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ABSTRACT 

This work is part of an ongoing effort to bridge the cycle-time gap between high- 

speed processing units and lower-speed main memories through the use of memory 

hierarchies. Cache memory exploits the principle of locality by providing a small, fast 

memory between the processor and the main memory. The Predictive Read Cache (PRC) 

further improves the overall memory hierarchy performance by tracking the data read miss 

patterns of memory accesses, developing a prediction for the next access and prefetching the 

data into the faster cache memory. The PRC has been proven to significantly improve 

system performance when acting as a second-level cache. The purpose of this thesis is to 

simulate the effectiveness of the PRC as a first-level cache in the memory hierarchy using 

the same simulator developed to prove the effectiveness of the PRC as a second-level cache. 
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I. INTRODUCTION 

A.       MEMORY HIERARCHY DESIGN 

Ideally one would desire an indefinitely large memory capacity such that 
any particular...word would be immediately available.... We are...forced 
to recognize the possibility of constructing a hierarchy of memories, each of 
which has greater capacity than the preceding but which is less quickly 
accessible. 

A.W. Burks, J.H. Goldstine, and J. von Neumann, Preliminary Discussion of the Logical 

Design of an Electronic Computing Instrument (1946) [Ref. l:p. 372] 

The early computer designers recognized the need for memory hierarchy to diminish 

the cycle-time gap between processors and data storage devices. A von Neumann machine 

executes a program in the following manner: the CPU repeatedly fetches the instruction 

from memory as well as any operands the instruction requires, it performs the indicated 

operation and then, frequently, writes the result back to memory. These recurrent memory 

accesses have become the limiting factor in overall system performance. 

Processor cycle time has dramatically decreased over the years while memory 

technology has fallen behind. In particular, Very Large Scale Integrated (VLSI) technology 

enables processors to complete the computation portion of the instruction cycle much faster, 

making the memory access times even more of a system performance issue. 

This problem leads to a trade off between size, speed and cost of the main memory. 

One solution is to design the main memory with the same technology used for the CPU. 

This would be technically impractical and prohibitively expensive to implement on such a 

large scale. Instead, the concept of memory hierarchies was developed as a more cost- 

effective solution to this problem. 

The design of a memory hierarchy consists of placing smaller, faster, more 

expensive memories between the processor and the larger, less expensive, slower memory. 

These memories have been named cache memories. Figure 1 illustrates a general case of a 
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memory hierarchy. The cache memory level of the hierarchy can be multiple levels of 

caches, consisting of a first-level cache (the cache closest to the CPU), second-level cache, 

etc. The terms on-chip cache and off-chip cache refer to the physical location of the cache: 

either on the same chip as the processor or outside the chip. 

CPU 

Fastest 

Most 

Speed 

Cost 

-►  Slowest 

Least 
expensive 

Smallest     •*■ Size 

expensive 

-►  Largest 

Figure 1. Memory Hierarcy 

B.       CACHE MEMORY 

The concept of cache memory operation is based on the principle of locality. There 

are two types of locality: spatial and temporal. Spatial locality refers to the concept that 

when a memory address is referenced, the memory addresses near the one referenced are 

likely to be referenced in the near future. Temporal locality is the concept that when a 

memory address is referenced, it is likely to be referenced again in the near future [Ref. 2:p. 

344]. Cache memory exploits these principles of locality by storing copies of the recently 

accessed main memory data and instructions in the cache. Temporal locality predicts that 

the same reference will be used again soon and the next time the data will be fetched from 

the faster cache memory instead of the slower main memory. The cache is updated with a 

block which is larger in size than the word requests of the CPU. Once the data is fetched 

from main memory in the original request, it is stored in the cache memory along with a few 

word addresses surrounding it. Therefore, if the CPU requests an address near the original 



one (spatial locality) the data will be found in the faster cache memory instead of needing to 

be fetched from main memory. 

One method of measuring performance of cache memory is to measure the cache 

hits and cache misses. A cache hit occurs when the CPU finds the requested memory 

address in the cache, a cache miss occurs when the requested memory address is not located 

in the cache. Cache hits and misses are further divided into the categories of read hits, read 

misses, write hits and write misses. The cache hit ratio is simply the number of cache hits 

divided by the number of requests. The miss ratio is the number of CPU requests that miss 

in the cache divided by the total number of requests [Ref. l:p. 43]. Cache hit ratios are not 

enough to accurately evaluate system performance. Przybylski [Ref. 3:p. 5] warns of the 

dangers of focusing on the "time-independent" statistics. To improve system performance, 

the entire system must be optimized, not merely a single aspect. 

There are three different types of misses that may occur in a cache: compulsory, 

capacity and conflict. A compulsory miss is one which could not be avoided, often the first 

access to a data address [Ref. 4:p. 245]. A capacity miss occurs when the cache is not large 

enough to hold all of the blocks required during program execution. In this case, a request 

is made to the cache which requires a block which was once replaced to be retrieved again 

from memory [Ref. l:p. 390]. A conflict miss occurs through a request to a direct-mapped 

or set-associative cache when too many requested blocks map to the same set [Ref. 

l:p.390]. 

Overall system performance is dependant on the miss penalty as well as the hit/miss 

ratios. The miss penalty is defined as the time (in clock cycles) it takes the CPU to fetch the 

required data from main memory upon a cache miss. Specifically: 

Miss penalty = Memory access time/ Clock period 

Speedup is a performance measure which compares the relative performance between two 

configurations. Specifically, in this thesis, speedup is defined as: 

Speedup = (Read Access Time    ,  -Read AccessTimepR_)/ReadAccessTime    , 



Cache performance is effected by many different parameters: cache size, block size, 

associativity, replacement policy, write policy, and write-miss policy. Cache size refers to 

the number of bytes the cache can store. Block size is the fixed size of memory which is 

transferred to the cache at a time. Associativity is the mapping function between the cache 

memory and the main memory and is necessary because the cache memory is smaller than 

the main memory. 

There are three main types of cache associativity: direct-mapped, fully associative 

and set-associative. In a direct-mapped cache, each main memory location can only be 

mapped into a specific cache location. If there is already data occupying that location, then 

that data must be removed from the cache. In a fully associative cache, any main memory 

location can be mapped into any cache location. In the fully associative case, data needs to 

be removed from the cache only if the entire cache is full. Set-associative is in between 

direct-mapped and fully associative. The set-associative cache maps a certain portion of 

main memory to a designated portion of the cache memory, called a set. Data is replaced in 

the cache only when the set to which the incoming data is mapped is full. The set a block is 

mapped to is determined by: 

(block address) MOD (number of blocks in cache) [Ref. 1. p. 376]. 

Block address is defined as the actual main memory address divided by the block size in 

bytes. The cache is said to be «-way set-associative, where n is the number of blocks in a 

set. n is calculated by: 

(number of blocks in cache))'(number of sets in cache) 

or 

(cache size in bytes) /[(block size in bytes) *(number of sets in cache)] 

Direct-mapped is actually a special case of set-associative with an associativity of one. 

Fully associative is also a special case of set-associative where n is equal to the number of 

blocks in the cache. 

When there is no room in the cache for the incoming block, the cache uses a 

replacement policy to choose which block to remove to make room. No replacement policy 

is needed in a direct-mapped cache since there is only one place in the cache a given 



memory address can be mapped. Therefore, if it is being used, the data in that location must 

be removed. The most common replacement policies are: Least Recently Used (LRU), First 

In First Out (FIFO) and random. LRU tracks the usage statistics on each block in the set 

and chooses the one for replacement which is the oldest. FIFO designates the oldest block 

in the cache for replacement. Random replacement chooses the candidate for replacement 

at random from all of the blocks in the set. 

There are two major types of write policies: write back and write through. In a 

write-through cache, data is written to the cache at the same time it is written to the main 

memory. This policy slows down the overall system speed because the speed of all writes is 

limited by the main memory write speed. There are two advantages of a write-through 

cache: the hardware is less complex and the cache is always coherent with the data in main 

memory. Write back only updates the cache memory upon a write, main memory does not 

get updated until that block is chosen for replacement. 

The cache write-miss policy determines the sequence of events which occur when a 

CPU write request misses in the cache. Common types of write-miss policies are: write 

allocate and write around. The write allocate policy loads the block into the cache and then 

modifies the data according to the write policy in effect. In a write around cache the CPU 

writes to the block in main memory, completely bypassing the cache. The block is not 

loaded into the cache on a write miss when a write around policy is in effect. 

Cache memory is sometimes divided into a hierarchy within itself. The cache 

memory closest to the CPU is called the level one or LI cache. The level denoted by the 

largest number is the cache which is located closest to the main memory. It is also common 

for there to be separate caches for instructions and for data, called a split level cache. 

