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A DEMONSTRATION OF SURVEILLANCE-RADAR 
COMMUNICATION 

INTRODUCTION 

A system to demonstrate computer-to-computer communication was built by using the transmitter 
and rotating antenna of the Naval Research Laboratory's (NRL) experimental Z,-band surveillance 
radar. This communication capability can be used with only a small degradation in radar performance. 
The demonstration system illustrates concepts on which an operational radar communication system 
could be built. 

NRL's work focused on radars with conventionally rotating antennas, rather than phased arrays, 
simply because they are more common. Although phased arrays, with their beam agility, are naturally 
suited to a part-time communication function, there simply are not many phased-array radars opera- 
tional. This report first gives an overview of the demonstration, and describes in detail the 
communication-link architecture which features a layered structure. Finally, the demonstration system 
hardware and software are presented. 

A DEMONSTRATION SYSTEM 

NRL's radar communication demonstration system was built around an experimental surveillance 
radar located at NRL's Chesapeake Bay Detachment (CBD). A second site at CBD was chosen to com- 
plete the demonstration link. Because there is no radar at the second site suitable for the radar com- 
munication function, a simple "radar emulator" was built to substitute for a real radar at that site. The 
emulator cannot function as an actual radar, but it can transmit the communication waveforms. The 
discussion below centers on the operation of the radar-based system, with it understood that the opera- 
tion of the system at the second site is similar. 

The basic approach is to replace several of the radar's pulses with the output of a modem as the 
main beam of the radar's antenna sweeps over the receive site [1]. For the demonstration, messages 
can be typed into a small computer for transmission to the second site as the antenna position allows; 
see Fig. 1. In addition to preparing and formatting messages, the computer monitors the radar's 
antenna position and pulse timing. With this information, it controls the switching of the radar's high- 
power amplifier between radar and communication waveforms. The communication waveform is gen- 
erated by a modem whose data input is provided by the computer at the appropriate times. The modem 
also converts incoming communication signals from the second site back into data, and passes the data 
into the computer for decoding and display. It is possible to observe the radar's performance in detect- 
ing aircraft while it is transmitting data across the link. 

The demonstration system can be conceptually divided into two major components: the commu- 
nication link and the demonstration software. Here the term communication link includes not only the 
communication hardware and the radar, but also all the software necessary to form a usable communi- 
cation link that can be used by other software modules to communicate with each other. It therefore 
includes all the software that interacts with the radar or performs general communications functions. 
The demonstration software exists only to provide an interface to the communication link that is con- 
venient for humans to use. It gathers messages from the computer keyboard and passes them with the 
appropriate control information to the communication link for transmission.  It simultaneously accepts 

Manuscript approved May 17, 1985. 
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Fig. 1 — Messages typed into a control computer can be transmitted through the radar 
81417(2) 

incoming messages from the communication link and presents them appropriately on the computer's 
video display. 

The rest of the discussion of the demonstration system is divided into three parts. First, the link 
architecture is discussed in very general terms, the hardware components of the demonstration are 
described, and the structure of the system software is outlined. 

COMMUNICATION-LINK ARCHITECTURE 

The communication-link "architecture" is a collection of techniques used to control the interfacing 
with the radar, control system timing, and provide data framing and various levels of error control. 
Taken collectively, the services provided by the system components implemented according to this 
architecture allow the demonstration software to use the communication link without concern for the 
details of the link's operation. Ideally, the link should appear as a transparent path for data transferred 
between software modules at different sites. 

The Layered Approach 

Modern computer communication networks are generally designed around layered architectures 
[2,3]. The services needed to provide a communication path between two points are provided by enti- 
ties structured into layers. The applications, which run on the computers at two sites, communicate 
through a communication path provided by the highest layer entity at each site. These two entities pro- 
vide a predefined set of procedures called a protocol. The protocol allows the entities to communicate 
with each other through a more primitive communication path provided by the pair of entities of the 
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next lower layer at the two sites. In turn, the entities of this lower layer provide a path for the higher 
layer entities by using another protocol to communicate with each other through a still more primitive 
path provided by entities of an even lower layer. This layering continues until at the lowest layer two 
entities communicate with each other by using a physical channel. To summarize, peer entities (entities 
at the same layer but at different sites) use a protocol to communicate through a path provided by peer 
entities of the next lower layer. 

