0o),        (2) 

where 1 is a unity operator in Hubert space. The expo- 
nential is defined as a power series where L0 acts on the 
H\ operators to the right, i.e. 

A2     , 
exp [-A(H, + L0)] 1 = 1 - AH, + - {H\ + L0tf, ) + •••. 

(3) 

Note L01 = 0. Next, we define the Laplace transform of 
the function /(A) by: 

/(*) = 
f+OO 

/(A) 
Jo 

exp(Az)dz,        5?{z}<0.    (4) 

One can show [1,6] that the energy shift 6E0 with respect 
to the unperturbed ground-state energy e0 is given by 

<5£0 = lim z f(z). (5) 

On the other side, equation (2) is used to express SE0 in 
terms of cumulants 

SE, o = lirn(<Ao|tfi 
z->0 

1 + 
1 

Hi 
»i )\<f>«Y-       (6) 

Here {4>0\ ••• \(j)0)
c denotes cumulant expection values 

with respect to the unperturbed ground state \<f>0). 
Cumulant expectation values [7] for a product of arbi- 
trary operators A, with an arbitrary state \<f>) are defined 
by: 

ln^lJIexpCA,-/!,-)^) A,=0Vf (7) 

The quantity inside the bracket of (6) is called wave 
operator ß (it has similarity with the Möller operator 
known from scattering theory), 

ß=l+lim J —//,. (8) 
z-0 Z H, 

Thus we can rewrite fiE0 as 

«£0 = (^|//,fi|^>f       or       E0 = {UHQ\^)C   (9) 

Treating cumulant expectation values one must distin- 
guish between prime and composite operators. A prime 
operator is a single entity in the cumulant evaluation 
procedure. Expanding ß given in (8) the resulting prod- 
ucts of L0 and H, arc composite operators in the cumu- 
lant ordering. Within cumulants, the operator ß 
transforms the ground state \<f>0) of the unperturbed 
Hamiltonian tf0 into the full ground state |t/'o) of H. 
Expanding (8) into powers of H\ it can be shown that 
(9) is equivalent to Rayleigh Schrödingcr perturbation 
theory summed up to infinite order, sec e.g. [6]. 

There is no general rule how to split H into H0 and H, 
except that the overlap between the unperturbed and the 
full ground state has to be non-zero, i.e. (V>o|<Ao) ^ 0. 
The operator ß describes the influence of H\ onto 
|0o). This effect should be a small correction to |</>0), 
i.e. it should be treatable pcrturbativcly in the sense 
that it can be obtained by summation of a perturbation 
expansion. This is usually fulfilled if H{) is the dominant 
part of the Hamiltonian. Therefore, for strongly corre- 
lated systems H0 should consist of the correlations (or at 
least part of them) whereas //, usually contains the 
hybridization. 

Instead of using the explicit form (8) of the wave 
operator ß an exponential ansatz was proposed [8] 

ß = exp S,        S = 2_.n^Sf, (10) 

where {S,,} is a set of relevant operators. They have to 
be chosen in such a way that exp(J]//o/,S/,) \<f>0) (with 
appropriate parameters o,,) represents a good approxi- 
mation of the exact ground state. The yet unknown 
parameters c\f, arc to be determined from the following 
set of equations 

(0ü|St//ß|^)f = O,        «/= 1,2,3,. :\v 
These equations follow from the condition of ß|</>o) 
being an eigenstate of H. Note that equations (9), (10) 
and (11) allow for the computation of the ground-state 
energy. The result of (9), (10) and (11) is a priori size- 
consistent even if the sum in S is restricted to a finite set 
of operators S„ due to the use of cumulants. 

The choice of appropriate operators S,, is most impor- 
tant for actual calculations using the cumulant method. 
These operators describe fluctuations introduced into 
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\(j>o) by successive application of H\. In principle, they 
can be derived systematically from the explicit form (8) 
of the wave operator Ü. For practical applications this 
might be only of little help especially if the main physical 
effect comes from higher powers of Hj. In such a case a 
small set of few relevant operators leads to a far simpler 
description of the main effect than including a large set 
of powers H". The selection of relevant operators for the 
cumulant method can be seen as similar to the selection 
of dynamical variables for the Mori-Zwanzig projection 
technique: Formally, variables can be systematically 
derived from the Liouvillian, but often choosing vari- 
ables from physical insight is more useful. 

In the past, equations (9), (10) and (11) were used to 
evaluate ground-state properties of several systems, see 
for instance [2,9,10]. Recently, we have proposed an 
extension of the formalism which allows one also to 
evaluate excitation energies [11]. Note that the cumulant 
formalism can also account for the calculation of dyna- 
mical correlation functions [3]. This allows one to treat 
static and dynamical aspects of the system along the 
same lines. 

3.    Comparison with variational calculations and the 
coupled-cluster method 

For practical calculations the cumulant method 
together with the exponential ansatz for the wave 
operator Q consists of selecting an appropriate set of 
operators Sv, i.e. writing down an ansatz for the 
ground-state wavefunction. Then the coefficients av 

are determined using equations (11). The main advan- 
tage of this procedure compared to other methods is 
that the exponential term occurs only once in all equa- 
tions. 

In a standard variational calculation one uses an 
ansatz for the wavefunction and minimizes the 
ground-state energy by variation of the coefficients. In 
such a calculation the ansatz wavefunction (including 
the exponential operator) usually occurs four times, 
£o = (V'ol#lV'o)/(V'olV'o)- Furthermore, a wavefunction 
with an exponential ansatz is usually not normalized 
to unity. So both numerator and denominator of the 
energy expression might diverge with an exponential of 
the system size whereas their ratio should be propor- 
tional to the system size. The physical difference between 
both methods is the following: in a variational 
calculation the aim is to minimize the total energy of 
the system whereas in the cumulant method the aim is 
to find an eigenstate of H. (Note that equation (11) is 
exactly the condition of exp S\</>0) being an eigenstate 
ofH.) 

There is a close relationship of the equations (9), (10) 
and (11) to the so-called coupled cluster method. This 
approach which was originally invented for studies in 

nuclear physics is also size consistent and does not 
involve Wick's theorem. For a review see [4]. Recently 
it was shown [8] that the coupled-cluster method can be 
derived from the cumulant expressions (9) and (11). 
Comparing practical calculations the cumulant method 
with an exponential ansatz is again easier to handle than 
the coupled-cluster scheme because the exponential term 
occurs only once in the cumulant equations and twice in 
the coupled-cluster equations. 

Usually these different methods lead to different 
(approximate) results when calculating ground-state 
quantities. However, if the ansatz for the ground-state 
wavefunction covers the exact ground state, i.e. if the 
subspace spanned by the operators Sv contains the exact 
ground-state wavefunction, then of course all methods 
lead to the same exact result. Furthermore, the cumulant 
and coupled-cluster methods yield the same result 
provided that they use the same set of operators {Sß} 
and that the equations for the coefficients are solved 
exactly. 

In the following we briefly show how to derive 
coupled-cluster (CC) and variational (V) equations 
from the cumulant method if one assumes that the 
exact ground state has the form \tpo) = exp S\<j>0) with 
S = Y^v oivSv. We note that equation (11) also holds for 
arbitrary composite operators, e.g., 0 = (4>0\ABHQ \(j)0)

c 

for arbitrary operators A and B. Inserting (11) into (9) 
one can transform 

into 

£0 = (<&>!# exp S|</>0)
c 

(</>0|exp(-S)ffexpS|<£0)
c 

I   (4>0\exp tfH exp S\<fi0)
c. 

Evaluating the cumulants leads to [11] 

( (0o|exp(-5)HexpS|^o)    (CC) 

(V>o|tf|Vo> 

(12) 

(13) 

(V'olV'o) 
(V). 

(14) 

These are the energy expressions for the coupled-cluster 
and the variational scheme, respectively. The equations 
for the coefficients are obtained from (11) as follows: 

O = <4>o|SttfexpS|0o>c 

(<j>0\St exp {-S)H exp S\<j>0) 

(<j>0\ exp S^StH exp S|^0)
c. 

(15) 

Transforming    again    the    cumulants    and    using 
{(j>o\S„\4>o) =0 one finds 

0 = (<t>0\Slexp(-S)HexpS\<f>0)    (CC) (16) 

and 
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(VolSttf |V;0)
r + (rl>o\HS„ \^0)

c = -^ £o    (V). 

(17) 

These two conditions arc the equations for the coeffi- 
cients av within the coupled-cluster and the variational 
method. The second step of (17) includes evaluating the 
new cumulants with |V->o) yielding exactly the four terms 
arising from the differentiation of the energy expression 

(V>o|tf |V>o)/(V;olV;o) with rcsPcct to <V [H]- 
We want to note here that the wave operator (8) of 

the cumulant approach is not limited to an expo- 
nential form (as is the case, for example, in coupled- 
cluster calculations). So the cumulant method appears 
to be the more general and powerful scheme for the 
calculation of ground-state properties. A modified appli- 
cation of the cumulant approach is shown in the next 
section. 

4.    Application to the Hubbard model 
In this section we demonstrate the application of the 

cumulant method to the 2D Hubbard model. The fol- 
lowing calculation contains two modifications to the 
scheme presented in the last section, for more details 
see [9]. 

The operators {S,,} may also represent composite 
operators, i.e. products of operators, each of which 
is an entity in the cumulant ordering. 

Noting that the wave-operator ß, defined in equation 
(8), obeys the integral equation 

Q = 1 + lim 
1 

H,ß, 
x-^o x — L0    ' 

we may replace equations (9) and (11) by 

1 

(18) 

x->0   \ X Lo 

O=(to|StH,|^)f + <^|Sj,Hoß|0o>f 

+ lim tfolte X - L, ■H,ß|& 

tf,«|<M , (19) 

(20) 

The advantage of recasting (9) and (11) into the new 
form (19) and (20) is the appearance of the term 
Hi [l/(x-L0)] H\ on the right hand sides. This term 
may be interpreted as an effective Hamiltonian as 
obtained by second order perturbation theory. As men- 
tioned above, it is understood that the operators S„ in 
(19) and (20) may also represent products of operators. 

We now turn to the Hubbard model at half-filling on 
a two-dimensional square lattice. The Hubbard model is 
given by 

H = H0 + H{ 

H0 = uY^»i}»n 
i=l 

H, 

(21) 

(22) 

(23) 

Here, U is the Coulomb repulsion between electrons on 
the same site. nia — c\ncin is the occupation-number 
operator for electrons with spin a on site i. The 
symbol ((/) denotes pairs of nearest-neighbours. In the 
case of strong electronic correlations, U 3> t, the above 
Hamiltonian is used as a model system for the electronic 
degrees of freedom of the Cu02 planes in high-Tc super- 
conductors. In this limit, double-occupation with two 
electrons on the same site is strongly suppressed. 
Then, the Hubbard model can be transformed into the 
t - J Hamiltonian which acts only in the unitary sub- 
space where double-occupancy is excluded 

(24) 

(25) 

H, J = HJ + Hi 

«/■) 

S,-S,--AV>, 

(26) 

The first part of Hj is the antifcrromagnctic Heisenberg 
exchange with J = 4t2/U. H, is the so-called conditional 
hopping term since the hopping of electrons is only 
allowed to a site which was empty before. We have 
also introduced h, = Y,a'c\n'

c>n ,and <"L = rl0 ~ ni *)■ 
For later reference we define cilT = r^n, „. Note that 
c\„ describes transitions from empty to singly occupied 
sites, whereas c]„ describes transitions from singly to 
doubly occupied sites. At half-filling, with one electron 
at each site, the t - J model reduces to the Heisenberg 
Hamiltonian since in that case the restricted hopping 
term H, cannot act. The ground-state energy of the anti- 
ferromagnetic Heisenberg exchange (25) (with 
h, = hj = 1 at half-filling) is not exactly known. From 
series expansions and numerical methods [12], there is 
quite general agreement that the correct value of the 
ground-state energy is close to —1.17 NJ. 

We now apply our method to calculate the ground- 
state energy of the Hubbard model at half-filling. We 
start from the Necl state as unperturbed ground state 
\<t>0). From the above discussion it is evident that in the 
large U limit only spin-fluctuations reduce the ground- 
state energy relative to the energy of the Necl state. 
Charge fluctuations, induced by hopping operators, 
are important only for decreasing values of U/t. 
Hence, in the exponent of ansatz (10) for fl we include 
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spin-fluctuation operators S],...,S4 and charge fluctua- 
tion operators Ai,.„,Ay. the resulting ansatz for Q 
therefore reads 

Q = exp 
["4              ] r 3        ] 

+ 
."=1 

(27) 

Equation (27) is valid for both large and moderate 
values of U/t. 

The spin fluctuation operators S„ are best found from 
a perturbative treatment of the Heisenberg model (for 
instance by use of projection technique) up to fourth 
order: 

s,= Hi   ^ (28) 

s2 = (Si)2 (29) 

s3 = 1h 4j 

h   Hi 
(30) 

s4 = Hi   %   to   h (31) 

The arrows with double lines ft or JJ. indicate spins which 
are flipped relative to their original orientation in the 
Neel state. For instance, the first spin fluctuation 
operator S{ is formed by two successive hoppings from 
site i to a neighbouring site j and back, combined with 
flipping of the transferred spin. Explicitly, St is written 
as 

Et      t cnciicncfi ■ Xsj St; je sublattice |. 
<(/•> 

(32) 

The sum runs over all pairs of neighbouring sites i,j. In 
(32) we have again introduced the spin raising and low- 
ering operators Sf = c\aCi_a {a = ±1). The remaining 
operators S2,S3 and S4 are formed by four successive 
hopping processes. S2 is the first example for an 
operator which is not prime, but rather a composite 
operator. It appears here only due to the introduction 
of cumulants. Applying S2 is equivalent to applying Si 
twice, and its main contribution comes from two spin- 
flip processes with overlapping sites. S3 creates a 2 x 2 
square of flipped spins. Finally, S4 creates all other 4 site 
spin-flip configurations connected to each other. 

Restricting ourselves first to the case [/>f we only 
keep these spin fluctuation operators Sv in the ansatz for 
Ü. Inserting the ansatz for Q into (19) and (20) we obtain 
a set of equations for the ground-state energy E0 and the 
coefficients av which can be reduced to a quartic equa- 
tion for ai. Details of the calculation are written down 
in [9]. The values for the coefficients are found to be: 
o"! =0.1756, a2 = (-)2.32 x 10-3, a3 = 3.04 x 10-2, 
a4 = 8.85 x 10-3. The final value for the ground-state 

energy E0 for the Hubbard model at half-filling and 
U > t is found to be 

At1 

£0 =-1.1756 xiV—; C/»t. (33) 

It agrees well with that of the Heisenberg model. Note 
that the coefficients a2, <r3 and <r4 are smaller by at least 
one order of magnitude than ui. This shows a tendency 
for rapid convergence when operators for multiple hop- 
pings are added to the ansatz. 