Instructions and data have different reference patterns and splitting them apart allows 

separate cache designs for data and instruction caches. Split level caches further increase 

the performance by doubling the cache bandwidth. 

The large number of parameters which determine the performance of cache memory 

has launched a whole field of study in cache design. Performance optimization is extremely 

difficult due to the large number of factors involved. New technological advances and the 



complexity surrounding cache design indicate that the study of cache design will continue to 

be an intense area of research efforts. 

C. GOALS OF THE THESIS 

The goal of this thesis is to simulate and evaluate the performance of the Predictive 

Read Cache as a first-level data cache in a memory hierarchy with only a level one cache. 

The Cache and PRC simulator (CaPSim) [Ref. 5] will be used for this evaluation. 

D. THESIS OUTLINE 

The remainder of this thesis is organized as follows. Chapter II discusses the 

background of the PRC research. The fundamentals of both the Instruction Predictive Read 

Cache (iPRC) and the Data Predictive Read Cache (dPRC) algorithms will be described. 

Hardware architectures are presented and read/write operations are discussed. The trace 

driven simulator and the address traces used in the simulations will be presented. Chapter 

DI discusses the reconfigurations needed to CaPSim to accurately simulate a memory 

hierarchy with only a single level cache and the changes needed to simulate the PRC as a 

first-level cache. The results of these simulations will be presented. A new algorithm is 

presented in Chapter TV: a demand Predictive Read Cache. Simulations are described and 

compared with a purely demand-driven cache. Chapter V presents an improved version of 

the demand PRC which was developed to reduce the average read access time of the 

demand PRC in Chapter rv. Finally, Chapter VI contains conclusions and suggestions for 

future work. 



H. BACKGROUND OF THE PREDICTIVE READ CACHE 

A.       THE PREDICTIVE READ CACHE 

The Predictive Read Cache (PRC) is a special cache designed by Fouts and 

Billingsley [Ref. 6]. It was originally intended to be implemented as a second-level data 

cache. The PRC uses a prediction algorithm to predict the data address of the next primary 

data cache miss. The data at the predicted address is then prefetched into the PRC, awaiting 

the primary cache's request. 

The PRC's prediction algorithm is based upon the fact that most data requests are to 

sequential data structures stored in memory. The PRC predicts the next primary cache miss 

by simply taking the difference of the last two data read address requests from the primary 

cache and adding that difference to the last data miss address. The PRC then makes a 

request to memory to prefetch the data at the predicted address. 

For example, the CPU makes a request for data at the address of 10001000. This 

request misses in the primary data cache, which forwards this request to both the main 

memory and the PRC. The PRC cannot make a prediction at this point since it is the first 

request. The next request is for data at address 10001004. Again, this misses in the primary 

data cache and is forwarded to both main memory and the PRC. This time the PRC makes 

a prediction based on the following simple calculation: 10001004 + (10001004-10001000) 

= 10001008. The PRC will then prefetch the data from address 10001008 from main 

memory and store it in the PRC. Assuming that the CPU is accessing a data array with each 

element consisting of 4 bytes, the next request should be a read hit in the PRC, thus 

preventing the long cycle time required to fetch it from main memory. 

The PRC requires additional storage for the most recent miss address (MRMA) and 

the previous miss address (PRMA) for each cache block. The PRC algorithm also requires 

the addition of a subtracter-adder pair (or just a subtracter with a 1-bit offset for the 



MRMA) to calculate the displacement between the data read miss addresses.   The PRC 

demonstrated a significant improvement in performance over a second-level cache [Ref 7]. 

B. THE INSTRUCTION PRC 

The Instruction PRC (iPRC) algorithm was designed by Altmisdort and fully 

described in reference 5. The goal of the iPRC is to improve performance during program 

branches and context switches by reducing the miss penalty on compulsory misses. The 

iPRC does this by maintaining a relationship between the addresses of the read misses and 

the addresses of the instructions that cause the read misses [Ref. 5, p. 9]. 

The iPRC uses a similar architecture to the original PRC and adds additional storage 

for the instruction tag for each block. It also requires that an instruction bus be added 

between the CPU and the iPRC (transparent to the first-level cache) to provide the 

instruction addresses of the data requests. 

The iPRC operates in a similar manner to the original PRC: when two read misses 

occur, a signed displacement is determined between the MRMA and the PRMA. This 

displacement is added to the MRMA to predict the address of the next read miss. 

The iPRC performance was simulated using address trace simulations and the 

results were documented in reference 5. The iPRC provides a significant improvement in 

performance over a second-level cache and a nominal performance increase over the dPRC 

algorithm. 

C. THE CACHE AND PRC SIMULATOR 

The Cache and PRC Simulator (CaPSim) is an address-trace driven simulator 

developed by Altmisdort to simulate a memory hierarchy which can be configured for either 

traditional, original dPRC or iPRC caches of multiple levels [Ref. 5]. 

1.        Address Traces 

CaPSim uses address traces collected from the SPEC SDM (System Development 

Multitasking) benchmark programs on the SPARC platform.   These address traces were 



collected by the BYU BACH system [Ref. 8]. The benchmarks used for the simulations 

were the Kenbus20 and the Kenbus80 benchmark programs. Kenbus20 models the 

behavior of a Unix operating system in a multitasking, educational environment. Kenbus20 

simulates the demands made by twenty users on the system at one time. Kenbus80 models 

the same multitasking environment but with eighty users on the system. The Kenbus80 

benchmark has more context switching and thus more compulsory misses than does the 

Kenbus20 benchmark. These traces were chosen because they represent the most 

demanding environment for a predictive cache with context changes occurring frequently 

due to the heavy multitasking load. 

There are two types of address traces: the original BYU format address trace and the 

PRC format for use with the iPRC cache. The PRC format includes the necessary 

instruction tag information to make the proper predictions. Reference 5 describes at length 

the use of the address traces and the software conversion tool. 

2.        CaPSim 

The Cache and PRC Simulator (CaPSim) is written in C++ code using object- 

oriented programming techniques. CaPSim may be configured to simulate different 

memory configurations. 

The CaPSim architecture is centered around the concept of a generic memory 

module. Up to five different types of memory modules can currently be defined from the 

generic: CPU, Cache, PRC, Buffer, and main memory. CaPSim has been programmed so 

that new memory modules, such as disk drives or a virtual memory system, may be added to 

the memory hierarchy by simply making small changes to the CPU class and programming 

a new module with adherence to the generic memory module format [Ref 2: p.70]. 

CaPSim comes complete with an integrated, interactive debugger. The debugger 

displays the inter-cycle events as well as the request-respond handshaking of the modules. 

Its operation and capabilities are described fully in reference 5. 
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m. FIRST-LEVEL CACHE CONFIGURATION AND RESULTS 

A.       DEMAND-DRIVEN FIRST-LEVEL CACHE CAPSIM CONFIGURATION 

Some minor changes were necessary to allow CaPSim to simulate the configuration 

shown in Figure 2. 

Traditional 
Cache 

Figure 2. First-level Cache-Only Memory Hierarchy 

First-level caches of sizes varying from 256 Bytes to 512 Kbytes were simulated. 

All sizes were simulated for three different degrees of associativity: direct-mapped, fully 

associative and four way set-associative. Table 1 delineates the remaining properties which 

were constant throughout the simulations. 

Block size and sub block size were 16 and 8 bytes respectively. The sub block size 

is the smallest size which maintains an independent valid bit. The fetch size determines the 

size of the memory request made after a read miss in the cache. The specification of a fetch 

size allows the cache to fetch multiple blocks from the cache upon a single read miss. In 

this configuration, a single-block fetch is simulated. The transfer size determines the bus 

width between the cache and the CPU. 

The write policy is write through and the write-miss policy is write around. Both of 

these policies were described in Chapter I. The wrapping-fetch policy determines the 

direction of fetches from higher memory levels during a block update [Ref. 5:p. 90]. 

The access time determines the number of cycles expended to access the cache for 

either a read or a write request. The read/write hit and miss times are penalties imposed in 

11 



addition to the access time to model an excessive delay imposed by the architecture, in this 

case they are all set to zero. 

The cache block buffer is enabled because in the case of the PRC (with which these 

simulations results will later be compared) the block buffer is always enabled. When the 

Read Forwarding policy is in effect, the missed word is fetched from main memory first and 

then the word is forwarded to the CPU at the same time it is written to the block buffer. 

This policy allows the cache to continue servicing CPU requests while the rest of the block 

is being updated in the cache [Ref. 4:p.83]. The Read Forwarding option is not used with 

the Cache Module because it is not an option with the CaPSim PRC module. 

