
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

19980727 149
THESIS

ARCHITECTURAL DEVELOPMENT AND
PERFORMANCE ANALYSIS OF A PRIMARY DATA
CACHE WITH READ MISS ADDRESS PREDICTION

CAPABHJTY

by

Kathryn S. Christensen

June 1998

Thesis Co-Advisors: Douglas J. Fouts
Frederick Terman

Approved for public release; distribution is unlimited.

pile QXJAIA* IK8?ECrED 1

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave

blank)
REPORT DATE

June 1998
REPORT TYPE AND DATES COVERED

Master's Thesis

TITLE AND SUBTITLE ARCHITECTURAL DEVELOPMENT AND
PERFORMANCE ANALYSIS OF A PRIMARY DATA CACHE WITH READ
MISS ADDRESS PREDICTION CAPABILITY

6. AUTHORfS) Kathryn S. Christensen

FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

PERFORMING
ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
This work is part of an ongoing effort to bridge the cycle-time gap between high-speed processing units and lower-speed

main memories through the use of memory hierarchies. Cache memory exploits the principle of locality by providing a small,
fast memory between the processor and the main memory. The Predictive Read Cache (PRC) further improves the overall
memory hierarchy performance by tracking the data read miss patterns of memory accesses, developing a prediction for the next
access and prefetching the data into the faster cache memory. The PRC has been proven to significantly improve system
performance when acting as a second-level cache. The purpose of this thesis is to simulate the effectiveness of the PRC as a
first-level cache in the memory hierarchy using the same simulator developed to prove the effectiveness of the PRC as a second-
level cache.

14. SUBJECT TERMS Predictive Read Cache; address prediction; memory
bandwidth; memory latency; cache memory; memory systems

15. NUMBER OF
PAGES 94

16. PRICE CODE

17. SECURITY- CLASSIFI-
CATION OF REPORT

Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS PAGE

Unclassified

19. SECURITY CLASSIFI-
CATION OF ABSTRACT

Unclassified

20. LIMITATION
ABSTRACT

UL

OF

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

11

Approved for public release; distribution is unlimited.

ARCHITECTURAL DEVELOPMENT AND PERFORMANCE ANALYSIS OF A
PRIMARY DATA CACHE WITH READ MISS ADDRESS PREDICTION CAPABILITY

Kathryn S. Christensen
Lieutenant, United States Navy

B.S., United States Naval Academy, 1992

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE
IN

ELECTRICAL ENGINEERING

from the

Author:

Approved by:

NAVAL POSTGRADUATE SCHOOL
June 1998

Kathryn S. Christensen

Douglas J. Fouts, Thesis Co-Advisor

ierschel H. Loomis, /«Chairman
Department of Electrical and Computer Engineering

111

IV

ABSTRACT

This work is part of an ongoing effort to bridge the cycle-time gap between high-

speed processing units and lower-speed main memories through the use of memory

hierarchies. Cache memory exploits the principle of locality by providing a small, fast

memory between the processor and the main memory. The Predictive Read Cache (PRC)

further improves the overall memory hierarchy performance by tracking the data read miss

patterns of memory accesses, developing a prediction for the next access and prefetching the

data into the faster cache memory. The PRC has been proven to significantly improve

system performance when acting as a second-level cache. The purpose of this thesis is to

simulate the effectiveness of the PRC as a first-level cache in the memory hierarchy using

the same simulator developed to prove the effectiveness of the PRC as a second-level cache.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. MEMORY HIERARCHY DESIGN 1

B. CACHE MEMORY 2

C. GOALS OF THE THESIS 6

D. THESIS OUTLINE 6

H. BACKGROUND OF THE PREDICTIVE READ CACHE 7

A. THE PREDICTIVE READ CACHE 7

B. THE INSTRUCTION PRC 8

C. THE CACHE AND PRC SIMULATOR 8

1. Address Traces 8

2.CaPSim 9

IE. FIRST-LEVEL CACHE CONFIGURATION AND RESULTS 11

A. DEMAND-DRIVEN FIRST-LEVEL CACHE CAPSM CONFIGURATION. 11

B. FIRST-LEVEL PRC CAPSM CONFIGURATION 14

C. TRADITIONAL CACHE VS. PRC SIMULATION RESULTS 20

1. Direct-Mapped First-level Cache Simulations 20

2.4-Way Set-associative First-level Cache Simulations 23

3. Fully Associative First-level Cache Simulations 24

D. TRADITIONAL CACHE VS. PRC SIMULATION CONCLUSIONS 26

IV. THE DEVELOPMENT AND SIMULATION OF A DEMAND PRC 29

Vll

A. FIRST-LEVEL DEMAND PRC CAPSIM CONFIGURATION 29

B. FIRST-LEVEL DEMAND PRC SIMULATION RESULTS 30

1. Direct-Mapped First-level Cache Simulations 30

2.4-Way Set-associative First-level Cache Simulations 33

3. Fully Associative First-level Cache Simulations 37

C. FIRST-LEVEL DEMAND PRC CONCLUSIONS 40

V. THE DEVELOPMENT AND SIMULATION OF A PRIORITY-DEMAND PRC 41

A. PRIORITY-DEMAND PRC CAPSIM CHANGES 41

B. FIRST-LEVEL PRIORITY-DEMAND PRC SIMULATION RESULTS 41

1. Direct-Mapped First-level Cache Simulations 41

2.4-Way Set-associative First-level Cache Simulations 45

3. Fully Associative First-level Cache Simulations 48

C. FIRST-LEVEL PRIORITY-DEMAND PRC CONCLUSIONS 51

VI. CONCLUSIONS 53

A. EFFECTIVENESS OF THE PRC AS A FIRST-LEVEL CACHE 53

B. SUGGESTION FOR FUTURE DEVELOPMENT 53

APPENDIX A. AN EXAMPLE CAPSIM CONFIGURATION FILE 55

APPENDK B. AN EXAMPLE CAPSIM CONFIGURATION FILE 57

APPENDIX C. AN EXAMPLE CAPSIM LOG FILE 59

APPENDDC D. AN EXAMPLE OUTPUT FILE FOR THE CPU MODULE 63

Vlll

APPENDIX E. AN EXAMPLE OUTPUT FILE FOR THE CACHE MODULE 65

APPENDIX F. AN EXAMPLE OUTPUT FILE FOR THE PRC MODULE 69

APPENDIX G. AN EXAMPLE OUTPUT FILE FOR THE BUFFER MODULE 73

APPENDIX H. AN EXAMPLE OUTPUT FILE FOR THE MAIN MEMORY

MODULE : -75

LIST OF REFERENCES 77

INITIAL DISTRIBUTION LIST 79

ix

LIST OF FIGURES

Figure 1. Memory Hierarcy 2

Figure 2. First-level Cache-Only Memory Hierarchy 11

Figure 3. First-level PRC Configuration 14

Figure 4. Original Memory Hierarchy Handshaking 17

Figure 5. First-level PRC Handshaking 18

Figure 6. Revised First-level PRC Handshaking 19

Figure 7. Hit Rate vs. Cache Size for Direct-mapped cache, Kenbus20 21

Figure 8. Hit Rate vs. Cache Size for Direct-mapped Cache, Kenbus80 21

Figure 9. Access Time vs. Cache Size for Direct-mapped cache, Kenbus20 22

Figure 10. Access Time vs. Cache Size for Direct-mapped cache, Kenbus80 22

Figure 11. Hit Rate vs. Cache Size for 4-way Set-associative cache, Kenbus20 23

Figure 12. Hit Rate vs. Cache Size for 4-way Set-associative cache, Kenbus80 23

Figure 13. Access Time vs. Cache Size for 4-way Set-associative Cache, Kenbus20 24

Figure 14. Access Time vs. Cache Size for 4-way Set-associative Cache, Kenbus80 24

Figure 15. Hit Rate vs. Cache Size for Fully Associative Cache, Kenbus20 25

Figure 16. Hit Rate vs. Cache Size for Fully Associative Cache, Kenbus80 25

Figure 17. Access Time vs. Cache Size for Fully Associative Cache, Kenbus20 26

Figure 18. Access Time vs. Cache Size for Fully Associative Cache, Kenbus80 26

Figure 19. Hit Rate vs. Cache Size for Direct-mapped cache, Kenbus20 30

Figure 20. Hit Rate vs. Cache Size for Direct-mapped Cache, Kenbus80 31

Figure 21. Access Time vs. Cache Size for Direct-mapped Cache, Kenbus20 31

Figure 22. Read Access Time vs. Cache Size for Direct-mapped Cache, Kenbus80 32

Figure 23. Speed Up vs. Cache Size for Direct-mapped Cache, Kenbus20 32

Figure 24. Speed Up vs. Cache Size for Direct-mapped Cache, Kenbus80 33

Figure 25. Hit Rate vs. Cache Size for 4-Way Set-associative Cache, Kenbus20 34

Figure 26. Hit Rate vs. Cache Size for 4-way Set-associative Cache, Kenbus80 34

Figure 27. Access Time vs. Cache Size for 4-way Set-associative Cache, Kenbus20 35

XI

Figure 28. Access Time vs. Cache Size for 4-way Set-associative Cache, Kenbus80 35

Figure 29. Speed up vs. Cache Size for 4-way Set-associative Cache, Kenbus20 36

Figure 30. Speed Up vs. Cache Size for 4-Way Set Associative Cache, Kenbus80 36

Figure 31. Hit Rate vs. Cache Size for Fully Associative Cache, Kenbus20 37

Figure 32. Hit Rate vs. Cache Size for Fully Associative Cache, Kenbus80 37

Figure 33. Access Time vs. Cache Size for Fully Associative Cache, Kenbus20 38

Figure 34. Access Time vs. Cache Size for Fully Associative Cache, Kenbus80 38

Figure 35. Speed Up vs. Cache Size for Fully Associative Cache, Kenbus20 39

Figure 36. Speed Up vs. Cache Size for Fully Associative Cache, Kenbus80 39

Figure 37. Hit Rate vs Cache Size for Direct-mapped Cache, Kenbus20 42

Figure 38. Hit Rate vs. Cache Size for Direct-mapped Cache, Kenbus80 42

Figure 39. Access Time vs. Cache Size for Direct-mapped Cache, Kenbus20 43

Figure 40. Access Time vs. Cache Size for Direct-mapped Cache, Kenbus80 43

Figure 41. Speed Up vs. Cache Size for Direct-mapped Cache, Kenbus20 44

Figure 42. Speed Up vs. Cache Size for Direct-mapped Cache, Kenbus80 44

Figure 43. Hit Rate vs. Cache Size for 4-way Set-associative Cache, Kenbus20 45

Figure 44. Hit Rate vs. Cache Size for 4-way Set-associative Cache, Kenbus80 45

Figure 45. Access Time vs. Cache Size for 4-way Set-associative Cache, Kenbus20 46

Figure 46. Access Time vs. Cache Size for 4-way Set-associative Cache, Kenbus80 46

Figure 47. Speed Up vs. Cache Size for 4-Way Set-associative Cache, Kenbus20 47

Figure 48. Speed Up vs. Cache Size for 4-Way Set-associative Cache, Kenbus80 47

Figure 49. Hit Rate vs. Cache Size for Fully Associative Cache, Kenbus20 48

Figure 50. Hit Rate vs. Cache Size for Fully Associative Cache, Kenbus80 48

Figure 51. Access Time vs. Cache Size for Fully Associative Cache, Kenbus20 49

Figure 52. Access Time vs. Cache Size for Fully Associative Cache, Kenbus80 49

Figure 53. Speed Up vs. Cache Size for Fully Associative Cache, Kenbus20 50

Figure 54. Speed Up vs. Cache Size for Fully Associative Cache, Kenbus80 50

Xll

LIST OF TABLES

Table 1. Traditional Cache Configuration 12

Table 2. Buffer Module Configuration 13

Table 3. Main Memory Configuration 13

Table 4. First-level PRC Configuration 14

Table 5. Transaction Request Format 15

xui

XIV

I. INTRODUCTION

A. MEMORY HIERARCHY DESIGN

Ideally one would desire an indefinitely large memory capacity such that
any particular...word would be immediately available.... We are...forced
to recognize the possibility of constructing a hierarchy of memories, each of
which has greater capacity than the preceding but which is less quickly
accessible.

