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ABSTRACT 

We typically think of fitting data with an approximating curve in the linear 

least squares sense, where the sum of the residuals in the vertical, or y, direction is 

minimized. The problem addressed here is to fit a Bezier curve to an ordered set 

of data in the total least squares sense, where the sum of the residuals in both the 

horizontal and vertical directions is minimized. More exact: given an ordered set of m 

data points d,, i = 1,2,..., m find a set of control points b,-, i = 0,1,..., n where n is 

the order of the Bezier curve, and a vector t of nodes, 0 < t\ < t2 < • • ■ < tm < 1 that 

minimize || B(t) P — D \\p. The matrix D contains the data points, the matrix P 

contains the control points, and the matrix B(t) is a Bernstein matrix. The algorithm 

to accomplish this is explained in detail and makes extensive use of the linear algebra 

representation of Bezier curves. 



VI 



TABLE OF CONTENTS 

I. INTRODUCTION  1 

A. BERNSTEIN POLYNOMIALS  1 

B. BEZIER CURVES  1 

C. PROPERTIES OF BEZIER CURVES     3 

1. Endpoint Interpolation  3 

2. Affine Invariance      3 

D. MATRIX REPRESENTATION OF BEZIER CURVES  4 

1. The Bernstein Matrix  4 

2. Slope of a Bezier Curve  6 

II. PROBLEM STATEMENT  11 

A. PROBLEM STATEMENT  11 

B. THE SEPARABLE LEAST SQUARES PROBLEM  12 

C. SHORTEST DISTANCE TO A CURVE  13 

1.         A Necessary Condition  14 

D. ORDERED DATA  15 

III. BASIC ALGORITHM  21 

A. BASIC ALGORITHM  21 

1.         Approaching {P*,t*}  21 

B. THE NEARESTPOINT METHOD  22 

C. THE GRADIENT METHOD     23 

1.         Results of the Gradient Method  24 

D. THE GAUSS-NEWTON METHOD  24 

1. Review of Newton's Method  25 

2. Solving the Nonlinear Least Squares Problem  25 

3. Stopping Criteria  28 

E. PRIMARY ALGORITHM  29 

vn 



IV.     METHOD EXAMPLES     31 

A. GRAPHICAL COMPARISONS  31 

1. Gradient Method and Approaching {P*,t*}      31 

2. Total Least Squares Versus Linear Least Squares  32 

3. Effect of the Initial Set of Nodes  32 

4. Failure to Maintain Ordering of Data  33 

5. Gauss-Newton Method and Data with Noise  33 

6. Gauss-Newton and Real World Data      34 

B. GAUSS-NEWTON VERSUS NEARESTPOINT  35 

1. Graphical Results  35 

2. Computer Time and Iterations  35 

C. GENERAL COMPARISON OF FUNCTIONS  35 

APPENDIX. MATLAB FUNCTIONS  47 

LIST OF REFERENCES  57 

INITIAL DISTRIBUTION LIST      59 

Vlll 



LIST OF FIGURES 

1. Cubic Bezier Curve  9 

2. Cubic Bezier Curve with Reordered Control Points  9 

3. Data Points and Fitted Curve  18 

4. Solution for the Nearest Points      18 

5. Data and Nodes for Linear Least Squares Problem      19 

6. Solution to Linear Least Squares Problem  19 

7. Gradient Method  30 

8. Gradient Method  37 

9. Gradient Method  37 

10. Linear Least Squares Fit  38 

11. Gauss-Newton Fit      38 

12. Affine Invariant Chord Method  39 

13. Affine Invariant Angle Method  39 

14. Failure to Maintain Order  40 

15. Affine Invariant Angle Maintains Order  40 

16. Data With Added Noise  41 

17. Fitting Data With Added Noise  41 

18. Curve With Too Much Freedom  42 

19. Real World Data and gvadl.m  43 

20. Data Set One and grad7.m  44 

21. Data Set One and gradö.m  44 

22. Data Set Two and gradl.m      45 

23. Data Set Two and gradö.m      45 

24. Data Set Three and grad7.m      46 

25. Data Set Three and grad5.m      46 

IX 





LIST OF TABLES 

I. Computer Time Used       36 

II. General Comparison of Functions       36 

XI 



XI1 



ACKNOWLEDGMENTS 

This paper is the result of the ideas and guidance of Carlos Borges. I greatly 

appreciate the detailed review by Richard Franke along with his help and advice, and 

I appreciate the help from Sam Buttrey in getting over several hurdles. A big thanks 

goes to David Canright for his thesis style for L^TgX. 

Most importantly, I thank God for the learning ability I have and for leading 

me to this school. 

xni 



XIV 



I.        INTRODUCTION 

Notation used in this paper is as follows: matrices are slanted upper case 

letters, vectors are lower case bold letters, and scalars are slanted lower case letters. 

Also, vectors are column arrays unless otherwise indicated. For ease of discussion, a 

point and a vector are equivalent. 

A.     BERNSTEIN POLYNOMIALS 

Bernstein polynomials have the following general form: 

where t  6   [a, b]. 

We will only consider the case where a = 0 and 6=1. Equation (1.1) now 

takes on the form; 

B?(t)= ("W(l-<)n"S t = 0,l,...,n (1.2) 

which is a scalar for a particular t G [0,1]. From Equation (1.2) note that i?o(*) = 1- 

Also, we define Bf(t) - 0 if j < 0 or j > n. 

The set of Bernstein polynomials of degree n form a basis for Vn, the space of 

polynomials of degree n or less. The linear transformation from power basis coeffi- 

cients to Bernstein basis coefficients is explained in detail in [Ref. 1]. For a complete 

discussion on the properties of Bernstein polynomials see [Ref. 2]. 

B.     BEZIER CURVES 

Bezier curves are named after P. Bezier and are used extensively in computer 

aided geometric design. Before presenting the general form for a degree n Bezier 

curve, let us look at an example. 

Consider two points on the x-axis given by b0 = (2,0) and b1 = (4,0), and 

suppose that we want to describe a degree 1 curve between these two points.   A 
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parametric representation of this curve is; 

x(t) = 2 + 2t, y{t) = 0,   <€ [0,1] 

Note that since B}(t) for i = 0,1 is a basis for "Pi, we can write x(t) and y(t) in terms 

of Bernstein polynomials. Using matrices, we have; 

[x(t),y{t)]   =   [2 + 2*, 0] 

=   [2(1 - t) + 4t, 0(1 - t) + 0t] 

2   0 
Bl(t)   Bl(t) 

Bat)   Bl(t) 

4   0 

bT 

hi 

Jo (1.3) 

The parametric representation of a curve in the form of Equation (1.3) is of central 

importance in this paper.  Also, all examples in this paper are in 2-dimensions, but 

it is understood that this representation holds for higher dimensional space as well. 

In general, a Bezier curve of degree n, denoted bß(i), can be written as 

(bo(*))T = 5>r(«)bf 
i=o 

=   BZ(t)bT
0+B?(t)bJ + --- + B:(tK 

.(1.4) 

where bp(^) is a point on the curve for a particular t 6 [0,1]. The points b,-, i = 0,..., n 

are called control points. We see that a point on a Bezier curve is a weighted sum of 

control points, where the weights are Bernstein polynomials evaluated at a particular 

value of t. 

Let us look at an example of a cubic Bezier curve before discussing properties 

of these curves. Figure (1) on page 9 shows four control points and a curve starting 

at control point b0 and ending at control point b3. Note that we need n + 1 control 

points for a degree n curve. Also note that, in this example, the curve does not pass 

through bi or b2. 