Parameter Name Parameter Value Parameter Name Parameter Value 

Block Size 16 bytes Access Time 1 cycle 

Sub-block. Size 4 bytes Write Hit Time 0 

Fetch Size 16 bytes Write Miss Time 0 

Transfer Size 4 bytes Read Hit Time 0 

Replacement Policy LRU Read Miss Time 0 

Write Policy Write Through Block Buffer Transfer Time 1 cycle 

Write Miss Policy Write Around Enable Block Buffer Yes 

Wrapping Policy Wrap Up Search Block Buffer Yes 

Read Forward No 

Table 1. Traditional Cache Configuration 

The buffer module contains both a read and a write buffer. The buffers compensate 

for the difference in data flow rate during transfers between the cache and main memory. 

For instance, the write buffer allows the processor to continue execution as soon as the data 

is written into the buffer, instead of waiting for the slower main memory to complete the 

write. 

The buffer parameters are constant throughout all simulations and are shown in 

Table 2. The read and write buffer sizes are eight and four bytes respectively. The write 

buffer block size refers to the number of bytes which can be stored in a single buffer line. 

This allows the buffer to combine adjacent write requests into a single request. Enforce 

priorities ensures that the highest priority requests are serviced first in the buffer.   The 
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"remove read and write duplicates" parameters allow the buffer to combine duplicate 

requests into a single request. Search Read Buffer parameter allows the buffer to update the 

data in the read buffer from the write buffer in the case of a buffer write hit. The Search 

Write Buffer parameter allows the buffer module to conduct a search to determine if a read 

request will hit in the write buffer. 

Parameter Value 

Read Buffer Size 8 bytes 

Write Buffer Size 4 bytes 

Write Buffer Block Size 16 bytes 

Enforce Priorities Yes 

Remove Read Duplicates Yes 
Remove Write Duplicates Yes 
Search Read Buffer Yes 

Search Write Buffer Yes 

Table 2. Buffer Module Com Iguration 

Table 3 shows the main memory module parameters used for all simulations. 

Access time refers to the number of cycles required for main memory to access the first 

word of a transfer. The remaining words are accessed at the "transfer time" rate of one per 

cycle. The transfer size determines the bus width between the main memory module and 

the buffer. 

Parameter Value 

Access Time 5 cycles 

Transfer Time 1 cycle 

Transfer Size 4 cycles 

"able 3. Main Memory Configuration 

In order to successfully complete the baseline demand-driven cache simulations, 

there was a minor change which was made to the CaPSim program itself. Specifically, an 

error occurred when the cache was designated as a write-through cache and the incoming 

write request to the cache was registered as a pending request because the cache was busy. 

The request was not getting propagated to the buffer at any time in the CaPSim code. This 
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caused the CPU to wait indefinitely for the response to its write request. This was fixed by 

adding the proper code to propagate the request to the subordinate modules. 

B. FIRST-LEVEL PRC CAPSIM CONFIGURATION 

The memory hierarchy is similar to the hierarchy used in the simulations in part A, 

except the traditional cache is replaced with a PRC. The configuration is shown in Figure 3. 

Main 
Memory 

PRC —» 

4— 

Buffer —» 

«— CPU 
—♦ 

*— 

Figure 3. First-level PRC Configuration 

The configuration of the main memory and buffer modules remains the same as they 

did for the simulations in Part A. The configuration of the PRC is shown in Table 4. 

Parameter Value 

Block Size 16 bytes 

Sub-Block Size 4 bytes 

Fetch Size 16 bytes 

Transfer Size 4 bytes 

Replacement Policy LRU 

Write Policy Write Through 

Access Time 1 cycle 

Read Hit Time 0 

Read Miss Time 0 

Write Hit Time 0 

Write Miss Time 0 

Block Buffer Transfer 1 cycle 

Table 4. First-level PRC Configuration 
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The parameters are almost identical to those used in Section A of this chapter. The 

write-miss policy is not specified since CaPSim is programmed to always treat the PRC as a 

write around cache. The block buffer is not specifically enabled since CaPSim always 

enables the PRC block buffer and the searching of the block buffer. CaPSim does not offer 

the read forward option for the PRC so it is not a valid parameter to specify. 

Many aspects of the CaPSim program itself had to be modified to allow the 

simulation of a PRC first-level cache. CaPSim was written with the main purpose of 

simulating the PRC as a second-level cache with a traditional first-level cache. Although it 

has the flexibility to assume other configurations, most of the other configurations had not 

been fully tested and many modifications to the C++ code were necessary. 

The first reconfiguration needed was in the inter-module handshaking. 

Handshaking is the means of communication between the modules. The handshaking 

requests are used by the modules to make write or read requests from each other and to 

respond when the requests are completed. Table 5 below shows the memory request format. 

Field Size 

Source ID unsigned integer 

Match ID unsigned integer 

Priority integer 

Total Size integer 

Data Address AddressType 

Instruction Address AddressType 

Transaction Type {Read, Write, Cancel} 

Minimum Size integer 

Drop Counter integer 

Original Address AddressType 

Original Size integer 

Victim Block integer 

Table 5. Transaction Request Format 
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The Source ID field designates where the request is originating from and therefore, 

where the response must be returned. The match ID is used when two modules are sharing 

a request. It ensures that both modules receive the proper response. The Data Address field 

holds the data address of the request and the Instruction Address field holds the instruction 

address. The Priority field specifies the priority of the request. The Total Size indicates the 

size of the current request. The Transaction Type indicates the type of transaction 

requested. Originally, the choices were Read, Write and Cancel. The Minimum Size field 

is used to determine if the minimum size of the transfer has occurred to see if the 

transaction may be interrupted or not. The Drop Counter is used by the Buffer Module to 

specify the number of tries a transaction is allowed before it is dropped out of the buffer. 

When used, the counter is decrements by one every time a transaction is canceled due to a 

higher priority transaction. Original Size and Original Address are used by the buffer 

module to restore the original parameters after the transaction had been modified by the 

module. The Victim Block field holds the place in that cache that this data is to replace. 

Typically, the requests are made by a higher-level memory module to a lower-level 

module. The higher-level module changes the Source ID field to its own ID, therefore 

ensuring that the response is sent through that module on its way back to the CPU. Since 

the PRC was originally designed to be a second-level cache, the CaPSim PRC module is not 

programmed to handle request and response handshaking in the same way as the Cache 

Module, which is assumed to be the primary data cache in the hierarchy. 

In a memory hierarchy with a traditional first-level cache and a PRC second-level 

cache, write-miss requests are handled in such a way that the PRC does not receive the 

response. Upon a write miss, the primary cache will send a request to the PRC and the PRC 

is programmed to immediately forward the request to the buffer, without changing the 

Source ID field of the request to its own Source ID. Leaving the Source ID field set to the 

primary cache module ID results in the primary cache directly receiving the responses to 

write-miss requests, completely bypassing the PRC module (Figure 4). 
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CPU 
Module ID = 0 

Write Response 
Source ID = 1 
Transfer Time 

Write Response 
Source ID = 3 

Write Response 
Source ID = 4 

Write Request 
Source ID = 0 

LI Cache 
Module ID = 1 

Write Request 
Source ID = 1 

PRC 
Module ID = 2 

Write Request 
Source ED = 1 

Buffer 
Module ID = 3 

Write Request 
Source ED = 3 

Main memory 
Module ID = 4 

Figure 4. Original Memory Hierarchy Handshaking 

This works very well in the memory configuration with a traditional-type first-level 

cache, which is the memory configuration used by Altmisdort [Ref. 5]. The CaPSim cache 

module is programmed to receive the response from the buffer and then calculate the 

appropriate transfer time, which is then forwarded to the CPU. Once the write response is 
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received by the CPU, it waits the appropriate time until the transfer is complete and then the 

CPU transitions out of the write stall state to fetch the next instruction. 

The PRC Module behaves in the same manner when it is the primary cache as when 

it is the secondary cache. As in the previous case, the PRC receives the write request from 

the CPU and it forwards the request to the Buffer Module without changing the Source ID 

to its own Module ID. The buffer then responds directly to the CPU. In this way, the 

correct transfer time is not calculated when the buffer responds to the CPU (since that is 

programmed into the Cache Module) (Figure 5). This becomes a problem when the CPU 

prematurely transitions out of the write stall state and begins executing the next instruction 

before the write transfer is complete. 