For smaller values of U/t we now consider charge 
fluctuation operators Av which will produce states 
with empty and doubly-occupied sites. The simplest 
possible operator is 

ci<jC)o'i j e sublattice a. (34) 

The quantity c]a has been defined already below equa- 
tion (26). It describes the creation of an electron with 
spin a on a site i where an electron with spin —a is 
already present there. The operator Ai is written sym- 
bolically as 

(35) Ui   Oj 

The circle denotes a hole. The opposite-directed arrows 
indicate two opposite electron spins at the same site. We 
will also include two operators of second order in the 
hopping Hamiltonian Ht 

A2 = (A}) (36) 

A3 = X c\-ici-^}icka,        k € sublattice a.     (37) 
(ijk)a 

When evaluated with their respective Hermitian conju- 
gates they are the only second order operators to yield 
non-zero expectation values. In other words, only those 
hopping operators of second order are included in the 
set Av which represent connected diagram contributions 
to the energy. In symbols a typical term in A3 would be 

(38) A* = Ui  Hj   Ok 

where sites i and k (i ^ k) are nearest neighbours of 
site ;'. 

Having defined the operators Av we now proceed with 
the full ansatz (27) for the wave operator Q. From (20) 
we obtain again a set of nonlinear equations for the 
energy and the coefficients au and av. For brevity we 
only state here the equation for the energy 

En = 

lim U0\Hi-—— 
x-»0   \ X — LQ 

Hx[l+aiSi + a2A2 + a3A3}\4>c 

(39) 
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Ground-state energy 

Figure 1. Ground-state energy of the 2D Hubbard model at 
half-filling. The solid line is the result of the exponential 
(EXP) ansatz in its new formulation. The dotted line is the 
result of the coupled-cluster method (CCM). Quantum 
Monte Carlo (QMC) and variational Monte Carlo 
(VMC) data are shown as well. The Heisenberg limit is 
indicated by a cross. 

The result for E0 (in units of J = 4t2/U) is plotted in 
figure 1 as function of U/t (full line). Quantum Monte 
Carlo (QMC) results [13] are available only in the weak 
and intermediate-coupling regime, up to U/t = 8. The 
variational Monte Carlo (VMC) method [14] provided 
results in the strong-correlation regime too. Both QMC 
and VMC data points are shown in figure 1. The QMC 
and VMC results agree well where both are available. 
However, in the strong-coupling regime the VMC 
results can only set an upper bound for the ground- 
state energy. The infinite U value, indicated by a cross 
on the figure, is the QMC result [12] for the Heisenberg 
antiferromagnet. For a further discussion of the results 
see [9]. 

5.   Application to the method of increments 
In this section we discuss the method of increments 

which is useful for high-accuracy correlation calcula- 
tions of the ground state of periodic systems. We con- 
sider a solid with well defined bonds such as diamond or 
silicon. The result of a SCF calculation is assumed to be 
done. The resulting SCF ground state |</>scr) of 
H0 = J/SCF is expressed in terms of localized molecular 
orbitals (MO) labelled with index /. 

Then we employ the following ansatz for Q: 

ß= 1 + ^ajA, + Y^°IJA,J, 
i u 

(40) 

where the first term with the operators A, describes one- 
and two-particle excitations out of bond /, whereas the 
operators Au in the second term create two-particle 
excitations in bonds I and J. 

Note that the applied ansatz (40) for the wave 
operator Q docs not have an exponential form as sug- 
gested in section 2. compare (9). So the wave-function 
Q \(f>ü) obtained with the ansatz (40) looks similar to a 
configuration-interaction (CI) wavefunction. However, 
the result for the ground-state energy £0 obtained 
using the present approach is size-consistent due to the 
use of cumulants whereas the results of a CI calculation 
is not size-consistent. 

The method of increments now provides a solution of 
the cumulant equations for £0 and the parameters {r>/} 
and {nu} in terms of successive local approximations. It 
is based on the following idea. First, all electrons in 
\<Pscr) are kept fixed except the two in one bond / 
which corresponds to the wave operator 

Q^ = \+n^A (41) 

.(') The parameter o}   is obtained from: 

0=(A]HQi%cr. 

We can define the correlation energy of bond /: 

e\l) = <//re5fl
(,))^F 

= o;  {Hr^A,)c
scy. 

The total energy of the system including to one-bond 
correlations is then given by: 

(42) 

(43) 

(44) 

£■0   - £so + Z^£i ■ (45) 

In the second step the electrons in two bonds /, J arc 
released: 

aV = ]+a?)Al + n(?)Aj + n%AIJ. (46) 

With this wave operator wc can define the energy incre- 
ments from the two bonds as compared with the pre- 
vious situation as: 

.(2) 
-U ^(a(

(2)-o,(,))(Hrc^,rsrr.. 
i=I.J 

..(2) + nIJ (tfrcs^/./)sCF- (47) 

From this we find the total energy due to one- and two- 
bond correlations 

^-scr + E^ + E^- (48) 
('•/> 

In the next step one can improve these results by 
including correlations among electrons on three sites: 
in most cases this procedure is sufficient to obtain accu- 
rate results. By calculating higher and higher increments 
the exact correlation energy within the common CEPA- 
0 scheme is obtained. The method of increments is useful 
if the incremental expansion in terms of local corrcla- 
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tions is convergent. It can be applied, for example, to 
group IV semiconductors, see [15]. 

6.    Conclusion 
In this paper we have presented a method for calcu- 

lating ground-state properties in many-body systems. 
This method is based on the introduction of cumulants. 
It can be applied to both weakly and strongly correlated 
systems. After a brief description of the method we have 
compared it with variational calculations and with the 
coupled-cluster method known from quantum chem- 
istry. We have shown that the basic equations for both 
methods can be derived from our cumulant formalism. 
Finally, we have presented two applications of the 
cumulant method: the Hubbard model at half-filling 
and the method of increments. 

It is a pleasure for us to thank B. Paulus, H. Köhler, 
and G. Polatsek for helpful discussions. 

Appendix A: treatment of a degenerate ground state 
of#0 

If we are faced with a degenerate ground state of H0 

where the degeneracy is lifted by H{ we have the 
freedom to choose the initial state \<j>0) for the cumulant 
method from the subspace of degenerate states. The 
operator Ü given by (8) transforms any of these states 
into the full ground state |V>o) provided it has a non-zero 
overlap with |^>0). However, if we use a certain ansatz 
for the operator Q then the best choice of |</>0) depends 
on the form of this ansatz. Assume that the states 

I0o, )> • • • > I0o„) are tne degenerate ground states of H0 

with energy e0. The correct state |</>0) with Q \<j>0) being 
the ground state of H (for a certain form of Q) is a linear 
combination of the |</>0.): 

l<Äo> = I>;l<H>- (Al) 
;=i 

To find the jj one again uses equation (11) provided by 
the cumulant method. Note that equation (11) also 
holds for generalized cumulants [16], i.e. defined with a 
bra vector different from the ket \d>„): 

0=(<t>\StHQ\ct>0)
c (A 2) 

The arbitrary vector (<D| should have a non-zero overlap 
with \<t>0). Evaluating the cumulants [11] and using the 
linear combination (A 1) instead of the ket vector \<f>0) 
we obtain 

J2 -TjmSlHQ \4>0.) = £0 E 7;<<J>|Siß |0Oj.) •     (A 3) 
j j 

For fixed ß = exp S and appropriate operators S„, 
equation (A3) is a generalized eigenvalue problem for 
E0 and {7^} and can be solved by standard methods. The 
lowest eigenvalue is the ground-state energy, the corre- 
sponding eigenvector the desired linear combination of 
the degenerate ground-state vectors of H0. 
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This presentation will provide a comprehensive account of the recent developments in the the 
state-selective coupled cluster method for quasi-degenerate electronic states. We will mention 
some previous important applications and present new data from our recently finished calcu- 
lations related to stretching of chemical bonds. We will also discuss some possible future 
developments. 

1.   Introduction 
Single reference coupled cluster (SRCC) method [1-3] 

has been largely successful in providing accurate values 
of energy [4-7] and molecular properties [8-18] for the 
non-degenerate ground states of closed shell systems as 
well as of high-spin open-shell systems. In such cases, 
the zero-order approximation to the exact wave function 
can be satisfactorily described by a single determinant, 
which is usually the restricted or unrestricted Hartree- 
Fock (RHF or UHF) wave function. However, prob- 
lems that are of chemical interest often correspond to 
more complicated situations where a few leading config- 
urations of the full configuration interaction (FCI) space 
contribute almost equally to the wave function of the 
electronic state of interest (it is important to realize that 
a configuration composition of a state depends on the 
particular choice of the molecular orbital basis and a 
state which is significantly 'multiconngurational' in 
one basis may have less of the multi-reference character 
in the other basis). The proper way to deal with such 
open-shell/quasi-degenerate situations is to include the 
dominant configurations in the model/reference space 
and generate the corresponding exact wave functions 
by applying a suitable wave operator on this reference 
space. The genuine multi-reference (MR) CC methods, 
such as the Fock-space [19-21] and Hilbert-space 
[22,23] versions follow such a direction and eventually 
arrive at an eigenvalue equation involving diagonaliza- 
tion of an effective Hamiltonian defined through the 
Bloch equation in the model space. Strict application 
of these approaches leads to simultaneous calculation 

of several electronic states corresponding to the given 
reference space. 

Another, very diverse class of MRCC methods 
focuses on a single state at a time. These methods are 
called the state-selective (SS) or single-state theories [24- 
31]. Some of these approaches rely on more general 
multi-reference concepts (e.g. [27]), while aiming at a 
single electronic state, whereas the others utilize the 
SRCC concepts (e.g. the SSCC method of [31] or the 
equation-of-motion (EOM) CC methods [32]). Some 
SSCC methods combine SRCC ansatz with a CI-like 
eigenvalue problem, thus allowing evaluation of a 
number of electronic states in a single calculation (e.g. 
the EOMCC method [32(a)] and its more recent simi- 
larity-transformed modification [32(b)], or the method 
proposed by Paldus et al. [25]). 

The state-selective MRCC approach of Oliphant and 
Adamowicz [33] and Piecuch et al. [34] introduces multi- 
reference character of the wave function through suit- 
able modifications of cluster components defining the 
SRCC approach. These modifications are introduced 
in such a way as to provide sufficient flexibility to the 
wave function in order to handle open-shell and quasi- 
degenerate situations. We use the term 'multi-reference' 
in a loose sense, as it is done in the MRCI theory, where 
the multi-reference description is achieved directly by 
selecting important configurations and not by 
employing the Bloch wave operator formalism and the 
concept of effective Hamiltonians. 

In the SSMRCC method of [33-38], the exponential 
wave operator of SRCC is partitioned into internal and 
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external parts such that the former acts on a suitably 
chosen single-determinantal formal reference to gen- 
erate a multi-determinantal zero-order wave function. 
The external part of the exponential SRCC operator 
acts on this zero-order wave function to generate the 
exact wave function. Both parts are exponentials of 
the relevant cluster operators. Another SSMRCC 
ansatz which we recently proposed [39,40] to better 
handle the quasi-degenerate situations arising in excited 
states, where the cluster structure of the electron corre- 
lation effect is expected to be different from the quasi- 
degeneracy resulting from stretching chemical bonds, 
has the internal part linearized. Such linearization 
makes the computation of the internal cluster compon- 
ents simpler. 

The advantage of using a partially linearized ansatz in 
a size-extensive representation of the wave function, 
rather than a fully exponential one, is to avoid any 
particular assumption regarding the cluster structure 
through the exponentiated excitation operator. How- 
ever, if a linearized ansatz is used, one needs to either 
consider all the configurations which can be constructed 
with the use of the active orbitals in the model space (the 
full CI expansion using core and active orbitals) or use 
some other means, such as size-extensive corrections to 
the Hamiltonian matrix, in order to obtain a fully size- 
extensive theory. In the recently proposed method 
termed [(SC)2 - CI] [41, 42], the size-extensivity was 
achieved through a self-consistent dressing of the diag- 
onal elements of the CI matrix. Such an approach, 
which proceeds through the construction of an effective 
Hamiltonian matrix by including contributions from 
higher excitations in the diagonal elements, offers some 
potential advantages over the conventional CC 
approach. One such advantage is reducing the non- 
linearity of the equations for the configuration ampli- 
tudes and solving for the amplitudes using the 
conventional diagonalization procedure; another being 
that the method offers a scheme which can be easily 
implemented within the conventional CI method and 
can provide size-consistent results not only for the 
ground state at the equilibrium geometry but also for 
structures significantly distorted from the equilibrium as 
well as for excited states. Although for some excited 
states, which are well described by single excitations 
from the Hartree-Fock wave function, the EOMCC 
method based on the single-determinant CC approach 
provides very good results [32], there are many classes of 
excited electronic states where a different approach is 
necessary. Dealing with those states requires that the 
CC method be extended beyond the single reference 
case allowing for several determinants to significantly 
contribute to the reference wave function of the state 
of interest. 

Based on our previous experience, we prefer to con- 
sider the state-specific (or state-selective) approach. The 
state-selective scheme can be applied to determine only 
one state of the system (this being either the ground or 
excited state) in a single calculation, while a single multi- 
state calculation provides results simultaneously on sev- 
eral states. The reason for choosing the state-specific 
approach is the realization that in most applications 
one is usually concerned with a single electronic state 
or a small subset of states. Moreover, if several states 
are simultaneously considered in a calculation, as it is 
done in genuine MRCC methods, one either needs to 
compromise the accuracy of the calculation by having 
the states share the same active orbitals and the same set 
of cluster amplitudes (this may be a more reasonable 
assumption for some states than for the others), or to 
perform a calculation which, in essence, would be 
equivalent in complexity and effort to a set of indepen- 
dent calculations, each aiming to determine a different 
state. On the other hand, if electron excitation spectra 
are investigated, it certainly is more practical to consider 
several states in a single calculation, and this mandates a 
multi-state procedure. 

We also find it reasonable to assume that the initial 
step in our approach will be a complete active space self- 
consistent field (CASSCF) calculation, which will pro- 
duce orbitals and the initial reference functions for the 
state or states under consideration. The CASSCF 
method [43] is a well established approach, which 
through implementation of the second-order orbital 
and configuration optimization procedure has become 
a popular and effective method to study states with 
multi-reference character, particularly excited states. 
At present, however, it seems that a satisfactory 
method to treat the dynamic electron correlation effects 
in a size-consistent fashion is still an open problem. In 
particular, it seems that no satisfactory approach has yet 
been proposed that equivalcntly describes the dynamic 
and non-dynamic electron correlation contributions and 
allows them to interact in a self-consistent manner. The 
CASPT2 method, which has been advanced by several 
groups [43], provides a good account of the dynamic 
correlation effects for cases where the active orbitals 
arc energetically separated from the virtual orbitals. 
However, it fails when degenerancics appear in the 
orbital space. Although 'level shifting' and other types 
of techniques have been tried to remedy the problem, no 
'clean' and general solution has yet been found. 