Figure (2) on page 9 shows how the curve changes when the positions of control 

points h>! and b2 are interchanged. This is why Bezier curves are so widely used in 

computed aided geometric design; by changing the position of one or more control 

points the user can easily change the shape of the curve. 

C.     PROPERTIES OF BEZIER CURVES 

The following properties are basic to understanding Bezier curves and provide 

the necessary background for discussion later in this paper. 

1. Endpoint Interpolation 

Bezier curves interpolate between the end control points bo and bn. We saw 

in Figure (1) that the Bezier curve had b0 as one endpoint and b3 as the other. This 

is always the case and is shown using Equation (1.4) with t = 0 and t = 1. Because 

B?(0) = 0 except for i = 0, and B"(1) = 0 except for i = n, we have; 

(^(o))T = Eßf(o)bf = b^ 

and 

(bS(l)f = ±B?(l)hJ = bl 
i=0 

Though Bezier curves are guaranteed to begin at bo and end at bn, it is not guaranteed 

that they pass through any of the intermediate control points bi, b2,..., bn_i. 

2. Affine Invariance 

An affine transformation is of the form $(p(£)) = Ap(t) + c. Examples of 

affine transformations are scaling, rotation, and reflection. The equation describing 

Bezier curves is affine invariant in that given 

i=0 

under the transformation $ we will have 

*((W))T) = Ea?(t)*(b?) 
i=0 



In other words, given an affine transformation $, performing the following two steps 

produces equivalent results. 

1. Evaluate Equation (1.4) for a given set of control points and a value t to 
obtain (b£(*))T, and then apply $ to (b£(*))T. 

2. Apply $ to each of the control points and then evaluate Equation (1.4) 
using the transformed control points and the same value t as in 1. 

For example, suppose we want to rotate a given Bezier curve. We can either transform 

the relatively few control points or transform all the points of the curve. In general, 

transforming the control points and re-plotting the curve costs much less. Other 

properties of the Bezier curve are discussed in detail in [Ref. 2]. 

D.     MATRIX REPRESENTATION OF BEZIER CURVES 

In this section we represent Bezier curves in linear algebra form. This paper 

makes extensive use of this representation for Bezier curves to simplify their manip- 

ulation. 

1.      The Bernstein Matrix 

Equation (1.4) showed that a Bezier curve is described by 

(boWf = i>r(')bf,   *€[0,1] 
i=0 

This is equivalent to the linear algebra form: 

(bn
0(t))

T = [BS(t) ... Bn
n(t)} 

bo 

K 
= B(t)P (1.5) 

where we will refer to B(t) as a Bernstein matrix. A Bernstein matrix is a generalized 

Vandermonde matrix which, for a vector t = [ti,t2, ■ ■., tm]T, U € [0,1] and a given 



degree n, has the form; 

B(t) = 
BSfo)    ß?(ta)    •••    B5{t2) 

Bo(tm)     Bi(tm)     ■ ■ •     Bn(tm) 

Therefore, we see that for t € Tlm and a given degree n we have B(t) € 7?.mx("+1). 

In 2-dimension, the matrix P contains the x and y coordinates of the control 

points and has the following form: 

xo   yo 

•En     Vn 

For example, if instead of evaluating Equation (1.5) for a particular t we are 

interested in getting m = 3 points on a Bezier curve of degree n = 3 we would 

evaluate; 

(bJ(t))T = B(t)P 

where B(t) 6 ft3*4 and P € ft4x2.  Therefore, (b£(t))T € ft3x2 and is a matrix of 

points on the curve. 

As another example, let n — 3 and only consider a particular t. We will expand 

the elements of B(t) to further demonstrate the inherent linear algebra form of Bezier 

curve representation. Note that we can write 

B(tf = 

B3
0(t) ' -t3 + St2 - 3t + 1 

B3(t) 3i3 - 6t2 + 3t 

Bi(t) -St3 + St2 

BZ(t) t3 



and, therefore, we see that 

1 3 

3 -6 

3 3 

1 0 

3    1 >" 

3    0 t2 

0    0 t 

0    0 1 

B(tf 

where T G 7£lx4 for the array. Equivalently, we have; 

B(t) = TM 

MTTT 

(1.6) 

If we now consider a vector t € 1lm, then instead of T G 7£lx4 we would have 

T € 7£mx4 . For a given matrix of control points we get the following equation which 

describes m points on a degree 3 Bezier curve. 

T   _ 

-1 3 
*3 

ti 1 
3 

-3 

-6 

3 
t3 t2 

m im 1 
1 0 

-3 1 xo   2/o 

3 0 zi    2/i 

0 0 X2     2/2 

0 0 . Xz y* . 

(bo(t)) 

=   TMP 

=   B(t)P 

2.      Slope of a Bezier Curve 

Now that we have an equation for a degree n Bezier curve, we will derive the 

equation for the first derivative at a particular t, which in turn gives the slope at a 

point on the curve. Since Bezier curves are parametric in i, we want to solve 

=   ±jtB?{t)bT 
t=o ai 

From [Ref. 2: page 46] we have 

d 
dt 

B»{t) = nB-\t)-nBr\t) 



and, therefore, 

jAK(t))T   =   tinB^-nBrjbf 

(n[0 - BS-1®])^ + HBr\t) - BT'mbT + 

+(n[B:zl(t) - 0])bj 

After combining like terms of n Bf 1 (t) we have, finally 

jt(K(t)f   =   nBr1(t)(^-bT
0) + nBr1(t)(bT

2-bT
1) + ... 

+nB:zl(t)(bT
n-bT

n_1) 
n-l 

(1.7) 
i=0 

where A is the forward difference operator. 

Equation (1.7) lends itself to representation in linear algebra form as follows; 

bT
0 

dt (b
n

0(t)f = «[rwrw- stilt) A 

=   nB(t)AP 

where A € 7lnx(n+1) and has the form 

-110      0 

0-110 

0 

0 

0           0-1     1 

For example, consider the case where n = 3. Since we have that 

W))T = 
Blit) 

B2S) 
B${t) 

t2-2t + l 

-2t2 + 2t 

t2 

1 -2    1 e 
-2 2    0 t 

1 0    0 i 



we can write 

dt 
(H(t))T = 3 V   t   1 

1 

-2 

1 

-2 1 

2 0 

0    0 

-1 

0 

0 

1 

-1 

0 

0 0 

1 0 

-1   1 

hT0 

b[ 
hi 
hi 

We can obtain the first derivative at m points along a Bezier curve by evaluating 

Equation (1.7) for a given vector t € 7£m and £, G [0,1]. For example, when n = 3 

we have; 

^(bo(t)f = 3 

t2 
h   l 

l t2   t2 

r   t     1 

1   -2    1 

-2      2    0 

1      0    0 

-110 0 

0-1 10 

0      0-11 

[bfl 
bf 

V 
[bjj 

There are similar equations for higher derivatives, for these see [Ref. 2]. 