CPU 
Module ID = 0 

Write Response 
Source ID = 3 
(no transfer time) 

Write Request 
Source ID = 0 

PRC 
Module ID = 1 

Write Request 
Source ID = 0 

Buffer 
Module ID = 3 

Write Response 
Source ID = 4 

Write Request 
Source ID = 3 

Main memory 
Module ID = 4 

Figure 5. First-level PRC Handshaking 
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The solution involved modifying the PRC module so that it could handle write 

requests and responses as a first-level cache. The new PRC module includes the ability to 

modify the Source ID of write requests to its own Module ID. It further includes the ability 

to receive write responses, calculate the transfer time and propagate the response to the CPU 

(Figure 6). 

CPU 
Module ID = 0 

Write Response 
Source ID = 1 
Transfer Time 

Write Request 
Source ID = 0 

PRC 
Module ID = 1 

Write Response 
Source ID = 3 

Write Request 
Source ID = 0 

Buffer 
Module ID = 3 

Write Response 
Source ID = 4 

Write Request 
Source ID = 3 

Main memory 
Module ID = 4 

Figure 6. Revised First-level PRC Handshaking 

A similar problem existed with the read request handshaking sequence. As with the 

write request, the PRC Module was programmed to maintain the original Source ID of the 

request and propagate it to its slave module. Also, the only type of read response the PRC 

module was programmed to receive was prefetch requests. To distinguish between a CPU- 
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generated read request and a PRC-generated prefetch request, a new type of request had to 

be created and included in the type definition of "transaction type". The PRC-generated 

prefetch requests are designated a transaction type named "Prefetch". The CPU-generated 

requests are a transaction type named "Read". The new PRC module will update the source 

ID of a CPU-generated read request to its own module ID. This ensures the response will 

be sent through the PRC. Upon receipt of a response, the PRC is able to distinguish 

between a prefetch response and a read response. In the case of a read response, the PRC 

will propagate the response to the CPU and, in the case of a response to a prefetch request, 

the PRC will not propagate the response to the CPU. 

The next problems encountered were with the number of cancels occurring in the 

buffer module. With a PRC as a first-level cache, nearly every request made by the CPU, 

resulted in the PRC sending a prefetch request. This caused the buffer module to fill 

quickly and the need to cancel transactions happened more frequently. Problems arose 

when a request from the CPU was canceled and the CPU would remain in a stalled state 

forever because it did not receive an appropriate response. Assigning the prefetch requests 

a lower priority than the CPU requests ensured the prefetch requests would be canceled 

before the more important CPU requests. 

C.       TRADITIONAL CACHE VS. IPRC SIMULATION RESULTS 

Figures 7-18 show the simulation results for direct-mapped cache, four-way set- 

associative cache and fully associative Demand Driven Cache(DDC) and Predictive Read 

Cache(PRC), respectively. Read hit rate and read access time are indicated. Results are 

displayed for both the Kenbus20 and the Kenbus80 benchmarks. 

1. Direct-Mapped First-level Cache Simulations 

The direct-mapped first-level cache simulations are conducted with the traditional 

demand driven cache and the PRC as first-level caches. The first-level cache size is varied 

between 256 bytes and 512 Kbytes, with each simulation increasing the size by a factor of 
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two. Figures 7-10 summarize the results for the read hit rate and average read access times 

respectively. 
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Figure 7. Hit Rate vs. Cache Size for Direct-mapped cache, Kenbus20 
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Figure 8. Hit Rate vs. Cache Size for Direct-mapped Cache, Kenbus80 
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Figure 9. Access Time vs. Cache Size for Direct-mapped cache, Kenbus20 
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Figure 10. Access Time vs. Cache Size for Direct-mapped cache, Kenbus80 

22 



2.        4-Way Set-associative First-level Cache Simulations 

The first-level cache simulations were repeated with the same cache sizes but with 

4-way set associativity. The results are summarized in Figures 11-14. 
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Figure 11. Hit Rate vs. Cache Size for 4-way Set-associative cache, Kenbus20 
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Figure 12. Hit Rate vs. Cache Size for 4-way Set-associative cache, Kenbus80 
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Figure 14. Access Time vs. Cache Size for 4-way Set-associative Cache, Kenbus80 

3.        Fully Associative First-level Cache Simulations 

The first-level cache simulations were repeated with the same cache sizes but with 

four-way set associativity. The results are summarized in Figures 15-18. 
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Figure 15. Hit Rate vs. Cache Size for Fully Associative Cache, Kenbus20 
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Figure 16. Hit Rate vs. Cache Size for Fully Associative Cache, Kenbus80 
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Figure 18. Access Time vs. Cache Size for Fully Associative Cache, Kenbus80 

D. TRADITIONAL CACHE VS. PRC SIMULATION CONCLUSIONS 

The traditional demand-driven cache performance as a first-level cache far exceeds 

that of a PRC. The read access times for the demand-driven cache are an average of 2.38 

cycles across all associativity types simulated with the Kenbus80 benchmark and 2.14 
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cycles with the Kenbus20 benchmark. The read access time average for the PRC is 6.36 

cycles across all associativity types simulated with the Kenbus80 benchmark and 5.89 

cycles with the Kenbus20 benchmark, which is a decrease in performance of over two and a 

half times. The demand-driven cache average read hit rate across all associativity types 

simulated with the Kenbus80 benchmark is 84.07% and 86.56% with Kenbus20, while the 

PRC average read hit rate is 17.86% and 23.19% respectively. Clearly, a first-level cache 

which is purely predictive in nature is not feasible as a first-level cache. 
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IV. THE DEVELOPMENT AND SIMULATION OF A DEMAND PRC 

The poor performance of the PRC as a first-level cache lead to a comparison of the 

read miss patterns occurring in the PRC vs. a demand-driven cache. It was determined that 

a large number of the read misses occurred in the PRC were data addresses that were being 

accessed frequently but were not part of a data array. When a request for a data address is 

made of the PRC and that request misses, the predicted data is the only data that is added to 

the cache. The original request is not put in the cache as it is in a demand-driven cache. 

During the simulations conducted by Altmisdort [Ref. 5] all original requests were stored in 

the first-level demand driven cache. Future requests resulted in a read hit in the first-level 

cache, the PRC (as a second-level cache) was never queried for the data. 

The development of a new algorithm was proposed to combine the effects the 

demand-driven cache and the PRC. The new cache will put both the original request data 

into the cache as well as the predicted data. 

A.       FIRST-LEVEL DEMAND PRC CAPSBM CONFIGURATION 

Major program changes were required within CaPSim to simulate the new 

algorithm. The original PRC module only had the capability to store predicted data, not 

requested data. The changes made to allow the PRC to act as a first-level cache simplified 

the changes needed to make it a demand PRC. 

The distinction of the read requests from the prefetch requests was the first step in 

storing the demand data.   The method for storing the prefetches was already coded into 
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CaPSim. Those procedures were copied and modified to handle a demand request vice a 

prefetch request and added to the PRC logic module. The changes were made in such a way 

as not to interfere with the prediction function of the logic. 

B.       FIRST-LEVEL DEMAND PRC SIMULATION RESULTS 

Figures 19-36 show the simulation results for direct-mapped cache, four-way set- 

associative cache and fully associative cache, respectively. Read hit rate, average read 

access times and speed up are indicated. 

1.        Direct-Mapped First-level Cache Simulations 

The direct-mapped first-level cache simulations are conducted with the traditional 

demand driven cache and the PRC as first-level caches. The first-level cache size is varied 

between 256 bytes to 512 Kbytes, with each simulation increasing the size by a factor of 

two. Figures 19-22 summarize the results for the read hit rate and average read access times 

respectively. Figures 23 and 24 show the speedup of the demand PRC over the traditional 

demand driven cache as a function of cache size for Kenbus20 and Kenbus80 respectively. 
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Figure 19. Hit Rate vs. Cache Size for Direct-mapped cache, Kenbus20 
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Figure 20. Hit Rate vs. Cache Size for Direct-mapped Cache, Kenbus80 

The hit rate for a direct-mapped demand PRC provided an improvement of 0.4% to 

3.21% in the Kenbus80 benchmarks and 0.85% to 2.33% with the Kenbus20 benchmarks. 

An improvement was realized for all cache sizes simulated, with greater improvement 

demonstrated in the 8Kbyte, 16Kbyte and 32Kbyte cache sizes. 
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Figure 21. Access Time vs. Cache Size for Direct-mapped Cache, Kenbus20 
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Figure 22. Read Access Time vs. Cache Size for Direct-mapped Cache, Kenbus80 
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Figure 23. Speed Up vs. Cache Size for Direct-mapped Cache, Kenbus20 
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Figure 24. Speed Up vs. Cache Size for Direct-mapped Cache, Kenbus80 

The speed up of the demand PRC over the traditional demand driven PRC for the 

direct-mapped case ranges from 1.8% to 5.7%(Kenbus80) and 0.28% to 4.94%(Kenbus20), 

with the maximum speed up in the 32Kbyte case. For cache sizes of 256 bytes to 4Kbytes 

and sizes equal to and greater than 128Kbytes, the speedup is negative. 