Figure 2 schematically illustrates this relationship among the various entities. The dashed lines 
represent communication paths that are not physical channels but are really provided by the pair of 
entities immediately below. For example, the path between the two "high" entities is provided by the 
"middle" entities. Therefore, the actual path of the data from the left "user" to the right user is down 
through the left "low" entity, across the physical channel to the right low entity, and up to the right 
user. A certain amount of overhead or control information is typically communicated between peer 
entities of the lower layers, and is never seen by the user entities. 

User 

High 

Middle 

Low 
Physical Channel 

User 

High 

Middle 

Low 

Fig. 2 — An example of layering 

One interpretation of the structure in Fig. 2 is that entities at each successively higher layer add 
some capability, such as error correction, etc., to that provided by the entities at the layers below. The 
inverse viewpoint is that the entities at each layer exist to hide some information from the entities at a 
higher layer. The information hidden might be, for example, restrictive timing requirements or a sub- 
standard reliability level of the underlying, lower layer communication path. In the present context, the 
entities at each layer hide from entities at higher layers the internal details and methods of their opera- 
tion, including the protocols they use to communicate with their counterparts at other sites. This 
allows many changes in the implementation of entities at one layer to proceed without the designer 
having to be concerned with effects on the operation of entities at other layers. In information-hiding 
terms, a layer provides the additional capability by recognizing that the entities at any one layer also 
hide from entities at a higher layer the "inadequacies of the services" provided by the entities at a lower 
layer. 

Criteria for Layer Definition 

Zimmerman [4] lists a set of principles to consider in defining a set of architectural layers.  A sub- 
set of those principles reflects the philosophy of this design: 

(1) Create a boundary at a point where the service description can be small and the number of 
interactions across the boundary is minimized. 

(2) Create separate layers to handle functions that are manifestly different in the process per- 
formed or the technology involved. 

(3) Enable changes of functions or protocols within a layer without affecting the other layers. 
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Other things being equal, systems of many small (in the sense of functions performed) layers tend to 
have more communication overhead than systems of a few large layers because the many separate 
layers must operate independently. A system structured into a few large layers can result in efficient 
operation; however, the operation of such large layers is often difficult to understand because of com- 
plexity. At the early stages of this experimental system, simplicity and reliability are more important 
than efficiency. In addition, we have generally tried to have the functionally different aspects of the 
interaction with the radar transmitter occur from within different layers. These factors have resulted in 
more layers in the architecture described here than are used to accomplish roughly the same objectives 
in various well-known communication systems [3]. The entire system described here corresponds to 
roughly the combination of the data-link layer and the physical layer in one representative architecture 
[4]. Fortunately, most of the tasks to be divided between the layers were inherently sufficiently 
independent such that little extraneous protocol overhead resulted from this approach. 

The Layers of the Architecture 

Table 1 summarizes the functions of the various layers of service in this architecture. (The 
warning-pulse feature of the group layer was designed into the protocol, but it was not actually imple- 
mented in the demonstration system); see Ref. 5 for more detail on the functions of the various layers 
and the protocols used. Figure 3 illustrates the relationship among the various entities. The labels 
shown in Fig. 3 on the dashed lines between peer entities refer to the designations we have given to the 
units of data that are passed through the associated communication paths. For example, the user- 
interface-modules at the top communicate units of data (referred to as low- and high-priority frames) 
back and forth through two separate paths provided by frame-service. In the physical operation of the 
system, the name was generally chosen to reflect where the units of data correspond to some particular 
unit of radar transmission.* 

Table 1 — Layers of Architecture 

The Layers 
User interface 

Frame 

Codec 

Scan 

Group 

Pulse 

Buffer 

Modem 

Multiplexes multiple users (generally higher level protocols) through the link. 
Provides a convenient interface to user software modules. 

