AFRL-IF-RS-TR-1998-34
Final Technical Report
April 1998

ATLANTIS: AN OPEN ARCHITECTURE FOR
SYNERGY OF PROCESS-CENTERED
ENVIRONMENTS AND COMPUTER-SUPPORTED
COOPERATIVE WORK

Columbia University

Sponsored by
Advanced Research Projects Agency

ARPA Order No. B128

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE
ROME RESEARCH SITE
ROME, NEW YORK

mo QUALT ePECTED &

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

AFRL-IF-RS-TR-1998-34 has been reviewed and is approved for publication.

-

JAMES R. MILLIGAN
Project Engineer

FOR THE DIRECTOR: %ﬂ /’L/{ Fuf ﬁ:' lm

NORTHRUP FOWLER, III, Technical Advisor
Information Technology Division
Information Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory Rome Research Site mailing list, or if the addressee is no longer employed by
your organization, please notify AFRL/IFTD, 525 Brooks Road, Rome, NY 13441-4505.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

ATLANTIS: AN OPEN ARCHITECTURE FOR SYNERGY OF
PROCESS-CENTERED ENVIRONMENTS AND
COMPUTER-SUPPORT COOPERATIVE WORK

Gail E. Kaiser

Contractor: Columbia University

Contract Number: F30602-94-C-0197

Effective Date of Contract: 30 June 1994

Contract Expiration Date: 30 September 1997

Program Code Number: 7E20

Short Title of Work: ATLANTIS: COLUMBIA SUPPORT

Period of Work Covered: Jun 94 - Sep 97

Principal Investigator: Gail E. Kaiser
Phone: (212) 939-7084
AFRL Project Engineer: James R. Milligan
: Phone: (315) 330-2054

Approved for public release; distribution unlimited
This research was supported by the Advanced Research Projects

Agency of the Department of Defense and was monitored by
James R. Milligan, AFRL/IFTD, 525 Brooks Road, Rome, NY.

Form Approved

REPORT DOCUMENTATION PAGE OMB No. 07040188

Public reporting burden for this collection of information is estimated to averags 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data neaded, and complating and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for raducing this burden, to Washington Headquarters Services, Directorate for information
Operations and Reports, 1215 Jefferson Davis Highway, Suits 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave biank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

April 1998 Final Jun 94 - Sep 97
5. FUNDING NUMBERS

4. TITLE AND SUBTITLE
ATLANTIS: AN OPEN ARCHITECTURE FOR SYNERGY OF PROCESS-
CENTERED ENVIRONMENTS AND COMPUTER-SUPPORTED COOPERATIVE |C - F30602-94-C-0197

WORK PE - 62301E

6. AUTHOR(S) PR - Bi28
TA -01

Gail E. Kaiser WU -01

8. PERFORMING ORGANIZATION
REPORT NUMBER

1. PERFORMING ORGANIZATION NAME(S) AND ADDRESSIES)

Columbia University
Department of Computer Science
1214 Amsterdam Avenue, Mail Code 0401

York NY 10027
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSIES)

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

AFRL/IFTD

Advanced Research Projects Agency

3701 North Fairfax Drive
Arlington VA 22203-1714

525 Brooks Road
Rome NY 13441-4505

AFRL-IF-RS-TR-1998-34

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: James R. Milligan/IFTD/(315) 330-2054

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT Maximum 200 words)

This report summarizes the work performed under a DARPA-sponsored effort performed by Columbia University which
focused on the development and integration of advanced software engineering environment capabilities for computer-
supported cooperative work, rule-based process modeling and execution, and distributed transactions management.

15. NUMBER OF PAGES

272
16. PRICE CODE

14, SUBJECT TERMS

Process-Centered Environments, Groupware, Software Engineering, CSCW, Transaction

Management
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 18, SECURITY CLASSIFICATION 20. LIMITATION OF
OF REPORT OF THIS PAGE OF ABSTRACT _ ABSTRACT
UNCILASSIFIED UNCLASSIFIED UNCLASSIFIED UL

Standard Form 298 (gRev. 2-89) (EG)
Prescribed by ANSI Std. 238.18
Designed using Perform Pro, WHS/DIOR, Dct 94

e

Contents

1 Overview

1

1.1 Project Summary 1
1.2 Accomplishments 2
121 FY94-FY95 o 2
122 FYO96 3

13 FYOT . . 4
2 Decentralized Process Interoperability 7
21 Introduction. 8
2.1.1 Requirementsand Scope 8

2.2 The Process Interoperability Model 10
2.2.1 Basic Concepts and Definitions 10
2.2.1.1 General Process Terminology 10

2.2.1.2 A Multi-User, Single-Process PSEE 11

2.21.3 A Multi-Group, Multi-Process PSEE 12

2.2.2 Defining Process Interoperability: the Treaty 13
2221 Treaty Requirements 14

2.2.2.2 Alternative Approaches 15

2223 TheTreaty o . o e 16

2.2.24 Local Evolution and Dynamic Treaty Verification 19

2225 Treaty Summary 20

2.2.3 Multi-Process Execution: the Summit 20
2.2.3.1 Alternatives, Design Choices, and Justifications 21

223.2 TheSummit 21

2233 Example 23

2.3 Realization of the Interoperability Modelin Oz 23
231 Oz Overview 23
232 Treatyin Oz 26
2321 export. 26

2322 Unexport 27

2323 import e 27

2324 unimport DU 30

2.3.25 Forming Treaties 30

233 Summitin Oz 31
2.3.3.1 Summit Initialization and Treaty Verification 31

2332 PreSummit 31

2333 Summit Activity L 32

2334 Post-Summit 32

2.3.3.5 Inference of Summit Rules 32

2336 Summit Completion 33

2.4 Application of the Model to Other PMLs 33

241 PetriNets o e e
2411 AnExample e
2.4.2 Grammar-Based PMLs
2.5 Experience and Evaluation e e e e e e e e e
2.5.1 The Emerald City Environment
2.5.2 Evaluation e
2.52.1 Autonomy e e
2522 Locality
2.5.2.3 Interoperability o0
2.5.2.4 Support for Pre-existing and Heterogeneous Processes
2.5.2.5 Scaleability
2.5.2.6 Language vs. System approaches to Treaty Definition
26 Related Work
2.7 Conclusions and Future Work
271 Future Work
Process Support for Componentry
3.1 Imtroduction.
3.2 Marvel and Oz Background
3.3 First Try: OzMarvel e
3.4 Second Try: EmeraldCity i
35 Conclusions e e e e e
Integrating a Standard OMS
4.1 Introduction L e e
42 PCTE Overview ittt e e e d e e
421 The PCTEOMS Model
4211 Object Model
4.2.2 Communicating with the PCTEOMS
4.3 Oz Overview e e e e e e e e
4.3.1 Major Oz Components ottt e
4.3.2 Communicating with the Oz OMS
433 Oz ToolEnvelopes i
4.4 Implementation — Data Model Mapping,
4.4.1 Comparison of Oz and PCTE OMS Models
4.4.1.1 Similarities Lo
4412 Differenceso e e e
4.4.2 Using the PCTE Object Model to Define Oz Schemas
4.5 Implementation ~ Interface to the PCTEOMS
4.5.1 OMS Primitivesin PCTE
4.5.2 Reading the Class and Object Hierarchy into the Oz Server
4.5.3 Oz Built-in Operations. i
4.5.4 Accessing PCTE Objectsinan Oz Task
4.6 Concurrency Control and Recovery
4.6.1 Concurrency and Integrity Controlin PCTE
4.6.2 Built-in Operations as PCTE Protected Activities
4.6.3 External Tools Wrapped in PCTE Transactions
4.6.4 Recovery Using Pern Log and PCTE Transactions
4.6.5 Dealing with Concurrent PCTE Tools
4.7 An Example: Oz/Doc with PCTEOMS
471 The Oz/Doc Environment

4.7.2 Implementing the Oz/Doc Environment with Oz and the PCTE OMS
4.7.3 Performance Analysis e

it

48 Related Work
49 Conclusion
4.9.1 LessonsLearned
492 FutureWork
Integrating Synchronous Groupware
51 Introduction.
5.1.1 A Motivating Example
5.2 Relationships between Workflow and Groupware .
5.3 Integration Concepts and Mechanisms
53.1 User Modeling
532 UserBinding
5.3.3 Process Automation of Groupware Activities
5.3.4 Infrastructure Support
5.4 Groupware Integrationin Oz
541 Oz Overview
5.4.2 Realization of the Review Task
55 Summary
Integrating Asynchronous Groupware
6.1 Introduction.
6.2 Oz Background
6.3 Tool Modeling
6.4 The Integration Protocol
6.4.1 ToolSessions
6.4.2 Architecture
6.4.3 Envelope Execution
6.4.4 Wrapper Structure
6.5 Tool Integration Examples
6.5.1 UNIQUEUE:idraw
6.5.2 UNINO.QUEUE:emacs
6.53 MULTIQUEUE:FUF
6.54 MULTINOQUEUE: Oz
6.6 Related Work
6.7 Contributions and Future Work
Federating Process-Centered Environments
7.1 Introduction.
7.2 Requirements and Alternative Architectures
7.2.1 Local Environment Internal Architecture .
7.2.2 Requirements for Homogeneous Federation
7.2.3 Homogeneous Federation Architectures . .
7231 Adhoc
7.2.3.2 Centralized Glue
7.2.3.3 Decentralized Glue
7.2.3.4 Moderated Peer-to-Peer
7.2.3.5 ~ Direct Peer-to-Peer
7.2.4 Choice of Homogeneous Architecture
7.2.5 Requirements for Heterogeneous Federation
7.2.6 Heterogeneous Federation Architectures . .
7.26.1 Adhoc
7.2.6.2 Centralized Glue
7.2.6.3 Decentralized Glue.

iii

7.2.7 Choice of Heterogeneous Architecture

7.3 The Oz Homogeneous PCE Federation
7.3.1 Marvel and Oz Overview e
7.3.1.1 Treatiesand Summits L oo oL

7.3.2 Oz Architecture e
7.3.2.1 The Environment Server

7322 TheClient i

7.3.2.3 The Connection Server

7.4 0Oz/ProcessWall: A Hypothetical Heterogeneous Federation
TA41 TsSUES o o e e e e e e
7.4.2 Integrating Oz Tasks and ProcessWall Tasks

7.5 Contributions and Future Directions

8 Flexible Process Enactment

8.1 Imtroduction. e
8.2 Motivating Example L
8.3 Knowledge-Based Assistance o e
84 MARVEL Background L e e e e
85 Amber Design. e e
8.6 Guidance and Delegation
8.7 Planning, Simulation, Monitoring and Instrumentation
88 Related Work e
8.9 Conclusions e e e e e e e e

9 External Process Server Component

9.1 Introduction L e e e
9.2 Spectrum of (Rule-based) Metalinguistic Extensibility
9.3 Mechanisms for Metalinguistic Extensibility in Amber
9.3.1 Language Overview i i
9.3.2 Amber Rule Execution Algorithm
9.3.3 Amber Callback Interface

9.4 Sample Extensions e
94.1 Multi-Process Collaboration
9.4.1.1 Amber/Oz Implementation Details

9.4.2 Integration with micro-TeamWare,
9.4.2.1 micro-TeamWare Integration Approach

9.5 Contributions e e

10 External Transaction Manager Component
10.1 Introduction e e e e e e e e e e
10.2 Requirements o i e e e e e e e e e e e e e e e
10.3 ECC Architecture o i e e e e e e e e e e
10.4 ProcessWEAVER e e e e e e e
10.5 Oz . . . e e e e e e e e
10.6 Lessons Learned e e
10.7 Contributions and Future Work oL

11 Extended Transaction Modeling
11.1 Introduction L L. e
11.2 Architecture e e
11.3 ETM Specification o 0 i it e e e
11.3.1 Motivating Example Revisited
11.3.2 Extracting Semanticst e e e

iv

11.4 Example Extended Transaction Model 201

11.5 Example Integration with DBMS 205
11.5.1 Altruistic Lockingin Exodus 206
11.6 Evaluation L e 206
11.6.1 Support for Locking 206
11.6.2 Effects on application 207
11.7 Related Work o e 207
11.8 Contributions and Future Work 208
12 Low-Bandwidth Operation 209
12.1 Introduction L e e e e e 210
12.2 Motivation e e e 211
12.3 Goals . . . L o e 211
12.4 Sources of Network TrafficinOz N 212
1241 Client Login o e e 212
12.4.2 Objectbase Image L 213
12.4.3 “Strategy” Data 213
1244 File Access . . . o . it e e e e 213
12,5 Low Bandwidth Client 214
12.5.1 Objectbase Caching 214
12.5.2 Strategy Caching 215
12.6 Running External Tools e 216
12.7 Proxy Client o o e e e e e e e e e 216
12.7.1 Proxy Login to “Local” Server 217
12.7.2 Proxy to Low Bandwidth Binding 217
12.7.3 Proxy Execution e 218
12.7.4 Support for Graphical Tools 218
12.8 Low Bandwidth Activity Manager 219
12.8.1 File Transfers Support e 219
12.8.2 Language Extensions for Low Bandwidth Client 220
12.8.3 Low Bandwidth Summary 220
12.9 Future Work oL e e e 222
12.9.1 Prefetching 222
12.9.2 Concurrency Control 224
12.9.3 Reintegration L e 227
12.9.4 Dependency Tracking 229
12.10Related Work oL e e e e 229
12.11Contributions L L L e e e e 230
v

List of Figures

2.1 A Generic Multi-User Single-Process Environment 12
2.2 A Decentralized Environment L oo 13
2.3 Dynamic Treaty Verification Algorithm 20
24 AnExampleSummit 24
2.5 An Oz Environment o i vt it e e e e e e e 26
2.6 Oz Environment with one open remotesite 27
2.7 Integration of Imported Rules 29
2.8 Example Multi-Process Petri-net 0L 35
2.9 The Emerald City Environment o 37
2.10 Three-site Build e 39
2.11 A Snapshot from the Master SubEnv 0L 40
3.1 Hierarchical Master Area Display i e 52
3.2 Horizontal Master Area and Workspace Display 52
3.3 Workspace Display e 53
3.4 Zoom Into Systems Hierarchy in Master Area 55
3.5 Darkover Conversion Process Task, 57
3.6 Treaty Process Steps for 3-site Builds 58
41 An Oz ClassDefinition« . o o i i e e 67
4.2 Corresponding PCTE Schema Definition 68
4.3 System Architecture of Oz Interfacing with PCTEOMS 69
4.4 Nesting a Pern Transaction within a PCTE Transaction (not possible) 72
4.5 Transaction Envelope e 74
4.6 Concurrent Activities e e 76
4.7 Incorrect Summary Problem 77
4.8 Lock Mediator i i i i i e e e 77
4.9 Definition of the FILE class (with multiple inheritance) in Oz/Doc 79
4.10 Corresponding Definition of FILE in PCTE (using single inheritance) 80
4.11 Objectbase and Strategy Files oL 80
51 TheReview Task o 0 i o i i i e e 87
52 Sample Userand Group Classes 90
5.3 multi-edit activity e e 91
5.4 Oz External Architecture0 0 0o 93
5.5 Sample rules from the Review Task 95
6.1 Original Oz architecture 101
6.2 Modified tool definition notation oo 102
6.3 Toolsessiontemplate. e e 104
6.4 OzMTP Interface o i i i i i e e e 105
6.5 New Oz architecture i i i e e 108

vi

6.6 Example initialization script for a multi-user client/server tool 111

6.7 Example termination script for a multi-user client/server tool 112
6.8 Example activity script for a multi-tasking tool 113
6.9 MTP Activity Initiation 116
6.10 MTP Activity Completion 117
7.1 Multiple Team SDE Spectrum 128
7.2 Centralized Architecture L. 134
7.3 Decentralized Glue Architecture. 135
7.4 Moderated-peer-to-peer Architecture 136
7.5 Direct Peer-to-peer Architecture 137
7.6 Oz External Architecture 143
7.7 Oz Internal Architecture. 146
8.1 Simple Process Fragment 155
82 ARule From C/MARVEL 159
8.3 After Alice edited “agenda.c” and built “agenda.module”. 161
8.4 After Alice edited “agenda.c” again. 162
9.1 Example AmberRule 178
9.2 Amber Internal Architecture, 179
10.1 Division between logic and concurrency 183
10.2 ECMA/NIST Reference Model [168] 184
10.3 ECC component architecture 185
10.4 Interfacing of PERN with ProcessWEAVER.. 187
10.5 Augmented Deposit CP 189
10.6 Interfacing PERN with Oz 191
11.1 Concurrency specifications e e 197
11.2 CCL extension to DBMS architecture 198
11.3 CCL engine integrated with Transaction Manager 199
11.4 Modified Lock(t,objlist,mode) 199
11.5 Default CORD semantics 200
11.6 CORD rule for Epsilon Serializability 202
11.7 ESR::lock.after mediator algorithm 202
11.8 AL requirements 203
11.9 Mediator extensions for AL 204
11.10corD rule to support AL 205
11.11Statistics on implementing ETMs 206
12.1 Summary of Low Bandwidth Client Network Traffic 221
12.2 Transitive Closureof Rule Set 225
12.3 Probability Graph 226
12.4 Laputalock matrix 228
vii

Preface

The Atlantis project at Columbia University investigated componentization of workflow model-
ing and execution systems, particularly synergy of process-centered environment and computer-
supported cooperative work components. The components are intended to be intercperable with
legacy and off-the-shelf tools and frameworks and indicate requirements on future systems, for a
concrete transition path.

Subject Terms: Computer-Supported Cooperative Work, Distributed Computing, Object-
Oriented Database, Software Development Environments, Software Process, Transaction Manage-
ment, Workflow

This document describes work sponsored in part by Defense Advanced Research Project Agency
under DARPA Order B128 monitored by Rome Lab F30602-94-C-0197.

The views and conclusions contained in this document are those of the authors and should not
be interpreted as representing the official policies, either expressed or implied, of the US government
or DARPA.

viii

Chapter 1

Overview

1.1 Project Summary

Atlantis was originally formulated as a consortium consisting of the Programming Systems Lab
at Columbia University, the Advanced Collaborative Systems Lab at the University of Illinois at
Urbana-Champaign and the US Applied Research Lab of Bull HN Information Systems. However,
the Illinois work was later partially corducted at the Distributed Systems Technology Centre at
University of Queensland, Australia; and ARL shut down, their DARPA contract was cancelled.
The two academic groups had been working on their own diverse workflow-related projects for over
a decade prior to forming Atlantis. They initiated cross-licensing with each other and with Bull to
evaluate the prospects for integrating their technologies, culminating in a plan to investigate several
important, practical problems not previously being pursued:

¢ Groupware. The main theme was to integrate human/human collaboration, studied in the
computer-supported cooperative work (CSCW) community, with tool/tool integration, the forte
of the software engineering community. The Illinois researchers had addressed process primar-
ily from a CSCW perspective, e.g., Bull used their framework to develop a system for directing
human behavior during document inspections. The Columbia lab had been working on multi-
user process-centered environments (PCEs), particularly enforcement of process constraints
and automation of tool invocations to satisfy prerequisites and fulfill consequences of process
steps. The open architecture for workflow systems drew from both lines of research, with the
results originally intended to be transitioned by Bull into potential products.

¢ Process transition from current computer-aided software engineering (CASE) and tool inte-
gration technologies to PCEs by developing an ezternal process server component that enacts
project-specific process definitions. The resulting open architecture supports mediation be-
tween such a server and applications, to minimize or avoid changes to pre-existing systems.
The process server component provides a rule-based “process assembly language” into which
the user organization’s choice of process modeling formalism (e.g., Petri nets, grammars, task
graphs) can be translated, to be executed by the corresponding “process virtual machine”,
thus lowering the barrier to adoption.

¢ Collaboration transition from current database transactions and “check-out” technology to
collaborative workflow environments by developing an erternal cooperative transaction man-
ager. It is widely agreed that the classical transaction model is inappropriate for long-duration,
interactive and/or cooperative activities, but there is no consensus on the numerous extended
transaction models that have been proposed, and it appears that there will never be a consen-
sus: different models are needed for different applications. Thus the transaction-management
component supplies primitives for defining project-specific concurrency control policies, anal-

1

ogous to process modeling. The open architecture enables mediation between the transaction
manager and pre-existing systems, mapping task units to transaction-like constructs.

* Geographical distribution. Industrial-scale software development increasingly takes place
outside the boundaries of a local area network, often spread across regions and/or indepen-
dent organizations, on an intranet/extranet or the Internet. Collaborating subcontractors may
guard their own proprietary processes and tools, while sharing data subject to security con-
straints, so a model for “cooperating software processes” is needed. The open architecture ex-
tends workflow management and execution technology to interoperability among autonomously
defined processes, with a wide area network-capable PCE infrastructure.

1.2 Accomplishments
The main deliverables for the project overall were:

e Definition and realization (Oz) of the Treaty/Summit model for interoperability among au-
tonomously defined processes and an infrastructure for Internet-wide distribution.

e Development of a coordination modeling language and interpreter (CORD), and several case
studies interfacing an external concurrency control component (Pern) to existing systems (in-
cluding the commercial ProcessWEAVER).

o Definition of a process assembly language and corresponding process virtual machine (Amber),
and several case studies translating other workflow definition formalisms (including commer-
cial StateMate and ProcessWEAVER notations) and interfacing Marvel or Amber to existing
systems (including ProcessWEAVER. and Bull’s Scrutiny).

e Construction of an object management system component (Darkover) from Oz’s native OMS,
and replacement of the “hidden” file system (for coarse-grained data) with a more efficient
subsystem.

1.2.1 FY94-FY95

The Atlantis project at Columbia University developed an “International Alliance” metaphor for
interoperability and collaboration among diverse workflow processes. The processes may be specified
autonomously by independent organizations, with interoperation added-on if and when needed while
the processes are in progress, or alternatively may be specified top-down as interacting subprocesses
when collaboration is planned in advance. A Treaty is a mechanism for agreeing on small to large
degrees of collaboration among processes (termed “sites”), at the level of one or more workflow steps.
Any two or more sites may separately choose whether or not to participate in a Treaty, and any
site can decide to cancel its agreement. Treaties need not be symmetric; e.g., one organization may
agree to perform certain operations on another organization’s data without permitting that other
organization to apply those operations to its own data.

A Summit is an execution of any process step involving data from multiple sites; all of these sites
must have previously agreed to the corresponding Treaty. A Summit may involve multiple processes
executing on the same machine, on different machines connected by a local area network, or on
collections of machines arbitrarily dispersed over a wide area network such as the Internet. Any
prerequisites to a Summit process step are requested from each local site, to be satisfied according
to its own private process; a Summit step cannot continue if any affected site does not fulfill the
relevant prerequisite(s). Similarly, each site is notified of the consequences of a Summit, and may
(or may not) carry out corresponding actions according to its own private process. A Summit can
potentially consist of a sequence of coordinated steps. The basic Treaty/Summit approach applies
in principle to any process modeling and execution technology, but to date has been implemented
only for Oz.

The Oz system provides an infrastructure for registration and communication of sites that could
potentially collaborate. Oz currently implements the International Alliance metaphor for a rule-
based process engine, where each process step is specified by a condition-action-effect rule, and
execution of tasks consisting of multiple process steps is implemented by backward and forward
chaining among rules. A Treaty corresponds to a selected subset of the rules, and requires a com-
mon subschema describing the structure of relevant product and process data. A Summit involves
backward chaining at each local site to satisfy the condition and forward chaining at each local site
to carry out the implications of the effect, with one site coordinating the execution of the Summit
rule. This rule might invoke a conventional tool, with the tool’s user interface supplied either to
the user who invoked the Summit in the first place or to an alternative user from a specified list, or
instead a groupware tool with simultaneous delegation to multiple users. Rule chains may also be
formed among Summit rules when the collaboration consists of several directly linked phases.

The Columbia group also achieved something that many believed “couldn’t be done”: adding
transaction management to legacy systems. A mediator-based architecture allow system builders to
add concurrency control to existing database applications, environment frameworks, and workflow
execution systems - in many cases without changing the existing software. The Pern external
concurreny control component requires the application to have some notion of grouping into task-
like units (which are mapped to transactions), some mechanism for wrapping calls or messages to
Pern around data accesses (for locking), and some capability for undoing or rolling back updates
{for recovery). Many systems do not directly provide such “hooks”, but back doors into a system’s
facilities can sometimes be found; in the worst case, recovery can be achieved by Pern submitting
a series of new update that happen to restore the previous values of the affected entities. Only
conventional atomic and serializable transactions were supported initially.

Columbia’s predecessor Marvel 3.x system, which supported a single process model per environ-
ment resident on a local area net, was licensed to over 40 institutions including a dozen companies and
Rome Lab. An early version of the Oz process-centered environment, supporting logical distribution
and multi-process interoperability, was delivered to DARPA with complete user and administrator
manuals. Oz was in daily use for over two years in daily internal use for both software development
and technical writing, prior to the deployment of the successor OzWeb system.

1.2.2 FY96

Database management systems (DBMSs) are increasingly used for advanced application domains,
such as software development environments, network management, workflow management systems,
CAD/CAM, and managed healthcare, where the standard correctness model of transaction bseri-
alizability is often too restrictive. The Atlantis project at Columbia introduced the notion of a
Concurrency Control Language (CCL) that allows a database application designer to specify con-
currency control policies to tailor the behavior of a transaction manager: a well-crafted set of
policies defines an extended transaction model. The necessary semantic information required by
the CCL run-time interpreter is extracted from a task manager, a (logical}) module by definition
included in all advanced applications, which stores task models that encode the semantic infor-
mation about the transaction-like units submitted to the DBMS. Columbia designed a rule-based
(condition-action) CCL, called CORD, and implemented a run-time interpreter that can be hooked
to a conventional transaction manager to implement the sophisticated concurrency control required
by advanced database applications. They developed an architecture for systems based on CORD,
integrated the CORD interpreter with their own Pern transaction manager component and with
the Exodus storage manager from the University of Wisconsin, and implemented the well-known
Altruistic Locking and Epsilon Serializability extended transaction models as samples.

Columbia also developed a process server component, called Amber. New systems could be con-
structed around the component, or existing non-process environment architectures enhanced with
value-added process enactment services (as in Columbia’s integration with Field from Brown Uni-
versity). Synergistic integration with existing process engines enables a degree of heterogeneity (as
in Columbia’s coupling with their mockup of TeamWare from the University of California at Irvine),

3

and previous-generation process enactment facilities in existing environments could be replaced (as
Columbia did with their own Oz system and with the ProcessWEAVER product from Cap Gemini).

Amber also supports translation of higher-level process modeling formalisms, e.g., Petri nets,
grammars and graphs, into its rule-based “process assembly language” for enactment, and permits
addition of formalism-specific support to the process engine via an extension and parameterization
mechanism. Thus the same process engine can support many different process modeling paradigms.
Columbia developed translators for ProcessWEAVER’s Cooperative Procedures (Petri nets), Bill
Riddle’s Activity Structures (concurrent regular expressions), and StateMate’s statecharts (finite
state automata). Integration of Amber as an external component into some foreign system, and
extension/parameterization of its process syntax and semantics, are both achieved through callbacks
to a mediator consisting of special-purpose “glue” code. The Amber version of Oz, replacing its
native process engine, was used for all software development by the Columbia Atlantis group.

“Black Box” enveloping technology expects the tool integrator to write a special-purpose script to
handle the details of interfacing between each COTS (or GOTS) tool and the environment framework.
Generally, the complete set of arguments from the environment’s data repository is supplied to the
tool at its invocation and any results are gathered only when the tool terminates, so tool execution
is encapsulated within an individual task. This does not work very well for: Incremental tools
that request parameters and/or return (partial) results in the middle of their execution, e.g., multi-
buffer editors and interactive debuggers; Interpretive tools that maintain a complex in-memory state
reflecting progress through a series of operations, e.g., “Knowledge-Based Software Assistants”;
Collaborative tools that support direct interaction among multiple users, including asynchronous
discussion and synchronous conferencing.

To address these concerns, the Atlantis project at Columbia introduced a Multi-Tool Protocol
(MTP), which enables submission of multiple tasks, either serially or concurrently, to the same
executing tool instance on behalf of the same or different users. Single-user tools can thereby be
converted to a “floor-passing” form of groupware, and a user can even send a running task to another
user for assistance; these facilities assume X11 Windows. MTP also addresses multiple platforms:
transmitting tool invocations to machines other than were the user is logged in, e.g., when the
tool runs only on particular machine architecture or is licensed only for a specific host. Columbia
implemented MTP as part of their Oz process-centered environment.

Componentization involves restructuring a stovepipe system into components that could poten-
tially be reused in other systems, and/or re-engineering an old system to permit replacement of
native code with new components. Columbia’s Atlantis project developed a series of two processes,
OzMarvel (running on top of the earlier Marvel process-centered environment) and EmeraldCity
(on top of the Oz process-centered environment, Marvel’s successor). Each was intended to support
both aspects of componentization, but EmeraldCity addressed one requirement not fully understood
when OzMarvel was developed: process support for co-existing components designed as alternatives
to each other in plug-n-play style. Columbia used OzMarvel to replace Oz’s native transaction
management subsystem with Pern, and used EmeraldCity both to replace Oz’s native object man-
agement system with an object-oriented database management system component (called Darkover)
and to replace Oz’s native process engine with Amber.

1.3 FY97

The Atlantis project at Columbia externally released a fully documented and robust version of the
Oz process-centered environment framework, and the components described above, ported to Solaris
2.5 (earlier versions ran on SunOS 4.1.3). There are already several “alpha” sites: the University
of Massachusetts at Amherst, North Carolina State University, the University of West Virginia,
Brown University, the University of California at Irvine, Lockheed Martin and the Naval Research
Laboratory.

Columbia completed a “proof-of-concept” World Wide Web browser user interface client to
Oz. They developed a general method for accessing legacy client/server applications from stan-

4

dard WWW browsers. The main effort is to modify an existing client for the system to perform
HTTP proxy server duties. Web browser users then simply configure their browsers to use this proxy,
and thereafter can access the target system via specially encoded URLs that the proxy intercepts
and sends to the existing server. The Web-based browser user interface to Oz is just one example.

Columbia developed mechanisms to structure information so that the view of the World Wide
Web, both within and across Web pages, is dynamically customizable. They investigated an archi-
tecture that integrates environment data repositories, such as their Darkover object management
system, with WWW to organize such dynamic structures. Different users, or the same user at
different times, could have different views of the Web. Their architecture potentially provides high
flexibility for a wide variety of applications, nothing is specific to software development environments.

5/6

Chapter 2

Decentralized Process
Interoperability

Abstract

A process-centered software engineering environment (PSEE) enables to model, evolve, and enact the
process of software development and maintenance. This chapter addresses the problem of process-
interoperability among decentralized and autonomous PSEEs by presenting the generic International
Alliance model, which consists of two elements, namely Treaty and Summit. The Treaty abstraction
allows pairwise peer-peer definition of multi-site shared sub-processes that are integrated inside
each of the participating sites, while retaining the definition- and evolution-autonomy of non-shared
local sub-processes. Summits are the execution abstraction for Treaty-defined sub-processes. They
enact Treaty sub-processes in multiple sites by successively alternating between shared and private
execution modes: the former is used for the synchronous execution of the shared activities, and
the latter is used for the autonomous execution of any private subtasks emanating from the shared
activities. We describe the realization of the models in the Oz muiti-site PSEE and evaluate the
models and system based on experience gained from using Oz for production purposes. We also
consider the application of the model to Petri net-based and grammar-based PSEEs.

2.1 Introduction

As software systems become more complex and larger in scale, their development and maintenance
requires more people with various skills, often organized into groups. The decomposition into groups
can be characterized by the level of intra-group vs. inter-group heterogeneity. For example, a project
may be composed of separate teams for requirements elicitation, functional specification, design,
coding, testing, documentation, and maintenance. This decomposition exhibits high intra-group
homogeneity and inter-group heterogeneity. Alternatively, a project may be decomposed into teams
that are each responsible for full development of a distinct component of the system, exhibiting
intra-group heterogeneity. Another characteristic of the project organization is whether it is formed
top-down or bottom-up. An example of the latter is when multiple independent organizations team
up (perhaps for a limited period of time) to develop a system. Finally, project personnel may
be divided into, or made up of pre-existing, physically dispersed teams (or even individuals, e.g.
telecommuting from home), a scenario that becomes more frequent with the advances in networking
technologies.

Although the various decompositions have their own specific requirements, a common desirable
property in a multi-team development is to allow some degree of operational as well as managerial
team autonomy. For example, it may be desirable to allow teams to use their own set of software
tools and hardware, their own private files or databases, and their own development policies and
workflow, or process. Furthermore, when the teams belong to different organizations, autonomy
and privacy are “hard” constraints that cannot be compromised or a priori restricted. At the same
time, the autonomous teams need to collaborate in order to develop the product. For example, they
may need to share tools or employ multi-user tools across teams, they may need to exchange and/or
share files and other data, and they may need to agree on some common policies and workflow, at
least for the parts of the work that involve collaboration.

The concept of system-interoperability, which has been largely motivated by the emerging global-
ization of computing, has been increasingly gaining popularity in various domains such as workflow
interoperability for business process re-engineering [81], multi-database interoperability [37], and
general client-server interoperability [214, 149]).

In this chapter we explore interoperability in the context of process-centered software engineer-
ing environments (PSEEs). PSEEs are systems that support large scale software development by
providing: (1) mechanisms and notations for explicitly modeling the process of development and
maintenance of software, including task definitions, control integration such as global task ordering
and local constraints on their activation, tool integration, data modeling and integration, and user
modeling; and (2) mechanisms for enacting the modeled process by the PSEEs process-engine, where
forms of enactment include process automation (e.g., Marvel [124]), consistency (e.g., CLF [185]),
monitoring (e.g., Provence [140]), enforcement (e.g., Darwin [162]), and guidance (e.g., Merlin [201}).

Thus, the PSEE-interoperability problem is to balance autonomy and collaboration among mul-
tiple processes, both in the modeling and the enactment phases, as a basis for collaboration among
multiple groups.

2.1.1 Requirements and Scope
Decentralized PSEEs

We deliberately use the term decentralization as opposed to distribution to emphasize that our
focus in this work is on interconnecting environments that are independent and loosely-coupled,
both physically and logically. This is in contrast to a “classical” distributed system in which a
single and homogeneous logical perspective is given to its applications but is physically distributed
into multiple computing units. Note that PSEE distribution (in the “classical” meaning) is a form
of “vertical” scale-up, in that it allows for more users to work, but under the same process and
typically with some bounded physical distance (typically a local-area network). Here we address
mainly “horizontal” scale-up, where the number of users per group sharing the same process may

8

not grow much (and in fact may degenerate to a single user), but the number of groups may be
arbitrarily large, each group with its own private process and data but collaborating in a concerted
effort with other groups.

Another aspect that is derived from decentralization is Independent Operation and Self-Containment.

This means that a sub-environment (henceforth SubEnv) should be able to behave as a complete
environment by itself when not collaborating with any other SubEnvs, and SubEnvs must be able
to operate concurrently and independently, except when their processes explicitly collaborate. The
most fundamental implication of this requirement is a “share-nothing” architecture. That is, no
multi-site service, mechanism, or data in the environment can be centralized or physically shared
and all interaction should be based solely on message passing.

Decentralization also implies that A multi-site PSEE should impose minimum overhead on the
operation of local work in SubEnvs. The underlying assumption is that most of the work done by a
SubEnv is local to that SubEnv, and therefore each SubEnv should still be optimized towards local
work.

Finally, we make the distinction between inter- vs. intra- process coordination. The latter is
concerned with coordinating concurrent activities that might violate the consistency of the project
database, assuming that all participants use the same process, the same schema, and most impor-
tantly, share the same centralized, project database (see, for example, {14]). In contrast, we focus
in this chapter on collaboration between users or teams with different processes, different schemas,
and different project databases.

PSEE Autonomy

Each local SubEnv should have complete control over its process, tools and data, while allowing
access by remote SubEnvs under restrictions that are solely determined by the local SubEnv. Access
to a SubEnv has two perspectives: access to the local artifacts owned by the SubEnv through some
process interface; and access to, and interaction. with tools and actual process tasks. Autonomy
constraints imply that a SubEnv’s data, tools and process are by default private, and some work has
to be done to allow sharing and remote use. Moreover, once defined, sharing should be restricted to
the minimum degree necessary for interoperability.

Process Heterogeneity

Heterogeneity in software systems in general (and PSEEs in particular) can be classified into four
levels: the operating system, the runtime support (PSEE engine), the front-end language (Process
Modeling Language (PML)), and the applications (specific processes). For example, a multi-PSEE
can support heterogeneous processes written in the same PML (application heterogeneity), it can
support heterogeneous PMLs but still require the same underlying (multi-lingual, in this case)
process engine (language heterogeneity), or it can support interoperability across heterogeneous
PSEE engines (system heterogeneity). Support for heterogeneity is, in general, an extremely difficult
problem, particularly in the context of decentralization. This chapter explores a limited aspect of
heterogeneity by fixing the system and language levels (although not restricting to a particular.
system or language) and supporting heterogeneity at the process model level. This is in contrast to
ProcessWall [98] for example, which focuses on language heterogeneity (see Section 2.6).

Allowing Pre-Existing Processes

In a typical top-down approach a system (process) is decomposed into sub-systems (sub-processes),
usually by a global authority which dictates where and how the different parts of the system, both
control and data, will be defined and executed. In contrast, the bottom-up approach, which is closely
associated with decentralized systems, does not assume a global authority, and multi-site applications
are constructed between the possibly pre-existing local (sub)systems, thereby avoiding the need to
have any a priori knowledge of the “neighboring” subsystems before the time of construction. Our
focus here is on the more decentralized bottom-up construction of multi-PSEE processes. This is in

9

contrast to most other distributed PSEEs which decompose a single process in a top-down fashion
into sub-processes with predefined and coordinated interfaces (as done in ProcessWEAVER [67], see
Section 2.6). Notice that we do not exclude support for top-down methodology; we do not, however,
enforce it.

Thus, it should be possible for pre-existing SubEnvs to “join” an on-going multi-site environment
or to form a new one with minimal configuration overhead. Similarly, a “split” of a SubEnv from
its currently configured multi-site environment should be supported.

The rest of this chapter is organized as follows: Section 2.2 presents the interoperability model for
definition and enactment of multi-site activities; Section 2.3 discusses an actual implementation of
the model in the Oz rule-based multi-site PSEE; Section 2.4 outlines the application of the model to
other non-rule-based PMLs; Section 2.5 evaluates the research based on experience gained by using
Oz in a production environment; Section 2.6 compares to related work; and Section 2.7 summarizes
the contributions of this research and outlines future directions.

In earlier work [27] we introduced a preliminary version of the model and its implementation, focusing on
enactment. Our book [21] presented a revised, comprehensive and formalized model with detailed coverage
of both the definition and enactment aspects, and describes a mature implementation. This chapter of the
report abridges the book, and adds new material in two areas: Section 2.5 is entirely new. It describes
anecdotal experience and provides statistics on using one Oz environment for production purposes by up to
14 users over approximately 8 months (to date), and (re)evaluates the interoperability model based on this
experience. This and other retrospective led to abstraction of local process evolution and dynamic Treaty
verification out of the Oz realization and its generalization and reformulation as part of the International
Alliance model in Section 2.2.2.

2.2 The Process Interoperability Model

At a high-level, our approach taken to meet the challenges described above is to exploit the fact
that process models are encoded in a formal notation, and use it as a basis for formally modeling
interoperability among process models. Furthermore, we extend the concept of process enactment
to encompass enactment support for the actual multi-process activities that enable collaboration
between the sites, in addition to the conventional single-site execution.

We begin with definitions of terms and a formalization of concepts that are used in the rest of
the chapter.

2.2.1 Basic Concepts and Definitions
2.2.1.1 General Process Terminology

As stated earlier, a process model defines a project-specific process and is encoded in some process
modeling language (PML), and a process-centered software engineering environment (PSEE) is a
system in which processes are modeled and enacted. A process model can be instantiated when it
gets bound with real data artifacts, tools, users, and any other system bindings which are required
by the PSEE. An instantiated environment is an executable process model. For brevity, we shall
call an instantiated environment simply an environment {(or SubEnv in the context of multi-site
PSEEs). This term should not be confused with the term PSEE, which refers to the system on
which (instantiated) environments run.

Note that the same process model can be instantiated in multiple environment instances. At
some point during its enactment, the process model of an environment might need to be changed,
e.g., because of feedback from the environment and/or new requirements, in which case it is evolved,
i.e., its persistent process and product states are upgraded to comply with the new process definition.

We can identify a generic three-level context hierarchy in process models. A particular PML may
have more or fewer levels, but we assume that there is some mapping into these core levels:

10

1. Activity — This is the PSEE’s interface to actual tools, including input/output data bindings,
user bindings (i.e., who should execute the tool if it is interactive), and machine binding (i.e.,
on what machine should the tool execute).

2. Process-step — This level encapsulates an activity with local prerequisites and immediate
consequences (if any) of the tool invocation, as imposed by the process. For example, in the
FUNSOFT Petri net based PML [90] a process step corresponds to a transition along with its
(optionally) attached predicates; in the Articulator task graphs [161] this level corresponds to
a node with its predecessor and successor edges; and in rule-based PMLs, a process step is
represented by a rule with pre- and post-conditions. The process-step level may also supply
the mechanism to interface among multiple activities in a process. For instance, in rule-based
PMLs, a post-condition of one rule is matched against a pre-condition of another rule to
determine possible chaining; similarly, the firing of a Petri net transition can enable another
transition.

3. Task — A set of logically related process steps that represent a coherent process fragment.
Depending on the specific PML and PSEE (1) there usually are some ordering constraints
among the activities or process steps of a task; (2) parts of a task might possibly be inferred
dynamically, emanating from an entry activity or process step selected by the user; and (3)
depending on the subtasks, a task might be partially carried out automatically by the PSEE
on behalf of the user, usually by triggering the inferred activities or steps. The task level
may be explicitly defined in the PML through a special notation, or may be implicitly defined
through the local prerequisites /consequences in the process-step level, or both.

2.2.1.2 A Multi-User, Single-Process PSEE

An (instantiated) environment E is defined as a quintuple
E=<UT,S,D,P>

where:

e U is a set of users using the environment. No built-in roles or hierarchies are assumed to be
attached to users, except for the concept of an environment administrator, who defines and
can modify each of the elements in E (analogous to the role of a database administrator).

e T is a set of tools being used in the environment. The tools can be off-the-shelf, or customized
to work in the PSEE, but in either case the PSEE is assumed to have means to invoke those
tools with process activities.

e S is a schema sub-language representing data types for modeling the process and product data.
S could be part of an external database that is separate from the PML (as in SPADE [10])
or it could be part of the PML (as in Marvel [124]). In addition, the process data could be
kept separately from the product data (which may reside in the native file system). In PMLs
with no data modeling at all (e.g., Synervision [109]) this element degenerates to the empty
language and all data elements are considered to belong to the single “universal” class. -

e D is a database for storing the persistent objects, each belonging to a certain type (or class)
from S.

e P is a set of activities/steps/tasks and their inter-relationships, which together comprise the
process model. They can be invoked either manually by human end-users, or automatically by
the process engine. Each activity encapsulates a tool from T, with formal parameters from S,
and actual parameters from D. An activity is not required to be bound to specific users (or
roles) from U, although such a requirement can be imposed by a specific implementation or a
specific process definition.

11

Data .1 Tool
"I Server

” Process
Server

’ \4
/ <P,5,D,T,U>

Environment

\/ /."] \ |

] Communication

client client client

Figure 2.1: A Generic Multi-User Single-Process Environment

Based on the above definitions and requirements, a high-level view of a single-process PSEE
with an instantiated environment is depicted in Figure 2.1. It consists of a data server managing
the process schema and data, a tool server integrating the project’s tools, a process server executing
the defined process, a client-user interface, and a communication layer connecting all components.
" A typical interaction with the PSEE is as follows: an end-user from U initiates a task from P by
invoking an activity that encapsulates tool(s) from T, on a set of data arguments from D that belong
to classes from S. The process server receives the request, and depending on the specific installed
process and other ongoing activities, determines what to do before, during and after the requested
activity, involving the data and tool servers, which can also interact directly with the client.

2.2.1.3 A Multi-Group, Multi-Process PSEE

A multi-process decentralized environment is formally defined as:
{Ez} t=1...n

where each E; is a single-process environment as defined above, maintaining its own data repos-
itory, tools, and process model. While the data is disjoint, it must nonetheless be accessible by
remote SubEnvs in order to enable process-interoperability. Thus, we assume that the underlying
PSEE has the necessary mechanisms to reference and bind remote data objects to local activities.
Driven by autonomy requirements, however, the data in each SubEnv is private by default, and is
said to be “owned” by its local process. Thus, access to both process and product data cannot be
made from a remote process without prior authorization from the owner process.

The high-level architectural view of a generic decentralized PSEE with a three-site decentralized
environment is depicted in Figure 2.2. Each local SubEnv consists, in addition to the single-process
components, of an inter-process server, a remote-data server, a remote-tool server and, a connectivity

12

Wide Area Network

l . ' ew— .

| . I !

: o B

e | [—
: o | |
I : ; ‘ |

i i | ! | | ’

| | o l |

| (c) . l i | c I v

! n Remote Remote l .111 R !

| e | emote Remote

| . Server Inter— JToul | n Data Inter— Tool

1 g Process Server | ¢ Server Process Server

| t Data i Server Tool | f Server

| i 00l | i Data Tool

| v Server Server | v Server Server

| i Process - ~ | i Prucess

| t 4 Server A] t T Server, ¥

| y ; S 5\ | y —— “n_—
—— I /v \ I v\l

®SOTU b | / <P.S.0,T.U> I { / I <P.S,D.T,U> :
. Environment | / Environment l \ | | Environment Y
L / / \ .
| 7 TR T |
. A AN
! I3 k . L I l e I‘ '
t C A' ation . 1 : Ci icati
7
| i ' | 7 1 v
! | .

{ | } ’ | |

! ! 3

| | =2 =3

|

: client cHent client : client client client

| |

| |

| |

Figure 2.2: A Decentralized Environment

server that enables SubEnvs to connect to, and communicate with, other SubEnvs participating in
the same (global) environment. These elements together form the necessary infrastructure support
needed for process-interoperability. Notice how the “no sharing” property allows normal operation
of some sites when other sites (e.g., the leftmost site in the figure) are inactive or disconnected.

We define a multi-site activity as an activity that uses data objects, and optionally users and/or
machines from one or more remote sites. Note that the activity (or tool) per-se, need not execute on
multiple sites concurrently (as in groupware tools), it can execute at one site into which the remote
data objects are transferred. Thus, a given activity may or may not be considered a multi-site
activity during different invocations, depending on whether the resources bound to it include remote
elements. Multi-site activities are the building blocks of our process-interoperability model.

Finally, referring back to the context-hierarchy described earlier, it is important to note that
there is intentionally no fourth level that represents a local process as part of a global process. This
reflects our concept of independent collaborating (local) processes. While our model provides global
infrastructure support to enable interoperability among local processes, it explicitly avoids the need
for a global “super” process — although such a process can be implicit.

2.2.2 Defining Process Interoperability: the Treaty

In general, the interoperability model is based on the idea that sites explicitly specify in what ways
they are willing to participate in a multi-site operation, and the specifications are loaded into each
site’s local PSEE to establish all that is needed to enable those interactions. Some intuition to
the model may be gained by the “international alliance” metaphor, whereby independent countries
sign “treaties” that determine their collaboration but retain full control over their local laws. Once
signed, treaties have to be ratified by the local parties, so that the full impact of the treaty is reflected
in each country when enacted. In addition, Treaties have to be verified to make sure that they are
being carried out as agreed.

13

2.2.2.1 Treaty Requirements

The following is a set of requirements specific to modeling interoperability, driven by the high-level
requirements presented earlier in Section 2.1.1.

1. Common sub-process — In order to enable invocation of multi-site activities, there must be
a way to define and agree on a common sub-process that would become an integral part of
each local process intended to collaborate during that sub-process (but not necessarily by
all SubEnvs in a global environment). A common sub-process determines what actions can
be taken in the multiple participating SubEnvs. At the very least, the multi-site activities
must be commonly specified so that they can be identified during execution. But this “unit of
commonality” might also be the process step, or even the task. In any case, this unit represents
those process fragments that potentially involve multiple local processes. The decision as to
what level (in the context hierarchy) to choose as the unit of commonality depends on the
modeling primitives of the specific PML. In a Petri net formalism, for example, the transition
(along with its input and output places) seems a natural choice, whereas in rule-based PMLs
the rule (process step) is likely to be chosen. In PMLs that support task hierarchies and
modularization (e.g., Articulator [161]), a subtask might be the right choice.

It is important to recognize that the activity portion of a decentralized sub-process need not
be executable in every participating SubEnv, e.g., since the encapsulated tool may not be
physically available everywhere. Instead, the activity only needs to be executable in one of
the SubEnvs intended to collaborate, which would hence always serve as the invoking, or
coordinating process. This means that common sub-processes are not necessarily reciprocal,
in the sense that not all participant SubEnvs have identical process “privileges” on multi-site
activities. This issue has direct implications on the model, as will be seen shortly.

2. Common sub-schema — This requirement applies mainly to PSEEs with database and schema
support. In such PMLs, invocation of multi-site activities (as part of a multi-site common sub-
process) requires the involved SubEnvs to share a common sub-schema, so that the types of the
parameters specified in the invocation are defined in the relevant SubEnvs. For example, if an
activity 4, is invoked from SubEnv E; on remote data from E,, then E; must have the proper
data types (with possible support for limited type coercion) in its schema and consequently
the properly instantiated objects that are required by A;. Note, however, that a common sub-
schema does not necessarily imply that the corresponding data instances are shared — only
their types (i.e., their schema) are shared. Defining common data schema and allowing access
to data instances are separate concerns which should not be confused or coalesced.

3. Remote access control — Following the above argument, there must be a way to define (and
subsequently, control) which data instances are allowed to be accessed, in what way, and by
which SubEnv. That is, local databases are by default private, consistent with the autonomy
requirement, but parts of them can be made accessible for remote access by multi-site activities.

4. Locality of specifications — It must be possible for a common sub-process (and the corre-
sponding common sub-schema) to be shared among only some of the local processes of a given
global environment, not necessarily all of them. Furthermore, a SubEnv may contain multiple
sub-processes, each of which is shared with different subsets of peer SubEnvs. There is usu-
ally some portion of each local process that is not shared with any other process (a private
sub-process). Similarly, it must be possible to specify access to subsets of the data instances
to only some but not all participating SubEnvs, as opposed to allowing data to only be either
totally private or universally public.

5. The PML must allow for both dynamic inclusion and exclusion of common sub-processes, as
well as independent evolution of private sub-processes. The former is particularly important
when independent pre-existing processes decide to collaborate, perhaps only temporarily, while

14

the latter is important for preserving the autonomy of local processes. The independent op-
eration requirement further implies that the Treaty mechanism should minimize the inter-site
dependencies that are required to maintain a consistent Treaty. This point is addressed in
Section 2.2.2.4.

In the rest of this section we address requirements 1, 4 and 5. Requirements 2 and 3, which are
more database oriented, are covered elsewhere [21].

2.2.2.2 Alternative Approaches

In considering the possible alternatives to expressing common sub-processes within otherwise private
and encapsulated processes, we can draw an analogy between our problem and similar problems in
the domain of distributed programming languages and systems, and investigate alternatives there:

1. Process interface specified within the PML — This approach includes programming language
abstraction mechanisms in which all control and data of a unit are by default private (or hidden)
unless specified explicitly as public in the unit’s interface. For example, the body/specification
distinction in Ada could be used to expose only the common sub-processes (or sub-tasks in
Ada terminology) in the specification and hide the private sub-process in the body. Another
example is the export-import mechanism in Modula-2, in which a subset of the activities
(functions) could be exported by one process (module in Modula-2 terminology) and imported
by another, while the rest of the local process (module) is by default hidden.

The main problem with applying the above approach to our case is that it provides the wrong
abstraction. Its prime motivation is to distinguish between a unit’s external (public) interface
and its internal (private) implementation, promoting modularity, encapsulation, and reuse.
While this might be the case in process interoperability, more often the distinction is along
the lines of shared versus private sub-processes, regardless of whether the private process is
an “implementation” of the shared process. Another problem with this approach is that it is
language-based, and thus static in nature, conflicting with the dynamic inclusion and evolution
requirement stated earlier. That is, the interface specifications cannot be changed while the
program is executing, and all the bindings among the different modules are made at “compile”
time.

2. Process interconnection language, séparate from a specific PML — This is analogous to dy-
namic module interconnection languages, in which a separate notation is used to denote how
modules are inter-connected. For example, the Darwin [155] configuration language® (the
successor to Conic {156]) enables (operating system) processes to interconnect independently
of the specific language in which they are written, by means of typed ports through which
data is exchanged between the processes. Ports are protected and made accessible through an
import-export mechanism (the actual notation in Darwin is require and provide).

The abstraction here is closer to our needs, and it can also be made dynamic, as is the case with
Darwin. That is, the nature and kinds of bindings between the processes can be changed dy-
namically. However, since this is still essentially a language-based approach, dynamic changes
impose a problem in terms of comprehensibility: either the changes do not correspond to the
original source definitions, which is an obvious problem, or the interconnection is not explic-
itly declared, defeating in some sense the purpose of using a language-based approach to begin
with. The latter approach is taken in Darwin, where the references to the services (or control
constructs) are passed in messages, allowing to change their behavior, but as the authors point
out, this feature is not recommended for long-term or semi-permanent bindings.

3. Other distributed programming languages — This community produced numerous languages
that support some form of dynamic program configuration among relatively independent (op-
erating system) processes. One representative is Hermes [217], another port-based language

INot to be confused with the Darwin environment mentioned earlier.

15

in which new ports can be added to an executing (operating system) process and existing port
connections can also be changed, by statements executed from within the existing Hermes
code. New processes can also be added using the create of statement, but only from within an
existing process. Thus, it is not possible to add new facilities that were not anticipated in the
original program.

Our Treaty abstraction for defining process-interoperability is different than any of the above
alternatives and is geared towards satisfying the requirements. It is defined pairwise between each
two SubEnvs that intend to collaborate, reflecting the peer-peer nature of interoperability; it is
defined inside each of the participating SubEnvs, to address decentralization; and it allows unilateral
cancelation coupled with dynamic verification, to address autonomy. Finally, in contrast to the
language-based approaches, we advocate a system-based approach, i.e., we extend the available
PSEE’s execution engine with “system calls” that support the definition of the interoperability
model. As such, this approach does not require the invention of a whole new process-interoperability
modeling language, nor does it make any assumptions about a particular PML, making it generically
applicable. (We will return to the issue of language- vs. system-based approach in Section 2.5.2.6.)

2.2.2.3 The Treaty

In the following discussion, the following notation is used:
e F; denotes an instantiated environment.

e A; is used to denote a set of process steps that form a common sub-process. Note that in terms
of the definition of an environment, A; is a subset of P (process), i.e., it does not necessarily
contain a subset of T' (tools), D (data), U (users), but it does imply a subset of S (schema)
through the types of the formal parameters to the activities in A4;. Furthermore, A; may
consist of a set of unrelated steps, all of which are part of the common process, or they can be
interrelated, for example representing a single common task.

e A;(E;) denotes sub-process A; of environment Ej;, i.e., a fragment of E;’s process model.
We define the following operations:

1. ezport(A,(FE:), E2) — Export A; from E; to Es, enabling E; to import A;. This operation
executes locally at E;.

2. import(A1(Ey1), E;) — Get A; from E;, and integrate it with Ey’s process. This operation
executes at E; and involves also E;. A pre-requisite to this operation is that A,(E;) was
previously exported in E;. The successful outcome of this operation generates A, (E-), a local
replicated version of A;, fully integrated with the rest of F5’s process. The exact meaning of
“full integration” is intentionally left out here, since it is PML-specific. Intuitively, the idea is
that the newly imported sub-process gets interconnected with the local process and becomes
an integral part of that process (Section 2.3.2.3 shows a concrete implementation of import).
Note that the name of A; must be distinct from any other pre-existing or new activity in E,
so that it can be uniquely identified at runtime.

These operations form the mechanism to implement common activities. However, as mentioned
earlier, a separate concern is to determine execution privileges on the common activities, such as
which SubEnv is entitled to execute a multi-site activity on remote data. In some cases, invocation
of specific activities cannot be made from some of the SubEnvs, for example, due to tool invocation
restrictions (e.g., licenses, platforms, location of tool experts, etc.).

It appears at first that such “execution privileges” semantics could be permanently attached to
the export and import operations in some fashion, e.g., to associate a request to execute on remote
data with the export operation. However, early experiments with our implementation revealed that
these are indeed orthogonal concerns that should be distinguished. Thus, we separate the issue of

16

how to provide common multi-site activities from the concern of how to restrict or control their
application.

We define the following two execution privileges directives, each of which could be used in con-
junction with either of the above operations:

1. request(A;, Ey, E;) — E) specifies an intent to use 4; on data from E,. Note that A; can
be either exported by E; or imported from some other SubEnv.

2. accept(A;, E1, E;) — E; allows A; to be used by E; on data from E;. Once again, 4; could
be originally defined at E; (or at some third site from which E; imported it), in which case it
was later imported by E,, or it could be exported by E; and imported by E;.

To summarize, the four combinations and their intuitive meanings are:

1. export.request(Ai(E1), Ez) — I (E;) want to use my A; on your (E;) data.