The reason for the bell-shaped speed up curve it two-fold. The speedup is negative 

in the smaller cache sizes because the cache is attempting to put too many blocks into the 

cache. Since nearly every CPU request will result in two blocks being placed in the cache 

(the original request and the prefetch), in the smaller cache sizes the PRC will have more 

conflict misses than the DDC. Speedup continues to increase until it reaches maximum and 

then decreases, eventually becoming negative. This occurs because with the larger cache 

sizes, the bandwidth between the cache and main memory saturates in the PRC case due to 

the large number of data requests generated. 

2.        4-Way Set-associative First-level Cache Simulations 

The first-level cache simulations were repeated with the same cache sizes but with 

4-way set associativity. The results are summarized in Figures 25-30. 
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Figure 25. Hit Rate vs. Cache Size for 4-Way Set-associative Cache, Kenbus20 
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Figure 26. Hit Rate vs. Cache Size for 4-way Set-associative Cache, Kenbus80 

The hit rate for a 4-way set-associative demand PRC provided an improvement of 

0.7% to 2.6% for cache sizes up to 256Kbytes with the Kenbus80 benchmark and 0.05% to 

1.24% for Kenbus20. The greater improvement was again at the 8Kbyte, 16Kbyte and 

32Kbyte cache sizes. 
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Figure 27. Access Time vs. Cache Size for 4-way Set-associative Cache, Kenbus20 
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Figure 28. Access Time vs. Cache Size for 4-way Set-associative Cache, Kenbus80 
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Figure 29. Speed up vs. Cache Size for 4-way Set-associative Cache, Kenbus20 
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Figure 30. Speed Up vs. Cache Size for 4-Way Set Associative Cache, Kenbus80 

The speedup for the 4-way set-associative organization ranges from 1% to 

4.3%(Kenbus80) and 0.75% to 3.66%(Kenbus20) with a maximum at a cache size of 

64Kbytes. The speedup is negative for cache sizes up to and including 2Kbytes and equal 

to or greater than 128Kbytes for the Kenbus80 benchmark. With the Kenbus20 benchmark, 

the speedup is negative for cache sizes up to and including 4Kbytes and cache sizes equal or 
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greater than 256Kbytes. The 4-way set-associative organization also displays the same bell- 

shaped speed up curve as the direct-map case. 

3.        Fully Associative First-level Cache Simulations 

The first-level cache simulations were repeated with the same cache sizes but with 

full associativity. The results are summarized in Figures 31-36. 
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Figure 31. Hit Rate vs. Cache Size for Fully Associative Cache, Kenbus20 
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Figure 32. Hit Rate vs. Cache Size for Fully Associative Cache, Kenbus80 
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The hit rate for fully associative case provided an improvement of 0.3% to 2.7% 

(Kenbus80) and 0.03% to 1.57%(Kenbus20) with greater improvement in cache sizes from 

16Kbytes to 128Kbytes. 
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Figure 36. Speed Up vs. Cache Size for Fully Associative Cache, Kenbus80 

The speedup for the fully associative organization ranges from 2% to 

8.3%(Kenbus80) and 1.24% to 4.23%(Kenbus20), with a maximum speedup at a cache size 

of 128Kbytes. Negative speedup occurs in cache sizes up to and including 

8Kbytes(Kenbus80) 16Kbytes(Kenbus20) and greater than or equal to 256Kbytes. The 

same general bell-shaped speed up curve is again observed in the fully associative case. 
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C.       FIRST-LEVEL DEMAND PRC CONCLUSIONS 

The first-level demand PRC read hit rate is an improvement when compared with 

the read hit rate of a traditional purely demand-driven cache. 

The improvement in the average read access time of the demand PRC was less than 

that identified in the hit rate. There are instances when the hit rate for the demand PRC is 

higher than that of the traditional cache but the average read access is higher for the demand 

PRC. The reason the PRC does not produce any speedup in these cases is due to the stall 

cycle encountered when the PRC is trying to forward a read request it received from the 

CPU but the buffer is busy handling a previous request. 

The demand PRC demonstrated an improvement in performance in most cases. The 

most consistent performance improvement was observed in cache sizes ranging from 

16Kbytes to 64Kbytes. 
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V. THE DEVELOPMENT AND SIMULATION OF A PRIORITY-DEMAND PRC 

The hit rate improvement of the demand PRC over the purely demand driven cache 

is quite significant. However, the read access time and overall speedup is not as significant 

and, in some cases, there is a negative impact. A study of the timing issues revealed that the 

speedup improvement is hindered by the overload in the Buffer Module caused by the 

prefetch requests. An improvement of the demand PRC algorithm was developed which 

prioritizes the buffer tasks and ensures the read requests that originate with the CPU are 

handled as quickly as possible, even at the price of preempting a prefetch request which is 

in the process of being transferred. 

A. PRIORITY-DEMAND PRC CAPSIM CHANGES 

In order for the read requests to be handled in a prioritized order, the Buffer Module 

of CaPSim was modified. Transactions are assigned a priority based upon the type of 

transaction: read or prefetch. Transactions of the read type are the CPU requested read data 

and have the higher priority. Transactions of the prefetch type originate in the PRC module 

and have the lower priority. The new CaPSim Buffer Module preempts any prefetch 

transaction when an incoming read request arrives. This ensures the read requests will be 

completed as expeditiously as possible. 

B. FIRST-LEVEL PRIORITY-DEMAND PRC SIMULATION RESULTS 

Figures 37-54 show the simulation results for direct-mapped cache, four-way set- 

associative cache and fully associative cache, respectively. Read hit rate, average read 

access times and speed up are indicated. 

1.        Direct-Mapped First-level Cache Simulations 

The direct-mapped first-level cache simulations are conducted with the traditional 

demand driven cache and the PRC as first-level caches. The first-level cache size is varied 

from 256 bytes to 512 Kbytes, with each simulation increasing the size by a factor of two. 
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Figures 37-40 summarize the results for the read hit rate and average read access times 

respectively. Figures 41 and 42 shows the speedup of the demand PRC over the traditional 

demand driven cache as a function of cache size. 
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Figure 37. Hit Rate vs Cache Size for Direct-mapped Cache, Kenbus20 
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Figure 38. Hit Rate vs. Cache Size for Direct-mapped Cache, Kenbus80 

The hit rate for a direct-mapped demand priority PRC provided an improvement of 

0.3% to 3.21%(Kenbus80) and 0.77% to 2.3%(Kenbus20) over a demand driven cache. An 

improvement was recognized through all cache sizes (with the exception of the 512k size 
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for the Kenbus80 benchmark) simulated with greater improvement demonstrated in the 

8Kbyte, 16Kbyte and 32Kbyte cache sizes. 
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Figure 42. Speed Up vs. Cache Size for Direct-mapped Cache, Kenbus80 

The speed up of the priority-demand PRC over the traditional demand driven cache 

for the direct-mapped case varied from 1.6% to 7%(Kenbus80) and 0.91% to 

6.9%(Kenbus20), with the maximum speed up in the 32Kbyte case. For cache sizes of 256 

bytes to lKbytes(Kenbus80) or 2Kbytes(Kenbus20) and sizes equal to and greater than 

128Kbytes(Kenbus80) or 256Kbytes(Kenbus20), the speedup is negative.   This speed up 
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plot maintains the bell-shaped pattern of the direct-mapped demand PRC plot, but the 

maximum speedup is greater and more cache sizes provide a positive speed up. 

2.        4-Way Set-associative First-level Cache Simulations 

The first-level cache simulations were repeated with the same cache sizes but with 

4-way set associativity. The results are summarized in Figures 43-48. 
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Figure 43. Hit Rate vs. Cache Size for 4-way Set-associative Cache, Kenbus20 
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Figure 44. Hit Rate vs. Cache Size for 4-way Set-associative Cache, Kenbus80 
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The hit rate for a 4-way set-associative priority-demand PRC provided an 

improvement of 0.7% to 2.6%(Kenbus80) and 0.03% to 1.75%(Kenbus20) for cache sizes 

up to 256Kbytes. The greater improvement was observed for the 8Kbyte, 16Kbyte, 

32Kbyte and 64KByte cache sizes. 
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Figure 45. Access Time vs. Cache Size for 4-way Set-associative Cache, Kenbus20 
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Figure 46. Access Time vs. Cache Size for 4-way Set-associative Cache, Kenbus80 
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Figure 47. Speed Up vs. Cache Size for 4-Way Set-associative Cache, Kenbus20 
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Figure 48. Speed Up vs. Cache Size for 4-Way Set-associative Cache, Kenbus80 

The speedup for the 4-way set-associative organization ranges from 1.5% to 

5.3%(Kenbus80) and 0.27% to 4.45%(Kenbus20) with a maximum at a cache size of 

64Kbytes. The speedup is negative for cache sizes up to and including 512bytes(Kenbus20) 

or lKbytes(Kenbus80) and equal to or greater than 128Kbytes(Kenbus80) or 

256Kbytes(Kenbus20). The speedup plot is similar in shape to the 4-way set associative 
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demand PRC speedup plot in the previous chapter, but the maximum speed up is greater 

and a wider range of cache sizes generate positive speed up. 