Handles data frames of two priorities, providing frame demarcation and detect- 
ing and discarding frames received in error. 

Does forward-error-correction to ensure data integrity if a group is lost or gar- 
bled. 

Handles units of data corresponding to radar scans.  Deals with addressees and 
antenna direction. Detects missing groups. 

Handles units of data corresponding to radar pulse groups.   Uses a warning 
pulse in each group to prevent collisions with radar output at the receive site. 

Handles units of data corresponding to radar pulses, removing random trailing 
data added by modem. Provides data interface to hardware layers below. 

Handle bursts of data, transforming hardware data rates. Synchronizes outgoing 
bursts with the radar. 

Handles high-speed bit streams, sending them through the radar and over the 
RF channel. 

'Viewed from a particular receiving site, once per scan the radar sends several groups, each of which contains several pulses. 
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Fig. 3 — Relationships between the layers 

Some of these layers are hardware, some software, and some bits of both. The modem and 
buffer layers are implemented in hardware. The scan, group, and pulse layers are largely implemented 
in software with hardware interfaces to the radar as well as to the buffer layer below. The user- 
interface, frame, and codec layers are entirely software with no hardware interfaces of any kind. 

Although only a two-site demonstration system was built, there is no reason why this architecture 
cannot accommodate multiple two-site links by using a single radar transmitter. The transmit-site enti- 
ties can be (and should be) shared between links to several receive sites. A similar statement applies to 
a receive site that has links to several transmit sites. 

For a simple demonstration link, this set of layers is adequate. However, other layers, higher 
than those listed here (or, alternatively, between user-interface-service and frame-service), would need 
to be defined in an operational network of these links. The first such additional layer would almost cer- 
tainly be a network layer. A network layer would handle forwarding of datagrams over multiple hops, 
making all the routing decisions. If this communication system were to be interoperable with other 
DoD computer-communication networks, a layer conforming to the DoD-standard Internet Protocol [6] 
specification should probably reside above the network layer. Further, the associated DoD-standard 
Transmission Control [7] and User Datagram [8] protocols may be appropriate to provide virtual-circuit 
and datagram service. 

DEMONSTRATION SYSTEM HARDWARE 

Figure 4 shows the major hardware components of the demonstration system at the radar site. 
The computer, a Convergent Technologies workstation, serves a dual role; it is host to the demonstra- 
tion software, and it is the "link controller," running the communication-link software that implements 
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Fig. 4 — The demonstration-system hardware at the radar site 

the communication-link architecture described above. The radar communications interface is a wire- 
wrapped card containing 124 ICs and plugs into the computer's multibus. It interacts with the software 
via DMA (direct "memory access), port (programmed) I/O, and interrupts. This interface provides 
high-speed buffering of data (the buffer layer in the communication-link architecture) to and from the 
modem, and it controls the timing of transmit operations. 

The Radar Communications Interface Card 

Most of the hardware complexity of this system is in the interface card (pictured in Fig. 5). Its 
functions are described here in terms of the actions that take place in and around the interface to 
transmit and receive data. 

The hardware sequence of events to transmit a communication burst is as follows. First, the com- 
munication software orders the interface to transmit a data burst by writing the memory address of an 
internal buffer that contains the outgoing burst to a particular I/O port on the interface card. The inter- 
face can then use DMA to copy the data from the computer's memory to an on-card high-speed buffer. 
Control information is copied with the data to indicate the antenna azimuth and the pulse ID (within 
the radar pulse group) at which the data is to be transmitted. The interface uses an interrupt to notify 
the software when DMA is complete. When the radar's antenna azimuth lines indicate the required 
antenna direction, and the pulse-timing lines from the radar transmitter indicate that the selected pulse 
is about to begin, the interface switches the radar's high-power amplifier (HPA) input from the radar's 
own waveform generator to the modem transmitter's output. The data burst is then passed to the 
modem transmitter where it is converted to an RF waveform for transmission through the radar's HPA 
and antenna. When transmission of the burst is complete, the HPA input is once again switched to the 
radar's waveform generator so that the radar waveform can be transmitted. 