A.W. Burks, J.H. Goldstine, and J. von Neumann, Preliminary Discussion of the Logical

Design of an Electronic Computing Instrument (1946) [Ref. l:p. 372]

The early computer designers recognized the need for memory hierarchy to diminish

the cycle-time gap between processors and data storage devices. A von Neumann machine

executes a program in the following manner: the CPU repeatedly fetches the instruction

from memory as well as any operands the instruction requires, it performs the indicated

operation and then, frequently, writes the result back to memory. These recurrent memory

accesses have become the limiting factor in overall system performance.

Processor cycle time has dramatically decreased over the years while memory

technology has fallen behind. In particular, Very Large Scale Integrated (VLSI) technology

enables processors to complete the computation portion of the instruction cycle much faster,

making the memory access times even more of a system performance issue.

This problem leads to a trade off between size, speed and cost of the main memory.

One solution is to design the main memory with the same technology used for the CPU.

This would be technically impractical and prohibitively expensive to implement on such a

large scale. Instead, the concept of memory hierarchies was developed as a more cost-

effective solution to this problem.

The design of a memory hierarchy consists of placing smaller, faster, more

expensive memories between the processor and the larger, less expensive, slower memory.

These memories have been named cache memories. Figure 1 illustrates a general case of a

1

memory hierarchy. The cache memory level of the hierarchy can be multiple levels of

caches, consisting of a first-level cache (the cache closest to the CPU), second-level cache,

etc. The terms on-chip cache and off-chip cache refer to the physical location of the cache:

either on the same chip as the processor or outside the chip.

CPU

Fastest

Most

Speed

Cost

-► Slowest

Least
expensive

Smallest •*■ Size

expensive

-► Largest

Figure 1. Memory Hierarcy

B. CACHE MEMORY

The concept of cache memory operation is based on the principle of locality. There

are two types of locality: spatial and temporal. Spatial locality refers to the concept that

when a memory address is referenced, the memory addresses near the one referenced are

likely to be referenced in the near future. Temporal locality is the concept that when a

memory address is referenced, it is likely to be referenced again in the near future [Ref. 2:p.

344]. Cache memory exploits these principles of locality by storing copies of the recently

accessed main memory data and instructions in the cache. Temporal locality predicts that

the same reference will be used again soon and the next time the data will be fetched from

the faster cache memory instead of the slower main memory. The cache is updated with a

block which is larger in size than the word requests of the CPU. Once the data is fetched

from main memory in the original request, it is stored in the cache memory along with a few

word addresses surrounding it. Therefore, if the CPU requests an address near the original

one (spatial locality) the data will be found in the faster cache memory instead of needing to

be fetched from main memory.

One method of measuring performance of cache memory is to measure the cache

hits and cache misses. A cache hit occurs when the CPU finds the requested memory

address in the cache, a cache miss occurs when the requested memory address is not located

in the cache. Cache hits and misses are further divided into the categories of read hits, read

misses, write hits and write misses. The cache hit ratio is simply the number of cache hits

divided by the number of requests. The miss ratio is the number of CPU requests that miss

in the cache divided by the total number of requests [Ref. l:p. 43]. Cache hit ratios are not

enough to accurately evaluate system performance. Przybylski [Ref. 3:p. 5] warns of the

dangers of focusing on the "time-independent" statistics. To improve system performance,

the entire system must be optimized, not merely a single aspect.

There are three different types of misses that may occur in a cache: compulsory,

capacity and conflict. A compulsory miss is one which could not be avoided, often the first

access to a data address [Ref. 4:p. 245]. A capacity miss occurs when the cache is not large

enough to hold all of the blocks required during program execution. In this case, a request

is made to the cache which requires a block which was once replaced to be retrieved again

from memory [Ref. l:p. 390]. A conflict miss occurs through a request to a direct-mapped

or set-associative cache when too many requested blocks map to the same set [Ref.

l:p.390].

Overall system performance is dependant on the miss penalty as well as the hit/miss

ratios. The miss penalty is defined as the time (in clock cycles) it takes the CPU to fetch the

required data from main memory upon a cache miss. Specifically:

Miss penalty = Memory access time/ Clock period

Speedup is a performance measure which compares the relative performance between two

configurations. Specifically, in this thesis, speedup is defined as:

Speedup = (Read Access Time , -Read AccessTimepR_)/ReadAccessTime ,

Cache performance is effected by many different parameters: cache size, block size,

associativity, replacement policy, write policy, and write-miss policy. Cache size refers to

the number of bytes the cache can store. Block size is the fixed size of memory which is

transferred to the cache at a time. Associativity is the mapping function between the cache

memory and the main memory and is necessary because the cache memory is smaller than

the main memory.

There are three main types of cache associativity: direct-mapped, fully associative

and set-associative. In a direct-mapped cache, each main memory location can only be

mapped into a specific cache location. If there is already data occupying that location, then

that data must be removed from the cache. In a fully associative cache, any main memory

location can be mapped into any cache location. In the fully associative case, data needs to

be removed from the cache only if the entire cache is full. Set-associative is in between

direct-mapped and fully associative. The set-associative cache maps a certain portion of

main memory to a designated portion of the cache memory, called a set. Data is replaced in

the cache only when the set to which the incoming data is mapped is full. The set a block is

mapped to is determined by:

(block address) MOD (number of blocks in cache) [Ref. 1. p. 376].

Block address is defined as the actual main memory address divided by the block size in

bytes. The cache is said to be «-way set-associative, where n is the number of blocks in a

set. n is calculated by:

(number of blocks in cache))'(number of sets in cache)

or

(cache size in bytes) /[(block size in bytes) *(number of sets in cache)]

Direct-mapped is actually a special case of set-associative with an associativity of one.

Fully associative is also a special case of set-associative where n is equal to the number of

blocks in the cache.

When there is no room in the cache for the incoming block, the cache uses a

replacement policy to choose which block to remove to make room. No replacement policy

is needed in a direct-mapped cache since there is only one place in the cache a given

memory address can be mapped. Therefore, if it is being used, the data in that location must

be removed. The most common replacement policies are: Least Recently Used (LRU), First

In First Out (FIFO) and random. LRU tracks the usage statistics on each block in the set

and chooses the one for replacement which is the oldest. FIFO designates the oldest block

in the cache for replacement. Random replacement chooses the candidate for replacement

at random from all of the blocks in the set.

There are two major types of write policies: write back and write through. In a

write-through cache, data is written to the cache at the same time it is written to the main

memory. This policy slows down the overall system speed because the speed of all writes is

limited by the main memory write speed. There are two advantages of a write-through

cache: the hardware is less complex and the cache is always coherent with the data in main

memory. Write back only updates the cache memory upon a write, main memory does not

get updated until that block is chosen for replacement.

The cache write-miss policy determines the sequence of events which occur when a

CPU write request misses in the cache. Common types of write-miss policies are: write

allocate and write around. The write allocate policy loads the block into the cache and then

modifies the data according to the write policy in effect. In a write around cache the CPU

writes to the block in main memory, completely bypassing the cache. The block is not

loaded into the cache on a write miss when a write around policy is in effect.

Cache memory is sometimes divided into a hierarchy within itself. The cache

memory closest to the CPU is called the level one or LI cache. The level denoted by the

largest number is the cache which is located closest to the main memory. It is also common

for there to be separate caches for instructions and for data, called a split level cache.

Instructions and data have different reference patterns and splitting them apart allows

separate cache designs for data and instruction caches. Split level caches further increase

the performance by doubling the cache bandwidth.

The large number of parameters which determine the performance of cache memory

has launched a whole field of study in cache design. Performance optimization is extremely

difficult due to the large number of factors involved. New technological advances and the

complexity surrounding cache design indicate that the study of cache design will continue to

be an intense area of research efforts.

C. GOALS OF THE THESIS

The goal of this thesis is to simulate and evaluate the performance of the Predictive

Read Cache as a first-level data cache in a memory hierarchy with only a level one cache.

The Cache and PRC simulator (CaPSim) [Ref. 5] will be used for this evaluation.

D. THESIS OUTLINE

The remainder of this thesis is organized as follows. Chapter II discusses the

background of the PRC research. The fundamentals of both the Instruction Predictive Read

Cache (iPRC) and the Data Predictive Read Cache (dPRC) algorithms will be described.

Hardware architectures are presented and read/write operations are discussed. The trace

driven simulator and the address traces used in the simulations will be presented. Chapter

DI discusses the reconfigurations needed to CaPSim to accurately simulate a memory

hierarchy with only a single level cache and the changes needed to simulate the PRC as a

first-level cache. The results of these simulations will be presented. A new algorithm is

presented in Chapter TV: a demand Predictive Read Cache. Simulations are described and

compared with a purely demand-driven cache. Chapter V presents an improved version of

the demand PRC which was developed to reduce the average read access time of the

demand PRC in Chapter rv. Finally, Chapter VI contains conclusions and suggestions for

future work.

H. BACKGROUND OF THE PREDICTIVE READ CACHE

A. THE PREDICTIVE READ CACHE

The Predictive Read Cache (PRC) is a special cache designed by Fouts and

Billingsley [Ref. 6]. It was originally intended to be implemented as a second-level data

cache. The PRC uses a prediction algorithm to predict the data address of the next primary

data cache miss. The data at the predicted address is then prefetched into the PRC, awaiting

the primary cache's request.

The PRC's prediction algorithm is based upon the fact that most data requests are to

sequential data structures stored in memory. The PRC predicts the next primary cache miss

by simply taking the difference of the last two data read address requests from the primary

cache and adding that difference to the last data miss address. The PRC then makes a

request to memory to prefetch the data at the predicted address.