2. import_accept(A1(E1), E2) — I (E2) allow you (E;) to use your A; on my data.
3. export_accept(A1(Er), E;) — 1 (E;) allow you (E3) to use my A; on my data.
4. import_request(A;(E1), E;) — I (E;) want to use your A; on your (E;) data.

A (simple) Treaty (denoted as T') is a binary relationship between two sites, defined as either
one of these two possibilities:

Ta,(E1, Ey) = export_request(A;(E,), Ez); import.accept(4;(E)), E2) (2.1)

Ta,(Ey, E2) = export.accept(A1(Ez), E1); import_request(A; (Ez), E1) (2.2)

In words, this Treaty allows users operating at E; to execute activities defined in A; on data
from E,. We shall refer to this Treaty as “a Treaty from E; to E5 on A;”. Both definitions lead to
the same outcome, the difference being the origin of A;: in expression (2.1) A; is initially defined
in E; and is exported to E;, which imports it; whereas in expression (2.2) A4; is initially defined in
E, and exported to E;, which imports it.

Thus, a Treaty between two SubEnvs consists of one requester and one acceptor, as well as
one exporter and one importer. The ezport-import pair of operations establishes a common step
(containing multi-site activities), and the request-accept pair defines which site is eligible to invoke
- activities from the common step (the requester) and which one allows access to its data (the accep-
tor). The gist of the Treaty is that it requires both sides to actively participate in the agreement
that determines their inter-process interactions. In particular, a request on an activity without a
corresponding accept on the same activity has no effect on either SubEnv (regardless of whether the
activity is properly imported-exported). As for the order of the operations in a Treaty, the main
reason for them not being commutative is to protect the privacy of the exporting process. This
means that any implementation of import should restrict its visibility only to activities which have
been already exported to the relevant SubEnv by another SubEnv.

It is important to understand that the Treaty relationship is not symmetric. For example,
the Treaty above does mot imply that E, can run activities from A; on Ej, i.e., it is only uni-
directional. This property of Treaties addresses the concerns raised earlier regarding execution
privileges. Furthermore, the Treaty is not transitive, and each Treaty between two sites must be
formed explicitly. (Treaties can be considered reflexive, though, if self-export and self-import are
defined as “no-ops”.)

The extension of a Treaty to multiple sites is defined as:

Ta,(Er, (Bz ... En)) = | J Ta, (Er, Ey) (2.3)

1=2

17

In words, it is the union of all pairwise (simple) Treaties with FE; as the source SubEnv. This
multi-site Treaty allows users operating in E; to run activities defined in A; on remote data from
some or all of E;, 1 > 1.

To enable symmetric Treaties, we define a (binary) Full Treaty (denoted FT) as:

FTs,(Er, E2) = Ta, (B, Es); Ta, (B2, En) (2.4)
and similarly, a multi-site full Treaty is defined as:

FTa, (B, Bz ... Ey) = | FTa,(E:, E;) (2.5)
i<j

This consists of the union of all unordered pairs of binary full Treaties (or all ordered pairs of
regular Treaties). While symmetric, full Treaties are still not transitive, to protect the privacy of
sites as in simple Treaties.

A Full Treaty allows any participating SubEnv to invoke a multi-site activity on data from any
other SubEnv in the Treaty. Note that when multiple sites are involved, there are many combinations
of possible Treaties between the sites on the same set of activities, not only simple or full. For
example, the Treaties:

Ta(Er, (B, Es)) (2.6)
Ta(E, (Er, Es)) (2.7)

allow either E; or E,, but not Es, to invoke multi-site activities from A on data from some or
all of the three sites.

This model provides maximum flexibility in expressing interprocess collaboration, and each par-
ticipant in a Treaty must explicitly “sign” it by invoking the proper operation that reflects its role
in the Treaty.

In order to withdraw from Treaties, the following operations are defined:

1. unexport(A;(Ey), Ez) — This operation executes in E;. It removes A; from further being
available to E, and invalidates possible previous Treaties. In addition, it revokes any privileges
which were associated with the export (see below).

2. unimport(A;(E;), E2) — This operation executes in Ej, effectively removing A; from Ej’s
process. Like unezport, it invalidates any previous Treaties and privileges which were attached
to the import.

3. cancel(A;, E1, E;) — has the opposite effect of request, i.e., it disallows further use of A at
E, on E,. It is issued at the requester end of a Treaty.

4. deny(Ai, E1, E;) — The opposite of accept, it disallows E, to further access Ez’s data through
A;. Tt is issued at the acceptor end of the Treaty.

Since export and import are the mechanism for establishing shared common sub-processes, when
unezport (unimport) is executed on a previously exported (imported) activity, the corresponding
execution privileges property (either request or accept) is also revoked (by cancel or deny). The
opposite is not true, though. A cancel/deny does not imply unexport or unimport. For example,
a requester activity could be transformed to an acceptor activity by issuing a cancel followed by
accept, regardless of whether it is an exported or imported activity.

18

2.2.2.4 Local Evolution and Dynamic Treaty Verification -

In Section 2.2.2.1 we identified the need to be able to perform process evolutions and Treaty-
leaving operations locally with minimum interaction with remote SubEnvs, while still being able
to dynamically check the validity of Treaties. We begin with a definition of a valid (or consistent)
Treaty, analyze all possible ways in which it can be invalidated, and discuss our dynamic Treaty-
verification algorithm.

A (simple) Treaty from E; to E; on A, is said to be valid if and only if all three conditions below
hold:

1. Either:

(a) A, is marked at E,; as exported to E,, and is marked at E; as imported from E;.

(b) A; is marked at E; as imported from E,, and is marked at E; as exported to E;.
2. A; is marked at E; as a requester of Ez, and is marked at E» as an acceptor from Ej.

3. A; is identically defined in both SubEnvs. Since there is no shared space in which Treaties are
stored, there must be a way to guarantee that original Treaties have not been altered by the
time they are invoked on remote data. We refer to this condition as the “common sub-process
invariant”.

The first condition is invalidated whenever unezport at the exporting site, or unimport at the
importing site, is issued. When an activity is issued, unezport can be easily detected locally at the
invoking site — the invocation is rejected if the issued task is not (anymore) exported. unimport is
also easily detectable since when the task is requested on the remote site, if it is part of a sub-process
which has been unimported (and thus removed from the process’ set of tasks) the requested activity
will simply not be found.

As for the second condition, both request and accept privileges have to be checked for their
validity. E; can lose its request privileges on A; if the equivalent of cancel(Ai, E1, Eq) was issued.
This can occur in one of two ways, depending on the method by which the request privileges were
originally obtained: (1) If through ezport-request, then an unexport-request on A; from E; to
E, revokes request privileges. This can be validated at E; locally when the multi-site activity is
invoked, at the same time that the ezport privileges are checked. (2) If through import-request,
then an unimport on A; at E; invalidates condition 2. Thus, validity checking is similar to that for
condition 1.

E, can revoke accept privileges from E on S; whenever the equivalent of deny(A;, Ey, E3) occurs
at E,. This can also occur in one of two ways, depending on the original commands issued to set
up the privileges. (1) In case of export-accept, an unezport-accept command revokes the accept
privileges. To verify this case, E, must explicitly check for proper accept privileges every time an
activity in A; is issued from E; on data from Ej; (2) In case of import-accept, an unimport at Es
invalidates the accept privileges. Again, in case of normal unimport, there is nothing to check, the
activity will simply not be found.

The third condition, requiring identical copies of the Treaty sub-processes at the participant
SubEnvs, can become unsatisfied as a result of various (local) process evolutions, and is more
complicated to check for. The main problem occurs when a Treaty sub-process is modified at
the exporting (“source”) SubEnv. Regardless of the process privileges attached to the exported
task, such evolution violates the common sub-process invariant.

One method to address this (which was implemented in Oz) is based on evolution timestamps.
The idea is for the local SubEnv to assign a “timestamp” each time a process is compiled and loaded
locally. When a sub-process is imported, its timestamp is also shipped and stored at the importing
SubEnv. At run-time, whenever a multi-site activity is invoked for execution, the timestamp at the
requesting SubEnv is compared to the one stored at the accepting SubEnv. If there is a mismatch, it
means that local evolution took place at the exporting SubEnv, implying invalidation of the Treaty,
and the execution is rejected. Re-activation of the Treaty can be made by either re-importing

19

{\it verify-treaty} (Taskld, SrcSubEnv, DstSubEnv):
/* Executes at DstSubEnv */
/* condition 1 */
A {\bf if} (find task with the given Taskld)}
\ {\bf then}
/* condition 2 */
A\ {\bf if} (DstSubEnv $accept$s Taskld from DstSubEnv)
A\ {\bf then}
/* condition 3 */
VA (\bf if} (Tasks's remote timestamp $=$ Tasks's local limestamp)
A\ {\bf then}
A\ \ Treaty is valid, allow execution
A\ {\bf clse}
A\ \ \ Treaty is invalid, reject execution
A\ A\ Reason: local evolution at the exporting SubEnv
\ \ \ Reactivation: re-import (or reload) at the
\ \ importing SubEnv with proper privileges
\ {\bf end if}
{\bf else}
\ There is no Treaty on that Task, reject execution
\ Reason: an equivalent of $cancel$ occurred
\ Reactivation: DstSubEnv needs to $accept$ the Task
{\bf end if}
\bf else}
Requested task does not exist in local SubEnv, cannot exccute
Re)activation: DstSubEnv needs to (re)import the task

\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
\
VA

\ {\bf end if}

\
\
\
\
\
\
\
{
\
\
{

Figure 2.3: Dynamic Treaty Verification Algorithm

explicitly the (possibly modified) sub-process, or by reloading the process (perhaps automatically),
which also fetches the up-to-date versions of all imported strategies from the exporting SubEnv(s).
This dynamic approach toTreaty verification eliminates the need to notify all related SubEnvs
when a local process change occurs (some of them might not even be active at that time), and
transfers the responsibility of upgrading the imported rules to each individual SubEnv when it
actually needs to use them. This “lazy update” approach fits well with the general decentralized
philosophy. Figure 2.3 summarizes this section by presenting the dynamic Treaty verification
algorithm that is executed in the acceptor SubEnv prior to invocation of each multi-site activity.

2.2.2.5 Treaty Summary

Treaties are the abstraction mechanism wused for the definition of process interoperability. The
only way by which a SubEnv can collaborate with other SubEnvs is through these pre-defined
arrangements that determine how to collaborate, and on what artifacts. Consequently, the degree
of collaboration (vs. autonomy) between each pair of SubEnvs is determined by the “size” of their
common sub-process. This can range from total isolation (no common sub-process is defined) -
where the SubEnvs have no means to access each other's data but are entirely autonomous - to
total collaboration (the entire process is common) - where the SubEnvs lose any autonomy and
logically share the same process and data and are perhaps only physically distributed.

By splitting a Treaty into two independent operations and the Full Treaty into four
operations (as opposed to bundling them to one global operation) we ensure that both ends agree
on the Treaty and join it on their own terms. Not requiring synchronous execution of export and
import enables Treaties to be formed incrementally and when each party wants to join them. In
fact, of all the primitive operations, import is the only operation that requires both sides to be
simultaneously active. This independent multi-step protocol also enables SubEnvs to retract from,
and join to, a Treaty, independently and dynamically.

Finally, although Treaties are defined pairwise, multi-site Treaties involving an arbitrary
number of sites can be formed. It might appear that our approach suffers from being too low-level
in that it makes it somewhat complicated to define multi-site Treaties by requiring to form
pairwise Treaties. However, this formalism ensures maximum process autonomy. Further, a
particular implementa- tion might use “macros” or “scripts” that perform all the necessary
operations automatically to form Treaties between “friendly” sites in cases that privacy can be
compromised for simplicity and convenience. Alternatively, an implementation may decide to
bundle some of the operations into a single built-in command. For example, it could set defaults
for combining export and import with request and accept but allow the expert process
administrator to modify them. Finally, the PSEE can make provisions for enabling a user to be an
administrator on multiple SubEnvs, so that in environments that allow multi-site administrators
(e.g., when the interoperability isbetween tightly-coupled SubEnvs), it is possible to bundle the
Treaty as one operation, without violating autonomy. Several of these alternatives were in fact
implemented in Oz (see Section 2.3).

2.2.3 Multi-Process Execution: the Summit
The Treaty mechanism establishes common sub-processes between sites, and de_nes execution

priv- ileges over the common multi-site activities. However, it does not impose a particular
approach on how toexecute these shared processes. This is the role of Summits.

20

2.2.3.1 Alternatives, Design Choices, and Justifications

At first glance, there are two ways in which a multi-site task can be executed: (1) one SubEnv (call
it the coordinating SubEnv) copies remote data into its own space and executes locally, or (2) the
task leaves the data where it is, and requests that its activities be executed by the remote SubEnvs.
This is similar to the two main approaches to distributed program execution: fetch the data and
execute locally, or send a request for remote function execution. There are obvious tradeoffs between
the two approaches, and the superiority of one over the other largely depends on the nature of the
program and the volume of the data involved.

However, since a multi-site task inherently involves more then one process, neither of these
approaches is always feasible or desirable: (1) Process autonomy restricts application of the data
fetching approach, since some of the remote data might not be accessible to the executing process.
and even if it is, the prerequisites and consequences determined by the coordinating process might not
maintain consistency with respect to the remote process(es). (2) The function sending approach does
not address activities that manipulate data from multiple (local and remote) processes, but instead
assumes that an activity’s arguments all reside in the same SubEnv. In addition, as mentioned
earlier, tools invoked by an activity may not be available at a remote SubEnv (in fact such a
scenario might be the initial motivation for running the activity in the originating site}, and even
copying the tools might not work if the SubEnvs operate on heterogeneous platforms or if there arc
licensing restrictions.

We devised a third hybrid approach, which combines the two approaches mentioned above in
a manner that ameliorates their limitations. Multi-site activities that are defined in a common-
sub-process are executed at the coordinating SubEnv by fetching to it all remote data, while local

activities emanating in each local process from the common-sub-process are executed locally at each
site with local data.

2.2.3.2 The Summit

Following the “international alliance” metaphor mentioned earlier, our decentralized execution model
can be described as a “summit meeting”. Before the meeting (multi-site activity), each party
(process) handles local constraints (prerequisites) that are necessary for the meeting to take place;
then the meeting is held at one location (SubEnv), where the various parties send representatives
(data) to collaborate; once the meeting is over and agreements were made (results of the activities),
all parties return home (to their SubEnvs) and carry out the implications (consequences) of the
meeting locally. Summits can lead to subsequent Summits, each involving a subset of the parties,
possibly with different representatives (data arguments). It is important to note that each of the
two metaphors, namely Treaty and Summit, are independent from each other in our model. That
is, whereas in the international community Summits (may) lead to Treaties, in our model Treaties
actually enable Summits.

Process interoperability takes place when an activity is invoked (either manually by an end-user
or automatically by the process engine) on data from one or more remote SubEnvs. (The case of
only local data from the same SubEnv does not lead to inter-process collaboration, and is handled
however it would normally be by the underlying single-process PSEE.) We call the process from

which the multi-site activity is invoked the coordinating process. The Summit protocol consists of
the following phases:

1. Summit Initialization and Treaty Verification — The coordinating process in which the Sum-
mit request was issued establishes a task context (necessary to support interleaved execution
of multiple activities) and allocates the necessary resources needed for the Summit. It then
binds the actual parameter objects (at least one of which is remote, or otherwise this would
not be considered a Summit) to the formal parameters of the activity. Initialization is followed

- by executing the Treaty-verification algorithm shown in figure 2.3.

2. Pre-Summit — The involved procésses (i.e., those that own some of the data requested by the
multi-site activity) are notified, and all of them (including the coordinating process) perform

21

simultaneously and asynchronously pre-Summit process actions, each according to its local
process, with its local data and tools, in the local SubEnv. Pre-Summit actions include: (1)
Verification that prerequisites imposed by the process step enclosing the activity are satisfied
locally; this may be regarded as “internal” constraints. (2) Verification that the activity can
be executed with respect to the overall task workflow; this may be regarded as “external”
constraints (see [127] for more on this distinction). (3) Active invocation of related activities,
e.g., to satisfy (1) and (2). And (4) Deriving and binding data arguments that are required
by the activity but were not specified as parameters. Note that Pre-Summit requires that all
involved SubEnvs identify the same requested activity, in order to know what to verify /satisfy.
This is guaranteed through the import mechanism of the Treaty.

One optimization that can be made in some cases (depending on the PML as well on the
specific activity) is for the coordinating process to determine locally whether or not launching
a remote pre-Summit is necessary for each participating SubEnv, in which case no “fan-out” to
the local sites is required. In general, however, the local SubEnvs need to be able to decide for
themselves whether or not they need to undertake any work. The main point is the locality of
the execution, which is determined solely by each SubEnv on its local data, without “global”
intervention.

3. Summit — I pre-Summit is successful in all involved processes, the requested activity is
invoked in the coordinating process, with all the necessary local and remote data arguments.
The activity is executed synchronously, and it may or may not execute at one location depend-
ing on the kind of tools associated with the activity. For example, it may launch a cooperating
set of tools, on one or more sites, involving one or several users.

4. Post-Summit — When the Summit completes, all involved SubEnvs are notified, and all of
them (including the coordinating SubEnv) perform simultaneously and asynchronously post-
Summit process actions, again each according to its local process, with its local data and tools,
in the local SubEnv. Post-Summit actions include: (1) Assertions on the process and product
data that reflect the fact that the various activities were executed (depending on the PSEE, it
may not always be possible to directly modify such data within the activities themselves); (2)
Binding and assignment of data affected by the activities that were not supplied as arguments;
(3) Verifying that consequences imposed by the steps in the Summit can be fulfilled (this is
not always a logical implication of the pre-Summit verification); and (4) Triggering execution
of further activities, e.g., as part of (3).

5. Summit Completion — When post-Summit completes in all local sites (including the coordi-
nating SubEnv operating in “local” mode) the coordinating SubEnv checks whether further
Summits are pending (see below). If any Summit activity is pending, the algorithm returns
to step 1. If no Summits are pending, the Summit is completed by releasing all resources
associated with the Summit.

Thus, both pre- and post-Summit phases occur asynchronously in each SubEnv only accord-
ing to its local process, while execution of the Summit phase occurs synchronously and involves
collaboration among the participating SubEnvs. This design minimizes the interference between
the processes (and hence maximizes autonomy) while still allowing them to carry out the desired
common activities as agreed upon in the Treaty.

A composite Summit (i.e., consisting of multiple Summit activities) can be viewed as alter-
nating between “local” mode — whereby each participating site (including the coordinating site)
performs local operations asynchronously — and “global” mode in which the coordinating process
synchronously carries out operations involving data from multiple sites, with the approach intended
to minimize the “global” mode and maximize the “local” mode.

22

2.2.3.3 Example

The following example illustrates the execution of Summits. Assume there are three development
teams working in separate sub-environments SE1, SE2, and SE3, who are responsible for three
disjoint components of a system S, labeled S1, S2, and S3. The teams operate at different sites
and reside in different geographical areas. They each work on their own artifacts (e.g., files, docu-
mentation) using their private tool set and their own processes. Each component can be coded and
unit-tested independently, and the components are interconnected through published, well-defined,
interfaces. Suppose S2’s interface has to be modified in order to enhance some of its functionality,
thereby requiring the other components to change. The following steps should be taken: (1) the
proposed change has to be reviewed and approved by all SubEnvs; (2) the interface of S2 is actually
modified; (3) The affected components are modified to correspond to the new interface; (4) a local
test of each component is performed; and (5) an integration test with all revised components is
performed. For simplicity, only the “successful” path, i.e., assuming that all the steps were carried
out successfully, is described. While the global modification and integration test must be performed
synchronously (with respect to all sites) and at one site, the review, local modification, and local
test activities can be performed asynchronously in the local sites, and they can differ at different
sites. For example, one site might employ “white box” local testing, while another site might use
“black box” testing. Moreover, even identical operations might trigger different related operations
when issued at different sites.

Figure 2.4 illustrates the enactment of this example as a (composite) Summit. The change
activity is initiated by the coordinating SubEnv SE2. Pre-Summit takes place in a decentralized
manner, where each SubEnv performs the Review activity locally according to its own process. For
example, SE3 requires an additional analysis step before the review and both SE1 and SE2 require
a check-out phase using different configuration managers (RCS and SCCS, respectively). Once
reviewed by all sites, the Summit activity approve is executed, determining whether to approve
or disapprove the change based on the local reviews. If the approval step succeeds, the modify
activity is executed, where the objects are modified. When finished, post-Summit begins, again in a
decentralized manner. All SubEnvs are engaged in a unit-test step, but each one does it according
to its own process. For example, SE3 employs a manual-test procedure (e.g., for testing the user
interface) which involves human users that actually perform the tests (devising the input sequences
for the test suites can be also done manually or automatically for either manual or automatic testing),
whereas the other SubEnvs perform automatic testing, but SE2 has an additional code-inspection
step. Completion of the local testing leads to integration-test, another Summit activity in this
composite Summit.

It is important to understand that Figure 2.4 depicts one particular execution trace of the process,
not the whole process. For example, a different execution would occur if the review activity failed
at SE1 (i.e., the reviewer did not accept the proposed change). In this case, a revision phase would
be followed, after which a second review would be scheduled, and so forth, until the review succeeds.

2.3 Realization of the Interoperability Model in Oz

The generic model, as a high-level abstraction, leaves many aspects undefined and unresolved, both
technical and conceptual. We address some of these issues here by discussing the realization of
Treaties and Summits. The architectural aspects of Oz, including site interconnectivity, configura-
tion, transactions, database and cache management, are beyond the scope of this report and can be
found elsewhere [21, 26].

2.3.1 Oz Overview

Oz is a multi-process PSEE (as defined in Section 2.2.1.3), and it supports definition and execution
of autonomous multiple SubEnvs following the Treaty and Summit models. When not interoperating
with other SubEnvs, the functionality of a local SubEnv resembles that of Marvel [31], the predecessor

23

| |
| |
SE1 : SE2 : SE3
______________ I U E Sy,
| |
| |
| |
| |
{ Change(S1, 52, §3) I
| |
Init-Summit I P I :
e e
T ! I
: |] gree——— .
i Review(S1) II : \ Analyze(S) |
. { Review(S2) Il
: [|
l ‘ !
{ Check-Out-RCS(S1) | | Review(S3)
H | Check—-Out-SCCS(S2) |
Pre-Summit T .__) : I T
—_— e e — ——":—:-—/—":'—f ———————————————
| S |
: Approve(S1, 82, 83) I
Summit activities I l :
! |
: Modify(S1, §2, §3) :
| e |
[i
____________ RN e S g S
| e
: code-inspect(S2) : o
Auto-test(S1) | |
| L { Manual-test(S3)
o | |
e : Auto—test(S2) } "
Post-Summit RN L
R oS B .
| o |
| S |
Pl |
Summit activity | | Integration-test(S1,52,83,S) |
| |

Figure 2.4: An Example Summit

24

—

to Oz. As in Marvel, each local (sub)environment in Oz is tailored by a local administrator who
provides the data model, process model, tool envelopes and coordination model for its team. These
definitions are translated into an internal format and then loaded into the environment. The process
modeling language of Oz is based on the Marvel Strategy Language (MSL) [142]. Most importantly,
Oz extends the user-driven, rule-based paradigm to multi-process environments. Specifically, as far
as local processes are concerned, OZ processes are defined in terms of rules which correspond to the
notion of process-steps in the generic context hierarchy.

A rule consists of: a signature, i.e., names and types of formal parameters; a binding section,
where additional objects (termed derived parameters) are bound to the rule as a result of querying
the database; a pre-condition consisting of a (composite) predicate over the arguments; an activity
which interfaces to external tools and data; and a set of mutually-exclusive effects. A rule can be
fired either directly by a user (via a client, see below), or indirectly, as a result of rule chaining.
When a rule is fired, its condition is evaluated. If the evaluation fails (i.e., the predicate evaluates to
false), the rule processor attempts to automatically satisfy the rule by backward chaining to other
rules whom effect may satisfy the failed condition, recursively. If the condition is (or has become)
satisfied, the activity of the rule is spawned and executed on behalf of the user who invoked the
rule (or, in case of a chained rule, the user who issued the rule that chained to this rule). Upon
completion, the activity returns a return code that determines which effect of the rule to assert.
The rule processor then attempts to forward chain to rules whom condition have become satisfied
as a result of the assertion, recursively. Thus, process steps are implicitly interrelated by logical
matchings between effects and conditions of rules. In order to enable finer control over the degree of
chaining, several chaining directives can be applied on rule predicates. For example, a no_forward
directive on a rule’s effect disables any forward chaining from that rule.

Oz has a two-level architecture: within a SubEnv, it has a client-server architecture with mul-
tiple clients communicating with a single centralized process-server. Across SubEnvs, OZ has a
multi-server “share-nothing” architecture, as advocated in the formal model. This means that the
processes, schemas, and instantiated objectbases are kept separately and disjointly in each SubEnv,
and that there is no global repository or “shared memory” of any sort.

Human interaction with the environment is provided through a client that is connected primarily
to its local server. Using the client’s connection to its local server, users can operate the local tools
(encapsulated in rule activities), on local data objects, under the local process. In addition to the
local server, however, Oz users can connect to remote servers. Each remote SubEnv is represented
in each local objectbase by a “stub” object that is visible to the client. By issuing the built-in
open-remote (close-remote) command with the appropriate stub object as parameter, a client
can open (close) a connection to a remote SubEnv. A remote connection provides limited access to
the remote SubEnv. A remote client can browse through remote objectbases and get information
about remote objects (subject to access control permissions). However, a client has no access to
remote processes (i.e., rules, tools) and manipulation of remote data can be done only by binding
| remote objects as parameters to Treaty rules.

For example, figure 2.5 shows how the client for user israel? is connected to the local server of
SubEnv NY, with a (default) view of the local objectbase® (parent-child relationships are depicted
with straight lines and links by curved lines). Figure 2.6 shows israel’s view after an open-remote
on site CT has been made, making CT’s remote objectbase available for browsing by israel. israel’s
client has not connected to SubEnvs MA and NJ, and they may, or may not, be currently active (i.e.,
executing). israel interacts with the environment by selecting commands from the rules menu,
which contains all the process-specific user-level commands, and he supplies arguments to the rules
by clicking on objects from the objectbase. In particular, if a remote objectbase is open, israel
can initiate a Summit by selecting remote objects as arguments to Treaty rules. When the (local)
server services the request to fire a rule, it checks its own process, and communicates with remote
SubEnvs if the rule accesses remote data from their objectbases, and eventually determines whether

2The user’s name is shown in the upper left corner of the interface window.
3For simplicity, only a small objectbase is shown, but in reality Oz can maintain thousands of objects with adequate
browsing support.

25

02 1.0: 1srasi @ blewcker.cs columbia.cc_ RSN

Local Server: NY Current Object: NY

(Session v) (Rules v) (Construct v) (tocal v) (Query v) (Print v) (Misc v)

Left: Print Informatian for Object
Right: Change Current Object

T

{«] 1)

estl.h
shared.h doc.tex

f==1

Figure 2.5: An Oz Environment

an activity has to be executed. That activity could be either the one explicitly requested by the user,
or another activity related to the requested one through a chained rule. The server then sends a
message to the requesting client to execute the activity in its activity-manager component. During a
Summit activity, remote objects are temporarily copied to the local SubEnv and passed to the client
prior to the activity execution. Note that since a client has no explicit access to remote processes,
it cannot invoke “remote Summits”, thus all Summits are initiated by local clients.

2.3.2 Treaty in Oz

Treaties in Oz follow the formal Treaty model. The basic unit of commonality in Oz is the rule.
However, as a “syntactic sugar”, the unit that is exported and imported is the strategy, a bundling
construct for rules, somewhat analogous to a module consisting of functions in modular programming
languages.

Oz provides five built-in commands for establishing Treaties: export, import, unexport, unimport,
and the “non-standard” treaty operation. Although there are no separate commands for request,
accept, deny and cancel, they are specified as parameters to each of the above commands, mak-
ing it possible to generate all possible combinations that were discussed in the formal model in

Section 2.2.2.
2.3.2.1 export
The export operation is defined as:

export(strategy(SrcSubEnv), DstSubEnv, [privileges])

1t executes locally at SrcSubEnv and merely involves adding an entry with the specified strategy
and DstSubEnv to a persistent local export table. By default, Oz associates request privileges

26

IE 0z 1.0: lsrasl @ bleeckor.cs.columbia.edu

i)

Lacal Server: NY Current Object: CT

(Session v} (Rules v) (Construct v) (Locat v) (Query) (Print v) (Misc v)

Left: Print Information for Ohject
Right: Change Current Object

OG0}

(=]

Figure 2.6: Oz Environment with one open remote site

with ezport, i.e., it assumes that in most cases the exporter wants to use the exported strategy
on data from DstSubEnv. But the administrator can change the default by explicitly selecting
accept privileges. In addition to accept and request, Oz provides a third option called shared. The
semantics of the shared option are to export a strategy both as a requester and as an acceptor. The
main use of this option is to facilitate convenient generation of full (i.e., bi-directional) Treaties: a
shared export followed by the proper shared import establishes a full Treaty.

2.3.2.2 unexport
The unezport operation is defined as:

unezxport(strategy(SrcSubEnv), DstSubEnv, [privileges])

Like export, this is a local operation that executes at SrcSubEnv. It removes DstSubEnv from
the list of SubEnvs that are entitled to further import strategy. In addition, the execution privileges
are undone based on the specified privileges argument — when coupled with accept the effect is
deny, coupled with request results in cancel, and coupled with shared revokes both. Note that if,
for example, the exported strategy was previously shared (i.e., both requested and accepted), then
unexporting with request (accept) retains the accept (request) privileges intact.

2.3.2.3 import
The import operation is defined as:
import(strategy(SrcSubEnv), DstSubEnv, [privileges))

import is the main operation in Treaties. We assume the existence of the necessary underlying
infrastructure to communicate with the remote SubEnv (This topic is beyond the scope of this

27

report, see [21]). In particular, there must be a connection from DstSubEnv to SrcSubEnv, since
the operation is initiated at DstSubEnv but it involves both SubEnvs. The realization of import
consists of four distinct phases:

1. Select — Since remote strategies are not normally visible to SubEnvs, the import interface
must supply the administrator at DstSubEnv with a list of the available strategies at SrcSubEnv
that were explicitly exported from it to DstSubEnv. Further, this information must be generated
dynamically, since the list of exported strategies at SrcSubEnv can change at any time as a result
of issuing local export or unexport operations.

2. Copy — Once the importer at DstSubEnv selects the strategy to import, the strategy
is copied from SrcSubEnv along with additional information needed for runtime validation (e.g.,
timestamp). The source-code of the strategy is used only during the integration phase, however, and
cannot be manipulated by administrators at DstSubEnuv, to ease dynamic verification of Treaties.

Note that smport fetches only the rules, without the tools and their envelopes (i.e., the wrapping
mechanism used to integrate tools into Oz, see [86]). While this is not a problem with the default
import-accept option (where the activity is not executed at the importing SubEnv, only its data
is accessed by the activity, which executes at another SubEnv), the import-request combination
implicitly assumes that either the activity and its associated tools already exist at the importing
SubEnv, or they can be copied explicitly. If this is not the case (e.g., a tool is bound to a specific
machine and cannot be copied), then this combination should not be used.

3. Integrate — This is the main step. First, the imported strategy is parsed and checked to be
schema-compatible with the local process. Next, the rules in the parsed strategy are integrated with
the rule network, by forward connecting each new rule to all other rules (both imported and local)
whose conditions match the rule’s effect, and backward connecting it to all rules whose effects matches
the rule’s condition. At the end of this procedure, the imported strategies are fully integrated with
the local process. When executed as part of a Summit, local prerequisites and consequences (in
addition to “global” Summit implications) of the imported Summit rules would be automatically
enacted.

Figure 2.7 illustrates the integration phase. Suppose the modify rule is imported by two different
sites, SiteA and SiteB.In siteA, modify is backward connected to rule review through the matching
between modify’s condition and review’s effects, and it is forward connected to rule manual test
through the matching between modify’s effects and manual_test’s condition. In siteB, the rule
modify is backward connected to analyze and forward connected to auto_test. Thus, modify
becomes an integral part of both processes, and may trigger, or be triggered by, invocation of
related rules during execution. Notice that in general an imported rule may connect to zero, one or
more local or other imported rules.

The ease with which process integration can be achieved reveals the strength of the declarative
nature of the rule paradigm: process fragments can be incrementally added (or incrementally re-
moved) and automatically integrated without user intervention. The context-less rules, as well as
the fine granularity of rules as process building blocks, also pay off handsomely.

Due to the coupling of import/export with accept/request in Oz, it is necessary to make import
idempotent with respect to the compilation mentioned above, and to allow a SubEnv to export an
imported strategy. This is particularly important for multi-site Treaties. For example, suppose site
E, imports strategy S, from site E; and site Es also imported Sy from FE;. Now site E; wants
to grant accept privileges to Es, so it issues an import-accept command, but this time compilation
of the process model is not necessary so only execution-privileges are modified. When an import
is requested on an already imported strategy (or alternatively, if it is a local strategy which was
exported and is now imported, possibly to form a full Treaty), only the process privileges are updated,
and the compilation part is ignored. We refer to such operation as a “faked” import.

4. Acknowledge — An acknowledgment is sent to SrcSubEnv. This acknowledgment is not crit-
ical, however, since Treaties are verified at runtime. Its sole purpose is to notify users at SrcSubEnv
of the new Treaties that are available to them.

There are two more properties that the import operation must possess. One is atomicity; clearly,
the import operation has several potential failure points, meaning that it must be accompanied by

28

review[?f:FILE]:

: #condition
(?.status = NotReviewed)

activity

{ REVIEW review .request f.review }

effects
(7f.status = Reviewed);

(M.status = ReviewFailed")r_]

SiteA SiteB

analyze{?f:FILE]:

: #condition
(.status = NotReviewed)

activity
{ REVIEW review f.request ?f.review }

effects

> ?f.status = Reviewed);
(f.status = ReviewFailed);

i
|
|
!

modify[?a:FILE, 7b:FILE]:

: # condition
(and

(Ta.status = Reviewed) !
(7b.status = Reviewed)}——————

activity
{ MODIFY mod 7a.contents 7b.contents }

effect
(and
(7a.status = Modified)

(7b.status = Modified Yp———

manual_test{?f:FILE]:

binding
(forall MODULE ?m suchthat

:#condition

(f.status = Modified }»—-
activity

{ TEST man_test 7m.exec }

effects

(.status = UnitTested);
(M.status = TestFailed);

member [Tm.files 7f]))

binding
(forall MODULE ?m suchthat (member [?m.files ?f]))

: #condition

= (f.status = Modified)

activity
{ TEST auto_test m.exec }

effects
(M.status = UnitTested);
(.status = TestFailed);

auto_test[f:FILE]:

Figure 2.7: Integration of Imported Rules

29

a context-sensitive rollback mechanism that preserves the integrity of the server in case of failures.
However, since the acknowledgment phase is optional, there is no need to guarantee cross-site atom-
icity for import. The atomicity of the operation has to be preserved only in the importing server.
This fits well with the general decentralized requirements.

The second required property is persistence. The imported compiled strategy, along with the
necessary information used for runtime verification, must be stored permanently with the local
process since it outlives an execution of the server, and needs to be reloaded in subsequent evolutions.

2.3.2.4 unimport

The unimport operation is defined as:
unimport(strategy(SrcSubEnv), DstSubEnv, [privileges])

Unlike its import counterpart, unimport is a local operation. However, unlike unezport, it might
involve some non-trivial amount of work at the server. The algorithm is as follows: if strategy is
marked as imported from more than one SubEnvs, or if strategy is a local strategy (which was
“faked” imported for full Treaty purposes), then unimport does not modify the process, and only
updates the privileges similar to the way it is done in unezport. If, however, DstSubEnuv is the only
site from which strategy is marked as imported, then unimport removes strategy from SrcSubEnuv’s
process. This requires “decremental” recompilation and regeneration of the rule network. Such an
unimport also revokes all privileges from all remote SubEnvs regardless of the parameters that were
specified with the operation, since the strategy is removed from SrcSubEnv and cannot be used in
any manner there. :

As can be seen, not having the four execution-privileges commands (request, accept, cancel, and
deny) available separately from the four strategy-transfer commands (ezport, unexport, import,
unimport) introduces some technical and conceptual difficulties. On the other hand, preliminary
experiments showed that easing the procedure of forming Treaties is pragmatically important, and
that most of the Treaties can be formed using the default privileges, while more proficient adminis-
trators can still select other options in order to get the desired behavior. In any case, this is mainly
a user-interface issue; the main point is that the equivalent semantics of the formal model are fully

obtainable in Oz.

2.3.2.5 Forming Treaties

Going back to the formal model, a simple binary Treaty between two SubEnvs is formed by an
export operation at the source SubEnv, followed by a matching import operation at the target
SubEnv. But these operations do not have to be synchronized, and in particular, the import can
occur at anytime after the export, or never occur at all. From the system’s standpoint, Treaties
are formed implicitly, and perhaps even without explicit intention. That is, Treaties can be inferred
automatically, when the right combination of export and import occurs at the SubEnvs. In some
sense, this is a continuation of the context-less rule-based model that fits well with autonomy con-
cerns. In particular, there is no need for a “global administrator” to form Treaties; they are formed
by local administrators willing to collaborate in order to form the Treaties, and using the system to
formalize their intentions as well as to ensure that they are carried out as agreed.

In cases where SubEnvs are more tightly coupled, however, there might be a need to support
(simple and full) Treaties as one operation, to simplify their formation. Indeed, early experience with
Oz revealed the need for such an operation in cases where, for example, each SubEnv represented a
single-user process as part of a multi-user global environment, in which case a global administrator
(and a corresponding global Treaty operation) was essential. Therefore, Oz supports the explicit
Treaty operation, which bundles ezport and import, as explained below.

In order to be eligible for executing a Treaty operation, a user has to have administrator privileges
on both SubEnvs. Note, however, that in conformance with the “not-only-local-or-global” principle,
the user does not need universal administrator privileges, only on the two sites of a given Treaty.

30

The treaty operation is defined as:
Treaty(strategy(SrcSubEnv), DstSubEnv, [privileges))

The semantics of the operation are as follows: strategy is exported from SrcSubEnv and sub-
sequently imported by DstSubEnv. Treaty is atomic, meaning that both SubEnvs have to rollback
in case of a failure. In addition, DstSubEnv has to operate in single-user mode (i.e., only one client
can be connected to it, although SreSubFEnv and other SubEnvs might have arbitrary number of
active clients). To simplify matters, Treaty is always initiated by the exporter. However, the ex-
porter can be either a requester {default) or an acceptor, implying acceptor or requester privileges
on DstSubEnv, respectively. Finally, as mentioned earlier, a shared privilege implements a full
Treaty, i.e., either site can operate the rules in the strategy on the other site’s data.

2.3.3 Summit in Oz

Summits are the main means by which multiple SubEnvs actually interoperate, and as such, they
encompass all the support that is required to enable execution of multi-process “Treatified” tasks.
Thus, whereas Treaties refer to static properties of rules and data (e.g., formal parameters and types),
Summits are concerned with dynamic properties of rules under execution, such as the runtime objects
that are bound to an executing rule, the chaining context in which they execute, and so forth.

2.3.3.1 Summit Initialization and Treaty Verification

A Summit task is initiated as a result of an explicit request from a user. From the user’s point of
view, the only difference between invoking a Summit rule and a normal rule is that at least one of
the parameter objects specified by the user is remote. The first action taken by the coordinating
server is to fetch copies of the remote objects from their origin SubEnvs, and bind them to the
parameters of the rule (in addition to the obvious binding of local objects, but as we focus here on
inter-site issues we will ignore from now purely local aspects).

The second step involves Treaty verification. The coordinating server checks locally whether the
rule could be invoked as a Summit rule, by checking that the rule has request privileges on the
remote participating SubEnvs (i.e., those SubEnvs that have objects bound to parameters of the
rule). If this is not the case, the rule cannot be executed in a Summit. But, as explained earlier, this
is only a necessary condition, not a sufficient one, because the Treaty might have been invalidated
unilaterally by one or more of the participating remote SubEnvs. So, after local verification, the
coordinating server requests each participant SubEnv to execute the verification algorithm from
figure 2.3.

The reader might wonder why is it necessary to fetch the remote objects before doing Treaty
verification. The reason is somewhat pragmatic, and has to do with the rule-overloading mechanism.
Oz allows multiple rules with the same name to co-exist, and determines which rule to execute based
on the types and number of actual parameters supplied by the client [108]. Thus, when the local
server receives a request to execute a rule, it has to find the “closest” rule that matches the types of
the parameters, so only after the remote objects (and their type information) are fetched, can the
server determine which rule is intended for the Summit.

2.3.3.2 Pre-Summit

The coordinating server evaluates the rule’s condition. If the condition is not satisfied, the server
fans out to the participating sites and triggers local backward chaining at each site in an attempt
to update the objects so that they satisfy the condition. Backward chaining is private, i.e., each
process performs this step according to its autonomously defined sub-process.

One important aspect of remote backward (and also forward) chaining involves execution of re-
mote activities. In Oz, both backward and forward chaining can lead to the execution of further

31

activities, since the chained-to rules are regular rules that may contain arbitrary activities. In par-
ticular, some of those activities might be interactive, requiring input from a user. This presents both
conceptual as well as technical problems that do not come up in local backward chaining: concep-
tually, the remote server must determine which user’s client should execute the remote activities;
technically, it should be able to redirect the activity to the specified user’s client. The solution in
Oz is to direct all activities to the initiating user, by default. An optimization could be to direct
only interactive activities to the remote client and execute non-interactive activities with a local
“proxy” client (see [226]). To provide a full solution, however, Oz allows remote activities to be
delegated to (remote) users by extending its modeling language to specify delegation, and by provid-
ing a delegation mechanism that redirects activities. This topic is beyond the scope of this report,
see [21].

2.3.3.3 Summit Activity

If the condition of the rule is satisfied, the multi-site activity is fired at the coordinating site. Since
typical Oz activities involve (possibly large) files — as opposed to pre- and post- phases which
access “light” process state information — multi-site activities require sites which are physically
remote to transfer the remote files to the coordinating server.

Another issue regarding multi-site activities is the association with users. In case of a single-user
activity, Oz associates the activity with the user whose on behalf the Summit rule was invoked, or
to a delegated user if it was specified in the rule. In case of a multi-user groupware activity (e.g.,
virtual whiteboard), Oz provides mechanisms to define the participants and bind the activity to
them at run time, see [29].

2.3.3.4 Post-Summit

The first step in Post-Summit asserts the appropriate (local and remote) effects of the Summit rule,
depending on the output from the activity. Since the executed rule is identical at all participating
sites (because of the common sub-process invariant), this phase can be carried out in one of two
ways: either the coordinating server sends a message to the remote servers to assert the effect of the
rule on the objects (which are remote to the coordinating server and local to each remote server), or
the coordinating server itself asserts the effects on the replicated objects and sends the updates to
the remote servers. The latter approach simplifies rule processing in that the Summit rule executes
as a whole at the coordinating server and there is no need to invoke remote rule processors to execute
rule “fragments”. In addition, the replicated remote objects must be updated in the coordinating
server anyways for object cache management. Therefore, Oz employs the latter approach. In order
to enable forward local chaining, the coordinating server sends, in addition to the object updates,
a pointer to the asserted effect, and each of the remote servers acts as if it had asserted the effects
locally to explore forward chaining possibilities.

Following the derivation phase, forward fan-out takes place. Each SubEnv then determines which
rules to execute based on its local process, and carries out the chains locally until all possible forward
chains have completed. At this point, they return to the coordinating server.

2.3.3.5 Inference of Summit Rules

There are several approaches to modeling and enacting multi-step Summit rules. Technically, the
coordinating server must distinguish chains which are part of the local fan-out from those which are
“global” Summit rules. One alternative is to add “Summit” directives, similar to chaining directives,
that explicitly annotate effect predicates in rules as “Summit” predicates. These annotations could
be used to determine which chains are local, and which are global. In fact, the initial implementation
in Oz was done that way. However, this alternative both limits the power of the rule inference engine
and proves to be unnecessary.

Given that a Summit rule is syntactically a “normal” rule that just happens to have remote
objects bound to it, then by extending the mechanism for dynamic binding of parameters [108] to

32

handle binding of both local and remote objects to chained rules, the basic rule-inference mechanism
can infer Summit rules — these are simply the rules that happen to have been instantiated with
(some) remote objects as parameters. Thus, the inference of Summit rules has been extended to
operate in the same manner as local inference is done. However, unlike normal rules, when Summit
rules are inferred they are enqueued in a separate Summit queue and are scheduled for execution
only after local forward chaining has completed in all sites that are part of that Summit (see below).

The main advantage of this approach is that as a natural extension of the rule processor for
handling derivation of Summits, it is no more (and no less) implicit that derivation of rules, and it
has the potential for automatically inferring multi-step Summits which could not have been formed in
the explicit notation unless they were pre-determined. Another advantage is that Summit rules are
formed only as needed, whereas the annotation approach would force the administrator to consider
Summits even when no remote data is involved. Finally, adding annotations would have added an
(apparently unnecessary) burden on process administrators in forming Treaties.

2.3.3.6 Summit Completion

Once local forward chaining completes in all involved SubEnvs, they notify the coordinating server,
which in turn checks if there are any rules in the Summit queue. If there are none, it completes
the task and releases resources that were allocated for the Summit (e.g., transaction locks, which
are beyond the scope of this report, see [21]). If there are pending Summit rules, the coordinating
SubEnv reiterates to the Summit initialization phase, except it bypasses the manual parameter
binding phase which is (automatically) pertormed by the extended parameter binding mechanism.
Recall that binding must occur before the initiation of forward Summits, because it is the binding
phase that actually recognizes which rules are Summit rules.

2.4 Application of the Model to Other PMLs

We now outline how the interoperability model may be applied to two other families of PSEEs
categorized by the paradigm underlying their PMLs, namely Petri nets and Grammars (application
to imperative process programming such as APPL/A can be found in [21]). These families, together
with rules, cover most kinds of PSEE [132]. Since we take the existing PMLs as given, the uninitiated
reader should see the cited references for background and justification of each approach to process
modeling.

2.4.1 Petri Nets

The Petri net [178] is a formalism for modeling concurrent systems, and it has been widely applied
to software process modeling. The application of our decentralized model to Petri net-based PSEEs
is influenced primarily by SLANG [10] and FUNSOFT [90], and their corresponding PSEEs, SPADE
and MELMAC, respectively. Each of these PMLs is based on extended Petri net formalisms (specif-
ically, SLANG is based on ER nets, and FUNSOFT on predicate/transition nets), but we will use
for the most part general Petri net terminology.

Transitions usually represent our notion of activities (note that our activities are different from
SLANG’s notion of activities, which are more like our notion of a task). The equivalent of a
process activity that involves (possibly external) tools is termed in SLANG a black transition, and
in FUNSOFT it is called a regular agency.

Places represent the activity’s formal parameters, and Tokens represent the current state of the
process under enactment and the product data used in the activities (i.e., the actual parameters).

A predicate can be attached to a transition and must be satisfied prior to firing the transition. The
predicates define local constraints on an activity, as opposed to the general control flow expressed
by the topology of the net. Both languages support the notion of a predicate. In SLANG they are
called guards, and in FUNSOFT simply predicates. A transition is said to be enabled when its input
places contain the sufficient quota of tokens and the predicate(s) on the transition is satisfied.

33

A transition along with its attached predicates and input and output places correspond to a
process step, and is necessarily the minimal unit of commonality for Treaties, since in general altering
the input or output places of a transition requires to modify the transition itself (analogous to
changing the number or types of the formal parameters to a function in a conventional programming
language). Also, the predicate is a local constraint on the transition and therefore conceptually part
of it.

Integration of a process step into an existing net as part of the import operation involves: (1)
merging (or adding new) output places of local steps with input places of the imported step; and (2)
merging output places of the imported step with (possibly newly created) input places of local steps.
This in turn might imply further modifications in the neighboring transitions to accommodate the
changes in input-output places. These operations effectively merge the imported (common) step
with the local process (net). It is not mandatory, however, to connect an imported step to the
net. There might not be opportunities to do so, just as it is possible that in rule-based PMLs an
imported rule will not match with any local rule, leaving it isolated, in which case there are no pre-
and post-Summit actions during its enactment.

The Summit protocol starts when a common transition is attempted, and the input places contain
some tokens representing remote objects (again, we assume remote binding capabilities which are
provided by the underlying PSEE):

Summit initialization — The coordinating SubEnv binds the data arguments to its input places,
and all involved SubEnvs mark their nets like the coordinating SubEnv, except the tokens in the
non-coordinating SubEnvs are merely stubs.

Pre-Summit — The transition’s predicate (if any) is evaluated at the coordinating site, and
if not satisfied, the involved SubEnvs are notified. Since Petri net based PMLs are usually not
extended to support the equivalent of backward chaining in rules, pre-Summit might be restricted
to condition evaluation if needed to be performed in a distributed manner.

Summit — The transition is fired in the coordinating SubEnv, invoking an activity on the data
arguments. When the activity finishes, all involved remote SubEnvs fire the transition without
ezecuting the activity. If there is a conditional branching that depends on the result of applying the
activity, then the same “return code” is used in all SubEnvs to properly direct the flow of tokens to
the output places.

Post-Summit — All associated SubEnvs transfer the appropriate tokens from their input to their
output places. This can lead to firing of local transitions depending on the local nets. When local
firing of transitions that were triggered by the Summit transition completes, the remote SubEnv
notifies the coordinating SubEnv.

Summit-Completion — The coordinating SubEnv checks if new Summits can be derived from
the previous Summit, based on further connections in the coordinating SubEnv’s net. If none exist,
the Summit is complete.

One way to look at a Treaty and a corresponding Summit in Petri nets is as an “intersection”
subnet which is shared by the participating local nets (although possibly with different execution
privileges), whereby each local net has its own private connections to the subnet, and its own “role”
in the shared subnet, in terms of sending the data required for executing the Treaty subnet.

2.4.1.1 An Example

The following example, depicted in Figure 2.8, illustrates how Treaties and Summits can be applied
in Petri nets. This is a multi-process extension of an example which was originally given in [13]
describing SLANG.

In the example, there are two processes, CODE and TEST, used by two separate groups that
are responsible for coding and testing the application, respectively. In order to increase productivity
and consistency, the two teams, previously not connected in any way by their processes, decide to
collaborate. The main collaborative step involves a joint evaluation of the test results by representa-
tives from both groups that will lead to better understanding of the errors. In addition, implications
of this step should provide local feedback to both groups. Finally, the necessary data transfer among

34

CODE
Begin
1] Coding
module to (LT —————————————————————————— \
be edited ._,,A‘_'-- T -1 I
" L] ; |
edit L X i
¥ ' !
edited A . :
module . : i ’
] -
l
compile * ! ! !
| ; i
wngiid i TEST !
modle b \ ! old package |
Lo h R
o I
= 1
R s R — Y) Oy
i | I
i | |
rexdy . 1 - i |
i i ’ 4 t
j repare new
oenente) 5 mel CYO)
| . i
5 end | 1
coding i it A ——.__'__,i, | |
timeoot QK. . () | :
- - . ~—— |
Vo) object ! et ! l
\ i / { ,\\’ code ; pckage ! I
AR ! Lo
e .
: . | !
el test
R e o
code { S e | !
Nt R l ’h) output : 1
() A l ! !
- ! = evaluate 1 |
i [[| :
! i | !
i PN | ’
i - |
i T i 1
[P t - | i
] T 1 [———f -
test fuiled § ok fautyanutficient
(’) eyl

Figure 2.8: Example Multi-Process Petri-net

the groups (e.g., object code, reports, etc.), previously done outside the process, should be mod-
eled and handled through the inter-process modeling and binding mechanisms, respectively, thereby
enabling automatic and consistent transfer of the artifacts between the collaborating groups.

The dashed sub-process within the TEST process is then identified as the future shared sub-
process. The main modifications made to that sub-process before turning it into a Treaty sub-process
are in the addition of an interface input place (depicted by a circle with an inner-circle, representing
in SLANG an end-user interacting with an activity) from the CODE group for purposes of the
evaluation of the test results, and two new transitions with cross-process implications: (1) if the
test fails, the CODE group is notified to fix the problems indicated by the test; (2) if the test is
recognized as faulty, or insufficient, the TEST group is notified and modifies its package according to
the recommendations made in the evaluation. Finally, the input place holding the object code is now
transferred by the CODE group through the Summit mechanism, whereas before it was implicitly
supplied to the TEST group. This, however, does not require a change in the sub-process, since
when the Treaty is established, the object-code output place in the CODE process is merged with
the corresponding input place in TEST.

Once the Treaty is established, all coding and test package preparations are still done indepen-
dently and autonomously as before, but the processes synchronize for the actual testing phase when
both groups are ready, as indicated by the presence of their respective tokens in the input places of
the shared activities.

When the shared activities (i.e., the Summit) complete, a “fan-out” (or post-Summit) occurs,
involving passing the relevant evaluation results to each team, possibly affecting their (local) state.
At a later point, when both teams are ready for a second test, a second Summit activity is initiated.

35

2.4.2 Grammar-Based PMLs

The grammar hierarchy [41] and the corresponding automata provide another powerful set of for-
malisms for modeling a wide variety of systems, although they may have been less frequently ap-
plied to software process modeling than the other paradigms mentioned. There is a spectrum of
approaches to employing grammars in process modeling, analogous to sentence generation at one
end (what Heimbigner calls a prescriptive process [96]) to sentence recognition (parsing) at the
other (proscriptive) [120]. The PDL project employed the former for context-free grammars [114],
while the implementation of the Activity Structures Language on top of Marvel follows the lat-
ter approach [127]. One group experimented with both in the context of attribute grammars for
HFSP [131] and Objective Attribute Grammars [206], respectively.

Considering the grammar-based PMLs, a terminal symbol corresponds to an activity in our
context hierarchy, a non-terminal symbol to a task, and a production to a process step. Grammar-
based PMLs usually associate some kind of condition with each production, or possibly with each
symbol in a production, to specify when it could be selected. For example, in the PDL-based system
these are called restriction conditions, in the Activity Structures Language they are simply rule
conditions, and in HFSP they are decomposition conditions. Symbols are associated with formal
and actual parameters in some fashion specific to the PML and PSEE. The symbol (along with
its possible condition) seems the best candidate for the unit of commonality. But it doesn’t have
to be a terminal symbol. This reflects the hierarchical decomposition property of grammar-based
PMLs, since it essentially allows to define any sub-process as common. However, any sub-tree that
can possibly be generated during execution from that symbol must be identical in both processes
(otherwise it will not be common). Thus, the import of a symbol is necessarily recursive, i.e., when
a symbol is imported, all of its possible productions are imported recursively. Of course, a cyclic
import must be detected as part of the import procedure.

As with Petri nets, the importing site must also explicitly augment its grammar with the new
symbol, and use it in its production(s). An issue that comes up in all PMLs but is particularly
eminent here is the issue of (sub)task naming. The newly imported symbol must not conflict with
the name of any other local symbol, and at the same time it (and in fact all the derived symbols in a
Treaty) must be identified as the common symbol when the Summit is enacted, eliminating simple
local renaming as an option. The general approach recommended here, (which is the one actually
taken in Oz to address naming of rules) consists of separation of logical and physical names combined
with unique physical name generation. This approach enables both private (logical) naming of
subtasks, as well as a global name space for running Summits. The Summit protocol works as
follows (skip the first and last phases):

Pre-Summit — This phase begins when an activity represented by a common symbol is invoked
in one process with data from multiple processes. The remote SubEnvs are notified, and any pre-
requisites to enacting that symbol are checked in each of the participating SubEnvs, each according
to their own local process. In principle, a recognition-oriented PSEE might now recursively enact
any symbols immediately preceding the common symbol in the current production in an attempt
to fulfill the prerequisites, analogous to backward-chaining for rule-based PSEEs. This could be
regarded as a form of sentence generation.

Summit — Assuming all SubEnvs ultimately agree, the symbol is enacted in the coordinating
SubEnv. If, however, this is a non-terminal symbol representing a composite subtask, it is “parsed”
recursively, possibly involving multiple multi-site activities. This is in fact a “natural” instance of
composite Summits mentioned in the generic model. This is also why non-terminal Treaty symbols
are imported recursively: a common sub-task must be literally common so that all involved sites
know (and trust) what exactly is taking place when their data is accessed.

Post-Summit — All the participating SubEnvs are notified by the coordinator to complete the
symbol. For example, in the case of a generation-oriented PSEE, each local process might automate
control flow through its local production within which the symbol was embedded. Once again, the
productions including a common symbol might be completely different in different local processes,
and enacted independently and autonomously.

36

Master

Locat
Process

Build Component

Check-out model k

export1accept

/

import-accep!

Assemble export-request

Build Component |-

Local export~rgquest
Process
importtrequest
7| | Check—out model

,-mm-# \

.
' i I Local /
} Process

 Workspace

Ly
|
|
l
|
1

1
1
)
i

Figure 2.9: The Emerald City Environment

2.5 Experience and Evaluation

We now discuss how the interoperability model fulfills the requirements set forth in Section 2.1.1.
We base our evaluation mainly on our experience in using Emerald City, an OZ environment that
has been used to develop the Amber [224] rule processor, Pern [105] transaction manager, and
the Darkover [144] object management system. Most importantly, Emerald City was used for the
re-engineering of the Oz kernel itself to be constructed by these components®.