0 12 3 4 5 

Figure 1. Cubic Bezier Curve with Control Points 

3 4 5 6 

Figure 2. Cubic Bezier Curve with Reordered Control Points 
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II.        PROBLEM STATEMENT 

This chapter presents the problem of fitting a given ordered set of data with 

a Bezier curve in the total least squares sense. We will see how the linear algebra 

representation of Bezier curves lends itself to solving this problem. We refer to the 

point along a Bezier curve determined by a particular node i; as the point Ti. So, 

from Equation (1.4) we have 

Ti = K(ti) 

A.     PROBLEM STATEMENT 

The problem to solve is stated as follows: given an ordered set of m data 

points d;, i = 1,2,..., rn find a set of control points b,, i = 0,1,..., n, where n is 

the order of the Bezier curve, and a vector t of nodes, 0 < ti < t2 < • • • < tm < 1 

that minimize 

\\B{t)P - D\\F (II.l) 

where the matrix D contains the data points. Though neither the matrix P* nor 

the vector t* that minimize Equation (II.l) are unique, and though in practice the 

resulting value of Equation (II.l) is determined in part by the stopping criteria of 

the algorithm, for ease of reference we will equate minimizing Equation (II.l) with 

determining {P*,t*}. Also, we will only consider the case where n < m since for 

n > m we could produce a curve which passes through all the data points and this is 

uninteresting in the context of this paper. 

Notice that we are minimizing the Frobenius norm of the residual in Equa- 

tion (II.l). For A e HmXn, this norm is given by 

i 
(77i     n \ 2 

i=l 3 = 1 

11 



Consider the case m = 3 and n = 1. The residual in Equation (II. 1) is then 

BKh) B\{h) 

BKh) B\{h) 

BKh)   Bl(t3) 
hi 

df 

However, minimizing the Frobenius norm is the same as minimizing the 2 norm of 

BKh) BKh) 

BKh) Bl(t2) 

BKh) BKh) 

0 0 

0 0 

0 0 

0 

0 

0 

0 

0 

0 

d\,x 

bo,x d2,x 

bi,x dz,x 

&o,y d\,y 

. h^v . 
d2,y 

(II.2) 
BKh) BKh) 

BKh) Bl(U) 

BKh)   BKh) 

where, for example, b0,y denotes the y component of the vector b0.   We will call 

Equation (II.2) the uncoupled form of the residual in Equation (II.1). 

B.     THE SEPARABLE LEAST SQUARES PROBLEM 

Minimizing Equation (II. 1) is a nonlinear least squares problem because it is 

nonlinear in t. Minimizing Equation (II. 1) is also separable because we can separate 

out from the original nonlinear problem a linear least squares parametric functional 

problem for the matrix P. In particular, for a given vector t, the minimizing matrix 

P of the residual in Equation (II. 1) satisfies 

P = B+(t)D 

where B+(t) is the Moore-Penrose generalized inverse, or pseudo-inverse, of B(t). 

Note, since we have that P = B+(t)D for a given t that we are able to separate 

the unknown matrix P from Equation (II.l). Therefore, the optimal vector t is found 

by minimizing the variable projection functional 

|| B(t)B+(t)D -D\\F 

12 



Further, consider the nonlinear least squares problem 

B(t)P = 

Bi(U)   Bl{h)   BUh) b0 dj 

bf   =    ; (II.3) 

Bl{U)   Bl{U)   Bi(U) 

where the matrix P € TZ4x2 and the vector t £ 1Z4 are unknown and n = 2. Note that 

if the vector t is given, then our least squares problem becomes linear. If, instead, we 

are given a matrix P, then Equation (II.3) is a nonlinear least squares problem for 

the vector t only. 

C.     SHORTEST DISTANCE TO A CURVE 

Given an ordered set of data, minimizing Equation (II. 1) determines the points 

T which are nearest to their associated data points for a particular control point 

matrix P. We will refer to these particular points as the nearest points. For example, 

let TijX and r^y represent the x and y values of the point r,- for a particular matrix P. 

We saw that the nodes and control points that minimize Equation (II.1) also minimize 

the 2 norm of Equation (II.2). This is equivalent to minimizing the objective function; 

{T\,X - dljX)  -\ + (rmiX - dmiX)  + (r1>y - dljV)  H h (rmj2/ - dm>y)        (II.4) 

For a particular matrix P, a change in the node i; only affects the point 

T;. Therefore, Equation (II.4) can be broken down into m independent objective 

functions. For example, the node ii only affects the following terms of Equation (II.4) 

(rhx - dhx)2 + (rhy - dhyf (II.5) 

Minimizing Equation (II.5) is equivalent to determining the nearest point for data 

point (dijX , di7y). Proceeding like this for each node, we can determine each nearest 

point and minimize Equation (II. 1) for a particular matrix P. So we see that with a 

given matrix P the nonlinear least squares problem for the vector t is equivalent to 

solving the nearest point problem. 

13 



J-T J-T 
dti1'*   dt1

Tl<y 
= 0 (II.6) 

1.      A Necessary Condition 

Treating t\ as a variable, Equation (II.5) is minimized by finding the stationary 

point of 

g(h) = (rM - dhx)2 + (rlty - dlty)
2 

The stationary point is such that 

—g(h) = 2{T1>X - dhx)—Thx + 2(rhy - dhy)—rUy = 0 

In matrix notation this becomes 

T\,x - di,x 

T\,y -  dl,y 

So, we see that the point r,- which minimizes Equation (II.5) is perpendicular to 

the tangent vector at that same point. In general, this is a necessary condition for 

minimizing Equation (II.5). 

Figure (3) on page 18 shows a given ordered set of data and the degree 2 

Bezier curve produced from a given set of control points. Figure (4) on page 18 shows 

the points r gotten by solving the nonlinear least squares problem for the vector t. 

Notice that each r,- satisfies the necessary condition except for the point r4. Because 

our parameter values are constrained within [0,1], t\ = 1 is the best we can do. 

Now, consider again the problem of minimizing Equation (II.4) except we are 

given an initial set of nodes. Figure (5) on page 19 shows the same data set as used 

in Figure (3) and the node associated with each data point. The nodes were chosen 

uniformly spaced on the interval [0,1] and are given by 

0 

.33 

.67 

1 

The degree of the Bezier curve we want to fit to the data is again two. After solving 

the linear least squares parameter functional problem for the control points, we can 

t = 

14 



plot the Bezier curve. Figure (6) on page 19 shows the resulting Bezier curve along 

with the points r. Note that point r3 does not minimize Equation (II.5) or satisfy the 

necessary condition. What the least squares solution for the control points produced 

was the best answer possible given the initial set of nodes and desired degree of the 

Bezier curve. 

D.     ORDERED DATA 

In the problem statement at the beginning of the chapter, we are given an 

ordered set of m data points. We will order the data with respect to t because Bezier 

curves are parametric in t. So, tj > U implies that the data point associated with tj 

is ordered after the data point associated with t{. Therefore, the problem of ordering 

a set of data with respect to t becomes one of determining an initial set of nodes. 

Consider a set of m data points and that we want to determine a set of control 

points which will produce an approximating Bezier curve. We need an initial set of 

nodes in order to solve the least squares problem for the matrix P, and we want the 

initial set of points r in the neighborhood of the nearest points. The reason for this 

last condition on the initial set of points r is explained in Chapter III. Since the 

elements of t must be contained in [0,1], we might use either the uniform method 

* ~ 1     ■     , U = -, i = l,...,m 
m — 1 

or the chord length method 

+   - i       _L        11 d' ~ d'-l  h ■ _ 9  o m H — H-\ T -=^    fr-]       j       [j-, « — z, o,..., m 
/U=2 II di_ d;-i lb 

where we define t\ = 0. 

The main problem with the uniform method is that it does not take into 

account nonuniform distribution of the data. The main problem with the chord 

length method is that it is not invariant under all affine transformations [Ref. 3]. For 

example, consider a set of data and that the user wants to scale one of the components 

by a constant while using the same initial set of nodes in the new scaling. Because 

15 



the chord length method is not invariant under scaling, the resulting Bezier curves 

would not have the same relationship to the data. 