The interface simultaneously handles incoming data from the modem receiver. The software first 
writes the memory address of an empty buffer in the computer's memory to a particular I/O port on 
the interface card. The modem receiver passes the data burst to the interface as it is demodulated, and 
the data burst is then queued in an on-card high-speed buffer. DMA is used to transfer the data to the 
buffer in the computer's memory. An interrupt signals the software that the buffer has been filled. 
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Fig. 5 — Hardware interface to the modem 
81417(1) 

To allow multiple transmit and receive buffers to be processed by the interface in quick succes- 
sion, the interface provides storage for multiple buffer addresses. Since all instructions to the interface 
from the software are provided by writing buffer addresses to I/O ports, this allows the relatively slow 
software to work ahead of the higher speed hardware to some extent. On transmit, this allows an entire 
scan's worth of bursts to be specified to the interface before the first is transmitted. On receive, it 
allows the interface to have enough buffer addresses on hand to handle an incoming scan of data 
without interacting with the software. This buffer-address queuing therefore greatly reduces the 
requirement for fast interaction between software and hardware. The software can interact with the 
interface on a scan-by-scan rather than a pulse-by-pulse basis. 

The Modem 

The modem for the demonstration system was designed to be simple and robust. We chose 
frequency-shift keying (FSK) as the modulation type for this demonstration because: (1) it is simple to 
implement; (2) it is so tolerant (at high-modulation indices) of various types of distortion that it was 
not even necessary to take the time to characterize the distortion levels in the transmitter of the partic- 
ular radar we were using; and (3) for this demonstration at least, we could afford the high bandwidth 
per bit transmitted.* 

The demonstration-system modem operates at an instantaneous data rate of 5 Mbit/s, transitting a 
lower frequency tone for 200 ns to send a zero, and transmitting a tone 12 MHz higher for 200 ns to 

*We are not suggesting by this decision to use FSK for the demonstration system that FSK should be used operationally, 
should probably not be used in an operational system because its "spectral efficiency is so low. 

FSK 
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send a one. The modem transmitter precedes each transmitted data burst with a preamble comprising a 
17-bit prefix of alternating ones and zeros followed by a fixed 7-bit sync code. The alternating prefix 
allows the modem receiver time to discover the correct clock phase. The sync code indicates to the 
modem receiver that data are about to begin. The sync code can be recognized correctly even with a 
transmission error in one of it seven bits [9]. 

DEMONSTRATION SYSTEM SOFTWARE 

The Software Interface to the Communication Link 

The communication-link program and application programs that use the link can run simulta- 
neously on the Convergent Technologies workstation that serves as the link controller. The 
communication-link program is set up in such a way that the link can be used by more than one appli- 
cation program at once. The link appears as a resource, much as do various operating system features. 

An application program, for example, the demonstration software, interacts with the communica- 
tion link by using the operating system to send "requests" to a particular "exchange" (an exchange serv- 
ing the role of a mailbox). The communication-link program waits for requests to arrive at the 
exchange and acts on each in turn. Each request contains a request code, identifying the purpose of the 
request, and it also contains the ID of the "response exchange" to which the communication link should 
send a response to the request. The requesting program will wait at the specified response exchange for 
a response to its request. 

In addition to a request code and response exchange ID, each request must include information 
specific to the particular type of request. For example, a request to transmit a datagram would include 
the ID of the site to which it is to be sent, the ID of the recipient (program) at that site, the priority, 
the address in memory where the datagram contents begin, and the length of the datagram. For a 
receive request, the address and length of an empty datagram buffer must be provided, along with the 
ID of the program making the request. A response to a receive request would be generated only when 
the buffer had been filled with data from a suitably addressed incoming datagram. The response would 
include the length of the datagram, its priority, and its site of origin. In addition to requests to transmit 
and receive datagrams, requests may be sent to update the stored azimuth of a receive site, to open or 
close an error-logging file, and to cancel a previous request (not yet responded to). 