There has been also some development within the 
MRCI method to correct its lack of sizc-cxtensivity. In 
our recent work [39, 40] we proposed a scheme where 
the dynamic'non-dynamic electron correlation interac- 
tion in a state-specific calculation is introduced by 'dres- 
sing' the CI Hamiltonian with the contributions of the 
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higher excitations. These contributions are determined 
based on the coupled-cluster representation of the wave 
function. Another possible approach to determine the 
size-extensive dressing of the CI Hamiltonian matrix is 
to develop a procedure for solving the CI problem 
simultaneously for M states. In this type of approach, 
which we proposed recently [40], we use a set of M 
determinants that have the largest contributions to the 
M states of interest. The CI space then represents the 
model space and the determinants play the same role as 
references in the single-state single-reference problem. 
They form the so-called 'main model space' of the inter- 
mediate Hamiltonian theory [44]. The CI eigenstates are 
expressed in the form which is based on the Jeziorski- 
Monkhorst (J-M) [22] formulation of the MRCC 
expansion, with the M determinants being the M refer- 
ences. The coefficients of the outer-space determinant, 
which contribute to the dressing terms in the Hamil- 
tonian, are calculated from the J-M exponential wave- 
operator. In the solution of the dressed-CI problem, it is 
necessary to iterate the CI equation and recalculate the 
dressing terms in each iteration. The method is particu- 
larly applicable to the CAS-SDCI problem (MRCI sin- 
gles and doubles approach employing CASSCF 
orbitals). The general concept of the approach is 
reviewed in greater detail in the following section. 

particle (not occupied in |0)) subspaces. Hole and par- 
ticle indices in r'mt' have fully internal (all active) label- 
ling. Let N^ denote the highest level of excitation 
possible in the T(mt> operator. For T(ext\ the indices 
are either all external (inactive) or semi-internal (a mix- 
ture of internal and external labelling). Let iV(ext^ denote 
the highest level of excitation possible in the T^ 
operator, which is equal to the number of all correlated 
electrons. In this work, we follow the convention of 
indicating orbitals of different categories: core (inactive 
holes) i, j, k, 1; active holes I, J, K, L; active particles A, 
B, C, D; and virtual (inactive particles) a, b, c, d. If the 
active or inactive character of a particular spin-orbital is 
irrelevant, we designate it in italics (holes: i, j, k, 1; 
particles: a, b, c, d). With the use of the above indexing 
convention, the T(int) and T(ext) operators can be for- 
mally written in terms of particle-hole (p-h) excitation 
operators, E-^" 
lowing way: 

(lo'tC) = C'C'i0) )•in the fol- 

n(int) _ 
Nd° 

= E^' mt) 

rp(tXt)    V"^ y(ext) 

(2) 

(3) 

with 

2.   State-selective multi-reference CC formalism 
In the originally introduced version of the SS MRCC 

method [33-38], the traditional SRCC exponential wave 
operator eT is partitioned into two parts, exp T^mi) and 
exp T^ext\ such that the former acts on a suitably chosen 
single-determinantal formal reference function |0) 
(which is chosen as a Fermi vacuum) to generate the 
model space reference function \&(mt)) being a linear 
combination of reference determinants and the latter 
produces excitations outside the model space. The 
formal reference determinant, |0), can be different for 
different states. Thus, the exact function is generated as: 

\<F) = exp T(ext)|*(int)> = exp T(ext) exp T^int>|0>.    (1) 

The T(int) and T(ext) operators commute as both of 
them are expressed in terms of excitation operators rela- 
tive to |0). In order to specify the orbital indices in these 
two operators, the spin-orbital space is divided into 
active and inactive subspaces. The inactive space con- 
tains core and virtual orbitals which are always occupied 
and unoccupied, respectively, in all model space config- 
urations. Active space orbitals are those which have 
different occupancies for different model space con- 
figurations. The formal reference determinant, |0), 
defines the partitioning of the active space into two sub- 
sets, namely, the active hole (occupied in |0}) and active 

nm)=(*!)-2 E 
I1>I2>->I« 
Aj>A2>—>AK 

rA,A2 

lK     FA,A2. 

rp(ext) 
1 V wr 

(ext) 

E i,i2... 1     P a,a2.. 

'»    M'2-', 

(4) 

(5) 
l!>I2>->^ 
Oj>fl2>->flj? 

where among the axa2...an and ixi2 ...iv indices in the 
above expansion, either at least one label corresponds to 
an inactive orbital, or all indices are active, but in this 
case the level of the external excitation is at least one 
higher than the highest excitation level in T(int). The SS 
MRCC expressions for determining correlation energy 
AE and amplitudes are obtained with assumption of 
intermediate normalization (f |0) = (0|0) = 1 as fol- 
lows: 

(0|[Hjvexp T{ext> exp Ttmt,]c|0) = AE 

(**\[HNexp T(ext) exp T^]c\0) = 0, 

(6) 

(V) 

where $* are the excited configurations and HN repre- 
sents the Hamiltonian in the normal order form 
(HJV = H - (0|H|0)). It is the sum of one- and two- 
body operators, FN and VN, whose matrix elements 
are the usual one- and two-electron molecular integrals. 
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r(int) -(ext) For practical use, expansions of T[m ' and Tlt"" in terms 
of respective many-body components Tj,'n,) and TJ"' 
have to be truncated. In all the applications performed 
to date, the internal set was restricted to include only 
T(,'nl) and Tj"1' operators, while the external set con- 
tained all possible semi-internal and external, singly 
and doubly excited amplitudes plus a restricted set of 
internal and semi-internal three- and four-body ampli- 
tudes. The three-body external amplitudes were 
restricted to carry at least one pair of active hole par- 
ticle labels and four body amplitudes were restricted to 
carry at least two active hole particle pair labels. The 
approximate version of SS MRCC with all singles and 
doubles amplitudes and internal and restricted semi- 
internal types of triple amplitudes is called the SS 
MRCCSD(T) method. The version which includes 
internal and restricted semi-internal quadruple ampli- 
tudes is termed the SS MRCCSD(TQ) method. These 
versions have the following ansatz for the wave func- 
tion: 

|ipSSMRCCSD(T))=exprr n(exl) -(cxt) 

+^(uf)]exp[7|inn + T«im)]|0),   (8) 

HP SSMRCCSD(TQU .(cxl) ) = exp T|x" + T p(exl) 

+T3(Uf)+T4(sJSD)]expfr' -(int) 

+ rfi; 
]|0). (9) 

It has been shown with a number of examples that the 
SS MRCCSD method based on the above wave func- 
tions handles very well the dissociation process of single- 
and double-bonds, as well as quasi-degenerate situations 
in some excited states [45]. 

In order to more effectively handle the general quasi- 
degencracy problem, we recently proposed the use of a 
linearized form for the internal operator, exp x(,nl\ 
while retaining our previous description for the external 
operator (semi-linear approach) [39]. The resulting 
ansatz assumes the form: 

|^)=expT(cx,)(l+r(,n,))|0). (10) 

In this case the equations for the amplitudes are linear in 
terms of C(int). In general, if T(in,) includes all possible 
excitations within the active orbital space, the 
exp T(in,)|0) and (1 + C(in,))|0) wave functions arc com- 
pletely equivalent and only practical reasons may deter- 
mine which approach will be more effective and 
convenient in a particular case. However, since in calcu- 
lations on excited states one usually performs CAS cal- 
culations  first,  it  seems  more  practical   to  use  the 

linearized form of the wave function, equation (10), 
rather than convert the CAS wave function to the ex- 
ponential form, equation (1). Also, the spin adaptation 
of the wave function of equation (10) (making the func- 
tion and eigenfunction of the S7 operator) is more 
straightforward than for the wave function of 
equation (1), which makes this ansatz better suited in 
representing excited states. In order for the ansatz repre- 
sented by equation (10) to provide a size-extensive wave 
function, the internal part, (1 + C(in°)|0), should include 
the complete set of the determinants within the manifold 
of configurations constructed with the use of all active 
orbitals. Thus, the substitution of exp T(in,) with (1 + 
C(l"n) will satisfy the linked cluster theorem and pre- 
serve the sizc-extensivity requirement only if the full 
CI representation of the internal part of the wave func- 
tion is assumed and no truncation is made in the O""' 
amplitude set. However, because of the exponential 
nature of the T(cxn operator, the scries can be truncated 
after including any particular level of multi-body opera- 
tors. For example, including one- and two-body excited 
operators, T(,ex' and T^™", is one of the possible choices. 
In this case the ansatz for the wave function has the 
following form: 

V) = exp [T(r] + Tf ° + T, (ßT) + T4 (fft
D) 

. T /abrnr\ 
+ ' 5 I IJKIm    I + (i + rm")|o), (ii) 

where the C('nl1 operator comprises the following excita- 
tions: 

(12) nK   nkV.   -"ABC   ^.ARrn 1 I i *- IJ   i*- UK   > l 1.IKI     ■ 

and can be defined as: 

C 

c 

■(int) 

int) 

£cr 
(int) 

£ 
I|>I:> ■■■>!,. 
A,--X,.    --A, 

I,l:   I,      c.A,A,..A, 
fA,A; ...A,.    >i':   K 

(13) 

(14) 

The T'"" operator comprises the same types of fully 
external and semi-external amplitudes as in the fully 
exponential ansatz. The only difference is that, since 
all fully internal excitations are included in C(l" , there 
is no need to include any higher-level fully internal exci- 
tations in T(cxl1 as was done with the fully exponential 
ansatz. where the external excitations have to be aug- 
mented by internal triple and quadruple excitations, 

TJ(UK) and T4ten), in the SS MRCCSD(T) and 

SS MRCCSD(TQ) levels of theory to account for con- 
nected internal single and double excitations from 
important singly and doubly excited configurations gen- 
erated by T(,nn. If we assume that all the configurations 
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generated by the action of (1 + C^int') on |0) are equally 
important then, in principle, one needs to include in 
j-text) ajj fuiiy external and semi-internal excitations 
which are single and double excitations from all the 
(1 + Cint')|0) configurations. This would necessitate, in 
the case when Ömt> is a «-body operator, including 
certain selected K + 1 and K + 2 body r(ext) amplitudes. 
Although there are certainly cases where one cannot 
avoid high-order connected excitations, one can always 
make an attempt for the state of interest to reduce the 
importance of higher excited configurations in the model 
space manifold. One way of accomplishing this is by 
transforming the model space CI expansion for the 
state of interest to an expansion in terms of configura- 
tions constructed with the use of natural orbitals deter- 
mined for this state. With this kind of transformation, it 
may be possible to reduce the active orbital set (the 
degree of the reduction can be different for different 
states) by including only those orbitals which are more 
significantly occupied. In consequence, one can reduce 
the level of the T(ext) excitations. There is an additional 
point which one can make in favour of using the natural 
orbitals. If they are not used in the calculation, the CAS 
orbitals are not well defined, which can cause incon- 
sistency in representing different points on the potential 
energy surface. 

The following types of amplitudes are included in the 
T^ext' operator: three types of single amplitudes: 

4,4,4 
eight types of double-excitation amplitudes: 

JJ  Jj    Jj   JJ  jj    f.j   t.j   r 
laB> lAB> laB> lab, <AB> lab' laB>l: 

t>> 
AB' lab,laB' lab> 

and eight types of triple excitation amplitudes: 

JJK   ,IJk     Jjk     JJK   Jjk      ,IJk    Jjk     ,ijK 
raBC, rABC; raBC, rabC, rABC rabC> raBC> rabC" 

(15) 

(16) 

(17) 

From the above it is easy to see how to determine what 
types of higher order amplitudes should be included if 
higher order internal excitations become important. 
Those can be generated by adding one or more active 
hole-particle label pairs, (L,D), (L,M,D,E), etc., to the 
above triple amplitudes. The resulting eight classes of 
the general types of external excitation amplitudes are: 
JJK...L    JJK...L      JJK...L     JJK. L 
raBC...D, rABC...D, 'aBC.D, rabC...D, 

JJK...L      JJK...L    JJK...L     JJK...L /,8\ 
lABC...D' labC...D, laBC...D> labC...D-     \LO) 

As one can see, the 'complete' wave function in 
equation (10) is developed by acting with the excitation 
operators on a single determinant wave function, |0), 
which we call the formal reference. As mentioned 
before this function can be chosen to be different for 
different states. As a matter of fact, for states which 
belong   to   different   symmetry   representations,   the 

formal references have to be different, since the formal 
reference is expected to contribute (presumably in a sig- 
nificant way) to the calculated state. The proposal of 
using different formal references for different states is 
in line with the role which we consider the coupled 
cluster method should play in electronic structure calcu- 
lations, which is to exact the CASSCF results by 
accounting for the part of the dynamic electron correla- 
tion contribution not included at the CASSCF level. In 
this scheme a separate CC calculation is performed for 
each state (like in the CASPT2 method). 

The approach that we propose is close in spirit to the 
approach suggested by Paldus and co-workers [25] and, 
perhaps even closer, to the approach proposed by 
Nakatsuji and co-workers [26]. In the former approach 
the authors start form exp T|0) to describe the ground 
state, and then generate excited states through the action 
of a linear CI-like operator W on the ground-state wave 
function. The internal part of W acting on |0) gives a 
contribution similar to our (1 + C(int))|0). The 
remaining portion of W includes correlation effects 
needed to describe the dynamical correlation in the 
excited state. This effect is described in our approach 
by T(ext). Nakatsuji and co-workers [26] use an idea 
which in some respect is similar to our proposal. They 
start with their symmetry adapted cluster (SAC) expan- 
sion theory by defining the ground state wave function 
in the exponential form: fgAC = exp S|0), where 
S = J2i C[Sj is expressed in terms of symmetry adapted 
configuration generators, S]. For the excited, ionized 
and electron attached states they use the following 
SAC-CI wavefunction: f«0"0 = EK^K^K^

0
, 

where R'K is a symmetry-adapted excitation, ionization, 
or electron attachment operator. 

For the modified SS MRCC ansatz, the equations for 
energy and amplitudes may be expressed by projecting 
the Schrodinger's equation against the vacuum deter- 
minant and the configurations |#*int)) and |<P(ext)), 
where |<P(ext)) are the configurations corresponding to 
excitations included in 7^ext' and |$(jnt)) are all the con- 
figurations other than |0) included in the model space 
formed out of active orbitals. Projecting the Schrodin- 
ger's equation to the vacuum, one can write the correla- 
tion energy as, 

(Oltfjyexp T(ext)(l + C(int))|0) = A£. (19) 

To obtain the equation for the amplitudes of the T^"1' 
and Ömt' operators, the Schrödinger equation has to be 
projected onto the set of internally and externally 
excited states leading to, 

(^*m\HNexp r<ext>(l + C(int))|0) = A£c(int) 

&
(int) c(int) = <^(int)|C

(int)|0>,    (20) 
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<^cxt)|//Nexp 7^(1 + din,')|0) = AEc(ext 

c(ex,) = Wcxt)|C
(ex,)|0},    (21) 

where C'ext' may be defined as sum of r(cxl' of the same 
rank and all the products of T(cx,) and C(in,) of the lower 
ranks that give the same order of excitation as |#[cx,)). 