The affine invariant chord method as described in [Ref. 3] takes into account 

nonuniform spacing of data and is based on the following metric 

0 1 
| A+i - Di\D   =   [xi+y - Xi, yi+1 - y,-] A [xi+i - xt-, yi+i - y,-] 

[xi+i - Xi,yi+1 -y,-] 
f£ 
gyy 

"yy 
Xi+1 — xi 

Vi+1 ~ Vi 

(II.7) 

where D,- and D,+i are successive data points, ay is the sample variance in the y 

components of the entire data set, <J\ is the sample variance in the x components of 

the entire data set, a\y is the sample covariance in the x and y components of the 

entire data set, and 

9   = 
i-i 

2      2/ \z 
=   axaY - {(TXY) 

The matrix A is the inverse of the covariance matrix used in the bivariate normal 

distribution function. 

The term metric means a way to measure distance. Normally, we think of the 

Euclidean metric 

|| A+i - Di ||2    =    [xi+1 - Xi, y,-+i - yt] / [xi+1 - Xi, yi+1 - y{] 

=   (xi+i - Xi)2 + (yi+1 - yt)
2 

Note that in the case of the Euclidean metric A = I. The reason is that the Euclidean 

metric assumes no scaling or correlation between the data points. 

An improvement on the affine invariant chord method is the affine invariant 

angle method. This method combines the metric in Equation (II.7) and the bending 

of the data. Let three noncollinear data points be the vertices of a triangle. The 

bending of the data is how much of a turn is made when going from one side of the 
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triangle to another at a vertex. For details of the construction of this method see 

[Ref. 4]. The primary algorithm of this paper to solve the problem stated at the 

beginning of the chapter uses the affine invariant angle method to obtain the initial 

set of nodes. 
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III.        BASIC ALGORITHM 

This chapter presents the basic algorithm used in this paper to determine 

{P*,t*} and also presents three methods used to solve the nearest point problem. 

Finally, the primary algorithm to determine {P*,t*} is presented. 

A.     BASIC ALGORITHM 

The basic algorithm used in this paper to determine {P*,t*} makes use of 

the separability of minimizing Equation (II. 1) and follows an alternating projection 

approach. The basic steps are as follows: 

1. Determine the initial set of nodes. 

2. Solve the linear least squares parametric functional problem for the control 
points. 

3. Solve the nonlinear least squares problem for the nearest points. 

4. Repeat steps two and three until the algorithm reaches the stopping criteria. 

The difference between the three MATLAB functions used in researching this paper 

is the method each uses to accomplish step three of the basic algorithm. 

1.      Approaching {P*,t*} 

Let us look at the idea behind the basic algorithm as a solution technique for 

determining {P*,t*}. Given an ordered set of data and an initial vector of nodes ti, 

after solving the least squares problem for the matrix Pi we would have 

|| B(t1)P1 - D \\F= ax (ULI) 

Note that, in general, the Bezier curve will not pass exactly through all the data 

points. 

As we saw in Figure (6) on page 19 the initial set of points r will most likely 

not be the nearest points, so some improvement to ti is possible. Solving the nearest 
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point problem for t2 gives 

|| B(t2)P1 - D \\F= a2 < a, 

Now we have an improved set of nodes but we have not improved the initial 

Bezier curve as described by Pi. If there is a better fitting Bezier curve using the 

vector of nodes t2 then solving the least squares problem for P2 will result in 

|| P(t2)P2 - D \\F= a3 < a2 

In this manner, we approach {P*,t*}. The above argument is not a proof of 

convergence. 

B.     THE NEARESTPOINT METHOD 

Given a matrix P, the NearestPoint method is a code found in [Ref. 5] which 

determines the nearest point associated with each data point d, by numerically solving 

for the roots of 

[B(U)P - df] • ^B(U)P = 0 

For example, for a degree 3 Bezier curve, the left-hand side of the above equation 

is a degree 5 polynomial. A subroutine called FindRoots returns the real roots of 

the resulting polynomial which, after ensuring they are within the interval [0, 1], are 

used to determine points on the curve. The distance from the data point d, to each 

determined point on the curve along with the distance from the data point to each 

endpoint of the curve is compared, and the shortest distance indicates the parameter 

value of the nearest point. Because this is a numerical method, there is some degree 

of error in the solution. 

There are two notable differences between this method and the two other 

methods used to accomplish step three of the basic algorithm. First, whereas the 

NearestPoint code considers each nearest point separately, the linear algebra repre- 

sentation of Bezier curves is used by the two other methods to consider all the nearest 
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points at once. Second, note again that the basic algorithm is an alternating pro- 

jection approach where a new curve is produced with each new matrix P. In other 

words, the problem changes each time step two of the basic algorithm is performed. 

So, when accomplishing step three of the basic algorithm the two other methods do 

not continue to iterate to reach a numerical solution to the nearest point problem. 

Instead, the two other methods only move one step in the direction of the nearest 

points. 

C.     THE GRADIENT METHOD 

The gradient method resulted from seeing the nonlinear least squares problem 

for the nearest points as an optimization problem requiring a gradient search tech- 

nique [Ref. 6: 220]. From an initial set of nodes, we want to change each value so 

that the points r approach the nearest points. However, instead of holding to the 

formal gradient search method we proceed as follows. 

Recall that in Chapter II we showed that the nearest point on a Bezier curve 

from a given data point d, will minimize 

T, - di (III.2) 

and satisfy the necessary condition 

d d 
dtiTl<*     dtiTl>y 

n,y - di>y 

= 0 (III.3) 

Therefore, if we have an initial point r,- in the neighborhood of the nearest point, 

then by finding the point V,- which satisfies Equation (III.3) we find the nearest point. 

Recall that the cosine of the angle between two vectors a and b is 

cosö = -—,,,, .   ,, 

Let a = -jtTi and b = r, — d;. Given a point r,-, which is in the neighborhood of the 

nearest point, we want to change the node £,• so that a • b approaches zero. Note that 
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the closer we get to satisfying Equation (III.3) the smaller the magnitude of a • b. 

Therefore, we use a-b to not only tell us what direction to move the node £,• but also, 

it was initially thought, to give sufficient indication of how far to move. 

Consider the following example. Figure (7) on page 30 shows four ordered 

data points and a Bezier curve fitted to the data points. Since 6 < | we have that 

a-b > 0. This tells us to move point T3 to the left, which corresponds to decreasing 

the value t3. We change t3 with 

{3 = h - At3 (III.4) 

where At3 is a scalar multiple of a • b. This iterative process is likened to bracketing 

the nearest point. 

1.      Results of the Gradient Method 

The first problem with the method as presented is that Equation (III.3) is not 

a sufficient condition for minimizing Equation (III.2). Starting out with an initial set 

of points T in the neighborhood of the nearest points may overcome this problem in 

most cases, but it would still require an added check in any algorithm. 

Secondly, when we fit higher degree Bezier curves to data the nearest point 

problem becomes nonlinear and in these cases this method as presented is insufficient 

to consistently move the points r closer to the nearest points. The problem of de- 

termining the correct step size to take in the direction of the gradient requires more 

effort than relying on a user defined value of some scalar multiplying a • b. Instead of 

attempting a possibly involved search technique to overcome this obstacle, a better 

solution technique for the nearest points was sought. 

D.     THE GAUSS-NEWTON METHOD 

For a given matrix P, the Gauss-Newton method is a better way to solve the 

nonlinear least squares problem for the nearest points. 
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1.      Review of Newton's Method 

Under appropriate conditions on the function / : t —» /(£), Newton's method is 

known to converge quadratically for initial estimates in the neighborhood of the roots. 