3.        Fully Associative First-level Cache Simulations 

The first-level cache simulations were repeated with the same cache sizes but with 

full associativity. The results are summarized in Figures 49-54. 
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Figure 49. Hit Rate vs. Cache Size for Fully Associative Cache, Kenbus20 
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Figure 50. Hit Rate vs. Cache Size for Fully Associative Cache, Kenbus80 
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The hit rate for the fully associative case provided an improvement of 0.3% to 

2.7%(Kenbus80) and 0.05% to 1.56%(Kenbus20), with greater improvement in cache sizes 

from 16Kbytes to 128Kbytes. 
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Figure 51. Access Time vs. Cache Size for Fully Associative Cache, Kenbus20 

PRC 

DDC 

Cache Size 

Figure 52. Access Time vs. Cache Size for Fully Associative Cache, Kenbus80 
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Figure 53. Speed Up vs. Cache Size for Fully Associative Cache, Kenbus20 
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Figure 54. Speed Up vs. Cache Size for Fully Associative Cache, Kenbus80 

The speedup for the fully associative organization ranges from .5% to 

9.6%(Kenbus80) and 1.24% to 5.42%(Kenbus20), with a maximum speedup at a cache size 

of 128Kbytes. Negative speedup occurs in cache sizes up to and including 

2Kbytes(Kenbus80) or 8Kbytes(Kenbus20) and greater than or equal to 256Kbytes. The 

20% drop in speed up observed in the Kenbus80 benchmark from 128Kbytes to 256Kbytes 

seems to be a factor in the DDC's response to the benchmark. The PRC's read access times 
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remain smooth but the DDC has a large decrease in read access time and, correspondingly, a 

large jump in the hit rate between 128Kbyte and 256Kbyte cache sizes. 

C.       FIRST-LEVEL PRIORITY-DEMAND PRC CONCLUSIONS 

The first-level priority-demand PRC read-hit rate is an improvement when 

compared with the read-hit rate of a traditional purely demand-driven cache. 

The improvement in the average read access time of the priority-demand PRC was 

much better than that demonstrated in the demand PRC. The priority preemption of tasks in 

the buffer module successfully lowered the average read-access rate. 

The priority-demand PRC demonstrated an improvement in performance in the 

majority of cache sizes. The most consistent performance improvement was observed in 

cache sizes ranging from 16Kbytes to 64Kbytes. 
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VI. CONCLUSIONS 

A. EFFECTIVENESS OF THE PRC AS A FIRST-LEVEL CACHE 

Li this thesis, the Predictive Read Cache was accurately simulated as a first-level 

cache. CaPSim simulation results for both the PRC algorithm and a traditional demand- 

driven cache were presented. The poor performance of the PRC as a first-level cache lead 

to the development of a demand PRC which was shown by simulation to have a much 

higher performance than the original PRC. 

The hit rate performance of the demand PRC was higher than that of a traditional 

cache, but it was felt that the overall speedup could be improved. By designing the buffer 

module to preempt prefetch transactions in progress, the speedup was improved. The 

priority-demand PRC dramatically increased the performance of the first-level cache. 

B. SUGGESTION FOR FUTURE DEVELOPMENT 

The performance of the PRC as a first-level cache can be investigated further by 

simulating larger address traces of different types. In particular, the new SPEC 98 

benchmarks will be available soon and will provide longer address traces to more accurately 

simulate the performance of the PRC. Different types of address traces, such as those from 

the SPEC suite rather than the SDM suite, will more accurately reflect the scientific, vice 

multitasking, environment, for which the PRC is intended. 

A larger set of design alternatives can also be simulated. Experimenting with block 

sizes and different types of set associativity may reveal an optimal configuration for the 
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memory hierarchy with a PRC.  The CaPSim cost analysis tool can be further developed 

and used to evaluate the cost-performance trade-off of the PRC as a first-level cache. 
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APPENDIX A. AN EXAMPLE CAPSEM CONFIGURATION FILE 

The following is an example of a configuration file used for the simulations of the 

Predictive Read Cache as a first-level cache: 

# CaPSim Configuration File 
# Author : K. Christensen 
#Revised: 28OCT97 
#  

simulation 
{ 

Word Size 
Input Path 
Output Path 
Trace Type 
Trace Filename 
Start File Number 
Stop File Number 
Trace Buffer Size 
User E-mail Address 

} 

= 4 
= /data_tehe/altmisdo/Kenbus80/output/ 
= iPRC_64k/ 
= PRC 
= skenPRC.***** 
= 0 
= 99 
= 10000 
= kschrist@nps.navy.mil 

hierarchy 
{ 

pre 
buffer 
memory 

PRC 
Buffed 
MainMemory 

module PRC 
{ 

Prediction Algorithm 
PRC size 
Block Size 
Associativity 
SubBlock Size 
Replacement Policy 
Write Policy 
Access Time 

= Instruction Address Displacement 
= 65536 
= 16 
_ * 

= 4 
= LRU 
= Write Through 
= 1 
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Block Buffer Transfer Time   = 1 
Bypass Write Allocates = Yes 
Maximum read slips in buffer = 2 
Minimum read size in buffer =12 

} 

module Buffer 1 
{ 

Read Buffer Size = 8 
Write Buffer Size = 4 
Write Buffer Block Size =16 
Enforce Priorities = Yes 
Remove Duplicates = Yes 

} 

module MainMemory 
{ 

Access Time =5 
Transfer Time = 1 
Transfer Size   = 4 

} 
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APPENDIX B. AN EXAMPLE CAPSIM CONFIGURATION FILE 

The following is an example of a configuration file used for the simulations of a 

traditional demand driven cache as a first-level cache. 

#■ 

# CaPSim Configuration File 
# Author : Kathryn Christensen 
#Revised:MarchlO,1998 

simulation 
{ 

Word Size = 4 
Input Path = /data_tehe/camligun/Kenbus80/input/ 
Output Path = Ll_64k/ 
Trace Type = BYU 
Trace Filename —  CKPTI   !£%3FSp5fc 

Start File Number = 0 
Stop File Number = 99 
Trace Buffer Size = 1000 
User E-mail Address 

} 
= kschrist@nps.navy.mil 

hierarchy 
{ 

cache              Cache LI 
buffer             Buffed 
memory          MainMemory 

} 

module CacheLl 
{ 

Cache Size = 65536 
Block Size = 16 
SubBlock Size = 4 
Fetch Size = 16 
Transfer Size = 4 
Associativity _ * 

Replacement Policy = LRU 
Write Policy = Write Through 
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Write Miss Policy = Write Around 
Wrapping Fetch Policy = Wrap Up 
Access Time = 1 
Read Hit Time = 0 
Read Miss Time = 0 
Write Hit Time = 0 
Write Miss Time = 0 
Read Forward = No 
Enable Block Buffer = Yes 
Search Block Buffer = Yes 
Block Buffer Transfer Time = 1 

module Buffed 
{ 

Read Buffer Size =8 
Write Buffer Size = 4 
Write Buffer Block Size =16 
Enforce Priorities = Yes 
Remove Duplicates = Yes 

} 

module MainMemory 
{ 

Access  Time =5 
Transfer Time = 1 
Transfer Size   = 4 

} 
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APPENDIX C. AN EXAMPLE CAPSIM LOG FILE 

ICaPSim] 
 P 

Log File                    F. Nadir ALTMISDORT1 
1 Sat May 2 01:52:091998                                          1 
J u 

.dfrarfincr /wrvfimircifirvn  

CPU Reading Configuration File... [OK] 
CPU Checking Syntax... [OK] 
CPU Setting Simulation Parameters... [OK] 
CPU Checking Memory Hierarchy... [OK] 
CPU Checking Input/Output Paths... [OK] 
CPU Starting Self-Test... [OK] 

Initializing simulation module CacheLl [1] 
CacheLl Cache Size [OK] 
CacheLl Block Size [OK] 
CacheLl SubBlock Size [OK] 
CacheLl Fetch Size 
CacheLl Transfer Size [OK] 
CacheLl Associativity [OK] 
CacheLl Replacement Policy [OK] 
CacheLl Write Policy [OK] 
CacheLl Write Miss Policy [OK] 
CacheLl Wrapping Fetch Policy [OK] 
CacheLl Access Time [OK] 
CacheLl Read Hit Time [OK] 
CacheLl Read Miss Time [OK] 
CacheLl Write Hit Time [OK] 
CacheLl Write Miss Time [OK] 
CacheLl Read Forward [OK] 
CacheLl Enable Block Buffer [OK] 
CacheLl Search Block Buffer [OK] 
CacheLl Block Buffer Transfer Time [OK] 
CacheLl Starting Self-Test... [OK] 

Initializing simulation module Buffer 1 [2] 
Bufferl Read Buffer Size [OK] 
Bufferl Write Buffer Size [OK] 
Bufferl Write Buffer Block Size :[OK] 

:[OK] 
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Buffer 1       Enforce Priorities 
Buffer 1       Remove Duplicates 
Bufferl       Starting Self-Test... 