2.5.1 The Emerald City Environment

Emerald City consists of three types of processes: a “Master” process that is used to maintain stable
versions of components as well as additional “glue” modules that together comprise Oz; an inter-
mediate “Assembly” process used for system (re)-engineering from components; and a “Workspace”
process for individual intra-component development. Although processes can be in general instanti-
ated for a variety of projects, Emerald City was tailored specifically to support the complex develop-
ment and re-engineering tasks of Oz, so we will not distinguish from now between the processes and
the actual environment. Note, however, that many local (i.e., non-Treaty) rules have been reused
from earlier Oz and Marvel environments, particularly from OzMarvel, the Marvel environment
which was used for the production of the earlier Oz 1.0.

Figure 2.9 shows the site interconnections in Emerald City. It comprises of a single Master
SubEnv, a single Assembly SubEnv and multiple Workspace SubEnvs. The Workspace SubEnvs
are mostly similar but not identical to each other, and unlike the multi-user Master and Assembly
SubEnvs, they are mostly single-user although nothing prevents them from being used by mul-

4The latest version of Oz , 1.1.1, already uses Darkover and Pern as its components, and the integration of the
Amber process-server is in progress.

37

tiple users (as some have). The Master SubEnv interoperates with Workspace SubEnvs via the
check-out-model strategy that contains various cross-site rules for reserving and depositing artifacts
across the sites, and for updating local information as a result of changes in other SubEnvs. A sample
Treaty rule for updating function interfaces is listed in Appendix A. The rules in check-out-model
are executable from Workspace, and have originated at Master, as indicated in the figure by the
request and export labels, respectively.

Assembly maintains a three-way Treaty on the build-component strategy with the Master
SubEnv and with each Workspace SubEnv that is involved in the re-engineering effort. This is
a simple Treaty from Assembly to Master and Workspace, i.e., only the Assembly SubEnv can
execute rules from that Treaty on data from Master and Assembly. A representative rule from
build-component is listed in Figure 2.10.

This rule takes 3 arguments, one from Master, one form Assembly, and one from a Workspace SubEnv
(line 1). It then binds the proper subsystem object from Assembly (line 5), the executable from the local
workspace SubEnv (line 8), the local repository of header files (line 10), the main function from the local
project (if exists) or from the master project (lines 12 - 15), and source files from the local and the master
projects (lines 17 - 18). The condition (lines 20-24) states that all source files have been compiled and do
not require recompilation (e.g., due to changes made to external function prototypes). Notice that this rule
may backward-chain to a local compile rule vie the predicate in line 22. The activity (lines 25-28) invokes
a builder tool with objects from all three sites. Finally, the effects (lines 29-31) indicate whether the build
activity was successful (first effect) or not (second effect).

The Workspace SubEnv is where most of the development is done, where each developer tailors
his/her own rules and tools to suit his/her needs. Thus, Emerald City is prescriptive and allows
freedom in the creative aspects of programming (carried out in Workspaces) while providing auto-
matic utilities and proscription for the complex and mechanical aspects of connecting the individual

pieces together.

Emerald City has been in use since April 1995 and is constantly evolving. In its present config-
uration it consists of 16 SubEnvs: 1 Master, 1 Assembly, and 14 Workspace SubEnvs. The Master
process consists of 34 local rules (in addition to the 15 standard rules used for site configuration [26]
and for built-in operations, e.g., copy object) and 21 Treaty rules. Figure 2.11 shows a snapshot
of user kaiser working in the Master SubEnv and listing the rules. The number of rules in the
menu is smaller than the total number of rules because some of the rules are “hidden”, i.e., they are
intended to be fired only through chaining and not explicitly invoked by users, and other rules are
overloaded, e.g., there are 6 different reserve rules for the various types of objects reserved, and
for different types of destination SubEnvs.

The Assembly process has 27 local process-specific rules and 2 Treaty rules. A typical Workspace
process contains 22 new rules, in addition to the imported Treaty strategies from Assembly and
Master. Thus, 19% of the total distinct rules in Emerald City are Treaty rules. This figure,
which can be used as a (static) measure of the level of site-interoperability, seems to be typical
for Oz environments; in another experimental environment that implemented the ISPW9 “bench-
mark scenario” [176], this interoperability measure was 15% (see [21]). Another (dynamic) measure
of site-interoperability is the percentage of actual invocations of Treaty rules in Summits from the
total invocations. Table 2.5.1 summarizes the runtime statistics made for 11 active project members
(taken from execution log files generated by Oz). The built-in column includes operations such
as printing an object and browsing the hierarchy, and are in general not part of a specific process.
The treaty column lists the “meta” administrator commands to establish/update/ remove treaties.
They were mostly issued by three administrators of Master and Assembly (other users have issued
such commands sparsely, to connect their Workspace to other SubEnvs). The summit and local
columns list invocations of Summit and local rules, respectively, and the int. measure lists the
dynamic interoperability measure, i.e., the percentage of Summit rules from the sum of Summit and
local invocations. We can see that the overall dynamic interoperability measure is 22%, meaning
that approximately 80% of the development efforts were local, an overall positive result.

38

Build a system using a local main function

#
#

#

?1p is the local (workspace) project object

?ap is the assembly project object

7mp is the master project object, where code needed by a
variety of workspace SubEnvs is stored.

1) build-system [?1p:LOCAL_PROJECT, ?ap:PROJECT, ?mp : PROJECT] :

2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)
23)
24)

25)
26)
27)
28)

29)
30)
31)

RULE BINDINGS:
(and
find the proper subsystem in re-project to link to.
(exists SUBSYSTEM ?s suchthat (and (ancestor [?ap ?sl)
(?s.Name = 71p.subsystem)))
find the local binary
(exists BIN 71b suchthat (member [71lp.bin 71b]))
find the repository of local header files
(forall INC 7i suchthat (member [71lp.inc 7il]))
Find Main file, if it exists, in the local project or Master
(exists CFILE ?main suchthat (or (and (linkto [?1lp.main 7main])
(ancestor [?1p ?main]))
(and (linkto [?mp.main “?main])
(ancestor [7mp 7mainl))))
bind all source files in the local project
(forall COMPILABLE ?7c suchthat (or (member [?lp.files ?7c])
(member [7mp.files 7c]))))

RULE CONDITION: all source files are compiled and are not marked
for recompilation
(and no_forward (?c.compile_status = Compiled)

no_chain (?i.recompile_mod = false)

no_forward (7main.compile_status = Compiled))

RULE ACTIVITY: build an executable with objects from all sites

{ COMBINE_TOOLS build_local_main 71b.executable 71p.build_log
?s.libraries ?s.build_order ?s.med_libraries
7main.object_code 7c.object_code }

RULE EFFECTS:
(71b.build_status = Built); # build succeeded
(?1b.build_status = NotBuilt); # build failed

Figure 2.10: Three-site Build

39

@ 0z 1.1.1: kaiser B westend,cs.columbia.edu GGG
e
Local Server: oz_master - Current Object: /n/americas/proj/oz/EmeraldCity/oz._master/hfs/1
(Session v) (Falsz @) (Construct v) (Local v) (Query v) (Print v) (Misc 9)
ke Qarch_ D keyboard command
¥! build t Object
— build_bin =
change_subenv_location
clean et _lock_modes,c
. invert_logic.c
combine_prototype 53_parans.c
complle ule_stack.c
deposit _rp.C
dereglster_subenv -”-’:‘f“;;;
N _rp_chain._i +C
determine_build “rp_chain.for.c -
diff2files _rp_restart.c M
fail_reserve umbol _queve.c =]
generate_old_path ver Load.c
P_ipc.c
llst_arch _rp_call_sched,c
make_clean ompare.c
mk_Hatsrc é:lr\d_rp.c
mk_prototype atch_pred.c
B register_subeny oad_strategies.c
glster- p_add_pred.c
reserve ule_network.c
send_subenv_map ype_check.c
set_subsystem rite_strategies.c
reaty_table.c
unreserve :
tivity.c
update_interface int_rute.c
update_interface_version p_alloc.c
view p.utile.c
N umbol.c
viewErr oto.h
roto.h
; " =
(CeI o) 0

Figure 2.11: A Snapshot from the Master SubEnv

users built-in | treaty | summit | local | Total | int. measure
1 admin | 17141 661 2096 4908 | 24806 .30
2 2116 0 450 1145 { 3711 28
3 admin | 7707 134 589 1581 | 10021 27
4 2812 29 735 1942 | 5518 27
5 4661 23 330 1271 | 6285 21
6 1250 0 110 446 1806 .20
7 631 13 133 519 1296 .20
8 admin | 7049 198 678 3528 | 11453 .16
9 3968 1 294 1592 | 5855 15
10 360 0 12 120 492 .09
11 11427 4 107 1782 | 13320 .06
Total: 59122 1063 5534 | 18844 | 84563 22

Table 2.1: Summary of usage in Emerald City

40

2.5.2 Evaluation
2.5.2.1 Autonomy

Throughout the chapter we have seen numerous cases where autonomy played a major role in
determining the design of the model and the system. Perhaps the major aspect that fulfills this
requirement is that site autonomy is the default and is guaranteed unless explicit specification of
interoperability is made. Autonomy-by-default is closely related to enabling independent operation,
but includes also definitional and execution aspects.

Regarding definition, the schema, process, and database are all by default autonomous. The fine-
grained modeling of Treaties contributes also to autonomy since each site can control precisely what is
shared and what is not. The loose commitment to a Treaty that enables unilateral retraction further
supports autonomy, even though it incurs some performance overhead in dynamically verifying
Treaties at runtime. Regarding execution, the general idea in supporting autonomy was to minimize
the impact of interoperability beyond what was explicitly defined as shared, and to maximize local
execution. Most of these arguments hold equally well to the generic model as well as to Oz.

The tension between supporting autonomy and enabling facilities for interoperability have led
to some oversights regarding autonomy, however, mostly in the design of Oz (as opposed to the
generic model). The most important one concerns the global configuration mechanism and the global
objectbase browsing facility, both of which cannot be “turned-off” and thus they violate autonomy.
This was evidenced in Emerald City, where individuals working in their workspaces sites did not want
to provide any access to other workspaces. To overcome this problem, the configuration mechanism
has been modified to allow for partial visibility of remote sites which is determined autonomously,
but a more general solution is needed.

2.5.2.2 Locality

To a large degree, this requirement was met, both in the generic model and in Oz. The model was
specifically designed to minimize the impact on local work. In particular, the approach of gradually
superimposing interoperability on top of the underlying (possibly pre-existing and enactable) local
processes, maximizes locality. As far as the impact of decentralization on the quality and performance
of local work — this issue seems to have been successfully met, too. The overhead imposed by OZ on
local work in a SubEnv compared with work in an equivalent single instance running under the Marvel
single-site PSEE is negligible, because the infrastructure overhead impacts only interoperability.

2.5.2.3 Interoperability

Given that autonomy was a crucial requirement, this “competing” requirement seems to also have
been adequately addressed. The Treaty abstraction appears to support particularly well interop-
erability modeling of process and data. Two areas that still need improvements are in modeling
interoperability at the user and the tool levels, which are related to groupware technology. Prelimi-
nary work has been done in [29].

Work in Emerald City revealed another area that requires improvements in Oz, namely better
support for multi-site operations between trusted sites, particularly for interoperability modeling.
The Treaty operation as a single command (with the issuer being administrator in both sites) was
a step in that direction. Other improvements include commands for defining multi-site Treaties,
more selective Treaty invalidation procedures that do not invalidate Treaties unnecessarily, and
automatic updates of strategies without requiring to re-establish Treaties. Finally, work in Emerald
City showed that establishing cross-site links at the data level is important for facilitating multi-site
activities, although it may violate autonomy.

2.5.2.4 Support for Pre-existing and Heterogeneous Processes

Both Summits and Treaties were designed with this requirement in mind, and proved to be quite
effective. It is of course possible and even likely that two pre-existing and unrelated processes

41

will have no common sub-process a priori. But “bridges” of interoperability can be incrementally
added, with minimal distractions to local work. This is particularly true for the declarative rule-
based PML. For other PMLs, however, the addition of a new-subprocess may require more work
and special tools. Another problematic issue with supporting pre-existing processes is with their
schemas, particularly in strongly-typed PMLs. Such PMLs should provide facilities that enable to
superimpose new shared sub-schemas on top of the pre-existing ones (perhaps along the lines of
what is done in Pegasus [63]). Alternatively, PMLs might need to sacrifice some of their typing
restrictions, at least for Summit activities, to accommodate heterogeneous schemas, and to be able
to check for schema (sub)compatibility.

2.5.2.5 Scaleability

The Treaty/Summit model scales up mainly because it does not assume any global authority or cen-
tralized control. However, it does not provide means to form hierarchies over a set of interoperating
sites, and they are all treated flatly as peers. This might have a negative impact on scaleability,
particularly for top-down oriented environments. For example, in Emerald City it may have been
advantageous to define a hierarchy of workspace SubEnvs with individual student’s workspaces below
“component” workspaces.

2.5.2.6 Language vs. System approaches to Treaty Definition

We already discussed in Section 2.2.2.2 some advantages of using the system-based approach. One
disadvantage of this approach is that it is impossible to define a “Treaty” program with site classes as
formal parameters. In Emerald City, for example, this capability would have allowed to automatically
form a Treaty upon instantiation of a new workspace site in Emerald City. Instead, it was necessary
to form a Treaty manually between each new workspace SubEnv and the other sites. Another
disadvantage of the system-based approach was that it was necessary to create a set of built-in
system calls not only for creating Treaties but also for removing, listing, and updating them. This
suggests language constructs for Treaties in conjunction with system calls that are called from them,
as an improved approach. '

2.6 Related Work

ISTAR [57), one of the earliest software engineering environments (or “Integrated Project Support
Environments”), provided comprehensive support to the software development lifecycle, including
both management and software engineering. The main idea in ISTAR was the contractual ap-
proach, in which a “contractor” (e.g., a group of programmers) provides services to a client (e.g.,
a manager). The contract must have well-defined deliverables and acceptance criteria, and might
include additional constraints imposed by the client. A contractor can further delegate some of
the tasks to a sub-contractor, creating a “contract hierarchy” in a top-down fashion. In addition,
the ISTAR architecture permits for sub-contracts (and all of their sub-contracts, recursively) to
operate autonomously in different sites, since the contract databases are distinct and can be oper-
ated independently. Although ISTAR was not a PSEE (it had a somewhat hard-coded process), its
architecture was an important step towards decentralization.

Shy, Taylor, and Osterweil were among the first to explicitly identify decentralization as a key
environment technology {207]. Their theoretical work draws an analogy between software devel-
opment and the business corporation, and they advocate a “federated decentralization” model for
PSEEs with global support for environment infrastructure capabilities and local management with
means to mediate relations between local processes. Among the arguments made for this model
are: (1) The level of global support is not rigid; (2) While the communication is established under
guidelines determined by the global process, the actual communication is provided and maintained
under the control of the local entities; and (3) Extensibility, because integration of processes and
services can be implemented gradually. This preliminary model, while advocating decentralization,

42

still considers every sub-environment to be strongly affiliated with the corporation and necessarlly
abiding by some global rules. Thus, autonomy is necessarily restricted a priori.

Heimbigner argues in [97] that just like databases, “environments will move to looser, federated,
architectures ... address inter-operability between partial-environments of varying degrees of open-
ness”. He also notes that part of the reason for not adopting this approach until recently was due to
the inadequacy of existing software process technology. However, his focus is on support for multiple
formalisms. His proposed ProcessWall [98] is an attempt to address heterogeneity at the language
level. The main idea in the ProcessWall is the separation of process state from the programs that
construct the state; in theory, multiple process formalisms (e.g., procedural and rule-based) can
co-exist and be used for writing fragments of a process. However, decentralization as a concept is
not addressed, and in particular, the process state server is centralized.

ProcessWEAVER is a commercial product of Cap Gemini Innovation, with a Petri net based
PML. Fernstrém describes “...in a process, which consists of a set of cooperating sub-processes, every
sub-process can be characterized by the set of ’services’ it provides and requires from the other sub-
processes” [67]. This sounds remarkably similar to our approach. However, in the ProcessWEAVER
system, “...processes are recursively structured into sub-processes of finer and finer granularity and
detail.” In other words, processes are defined top-down, and provide essentially for fine-grained
decomposition of one global process, whereas in our approach, what is in effect the decentralized
process of a global environment can be defined bottom-up from the (collaborating) processes of the
constituent SubEnvs. Finally, autonomy concerns for local process and their artifacts, which is a
fundamental requirement in our approach, is not considered.

SMART [77] is an attempt to provide a methodology and a supporting technology for the process
(as opposed to product) lifecycle through multi-formalism support, whereby different phases in the
lifecycle are supported by different formalisms and corresponding (sub)systems. Specifically, SMART
views the lifecycle of a process as consisting of a development phase; followed by analysis and possibly
a simulation phase; followed by an embedding phase, in which a process model is instantiated with
actual tools and product data bound to it; followed by an execution and monitoring phase, which
feeds back to the development phase. Modeling, analysis, and simulation are performed with the
Articulator system [160], process execution is performed by HP’s SynerVision, and Matisse [78] (also
from HP) is used to maintain a knowledge-base containing the artifacts that represent the process
models developed in the Articulator, and serves as an integration medium between Articulator
and SynerVision. Thus, the emphasis is on multi-paradigm support for the process, and on bi-
directional translation: from process models to process (executable) programs, and from the process
execution state back to the process model level. From a heterogeneity standpoint, SMART can
be categorized as having some degree of system heterogeneity, since it integrates three different
systems, and formalism heterogeneity, although not for defining different aspects of the process (as
in ProcessWall), but rather for supporting different phases of a predefined lifecycle. However there
is no support for multiple processes with distinct instantiated products.

TEMPO [170] is another PSEE that is designed to support “programming-in-the-many”, i.e.,
projects that involve a large number of people, and therefore its emphasis is on modeling and mech-
anisms for supporting collaboration, coordination, and synchronization between project participants.
TEMPO provides three main abstractions that facilitate modeling multi-user aspects of the process:
(1) hierarchical decomposition of processes to sub-processes in a top-down fashion, similar to Pro-
cessWEAVER,; (2) support for multiple private views of the process, through the role concept which
allows to define private constraints and properties; and (3) active and programmable connections
between role instances, which are defined and controlled by rules with temporal constraints in ad-
dition to pre- and post-conditions. TEMPO is data-centered, and is built on top of Adele 2 [20], an
active configuration management system with data-driven triggering, which enables to realize rule
processing in TEMPO. While TEMPO provides for definition of “personal” processes and supports
coordination among them, it is still inherently centralized, in that it requires a single database as
the coordination platform, and supports multiple views of essentially a single group process, defined
in a top-down fashion.

43

2.7 Conclusions and Future Work

Two key concerns guided this research: (1) maximizing local autonomy, both physically and logically,
s0 as not to force a priori any global or inter-site constraints on the definition, execution and operation
of local sites, unless explicitly specified in a particular environment instance; and (2) flexibility and
fine-grained control over the degree of interoperability.

The high-level approach to address decentralization was to extend the notions of process modeling
and process enactment to inter-process modeling and inter-process enactment, respectively. The
former was achieved by the Treaty. In essence, a Treaty is an abstraction that specifies shared
sub-processes for interoperability purposes while retaining the privacy of the local sub-processes.
Treaties have several unique characteristics. First, they require explicit and active participation
of the involved entities to mutually agree on the nature of the interoperability, thereby balancing
autonomy and global specification. Second, the definition of Treaties is fine-grained in two respects:
they are defined pairwise, between every two sites that need to interoperate, as opposed to being
global and known in all sites of a multi-site environment; and each Treaty is formed over a single and
a small sub-process unit. Still, complex Treaties can be formed (and subsequently executed) between
any number of sites and involve arbitrarily large sub-processes, by successive invocations of simple
Treaties (which could be optimized from the user interface perspective). The third characteristic
of Treaties is that they are superimposed on top of pre-existing processes as opposed to being
specified as part of each individual process; this enables gradual and incremental establishment of
interoperability and supports the decentralized bottom-up approach. Fourth, they are designed
to support local evolutions including unilateral retraction from Treaties (combined with dynamic
Treaty verification), on demand.

Inter-process execution was achieved by the complementary Summit model. Summits are the
execution abstraction for Treaty-defined sub-processes. They support multi-site enactment of shared
sub-processes involving artifacts and/or users from multiple sites, while maximizing local execution
of related private sub-processes. This is done by successively alternating between shared and private
execution modes: the former is used for the synchronous execution of the (fine-grained) shared
activities, involving artifacts, tools, and/or users from multiple sites, and the latter is used for the
autonomous execution of any private subtasks emanating from prerequisites and consequences of
the shared activities.

2.7.1 Future Work

The first issue to further explore is extensions of the basic Treaty/Summit model with more ab-
stractions that support alternative modes of interoperability, both in modeling and in execution.
For example, enabling to model and enact local activities that execute simultaneously. Another
extension concerns enhanced groupware modeling facilities for tools and users. Finally, support for
site hierarchy should be explored.

Addressing heterogeneity and interoperability at the PSEE and PML levels in conjunction with
the process-interoperability model described in this paper, are other important avenues to explore.

Finally, it seems that the idea of describing the behavior of autonomous entities formally, as a
basis for constructing consistent and trustworthy interoperability among them, and operating within
an environment that supports their execution, goes beyond software process modeling and can be
applied to general distributed and decentralized system design. For example, this could be used to
model and subsequently support interoperability among autonomous Internet repositories, making
them more active and responsive to other objects on the network.

44

—_—

Appendix A: A Sample Treaty Rule from Emerald City

A Treaty rule for Updating interfaces for Workspace Project
(LOCAL_PROJECT) based on changes in the Master Project (PROJECT)

update_interface[?1p:LOCAL_PROJECT, ?p:PROJECT]:
(and (exists SUBSYSTEM ?s suchthat (and (ancestor [7p 7s])
(?s.Name = ?71lp.subsystem)))

Find local interface

(forall PROTOTYPE 7LPT suchthat (member [?lp.proto ?LPT]))
(exists INC ?i suchthat (member [71p.inc ?i]1))
(forall HFILE ?h suchthat (member [7i.hfiles ?h]l))
Find master interfaces

(forall PROTOTYPE 7PT suchthat (member [7p.proto 7PT]))
(exists INC ?ii suchthat (member [?71p.interface ?7ii]))
(forall COMPONENT ?CD suchthat (ancestor [7s ?CD1))
(forall LIB ?1 suchthat (linkto [7CD.1ib ?11))
(forall MODULE 7m suchthat (linktoe [?m.library 711))
(forall SRC ?sr suchthat (member [7sr.libs 71]1))
(forall INC ?ri suchthat

(or (member [7?sr.incs ?ri]})
(linkto [?m.related_incs ?ri])
(member [?p.common_incs 7ril))))

{ TREATY_TOOLS install_interface ?i 7h.contents 7ii ?ri.directory
?sr.sys_includes 7p.tags 71p.tags
?PT.contents 7LPT.contents
return ?7i_path 7ii_path 7combine }

(and no_chain (?1lp.interface_version = 0)
(71p.interface_version = 7p.interface_version)

no_chain (?lp.sys_includes = 7combine)
no_chain (?i.directory = ?i_path)

no_chain (?i.recompile_mod = false)

no_chain (7ii.directory = 7ii_path)
no_chain (?ii.recompile_mod = false));

45/46

Chapter 3

Process Support for Componentry

Abstract

Componentization is an important, emerging approach to software development whereby new sys-
tems are constructed from relatively large-scale components intended to be used in a variety of
systems. More significantly from the perspective of this report, componentization also provides a
road to modernization of stovepipe systems, which are restructured into components to ease contin-
ued maintenance. Selected components in the original system can be completely replaced, e.g., the
database or user interface, potentially in a family of configurations each including different realiza-
tions of the components. Of course, the newly separated components can also be reused in other
systems.

We have investigated process modeling and workflow automation technology to support both re-
engineering of legacy systems into components and replacement of some of those components. This
chapter describes our experience following that approach through two generations of component-
oriented process models supported by two generations of process-centered environments developed
in our lab.

47

3.1 Introduction

Componentization, as discussed here, has two main facets: re-structuring a stovepipe system into
components that could potentially be reused in other systems, and re-engineering the original sys-
tem to permit replacement of selected components. One application is to upgrade portions of the
stovepipe system to new technology, e.g., a new database or user interface. Another is to migrate to
a new architecture, for instance, converting a monolithic system to the client/server paradigm, with
some old components appropriately encapsulated to work together with some new ones.

In this chapter, we describe our experience using process/workflow technology to support both
aspects of componentization. Our study was particularly targeted to process support for componen-
tization of process-centered environments (PCEs), which involved breaking up a particular existing
PCE into components and reusing some of its components in a variety of environment architec-
tures and frameworks, but the same processes should apply to other kinds of systems. We started
implementing the existing PCE in January 1987, initially known as MARVEL and later as Oz; the
final version consists of about 300k lines of C, lex and yacc code. Approximately 60 graduate and
undergraduate students participated in the effort, most of them for only one semester as part of an
independent study project for academic credit, a handful for several years as research assistants. An
“exploratory programming” style was used, and the resulting PCE certainly qualifies as a stovepipe
system.

We developed a series of two enactable (executable) process models, each intended to support
both aspects of componentization, i.e., re-structuring and re-engineering, in an incremental manner.
That is, the componentization effort was going on at the same time on the same code as “new”
development work supported by the same process; it was not possible to suspend other changes
to the system while the re-structuring/re-engineering was in progress. The first process, OzMar-
vel, was implemented in Spring 1993 as a MARVEL environment instance and then employed for
nearly two years in our initial development of OZ. EmeraldCity came on-line in Spring 1995 as an
Oz environment instance and has been used for two years as of this writing. (Prior to OzMarvel
we used a non-component process called CMarvel, starting in January 1992, which mimicked our
earlier work methods on Unix.)

There were two main reasons for upgrading from OzMarvel to EmeraldCity. One was to bootstrap
from MARVEL to Oz as our platform to continue development of Oz. The Oz project is devoted in
large part to componentization issues, while the predecessor MARVEL project was not. Another im-
portant distinction between MARVEL and Oz, for the purposes of this chapter of the report, is that
a MARVEL environment instance supports a single process that must be enacted by all users of that
environment, although they would generally follow distinct workflows, whereas an Oz environment
instance supports interoperability among multiple autonomously developed processes and interac-
tions among users carrying out workflows within different processes. A MARVEL environment with
an in-progress process can be converted to a single-process Oz environment, but as explained later
EmeraldCity needed to exploit Oz’s multi-process support.

EmeraldCity is also substantially different from OzMarvel in several other dimensions due to our
early experience using OzMarvel to divide a legacy system into components and integrate experi-
mental systems from those and external components. Thus the second reason was to incorporate
what we had learned from our initial, relatively naive attempt at a component-oriented process and
continue our re-engineering work with the significantly better process (i.e., from the viewpoint of
successfully supporting componentization).

It may be confusing that we used a PCE to support componentization of that same PCE. There
is nothing specific to PCEs in either of our two software engineering processes, so the approach
should apply equally well to other systems — but a PCE happened to be the system we were
componentizing and from which our experience is drawn. That is, this was our real work, not an
invented “case study”. Certain peculiarities of the processes are, however, specific to C program-
ming, e.g., the distinction between source and header files, the use of prototypes, etc.; we assume
throughout the report that the reader is generally familiar with ANSI C.

First we provide brief background on the MARVEL and Oz process modeling and workflow au-

48

tomation systems. Then we describe the OzMarvel and EmeraldCity processes, including the re-
quirements they were intended to fulfill, how they exploited the then-available process/workflow
technology, and our experience using each of the process environment instances in our componenti-
zation efforts. The chapter concludes by summarizing lessons learned.

3.2 Marvel and Oz Background

MARVEL (31, 108] and Oz {27, 21] employ client/server architectures. Clients provide the graphical
user interface and invoke external tools. Servers context-switch among multiple clients, and include
the workflow automation engine, object management, and transaction management for concurrency
control and failure recovery (transaction management details are not addressed in this chapter).

MARVEL and OZ employ nearly the same rule-based process modeling language in which to
define new processes or tailor reusable processes for an organization or project. A rule generally
corresponds to an individual software development task, and specifies the task’s name as it appears
in a user menu. A rule definition includes: typed parameters and bindings of local variables to the
results of queries on the project objectbase; a condition on the parameters and local variables that
must be satisfied before initiating the activity — generally an external tool invocation — to be
performed during the task; the tool envelope and arguments for that activity; and a set of effects,
one of which asserts the actual results of completing the activity on the objects referred to in the
parameters and variables. There is generally more than one possible effect if the tool has more than
one possible result (the simplest example is a compiler than generates either object code or syntax
€ITOT messages).

The workflow engine enforces that rule conditions are satisfied, and automates workflows via
forward and backward chaining. When a user requests to perform a task whose condition is not
currently satisfied, the system automatically backward chains to attempt to execute other rules whose
effects may satisfy the condition; if all possibilities become exhausted, the user is informed that it
is not possible to enact the chosen task at this time. When a rule’s activity completes, its asserted
effect triggers automatic enactment of other rules whose conditions have now become satisfied.
Both backward and forward chaining procedures operate recursively. Users usually control process
performance by selecting a rule representing an entry point into a composite task consisting of a one
main rule and a small number of other auxiliary rules (reached via chaining) to propagate changes
and perform bookkeeping chores, but it is possible to define an entire process as a single goal-driven or
event-driven chain — which is useful for simulation or training purposes. Built-in operations such
as add an object, delete an object, etc., are modeled as rules for a uniform approach, and different
conditions and effects can be attached to such operations for different classes of objects. Oz provides
means for modeling and launching synchronous and asynchronous “groupware” tools [227, 29], which
were not supported by MARVEL, but the details aren’t relevant to this chapter.

MARVEL and Oz support nearly the same object-oriented data definition and query languages. A
class specifies primitive attributes (integers, strings, timestamps, etc.), file attributes (pathnames to
files in an intentionally opaque “hidden file system” that should not be accessed except through the
PCE), composite attributes in an aggregation hierarchy, and reference attributes allowing arbitrary
1-to-N links among objects, and one or more superclasses from which it inherits attributes (and rules
treated as multi-methods [15]). Ad hoc and embedded (in rules) queries may combine navigational
and associative clauses in a declarative style. Rules perform all data manipulation in the objectbase
proper, whereas the contents of file attributes are manipulated by tools. Commercial off-the-shelf
tools and other external application programs are interfaced to an environment instance through
shell script envelopes, using augmented notation that hides from tool integrators the details of
accessing the “hidden file system” and passing input and output parameters [86]. A return code
from the envelope determines which of the several rule effects is asserted.

A MARVEL environment consists of an arbitrary number of clients connected via an interprocess
communication layer to a central server. Each server enacts one process, in which all its clients
participate; an arbitrary number of workflows within that process may be in progress simultane-

49

ously, one or more per client. Every client maintains its own objectbase “image” for browsing,
which includes composite and reference attributes without primitive attributes and files, which are
transferred only as needed — so the “image” is relatively small.

In contrast, an Oz environment consists of one or more servers (termed “sites”), each with its
own process model, data schema, objectbase and tools. Clients are always connected to their one
“local” server (usually on the same local area network sharing a network file system), and may also
open and close connections on user command to “remote” servers (which may, but need not, reside
in other Internet domains with no shared file system). Oz servers communicate among themselves
to establish Treaties — agreed-upon shared subprocesses automatically added on to each affected
local process, and to coordinate Summits — enactment of Treaty-defined workflows that involve
data and/or local clients from multiple sites. We stretch the International Alliance metaphor a bit,
since Treaties among sites precede and specify Summits rather than vice versa.

3.3 First Try: OzMarvel

OzMarvel was our first component-oriented process. We used it to assist us in pulling subsystems
out of MARVEL to rewrite them into components, and at the same time implement Oz by direct
extensions to MARVEL — thus the name OzMarvel (our document processing environment was
named DocMarvel, etc.). The main components envisioned were the process engine, the transaction
manager, and the object management system. The long-term plan was to eventually reconstitute
Oz from these components (the final phase, replacement of the process engine, is now in progress
using EmeraldCity), after performing a set of experiments concerned with integrating some of our
components into externally developed systems (notably Cap Gemini’s ProcessWEAVER process-
centered environment framework [67] and University of Wisconsin’s Exodus database management
system [38]) and replacing portions of Oz with externally developed components (notably the object
management system from GIE Emeraude’s PCTE industry-standard environment framework [221]);
these experiments are discussed in [105, 183, 107, 147].

The OzMarvel data schema structures the objectbase into two main parts. One part consists
of a set of teams, each consisting in turn of a group of private programmer workspaces. We used
only two teams, representing current and past project members, respectively, but the schema allows
for an arbitrary number. A workspace contains a set of C source and header files reserved by that
user, locally generated object code and executables, and references to libraries in a shared repository
needed to compile and build local executables. There are also means for testing with executables
from other private workspaces (e.g., one user might be working on a new client while another works
on a new server that must be tested together due to a change in the client/server protocol).

The other part of the objectbase consists of a set of projects, each representing a shared code
repository. We had three, representing the baseline versions of Oz and its main Oz components,
work progressing independently of Oz, and a frozen copy of all code delivered to a funding agency.
The first two projects are collectively referred to as the “Master Area”. Each project consists of a set
of what the schema calls systems, a component pool, a module pool, and a pool of external libraries.
Each system consists of a set of subsystems, each in turn corresponding to a distinct executable
(a distributed system may involve multiple cooperating executable programs). For example, at the
time we migrated the Oz code out of OzMarvel it had 19 subsystems: three variants of the server,
four kinds of client, three translators for different Oz notations, the schema/process evolution tool,
the daemon for automatically bringing up the server when a client starts up, and several utilities
for managing an environment instance.

Libraries represent object code archives (i.e., Unix “.a” files) that may be linked into subsys-
tems or components, together with their header files needed for compilation of importing code. For
instance, OzMarvel had external libraries for gdbm (used as the backend of Oz’s native object man-
agement system), for the PCTE object management system (which replaced gdbm in the two variant
Oz servers), and for the socks secure TCP/IP sockets package (for authorized tunneling through
corporate “firewalls”), along with motif, xview, termcap, etc. libraries imported by particular

50

Oz clients.

Each subsystem referenced the several contert-free components and external libraries (in the com-
ponent and library pools, respectively) from which it was constructed, plus special-purpose modules
for “glueing” those components and libraries together to construct the specific subsystem. The
components in turn referenced the contezt-free modules (in the module pool) from which they were
composed, and also contained local “glue” files for tailoring its modules to provide the functionality
needed for that component. Each module (which could be and often was decomposed into a hierar-
chy of submodules) contained attributes representing its source files, object code archive, and public
(to using modules) and private (for use only within the module) header files, as well as references
to other header files needed for compilation. We emphasize context-free here, meaning that the
components, modules, etc. were not supposed to make any assumptions about the systems and
subsystems in which they were to be used and, at least in principle, were amenable to “plug-n-play”.

Over its lifetime, OzMarvel was actively used by 14 people (not all at the same time). Although
the basic philosophy and design remained the same, OzMarvel was modified several times to fix
bugs in the process and to improve multi-user support; see [25] for a brief discussion of the schema
and process evolution utility, called Evolver, used by MARVEL and Oz to upgrade the state of an
in-progress process to match the semantic constraints of a new process model. The final process
evolution left OzMarvel with 139 rules (only 26 task names appeared in the user menu, due in part to
overloading — for instance, the edit command applies to many different kinds of objects — and
in part to the marking of 75 rules in the process model as for internal propagation purposes only); 48
classes (13 of them virtual superclasses, such as VERSIONABLE, which would never be instantiated);
and 37 tool envelopes.

Unfortunately, OzMarvel’s multi-level structure proved much too complicated, evidenced by the
relatively large proportion of propagation rules needed. For example, OzMarvel’s rules to automate
maintenance of each source file object’s set of references to the objects representing each of the
directly or transitively included header files were particularly intricate (and buggy). A header file
might include other header files with arbitrary recursion depth, and propagation rules were triggered
whenever the source file or one of the header files was edited in a way that affected header file
inclusion. Some of these references were different for each component/subsystem context in which
the source file was used, since the same component might provide a different interface to different
subsystems.

Further, multiple modules performed the same function with intentionally the same interface,
i.e., there were at least two each of the major modules of the process engine, transaction manager
and object management system in the module pool, corresponding to the original native modules in
Oz vs. our new components. Thus the tools we had used for code cross-referencing in the earlier
CMarvel environment, standard Unix etags and our home-grown revtags, which assume a flat
name space, did not operate properly in OzMarvel. Renaming solved this problem, e.g., component-
name_subroutine-name, but made it difficult to plug-replace one component with another since code
had to be edited (or preprocessed) for each subsystem context.

3.4 Second Try: EmeraldCity

EmeraldCity is really a set of several processes that work together, following Oz’s International
Alliance metaphor, rather than a single process like OzMarvel. EmeraldCity consists of two shared
sites and an arbitrary number of workspace sites (16 at present, the number varies as students join
and leave the project — or clone their workspace to perform relatively independent development in
each one). Each EmeraldCity workspace has its own objectbase and process, whereas all OzMarvel
workspaces necessarily are part of the same objectbase and share the same process. Thus moving
to EmeraldCity gains advantages in performance (transfer of smaller objectbase images) and fault-
tolerance (no central point of failure). EmeraldCity workspaces can be (and have been) shared by
multiple users, but usually they are personal. One of the shared sites corresponds to the “Master
Area” in OzMarvel, whereas the other “Assembly Area” is used only while a major re-engineering

51

rEI 0z 1.1.1: kaliser B westend.cs.columbia.edu
—
Local Server: oz_master Current Object: /n/americas/proj/oz/EmeraldCity/o2_master/hfs/1
(Session v) (Rules v) (Construct v) (local v) (Query v) (Print v) (Misc v)
Left: Print information for Object
Right: Change Current Object
iR e 8
<]
2\:‘.\ el g g
SN
\""- S
amD] [r-‘
Figure 3.1: Hierarchical Master Area Display
'E! 0z 1.1.,1: kaiser P westend.cs.columbia,edu
Local Server: oz_master Current Object: (1] 2/EmeraldCity/pds/hfs/896-927/3108#910#Top

(Session v} (Rules v) (Construct v) (Local v) (Query v) (Print v) (Miscv)

Left: Print Information for Object
Right: Change Current Object

d bz_darkover_incs

3 jstatistics: B 1ib_oz_darkover—
ich SEE 51 pern_incs:
ject_studants 3 ty X "
boview :
bsystens —
bz_proto 1ib_pern————
cormon_incs:
fig. X1l
config.motif
onfig,signal

config.xview sre—————-
local
interface .
bin K 1ib_gp——
bz_proto -
g _wain,c N e
local ; i ared————
-\ interface bstrategy————j
bin Aty——————j
Whoz_proto
J - X ache_mgr .C ' 1ib_core_rp- ﬂ,__,
4 »

Figure 3.2: Horizontal Master Area and Workspace Display

52

@] 0z 1.1.1: kaigser @ westend.psl.cs.columbia.edu]

Local Server: heineman Current Object: /n/americas/proj/oz/E meratdCity/heineman/hfs/89

(Session v) (Rules v) (‘Construct v) (local v} (Query w) (Print v) (Misc v)

Left: Print Information for Object
Right: Change Current Object

" #ineman ‘z_nasw ’ro]cct_xtudents T

i

s, List.h control htx_mgr,h HashtableRhnge.h mediator .hx_mge,h Hashtablechntrol hsuncs.h rif

vie

Ul I}

Figure 3.3: Workspace Display

effort is in progress. Figure 3.1 shows the (not terribly readable) hierarchical view from the “Master
Area” site (oz_master), showing only the local objectbase. Figure 3.2 shows a (somewhat more
readable) horizontal view from that site, with an open connection to the pds site (Peter Skopp’s
workspace).

Over the summer 1995 we converted Oz from its native pointer-based object management system
to using a OID-based object-oriented database component, Darkover [144]. An OID (or object
identifier) is a unique identifier represented as an integer. The native transaction manager had
already been replaced with a component [105], a much simpler effort performed using OzMarvel,
and work on the new process engine component was still progressing independently.

Source and header file objects slated for re-engineering were checked out of the Master Area into
a workspace (via a Summit) for changes, and then checked into either the Assembly Area (another
Summit). Conversion efforts in relevant workspaces ranged from using home-grown tools that semi-
automated the lexical aspects of interface changes by matching code patterns that should be replaced
with calls to Darkover’s application programming interface; to recoding individual subroutines to
traverse OID arrays rather than linked lists pointing to child objects; to module redesign, e.g., of
02z’s cache manager for remote objects, which involved modifying Darkover to support transient
objects — which probably would not have been possible had we been integrating with a foreign
object management component.

The Assembly Area process allowed only completely converted code to be checked in. However,
other code could still be checked into the Master Area, permitting unrelated development of portions
of the system. This was very useful since not all of the developers were involved in the re-engineering
effort, but had other pressing work to do that we wished to disrupt as little as possible. Figure 3.3
shows the hierarchical view from the heineman site, which allows opening of only the “Master Area”
and “Assembly Area” (called proj_students for obscure historical reasons).

Subsystem builds in each re-engineering workspace looked for non-local object code first in the

53

Assembly Area and, only if not found there, in the Master Area; other workspaces were unaware
of the Assembly Area. Treaties between OZ sites are set up on a pairwise basis that is neither
symmetric nor transitive, so the connection graph need not be complete, although Summits can
involve any number of sites that have agreed to the same Treaty. Our goal was to always be able
to perform recompilation and build throughout the three months or so while the 150k affected lines
(out of about 280k) were converted; this incremental approach would not have been possible without
the binary compatibility of the old and new interfaces, due to C’s allowance of type casting between
integers and pointers. After the re-engineering effort was over, the entire code base was copied from
the Assembly Area to the Master Area.

We have also been incrementally re-engineering our previously Kernighan and Ritchie C code base
to ANSI-standard, the main focus of a previous paper [103]. Although we settled on a mechanism
somewhat more complicated than what was presented there, the effort has proved considerably
simpler than the object management system replacement. After an initial flurry to convert the
Master Area baseline, the work has proceeded more gradually: any C code (from OzMarvel or
elsewhere) may be immigrated into an EmeraldCity workspace using a utility [213]. There it is
converted using a combination of the Gnu protoize tool, extensions to the envelopes of other tools,
and manual changes to header files to preserve the conventions discussed below. The Master Area
enforces that only ANSI-compliant code can be deposited (i.e., the ANSI C compiler using the
strictest options generates no error or warning messages).

EmeraldCity restricts the contents of header files to avoid transitive dependencies, simplifies
OzMarvel’s notion of pools, and distinguishes context-free from context-sensitive representations
of components. A project is composed only of a set of systems, a single prototype header file
(oz-proto.h) included by all other header files in the project, a set of header files containing type
definitions (but no prototypes) that may be used throughout the project, and a “program unit”
pool. A prototype is essentially a forward declaration of a C function signature, as it must be
used in source files whose object code will link with that function’s code; prototypes are a required
feature of ANSI C. oz-proto.h is automatically constructed by concatenating the contents of the
proto.h header file associated with every library, which are in turn constructed automatically by
too! envelopes as files are edited and compiled and libraries archived. Sections of oz-proto.h are
guarded with preprocessor variables, so that only the relevant subset of the prototypes are used
during compilation and there are no naming conflicts.

An EmeraldCity system consists of only a set of subsystems, as illustrated in Figure 3.4. A
subsystem consists of a set of context-specific components, an executable, an archive for “glue”
code between the components, and the source and object code for the “main” file (required by C
convention for every executable). Each context-sensitive component contains source files for “glue”
code, a reference to the single library representing the entire component, and a hierarchy of sub-
components. These components are not reused in multiple subsystems — thus the designation
context-sensitive.

In contrast, an EmeraldCity program unit is analogous to a context-free component in OzMarvel:
it consists of a set of modules, a set of libraries, a set of local header files, and a set of references
to header files in other program units. Each module contains its source files, and references the one
archive holding its object code and the appropriate header files from its program unit; the modules
assume the context of their program unit, but not of a subsystem component. Each workspace
consists of a set of “local projects”, which organize checked out files according to subsystem contexts
and replicate relevant header files.

This new organization solved the naming difficulties that permeated OzMarvel. The files scanned
by cross-referencing tools, etags and revtags, are always encapsulated in the appropriate context.
We recently added a home-grown tool, called Hi-C, to generate HTML (HyperText Markup Lan-
guage) to enable EmeraldCity users to view code and follow automatically generated hypertext links
using World Wide Web browsers.

EmeraldCity has been actively used by about 15 people (not all at the same time). The Master
Area site consists of 78 rules (26 distinct names visible in the task menu, coincidentally 26 rules for
internal propagation), 27 classes (6 of them virtual), and 32 tool envelopes. 21 of these rules are

54

[¢ 0z 1,1,1; kaiser B westend,cs.columbia.edu =] |

Local Server: oz_master Current Object: /n/americas/proj/oz/EmeraldCity/o2_master/hfs/1 ‘

(Session v) (Rules ¢) (Construct v) (local v) (Query v) (Print v) (Misc v)

Left: Print information for Object
Right: Change Current Object

_main.c ‘
_dark_main,c
ambe _:wda—_..lm —/:-lei.c [a]
e —flaber_sen 1_shared jl
 rlover =
L parst

over: in,c

" 'leWWer_mlw—Mwer_loh
W_IOMMW_IW—\M %.c

D\)ﬂ‘—\
Harkover_shell —————_gg/ 1 jorkover_shell \\\:p—\
Y _\;Jrk_uin.c

o T Wl oader o over ——-= |
h _mtif——a_.”uf _shell_main.c

b2 _—H“h

bz _| e_envelope.c

bz_: S |

—main.c

"_—’“%-de
T kstat: 1 _shared——mm—"]
——fikranslator l_shared————/
N 1_shared—]
1_shared———"]
i [em}]

0fel]2} {

Figure 3.4: Zoom Into Systems Hierarchy in Master Area

exported via Treaties to workspaces for use in checkin/checkout, local build, etc. Workspaces are
virtually identical to each other, although they need not be, with the main customization in the
past being whether or not they formed Treaties (which have now been revoked) with the Assembly
Area. A typical workspace has 68 rules (24 task names, 19 propagation), the identical 27 classes as
the Master Area (this is not a requirement of Oz: different sites may have different schemas, with
compatible subschemas needed only to match any Treaty subprocesses), and (coincidentally) 27
envelopes. The Assembly Area is the same as a Workspace, except for three special rules that were
used in the Darkover conversion and two rules exported for the (now-revoked) three-way Treaties
with a re-engineering workspace and the Master Area. One of the former three rules is shown in
Figure 3.5 and one of the latter two in Figure 3.6, both in the appendix; the other rules are similar.

3.5 Conclusions

We originally imagined we would construct EmeraldCity by evolving OzMarvel, but that proved
too complicated, so we designed the new process from scratch (although portions of OzMarvel’s
data model were retained). Between launching of OzMarvel and completion of immigration into
EmeraldCity our code base nearly doubled from 155k to 280k lines; this does not include any
external libraries or systems, e.g., for X Windows or used in our integration experiments. After that
we consolidated and replaced code, with relatively little growth in the Master Area. ! While neither
MARVEL nor Oz are production-quality in the commercial sense, we have been using the technology
on a daily basis for over five years and have licensed the technology to about 45 institutions.

Our reconstruction of Oz from components and experiments integrating components with/from

1Until we started developing OzWeb, an extension of Oz that operates on World Wide Web entities, discussed
elsewhere [122].

35

commercial systems necessitated our development and use of two generations of component-oriented
process models running on two generations of process modeling and workflow automation systems.
Our processes focused on the nitty-gritty but mandatory details of code understanding and config-
uration management, and ignore upstream aspects of the lifecycle (which were performed off-line).
Although some of the problems encountered in OzMarvel were due to peculiarities of C, we'd expect
to run into analogous difficulties using most programming languages — given that few were de-
signed with “plug-n-play” componentry in mind. Oz’s support for process interoperability (Treaty
and Summit) proved an immense boon to component-based software engineering of our process-
centered environment framework and we expect would apply similarly to other legacy systems. The
incremental nature of the component-based processes, and the corresponding support from our pro-
cess/workflow technology, were critical in being able to perform re-structuring and re-engineering
without significantly interfering with “new” development work affecting the same code.

56

rule signature
convert_CLASS [?c:COMPILABLE, ?cf:PROTOTYPE]:

bindings of local variables to results of objectbase queries
(and (exists LOCAL_PROJECT ?1p suchthat no_chain (ancestor [?1p ?c]))
Use local version of prototype file

(forall PROTOTYPE ?LPT suchthat no_chain (member [?1p.proto 7LPT]))
Local HFILEs

(forall INC 71i suchthat no_chain (member [?1lp.inc 71i]))

Installed Interface (from set_subsystem[] rule)

(forall INC ?ii suchthat no_chain (member [?1lp.interface 7ii])))

condition
If the C file has not yet been compiled, this rule can fire.
The compilation changes the status of the CFILE to Compiled on success.
(and no_forward (7ii.recompile_mod = false)
no_chain (7cf.Name = "CLASS_PTR")
no_forward (7li.recompile_mod = false))

activity ,
CONVERSION_TOOLS converter 7c.contents 7c.compile_log 7c.object_code
?c.proto 7li.directory 7ii.directory ?LPT.contents
"-DMOVING_CLASS -Wall" ?71p.sys_includes
?1p.compiler_directives 7cf.contents

success and failure effects
(and (?c.compile_status = Compiled)

no_chain (?c.object_time_stamp = CurrentTime));
(?c.compile_status = ErrorCompiled);

Figure 3.5: Darkover Conversion Process Task

57

Build with master Main file (in SUBSYSTEM or SYSTEM.common_main)
rule signature
build[?1p:LOCAL_PROJECT, 7p:PROJECT, ?mp:LOCAL_PROJECT]:
bindings of local variables to results of objectbase queries
(and (exists SUBSYSTEM 7s suchthat (and no_chain (ancestor [?p ?s])
no_chain (?s.Name = ?lp.subsystem)))
(exists BIN 71b suchthat no_chain (member [?lp.bin 71b]))
(forall COMPILABLE ?C suchthat
(or no_chain (member [?lp.files 7C])
no_chain (member [7mp.files ?7C])))
verify that there is no local Main file
(forall CFILE ?71lm suchthat
(or (and no_chain (linkto [?1lp.main 7?1m])
no_chain (ancestor [?1p ?1m]))
(and no_chain (linkto [?mp.main ?1m])
no_chain (ancestor [Tmp ?71m]))))
get master main file
(forall CFILE ?main suchthat
(and no_chain (linkto {?s.main ?main])
no_chain (ancestor [?s 7mainl))))

condition

(and no_chain (?1lm.Name = "") # Not-Exists condition
no_forward (7C.compile_status = Compiled)
no_chain (?main.compile_status = Compiled))

activity

Use main object code with the SUBSYSTEM.object

COMBINE_TOOLS build_local ?1b.executable ?1lp.build_log
?s.libraries ?s.build_order
?s.med_libraries
?s.object_code 7C.object_code

success and failure effects

(?1b.build_status = Built);
(?1b.build_status = NotBuilt);

Figure 3.6: Treaty Process Steps for 3-site Builds

58

Chapter 4

Integrating a Standard OMS

Abstract

The integration of a legacy system and a standard Object Management System (OMS) is often a
very challenging task. This chapter details a case study, our experiment interfacing between Oz and
a PCTE (Portable Common Tool Environment) Object Management System. Oz is a multi-user
process-centered software development environment that has been under development in our lab
since 1987, originally under the name Marvel. PCTE is a specification that defines a language-
independent interface providing support mechanisms for software engineering environments (SEE).
One of the premises of PCTE is that, in theory, an SEE such as Oz can be built (or extended) using
the services provided by PCTE. The purpose of our experiment was to study how a legacy system
such as Oz can be integrated into a new environment framework, e.g., PCTE. The architecture of
the legacy system and the services of the framework are the key factors in the integration approach.
Because Oz historically has included a native OMS, our experiment focused on modifying Oz to
use the PCTE OMS, which has an open and standard API This chapter describes how several Oz
components were changed to interface to the PCTE OMS. The resulting proof-of-concept hybrid
system has process control and integration services provided by Oz, and data integration services
provided in part by PCTE. We discuss in depth the solutions to the concurrency control problems
that arise in such an environment, where Oz and PCTE use different approaches to transaction
management (i.e., each has its own transaction manager). The PCTE implementation used in our
experiment was the Emeraude PCTE V 12.5.1, and the Oz version was V 1.0.1.

59

4.1 Introduction

The goal of a software development environment (SDE) is to provide support for software engineering
activities such as system design, implementation (coding), testing and documenting. Support is
more effective if the environment is integrated — if all its components function as a single, consistent,
coherent and integral unit [223]. There are several key aspects of integration: tool, data and process.
Tool integration provides a development tool set and an invocation mechanism to control its use
within an environment. Data integration normally is based on an object mcdel of software artifacts:
it uses object management technologies to handle the repository, duplication, sharing and consistency
of the artifacts. Process integration normally uses a software process model to explicitly represent
the software development activities and the workflow among activities; it guides and coordinates
development activities and integrates tools and data in the environment. Process integration is at
a higher level than tool and data integration [161]. In fact, the invocation order of tools to perform
routine development tasks, e.g., compiler (to compile) then linker (to link), in an environment
implicitly defines the conditions and orders of tools. Similarly, the production and consumption
of software artifacts normally has a partial order during a software life cycle, e.g., executables are
produced before being used in test runs. It is very clear that a process, manual or automated,
is required to insure the proper order for tool invocation and software artifacts production and
consumption. Therefore an important goal of many integrated software engineering environments is
support for the definition, enforcement and automation of a software process.

PCTE is a specification of an environment framework which provides support for environment
builders to write, assemble and customize integrated software development environments. A number
of systems, for example, the Object-Oriented Tool Integration Services (OOTIS) [94] from IBM and
the PCTE Workbench [68] from Vista Technologies, have been successfully built on top of PCTE.
An SDE that has built-in support for process integration is called a process-centered environment
(PCE). Oz is a process-centered, multi-user and multi-server environment. It (with its predecessor,
Marvel) is one of the oldest PCEs still in existence. Regarding PCTE as a good example of a
standard framework and Oz as an example of a legacy PCE (SDE), the main goal of our experiment
was to make a transition from Oz to the PCTE framework. Ultimately, we wanted Oz to conform
to the PCTE standard and be able to integrate with other software tools in a PCTE environment.
We believe that such an experiment is valuable because:

First, we can test the capabilities of the PCTE framework in facilitating the migration of legacy
SDEs. We feel that it is very important for a standard framework, such as PCTE, to be able to
support legacy systems, such as Oz, because while adapting to a new standard the investments
in the existing SDEs should be preserved. The architecture of a legacy system and the types of
standard services and their APIs provided by the framework, are the key factors in determining
the approaches to the transition. Oz [21] has several major components: the Process Engine, the
Transaction Manager, the Object Management System, and the Activity Manager. They were loosely
coupled through the access functions of each component. In particular, since the services provided
by the Object Management System are conventional object storage and manipulation operations,
we felt that we should be able to replace this component with another objectbase without much
changes to other Oz components. The PCTE OMS is open and standard, its services and the API
address many data integration problems. Thus, a natural pathway in moving Oz to PCTE is for Oz
to use the data integration services provided by PCTE, in other words, for Oz to interface with the
PCTE OMS.

Second, we can also study whether it is feasible for a standard framework and a legacy SDE
to complement each other in providing support for integration. A commonly recognized limitation
of PCTE is the lack for the sort of high-level control integration capabilities (it only has low-level
controls similar to the basic Unix mechanisms) on which much of process integration support is
built [152]. It is typically the case that given any single framework there is strong support for some
forms of integration but only weak support for other forms. Thus to remedy weak support for a
certain form of integration, it is often necessary to add additional support - in our case from another
environment (or framework). Since Oz has strong support for process integration, we wanted to

60

determine whether Oz can provide process integration support in a PCTE environment.

The challenge of moving a legacy SDE into a standard framework (vs. developing a new SDE
using the framework) lies in the potentially substantial changes required in the SDE (since we can
not assume that the standard framework can be changed to suit the legacy system - in fact, this
would defeat the purpose of the “standard”). The exercise of making the changes can reveal the
adaptability of the legacy SDE as well as the limitations of the framework. As a major side effect, our
experiment tested the functionalities of the PCTE OMS and the ease of replacing an Oz component,
its native OMS, with an outside component, the PCTE OMS.

In a truly componentized system, the OMS component can be replaced by another objectbase
management system without changing the internals of other components, since ideally the OMS
provides an API from which other components access the objectbase. Thus ideally only a translation
layer that maps the Oz OMS API to the PCTE OMS API would need to be implemented for Oz
to use the PCTE OMS. However, the implementation of Oz had incorporated a large amount of
legacy code from Marvel, the predecessor of Oz. As a result, the native OMS had a weak and
incomplete API and other modules made fixed syntactic format (e.g., using pointer operations to
access objects) and semantic assumptions (e.g., files are stored in the host file system rather than as
first class objects in the objectbase) on the underlying data model and data manipulation primitives.
Since the PCTE OMS is different from the Oz native OMS in both the data model and the set of
primitives, we needed to deal with these fixed syntactic and semantic assumptions. We made changes
mainly to two sets of Oz functions in our experiment. The first set of functions was the object storage
and retrieval functions, which were changed to use the PCTE OMS API [64]. We tried to preserve
the internal (run-time) format of Oz objects by reading PCTE objects into the Oz data structures
so that code that used the fixed syntax (e.g., pointers) did not need to be changed. The second
set of functions was the concurrency control functions, which were expanded to incorporate PCTE
activities [84] (sequences of object operations) into Oz transactions.