The idea behind Newton's method is that near a root we can model the behavior of 

the function with the following: 

Mc(t) = f{te) + f'(te)(t-te) (III.5) 

where Mc(t) is a linear approximation of the function / and tc is an estimate to a root 

of /. The value t such that Mc(t) = 0 is an improved approximation. This improved 

approximation is then used as the next estimate. So, we see that Newton's method 

is iterative with each iteration, or step, bringing the estimate closer to a root of /. 

This is also the idea behind the Gauss-Newton method for solving the nonlinear least 

squares problem. 

2.      Solving the Nonlinear Least Squares Problem 

For a detailed discussion on the Gauss-Newton method, see [Ref.   7].   Let 

control point matrix P € Hmx2 be known and that we want to solve the following: 

B(t)P -D = 0 (III.6) 

where 0 is an mx2 matrix of zeros.  To change Equation (III.6) to a form solvable 

using the Gauss-Newton method, we need to uncouple the left hand side as 

B$(h) B?(h)    ■ •    Bl{h) 0 0 0 

BUh) BUh)   ■ ■■    B«{t2) 0 0 0 

Bo(tm) Bi(tm)   • ■•   B£{tm) 0 0 0 

0 0 0 B%{h) Wl) • ••  K(h) 
0 0 0 BS(h) BUh)    ■ ■■    B%{t2) 

0 0 0 Bo(tm) B?{tm)    ■ ••   B»(tm) 

bo,x dl,x 

h,x d2,x 

"n,x ""m,x 

bo,y dl,y 

Ky d2,y 

"n,y U"m,y 
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Let the above expression be the residual R(t). We see that R(t) is a system of 2m 

polynomials and, therefore, minimizing R(t) is in some sense similar to root solving. 

The Gauss-Newton method proceeds as follows. As in Newton's method, we 

first model the behavior of R(t) with 

' d 
Mc(t) = R{te) + 

dt fi(tc) (t - tc) 

which is analogous to Equation (III.5). We will use the term Jacobian to describe the 

derivative of a vector function. Therefore, our Jacobian matrix is 

■/(to) = 

dRjh, e), 
dti 

dRjtm ch 
*i 

<*R(ti, ch 
dti 

dR{tm ch 
dU 

dRjh, c)x 
dtm 

dRjtm e). 
dtm 

dR(h} Jv 
dtm 

dRjtm c)y 
dtm 

Note that 
dR{tj,c)i 0 for i T^ j 

which also holds for the y components.    Therefore, our Jacobian matrix has the 

following special form 

./(tc) = 

A, 0 0 

0 '■• 0 0 

0 0 ■•. 0 

0 

dRjh.ch 
dti 0 

0 dRjtm,c)x 
dtm 

0 

0 • . 0 0 

0 0 0 

0 0 dRjtm,c)y 
dtm 

(III.7) 
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To get an improved estimate we want to solve for t so that 

Afc(t)   =   £(tc) + J(tc)(t-tc) 

=   0 

or, equivalently 

J(tc)t = J(tc)tc - Ä(te) (III.8) 

where the right hand side is a known vector in 7l2m. Note that Equation (III.8) is a 

linear least squares problem for the vector t. Formally, we proceed by forming the 

normal equations 

JT{tc) J(tc)t = JT(tc) J(tc)tc - JT{tc)R{tc) 

where JT(tc)J(tc) is a square matrix and invertible. Though one could argue for a 

more numerically stable method to solve this least squares problem, in our particular 

case the normal equations lead to a simple expression for the change to make in 

our nodes and to results which are favorable when using the alternating projection 

approach. So, after multiplying both sides by (</T(tc) J(tc)J     we have 

t = tc - (j
T(tc)J(tc))

_1 JT(tc)R(tc) 

Therefore, our improved estimate tc is given by 

tc   =   tc-(jT(tc)J(tc))
_1Jr(tc)ß(tc) (III.9) 

=   tc-A(tc) 

Our matrix J(tc) from Equation (III.7) has a special form so that the right 

hand side of Equation (III.9) simplifies. First, note that JT(tc) J(tc) is a diagonal 

matrix with elements on the main diagonal of the form 

(^)'+(^)'«..--W. a-») 
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Therefore, (Jr(tc)J(tc))
_1 is another diagonal matrix with elements which are the 

reciprocals of those described by Equation (III. 10). The term JT(tc)R(tc) is a vector 

in lZm with elements of the form 

dR(U,c)x .     >  dR(tiiC)y 

-^r+m'c)y~d7r R{ti,c)x TT h R(ti,c)y (III.ll) 

Combining the results from Equation (III.10) and Equation (III.ll), we have 

the following expression for each element of A(tc), 

-i 
'dR{ti)xV ,  fdRit^yV]   ~[ dR{thC)x , dR(tite)y 

dt{     I       V    dt{ 
R{U,c)x -^  + R(ti,e)y        dt (111.12) 

Equation (III. 12) is easy to program into MATLAB and very inexpensive. 

Note that tc is one step in the direction of the nodes which will minimize R(t). That 

is, tc is one step in the direction of the nearest points. 

The effectiveness of the Gauss-Newton method depends in part on our initial 

points T being in the neighborhood of the nearest points. Just like the Newton 

method, a poor initial estimate could cause the method to fail. Therefore, we use the 

affine invariant angle method in our primary solution algorithm to get the initial set 

of nodes. 

3.      Stopping Criteria 
Because relative error is a more meaningful indicator of change for larger 

values, the stopping criteria used in this paper to determine {P*,t*} is determined 

by the value of || R(tj+i, Pj+i) ||2. When the 2 norm of this residual is greater than 

one, the stopping criteria is the relative error. When the 2 norm of the residual is 

less than or equal to one, the stopping criteria is the absolute error expressed as 

II Ä(tj+1,Pj+1) - R(tj,Pj) ||2 

where 

R(tj,Pj) = B(tj)Pj-D 
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is the residual of iteration j.  Note that the residual depends on the nodes and the 

control points.   When either measure of error gets below a user defined value, the 

function stops improving the fit of the curve. 

We could also use the absolute error 

II tj+l _ tj II2 

However, a small change in our estimates does not necessarily mean we are close to 

the nearest points. It is the curve we are fitting to the data and not the vector t, so 

it is best to use the curve itself to indicate when we are close enough to determining 

{P*,t*}. 

E.     PRIMARY ALGORITHM 
The following is the primary algorithm this paper uses to determine {P*,t*}. 

It is presented to aid in the understanding of the MATLAB function grad7.m. The 

MATLAB functions included below are provided in the Appendix. 

Step one. The user sends grail.m the data matrix D € 7£mx2 in the sequence 

he wants the data ordered, the degree Bezier curve to fit to the data, and an exponent 

value which determines the stopping criteria. The function aff-angle.rn is called as 

a subroutine and returns the initial set of nodes ti using the affine invariant angle 

method. The function mxbern2.m is called as a subroutine and returns the Bernstein 

matrix jB(ti). Then, the linear least squares parametric functional problem B(ti)Pi = 

D is solved for the matrix Pi of control points. Finally, the residual P(ti,Pi) is 

calculated. 