For example, the CPU makes a request for data at the address of 10001000. This

request misses in the primary data cache, which forwards this request to both the main

memory and the PRC. The PRC cannot make a prediction at this point since it is the first

request. The next request is for data at address 10001004. Again, this misses in the primary

data cache and is forwarded to both main memory and the PRC. This time the PRC makes

a prediction based on the following simple calculation: 10001004 + (10001004-10001000)

= 10001008. The PRC will then prefetch the data from address 10001008 from main

memory and store it in the PRC. Assuming that the CPU is accessing a data array with each

element consisting of 4 bytes, the next request should be a read hit in the PRC, thus

preventing the long cycle time required to fetch it from main memory.

The PRC requires additional storage for the most recent miss address (MRMA) and

the previous miss address (PRMA) for each cache block. The PRC algorithm also requires

the addition of a subtracter-adder pair (or just a subtracter with a 1-bit offset for the

MRMA) to calculate the displacement between the data read miss addresses. The PRC

demonstrated a significant improvement in performance over a second-level cache [Ref 7].

B. THE INSTRUCTION PRC

The Instruction PRC (iPRC) algorithm was designed by Altmisdort and fully

described in reference 5. The goal of the iPRC is to improve performance during program

branches and context switches by reducing the miss penalty on compulsory misses. The

iPRC does this by maintaining a relationship between the addresses of the read misses and

the addresses of the instructions that cause the read misses [Ref. 5, p. 9].

The iPRC uses a similar architecture to the original PRC and adds additional storage

for the instruction tag for each block. It also requires that an instruction bus be added

between the CPU and the iPRC (transparent to the first-level cache) to provide the

instruction addresses of the data requests.

The iPRC operates in a similar manner to the original PRC: when two read misses

occur, a signed displacement is determined between the MRMA and the PRMA. This

displacement is added to the MRMA to predict the address of the next read miss.

The iPRC performance was simulated using address trace simulations and the

results were documented in reference 5. The iPRC provides a significant improvement in

performance over a second-level cache and a nominal performance increase over the dPRC

algorithm.

C. THE CACHE AND PRC SIMULATOR

The Cache and PRC Simulator (CaPSim) is an address-trace driven simulator

developed by Altmisdort to simulate a memory hierarchy which can be configured for either

traditional, original dPRC or iPRC caches of multiple levels [Ref. 5].

1. Address Traces

CaPSim uses address traces collected from the SPEC SDM (System Development

Multitasking) benchmark programs on the SPARC platform. These address traces were

collected by the BYU BACH system [Ref. 8]. The benchmarks used for the simulations

were the Kenbus20 and the Kenbus80 benchmark programs. Kenbus20 models the

behavior of a Unix operating system in a multitasking, educational environment. Kenbus20

simulates the demands made by twenty users on the system at one time. Kenbus80 models

the same multitasking environment but with eighty users on the system. The Kenbus80

benchmark has more context switching and thus more compulsory misses than does the

Kenbus20 benchmark. These traces were chosen because they represent the most

demanding environment for a predictive cache with context changes occurring frequently

due to the heavy multitasking load.

There are two types of address traces: the original BYU format address trace and the

PRC format for use with the iPRC cache. The PRC format includes the necessary

instruction tag information to make the proper predictions. Reference 5 describes at length

the use of the address traces and the software conversion tool.

2. CaPSim

The Cache and PRC Simulator (CaPSim) is written in C++ code using object-

oriented programming techniques. CaPSim may be configured to simulate different

memory configurations.

The CaPSim architecture is centered around the concept of a generic memory

module. Up to five different types of memory modules can currently be defined from the

generic: CPU, Cache, PRC, Buffer, and main memory. CaPSim has been programmed so

that new memory modules, such as disk drives or a virtual memory system, may be added to

the memory hierarchy by simply making small changes to the CPU class and programming

a new module with adherence to the generic memory module format [Ref 2: p.70].

CaPSim comes complete with an integrated, interactive debugger. The debugger

displays the inter-cycle events as well as the request-respond handshaking of the modules.

Its operation and capabilities are described fully in reference 5.

10

m. FIRST-LEVEL CACHE CONFIGURATION AND RESULTS

A. DEMAND-DRIVEN FIRST-LEVEL CACHE CAPSIM CONFIGURATION

Some minor changes were necessary to allow CaPSim to simulate the configuration

shown in Figure 2.

Traditional
Cache

Figure 2. First-level Cache-Only Memory Hierarchy

First-level caches of sizes varying from 256 Bytes to 512 Kbytes were simulated.

All sizes were simulated for three different degrees of associativity: direct-mapped, fully

associative and four way set-associative. Table 1 delineates the remaining properties which

were constant throughout the simulations.

Block size and sub block size were 16 and 8 bytes respectively. The sub block size

is the smallest size which maintains an independent valid bit. The fetch size determines the

size of the memory request made after a read miss in the cache. The specification of a fetch

size allows the cache to fetch multiple blocks from the cache upon a single read miss. In

this configuration, a single-block fetch is simulated. The transfer size determines the bus

width between the cache and the CPU.

The write policy is write through and the write-miss policy is write around. Both of

these policies were described in Chapter I. The wrapping-fetch policy determines the

direction of fetches from higher memory levels during a block update [Ref. 5:p. 90].

The access time determines the number of cycles expended to access the cache for

either a read or a write request. The read/write hit and miss times are penalties imposed in

11

addition to the access time to model an excessive delay imposed by the architecture, in this

case they are all set to zero.

The cache block buffer is enabled because in the case of the PRC (with which these

simulations results will later be compared) the block buffer is always enabled. When the

Read Forwarding policy is in effect, the missed word is fetched from main memory first and

then the word is forwarded to the CPU at the same time it is written to the block buffer.

This policy allows the cache to continue servicing CPU requests while the rest of the block

is being updated in the cache [Ref. 4:p.83]. The Read Forwarding option is not used with

the Cache Module because it is not an option with the CaPSim PRC module.

Parameter Name Parameter Value Parameter Name Parameter Value

Block Size 16 bytes Access Time 1 cycle

Sub-block. Size 4 bytes Write Hit Time 0

Fetch Size 16 bytes Write Miss Time 0

Transfer Size 4 bytes Read Hit Time 0

Replacement Policy LRU Read Miss Time 0

Write Policy Write Through Block Buffer Transfer Time 1 cycle

Write Miss Policy Write Around Enable Block Buffer Yes

Wrapping Policy Wrap Up Search Block Buffer Yes

Read Forward No

Table 1. Traditional Cache Configuration

The buffer module contains both a read and a write buffer. The buffers compensate

for the difference in data flow rate during transfers between the cache and main memory.

For instance, the write buffer allows the processor to continue execution as soon as the data

is written into the buffer, instead of waiting for the slower main memory to complete the

write.

The buffer parameters are constant throughout all simulations and are shown in

Table 2. The read and write buffer sizes are eight and four bytes respectively. The write

buffer block size refers to the number of bytes which can be stored in a single buffer line.

This allows the buffer to combine adjacent write requests into a single request. Enforce

priorities ensures that the highest priority requests are serviced first in the buffer. The

12

"remove read and write duplicates" parameters allow the buffer to combine duplicate

requests into a single request. Search Read Buffer parameter allows the buffer to update the

data in the read buffer from the write buffer in the case of a buffer write hit. The Search

Write Buffer parameter allows the buffer module to conduct a search to determine if a read

request will hit in the write buffer.

Parameter Value

Read Buffer Size 8 bytes

Write Buffer Size 4 bytes

Write Buffer Block Size 16 bytes

Enforce Priorities Yes

Remove Read Duplicates Yes
Remove Write Duplicates Yes
Search Read Buffer Yes

Search Write Buffer Yes

Table 2. Buffer Module Com Iguration

Table 3 shows the main memory module parameters used for all simulations.

Access time refers to the number of cycles required for main memory to access the first

word of a transfer. The remaining words are accessed at the "transfer time" rate of one per

cycle. The transfer size determines the bus width between the main memory module and

the buffer.

Parameter Value

Access Time 5 cycles

Transfer Time 1 cycle

Transfer Size 4 cycles

"able 3. Main Memory Configuration

In order to successfully complete the baseline demand-driven cache simulations,

there was a minor change which was made to the CaPSim program itself. Specifically, an

error occurred when the cache was designated as a write-through cache and the incoming

write request to the cache was registered as a pending request because the cache was busy.

The request was not getting propagated to the buffer at any time in the CaPSim code. This

13

caused the CPU to wait indefinitely for the response to its write request. This was fixed by

adding the proper code to propagate the request to the subordinate modules.

B. FIRST-LEVEL PRC CAPSIM CONFIGURATION

The memory hierarchy is similar to the hierarchy used in the simulations in part A,

except the traditional cache is replaced with a PRC. The configuration is shown in Figure 3.

Main
Memory

PRC —»

4—

Buffer —»

«— CPU
—♦

*—

Figure 3. First-level PRC Configuration

The configuration of the main memory and buffer modules remains the same as they

did for the simulations in Part A. The configuration of the PRC is shown in Table 4.

Parameter Value

Block Size 16 bytes

Sub-Block Size 4 bytes

Fetch Size 16 bytes

Transfer Size 4 bytes

Replacement Policy LRU

Write Policy Write Through

Access Time 1 cycle

Read Hit Time 0

Read Miss Time 0

Write Hit Time 0

Write Miss Time 0

Block Buffer Transfer 1 cycle

Table 4. First-level PRC Configuration

14

The parameters are almost identical to those used in Section A of this chapter. The

write-miss policy is not specified since CaPSim is programmed to always treat the PRC as a

write around cache. The block buffer is not specifically enabled since CaPSim always

enables the PRC block buffer and the searching of the block buffer. CaPSim does not offer

the read forward option for the PRC so it is not a valid parameter to specify.

Many aspects of the CaPSim program itself had to be modified to allow the

simulation of a PRC first-level cache. CaPSim was written with the main purpose of

simulating the PRC as a second-level cache with a traditional first-level cache. Although it

has the flexibility to assume other configurations, most of the other configurations had not

been fully tested and many modifications to the C++ code were necessary.

The first reconfiguration needed was in the inter-module handshaking.

Handshaking is the means of communication between the modules. The handshaking

requests are used by the modules to make write or read requests from each other and to

respond when the requests are completed. Table 5 below shows the memory request format.

Field Size

Source ID unsigned integer

Match ID unsigned integer

Priority integer

Total Size integer

Data Address AddressType

Instruction Address AddressType

Transaction Type {Read, Write, Cancel}

Minimum Size integer

Drop Counter integer

Original Address AddressType

Original Size integer

Victim Block integer

Table 5. Transaction Request Format

15

The Source ID field designates where the request is originating from and therefore,

where the response must be returned. The match ID is used when two modules are sharing

a request. It ensures that both modules receive the proper response. The Data Address field

holds the data address of the request and the Instruction Address field holds the instruction

address. The Priority field specifies the priority of the request. The Total Size indicates the

size of the current request. The Transaction Type indicates the type of transaction

requested. Originally, the choices were Read, Write and Cancel. The Minimum Size field

is used to determine if the minimum size of the transfer has occurred to see if the

transaction may be interrupted or not. The Drop Counter is used by the Buffer Module to

specify the number of tries a transaction is allowed before it is dropped out of the buffer.