This chapter is organized as follows: Section 4.2 describes briefly the services provided by PCTE,
with the PCTE OMS covered in detail. Section 4.3 provides an overview of the functionalities of Oz
components. Section 4.4 compares the Oz OMS model and the PCTE OMS model, and discusses
how to define an Oz data model using the PCTE OMS. Section 4.5 describes the implementation of
the Oz interface to the PCTE OMS. This interface consists of object operations implemented using
the PCTE OMS primitives. Section 4.6 examines the concurrency control problems that arise when
the PCTE OMS is in use. Two different solutions are discussed in detail. Section 4.7 describes an
example Oz environment that uses the PCTE OMS as the data repository. Section 4.8 compares
our experiment to other related work. Section 4.9 concludes this chapter with a summary of our
experience and a discussion of possible future work.

4.2 PCTE Overview

PCTE, for Portable Common Tool Environment, is a framework for CASE tool integration. Tool
integration not only means that all of the tools exhibit some measure of uniformity, but also that
they should be able to share the same data and communicate with each other. The commonly
accepted solution for the development of environments that facilitate CASE tool integration is to
use an Open Software Integration Platform, known as an Environment Framework. PCTE is a widely
supported framework based on the Reference Model for Software Engineering Frameworks developed
by ECMA and NIST [168]. This model suggests that a framework should support at least three main
sets of services, namely, User Interface Services, Communications Services and Object Management
Services, which correspond to these three dimensions of tool integration: presentation, control, and
data. The fourth important set of services of the framework, the Process Management Services, is
to support the development of an environment enforcing a particular software development process.
Note that a process should not be “built-into” a software development environment. Instead, the
environment should provide facilities for users to define and tailor a particular process suitable for
the particular software development policies and activities.

61

N

For presentation integration, PCTE supports Motif-compliant tools. In the area of data integra-
tion, PCTE provides a single, common data repository, open to all components of the environment.
This data repository provides all the basic services necessary in an Object Management System (as
described in the ECMA/NIST Reference Model) for a high level of data integration between tools.
For control integration, PCTE provides message and notification facilities.

The Emeraude PCTE environment is a distributed SDE. It typically consists of a network of
hosts, which are workstations that allow users to access the Emeraude PCTE environment. It
provides an operating system-like environment where users can log into the PCTE shell and execute
PCTE commands (e.g., objectbase navigation commands) or invoke integrated tools. It also provides
APIs (in various programming language bindings) that implement the PCTE specifications. These
APIs enable developers to implement or re-engineer software tools to integrate them into the PCTE
environment.

4.2.1 The PCTE OMS Model

The main focus of our case study is on the OMS services provided by PCTE. These services include
data typing and data storage along with concurrency control. This subsection briefly explains the
key concepts and features of the PCTE OMS model.

The OMS model defines the static information about the data stored in the objectbase, which
is the repository of all persistent PCTE data (both the product and control data of an SDE). The
objectbase is managed by the PCTE OMS, and (in the Emeraude PCTE environment) is distributed
over the environment on a number of logical volumes (partitions of of the objectbase) corresponding
to the physical distribution of storage devices over the network. A volume is mounted on a Unix file
system or a device of a particular host so that the data held in the volume is available transparently
throughout the environment.

4.2.1.1 Object Model

The objectbase represents discrete items of data as typed objects connected in a logical network by
typed links (and relationships). Objects and links have typed attributes.

Objects represent the basic entities upon which operations are to be performed, and one object
exists for every distinct entity that is to be operated on by a tool. Examples of objects are text files,
documents, source and compiled modules.

Links represent relations between objects. A link is directional, emanating from one source
object to the other destination object; it is always paired with a reverse link going in the opposite
direction, either as part of a relationship (paired mutually dependent links) or created automat-
ically as a system reverse link. An example is a link writes from object user to object document,
representing the fact that document is created by user. The link in this example is called a refer-
ence link, which models dependencies between objects. Another type of link is the composition
link, which models composite objects. A composition link is automatically created by PCTE when
an object is created. It links an existing object (the parent object) to the newly created object (the
child object). An example is the composition link contains from object book to chapter_1. A link
also has a cardinality, either one or many. This defines whether more than one link of this link
type can start from the same source object.

Direct reference to a particular object or link in the objectbase is through navigation. A pathname
that walks the composition hierarchy top-down can be used to access an object or a link. For
example, assuming book is a top-level object, then the pathname to access object chapter_1 of book
is book /chapter_1. Which objects and links can be seen and created at any given time depends on
the working schema of the currently running PCTE process (on behalf of a tool). A working
schema contains all the type information needed by the tools being executed. The use of working
schema allows different views of the objectbase to be presented to different tools so that only the
appropriate types are visible to a particular tool.

62

4.2.2 Communicating with the PCTE OMS

Tools communicate with the OMS through a number of tool interfaces provided by PCTE. These
interfaces include the C language interface, which is a set of C libraries that can be linked with
the object code of tools programmed in C; and the PCTE shell interface, which allows users to
communicate with the OMS directly through a set of OMS commands.

Tools that are integrated into or developed within a PCTE environment are stored in the PCTE
objectbase as objects (of type Sctz) and their executions (at run-time) are managed as PCTE
“client” processes. These processes are not stored objects because they are purely dynamic. PCTE
provides facilities that are similar to Unix to manage the start, stop, suspension, communication
and synchronization of PCTE processes [221]. On the other hand, Unix tools that are interfaced to
a PCTE environment need to be linked with the PCTE Unix libraries, and their executions (which
are standard Unix processes) are “alien” processes to PCTE. In our case study, we modified Oz and
linked it with the PCTE libraries instead of integrating it into PCTE.

4.3 Oz Overview

Oz is a process-centered software development environment that supports cooperation among en-
gineers who follow a project-specific software development process (workflow) [21]. It facilitates
both data sharing and process coordination. The architecture of an Oz environment is based on
the client/server model. An Oz server manages the objectbase that stores both product and control
data of a software development project. It also automates and enforces the project-specific process.
An Oz server can support multiple Oz clients sharing the same process and accessing the same
objectbase. A user interfaces directly with an Oz client, which in turn communicates with an Oz
server. An Oz client provides a user interface from which a user can view the objectbase hierarchy,
query the objectbase, and can perform development tasks (process steps), e.g., edit, compile, and
build. In general, a task (process step) execution cycle in Oz is the following:

e The Oz client sends a task execution request (from the user) to the Oz server.

e The Oz Server checks the prerequisites of the task according to the process definition, and
sends the necessary data (e.g., a C file object) back to the client to perform the task. In case
that the prerequisites are not satisfied, Oz server may invoke other process steps whose results
may satisfy the prerequisites of the current process step.

e The Oz client then invokes the appropriate tool (e.g., an editor) on the product data.

e After the user finishes the task (exits the tool), the Oz client sends back the data (e.g., a
changed C file object) to the Oz server.

o The Oz server propagates appropriate changes to the objectbase, and according to the process
definition, may invoke other process steps if their prerequisites are now satisfied because of the
changes made by the current process step.

4.3.1 Major Oz Components

As stated earlier, the architecture of Oz is one of the most important factors in our approach of
moving Oz to PCTE. We now briefly describes the major components of the Oz:

The Process Engine. Tasks are the key elements of a process definition. Each task definition
consists of a name; a list of typed parameters; a condition consisting of bindings of local variables
and a complex property clause that must hold on the actual parameters (instances of control and
product data) and bound variables for the task to take place; an optional (physical) activity that
specifies a tool envelope (see Section 4.3.3) and its arguments; and a set of mutually exclusive effects,
each consisting of assertions to the objectbase that reflect one of the possible results of executing
the activity. Tasks are implicitly related to each other through matches between a predicate in

63

the condition of one task and an assertion in the effect of another task. Process enactment is
done through the dynamic construction of task segment. Backward chaining of a sequence of tasks
is attempted to satisfy the condition of a task. Forward chaining through “atomicity chains” is
performed to propagate data changes to preserve the atomic nature of a transaction. Forward
chaining through “automation chains” is for the purpose of automating sequences of activities, not
necessary atomically.

The Transaction Manager is a separate component called Pern [102], which interfaces to the
rest of Oz (or another environment framework) through application-specific mediator code. Because
multiple clients can access the same objectbase, conflicts may arise among user activities and concur-
rency control is thus in order. Oz follows the approach of associating tasks with transactions. A task
segment consists of all tasks executed during backward chaining, followed by the user-invoked task
(which caused the backward chain), followed by all tasks executed during forward chaining. Pern
supports a nested transaction model in which a task segment corresponds to a series of top-level
transactions. Each atomicity chain is a subtransaction of the triggering transaction and each task
in an automation chain starts an independent top-level transaction.

The Object Management System (OMS). In an Oz environment, all data, both process control
data and product data, are stored in and managed by the OMS. The Oz OMS contains an Object
Manager, a Storage Manager, and a File Manager. The Object Manager implements the data
model, provides persistence, and performs all requests for access and modification of both control
and product data. It assumes an object-oriented data model, with a class inheritance lattice, an
object composition hierarchy and arbitrary relationships between objects in the same objectbase.
The Storage Manager is responsible for low-level disk and buffer management for control data.
Since Oz integrates file-based external tools and maintains its product data in ordinary files, the
File Manager is responsible for accessing files requested by other Oz components. Usually, the data
model of a process encapsulates the product data within control data and abstracts the file system
as objects by providing typing and relationship information. In this case, the File Manager is just a
mapping function between objects’ file attributes and their file contents. The Oz OMS also provides
an ad hoc query processor and a set of object manipulation functions.

4.3.2 Communicating with the Oz OMS

All the major Oz components need to communicate with the OMS. The Process Engine queries
the objectbase to obtain the actual parameters of a task and evaluates its condition. The task’s
activity accesses and modifies data in the objectbase. The Process Engine also modifies data in the
objectbase when it asserts an effect of a task. Pern locks objects accessed within a transaction and
directs the OMS to undo changes in the objectbase when a transaction is aborted.

At the time of this experiment, the Oz components were tightly coupled with the OMS. For
example, it was assumed that the whole objectbase is loaded into Oz buffers when the Oz server
is started and access (read) to objects is then done by directly addressing (using memory pointers)
into these buffers instead of function calls to the OMS interface. Object modification (updates) is
done by a set of OMS functions that handle both updating the in-memory buffer and the on-disk
persistent data. But these functions only work with an assumed data model where objects can have
file attributes, which are files stored in the hidden file system, and composite attributes, which
refer to one or more component objects.

4.3.3 Oz Tool Envelopes

A typical Oz process may utilize several external tools to carry out software development activities.
Oz provides one or more tool envelopes for each external tool so that the external tool can be used
as a “black box”. In our case study, we developed a special envelope to wrap around some PCTE
related object operations, see section 4.6.3. A tool envelope represents the implementation of an
activity and is executed by Oz client. Tool envelopes are written in SEL, an extended Unix shell
language [86]. SEL allows the tool integrator to write shell-like code to wrap around the call to the

64

tool. It also requires the explicit declaration of all object attributes, along with the corresponding
types, that are input or output variables of an envelope. This requirement hides the details of the
object data model from the envelope writer. SEL also handles multiple output (return) values so
that it can not only report the status of tool execution back to Oz, but also return the execution
results, which may be assigned to object attributes in a task’s effects. A tool envelope written in
SEL is translated using the Oz make_envelope utility into a standard Unix shell script (currently,
sh, csh or ksh). -

4.4 Implementation — Data Model Mapping

In an Oz and PCTE OMS hybrid system, Oz objects (all control and product data of an Oz envi-
ronment) are to be stored in the PCTE objectbase. Thus we need a general solution (not ad hoc
for each Oz environment) of using the PCTE object model to define the data schema used by an Oz
environment. Since an Oz data schema is defined according to the Oz object model, we need to first
compare the Oz object model and the PCTE object model, then devise a mapping between the two.

4.4.1 Comparison of Oz and PCTE OMS Models
4.4.1.1 Similarities

Since both the Oz object model and the PCTE object model are intended to be general-purpose,
there are many similarities between the two.

e Both Oz and PCTE support the concept of an object, that can be uniquely identified in the
objectbase — in Oz via the unique object identifier (OID) and in PCTE via the navigational
pathname to the object.

e Both associate a type (class) with an object. Both support a type hierarchy and inheritance.
However, PCTE only allows single inheritance while Oz supports multiple inheritance.

o Both have a pre-defined root in the type hierarchy — in Oz the ENTITY class; in PCTE the
object type.

¢ Both apply attributes to objects. In Oz, primitive attributes can be of string, integer, boolean,
date (time stamp), real, and user-defined enumerated types. In PCTE, only string, integer,
boolean, and date are allowed.

o Both use links to model binary relations between objects. Both have implicit reverse links to
facilitate objectbase navigation.

¢ Both support an object hierarchy through composite objects. The definition (and construction)
of the object hierarchy is identical. In Oz, an object can have composite attributes each of
which can be a component object or a set of component objects. In PCTE, a parent object
can have composition links to one or a set of component objects.

4.4.1.2 Differences

The main differences between the two object models are:

e In PCTE, type definitions (classes) are stored in the objectbase as first class objects; in Oz,
class definitions are stored separately from the objectbase in a file and loaded into the Oz
server at startup.

e In Oz, the name space of attributes and links is scoped within each class where the attributes
and links are defined and applied. In PCTE, all objects, links and attributes in a schema share
a single name space.

65

o Oz objects may have file attributes whose values are the pathnames of files in a “hidden” file
system (with directory hierarchy and file names not comprehensible outside of the Oz system).
It is therefore possible to associate an Oz object with one or many files. In PCTE, objects
that can have file contents are of type, or subtype, of the file object type predefined in the
PCTE OMS. A PCTE object can be associated with at most one file.

4.4.2 Using the PCTE Object Model to Define Oz Schemas |
The following are general guidelines for defining an Oz data schema in the PCTE OMS:

e Each link and attribute name in PCTE is prefixed with the object type (class) name. For
example, attribute title of class MANUAL is defined (named) as MANUAL__title (see Fig-
ure 4.2). This guarantees that links and attributes names are unique in a schema.

e Oz link attributes are modeled as relationships in PCTE and each composite attribute (for
component object) in Oz is mapped to a composition link.

e A file attribute for a file in Oz is mapped to a composition link to an object of type Oz_FILE,
which is a subtype of file in PCTE. For example, if an Oz (object) class cfile has a file
attribute named contents, then in PCTE, cfile will have a composition link Oz_FILE named
contents.

e 0z_.0ID and Oz_NAME are Oz system-attributes for all Oz objects in PCTE. Each Oz.0OID
has a unique value in an objectbase; it is added to facilitate Oz components in referencing
objects. Oz_NAME is needed mainly for the purpose of objectbase display in Oz clients.
02.0ID and Oz_NAME can therefore be regarded as the external identifiers of an object,
with the first used in the programming interface and the second used in the user interface.
The pathname of an object can then be regarded as the internal (navigational) identifier.

e An attribute of a user-defined enumerated type is mapped to an attribute of type string in
PCTE. While the default value can be set, the list of the possible valid (enumerated) values
is not stored. Therefore we omitted the validation of enumerated attributes for the sake of

simplicity.

We limited our case study to those Oz data models that do not use multiple inheritance in
their class hierarchies. Although one can always devise an algorithm that translates a multiple
inheritance class hierarchy into a single inheritance class hierarchy, it is neither the goal nor the
interest of this experiment to actually implement such an algorithm. We have found few significant
fixed assumptions about multiple inheritance in Oz components.

Suppose we have an Oz class definition as shown in figure 4.1, which defines the class MANU AL
as having base attributes title, re format and format_status, consisting a set of objects (submanuals)
of class SUBM ANU AL as its composite attributes (component objects), a file attribute (first_page),
and a link (first_sub) to an object of class SUBM ANUAL. Then the relevant information in the
PCTE schema definition file will be as shown in figure 4.2. Here, we can see that the expansion
factor (in terms of lines of definition) is about two because each attribute (base attribute, link,
component) has to be first defined individually, and then be referenced in the class definition.

4.5 Implementation — Interface to the PCTE OMS

Figure 4.3 depicts the simplified (run-time) system architecture of Oz interfacing with the PCTE
OMS. The arrows represent data flows. Here we see that Oz modules make direct reference to (read
from) the object buffers instead of always using the OMS API functions'. This means that Oz
components assume that the entire objectbase is loaded into memory when the Oz server is started.

Lthis is no longer the case in Oz Version 1.2.1

66

MANUAL :: superclass ENTITY
title : string;
reformat : boolean = false;
/* enumerated-type attribute */
format_status :

(Initialized, Working, Done) = Initialized;
/* composite attribute */
submanuals : set of SUBMANUAL;
first_page: text /* file attribute */
first_sub : link SUBMANUAL;

Figure 4.1: An Oz Class Definition

While this assumption could potentially be changed, we were mostly interested in investigating how
the process engine and transaction manager need to be changed when an external OMS is used.
We wanted to minimize our efforts while achieving our goals. Therefore we tolerated this fixed
assumption by loading the PCTE objectbase into the in-memory buffers in the Oz server. The Oz
read_objectbase function was rewritten to read the PCTE objectbase.

Once the objectbase is loaded into Oz buffers, objectbase navigation can be done in memory
using the existing Oz functions without changes. On the other hand, the effects of object update
operations are written immediately to the PCTE objectbase. This is done to facilitate data sharing
with other tools running in the PCTE environment. The PCTE-specific code (that implement the
updates) is isolated to a handful of low level functions because there is already some degree of
abstraction in Oz - the components do not have knowledge of how the objects are physically stored:
low level functions (in the Storage Manager) handle the details. The PCTE objectbase has effectively
replaced the storage manager.

4.5.1 OMS Primitives in PCTE

Before we go into the details of reading and updating the PCTE objectbase, we first briefly describe
the APIs of the PCTE OMS.

The PCTE OMS C language binding contains a rich set of OMS primitives, which are essential
for developing an access interface for an external system (such as the Oz server) to communicate
with the PCTE OMS:

e Data Definition Primitives: schema definition and browsing.
e Data Manipulation Primitives: object, link, and attribute manipulation.

¢ Establishing the Working Schema - establish a working schema consisting of a set of schema
definitions. Tools can access only the objects, links, and attributes defined in the working
schema.

4.5.2 Reading the Class and Object Hierarchy into the Oz Server

When the Oz server starts up, it first reads the class hierarchy of the data model in use and then
reads the whole objectbase. We now describe our re-implementation of these two functions.

Every Oz environment is associated with a file system directory, called the environment directory,
which contains environment-specific process definition files, tool envelope files, an objectbase file,
and a subdirectory containing the “hidden file system”, which stores the file attributes of objects.
The strategy file contains the class hierarchy in an internal format, which is loaded into the Oz
server when it starts. Thus Oz effectively employs a single (working) schema for each Oz server.

67

0Z_0ID : string;

0Z_NAME : string;

MANUAL__title : string;

MANUAL__reformat : boolean := false;

MANUAL__format_status : string
:= ‘‘Initialized’’;

/% 0Z_DID is the key attribute of this
* cardinality many link
*/

MANUAL__submanuals : composition link
(0Z_DID) to SUBMANUAL;

/* file attribute is mapped to a composition
* link to a file object
*/

MANUAL__first_page: composition link
to 0z_FILE;

/* link mapped to relationship */
relationship (

first_sub : reference link to SUBMANUAL;
first_sub_of : implicit link to MANUAL

)

‘ENTITY : subtype of object;
MANUAL : subtype of ENTITY;
0z_FILE: subtype of file;

extend ENTITY

with

attribute 0Z_0ID;
0Z_NAME;

end ENTITY;

extend 0z_FILE

with

attribute 0Z_0ID;
0Z_NAME;

end 0z_FILE;

extend MANUAL
with
attribute MANUAL__title;
MANUAL__reformat;
MANUAL__format_status;
link MANUAL__submanuals;
MANUAL__first_page;
end MANUAL;

Figure 4.2: Corresponding PCTE Schema Definition

68

Oz Server
PCTE Environment
| ocess . Tianeasin N
Co Engine) ‘-~ Manager -~ Jp— oA
P - i T ,' S I \\
/ N |- PCT wl \
! / : Ty OMS . N - tools \
i LOMS API - Nt PR N e) \
' /ﬂ*—— S LN \
’ 1 K ~S— o
1 . v) S L ~———_]
t i Object Butfers F———/f -~
i [IR
i

Figure 4.3: System Architecture of Oz Interfacing with PCTE OMS

In PCTE classes are instead first class objects that are actually stored in the objectbase, and type
definitions are visible within a specific working schema. We put the keyword PCTE, followed by
the names of the schema definitions that constitute the working schema, in the Oz strategy file.
This information is used by the Oz server to first set the working schema. Data definition browsing
primitives (of the PCTE OMS) are then used to get all the type definitions in the PCTE objectbase.
For each object type definition, its parent type definition is used to build the class hierarchy. Also
for each class, the definitions of its attributes of type integer, string, boolean or date are read. The
definitions of its composition links are mapped to Oz composite attributes definitions; the definitions
of its relationships are mapped to Oz link attributes definitions (recall from section 4.4.2 that we
use PCTE relationships to represent Oz links and PCTE composite links to represent Oz composite
attributes).

Reading the objectbase from PCTE is achieved through navigation starting from a set of top-level
objects. A list of absolute pathnames of PCTE top-level objects is thus the only needed contents
of the objectbase file in the Oz environment directory. To read the object hierarchy from these
top-level objects, depth first search (DFS) or bread first search (BFS) can be used.

We use a modified DFS in our implementation. The modification is the following: when an
object A is read, if A has a reference link (as part of a relationship) to object B, then B is read
(recursively using DFS) if B has not been read already. This is done to facilitate the set up of the
reference link and the reverse link between A and B. If we used the standard DFS, B would not be
read at this point since B is not a child (a component object) of A. The consequence would be that
the reference links of A can not be set up when A is being processed, thus a second pass would be
needed to set up the reference links between objects. It is thus clear that our modified DFS is more
efficient.

4.5.3 Oz Built-in Operations

There are a number of built-in object operations in Oz, namely add, delete, copy, move, link, unlink,
and rename. These operations first update the in-memory copy of the objectbase and then write
the updates to the persistence storage. The functions to update the objectbase had to be rewritten
using PCTE OMS primitives. These changes were in general very straightforward.

The exception was the move operation, which moves object from to object to so that to has an
exact copy of from as its child object and the original parent object of from no longer has it as a
child object. PCTE only provides primitives to move an object across physical storage volumes (in
PCTE, the objectbase can be partitioned into multiple volumes). Since we do not assume to and
from are in different physical volumes, the move operation has to be done in a number of steps.
In the first step, the whole from object hierarchy is copied and placed under to. The links are
not copied; instead, for each link, the object ids of the source object and the destination object,
along with the link name, are stored in a table called link_table, which has entries of the form
(from_id, to_id,link_name). For each object being copied in this step, ids of the original object

69

and the copied object are stored as (old_id, new_id) in table object_table. In the second step, the
original from object hierarchy is deleted. The links are also deleted as a result. In the third step,
object_table and link_table are used to create links. For example, a link recorded as (A4, B, 1) is now
created as link [from A’ to B if (A, A’} is found in object_table.

4.5.4 Accessing PCTE Objects in an Oz Task

As discussed in earlier sections, the Oz process engine needs to access objects during all phases
of process enactment, namely, bindings of task inputs, checking of prerequisites, execution of task
activity, and assertion of task effects. Since the Process Engine only calls the high level built-in
operations to modify the objectbase, there should not be any changes required after the built-in
functions have been changed to interface the PCTE OMS. However, in our experiment, we have
found some fixed semantic assumptions about how files are modeled, that are beyond the scope of
the built-in object operations and need to be dealt with separately.

In the Oz OMS, a file contained within an object is represented by one of its file attributes, while
in PCTE it is a component object of subtype file. When reading the class hierarchy and objectbase
from PCTE into Oz, file objects are treated the same as other component objects, i.e., they are
translated into Oz composite attributes of their parent objects. As a result, only the process engine
code that handles file attributes had to be changed to also consider composite attributes. The
attribute type definition, in this case class Oz _FILE, is used to determine whether the composite
attribute is a file object.

A more serious problem is when a task is applied to an object that has a file attribute in its
object type definition but has no such physical attribute in the object instance yet. In the Oz OMS,
the file attributes stored in the objectbase are just file paths to the host file system, which are known
and fixed once the object instance is created. In the original Oz implementation, when an object is
read into the Oz server (at server startup time) or when it is created in Oz, a file attribute pointer is
created for each of its file attributes, regardless of whether the file exists or not. This works because
the file path for a file attribute is already known even if the file is not physically created yet, so long
as the object instance exists. When a task activity that requires access to a file attribute is executed,
Oz just passes the file attribute (the file path) to the task; it then relies on the tool envelope (e.g.,
invocation of the editor on the file path) to create/modify the file.

For example, suppose we have class C_FILE with file attribute C_contents; an instance of
C_FILE, foo.c, can be created without having physical C_contents due to, for example, that foo.c
has never been edited. When a task, say edit, is applied to foo.c the first time, it requires access to
its C_contents. Oz will pass to the editor the C_contents attribute, which is just a file name (for a
nonexistent file) in the host file system. After edit completes, the C_contents is now the (unchanged)
file path to an existing file. When the PCTE objectbase is in use, however, files are stored as first
class objects in the objectbase, and a file attribute of an object is modeled as a component object
of object type file. Therefore, creating a pointer (in memory) to a nonexistent component object
is obviously not acceptable because it will seriously compromise the data integrity of the objectbase
in memory. Our solution to this problem is the following: the file component object is created only
when a task that requires a file attribute parameter is applied to this object. This action of creating
the component is logged automatically by the governing transaction; therefore it can be undone in
the case of a transaction abort (see next section). Since most external tools that access files require
that files be in the host file system instead of in the objectbase, file copying in both directions is
also required. Details are discussed in section 4.6.3

4.6 Concurrency Control and Recovery
Since Oz is a multi-user system with multiple Oz clients sharing the same objectbase, concurrency

control is needed to prevent chaos. For the same reason, PCTE also provides concurrency control
mechanisms for concurrent foreign and PCTE tools to cooperate with each other. Note the Oz server

70

compatible read- write- read- write- write-

modes unprotected unprotected protected protected transaction
read-unprotected yes yes yes yes yes
write-unprotected yes yes 1o no no
read-protected yes no yes no no
write-protected yes no no no no
write-transaction yes no no no no

Table 4.1: Compatibilities of PCTE Lock Modes

may be only one of these (foreign) tools, and multiple foreign and PCTE tools may be accessing the
PCTE objectbase at the same time as Oz.

Pern, the transaction manager used by Oz, is a flexible, powerful and elaborate system. In
contrast, PCTE provides only the basic primitives for concurrency control. In this experiment, we
try to make Pern and the PCTE OMS work together in such a way that Pern manages the high
(task) level transactions and PCTE handles the lower (object operations) level subtransactions.
Data locking is done first in Pern (in memory) and then in PCTE (in the objectbase). If a lock can
not be acquired in PCTE, the current Pern transaction will normally abort.

There are certainly other more desirable approaches that we wish we could have used to integrate
Pern and PCTE. However, as the following detailed discussion will show, the current implementation
of PCTE has some serious limitations that make other alternatives very difficult to implement.

4.6.1 Concurrency and Integrity Control in PCTE

Concurrency and integrity controls in PCTE are enforced by means of activities (not to be confused
with the activity of an Oz task). An activity in PCTE is a defined framework within which a set of
related operations takes place. These operations involve accesses to the objectbase. Each operation
is always carried out on behalf of a single activity.

An activity is characterized by its class. There are three classes of activity in PCTE:

e An unprotected activity does not require that its accesses to the objectbase be protected
from other concurrent activities.

e A protected activity requires that its accesses to the objectbase be protected from the effects
of other concurrent activities. The data it reads remain stable and the data it writes is not
overwritten by other concurrent activities. Changes to the objectbase made by the activity
are permanent even if the activity terminates prematurely.

e A transaction requires the same protection as a protected activity, but in addition it must
be atomic; that is, all or none of its results should be applied to the objectbase. This corre-
sponds to traditional database transactions, with full rollback of the objectbase updates when
a transaction fails for any reason.

An activity can acquire locks on resources. Here a resource refers to: either an object with
its contents and its set of attributes, but not the links originating from the object; or a link and its
attributes. The effect of a lock on a resource is the following:

¢ read-unprotected mode allows other activities to write to this resource concurrently.

e write-unprotected mode allows other activities to write to this resource concurrently. Any
modifications, from whatever source, are immediately applied.

e read-protected mode prevents other activities from writing to this resource concurrently.
This mode is applicable to both protected activities and transactions.

71

Unix process (on behalf of the Oz server) Unix process

; PCTE transaction |

PCTE transaction

\

i .
. 11 / i
' | Pem transaction ‘ NF?::r?d | [| Pern transaction \
{ i i‘ Transaction f PCTE ...)
| ——
] | \ o
S — y

@ | 0

Figure 4.4: Nesting a Pern Transaction within a PCTE Transaction (nof possible)

¢ write-protected mode prevents other activities from writing to this resource concurrently.
Any modifications, by the activity which holds the lock only, are applied immediately.

e write-transaction mode prevents other activities from writing to this resource concurrently.
Any modifications, by the activity which holds the lock only, are either applied or discarded
once the lock is released. This mode is applicable to transactions only.

Compatibilities of lock modes are shown in table 4.1.

PCTE has a different implementation of nested transactions than many other DBMS’s because
of the association of process and activity. A" process (an executing program), which carries out
operations that access the objectbase, is always initiated in the context of an activity. A process
can start and control new activities, which are treated as nested (internal) to the one in which the
process was started. In the current implementation of PCTE in the Unix environment, the only way
for a process to start a new activity is for this process to spawn a child process and then let this
child process start an activity. Thus, within each Unix process, there can be only one (flat) PCTE
activity.

In the following sections, we will see the consequences and limitation of this implementation.
Basically, since in the Oz environment there is a single Oz server per objectbase and Pern is part
of the Oz server, which is implemented as a single Unix process, there is only a single Unix process
on behalf of Pern with respect to a given objectbase at any given moment. A Pern transaction
corresponding to a task often requires nested transactions, for example, because of an atomicity task
segment. If we try to put a Pern transaction within a PCTE transaction, then the implementation
will require that a PCTE transaction is started before a Pern transaction is started, see part (a)
of figure 4.4. If the Pern transaction happens to have nested subtransactions, a PCTE transaction
should also be started before each Pern subtransaction is started. But this second PCTE transaction
would then be nested within the first PCTE transaction, as seen in part (b) of figure 4.4, and they
are both started by the same Unix process for the Pern (actually the Oz server) executable. This
is not allowed by the current implementation of PCTE. Therefore there is currently no simple
and direct way for Pern to take full advantage of the PCTE nested transactions facility. Instead,
we have devised mechanisms that enable low-level PCTE object operations to be controlled by
PCTE protected activities and transactions, while high level object manipulations (as in an Oz task
segment) to be guarded by Oz’s Pern.

4.6.2 Built-in Operations as PCTE Protected Activities

The built-in object operations in Oz, namely add, delete, copy, move, link, unlink, and rename,
require write access to the PCTE objectbase and thus require protection from other concurrent
PCTE activities. The semantics of these operations are well-defined and have no dependencies on
other operations. Therefore they can be implemented either as protected activities or as transactions
because either can provide the same protection against other concurrent activities. We decided to

72

implement these operations as PCTE protected activities in order to gain more experience with
PCTE, since we implemented some other object operations (discussed in the next section) as PCTE
transactions.

Each of the built-in operations eventually calls a low level function that uses PCTE OMS prim-
itives to carry out the object operations in the PCTE objectbase. These low level functions can
be placed within PCTE protected activities. For example, do_add_operation calls the function
OM S _write_object to write objects in the PCTE objectbase. Before calling OM S_write_object, a
PCTE protected activity is started so that all object operations following this call are protected.
When OM S_write_object returns, this activity is ended. Within OM S write_object, before writing
an object (changing its attributes or creating a child object), an attempt is made to lock this object
in write-protected mode. If the lock is obtained, then this object is written to PCTE’s OMS and
the lock is released. This sequence of actions ensures that no other concurrent PCTE activities can
write to this object if an Oz built-in operation is accessing it.

These built-in object operations are normally called upon by a task’s effects and are therefore part
of a Pern transaction. If the PCTE protected activities on behalf of these Oz built-in operations
have to be aborted, for example, if an exclusive lock can not be obtained, the upper level Pern
transaction also aborts. Say, a task’s effect has two update operations: add(a,b) and link(c,d).
These two operations both have to succeed. Suppose that the add succeeds but the link fails; Pern
would then abort the transaction of this task. This requires the result of the add to be undone in
the PCTE objectbase. Pern maintains an entry for each invocation of such operations in its log
file so that the effects of these operations can be undone when a Pern transaction aborts. The
details of putting entries in the log file and performing recovery for these PCTE object operations
are discussed in section 4.6.4.

4.6.3 External Tools Wrapped in PCTE Transactions

The activity part of an Oz task can invoke an external tool such as the default editor. These
external tools normally require access to the contents of objects (for example, the content of a C
source file). Object contents, i.e. files, are of utmost importance in a (coarse-grained) software
development environment and thus demand vigorous protection. For this reason we decided to wrap
the tools that access PCTE object contents in PCTE transactions. This implementation ensures
that the updates of object contents are all-or-nothing, and no intermediate changes can be seen
by other concurrent PCTE activities (this is a given, since in our Oz/PCTE integration, a PCTE
file object is always copied to the host file system before an external tool can use it). Recall the
PCTE limitation that a Unix process can only have one PCTE transaction. If it did not have this
limitation, we could easily implement the top level Pern transaction as a PCTE transaction and the
tool invocation as a nested PCTE transaction.

We overcame this limitation by implementing a wrapper Unix program, a transaction enve-
lope, that runs as a separate Unix process. This transaction envelope receives the message regarding
what tool operates on what objects, along with some Oz environment-specific information (e.g., the
id of the Oz client that runs the task activity) from the Oz client. It then starts a PCTE transaction,
tries to lock the required objects, and then calls a tool envelope. Figure 4.5 (the arrows represent
control and data flows) shows how the transaction envelope interacts with the Oz client and the
PCTE OMS. 1t also shows that the PCTE transaction carried out by the transaction envelope is
part of a Pern transaction. The tool envelope is a shell script that invokes the actual tool in the
system, and reports the status and returns the result values to its caller. Normally the return code
from a tool envelope is used to choose one of the task’s several effects. We have designated a return
code to indicate an aborted request. The transaction envelope then decides whether to commit or
to abort this PCTE transaction according to the return status from the tool envelope. The return
status of the transaction envelope is the same as that of the tool envelope so that in the case of a
PCTE abort, the abort request will be propagated to the Oz server and Pern; otherwise, this return
code is used to choose the effect as usual.

When an external tool is called as a task’s activity, the Process Engine of Oz marshals arguments

73

Oz Server Oz Client

Pem _ Activity Manager
T_Talsk,A Begin: 7 Activity Begin
//
} call e‘bnvelope - e [—
| , S :
activity_A A Aclivil& End Oz Transaction Envetope
SESeceeenmnstt BN hiviuhiie At B .
= ~ N\
~ T_Task_B Begin: R "
l Begin PCTE transaction
activity_B Lock objects in PCTE —1_ U
- Copy object contents to Unix __| v :
™ e’
_..= call tool envelope
T_Task_B End 1 PCTE
! ’ Abort PCTE transaction ; return OMS
11 or: :
| T._Task_AEnd Copy object contents to PCTE e T

L Commit PCTE transaction 1
return J

Figure 4.5: Transaction Envelope

(objects or attributes) required by this tool in a command line arguments buffer and sends it to an
external program, the tool envelope, normally via the Oz client. The Oz client also creates a
named pipe, a file in the host file system, and sends the pipe name to the envelope as a command
line argument. This named pipe is used by the envelope to write the return values so that the
Oz client can read them after the envelope terminates. When a transaction envelope is called,
however, the command line arguments are marshaled differently than for a tool envelope. First, the
name of the tool envelope (which the transaction envelope will call) is passed in as an argument;
second, for each external tool argument that is of a file type, the Process Engine translates it to
“lock.mode x PCTE_file > Uniz_file > backup_file”, where:

e lock_mode is the kind of lock required on this object.
e PCTE:_file is the full path of the object contents in the PCTE objectbase.

o Uniz._file is the file (in the Unix file éystem) that initially contains the PCTE object contents.
It is the file that the Unix tool (called by the tool envelope) will operate on.

o backup_file is the Unix file that maintains the original object contents.

The lock_mode indicates the lock mode that Pern requires on this object. For our experiment, it
is S for shared or X for exclusive. At the point when the transaction envelope receives this message
from the Oz server, the in-memory copy (within the Oz server) of the object has already been locked
in an appropriate lock mode by Pern. The transaction envelope then tries to lock the persistent
copy of the object in PCTE accordingly: X as write-transaction and S as read-protected. If a lock
mode other than shared and exclusive is used in Oz, it also needs to be mapped to one of these
two PCTE lock modes, which would generally require the “promotion” of the Oz lock mode. For
example, if a SX (for shared exclusive) was requested in Pern, it would be promoted to X, which
would then lead to a write-transaction lock in PCTE.

The object contents in PCTE, specified by PCTE_file, are copied to Uniz_file before the tool
envelope and thus an external tool (a Unix tool such as Emacs) is invoked. After the tool envelope
execution, the contents of the Unixz_file are copied back to PCTE._file before the transaction is
committed. The backup._file is for the purpose of recovery; it is a Unix file that contains a copy
of the object contents prior to the tool execution. The reason why we need this backup file is the
following: although the tool execution is performed within a PCTE transaction, it is also part of a
higher level Pern transaction, which may abort. But when this occurs, the changes to the object
contents in PCTE have been committed and need to be undone. Our solution here is to put an

74

entry in Pern’s log file to indicate that the object contents have been updated and there is a backup
file that contains the original contents. In the event of a Pern abort, the recovery function will use
this log entry to copy the original contents back to PCTE, thus undoing the committed changes in
PCTE.

Since the transaction envelope calls the tool envelope to actually execute the external tool, it
creates a named pipe and passes the pipe name to the tool envelope so that the tool envelope can
write the return status and output values to the pipe. The transaction envelope can then read the
output after the external tool envelope terminates. After a PCTE commit or abort based on the
return status, the transaction envelope just writes the same output to the named pipe that was
passed from the Oz client, thus enabling the client to get the return status and output values. When
the transaction envelope tries to lock an object in the PCTE objectbase, it may encounter a lock
conflict because another PCTE tool is already holding the lock. In such a case, the transaction
envelope aborts its PCTE transaction, then the upper level Pern transaction also aborts. The
recovery is also handled by Pern.

Because file (PCTE object) copying is required for most of the Unix tool invocations, the per-
formance of task activities when the PCTE OMS is in use must be worse than the case when the
native Oz OMS is in use. Section 4.7.3 gives an example in tool performance comparison.

4.6.4 Recovery Using Pern Log and PCTE Transactions

In Oz, the Pern log file is used for the purpose of recovery. Each object operation has an entry
in the log file. When recovery is needed, the entries are used to undo the effects of these object
operations. Although Oz built-in operations are implemented as PCTE protected-activities and
external tool invocations as PCTE transactions, they are both subtransactions of the upper level
Pern transaction. Therefore their results need to be undone if the Pern transaction aborts.

To prevent a partial undo, we implemented each undo operation in a PCTE transaction. This
ensures that undo can be done idempotently in case of failures during a previous undo.

4.6.5 Dealing with Concurrent PCTE Tools

Notice that the order of data lockings and the fact that PCTE transactions are subtransactions of
Pern transactions only guarantees serializability between Oz activities within the same Oz environ-
ment, but not between an Oz activity and a PCTE activity that accesses the same PCTE OMS
through its own interface. To see this, suppose that we have two Oz clients A and B that connect to
the same Oz server, and they are firing tasks task_A and task_B, respectively. Further, the activities
(or effects) of these two tasks try to gain exclusive access to a PCTE object bar at the same time.
Since the execution of each Oz task is done within a Pern transaction, and there is a single Pern
per Oz server, Pern can grant the exclusive lock on bar (locking done in memory) to either task.A
or task_B. Actually, Oz (and hence, the Pern instance in use) requires that all the objects that a
task intends to update be locked before the task’s activity and effect take place. When, say, task A
gets the exclusive lock from Pern and actually accesses bar in the PCTE objectbase, it first does the
actual locking of bar in the PCTE objectbase. This is done to prevent other external (outside the
Oz environment) activities from accessing bar after task_A starts accessing bar. This mechanism
(a strict two phase locking scheme) guarantees serializability between task-A and task.B, and is
deadlock-free because: 1) task_A and task_B have to obtain all the locks at once from Pern; and
2) when task_A or task.B locks and accesses an object in the PCTE objectbase for which it has
obtained the Pern lock, there can not be any other Oz task (within the same Oz server environment)
that can access the same object.

The story is quite different if an external activity, say C, is accessing the PCTE objectbase
through the PCTE OMS interface directly (without going through the same Oz server, and thus the
same Pern). Unless C locks all the objects it intends to update at once before it actually writes to
the PCTE objectbase, there is no guarantee of serializability between C and A (or C' and B). For
example, C can have an old copy of bar (done by reading without first locking bar) before A locks it,

75

task_A: task_B: external activity C:

read(X); read(X,Y); lock(X);

X=X-N; Y=Y+X; read(X);

write(X); write(Y); X=X+N;
write(X);
unlock(X);

Figure 4.6: Concurrent Activities

and then after A has committed the changes to bar and released the lock, C writes its own update
of bar, resulting in a “lost update” problem (A’s update is gone). The point here is that, unless
all PCTE activities follow a transaction model such as two-phase locking in accessing the PCTE
objectbase, there will be unpredictable results in the face of concurrent activities.

However, even if we are in a “perfect world” where all PCTE activities use the transaction model
in accessing the PCTE objectbase, there can still be a “Incorrect Summary Problem” (also known
as the “Inconsistent Analysis Problem”) [60]. To see how this can happen, suppose that we have
two tasks task_A and task_B and they are chained together (from task.A to task_B by an atomicity
chain). The activities of task_A and task_B are shown in figure 4.6. The two tasks are chained
because of, for example, a consistency constraint: “whenever X is updated, update Y accordingly”.
In Oz, task_B will be in a Pern subtransaction of task_A. X is locked in task-A’s transaction, and
the lock is passed to task_B’s transaction. But when the transaction envelope is used, the activities
of task_A and task_B will be in different PCTE transactions, and passing locks between the two
envelopes, which are two different Unix processes, is not possible because a PCTE object can be
locked by only one activity (in this case, on behalf of a transaction envelope, a Unix process) in
any single moment, and the lock is released when the activity (and hence the PCTE transaction) is
ended.

Imagine that after the transaction envelope for task_A commits the corresponding PCTE trans-
action which updates X (at which point the lock on X is released), but before the transaction
envelope of task_B can lock X and Y, another external activity C can start. The activity of C' is
also shown in figure 4.6. C can finish quickly enough so that the transaction envelope (of task_B)
can successfully lock X and Y, and then go on to do the update X. Since X has actually been
changed by C already when task_B uses it, this results in a “incorrect summary” on X.

Figure 4.7 shows the inadequate protection against external activities when transaction envelopes
are used in a nested Pern transaction (for a task segment). Here, a PCTE transaction (on behalf of
an external activity) that starts and finishes between the time of two Oz activities could potentially
cause the incorrect summary problem.

A solution to this problem is to have a lock mediator process to lock all the objects needed
for a Pern (nested) transaction. As shown in figure 4.8 (the dashed lines represent correspondence
between Pern transactions and lock mediators), one instance of such a mediator process is needed
for each top level Pern transaction. Our implementation of the lock mediator is the following: when
the Oz server is started, also start the master lock mediator process and set up a pipe (Unix FIFO)
between it and the Oz server process. Whenever a top level Pern transaction is started, Oz (on
behalf of Pern) notifies the master mediator process to fork and spawn a child mediator process
for this new transaction. The master mediator also sets up a named pipe, identified by the top
level transaction id, between it and the child mediator process. Whenever a Pern transaction needs
to lock or unlock an object, it notifies the master mediator process of its top level transaction id,
the object id and the action (lock or unlock), using the pipe between the Oz server and the master
mediator process. The latter then sends the lock/unlock request to the corresponding child mediator
process using the named pipe between these two processes. The child mediator process does the
actual lock/unlock for objects in the PCTE objectbase. It also starts a PCTE transaction when

76

Pern Transaction
T_Task_A Begin

v
Lock X in PCTE
X=X-N B
Unlock X in PCTE ' L T_PCTEC
—————————— o Lock X
= T_Task_B Begin: L X=X+N
| T — Write X
L ______ -~ Commit
Lock X, Y in PCTE
Y=Y+X
Unlock X, Y in PCTE
T_Task_B End
y l
T_Task_A End
Figure 4.7: Incorrect Summary Problem
Oz Server
Master Lock Mediator

l Pem top level transactions: (f“>
I N
L .
] “7’ __________________ ——- (YMediator for T,
: -) Mediator for T,y -
o -

; Jo -

Begin PCTE Transaction <.
lock objects for T ,,

notusedby T 3y b - N

lock additional objects. e

|
release tocks on objects """ .
notusedby T 5, : P

lock additional objects. P T

Commit or Abort PCTE =~
| Transaction
L

release locks on objects B ') w
|

Figure 4.8: Lock Mediator

77

the top level Pern transaction starts, and commits the PCTE transaction when the top level Pern
transaction is to commit. Copying object contents from/to PCTE should also be done by the child
mediator when it locks/unlocks an object. Any failed lock request to PCTE will trigger the child
mediator to abort the PCTE transaction. It then notifies Pern, through the master mediator, to
abort the top level Pern transaction. Using this scheme, each top level Pern transaction, along with
its possible subtransactions, correspond to a single PCTE transaction. Locks can be transferred
between Pern transactions that belong to the same top-level transaction because all the locks within
a top-level transaction are held by a single process.

Comparing to the transaction envelope approach, the advantage of using a lock mediator is that
it actually maps each top level Pern transaction to a PCTE transaction and can therefore guarantee
the integrity of the Pern transactions. The disadvantage is that it may be relatively heavy weight
since one child mediator process is created for each top level Pern transaction. The choice between
the two solutions may depend on the actual application environment and the degree of protection
that is required. If it can be assumed that most of the objects used by Oz would not be accessible
to other PCTE activities, for example, by setting the proper group permissions on the objects
(the Emeraude PCTE has commands for setting and changing user/group permissions), then using
transaction envelopes is probably adequate. Otherwise, if Oz intends to use the objects that are
shared by other PCTE activities, the lock mediator is in order.

We did not fully implement the lock mediator approach due to time and resources constraints.

4.7 An Example: Oz/Doc with PCTE OMS

We now demonstrate an example of using Oz and the PCTE OMS together. We ported an existing
Oz environment, Oz/Doc, to test the modified Oz server (which interfaces with the PCTE OMS),
and to conduct some performance analysis.

4.7.1 The Oz/Doc Environment

Oz/Doc is a document production environment implemented on top of Oz. The document compo-
sition structure (for example, a manual is composed of a set of submanuals, each of which consists
of a header, a set of chapters and figures) is represented using an Oz object-oriented data model.
A set of Oz task definitions was employed to implement the process of document production (for
example, first reserve, then edit, format, deposit and print).

We chose this environment as a test case in our experiment because the data model of Oz/Doc
is relatively simple and thus it can be mapped into the PCTE OMS easily. Another motivation is
that there are readily available PCTE tools, for example, the “Edit Object” command in the OMS
Browser, that can be used as concurrent PCTE tools (with regard to the Oz tasks in Oz/Doc, e.g.,
edit) to test our concurrency control mechanisms.

In our experiment, both the control data (Oz process data) and the product data are stored
in the PCTE OMS. However, end-users need not be aware that the PCTE OMS is in use. They
normally work in an Oz environment using the Oz Client GUI, which is responsible for sending
object and task requests to the Oz server. The Oz client interface includes an objectbase display
which shows the entire objectbase hierarchy. Users can “navigate” the objectbase (and thus “zoom
in” to any part of the objectbase) by clicking the objects in the display. Tasks and Oz built-in
commands can be selected from the menus. Clicking an object identifies it as a parameter for a
selected task. External tools (for example, emacs) are encapsulated as the activities of Oz tasks.
They are invoked by the Oz clients and thus normally run on the same workstation where the Oz
client was started.

78

HISTORY :: superclass ENTITY;
history : text;
end

TIMESTAMPED :: superclass ENTITY;
time_stamp : time;
end

VERSIONABLE :: superclass ENTITY;

version_num : integer = 0;
state : integer = 0;
locker . user,

reservation_status :
(CheckedOut, Available, None) = None;
version : text = " oy",

end

FILE :: superclass TIMESTAMPED, VERSIONABLE,
HISTORY, ENTITY;
owner : user;
contents : text;
end

Figure 4.9: Definition of the FILE class (with multiple inheritance) in Oz/Doc

4.7.2 Implementing the Oz/Doc Environment with Oz and the PCTE
OMS

To implement the Oz/Doc process, we first map a Oz/Doc data model onto the PCTE OMS model
using the approaches discussed in section 4. Most of the data definition mappings are straightfor-
ward. Figure 4.1 and figure 4.2 give an example on how to define an Oz object class in the PCTE
OMS. Oz/Doc has only one class definition, FILE, that is derived from multiple super classes,
namely, TIMESTAMPED, VERSIONABLE, HISTORY, ENTITY, as shown in figure 4.9.
The multiple inheritance is only one level. Therefore, as shown in figure 4.10, we simply duplicated
the attribute definitions of the first three super classes in the class definition for FILE and make it
a subclass of ENTITY.

In the Oz/Doc environment directory, there are two files that need to be set up specifically when
the PCTE objectbase is in use. Figure 4.11 shows the contents of these two files. For objectbase, it
specifies the root (top level) object for all Oz objects (of Oz/Doc) stored in the PCTE objectbase.
It is from this root Oz object that the read_objectbase function in Oz server starts the objectbase
traversal. The strategy file usually contains the compiled Oz data model and task definitions. In our
Oz/Doc environment, it first specifies the names of the schemas that make up the working schema
set. Then it lists the name of the schema, oz_doc, that defines the Oz/Doc data model (figure 4.10
is actually part of the output of the PCTE command “sds-decompile oz.doc”, which prints out the
definitions of a PCTE schema). sys and env need to be in the working schema set because oz.doc
references object types defined in these two schemas. The read_strategy function in the Oz server
uses these schema names to set the working schema set, and then reads the class hierarchy from the
PCTE OMS according to oz_doc.

Once the data model for Oz/Doc and the object instances are loaded into the Oz server, users
can start working in this environment via the Oz clients. For example, say a user can start the edit
task on a FILE object named introduction (for example, by selecting the edit command off the

79

FILE__time_stamp : integer := 0 ;
FILE__version_num : integer := 0 ;
FILE__state : integer := 0 ;
FILE__user : integer := 0 ;
=O;

FILE__locker : integer :
FILE__reservation_status : string := "None" ;
FILE__owner : integer := 0 ;

ENTITY : subtype of object ;
FILE : subtype of ENTITY ;

FILE__history : composition link to 0z_FILE;
FILE__version : composition link to 0z_FILE;
FILE__contents : composition link to Oz_FILE;

extend FILE
with
attribute FILE__version_num ;
FILE__time_stamp ;
FILE__state ;
FILE__locker ;
FILE__reservation_status ;
FILE__owner ;
link FILE__history ;
FILE__version ;
FILE__contents ;
end FILE ;

Figure 4.10: Corresponding Definition of FILE in PCTE (using single inheritance)

objectbase: strategy:

-/0zDoc. sys PCTE_BEGIN
sysloz_doc|env
oz_doc
PCTE_END

Figure 4.11: Objectbase and Strategy Files

80

menu and identifying introduction by clicking it on the objectbase display). Oz copies the contents
of introduction from PCTE to a Unix copy and creates a backup copy for it, before invoking the
Unix edit program on the Unix copy. It also copies the Unix copy back to PCTE if the task succeeds
(the governing Pern transaction commits), or the backup copy back to PCTE if the Pern transaction
rollbacks. Both the Unix copy and the backup copy of introduction are removed after the edit task
(and the appropriate commit or rollback actions) completes.

To the users, all these file I/O operations happen “behind the scene” in the sense that the users
are not aware at all that the PCTE OMS (instead of the native Oz OMS) is in use.

4.7.3 Performance Analysis

To get some idea of how file I/ O operations has affected the performance of task activities, we defined
a file_io task with an activity that concatenates “hello world” to the end of a file. We then used
an Oz tty client, which can execute tasks in batch mode, to fire this task on the same file (a PCTE
object) 100 times. The average total time it took to finish all 100 task invocations was 316 seconds.
Using the same task in an identical Oz/Doc environment where the Oz OMS is in use, it took an
average 115 seconds to finish all 100 task invocations. From the discussion in the previous section,
we see that the following additional file I/O operations were performed when the PCTE OMS was
in use: file creation in Unix, file copied from PCTE to Unix, file copied from Unix to PCTE, and
file deletion in Unix. The two copy operations were responsible for the bulk of the difference in total
elapse time.

It is evident from this result that when the PCTE OMS is in use, file-related Oz tasks will
take longer to finish (from a user’s perspective) because of the additional file I/O operations. This
performance hit is inevitable.

4.8 Related Work

HyperWeb [69] is a framework that supports the construction of hypermedia-based software devel-
opment environments. In Hyperweb, software artifacts is stored in the PCTE OMS. Moreover, the
hypermedia linking of these software artifacts are also modeled and stored in the PCTE OMS -
each hypermedia node is an object and each hyperlink is a relationship between two objects. The
(PCTE) working schema set is used to constrain the types of links that can leave or enter a node.
The architecture of HyperWeb is client/server. The HyperWeb server communicates with the PCTE
OMS, which acts as a software object base, providing data integration. The server coordinates tool
activities among clients through message passing. HyperWeb is very similar to Oz in using the PCTE
OMS for data integration. Both have the client/server architecture where the server is responsible
for communicating with the PCTE OMS. Also inferred from the HyperWeb paper is that the server
and clients run outside of the PCTE environment. There was no discussion of concurrency control
or process integration.

The CORBA, ATIS and PCTE integration [6] was an interesting experiment to test the possi-
bility of coupling CORBA, PCTE and CASE tools. It layered CORBA on top of PCTE so that
CORBA provides the interfaces for external access to the underlying object model implemented
in the PCTE OMS. To guarantee the interoperability between CORBA and PCTE, the CORBA
distributed and secure execution services were implemented to conform with the PCTE Execution
and IPC specification. Some CASE tools, i.e., the ATIS (A Tool Integration Standard) Version and
Configuration Services, were added to this hybrid environment to demonstrate the advantages of
the distributed object (CORBA) interface on top of PCTE in terms of data and control integration.

4.9 Conclusion

Our approach might be considered as a light integration with PCTE because the Oz server, Oz
client and external tools remain as alien processes to PCTE. Theoretically we could have put all

81

the Oz code into the PCTE objectbase so that Oz runs within the PCTE environment, but given
the sheer amount of source code and the heavy Unix dependencies, we did not believe a complete
porting was practical. We believe that our situation is typical for a legacy SDE that is adapted to a
new framework. Because the Oz components were loosely coupled and the PCTE OMS provides a
standard API, we were able to interface Oz with the PCTE OMS, thus accomplished the integration
between the two.

Our experiment has successfully enabled Oz to interface with the PCTE OMS. The resulting
system is an environment where software tools can be integrated by sharing the same Oz process
and the same PCTE objectbase. From the point of view of integration technology, we showed
that Oz and PCTE are complementary and add value to one another. For tools running in an Oz
environment, using the PCTE OMS enables them to also share data with other PCTE tools (that
are not in the Oz environment). For the PCTE environment, using Oz allows process integration
among Unix tools that access the PCTE OMS. This can be very useful since not all software tools
will be “tightly” integrated into PCTE (moved into PCTE); rather, they will still run on Unix while
using the PCTE OMS and other services.

This experiment shows that the Oz server can be modified to work with an external OMS with
a somewhat different data model. A better part of this experiment was devoted to the concurrency
control problem, where we wanted to devise a mechanism to incorporate PCTE transactions into
the more flexible Pern transactions. This is necessary to prevent the tools written to use the PCTE
interface directly from avoiding our policy enforcement mechanism. The transaction envelope is a
light-weight, clean but a bit simple-minded solution. The lock mediator solution is more elaborate
and sophisticated but heavy-weight.

4.9.1 Lessons Learned

Since Oz already had a fully functional process engine and a certain degree of abstraction in terms
of object access, we were able to focus on the making an interface to the PCTE OMS in order to
build an environment that has both process integration and (open and standard) data integration
services.

The limitation that one Unix process can have only one PCTE transaction, coupled with the
current Oz architecture (one Pern process per Oz server), certainly made it difficult to elect a simple
and yet complete solution to implement Pern nested transactions. Obviously if PCTE allows nested
transactions within a single Unix process, mapping (starting) a PCTE transaction for each Pern
transaction becomes an easy solution to this problem. Alternatively, Pern can be re-engineered into
a separate program; and in run-time, a Pern process is created (spawned) for each top-level Pern
transaction and locks (PCTE) objects in a scheme similar to the lock mediator approach. This later
solution is much more complicated.

Finally, as mentioned throughout this chapter, there were fixed assumptions about the OMS in
the earlier versions of the Oz code. These fixed assumptions were eliminated during later phases of
the work reported here. All access to class, object and attribute are now done through function calls
to an OMS API Had this interface been in place when we started our experiment, we could have
just implemented a set of functions that can be used by the API to access the PCTE objectbase.
However the major data model mismatch (for example, files are component objects instead of object
attributes) still requires changes outside of Oz’s OMS interface (for example, in the process engine if
the code assumes only file attributes, it needs to be changed to also consider composite attributes
of Oz _FILE if the PCTE OMS is in use).