In general, (1 + C'in,^)|0) describes a complete set of 
determinants within the set of active Orbitals and thus, 
as in the full CI case, the disconnected components of 
the left and right hand side of the equation obtained by 
the projection to the 'internal' set of configurations, 
equation (20), cancel among themselves. In such a 
case, the disconnected components of the left hand 
side of equation (21) also cancel with the right hand 
side as in the standard CC method, 

(^int)|[//NexpT^(l+d^)](.|0) = 0,      (22) 

(^cxt)|[//Nexpr(ex,»(l+din,»)](.|0) = 0.      (23) 

The above equations have only symbolic meaning. In 
order to perform cancellation of the disconnected 
terms on the left and right hand sides of equations 
(20) and (21) one needs to separate the disconnected 
terms resulting from the disconnected parts of the 
C'int' operator. This requires that this operator is 
expressed in terms of the T(inl) operators. However, 
then the C^int' cannot be directly calculated. Therefore, 
in the calculations utilizing semi-linear ansatz we will be 
solving equations (20) and (21) rather than equations 
(22) and (23). 

One may examine the case where C',nl contains an 
'incomplete' set of operators in the sense that it is trun- 
cated at some lower excitation order, e.g. singles and 
doubles, so that (1+C(in,))|0) does not represent the 
full CI expansion within the active space. This modifica- 
tion of the semi-linear ansatz makes it more general and 
helps include only those configurations in the internal 
space which arc important. This may lead to computa- 
tional simplicity as well. Unfortunately, truncation of 
this type would introduce disconnected diagrams to 
the energy. In each equation of the system of equations 
(20) and (21) there will be only partial cancellation of the 
disconnected components. In some special situations 
one can identify the terms needed to achieve cancellation 
of disconnected terms. For example, if C('n,) and T'"'' 

operators arc truncated at a given order of excitation, 
say doubles, the disconnected components of the left 
hand side of equation (20) will consist of disconnected 
diagrams of the operator [77Nexp T(cx,)(l + C(in,))] with 
two internal holes and particle lines open. This can only 
be a product of closed diagrams representing vacuum 
expectation value of HNexp T(cx,) and the r[rü) coeffi- 
cient. If we now separate AE as, 

(0|Wvexp T(ex,)|0) + (0|HA.exp T(cx,)C(in,)|0) 

= A£(cx" + AE(in,) = AE,    (24) 

then one can sec that in this special situation, the dis- 
connected components resulting from the left hand side 
of every equation (20) will cancel with AE(cx,)c(in,). As 
for equation (21), the disconnected diagrams with at 
least one external line are products of the closed dia- 
grams of [tfA exp T(cx,)(l + C(in,))] operator and ampli- 
tudes representing T(cx,) operator and this cancels with 
the right hand side fully. However, if one uses different 
truncation schemes in C'"1'' and 7*'™'' operators, as 
would be done in the semi-linear SSCC ansatz, one 
must use equations (20) and (21) accepting the fact 
that certain disconnected terms will not cancel out. 
Hence for the semi-linear ansatz to formally satisfy the 
size extensivity, it is necessary that the C'm,) operators 
describe the complete set of excitations within the active 
Orbitals in which case equations (22) and (23) arc satis- 
fied. 

With many active orbitals, the rank of C*""' operator 
will be high and in such situations the set of equations to 
be solved will become very complex. A plausible solu- 
tion [27] is to keep the C(int) amplitudes (as determined 
from CASSCF calculation) frozen while solving for the 
external set of amplitudes, 7"'"1'. This will mean solving 
for the external amplitudes in the presence of a fixed 
potential owing to the active orbital set in a decoupled 
manner. On the other hand, if the number of active 
orbitals and consequently the number of Öwt' ampli- 
tudes is small enough to make the corresponding com- 
putational exercise feasible, one can solve the coupled 
set of equations (20) and (21). This line of approach will 
help relaxing the internal amplitudes in the presence of 
the external set. Depending on the number of active 
orbitals needed for a qualitatively correct description 
of bonding, one needs to choose from above two alter- 
native modes of solving. 

Finally, one might consider the complete elimination 
of the exponential component in the wave function by 
replacing the external excitation part by the linearized 
operator: 

i(cxt) y) = (l + Clcx")(l+Cl'n")|0), (25) 
■(ext) which, when the O operator is truncated, leads to a 

MRCI expansion. In order for the above ansatz to be 
size-consistent one needs to include the complete set of 
both internal and external excitations. Obviously, this 
would lead to the full CI (FCI) wave function. 

In the above discussion one point needs to be clarified 
in order to avoid a contradiction between what is com- 
monly understood as the 'reference function' and the 
meaning of this term which we use in this work. First, 
in equation (1) we introduced a single detcrminantal 
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Figure 1.   The potential energy curves for the HF molecule 

calculated at the SRCC and SSCC levels of theory. 

wave function |0), which we call the formal reference. 
Next, we introduced two new functions, expT'mt'|0) 
and (1 + C^nt^)|0), which are defined in the active orbital 
space and in the commonly used terminology would also 
be called reference functions (even though they have 
multi-determinantal character). In the subsequent step 
we act with exp T^xt> on those reference functions to 
introduce the dynamic correlation effects. It is important 
to distinguish between the formal reference determinant, 
which is used to establish the partitioning of the orbital 
space into the active and inactive subspaces and to 
define the Fermi vacuum, and the reference functions 
defined in the active configuration manifold with the 
internal excitation operators. According to the conven- 
tional definition, the latter are the 'true' reference func- 
tions, which provide the first approximations for the 
state under consideration. If the CASSCF wave function 
is used as the 'true' reference, the choice of the formal 
reference determinant is ambiguous since all active- 
space configurations are included. Obviously, the 
formal reference determinant cannot be the one, which 
does not contribute to the state under consideration. In 
practical applications one usually chooses one of the 
leading determinants to be the formal reference. 

3.    Numerical examples 
The results presented in this section have been 

obtained with the double-exponential SSMRCC wave 
function of equation (1) at the SSCCSD(T) and 
SSCCSD(TQ) levels of theory (equations (8) and (9)). 
First, on figure 1 we present a potential energy curve 
calculation for the ground state of the HF molecule as 
a function of the internuclear distance using the double 
zeta (DZ) basis set. The figure compares the perform- 
ance of the single reference (SR) CC theory at the CCSD 

Table 1. A comparison of the SSCCSD(T) energies (in har- 
tree) with FCI, CCSD/RHF, CCSD/UHF, CCSD + 
T(CCSD)/RHF, CCSD(T)/RHF, and CCSD(T)/UHF 
results for the CO molecule at the equilibrium (R = Re) 
and stretched bond lengths R obtained with double zeta 
(DZ) basis set. In all correlated calculations, the lowest 
two core orbitals and the highest two virtual orbitals were 
kept frozen. A is the difference with the FCI result. 

Method R = RJ R- .5R, R = 2.0R„ 

RHF -112.685 05 -112.439 21 -112.314 40 

UHF -112.68505 -112.453 83 -112.41390 

SRCCSD/RHF -112.88614 -112.71510 -112.46851 

SRCCSD/UHF -112.88614 -112.723 59 -112.60917 
SRCCSD+ T(CCSD) -112.89610 -112.785 83 -112.48026 
SRCCSD(T)/RHF -112.89373 -112.74615 -112.47808 
SRCCSD(T)/UHF -112.89373 -112.74522 -112.67225 
FCI -112.89509 -112.74993 -112.62756 
ssccsDcn)* -112.89228 -112.74496 -112.63569 

A SRCCSD(T)/RHF 0.0014 0.0038 0.1495 
A SRCCSD(T)/UHF 0.0014 0.0047 -0.0447 
A SSCCSD(T)/RHF 0.0028 0.0050 -0.0081 

" Re = 2.132 bohr. 
SSCCSD(T) calculations with four-hole and four-particle 

active space consisting ; of valence KX, 7t„, TU! and 7t* orbitals. 

and CCSD(T) [46] levels with the SSCCSD(T) results 
obtained with two-hole and two-particle active space 
(a and a* spatial orbitals) and with six-hole and six- 
particle active space (<r,nx,ny, and a*,K*x,K*y spatial 
orbitals). In describing the active spaces, we use a 
spin-orbital description, so that two holes correspond 
to a single spatial orbital, etc. There are a few observa- 
tions which one can make upon inspection of the results. 
First, it is clear that the SSCCSD(T) method with both 
smaller and larger active spaces gives results virtually 
identical to FCI. Second, the results with the smaller 
active space are only marginally worse than with the 
larger space. The SRCCSD method overestimates the 
dissociation energy and, what is noticeable, the 
SRCCSD(T) method using RHF orbitals underestim- 
ates it and produces a large and unphysical dip in the 
curve around 5-7 au. 

Similar behaviour of the SRCCSD(T) method can be 
seen for the CO molecule in the results presented in 
table 1. The differences between the total energies calcu- 
lated at the particular level of the theory and the FCI 
results, which are shown at the bottom of the table, 
indicate that this method performs well near the equili- 
brium but fails at 2Re. The failure of the SRCCSD(T) 
approach is particularly dramatic when the RHF orbi- 
tals are used (SRCCSD(T)/RHF method). Somewhat 
better results at R = 2Re are obtained at the 
SRCCSD(T)/UHF level (i.e. using SRCCSD(T) with 
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Table 2. A comparison of the FCI, CCSD, SSCCSD(T) and 
SSCCSD(TQ) energies (au) for C2 at equilibrium (/?,)" 
and stretched bond length (1.5/?) obtained with double 
zeta (DZ) basis set. The lowest two occupied and the 
highest two virtual orbitals were kept frozen. A is the 
difference with the FCI result. 

/? = /?, R = 1.5/?, 

RHF -75.35648 -75.202 68 
SRCCSD -75.621 18 -75.482 24 
SSCCSD(Tl)'' -75.631 80 -75.50295 
SSCCSD(TQl)r -75.63322 -75.50658 
SSCCSD(T2)rf -75.63844 -75.504 33 
SSCCSD(TQ2)P -75.63977 -75.508 86 
FCI -75.641 86 -75.51841 

ASRCCSD 0.0207 0.0362 
ASSCCSD(Tl) 0.0101 0.0155 
ASSCCSD(TQI) 0.0086 0.0118 
ASSCCSDCT2) 0.0034 0.0141 
ASSCCSD(TQ2) 0.0021 0.0096 

" Re = 2.348 au. 
SSCCSD(T)   calculations   with   four-hole   four-particle 

active space (nuv, nuy, ngx and ngy). 
''  SSCCSD(TQ) calculations with  four-hole four-particle 

active space (7tuv, nuy, ngx and ngy). 
d SSCCSD(T) calculations with six-hole six-particle active 

space (ag, 7t„v, nuy, au, ngx and ngy). 
e SSCCSD(TQ) calculations with six-hole six-particle active 

space (air 7t„v, 7t„v, <r„, ngx and ngr). 

the UHF reference), but this is achieved at the expense 
of not providing a pure spin state. Moreover, the error 
in the SRCCSD(T)/UHF result (ea. 45millihartrcc) is 
still rather large. This is an important observation in 
view of the popularity of the UHF-based SRCCSD(T) 
approach. 

The SSCCSD(T) method with four-hole and four- 
particle active space (using only the n and n* valence 
orbitals) performs much better and gives only 8.1 milli- 
hartrcc error at R = 2RC in spite of using the RHF 
reference. Since three bonds dissociate in CO when the 
internuclear distance increases, a more accurate descrip- 
tion of the process requires larger active space and. 
probably, the SSCCSD(TQ) level of theory. It is very 
encouraging to observe that the simplest SSCCSD(T) 
method using 'minimal' active space performs so well. 
The resulting wave function is not spin-contaminated as 
in the SRCCSD(T)/UHF case. 

We examine the contribution of the quadruple excita- 
tions in calculations for the C2 molecule in the results 
presented in table 2. For this system the appropriate 
active space should contain either four holes and four 
particles (rcuv, rcm. and JC. 

particles (CJ„, jr.. 
'lg-v 

7iuv and au, jtgv. 
7igl.) or six holes and six 

Kg,.). At the bottom 

of the table one again can find differences between the 
total energy provided by the particular SSCC method 
and the FCI results. These differences systematically 
decrease when the active space is enlarged and when 
quadruple excitations arc included in the calculations. 
Also, upon examining the last four rows in the table 
one sees that including the quadruple excitations 
makes the energy slope more parallel to the slope 
obtained with FCI. 

4.    Conclusions 
The SSMRCC method is still in the development 

stage. Not only the performance of this method in 
terms of reproducing the FCI results, but also its con- 
vergence properties and effectiveness in practical appli- 
cations will decide about its usefulness in theoretical 
calculations. At this stage, one can already sec that the 
behaviour of the SSCCSD(T) method is better than in 
the case of the very popular SRCCSD(T) method even 
when the latter method uses the UHF reference. We 
plan to implement the SSMRCC method based on the 
semi-linear ansat/. We believe that this approach when 
coupled with the CASSCF method will provide a prac- 
tical and well converging scheme to generate very accu- 
rate results for excited states, as well as for dissociating 
systems. 
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The externally-corrected singles and doubles coupled cluster (CCSD) method, as implemented 
for high-spin open shell systems by exploiting the unitary group approach and restricted to 
the first order interacting space (UGA-CCSD(is)) in Part I (Li, X., et al, 1997, J. chem. Phys., 
107, 90), is applied to several simple radicals in their doublet ground and excited states. 
The capabilities and limitations of this approach are examined by studying the potential 
energy surfaces or their suitable cuts involving the dissociation of both single and multiple 
bonds (OH and CN) or simultaneous dissociation of several single bonds (NH2 and CH3). 
Using low dimensional CAS-FCI and SOCI wave functions for the internal and external active 
space excitations, it is shown that corrected CCSD energies are superior to the standard ones 
in all cases, including those obtained with CI spaces of very modest dimension, and are 
capable of accounting for the presence of higher than pair clusters even in severe cases of 
quasi-degeneracy. 

1.   Introduction 
In the preceding paper of this series [1] (further 

referred to as Part I), we have outlined and tested the 
so-called externally corrected coupled cluster method, 
restricted to singly and doubly excited cluster ampli- 
tudes (CCSD), for open-shell systems, relying on the 
unitary group approach (UGA-CCSD method) [2-8]. 
The key idea of any externally corrected CCSD 
method is based on the fact that the full CC chain of 
equations can be exactly decoupled at the pair cluster 
level if we know the 3- and 4-body cluster amplitudes 
[9-12], assuming that the Hamiltonian involves at most 
two-body interactions. This idea was first exploited for 
closed-shell systems in formulating the so-called ACPQ 
method [9] (approximate coupled pair method with 
quadruples), which implicitly accounts for connected 
4-body clusters T4 as given by the UHF wave functions 
of the DODS (different orbitals for different spins) type. 
An explicit account of these clusters, leading to the 
so-called CCSDQ' method [13], was achieved only 
recently. Unfortunately, the UHF wave function of the 
DODS  type  for  closed-shell  systems  contains  only 

§Also at: Department of Chemistry and (GWC)2— 
Waterloo Campus, University of Waterloo, Waterloo, 
Ontario, Canada N2L3G1. 

even-number of times excited clusters. In general, we 
thus must rely on some easily accessible source of 
higher than pair clusters when decoupling CCSD 
equations from the rest of the CC chain, rather 
than neglecting these clusters altogether as is done 
when deriving the standard CCSD method. This is 
particularly important in quasi-degenerate situations 
that are invariably encountered when we examine 
systems that are far away from their equilibrium 
geometry. In such cases we must rely on a suitable, yet 
computationally easily accessible, wave function that is 
capable of describing the dissociation or association 
process under consideration and can provide a 
reasonable approximation of both T3 and T4 cluster 
components. 