When used, the counter is decrements by one every time a transaction is canceled due to a

higher priority transaction. Original Size and Original Address are used by the buffer

module to restore the original parameters after the transaction had been modified by the

module. The Victim Block field holds the place in that cache that this data is to replace.

Typically, the requests are made by a higher-level memory module to a lower-level

module. The higher-level module changes the Source ID field to its own ID, therefore

ensuring that the response is sent through that module on its way back to the CPU. Since

the PRC was originally designed to be a second-level cache, the CaPSim PRC module is not

programmed to handle request and response handshaking in the same way as the Cache

Module, which is assumed to be the primary data cache in the hierarchy.

In a memory hierarchy with a traditional first-level cache and a PRC second-level

cache, write-miss requests are handled in such a way that the PRC does not receive the

response. Upon a write miss, the primary cache will send a request to the PRC and the PRC

is programmed to immediately forward the request to the buffer, without changing the

Source ID field of the request to its own Source ID. Leaving the Source ID field set to the

primary cache module ID results in the primary cache directly receiving the responses to

write-miss requests, completely bypassing the PRC module (Figure 4).

16

CPU
Module ID = 0

Write Response
Source ID = 1
Transfer Time

Write Response
Source ID = 3

Write Response
Source ID = 4

Write Request
Source ID = 0

LI Cache
Module ID = 1

Write Request
Source ID = 1

PRC
Module ID = 2

Write Request
Source ED = 1

Buffer
Module ID = 3

Write Request
Source ED = 3

Main memory
Module ID = 4

Figure 4. Original Memory Hierarchy Handshaking

This works very well in the memory configuration with a traditional-type first-level

cache, which is the memory configuration used by Altmisdort [Ref. 5]. The CaPSim cache

module is programmed to receive the response from the buffer and then calculate the

appropriate transfer time, which is then forwarded to the CPU. Once the write response is

17

received by the CPU, it waits the appropriate time until the transfer is complete and then the

CPU transitions out of the write stall state to fetch the next instruction.

The PRC Module behaves in the same manner when it is the primary cache as when

it is the secondary cache. As in the previous case, the PRC receives the write request from

the CPU and it forwards the request to the Buffer Module without changing the Source ID

to its own Module ID. The buffer then responds directly to the CPU. In this way, the

correct transfer time is not calculated when the buffer responds to the CPU (since that is

programmed into the Cache Module) (Figure 5). This becomes a problem when the CPU

prematurely transitions out of the write stall state and begins executing the next instruction

before the write transfer is complete.

CPU
Module ID = 0

Write Response
Source ID = 3
(no transfer time)

Write Request
Source ID = 0

PRC
Module ID = 1

Write Request
Source ID = 0

Buffer
Module ID = 3

Write Response
Source ID = 4

Write Request
Source ID = 3

Main memory
Module ID = 4

Figure 5. First-level PRC Handshaking

18

The solution involved modifying the PRC module so that it could handle write

requests and responses as a first-level cache. The new PRC module includes the ability to

modify the Source ID of write requests to its own Module ID. It further includes the ability

to receive write responses, calculate the transfer time and propagate the response to the CPU

(Figure 6).

CPU
Module ID = 0

Write Response
Source ID = 1
Transfer Time

Write Request
Source ID = 0

PRC
Module ID = 1

Write Response
Source ID = 3

Write Request
Source ID = 0

Buffer
Module ID = 3

Write Response
Source ID = 4

Write Request
Source ID = 3

Main memory
Module ID = 4

Figure 6. Revised First-level PRC Handshaking

A similar problem existed with the read request handshaking sequence. As with the

write request, the PRC Module was programmed to maintain the original Source ID of the

request and propagate it to its slave module. Also, the only type of read response the PRC

module was programmed to receive was prefetch requests. To distinguish between a CPU-

19

generated read request and a PRC-generated prefetch request, a new type of request had to

be created and included in the type definition of "transaction type". The PRC-generated

prefetch requests are designated a transaction type named "Prefetch". The CPU-generated

requests are a transaction type named "Read". The new PRC module will update the source

ID of a CPU-generated read request to its own module ID. This ensures the response will

be sent through the PRC. Upon receipt of a response, the PRC is able to distinguish

between a prefetch response and a read response. In the case of a read response, the PRC

will propagate the response to the CPU and, in the case of a response to a prefetch request,

the PRC will not propagate the response to the CPU.

The next problems encountered were with the number of cancels occurring in the

buffer module. With a PRC as a first-level cache, nearly every request made by the CPU,

resulted in the PRC sending a prefetch request. This caused the buffer module to fill

quickly and the need to cancel transactions happened more frequently. Problems arose

when a request from the CPU was canceled and the CPU would remain in a stalled state

forever because it did not receive an appropriate response. Assigning the prefetch requests

a lower priority than the CPU requests ensured the prefetch requests would be canceled

before the more important CPU requests.

C. TRADITIONAL CACHE VS. IPRC SIMULATION RESULTS

Figures 7-18 show the simulation results for direct-mapped cache, four-way set-

associative cache and fully associative Demand Driven Cache(DDC) and Predictive Read

Cache(PRC), respectively. Read hit rate and read access time are indicated. Results are

displayed for both the Kenbus20 and the Kenbus80 benchmarks.

1. Direct-Mapped First-level Cache Simulations

The direct-mapped first-level cache simulations are conducted with the traditional

demand driven cache and the PRC as first-level caches. The first-level cache size is varied

between 256 bytes and 512 Kbytes, with each simulation increasing the size by a factor of

20

two. Figures 7-10 summarize the results for the read hit rate and average read access times

respectively.

100.00%

90.00%

80.00%

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

- ■ —J'^ ■ - J - - - •---•...<._.). --I-.-I-.. I___L__

-■--;- --,-■--- -^- - - <sl—^' " * " '? " " ft " " k

-PRC

-DDC

CO CM
in 1-
<M in

it
CM

it .*
CO CM
T- CO CO

it JÜ Jt
CO CD CM
CM in i-
i- CM in

Cache Size

Figure 7. Hit Rate vs. Cache Size for Direct-mapped cache, Kenbus20

100.00%

90.00%

80.00%

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

0.00%

T • ■ r - • i ■ • T - • i - - T - - - - - •, - - -, ■ • -i - * -i - • -

.1 - - A A <>-—<>-*-^6-^-<>^T-6 - - 0^T-»^^-6^^

-PRC
-Cache

CD
in
CM

i- -i- CM
in

it
CO CM
i- CO

it
-t
CO

it it it
CO CO CM
CM in T-
i- CM in

First Level Cache Size

Figure 8. Hit Rate vs. Cache Size for Direct-mapped Cache, Kenbus80

21

_ 7
o>
CO

!6

O

I 5

01 u
u <
eo
O)

DC
0)
Dl
CO

<

 , . „- . -T~7T~V ...$... 9 . . -9r-r^-9

to
in
(M

(M

m
CM oo CD

to CO
CO
CM

CO m
CM

CM

Cache Size

Figure 9. Access Time vs. Cache Size for Direct-mapped cache, Kenbus20

-PRC

-Cache

Ji js: 3C -i: n
CM ■«r CO CO CM
CO CO CM in

T- CM m
First Level Cache Size

Figure 10. Access Time vs. Cache Size for Direct-mapped cache, Kenbus80

22

2. 4-Way Set-associative First-level Cache Simulations

The first-level cache simulations were repeated with the same cache sizes but with

4-way set associativity. The results are summarized in Figures 11-14.

■PRC

■DDC

J£ ü ^
CO CO CM
CM lO T-
i- CM m

Cache Size

Figure 11. Hit Rate vs. Cache Size for 4-way Set-associative cache, Kenbus20

o
co
EC

■a
a
a

DC

100.00%

90.00%

80.00%

70.00% ■

60.00% 4

50.00%

40.00%

30.00%

20.00%

10.00% f"*—■t>

0.00%

«—»- ^rO-.

™r* T

■PRC

-Cache

co CM
in T—

CM to
co

.* JA
CO CM
i- CO

1-
CD

-* .* J*
CO CO CM
CM Iß T-
i- CM IO

Cache Size

Figure 12. Hit Rate vs. Cache Size for 4-way Set-associative cache, Kenbus80

23

■PRC

■DDC

Cache Size

Figure 13. Access Time vs. Cache Size for 4-way Set-associative Cache, Kenbus20

-PRC

-Cache

.* -* JC
00 <o CM
CM If)
T— CM IT)

Cache Size

Figure 14. Access Time vs. Cache Size for 4-way Set-associative Cache, Kenbus80

3. Fully Associative First-level Cache Simulations

The first-level cache simulations were repeated with the same cache sizes but with

four-way set associativity. The results are summarized in Figures 15-18.

24

100.00%

90.00%

80.00%

70.00%

tc

■o a

-PRC

■DDC

Cache Size

Figure 15. Hit Rate vs. Cache Size for Fully Associative Cache, Kenbus20

©

cc

■o n
a>

DC

100.00%

90.00%

80.00%
70.00% i

60.00%

50.00% 4

40.00%

30.00%
20.00%

10.00% 4

0.00%

-PRC

-DDC

Cache Size

Figure 16. Hit Rate vs. Cache Size for Fully Associative Cache, Kenbus80

25

PRC

DDC

Cache Size

Figure 17. Access Time vs. Cache Size for Fully Associative Cache, Kenbus20

•PRC
-DDC

J£ jc J£
00 CD CM
CM in

CM in

Cache Size

Figure 18. Access Time vs. Cache Size for Fully Associative Cache, Kenbus80

D. TRADITIONAL CACHE VS. PRC SIMULATION CONCLUSIONS

The traditional demand-driven cache performance as a first-level cache far exceeds

that of a PRC. The read access times for the demand-driven cache are an average of 2.38

cycles across all associativity types simulated with the Kenbus80 benchmark and 2.14

26

cycles with the Kenbus20 benchmark. The read access time average for the PRC is 6.36

cycles across all associativity types simulated with the Kenbus80 benchmark and 5.89

cycles with the Kenbus20 benchmark, which is a decrease in performance of over two and a

half times. The demand-driven cache average read hit rate across all associativity types

simulated with the Kenbus80 benchmark is 84.07% and 86.56% with Kenbus20, while the

PRC average read hit rate is 17.86% and 23.19% respectively. Clearly, a first-level cache

which is purely predictive in nature is not feasible as a first-level cache.

27

28

IV. THE DEVELOPMENT AND SIMULATION OF A DEMAND PRC

The poor performance of the PRC as a first-level cache lead to a comparison of the

read miss patterns occurring in the PRC vs. a demand-driven cache. It was determined that

a large number of the read misses occurred in the PRC were data addresses that were being

accessed frequently but were not part of a data array. When a request for a data address is

made of the PRC and that request misses, the predicted data is the only data that is added to

the cache. The original request is not put in the cache as it is in a demand-driven cache.

During the simulations conducted by Altmisdort [Ref. 5] all original requests were stored in

the first-level demand driven cache. Future requests resulted in a read hit in the first-level

cache, the PRC (as a second-level cache) was never queried for the data.

The development of a new algorithm was proposed to combine the effects the

demand-driven cache and the PRC. The new cache will put both the original request data

into the cache as well as the predicted data.