4.9.2 Future Work

Pern and and more recently, a new Process Engine called Amber, have been developed as indepen-
dent components. Although re-implementing the entire Oz system in PCTE is not practical, it is
now feasible and would be interesting to experiment putting (re-implementing) these components
into PCTE. Putting Pern into PCTE would add support for flexible transaction models to PCTE.

82

————

Further, its mediator interface would enable PCTE environment builders to tailor Pern to suit their
environment-specific concurrency control policies [107]. Similarly, putting Amber into PCTE would
add process integration, not addressed in this chapter. Amber has a mediator interface that enables
environment developers to tailor it to support environment-specific process enforcement and assis-
tance models. Since our experiment is a light integration, it is difficult for Oz to enforce controls
on tools running within PCTE other than using data locking, which provides only passive control.
However if the Oz components are put into PCTE, they can take advantage of the control integration
services provided by PCTE, e.g., the message queue, support for user roles, and security control, to
provide active control and integration for the PCTE tools.

83/84

Chapter 5

Integrating Synchronous
Groupware

Abstract

Computer supported cooperative work (CSCW) has been recognized as a crucial enabling technol-
ogy for multi-user computer-based systems, particularly in cases where synchronous human-human
interaction is required between geographically dispersed users. Workflow is an emerging technology
that supports complex business processes in modern corporations by allowing to explicitly define
the process, and by supporting its execution in a workflow management system (WFMS). Since
workflow inherently involves humans carrying out parts of the process, it is only natural to explore
how to synergize these two technologies. We analyze the relationships between groupware and work-
flow management, present our general approach to integrating synchronous groupware tools into a
WFMS, and conclude with an example process that was implemented in the Oz WFMS and inte-
grated such tools. Our main contribution lies in the integration and synchronization of individual
groupware activities into modeled workflow processes, as opposed to being a built-in part of the
workflow WFMS.

85

5.1 Introduction

Human-to-human collaboration and coordination is critical in any multi-person product develop-
ment effort. In cases where the work requires intensive use of computers, computerized support
for collaboration is essential, particularly when the collaborating users are physically dispersed, a
scenario that is becoming more common with the recent advances in networking technologies and
the growing popularity of the Internet and the World Wide Web.

Workflow management is an emerging technology that is concerned with modeling and executing
business processes. As defined in the workflow coalition model [110], a business process is “a pro-
cedure where documents, information or tasks are passed between participants according to defined
sets of rules to achieve, or contribute to, an overall business goal”. A WorkFlow Management System
(WFMS) thus provides a formalism (e.g., Petri nets, task-graphs) in which processes are defined,
and a corresponding workflow engine in which processes are “executed”, where forms of execution
include automation in scheduling and activating activities according to the defined process; reac-
tively triggering activities based on state changes; monitoring the process; and enforcing policies
and consistency constraints (e.g., on the data being accessed during the process).

Since workflow inherently involves multiple humans carrying out parts of the process, it is only
natural to explore how to synergize groupware and WFMS. This chapter investigates support for
defining groupware activities in a process, and executing them as part of an on-going workflow.
Our focus is on integrating individual (external) synchronous tools, such as multi-user editors (e.g.,
Flecse [53]) and virtual whiteboards [115], intc a process executed in a WFMS. This is in con-
trast to interfacing the WFMS framework with entire CSCW development toolkits or environment
frameworks (e.g., ConversationBuilder [130]).

The possible degree of integration of groupware tools into the WFMS lies in a wide spectrum. The
simplest method involves “inserting” a single tool as an isolated entity in the process and invoking
it using the same notations and mechanisms as for regular (single-user) tools. This is obviously a
very limited form of integration; for example, it does not supply mechanisms to identify and bind
the participants to the execution of the activity from within the workflow framework, and it does
not allow to associate the activity with other related activities. At the other end of the spectrum,
a groupware activity may be fully integrated in the WFMS by becoming an undistinguished part
of the WFMS framework itself, as opposed to being part of a particular process that is enacted
on the WFMS. Such an approach is taken by various existing WFMSs (e.g., Lotus Notes [134]),
in which the WFMS is essentially treated as a CSCW system. While useful in its own right, it
does not address the need to integrate external tools which are defined as part of a specific process
description, and for which the WFMS does not have its own “native support”. This leads to our
approach, which is process-specific tailoring and integration of groupware activities. This approach
requires means to embed groupware tools such that it is possible to define control-flow, constraints
and other rules of invocation for the activity, and to supply additional notations and mechanisms for
handling multi-user synchronous interactions. Here again, there are several levels of integration of
the tool with the underlying framework, ranging from being black-box where the internals of the tool
(e.g., source code) are not accessible to the WFMS, to “gray-box” integration if the tool provides
some application programming interface, to “white-box” integration. While white-box integration
may have a potential for higher-degree of integration, it cannot be employed when there is no access
to the tool’s source code, or when modification of the (external) tool might be too difficult. Hence,
our focus in this chapter is on models and mechanisms that provide for full integration of individual
groupware activities as units of a workflow process, but treating the tools themselves as encapsulated
entities.

5.1.1 A Motivating Example

Consider a workflow for reviewing documents (e.g., research paper, or a business plan) by a group
of independent and physically-dispersed experts. A Review task, illustrated in Figure 5.1, may be
defined as follows. A coordinator sets-up the team of reviewers, by possibly running a setup-review

86

ESiteB : Site C | SiteD ! Sijte E

| i
|

v
..o -=| setup review ..

i P |

, - v i |
/’ i| review ;

s Single—user activity

\\ MONOND Multi-user activity

|
- \ L
conference \

;
|
i,
[
!
[
i
|
i
|
|
- 1 - rejected | \
i
i
|
!
I
I
!
\
|

T

review| | [review|
h) ———

|,

revisg .- .
L | \
| revise | a({cepted
— 1 \
approyv \

submit-new

Figure 5.1: The Review Task

I
|
|
!
!
i
I
I

|
[
|
|
|
{
|
!
4
3
)

tool that identifies and selects a qualified set of experts who agree to review the document. Next, they
review the document individually. Once they all complete, a multi-user virtual conference meeting
takes place, where they discuss together the document and possibly reconcile their conflicts. After
the meeting, if the document is accepted, the coordinator completes the review task and proceeds
with the approval task. Otherwise, if the document needs revisions, a revision request is sent to the
author(s) of the document, after which the task reiterates to the personal review phase. If the review
concludes that the document is totally unacceptable in its present form, it is rejected and a new
submission (perhaps from another person) is requested. Each of these activities may be associated
with an automated set of actions, or enforcement rules. For example, the approve action for paper
review may entail notifying the author and the publisher and sending the proper author kit (or
proceeding with actions to deliver the requested venture capital in case of a buisness plan review).

In order to support such task, the WFMS should have the ability to: (1) define such task using
the WFMS process modeling formalism, including definition of the groupware activities, local and
global constraints on their activation, and local and global inter-activity control-flow and “user”-
flow; and (2) ezecute such task, including mechanisms that automate the control- and user-flow,
enforce the constraints, and in general enabling groupware activities to affect, and be affected by,
other local or groupware activities from same or from different users.

The rest of this chapter is organized as follows: Section 5.2 discusses the relationships between
groupware and workflow, and overviews related work; Section 5.3 presents our approach to enabling
integration of groupware activities in a process; Section 5.4 outlines the realization of the approach in
the Oz WFMS and presents an example Oz (sub) process that integrates groupware, and Section 5.5
summarizes the chapter.

5.2 Relationships between Workflow and Groupware

Although both fields deal with certain common issues and overlap with each other, their orientation
is quite different, and it is important to realize these differences as a basis for understanding both
the need for, and the general approach to, our synergy. Workflow management in general focuses on
support for process, including its explicit representation and executability, involving users, tools and
artifacts. Further, it is concerned with allowing to specify and preserve the consistency and integrity

87

of the process and its related artifacts (e.g., documents, products, etc.), particularly for tasks that
require such support. Finally, it typically involves integration of single-user, or asynchronous multi-
user tools (in fact, the WFMS may itself be viewed as such “tool”).

CSCW, to the contrary, is less concerned with (formal) processes, and is mainly concerned with
human-human interface and inter-personal cooperation and collaboration paradigms. Process is in-
cidental and implicit, and therefore unsupported. Thus, while both technologies are geared towards
supporting collaboration among people in organizations, they are mostly complementary. Work-
flow technology can benefit from integrating groupware by embracing the human-human interaction
paradigms and tools, and groupware could benefit from workflow by adding explicit and consistent
process definition and enactment.

Although groupware in general refers also to asynchronous tools such as electronic mail and
electronic bulletin-boards, in this chapter we focus on the classical synchronous groupware tools,
in which multiple users collaborate in a virtual shared space, also known as “same time, same
place” technology [89]. Each such tool is invoked for or otherwise affiliated with a designated set
of users all at the same time and they all terminate their connection at the same time (modulo
network delays and other implementation-specific glitches). We have in mind tools ranging from
multi-user editors and debuggers (e.g., the Flecse toolkit [53]) to document inspection systems (e.g.,
Scrutiny [85]). Most significantly from the viewpoint of workflow, synchronous groupware requires
special integration facilities that do not exist in conventional WFMSs, and at the same time, once
they are in place, there are many automation opportunities and control dependencies that can be
associated with their activation, which is the main reason for focusing on them. (An asynchronous
multi-user tool enveloping approach that allows the WFMS to submit multiple activities to the same
“persistent” tool invocation is described elsewhere {227].)

There have been some systems that attempted to combine workflow and synchronous groupware.
One such system that originated from CSCW is Conversation Builder (CB) [130]. The main concept
in CB is that of a conversation, that serves as a context in which a user performs its actions
(“utterances”), and can potentially affect other users participating in the same conversation through
a shared conversation space yet still protect their private conversation space. In addition, CB enables
to specify activities and their interrelations using protocols, which are state-machine descriptions of
the flow of the conversations, or in other words, a limited form of process modeling. However, it has
no process enactment engine.

Scrutiny [85] is a code-inspection system built on top of CB that supports a specific methodology
— Fagan-style code inspection [65] — translated into process. This includes support for different
roles (moderator, author, etc.) and ensuring that the inspection follows the defined process, in addi-
tion to the underlying groupware framework for supporting synchronous inspection among multiple
remote users. Scrutiny is not a generic WFMS, however; the workflow process is built-in.

On the WFMS side, most systems provide some degree of “groupware”, or multi-user support
because they are inherently multi-user. However for the most part the support is either built into the
WFMS (as opposed to integrating external tools), or it supports asynchronous external groupware.
Examples include InConcert [44], ActionWorkflow [70] and ProcessWEAVER [67].

Finally, there is yet another approach to supporting collaboration that is orthogonal to both
workflow and groupware, namely (collaborative) concurrency control. Users going about their own
business happen to try to access the same data in conflicting ways (e.g., two writers). The con-
currency control mechanism reacts to such attempts, and typically disallows all except one of the
accesses. We have conducted extensive research on semantics-based concurrency control, as have oth-
ers, and there are many proposed approaches that provide collaboration by permitting “conflicting”
accesses when they happen to come up, perhaps with an attached “resolution” procedure (see [16)
for a survey). We take here a complementary proactive approach to supporting collaboration.

88

5.3 Integration Concepts and Mechanisms

5.3.1 User Modeling

In order to identify and specify explicitly which users should be assigned to the execution of an
activity, users must be somehow represented in the system. The simplest way to represent users is
by their operating-system (or any other system-supplied) id. This allows the process to associate
users with activities, either by directly specifying the id, or indirectly via a “user” attribute that is
dynamically bound to such id at runtime. We defer the discussion of static vs. dynamic binding
of users to activities to Section 5.3.2; regarding the representation, this approach is clearly limited.
For example, it would be impossible to associate users to activities based on general characteristics
and specific “state” of the users, such as their roles, whether they are active in the system, their
physical and virtual location, etc. Moreover, the lack of such attributes may not allow the workflow
engine to assist in the activation of groupware tools by, for example, locating available and qualified
users.

Thus, a more suitable representation of users should be provided. Our approach is to model
users as a distinct entity, much in the same way that typical WFMSs model data, process, and tools.
In other words, in addition to data-, tool- and process- (or control-) integration, we employ user-
integration. This leads to abstracting users as objects in a user-repository. More specifically, each
user is represented as an object that stores pertinent information that is needed by the operating
process, and is instantiated from a primitive user “base” class, or one of its derived sub-classes.
Individual user objects can be aggregated in a user-group, which can be used for three different
purposes: (1) represent an organizationally determined sets of users, such as members of a project
team (an “is-part-of” composition hierarchy); (2) classify users based on common characteristics,
such as their “role” (“is-a” class hierarchy); and (3) represent a set of users that is grouped specifically
for the purposes of activating specific groupware tool(s). Note that we deliberately use the more
general “group” term and avoid typical built-in mechanisms to define roles (which, as recognized
by [99], can sometimes be as much limiting as assisting), although such a notion can be imposed on
top of the generic user and group classes.

Once users and groups are modeled as objects, they can be pointed-to by other kinds of objects.
For example, a multi-author document object can point to its “owner” object(s), and one user object
can point to another “manager” user-object. This enables to query the user repository in conjunction
with the artifact repository in order to, for example, automatically assign the review of a given
document to its author(s) and notify their manager(s). But in order to provide such functionality,
the repository must supply a mechanism that enables the process to select users based on the values
of their attributes. The WFMS should strike the right balance between providing built-in support
for few mandatory attributes of these classes, and allowing to extend these class definitions with
optional, process-specific attributes that are defined and manipulated on a per-process basis.

To illustrate the concept of user modeling, consider the following sample user and group classes
defined in the Oz data modeling language, shown in Figure 5.2. In this example, users are rep-
resented by the USER class. Each object that gets instantiated from that class has several “state”
attributes (e.g., host from which user is connected, which is in general different from the host in
which the USER object resides due to the client-server architecture, see Section 5.4), and a set of links
to USER_GROUP instances. A WFMS supporting such class may elect to provide built-in support for
none, some, or.all of the attributes in that class. For example, when a user logs-in to the WFMS,
the WFMS may automatically attach the user to his proper USER object by looking up the userid
attribute, and subsequently fill-in some values for the built-in attributes based on the login informa-
tion. The current version of Oz supports only the attachment to USER object as a built-in facility
(actually, even this is not strictly enforced, since an Oz environment may have no user modeling at
all in cases that it is unnecessary), although any other attribute can be defined and manipulated by
a specific process.

89

USER.GROUP:: superclass PROTECTED.ENTITY;
name : string;
users: set_of link USER;

end

USER:: superclass PROTECTED_ENTITY;
id : userid;
name: string;

host_name: string;

host_ip: string;

active: boolean;
groups: set.of link USER.GROUP;
end

Figure 5.2: Sample User and Group Classes

5.3.2 User Binding

Once users and groups are properly modeled in the system, the process definition language must
enable to associate user objects with the activities. This binding method depends on the underly-
ing user-interaction and user-control models that WFMSs employ. In “active” WFMSs the process
executes on behalf of the “system”, in which case any (at least any interactive) activity must be
assigned to some user, or to a set of users in case of a multi-user activity. In contrast, in “reactive”,
user-driven WFMSs, each activity is by default executed on behalf of the user who invoked it. In
this case, single-user activities may still need to be delegated to other users. For example, Process-
WEAVER [67] supports agendas, which are personal “to do” list that can be updated by the WFMS
or by other users for delegation purposes. Although delegation can be considered as a (somewhat
restricted) form of groupware, we do not discuss it here; see [21].

The simplest method to bind users to activities is to specify them (via their object representation)
directly in the process model as the “recipients” of the activity. The main problem with this static
approach is that in order to change the binding set, the process model has to be modified and
consequently the instantiated process must be evolved, a non-trivial task [73]. This is particularly
evident in cases where the same activity could be bound to different users depending on the context
in which the activity is invoked and other time- and location-dependent circumstances.

Our approach is to provide dynamic (late) user binding. When the process is initially defined,
groupware activities are associated with classes of qualified users or groups, as opposed to instances.
At run-time, they are attached to an activity based on both their class membership as well as the
particular values of their state attributes. A group of participants can then be formed by either
binding directly all (active) members of a given class, or by binding a set of individual users (which
are not necessarily all part of the same group) which satisfy a certain condition.

By modeling users as objects and employing dynamic binding, a process can utilize the WFMS’s
regular data-query facilities in order to select the proper users based on the knowledge stored in
these objects. For example, the process may be able to select only users that are known to be
active, denoted by having a true value in the active attribute of their user object. Furthermore,
if the process modeling language supports the notion of pre-condition or “guard” predicates (as
many do), it can be applied to the user binding-set to check or verify that the selected user-set
and its cardinality are valid for the activity. Finally, if the WEFMS supports automatic invocation
of activities to satisfy a failed condition (backward-activation), or following state-changes (forward-
invocation), it can further assist in the process of locating qualified users. For example, a failed
user-binding predicate could trigger an activity that can lookup, periodically poll, or otherwise
employ a “wakeup” procedure to locate users.

Figure 5.3 shows an example of how the document-owner association mentioned earlier can be
modeled in the OZ process modeling language (we ignore details of the language that are not relevant
to the issue of user binding). The multi-edit activity takes a single document object as input (line

90

1) multi-edit [7d:DOCUMENT]:

2) # OBJECT BINDING

3) (and

4) # bind users to activity

5) (forall USER ?u suchthat (and

6) (linkto [?doc.owner ?u])
7) (?u.active = true)))

8) # bind relevant documents

9) (forall DOCUMENT 7?related suchthat

10) (linkto [?doc.ref ?related]))):
11) # CONDITION

12) # check that documents are allowed to be read by all
13) # users in the binding set

14) (?doc.allowed.edit = 7u):

15) # USER BINDING

16) participants{?u]:

17) # EXECUTE

18) MULTI.EDIT multi_editor ?doc ?related-docs
19) # ASSERT EFFECTS

20) #0. document changed.

21) # this assertion may trigger other activities.
22) (?doc.status = Changed);

23) #1. document unchanged.

24) (?doc.status = NotChanged);

Figure 5.3: multi-edit activity

1). It then binds to the activity all users that satisfy two conditions (lines 4-7): they must be owners
of the document (modeled as a link from the document to the owner object), and they must be
active (as denoted by the active attribute). After binding other related documents (lines 9-10), the
activity checks whether the users in the binding set are allowed to edit the document (line 14); if
this is not the case, the activity is aborted. Otherwise, the user-binding phase actually takes place
(denoted by the participant directive in line 16), followed by invocation of the multi-user tool
(line 18) followed by assertions that reflect the result of applying the tool (lines 20-24). The actual
interface from the modeling language to the tool is done via enveloping mechanism, which is beyond
the scope of this report, see [86].

Notice that depending on the selected document, each time the activity is invoked it would be
assigned to the appropriate owners. Moreover, if the owners of the document change over time (this
would be reflected by changing the owner links of the document), subsequent invocations of the
same activity on the same document will automatically bind the new (active) owners.

Two additional closely-related issues to discuss regarding user-binding are: (1) “user-overflow”,
i.e., when the user binding-set contains more users than required by the activity; and (2) “user-
underflow”, when the user binding-set is smaller than required, either because there are no available
users, or some users do not want to participate in such activity. In either case, some additional
semantics must be associated, either by default and/or specified by additional syntax. Regarding
overflow, the process modeling language needs to provide directives for subset-selection. Three
plausible methods may be (1) interactive, i.e., the system prompts the coordinator who initiated the
activity to make the selection; (2) random; and (3) following some priority scheme. The problem
with user-underflow is more severe, since it effectively disables the execution of the activity, and
therefore some failure semantics must be attached and further actions may be taken. We have
identified the need for a notify action that directs the WFMS to notify (e.g., by e-mail) potential
participants about future invocations, perhaps with a later retry action that actually re-invokes
the activity. Alternatively, if the activity must be executed instantly, the WFMS may seek means
to automatically activate users by invoking a triggering activity that would search for, and locate,

91

qualified but currently inactive users.

5.3.3 Process Automation of Groupware Activities

Process automation lies in the heart of workflow management. Regarding automation groupware
activities, we have already mentioned one form of automation, namely the ability to automatically
satisfy a user-binding condition for setting-up a groupware activity. Another important capabil-
ity that is required especially for groupware tools, is to be able to fan-in to and fan-out from the
synchronous groupware activity and perform in parallel and asynchronously local and personal ac-
tivities. This gives rise to distinguishing between globally defined, shared, multi-user activities,
and locally defined, personalized activities, which each participant could define in his own private
(sub-) process. In other words, if the process allows to define private workspaces with their own
rules and state, the workflow engine could spawn multiple single-user activities as a result of, or as
a preparation for, a groupware activity, without actually being required to know how these local
activities are performed, and therefore delegating non-global definitions to the local users/sites. For
example, in the Review task mentioned earlier, the review activity could be defined autonomously
(and differently) by each user according to his own method of reviewing documents. This is the
underlying motivation for the Summit model elaborated in [21] (although it actually deals with the
general case of interoperating full-fledged processes). We will illustrate this control mechanism in
Section 5.4.2.

5.3.4 Infrastructure Support

The above discussion made some implicit assumptions about the infrastructure support for group-
ware. This is in general open-ended and depends on the level of integration with the WFMS, but
there are several basic requirements. First, the WFMS should be able to “locate” selected partici-
pants. This means that the system can locate and communicate with the client on whose behalf the
participant executes (assuming a client-server WFMS as in the reference architecture [158]). Second,
the WFMS should be able to (re)direct activities or parts of them across and among clients. Third,
there must be a notification mechanism. Groupware activities, even if originating from one user,
require to notify other remote users and ask them to perform the synchronous interaction. This
setup procedure requires asynchronous mechanisms in which a client is notified and acts in reaction
to a server request, which is the opposite of conventional client-server interaction. A related aspect is
concerned with the user-interface for such notification. Such mechanism has to prompt the (perhaps
unexpecting) user and attract its attention, and must allow the user the option to refuse to perform
the action (or request to delay it).

5.4 Groupware Integration in Oz

We outline the implementation of the above ideas in the Oz framework and illustrate their use in
an effective process for the Review task discussed in the introduction.

5.4.1 Oz Overview

Oz [21] is a multi-site collaborative WFMS that supports interoperability among heterogeneous
and autonomous processes. Initially, it was designed to support software engineering projects (also
known as process-centered software engineering environments, see [76] for a book surveying such
systems), but later has been generalized to support workflow in various application domains (e.g.,
healthcare workflow [148]).

Oz introduces a flexible and dynamic mechanism to specify and integrate the desired interoper-
ability between multiple process models (called the Treaty protocol), and corresponding execution
support for multi-process activities that enables execution of activities with data/tools/users from
multiple sites and fulfillment of their local prerequisites and consequences (the Summit protocol).

92

Wide Area Network

! Connectlon
' Server

| romote [Tramsaction | romote Tramaction
i Server { Server

Connection I Connection
Server I Server

inactive

remote

|
|
|
|
|
|
I
|
I e
|
t
t
|
|
|
|
!

Po— / V
{ Instantiated Instantiated Instantinted Y\
/ Environment / Environment Environment \
A AN 7
/ I \ "’ d

Intra-Environment Communication]

A\
Intra—Environment Communication
T Ay

4 @

client client

/

@ aa

dlient cllent client

U NS —

Figure 5.4: Oz External Architecture

The architecture of Oz is illustrated in figure 5.4; it is “shared nothing”, i.e., the system is phys-
ically as well as logically decentralized, with each site maintaining autonomously its own project
database, schema, process, and tool base, thus not limiting a priori the scale, scope or physical loca-
tion(s) of the project being developed. Interactions among sites utilize local client-remote server and
server-to-server connectivity facilities provided by the system (local client-local server connections
assume a shared network file system, but need not reside on the same host).

Treaties, Summits and interconnectivity support are discussed elsewhere [21, 27, 26]; here we
investigate collaboration among multiple users regardiess of whether they work within the same
or in different processes, or within the same local area network vs. across a wide area network.
Nevertheless, decentralization and geographical dispersion were prime motivations for this work: we
discovered quickly the limitations of ad hoc approaches when we had to deal with interactions among
logically and physically distributed users.

Human interaction with the environment is through a client that provides the user interface
as well as the workspace in which activities are executed. When a user issues a command (often
indicating a rule, see below) he/she wants to perform, the request is sent to the server to check
whether the activity can be executed (e.g., all prerequisites are satisfied and no parameters are locked
exclusively by another user) and explores opportunities to automate and/or guide the execution of
this or related activities (e.g., invoking other activities to attempt to satisfy the prerequisites or
negotiating according to relaxed concurrency control policies [105]), and eventually returns to the
client — either with the necessary information to execute the activity or to inform the client that
the activity cannot be performed at this time.

A local process in Oz is defined using a rule-based language. Each activity is enclosed in a rule
with formal typed parameters, and optional condition and effects that serve two purposes: to enforce
and assert conditions that pertain to the activity itself; and to connect (through predicate/assertion
matching) to other related activities and specify automation and/or atomicity requirements across
activities. Related activities can be invoked automatically as part of either backward chaining to
satisfy the predicates in a rule’s condition, or forward chaining as a result of the assertions in a rule’s
selected effect (a rule may define more than one effect, but exactly one is asserted depending on the
results of the encapsulated activity). A rule thus defines a process step, and the set of all chains
emanating from that rule (implicitly) define a task.

93

0Oz allows for dynamic (or late) binding of data to activities. The actual parameters to the rule
are designated either explicitly by the user, or automatically by the process engine in case of a
chained-to rule (see [108]). In addition, the language binds derived parameters in a binding clause
that queries the project database, usually resulting in a set of objects structurally and/or logically
related to the actual parameters.

Oz integrates most of the groupware facilities that were mentioned in the previous section,
including user modeling, binding, automation, and infrastructure support for locating, setting-up,
and notifying users through their clients. We now turn to the realization of the motivating example
and show how the WFMS features can be exploited to support such process.

5.4.2 Realization of the Review Task

An Oz process that supports the Review task consists of: a schema (data model) with definitions
for artifacts such as documents, reviews, revisions, etc.; a user model with proper user and group
classes; envelopes encapsulating the tools, for example a conferencing tool !; and, most importantly
from this chapter’s viewpoint, a set of rules that specify how and by who the tools are enacted, their
inter-dependencies with other rules, and potential for their automatic invocation.

Each of the boxes in Figure 5.1 could be realized as either a single rule, or as a set of interrelated
rules collectively implementing the (sub)task. The edges between the boxes are represented by
the matchings between effects of one rule and the condition of another rule. A rule is designated as
either a single-user personal rule or as a multi-user, groupware rule (for pragmatic reasons the actual
annotation is made in the tool definition as opposed to in the enclosing rule , but this is an irrelevant
syntactic detail). If a multi-user rule is encountered, the rule-processor employs its infrastructure to
select, locate, and connect to the proper participants; set up the activation and transfer control for
the execution of the external tool; and regain control after the termination of the activity, setting
the proper state values and possibly invoking other single- or multi-user derived rules.

Figure 5.5 shows two sample rules from the process (a full realization of a comprehensive multi-
user “benchmark” process appears in [21]): the groupware conference rule and the personal review
rule that precedes it. The conference activity binds all members of a group that is linked to the
document (lines 3-6, 12); it is enabled only if a conference is requested on the document (line 13); it
invokes the conference groupware tool (line 15); and it asserts one of the three possible outcomes
of the conference that correspond to the three boxes in Figure 5.1: revise, reject, or accept (lines
16-21). Depending on the outcome of the conference, the proper rule will be triggered and assigned
to the proper user. The review rule has a pre-condition that states that the document must be in
a “reviewable” state (e.g. the author has completed it), and an assertion that either enables later
invocation of conference (line 32), or disables it (line 34), depending on the outcome of the local
review rule. (The delegate directive in line 29 is similar to the participants clause and binds
the personal activity to a single user). Note that, as specified in the process definition, we want to
enable conference only if and when all participants (i.e., reviewers) have completed their reviews.
This is indicated by the forall universal quantifier (which is defined in line 7 but is actually used
in line 13) that ensures the desired behavior (the latest version of Oz corrected this problem and
the quantifiers are defined in the condition clause instead of the binding, as they should be).

5.5 Summary

The approach presented in this chapter shows how synchronous groupware activities can be syner-
gized with workflow technology in a way that exploits the advantages of both worlds. By integrating
such tools into a process framework, we enable to apply on them all the advantages that workflow
provides: (1) Formal definition in the context of an enclosing process, and in specifying constraints
and guidelines for user binding and invocation in general; (2) assistance in the execution of such

In an actual implementation of a similar task we used the white_board public-domain tool, which enables multiple
distributed users to share a virtual white-board on their screens [115].

94

1) conference[?d:IPOCUMENT]:
2) (apd
3) (forall USER_.GROUP ?g suchthat
4) (linkto (?d.reviewers ?g]))
5) (forall USER ?users suchthat
6) (mpmber [?g.users ?users]))
7) (forall REVIEW ?revs suchthat
8) (limkto [?d.reviews ?revs]))
9) (forall DOCUMENT ?rel suchthat
10) (lipkto [?d.related ?rel})))

11)

12) participan

13) (?revs.status = Co

14) # invoke the multi-y

ts[?users]:
hferenceRequested)

ser white_board tool

15) MU_TOOLS conference ?d ?u 7revs ?rel
16) # 0. enable revise
17) (?d.reviewstatus = RevisionRequested);

18) # 1. no hope, go to reject.

19) (?d.review.staty
20) # 2. reviey

21) (?d.review_stat

#EH AR
22) review[?d:DOCU]

23) (exist REVIEW
24)
25)
26)
27)

28) (?review.status =

29) deleg

30)
31)
32)
33) # 1. ind
34)

(link{
(?revi

REVIEW|

0. ena
(?review.status = C

(?review.sta

s = Rejected));

b accepted.

s = Accepted);

###AEAHE

MENT, 7r:USER]:

?review suchthat
(and

o [?d.reviews ?review])

bw.owner = ?r.userid}))

ReviewRequested):
hte[7r]:

review 7d

ble review
bnferenceRequested);
cate error

us = Error);

Figure 5.5: Sample rules fr

95

om the Review Task

heeds to start all over again.

activities, by allowing the activities to modify the state of the process, thereby allowing to assist,
automate, enforce, and monitor the activities as well as related (perhaps personal and asynchronous)
activities.

The work described in this chapter mainly deals with essentially one process state. Expanding
groupware to work across multiple processes with their own process state and “user space”, running
on true heterogeneous WFMSs, is a major future direction of this work.

96

Chapter 6

Integrating Asynchronous
Groupware

Abstract

We present a tool integration strategy based on enveloping pre-existing tools without source code
modifications or recompilation, and without assuming an extension language, application program-
ming interface, or any other special capabilities on the part of the tool. This Black Box enveloping
(or wrapping) idea has existed for a long time, but was previously restricted to relatively simple
tools. We describe the design and implementation of, and experimentation with, a new Black Box
enveloping facility intended for sophisticated tools — with particular concern for the emerging
class of groupware applications.

97

6.1 Introduction

Process-centered environments (PCEs) and other task-oriented frameworks (see, e.g., the NIST/ECMA
reference model [168]) usually support dialogues between external tools and the environment, which
serves as a mechanism for integrating the tools according to their roles in the workflow. We identify
three categories of integration methods, with respect to their approach to adapting the tools to the
environment:

o White Boz, where a custom tool is developed as part of a particular environment or a pre-
existing tool’s source code is modified to match a framework’s interface. Custom tools may be
prohibitively expensive to develop. Changes to pre-existing tools can often be implemented in
a straightforward, repetitive manner, but nevertheless the source code must be available —
perhaps an insurmountable difficulty when integrating off-the-shelf tools from independent
vendors. The White Box approach is followed by several commercial message buses, most
based on either the Field broadcast message server [193] or the Polylith software bus [188].
PCTE [221] and similar framework standards probably require more effort in tool adaptation,
or a priori adherence to the standard by vendors, but enable a higher scale of integration. The
CORBA interoperability standard [166] is not specifically directed to environment frameworks,
and seems best suited to tools explicitly organized as servers — which relatively few are at
present.

o Grey Boz, where the source code is not modified but the tool provides its own extension lan-
guage or application programming interface (API) in which functions can be written to interact
with the environment. Relatively few tools, aside from database management systems, provide
such convenience (although see [169]). Dynamic linking coupled with replacement of standard
libraries (e.g., for I/O) works for some environments, e.g., Provence [140], concerned with mon-
itoring simple events such as file system accesses, but it seems unlikely in the general case that
arbitrary tools would happen to fit the protocols of a task-oriented framework. In particular,
a PCE requires that task prerequisites be fulfilled prior to performing the task, so mechanisms
to detect and/or notify that a task has already been completed are inadequate [181].

e Black Bor, when only binary executables are available and there is no extension language or
API. In this case, the environment must provide a protocol whereby envelopes extract objects
and/or files from the environment’s data repository, present this data. to their “wrapped” tools
in the appropriate format, and provide the reverse mapping for updated data and tool return
values.! Envelopes may also be used in conjunction with Grey and White Box methods, but
are mandatory for Black Box integration.

Our primary goal in this paper is to augment enveloping concepts and technology to apply to a
much wider array of tools. We concentrate on the Black Box model, since it is often the only choice
(particularly for legacy tools) as well as the most challenging.

Typical Black Box enveloping technology expects the tool integrator to write a script or program
that handles the details of interfacing between the tool and the environment framework, often both
to respect the environment’s notion of task and to access its data repository, as well as the actual
invocation of the tool with an appropriate command line and collection of any outputs and return
values. In the case of a PCE, the process definition determines the workflow within which such a
script or program may be executed. For example, the task’s prerequisites may need to be satisfied in
advance and its obligations fulfilled afterwards. The state of the on-going process execution usually
sets the context for providing parameters to the tool and determines what should be done with its
results.

This approach works well for tools, such as the standard UNIX toolset, that accept all their argu-
ments from the command line at invocation, read and write some files (whose file system pathnames

1The first use of the term “envelope” to refer to tool wrapping, that we know of, was with respect to the ISTAR
system [58].

98

are given on the command line), and return a simple status code. Notice this does not preclude
interactive tools — even graphical user interface tools such as project schedulers and drawing pro-
grams — since the tool’s own user interface appears on the user’s display device when the envelope
executes the tool. The user may then enter text or click menu items as desired; however, the granu-
larity of access to objects/files from the environment’s data repository is the entire tool invocation.
In other words, the nature of current Black Box enveloping technology requires that the complete
set of arguments from the repository is supplied to the tool at its invocation and that any results to
be returned to the repository are gathered only when the tool terminates, so that the tool execution
— what we call here an activity — is encapsulated within an individual task.

There are numerous tools whose natural and/or convenient use doesn’t fit this description, but
may be highly desirable to integrate into PCEs, including at least the following categories. Note
these classes are not disjoint.

e Tools intended to support incremental request of parameters and/or return of (partial) results
in the middle of their execution, such as multi-buffer text editors and interactive debuggers.
Although such tools by definition allow submission of an arbitrary sequence of the user’s choice
of commands during their execution, when run in a stand-alone fashion, current enveloping
technology does not permit the sequence of commands to be guided, automated or enforced by
a task-oriented environment, and often even precludes retrieval of their parameters from the
environment’s data repository (e.g., if the process engine controls all access to the repository).

e Interpretive tools that maintain a complex in-memory state reflecting progress through a series
of operations: Lisp applications, such as “Knowledge-Based Software Assistant” (KBSA) sys-
tems [39], are classic examples. Such tools may require severe start-up overhead and command
substantial system resources (thus we refer to them as “heavy-weight”). We are particularly
concerned with permitting different users to submit activities to the same tool execution in-
stance, even when that tool was not designed to support multiple users. One of our goals is
to extend a variety of single-user tools to (modest) multi-user operation.

o Multi-User tools, such as conventional database management systems that guarantee atomic-
ity and serializability of separately transmitted but concurrently executing transactions. An
important subclass is Collaborative tools (often referred to as computer-supported cooperative
work — CSCW — or groupware), which abhor the conventional isolation model and directly
support multiple users interacting with each other, such as WYSIWIS (what-you-see-is-what-
I-see), IBIS decision support, Fagan-style document inspection, desktop video conferencing,
etc. (see [129, 2] for more examples).

We introduce a Multi- Tool Protocol (MTP), where Multi refers to submission of multiple activities
to the same executing tool instance and enabling of multiple users to interact with that same tool
instance. Tool instances may operate for an arbitrary period of time, far beyond the length of
an individual activity on behalf of an individual user; thus we refer to the executing tool instance
as “persistent” with respect to the duration of the activities submitted under the MTP protocol.
MTP also addresses multiple platforms: submitting tool invocations to machines other than were
the user is logged in, e.g., when operating over a heterogeneous collection of workstations and server
computers but executables are available for only a particular machine architecture or even only for
a specific host; and multiple tool instances: managing a set of executing instances of a tool, e.g.,
when licensing limits the number of instances that can operate at the same time (common with
commercial server licenses). MTP, as currently defined, treats tools in a Black Box manner. MTP
has been implemented as part of the OZ process-centered environment.

Section 6.2 supplies brief background information on Oz. Section 6.3 introduces a tool modeling
notation for specifying the category and special requirements of the tool; this notation extends O2’s
previous facility, but could readily be adapted to other PCEs with some notion of tool declaration.
Then we present our main work in Section 6.4, covering the general ideas, persistent tool sessions for
four different categories of tools, an extension of the Oz client/server architecture for managing MTP

99

tools (intended to be adaptable to other client/server or peer-to-peer architectures), the protocol for
interaction between a process or task management engine and executing tool instances, and finally
the structure of the tool wrappers themselves (we will use the terms “envelopes” and “wrappers”
interchangeably throughout the paper). Then Section 6.5 describes four tool integration experiments,
one for each of our categories. We discuss related work in Section 6.6. The paper concludes by
summarizing our contributions and outlining future work.

6.2 Oz Background

Oz [27] is a process-centered environment framework. It represents both product (project artifacts)
and process (workflow status) data using a home-grown object-oriented database management com-
ponent, with a separate objectbase for each instantiated process. An object may contain zero or
more file attributes, each typed as either text (ASCII) or binary. The value of a file attribute within
an objectbase is a file system pathname into a “hidden” file system specific to that objectbase, not
intended to be accessed except through Oz. Non-file attributes include the usual primitive values
(strings, integers, etc.), containment of child objects, and references to arbitrary objects elsewhere
in the same objectbase.

Oz’s Shell Envelope Language (SEL) [86] is typical of current Black Box enveloping facilities,
which typically involve some scripting language.2 The process engineer (or environment builder)
writes what are essentially UNIX sh, esh or ksh scripts, using added constructs that a translator
expands into regular shell commands to handle the details of interfacing between the tool and the
environment framework. An SEL envelope is associated with each task activity. After parameters
have been bound and other preliminaries completed, O2z’s process execution service directs that the
named envelope be invoked on the arguments specified by the encapsulating task, including literals
and/or object attributes. When the envelope terminates, it returns a status code and (optionally)
result values to the process engine, at which point the pending task assigns the result values to
objectbase attributes and performs various operations based on the envelope’s status (typically
indicating success versus failure).

The mechanisms described above are implemented within a client/server architecture, one server
per instantiated process, as shown in Figure 6.1. Tool envelopes are forked by clients. The server
sends envelope names and arguments to the client responsible for that activity, and then handles
other clients in a first-come-first-served manner until the tool completes and the results returned by
the client arrive at the front of the server’s request queue.

The figure shows the main components of an Oz server: Inter-Process Communication (IPC)
with its clients, Object Management System (OMS), Software Process Manager (PM), Transaction
Manager (TM), and the “glue” that holds them together as well as performing multi-client scheduling
(labelled Control). The clients have limited knowledge of object management (om) and process
management (pm), and of course also include an interprocess communication component (ipc); the
activity manager (am) is responsible for managing tool invocations. XView and Motif graphical user
interfaces are supported, as well as a tty command line interface (not shown in figure). The various
components are drawn as “jigsaw pieces” to denote numerous connections among components as
opposed to, say, a purely layered architecture. See [31, 21] for additional details.

6.3 Tool Modeling

Assuming both SEL-like enveloping and a new MTP protocol are available, the process or other task-
oriented execution service needs to specify which tools require which protocol. In principle, every
tool could be invoked via the new MTP protocol, but we retained SEL for Oz (or the equivalent
facility for some other system) as the default because we believe that MTP is complementary to

2SEL and many of the other Oz facilities mentioned in this paper were originally developed for our earlier system
called MARVEL.

100

Figure 6.1: Original Oz architecture

SEL on a per-tool basis: together, they address with greater specificity the peculiarities of diverse
families of applications, and the choice allows minimization of overhead balanced across a number
of factors (see Section 6.4). In general, we believe an approach to integration based on multiple
enveloping protocols is likely to achieve the greatest generality.

In the Oz implementation, the tool declaration notation has therefore been modified to include
the new portion shown between square brackets (“[...]”) in Figure 6.2, which is optional and may
be omitted for SEL (some but not all of these fields are meaningful for SEL, as explained later, but
defaults are assumed if they are not provided by the process engineer). Note each tool declaration
is represented as a subclass of the built-in TOOL class; running tool execution instances are viewed
as instances of these subclasses (although they are not currently reified in Oz’s objectbase).

The new fields have the following meanings:

e path: indicates the pathname in the file system where the tool’s envelope resides (or the tool’s
own binary executable, since an envelope is not always needed for tool initialization when using
our MTP protocol, depending on the_details of the tool). For example, an envelope might
prompt the user for tool parameters not managed by the environment (such as a database
volume).

e host: an Internet address, given when it is necessary to run the tool on a specific host because
of some restriction (perhaps due to pragmatic licensing issues).

e architecture: used to indicate the machine architecture and/or operating system on which
the tool (and its corresponding envelope) is expected to run. When the host is not specified,
the system refers to the architecture specification and separate environment instance-specific
configuration information, to determine a corresponding default machine on which the persis-
tent tool (and its envelope) will be invoked.

e instances: This specifies the maximum number of copies of the tool that can execute at the
same time (0 means there is no upper limit). Independent of licensing issues, this could be
used to bound the system resources allocated to a heavy-weight tool in all its instantiations.

101

<tool-name> :: superclass TOOL;

[protocol : (MTP, SEL) ;
path : <string> ;
host : <string> ;
architecture: (sun4, ...) ;
instances : <integer> ;

multi-flag : (UNI_QUEUE, MULTI_QUEUE,
UNI_NO_QUEUE,
MULTI_NO_QUEUE) ;
]
<activity-name> : string =
"<envelope-name> <parameters locks>";
<activity-name> : string =
"<envelope-name> <parameters locks>";

end

Figure 6.2: Modified tool definition notation

e multi-flag: This determines the behavior of MTP in managing the interactions between
multiple human users and a persistent tool instance. We distinguish among four categories of
tools, with respect to their single-user versus multi-user and single-tasking versus multi-tasking
capabilities, through the cross-product of two orthogonal dimensions:

— UNI versus MULTI: MULTI (multi-user) indicates that the same instance of the pro-
gram can be gshared by several users, whereas UNI (single-user) allows only for isolated
work of each user on his/her own executing instance of the tool;

— QUEUE versus NO_QUEUE: where concurrent (overlapping) execution of multiple
activities with respect to the same tool instance is supported for NO_QUEUE (multi-
tasking) but not for QUEUE (single-tasking).

It may seem counterintuitive to think of these dimensions as orthogonal. In the case of
MULTI_QUEUE, i.e., multi-user and single-tasking, multiple activities on behalf of different users
can share the same tool instance, but only one actually controls it and views the user interface
at a time, in “floor-passing” fashion. For UNI_NO_QUEUE, i.e., single-user and multi-tasking,
multiple activities can execute simultaneously in the same tool instance (perhaps in distinct
“buffers” or other tool-specific contexts — the tool need not be implemented using multi-
threading or parallel processing technology), but all must be on behalf of the same user. The
four cross-product cases are explained by relatively generic examples in Section 6.4.1 and
correspond to specific experiments elaborated in Section 6.5.

Each of the declarations following the brackets specifies the name of a activity together with the
file name of an envelope, distinct from the one that started up the tool (if any). The activity-specific
envelope is invoked whenever the corresponding activity is submitted to the persistent tool. There
are likely to be several qualitatively different activities that can be performed using the same tool,
so it is expected that multiple activity /envelope mappings would be listed in the tool declaration.
If so, multiple instances of the same activity or several entirely different activities can be submitted
to the same persistent tool execution. Formal parameters and locking information are also listed
(transaction management is outside the scope of this paper, see {14, 105]). The envelope specified
by the associated task handles the passing of arguments back and forth to/from the environment’s
repository as well as the details of interaction with a tool that is already running.

102

These declarations appear in identical form in SEL specifications, but in that case each envelope
invokes a distinct tool instance to perform the activity (and envelopes may be grouped into the
same tool declaration for abstraction reasons, without necessarily employing the same external
application program). We made no changes at all to Oz’s process definition facilities other than
the tool declaration notation, and our approach is intended to be orthogonal to the environment
framework’s mechanisms for workflow definition and performance.

6.4 The Integration Protocol

We adopted what we call a loose wrapping approach, as opposed to the tight wrapping currently
effected in Black Box enveloping schemes. The latter relies on complete encapsulation of all of
the tool’s actions inside a single envelope, whereas the former is instead based on control of the
tool’s behavior (from the viewpoint of the PCE), with the enveloping facility intervening only as
the need arises during workflow execution and/or upon detection of some external event relevant to
the environment. A typical example of the former is when the initiation of a process step (either
automatically or through an environment command selected by a user) requires the tool to perform
some work, and of the latter when a tool action saves some files that should be recorded in the
environment’s repository.

Control, as opposed to encapsulation, provides a means for long-lived and intermittent dialogue
between external tools and the environment; meanwhile, the tools continue their execution effectively
detached from the environment framework. Tight wrapping, on the other hand, governs all phases
of a tool’s execution, from the moment of invocation to termination; to perform multiple activities
using the same tool, it must be explicitly and repeatedly instantiated (even if on behalf of the same
user) each time an activity is assigned to the tool.

Our approach may be viewed as combining the advantages of conventional Black Box enveloping
and event notification systems like Field and YEAST [198], where tools execute persistently but the
server’s concern is only for events of interest to other tools and there are no separate “environment
commands” or “workflow” that control tools. The Forest extension of Field manages the propagation
of event notifications among tools according to “policies” [79], analogous to Oz’s process management
services, and Provence is implemented on top of MARVEL (124, 108], the predecessor of Oz, but
neither has any means for requiring satisfaction of task prerequisites. These systems also do not
address one of our foremost requirements, to integrate multi-user tools, and few message buses are
concerned with groupware or even support multiple users per bus. Buses internal to PCE frameworks
such as ConversationBuilder [130] and ProcessWEAVER [67] are exceptions.

Once we established loose wrapping as the overall principle on which to base our design, we
analyzed the major capabilities needed to implement our tool modeling facilities (described in the
previous section). We divide these functions into two categories: those generally concerned with
Black Box integration — i.e., the abilities to invoke and terminate an instance of a tool on demand,
to parameterize that instance according to the corresponding process task, to transform objects
from/to the environment’s representation to/from that required by the tool, to support and display
the I/O flow between the wrapped program and its user(s) — and those abilities especially necessary
given the nature of the four tool categories of interest (i.e., the cross-product of UNI vs. MULTI
and NO_QUEUE vs. QUEUE):

1. Limit the number of co-existing (executing) copies of a given tool according to the specifications
set out in the tool’s declaration, and to record and service previously unsatisfied requests as
soon as possible;

2. Exploit the persistence of MTP-tools, in order to share a given instance among multiple users
— possibly emulating partial multi-user capability for programs not usually employed for
groupware;

3. Coordinate overlapping requests for access to an instance of a persistent tool from separate

103

OPEN-TOOL tool [session]>
<MTP-activityA> <argumentsA> <session>
<MTP-activityB> <argumentsB> <session>

CLOSE-TOOL <tool [session]>
Figure 6.3: Tool session template

users, to avoid deadlocks and starvation on the one hand, and of unintended concurrency of
several activities for programs that do not support any form of multi-tasking on the other; and

4. Record results of intermediate steps of the tool’s processing, during the execution of each single
activity.

To fulfill these requirements, we have introduced several extensions to O2z’s process management
services. Analogous extensions could be made to other environment frameworks.

6.4.1 Tool Sessions

To encompass both serial and concurrent access to a tool instance, we introduce sessions, which
define the life-span of a persistent tool. A session normally begins with an OPEN-TO0OL command and
ends with a CLOSE-TOOL command, as illustrated in Figure 6.3. A session’s body is made up of a
set of activities, denoted MTP-activity in the figure, determined dynamically as the users carry out
their work within the environment. Note that although the activities are listed in sequence, they
could potentially overlap (for NO_QUEUE tools).

tool could refer to any tool declared as MTP. The session identifier distinguishes among si-
multaneously executing instances of the same persistent tool, so that multiple users can choose to
participate in a particular session opened by another user (for MULTI tools). Both arguments are
selected from menus. Users can ask to join an existing session (if there are any) by clicking the
corresponding automatically generated session identifier when issuing an OPEN-TOOL command, or
request a new session as shown in Figure 6.4. The current implementation does not provide any
support for access control, e.g., specifying which users are permitted to, or are required to, join a
particular session. There is also no support for providing parameters for tool initialization from
within the environment, which is less limiting than it sounds since the process steps that trigger
incremental interaction with the tool usually provide arguments from the environment’s repository.

Leaving a session is achieved with a CLOSE-TOOL command applied to a session where there
are still other active users. In this case, the CLOSE-TOOL does not kill the tool instance, but only
changes internal information about the association between the user and the session. Termination
of the program follows the CLOSE-TOOL command of the last participant.

Besides setting the duration of a specific tool instance and providing a context for sharing an
application, sessions are central in several other functions supported by our MTP protocol. For
example, they implicitly operate on what we call the Session Queue of a tool. This feature allows us
to satisfy the constraints posed by the instances field of a tool declaration, accordingly limiting the
maximum number of copies of the program that can be active simultaneously. (Such a restriction
could be violated due to tool instances executing completely outside the environment, resulting in
tool invocation failures.) When OPEN-TOOL is issued, the system first checks whether the request
is satisfiable given this constraint. If the limit has been hit, the request is not serviced, but is
recorded in the Session Queue; when an already running session is terminated, the next queue entry
is extracted and automatically initiated (the user is effectively notified when the user interface of
the tool pops up on his/her workstation monitor).

Our design also allows for a special case where it is possible to use a persistent tool without
being compelled to issue the OPEN-TOOL and CLOSE-TOOL commands every time, via an implicit

104

local bin
interface 0zZ_proto proxy.c

[(Proxy.h

Figure 6.4: Oz MTP Interface

105

atomic session that consists of only a single activity. Atomic sessions are instituted by the system,
transparently to the user, when a user intends to perform an activity associated with an MTP tool
but has not previously opened or joined a session. In that case, an implicit OPEN-TOOL command is
automatically executed and the new tool instance is marked as atomic by the environment, so that
no other activities (or OPEN-TOOL/CLOSE-TOOL commands) can be directed to it. When the activity
finishes, the tool is shut down automatically.

Our sessions idea leads to a number of questions on how different users could, practically, par-
ticipate in the same session of a persistent tool, thus exploiting the same resources and the collected
state of the executing tool. In our MTP design, we stressed the facets intended to accommodate in
a natural way those applications that are inherently designed for collaboration, or — a more am-
bitious goal — to exploit in a multi-user context those tools that, even if not commonly employed
in that manner, the environment builder considers adaptable to and promising for collaborative
activities.

Our four categories of tools provide a flexible solution to these problems: the valid values of
the multi-flag field within the tool modeling specifications represent and enforce in the protocol
four working models, intended to cover as widely and as precisely as possible the behaviors and
requirements of various classes of persistent tools.

UNI_QUEUE is the most basic category: with it, we intend to accommodate applications that
are strictly single-user and that could not adequately support concurrent operations deriving from
simultaneous MTP activities. Therefore each instance of such a tool is reserved exclusively to the
user who requested it in the first place, via an OPEN-TOOL command, and the body of the session is
made up of a simple sequence of activities that are never permitted to overlap.

The most significant difference between MTP’s UNI_QUEUE and SEL is that multiple operations
can be sent to the same copy of the tool, under the control of the process engine, by exploiting the
newly introduced concept of Activity Queues: each UNI_QUEUE session is associated with an Activity
Queue, which holds in first-come-first-served order the activities waiting to take control of the tool
instance.

Consider, for example, a drawing program with a relatively long start-up time (e.g., it may load
numerous fonts during initialization). Rather than force the user to wait several seconds to bring
up the tool for each of the increasingly detailed data flow diagrams the process directs him/her to
construct as part of a design document, the tool is invoked once and then this executing instance
is reused for each separate diagram. This model assumes the tool provides interactive commands
to load and store particular diagrams in the file system or a database, as most drawing programs
do. Each activity begins by loading an existing diagram, indicating that a clean slate is needed, or
simply expanding on the most recently loaded diagram, and ends with storing that diagram, with
arbitrary tool-specific commands in between.

UNI_NO_QUEUE is intended to satisfy more complex integration requirements and to allow for more
operational flexibility. Again, each tool instance is reserved for just one user, but the full exploitation
of the inherent multi-tasking (or multi-context) capabilities of the tool is supported, by directing to
the tool multiple simultaneous or overlapping activities.

One case is a multi-buffer text editor, where the user can easily switch among buffers with an
interactive command; perhaps two or more buffers can be shown at the same time. A programmer
might be part way through editing a particular source file when he/she realizes that it would be
useful to cut and paste some code from another file, and modify the copied code, rather than type it
in from scratch or call that other code as a subroutine. And while looking at this other source file,
the programmer decides to make some changes to it, too, which may entail loading into the editor the
header file(s) it imports, and so on. The process dictates certain obligations, such as recompilation,
static analysis, and/or code inspection, for each edited file, perhaps somewhat different process
segments depending on file type (source vs. header vs. documentation) and/or on whether the
programmer is the “owner” of that file. Thus the editing of each file must be treated as a separate
activity by the process, while at the same time it is useful to load the files into different buffers of a
single executing instance of the editor rather than bring up a separate instance for each file.

If a tool is not inherently multi-user (as is the case for most current tools), but is declared

106

MULTI_QUEUE, only the most rudimentary form of sharing is possible: different users are allowed to
join the same session, and therefore to access the same executing tool instance. But they must
“take turns” (if they happen to issue requests that overlap in time): they are forced to wait in the
Activity Queue until the previous activity is finished. Note that users whose requests are placed in
the Activity Queue may still execute other process steps — or decide to abort and try again later
(Oz’s XView and Motif interfaces allow a user client to context-switch at will among in-progress
process segments, and many other environments do likewise). Albeit limited, this form of sharing can
be usefully exploited in various collaboration scenarios, for example, by multiple users committed
to take care of different sequential stages of the same complex, long and composite process task, in
which all must employ the same external program. One can then think of the MULTI_QUEUE tool as
a semi-permanent environment service for these users.

Any interactive tool could, in principle, be supported by MTP as a MULTI_QUEUE tool. But it
would not always be particularly desirable or useful to do so. Imagine declaring an electronic mail
tool as MULTI_QUEUE. Then one user might read and respond to one incoming message, another user
the next message, a third composes a new outgoing message, and so on. But such an activity sequence
seems unlikely to be part of any practical software development process. Instead, MULTI_QUEUE is
intended primarily for tools that build up a substantial in-memory state and that — under normal
usage — support a sequence of activities that depend, at least in part, on the state constructed by
previous activities and on the efforts of distinct human users (or user roles).

One example might be a Lisp-based application that generates natural language, say for a user
manual, from a knowledge representation constructed during the requirements analysis and func-
tional specification phases of the software process. A sequence of human-directed procedures are
generally needed to turn the internal structure into prose appropriate for the end-user of the system
under development. A software analyst might initiate the work, perhaps interleaved with activities
performed by programming and/or quality assurance personnel, to be polished off by a technical
writer and reviewed by a customer representative. Each user begins his/her activity where the last
left off, with the tool’s user interface automatically redirected among user display devices as another
user takes over. The different user roles bring different kinds and levels of expertise to bear on pro-
ducing the finished document. Note that while it is certainly possible to develop a knowledge-based
assistant that saves its relevant state in the file system between steps, allowing separate invocations
for each user, a given tool is not necessarily constructed that way. Further, even if such were avail-
able as an option (e.g., a Lisp image might be saved on disk), the heavy-weight start-up overhead
might be best limited to a single invocation per process segment rather than once for each activity.

The MULTI_NO_QUEUE class was conceived to accommodate inherently multi-user systems, taking
into account their architectural and functional peculiarities. MTP ensures in this case that every
OPEN-TOOL command issued by some user in the context of the same session maps to the instantiation
of a portion of the same multi-user system (e.g., a client in a client/server architecture), which is
assigned to that user.

While MTP is in charge of directing users’ process-determined activities to MULTI_NO_QUEUE tools,
it is the intrinsic multi-user nature of these applications that defines whatever sharing and concur-
rency control policies are necessary to operate in the multi-user and possibly collaborative context.
The transparency or visibility among user-controlled components with respect to their activities and
data depends solely on the nature and the purpose of the tool, which may support collaboration (in
a groupware application) or enforce isolation (in a conventional database management system). The
integration protocol, per se, is not concerned with these issues.