Step two. Begin the while loop. The stopping criteria is checked, and, if met, 

we exit the while loop. Otherwise, the derivative of P(t{, P;), which is the derivative 

of B(ti)Pi, is determined as presented in Chapter I again using mxbern2.m. We now 

use Equation (III.12) to obtain the improved estimate, where tt+1 = tj. Thus, we 

take only one step in the direction of the nearest points. Once we have the improved 

estimate we ensure its elements are within the interval [0,1]. 
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Step three. Solve the least squares problem for the matrix P,+i. The residual 

i?(t,-+i, Pi+\) is calculated. Return to step two. End of the while loop. 

0 12 3 4 5 

Figure 7. Moving Nodes with Gradient Method 
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IV. METHOD EXAMPLES 

In this chapter we will consider graphic examples of the different MATLAB 

functions used while researching this paper to determine {P*,t*}. The difference 

between the functions is how each handles the nonlinear least squares problem for 

the nearest points. The MATLAB functions examined in this chapter are: 

1. gradS.m. Uses the gradient method. 

2. gradö.m. Uses the NearestPoint method. 

3. grad7.m. Uses the Gauss-Newton method. 

A.     GRAPHICAL COMPARISONS 

This section examines graphical examples of the three MATLAB functions 

above and also the graphical difference between the two affine invariant node spacing 

methods presented in Chapter II. 

1.      Gradient Method and Approaching {P*,t*} 

As stated in Chapter III, the gradient method as developed for this paper was 

insufficient to consistently move the points r closer to the nearest points. Figure (8) 

and Figure (9) on page 37 show that the algorithm reaches a stage where the points 

T cycle back and forth along the curve.  The two curves are similar, but we are no 

longer approaching a better fit. By the third iteration the control points cycle back 

and forth between 

0.8297   0.8911 

Pi =    6.0947 9.5031 

5.0183 1.0117 

and 

0.7802 0.7811 

5.9106 9.6305 

4.9913 0.9784 
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The nodes cycle back and forth between 

ti = 

0.0000 

0.1626 

0.3566 

1.0000 

and 

t2 = 

0.0413 

0.1011 

0.4272 

1.0000 

Though either of the curves seem like a pretty good fit, an algorithm that approaches 

{P*,t*} is what any user expects and, therefore, this method is unacceptable. 

2. Total Least Squares Versus Linear Least Squares 

We might ask what the difference is between a fitted curve produced by tra- 

ditional linear least squares and a fitted curve produced by the total least squares 

function gradl.m. Figure (10) and Figure (11) on page 38 are both cubic curves fitted 

to the same data set but using these two different approaches. 

We notice that each curve makes a different assumption about the behavior 

of the data about the point di. Most important to the user is that the linear least 

squares fit is only assuming error in the y values, while gradl.m is minimizing error 

in the x and the y values. This is more practical since the input, or the x values, will 

also often contain some degree of error. 

3. Effect of the Initial Set of Nodes 

We will now see how the initial set of nodes may determine the fit of the ap- 

proximating curve. Figure (12) and Figure (13) on page 39 show the Bezier curves 

returned by gradl.m using two different affine invariant node spacing methods. Fig- 

ure (12) reflects the affine invariant chord method while Figure (13) reflects the affine 

invariant angle method. Both figures show the nodes associated with the data points. 
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Because the affine invariant angle method takes into account the bending of 

the data, the approximating curve fits more naturally. This is opposed to what we 

have in Figure (12) where it looks like the curve is alternately stretched and slack. 

4. Failure to Maintain Ordering of Data 

Figure (14) and Figure (15) on page 40 are two approximating curves for the 

same set of data. Both curves were generated by gradl.m with stopping criteria of 

10-1. Figure (14) is the result of using the affine invariant chord method to obtain 

the initial set of nodes and Figure (15) is the result of using the affine invariant angle 

method. 

In the same figures, notice the difference in interpolating about the point d4. 

When the order of the data is not maintained the user gets an entirely different 

picture of the trend in the data. In general, whether the methods presented in this 

paper maintain the ordering of data is dependent on the initial set of nodes and the 

order of the curve the user fits to the data. For example, using the same data set as 

in Figure (15) and a degree 2 curve, the function grad7.m, using the affine invariant 

angle method, will fail to maintain the order of the data about d4. 

Consider the function grad5.m. Because the NearestPoint method is free to 

look anywhere along the curve to solve the nearest point problem, gradö.m more often 

fails to maintain the ordering of data. This is opposed to the Gauss-Newton method 

which assumes that each initial point r,- is in the neighborhood of the nearest point. 

5. Gauss-Newton Method and Data with Noise 

Consider a set of data that lies on a cubic curve and that the data is then 

transmitted to a receiver. In the transmission of the data a small amount of noise 

gets added. How well does grail.m fit the data with the noise added, and how much 

like the original curve is the resulting fitted curve? Note, in the following examples 

all random sets of numbers were generated using the MATLAB rand command which 

returns a uniformly distributed set of numbers on the interval [0, 1]. Figure (16) on 
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page 41 shows a random sampling of 10 data points from a cubic Bezier curve which 

was generated from a random matrix P. Noise was added to each data point by 

generating a random set of points around the unit circle and scaling each point by 

.012. Figure (17) on the same page is the curve fitted by grad7.m. 

This example shows one of the limitations of grail.m even when using an 

effective initial node spacing method: gradl.m views the cluster of data points in the 

upper right hand side of the plot as just another set of points to fit with a curve. This 

is why we get the sharp bend within the cluster. The user who wants to avoid this 

type of behavior could, for example, substitute one data point for the entire cluster 

or use a weighted least squares approach to fitting the data. 

Figure (18) on page 42 is the same set of data but now fitted with a degree 5 

curve. This plot reflects what occurs when the fitted curve has too much freedom. A 

degree 5 curve has more freedom than needed for the data, and gradl.m makes use 

of all the freedom available in order to improve the fit. 

6.      Gauss-Newton and Real World Data 

This section briefly presents a real world problem where the function gradl.m 

could be used. The data for this section comes from recording positions along a road 

leading to Fort Ord, California with a Global Positioning System (GPS) receiver. 

Many similar data sets are gathered using several different receivers along the same 

route and curves are then fitted to the data. The fitted curves are used to determine 

the bias present based on the particular satellites being used by the receivers. Imagine 

the road in the x-y plane. There will be error in both the x and y coordinates of each 

location in the data set, so we will want to fit a curve to the data in the total least 

squares sense. Figure (19) on page 43 is the data and the degree 3 curve fitted to the 

data using a stopping criteria of 10-4. 
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B. GAUSS-NEWTON VERSUS NEARESTPOINT 

We now look specifically at the performance of gradl.m and gradö.m. We will 

consider both graphical results and computer time as indicators of performance. Both 

functions get their initial set of nodes using the affine invariant angle method. 

1. Graphical Results 

We will consider cubic Bezier curves on which we select 11 evenly spaced 

points with respect to the parameter t and then add a small amount of random noise, 

as above, to each point. Each of the two functions fits a cubic Bezier curve to the 

resulting data set and the original and newly generated curve are displayed on one plot 

to compare how well each function performs. Figure (20) on page 44 to Figure (25) 

on page 46 are pairs of plots for three different data sets. The solid line is the curve 

returned by the functions. 

Note that in each case the pair of plots is slightly different. Regardless, the 

overall graphical comparison of the two functions, after conducting many other ex- 

amples not shown, is that they perform equally well except when grad5.m fails to 

maintain the ordering of data. 

2. Computer Time and Iterations 

Table I on page 36 reflects how much computer time was used for several sizes 

of data sets and stopping criteria of 10~4. Each data set is a matrix of uniformly 

distributed random entries and ordered with respect to the x and y values. Because 

the NearestPoint method finds each new node separately, it is part of a for loop 

within gradö.m. As the data sets get larger, the function slows down in comparison 

to grad7.m where the form of the normal equations in the Gauss-Newton method 

remains relatively fast. 