A. FIRST-LEVEL DEMAND PRC CAPSBM CONFIGURATION

Major program changes were required within CaPSim to simulate the new

algorithm. The original PRC module only had the capability to store predicted data, not

requested data. The changes made to allow the PRC to act as a first-level cache simplified

the changes needed to make it a demand PRC.

The distinction of the read requests from the prefetch requests was the first step in

storing the demand data. The method for storing the prefetches was already coded into

29

CaPSim. Those procedures were copied and modified to handle a demand request vice a

prefetch request and added to the PRC logic module. The changes were made in such a way

as not to interfere with the prediction function of the logic.

B. FIRST-LEVEL DEMAND PRC SIMULATION RESULTS

Figures 19-36 show the simulation results for direct-mapped cache, four-way set-

associative cache and fully associative cache, respectively. Read hit rate, average read

access times and speed up are indicated.

1. Direct-Mapped First-level Cache Simulations

The direct-mapped first-level cache simulations are conducted with the traditional

demand driven cache and the PRC as first-level caches. The first-level cache size is varied

between 256 bytes to 512 Kbytes, with each simulation increasing the size by a factor of

two. Figures 19-22 summarize the results for the read hit rate and average read access times

respectively. Figures 23 and 24 show the speedup of the demand PRC over the traditional

demand driven cache as a function of cache size for Kenbus20 and Kenbus80 respectively.

-PRC

-DDC

CO CM J£ J£
W T- t- CM co to

CM in
I- CM in

Cache Size

Figure 19. Hit Rate vs. Cache Size for Direct-mapped cache, Kenbus20

30

100.00%

95.00%

90.00%

85.00%

80.00%

75.00%

70.00%

65.00%

60.00%

-PRC

-DDC

CO
in
CM

i- CM
2£

CO
XL J*
CD CM
T- CO s

Jd JA J*
CO CO CM
CM m T-
i- CM in

Cache Size

Figure 20. Hit Rate vs. Cache Size for Direct-mapped Cache, Kenbus80

The hit rate for a direct-mapped demand PRC provided an improvement of 0.4% to

3.21% in the Kenbus80 benchmarks and 0.85% to 2.33% with the Kenbus20 benchmarks.

An improvement was realized for all cache sizes simulated, with greater improvement

demonstrated in the 8Kbyte, 16Kbyte and 32Kbyte cache sizes.

^ 4.5 »

>» 4
13,

I 3.5
P

a> u
u
< 2.5
■o a
a. 2

0)

g 1.5
>
< 1

_ . - ^^-' ^V- _■._-! ------- ■_---l--_l-__L __-'_._'-_-

-PRC

-DDC

CO
IO
CM

CM
CO

.* J£ J£
co CO CM
CM m T—

CM in

Cache Size

Figure 21. Access Time vs. Cache Size for Direct-mapped Cache, Kenbus20

31

• s
ö 4.5-
ü r
O 4-
E

co
o 3 - u
<
•D 2.5-
(0
CD
cc 2-
o
D)
2 1.5-

I < 1 -

■ ■

, ,
'

•

JL^ '

1 ^""^^^-r -1

•

 ! i ! -—i

-PRC

-DDC

CD
lO
CM

T- i- CM
je je

c\i
co

je
■v
CD

je
co
CM

je
CD
ID
CM

Cache Size

Figure 22. Read Access Time vs. Cache Size for Direct-mapped Cache, Kenbus80

•a
o>
t>
a.
(0

6.00%

4.00%

2.00%

0.00%

-2.00%!

-4.00%

-6.00%

-8.00%

-10.00%

-12.00%

-14.00%

.

Jr^^ ' ^v
, ^/^' ^S. ■

c
u
c

> cu je J

1 - - -ubr v*
zy'^ J

1". - . ?
C J
5 _ _ C S- - -5 5- - - S- - -8\-S

rr CM \ U

'/

/ '

Cache Size

Figure 23. Speed Up vs. Cache Size for Direct-mapped Cache, Kenbus20

32

10.00%

5.00%

£ 0.00%
■o <*
a>

J- -5.00%

-10.00%

-15.00%

Cache Size

Figure 24. Speed Up vs. Cache Size for Direct-mapped Cache, Kenbus80

The speed up of the demand PRC over the traditional demand driven PRC for the

direct-mapped case ranges from 1.8% to 5.7%(Kenbus80) and 0.28% to 4.94%(Kenbus20),

with the maximum speed up in the 32Kbyte case. For cache sizes of 256 bytes to 4Kbytes

and sizes equal to and greater than 128Kbytes, the speedup is negative.

The reason for the bell-shaped speed up curve it two-fold. The speedup is negative

in the smaller cache sizes because the cache is attempting to put too many blocks into the

cache. Since nearly every CPU request will result in two blocks being placed in the cache

(the original request and the prefetch), in the smaller cache sizes the PRC will have more

conflict misses than the DDC. Speedup continues to increase until it reaches maximum and

then decreases, eventually becoming negative. This occurs because with the larger cache

sizes, the bandwidth between the cache and main memory saturates in the PRC case due to

the large number of data requests generated.

2. 4-Way Set-associative First-level Cache Simulations

The first-level cache simulations were repeated with the same cache sizes but with

4-way set associativity. The results are summarized in Figures 25-30.

33

100.00%

95.00%

2 90.00%
CO

EC

X 85.00%
■D a
a 80.00%

75.00% 4

70.00%

-PRC

■DDC

CDOJ-*-*.*-*.^.*.*^.*.*:
lOT-'r-CVJTCOtOCMVeOeOOJ cam i-cotocMio-i-

T- ca in

Cache Size

Figure 25. Hit Rate vs. Cache Size for 4-Way Set-associative Cache, Kenbus20

100.00%

95.00%

s re
EC

■D

O
oc

■PRC

•DDC

eo <o oj
CM IO i-
■^ oj in

Cache Size

Figure 26. Hit Rate vs. Cache Size for 4-way Set-associative Cache, Kenbus80

The hit rate for a 4-way set-associative demand PRC provided an improvement of

0.7% to 2.6% for cache sizes up to 256Kbytes with the Kenbus80 benchmark and 0.05% to

1.24% for Kenbus20. The greater improvement was again at the 8Kbyte, 16Kbyte and

32Kbyte cache sizes.

34

*r 4

3.5
u
>> u

I 3
CO
CO
<D
U
Ü <
•a a
O)

EC
a>
D)
CO

5

2.5

1.5

..._.I._.1_..J__.<- T^«| L- ._■__.!- -_J ___!___».-..

CO
CO
CM

CM

IS IN
2*

CO
CO
CM

co
m
CM

Cache Size

Figure 27. Access Time vs. Cache Size for 4-way Set-associative Cache, Kenbus20

Cache Size

Figure 28. Access Time vs. Cache Size for 4-way Set-associative Cache, Kenbus80

35

■B
01
0) a
to

4.00%

2.00%

0.00%

-2.00% ^ - - -so.

-4.00%

-6.00%

-8.00%

-10.00%

-12.00%

Cache Size

Figure 29. Speed up vs. Cache Size for 4-way Set-associative Cache, Kenbus20

a a
a.

CO

5.00%

0.00%

-5.00%

10.00%

-15.00%

-20.00%

-25.00%

Cache Size

Figure 30. Speed Up vs. Cache Size for 4-Way Set Associative Cache, Kenbus80

The speedup for the 4-way set-associative organization ranges from 1% to

4.3%(Kenbus80) and 0.75% to 3.66%(Kenbus20) with a maximum at a cache size of

64Kbytes. The speedup is negative for cache sizes up to and including 2Kbytes and equal

to or greater than 128Kbytes for the Kenbus80 benchmark. With the Kenbus20 benchmark,

the speedup is negative for cache sizes up to and including 4Kbytes and cache sizes equal or

36

greater than 256Kbytes. The 4-way set-associative organization also displays the same bell-

shaped speed up curve as the direct-map case.

3. Fully Associative First-level Cache Simulations

The first-level cache simulations were repeated with the same cache sizes but with

full associativity. The results are summarized in Figures 31-36.

95.00% -

a 90.00% -
«

GC

X 85.00% •
TJ
(O

a 80.00% -

75.00% •

70.00% <

•

sv

-PRC
-DDC

03 CM .* Jt
in i- y- CM
CM IO

■*CO<DCM'*0O(DCM
i- CO CD CM IO r-

i- CM W

Cache Size

Figure 31. Hit Rate vs. Cache Size for Fully Associative Cache, Kenbus20

100.00%

95.00%

3 a a

•a
CO a
a

PRC
DDC

jü A JC
CO CO CM
CM in T-
i- CM IO

Cache Size

Figure 32. Hit Rate vs. Cache Size for Fully Associative Cache, Kenbus80

37

The hit rate for fully associative case provided an improvement of 0.3% to 2.7%

(Kenbus80) and 0.03% to 1.57%(Kenbus20) with greater improvement in cache sizes from

16Kbytes to 128Kbytes.

O) <
CO

P
O 3.5;

^™" L
0)

O)
(0
0)
8 2.5-
<
■o
(8 o .
CO e-

OC
CO

8s 1.5-
k.
V >
< 1-

t

>v ^v

■PRC

■DDC

CD
in
CM

CM

in
CM oo CD oo

CM
CO
in
CM

CM

Cache Size

Figure 33. Access Time vs. Cache Size for Fully Associative Cache, Kenbus20

-PRC

-DDC

Cache Size

Figure 34. Access Time vs. Cache Size for Fully Associative Cache, Kenbus80

38

Q.
3

a
a.
m

6.00%

4.00%

2.00%

0.00%

-2.00%!

-4.00%

-6.00%

-8.00%

-10.00%

-12.00%

-14.00% ;

-16.00%

, L

,
' S^ \

, ^/r \
c
n
c

) CM .* ^ JC -* _s& ■* •* a V
3 *- ^~... CV1 ...■*... CO. ^^ CD . . . CM . . •* - - JP. - - - S
I - - 'if)" ---. ---T---I- - f^^ T- CO CD CM a

i c!
► T *

. /

' ^*J9

jy~"^>

*r

r : :
Cache Size

Figure 35. Speed Up vs. Cache Size for Fully Associative Cache, Kenbus20

15.00%

10.00%

5.00%

ID
O

* -5.00%*

-10.00%

-15.00%

Cache Size

Figure 36. Speed Up vs. Cache Size for Fully Associative Cache, Kenbus80

The speedup for the fully associative organization ranges from 2% to

8.3%(Kenbus80) and 1.24% to 4.23%(Kenbus20), with a maximum speedup at a cache size

of 128Kbytes. Negative speedup occurs in cache sizes up to and including

8Kbytes(Kenbus80) 16Kbytes(Kenbus20) and greater than or equal to 256Kbytes. The

same general bell-shaped speed up curve is again observed in the fully associative case.

39

C. FIRST-LEVEL DEMAND PRC CONCLUSIONS

The first-level demand PRC read hit rate is an improvement when compared with

the read hit rate of a traditional purely demand-driven cache.