An interesting MULTI_NO_QUEUE case is a process-centered environment, itself treated as a tool.
The controlling PCE might specify the process at a relatively coarse granularity, e.g., coding and
unit testing an individual module would be represented as a single task and integration testing of a
subsystem as another. The controlled PCE (i.e., the “tool”) might assist the users in carrying out
the finer details of such tasks, e.g., editing, compiling, constructing test harnesses, and debugging
would be separate steps triggered by the code-and-test task. (We have explored elsewhere the
advantages of integrating higher level and lower level process definitions [127).) We assume here
that the controlled PCE is itself designed and implemented as a multi-user system, e.g., following a

107

¥ user client

user client

7 3
$
$
$

$
&
$
§
§
$
$
$
N
$

§ xmove
$

watcher F e
“\'“‘““"“"m"""""'m,, P
g o Control | TM

4,
0, e
""llllllllfllllllll““
B

\

pael we=slp
activity — omqﬁ

queue PM o
— ipc

Figure 6.5: New Oz architecture

client /server architecture as in Oz, to allow teamwork within each coarse-grained step as determined
by the finer-grained process. The two PCEs may or may not be distinct instances of the same system.

6.4.2 Architecture

The implementation architecture is necessarily specific to Oz, but we anticipate that a similar
approach would apply to other multi-user process-centered environments. We divided O2z’s clients
into two categories, new prozy clients (or just proxies) and the original user clients.> Proxy clients
introduce into the architecture a new kind of long-lived entity, with the role of spawning, managing,
and achieving the integration of persistent tools. User clients are always associated with human
users of the system, who invoke and exit them at will, and therefore they cannot be relied on to
support the life cycle of a persistent tool instance. The Oz server persists indefinitely but provides
process execution and object management services and most aspects of tool management discussed
in this paper, but is intentionally not directly involved with tool invocation (in part for performance
reasons, see [22]).

In our design, the session management commands (OPEN-TOOL and CLOSE-TOOL) are issued by
user clients on demand by human users and executed by the appropriate proxy client, installed on
the machine determined by the host or architecture data in the MTP TOOL declaration and, if
both fields are null, then on the same machine where the Oz server is running. Subsequent activities
submitted to the same tool may be initiated from a user client’s user interface, but are delegated
to the proxy client. The same proxy manages all persistent tools executing on the same host (with
respect to activities managed by the same Oz server).

Proxy clients do not need to interact directly with any human operator, so no user interface is
needed. However, they must manage the user I/O to/from persistent tools. This involves redirection
of simple textual I/O between the tool and the user client, and more significantly the ability to
display the tool’s own graphical user interface (GUI) on the user’s display. Most inherently multi-

3Proxy clients and user clients were initially referred to as Special Purpose Clients and General Purpose Clients,
respectively [226].

108

user tools are able to dispatch private instances of their user interface to each user, but for other tools
(e.g., originally single-user tools extended by MTP to a modest form of groupware) we exploited
the public-domain zmove utility [215], which transfers the GUI of a tool across workstations and
X terminals. Resetting the X Windows DISPLAY variable would be insufficient, since the GUI
instance has to start on one display device for one user, then move to another for a second user, etc.
without reinitializing the tool. (Note our implementation is inherently limited to those GUIs based
on X Windows.)

Another job assigned to proxies is to spawn, manage, and communicate with auxiliary programs
called watchers, each of which operates in the temporary directory for a tool instance and “notices”
any files created or updated by a tool. These files are mapped to activity arguments according
to a configuration file constructed by the envelope. The files can then be transferred back to the
environment when the activity is completed.

The new proxy client, here supporting MULTI_QUEUE operation for a single persistent tool, is

depicted in Figure 6.5. The internal composition of a proxy client is nearly the same as a user client,
except there is no user interface and an additional component handles watchers, activity queues and
other aspects of persistent tool management (the unlabelled piece of the proxy client in the figure).
The same proxy client may manage multiple persistent tools, in which case there may be multiple
activity queues — one for each UNI_QUEUE or MULTI_QUEUE tool.
_ Besides the capability for the same tool instance to handle multiple activities, another major
difference between a SEL-like protocol and MTP’s UNI cases, at least with respect to environment
frameworks similar to the Oz architecture, is forking of the envelope and, indirectly, the tool by
a proxy client — often not on the same machine as the user client — which could result in
unnecessary communications overhead. MTP could easily be modified to default to a proxy on the
same machine as the user client, and even some of the user and proxy client functions could be
merged so that a separate proxy would not be needed when host and architecture specifications
are not supplied and/or match the user client machine.

6.4.3 Envelope Execution

The most significant remaining issue that must be resolved to complete the design of our new protocol
is the way in which the execution of envelopes is accomplished, in the manner of the loose wrapping
concept. A typical MTP activity execution steps through the sequential phases listed below:

1. A reservation phase, in which a tool session is acquired on behalf of the activity and its
associated user. This is carried out according to the session mechanism explained above.

2. An initialization phase, in which the objects/files from the environment are made avail-
able to the tool and any other parameterization functions are performed. We have employed
for this purpose a standard envelope template, which accepts as its parameters: pathnames
corresponding to file attributes in O2z’s object management system; the path to a dedicated
temporary directory that is created when the tool is started up and within which it normally
operates; and some additional information used for internal housekeeping. The filename of
this envelope is given by the tool declaration in its envelope-name field.

The envelope is forked by the relevant proxy client, which sets up UNIX pipes for communi-
cation. The first job of the shell script is to copy the files into the tool’s dedicated directory,
thus making them visible to the tool; then any series of shell commands can be inserted, to
perform whatever customization is necessary; finally, via the pipes, a sequence of text messages
is sent to the proxy, to be displayed to the user in a pop-up window. These messages may
include the values of primitive attributes from Oz’s objectbase, and are intended to direct
the loading of the files from the temporary directory into the memory of the application and
otherwise instruct the user as to what to do. For example, the text presented in the window
might indicate the command line or the mouse action that the user should enter to get started
on the activity, although the details of performing the work are usually left to the user’s own
creativity and expertise.

109

Although we would have preferred a totally automatic loading procedure, as accomplished by
SEL, that it is hardly possible given the inherent restrictions of the Black Box model: MTP
tools are already running before the execution of any activity envelope, and therefore cannot
be initialized according to the individual activities. Moreover, we cannot assume any special
facilities on the part of the tool for simulating user input; redirecting “stdin” is generally
insufficient for GUI tools. However, the envelope, via messages to the pop-up window, may
still provide assistance and guidance to the users in a practical and convenient manner.

A Grey Box variant of MTP would overcome this drawback, since the tool’s programmable
facilities could act in collaboration with the envelope, producing and exchanging messages
interpreted as directives to be executed by the tool. (Some Grey Box experiments have been
conducted using SEL; see Section 6.5.2.) In the White Box case, this issue can usually be

avoided entirely.

3. An operation phase, which includes free use of the tool with all its features, including manip-
ulation of the loaded data. There is no restriction on the use of the tool, because it is accessed
directly and not through any intermediary. The only requirement of the MTP protocol (that
cannot, however, be enforced in the Black Box case) is that the execution must not be ter-
minated through the tool’s own internal command, menu button or procedure, but only via
the environment’s CLOSE-TOOL command. In addition, both MTP and SEL assume that users
do not access the “hidden” file system sereptitiously, e.g., loading files into the tool outside
the workflow, although there is nothing beyond an obscure organization and naming scheme
(witness the filename the user is asked to type in Figure 6.9) to prevent them from doing so.

4. One or more data recording phases may interleave with other actions, whenever the user
saves temporary results of the work he/she is performing (the tool updates the copies of the
files kept in its own temporary directory, and not those internal to the environment). Such
events are monitored by the proxy client’s watchers. A table of updated files is maintained in
the proxy and used in the next phase.

5. The conclusion of the activity, at which point control of the tool is released (with respect to
this activity). The user is required to designate the activity’s completion as either a success
or a failure, via corresponding buttons in an MTP-specific extension to Oz’s activity man-
agement window (see Figure 6.9). The data resulting from the execution is stored back in the
environment only if the user considers the activity successfully completed.

SEL expects the envelope to automatically capture the return code of the tool after the user
decides to close it, but in MTP the tool remains indefinitely active; therefore the only means
of ending an individual activity is to let the user decide when his/her work is finished and to
provide a way to communicate this fact (and how to handle the results) to the envelope. Other
differences are that SEL file updates are permanent, regardless of the success or failure status:
actually, SEL may return any value in a range determined by the encapsulating task, each of
which will result in different obligations following that task. A similar facility could be added
to MTP.

6.4.4 Wrapper Structure

Envelopes provide a very flexible approach to tool integration. Consisting of either standard scripts
in some scripting language (as we have employed for MTP), or augmented variants of the scripting
languages that provide primitives to handle interfacing to the environment and its data repository
(as in SEL) — or possibly even written in a conventional programming language, wrappers offer
programmable facilities that can handle the different needs and idiosyncratic properties of a wide
range of external applications in a convenient and uniform way.

MTP uses two kinds of envelopes: the first is executed in response to the OPEN-TO0L command,
whereas the second operates at the granularity of the individual activity. The latter is concerned

110

#!/bin/sh
#initialize variables

SERVER_PID=-1
CLIENT_PID=-1
look if already hooked to the environment directory
FOUND=‘find . -name linkfile -print‘
if environment directory is not found
if ["x$FOUND" = "x"] #no oz_server active
then
#The 0Z environment directory is not set up
#The shell script exit with -1
echo "The 0Z environment directory is not set up properly" \
>> /tmp/SPC.log

exit -1;
else

#Change to the 0Z environment directory

cd linkfile

#test whether there is a server running

SERVER_PORT=‘find . -name .server_port -print‘

if ["X$SERVER_PORT" = "X"] #No server is running

then
#bring up the oz server
/u/bleecker/xi/bin/oz_server &
SERVER_PID=$!
#Record the server process id
echo $SERVER_PID>.server_pid
#Record the number of client run on the server
echo "0">.client
sleep 5

fi

#start up the client

/u/bleecker/xi/bin/gpc -x

CLIENT_PID=$!

#increase the number of clients

read CLIENT_NUMBER <.client

CLIENT _NUMBER=‘expr $CLIENT_NUMBER + 1°

echo $CLIENT_NUMBER >.client

fi

CURR_DIR=‘pwd*

trap a request to kill this OZ component and

invoke close_oz_script to take care of this task.

trap ’/u/bleecker/xi/Rivendell/Mtp/mtp/close_oz_script \
$CURR_DIR $CLIENT_PID; exit 1’ 2

wait

Figure 6.6: Example initialization script for a multi-user client/server tool

111

#!/bin/sh
$1 tool_directory
$2 oz client process id
echo "Close the client and server!\n" > &2
read CLIENT_NUMBER < .client
if [$CLIENT_NUMBER !'= 1]
then
CLIENT_NUMBER=‘expr $CLIENT_NUMBER - 1°
echo $CLIENT_NUMBER > .client
kill -9 $2
else
read SERVER_PID < $1/.server_pid
kill -9 $2
kill -2 $SERVER_PID
#take care of the garbage
rm $1/.client
rm $1/.server_pid
fi

Figure 6.7: Example termination script for a multi-user client/server tool

mainly with preparing and loading the data that must be processed by the program during the
associated activity; the former is used to perform customization of the tool, in order to present it
to the user(s) in the correct state, in relation to the characteristics of the system and the work
model indicated by the multi-flag specification. This kind of customization script is usually very
simple — no more than a few lines of straightforward shell commands — but sometimes may
be quite complicated, accounting for complex interactions with the environment through watchers,
and sometimes even for the invocation of other auxiliary (usually simpler) scripts that perform
supplementary bookkeeping or actions in response to particular states of the application. An example
of an intermediate case is shown in Figures 6.6 and 6.7; note the latter shows the contents of the
auxiliary close_oz_script invoked by the former.

In the case of the Oz implementation, the envelope writer must be a relatively skilled shell
programmer with some knowledge of the purpose and the functions of the wrapping protocol to be
able to easily set up the scripts. The burden might be lowered somewhat if MTP were to extend the
scripting language with special-purpose primitives, perhaps somewhat different sets to accommodate
each of the four work models. However, the experience gained with SEL shows that even with such
primitives the scripts are not exactly trivial, since the intrinsic specificity of the application programs
necessitates ad hoc treatment for each case.

Language extension would be useful mainly to abstract and parameterize those operations that
must be carried out in a repetitive manner for any application; this seems more plausible with
the data interface between the tool and the environment, rather than with the adaptation of their
reciprocal behavior. Consider the example shown in Figure 6.8: some of the shell commands, those
marked with the comment # always, must always be present in any MTP activity-related envelope;
others, indicated by the comments that contain the words FILE parameters, are needed to handle
certain types of incoming data, and are similar but not identical in all the envelopes. These two sets
of commands together contribute to preparing the data involved in the activity.

The other shell commands, marked by the # tool-dependent comments, are concerned with
operating the tool towards the goal of the task at hand. It is clear that in the general case the size
and the complexity of this last set is dependent on the wrapped application, of the supported work
model and, especially if a lot of direct interaction with the user is necessary, of the activity to be
performed. In contrast, the former two sets are relatively independent of all these factors; hence it

112

#!/bin/ksh

#input parameters:

$1 tool dir. <====- MTP additional parameter

$2 C file === NOTE: FILE parameter

$3 compile status Cmmmmm Literal

$4 compile log file <----- NOTE: FILE parameter

$5 C file proto <====- For later extension to match

$6 local project tag <----- SEL editor envelope functionality
$7 EnDoFAtTrSEt <===== marks end of arguments from process
$8 task identifier === MTP additional parameter

$9 client identifier <----- MTP additional parameter
LOGFILE="/tmp/ForkLog" # debugging code

echo "start up enveloper” >>$LOGFILE # debugging code

cp $2 $4 $1 # copy all FILE parameters into the tool dir.
CFile=‘basename $2° # for all FILE parameters
CompileFile=‘basename $4° # for all FILE parameters
CPath=‘echo $1/$CFile* # for all FILE parameters
CompilePath=‘echo $1/$CompileFile* # for all FILE parameters
F_LIST_DUMMY=$1/filelist_tmp # always
F_LIST=$1/filetable # always

touch $F_LIST_DUMMY # always

echo $9 $8 $CFile $2 >> $F_LIST_DUMMY # for all FILE parameters
echo $9 $8 $CompileFile $4 >> $F_LIST_DUMMY
for all FILE parameters

echo $F_LIST_DUMMY >>$LOGFILE # debugging code
FOUND=‘find $1 -name filetable -print°® # always
if ["x$FOUND" = "x"] # always
then # always
mv $F_LIST_DUMMY $F_LIST # always
else # always
F_LIST_CAT=$1/merge_list # always
cat $F_LIST_DUMMY $F_LIST > $F_LIST_CAT # always
rm $F_LIST_DUMMY # always
mv $F_LIST_CAT $F_LIST # always
fi # always

echo \#xxx\#TYPE: CTRL-xf $CPath
tool-dependent : load code file
if [$3 = "NotCompiled"] # tool-dependent
then # tool-dependent
echo \#***\#TYPE: CTRL-x 2 .
tool-dependent : display new buffer
echo \#**x\#TYPE: CTRL-xf $CompilePath

tool-dependent : load compiler logfile

fi # tool-dependent

Figure 6.8: Example activity script for a multi-tasking tool

113

would be easier to invent scripting-language extension facilities to express them.

However, it would also be possible (and desirable) to define some ad hoc constructs for use
in those tool-dependent statements that communicate to the user the actions that he/she should
perform, e.g., to carry out the loading of activity arguments into the tool instance, during the
initialization portion of an MTP activity. In Figure 6.8 these messages are implemented simply
with echo commands prefixed by a common string (#***#); the output is redirected through pipes
maintained between the envelope and the proxy client that initiated it, and the proxy is in charge
of displaying the messages to the user in a pop-up window. One could certainly imagine more
sophisticated facilities for guiding the user.

6.5 'Tool Integration Examples

To test the facilities described in the previous sections, we have used several available in-house
applications and off-the-shelf tools. The purpose of these tests was to gain confidence in the viability
of the new MTP protocol, and in particular to challenge its ability to accommodate a wide range of
variability in the nature of the wrapped applications.

Therefore, we have tried to define the degree of integration that can be reached and to identify
limitations (either based on the characteristics of the tool category under examination, or specifically
to the adequacy of our support to the single cases) or unresolved problems we need to address during
future development. The applications we used as examples were:

e idraw as a UNI_QUEUE tool, where activities are queued for one-at-a-time execution (the same
user may submit activities from multiple Oz clients, and the user interface is transferred among
workstation monitors as needed);

e emacs as a UNI_NO_QUEUE tool where steps are not queued but may overlap (typically on a
single monitor);

o A Lisp-based natural language processing system called FUF as a MULTI_QUEUE tool, where
steps are queued for one-at-at-time execution (and the user interface is transferred among users
participating in the same session as needed); and

e Oz itself as a MULTI_NO_QUEUE tool (that supplies its own clients for multiple users).

6.5.1 UNI_QUEUE: idraw

idraw [228] is a popular public-domain drawing tool, commonly used to develop pictures and di-
agrams stored in a postscript form. It provides an intuitive graphical user interface employing a
well-known paradigm based on mouse movement and menu selection to operate on a virtual can-
vas shown within an X window. idraw is intended to be single-user; although it supports multiple
buffers, we ignore that feature here, and treat the system as if it were necessary to save the current
document before loading a different one. This limited use of idraw serves as an example of the
category of programs where such restrictions are inherent. From our point of view, idraw presents
some additional features of interest since it fulfills our definition of heavy-weight tool: there is a
relatively long initialization time following its invocation.

In our experiment, we employed a distinct activity, parameterized by a file attribute from Oz’s
objectbase, to construct a complete diagram or to allowing editing of an existing diagram stored in
that file, with the details of the drawing left to the creativity and expertise of the user. That is, a
activity’s envelope sends a message to be displayed in a pop-up window, telling the user to load a file
with a particular pathname, and briefly instructs the user regarding the purpose of the drawing to be
constructed for that file. The user is responsible for using idraw’s normal command to later save that
file, prior to announcing the conclusion of the activity. This accounts for a simple interaction model

4idraw takes about 15 elapsed seconds to start-up on a Sun SparcStation 10 workstation.

114

that is common practice in the use of such kind of tools; however, it would alternatively be plausible
to invent activities and corresponding envelopes to operate at a much finer level of granularity, for
example, “select the line icon and insert a vertical line two inches to the left of the triangle”, but
we doubt this would be useful (except perhaps as part of a tutorial in the use of a system devoted
to the management of graphic documents).

The construction of the corresponding wrapper, and of wrappers for most UNI_QUEUE applications,
is actually very simple: the only tool-dependent statements are aimed at instructing the user on
how to load the input file and (optionally) on what he/she must do with it.

A few words are in order regarding our intentionally restrictive use of idraw: we had some trouble
finding a good candidate for the most basic UNI_QUEUE category, among the interactive tools we had
on hand for testing (SEL seems adequate and completely satisfactory for non-interactive tools, such
as compilers, that must be restarted for each new set of arguments anyway); idraw on the other hand
seemed to have many of the properties that we were looking for in a UNI_QUEUE candidate. However,
we recognize that it would normally be deemed UNI_NO_QUEUE, because of its intrinsic multi-buffering
capability (see Section 6.5.2). Further, one could imagine employing idraw in a multi-user context,
where one user starts a picture and others add to and finish it, analogous to the work mode] in
Section 6.5.3, in which case idraw could even be designated MULTI_QUEUE.

Given all of the above, one may have the impression that perhaps the UNI_QUEUE category is not
really necessary. However, we expect that environment builders will discover cases where they intend
a tool to be used in a certain restricted way within the workflow, and enforcement of UNI_QUEUE
would prove useful.

In general, UNI_QUEUE appears suitable to deal with those applications that do not present any
multi-tasking capability and do not seem particularly adaptable to multiple users, but are most con-
veniently handled as persistent tools. The main advantages of persistence for this class of tools, and
the most valuable improvements introduced by MTP’s loose wrapping compared to tight wrapping
as in SEL, is the reduction of start-up overhead (since the tool need be invoked only once) and the
user can run ordered sequences of activities on the same instance of the program without losing its
internal state.

6.5.2 UNI_NO_QUEUE: emacs

emacs [216] is one of the most readily available and widely used text editors; its sophisticated func-
tionality and features make it a very useful tool, which nearly reaches in itself the status of a single-
user programming environment. All of its commands are expressed with sequences of keystrokes,
augmented with mouse pointing and selection; its latest versions also support menu selection, at
least for its main features. One of the most useful properties of emacs, and one of the most im-
portant for us with respect to this discussion, is its buffering capability. This enables the user to
operate simultaneously on multiple files, keeping several buffers in the background and switching
among them on command. Coupled with the ability to split the display and hence show more than
one of the buffers, this feature is of great use to perform complex and incremental editing sessions
that involve as many different data sets as needed.

Many users would prefer to use emacs in the natural fashion available outside a process-centered
or otherwise task-oriented environment framework, which is to create and kill buffers, load and
save files, and cut and paste among buffers/files, as the urge arises during perhaps very long work
sessions.® emacs demonstrates the most obvious limitation of conventional Black Box wrappers —
that is, all arguments must be supplied on the command line at tool start-up — in which some
peculiarities of the application do not fit well with the protocol’s design and are left unsupported,
but it is nevertheless possible to integrate the program in some form.

MTP’s UNI_NO_QUEUE class allows for overlapping multiple activities that involve loading various
buffers of the same executing emacs instance with the desired files for the user’s editing sessions.
MTP then employs watchers to allow mapping of each modified file to the corresponding activity

5The second author has been known to keep the same emacs instance running for months, obviously persisting
over numerous and often unrelated tasks.

115

Buffers Files Tools Edit Search C-node Help

d rule de
translat
e, one .d

tool obj

O ntp_editi{t_main.c)

Figure 6.9: MTP Activity Initiation

and hence discriminates what file attributes must accordingly be modified inside the environment
at the end of the activity. The use of a pop-up window during the initialization phase of each
activity, and extensions to the standard activity window to indicate completion, effectively isolates
the overlapping activities, in the sense that their data flow and status with respect to the on-going
process are independent.

In our experiment, we employed individual activities, parameterized by file attributes, to edit
programming language or documentation files; the details of the programming or writing were the
concern of the user. That is, an activity’s envelope would display a message on a pop-up window
telling the user to load the file with a given pathname, as shown in Figure 6.9, and perhaps briefly
explain to the user the purpose of the code or prose in that file (not shown in the figure). Rather
than simply asking the user to edit, the envelope might instead request the user to repair the syntax
errors found during the last compilation — by sending a file containing those error messages to
another buffer as part of the same activity.

The complete script of an emacs wrapper of this kind is shown in Figure 6.8; it performs the
loading of a C source file together with the results of the last compiler run, if unsuccessful, to display
the generated error messages. Again, the user must give emacs’s normal command to save the source
file. He/she may choose to indicate that the completion of the activity has been successful, by
committing changes to the environment’s repository via the Good (success) button in Oz’s activity

116

ntp_editl(t_main.c)
dirty(test)

compile(t_main,c)

MODIFIED: t_maln.c
86/02/27[18:30] xi compile
/n/bleecker/u/bleecker/xi/Rivendel1/Mtp/../shared/cproto -Dsund4 -Iincludes
/n/bleecker/u/bleecker/xi/Rivendel1/Mtp/hfs/1024-1055/1052#10454#F 1 1esitt_main.c/

_main.c >
/n/?1eeche;/u/b]eecker/xi/Rivandel1/Htp/hfs/1024—1055/1052#1045ﬂf11asﬂt_-ain.c/t
_main.c.h.in

. /envs/compile_local.env{159]:
/n/bleacker/u/bleecker/xi/Rivendell/Mtp/../shared/cproto: not found
./envs/compile_local.env{169]): ../shared/config_files: not found
./envs/compile_local.env[170]:
/n/blesckar/u/bleecker/x1/Rivendell/Mtp/../shared/gen_proto: not found
gce -Dsund -g -¢ -#all -pedantic -ansi -Iincludes -in: t_main.c
~out:t_main.c.o

compile successful, view results with viewErr

Figure 6.10: MTP Activity Completion

window. Then the workflow may automatically continue to other tasks, as illustrated in Figure 6.10,
where MTP and SEL activities may be arbitrarily intermingled in a single process fragment. Or the
user decides not to save his/her work, by selecting the Bad button (failure), which has the effect
of withdrawing whatever intermediate saves were performed during the work and noticed by the
watchers. As with idraw, we did not consider finer-grained activities such as “add a new floating
point variable to function f and initialize it to pi”, but the implementation supports them.

A previous attempt to extend OZz’s enveloping mechanism had focused on emacs as a test case,
and tried to resolve the problems posed by the desired incremental data exchange with the en-
vironment. This previous attempt exploited a facility not provided by most tools: an extension
language. emacs’ extension language, called E-Lisp, allows users to define their own new functions
and commands, and thus customize emacs to their applications.

Ad hoc E-Lisp functions were coupled with an augmented version of SEL, to effect a Grey Box
integration, where the environment could perform loading of additional files into the same emacs
instance at any time and discern which files had been updated. No special effort was required by the
user, in contrast to the attention he/she must pay to MTP’s pop-up window. This was achieved using
one wrapper for the entire session, which dealt with addition of new buffers as new activities were
submitted, rather than using a separate wrapper per activity. There was a major drawback to this

117

approach, however: only one final status result could be returned to the environment, when emacs
and its wrapper terminated, and all files were effectively recorded into the environment’s repository
at this same moment. In other words, it was not possible for the process to treat separately the
different sets of data acquired throughout the work session — a central feature of MTP.

Later during the development of MTP, we looked at E-Lisp again to pursue Grey Box integration.
Ad hoc E-lisp functions implemented a direct interface between emacs and the watcher utility,
and also completely automated the initialization phase of the activities. The conclusion phase,
particularly the choice of the success or failure return status for the separate activities run on
the same instance of emacs, is still an explicit responsibility of the user even under this paradigm.

In general, UNI_NO_QUEUE appears appropriate for tools with some internal multi-tasking, multi-
buffer or multi-context capability, but still not particularly useful or desirable for multi-user access.
The main advantage of persistence for this class of tools is that the user can run partially ordered
activities on the same instance of the program, without losing its intermediate state information, and
possibly allowing for sharing or splicing (cut-and-paste) of intermediate results. Cut-and-paste can
be intentionally directed among activities directed by the process, or even within a single activity
that simultaneously presents multiple file arguments to the tool, in either case with the envelope’s
messages to the pop-up window instructing the user what to do. Note there is no means for prevent-
ing, from the environment, user-initiated cut-and-paste once the tool is designated as UNI_NO_QUEUE.

6.5.3 MULTI_QUEUE: FUF

FUF is a sophisticated unification-based tool running on top of Lisp and is used, among other things,
in natural language processing research for the generation of sentences from corresponding syntactic
data structures [59]. It defines hierarchical procedures that apply in sequence one or more separate
layers of unification rules to its input structures — as well as to the new structures produced by
each step of the procedure — in order to obtain as output all the valid surface forms, under the
constraints posed by the language rules. FUF is a typical Lisp-based interpreted application, in that
it that supports various kinds of interactive tracing facilities and has the option to test and execute
various data and program files, by loading and swapping them on the fly. As with most interpretive
tools, it maintains sufficient information in memory to reflect the progress of its elaboration through
the series of commands issued to it since start-up. Moreover, like many query systems constructed
on top of Lisp, there is a long start-up time and it engages a considerable amount of system resources
(notably main memory and swap space) and thus qualifies as a heavy-weight tool.

One of the main reasons for this choice as our exemplar MULTI_QUEUE tool is that it is easy to
imagine a scenario in which, in order to process some data with FUF, multiple unification procedures
are needed, each of which is the responsibility of a different member of a development group. Our
paradigm could facilitate the testing and execution of the various phases of the project through a
(modest) form of groupware: sequentially, each developer would load into FUF its own program,
run it on the appropriate data and refine it as much as needed, and produce at the end an output
that is also the input for the next step, also leaving the system in the correct state to begin the
following activity. MTP moves the user interface among the users as they take their turns. The final
outcome of the overall workflow would be produced by a single instance of the system and as the
result of the collaboration of several users. Analogous collaborative work models could be applied
to other programs, which outside the MTP framework could not be employed in this way. We have
recently used the commercial FrameMaker word processing system in MULTI_QUEUE style; although it
supports multiple buffers, it does not provide machinery for multiple users and thus GUI movement
support is needed.

The envelopes we devised for this case study are devoted to loading within the memory of FUF
a specific unification program, and to handle the correct system configuration for it, by asking the
user to type the appropriate Lisp commands. The user might know little, if anything, about the
configuration issues involved: he/she needs only to follow the instructions appearing in a pop-up
window, since each envelope is specialized towards a separate portion of the group work. After this
initial customization, the user is left completely free to query FUF and interact with it in the typical

118

fashion of Lisp-based interpretive applications. Any files produced as result of these operations may
be imported into the objectbase when the success choice ends the activity, as described above.

From a general point of view, the MULTI_QUEUE category allows the reuse of single instances
of such computationally expensive programs throughout a series of activities. Another important
point in favor of supporting this class is that the information retained in the tool’s memory space
(and not necessarily persistently on disk) represents both the current state of the system and the
history of its past performance, and is generally necessary for generating the answer to new queries.
This makes even more valuable the ability of the MULTI.QUEUE work model to support applications
with long-duration work sessions that go beyond any individual process step, and to ensure common
access to them to any set of users. ’

The most relevant consequence of the creation of this category is indeed that, by exploiting
Activity Queues and the zmove facility that achieves passing of control over the user interface
among users involved in a session, it allows us not only to conveniently integrate a vast and peculiar
family of tools, but also to actually modify at the same time their intrinsic single-user nature and
extend their use along the serial groupware lines described above. We consider this as one of the
most interesting and meaningful results of this work.

6.5.4 MULTI_NO_QUEUE: Oz

We decided to use Oz itself as a testbench for the MULTI_NO_QUEUE category. The main reasons for
this choice were the familiarity we have with Oz as a complete multi-user system and the in-house
availability of the application in a ready-to-run state. Oz, as a typical client/server system (and
unlike most applications based on peer-to-peer architectures), poses, in the most general case, the
problem of treating differently the OPEN-TOOL command initiating a session, when it is necessary to
start-up both the tool’s server and a client, from those subsequently issued to join the session, which
obtain further copies of only a client. Conversely, the last CLOSE-TOOL command in a session must
deal with shutting down the tool’s server. Moreover, since one can optionally employ a daemon that
automatically starts up the Oz server with the first client and automatically shuts it down when the
last client exits, Oz can also be used to simulate the behavior of non-hierarchical architectures, which
do not need special treatment for the activation of its first and termination of its last components.

The intrinsic difficulties of dealing with these issues were solved in the context of the envelope
indicated by the path field of the tool declaration and invoked by the OPEN-TOOL command. The
designated envelope is invoked exactly once per session for all other categories of tools, but in the
case of MULTI_NO_QUEUE is invoked separately for each user who joins the session — and thus
must be able to, internally, distinguish its first from its subsequent invocations with respect to the
same persistent tool. O2z’s initialization envelope is shown in Figure 6.6; this envelope handles
the shut-down of Oz’s server by invoking the auxiliary script given in Figure 6.7. MTP, with its
MULTI_NO_QUEUE class, is therefore able to support a generic multi-user tool, by forking and providing
copies of the program to every participant in a session, as required by its structure.

MTP could easily be extended to allow for two distinct initialization envelopes in the MULTI_NO_QUEUE
case, or in all cases — so that the first user to join a session and all subsequent users may be treated
differently (of course the two scripts may be identical if no distinction is needed for the particular
tool). Similarly, MTP could be extended to handle yet another separate envelope triggered by the
CLOSE-TOOL command, or a pair of envelopes distinguishing between the last user to leave a session
and all previously exiting users.

During our experiment with Oz, we devised MTP activities that perform operations within an
in-progress workflow {the process state as well as the product data is persistent across sessions as
well as tasks and activities within a session). Some wrappers instruct the user, with the usual pop-up
messages, on how to use Oz’s GUI to browse the objectbase, inspect the process definition task set,
etc.; this could be useful for training new users. More significantly, it is also simple to ask users
to initiate specific Oz tasks, or sequences of tasks. Alternatively, the MTP activity might simply
instruct the user(s) as to what is to be accomplished, and leave it to the user(s) to determine how
best to achieve that goal within the process supported by the MTP-invoked Oz instance (not to be

119

confused with the MTP-invoking Oz instance)

This raises the possibility of an Oz meta-process that controls one (or more) Oz process(es),
effecting a form of hierarchical workflow system. This could potentially address a certain limitation
of Oz as a PCE, namely that relationships among tasks within a process are formed only with respect
to satisfying local constraints, the task prerequisites and obligations, and there is no global topology
or “grand view” [127]. However, that grand view could feasibly be defined by the meta-process, by
directing the workflow among abstract or at least aggregate tasks, while each MTP-invoked process
itself directs only the workflow among concrete, perhaps primitive tasks, effectively filling in the
details left out of the meta-process. The meta-process hierarchy could be elaborated to arbitrarily
many levels, not just two. Further discussion of this idea is outside the scope of this paper.

There are some important differences between the integrations of collaborative tools, like Oz,
and non-collaborative tools, which must be taken into account when considering the capabilities of
the MULTI.NO_QUEUE work model. In the non-collaborative case, by definition each user is intended
to be isolated from the rest and data access conflicts among overlapping argument sets are sporadic.
In the case of data from the environment’s repository, conflicts may be resolved before the arguments
are passed to the tool by some concurrency control mechanism provided by the PCE; Oz, by default,
implements conventional atomic and serializable transactions composed of individual or multi-step
tasks [105]. When an external repository specific to the tool is employed (e.g., a database volume),
the tool is assumed to have its own intrinsic concurrency control facilities.

In the collaborative case the issue of shared data becomes more problematic, even though most
of the multi-user machinery is necessarily offered by the wrapped tool itself. A simple example is
that of a multi-user editor [51] invoked in the context of a groupware activity: the program itself
permits and is able to deal with concurrent modification of its internal data, but from the viewpoint
of environment’s data repository it is necessary to support a concurrency control policy that allows
multiple writers of the object containing the edited file attribute(s); this is achieved in OZ by defining
and loading application-specific concurrency control policies, written in a notation [102] that permits
definition of extended transaction models including “cooperative transactions” [118]. Concurrency
control, per se, is not in the strictest sense part of the wrapping facility, but is nevertheless essential
in order to fully integrate this class of tools. Further discussion of this topic is outside the scope of
this paper.

6.6 Related Work

As we pointed out in the previous sections, tool integration is of central importance to every effort
to build efficient and practical software engineering support systems; therefore many studies have
concentrated on defining and exploring the meaning and the dimensions of the term integration as
applied to environments. Wasserman [230], for example, identified five different kinds of integration:

¢ Platform: concerned with interoperability among tools, achieved through the use of a common
set of system services;

¢ Presentation: stress on members of a toolkit giving the same “look and feel”, via common
GUI concepts and design;

¢ Data: sharing data between different tools and handling the data relationships among objects
produced by them;

¢ Control: monitoring the tools’ operation, and using such information to guide the develop-
ment process; and

o Process: realizing a well-defined software development process, by defining and tracking its
steps.

120

According to this categorization, the work presented in this paper would be categorized mainly as
control integration, even though guided by process.

In the attempt to fulfill the various requirements of control integration, and to overcome its
inherent difficulties, the software engineering community has developed a wide spectrum of different
approaches. Systems and methods are quite numerous, even when one decides — as we do in
the rest of this section — to neglect what is probably the largest category: symbiotic collections
of tools that (as, for instance, in the case of UNIX [133]) are sometimes claimed as environments
themselves, although they typically realize only platform integration.

Many methods embrace the White Box paradigm, with great variation among them with respect
to the amount of tool code that must be generated or modified to achieve integration. An extreme
approach in this sense is the realization of a set of custom tools, all managed by a common framework;
typical and well-known examples are language-based environments generated by Gandalf [91] or the
Synthesizer Generator [195], where usually tiny tool fragments are organized for execution in an
incremental fashion as small portions of the program are edited, or interpretive systems such as
Smalltalk [87], in which all the tools are combined together at run-time in the memory space of the
language interpreter.

For many other environments, the common framework realizing a form of White Box integration
of their toolset — focused on the data dimension — is represented by the database where the
results of all the development activities, in their intermediate and final stages, are stored and shared.
The tools are on the one hand forced to be closely related, since they must be able to use the same
data formats, and on the other hand benefit in terms of performance, because they can reuse data
produced by other utilities during previous operation. Some example databases intended for use
by environments are GRAS [135], based on an extension of the classic Entity-Relationship data
model, and Damokles [55], which employs schemas in the form of attributed graphs. Adele 2 [20]
enhances this methodology via a system of triggers connected to the state of the database, so that
data modification by one tool is recognized and may cause the invocation of others.

The idea of assigning the role of main integration principle to a common object-oriented data
repository has been employed quite widely, including by several of the projects aimed to define stan-
dards for building generic tools with a high degree of portability and interoperability, and therefore
widely reusable — although only under the standard’s specifications. PCTE [74] is probably the
best known of such standards. The goal of PCTE is to create a set of services and facilities, called
a public tool interface, complete enough to support tool implementors in very different situations
and domains; many environment prototypes and projects (e.g., [222, 36, 82]) already exploit this
facility. Another proposed standard that exploits an object-oriented repository for its integration
mechanism is the Ada-specific CAIS-A [164].

A different approach to the White Box paradigm, intended to be more cost-effective than building
custom toolsets around a given framework, is represented by the class of systems based on event
notification — whose stress is on control integration rather than data integration. Field [193]
is viewed by many as the archetype of this class of system: its basic principle is the addition of
interface modules that send and receive specialized messages to the code of generic tools (in some
cases this can be achieved by Grey Box extensions or Black Box wrappers). The messages produced
by a tool are sent to a centralized component, known as the Broadcast Message Server (BMS), to
inform it about the actions performed during the work session. The BMS elaborates them and
produces further information that is sent on to other tools, who have registered for that pattern of
message without necessarily any specific knowledge regarding the tool that produced it, in order to
coordinate their operation.

YEAST [198] is another system using a form of event notification: it also has a client/server
structure, in which the server accepts from the clients event pattern definitions associated with
action specifications. It is also able to recognize the occurrences of events in the general computer
system, such as time passage, timestamp modifications etc., or can be notified of such occurrences,
either interactively by users or automatically by tools. In response to an event recognition, YEAST
takes the actions that have been previously associated with that event.

121

Polylith [188] combines an event-driven approach with another technique in the spectrum of
White Box integration: tool fragmentation. While entire external tools can be incorporated in
Polylith, by relinking with the provided libraries that support the interface to the system’s kernel,
more often tools are identified with simpler services — or modules or subroutines — whose
structure is declared in a service database, and whose free combination and communication is used
to obtain the performance of various complex, full-fledged applications and to carry out all the tasks
supported by the environment. Further, modules are configured in a distributed fashion, and may
even be packaged up and moved among hosts during execution [189]. Many commercial message bus
products, such as Sun Tooltalk, DEC FUSE and HP SoftBench, combine ideas introduced in Field
and Polylith.

Tool fragmentation (usually in larger pieces than for the language-based editors above) is the ba-
sic integration principle of several systems, including RPDE [93] [173], Odin [43] and IDL [211] [212].
RPDE maintains tables that represent its tool fragments as the cross-product of objects (i.e., struc-
tural components that can be manipulated by applications) and roles and methods (i.e., procedural
components used to act upon objects). Odin has a very similar concept of objects and of the tool
interactions that manipulate them; it also provides a language to specify tasks and composite tools,
whose operators are represented by tool fragments and where objects play the role of their operands.
Similarly, IDL proposes a notation to define the structural and functional features of its tools, each
of which can be seen as a “building block” with a front-end for input, a composite structure defin-
ing its algorithm, and a back-end for its output. IDL declarative statements also describe how to
connect several of these components into composite tools. The same kind of notation is now used
as part of the CORBA distributed computing standard to describe data transmitted among clients
and servers [214].

Since White Box, in all of its flavors, is the kind of integration most frequently implemented
by environment builders, less work has been done on Grey Box methods. This paradigm does not
require any code modification to the tools, which instead must provide an extension language or
API, so that functions can be written to interact with the environment. Unfortunately, relatively
few applications (aside from database management systems) are equipped with features that allow
to build arbitrary functional interfaces to an environment framework. An attempt to address this
limitation is presented by Notkin and Griswold [169], who proposed a mechanism to dynamically and
incrementally extend the functionality of generic software systems, without modifying the underlying
source code.

Mediators have been proposed as a general architectural facility for integration of perhaps legacy
applications whose interfaces do not nicely fit together and cannot readily be modified to match [234].
The mediators comprise special “glue” that make whatever transformations are necessary among
relatively independent subsystems to make them work together, and often involve callbacks from the
glue code to the application or vice versa — which assumes an API on the part of at least one of
the several coupled components. This approach has been applied to large environment components
such as object-oriented database management systems [233], transaction managers [105], and process
engines [224], as well as tools.

We maintain that Black Box integration, via tool wrapping/enveloping (a form of mediation
without the explicit API and callbacks), is probably the most flexible and general methodology
since its conceptual aim is the encapsulation in the environment of external tools with no changes
to their code, nor need for other kinds of functional capabilities.

ISTAR [57] appears to be the initiator of studies along these lines. While it provided its own
development and integration toolkit to help construct new dedicated programs according to the
needs of a particular environment, ISTAR also allowed use of third-party applications, simply by
encapsulating their invocation into the code of ad hoc envelopes that provide the correct interaction
with ISTAR’s database and user interface.

As we already pointed out in Section 6.2, Oz employs shell-script envelopes to invoke the ac-
tivities of process tasks and abstractly represents external application programs as object classes in
a toolbase. Another example is offered by ProcessWEAVER [67], a commercial system embracing
Black Box integration and combining together a message bus and a process engine. ProcessWEAVER,

122

models tools as objects of class TOOL, and envelopes have the form of interpreted procedures with a
syntax similar to UNIX shell scripts. Most process-centered environments, among those that do not
rely on White Box methods, provide a system-specific enveloping language and/or exploit standard
scripting languages such as Tcl [175] or Python [231].

Many systems provide some means for off-loading the execution of tools away from where they
would “normally” run. The simplest is remote job control, such as UNIX rsh, which invokes a
program or script on a specified host. It can be used to take advantage of tools that do not operate
on the user’s machine. Some environments, such as Spice [49] and DSEE [145], automatically
distribute tool executions to other hosts on a local area network. Their main goal is to achieve
load balancing, e.g., for a large system build. These approaches seem limited to batch tools, such as
compilers, with no user interaction. Batch tools inherently do not admit sharing of a single execution
instance, except in the degenerate sense that multiple users may happen to want to compile the same
version of a file and once is enough, but are easily amenable to Black Box integration methods.

WebMake [8] may be the ultimate combination of remote job control and load balancing, whereby
tool invocations can be automatically sent over the Internet to other sites on the World Wide Web
that participate in the WebMake protocol by installing a particular program (a “CGI-bin”) in their
website. The data might reside at a remote site, or the tool might need to execute on a particular
machine architecture. Server load is considered, with the possibility of offloading to another host at
the same site or back to the originating site, with all necessary data transfers handled transparently.
Interactive tools can be invoked, but by delegating control to a resident user at the relevant Internet
site rather than sending the GUI back to the originating user. We have recently constructed a
Web-based Oz client [56], which is intended to eventually support the same kind of facility.

Various systems support some form of tool instance sharing. XTV [1] is a utility related to zmove,
but operating at a finer granularity and considerably more sophisticated. It displays the graphical
user interface of an X Windows tool to multiple users simultaneously, as opposed to one at a time,
but still only one user has control of the mouse and keyboard at any given moment. Tools may be
integrated (with XTV, not a PCE) in Black Box fashion with no modification or extensions. If we
had employed XTV instead of zmove,® then most of our MULTI_QUEUE tools could nominally become
MULTI_NO_QUEUE as far as MTP was concerned, but still lacking facilities for truly concurrent work.
Suite [52] is a toolkit for constructing shared GUIs for computer supported collaborative work tools,
where generally the tools must be modified or written from scratch (i.e., White Box). It has been
applied to a number of software engineering tools in Flecse [53]. Suite also utilizes floor-passing, as
in our MULTI_QUEUE, but with the advantage — like XTV — that all users can see the tool’s GUI
simultaneously.

6.7 Contributions and Future Work

We have fully implemented all the facilities discussed in this paper, except as noted in the text, and
support the tools we chose as test cases for MTP’s four work models. The completed experiments
— all of which run quite satisfactorily — have demonstrated the feasibility of employing wrappers
for persistent tools within a process-centered environment framework. We expect that an analogous
approach would work for integrating legacy applications into a variety of software development
environment frameworks and other kinds of integration architectures.

Further, we have introduced several useful concepts to the domain of Black Box tool integration,
including a categorization of tools into families with diverse multi-user and multi-tasking capabilities,
the notions of multiple complementary enveloping protocols and of loose wrapping, the idea of
interfacing with already-executing persistent instances of programs external to the environment,
and the ability to extend the functionality of intrinsically single-user tools to partial sharing of their
data and computational resources. The support for directing tool execution to a proxy client, when
the host or architecture field is non-empty, also extends to Oz’s original SEL protocol, since the

6We chose zmove over XTV primarily because the former was developed by another group at Columbia.

123

pragmatic problems of host licenses and platform dependencies apply even to the relatively mundane
tools (compilers and the like) supported by previous approaches to Black Box enveloping.

The MULTI_NO_QUEUE model presented here is best suited to asynchronous groupware applications,
where users enter and leave the tool as they please. There is as yet no facility in Oz to define, as part
of the process, the circumstances under which tool sessions should be automatically opened/joined
and exited/closed; adding such a feature would still allow for asynchronous groupware but more
closely couple sessions with the workflow in a manner similar to how individual activities within those
sessions are supported. We have already developed preliminary process support for synchronous
groupware, in which multiple users perform an activity together at the same time [24]. For example,
the multi-flag field, originally introduced for MTP, is now used within SEL to identify tools that
support this kind of collaboration, so that the system can simultaneously submit the activity and
its arguments to the clients corresponding to multiple designated users [21]. We have also recently
added support for either a human user or the process to delegate control over pending tasks to
alternative users [224], as opposed to machines, along with corresponding user interface support
(agendas treated as menus to select which of the enabled tasks to do next).

One interesting future direction would be to split off all tool management (for both MTP and
SEL) from the Oz server into a separate component, independent from the process engine, that
would execute as another operating system process distinct from the server, user clients and proxy
clients. This would lower the load on the server, simplify later replacement of the component within
the Oz system (if desired), and ease the incorporation of both MTP and SEL facilities into other
environment frameworks.

124

Chapter 7

Federating Process-Centered
Environments

Abstract

We describe two models for federating process-centered environments (PCEs): homogeneous fed-
eration among distinct instances of the same environment framework enacting the same or differ-
ent process models, and heterogeneous federation among diverse process enactment systems. We
identify the requirements and consider possible architectures for each model, although we concen-
trate primarily on the homogeneous case. The bulk of the chapter presents our choice of architec-
ture, and corresponding infrastructure, for homogeneous federation among MARVEL environment
instances as realized in the Oz system. We briefly consider how a single MARVEL environment,
or an Oz federation of MARVEL environments, might be integrated into a heterogeneous federation
based on ProcessWall’s facilities for interoperating PCEs.

125

7.1 Introduction

Large-scale software engineering projects are not always confined to a single organization (e.g.,
group, department or lab), or even to a single institution (e.g., in a subcontracting or consortium
relationship). A project may span multiple teams located at geographically dispersed sites connected
by a wide area network (WAN) such as an organizational intranet or the Internet. Distinct teams
may each have their own software development practices, favored tools, use different programming
languages, etc. Yet the teams may still need to collaborate frequently in real-time, i.e., operate
concurrently rather than sequentially, share part or all of their code and document base, perform
tasks on behalf of each other and/or jointly, and so on.

Note we generally use the term “site” to mean an administratively cohesive domain, in which most
(but not necessarily all) machines share a single network file system name space, e.g., cs.columbia.edu,
as opposed to either a single host such as westend.psl.cs.columbia.edu, a lab subnet within an admin-
istrative domain such as psl.cs.columbia.edu, or a campus backbone such as columbia.edu. However,
as we shall see, we sometimes use the term “site” in an alternative sense where a single local area
network (LAN) or even a single machine may be home to multiple sites — when multiple teams
happen to do their work on that same LAN or machine, respectively. That is, a site is whereever a
team does its work.

Consider, for example, several teams each responsible for a separate set of “features”, all intended
to be included in an upcoming Microsoft product release [48]. Imagine some of these teams have
been subcontracted from various independent software houses located outside Microsoft’s main de-
velopment lab, perhaps even outside the United States. Although Microsoft documents recommend
vendor processes, it seems unlikely that these teams would follow identical software engineering prac-
tices, use exactly the same tools, etc. They may not be willing to publicize (even among themselves)
their proprietary software development “trade secrets”.

There are various approaches to software development environment (SDE) support for multi-site
projects. For the purposes of this chapter, we organize these approaches along two orthogonal axes:
tightness of coupling and degree of heterogeneity. At one end of the coupling spectrum, each team
chooses its own SDE (which may happen to be copies of the same environment in some of the sites)
and there may be more or less concern with whether the different team’s SDEs are compatible with
each other.

A little further along the coupling spectrum, the teams may choose the same (homogeneous) SDE,
to minimize data conversion and supply a common vocabulary, or they may use heterogeneous SDEs
but agree on a shared data interchange format. In either of these cases, sharing and collaboration
between teams is done outside the environment — unless some special “glue” is added on top to
bind them together into a federation (i.e., a common data format alone is not sufficient for them to
work together at run-time), as explained below.

Another important intermediate range is covered when the teams share the same instance of what
we call a multi-site SDE, which distinguishes among teams (who may reside at the same or different
sites) in some way, but provides facilities for sharing and collaboration between teams inside the
environment. That is, the glue (or perhaps “cement” in this case) is part of the environment
framework itself. The degree of independence afforded each team determines the point within
the subrange. The heterogeneous version of this intermediate range consists of multi-SDEs, that
is, interacting but distinct SDEs with the glue consisting of a shared standard event notification
scheme [17] or other control facilities in addition to a common data interchange format.

Finally, the far extreme is a geographically distributed SDE that does not distinguish among
teams — all the users are treated as members of one very large team sharing everything. We
choose the terms “multi-site” and “geographically distributed” here because many SDEs are said
to be “distributed”, meaning they have multiple internal components that may execute on different
hosts on a LAN or WAN.!

1Some authors have used the terms “multi-site” and “geographically distributed” interchangeably, but here they
refer to different concepts.

126

The geographically distributed SDE end of the spectrum is analogous to distributed database
systems, where there is transparent access to distributed data, while the independent choice of
SDE end is comparable to a collection of independent databases. The database community has
also delineated an intermediate range, often termed “federated databases” [205, 190]. Federated
databases generally permit a high degree of autonomy with respect to one or both of two criteria,
schema and system: local components of a single database system with intrinsic federation glue may
devise and administer their own schema independently (known as a homogeneous federation), and/or
the local components may correspond to different database systems from among those supported by
extrinsic federation glue (heterogeneous federation) — in which case even conceptually equivalent
schemas may appear in different forms due to system-specific data definition languages.

We are concerned in this chapter with the subclass of SDEs known as process-centered environ-
ments (PCEs) [200, 34]. In general, a PCE is a generic environment framework, or kernel, intended
to be parameterized by a process model that defines the software development process for a specific
instance of the environment. The PCE’s process engine interprets, executes or “enacts” the defined
process, to assist the users in carrying out the process by guiding them from one step to another,
enforcing the constraints and implications of process steps as well as any sequencing or synchroniza-
tion requirements, and/or automating portions of the process. A federated PCE might coordinate
users from multiple teams working on collaborative tasks, inform one team when it should perform
some task on behalf of another, notify one team on completion of some task it has been waiting for
another to perform, and transfer process state and product artifacts (design documents, source code,
executables, test cases, etc.) among local components of the federation as needed for this work.

It is important to note that in both multi-site PCEs and multi-PCEs, we treat process as the in-
tegrating principle of federation. That is, the federation is intended to fulfill the semantics expressed
explicitly in the (global) process, and this has a crucial impact on the design of the federated archi-
tecture. We do not address non-process-centered SDE federations further in this report.

A multi-site PCE is analogous to a homogeneous database federation. In particular, the PCE
process model fills the role of the database schema with respect to homogeneous federation: the
local components of the multi-site PCE are identical, except that they are tailored by and thus enact
different process models (or possibly reflect different instantiations of the same process model). A
multi-PCE is analogous to a heterogeneous database federation, and similarly requires that each
separate PCE is independently (from the others) capable of interfacing to federation glue that
makes it possible for them to work together. Generally the process modeling formalism as well as
the process model are different at each site, although the process model could be conceptually the
same while expressed differently. In either case, again the process model fills the role of the database
schema, although we note that generally each PCE also supports some schema for a data repository
containing its software development artifacts and process state.

Figure 7.1 illustrates the space of approaches, highlighting the two “federated” grey areas, which
serve as the context of this chapter. That is, we are concerned with federated PCEs that exhibit
at least some degree of coupling but also at least some degree of independence, i.e., not transparent
distribution; and we do not consider completely homogeneous approaches, where even the processes
must be identical, or completely heterogeneous approaches, where it is impossible to introduce any
sort of run-time integration, and the only possible integration is at definition-time, through a process
definition exchange format, e.g., as promoted by WiMC [157].

A federated PCE for cross-organization projects should permit each team to specify its own local
process model, along with the desired collaboration with other teams through shared subprocesses,
tool sets, data subschemas, data instances, etc. Thus, a noticeable difference from database federa-
tion is that the focus here is on interoperability among heterogeneous processes, i.e., the application
semantics, as opposed to (only) heterogeneous data schemas, i.e., the data on which applications
operate.

One approach to homogeneous PCE federation, where every team runs a component of the
same multi-site PCE but enacts a different process, is taken by our Oz PCE [27]. Oz was devised
to scale up our earlier MARVEL PCE [123] to multi-process, multi-team, geographically dispersed
software engineering projects. Oz introduces an International Alliance metaphor whereby each team

127

Independent - Same or similar Multi-site SDE Geographicall
choice of SDE SDE, no “glue” or Multi-SDE distnbuted SD|

Homogeneous
federation

Heterogensous
federation

Figure 7.1: Multiple Team SDE Spectrum

autonomously devises its own local process (supported by a local Oz component that is essentially
an extended instance of MARVEL), analogous to how each country has its own local customs and
laws. A team may agree to extend its process to a small degree (and thus temporarily lose some
autonomy) in order to participate in a Treaty with one or more other teams. The enactment of
a multi-site task, defined as any task that involves interaction among the several sites of a multi-
site PCE, is called a Summit. Oz extends MARVEL with Treaties, Summits, and an underlying
inter-site communication and configuration infrastructure where each site corresponds roughly to an
instantiated MARVEL environment.

Only tasks specified in a Treaty may access data from other sites, and even then only in accor-
dance with the privileges granted by the Treaty. For example, a site may agree to perform certain
tasks requested by another site on its own local data; or a site may agree to allow another site
to perform certain tasks on its local data; or a site may agree to perform certain tasks on data
from several sites. However, each site (or team) is responsible for any prerequisites or consequences
of such tasks with respect to its own data, following its own process, just as in preparations for
and follow-ups of meetings among country leaders (the basis for our metaphor). Treaties may be
dynamically defined while the process unfolds, i.e., while computation is in progress, permitting a
degree of flexibility not found in most distributed systems.

One approach to heterogeneous PCE federation, where two or more distinct process systems are
bound together into a multi-PCE, is taken by Heimbigner’s ProcessWall [98]. Note that ProcessWall
is the external glue supporting such binding, not itself a PCE. ProcessWall could of course be used
to integrate multiple instances of the same PCE, say MARVEL, with different process models as in
Oz, but in this chapter we address only the more challenging case of using it to federate multiple
distinct PCE systems.

Heimbigner refers to ProcessWall as a process state server because it enables interaction between
the PCEs through a centralized representation of global process state that the teams agree to share.
However, we believe it is more useful to treat the mechanism Heimbigner describes as a process
task server: it may maintain the history of tasks that have already been completed, in aggregate

128

representing the current process state, but more significantly from the viewpoint of federation the
server posts those tasks that have been instantiated but not yet scheduled for enactment by one of
the participating PCEs.

In particular, each participating PCE manages, schedules and enacts its own task descriptions,
usually forwarding each description to ProcessWall only after that task has been completed, e.g.,
to allow users to exploit ProcessWall’s process state inspection facilities (part of the glue). Thus
the process remains primarily decentralized, since the actual process operation is performed by the
separate PCEs without any interactions between them or with ProcessWall while the work is in
progress. However, in some cases a PCE may send an instantiated (e.g., with data parameters) but
unenacted task to ProcessWall intending it to be executed by some other PCE in the federation,
because the sending PCE does not have the data, tool(s) or user(s) appropriate to conduct the work.

An intelligent scheduler might then be attached to ProcessWall to direct such posted tasks to
particular sites, as described in [174], or alternatively ProcessWall might be treated as a “blackboard”
(using artificial intelligence terminology [95]) from which the schedulers of the individual PCEs
participating in the federation select those tasks they are suited to perform. Any sharing of software’
product artifacts, as opposed to process state, is implicit in the data information included with
posted tasks. As in Oz, each site might autonomously devise its own process model.