In our first attempt exploring the potential of the 
externally corrected CCSD approach we have used for 
this purpose a valence bond wave function [10, 11] and 
the semi-empirical Pariser-Parr-Pople (PPP) 7r-electron 
model systems. Later, we employed the complete active 
space (CAS) SCF wave functions, examining simple ab 
initio models [12]. In Part I of this series we applied this 
approach to open-shell systems at the ab initio level, 
while exploring CAS-SCF, CAS-FCI, as well as some 
limited CI wave functions as a source of the 3- and 4- 
body cluster amplitudes. 

0026-8976/98 $12-00 © 1998 Taylor & Francis Ltd. 
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In general, the approximate 3- and 4- body clusters 
n(0) T3' and T\', respectively, obtained by the cluster 

analysis of a suitable wave function, generate cor- 
rections to both the absolute and linear terms of the 
resulting externally corrected CCSD equations, the 
latter arising from the disconnected T\T\ term. As 
explained in Part I, this term can be treated in either 
an iterative or a non-iterative way, the latter one repre- 
senting an additional approximation in which we use the 

n(0) (0) external T, ' clusters in the T{T\ term, thus replacing it 
by T, Tj . In this way all corrections simply modify 
the absolute term of standard CCSD equations, or 
UGA-CCSD(is) equations in our case. Since the non- 
iterative treatment of the T\ 7^ term leads, generally, to 
only a few microhartrec error in the energy [1], we use it 
throughout. 

We have also shown in Part I that the type of MOs 
(ROHF versus CAS-SCF) that arc employed is of little 
importance. Moreover, very similar results arc obtained 
when using the CAS-SCF and CAS-FCI wave functions 
to generate the external T3 and T\ (and/or T\ for the 
T\ TT, term) corrections, although the latter wave func- 
tion requires less computational effort (roughly one 
CAS-SCF iteration). All active spaces employed in 
Part I arc rather small. Obviously, the external sources, 
such as CAS-SCF, CAS-FCI, or limited CIs within the 
active space, that were used in Part I, can only generate 
3- and 4-body connected clusters with all labels 
restricted to active orbitals, i.e. active space T3 and T4. 
To get more extensive information about the T3 and T4 

clusters, we would have to employ larger active spaces. 
For larger systems, however, the use of CAS-SCF or 
CAS-FCI as an external source for corrections is com- 
putationally too demanding and it is worthwhile 
exploring more affordable schemes relying on other 
CI-type wave functions. As the first step in this direc- 
tion, we divide the extended set of active orbitals into 
the two disjoint subsets of the so-called internal and 
external active orbitals. We then consider CAS-FCI 
for internal active orbitals, which will guarantee the 
correct description of the studied dissociation channel, 
and account for the effect of the remaining correlating 
external active orbitals via the second order CI (SOCI). 
This results in an affordable scheme, requiring CI wave 
functions of relatively modest dimension, while pro- 
viding 3- and 4-body corrections of roughly the same 
quality as the CAS-FCI or CAS-SCF schemes with the 
extended active space (AS) consisting of both internal 
and external active orbitals. 

In this paper we thus employ as the external source for 
P(0) r(0) the T\ ' and T\' clusters a CI-type wave function 

obtained by performing FCI within the AS defined by 
the internal active orbitals (i-CAS-FCI), followed by the 
second order CI involving single and double excitations 

into the external active orbital set (e-SOCI). To explore 
the performance of this scheme in various situations 
involving stretching or breaking of one or more single 
bonds, or of a single multiple bond, we examine double 
zeta (DZ) and DZ plus polarization (DZP) models of 
the ground and some excited states of the OH, NH2, 
CHj, and CN radicals. After briefly outlining the 
method employed and computational details in sections 
2 and 3, we present and discuss our results in section 4 
and draw appropriate conclusions in section 5. 

2.   Method 
We employ the externally corrected UGA-CCSD(is) 

method, described in Part I and relying on general 
ideas exposed in [10 12]. However, in contrast to 
Part I, where we employed as an external source the 
CAS-FCI or CAS-SCF wave functions, we now exploit 
the computationally less demanding CI procedure, 
requiring considerably smaller CI spaces. 

The key idea of the externally corrected CCSD 
methods stems from the fact that our Hamiltonian 
involves at most two-body potentials, so that CC equa- 
tions corresponding to projections onto the singly and 
doubly excited configuration state functions (CSFs) 
involve at most 3- and 4-body cluster amplitudes. 
These higher than pair cluster amplitudes arc neglected 
when deriving the standard CCSD equations by decou- 
pling the full CC chain at the double excitation level. 
However, it is precisely these higher than pair clusters 
that become important in quasi-degenerate situations. 
Unfortunately, the reference state of standard CC pro- 
cedures cannot usually properly describe such situa- 
tions, particularly the dissociation channels involving 
open-shell fragments. Such a description can be, how- 
ever, often achieved with a relatively simple multiconfi- 
gurational wave function. It is thus possible to use such 
a wave function as a source of the required 3- and 4- 
body clusters, and thus to achieve a more appropriate 
decoupling of the CC chain at the pair cluster level. 
Thus, by cluster analysing the chosen external wave 
function we compute Tf and TJ, cluster components 
and subsequently use them to correct the absolute (and 
possibly the linear) terms of the standard CCSD 
approach [10 12]. 

In Part I, this idea was exploited for open-shell sys- 
tems by relying on the recently developed UGA- 
CCSD(is) method and appropriate codes [2-8]. This 
paper employs the same procedure and software, 
except that we now rely on a computationally less 
demanding external source. Instead of using the stan- 
dard CAS-FCI or CAS-SCF procedure, in which one 
employs a relatively small set of orbitals as the active 
ones, we use an extended active orbital set, which is 
subdivided into the subsets of the so-called internal 
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and external active orbitals, as already stated above. We 
then consider CAS-FCI within the internal active space 
only (i-CAS-FCI), followed by the second order CI 
involving the external part of the active orbital space 
(e-SOCI). We shall see that this procedure requires CI 
of a much smaller dimension than the standard CAS- 
FCI method, in which all the correlated orbitals are in 
the active orbital space, while providing the 3- and 4- 
body cluster amplitudes of approximately the same 
quality. Thus, when specifying the active orbital space 
we distinguish between the internal and external active 
orbitals. 

When computing Tf] and T^] corrections to CCSD 
equations, we always get a contribution to the absolute 
term, except when accounting for the T{r\ term, which 
modifies the coefficients at the singly excited cluster 
amplitudes in the linear terms. It was shown in Part I, 
however, that a non-iterative treatment of this term, 
obtained by replacing the CCSD Tx clusters by the 
approximate T\ clusters (which are a byproduct of 
the cluster analysis of the external wave function 
yielding T3 ' and T\ ' clusters), leads to only a very 
minor change in the resulting energies (usually at a 
microhartree level). Thus, in all calculations presented 
here we employ this non-iterative T^TT, correction 
scheme. 

Finally, we must mention the procedure that is 
employed to compute T3 ' and T\ ' corrections. The 
codes that are employed in this paper treat both cluster 
components in a slightly different manner. For quadru- 
ples, we simply compute t4-amplitudes that are involved 
in our CI wave function and evaluate their contribution 
to the absolute term of UGA-CCSD(is) equations. In 
contrast, for the triply excited cluster components we 
consider all possible t3-amplitudes, even when they are 
not present in the external CI wave function. Assuming, 
then, that those not present in the CI wave function will 
have a negligible weight in the external wave function 
(i.e. C3 = 0 in such cases), we compute corresponding 
T3' corrections for all triple amplitudes. While this set 
of codes was used to generate the results presented in 
this paper, we have now designed a new set of codes that 
simply assumes that T3 = 0 when the corresponding C3 

is not available. In this way, both T3 and T4 amplitudes 
are treated on the same level. Clearly, this new version is 
computationally more efficient and will be systemati- 
cally used in the future. The differences between both 
versions, at least when used with an active space (AS) of 
a reasonable size, are less than a millihartree in all cases 
we examined. 

3.   Computational details 
The ROHF, CAS-SCF, CAS-CI and SOCI calcula- 

tions providing the external source for the corrections 

are obtained using the GAMESS system of programs [14]. 
The UGA-CCSD(is) [2-8], the cluster analysis and com- 
putation of corrections to CCSD(is) are carried out 
using our own codes [1, 11]. 

Concerning the basis sets, at the double zeta (DZ) 
level we use the 2s contractions of Huzinaga's 4s 
primitive set [15] scaled by the factor of 1.2 for the H 
atom, and Dunning's 4s2p contraction [16] of 
Huzinaga's 9s5p primitive sets [15] for the C, N and O 
atoms. For DZ plus polarization (DZP) bases we use the 
following exponents for the polarization functions: 
a3d(C) = 0.51, a3d(N) = 0.9, and a3d(0) = 0.8. For 
hydrogen, we use a2p(H) = 0.8 for NH2 and 
a2p(H) = 1.0 for OH and CH3. This choice enables us 
to use some of the existing full CI (FCI) benchmarks 
[17, 18]. 

For the 2IT state of OH, we use for the equilibrium 
bond length Re = 1.832 bohr. At the DZP level, we 
employ Cartesian Gaussians (all six components) and 
freeze Is core orbital as well as the corresponding Is* 
virtual orbital in all calculations. 

For NH2, both the 2A{ and 2P>! states are considered, 
using the geometries as well as the benchmark FCI 
values of [17]. In these calculations, only the nitrogen 
Is orbital is frozen, while the corresponding virtual Is* 
orbital is correlated. 

For CH3, we examine the 2A2' ground state, taking 
for the equilibrium bond length Re = 2.06 bohr as in 
[18]. Again, all virtual orbitals are correlated, unless a 
restricted AS is used. 

Finally, we chose the 2E+ and 2n states of CN to 
examine the stretching of a multiple bond. We employ 
experimental bond lengths for these states, namely 
JRe = 1.1718 and 1.2333 A, respectively. In all correlated 
calculations the Is orbitals, as well as the corresponding 
Is* virtual orbitals of both C and N, are frozen. 

Other computational details concerning these systems 
may be found in [7]. However, in contrast to this paper, 
we employ all six 3d Cartesian components in all con- 
sidered cases. For this reason, the CCSD(is) energies for 
NH2 and CH3 at the DZP level given here slightly differ 
from those of [7]. 

4.   Results and discussion 
An accurate description of bond breaking or forma- 

tion is a challenging problem for any quantum chemical 
method. This is particularly the case for single reference 
(SR) CC approaches. It is well known, for example, that 
the spin-orbital or closed-shell CCSD(T) [19] or 
CCSD[T] [20] approaches yield excellent results for 
near equilibrium geometries (as well as for the dissocia- 
tion energies; cf. e.g. [21]), but invariably fail away from 
equilibrium in view of their perturbative nature (see, e.g. 
figure 4 of [22]). In general, breaking of a chemical bond 
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requires a multi-reference description, and any SR 
approach will thus involve highly excited cluster com- 
ponents or the corresponding CSFs. However, approx- 
imating the higher than pair clusters by extracting them 
from a suitable external source can substantially extend 
the excellent performance of CCSD to systems involving 
highly stretched geometries, as will be illustrated by the 
following examples. 

For all the studied systems, we first present the results 
obtained with a DZ basis set, where a comparison with 
the exact or nearly exact FCI results is always possible, 
followed by realistic DZP results. We will present and 
discuss the studied systems in order of increasing 
complexity. 

4.1. Stretching of a single bond 
We employ the 2U state of the OH radical as a model 

of a single bond stretching. This system was already 
examined in considerable detail in Part I, where we 
employed both CAS-SCF and CAS-FCI wave functions 
as the external source for 7*3 and T4 corrections. 

For both DZ and DZP basis sets employed, the 
ROHF MOs can be labelled as followsf 

Ols02s<ToH02p>02p)ffOH02p;02p;02p;His.02s-'PO|s., 

(1) 

where V designates the polarization orbitals, so that 
V = 0 (an empty set) for DZ basis, while 

V = H2p;H2p.H2p;03d|03d:03d,03d403d50.H (2) 

for a DZP basis. The orbital ordering given above cor- 
responds to R = 2RC and may change as the bond is 
stretched or contracted. The lowest occupied (0ls) and 
the highest unoccupied (0ls.) orbitals are kept frozen in 
all calculations. The corresponding (complete) active 
space (AS) involving all the (non-frozen) orbitals and 
yielding the FCI results is designated as the zcroth 
active space, ASO, while various truncated active sub- 
spaces are labelled by AS«, n= 1,2,3, — In the present 
case, (0ls) and (0]s.) are always frozen, so that we have 
7 active electrons (i.e. all the valence electrons) occu- 

fThe molecular orbital labelling employed emphasizes the 
atomic site on which the atomic orbital having the highest 
weight is localized by listing first the atomic label. The type 
of the orbital (Is, 2s, etc.) is then given as a subscript. The 
unoccupied orbitals in the reference are starred. For the bond- 
ing orbitals of the sigma type we either give the atomic labels 
as subscript or, in the case of orbitals involving more than two 
centres (as in CH3), we simply indicate the main component by 
the single atomic label (e.g. ati for the orbital involving hydro- 
gen AOs in CH3 that is symmetric with respect to the H3 
plane). 

pying four orbitals 02s.(T0||.02p> and 02p , which arc 
always included in the (internal) active space and arc 
referred to as occupied MOs. The correlating virtual 
orbitals that are included in the active space arc subdi- 
vided into the two subsets of the so-called internal and 
external active orbitals. In specifying various truncated 
active spaces AS/;, (n > 0), wc only list the pertinent 
virtual orbitals, separating the internal and external 
ones by a double slash. The occupied and internal 
active virtual orbitals then define the i-CAS-FCI (full 
configuration interaction involving the complete 
internal active space orbitals) space, which is then 
extended by considering the second-order interacting 
space involving the external active virtual orbitals (c- 
SOCI). For the OH radical, the following active spaces 
arc considered (in addition to ASO): 

AS1 : [(Thn//02r'P2p.02r,Hls.02s.V], 

AS2 : [aon//02p;02p:02p!Hls.02.s.], 

AS3 : [aoH//02p;02p:02p;Hls.], 

AS4 : KW/02p.02p;02p.]. (3) 

For a DZ basis, where V = 0, AS1 = AS2. The dimen- 
sion of these spaces is always given together with the 
energetic information (cf. tables 1 and 2). The dimension 
of the CCSD approach is the same in each case and, at 
the DZ level equals 113 and at the DZP level to 541. 