The improvement in the average read access time of the demand PRC was less than

that identified in the hit rate. There are instances when the hit rate for the demand PRC is

higher than that of the traditional cache but the average read access is higher for the demand

PRC. The reason the PRC does not produce any speedup in these cases is due to the stall

cycle encountered when the PRC is trying to forward a read request it received from the

CPU but the buffer is busy handling a previous request.

The demand PRC demonstrated an improvement in performance in most cases. The

most consistent performance improvement was observed in cache sizes ranging from

16Kbytes to 64Kbytes.

40

V. THE DEVELOPMENT AND SIMULATION OF A PRIORITY-DEMAND PRC

The hit rate improvement of the demand PRC over the purely demand driven cache

is quite significant. However, the read access time and overall speedup is not as significant

and, in some cases, there is a negative impact. A study of the timing issues revealed that the

speedup improvement is hindered by the overload in the Buffer Module caused by the

prefetch requests. An improvement of the demand PRC algorithm was developed which

prioritizes the buffer tasks and ensures the read requests that originate with the CPU are

handled as quickly as possible, even at the price of preempting a prefetch request which is

in the process of being transferred.

A. PRIORITY-DEMAND PRC CAPSIM CHANGES

In order for the read requests to be handled in a prioritized order, the Buffer Module

of CaPSim was modified. Transactions are assigned a priority based upon the type of

transaction: read or prefetch. Transactions of the read type are the CPU requested read data

and have the higher priority. Transactions of the prefetch type originate in the PRC module

and have the lower priority. The new CaPSim Buffer Module preempts any prefetch

transaction when an incoming read request arrives. This ensures the read requests will be

completed as expeditiously as possible.

B. FIRST-LEVEL PRIORITY-DEMAND PRC SIMULATION RESULTS

Figures 37-54 show the simulation results for direct-mapped cache, four-way set-

associative cache and fully associative cache, respectively. Read hit rate, average read

access times and speed up are indicated.

1. Direct-Mapped First-level Cache Simulations

The direct-mapped first-level cache simulations are conducted with the traditional

demand driven cache and the PRC as first-level caches. The first-level cache size is varied

from 256 bytes to 512 Kbytes, with each simulation increasing the size by a factor of two.

41

Figures 37-40 summarize the results for the read hit rate and average read access times

respectively. Figures 41 and 42 shows the speedup of the demand PRC over the traditional

demand driven cache as a function of cache size.

100.00%

95.00%

90.00%

85.00%

80.00%

75.00%

70.00%

65.00%

■PRC

■DDC

tD CM

(M m
CM CO

M :* XL JÜ id
CM s CO CO CM
CO CM in

▼- CM m
Cache Size

Figure 37. Hit Rate vs Cache Size for Direct-mapped Cache, Kenbus20

S
a

DC

X
■D
CO
CO

BE

-PRC

-DDC

Cache Size

Figure 38. Hit Rate vs. Cache Size for Direct-mapped Cache, Kenbus80

The hit rate for a direct-mapped demand priority PRC provided an improvement of

0.3% to 3.21%(Kenbus80) and 0.77% to 2.3%(Kenbus20) over a demand driven cache. An

improvement was recognized through all cache sizes (with the exception of the 512k size

42

for the Kenbus80 benchmark) simulated with greater improvement demonstrated in the

8Kbyte, 16Kbyte and 32Kbyte cache sizes.

■ST ifo_

o

& i
£ 3.5-

S 3- <u
o
< 2.5-
■o
a

OC 2 "
a>

«1.5
<D

^ 1-

'

\Ss

~*i^ 'TT I

i i i i 1

-PRC

-DDC

m
CM

CM co CM
CO CO

co co
CM in
T- CM

Cache Size

Figure 39. Access Time vs. Cache Size for Direct-mapped Cache, Kenbus20

•PRC

-DDC

Cache Size

Figure 40. Access Time vs. Cache Size for Direct-mapped Cache, Kenbus80

43

6.00%

4.00%

-8.00%

Cache Size

Figure 41. Speed Up vs. Cache Size for Direct-mapped Cache, Kenbus20

3
■o
O

8.

6.

4.

2.

0.

-2.

-4.

-6.

-8.

-10.

00%

00%

00%

00%

00%

00%

00%

00%

00%

00%

■^^C».

• ^s^~^ '
/•

S\

t
u
c

> CM 4

t - - vr ~S ~
rCU<a-C0<OCM^StCDCJ

T7 \ cy u)

,
. ^k

. J
Cache Size

Figure 42. Speed Up vs. Cache Size for Direct-mapped Cache, Kenbus80

The speed up of the priority-demand PRC over the traditional demand driven cache

for the direct-mapped case varied from 1.6% to 7%(Kenbus80) and 0.91% to

6.9%(Kenbus20), with the maximum speed up in the 32Kbyte case. For cache sizes of 256

bytes to lKbytes(Kenbus80) or 2Kbytes(Kenbus20) and sizes equal to and greater than

128Kbytes(Kenbus80) or 256Kbytes(Kenbus20), the speedup is negative. This speed up

44

plot maintains the bell-shaped pattern of the direct-mapped demand PRC plot, but the

maximum speedup is greater and more cache sizes provide a positive speed up.

2. 4-Way Set-associative First-level Cache Simulations

The first-level cache simulations were repeated with the same cache sizes but with

4-way set associativity. The results are summarized in Figures 43-48.

100.00%

-PRC

•DDC

70.00%
CO CM JC
CO T- T-
CM m

it it it
co co CM

i- co

X. XL X.
CO CO CM
CM m T-
T- CM in

Cache Size

Figure 43. Hit Rate vs. Cache Size for 4-way Set-associative Cache, Kenbus20

100.00%

95.00%

90.00%

85.00%

■g 80.00%
Co
CD

C 75.00%

70.00%

65.00%

-PRC

-DDC

«O CM JÜ
in -r- i-
CM W

2Ä it
CO CM
t- CO s

iC it it
CO CO CM
CM in i-
i- CM in

Cache Size

Figure 44. Hit Rate vs. Cache Size for 4-way Set-associative Cache, Kenbus80

45

The hit rate for a 4-way set-associative priority-demand PRC provided an

improvement of 0.7% to 2.6%(Kenbus80) and 0.03% to 1.75%(Kenbus20) for cache sizes

up to 256Kbytes. The greater improvement was observed for the 8Kbyte, 16Kbyte,

32Kbyte and 64KByte cache sizes.

3.5 j

O)

ö
& "
d>
E

» 2.5-
(0
0) u u
t 2-
a
0)

EC
0)

k.

1 -

PRC

DDC

to
in
CO

CM

15 CM
CO

CO
in
CM

Cache Size

Figure 45. Access Time vs. Cache Size for 4-way Set-associative Cache, Kenbus20

-. 4 en
o
"o
g- 3.5

■i 3
w
(0
8 2.5
ü <
I 2
DC
CO

< 1

-PRC

■DDC

CO
m
CM

T- i- CM CM
CO

^ J£ J£
00 CD CM
CM m T—

▼- CM in

Cache Size

Figure 46. Access Time vs. Cache Size for 4-way Set-associative Cache, Kenbus80

46

Cache Size

Figure 47. Speed Up vs. Cache Size for 4-Way Set-associative Cache, Kenbus20

10.00%

Cache Size

Figure 48. Speed Up vs. Cache Size for 4-Way Set-associative Cache, Kenbus80

The speedup for the 4-way set-associative organization ranges from 1.5% to

5.3%(Kenbus80) and 0.27% to 4.45%(Kenbus20) with a maximum at a cache size of

64Kbytes. The speedup is negative for cache sizes up to and including 512bytes(Kenbus20)

or lKbytes(Kenbus80) and equal to or greater than 128Kbytes(Kenbus80) or

256Kbytes(Kenbus20). The speedup plot is similar in shape to the 4-way set associative

47

demand PRC speedup plot in the previous chapter, but the maximum speed up is greater

and a wider range of cache sizes generate positive speed up.

3. Fully Associative First-level Cache Simulations

The first-level cache simulations were repeated with the same cache sizes but with

full associativity. The results are summarized in Figures 49-54.

a
CC

•o
CO a>

DC

95.00% -

90.00% -

85.00% -

80.00% -

75.00% -

70.00% <

■

j^

'//

-PRC

-DDC

CO CM
in i-
CM in

CD CM
T- CO CO

oo co
CM in
i- CM

CM

Cache Size

Figure 49. Hit Rate vs. Cache Size for Fully Associative Cache, Kenbus20

100.00%

95.00%

CO
EC

CO
CD

DC

-PRC

-DDC

CO CO CM
CM in •>-
T- CM in

Cache Size

Figure 50. Hit Rate vs. Cache Size for Fully Associative Cache, Kenbus80

48

The hit rate for the fully associative case provided an improvement of 0.3% to

2.7%(Kenbus80) and 0.05% to 1.56%(Kenbus20), with greater improvement in cache sizes

from 16Kbytes to 128Kbytes.

PRC

DDC

Cache Size

Figure 51. Access Time vs. Cache Size for Fully Associative Cache, Kenbus20

PRC

DDC

Cache Size

Figure 52. Access Time vs. Cache Size for Fully Associative Cache, Kenbus80

49

-8.00%

Cache Size

Figure 53. Speed Up vs. Cache Size for Fully Associative Cache, Kenbus20

10.00%

-15.00%

Cache Size

Figure 54. Speed Up vs. Cache Size for Fully Associative Cache, Kenbus80

The speedup for the fully associative organization ranges from .5% to

9.6%(Kenbus80) and 1.24% to 5.42%(Kenbus20), with a maximum speedup at a cache size

of 128Kbytes. Negative speedup occurs in cache sizes up to and including

2Kbytes(Kenbus80) or 8Kbytes(Kenbus20) and greater than or equal to 256Kbytes. The

20% drop in speed up observed in the Kenbus80 benchmark from 128Kbytes to 256Kbytes

seems to be a factor in the DDC's response to the benchmark. The PRC's read access times

50

remain smooth but the DDC has a large decrease in read access time and, correspondingly, a

large jump in the hit rate between 128Kbyte and 256Kbyte cache sizes.

C. FIRST-LEVEL PRIORITY-DEMAND PRC CONCLUSIONS

The first-level priority-demand PRC read-hit rate is an improvement when

compared with the read-hit rate of a traditional purely demand-driven cache.

The improvement in the average read access time of the priority-demand PRC was

much better than that demonstrated in the demand PRC. The priority preemption of tasks in

the buffer module successfully lowered the average read-access rate.

The priority-demand PRC demonstrated an improvement in performance in the

majority of cache sizes. The most consistent performance improvement was observed in

cache sizes ranging from 16Kbytes to 64Kbytes.

51

52

VI. CONCLUSIONS

A. EFFECTIVENESS OF THE PRC AS A FIRST-LEVEL CACHE

Li this thesis, the Predictive Read Cache was accurately simulated as a first-level

cache. CaPSim simulation results for both the PRC algorithm and a traditional demand-

driven cache were presented. The poor performance of the PRC as a first-level cache lead

to the development of a demand PRC which was shown by simulation to have a much

higher performance than the original PRC.