The Communication-Link Program 

The communication-link program comprises roughly 5000 lines of Convergeht Technologies Pas- 
cal divided into 21 independently compiled "units."* The program runs as seven independent processes 
(threads of control), which communicate and synchronize their activities by passing messages to each 
other via exchanges. An interrupt handler, triggered into execution by the modem interface, activates 
appropriate processes by passing messages to them. 

Figure 6 shows the overall structure of the communication-link program. The seven units that 
implement the protocols are lined up, left to right, from the vertical dashed line on the left to the mul- 
tibus on the right. The dashed line represents the boundary between the communication-link program 
and the application programs. * Each of the units shown implements communication functions 
corresponding to the layer of the architecture associated with its name. In Fig. 6, a unit is represented 
as a tall rectangle with its name over the.top and is subdivided by solid horizontal lines into its major 
routines. For example, the CodecUnit contains routines CodecSource and CodecSink. The intent here 
is to show the major structure of the program into processes, not to give a detailed picture of the entire 
program. Consequently, only routines that are called from outside the unit are shown.   Most of these 

*A Convergent Pascal "unit" is a collection of constants, types, variables, procedures, and functions that can be used by other 
programs or units through an explicitly provided interface.  It is similar in concept to an Ada package. 

8 
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Fig. 6 — Unit and process structure of the communication link program 

routines call other routines internal to the same unit in order to perform their functions. These inter- 
nal routines are not given here. Likewise, the various utility units whose routines are called by those of 
Fig. 6 are not included. 

Routines whose names end in the word "process" are run simultaneously as separate processes 
(also the two "BufferHandler" routines in ModemHandlerUnit). Each contains an infinite loop, so none 
of the processes terminates. The threads of control of the processes are represented in Fig. 6 by the 
solid lines with arrows that course through the various routines called. For example, 
RxClockWatchProcess contains an infinite loop, and inside that loop it calls the routine CodecSink in 
the CodecUnit. CodecSink in turn calls DeliverFrameBits in the FrameUnit, and DeliverFrameBits 
calls DeliverDatagram in the UserlnterfaceUnit. 

A circle lying on the boundary between two routines running in two different processes represents 
a shared database that is accessed independently from the two processes. For example, in the Userln- 
terfaceUnit, DeliverDatagram shares a database with UserProcess. Dashed lines connect the databases 
with the process' threads of control at the approximate point of database access. Each database is 
locked in such a way that it can be accessed by only one process at a time. If a process needs access to 
a database that is in use, it halts execution until the database becomes available. 

The dashed lines with arrows in Fig. 6 are exchanges where messages can be queued for another 
process to read. For example, routine TransmitPulse in PulseUnit sends messages via an exchange to 
TxBufferHandler in ModemHandlerUnit. The arrows show the direction of message passing. A pro- 
cess needing to receive a message from an empty exchange (no messages queued) automatically halts 
execution until ä message is sent to that exchange by another process. In this way, exchanges are used 
to synchronize actions performed by different processes. 
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Interactions with multibus hardware are indicated in Fig. 6 by lines of alternating dots and dashes 
Inese interactions were intentionally confined to a single unit, ModemHandlerUnit, to simplify pro- 
gram maintenance as the hardware design evolved. 

The, one thread of control shown in Fig. 6 that is not a loop is that of the routine Modem- 
IntHandler in ModemHandlerUnit; this is the interrupt handler. It is triggered into execution by the 
operating system when an interrupt appears on the multibus from the modem interface card. 

The functions of each of the processes in the communication-link program will now be discussed 
briefly. Very little will be said here about the actual processing of the data by the various routines- that 
information is described elsewhere by Coleman [5]. The discussion here will center on the dataflow 
between the various parts of the program. The name of the top-level procedure in which the process 
runs will be used as the process name. 

