
NRL Report 8925

A Demonstration of Surveillance-Radar
Communication

J. O. COLEMAN AND J. J. ALTER

Radar Analysis Branch
Radar Division

October 4, 1985

1 19 167

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited.

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION

UNCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY

2b. DECLASSIFICATION / DOWNGRADING SCHEDULE

4 PERFORMING ORGANIZATION REPORT NUMBER(S)

NRL Report 8925

6a. NAME OF PERFORMING ORGANIZATION

Naval Research Laboratory
6b OFFICE SYMBOL

(If applicable)

Code 5312

lb. RESTRICTIVE MARKINGS

3 DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution unlimited.

5. MONITORING ORGANIZATION REPORT NUMBER(S)

7a. NAME OF MONITORING ORGANIZATION

6c. ADDRESS {City, State, and ZIP Code)

Washington, DC 20375-5000

7b. ADDRESS (City, State, and ZIP Code)

8a. NAME OF FUNDING/SPONSORING
ORGANIZATION

Naval Sea Systems Command

8b. OFFICE SYMBOL
(If applicable)

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City, State, and ZIP Code)

Washington, DC 20362-5101

10. SOURCE OF FUNDING NUMBERS

PROGRAM
ELEMENT NO.

627 12N

PROJECT
NO.

SF1213169ll

TASK
NO.

WORK UNIT
ACCESSION NO.

DN080-003
11. TITLE (Include Security Classification)

A Demonstration of Surveillance-Radar Communication

12. PERSONAL AUTHOR(S)
Coleman, J.Ö. and Alter, J.J.

13a. TYPE OF REPORT
Final

13b. TIME COVERED
FROM 10/81 JO 9/84

14. DATE OF REPORT (Year, Month, Day)
1985 October 4

15. PAGE COUNT

17
16 SUPPLEMENTARY NOTATION

17. COSATI CODES

FIELD GROUP SUB-GROUP

18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
Computer communication networks Radar communication
Tactical data transfer

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Success in multiplatform sensor integration will require a robust communication capability for
transferring data. One way to communicate is to use the existing radar transmitters and antennas. Con-
sequently, the Naval Research Laboratory (NRL) has investigated techniques for radar communications,
and has constructed a simple radar communication demonstration system to illustrate a concept suitable
both for new radar designs and for retrofitting onto existing radars.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT

□ UNCLASSIFIED/UNLIMITED ©SAME AS RPT. D DTIC USERS

21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL

M.I. Skolnik
22b. TELEPHONE (Include Area Code)

(202) 767-2936
22c. OFFICE SYMBOL

Code 5312
OD FORM 1473,84 MAR 83 APR edition may be used until exhausted

All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE

CONTENTS

INTRODUCTION 1

A DEMONSTRATION SYSTEM 1

COMMUNICATION-LINK ARCHITECTURE 2

The Layered Approach 2
Criteria for Layer Definition 3
The Layers of the Architecture 4

DEMONSTRATION SYSTEM HARDWARE 5

The Radar Communications Interface Card 6
The Modem 7

DEMONSTRATION SYSTEM SOFTWARE 8

The Software Interface to the Communication Link 8
The Communication-Link Program 8
The Demonstration Program 11

SUMMARY 12

REFERENCES 13

in

A DEMONSTRATION OF SURVEILLANCE-RADAR
COMMUNICATION

INTRODUCTION

A system to demonstrate computer-to-computer communication was built by using the transmitter
and rotating antenna of the Naval Research Laboratory's (NRL) experimental Z,-band surveillance
radar. This communication capability can be used with only a small degradation in radar performance.
The demonstration system illustrates concepts on which an operational radar communication system
could be built.

NRL's work focused on radars with conventionally rotating antennas, rather than phased arrays,
simply because they are more common. Although phased arrays, with their beam agility, are naturally
suited to a part-time communication function, there simply are not many phased-array radars opera-
tional. This report first gives an overview of the demonstration, and describes in detail the
communication-link architecture which features a layered structure. Finally, the demonstration system
hardware and software are presented.