The hit rate performance of the demand PRC was higher than that of a traditional

cache, but it was felt that the overall speedup could be improved. By designing the buffer

module to preempt prefetch transactions in progress, the speedup was improved. The

priority-demand PRC dramatically increased the performance of the first-level cache.

B. SUGGESTION FOR FUTURE DEVELOPMENT

The performance of the PRC as a first-level cache can be investigated further by

simulating larger address traces of different types. In particular, the new SPEC 98

benchmarks will be available soon and will provide longer address traces to more accurately

simulate the performance of the PRC. Different types of address traces, such as those from

the SPEC suite rather than the SDM suite, will more accurately reflect the scientific, vice

multitasking, environment, for which the PRC is intended.

A larger set of design alternatives can also be simulated. Experimenting with block

sizes and different types of set associativity may reveal an optimal configuration for the

53

memory hierarchy with a PRC. The CaPSim cost analysis tool can be further developed

and used to evaluate the cost-performance trade-off of the PRC as a first-level cache.

54

APPENDIX A. AN EXAMPLE CAPSEM CONFIGURATION FILE

The following is an example of a configuration file used for the simulations of the

Predictive Read Cache as a first-level cache:

CaPSim Configuration File
Author : K. Christensen
#Revised: 28OCT97

simulation
{

Word Size
Input Path
Output Path
Trace Type
Trace Filename
Start File Number
Stop File Number
Trace Buffer Size
User E-mail Address

}

= 4
= /data_tehe/altmisdo/Kenbus80/output/
= iPRC_64k/
= PRC
= skenPRC.*****
= 0
= 99
= 10000
= kschrist@nps.navy.mil

hierarchy
{

pre
buffer
memory

PRC
Buffed
MainMemory

module PRC
{

Prediction Algorithm
PRC size
Block Size
Associativity
SubBlock Size
Replacement Policy
Write Policy
Access Time

= Instruction Address Displacement
= 65536
= 16
_ *

= 4
= LRU
= Write Through
= 1

55

Block Buffer Transfer Time = 1
Bypass Write Allocates = Yes
Maximum read slips in buffer = 2
Minimum read size in buffer =12

}

module Buffer 1
{

Read Buffer Size = 8
Write Buffer Size = 4
Write Buffer Block Size =16
Enforce Priorities = Yes
Remove Duplicates = Yes

}

module MainMemory
{

Access Time =5
Transfer Time = 1
Transfer Size = 4

}

56

APPENDIX B. AN EXAMPLE CAPSIM CONFIGURATION FILE

The following is an example of a configuration file used for the simulations of a

traditional demand driven cache as a first-level cache.

#■

CaPSim Configuration File
Author : Kathryn Christensen
#Revised:MarchlO,1998

simulation
{

Word Size = 4
Input Path = /data_tehe/camligun/Kenbus80/input/
Output Path = Ll_64k/
Trace Type = BYU
Trace Filename — CKPTI !£%3FSp5fc

Start File Number = 0
Stop File Number = 99
Trace Buffer Size = 1000
User E-mail Address

}
= kschrist@nps.navy.mil

hierarchy
{

cache Cache LI
buffer Buffed
memory MainMemory

}

module CacheLl
{

Cache Size = 65536
Block Size = 16
SubBlock Size = 4
Fetch Size = 16
Transfer Size = 4
Associativity _ *

Replacement Policy = LRU
Write Policy = Write Through

57

Write Miss Policy = Write Around
Wrapping Fetch Policy = Wrap Up
Access Time = 1
Read Hit Time = 0
Read Miss Time = 0
Write Hit Time = 0
Write Miss Time = 0
Read Forward = No
Enable Block Buffer = Yes
Search Block Buffer = Yes
Block Buffer Transfer Time = 1

module Buffed
{

Read Buffer Size =8
Write Buffer Size = 4
Write Buffer Block Size =16
Enforce Priorities = Yes
Remove Duplicates = Yes

}

module MainMemory
{

Access Time =5
Transfer Time = 1
Transfer Size = 4

}

58

APPENDIX C. AN EXAMPLE CAPSIM LOG FILE

ICaPSim]
 P

Log File F. Nadir ALTMISDORT1
1 Sat May 2 01:52:091998 1
J u

.dfrarfincr /wrvfimircifirvn

CPU Reading Configuration File... [OK]
CPU Checking Syntax... [OK]
CPU Setting Simulation Parameters... [OK]
CPU Checking Memory Hierarchy... [OK]
CPU Checking Input/Output Paths... [OK]
CPU Starting Self-Test... [OK]

Initializing simulation module CacheLl [1]
CacheLl Cache Size [OK]
CacheLl Block Size [OK]
CacheLl SubBlock Size [OK]
CacheLl Fetch Size
CacheLl Transfer Size [OK]
CacheLl Associativity [OK]
CacheLl Replacement Policy [OK]
CacheLl Write Policy [OK]
CacheLl Write Miss Policy [OK]
CacheLl Wrapping Fetch Policy [OK]
CacheLl Access Time [OK]
CacheLl Read Hit Time [OK]
CacheLl Read Miss Time [OK]
CacheLl Write Hit Time [OK]
CacheLl Write Miss Time [OK]
CacheLl Read Forward [OK]
CacheLl Enable Block Buffer [OK]
CacheLl Search Block Buffer [OK]
CacheLl Block Buffer Transfer Time [OK]
CacheLl Starting Self-Test... [OK]

Initializing simulation module Buffer 1 [2]
Bufferl Read Buffer Size [OK]
Bufferl Write Buffer Size [OK]
Bufferl Write Buffer Block Size :[OK]

:[OK]

59

Buffer 1 Enforce Priorities
Buffer 1 Remove Duplicates
Bufferl Starting Self-Test...

Initializing simulation module MainMemory
MainMemory Access Time
MainMemory Transfer Time
MainMemory Transfer Size
MainMemory Starting Self-Test...

Finalizing simulation modules...
CPU Finalize...
CacheLl Finalize...
Bufferl Finalize...
MainMemory Finalize...

[OK]
[OK]
[OK]

[3]
[OK]
[OK]
[OK]
[OK]

[OK]
[OK]
[OK]
[OK]

CaPSim configuration completed successfully @ Sat May 2 01:52:10 1998

Starting simulation
Opening file /data.
Opening file /data.
Opening file /data.
Opening file /data.
Opening file /data.
Opening file /data.
Opening file /data.
Opening file /data.
Opening file /data.
Opening file /data.
Opening file /data.
Opening file /data.
Opening file /data.
Opening file /data.
Opening file /data.
Opening file /data.
Opening file /data.
Opening file /data.
Opening file /data.
Opening file /data.
Opening file /data.
Opening file /data.
Opening file /data.
Opening file /data.

.tehe/camligun/Kenbus80/input/sken.
tehe/camligun/Kenbus80/input/sken.
.tehe/camligun/Kenbus80/input/sken.
.tehe/camligun/Kenbus80/input/sken.
.tehe/camligun/Kenbus80/input/sken.
tehe/camligun/Kenbus80/input/sken.
.tehe/camligun/Kenbus80/input/sken.
.tehe/camligun/Kenbus80/input/sken.
_tehe/camligun/Kenbus80/input/sken.
.tehe/camligun/Kenbus80/input/sken.
.tehe/camligun/Kenbus80/input/sken.
tehe/camligun/Kenbus80/input/sken.
.tehe/camligun/Kenbus80/input/sken.
.tehe/camligun/Kenbus80/input/sken.
tehe/camligun/Kenbus80/input/sken.
_tehe/camligun/Kenbus80/input/sken.
_tehe/camligun/Kenbus80/input/sken.
.tehe/camligun/Kenbus80/input/sken.
.tehe/camligun/Kenbus80/input/sken.
_tehe/camligun/Kenbus80/input/sken.
_tehe/camligun/Kenbus80/input/sken.
_tehe/camligun/Kenbus80/input/sken
tehe/camligun/Kenbus80/input/sken
_tehe/camligun/Kenbus80/input/sken

00000: [OK]
00001: [OK]
00002: [OK]
00003: [OK]
00004: [OK]
00005: [OK]
00006: [OK]
00007: [OK]
00008: [OK]
00009: [OK]
00010: [OK]
00011: [OK]
00012: [OK]
00013: [OK]
00014: [OK]
00015: [OK]
00016: [OK]
00017: [OK]
00018: [OK]
00019: [OK]
00020: [OK]
00021: [OK]
00022: [OK]
00023: [OK]

60

Opening file /data_tehe/camligun/Kenbus80/input/sken.00024 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.0OO25 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00026 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00027 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00028 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00029 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00030: [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00031: [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00032: [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00033 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00034 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00035 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00036 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00037 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00038 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00039 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00040: [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00041 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00042: [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00043 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00044 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00045 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00046 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00047 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00048 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00049: [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00050: [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00051: [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00052: [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00053 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00054: [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00055 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00056: [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00057 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.OOO58 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00059 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00060: [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00061: [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00062 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00063 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00064 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00065 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00066: [OK]

61

Opening file /data_tehe/camligun/Kenbus80/input/sken.00067 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00068 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.0OO69 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00070: [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00071: [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00072 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00073 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00074 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00075 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00076: [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00077 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00078 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00079 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00080 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00081: [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00082 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00083 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00084 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.OO085 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00086 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.OO087 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00088 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.OO089 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.OO090 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00091 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00092 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00093 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00094 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.OO095 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.0O096 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.0O097 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00098 : [OK]
Opening file /data_tehe/camligun/Kenbus80/input/sken.00099 : [OK]

The simulation is completed successfully @ Sat May 2 04:23:58 1998

Dumping simulation modules...
CPU Dumping Ll_64k/CPU_dump.00099
CacheLl Dumping Ll_64k/CacheLl_dump.OO099
Bufferl Dumping Ll_64k/Bufferl_dump.00099
MainMemory Dumping Ll_64k/MainMemory_dump.00099

Closing Log File @ Sat May 2 04:23:59 1998

62

[OK]
[OK]
[OK]
[OK]

APPENDIX D. AN EXAMPLE OUTPUT FILE FOR THE CPU MODULE

I Module Title
I Module ID
I Configuration
H

:CPU
0
:L1 64k

I
Sat May 2 04:23:58 1998

System Clock: 0071595011

Operating Parameters

Number of Simulation Modules 4
Word Size 4
Trace Type B YU Trace
Trace Filename /data_tehe/camligun/Kenbus80/input/sken.00099
Start File Number 0
Stop File Number 99
Maximum Trace Buffer Size 1000
Current Trace Buffer Index 928
Last Entry in Trace Buffer

Simulation Set

928

_l—+
101

H—+
I CPU
+
I CacheLl

I Bufferl

111
-H +

121

I MainMemory 13 I
H +_„+

Event Queue Contents

-+
ICaPSim Event Queue I
I Size: 00 ©00715950111
^ h

Number of Canceled Events : 0

63

Module States

CPU State ©0071595011:
CacheLl State ©0071595011 :
Bufferl State ©0071595011 :
MainMemory State ©0071595011

ReadStall
Idle Block Buffer: Idle
Idle
Idle

Statistics

Total Number of Requests
Total Number of Read Requests
Total Number of Write Requests
Total Read Stall Cycles
Total Write Stall Cycles
Average Read Access Time
Average Write Access Time