Mentor [232] is similar to ProcessWall but divides the process state/task server into two compo-
nents: a worklist manager acting as a pure task server and a history manager corresponding to a pure
state server; data sharing is factored out as in ProcessWall. Note Mentor is a workflow management
system intended for business applications, not a PCE oriented towards software engineering; whether
there is any fundamental difference between workflow and process is a matter of some debate {204],
but we blur the distinction in this report. In any case, heterogeneous federation based on Mentor
would probably be quite similar to the ProcessWall model.

Process interchange formats [157, 146] support translation of a logically single process model
into the different representations of distinct process systems, but do not provide any means for
collaboration and interoperability during the process enactment by those systems. Thus there is no
true federation in the sense addressed by this chapter. However, some kind of translation facilities
are needed as part of any heterogeneous federation: Mentor transforms the heterogeneous process
modeling formalisms into StateMate charts [112], but in the case of ProcessWall only process state
is translated (or the participating PCEs might be implemented to use a common task format).

We mentioned above that process enactment by a federated PCE might involve movement of
product artifacts among teams that could potentially be distributed across a WAN. Alternatively,
all the sites might share a common centralized data repository, presumably located at one of the sites,
or even a transparently distributed data repository. Globally shared data seems most appropriate
for projects organized far in advance and involving only a single institution, perhaps with multiple
campuses. In contrast, when different institutions work together, particularly when the federations
are dynamically created and dissolved, most likely the institutions would prefer to maintain locally
at least those product artifacts produced by their local process.

This chapter discusses the architectural aspects of PCE federation and associated infrastructures,
and then justifies our architectural choices for the fully implemented (and used in our day-to-day work
since April 1995) Oz system in detail. We also explore a hypothetical Oz/ProcessWall interface.
Our investigation of architecture is strongly influenced by the fact that the main purpose of PCE
federation is to enact multi-site and global processes. For example, global processes devised using
a top-down methodology, say intended for multiple campuses of a single institution, may require
somewhat different architectural support than global processes constructed in a bottom-up manner,
e.g., for temporary multi-institution collaborations. However, methodologies for developing global
processes are outside the scope of this report.

First we present architectural requirements and the alternative architectural models we consid-
ered for both homogeneous and heterogeneous PCE federations, the latter in contrast to the former
(i-e., many of the requirements are shared and the architectures are analogous). We then elaborate
the specific design decisions and tradeoffs that were made in developing the Oz architecture and in-
frastructure that extended our earlier MARVEL PCE to a homogeneous PCE federation. We do not

129

go into detail regarding ProcessWall, Mentor, or any other such heterogeneous federation glue, since
that is properly left to their developers. Instead we briefly discuss how MARVEL, or Oz, might be
integrated into a heterogeneous federation based on ProcessWall’s process state/task server model,
to some extent synergizing the two federation mechanisms, i.e., allowing Oz to operate as a multi-
site PCEs within a multi-PCE. In both sections, the range of architectures is explored specifically
in the context of our choices for Oz. We conclude with the contributions of this work and outline
some directions for future research.

7.2 Requirements and Alternative Architectures

In both the homogeneous and heterogeneous federated models, each local site runs a component of
a multi-site PCE or multi-PCE. We refer to such a site component as a sub-environment, or just
SubEnv, even though it may operate in stand-alone fashion as a full PCE. We refer to the “glue”
that holds the SubEnvs together as the federation’s foundation, or just Foundation. Database
federation involves a similar foundational component or layer, e.g., to control global transactions,
although many classes of distributed system do not include any foundational layer beyond a basic
networking communication protocol. This section of the chapter is concerned with the function-
ality (Section 7.2.2 for the homogeneous case and Section 7.2.5 for the heterogeneous case) and
architectural design (Sections 7.2.3 and 7.2.6, respectively) of the Foundation. Recall that we are
mainly concerned with multiple sites on a WAN, generally with independent administrative domains
— although of course nothing prevents multiple sites from running on the same LAN, that is, a
multi-site PCE or multi-PCE might operate entirely within a single organization or group and each
“team” could conceivably consist of only one user (as in the Oz EmeraldCity environment we use
to support our own software development [125]). We take as given the requirement that each site
must be able to support an autonomously devised process model.

7.2.1 Local Environment Internal Architecture

Although the focus of this chapter is on federation architecture, it is useful to begin the discussion
with an overview of SubEnv internal architectures, since they have a substantial impact on the
design of a homogeneous federation; internal architecture is less germane in the case of heterogeneous
federation since, in general, each participating SubEnv may employ a different internal architecture.
As we focus in this chapter on process-centered SDEs and the impact of process on architecture,
we characterize local PCE architectures based on the degree of centralization in process enactment,
comprised of two aspects: process control and tool execution. The former refers to the function of
deciding which task to enact, when, according to process constraints/context, whereas the latter
corresponds to where and how the task gets executed, often but not necessarily via one or more
specific tools. This separation is important in PCEs because it reflects the typical separation between
the process itself and the tasks spawned by it, which may invoke external tools, take arbitrarily long
to complete, involve one or more human (possible simultaneous) users, and so on.

Although our goal was to scale up our pre-existing MARVEL PCE to support multiple teams each
sharing a potentially different process, where the teams might be connected by either a LAN or a
WAN, we identified four classes of internal PCE architecture — only one of which applies to the
final MARVEL version 3.1.1 we were concerned with. Note these are not the same classes suggested
by Peuschel and Wolf [180] and we follow a different classification scheme: Peuschel and Wolf were
concerned with the relationship between the process engine and the data repository, whereas we
consider process control vs. tool (or task) execution.

1. Centralized process control and Centralized tool execution:
This is the simplest case, where both control and execution are carried out by the same
component. An all-in-one single-user PCE such as MARVEL 2.x [119] and some compiled
process programs, e.g., written in APPL/A [219], would fit into this class. Even a client/server
system might fall into this category if the client supported only the user interface and all process

130

enactment was performed in the server. Given the multi-user multi-task nature of practical
software engineering processes, this architecture is inherently unscalable, even for a single
team.

2. Centralized process control and Decentralized tool execution:

A process server maintains the state of the process, controls its enactment, and synchronizes ac-
cess to shared resources, but the tools themselves execute at process clients. MARVEL 3.x [31],
ProcessWEAVER [67], and Mentor fit this mold, albeit in different ways. MARVEL 3.x relies
on fixed user clients to fork tools, whereas ProcessWEAVER, spawns user “work contexts”
as needed by the process. Oz local sites are somewhere in between, with one server per site
(i.e., per team), generally employing user clients as in MARVEL 3.x but also supporting “proxy
clients” that run tools on behalf of one or more users under various circumstances, as ex-
plained in {227, 209]. Mentor is similar to Oz in that user clients can connect to multiple
process servers in the federation.

3. Decentralized process control and Centralized tool execution:
Control is distributed among multiple process servers, where the tool execution function is
supported by a single component. This model supports separate process engines for each user
— as in Endeavors [35] or Merlin [201] — while sharing special computational or database
resources used in tool invocation. One can easily imagine multiple workflows accessing the
same tool management resource, particularly if only the tool broker is centralized, directing
actual tool invocation to distributed hosts as in WebMake {8].

4. Decentralized process control and Decentralized tool execution:
Here the process itself is distributed across multiple nodes, where each node is responsible for
the execution of its subprocess as well as corresponding tasks. Control flow and synchroniza-
tion between the process segments is specified locally inside the nodes. Several transactional
workflow systems, such as Exotica [5] and Meteor [116}, operate in a fully distributed manner
— by expressing the workflow implicitly in a network of task managers (which invoke the
actual tools) that interact only with their predecessors and successors in the workflow routing.

Several issues influence the choice of single-site PCE architecture. A major factor is the level of
data integration employed by the PCE for product artifacts. PCEs with extensive data integration
facilities (e.g., SPADE [10], EPOS [45]) might choose a centralized control architecture to minimize
communication between the data and process managers when disseminating tasks — unless the
data management is itself distributed, and/or the data itself is physically distributed, in which case
a distributed control architecture may be employed. PCEs with no data integration facilities might
be fully distributed in an easier manner. Note, however, that full distribution of process enactment
is not incompatible with sharing a centralized data repository; see [180].

Another characteristic that impacts the choice of local PCE architecture is whether the process
modeling paradigm employed by the PCE is reactive or proactive (termed proscription vs. prescrip-
tion by Heimbigner in [96]). Reactive enactment may be realized better in a centralized-control
architecture, as requests for enactment are directed to a single server that dispatches the service to a
client (perhaps the requester itself), whereas proactive enactment may be distributed by assigning a
priori each task to a component, with the ordering and execution constraints inside each component

— or implicit in their interconnection topology.

7.2.2 Requirements for Homogeneous Federation

We have identified the following additional requirements for the homogeneous model:

¢ Communication infrastructure.
The most fundamental functional requirement for multi-site process enactment is that the
Foundation include an infrastructure whereby the SubEnvs communicate with each other re-
garding multi-site tasks. This might be constructed directly on top of TCP/IP sockets, or

131

employ some higher level mechanism such as RPC or CORBA [172]. In any case, we are
mostly concerned with the PCE-cognizant interconnectivity layer, i.e., the Foundation, not
the underlying mechanism.

e Global process definition and acceptance.
On top of the basic interconnectivity support, the Foundation must supply means for lo-
cal processes to interoperate, i.e., to model and enact tasks that in some way span multi-
ple processes/sites and contribute to the global process. In particular, the Foundation must
have facilities to (re)negotiate and (re)define (possibly dynamically) the specifics of process-
interoperability for the relevant processes, e.g., via Oz-like Treaties.

Although a degenerate global process may involve only primitive operations (e.g., copy a
data item), we in general assume some notation to define multi-site tasks whose enactment
is controlled to some degree by the Foundation. In other words, we assume that multi-site
tasks are themselves modeled in either top-down or bottom-up fashion as parts of a global
process, with conceptually its own state and purpose. However, multi-site process modeling
and enactment is the subject of another chapter; here we are concerned with structure and
organization of components, i.e., architecture, that supports multi-site processes.

¢ Local autonomy and independent operation.

As far as purely local work is concerned, i.e., work involving the local process operating only
on local data, a SubEnv should operate autonomously and independently, and provide the
same capabilities as would a single-site PCE. It should not in any way rely on communication
with other SubEnvs, or with the Foundation, in order to perform its standard functions with
regards to defining and executing the local process. The underlying assumption is that most
of the work done by a site is local to that site, and therefore the multi-site PCE should still
be optimized towards local work.

¢ Restrict global dependencies to affected sites.

A related issue is that the SubEnv should minimize the dependencies on uninvolved SubEnvs
when executing part of a multi-site task. These two requirements are somewhat similar to
control and execution autonomy, respectively, in multi-database transaction management [138].
The local site autonomy prized in the Oz approach to bottom-up process modeling has also
been argued as necessary for top-down modeling: “A participant on a lower level [of the
hierarchy] does not want his/her management to know how a task is performed” [202]. Thus
we rationalize site autonomy as a critical requirement.

¢ Configuration awareness.
The SubEnvs must somehow be aware a priori (statically), or become aware during the course
of process enactment (dynamically), of each other’s existence, i.e., the other members of the
currently configured federation, if they are intended to directly communicate and, possibly,
collaborate. In the case where a Foundation intermediary is the conduit for all communication
and interactions among SubEnvs, the SubEnvs must at least be aware of that intermediary
and vice versa.

¢ Dynamic (re)configuration. _

Since the lifetime of enacted processes is often long, months to years, the Foundation must
allow for SubEnvs to join or leave a federation while a process is in-progress, that is, support
configuration and reconfiguration of participants in the global process. It is of course also
necessary for SubEnvs to determine or negotiate what services each can expect from other
(perhaps anonymous) SubEnvs in terms of process control, tool execution, and data and other
resources, and how to coordinate exploitation of those services, but again that is the subject
of another chapter.

e Process state survives failures.
Since processes in general, and federated processes in particular, are enacted for long durations,

132

they require facilities for persistent process state. In cases where each local PCE manages its
own product-data repository, the Foundation must also provide mechanisms for transferring
product artifacts, in addition to process state, among sites. This may involve the same or
different inter-PCE communication channels for product vs. process data, but the two cases
have to be handled separately because products typically involve significantly larger volumes
of data. For example, in a multi-site build task one site may collect code modules from the
other relevant sites and return to them copies of the resulting executables and/or libraries.
Another example is a distributed groupware task such as multi-user editing, in which source
code and/or documentation files stored at one site may need to be (simultaneously) transferred
to several other sites. In general, bulk data may be temporarily cached, permanently copied,
or migrated between sites.

e Semantics-based transaction management.

Another data-related requirement involves support for sophisticated and flexible concurrency
control and failure recovery mechanisms due to the long duration of tasks and task segments,
interactive control by users, and human-oriented collaboration among tasks and task segments
while they are in progress [139]. The explicitness of the process in PCEs makes it possible
to employ semantics-based transaction management (14, 107]. Multi-site tasks may modify
data from multiple sites, and thus require some kind of global transactional support, such as
two-phase commit that interfaces with local transaction managers. Investigation of this topic
is beyond the scope of this report, see 23, 102].

7.2.3 Homogeneous Federation Architectures

We identify five categories of architectures within the homogeneous (light grey) area of the “tightness
of coupling” spectrum of Figure 7.1. Note relatively minimal (or no) translation services are needed
in any of these categories: all the SubEnvs speak the same languages (including data formats, process
modeling notation, and tool wrapper scripts). The Foundation may perform name mappings, since
a common ontology is not assumed, but this is not its major function.

For the sake of the figures depicting the multi-site PCE architectures below we show one plausible
set of components that may comprise a local SubEnv (process, data, tool, and user interface compo-
nents), but we do not intend in any way to specify or constrain a SubEnv to follow the given structure,
and any of the internal architectures discussed in Section 7.2.1 might be employed. Further, we do
not specify any particular internal component for interfacing to the Foundation — interpret the
figures as if they all (potentially) do, to achieve federation of their various functionalities.

7.2.3.1 Ad hoc

Two or more instances of the single-site PCE are hardwired together in some ad hoc fashion for a
particular purpose. There is generally no Foundation, per se. This model obviously does not scale,
so is not addressed further.

7.2.3.2 Centralized Glue

The SubEnvs communicate and interact through a single centralized glue component that constitutes
the Foundation. As mentioned earlier, the Foundation, i.e., the federation glue, is intrinsically part of
the multi-site PCE rather than imposed externally. However, each SubEnv necessarily includes code
to interface to the Foundation, perhaps through RPC or TCP/IP socket calls originally part of native
SubEnv if the PCE was designed as a multi-site PCE, or inserted later if not. The Foundation may
perform brokerage or routing among SubEnvs, and maintain the state of multi-site process segments.

Figure 7.2 illustrates this architecture. Distributed systems with one or more central compo-
nents do not scale beyond a certain level, since the centralized component becomes a performance
bottleneck and single point of failure (i.e., if this one component fails multi-site tasks become impos-
sible). The interface aspect of the centralized glue could be expanded in several different ways with

133

SubEnv 2

i

ata :
process | product |

SubEnv 1 SubEnv 3

|

process 1 product

ata
product !

{_EI’_OCCSS 1

D — Foundation

O ~ Local component

Figure 7.2: Centralized Architecture

134

SubEnv 2

‘ [
L_GUI |

i Process

Tools

Data
process | product

SubEnv 1 SubEnv 3
GUI
1}. Process
Tools
Data D

process |product process |product

[:I — Foundation

O — Local component

Figure 7.3: Decentralized Glue Architecture

respect to the SubEnvs, analogous to the intermediary, moderated and direct decentralized cases
below. We do not discuss these options, since the variations between the cases are overwhelmed by
Foundation centralization — although as the interfaces get “larger” the central component tends
to get “smaller”, as functionality is shifted, effectively achieving a hybrid between centralized and
decentralized approaches.

7.2.3.3 Decentralized Glue

The SubEnvs communicate and interact through intermediaries, with one intermediary attached
to each SubEnv. These intermediaries collectively constitute the Foundation glue, and there is
no centralized component. A Foundation intermediary may or may not be realized as a separate
operating system process from its local SubEnv. If separate, it would usually reside “close” to the
local SubEnv, e.g., on the same LAN, but not necessarily on the same host.

However, this case is distinguished from the peer-to-peer cases below in that the intermediary
has no special knowledge of the PCE’s process-oriented functions and no access to its process model,
nor any special knowledge of its tool execution facilities, data repository, user interface, etc. To the
degree that these internal functionalities (whether or not distinguished as components) interoperate
within the federation, and thus interact with the Foundation infrastructure, they must interface to
the intermediary. The intermediaries are tightly coupled with each other, e.g., maintaining long-
term connections which permit them to share the Foundation’s global process state and work closely
together to realize the Foundation’s functionality (e.g., a distributed name service), but are loosely
coupled with respect to their SubEnvs. See Figure 7.3. From a process perspective, the interaction
between the global process and the local processes is quite limited because the Foundation has no
access to the internals of the local processes.

135

SubEnv 2

SubEnv 1

SubEnv 3

process |product

I~

T { !
- J— Tools |
— i
[Data | { Data |
Iprocess product : {process |product

D -~ Foundation

O - Local component

Figure 7.4: Moderated-peer-to-peer Architecture

Note a geographically distributed realization of the decentralized glue architecture is plausible
— with the intermediaries acting as gateways to remote SubEnvs on a WAN; the two peer-to-
peer architectures below also easily admit a geographically distributed implementation. Although
a centralized architecture might also be geographically dispersed, this seems less likely from an
administrative point of view — except possibly within a organizational intranet where the same
organization owns and controls all the relevant sites including the machine hosting the central

component.

7.2.3.4 Moderated Peer-to-Peer

The SubEnvs again communicate/interact through intermediaries, which we call moderators here,
with one moderator attached to each SubEnv. These moderators collectively constitute the Founda-
tion, and again there is no centralized component. Again there is no implication intended regarding
physical realization, the moderator may or may not be realized as a separate operating system pro-
cess from the rest of its local SubEnv. If separate, again it would necessarily reside “close” to the
local SubEnv, most likely on the same host.

Unlike the decentralized glue case, here each moderator is tightly coupled with its local SubEnv
and has intimate knowledge of that SubEnv’s process-oriented expectations regarding services from
other SubEnvs. Similarly, the moderator is cognizant of the local process model and state, tool
execution, data repository, user interface, etc., if relevant to federation. Again, to the degree that
these internal functionalities (whether or not distinguished as components) interoperate within the
federation, and thus rely on the Foundation infrastructure, they must interface to the moderator.
In contrast, the moderator is loosely coupled with respect to its peer moderators, e.g., making only
short-term stateless connections. See Figure 7.4.

This approach again seems obviously more likely to scale than a centralized architecture, but
more-or-less equivalent with respect to scaling as the decentralized glue case. However, in this
case the architecture cannot assume any shared capabilities (e.g., name services) provided by the
Foundation. In other words, it is a “shared nothing” architecture as far as the Foundation is
concerned. (Note this does not preclude sharing among internal components of the SubEnv.) On

136

SubEnv 2

SubEnv 1

Data P
process |product

~ 1 ou | _

Pn/)cess .
\
\ \\ \\\ Tools |
D . -

SubEnv 3

\
\\

Ata /
product Dpta ’

process
process | product

D - Foundation

O - Local component

Figure 7.5: Direct Peer-to-peer Architecture

the other hand, the interaction between the global process and the local processes is richer, because
the Foundation has direct access to local processes.

That is, the primary distinction between the decentralized glue case and the moderated peer-
to-peer case is that in the former the local Foundation components have no knowledge of the local
processes and manage a multi-site process imposed on the local SubEnvs divorced from their local
processes, whereas in the latter the local Foundation components have intimate knowledge of the local
processes, but without any shared global process state or common control. This reflects the tradeoft
between stronger coupling within the Foundation and weaker coupling between the local component
of the Foundation and its local SubEnv, in the decentralized glue case, vs. weaker coupling within the
Foundation and stronger coupling between the local Foundation and its SubEnv, in the moderated
peer-to-peer case.

7.2.3.5 Direct Peer-to-Peer

The SubEnvs communicate/interact with each other directly, and the Foundation cannot easily be
distinguished from the rest of the multi-site PCE. That is, the local component of the Foundation is
built into one or more of the SubEnv’s internal components, most likely the process engine; there is
no specific component introduced solely to represent the Foundation infrastructure. See Figure 7.5.
While this approach probably offers improved performance over the others described above, it is
more challenging to realize for pre-existing single-site PCEs because it generally involves significant
modification throughout the PCE code as opposed to “adding on” interfaces to a new component.
Thus scaling is restricted for software engineering rather than distributed computing reasons.

7.2.4 Choice of Homogeneous Architecture

The choice of federation architecture for homogeneous multi-site PCEs depends largely on two
concerns:

137

e

1. The paradigm chosen for modeling and enacting federated processes.
2. The style, design and implementation of the local SubEnv framework.

Regarding multi-site or global processes, we distinguish between two major paradigms, top-down
and bottom-up, although of course hybrids are possible. Top-down refers to a process broken down
through multiple levels of granularity each corresponding to subsequently smaller organization units,
as in the enterprise-level to campus-level to department-level to group-level of the Corporation
metaphor [207]; this is analogous to a global transaction in federated databases [186]). Bottom-
up refers to interoperability among possibly pre-existing local processes, as in Oz’s International
Alliance metaphor, without a global overseer (unfortunately, the kind of distributed computing
scenario where the Byzantine Generals problem arises — although consideration of fault tolerance
in the face of malicious behavior is outside the scope of this work). We do not consider here which
of the two paradigms is more appropriate for various applications (see [28] for such a discussion),
but rather which architecture best supports each of the paradigms — particularly the bottom-up
paradigm, since one of our major goals was to link pre-existing single-site MARVEL processes.

In order to support top-down global processes, the federation must support maintenance of global
process state. This suggests a glue architecture, particularly centralized but also decentralized, where
the Foundation manages the state. In contrast, bottom-up federation can naturally be realized on
top of a peer-to-peer architectural style, again in one of two possible ways, namely the moderated
or direct peer-to-peer architectures. In other words, we make a primary distinction between top-
down vs. bottom-up process interoperability, and a secondary distinction between the architectural
realization of each style. In general, bottom-up interoperability is more scalable than top-down, as
in any other distributed system, but introduces process-related problems in our context such as lack
of explicitness of the global process.

The association of top-down processes with glue and of bottom-up processes with peer-to-peer
architectures is not exclusive, however. It is potentially feasible, for example, to realize a top-down
process using a peer-to-peer architecture, but it is likely to be inefficient and harder to realize because
of the needs to distribute the global process state among the loosely coupled intermediaries and to
manage shared information over a shared-nothing architecture. It is probably easier to realize a
bottom-up process using a glue architecture, provided that administrative barriers (regarding access
to private process state at remote sites) can be relaxed or overridden.

Let us now consider the impact of the local SubEnv architecture on the choice of federated
architecture. One factor stems from the degree of openness and extensibility of the process control
and tool execution components (the data repository is also of concern, but those issues are not
terribly different than in other federated database applications, so we concentrate here on PCE-
specific matters). In particular, peer-to-peer architectures demand tighter integration at the process
control and task/tool execution levels, between the local SubEnv and its Foundation component,
than glue architectures. This is possible only if the local SubEnvs provide suitable application
programming interfaces (APIs) for extending these functionalities — which would usually suffice
for moderated peer-to-peer. Or, alternatively, if the SubEnv source code can be internally modified
— which would by definition be required for the direct-peer-to-peer, assuming the PCE was not
originally implemented as a multi-site system. (We know of none that were, e.g., multi-site Oz was
realized by adapting the single-site MARVEL 3.x PCE.)

Another important factor that impacts mainly peer-to-peer architectures is the degree of cen-
tralization of the SubEnv internal architecture. SubEnvs with centralized (local) process control
naturally lend themselves to a direct-peer-to-peer federation architecture, where the Foundation
infrastructure is built into the local process engine — which becomes the conduit to communicate
with other SubEnvs; communication via a centralized tool manager is also conceivable. Fully de-
centralized (local) process enactment, in contrast, seem better suited to a moderated-peer-to-peer
architecture since there is no one component that stands out as the focal point. Instead, a new mod-
erator component is attached to the SubEnv as a whole and communicates with each of the other
local components as well as with its peer moderators. However, a direct-peer-to-peer architecture is
not inconceivable for decentralized SubEnvs; see [229].

138

To summarize, the above categories represent different degrees of (de)centralization of the Foun-
dation, ranging from a logically and physically centralized architecture, to several forms of logi-
cally and physically decentralized architectures with variations in the coupling between and within
SubEnvs. Our key observation is that there is no one architectural style for federated PCEs that is
inherently superior to all others. Instead, we argue that the choice of a proper architecture depends
on the requirements of the system, and more specifically on the architecture of the local PCE and
on the federated process paradigm. This is elaborated for the case of Oz scaling up MARVEL in
Section 7.3.

7.2.5 Requirements for Heterogeneous Federation

Recall that in the heterogeneous model, each site (or team) runs a separate PCE that works together
with other PCEs in a multi-PCE joined together via the Foundation. Each site may employ a
different local PCE, selected to best fulfill its own needs or retained for historical reasons. A few
may happen to use independent copies of the same system, or local PCEs with similar architectures
and interfaces, but we cannot count on that and therefore treat each SubEnv as unique within its
federation.

We have identified the following requirements for heterogeneous federation. In general these are
in addition to homogeneous federation requirements, although in some cases we repeat the seemingly
identical requirement followed by new discussion oriented towards the special circumstances of the
heterogeneous case.

e Communication infrastructure.

The most basic function of the Foundation is to communicate with each SubEnv participating
in the federation. In general, the SubEnvs cannot communicate directly with each other since
(by definition) they were designed as independent PCE systems (although perhaps following
a “standard” Foundation interface). Realization of multi-site tasks, or fulfillment of a request
from one site for another site to undertake a task on its behalf, requires that some logically
homogeneous component is added to each PCE so that it can bind into the federation. This
component may involve quite diverse per-PCE physical implementations, e.g., to perform
PCE-specific protocol conversions and data format translations. The conceptually common
component is relatively limited, though, and in particular does not take over local process
modeling and enactment functions — since otherwise we could consider it to effectively convert
the federation to the homogeneous case.

e Federation awareness.

The SubEnvs (usually) must somehow be made aware of any federation(s) in which they
participate, possibly more than one at a time, in order to interoperate and contribute to
global process enactment. The SubEnvs need no direct knowledge of the other SubEnvs in
the federation, per se, but there must be some means whereby the Foundation coordinates
the global process, either by notifying a given SubEnv that it should or could perform specific
tasks or by posting the request to some standard forum that each SubEnv polls to choose tasks
it is able and willing to perform.

Note this does not necessarily assume that SubEnvs have some means to inform the Foundation
of pending tasks that they are unable or unwilling to do themselves: The Foundation could
itself impose all tasks, perhaps through a special process modeling and enactment system
intended to act as a “global hand” supporting some form of “superworkflow” [202], analogous
to multi-part transactions submitted to heterogeneous multi-databases.

In principle, it might be plausible for a SubEnv to perform work on behalf of a federation
without ever noticing that the heterogeneous federation exists (which would not normally be
the case for homogeneous federations). Thus an alternative is that only the Foundation is
aware of the various SubEnvs, and picks up their results through some non-intrusive manner,
such as understanding file formats of what the PCE considers internal process state information

139

(as done, for example, in [104, 183]). This alternative model operates more in the vein of a
broadcast message server, such as Field [194], where the only purpose of the Foundation is to
forward notification messages that a particular SubEnv has already performed a particular task.
This could be augmented with limited process support, as in Forest {79] and Provence [140],
to transform notification messages into requests to perform various tasks triggered by process
enactment in the Foundation.

e Data translation and transfer.

When process enactment at one SubEnv involves access to data “owned” by one or more
other SubEnvs, the Foundation must provide mechanisms for transferring product artifacts
and requisite process state among SubEnvs. As in homogeneous federations, bulk data may
be temporarily cached, permanently copied, or migrated between sites. Note that enactment
of such tasks may not be frequent in a multi-PCE, e.g., data exchange may be limited to
scheduled milestones, whereas collaborative tasks are expected to be more commonplace in a
multi-site PCE.

A homogeneous federation can assume a standard data repository, although perhaps with
differing local schemas, whereas heterogeneous federations also incur the problems of incom-
patible data formats; this is basically a distributed computing issue attacked by OMG [171]
and others through CORBA and similar layers, and not addressed further in this report.
Further, homogeneous federations assume compatible transaction management (concurrency
control and failure recovery), generally supporting a two-phase commit protocol for distributed
transactions, which may not be straightforward in the heterogeneous case. This issue has been
addressed extensively in the database community, e.g., [40], and is also not discussed further
here.

e Federation configuration.

Finally, there should be some means for configuring a federation. We anticipate this is con-
siderably more difficult and heavyweight for heterogeneous than for homogeneous federations,
and in the former case may involve substantial design and implementation to introduce a new
PCE (i.e., if it was not previously integrated with the Foundation) rather than just invoking
a pre-defined (re)configuration process. Substantial effort may be involved in introducing the
conceptually homogeneous infrastructure component mentioned above into a given PCE, and
the mechanism for doing so is necessarily ad hoc (i.e., PCE-specific).

7.2.6 Heterogeneous Federation Architectures

The three main categories are outlined below.

7.2.6.1 Ad hoc

A handcrafted federation consisting of a very small number of distinct PCEs, e.g., Bull’'s ACME (7]
integration of ConversationBuilder [130] and MARVEL 3.x. While one might be able to find a special-
purpose Foundation component in this or similar examples, we are concerned in this chapter with
general federation. There is no distinction between the ad hoc approach and peer-to-peer architec-
tures in the heterogeneous case, because by definition there is no common means for introducing
a tightly coupled Foundation moderator, or equivalent code inside the SubEnv’s internal architec-
ture, nor any general way for a moderating component to incorporate SubEnv-specific knowledge of
process and other concerns.

7.2.6.2 Centralized Glue

The SubEnvs communicate/interact through a centralized component that implements the Foun-
dation — the same architecture as shown in Figure 7.2, except that the SubEnvs may be different
(originally) single-site PCEs rather than components of the same multi-site PCE. This approach is

140

exemplified by ProcessWall. Mentor takes a similar tack, except that there may be multiple state
servers and task servers, not just one (of each).

7.2.6.3 Decentralized Glue

The Foundation is divided into multiple distributed components, i.e., intermediaries analogous to
those attached to each SubEnv as in Figure 7.3 and loosely coupled with their local SubEnv, except
that each of the SubEnvs may be a different system. There is no centralized component.

7.2.7 Choice of Heterogeneous Architecture

When a wide range of internal architectures is exhibited among the PCEs of interest, there is usually
no obvious preference exhibited for centralized vs. decentralized glue, except as in any distributed
system a decentralized approach will generally scale better; however, the extra software engineering
effort of separately retrofitting a large number of existing locat PCEs is more likely to be the
limiting factor than a central bottleneck. Thus the number of local PCEs is expected to be small.
By analogy to the discussion of Section 7.2.4, when scaling is not an issue, top-down global processes
would generally be more amenable to a centralized Foundation, and bottom-up to a decentralized
Foundation. But the case is not so compelling for heterogeneous as for homogeneous federation,
there considering glue vs. peer-to-peer, since construction of a global process using diverse process
modeling languages and paradigms is so complex as to overwhelm all other concerns.

This may be why Heimbigner proposes a third model for his process task server, a hybrid of
top-down and bottom-up: constructor PCEs post pending tasks to the shared process repository in
a generally bottom-up fashion, whereas it makes more sense for the constrainer PCEs, which remove
disallowed tasks from among those posted, to be organized top-down. That is, constructors create
newly instantiated tasks according to local process workflow, but constrainers may disallow some
tasks according to global process constraints. A distinguished constructor, effectively part of the
Foundation, might post multi-site tasks implementing a top-down global process.

The discussion in Section 7.4 considers a heterogeneous federation architecture where Oz plays
the role of a constructor (and employs its own constraints prior to instantiating a task to post);
other PCEs integrated into the same federation via ProcessWall could, of course, act as constrainers
on the posted tasks as well as additional constructors.

7.3 The Oz Homogeneous PCE Federation

Oz is the only fully implemented homogeneous PCE federation that we know of.? Oz originally
(versions 1.1.1 and earlier) followed the direct peer-to-peer architectural model, where the majority
of the Foundation functionality was built into the process engine (as elaborated in [21]). Oz was
later reimplemented (versions 1.2 and later), using a new process engine as moderated peer-to-peer
— with the Foundation moderator separated out into a component invoked via generic “callbacks”
from the process engine. We are primarily concerned with the later form of Oz in this chapter.
The overall choice of architecture for Oz follows the analysis given in Section 7.2.4. First, one
of the major requirements for the Oz system is to support interoperability among autonomous,
geographically distributed, and possibly pre-existing processes, e.g., the latter might have been
designed for a single-site MARVEL environment; we developed a utility that mechanically upgrades
an instantiated MARVEL environment to an Oz SubEnv. This requirement implies a bottom-up
approach, which in turn suggests a peer-based architectural style. However, we have constructed
both bottom-up (e.g., see [21], Appendix A) and top-down (e.g., see [125]) global processes for Oz.

2The Programming Systems Lab used a multi-site Oz environment to support all our day-to-day software develop-
ment for about two years, since April 1995, although as of this writing we are transitioning to the OzWeb extension
of Oz, which operates over the World Wide Web and supports a hypercode representation of product artifacts [122].

141

Second, Oz was developed (among other reasons) to interconnect instances of the MARVEL framework.
Since MARVEL's client/server architecture corresponds to the centralized-process-control, decentralized-
tool-execution local architecture, and MARVEL’s process engine provided no API and the source code
was handy, it was natural to adopt a direct peer-to-peer approach. Later on, OZ’s native process
engine adapted from MARVEL was replaced with the Amber process server [182], which provides an
API (and “callback” interface), and hardwires neither centralized-process control nor decentralized-
tool-execution. Amber itself was not modified at all to produce Oz multi-site functionality, as
discussed in [121].

7.3.1 Marvel and Oz Overview

Everything described here about MARVEL is also true for Oz unless stated otherwise.

MARVEL [124] provides a rule-based process modeling language in which a rule generally corre-
sponds to a process step, or task. Each rule specifies the task’s name as it would appear in a user
menu or agenda; typed parameters and bindings of local variables from the project objectbase; a
condition or prerequisite that must be satisfied before initiating the activity to be performed during
the task; the tool script with in, inout and out arguments for the activity [86]; and a set of effects,
one of which asserts the actual results or consequences of completing the activity (some activities
have more than one possible result). Built-in operations like add, delete, etc. are modeled as rules,
and can be overloaded, e.g., to introduce type-specific conditions and effects on those operations;
built-in operations can also be used as assertions in the effects of other rules.

MARVEL enforces that rule conditions are satisfied, and automates the process via forward and
backward chaining. When a user requests to perform a task whose condition is not currently satisfied,
the process engine backward chains to attempt to execute other rules whose effects may lead to
satisfying the condition; if all possibilities are exhausted, the user is informed that the chosen task
cannot be enacted at this time. When a rule completes, its asserted effect may trigger forward
chaining to automatically enact other rules whose conditions have become satisfied. Users usually
control the process by selecting rules representing entry points into composite tasks consisting of one
main rule and a small number of auxiliary rules (reached via chaining) for change propagation and
automation of menial chores, but it is possible to define complete workflows as a single goal-driven
backward chain or event-driven forward chain.

MARVEL employs a client/server architecture [31]. Clients provide the user interface and execute
tasks, usually by invoking external tools. The server context-switches among multiple clients, and
includes the process engine, object management, and transaction management. OZ is essentially
the same as MARVEL, except that an Oz environment may consist of several servers, each with its
own distinct process model, data schema, objectbase and tools [21]. Clients are always connected
to one “local” server, and may also open and close connections to “remote” servers on demand. A
server and its “local” clients constitute a SubEnv. The external view of the multi-site peer-to-peer
Oz architecture is shown in Figure 7.6.

Oz servers communicate with each other mainly to establish and operate alliances, which involves
(1) negotiation of Treaties — dynamically agreed-upon shared subprocesses that are automatically
and incrementally added on to each affected local process on the fly when the Treaty is instituted
(and automatically and incrementally removed when a site unilaterally revokes the Treaty); and
(2) coordination of Summits — enactment of Treaty-defined process segments that involve data
and/or local clients from multiple sites, with computation interleaved between shared and local
computational models (i.e., the Treaty and the local processes). We stretch the International Alliance
metaphor, since Treaties among sites precede and specify Summits rather than vice versa.

7.3.1.1 Treaties and Summits

The purpose of a Treaty is to establish a common subprocess. A Treaty consists primarily of a set
of Oz rules. These rules define intentionally multi-site tasks, where the parameters are expected to
be selected from multiple sites (i.e., distinct OZ objectbases chosen by a user via open connections

142

/""‘\

| .
SubEnv / : SubEnv
. . . I
Inter—site communication I Inter-site communication
Moderator I Moderator
|
Remote Inter- I Remote
Data Process | . Prores
Server Server | iy Srocess
| Server Server
\\ // | A /
| AN /.
|
|
|
Process
| Process
Server I Server
Process-Instantiated :
/ Environment \ : Pr(év:'e;slsr-;l::‘t::tl iated
7 - | y y
SN | AR
| Intra-site Commumcathn | | | Intra-site Communication |
| p
Server \ i Server \
) | "
@ H = |
|
client client client I client client client
| ;
I .

Figure 7.6: Oz External Architecture

143

to “remote” servers). Such tasks must be defined somewhere, in Oz’s case within one of the partic-
ipating SubEnvs. However, in general, Treaty rules are not an inherent component of any SubEnv’s
local process. Instead, the common subprocess is combined into each local participating process, in
the sense that its tasks may be synchronized with other local tasks, depend on the outcome of their
execution, and vice versa.

This is relatively easy to do with rules, the basis of Oz’s process modeling formalism, since
process enactment follows automatically determined forward and backward rule chains based on
matching a predicate in one rule’s condition to an assertion in another rule’s effect [108]. It does
not matter to the rule network construction algorithm whether the rules are included in the local
process model or added later via a multi-site Treaty.

Treaties are defined pairwise between two Oz servers at a time, which allows local SubEnv
administrators to form such agreements in a fully decentralized manner, without involving any
global authority. Still, a Treaty among any number of sites can be created by forming all the relevant
binary Treaties (and Oz provides commands to do this in one step, if the relevant administrator has
appropriate privileges at each affected SubEnv). A Treaty between SubEnvs SE; and SE, over a
subprocess SP is established when:

1. SE, issues an export operation of SP to SE,. This operation assumes that SP already exists
in SE; (either locally defined or imported from another SubEnv) and thus already integrated
within its own local process. erport also specifies execution privileges and general access
control to the exported subprocess.

2. SE, issues an import command that fetches SP from SE; and tightly integrates it into its
local process (the rules in a Treaty can be executed on purely local data, in which case they
are not in any way distinguished from the local process).

In order to control execution privileges, i.e., which site(s) can initiate multi-site tasks (e.g., due
to platform restrictions, security, etc.), both the export and import operation are parameterized
with permissions to control on which site(s) those tasks can be executed and from which site(s)
the relevant data can be fetched. That is, Treaties are not symmetric unless specified as such by
both the export and import operations. To support decentralization, Treaties may be withdrawn
unilaterally (except while multi-site tasks are actually being executed); note this requires dynamic
Treaty validation, i.e., checking that none of the affected parties to the Treaty have revoked it. Thus,
not only does the Treaty mechanism allow definition of decentralized multi-site processes, but the
(meta-)process for establishing and maintaining Treaties is itself highly decentralized.

Summits are the process enactment counterpart of Treaty process models. When a multi-site
rule (from some Treaty) is issued for enactment by a user client of its “local” Oz server, termed
hereafter the Summit coordinator, that SubEnv performs the following main steps:

1. Verify that the corresponding Treaty is valid (i.e., it has not been retracted by one of the
SubEnvs whose data was selected as parameters to the rule).

2. Evaluate the rule’s condition to determine whether or not it is satisfied. This requires fetching
all the parameters from their home sites and caching them locally.

3. If the condition is not satisfied, send to those participating SubEnvs whose data. fail their
condition predicates a request to issue local pre-Summit tasks, which involve local (hence
private) process steps on local data with local tools determined via backward chaining from
the requested multi-site rule.

4. Wait for all sites to return before continuing to the next phase. Note that if the original rule’s
condition is already completely satisfied, then the pre-Summit phase is null.

5. Execute the multi-site activity of the rule, usually but not necessarily involving data from
multiple sites (it is possible that remote parameters appear only in the condition and/or an
effect), and possibly multi-site tools (e.g., groupware).

144

6. Send to each participating SubEnv a request to update its own data affected by assertions of
the rule’s actual effect (determined according to the return code of the rule’s activity).

7. Each such SubEnv issues corresponding local post-Summit tasks determining via forward chain-
ing from the relevant assertions of the original rule’s effect, again involving only local resources.

8. Wait for all affected sites to reply.

9. Enact further related Summits, if any, reached via forward chaining to other multi-site rules
from the original Summit rule.

Thus, Summits alternate between execution of shared, global, and multi-site tasks, to execution
of private, local and single-site tasks, and effectively enact multi-site processes with minimal inter-
process dependencies beyond the explicitly defined shared subprocesses. Full details of Summits and
Treaties are given in [28].

Treaties and Summits impose several requirements on the design of Oz’s federated architecture.
First, the tight process-level integration of an imported subprocess into the local process implies
a strong coupling of the Foundation with the local PCE. The strict decentralization, even in the
definition of the federated process (using Treaties), avoids the need for a global process state (except
for the special configuration process, described in [26]), and further supports our choice of a peer-
to-peer architecture according to the issues discussed in Section 7.2.4.

Finally, Summits do not require a global process controller, but do require functional extensions
to local process engines to allow them to become Summit coordinators. Again, the peer-to-peer
architecture is favored. However, none of the above aspects indicate any preference with respect to
direct vs. moderated (peer-to-peer) approaches, assuming the process engine can be extended into
a coordinator without internal code modifications — as is the case for the Amber process server
but which would have been difficult for Oz’s native process engine. Thus this decision is likely to
be based on the lower-level architectural and implementation aspects of the local SubEnv — and,
as noted above, we have tried both models and prefer the moderated approach on modularity and
extensibility grounds.

Note that none of these concerns are specific to rules, as opposed to some other process paradigm,
except in the sense that the rule network generation algorithm makes it trivial to tightly bind
imported rules with the local process. Integration of imported Treaties into the local process for
non-rule process paradigms is more complicated, but possible, as discussed in 28] and not addressed
here.

7.3.2 Oz Architecture

The internal architecture of Oz is shown in Figure 7.7. We use the following graphical notations:
squared boxes with the widest bold lines (e.g., the Server) represent operating system processes, or
independent threads of control; squared boxes with lines with intermediate width (e.g., the Process
component) represent top-level computational components that are part of the same operating sys-
tem process as other components but are relatively independent from those components; squared
boxes with narrow solid lines are computational subcomponents; dashed-line separators within sub-
components further modularize a (sub)component into its various functionalities; shaded rectangles
within the above indicate “external” modules that extend the functionality of the basic component
(as explained below); shaded ovals represent data repositories; and arrows represent data and/or
control flow. The relative sizes of the various units are not intended to be meaningful.

Oz consists of three main runtime computational entities: the Environment Server (or simply,
the Server), the Connection Server, and the Client. In addition, there are several utilities that
convert the various project-specific definitions into an internal format that is understood and loaded
by the server; they are of no concern in this chapter.

There are three kinds of interconnections: client-to-local-server, client-to-remote-server, and
server-to-server. The first connection is “permanent”, in the sense that its existence is essential

145

e
a[npouw
rewaa,, - Y%

juauodwos
Jeuoneindwoy) — [|

K1ousodas ereq -

SEIEREORIRIRINERENORRNTEDORTNIL

(3

%

L]

oo

;puadar ;

-------------------:--:--::---:-:---::----------------------------::-:----------------r

IaSeuely
J3e10)g

10$$3301d K1ond)

J IaZeuey _
"] sseqrooy
]

| TaSeuepy
| T

WS 109(q0
_ Krowaws-—-j

| Bleq

SEYRETN

=

S~

Y
/

h

~

UOREUNWWO)) JIAIIG-IUN]D)

8
REYWETY

A

i i
: SUEl)

Auygqng

“nesarzNEIRENR

\\
—. l.\\\ - r—
) o T ——

| : _ e) So—— : :
R :] H
: | uonewu oju i DoejIdupii wonndIXy !
uor o“w_ﬂ...% 5 SR Bk M mb._mm" Ay

0 J i Kedsiqg aseqoelqQ i SUI-I|Ing % sany { 20U-PV:

|

Jojejsuel],
aseqoo,

J0je[SuRI],
BUIIYIS

| maroaq |

BUIIYOS

J0jefsueI],
uoneUIPIoo))

| xeAj0Aq
$S3201J

Iojejsuea],
$5300.1J

uommooc._nu.Lm
adopauys
J—

>

=

= |
) i

=]
mllllllllIIIIIIIIIIIIIIIIIIII

----------“

Figure 7.7: Oz Internal Architecture

146

for the operation of the client. That is, a client is assumed to always be connected to its local server,
and when such a connection becomes disconnected (either voluntarily on demand or involuntarily
due to some failure) the client normally shuts down and is removed from the local server’s state.? In
contrast, the two other connections can be regarded as “temporary”, since they are optional, and can
be dynamically reconnected and disconnected over the course of a user session without disrupting
the local operation of a SubEnv. This is a necessary feature to fulfill the independent-operation
requirement, particularly when the servers are spread arbitrarily over multiple administrative do-
mains.

An Oz (multi-site) environment consists of a set of instantiated SubEnvs, and at any point in
time none, some, or all SubEnvs may be active. A SubEnv is considered active if exactly one server is
executing “on the environment”, meaning that it has loaded the SubEnv’s process, and the SubEnv’s
objectbase (containing persistent product data and process state) is under the control of the server’s
data management subsystem (described in [144)). Typically an active environment also has at least
one active (i.e., executing) client connected to its server, because the server automatically shuts
itself down when there are no more active clients (and is automatically started up on demand by
the Connection Server, as will be explained shortly).

7.3.2.1 The Environment Server

The server consists of three major components: process, transaction and data managers, each of
which can be separately tailored by a combination of two facilities: declarative definitions loaded
from a file and “external” code modules. The process manager loads the process model (including
portions obtained through Treaty import), the transaction manager is parameterized by lock tables
and concurrency control policies, and the data manager loads the schema for the product data
and process state (currently imported rule sets must employ subschemas compatible with the local
schema, although some conversion is supported). All of these tailorings are stored in environment-
specific files; see [184] for details. The conceptually “external” code is hardwired into 0z’'s data
manager 4, reasonably independent and invoked through a callback interface in the case of the
process manager, and completely independent and dynamically loaded for the transaction manager.
We do not consider the distinction between “external” vs. intrinsic code further in this chapter,
that is the subject of other chapters.

Process Manager
The process manager is the main component of the server. Its frontend subcomponent is the sched-
uler, which receives requests for service from three entities that correspond to the previously men-
tioned interconnections, namely local clients, remote clients, and remote servers. With few excep-
tions, notably to prevent deadlocks among mutual server communications, these requests are served
on a first-come-first-served basis. The server is non-preemptive, i.e., it relinquishes control and
context-switches only voluntarily.

The session layer encloses each interaction with a server in a context containing information that
enables it to switch between and restore contexts. The context of locally executing tasks, including
those that execute as part of a pre- or post- Summit, and the context of composite (multi-task)
Summits, are represented in task data structures.

The rule processor consists of subcomponents for processing local tasks, local tasks spawned via
pre-Summit or post-Summit processing from either local or remote Summits (denoted “Remote” in
the figure), and Summit tasks. There are very few “system” built-in activities (notably parts of the
configuration process), so the behavior of a particular instantiated SubEnv is mostly determined by
the rule set that defines the process.

The built-in command processor handles all the kernel services that are available to every SubEnv.
These include the primitive structural operations on the objectbase (e.g., add and copy object),

3An extension of this model, in which clients can be disconnected from their server and continue to operate
independently to enact a process segment until reconnection, has been investigated separately to support mobile
computing {210].

4Such code has been separated out in the later OzWeb.

147

several display options and image refresh commands, access control, and the various dynamic process
loading and Treaty operations.

In the original direct peer-to-peer variant of Oz, all alliance support was hardwired. But in the
newer moderated peer-to-peer versions, Summits, Treaties and related infrastructure has been culled
out into the “external” code modules indicated in the figure.

Transaction Manager
All access to data is mediated by O2’s transaction manager. Due to the required decentralization,
each transaction manager is inherently local, i.e., it is responsible only for its local objectbase.
However, transaction managers attached to each server communicate among themselves to support
concurrency control and failure recovery involving remote objects. Oz’s transaction manager was
developed separately and has been used independent from the rest of Oz. Further details are outside
the scope of this chapter.

Data Manager
This component includes an in-memory object manager that provides uniform object-based access to
data from any system component. Objects can be looked up in one of three ways: by structural nav-
igation, by class membership, and by their object-identifier (OID). Structural and by-class searches
are requested by the query processor to service navigational and associative queries, respectively,
and by-OID lookup is used for several purposes, among them to support direct user selection of
objects (mouse clicking in the objectbase display) as parameters to rules.

The second major subcomponent is the query processor. It supports a declarative query language
interface, and is called from both the rule processor for embedded queries and directly from the user
client for servicing ad hoc queries. Queries on remote objects are handled at this level, by invoking
a server-to-server service.

The rest of data management consists of an untyped storage manager (implemented on top of
the gdbm package) that stores the objectbase contents; a file manager that handles access to file
attributes (file attributes are paths to files resident in the environment’s “hidden file system”); and
an object cache that holds transient copies of remote objects during Summits.

The data manager is tailored by the project-specific schema tied to the instantiated objectbase,
including both class- and composition-hierarchies. As in the case of rules and the process manager,
without a schema the data manager is useless since it cannot instantiate any objects.

7.3.2.2 The Client

There are three main clients, supporting XView, Motif and tty (command line) user interfaces, as
well as several auxiliary clients with no user interface intended primarily for tool execution. Each
client consists of four major subcomponents: (1) access to information about rules and built-in
commands, (2) objectbase representation, (3) activity execution, and (4) an ad hoc query interface.

The two graphical user interface clients are (conceptually) multi-threaded, i.e., a single client
can support multiple concurrent interactions with local or remote servers. This enables a user
to run in parallel several (possibly long) activities from the same client. The command interface
includes a process-specific menu and utilities for displaying rule definitions and the rule network
interconnections, all of which are stored in the client’s address space and can be dynamically refreshed
when a new process is (re)loaded or a Treaty is formed. A dynamic rule-chaining animator shows
the control flow of enacted tasks as they execute, both local and Summits.

The objectbase display maintains an “image” of structurel information, i.e., parent/child and
reference relationships, for browsing and for selecting arguments to activities. The contents of
primitive and file attributes are transmitted only when needed. Users can select the open-remote
command to display the objectbase images from other sites and subsequently select objects from
multiple sites, allowing invocation of a Summit rule. The client maintains multiple simultaneous
connections to the remote servers, and is able to direct requests to appropriate servers.

148

7.3.2.3 The Connection Server

The Connection Server’s main responsibility is to (re)establish connections to a local server from
local clients, remote clients, and remote servers. However, it does not participate in the actual
interactions between those entities; it serves only as a mediator for “handshaking” purposes. In
some cases, the destination server to which a request for a connection is made may not be active, in
which case the Connection Server is capable of automatically (re)activating the dormant server. In
other cases the desired server may be active but its address (host IP address and port number) might
be unknown to the requesting entity, in which case the Connection Server sends that information to
the requesting entity for further communication.

Unlike the Environment Server, the Connection Server is (conceptually) always active, since it is
implemented as a daemon invokable via the Unix inetd mechanism. Thus, each configured host has
its own (logical) Connection Server that supports all SubEnvs (of the same or different multi-site
environments) that reside on that host.

7.4 Oz/ProcessWall: A Hypothetical Heterogeneous Feder-
ation

A heterogeneous federation is inherently more general than a homogeneous federation. Thus it is
desirable to consider how a multi-site PCE like Oz might “fit” into a multi-PCE organized via a
process state/task server, the only specific model we know of for heterogeneous federation of PCEs.
Note the federation would presumably also include various non-Oz SubEnvs.

One approach is to drop the homogeneous Foundation entirely and employ only the heteroge-
neous Foundation for multi-site tasks. Then the homogeneous SubEnvs — i.e., homogeneous with
respect to system but heterogeneous with respect to process model — would be treated as if they
were unrelated local PCEs rather than part of an Oz multi-site PCE. Assuming that some com-
ponent is added to interface with the federation glue, this should work trivially if they fulfill the
requirement of independent operation — that is, that they do not depend on each other in any
way to perform entirely local work. In other words, in principle we could have used ProcessWall
to scale up MARVEL to support process interoperability across multiple teams, each with their own
local MARVEL environment instance. But then the main advantage of a homogeneous federation is
lost, namely the relative ease with which SubEnvs can call on each other to perform specific agreed-
upon services within the identical (and thus mutually understood) process modeling and enactment
paradigm.

An alternative approach is to allow individual (or all) SubEnvs of a homogeneous federation to
participate in one or more heterogeneous federations, while retaining the higher level of intimacy af-
forded by the system-level homogeneity when (intentionally) interacting with other local components
of the same system.

Note that SubEnvs that happen to participate in the same homogeneous federation may happen
to employ each other’s services indirectly through the heterogeneous federation, without necessarily
any knowledge that they have more direct means of interaction. In fact, through this “backdoor”
one might, in an unusual circumstance, inadvertently arrive in a situation where a SubEnv indirectly
requests services from itself without realizing that its doing so — which could potentially happen
in a homogeneous federation as well, although not in the Oz realization because the server checks
for this degenerate case.

7.4.1 Issues

Assuming a centralized Foundation in the style of the ProcessWall state/task server, the main
questions to answer are:

1. How would an Oz SubEnv post to the Foundation those tasks it has instantiated but not
initiated, and (generally speaking) would like some other PCE to perform?

149

The local task descriptor must of course be converted to the Foundation’s standard form. There
are complications regarding representation of data arguments as part of the task specification,
and later regarding data transfer when the task is enacted by some PCE participating in the
federation. Even though the task may eventually be picked up by another Oz SubEnv, this
cannot be assumed a priori (if it could, direct interaction through the homogeneous Foundation
would almost certainly be more efficient).

2. How would the Foundation notify an Oz SubEnv of the completion of such a task?
The Foundation’s relevant state must be converted to a form understood by Oz, and either
automatically transmitted to Oz by the Foundation or explicitly requested by Oz, e.g., via
periodic polling or some kind of rendezvous. When data arguments are modified during the
task, changed data must either be submitted back to the Oz objectbase, or Oz must be notified
of its whereabouts and have some means to retrieve the data.

3. How would the Foundation inform a particular Oz SubEnv that it should perform a specific
posted task?
One approach involves some kind of scheduler or other entity that selects among enabled
tasks for enactment, chooses the recipient SubEnv, and sends an appropriate request to that
SubEnv. This Foundation-generated request model is compatible with Oz’s current server-to-
server communication mechanism. In contrast, a completely new interface would be needed
to fit into a blackboard model that required each SubEnv to poll the Foundation for suitable
enabled tasks. However, a hybrid might be achieved in the style of a broadcast message server
like Field, where the SubEnv’s register their interests in or abilities to perform certain kinds of
tasks, perhaps by supplying a pattern that is matched by the Foundation against the enabled
task specifications. The application of event subscription to workflow management system
interoperability is suggested in [202].

4. How would an Oz SubEnv notify the Foundation of a task it had just completed?

There are two cases: the task was previously posted to the Foundation by the same or a
different SubEnv, or it arose entirely inside the given SubEnv (and thus is supplied only as
historic information). In the former case, the Foundation might have requested that this
SubEnv perform the task, or alternatively the SubEnv might have selected the task from
among those enabled (via either polling or registration). Note that generally it is necessary for
the Foundation to prevent multiple SubEnvs from concurrently agreeing to perform the same
posted task. Again, data transfer is of concern here in both directions.

7.4.2 Integrating Oz Tasks and ProcessWall Tasks

There are three different “levels” of task-like units supported by Oz: rule activities, full rules, and
rule chains, any or all of which could be mapped to ProcessWall’s notion of tasks. The answers
to the questions above will be somewhat different depending on which Oz unit is chosen for the
mapping.

Oz’s lowest task-like “level” is an individual rule activity, i.e., invocation of a tool script (and
thence external tool). Oz already defines a client/server protocol whereby user interface clients tell
the server to apply a selected rule to a list of objects and literal arguments; once the condition
is deemed satisfied, the server supplies the client with corresponding file pathname and primitive
arguments, and directs it to invoke the tool script specified in the rule activity; the client forks the
tool script, and the tool script or the tool(s) it invokes are assumed to directly modify the contents
of file arguments; finally, the client returns to the server with the return code from the tool script,
which selects among the possible rule effects, as well as (optional) assignments to output variables.
The encapsulating rule (and its pending chain) then continues.

It is simple to construct a special Oz client that receives the same message from the server
identifying tool script and arguments but does something different than the typical user client; in
fact, we have already introduced numerous such clients (see [209, 56, 227, 148]). Then, to implement

150

points 1 and 2, the new client would be inserted into the multi-PCE architecture between the
Oz server and the central Foundation. This client would convert the activity information provided
into the Foundation’s task representation and forward it to the centralized Foundation. Later, after
the activity has been completed, the Foundation would notify this special client, which would then
respond to the Oz server like any of its other clients. The special client would be responsible for
data traffic in both directions.