Initializing simulation module MainMemory 
MainMemory    Access  Time 
MainMemory    Transfer Time 
MainMemory    Transfer Size 
MainMemory    Starting Self-Test... 

Finalizing simulation modules... 
CPU Finalize... 
CacheLl Finalize... 
Bufferl Finalize... 
MainMemory Finalize... 

[OK] 
[OK] 
[OK] 

[3] 
[OK] 
[OK] 
[OK] 
[OK] 

[OK] 
[OK] 
[OK] 
[OK] 

CaPSim configuration completed successfully @ Sat May 2 01:52:10 1998 

Starting simulation 
Opening file /data. 
Opening file /data. 
Opening file /data. 
Opening file /data. 
Opening file /data. 
Opening file /data. 
Opening file /data. 
Opening file /data. 
Opening file /data. 
Opening file /data. 
Opening file /data. 
Opening file /data. 
Opening file /data. 
Opening file /data. 
Opening file /data. 
Opening file /data. 
Opening file /data. 
Opening file /data. 
Opening file /data. 
Opening file /data. 
Opening file /data. 
Opening file /data. 
Opening file /data. 
Opening file /data. 

.tehe/camligun/Kenbus80/input/sken. 
tehe/camligun/Kenbus80/input/sken. 
.tehe/camligun/Kenbus80/input/sken. 
.tehe/camligun/Kenbus80/input/sken. 
.tehe/camligun/Kenbus80/input/sken. 
tehe/camligun/Kenbus80/input/sken. 
.tehe/camligun/Kenbus80/input/sken. 
.tehe/camligun/Kenbus80/input/sken. 
_tehe/camligun/Kenbus80/input/sken. 
.tehe/camligun/Kenbus80/input/sken. 
.tehe/camligun/Kenbus80/input/sken. 
tehe/camligun/Kenbus80/input/sken. 
.tehe/camligun/Kenbus80/input/sken. 
.tehe/camligun/Kenbus80/input/sken. 
tehe/camligun/Kenbus80/input/sken. 
_tehe/camligun/Kenbus80/input/sken. 
_tehe/camligun/Kenbus80/input/sken. 
.tehe/camligun/Kenbus80/input/sken. 
.tehe/camligun/Kenbus80/input/sken. 
_tehe/camligun/Kenbus80/input/sken. 
_tehe/camligun/Kenbus80/input/sken. 
_tehe/camligun/Kenbus80/input/sken 
tehe/camligun/Kenbus80/input/sken 
_tehe/camligun/Kenbus80/input/sken 

00000: [OK] 
00001: [OK] 
00002: [OK] 
00003: [OK] 
00004: [OK] 
00005: [OK] 
00006: [OK] 
00007: [OK] 
00008: [OK] 
00009: [OK] 
00010: [OK] 
00011: [OK] 
00012: [OK] 
00013: [OK] 
00014: [OK] 
00015: [OK] 
00016: [OK] 
00017: [OK] 
00018: [OK] 
00019: [OK] 
00020: [OK] 
00021: [OK] 
00022: [OK] 
00023: [OK] 
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Opening file /data_tehe/camligun/Kenbus80/input/sken.00024 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.0OO25 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00026 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00027 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00028 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00029 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00030: [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00031: [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00032: [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00033 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00034 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00035 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00036 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00037 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00038 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00039 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00040: [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00041 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00042: [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00043 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00044 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00045 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00046 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00047 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00048 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00049: [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00050: [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00051: [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00052: [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00053 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00054: [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00055 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00056: [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00057 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.OOO58 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00059 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00060: [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00061: [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00062 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00063 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00064 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00065 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00066: [OK] 
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Opening file /data_tehe/camligun/Kenbus80/input/sken.00067 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00068 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.0OO69 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00070: [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00071: [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00072 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00073 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00074 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00075 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00076: [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00077 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00078 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00079 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00080 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00081: [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00082 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00083 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00084 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.OO085 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00086 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.OO087 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00088 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.OO089 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.OO090 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00091 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00092 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00093 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00094 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.OO095 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.0O096 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.0O097 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00098 : [OK] 
Opening file /data_tehe/camligun/Kenbus80/input/sken.00099 : [OK] 

The simulation is completed successfully   @ Sat May 2 04:23:58 1998 

Dumping simulation modules... 
CPU Dumping Ll_64k/CPU_dump.00099 
CacheLl Dumping Ll_64k/CacheLl_dump.OO099 
Bufferl Dumping Ll_64k/Bufferl_dump.00099 
MainMemory Dumping Ll_64k/MainMemory_dump.00099 

Closing Log File @ Sat May 2 04:23:59 1998 
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APPENDIX D. AN EXAMPLE OUTPUT FILE FOR THE CPU MODULE 

I Module Title 
I Module ID 
I Configuration 
H  

:CPU 
0 
:L1 64k 

I 
Sat May 2 04:23:58 1998 

System Clock: 0071595011 

Operating Parameters 

Number of Simulation Modules 4 
Word Size 4 
Trace Type B YU Trace 
Trace Filename /data_tehe/camligun/Kenbus80/input/sken.00099 
Start File Number 0 
Stop File Number 99 
Maximum Trace Buffer Size 1000 
Current Trace Buffer Index 928 
Last Entry in Trace Buffer 

Simulation Set  

928 

_l—+ 
101 

H—+ 
I CPU 
+  
I CacheLl 

I Bufferl 

111 
-H + 

121 

I MainMemory    13 I 
H +_„+ 

Event Queue Contents 

-+ 
ICaPSim   Event Queue I 
I Size: 00 ©00715950111 
^ h 

Number of Canceled Events : 0 
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Module States 

CPU State ©0071595011: 
CacheLl State ©0071595011 : 
Bufferl State ©0071595011 : 
MainMemory State ©0071595011 

ReadStall 
Idle      Block Buffer: Idle 
Idle 
Idle 

Statistics 

Total Number of Requests 
Total Number of Read Requests 
Total Number of Write Requests 
Total Read Stall Cycles 
Total Write Stall Cycles 
Average Read Access Time 
Average Write Access Time 

7122928 
4901106 
2221822 
8829458 
2221825 
1.80152357 
1.00000131 

END OF FILE [Ll_64k/CPU_dump.0OO99] 
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APPENDIX E. AN EXAMPLE OUTPUT FILE FOR THE CACHE MODULE 

+- 
I Module Title   : CacheLl 
I Module ID      : 1 
I Configuration  : Ll_64k 
H  

I 
I 

Sat May 2 04:23:58 19981 
 + 

System Clock: 0071595011 

Operating Parameters  

Cache Size 
Block Size 
Sub-Block Size 
Fetch Size 
Transfer Size 
Associativity 
Number of Sets 
Total Number of Blocks 
Number of Sub-Blocks 
Replacement Policy 
Write Policy 
Write Miss Policy 
Wrapping Fetch Policy 
Start Policy 
Read Forward 
Enable Block Buffer 
Search Block Buffer 
Read Access Time 
Write Access Time 
Read Hit   Time 
Read Miss  Time 
Write Hit   Time 
Write Miss  Time 
Block Buffer Transfer Time 

65536 
16 
4 
16 
4 
4096 (Fully associative) 
1 
4096 
4 
LRU 
Write Through 
Write Around 
Wrap Up 
Cold Start 
No 
Yes 
Yes 
1 
1 
0 
0 
0 
0 
1 

Address Decoder ■ 

+- -+--H—h+- 
133222222222211111111110O0O0OI00I0OI It: tag bits = 281 
I1098765432109876543210987654I32I10I Is : set bits = 001 
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+- -+--H—h lw : word bits = 021 
tttttlwwlbbl lb : byte bits = 021 
 +--+--+ H + 

Block Address Mask fffffffOhex 
Sub-block Address Mask fffffffchex 
Word Address Mask fffffffchex 
Set Number Mask 00000000 hex 
Sub-block Number Mask 0000000c hex 
Word Number Mask 0000000c hex 
Word Byte Number Mask 00000003 hex 
Block Byte Number Mask OOOOOOOfhex 

Stati stips -  WlULldLil/O                                                               ————... 