7122928
4901106
2221822
8829458
2221825
1.80152357
1.00000131

END OF FILE [Ll_64k/CPU_dump.0OO99]

64

APPENDIX E. AN EXAMPLE OUTPUT FILE FOR THE CACHE MODULE

+-
I Module Title : CacheLl
I Module ID : 1
I Configuration : Ll_64k
H

I
I

Sat May 2 04:23:58 19981
 +

System Clock: 0071595011

Operating Parameters

Cache Size
Block Size
Sub-Block Size
Fetch Size
Transfer Size
Associativity
Number of Sets
Total Number of Blocks
Number of Sub-Blocks
Replacement Policy
Write Policy
Write Miss Policy
Wrapping Fetch Policy
Start Policy
Read Forward
Enable Block Buffer
Search Block Buffer
Read Access Time
Write Access Time
Read Hit Time
Read Miss Time
Write Hit Time
Write Miss Time
Block Buffer Transfer Time

65536
16
4
16
4
4096 (Fully associative)
1
4096
4
LRU
Write Through
Write Around
Wrap Up
Cold Start
No
Yes
Yes
1
1
0
0
0
0
1

Address Decoder ■

+- -+--H—h+-
133222222222211111111110O0O0OI00I0OI It: tag bits = 281
I1098765432109876543210987654I32I10I Is : set bits = 001

65

+- -+--H—h lw : word bits = 021
tttttlwwlbbl lb : byte bits = 021
 +--+--+ H +

Block Address Mask fffffffOhex
Sub-block Address Mask fffffffchex
Word Address Mask fffffffchex
Set Number Mask 00000000 hex
Sub-block Number Mask 0000000c hex
Word Number Mask 0000000c hex
Word Byte Number Mask 00000003 hex
Block Byte Number Mask OOOOOOOfhex

Stati stips - WlULldLil/O ————...

Total Number Of Read Reque; >ts : 4901106
Total Number Of Write Reques ;ts : 2221822
Number Of Read Requests : 4901106
Number Of Write Requests 2221822
Number Of Read Cancels 0
Number Of Write Cancels 0
Number Of Read Hits 4457572
Number Of Write Hits 1470170
Number Of Dirty Read Misses 0
Number Of Dirty Write Misses 0

Global Read Hit Ratio : 0.90950328
Global Read Miss Ratio : 0.09049672

Global Write Hit Ratio : 0.66169566
Global Write Miss Ratio : 0.33830434

Local Read Hit Ratio : 0.90950328
Local Read Miss Ratio : 0.09049672

Local Write Hit Ratio : 0.66169566
Local Write Miss Ratio : 0.33830434

Dirty Read Miss Ratio 0.00000000
Dirty Write Miss Ratio 0.00000000
Dirty Read Miss Percentage 0.00000000%
Dirty Write Miss Percentage 0.00000000%

66

Read Miss Cycles : 4256988
Read Miss Penalty : 9.59788418

Block Buffer Read Hits :0
Block Buffer Write Hits :0

Block Buffer Read Hit Ratio : 0.00000000
Block Buffer Write Hit Ratio : 0.00000000

END OF FILE [Ll_64k/CacheLl_dump.00099]

67

68

APPENDIX F. AN EXAMPLE OUTPUT FILE FOR THE PRC MODULE

I Module Title : PRC
I Module ID : 1
I Configuration : iPRC_64k
^

I

FriApr24 14:31:48 19981
 1-

System Clock: 0091740833

Operating Parameters

PRC Algorithm :
PRC Size

Instruction Address Displacement
65536

Block Size : 16
Sub-Block Size 4
Fetch Size : 16
Transfer Size 4
Associativity
Number of Sets

4096 (Fully associative)
1

Total Number of Blocks 4096
Number of Sub-Blocks 4
Replacement Policy
Write Policy
Write Miss Policy
Bypass Write Allocates

LRU
Write Through
Write Around
Yes

Read Access Time 1
Write Access Time 1
Read Hit Time 0
Read Miss Time :0
Write Hit Time :0
Write Miss Time :0
Block Buffer Transfer Time :1

Address Decoder

INSTRUCTION ADDRESS DECODER:

13322222222221111111111000000001001 It: tag bits =
—+

= 301
110987654321098765432109876543211011s
H _ 1~ ++.

set bits: = 001
 +

69

Itt
+- —\ h

Instruction Tag Mask : fffffffc hex
Instruction Set Mask : 00000000 hex

DATA ADDRESS DECODER:

^ H—i—M +

13322222222221111111111000000I00I00I It: tag bits = lcl
I1098765432109876543210987654I32I10I Is : set bits = 001
H H—i—h |w : word bits = 021

Ittttt
+-

tlwwlbbl lb : byte bits = 021
 H—1—+ ^

Block Address Mask
Sub-block Address Mask
Word Address Mask
Set Number Mask
Sub-block Number Mask
Word Number Mask
Word Byte Number Mask
Block Byte Number Mask

Statistics

fffffffOhex
fffffffc hex
fffffffc hex
00000000 hex
OOOOOOOchex
0000000c hex
00000003 hex
OOOOOOOfhex

Total Number Of Read Requests 4900537
Total Number Of Write Requests 2221356
Number Of Read Requests 4900537
Number Of Write Requests 2221356
Number Of Read Cancels 378
Number Of Write Cancels 0
Number Of Read Hits 1848517
Number Of Write Hits 616829
Number Of Transfer Stalls 0

Total Hits 1815494
Partial Hits 33023
Total Misses 65937
Partial Misses 2986083
Maximum Write Hits 569824

Number Of Prefetch Requests 2076607

70

Number Of Invalid Predictions
Wrap-Around From Left
Wrap-Around From Right
Prediction in the Same Block
Maximum Pending Prefetches

2790907
11502
134
2779271
265967

Global Read Hit Ratio
Global Read Miss Ratio

0.37720704
0.62279296

Global Write Hit Ratio
Global Write Miss Ratio

0.27768129
0.72231871

Local Read Hit Ratio
Local Read Miss Ratio

0.37720704
0.62279296

Local Write Hit Ratio
Local Write Miss Ratio

0.27768129
0.72231871

Block Buffer Read Hits
Block Buffer Write Hits

2589
4

Block Buffer Read Hit Ratio
Block Buffer Write Hit Ratio

0.00052831
0.00000180

END OF FILE [iPRC_64k/PRC_dump.00099]

71

72

APPENDIX G. AN EXAMPLE OUTPUT FILE FOR THE BUFFER MODULE

I Module Title : Bufferl
I Module ID :2
I Configuration : Ll_64k
H

Sat May 2 04:23:581998
-+

System Clock: 0071595011

Operating Parameters

Read Buffer Size
Write Buffer Size
Write Buffer Block Size
Enforce Priorities
Remove Read Duplicates
Remove Write Duplicates
Search Read Buffer
Search Write Buffer

:8
:4
:16
:Yes
:Yes
:Yes
:Yes
:Yes

Read Buffer Contents

+-
I READ BUFFER [EMPTY]
I Access In Progress
I # Pushes Attempted
I # Pushes Granted
I # Pushes Rejected
H

0/8 I
No I
443534 I
443534 I
0 I
 +

Write Buffer Contents

I WRITE BUFFER [EMPTY]
I Access In Progress
I # Pushes Attempted
I # Pushes Granted
I # Pushes Rejected

 +
0/4 I
No I
2221822 I
2221822 I
0 I
 +

Statistics

73

Total Number Of Read Requests
Total Number Of Write Requests
Number Of Read Requests
Number Of Write Requests

4901106
2221822
443534
2221822

READ BUFFER:
Number of Requests Slipped
Number of Requests Dropped
Total Number of Matches
Number of Matches (Low-High)
Number of Matches (High-Low)
Instruction Address Matches
Victim Block Matches
Total Write Hits
Partial Write Hits

WRITE BUFFER:
Number of Inclusive Merges
Number of Adjacent Merges
Total Number of Matches
Number of Matches (Low-High)
Number of Matches (High-Low)
Total Read Hits
Partial Read Hits

0
735990
0
0
0
0
0

END OF FILE [Ll_64k/Bufferl_dump.00099]

74

APPENDIX H. AN EXAMPLE OUTPUT FILE FOR THE MAIN MEMORY

MODULE

H

1 Module Title : MainMemory

 +
1

1 Module ID :3 1
1 Configuration
j

: Ll_64k Sat May 2 04:23:5919981
 1-

System Clock: 0071595011

Operating Parameters

Memory Access Time : 5
Memory Transfer Time : 1

Number Of Read Requests
Number Of Write Requests
Number Of Read Cancels
Number Of Write Cancels

443534
1484334
0
0

Total Number Of Cycles
Number Of Idle Cycles
Number Of Read Cycles
Number Of Write Cycles

11372060
60222951
3548272 [31.20%]
7823788 [68.80%]

Total Memory Utilization
Memory Read Utilization
Memory Write Utilization

0.15883873
: 0.04956033
: 0.10927840

Average Read Service Time
Average Write Service Time
Global Read Service Time
Global Write Service Time

TJMT» OT7 T7TT P l"T 1 6AV/\A->in\/!f*mnr\/

: 8.00000000
: 5.27090788
: 0.72397375
: 3.52133870

Hiiror» nnnocn

75

76

LIST OF REFERENCES

1. Patterson, D. A. and J. L Hennessy, Computer Architecture: A Quantitative
Approach, 2nd ed. Morgan Kaufmann Publishers, Inc. San Mateo, CA, 1996.

2. Heuring, V.P, and H.F. Jordan, Computer Systems Design and Architecture,
Addison Wesley Longman, Inc. Menlo Park, CA, 1997.

3. Przybylski, Steven, A., Cache and Memory Hierarchy Design: A Performance
Directed Approach, Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1990.

4. Handy, J., The Cache Memory Book, Academic Press Inc., San Diego, CA, 1993.

5. Altmisdort, N., "Development of a New Prediction Algorithm and a Simulator for
the Predictive Read Cache (PRC)," Master's Thesis, Naval Postgraduate School,
Monterey, CA, September 1996.

6. Fouts, D.J. and A. B. Billingsley, "Predictive Read Caches: An alternative to On-
Chip Second-Level Cache Memories," Journal of Microelectronic Systems
Integration, vol. 2, no. 2,1994.

7. Miller, R.W., "Simulation and Analysis of Predictive Read Cache Performance,"
Master's Thesis, Naval Postgraduate School, Monterey, CA, December 1992.

8. Grimsrud, K., J. Archibald, M. Ripley, K. Flanagan, and B. Nelson, "BACH: A
Hardware Monitor for Tracing Microprocessor-Based Systems," Microprocessors
and Microsystems, vol. 17 no. 8, October 1994.

77

78

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library, Code 52 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5002

3. Chairman, Code EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

4. Professor Douglas J. Fouts, Code EC/Fs
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

5. Professor Frederick W. Terman, Code EC/Tz
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

LT Kathryn Christensen.
4534 Calle de Vida
San Diego, CA 92124

79