A DEMONSTRATION SYSTEM

NRL's radar communication demonstration system was built around an experimental surveillance
radar located at NRL's Chesapeake Bay Detachment (CBD). A second site at CBD was chosen to com-
plete the demonstration link. Because there is no radar at the second site suitable for the radar com-
munication function, a simple "radar emulator" was built to substitute for a real radar at that site. The
emulator cannot function as an actual radar, but it can transmit the communication waveforms. The
discussion below centers on the operation of the radar-based system, with it understood that the opera-
tion of the system at the second site is similar.

The basic approach is to replace several of the radar's pulses with the output of a modem as the
main beam of the radar's antenna sweeps over the receive site [1]. For the demonstration, messages
can be typed into a small computer for transmission to the second site as the antenna position allows;
see Fig. 1. In addition to preparing and formatting messages, the computer monitors the radar's
antenna position and pulse timing. With this information, it controls the switching of the radar's high-
power amplifier between radar and communication waveforms. The communication waveform is gen-
erated by a modem whose data input is provided by the computer at the appropriate times. The modem
also converts incoming communication signals from the second site back into data, and passes the data
into the computer for decoding and display. It is possible to observe the radar's performance in detect-
ing aircraft while it is transmitting data across the link.

The demonstration system can be conceptually divided into two major components: the commu-
nication link and the demonstration software. Here the term communication link includes not only the
communication hardware and the radar, but also all the software necessary to form a usable communi-
cation link that can be used by other software modules to communicate with each other. It therefore
includes all the software that interacts with the radar or performs general communications functions.
The demonstration software exists only to provide an interface to the communication link that is con-
venient for humans to use. It gathers messages from the computer keyboard and passes them with the
appropriate control information to the communication link for transmission. It simultaneously accepts

Manuscript approved May 17, 1985.

COLEMAN AND ALTER

Fig. 1 — Messages typed into a control computer can be transmitted through the radar
81417(2)

incoming messages from the communication link and presents them appropriately on the computer's
video display.

The rest of the discussion of the demonstration system is divided into three parts. First, the link
architecture is discussed in very general terms, the hardware components of the demonstration are
described, and the structure of the system software is outlined.

COMMUNICATION-LINK ARCHITECTURE

The communication-link "architecture" is a collection of techniques used to control the interfacing
with the radar, control system timing, and provide data framing and various levels of error control.
Taken collectively, the services provided by the system components implemented according to this
architecture allow the demonstration software to use the communication link without concern for the
details of the link's operation. Ideally, the link should appear as a transparent path for data transferred
between software modules at different sites.

The Layered Approach

Modern computer communication networks are generally designed around layered architectures
[2,3]. The services needed to provide a communication path between two points are provided by enti-
ties structured into layers. The applications, which run on the computers at two sites, communicate
through a communication path provided by the highest layer entity at each site. These two entities pro-
vide a predefined set of procedures called a protocol. The protocol allows the entities to communicate
with each other through a more primitive communication path provided by the pair of entities of the

NRL REPORT 8925

next lower layer at the two sites. In turn, the entities of this lower layer provide a path for the higher
layer entities by using another protocol to communicate with each other through a still more primitive
path provided by entities of an even lower layer. This layering continues until at the lowest layer two
entities communicate with each other by using a physical channel. To summarize, peer entities (entities
at the same layer but at different sites) use a protocol to communicate through a path provided by peer
entities of the next lower layer.

Figure 2 schematically illustrates this relationship among the various entities. The dashed lines
represent communication paths that are not physical channels but are really provided by the pair of
entities immediately below. For example, the path between the two "high" entities is provided by the
"middle" entities. Therefore, the actual path of the data from the left "user" to the right user is down
through the left "low" entity, across the physical channel to the right low entity, and up to the right
user. A certain amount of overhead or control information is typically communicated between peer
entities of the lower layers, and is never seen by the user entities.