The UserProcess in the UserlnterfaceUnit receives, processes, and responds to requests from the 
applications using the communication link. Outgoing datagrams are queued in a database where the 
GetDatagram routine can later remove them. The database shared with the DeliverDatagram routine 
contains two queues. One is a queue of incoming datagrams. Requests from the application software 
tor incoming datagrams provide buffers into which incoming datagrams can be copied When such a 
request arrives it is filled, if possible, from a datagram in the queue. If there is no suitable datagram 
in the queue the request itself is queued in a second, request queue. Incoming datagrams, provided by 
the routine DeliverDatagram, are put into the datagram queue only if no match with a queued request 
is possible. This dual queue arrangement allows matching of incoming datagrams with requests from 
app ication software regardless of whether the datagram or request arrives first. A refinement that 
could be easily added is automatic expiration of old datagrams in the datagram queue. 

The TxScanProcess in program scan does most of the work of preparing outgoing data for 
transmission It calls CodecSource to obtain a scan's worth of data for transmission. It adds overhead 
information (see Ref 5), waits for the radar antenna to become positioned to an azimuth somewhat 
betöre the azimuth of the receive site, then calls TransmitGroup on each group of data (corresponding 
to a radar pulse group) in the scan.  After a suitable interval, the sequence is started again. 

The data passed from CodecSource to TxScanProcess was ultimately obtained (except, of course 
for overhead bits) from GetFrameBits. GetFrameBits, in turn, obtained its raw data for processing 

daTrams    tagram'       * *"* aCC6SS t0 ^ datagram queue where UserProcess stores outgoing 

The data groups passed from TxScanProcess to TransmitGroup are passed on to TransmitPulse as 
data pulses where they are prepared for DMA to the hardware. Empty DMA buffers are obtained by 
TransmitPulse by waiting at an exchange where the buffer's addresses are provided in messages from 
the interrupt handler, ModemlntHandler. After preparing the buffer with the data, TransmitPulse 
sends it as a message to another exchange, where it will be picked up by TxBufferHandler at the earli- 
est opportunity. 

The TxBufferHandler monitors the state of the transmit portion of the modem interface card 
TB Z £ Jt lnterface has room in its on"card command memory for more transmit commands! 
TxBufferHandler waits at the exchange where outgoing DMA buffers were placed by TransmitPulse 
un obtaining a buffer at this exchange, a suitable command is sent to the hardware to cause the con- 
tained data to be transmitted. 

The RxBufferHandler obtains empty DMA buffers as messages from ReceivePulse and, keeping 
track of the state of the receive portion of the modem interface card, keeps the on-card memory of 

10 
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addresses of receive buffers as full as possible.   This way, a burst of incoming data is likely to have 
DMA buffers ready. 

When a receive DMA buffer is filled with data by the card, or when a transmit DMA buffer has 
been emptied by the card, a multibus interrupt is used to trigger the interrupt handler, Modem- 
IntHandler, into execution. ModemlntHandler interrogates the card to find out how many transmit and 
receive DMA buffers the card is finished with. The appropriate buffers are then returned to Transmit- 
Pulse and ReceivePulse via exchanges. 

RxScanProcess deals with incoming data groups. It calls ReceiveGroup to obtain each group, and, 
if the group obtained is marked as destined for this site, it then stores that group in a database shared 
with RxClockWatchProcess. ReceiveGroup calls ReceivePulse to obtain data pulses, and ReceivePulse 
obtains data by waiting at an exchange for ModemlntHandler to send it an incoming DMA buffer for 
processing. 

RxClockWatchProcess simply looks into the data-group database approximately once per second 
until it finds that an entire scan's worth of data has arrived. It then removes those groups from the 
database and passes them to CodecSink for disposal. CodecSink processes the data and passes it to 
DeliverFrameBits, where it is divided into datagrams and passed to DeliverDatagram for disposal as dis- 
cussed above. 