The resulting total energies as well as the differences 
relative to the FCI benchmark, representing the exact 
solution for a given basis set, arc listed in tables 1 and 2 
for the DZ and DZP basis sets, respectively. The last 
column in these tables gives the so-called non-paralle- 
lism error (NPE), which is defined as the difference 
between the maximal and minimal positive deviations 
from the FCI potential energy curve (PEC) (or, should 
the computed and FCI PECs intersect, as the sum of 
absolute values of the maximal positive and negative 
deviations from the FCI PEC). Although wc generate 
only a few points on the PEC (usually R — Rc, 
R = \.5RC and R = 2RC), so that the NPE given in our 
tables is based on this limited information, it nonetheless 
characterizes the 'parallelism' of the approximate and 
FCI PECs over the examined interval of intcrnuclcar 
separations, since these curves arc smooth and seldom 
intersect (and if so, then only once). Clearly, if both 
PECs arc 'parallel', i.e. if they differ by a constant 
energy shift, we have that NPE = 0. 

The DZ results given in table 1 clearly indicate that in 
each case the corrected CCSD method represents an 
improvement over the standard CCSD(is) one. Already 
for the smallest AS4 of dimension 268 wc find a signifi- 
cant improvement in CCSD energies relative to FCI, 
particularly for stretched geometries. Correspondingly, 
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Table 1. The total energies E, reported as 
FCI = CI(ASO) energy, for the 2U state 
as standard CCSD(is) methods for the 
for the external corrections is given in 

-(£ + 75) hartree, and the energy differences A£ (in millihartree) relative to the exact 
of the OH radical, obtained with a DZ basis set and various externally corrected as well 
three internuclear separations (Re = 1.832 bohr). The dimension of the CI spaces used 
the second column and the NPE (see the text) in the last column. 

Dim 

-(E + 75) (hartree) AE (mhartree) 

Method «e \.5Re 2Re *e 1.5Re 2Re NPE 

CI(ASO) 3460 0.481 22 0.42369 0.37276 0 0 0 0 

CCSD-AS2 0.480 51 0.42261 0.37262 0.71 1.08 0.14 0.94 
CI(AS2) 656 0.478 23 0.42036 0.369 52 3.00 3.34 3.24 0.34 

CCSD-AS3 0.48046 0.42209 0.37126 0.76 1.60 1.50 0.84 
CI(AS3) 441 0.457 85 0.398 72 0.34688 23.38 24.97 25.88 2.51 

CCSD-AS4 0.48047 0.421 79 0.37044 0.75 1.90 2.32 1.57 
CI(AS4) 268 0.439 83 0.391 19 0.339 83 41.40 32.50 32.93 8.90 

CCSD(is) 113 0.48003 0.42099 0.36711 1.20 2.71 5.65 4.45 

Table 2.   Same as table 1 for DZP basis. 

Dim 

-(E + 75) (hartree) A£ (mhartree) 

Method i?e 1.5Re 2Re Re 1.5i?e 2Re NPE 

CI(ASO) 441 792 0.56802 0.492 10 0.43265 0 0 0 0 

CCSD-AS 1 0.56645 0.49016 0.43050 1.56 1.95 2.15 0.59 
CI(AS1) 3954 0.55421 0.478 54 0.41961 13.81 13.56 13.03 0.77 

CCSD-AS2 0.56609 0.48842 0.42409 1.92 3.68 8.56 6.63 
CI(AS2) 656 0.488 12 0.41907 0.36231 79.90 73.03 70.34 9.56 

CCSD-AS3 0.56610 0.488 16 0.42321 1.91 3.94 9.44 7.53 
CI(AS3) 441 0.468 14 0.40068 0.343 61 99.88 91.42 89.03 10.85 

CCSD-AS4 0.56605 0.48784 0.42285 1.97 4.27 9.80 7.83 
CI(AS4) 268 0.462 53 0.393 54 0.33941 105.48 98.56 93.24 12.24 

CCSD(is) 541 0.565 58 0.48705 0.41995 2.44 5.05 12.70 10.26 

the NPE is reduced by a factor of almost three, from 4.5 
to 1.6 mhartree. This desired effect of external correc- 
tions gets amplified when we increase the size of the 
AS, as may be seen by comparing the results for AS2 
and AS3. Again, this effect is most pronounced for 
stretched geometries, as could be expected. Thus, at 
R = 2Re, we find the difference from the FCI energy 
to gradually decrease from 5.7 mhartree for standard 
CCSD(is) to 2.3, 1.5 and 0.14 mhartree for AS4, AS3 
and AS2, respectively, while this difference at the equi- 
librium geometry is much smaller and almost constant 
for all externally corrected CCSD schemes (0.7-0.8 
mhartree versus 1.2 mhartree for standard CCSD(is)). 

It should also be noted that in all cases the corrected 
CCSD energies are significantly closer to FCI than the 
CAS-CI energies corresponding to the wave function 
that is used as the source of the 3- and 4-body clusters. 
Of course, this improvement becomes less significant 
with the increasing dimension of the AS employed 
since, ideally, the FCI corrections will yield the exact 

energies (this is always the case for closed-shell systems 
[11, 12], while for OS cases considered here a small 
discrepancy arises due to the approximations involved 
in the UGA-CCSD(is) method, e.g. the consideration of 
at most quadratic terms in cluster amplitudes, etc. (see 
Part I for more details)). In this regard, the NPE values 
may be deceptive, since they only depend on the relative 
performance of the method at various geometries. 
Nonetheless, they serve as a useful guide in general. 

At the DZP level, we employed all the active spaces, 
equation (3), with V given by (2), as well as AS0 corre- 
sponding to FCI (with frozen 0ls and 0ls. orbitals). The 
resulting energies as well as the dimensions of the CI 
spaces corresponding to ASs, equation (3), are given in 
table 2. We observe the same pattern in performance of 
the externally corrected CCSD method as for a smaller 
DZ basis. The improvement in the energy over the stan- 
dard CCSD(is) value steadily increases and, correspond- 
ingly, the NPE decreases, with the size of the AS 
employed. However, although the use of the low-dimen- 
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sional ASs improves the CCSD result by several mhar- 
trees once the bond is stretched, a really significant 
improvement is only found for a rather large AS1, 
equation (3), that involves polarization functions, as 
might be expected. In each case, we find again a very 
significant improvement over the corresponding SOCI 
result, which is used as the source of 3- and 4-body 
corrections for our CCSD. 

Before proceeding to the next system, let us briefly 
compare the above presented results with those obtained 
earlier in Part I. There we have shown that the CAS-FCI 
or CAS-SCF correction scheme gives very similar 
results, the former one being significantly less costly. 
This led us to investigate various limited CI schemes. 
These preliminary results indicated that it is preferable 
to employ even severely limited CI based on a large AS, 
rather than FCI or even CAS-SCF employing a much 
more modest AS. Indeed, using the CAS-FCI or CAS- 
SCF schemes used in Part I prevented us from 
employing ASs involving polarization orbitals. The pre- 
sent paper thus pursues this very idea in various situa- 
tions, modelling different types of dissociation processes. 
Let us note that with AS4 (which happens to correspond 
to AS4 of Part I) and the DZ basis at the three geome- 
tries considered (Rc, 1.5KC, 2/?c), the energy differences 
AE relative to FCI of the CCSD-CASFCI, CCSD- 
CASSCF and the present CCSD-AS4 arc. respectively, 
0.7, 1.7 and 2.1; 0.7, 1.2 and 1.2; and 0.7, 1.9 and 
2.3mhartrcc. Similarly, for the DZP basis and AS2 
(corresponding to AS6 of Part I), these values are, 
respectively, 1.9, 3.7 and 8.8; 1.9, 3.6 and 8.7; and 1.9, 
3.7 and 8.6mhartree. Thus, the small i-CAS-CI supple- 
mented by e-SOCI gives practically the same result as 
the corresponding CAS-FCI or CAS-SCF. Note that in 
the present case the CT0H orbital is always in the internal 
part (and thus used in CAS-FCI), while all other orbitals 
are accounted for via SOCI. In contrast, no distinction 
of internal and external active orbitals was made in 
Part I, thus leading to larger CI spaces. For example, 
the AS4, AS3 and AS2 (corresponding to AS1, AS2 and 
AS3 of Part I) have CI dimensions 268, 441 and 656, 
while the corresponding CAS-SCF or CAS-FCI of Part I 
have dimensions 588, 1512 and 3460, respectively. 

This reduction in the CI dimension enables us to 
employ even polarization orbitals in the wave function 
serving as our external source, while relying on only 
modest computational requirements. This in turn leads 
to a very significant improvement for stretched geome- 
tries, as we have already seen above. Nonetheless, we 
must stress that even with the smallest AS4, having 
roughly half the dimension of CCSD and involving no 
polarization orbitals, the standard CCSD(is) result is 
improved by 23% at 2RC. 

4.2. Simultaneous stretching of two single bonds 
Here we examine both the 2B, ground state as well as 

the lowest 2A| excited state of the NH2 radical. The 
ordering of the ROHF orbitals for the 2A)  state at 
2RC is found to be: 

N|sN2s(TiNHN2rx(T2NIifT2NHfTINM 

N2p;N2p;N2prN2s.ffnffi,PN,s.,    (4) 

where again V = 0 for a DZ basis, while 

P = H2p<H2pH2pN3d|N3d,NM, 
xN.W4N.,lfH2r.H2p.H2p.NMi (5) 

for a DZP basis. We also write P = P'N3d,- In this 
case we freeze only the occupied N,s orbital in all 
calculations. We thus have 7 active (all valence) 
electrons and we employ the following ASs for both 
states, in addition to AS0 corresponding to FCI (with 
frozen Nh orbital): 

AS1 : [fT2NH^iNii//N2p:N2p.N2p.N2,.fTHfT;,H2Pv 

x H2riH2p.N3tl|N3t,:N3t|iN3t|4N3l|?H2p.H2p.H2p.], 

AS2 : [fT2NHfTlNH//N2p.N2p.N2prN2s-fT1|(Tj|H2p( 

x H2p H2pN3l1] NW;N3(i,N3l,4N3tI?], 

AS2':[AS2 + N3d>], 

AS3 : [ff2N'H'TiNH//N2r;N2p.N2p.N2s-aMlTf|N3lI| 

x N3l,;N3diN3c|4N3l|J, 

AS4 : [fT2N„a;N„//N2p.N2p.N2p.N2s-aMfr;|H2pv 

x H2p H2p ], 

AS5 : [o-2NH^iNnN2r;N2p;N2p.N2s.], 

AS6 : [(T2NMrr;NH//N2p-N2p.N2p.N2!,.aMrrJ1], 

AS7 : [a2NHfT;NH//N2p.N2p;N2p.N2s.]. (6) 

The last three (AS/;, n = 5,6,7) arc employed for a DZ 
basis and those with n = 1,2,2', 3,4 and 6 for a DZP 
basis. We also consider FCI with frozen N!s. orbital, 
which is referred to as AS0'. Thus, it is really the 
latter that represents the benchmark for a comparison 
with the CCSD(is) energies. However, as may be seen 
from tables 3 and 4, both energies differ by less than 
0.2mhartrcc for all considered geometries (in spite of 
the fact that the dimension is almost doubled when 
correlating the Nls- orbital), so that our conclusions 
will be the same using either benchmark. 

Both the standard and externally corrected CCSD(is) 
energies, as well as the corresponding SOCI energies and 
the NPEs obtained with a DZ basis sets arc listed in 
tables 3 and 4 for the 2A) and 2B, states, respectively. 
We find again a systematic improvement in the extcr- 
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Table 3.    Same as table 1 for the  Ai state of the NH2 radical. The total energies are reported as — (£ + 55) hartree. 

Dim 

-(£ + 55) (hartree) A£ (mhartree) 

Method *e 1.5Re 2Re Re 1.5Ke 2i?e NPE 

CCSD-ASO 
CI(ASO) 27 300 

0.603 35 
0.60340 

0.449 78 
0.449 85 

0.35977 
0.355 77 

0.05 
0 

0.07 
0 

-4.01 
0 

4.08 
0 

CCSD-ASO' 
CI(ASO') 14666 

0.603 35 
0.60329 

0.44977 
0.449 73 

0.35976 
0.355 62 

0.06 
0.11 

0.08 
0.12 

-4.00 
0.15 

4.08 
0.04 

CCSD-AS5 
CI(AS5) 3 556 

0.60282 
0.565 37 

0.44921 
0.43964 

0.358 57 
0.34668 

0.59 
38.04 

0.65 
10.21 

-2.81 
9.09 

3.45 
28.95 

CCSD-AS6 
CI(AS6) 2899 

0.60278 
0.60058 

0.44913 
0.44703 

0.35822 
0.35312 

0.63 
2.83 

0.72 
2.83 

-2.45 
2.64 

3.08 
0.18 

CCSD-AS7 
CI(AS7) 1429 

0.60266 
0.56448 

0.44873 
0.437 35 

0.357 35 
0.34471 

0.74 
38.93 

1.12 
12.50 

-1.58 
11.06 

2.33 
27.87 

CCSD(is) 235 0.60213 0.44478 0.339 52 1.28 5.07 16.22 14.97 

Table 4. Same as table 3 for the 2Bi state of the NH2 radical. 

Dim 

-(£ + 55) (hartree) A£ (mhartree) 

Method Re 1.5i?e 1.75Re Re 1.5Ä, 1.75Ke NPE 

CCSD-ASO 
CI(ASO) 24924 

0.64597 
0.64603 

0.53477 
0.53482 

0.48090 
0.48065 

0.06 
0 

0.05 
0 

-0.25 
0 

0.31 
0 

CCSD-ASO' 
CI(ASO') 13 742 

0.64596 
0.64590 

0.53476 
0.53468 

0.48089 
0.480 51 

0.07 
0.13 

0.06 
0.14 

-0.24 
0.14 

0.30 
0.01 

CCSD-AS5 
CI(AS5) 3430 

0.645 31 
0.605 63 

0.53399 
0.51439 

0.48021 
0.46929 

0.72 
40.40 

0.83 
20.43 

0.44 
11.36 

0.40 
29.04 

CCSD-AS6 
CI(AS6) 2737 

0.645 35 
0.643 35 

0.53418 
0.532 50 

0.48020 
0.478 59 

0.68 
2.68 

0.64 
2.32 

0.45 
2.06 

0.22 
0.62 

CCSD-AS7 
CI(AS7) 1363 

0.64518 
0.60489 

0.533 73 
0.51313 

0.47972 
0.467 73 

0.85 
41.14 

1.09 
21.69 

0.93 
12.92 

0.24 
28.22 

CCSD(is) 219 0.64469 0.53037 0.47462 1.34 4.45 6.03 4.69 

nally corrected CCSD(is) energies as the size of the AS 
employed increases, even though for a highly stretched 
geometry (R = 2Rt) we already find a slight overcorrec- 
tion. In fact, this overcorrection is largest when using 
the full AS0 space (about -4 mhartree for the 2A[ state 
at 2Re and -0.25mhartree for the 2B, state at l.75Re), 
while it is negligible (less than 0.1 mhartree) at less 
stretched geometries. 