User

High

Middle

Low
Physical Channel

User

High

Middle

Low

Fig. 2 — An example of layering

One interpretation of the structure in Fig. 2 is that entities at each successively higher layer add
some capability, such as error correction, etc., to that provided by the entities at the layers below. The
inverse viewpoint is that the entities at each layer exist to hide some information from the entities at a
higher layer. The information hidden might be, for example, restrictive timing requirements or a sub-
standard reliability level of the underlying, lower layer communication path. In the present context, the
entities at each layer hide from entities at higher layers the internal details and methods of their opera-
tion, including the protocols they use to communicate with their counterparts at other sites. This
allows many changes in the implementation of entities at one layer to proceed without the designer
having to be concerned with effects on the operation of entities at other layers. In information-hiding
terms, a layer provides the additional capability by recognizing that the entities at any one layer also
hide from entities at a higher layer the "inadequacies of the services" provided by the entities at a lower
layer.

Criteria for Layer Definition

Zimmerman [4] lists a set of principles to consider in defining a set of architectural layers. A sub-
set of those principles reflects the philosophy of this design:

(1) Create a boundary at a point where the service description can be small and the number of
interactions across the boundary is minimized.

(2) Create separate layers to handle functions that are manifestly different in the process per-
formed or the technology involved.

(3) Enable changes of functions or protocols within a layer without affecting the other layers.

COLEMAN AND ALTER

Other things being equal, systems of many small (in the sense of functions performed) layers tend to
have more communication overhead than systems of a few large layers because the many separate
layers must operate independently. A system structured into a few large layers can result in efficient
operation; however, the operation of such large layers is often difficult to understand because of com-
plexity. At the early stages of this experimental system, simplicity and reliability are more important
than efficiency. In addition, we have generally tried to have the functionally different aspects of the
interaction with the radar transmitter occur from within different layers. These factors have resulted in
more layers in the architecture described here than are used to accomplish roughly the same objectives
in various well-known communication systems [3]. The entire system described here corresponds to
roughly the combination of the data-link layer and the physical layer in one representative architecture
[4]. Fortunately, most of the tasks to be divided between the layers were inherently sufficiently
independent such that little extraneous protocol overhead resulted from this approach.

The Layers of the Architecture

Table 1 summarizes the functions of the various layers of service in this architecture. (The
warning-pulse feature of the group layer was designed into the protocol, but it was not actually imple-
mented in the demonstration system); see Ref. 5 for more detail on the functions of the various layers
and the protocols used. Figure 3 illustrates the relationship among the various entities. The labels
shown in Fig. 3 on the dashed lines between peer entities refer to the designations we have given to the
units of data that are passed through the associated communication paths. For example, the user-
interface-modules at the top communicate units of data (referred to as low- and high-priority frames)
back and forth through two separate paths provided by frame-service. In the physical operation of the
system, the name was generally chosen to reflect where the units of data correspond to some particular
unit of radar transmission.*

Table 1 — Layers of Architecture

The Layers
User interface

Frame

Codec

Scan

Group

Pulse

Buffer

Modem

Multiplexes multiple users (generally higher level protocols) through the link.
Provides a convenient interface to user software modules.

Handles data frames of two priorities, providing frame demarcation and detect-
ing and discarding frames received in error.

Does forward-error-correction to ensure data integrity if a group is lost or gar-
bled.

Handles units of data corresponding to radar scans. Deals with addressees and
antenna direction. Detects missing groups.

Handles units of data corresponding to radar pulse groups. Uses a warning
pulse in each group to prevent collisions with radar output at the receive site.

Handles units of data corresponding to radar pulses, removing random trailing
data added by modem. Provides data interface to hardware layers below.

Handle bursts of data, transforming hardware data rates. Synchronizes outgoing
bursts with the radar.

Handles high-speed bit streams, sending them through the radar and over the
RF channel.

'Viewed from a particular receiving site, once per scan the radar sends several groups, each of which contains several pulses.

Datagrams

1

NRL REPORT 8925

frames

Datagrams

t
User
Interface

.—

—

User
Interface

cycles
Frame Frame

scans Codec Codec

groups
Scan Scan

pulses Group Group

bursts

streams

Pulse Pulse

Buffer Buffer

(RF channel) Modem Modem

Fig. 3 — Relationships between the layers

Some of these layers are hardware, some software, and some bits of both. The modem and
buffer layers are implemented in hardware. The scan, group, and pulse layers are largely implemented
in software with hardware interfaces to the radar as well as to the buffer layer below. The user-
interface, frame, and codec layers are entirely software with no hardware interfaces of any kind.