C. GENERAL COMPARISON OF FUNCTIONS 

Table II on page 36 reflects the general results of researching this paper by 

comparing the three solution functions examined in this chapter. 
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Size Time (sec) / Iter 
gradö.m gradl.m 

10 3.0135 / 121 1.7405 / 126 
100 10.8809 / 53 3.7208 / 91 

1000 62.2660 / 36 .9655 / 3 

Table I. Computer Time Used 

Function General Results 

gradS.m • Inconsistently indicates how large a step to take in the direction 
of the nearest point. 

gradö.m • Faster than gradl.m in rare cases. 

• Graphically, performs equally well as gradl.m. 

• Code is already provided but more difficult than gradl.m to 
examine and follow, see [Ref. 5]. 

• More readily fails to maintain the ordering of data. 

• More expensive to run on larger data sets and many smaller 
data sets as seen during research. 

grad7.m • Faster than gradö.m in most cases. 

• In the many examples conducted during research, has not failed 
to reach a reasonable stopping criteria. 

• Simple to code and algorithm is easy to follow. 

Table II. General Comparison of Functions 
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Figure 8. Gradient Method Fails to Converge 
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Figure 9. Gradient Method Fails to Converge 
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Figure 10. Linear Least Squares Fit 
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Figure 11. Gauss-Newton Fit 
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Figure 12. Affine Invariant Chord Method 
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Figure 13. Affine Invariant Angle Method 
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Figure 14. Failure to Maintain Order 
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Figure 15. Affine Invariant Angle Maintains Order 
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Figure 16. Data With Added Noise 
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Figure 17. Fitting Data With Added Noise 
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Figure 18. Curve With Too Much Freedom 
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Figure 19. Real World Data and grad7.m 
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Figure 20. Data Set One and grail.m 
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Figure 21. Data Set One and gradß.m 
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Figure 24. Data Set Three and grad7.m 
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APPENDIX. MATLAB FUNCTIONS 

GRAD7.M 

function [p,t,info]= grad7(d,deg,stop) 

%  GRAD7.M This function takes a given set of ordered data and returns 
% the parameter values (nodes) and control points which determine the 
% Bezier curve that fits the data in the total least squares sense. 
% Instead of minimizing the vertical distance to the curve we minimize 
*/, both vertical and horizontal distance. The central feature of this 
% function is the use of the Gauss-Newton method to estimate the 
'/, nearest point along the Bezier curve from each data point. 

% Input Arguments: 

y. d 

y. 
y. 

deg 

y. 
stop 

(i x 2) matrix of ordered data points, 
i=2,3,... 
degree of the curve the user wants to fit 
to the data 
stopping criteria number which in the 
algorithm becomes 10"(stop) 

% Output Arguments: 

*/. P 
y. t 
X info 

y. 
y. 

control points for best fit Bezier curve 
nodes for best fit Bezier curve 
(2 x 1) vector which has the final norm of 
the residual and the number of iterations 
to convergence 

°/o Basic Algorithm: 
y. 
y. 
y. 
y. 
i 
% 

y. 
y. 
% 

y. 
y. 

1. Determine and plot the best fit Bezier curve by 
solving a linear least squares problem using an 
initial set of nodes based on the 
'spread' and 'bend' of the data. 

2. Perform the following until the stopping 
criteria is met: 

a. Determine a new set of nodes 
which estimates points on the current Bezier 
points. 
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y. 
'/, b. Determine the control points for the Bezier 
•/, curve which will best fit the data using the 
'/, new set of nodes. 

%  ALGORITHM STEP 1. 

'/, Check the hold state so it can be returned to how the user had it. 

if (ishold) 
hold_was_off =0; 
else 
hold_was_off = 1; 
end 

'/, 'i' is the number of data points and 'j' is the number of control 
y, points required for the degree of the curve specified by the user. 
y, aff_angle(d) returns the initial set of nodes, a vector of 'i' 
•/, elements, based on the 'spread' and 'bend' of the data. 

i = size(d,1); 
j = deg+1; 
t = aff.angle(d); 

V,  'bez_mat' is a (i x j) matrix which is determined by the nodes 
y, and the degree of the curve desired. Since we would 
y, like to fit the data exactly, we should solve: 
y. 
°/, d = bez_mat * p 

y. 
y, for the desired (j x 2) matrix of control points 'p' . This is a 
'/, linear least squares problem since the nodes are known.  'p' 
y, is determined by: 
y. 
•/, p = pinv(bez_mat) * d 

y. 
y, which is the same as using the matlab 'backslash' command. 

bez_mat = mxbern2(t,deg); 
p      = bez_mat \ d; 

y. Once we have the control points 'p' , we can determine the Bezier 
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%  curve and the points on the curve associated with the initial vector 
% t.  'y'is the (i x 2) matrix of points on the Bezier curve 
'/, associated with the initial vector t.  'tl' is a closely spaced 
'/, set of parameter values which will produce the Bezier matrix, 

y.'bez_mat_l', which will give enough points on the fitted Bezier curve 
% for matlab to plot a smooth looking curve:  'yl' is the matrix of 
% these points. 

y = bez_mat * p; 

tl = [0:1/128 :1]>; 
bez_mat_l = mxbern2(tl,deg); 
yl = bez_mat_l * p; 

'/, Mow we plot the results for the user. A legend is provided and the 
'/, axes are made 'equal' to eliminate distortions. 

'/, 'Pause' will keep the plot displayed and delay this function until 
y, the user presses any key on the keyboard. 

figure 

plot(yl(:,l),yl(:,2)) 
hold on 

plot(p(:,l),p(:,2),'*') 
plot(y(:,l),y(:,2),'o') 
plot(d(:,l),d(:,2),'+') 
axis('equal') 

legendO-VFitted Curve','*','Control Points',... 
'o','Initial Times','+','Data Points') 

pause 

y. ALGORITHM STEP 2. 

y, We will perform steps 2a and 2b within a 'while' loop with stopping 
% criteria to meet in order to end the loop. Our stopping criteria 
y, is based on the relative change of the residual. We also initialize 
% the iteration counter to zero.  The 'tic' command starts a clock so 
V,  that the user will know how much computer time was required to 
% meet the stopping criteria. 

iter = 0; 
resid_old = 0; 
resid_new - bez_mat * p - d; 
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tic 

while norm(resid_new - resid_old)/max(l , norm(resid_new)) > 10"(stop) 

%  Algorithm step 2a.  Each iteration of the 'while' loop produces a 
'/,  new vector t by solving the nonlinear least squares problem 

X 
'/. B(t) * p = d 

'/. 

'/, where 'p' is the vector of control points, 'd' the matrix of data 

'/, points, and 'B(t)' is the Bernstein matrix with unknown parameter 

'/, values. Matrix 'B(t)' is nonlinear in terms of the parameter 

"/,  values. The method used in this function is the Gauss-Newton method 

'/, where we let the residual be R(t) = B(t) * p - d and we let the 

y, Jacobian matrix 'J' be such that J_i,j = dB(t_i)/dt_j .  I.E., the 

y, (i,j)"th element of 'J' is the slope along the Bezier curve at the 
'/, i'th parameter value with respect to the j~th parameter 
% value.  The Gauss-Newton method says that the change in parameter 
% values which will minimize the residual is given by 

y. 
•/. delta.t = -inv(J' * J) * J' * R 

y. 
y, where 'J' and 'R' are evaluated at the current parameter values. 