Here we must remark again that, in principle, when 
using the FCI wave function as an external source for 
high order cluster amplitudes, we should recover the 
exact energy. This is indeed the case for closed-shell 
systems where the excitation level is unambiguously 
defined and we include all the terms (up to and including 
the quadratic ones) in the CCSD equations [11, 12]. 
However, CCSD(is) involves several approximations 
which cause the above mentioned overcorrections. In 

the first place, at most, quadratic terms are retained 
and, most importantly, the so-called pseudo-doubles 
are neglected. Although the latter are approximately 
taken into account through the external corrections, 
the decoupling of the full CC chain in the OS case is 
only approximate when using CCSD(is). Nonetheless, 
the errors involved are rather small, unless we are far 
away from the equilibrium geometry, where the external 
corrections may not be entirely reliable and one may 
also run into the convergence problems. 

For the 2B[ ground state, we face convergence diffi- 
culties at the highly stretched geometry (R = 2Re), so 
that only the results for R= 1.75Re are reported. In 
all cases, however, the corrected CCSD energies repre- 
sent a significant improvement over both the standard 
CCSD(is) and SOCI ones, the latter being used as a 
source of higher than pair cluster corrections. Indeed, 
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Table 5 Same as table 3 for DZP basis 

Dim 

(£ + 55) (hartrec) AE (mhartrec) 

Method Rc \.5RC 2RC Rc 1.5RC 2RC NPE 

CI(AS0)(5d)a 3 307920'' 0.688 76 0.51761 0.415 13 0 0 0 0 

CCSD-AS1 0.687 84 0.51690 0.417 53 0.92 0.72 -2.39 3.31 
CI(ASl) 19 870 0.68135 0.51010 0.408 04 7.41 7.52 7.10 0.42 

CCSD-AS2 0.687 56 0.516 33 0.41637 1.20 1.28 -1.24 2.52 
CI(AS2) 13711 0.663 52 0.50066 0.401 76 25.24 16.95 13.38 11.87 

CCSD-AS2' 0.68761 0.516 53 0.41681 1.15 1.08 -1.68 2.83 
CI(AS2') 15 672 0.665 88 0.50401 0.405 33 22.88 13.61 9.81 13.07 

CCSD-AS3 0.687 38 0.51572 0.41598 1.38 1.89 -0.85 2.74 
CI(AS3) 8 708 0.639 57 0.488 23 0.39946 49.19 29.39 15.68 33.52 

CCSD-AS4 0.687 34 0.51481 0.40917 1.42 2.80 5.97 4.55 
CI(AS4) 6008 0.62848 0.46083 0.35214 60.28 56.78 63.00 6.22 

CCSD-AS6 0.687 20 0.51049 0.408 84 1.57 7.13 6.30 5.56 
CI(AS6) 2899 0.609 56 0.45180 0.35044 79.20 65.81 64.69 14.51 

CCSD(is) 1013 0.686 59 0.51059 0.390 64 2.17 7.03 24.49 22.32 

"Reference [17]. 
b Frozen core, 6 d-orbitals. 

Table 6.    Same as table 4 for DZP basis. 

Dim 

-(£+55) (hartrec) AE (mhartrcc) 

Method Rc 1.5KC 2RC Rc 1.5RC 2RC NPE 

CI(AS0)(5d)" 3 271984'' 0.742 62 0.605 21 0.505 52 0 0 0 0 

CCSD-AS1 
CI(ASl) 19442 

0.742 27 
0.734 59 

0.60467 
0.598 27 

0.508 60 
0.499 62 

0.35 
8.03 

0.54 
6.94 

-3.08 
5.91 

3.62 
2.12 

CCSD-AS2 
CI(AS2) 13381 

0.741 92 
0.708 21 

0.603 74 
0.58149 

0.505 38 
0.49207 

0.70 
34.41 

1.47 
23.72 

0.15 
13.46 

1.32 
20.95 

CCSD-AS3 
CI(AS3) 8464 

0.741 63 
0.685 91 

0.602 88 
0.56948 

0.504 61 
0.489 95 

0.99 
56.71 

2.33 
35.73 

0.91 
15.57 

1.41 
41.14 

CCSD-AS4 
CI(AS4) 5 772 

0.741 54 
0.682 28 

0.601 14 
0.54801 

0.486 81 
0.446 28 

1.08 
60.34 

4.07 
57.20 

18.71 
59.25 

17.63 
3.13 

CCSD-AS6 
CI(AS6) 2737 

0.741 33 
0.662 91 

0.600 53 
0.538 70 

0.486 24 
0.44463 

1.29 
79.71 

4.68 
66.51 

19.28 
60.89 

17.99 
18.81 

CCSD(is) 990 0.74076 0.597 36 0.48700 1.87 7.85 18.52 16.66 

"Reference [17]. 
b Frozen core, 6 d-orbitals. 

even when using the smallest AS7, the NPE of the stan- 
dard CCSD(is) is reduced by about 85% (while the NPE 
of the corresponding SOCI is almost twice as large as 
that of standard CCSD(is)) in the case of the excited 
state and by 95% for the ground state (again, the 
SOCI NPE is six times as large as that of CCSD(is)). 
Thus, the AS7 set, which involves antibonding a* Orbi- 
tals in the internal (active) space and an extra anti- 
bonding orbital for each occupied valence orbital in 
the external space, seems to provide an ideal source 
for external corrections, since its size is very modest 

(corresponding CI dimension is less than 1500 in each 
case) and the computer requirements for CCSD-AS7 
exceeds that for standard CCSD(is) by only a couple 
of iterations. 

For a realistic DZP basis set, the results arc collected 
in tables 5 and 6. As benchmark FCI energies we use the 
results of Bauschlicher et at. [17]. We must note, how- 
ever, that in contrast to [17], we employ Cartesian Gaus- 
sians, since we rely on the GAMPSS package for the CAS- 
FCI and SOCI results. Of course, we also employ the 
same basis set in our CCSD calculations. Thus, in con- 
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trast to the basis set of [17], our basis set contains an 
extra s-type d-orbital. Clearly, the inclusion of this 
orbital produces a lower variational energy, so that the 
FCI energies of [17] represent only the upper bound to 
the actual FCI for our basis set. This energy lowering 
can be estimated not to exceed 2-3 mhartree at R = 2Re 

by examining an analogous energy lowering for a 
smaller basis set that our computing facility can 
handle. It should also be noted that the nitrogen 3ds 

orbital is included in all CCSD calculations. For this 
reason, the CCSD(is) results are slightly different from 
those of [7] and [23], where this 3ds orbital was 
eliminated. 

Apart from minor differences that we have just out- 
lined, the main conclusions are the same as for a DZ 
basis set. All correcting schemes, including the very 
modest AS6, perform well and significantly improve 
the standard CCSD(is) energies. Comparing, for 
example, the performance of the largest AS1 and of 
the smallest AS6 corrected CCSD methods with the 
standard CCSD(is) one, we find that for the 2Al state 
at R = Re, the 2.2 mhartree error is reduced to 0.9 
and 1.6 mhartree, respectively, and at R = 2i?e, this 
reduction is from 24.5 mhartree to —2.4 and 
6.3 mhartree (see table 5). To achieve a similar reduction 
for the ground state, we have to employ AS3 or larger 
active spaces. 

In all preceding cases, the size of the corrections 
increases with the quasi-degeneracy of the state, i.e. 
with the size of the error of the standard CCSD(is). 
This feature clearly reduces the NPE and is most desir- 
able. It is worth noting, however, that in spite of the fact 
that CI energies deviate significantly more from FCI 
than the corresponding corrected CCSD values (even 
for the largest AS1), the latter yield a larger NPE in 
view of the approximations leading to a slight over- 
correction at large internuclear separations. Nonethe- 
less, from a practical viewpoint, it is important that 
already the smallest AS6 gives very desirable results: 
while the CI(AS6) error for the 2A.\ state at R = Rt is 
79.2 mhartree, the CCSD-AS6 error is only 
1.6 mhartree, and at R = 2Re, these errors are 64.3 and 
6.3 mhartree, respectively. 

For the 2Bi ground state (table 6) we obtain 
analogous results as for the 2A{ state, except that 
the low dimensional AS4 and AS6 schemes give 
considerably poorer results, as already noted. The 
reason for this behaviour lies probably in the ROHF 
optimization scheme that does not work well in this 
case. Generally, CCSD performs better when using the 
ROHF rather than CAS-SCF orbitals. However this is 
not the case at R = 2Re for the 2B[ state considered 
here. 

4.3. Simultaneous stretching of three single bonds 
We next consider a symmetric stretching of three 

single bonds using DZ and DZP models of the 2A2 
state of the CH3 radical. The ROHF orbitals, ordered 
by their energies at R = 2Re, form the sequence 

Cls^lCH^CH^CHQp^lCH^CH^CH 

xQpjQpjC^Qs* o-*malHa*mV Cls.,    (7) 

where again V = 0 for a DZ basis and 

T3 = C3d1C3d2C3d3C3d4C3d5H2p)iH2p;(H2pzH2p^ 

x H2p> H2p> H2 «H2p» H2p»C3ds (8) 

for a DZP basis. The carbon Cls orbital is kept frozen in 
all calculations. We thus have 7 active (all valence) 
electrons distributed over 4 orbitals, <71CH,<72CH,CT3CH 

and C2p/ 

For a DZ basis, we use as a benchmark the FCI 
energies correlating all orbitals except Cls (ASO) as 
well as near FCI energies obtained by freezing both the 
lowest occupied (Cls) and the highest unoccupied (Cls.) 
orbitals, designated as CI(ASO'). As may be seen from 
table 7, the latter CI gives practically the same energies 
as the former one, while the corresponding dimension is 
lowered by almost a factor of two. The remaining ASs 
used with a DZ basis are: 

AS4 

AS4' 

AS5 

AS5' 

[<TlCH<T2CHff3CH//C2p;C2p;C2pjC2s*CTfHCT2HCr3H]> 

[
(T

1CH
(7

2CH
(T

3CHC2PJ//C2P*C2PJC2S«CT1H02HCT3H]) 

[°~l CH °2CH ^3CH //QpJ QpJ C2pj C2s» ], 

klCHO'2CH^3CHC2p'//C2p;C2p.C2s.]. (9) 

Note that the primed ASs differ from the unprimed 
ones by the inclusion of the C2p* lone pair orbital 
amongst the inner active ones, significantly increasing 
the dimension of the corresponding CI space (see 
table 7). Note that the y axis is perpendicular to the 
molecular plane. 

For a DZP basis, we use in addition the following ASs 
involving all or some polarization orbitals: 

AS1 : [(T]CH(T2CH0'3CH//C2pjC2pjC2pz*C2s*cr1Hcr2HÖ'3H 

x C3d, C3d2 C3d3 C3(j4 C3d5 H2Pj H2Px H2Pz ], 

AS2 : [<T1CH(T2CH
(T

3CH//C2PJC2PJC2PZ*C2S*<T1HO'2H
0

'3H 

x C3d1C3d2C3d3C3d4C3d5], 

AS3 : [<7iCHCT2CH^3CH//C2p;C2p..C2pz. 

X C2s«OrlH0'2H<''3HH2pvH2pjcH2pJ, ^ 
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Table 7.    Same as table 1 for the 2A'{ state of the CH, radical. The total energies are reported as -(£ + 39) hartrcc and 
7L = 2.060 bohr. 

Dimension 

-(£ + 39) (hartree) AE (mhartrcc) 

Method Rc 1.5KC 2RC R, 1.5KC 2«c NPE 

CCSD-ASO 0.64463 0.430 39 0.262 20 0.05 0.27 0.82 0.78 
CI(ASO) 70644 0.64468 0.43066 0.263 02 0 0 0 0 

CCSD-ASO' 0.64462 0.430 38 0.262 18 0.05 0.28 0.84 0.79 
CI(ASO') 42890 0.64460 0.43060 0.26293 0.08 0.07 0.10 0.03 

CCSD-AS4 0.64400 0.43006 0.261 85 0.67 0.60 1.18 0.58 
CI(AS4) 8 796 0.641 86 0.42916 0.26205 2.81 1.50 0.97 1.84 

CCSD-AS4' 0.64425 0.43026 0.262 08 0.43 0.40 0.94 0.54 
CI(AS4') 15 502 0.642 54 0.429 90 0.262 58 2.14 0.76 0.44 1.67 

CCSD-AS5 0.643 82 0.42921 0.259 61 0.86 1.45 3.41 2.55 
CI(AS5) 3478 0.60548 0.40929 0.245 75 39.19 21.37 17.28 21.92 

CCSD-AS5' 0.643 88 0.429 31 0.259 75 0.80 1.35 3.28 2.48 
CI(AS5') 5222 0.605 85 0.409 85 0.24610 38.83 20.82 16.92 21.91 

CCSD(is) 322 0.64342 0.423 89 0.228 73 1.25 6.77 34.29 33.04 

as well as AS«', « = 1,2,3, which again differ by 
the inclusion of C2p- amongst the inner active 
orbitals, i.e.: 

AS1' : [crICH(T2CH'T3CHC2p;//C2p;C2p:C2s-'''lH,T2H'''3H 
x C3d|C3d:C3dlC3d4C3ci5H2PvH2p>H2p.], 

AS2   : [c!cHCT2CH<T3CHC2p;//C2p;C2ptC2s-a!H<72Hff3H 

AS3 : [cr!cHfT2CH<T3CHC2P;//C2p;C2p:C2s-0'iH 
x 02H(T3HH2p,H2pA

H2pJ- (11) 

The relevant energies, obtained with both the 
standard and corrected CCSD(is) schemes, as well as 
the benchmark FCI energies and the NPE values, 
are given in tables 7 and 8 for DZ and DZP basis 
sets, respectively. We find again that all the externally 
corrected CCSD energies represent a significant 
improvement over the standard ones. Considering, 
first, the results obtained with a DZ basis, we see 
that even the AS5 set, having the smallest dimension, 
gives excellent results: the NPE of the standard 
CCSD(is) approach is reduced by more than 92%, 
while the CI(AS5), used as the source of external 
corrections, reduces this error by less than 34%. 
We note again that FCI corrected CCSD gives small 
but non-zero errors, all smaller than 1 mhartrec, due 
to the approximations involved in the CCSD(is) 
approach. 

A completely analogous situation is found for a DZP 
basis (table 8). We only note that with the smallest AS5 
scheme, the NPE of standard CCSD(is) is reduced by 

more than 75%, while the NPE of CI(AS5) is larger than 
that of standard CCSD(is). 

It is worthwhile to point out that moving the anti- 
bonding lone pair (C2p-) orbital from the external to 
the internal active space, i.e. by going from AS« to 
AS«', hardly changes the resulting energies and the 
NPE, while almost doubling the dimension of the cor- 
responding CI space. This clearly demonstrates that 
only essential orbitals for the dissociation process need 
to be included in the internal space, while the remaining 
correlating orbitals can be moved to the external space, 
significantly lowering the dimension of CI required for 
external corrections. 