Although only a two-site demonstration system was built, there is no reason why this architecture
cannot accommodate multiple two-site links by using a single radar transmitter. The transmit-site enti-
ties can be (and should be) shared between links to several receive sites. A similar statement applies to
a receive site that has links to several transmit sites.

For a simple demonstration link, this set of layers is adequate. However, other layers, higher
than those listed here (or, alternatively, between user-interface-service and frame-service), would need
to be defined in an operational network of these links. The first such additional layer would almost cer-
tainly be a network layer. A network layer would handle forwarding of datagrams over multiple hops,
making all the routing decisions. If this communication system were to be interoperable with other
DoD computer-communication networks, a layer conforming to the DoD-standard Internet Protocol [6]
specification should probably reside above the network layer. Further, the associated DoD-standard
Transmission Control [7] and User Datagram [8] protocols may be appropriate to provide virtual-circuit
and datagram service.

DEMONSTRATION SYSTEM HARDWARE

Figure 4 shows the major hardware components of the demonstration system at the radar site.
The computer, a Convergent Technologies workstation, serves a dual role; it is host to the demonstra-
tion software, and it is the "link controller," running the communication-link software that implements

computer

radar-
comm

inter-
face

display

COLEMAN AND ALTER

azimuth

pulse timing

RF switch control

transmit data

receive data

keyboard

Fig. 4 — The demonstration-system hardware at the radar site

the communication-link architecture described above. The radar communications interface is a wire-
wrapped card containing 124 ICs and plugs into the computer's multibus. It interacts with the software
via DMA (direct "memory access), port (programmed) I/O, and interrupts. This interface provides
high-speed buffering of data (the buffer layer in the communication-link architecture) to and from the
modem, and it controls the timing of transmit operations.

The Radar Communications Interface Card

Most of the hardware complexity of this system is in the interface card (pictured in Fig. 5). Its
functions are described here in terms of the actions that take place in and around the interface to
transmit and receive data.

The hardware sequence of events to transmit a communication burst is as follows. First, the com-
munication software orders the interface to transmit a data burst by writing the memory address of an
internal buffer that contains the outgoing burst to a particular I/O port on the interface card. The inter-
face can then use DMA to copy the data from the computer's memory to an on-card high-speed buffer.
Control information is copied with the data to indicate the antenna azimuth and the pulse ID (within
the radar pulse group) at which the data is to be transmitted. The interface uses an interrupt to notify
the software when DMA is complete. When the radar's antenna azimuth lines indicate the required
antenna direction, and the pulse-timing lines from the radar transmitter indicate that the selected pulse
is about to begin, the interface switches the radar's high-power amplifier (HPA) input from the radar's
own waveform generator to the modem transmitter's output. The data burst is then passed to the
modem transmitter where it is converted to an RF waveform for transmission through the radar's HPA
and antenna. When transmission of the burst is complete, the HPA input is once again switched to the
radar's waveform generator so that the radar waveform can be transmitted.

The interface simultaneously handles incoming data from the modem receiver. The software first
writes the memory address of an empty buffer in the computer's memory to a particular I/O port on
the interface card. The modem receiver passes the data burst to the interface as it is demodulated, and
the data burst is then queued in an on-card high-speed buffer. DMA is used to transfer the data to the
buffer in the computer's memory. An interrupt signals the software that the buffer has been filled.

NRL REPORT 8925

Fig. 5 — Hardware interface to the modem
81417(1)

To allow multiple transmit and receive buffers to be processed by the interface in quick succes-
sion, the interface provides storage for multiple buffer addresses. Since all instructions to the interface
from the software are provided by writing buffer addresses to I/O ports, this allows the relatively slow
software to work ahead of the higher speed hardware to some extent. On transmit, this allows an entire
scan's worth of bursts to be specified to the interface before the first is transmitted. On receive, it
allows the interface to have enough buffer addresses on hand to handle an incoming scan of data
without interacting with the software. This buffer-address queuing therefore greatly reduces the
requirement for fast interaction between software and hardware. The software can interact with the
interface on a scan-by-scan rather than a pulse-by-pulse basis.