'/, To compute the gradient at a point on the Bezier curve, we need the 

'/, forward difference of the control points. I.E., we need a 

'/, (j-1 x 2) matrix where the entries are p_i+l - p_i for i=l,..,j-l. 
y, The slope, 'deriv', is then determined multiplying the Bernstein 
'/, matrix for a degree-minus-one curve by the forward difference matrix 
'/. of control points and then multiplying by the degree of the original 

y, Bezier curve. 

deriv = deg * mxbern2(t,deg-l) * (p(2:j,:) - p(l:j-l,:)); 

y, Now we have what we need for the Gauss-Newton method. Since to use 
y, this method the residual needs to be a vector, we simply take the 
y, y-values of the residual and append them to the bottom of the 
y, x-values. This is done using 'resid(:)'. Similarly, the Jacobian 
'/, matrix's elements must be for the new vector 'resid'. Each element 
y, of the matrix 'J' is the x-value or y-value of the slope at each 

50 



'/,  parameter's point. Since the slope at any point on the curve 

% doesn't change with any parameter other than it's own, most of the 
% entries in 'J' are zero. 

% 't', the new nodes are given by 't = t - delta_t' 

% using the formula above. Because (J' * J) and J' have a form we 

% know in advance, we can form 'delta_t' using less computer time and 

y, flops. 

t = t - (deriv(:,1).*resid_new(:,1) + deriv(:,2).*resid_new(:,2)) ... 

./ [deriv(:,1).~2 + deriv(:,2).~2] ; 

%  Now we have a new vector t, but we want to make sure the values 
y, are between 0 and 1.  In most cases with well behaved data, the 

y„ following rescaling of the nodes also results in the endpoints 

% being associated with the nodes t_l=0 and t_m=l. 

t = -min(t)*ones(i,l) + t; 
t = t/max(t); 

y„ With ordered nodes we now want the new control points so 
% that we can reproduce the points 'tau' on the curve for the 

% next iteration of the 'while' loop or to be used in the final plot 

'/, if the stopping criteria is met. Note that if the condition is met 
y, we can also use the below 'bez_mat' matrix for the final plot. We 

y, also compute a new value for 'resid_new' and update the iteration 
V,  counter. 

bez_mat  = mxbern2(t,deg); 
p       = bez.mat \ d; 

resid_old = resid_new; 
resid_new = bez_mat * p - d; 

iter    = iter + 1;  '   ' 

% End 'while' loop and stop computer time clock to show user how long 
% it took to converge. 

end 

toe 
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'/, Now that we have the best fit vector t and the associated 

'/, matrix 'p' of control points, we are ready to plot the final 

'/, solution for the user,  'y' are the points on the Bezier curve 

y, associated with the vector t.  'yl' are the closely spaced 

% points on the Bezier curve which matlab will use to plot a smooth 

yo looking curve. 

y  = bez.mat * p; 

yl = bez_mat_l * p; 

y, Finally, we clear the current plot and plot the results. 

figure 

plot(yl(:,l),yl(:,2)) 

hold on 
plot(p( 

plot(y( 
plot(d( 

,D,p( 
,D,y( 

,2),'*') 
,2),'o') 

,2),'+') 
axis('equal') 

y, Include legend on final plot. 

legend('-','Fitted Curve','*','Control Points', 
'o','Nodes','+','Data Points') 

'/, Return hold state to however the user had it. 

if (hold_was_off) 

hold off; 

end 

info = [norm(bez_mat*p-d), iter]; 

'/. End GRAD7.M 

52 



MXBERN2.M 

function [B] = mxbern2(t,d) 

7, MXBERN2.M This function creates a Bernstein matrix of degree d 
% using the values in the column vector t. A Bernstein matrix 
% is a generalized Vandermonde matrix whose (i,j) entry is 

% B_{j-l}~d(t_i) . The vector t must be a column vector with values 
*/,  between 0 and 1. Copyright (c) 3 December 1994 by Carlos F. Borges. 
'/, All rights reserved. Modified by permission for this paper. 

[n m] = size(t); 
if (m ~= 1) 

error('t must be a column vector.'); 
end 

V,  Check to see if nodes are within [0,1]. 

if min(t) < 0 I max(t) > 1 
error('nodes are not within [0,1]') 

end 

'/,  Build the Bernstein matrix. 

ct = 1 - t; 
B = zeros(n,d+1); 

for i = 0 : d 
B(:,i+1) = (t.-i).*(ct.-(d-i)); 

end 

% If d > 22 we form the Bernstein matrix differently to 
% avoid roundoff. 

if d < 23 
B = B*diag( [1 cumprod(d:-l:l)./cumprod(l:d)] ); 

else 

B = B*diag(diag(fliplr(pascal(d+1)))); 
end 

•/. End MXBERM2.M 
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AFF.ANGLE.M 

function [h] = aff_angle(X) 

'/. AFF.ANGLE.M This function returns an affine invariant vector of 

'/, nodes for a given set of ordered data X.  It is 
'/, assumed that the user sends this function the data arranged in a 

'/, (n x 2) matrix ordered from row one to row n. 

'/, Obtaining the covariance matrix A is from a function AFF_KNT.M which 
'/, is copyrighted on 3 December 1994 by Carlos F. Borges and appears 

'/, here with his approval. The affine invariant angle method of 

•/, obtaining nodes is found in a paper by Thomas A. Foley 
•/, and Gregory M. Nielson, "Knot Selection for Parametric Spline 

y, Interpolation", in the book "Mathematical Methods in Computer Aided 

y, Geometric Design", Academic Press, Inc., 1989. Notation from this 
*/, paper is used to annotate the steps in this algorithm. 

n = size(X,l); 

Xbar = X - ones(size(X)) * diag(mean(X)); 

Xcov = Xbar' * Xbar/n; 
A   = inv(Xcov); 

'/, Obtain the node spacing values using the metric 

y. 
•/. t_i = M[X](X_i,X_(i+l)). 

% 

V = X(2:n,:) - X(l:n-1,:); 

t = diag(V * A * V) ." (1/2); 

•/, Obtain the values for 

y. 
•/. M-2[X](X_(i-l),X(i+l)) 

y. 

V_2 = X(3:n,:) - X(l:n-2,:); 

t_2 = diag(V_2 * A * V_2'); 
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'/„  Get theta_i values. This is what takes into account the bending 
%  of the data. 

theta = zeros(n-1,1); 

for j = 2:n-l 

theta(j) = min( pi - acos( (t(j-l)~2 + t(j)"2 - ... 

t_2(j-l))/(2*t(j)*t(j-l)) ) , pi/2); 

end 

% Obtain the affine invariant angle node spacing values h_i. 

h = zeros(n-1,1); 

h(l) = t(l)*( 1 + (1.5*theta(2)*t(2))/(t(l) + t(2)) ); 

for j = 2:n-2 

h(j) = t(j) * ( 1 + (1.5*theta(j)*t(j-l))/(t(j-l)+t(j)) +. . . 
(1.5*theta(j+l)*t(j+l))/(t(j)+ t(j+l)) ); 

end 

h(n-l) = t(n-l) * ( 1 + (1.5*theta(n-l)*t(n-2))/(t(n-2)+t(n-l)) ); 

%  Now that we have the node spacing values, we want to normalize 
%  them so that they are within [0,1], with the first data point being 
7. associated with the value zero and the last data point with the 
'/,  value one. 

h = [0;h]; 

h = cumsum(h); 

h = h / h(n); 

y. End AFF_ANGLE.M 
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