There is one process in the communication-link program that is not shown in Fig. 6. That is the 
AzimuthTrackerProcess, a process that repeatedly samples the azimuth of the radar antenna, available 
across the multibus from the modem interface card, and uses a tracking filter to provide estimates of 
antenna position to those routines that need it. 

The seven processes of the communication-link program each have assigned priorities that deter- 
mine which will actually execute on the processor when more than one is ready to run; that is, not 
blocked waiting for a message at an exchange or waiting for a database to become available. The use of 
multiple prioritized processes to handle the asynchronous nature of the various tasks involved allowed 
the various portions of the program to be programmed more or less independently without need of a 
master "executive" or scheduling program. Structuring the routines into units allowed complementary 
tasks to be kept together in the source code, even when multiple processes are involved. For example, 
error coding is done in routine CodecSource in CodecUnit. The corresponding decoding operation is 
done in routine CodecSink in the same unit. Even though the two routines are executed by different 
processes, keeping them physically together in the source code by putting them in the same unit makes 
it easier for the reader of the program to verify that the decoding operation at the receive site is indeed 
the inverse of the coding operation at the transmit site. In addition, complementary transmit and 
receive routines in the same unit often share common constant definitions, data type definitions, and 
utility routines, all of which are included in the unit along with the major routines. 

The Demonstration Program 

Several application programs were written to use the communication link; they are the demonstra- 
tion program and several test programs. Of these, only the demonstration program is described here. 

The demonstration program interacts with the user at the keyboard and video display, and deals 
with requests and responses to and from the communication-link program. It allows the user to com- 
pose textual datagrams for transmission in one window on the video screen, while automatically display- 
ing incoming datagrams in a second window as they arrive. A third screen window is provided in which 
the user can interact with the demonstration system by typing in commands. This command window is 
also used for status messages from the demonstration system; Fig. 7 shows the three windows during a 
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Fig. 7 — The computer screen during a test session 

typical test.    Capabilities provided by commands include destination site selection for outgoing 
datagrams and azimuth setting for receive sites. 

Commands are also provided to implement a rudimentary file transfer capability that can copy a 
disk file from one site to another at a low priority while interactive message traffic continues (rela- 
tively) unaffected. However, the file transfer capability is included only to demonstrate the necessity of 
higher level protocols (than those implemented here) for real applications. File transfer in this system 
generally fails because no protocol is provided here for flow control, that is, feedback from receive site 
to transmit site to limit the rate at which data is transmitted to the rate at which it can be processed at 
the receiver. 

The demonstration program comprises nearly 1300 lines of Pascal in four units running as six 
processes.  Another 2100 lines of Pascal are devoted to test software. 

SUMMARY 

NRL's Radar Division investigated techniques for radar communications, and constructed a sim- 
ple radar-communication demonstration system to illustrate a concept suitable both for new radar 
designs and for retrofitting onto existing Navy radars. The demonstration system illustrates ideas on 
which a radar-communication system could be built. By using this concept, data are sent through the 
radar transmitter and antenna in place of selected radar pulses as the antenna beam passes over the 
receive site. By using high data rates during the short intervals in which data are actually being 
transmitted, data may be transmitted at an average data rate of several thousand bits per second. 
Because the radar function is preempted for communication only a small part of the tinfe, degradation 
of radar performance is minimal. 
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NRL's radar communication demonstration system implements a two-way link between two sites 
at CBD. The system at one site was built around an experimental L-band surveillance radar. For the 
demonstration, messages can be typed into a small computer at either site for transmission to the other 
as the antenna position allows. Messages are transferred using a layered set of protocols that provide 
frame demarcation, forward error correction, and structuring and labeling of the data pulses. In addi- 
tion to preparing and formatting messages, the computer monitors various transmitter functions and the 
radar's antenna position. With this information, it controls the switching between radar and communi- 
cation functions. 

The successful demonstration of a radar communication system has shown that a surveillance 
radar can be used with a minimum of difficulty to transmit data with only a small degradation in radar 
performance. 
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