The Modem

The modem for the demonstration system was designed to be simple and robust. We chose
frequency-shift keying (FSK) as the modulation type for this demonstration because: (1) it is simple to
implement; (2) it is so tolerant (at high-modulation indices) of various types of distortion that it was
not even necessary to take the time to characterize the distortion levels in the transmitter of the partic-
ular radar we were using; and (3) for this demonstration at least, we could afford the high bandwidth
per bit transmitted.*

The demonstration-system modem operates at an instantaneous data rate of 5 Mbit/s, transitting a
lower frequency tone for 200 ns to send a zero, and transmitting a tone 12 MHz higher for 200 ns to

*We are not suggesting by this decision to use FSK for the demonstration system that FSK should be used operationally,
should probably not be used in an operational system because its "spectral efficiency is so low.

FSK

COLEMAN AND ALTER

send a one. The modem transmitter precedes each transmitted data burst with a preamble comprising a
17-bit prefix of alternating ones and zeros followed by a fixed 7-bit sync code. The alternating prefix
allows the modem receiver time to discover the correct clock phase. The sync code indicates to the
modem receiver that data are about to begin. The sync code can be recognized correctly even with a
transmission error in one of it seven bits [9].

DEMONSTRATION SYSTEM SOFTWARE

The Software Interface to the Communication Link

The communication-link program and application programs that use the link can run simulta-
neously on the Convergent Technologies workstation that serves as the link controller. The
communication-link program is set up in such a way that the link can be used by more than one appli-
cation program at once. The link appears as a resource, much as do various operating system features.

An application program, for example, the demonstration software, interacts with the communica-
tion link by using the operating system to send "requests" to a particular "exchange" (an exchange serv-
ing the role of a mailbox). The communication-link program waits for requests to arrive at the
exchange and acts on each in turn. Each request contains a request code, identifying the purpose of the
request, and it also contains the ID of the "response exchange" to which the communication link should
send a response to the request. The requesting program will wait at the specified response exchange for
a response to its request.

In addition to a request code and response exchange ID, each request must include information
specific to the particular type of request. For example, a request to transmit a datagram would include
the ID of the site to which it is to be sent, the ID of the recipient (program) at that site, the priority,
the address in memory where the datagram contents begin, and the length of the datagram. For a
receive request, the address and length of an empty datagram buffer must be provided, along with the
ID of the program making the request. A response to a receive request would be generated only when
the buffer had been filled with data from a suitably addressed incoming datagram. The response would
include the length of the datagram, its priority, and its site of origin. In addition to requests to transmit
and receive datagrams, requests may be sent to update the stored azimuth of a receive site, to open or
close an error-logging file, and to cancel a previous request (not yet responded to).

The Communication-Link Program

The communication-link program comprises roughly 5000 lines of Convergeht Technologies Pas-
cal divided into 21 independently compiled "units."* The program runs as seven independent processes
(threads of control), which communicate and synchronize their activities by passing messages to each
other via exchanges. An interrupt handler, triggered into execution by the modem interface, activates
appropriate processes by passing messages to them.

Figure 6 shows the overall structure of the communication-link program. The seven units that
implement the protocols are lined up, left to right, from the vertical dashed line on the left to the mul-
tibus on the right. The dashed line represents the boundary between the communication-link program
and the application programs. * Each of the units shown implements communication functions
corresponding to the layer of the architecture associated with its name. In Fig. 6, a unit is represented
as a tall rectangle with its name over the.top and is subdivided by solid horizontal lines into its major
routines. For example, the CodecUnit contains routines CodecSource and CodecSink. The intent here
is to show the major structure of the program into processes, not to give a detailed picture of the entire
program. Consequently, only routines that are called from outside the unit are shown. Most of these

*A Convergent Pascal "unit" is a collection of constants, types, variables, procedures, and functions that can be used by other
programs or units through an explicitly provided interface. It is similar in concept to an Ada package.