The same special Oz client (or alternatively a distinct special client) can be used to implement
points 3 and 4. The Foundation sends the task to the Oz client for that client to execute itself
using the same tool invocation facilities as any other Oz client, without involving the Oz server.
When the task completes, the special Oz client returns the results to the Foundation, again without
interaction with the Oz server. Note that some special communication facilities will be needed in
the Oz client, if the same client is used for both purposes, to avoid deadlock when the client happens
to be forwarding an activity to the Foundation to be performed by some other PCE at the same
time that the Foundation is sending a request to the client.

The intermediate task “level” corresponds to entire Oz rules, with condition and effect(s) as
well as activity. Oz servers already transmit rule definitions between themselves as part of Treaty
negotiation, and transmit the parameters and bound variables of instantiated rules as part of Summit
enactment. The newer variants of Oz introduce a protocol for transferring instantiated rules between
client and server to support delegation to and selection from user and group agendas (“to do”
lists) [121]. Rules with and without already satisfied conditions may appear in an agenda. These
facilities might be combined and extended, again through a translating client interposed between
Oz and the Foundation, to support all four points.

A complication: In the lowest level case the condition or prerequisite is already satisfied, by
definition, prior to posting the activity, but this would not in general be true in the intermediate
case. Analogously, handling the effect or consequence of the activity is the concern of only the
originally posting PCE, but again this cannot be assumed in the intermediate case. The ProcessWall
and Mentor task representations allow for predecessors and successors, but not all the constraints
embodied in Oz conditions are concerned with checking simple predecessor relationships (e.g., the
local variable bindings might find all objects that match a complex associative query and then the
condition checks that at least one of those objects satisfies a complex logical clause), nor are all
assertions made in Oz effects concerned with triggering successors (e.g., objects can be created and
deleted, reference links formed and removed, etc. through invocation of built-in operations).

One could argue for a simplification, whereby Oz’s postings to the Foundation are limited to
those tasks whose conditions and effects are solely concerned with predecessor/successor relations
that can be directly represented by the Foundation’s state and/or task model. Although Oz’s process
modeling language tends to obscure such relationships from a human-readability standpoint, they
are visible in the internal rule network compiled from the process model. Since the Foundation can
only represent such relations, by definition any requests sent by the Foundation to 0z would so
restrict the implicit conditions and effects.

A better approach might be to extend the Foundation’s task representation, or develop some
additional control channel, for transmitting the conditions and/or effects from the Oz SubEnv to
the (potentially) foreign SubEnv for evaluation within its paradigm, and vice versa regarding com-
municating any prerequisites and consequences that might be supported by the foreign paradigm to
an Oz SubEnv (and of course both issues come up between pairs of non-Oz SubEnvs as well). If
Oz were configured as a multi-site homogeneous federation where some (or all) sites happened to
also belong to a heterogeneous federation, pending tasks posted through the Foundation to another
Oz SubEnv (in the same federation) could include their conditions and effects in some opaque data
stream understood only by Oz servers.

So difficulties arise only when pending tasks posted through the Foundation involve non-Oz SubEnvs.
Fortuitously, we have already shown fairly straightforward mappings from most of the major PCE
paradigms, including Petri nets [183], task graphs [101], and grammars [127], into OZ rules, and
reverse mappings are not inconceivable. And as previously noted in Section 7.1, Mentor supports
translation from one notation into another, as does the process interchange format standardization

151

effort.

However, the general case requires substantial translation capabilities regarding data formats,
and predicates and operations over those formats. The “universal data model” problem is a well-
known unresolved, probably unresolvable issue in database research [165]. It may be possible to
address a special case of this problem with respect to PCEs, e.g., if we assume the main data
arguments are files and all attributes that might be referred to regarding task prerequisites and
consequences (rule conditions and effects in Oz) are standard file system appendages supported by
most operating systems, such as owner, read/write timestamps, access permissions, etc., or encoded
predecessor /successor relationships modeled directly by the Foundation.

The third task “level” in OZ is a rule chain, i.e., all the rules emanating from some user-selected
(or Foundation-requested) rule through backward and/or forward chaining. This seems easiest to
handle by iterating the intermediate case as the rule chain unfolds, in the Oz to Foundation case, or
incrementally sending each member of a sequence of predecessor/successor tasks, in the Foundation
to OZ case.

Note we have so far ignored the issue of specifying which PCE user should perform the work in
the case of an interactive task. Oz version 1.1.1 included process modeling and enactment facilities,
which could be revived, to delegate a rule activity to a specific user, or to one or all members of a
user group [29]. Later versions of Oz can delegate an entire rule or (rest of a) rule chain to a specific
user or any group member via “guidance chaining”, a form of forward chaining where the next rule
in the chain is placed in an agenda rather than immediately enacted [224]. How another PCE might
designate a user to perform tasks originally instantiated by Oz is of course open-ended.

7.5 Contributions and Future Directions

The main contributions of this work are:

o The elaboration of requirements and architectures for homogeneous and heterogeneous feder-
ations of process-centered environments. Both the homogeneous and heterogeneous federation
architectures we present are in line with a proposed distributed workflow reference model [229].

o The design and realization of a specific homogeneous federation architecture for Oz.

e A presentation of the issues that must be addressed to integrate Oz into a heterogeneous
federation based on the ProcessWall process state/task server (or Mentor worklist/history
manager) approach.

The obvious next step is to complete an experimental integration between Oz and the realization
of a process state/task server, assuming one becomes available. 5 It would be desirable to also
include in the heterogeneous federation at least one other PCE, besides Oz. Evaluation against the
heterogeneous federation requirements should prove interesting.

Finally, we would like to introduce greater flexibility into Oz alliances, i.e., homogeneous federa-
tions, including navigation and search among related SubEnvs both within and across alliances, easy
movement of user clients from one SubEnv server to another, and lighter weight composition and
destruction of SubEnv alliances. Note the second point presumes support for arbitrary geographical
dispersion within a SubEnv, not just among SubEnvs. Thus Oz user clients could not continue
to assume a shared network file system for accessing objectbase file attributes and communication
bandwidth may become a concern, issues already addressed to a limited extent for our Oz “low
bandwidth clients” in [209].

5We have asked Dennis Heimbigner to give us a copy of ProcessWall many times over the past few years, to no
avail.

152

Chapter 8

Flexible Process Enactment

Abstract

We present the design of a new rule-based process engine that generalizes previous systems to
support process enforcement, automation, guidance, monitoring, delegation, planning, simulation,
instrumentation and potentially other applications. Our approach is fully knowledge-based, tai-
lored by knowledge regarding the process assistance policies to be supported as well as the process
definition.

153

8.1 Introduction

A process is a set of steps for developing a software system. Different processes are needed for
different projects, organizations and application domains. Thus, a software development environ-
ment intended to intelligently assist users in carrying out any of a wide range of processes should
be knowledge-based. In particular, a process model represents the knowledge of the process steps,
their prerequisites and consequences, and any synchronization among concurrent steps, defined in
some process modeling language (PML). A process assistance system, generally known as a process-
centered environment (PCE), includes an engine that interprets a given PML and helps the users in
some way to carry out the specified process.

There are many different ways that a PCE could assist its users. It might enforce the process,
by preventing any work that did not conform to the prerequisites of the process model. It might
automate portions of the process, invoking tools at the right times with the right parameters. The
PCE could guide users towards selecting the appropriate tools and/or their parameters to accomplish
what needs to be done next, or it could plan a sequence of process steps to achieve the users’ goals.
It might allow one user to delegate one or more steps to another user, or it might simulate some or
all of a process on sample data, as part of a tutorial for educating the user about the process (or
the PCE). The actual process execution could be instrumented, to take measurements on relative
frequency of choices among alternative process steps or typical numbers of iterations of cycles (e.g.,
edit/compile/debug). Or the system might simply monitor each user’s work, to be able to inform
the users when they diverge from its knowledge of the process but without requiring conformance
(the process model might be incomplete or wrong, and needs to be changed). There are probably
several additional possibilities.

Existing PCEs generally support only a subset of these possibilities [47]. Our own MARVEL system
supports enforcement and automation [124], but not the others mentioned above. We present a de-
sign for a fully knowledge-based process assistant, where the knowledge is not limited to the process
model, but also incorporates the kind(s) of process aid required. Our new AMBER system will cen-
ter on a generalized process interpretation engine, which can be parameterized so that individual
environment instances support any subset of a wide range of process assistance options.

8.2 Motivating Example

The abstracted process model fragment shown in Figure 8.1(a) involves a code change during software
development in the C programming language. The fragment starts when a header file is reserved
and ends when the same header file is deposited, after the header file has passed code inspection and
each of the affected source files has passed unit testing successfully. Each of the steps after reserve
but before deposit can loop back to edit (loop not shown).

Alice and Bill are two programmers participating in this process. Say Alice wants to edit a
header file; a PCE that enforces the process won'’t let her edit until she has reserved the file. Process
enforcement ensures that prerequisites defined in the process model are strictly followed. In con-
trast, process automation doesn’t prevent users from doing anything, but instead opportunistically
undertakes simple activities on its own so users need not be bothered with them. For example, after
Alice modifies the header file, a PCE might try to re-compile all the affected source files.

Guidance may be preferable to automation when a PCE doesn’t have sufficient knowledge to
perform process steps by itself. Consider the case that the header file Alice wants to reserve is
already reserved by Bill. It is usually inappropriate for a PCE to automatically deposit the file for
Bill, since Bill might not be done with his changes yet. Instead of doing something inappropriate, or
nothing at all, a PCE might insert the deposit step into Bill’s agenda (“to-do” list), but the decision
as to when to select this agenda item is up to Bill. This particular case can be seen as process
delegation, since Alice indirectly asks Bill to deposit a file she wants by requesting to edit it, but a
PCE could also insert agenda items on behalf of the same user (e.g., to later compile a file that he
or she had edited).

154

|
y

reserve

compile

-

build

inspect

v

unit_test

deposit

|

(a)

reserve

inspect

unit;test

~

deposit

|
1
|
i

— — — No Chain
weweenifize Guidance Chain

el A utomation Chain
(b)

Figure 8.1: Simple Process Fragment

155

When process enforcement is viewed as an undesirable constraint on individual freedom, monitor-
ing offers a non-intrusive alternative by letting the user do whatever he or she wants. For example,
if Alice is not willing to wait for Bill to release the header file before beginning her edits, a PCE
might turn off process enforcement and switch to process monitoring (probably only with respect
to Alice; the other users need not be affected). Then it would be possible to let Alice go ahead and
make her change on a copy of the file, but the PCE records the fact that the normal procedure is
broken (maybe the process should be changed to permit parallel reservations of the same file) and
send a note to Bill to let him know what’s going on.

When Alice is unsure whether to edit the header file or not, she may appreciate a PCE that can
do process planning, to find out what are the likely consequences of her proposed change, such as
what other code would have to be re-compiled. And if Alice is unfamiliar with the process, because
she is new or the process has recently changed substantially, she might first (or instead) run a process
simulation. The PCE would go through the selected portion of the process model considering the
data indicated by Alice, showing her how the process works, but without generating permanent
side-effects on the data.

Finally, if Alice is frantically trying to meet a deadline, she might want to know how long it
usually takes to re-build and test the affected source files after a change to that header file. A PCE
supporting process instrumentation should be able to offer such measures. If the build and test steps
could be prolonged, she might forego her change.

In all of the above situations the same process model (i.e., the process model depicted in Fig-
ure 8.1(a)) is followed, only the interpretation of it is different — as needed to support different
process assistance modes. Since the full range of plausible modes is unknown, a PCE kernel that
supports only basic process modeling mechanisms and leaves process assistance policies to its in-
stances would minimize the effort to implement the desired set of modes for a particular project
(and may also make it feasible to add or delete some modes while the project is in progress).

8.3 Knowledge-Based Assistance

We are interested in two kinds of knowledge: (1) the knowledge of the specific process; and (2)
the knowledge of the kind of assistance to provide. All process-centered environments support (1),
by definition. We are primarily concerned here with (2). Further, although process models may be
expressed in a number of different paradigms — Petri nets and grammars are also popular (see [132])
— we limit the discussion to rules.

Let’s say, generally, that a rule consists of three main parts: precondition, action, and postcon-
dition. The precondition specifies any prerequisites to the action, and the postcondition specifies
any consequences. Many rule notations (logic programming, production systems, database triggers,
etc.) use two parts, combining the action with either the precondition or the postcondition, but
the extension from our discussion of three-part rules to either form of two-part rules is straightfor-
ward. Rule-based PMLs typically also include a name and formal parameters, so that a rule can be
explicitly invoked to execute the named process step on the given actual parameters.

The rule execution model consists of (at least) five stages: selection of a rule, binding of its pa-
rameters and local variables, evaluation of the precondition, performance of the action, and assertion
of the postcondition. To support multiple process assistance modes, no specific policy should be
hard-wired into the kernel as to how to behave if any of these steps succeeds or fails (although there
may be defaults that can be overridden). For example, in a PCE that only enforces the process,
if the precondition evaluates to false, no further stages can be executed; but if the PCE supports
automation as well as enforcement, then backward chaining could be initiated to attempt to satisfy
the precondition (a PCE might support only partial automation, i.e., only backward or only forward
chaining, not necessarily both). In contrast, a PCE that monitors rather than enforces the process
might simply record that the precondition failed (perhaps after automated backward chaining) and
go on to the action performance stage.

It should also be possible to skip a stage entirely, usually the action, or to apply the stages

156

to private copies of data maintained throughout a chain or for an entire user session. Then during
planning, a sequence of rules might be produced from a goal (backward chaining) or an event (forward
chaining), without performing actions and applying postconditions to private data kept only for the
duration of the chain. A simulation might or might not skip the actions depending on the purpose
of the simulation, e.g., training vs. analysis of dynamic behavior, and employ the same private data
across multiple chains.

The rule network is an internal representation of the rule base. In theory, this could be omitted
and the entire rule base re-parsed over and over again as needed, but this is inefficient. What we
have in mind when we choose the term “network” is a directed, potentially cyclic graph, where each
vertex is labeled by a rule, and each edge is labeled by a predicate in the precondition of one rule
and the postcondition of another (or the same) rule. Each edge may be annotated with one or more
directives concerning the applicable process assistance modes. Other formats may also be suitable,
depending on the chaining algorithms adopted.

A rule instance is the internal representation of an individual rule used during rule execution.
That is, one or more of the stages of the rule execution model have been completed, but not all of
them. Rule instances can be strung together into agendas, and must be (potentially) persistent so
that such contexts can be remembered between user sessions. The most useful scenario for manipu-
lating instantiated rules is probably after selection, parameter binding and precondition evaluation,
but before action performance and postcondition assertion; such rules have been “enabled” but not
yet “fired”. Another practical possibility is after selection and binding, but before precondition
evaluation, since a process step might reasonably appear in a user’s agenda long before it is ready
to go. But, for generality, any prefix of the stage sequence should be supported. There should
also be some means to “clone” rule instances to appear in multiple agendas associated according
to the process assistance policies — each with a named user, a group, a role such as programmer
vs. technical writer, and so on. Alternatively, the same rule instance could be referred to from
several agendas, and when executed or deleted by any user, it disappears from all. In any case, there
must be mechanisms through which a user executing an instantiated rule can directly or indirectly
(through chaining as discussed below) generate new instantiated rules, to add to his or her own
agenda or delegate process steps to other users.

The forward chaining algorithm should supply generic means whereby applying the execution
model on one rule can result in applying the execution model to any or all of the rules reached by
rule network edges emanating from the postcondition of the original rule. The algorithm should
be parameterizable to treat edges with different annotations differently, e.g., to consider all the au-
tomation edges first, and then turn to guidance edges. Automation edges might result in attempting
to complete all five stages for the relevant rules, whereas guidance edges might only place (partially
completed) rule instances into agendas. A PCE that supports only process monitoring, as opposed
to process enforcement, might check whether or not the sequence of rules actually chosen by the
user matched an internally simulated forward chain (note that a chain may be partially ordered or
cyclic, not just a strict sequence).

The backward chaining algorithm should include generic means whereby when one applies the
execution model to one rule, the execution model can be applied to one or more of the rules reached
by edges emanating from the precondition of the original rule. Again, the algorithm should be
parameterizable to consider only edges with specific annotations, and whether only one or all ac-
cordingly annotated edges should be considered. And also again, it must be possible to treat edges
with different annotations differently. Finally, the policy needs to specify whether the backward
chaining (with respect to a specific annotation) should halt after one or a specified depth/number of
AND/OR branches is attempted (e.g., placing an instantiated rule in an agenda for guidance), after
the original precondition becomes satisfied (e.g., when automation is supported), or after trying all
possibilities. The first two cases seem more practical than the latter, but a fully knowledge-based
process assistance mechanism should allow for the construction of unforeseen process assistance
modes. It should also be possible to turn off backward chaining and/or forward chaining entirely in
a particular PCE instance.

To achieve the various parameterizations, the rule execution model and the chaining algorithms

157

should incorporate “hooks” for inserting functions specific to the PCE instance, for example, to
decide whether to skip a stage or deal with a failure, how to order among rule network edges
and traverse the network, and also to implement instrumentation, so that various measures can be
obtained by on- or off-line analysis of the history log. One application might be to determine worst
case and average case lengths of time for a designated action to complete, with respect to particular
data or any data. Another would be to track how often a particular rule’s precondition is satisfied,
on particular data or on any data. And information about the origination and contents of chains
should be accessible, to determine how often execution of a certain rule leads to consideration of
another specific rule, or of any rule(s).

Both chaining algorithms depend on a dynamic data binding mechanism, whereby parameters
are “passed” from one instantiated rule in a backward or forward chain to another. This issue is
subtle and has already been reported in [108].

8.4 MARVEL Background

The knowledge of the process (or workflow) is represented in a rule-based process modeling language.
Each process step is encapsulated in a rule with a name and typed formal parameters. Each rule is
composed of a condition (the precondition of the generic rule-based PCE above), an optional activity
(the action), and a set of effects (collectively, the postcondition). The condition has two subparts:
bindings, to query the objectbase to gather local variables (e.g., included “.h” files when compiling
a “.c” file), and properties, which must evaluate to true prior to invocation of the activity. The
activity names a tool envelope and specifies its inputs and outputs. FEnuvelopes are stylized shell
scripts, which permit conventional file-oriented tools to be integrated into an environment instance
without source modifications or recompilation [86]. Each envelope implicitly returns a code that
uniquely selects the specific effect from among those given, to assert the actual result of the tool
on the objectbase (e.g., returning 0 for a successful compilation selects the first effect, returning
1 for detection of syntax errors maps to the second, etc.). A separate effect is necessary since an
external off-the-shelf tool can directly modify files referred to in the objectbase, through the shared
file system, but cannot directly manipulate the internal objectbase. If there is no activity, then there
is only one effect.

When a user enters a command, MARVEL selects the matching rule. The condition of a rule
is satisfied if its properties evaluate to true for every binding of each local variable (in the case of
forall bindings) or to at least one binding of each local variable (for exists bindings), considering
the actual parameters supplied to the command. If the condition of a selected rule is not satisfied,
backward chaining is attempted. If the condition is already satisfied or becomes satisfied during
the backward chaining, the activity is initiated; otherwise the user is informed that the process step
cannot be carried out at this time.

After the activity finishes, the appropriate effect is asserted. This triggers forward chaining to
any rules whose conditions become satisfied, which are executed in an implementation-specific order
obeying the directives below. The asserted effects of these rules may in turn satisfy the conditions
of other rules, and so on. Eventually no further conditions become satisfied and forward chaining
terminates. Chains affiliated with different users are interleaved at the points where activities are
executed, and new commands and activity returns are scheduled in FCFS order. To support such
multi-tasking, MARVEL keeps a stack of rule instances for each chain, and context-switches among the
stacks. (Like most rule-based PCEs, the MARVEL process engine is centralized, with a client /server
architecture [31]; we describe a multi-server decentralized extension in [27].)

Forward and backward chaining through condition and effect predicates is controlled by chaining
directives. Forward chaining is optional, and can be “turned off” wholesale or explicitly restricted
through no_forward or no_chain directives on individual automation predicates in the effect. Back-
ward chaining can also be “turned off”, or restricted by no_backward or no_chain directives on
individual predicates in the condition. Possible chains are compiled into a network when the process
model is installed, with edges annotated as to chaining type (e.g., automation). Both backward

158

arch [?m:MODULE]:
(and (forall CFILE ?c¢
suchthat (member [7m.cfiles ?c]))
(forall MODULE ?ch
suchthat (member [?m.modules ?7chl))
(exists AFILE ?a
suchthat (linkto [?m.afiles 7al])))

(and no_chain (?m.archive_status = NotArchived)
no_forward (7m.compile_status = Compiled)
no_forward (7c.archive_status = Archived)
no_forward (?ch.archive_status = Archived))

{ ARCHIVER mass_update 7m ?a.history }

(and (?m.archive_status = Archived)
no_chain (?m.time_stamp = CurrentTime)
(7a.archive_status = Archived));

(?m.archive_status = NotArchived);

Figure 8.2: A Rule From C/MARVEL

and forward automation chaining proceed in a depth-first order with respect to the rule network.

Figure 8.2 shows a (simplified) rule from the process we used in MARVEL's own development
(which consists of 40 classes, 184 rules and 46 tool envelopes). This arch rule checks whether its
MODULE parameter has already been archived and permits backward chaining attempts to compile
the MODULE parameter and/or to archive any of the CFILE components or nested MODULESs. However,
separately executing an arch rule (overloaded, only the one for MODULEs is shown) on one of these
components does not automatically forward chain to trigger this rule on the enclosing MODULE, as
this is prevented by the no_forward directive. When one of arch’s effects is asserted, forward
chaining is initiated. For example, whenever arch’s second effect is asserted, then any other rules
whose conditions are satisfied by setting the status of a related AFILE to NotArchived will be
automatically executed.

8.5 Amber Design

We plan to generalize MARVEL'’s rule execution model by replacing the hard-wired operations gov-
erning each stage with hooks for callback functions, defined separately for distinct process engine
instances (that is, versions of the engine supporting different sets of process assistance modes). Such
callback functions would be invoked immediately before and immediately after each stage, and re-
turn a boolean value. They would determine whether or not to skip a stage, and decide what to
do when the stage succeeds or fails (e.g., continue or terminate individual rule execution, or rule
chaining, depending on the stage). The chaining annotation for each edge in the rule network would
become a value of an arbitrary enumerated type defined by a process engine instance, not just one
of the automation directives.

A state and an origin field would be added to the rule instance data structure, with each possible
value of state corresponding to one of the stages and origin recording how the instance was originally
generated, such as by explicit user construction or via one (or more) of the enumerated chaining

" annotations. These fields together with the edge annotation would parameterize the dispatch to
the callback functions. Thus callbacks would permit variation in both the interpretation of the
rule notation and the semantics of chaining among rules. It is critical to understand that callback
functions would be defined per stage and per annotation, but not per rule, so the callback functions

159

would be entirely localized to the process engine and the number of functions that need to be
implemented for each process engine instance would be reasonably small — and defaults would be
provided that duplicate MARVEL’s original functionality.

To realize process delegation, a rule instance would also contain a generic pointer (“void *” in
the C programming language) to a context data structure defined in a process engine instance. For
example, if the context represents a user session, the rule instance might be executed on behalf
of that user and its activity will be performed by that user; if the context is an agenda, or a list
of agendas, the rule instance might be entered into (or deleted from) each of these agendas. New
routines would read/write the rule instance data structures from/to persistent storage, necessary to
save an agenda between user sessions.

To allow both breadth-first and depth-first chaining order, a tree of rule instances per task would
replace the rule instance stack. Each rule instance would contain a pointer to the “parent” instance
that was responsible for creating it, as well as two lists of “children” created by forward and backward
chaining. Some way of distinguishing among “children” would be needed, since both directions of
chaining may lead from a single rule instance. For example, a rule instance created by backward
automation chaining might trigger only additional backward automation chaining, or both further
backward automation chaining and forward guidance chaining (see next section). These chaining
dependencies between rule instances would comprise the task tree, which would be created when a
user invokes a rule, expanded and shrunk during chaining, and deleted after all the rule instances
finish their execution.

To determine ordering among the “children” of a given instantiated rule and across instantiated
rules, the kernel would maintains a set of queues of rule instances. These would be managed by the
callback functions associated with conditions and effects, to schedule the execution at the different
priorities determined by process engine instances. The rule instances in queues of lower priority
would not be executed until the queues of higher priority were empty. For example, rule instances
created by automation chaining might be placed in a queue having higher priority than the queue
where those generated by guidance chaining were placed, or vice versa, depending on the desired
process assistance policies. Within a queue, the rule instances would be executed according to the
usual FIFO scheme.

The next section describes the guidance and delegation facilities that have already been imple-
mented (except as noted) in a preliminary version of AMBER; the following section describes our
ideas for how we might implement some other process assistance modes.

8.6 Guidance and Delegation

An agenda is a persistent data structure that can be attached to and detached from a user session
dynamically by the user. When attached, a special agenda window displays the list of rule instances,
each of which has been instantiated with data parameters after at least the binding and possibly the
precondition stages of the rule execution model (see above). Each agenda entry can be executed,
deleted or delegated to other agendas by the user. If we stored agendas as instances of a new built-in
AGENDA class (and its project-specific subclasses) in the objectbase, then they could be browsed and
queried using MARVEL'’s existing facilities, but for now they are saved in a separate file.

The process engine automatically inserts instantiated rules into agendas through guidance chain-
ing. A new guidance annotation was added to MARVEL’s PML to mark selected condition and effect
predicates. Optional arguments to guidance annotations associate such predicates with one or more
named agendas, so that the process engine knows to which agendas to add the rule instances gen-
erated through guidance chaining from that predicate; the default is the agenda of the user who
triggers the guidance chaining.

Guidance chaining begins like automation chaining: when a rule is reached in the rule network
(after the completion of some original rule selected by a user command), dynamic data binding is
applied to generate a rule instance, and the condition is evaluated. But then instead of attempting
to complete the action and postcondition stages of the rule execution model, the rule instance is

160

Session Rules Construct Local (Query Attach Print Misc Session Rules Construct Local Query fAttach Print Misc

Current Object: server2/projects/amber_project/programs/asgenda_module Local Server
Left: Print Information for
Right: Change Current Object

L @ AgendaPS) BY server?

it tost agends. rody RN

o raemiarice. [Tl | iy N | TR

: Jbuild(amber_project)
iDone

inspect(agenda,c)
. inspect{agenda,c} ¢

4 Executs <y Delet]

W Exscute < Delete < Delegate

4 Execute < Delete < Delegate

4 Execute < Delete < Delegate

build
/n/lasalle/u/14
oduleexsc on Hd

ce
/n/1asalle/u/14

Alice genda, c/agenda] Alice
Bi11 /n/lasalle/u/14 Bill
PSL PsL:

—} | 9enda,t,c/agend !
’ ° /-m"m-'”"_df“t‘d.._:.:‘f_.__ /"/!asa“e/u”e ‘:’"m jm_no‘lwt—{-!.‘w._Mh <l

Figure 8.3: After Alice edited “agenda.c” and built “agenda_module”.

inserted into one or more agendas after the precondition stage (if the precondition is satisfied).
Thus the choice of when and whether to actually execute the rule instance is up to the user(s).
Guidance chaining is applied only after automation chaining emanating from the same original rule
has finished, that is, automation chaining has higher priority.

The PCE can keep the agendas up-to-date, containing only rule instances with satisfied con-
ditions, through negative chaining. Unlike positive chaining (e.g., automation, guidance), which
generate new instantiated rules, negative chaining finds the existing rule instances whose conditions
previously evaluated to true but might possibly evaluate to false due to the just-completed execution
of another rule. The process engine will re-evaluate the conditions of all such rules. If any condition
is no longer satisfied, that entry would be removed from its agendaf(s).

The cost of negative chaining grows with the number and size of agendas, so it should be possible
to “turn off” negative chaining entirely and/or focus it to affect only the agenda(s) of the same user
(who triggered the negative chaining). The penalty of such relaxation is that the process engine can
no longer guarantee that the conditions of existing agenda entries are always satisfied, so when a user
chooses to execute such an instantiated rule, its condition must be re-evaluated at that time — and
if it should prove unsatisfied (or unsatisfiable through automation backward chaining), that process
step cannot be completed (assuming process enforcement). A refresh mechanism could periodically
re-evaluate the conditions of rule instances in agendas based on policies specified by the relevant
user(s), such as after certain number of rules have been executed or a certain period of time has
elapsed.

Figure 8.1(b) depicts how we model the abstract process fragment in Figure 8.1 (a), with edges
annotated to specify the guidance capabilities described here. Figures 8.3 and 8.4 give snapshots of
the screens for Alice (left) and Bill (right) when they follow this process. Each figure shows both
Alice and Bill with two agendas, their user agendas (“Alice” and “Bill” respectively) and a shared
group agenda (“PSL”).

After Alice edited a CFILE “agenda.c” and made a change, the verify and compile rules were
automatically invoked (verify calls the 1int tool, which checks for certain common classes of errors
that are not detected by the weakly-typed C compiler). After the compilation succeeded, the process
engine evaluated the inspect rule on “agenda.c” and the build rule on the “agenda_.module”, and
inserted appropriate rule instances into Alice’s and Bill’s user agendas. Figure 8.3 shows what
happened after Alice executed the build rule from her user agenda: After the “agenda.module”

161

Session Rules Construct Local Query Attach Print Misc
Session Rules Cfonstruct Local Query Attach Print Misc
K PSS J) 2
Current Object: server2/projects/amber_projsct Local Server: ssrver? ol Age"da PS5t EJ server.
Left: Print Information for Object 1 ‘Done
Right: Change Current Object Dcm & R 1
P — i iRe-exacute i
iDone M @] Agenda:Riil.
editCagenda. e st
P— e Ione |
N verirytage
compile!
B . v Execute 4 Delet!
“Executs < Delete s Delel
S - " et et 1 e o .
- Execute 4 Delete Delegate
4 Execute s Delete - Delegate v v se
Editing agenda.c.
Changes Made and o
analyzing agenda.d
alice lint agenda.c
ﬁ : analysis successfi X
| Pt Bill compiling agenda.d Alice
M ervero mﬁcd.ct_<:qma_mu1o o Failed. rd - Bill
i ComMp. ed,
i .N"f 10(‘"-"‘““"%.":’}“’ ’ervoro /:nnb'r Drn.iect—(!uenda_nodule—_w

Figure 8.4: After Alice edited “agenda.c” again.

was successfully built, the system guidance chained to the unit_test rule on “agenda_module” and
then the build rule on the “amber” project. Both of these rule instances were then inserted into
the “PSL” group agenda. The “Alice” user agenda was not affected. Then, Alice edited “agenda.c”,
and the system automation chained to the verify and compile rules again, but this time the
compilation failed — resulting in negative chaining to remove the inspect rule from Alice’s and
Bill's user agendas as well as the build and unit_test rules from the “PSL” group agenda, as
depicted in Figure 8.4.

8.7 Planning, Simulation, Monitoring and Instrumentation

Process planning generalizes process guidance: instead of looking at only the next step in a chain
and placing it into an agenda, planning continues through an arbitrary number of steps until the
“chain” is done. We expect to realize process planning by caching a copy of each data item accessed
during planning, and applying automation chaining to the private copies. Since activities are not
executed during process planning, a plan might consider every effect in a full search, or only one
“most likely” path.

Like process planning, we are thinking that process simulation would automatically “fire” rules
on cached copies of data. However, here a “standard” effect (not necessarily the most frequent one)
might be specified for each rule by another annotation in the process model, probably reverting to
a second choice after several repetitions when there is a cycle. Further, the PCE could inform the
user of what is going on as the process “executes”, using the animation facilities mentioned below,
as opposed to generating a list of process steps for later execution.

Process monitoring involves a fairly simple change: When the condition of a rule instance cannot
be satisfied by backward chaining, instead of terminating the rule execution model at that point,
the process engine could continue to the next stage (executing the activity) but warn the user and
record the divergence from the predefined process model in a log file.

Process instrumentation would normally be realized by attaching functions to the rule execution
model and chaining algorithms. But MARVEL conveniently provides a simpler alternative: when
the user is performing a process fragment, that fragment is “animated” on a graphical display, with
icons for each activity executed and special arrows between icons indicating backward vs. forward

162

chaining. So instead of modifying the process engine in several places, we are instrumenting the
animation module to capture all the events it already receives.

8.8 Related Work

Merlin [179] offers process guidance by providing working contexts for each user, which display the
set of software objects, their inter-dependencies and the possible next process steps to be performed
on all these objects — based on the user’s specific role and the task at hand. The contents of
a user’s working context can be updated dynamically due to the results of others’ work through
backward chaining on special backward chaining rules, whose notation is different from the separate
rule base used by forward chaining to achieve automation. Process WEAVER [67] uses a Petri-
net process modeling formalism centered on cooperative procedures, which specify the ordering of
activities (process steps) and the conditions that trigger the move from one activity to another.
Each user has an agenda that contains all the Workcontezts encapsulating activities assigned or
delegated to him that form a “to-do” list. Process guidance and delegation is achieved by defining
an activity in a cooperative procedure to put Workcontexts into a user agenda, and letting a user
dynamically construct and delegate Workcontexts to others.

EPOS [151] uses planning in its implementation of process automation. Its primitive tasks are
essentially planning system-style rules, but with additional input/output constraints that achieve
parameter passing among tasks. A planner refines high-level tasks into partially ordered sequences
of subtasks, ultimately into individual rules. The resulting hierarchical plan specifies the control
flow that the EPOS execution manager then assists users in carrying out. This approach breaks
down when a (sub)task fails to achieve its goal, but an incremental replanning mechanism has
been proposed. Grapple [111] plans software processes off-line, for manual execution by process
participants. In principle, it could also monitor in-progress processes as input to plan recognition.

StateMate [112] models the traditional “who, what, where, when and how” of a process and
simulates the dynamic or behavioral aspect of a process through state transitions in a finite state
automaton. Transitions are labeled with a trigger (including an event expression and a condition
expression) and/or a set of actions (e.g., generate an event, set a condition, perform a calculation,
etc.). When the trigger requirements are met (the event expression occurs while the condition
expression is true), the state transition is taken and the actions are performed, moving the process
to the next state. However, there are no means to actually execute software development tools or to
store product data, so the process execution can only effect a simulation.” Articulator [159] simulates
a process by symbolically “executing” tasks according to the task precedence structure specified in
the process model. The simulation proceeds as long as task conditions are satisfied at each step;
otherwise, the simulated process stops, reports the problem, and waits for input or command from
the simulation user.

The Articulator process engine is also instrumented to monitor any deviations from the specified
process (during a non-symbolic, actual process execution), and collect process data including the
ordering and duration of activities, tools invoked, users who have worked on different tasks, etc.
Such information is abstracted and fed back through a sophisticated meta-process to improve the
process model. Amadeus [203] instruments a process model with agents written in an interactive
script language. When triggered by user-specifiable process events, object state changes and/or
calendar time abstractions, corresponding agents collect, analyze, integrate or display data, to serve
as feedback in adapting the process. Amadeus separates event specification from agent specification
and supports both static and dynamic event interpretation, which enables users to specify agents
corresponding to events and thus change the process instrumentation while the process is in progress.

Provence [140] is a process monitoring system that notifies users when there are troublesome
divergences from the process model. Implemented at AT&T Bell Labs, it uses MARVEL as its
process engine together with proprietary event-monitoring and file system overlay facilities, to non-
~ intrusively track activities by users conducted through the conventional UNIX operating system.
The event-monitor notifies MARVEL when any of the specified events occur on designated files or

163

directories. Then MARVEL'’s original process engine attempts to execute the rule corresponding to
that event. If it is not possible to satisfy the rule’s condition through backward chaining, a warning
is generated; notice that the event (and thus the process step) has already occurred by the time
MARVEL is invoked, so enforcement is impossible.

While many PCEs support more than one process assistance mode, we know of only one other
(proposed) system that could potentially support an arbitrary range of modes: The gist of Process-
Wall [98] is that the process state is maintained by a central process state server with a predefined
representation for steps, called tasks, hierarchical breakdown of tasks and control flow among tasks.
The types of task input and output parameters can be specified, and bound across multiple tasks.
Then multiple clients can manipulate and advance the state by enacting process fragments. Process
constructors construct process specifications using the ProcessWall primitives, unfolding the process
as it goes, and process constrainers enforce additional constraints on the process. The process state
server is thus analogous to the blackboards of many Al systems. Special process constructors could
be designed to support process planning and simulation. Similarly, process monitoring and instru-
mentation can be supported by relaxing and augmenting, respectively, the process constrainers.

8.9 Conclusions

We identified a second form of knowledge important to process-centered environments, beyond the
process model itself, namely the process assistance policies to be adopted by a particular project or
user. We introduced an approach to implementing such a knowledge-based process engine, assuming
rule-based process modeling. This approach is currently being implemented in AMBER, a successor
to our MARVEL system. We described our implementation of process guidance and delegation, re-
using as many facilities as possible from the existing MARVEL code. Further, we explained our
designs for process planning, simulation, monitoring and instrumentation, where again we were able
to exploit many of MARVEL’s original capabilities.

164

Chapter 9

External Process Server
Component

Abstract

We present a model for developing rule-based process servers with extensible syntax and semantics.
New process enactment directives can be added to the syntax of the process modeling language, in
which the process designer may specify specialized behavior for particular tasks or task segments.
The process engine is peppered with callbacks to instance-specific code in order to implement any
new directives and to modify the default enactment behavior and the kind of assistance that the
process-centered environment provides to process participants. We realized our model in the Amber
process server, and describe how we exploited Amber’s extensibility to replace Oz’s native process
engine with Amber and to integrate the result with a mockup of TeamWare.

165

9.1 Introduction

The essential concept underlying Process-Centered Environments (PCEs) is language-based exten-
sibility. That is, each PCE provides a language in which users specify the desired tailoring of the
system’s behavior to their particular needs and requirements. In other words, they represent the
process in the process modeling formalism provided by the PCE, and this process model is then
interpreted or executed by the PCE’s process enactment engine. Such “first-order” extensibility has
been widely investigated for a decade or so, and several major paradigms for process modeling for-
malisms have been investigated, including rules, Petri nets, grammars, task graphs, and imperative
code [132].

A related “second-order” kind of extensibility involves the ability to modify or re-engineer the
process, perhaps dynamically while a given process instance is in progress. Termed process evolution,
this concept has also been investigated in recent years in the software process community [154).
Reflection has been one influential language-based approach to evolution [10].

Such first- and second-order, fixed-language and fixed-interpreter, extensibility is inherently lim-
ited, however, in two major respects:

o Language — The expressive power of the particular process modeling language and its com-
putation model determines the scope of extensibility, even when in vivo evolution is supported.
That is, the assistance the PCE can give the user(s) in carrying out a given process is a priori
restricted when the process model is written, or modified, to those processes that can be de-
fined in the language and how that language is enacted by the process engine. For example,
process-wide constraint enforcement is readily supported in most rule-based process formalisms
via overloaded (data type-specific) pre-conditions on primitive operations (like OzWeb’s read
and write [122]), whereas constraints usually must be specified on a per task basis in Petri
nets (e.g., predicates in FUNSOFT nets [90]). On the other hand, modular process hierarchy,
which is built-into many (extended) Petri net formalisms, may not be directly supported in
rule-based PCEs.

While some extensions to the basic language paradigm may be done at the time the language
is designed (such as extending Marvel rules with control annotations that indicate partial
rule chains should be enacted as all-or-nothing transactions {14]), clearly not all desirable
functionality may be envisioned a priori, when the language and its engine are designed and
implemented. The inherent challenge of extensibility lies in the fact that the added-on fea-
ture(s) had not been thought of at the time of the initial design, or else they would already be
in the language/system in the first place.

e System — Process modeling may be viewed as supplying a language-based application pro-
gramming interface (API) to the services provided by the PCE. Again, the single and fixed
API, and single and fixed interpreter or execution engine, effectively limits the capabilities
of the system with regards to its behavior in supporting human process participants. For
example, adding process monitoring, e.g., for measurement purposes, may require addition of
interception techniques and logging facilities to track and record process activities. Adding
guidance support, e.g., to notify users when tasks become enabled and allow them to select
among currently enabled tasks, may demand addition of an agenda mechanism in which to
store some representation of the enabled tasks [224].

Such extensions might be written directly in an imperative process programming language
like APPL/A [219], but for most declarative process modeling formalisms adding on such
functionality necessarily involves modifying the underlying process enactment engine and/or
integration with other (sub)systems, independent of extensions to the language per se. In
other words, the process modeling API generally does not provide the primitives necessary to
substantially change the mechanisms by which the PCE supports process enactment.

There are two main alternatives for advancing to “third-order” beyond the fixed single-language/single-
interpreter extensibility: One is to eliminate the “singleness”, through a multi-lingual approach, and

166

the other is to eliminate the “fixedness”, through a meta-lingual (henceforth metalinguistic) ap-
proach. These approaches are not mutually exclusive, they could in principle be combined, but we
do not address this here.

Multi-lingual extensibility can itself be sub-divided into two different approaches: The first en-
ables multiple languages to co-exist as peers, their independent process engines interfacing to a
common process state (or enabled process task) representation, in the style of ProcessWall [98], per-
haps but not necessarily with an external task scheduling mechanism [174]. The second approach is
based on layers, with translators from higher to lower levels and a “process assembly language” at
the bottom. We have begun investigation of the former approach, see [30], and studied the latter
extensively as described in [182, 101, 127].

While enhancing the level of abstraction and potentially realizing the various enactment models
intended for the different languages, the multi-lingual approach is ultimately still dependent on the
capabilities of the underlying interpreter (and/or the assembly language) in the layered case, or on
the process state/task server, in the peer case.

In our metalinguistic approach to “third-order” extensibility, the basic process modeling language
can be extended with new syntax to include user-invented process enactment directives, and the
interpreter can be augmented with new semantics to implement the new directives, to interpret
the original syntax in a multiple different ways, and to add new process assistance services. This
approach is analogous to metalinguistic abstraction in Scheme [71]. Then tailored instances of the
PCE can be employed in a great variety of applications, including those not envisioned at the time
the system was originally developed. It is important to note that here we generically extend the
process system itself (i.e., the PCE), as opposed to refining, or evolving, a specific process definition
(e.g., as in [9]).

Metalinguistic extensibility introduces difficult technical problems. In particular, the process in-
terpreter must be designed to allow “deep” insertion of, and a structure for invoking, independently-
written code that changes its internal behavior — without affecting or conflicting with built-in
capabilities or other external extensions.

In the rest of this chapter, we focus on a particular process paradigm, i.e., rule-based, to which
we have applied our metalinguistic approach. While we believe that metalinguistic extensibility is, in
principle, generically applicable to other popular process formalisms, we have no supporting evidence
yet. We demonstrate here only that our metalinguistic approach is very effective for extending the
process assistance afforded by rule-based PCEs.

Section 9.2 describes the application of our metalinguistic approach to rule-based PCEs in gen-
eral, and the range of potential extensibility adaptations. Section 9.3 discusses the mechanisms
required to realize the metalinguistic approach, and presents an extensible rule-based process server,
Amber, in which such mechanisms were implemented. Section 9.4 illustrates Amber’s extensibility
with respect to two different kinds of process enactment functionality: one that added multi-server
connectivity and process interoperability in the style of Oz [27, 21], and another that added more
intuitive process modeling (than plausible with rules) as well as on-line process visualization by
integrating Amber/Oz with a mockup of the TeamWare research prototype from the University of
California at Irvine [35]. Section 9.5 summarizes the contributions of this research.

9.2 Spectrum of (Rule-based) Metalinguistic Extensibility

Rules come in many forms. Some kinds have two parts (condition and action, or logical precedent
and consequence), while others have three parts (condition, operator and effect, or event, action,
postcondition). Some systems support only forward chaining, some only backward chaining (or
inferencing), some both; Al planning systems effectively simulate chaining to draw up a specified
plan. To generalize the discussion on rules (while focusing on PCE rules), however, we assume that
each rule-based process modeling language (PML) has the following constructs:

e A condition, which specifies a predicate to be checked before the rule is executed. The condition
may be formed over local or global process state variables as well as system variables.

167

e An activity that encapsulates the actual process step modeled by this rule. An activity typically
involves invocation of an external "tool” application, on data which may be modeled in the
PCE (in PCEs that support data integration) or also external, and by (possibly a set of) users
which may or may not be designated in the body of the activity (e.g., by roles).

o A set of effects, which specify the assertions to be made on the process state as a result of the
activity invocation. Although some rule formalisms combine activities and effects as ”actions”,
it is usually more convenient to separate these sections in PCEs due to the fact that activities
are typically external to the PCE engine.

o Chaining policies, which determine the control-flow of the process, i.e., when and how one rule
invokes automatically other related rules as a result of a logical matching between them, as
well as means to manually restrict automatic invocation. jFrom PCE perspective, chaining is
effectively the process enactment mechanism. Matching may be intentionally formed by the
process modeler who wishes to bind several activities, or automatically inferred by the rule
interpreter, although they are in general indistinguishable from the process engine perspective.

Due to the high-level nature of rules, there is a wide range of possible adaptations that can be
made with respect to process enactment. (Recall that we discuss here extensions to the language
and/or interpreter which affect all process instances, as opposed to tailoring a specific instance.)

The first extensibility aspect concerns types of rules and their special properties. Rule type
extensibility is open-ended. For example, to add guidance support, a special kind of ”guidance”
rules may be introduced, which entail special runtime support that may be supplied via callback
functions (see Section 9.3. Another kind of rules may weaken the constraining notion of condition
and continue execution even if the condition is not satisfied (e.g., to permit and monitor process
exceptions). In order to support such extensibility, the original language must have a basic rule
categorization mechanism into which new ”basic” types can be added.

The second aspect is the chaining directions and modes. As mentioned above, the two basic
directions are backward chaining, i.e., firing rules which may satisfy an unsatisfied condition, and
forward chaining, i.e., firing rules whose condition became satisfied (or enabled) as a result of as-
serting the effects of another rule. One extension in systems with one direction might be to add
the other direction. However, such modification would be in general very hard to attain as an
afterthought, as it requires to essentially reimplement the core of the interpreter. On the other
hand, bi-directional chaining allows for two other hybrid extensions, both of which can be extended:
forward chaining during backward-chaining, and backward chaining during forward chaining. The
former may be attempted when the effect of a rule satisfies the conditions of other rules. Similarly,
the latter may be used when a condition is partially but not completely satisfied by the previous
rule’s effect. Note that the extension may or may not involve syntax changes, depending on whether
the chaining modes are selectively or unconditionally applied, respectively.

A third aspect combines the two above aspects, namely, static (matching) and dynamic (chaining)
relationships between rules. An obvious static extension is to adapt the valid matchings between
(pre-existing or extended) types of rules. For example, an interpreter extended with guidance rules
may only allow guidance rules to be associated with other guidance rules or with mandatory system-
exception rules but not with other ordinary rules. Similar extensions may include syntax to turn-on
and turn-off chaining, wholesale or on a per-rule basis.

Another aspect of inter-rule relationship concerns the dynamic property of their execution. For
example, the capability to atomically execute a set of linked rules may be added. This may in-
volve syntax notations to define and or derive the atomicity boundaries, but ultimately requires
interaction with and support of a transaction manager. Besides the fact that such transaction man-
ager component must exist (or be implemented) in order to support atomicity, the interesting point
from extensibility perspective is that the interpreter must enable interface to other sub-systems in
the PCE, such as the process data- and transaction- managers, as well as enable integration with
external sub-systems.

168

The final extensible property is the order of rule evaluation. Some rule systems employ breadth-
first invocation, i.e., firing all enabled rules at one iteration, followed by all subsequently enabled
rules in the following iteration, and so forth; other rule systems operate in a depth-first mode, firing
an enabled rule followed by all rules which have become enabled as a result of its effects, and so
forth. As with chaining direction, adding from scratch a basic evaluation-order would be hard, but
extending the basic algorithm, e.g., to include both modes and supply syntax to determine which
mode to apply, is a feasible extension. Another ordering policy may prioritize rule execution based
on (extended) rules types.

9.3 Mechanisms for Metalinguistic Extensibility in Amber

Several key design issues enable Amber to support metalinguistic extensibility, i.e., to extend the
syntax and semantics of its base language. To focus our discussion, we ignore many other aspects
of the language/interpreter which are not closely related to supporting extensibility (for a complete
account of Amber, see [182]).

Syntactic extensions can be made (only) by means of rule annotations. Annotations are strings
that can be attached to the different sections of the rules and affect the (default) behavior before,
during, or after the execution of the rule-section as well as the default chaining behavior into or
from the rule. Once they are added to the language, they become “new” keywords. For example,
a weak-enforce annotation in the condition of the rule may only raise a warning message when a
condition is not satisfied, but otherwise continue the execution of the rule. Note that by introducing
such annotation we give the option for process modelers to use weak-enforcement, but don’t change
the default behavior. One can also change the default of its Amber instance to be weak-enforcing,
but such a change does not require any syntax changes, only semantic ones. The restriction to
use annotations as means of syntactic extensibility provides a clean and relatively simple extension-
interface with the interpreter, because the basic rule structure, and thus the skeletal logic of the rule-
processor, are preserved. As a result, the number of entry points for code extensions is reasonably
small, simplifying the extension task while still enabling to insert arbitrarily complex functionality
in each of these entry points, as will be seen in Section 9.4.

Thus, all semantic extensions, including but not limited to those which correspond to syntax
extensions, are also constrained to be made at well-defined specific entry points in the interpreter,
essentially to ease the extensibility task and avoid complex control changes which might require
knowledge of the interpreter-internals. Note that if such intimate familiarity is required, such “ex-
tensibility” is mostly worthless because it is limited only to the implementors of the interpreter.
Recall that our goal is to enable process administrators to tailor the language/interpreter to fit their
special needs.

To facilitate such modular extensibility, the interpreter is iterative, rather than a recursive one.
(This is also the reason why Amber’s rule interpreter was largely rewritten although the basic
language is similar to the Marvel and Oz rule languages [108]). While the latter may be viewed
as more natural for implementation of rule-processing due to the recursive nature of chaining, it is
far less extensible due to the deeply intertwined and inter-dependent rule phases. Instead, the rule
execution algorithm iterates over a sequence of a fixed rule-phase dispatches, discussed below.

Process engine extenders can insert/revise/replace their own functionality between phases, using
a table-driven callback mechanism. The callbacks are made to a mediator that tailors the process
engine’s semantics and interfaces to other environment components, in a similar fashion to [234, 169].
The callbacks can interface with other sub-systems, Callbacks can break the sequential execution,
and access, in a controlled manner, internal state of the interpreter. The proper callback function to
invoke is determined by a combination of the current rule-phase, the (static) rule annotation (if any),
and the (dynamic) state of the rule (such as whether the rule is in backward or forward chaining).
This means that callbacks reside in a multi-dimensional function array. An interesting aspect of the
callback array is that even the number of dimensions may be extended to allow for multiple state
attributes.

169

Finally, since Amber supports context-switching among multiple tasks operating concurrently or
sequentially on behalf of one or more clients, a mechanism is required to be able to extend the rule
execution ordering policy. This is made possible by a parameterizable multi-priority queue, where
a rule’s priority is determined by its type, as defined by the (extended) rule annotation or by the
default setting. Thus, by adding a rule type annotation and assigning to it a priority, the execution
ordering can be extended.

We proceed with an overview of the language followed by the full rule execution algorithm.

9.3.1 Language Overview

Amber’s PML is based in part on the Marvle Strategy Language (MSL) first developed for the Marvel
process-centered environment [123] and later extended in Oz (with mostly semantic changes); most
of the syntax, except for the extensible annotations, was previously elaborated in [13]. The PML
incorporates an object-oriented data definition sublanguage for defining classes whose members
represent process state and product artifacts (design documents, source code, test cases, etc.), and
a rule sublanguage that specifies the actions that can be taken by a user or by the environment.

The fixed portion of the rule syntax is similar to the generic structure mentioned earlier, consisting
of a rule signature (name and typed formal parameters); a binding section for retrieving object
that are related to the parameters (derived parameters); a condition, specified as a compound
first-order predicate logic over (derived and regular) parameters; an activity that indicates a shell
script envelope which interfaces the PCE to external tools and executes with specified (possibly
transformed) arguments; and a set of mutually exclusive effects, each of which matches exactly one
of the possible return values from the tool envelope.

An Amber process server loads a collection of rules when it starts up; different Amber instances
may thus interpret different rule sets, representing different processes. The Loader utility parses a
rule set and translates it into an efficient internal form, basically a rule network whose nodes are
rules and whose edges represent matches between the condition (or bindings) of one rule and an
effect of another; the network thus reflects all possible chaining.

The rules of a process form the command set or interface of the Amber instance. The user
client or an encompassing program issues requests to Amber that result in one or more rules being
instantiated and evaluated. Amber supports by default both backward and forward chaining, as well
as backward during forward and forward during chaining modes, although either of these modes can
be altered or removed, either optionally (by introducing rule annotation) or globally (by changing
the default behavior). :

Figure 9.1 shows an example rule that triggers code inspection of a C file with respect to its
design document. This rule is adapted from an Oz demo environment for the ISPW9 example
process [176). The rule specifies that the review is performed whenever either of the conditions (a
buggy C file has been revised or a bug has been found in a C file) are satisfied. The assertions in the
effects trigger further chaining that results in a groupware document inspection application being
run, assisting the designer and coder to together inspect the code.

Notice the automation forward annotation which is attached to each predicate in the condition
and each assertion in the effect. In Amber, each chaining type (in this case automation) is followed
by forward and/or backward to indicate whether the chaining type applies during forward vs.
backward chaining, respectively (i.e., forward and backward are built-in, but automation is not).
Multiple annotations may be attached to the same predicate or assertion, e.g., both forward chaining
into and backward chaining out of the same predicate may be supported, and/or multiple chaining
types may be indicated. If no annotation is given, then normally there cannot be chaining to/from
that predicate or assertion. This can be changed in a given instance, to default to “on” rather than
“off” for any or all of the instance-specific chaining types (in which case no_chain annotations would
need to be introduced). Particular chaining types may require various arguments. For example, we
have devised a new chaining type we call guidance, which works like automation except that after
instantiating a rule and satisfying its condition, the rule instance is placed into a persistent agenda
(“to do” list), so one argument is whose agenda (user or group) [224].

170

9.3.2 Amber Rule Execution Algorithm

There are two auxiliary data structures, in addition to basic rules, that are used to manage rule
execution: tasks and bulges. A task is a set of rules, together with all of their forward and backward
chaining implications. It represents the context for all the rules invoked as the result of a top-level
rule selection from a client (a human user or program). A bulge is also a set of rules, which represent
a callback-specifiable dependency among a collection of rules, where either they must be executed
in sequence, or a single rule must be chosen from the bulge to run while the rest are discarded.

Amber’s rule execution algorithm consists of two intertwined parts: rule selection (or scheduling)
and rule execution. During the execution of a rule, it may have to be suspended when waiting. In
this case, its state is preserved, it is context-switched, and a new rule, if any, is selected using the
selection algorithm.

Rule Selection — New tasks (which correspond to newly issued commands) are always placed in
the top-level (i.e. highest-priority) execution queue, to optimize interactive (user-issued) tasks. This
policy is in fact hard-wired (perhaps unnecessarily). When a task has been instantiated, the rule
interpreter runs the task until such time as it has no more rules ready to execute. Individual rules
are marked as either “runnable” or “waiting”. A task may not have any runnable rules because
its has finished, or all of its rules are waiting, generally for either an activity or another rule to
complete. Concurrent tasks are interleaved at the natural breaks afforded by activity invocations
and backward or forward chaining.

If a runnable bulge is found, one of its runnable rules is selected for execution, and no more
bulges are considered in this cycle. Each bulge is also checked to see if it contains a rule that is
waiting for the completion of an activity. If no runnable bulge is found, but there is a waiting bulge,
execution of the entire task is suspended to wait for the activity. Any rule that may remain to be
executed is in a lower-priority queue than the waiting rule.

Rule Ezecution — As outlined earlier, rule execution consists of fixed phases, separated by
callback entries. ’

1. Enque — A rule is instantiated with parameters and placed in a bulge in the appropriate
queue, according to its priority.

2. Begin — An instantiated rule is selected from the current bulge.

3. Bindings — Local (to the rule) variable bindings are established via queries to the environ-
ment’s data repository.

4. Condition evaluation — The rule’s condition is evaluated. Backward chains may be instanti-
ated and enqueued during this phase. A callback function may filter certain entries from being
enqueued, or modify the entries to be enqueued.

5. Waiting for backward chaining — If required by the failure of the condition in this particular
Amber instance, the rule interpreter attempts to perform all possible backward chains from the
rule’s unsatisfied predicates, until the rule’s condition is satisfied or all possibilities have been
exhausted. (This is the essence of automation backward chaining, which is built into Amber
as the default chaining type for when chaining is permitted at all; a given Amber instance may
completely disallow any form of chaining.) Clauses in the rule’s condition are considered in the
order determined by a chaining callback function, and are never reconsidered after satisfaction
or exhaustion of backward chaining possibilities, to prevent infinite cycling (this decision could
easily be changed, but is not currently parameterized by a callback).

6. Activity initiation — Once the rule’s condition has been satisfied (or other implementor-
defined requirements for “success” have been met), the rule’s activity (a tool envelope) is sent
to the originating client with the arguments derived for it in the rule.

7. Activity completion — The client returns a status code and other return values at an arbitrary
later time when the tool envelope terminates.

171

8. Effect assertion — When the activity finishes, one effect is asserted according to the status
code. etc.). Forward chains may be instantiated. (Automatic enactment of those