4.4. Stretching of a triple bond 
We finally consider the most challenging problem of a 

triple bond stretching, employing DZ and DZP models 
of the 2E + and 2n states of the CN radical. The ROHF 
orbital sequence for the 2£+ state is 

NlsCl5N|pC]p7r|7r2fT7r27rJff*C2p;C2p'C2p;N2p; 

xN2p;N2p;Clp.Nlp.:PCls.Nls.,    (12) 

with V = 0 for a DZ basis and 

V = C3d,C3d:C3djC3d4CMjN3dlN,j:Njd, 

XN^N^CMNJ,,, (13) 

for a DZP basis. For the 2II state, wc find the same 
ordering of virtual orbital, while the bonding a- orbital 
now precedes the 7r orbitals. 

The Is orbitals (Nls and Cls) arc frozen in all AS«' 
schemes, while four additional electrons arc kept frozen 
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Table 8.    Same as table 7 for DZP basis. 

245 

Dimension 

-(£ + 39) (hartree) AE (mhartree) 

Method *e 1.5Re 2i?e «e 1.5R, 2Re NPE 

CI(ASO)" ~12230000 0.72121 0.48285 0.303 13 0 0 0 0 

CCSD-AS 1 0.72018 0.48186 0.30151 1.03 0.99 1.63 0.63 
CI(ASl) 37216 0.70003 0.47087 0.296 16 21.18 11.99 6.98 14.20 

CCSD-AS2 0.72008 0.48173 0.301 54 1.13 1.12 1.60 0.48 
CI(AS2) 24116 0.69297 0.46840 0.29564 28.24 14.46 7.49 20.75 

CCSD-AS3 0.71976 0.479 54 0.295 97 1.45 3.32 7.17 5.71 
CI(AS3) 17348 0.65401 0.43482 0.26010 67.20 48.04 43.03 24.18 

CCSD-AS4 0.71971 0.47945 0.29527 1.51 3.40 7.87 6.36 
CI(AS4) 8796 0.64948 0.43303 0.261 90 71.73 49.82 41.24 30.50 

CCSD-AS5 0.71953 0.47843 0.29268 1.68 4.42 10.46 8.78 
CI(AS5) 3478 0.62046 0.41327 0.24275 100.75 69.59 60.38 40.37 

CCSD-AS1' 0.72048 0.48215 0.301 83 0.73 0.70 1.30 0.60 
CI(ASl') 70774 0.70084 0.471 76 0.29682 20.37 11.09 6.31 14.06 

CCSD-AS2' 0.72037 0.48202 0.301 86 0.84 0.84 1.27 0.44 
CI(AS2') 45310 0.693 76 0.46927 0.29630 27.45 13.58 6.83 20.62 

CCSD-AS3' 0.71995 0.47971 0.296 17 1.26 3.14 6.96 5.70 
CI(AS3') 31516 0.654 59 0.435 50 0.26059 66.62 47.35 42.55 24.07 

CCSD-AS4' 0.71989 0.47963 0.295 51 1.32 3.23 7.62 6.30 
CI(AS4') 15 502 0.65006 0.433 70 0.26242 71.16 49.15 40.71 30.45 

CCSD-AS5' 0.71961 0.478 51 0.29282 1.60 4.34 10.31 8.71 
CI(AS5') 5222 0.62082 0.413 75 0.24311 100.39 69.10 60.02 40.37 

CCSD(is) 1501 0.71918 0.47439 0.26496 2.03 8.47 38.18 36.14 

"Reference [18]. 

in the lone pair orbitals Nlp and Clp in the ASn schemes. 
Thus, ASn and ASn' cases involve 5 and 9 active 
electrons, respectively. Again, we identify these ASs by 
listing correlating virtual orbitals, subdivided into the 
internal and external subsets separated by a double 
slash: 

AS1 : [7r57ri£r7/C2p.C2rtC2p.N2p.N2p.N2p.Clp.Nlp. 

xC3dlC3d2C3d3C3d4C3d5N3d]N3d2N3d3N3d4N3d5], 

AS2 : [7r^l(77/C2p.C2p;C2p.N2p.N2p.N2p.C3dl 

AS3 : [7r57ri<T7/C3dlC3d2C3d3C3d4C3d5N3dlN3d2 

x N3d3N3d4N3d5], 

AS4 : [7r>I«T7/C2p.C2p.C2p.N2pjN2p.N2p.Clp.Nlp.], 

AS5 : [^7r!(r7/C2p.C2p.C2p.N2p.N2p.N2p.], 

AS3" : [7r27r|o-7/C3dlC3d2C3d3C3d4C3d5N3dl 

x N3d2N3d3N3d4N3d5Clp.Nlp.]. (14) 

Only n = 4 and 5 ASn schemes are relevant for a 
DZ basis. We also note that in this case we freeze Is 
as well as Is* orbitals on both C and N in all cal- 
culations. As a benchmark, we use a near FCI value 
[23], obtained by considering all CSFs up to and 
including sextuples (as well as an unspecified number 
of higher excited CSFs). In this case, only the R = Re 

and R = l.5Re are considered. 
The standard and corrected CCSD(is) energies, as 

well as the near FCI values, are given for the 2E+ and 
2II states in tables 9 and 10 for a DZ basis and in tables 
11 and 12 for a DZP basis. Although we find again a 
very significant improvement over the standard 
CCSD(is) values in all cases, particularly for the 
stretched geometry, the role of various correlating orbi- 
tals seems to be less specific than in other cases. Also, an 
apparently more efficient reduction of the standard 
CCSD(is) error for the stretched geometry might be 
due to a tendency of the externally corrected CCSD(is) 
to overcorrect in such cases. Inclusion of the virtual lone 
pair orbitals (AS3 versus AS3') seems to have little 
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Table 9. Same as table 1 for the 2E+ state of the CN radical. 
The total energies arc reported as -(£ + 92)hartree. Only 
two internuclear separations (Rc = 1.1718A and \.5RC) 
arc considered and no NPE values are given. 

Table 11.    Same as table 9 for DZP basis. 

-(£ + 92) 
(hartrcc) 

Method Dimension Re .5R„ 

A£ 
(mhartrce) 

Rc        1.5«, 

nCI(ASO)" 

CCSD-AS4 
CI(AS4) 

CCSD-AS5 
CI(AS5) 

CCSD-AS4' 
CI(AS4') 

CCSD-AS5' 
CI(AS5') 

CCSD(is) 

-420000    0.368 89    0.22628 

1742 

1078 

56440 

33 200 

529 

0.36213 
0.271 38 

0.361 90 
0.26645 

0.363 96 
0.363 00 

0.361 90 
0.31173 

0.21230 
0.12220 

0.21198 
0.11925 

0.224 37 
0.222 54 

0.222 35 
0.19297 

0 

6.77 
97.52 

0 

13.98 
104.08 

6.99      14.30 
102.44    107.04 

4.93 
5.89 

6.99 
57.17 

1.91 
3.74 

3.93 
33.31 

0.35893     0.19062       9.96     35.66 

" Reference [23]. 

Table 10.    Same as table 9 for the 2IT state of the CN radical 
(Rc= 1.2333Ä). 

-(£ + 92) 
(hartrcc) 

A£ 
(mhartrce) 

Method Dimension Re \.5Rr Rr \.5RC 

CI(ASO)" 

CCSD-AS4 
CI(AS4) 

CCSD-AS5 
CI(AS5) 

CCSD-AS4' 
CI(AS4') 

CCSD-AS5' 
CI(AS5') 

CCSD(is) 

-420000    0.31295    0.21094       0 

1738 

1078 

55 860 

32 980 

505 

0.308 34 
0.228 33 

0.308 15 
0.22191 

0.31166 
0.30806 

0.31099 
0.27915 

0.20909 
0.123 97 

0.208 75 
0.12086 

0.21535 
0.207 82 

0.21316 
0.17601 

4.61 
84.62 

4.80 
91.05 

1.29 
4.89 

1.96 
33.81 

1.86 
86.97 

2.20 
90.08 

-4.41 
3.13 

-2.22 
34.93 

0.305 70    0.19342 7.25      17.52 

0 Reference [23] 

effect. On the other hand, freezing the corresponding 
occupied lone pair orbitals (AS« versus AS«') leads to 
a significant deterioration of resulting energies, particu- 
larly for stretched geometries. Except for these general 
observations, however, we cannot draw any general con- 
clusion in this case, which must be regarded as a pre- 
liminary test of the externally corrected schemes for this 
difficult problem. In any case, a comparison of the cor- 
responding CI(ASM) and CCSD-AS« energies shows a 
dramatic improvement in all cases. 

-(£ + 92) 
(hartrcc) 

A£ 
(mhartrce) 

Method Dimension Rc 1.5Kr Rr \.5RC 

CI(ASO)" 

CCSD-AS1 
CI(ASl) 

CCSD-AS2 
CI(AS2) 

CCSD-AS3 
CI(AS3) 

CCSD-AS4 
CI(AS4) 

CCSD-AS5 
CI(AS5) 

CCSD-AS3' 
CI(AS3') 

CCSD-AS3" 
CI(AS3") 

CCSD-AS4' 
CI(AS4') 

CSD-AS5' 
CI(AS5') 

CCSD(is) 

-680000    0.49243     0.31005 

7450 

5986 

2 562 

1742 

1078 

85080 

120416 

56 440 

33 200 

1983 

0.483 82 
0.338 60 

0.483 57 
0.33410 

0.48138 
0.28641 

0.48140 
0.30693 

0.481 16 
0.30293 

0.482 57 
0.376 32 

0.48302 
0.38990 

0.481 55 
0.384 54 

0.48078 
0.36402 

0.302 22 
0.15140 

0.30204 
0.149 67 

0.293 57 
0.095 64 

0.298 30 
0.12881 

0.298 20 
0.12766 

0.304 86 
0.20406 

0.305 57 
0.216 76 

0.307 84 
0.22401 

0.306 58 
0.201 27 

0 

8.61 
153.83 

8.87 
158.34 

11.05 
206.02 

11.03 
185.51 

11.27 
189.50 

9.86 
116.11 

9.41 
102.54 

10.88 
107.89 

11.66 
128.41 

0 

7.83 
158.65 

8.01 
160.38 

16.48 
214.41 

11.75 
181.25 

11.85 
182.39 

5.19 
205.99 

4.48 
93.29 

2.21 
86.04 

3.47 
108.78 

0.47911     0.27904     13.32     31.01 

0 Reference [23] 

5.    Conclusions 
In this paper we have studied the performance of the 

so-called externally corrected UGA based CCSD(is) 
method in quasi-degenerate situations that arise when 
exploring various dissociation channels of simple radi- 
cals. The method and its implementation was described 
in Part I of this series. However, instead of using the 
CAS SCF or CAS FCI wave function as an external 
source for the 3- and 4-body cluster amplitudes as was 
done in Part I, we employ here a computationally much 
less demanding scheme that combines a small internal 
CAS-FCI with a larger external SOCI, providing a CI- 
type wave function of modest dimensions, yet properly 
describing the dissociation channel considered. The 
handling of 3- and 4-body cluster amplitudes that arc 
obtained by the cluster analysis of the external CI-typc 
wave function, as well as the solution of the resulting 
externally corrected UGA-CCSD(is) equations, were 
amply described in Part I. The non-iterative handling 

of T\ 7"3 correction was employed throughout. 
This approach was applied to several DZ and DZP 

models of simple radicals, enabling us to assess its per- 
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Table 12.   Same as table 10 for DZP basis. 

-(£ + 92) 
(hartree) 

A£ 
(mhartree) 

Method Dimension *e 1.5i?e Re 1.5Re 

nCI(ASO)" ~680000 0.45401 0.30840 0 0 

CCSD-AS 1 0.44803 0.30148 5.99 6.92 
CI(ASl) 7442 0.30692 0.15714 147.09 151.26 

CCSD-AS2 0.44784 0.30113 6.17 7.27 
CI(AS2) 5982 0.30078 0.15503 153.23 153.37 

CCSD-AS3 0.44641 0.29416 7.60 14.24 
CI(AS3) 2558 0.267 56 0.09672 186.45 211.68 

CCSD-AS4 0.44670 0.29790 7.31 10.50 
CI(AS4) 1738 0.27680 0.13403 177.21 174.37 

CCSD-AS5 0.446 56 0.29767 7.45 10.73 
CI(AS5) 1078 0.271 63 0.13264 182.38 175.76 

CCSD-AS3' 0.44904 0.30119 4.97 7.21 
CI(AS3') 84788 0.35107 0.18310 102.95 125.30 

CCSD-AS3" 0.44934 0.30183 4.67 6.57 
CI(AS3") 119764 0.36606 0.195 68 87.96 112.71 

CCSD-AS4' 0.449 19 0.30303 4.83 5.37 
CI(AS4') 55 860 0.343 68 0.21115 110.33 97.24 

CCSD-AS5' 0.448 65 0.301 50 5.36 6.90 
CI(AS5') 32980 0.32144 0.18764 132.57 120.76 

CCSD(is) 1939 0.44478 0.28463 9.23 23.77 

" Reference [23] 

clusters (both pseudo-doubles and genuine triples) 
perturbatively, along similar lines as is done in, nowa- 
days, standard CCSD(T) [19] or CCSD + T(CCSD) = 
CCSD[T] [20] approaches within the closed-shell or 
spin-orbital formalisms. Although these corrections 
provide very good results in the neighbourhood of the 
equilibrium geometry (cf. e.g. [21]), they generally fail 
once the quasi-degeneracy effects become significant, 
just as in the closed-shell case (see e.g. figure 4 of [22]). 
Thus, the externally corrected CCSD approaches, that 
also account for connected quadruples, represent a 
much more reliable and effective method having a con- 
siderably larger range of applicability. 

Although the above presented results are most 
encouraging, the search for computationally in- 
expensive, yet efficient and reliable, sources of external 
corrections should be continued. We are currently 
examining [24] a similar scheme for the low spin systems 
that is based on multireference CI wave functions of 
modest dimensions. 
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formance when stretching or breaking one single (OH) 
or one multiple (CN) bond, or when simultaneously 
stretching two (NH2) or three (CH3) single bonds. For 
the OH and CN radicals, both the ground as well as the 
lowest excited state of another symmetry species were 
considered. In all cases, the externally corrected 
CCSD(is) energies not only represent a significant 
improvement over the standard CCSD(is) values, but 
also significantly improve the shape of the computed 
potential energy surface as measured by the so-called 
NPE, since the magnitude of these corrections increases 
with the increasing quasi-degeneracy. The corrected 
CCSD(is) energies are also much closer to the corre- 
sponding FCI values than the CI energies corresponding 
to the wave function serving as a source of 3- and 4- 
body corrections. The corrected CCSD(is) NPEs are 
also generally smaller than those corresponding to the 
limited CI energies. Most importantly, the former ones 
behave in a much more systematic way than the latter, 
which are sometimes poorer than those associated with 
the standard CCSD(is) energies. 

In this regard we must also mention our recent work 
[23] that accounts for the effect of 3-body connected 
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