8

NRL REPORT 8925

Radar ['
Comm
Users I

Deliver ^V_y
Datagram

Deliver
FrameBits

J~

CodecSink
RxClock
WatchProcess

_7tx'
i
i
i
i

RxScanProcess

».'

ur

ReceiveGroup

riodemlntHandler

ReceiverPulse

:t
RxBufferHandler

Fig. 6 — Unit and process structure of the communication link program

routines call other routines internal to the same unit in order to perform their functions. These inter-
nal routines are not given here. Likewise, the various utility units whose routines are called by those of
Fig. 6 are not included.

Routines whose names end in the word "process" are run simultaneously as separate processes
(also the two "BufferHandler" routines in ModemHandlerUnit). Each contains an infinite loop, so none
of the processes terminates. The threads of control of the processes are represented in Fig. 6 by the
solid lines with arrows that course through the various routines called. For example,
RxClockWatchProcess contains an infinite loop, and inside that loop it calls the routine CodecSink in
the CodecUnit. CodecSink in turn calls DeliverFrameBits in the FrameUnit, and DeliverFrameBits
calls DeliverDatagram in the UserlnterfaceUnit.

A circle lying on the boundary between two routines running in two different processes represents
a shared database that is accessed independently from the two processes. For example, in the Userln-
terfaceUnit, DeliverDatagram shares a database with UserProcess. Dashed lines connect the databases
with the process' threads of control at the approximate point of database access. Each database is
locked in such a way that it can be accessed by only one process at a time. If a process needs access to
a database that is in use, it halts execution until the database becomes available.

The dashed lines with arrows in Fig. 6 are exchanges where messages can be queued for another
process to read. For example, routine TransmitPulse in PulseUnit sends messages via an exchange to
TxBufferHandler in ModemHandlerUnit. The arrows show the direction of message passing. A pro-
cess needing to receive a message from an empty exchange (no messages queued) automatically halts
execution until ä message is sent to that exchange by another process. In this way, exchanges are used
to synchronize actions performed by different processes.

COLEMAN AND ALTER

Interactions with multibus hardware are indicated in Fig. 6 by lines of alternating dots and dashes
Inese interactions were intentionally confined to a single unit, ModemHandlerUnit, to simplify pro-
gram maintenance as the hardware design evolved.

The, one thread of control shown in Fig. 6 that is not a loop is that of the routine Modem-
IntHandler in ModemHandlerUnit; this is the interrupt handler. It is triggered into execution by the
operating system when an interrupt appears on the multibus from the modem interface card.

The functions of each of the processes in the communication-link program will now be discussed
briefly. Very little will be said here about the actual processing of the data by the various routines- that
information is described elsewhere by Coleman [5]. The discussion here will center on the dataflow
between the various parts of the program. The name of the top-level procedure in which the process
runs will be used as the process name.

The UserProcess in the UserlnterfaceUnit receives, processes, and responds to requests from the
applications using the communication link. Outgoing datagrams are queued in a database where the
GetDatagram routine can later remove them. The database shared with the DeliverDatagram routine
contains two queues. One is a queue of incoming datagrams. Requests from the application software
tor incoming datagrams provide buffers into which incoming datagrams can be copied When such a
request arrives it is filled, if possible, from a datagram in the queue. If there is no suitable datagram
in the queue the request itself is queued in a second, request queue. Incoming datagrams, provided by
the routine DeliverDatagram, are put into the datagram queue only if no match with a queued request
is possible. This dual queue arrangement allows matching of incoming datagrams with requests from
app ication software regardless of whether the datagram or request arrives first. A refinement that
could be easily added is automatic expiration of old datagrams in the datagram queue.

The TxScanProcess in program scan does most of the work of preparing outgoing data for
transmission It calls CodecSource to obtain a scan's worth of data for transmission. It adds overhead
information (see Ref 5), waits for the radar antenna to become positioned to an azimuth somewhat
betöre the azimuth of the receive site, then calls TransmitGroup on each group of data (corresponding
to a radar pulse group) in the scan. After a suitable interval, the sequence is started again.