Total Number Of Read Reque; >ts       : 4901106 
Total Number Of Write Reques ;ts : 2221822 
Number Of Read Requests : 4901106 
Number Of Write Requests 2221822 
Number Of Read Cancels 0 
Number Of Write Cancels 0 
Number Of Read Hits 4457572 
Number Of Write Hits 1470170 
Number Of Dirty Read Misses 0 
Number Of Dirty Write Misses 0 

Global Read Hit Ratio : 0.90950328 
Global Read Miss Ratio : 0.09049672 

Global Write Hit Ratio : 0.66169566 
Global Write Miss Ratio : 0.33830434 

Local Read Hit Ratio : 0.90950328 
Local Read Miss Ratio : 0.09049672 

Local Write Hit Ratio : 0.66169566 
Local Write Miss Ratio : 0.33830434 

Dirty Read Miss Ratio 0.00000000 
Dirty Write Miss Ratio 0.00000000 
Dirty Read Miss Percentage 0.00000000% 
Dirty Write Miss Percentage 0.00000000% 
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Read Miss Cycles : 4256988 
Read Miss Penalty : 9.59788418 

Block Buffer Read Hits :0 
Block Buffer Write Hits :0 

Block Buffer Read Hit Ratio : 0.00000000 
Block Buffer Write Hit Ratio : 0.00000000 

END OF FILE [Ll_64k/CacheLl_dump.00099] 
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APPENDIX F. AN EXAMPLE OUTPUT FILE FOR THE PRC MODULE 

I Module Title   : PRC 
I Module ID      : 1 
I Configuration   : iPRC_64k 
^  

I 

FriApr24 14:31:48 19981 
 1- 

System Clock: 0091740833 

Operating Parameters 

PRC Algorithm                               : 
PRC Size 

Instruction Address Displacement 
65536 

Block Size                                        : 16 
Sub-Block Size 4 
Fetch Size                                        : 16 
Transfer Size 4 
Associativity 
Number of Sets 

4096 (Fully associative) 
1 

Total Number of Blocks 4096 
Number of Sub-Blocks 4 
Replacement Policy 
Write Policy 
Write Miss Policy 
Bypass Write Allocates 

LRU 
Write Through 
Write Around 
Yes 

Read Access Time 1 
Write Access Time 1 
Read Hit   Time 0 
Read Miss  Time :0 
Write Hit   Time :0 
Write Miss  Time :0 
Block Buffer Transfer Time :1 

Address Decoder  

INSTRUCTION ADDRESS DECODER: 

13322222222221111111111000000001001 It: tag bits = 
—+ 

= 301 
110987654321098765432109876543211011s 
H _ 1~ ++. 

set bits: = 001 
 + 
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Itt 
+- —\ h 

Instruction Tag Mask : fffffffc hex 
Instruction Set Mask : 00000000 hex 

DATA ADDRESS DECODER: 

^ H—i—M + 

13322222222221111111111000000I00I00I It: tag bits = lcl 
I1098765432109876543210987654I32I10I Is : set bits = 001 
H H—i—h |w : word bits = 021 

Ittttt 
+- 

tlwwlbbl lb : byte bits = 021 
 H—1—+ ^  

Block Address Mask 
Sub-block Address Mask 
Word Address Mask 
Set Number Mask 
Sub-block Number Mask 
Word Number Mask 
Word Byte Number Mask 
Block Byte Number Mask 

Statistics  

fffffffOhex 
fffffffc hex 
fffffffc hex 
00000000 hex 
OOOOOOOchex 
0000000c hex 
00000003 hex 
OOOOOOOfhex 

Total Number Of Read Requests 4900537 
Total Number Of Write Requests 2221356 
Number Of Read Requests 4900537 
Number Of Write Requests 2221356 
Number Of Read Cancels 378 
Number Of Write Cancels 0 
Number Of Read Hits 1848517 
Number Of Write Hits 616829 
Number Of Transfer Stalls 0 

Total  Hits 1815494 
Partial Hits 33023 
Total  Misses 65937 
Partial Misses 2986083 
Maximum Write Hits 569824 

Number Of Prefetch Requests 2076607 
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Number Of Invalid Predictions 
Wrap-Around From Left 
Wrap-Around From Right 
Prediction in the Same Block 
Maximum Pending Prefetches 

2790907 
11502 
134 
2779271 
265967 

Global Read Hit Ratio 
Global Read Miss Ratio 

0.37720704 
0.62279296 

Global Write Hit Ratio 
Global Write Miss Ratio 

0.27768129 
0.72231871 

Local Read Hit Ratio 
Local Read Miss Ratio 

0.37720704 
0.62279296 

Local Write Hit Ratio 
Local Write Miss Ratio 

0.27768129 
0.72231871 

Block Buffer Read Hits 
Block Buffer Write Hits 

2589 
4 

Block Buffer Read Hit Ratio 
Block Buffer Write Hit Ratio 

0.00052831 
0.00000180 

END OF FILE [iPRC_64k/PRC_dump.00099] 
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APPENDIX G. AN EXAMPLE OUTPUT FILE FOR THE BUFFER MODULE 

I Module Title   : Bufferl 
I Module ID      :2 
I Configuration  : Ll_64k 
H  

Sat May 2 04:23:581998 
-+ 

System Clock: 0071595011 

Operating Parameters  

Read Buffer Size 
Write Buffer Size 
Write Buffer Block Size 
Enforce Priorities 
Remove Read Duplicates 
Remove Write Duplicates 
Search Read Buffer 
Search Write Buffer 

:8 
:4 
:16 
:Yes 
:Yes 
:Yes 
:Yes 
:Yes 

Read Buffer Contents 

+- 
I READ BUFFER [EMPTY] 
I Access In Progress 
I # Pushes Attempted 
I # Pushes Granted 
I # Pushes Rejected 
H  

0/8 I 
No I 
443534 I 
443534 I 
0 I 
 + 

Write Buffer Contents 

I WRITE BUFFER [EMPTY] 
I Access In Progress 
I # Pushes Attempted 
I # Pushes Granted 
I # Pushes Rejected 

 + 
0/4 I 
No I 
2221822 I 
2221822 I 
0 I 
 + 

Statistics 
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Total Number Of Read Requests 
Total Number Of Write Requests 
Number Of Read Requests 
Number Of Write Requests 

4901106 
2221822 
443534 
2221822 

READ BUFFER: 
Number of Requests Slipped 
Number of Requests Dropped 
Total Number of Matches 
Number of Matches (Low-High) 
Number of Matches (High-Low) 
Instruction Address Matches 
Victim Block Matches 
Total Write Hits 
Partial Write Hits 

WRITE BUFFER: 
Number of Inclusive Merges 
Number of Adjacent Merges 
Total Number of Matches 
Number of Matches (Low-High) 
Number of Matches (High-Low) 
Total  Read Hits 
Partial Read Hits 

0 
735990 
0 
0 
0 
0 
0 

END OF FILE [Ll_64k/Bufferl_dump.00099] 
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APPENDIX H. AN EXAMPLE OUTPUT FILE FOR THE MAIN MEMORY 

MODULE 

H  

1 Module Title : MainMemory 

 + 
1 

1 Module ID :3 1 
1 Configuration 
j  

: Ll_64k Sat May 2 04:23:5919981 
 1- 

System Clock: 0071595011 

Operating Parameters  

Memory Access  Time              : 5 
Memory Transfer Time              : 1 

Number Of Read Requests 
Number Of Write Requests 
Number Of Read Cancels 
Number Of Write Cancels 

443534 
1484334 
0 
0 

Total Number Of Cycles 
Number Of Idle Cycles 
Number Of Read Cycles 
Number Of Write Cycles 

11372060 
60222951 
3548272   [31.20%] 
7823788   [68.80%] 

Total Memory Utilization 
Memory Read Utilization 
Memory Write Utilization 

0.15883873 
: 0.04956033 
: 0.10927840 

Average Read Service Time 
Average Write Service Time 
Global Read Service Time 
Global Write Service Time 

TJMT» OT7 T7TT P l"T 1    6AV/\A->in\/!f*mnr\/ 

: 8.00000000 
: 5.27090788 
: 0.72397375 
: 3.52133870 

Hiiror» nnnocn    
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