The data passed from CodecSource to TxScanProcess was ultimately obtained (except, of course
for overhead bits) from GetFrameBits. GetFrameBits, in turn, obtained its raw data for processing

daTrams tagram' * *"* aCC6SS t0 ^ datagram queue where UserProcess stores outgoing

The data groups passed from TxScanProcess to TransmitGroup are passed on to TransmitPulse as
data pulses where they are prepared for DMA to the hardware. Empty DMA buffers are obtained by
TransmitPulse by waiting at an exchange where the buffer's addresses are provided in messages from
the interrupt handler, ModemlntHandler. After preparing the buffer with the data, TransmitPulse
sends it as a message to another exchange, where it will be picked up by TxBufferHandler at the earli-
est opportunity.

The TxBufferHandler monitors the state of the transmit portion of the modem interface card
TB Z £ Jt lnterface has room in its on"card command memory for more transmit commands!
TxBufferHandler waits at the exchange where outgoing DMA buffers were placed by TransmitPulse
un obtaining a buffer at this exchange, a suitable command is sent to the hardware to cause the con-
tained data to be transmitted.

The RxBufferHandler obtains empty DMA buffers as messages from ReceivePulse and, keeping
track of the state of the receive portion of the modem interface card, keeps the on-card memory of

10

NRL REPORT 8925

addresses of receive buffers as full as possible. This way, a burst of incoming data is likely to have
DMA buffers ready.

When a receive DMA buffer is filled with data by the card, or when a transmit DMA buffer has
been emptied by the card, a multibus interrupt is used to trigger the interrupt handler, Modem-
IntHandler, into execution. ModemlntHandler interrogates the card to find out how many transmit and
receive DMA buffers the card is finished with. The appropriate buffers are then returned to Transmit-
Pulse and ReceivePulse via exchanges.

RxScanProcess deals with incoming data groups. It calls ReceiveGroup to obtain each group, and,
if the group obtained is marked as destined for this site, it then stores that group in a database shared
with RxClockWatchProcess. ReceiveGroup calls ReceivePulse to obtain data pulses, and ReceivePulse
obtains data by waiting at an exchange for ModemlntHandler to send it an incoming DMA buffer for
processing.

RxClockWatchProcess simply looks into the data-group database approximately once per second
until it finds that an entire scan's worth of data has arrived. It then removes those groups from the
database and passes them to CodecSink for disposal. CodecSink processes the data and passes it to
DeliverFrameBits, where it is divided into datagrams and passed to DeliverDatagram for disposal as dis-
cussed above.

There is one process in the communication-link program that is not shown in Fig. 6. That is the
AzimuthTrackerProcess, a process that repeatedly samples the azimuth of the radar antenna, available
across the multibus from the modem interface card, and uses a tracking filter to provide estimates of
antenna position to those routines that need it.

The seven processes of the communication-link program each have assigned priorities that deter-
mine which will actually execute on the processor when more than one is ready to run; that is, not
blocked waiting for a message at an exchange or waiting for a database to become available. The use of
multiple prioritized processes to handle the asynchronous nature of the various tasks involved allowed
the various portions of the program to be programmed more or less independently without need of a
master "executive" or scheduling program. Structuring the routines into units allowed complementary
tasks to be kept together in the source code, even when multiple processes are involved. For example,
error coding is done in routine CodecSource in CodecUnit. The corresponding decoding operation is
done in routine CodecSink in the same unit. Even though the two routines are executed by different
processes, keeping them physically together in the source code by putting them in the same unit makes
it easier for the reader of the program to verify that the decoding operation at the receive site is indeed
the inverse of the coding operation at the transmit site. In addition, complementary transmit and
receive routines in the same unit often share common constant definitions, data type definitions, and
utility routines, all of which are included in the unit along with the major routines.

The Demonstration Program

Several application programs were written to use the communication link; they are the demonstra-
tion program and several test programs. Of these, only the demonstration program is described here.

The demonstration program interacts with the user at the keyboard and video display, and deals
with requests and responses to and from the communication-link program. It allows the user to com-
pose textual datagrams for transmission in one window on the video screen, while automatically display-
ing incoming datagrams in a second window as they arrive. A third screen window is provided in which
the user can interact with the demonstration system by typing in commands. This command window is
also used for status messages from the demonstration system; Fig. 7 shows the three windows during a

11

COLEMAN AND ALTER

oStlMtion set to site 1

SlSSVor sit. 1 s.t to 2020
Tranaalt aessage 1 accepted.
SJS.lt aessage 2 »ccepted.
Transait «essage 3 accepted.

This I* * *«st ■•ss«9«#1

HOM another

ThTJJstee Is In loopback teat aode Nhare outgoing aessages are
turned around at the aodea Intarfaca and fad Back Into the ayatea.»3

This is a test eessage»1
NON another
aessage*2
The systee is in loopback test aoda Mhere outgoing aassagas are
turned around at the aodea interface and fed back into the systea.*3

Fig. 7 — The computer screen during a test session

typical test. Capabilities provided by commands include destination site selection for outgoing
datagrams and azimuth setting for receive sites.

Commands are also provided to implement a rudimentary file transfer capability that can copy a
disk file from one site to another at a low priority while interactive message traffic continues (rela-
tively) unaffected. However, the file transfer capability is included only to demonstrate the necessity of
higher level protocols (than those implemented here) for real applications. File transfer in this system
generally fails because no protocol is provided here for flow control, that is, feedback from receive site
to transmit site to limit the rate at which data is transmitted to the rate at which it can be processed at
the receiver.

The demonstration program comprises nearly 1300 lines of Pascal in four units running as six
processes. Another 2100 lines of Pascal are devoted to test software.

SUMMARY

NRL's Radar Division investigated techniques for radar communications, and constructed a sim-
ple radar-communication demonstration system to illustrate a concept suitable both for new radar
designs and for retrofitting onto existing Navy radars. The demonstration system illustrates ideas on
which a radar-communication system could be built. By using this concept, data are sent through the
radar transmitter and antenna in place of selected radar pulses as the antenna beam passes over the
receive site. By using high data rates during the short intervals in which data are actually being
transmitted, data may be transmitted at an average data rate of several thousand bits per second.
Because the radar function is preempted for communication only a small part of the tinfe, degradation
of radar performance is minimal.

12

NRL REPORT 8925

NRL's radar communication demonstration system implements a two-way link between two sites
at CBD. The system at one site was built around an experimental L-band surveillance radar. For the
demonstration, messages can be typed into a small computer at either site for transmission to the other
as the antenna position allows. Messages are transferred using a layered set of protocols that provide
frame demarcation, forward error correction, and structuring and labeling of the data pulses. In addi-
tion to preparing and formatting messages, the computer monitors various transmitter functions and the
radar's antenna position. With this information, it controls the switching between radar and communi-
cation functions.

The successful demonstration of a radar communication system has shown that a surveillance
radar can be used with a minimum of difficulty to transmit data with only a small degradation in radar
performance.

REFERENCES

1. B. H. Cantrell, J. O. Coleman, and G. V. Trunk, "Radar Communications," NRL Report 8515,
August 1981.

2. A. S. Tanenbaum, "Network Protocols," ACM Computing Surveys 13(4), 453-489 (1981).

3. P. E. Green, Jr., "An Introduction to Network Architectures and Protocols," IEEE Trans. Com-
munications COM-28(4), 413-424 (1980).

4. H. Zimmermann, "OSI Reference Model — The ISO Model of Architecture for Open Systems
Interconnection," IEEE Trans. Communications COM-28 (4), 435-432 (1980).

5. J. O. Coleman, "Architecture for a Demonstration Radar-Communication Link," NRL Report
8829 (in publication).

6. Jon Postel, "Internet Protocol, DARPA Internet Program Protocol Specification," RFC-791, Net-
work Information Center, SRI International, Menlo Park, CA 94025 (September 1981).

7. Jon Postel, "Transmission Control Protocol," RFC-793, Network Information Center, SRI Interna-
tional, Menlo Park, CA 94025 (September 1981).

8. Jon Postel, "User Datagram Protocol," RFC-768, Network Information Center, SRI International,
Menlo Park, CA 94025 (August 20, 1980).

9. J. O. Coleman, "Optimum Synchronization Codes to Follow an Alternating Mark/Space Prefix,"
NRL Report 8494, July 1981.

13

