
NAVAL POSTGRADUATE SCHOOL 
Monterey, California 

THESIS 

THE DESIGN AND IMPLEMENTATION OF THE 
PETITE AMATEUR NAVAL SATELLITE (PANSAT) 

USER SERVICES SOFTWARE 

by 

George Kenneth Hunter 

March 1998 

Thesis Advisor: Man-Tak Shing 

Approved for public release; distribution is unlimited. 

rUTIC QUALITY DJSPEGTBD1 



H 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data 
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other 
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and 
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) 
Washington DC 20503. 

1. AGENCY USE ONLY (leave blank) 2. REPORT DATE 
March 1998 

3. REPORT TYPE AND DATES COVERED 
Master's Thesis 

4. TITLE AND SUBTITLE 
THE DESIGN AND IMPLEMENTATION OF THE PETITE 
AMATEUR NAVAL SATELLITE (PANSAT) USER SERVICES 
SOFTWARE 

6. AUTHOR(S) 
George Kenneth Hunter 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Naval Postgraduate School 
Monterey, CA   93943-5000 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 
The views expressed in this thesis are those of the author and do not reflect the official policy or 
position of the Department of Defense or the U.S. Government. 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release; distribution is unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (maximum Z00 words) 
PANSAT is an experimental spread spectrum, store-and-forward communications micro satellite. The Chief of 

Naval Operations C4I staff (N6) sponsors the project in order to determine the feasibility and effectiveness of using such a 
low-cost satellite to augment or eventually replace the existing military satellite communications architecture. While more 
than eight years of work has gone into the project, most of the nearly sixty theses thus far have dealt with hardware 
development. Prior to this thesis, the operations of the satellite were not formally defined, nor the desired software 
experiments specified. 

This thesis develops a detailed definition of the communications software and operating parameters for PANSAT. 
The formally specified communications software provides electronic mail, binary file transfer, and direct real-time 
information exchange. This research also designs and develops experimental features which are non-existent on current 
micro satellites. The new features included provide the spacecraft with a pseudo positional awareness for a system with no 
sensor support for such, implement a new application layer protocol to optimize data communications, and perform self 
analysis to find and correct the effects of space anomalies in conjunction with a ground station. 

This thesis also implements a subset of the formally specified software for initial operations to begin with 
spacecraft's launch in October of 1998. Further implementation and refinement will be based on actual operational results 
from PANSAT. 

14. SUBJECT TERMS 
PANSAT, User Services, Spacecraft Engineering, Amateur Satellite 
Communications, Amateur Radio Service, Ground Station, Software 
Engineering, NPSterm, Fault Tolerance 

15. NUMBER OF PAGES 

297 
16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

Unclassified 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

Unclassified 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

Unclassified 

20. LIMITATION OF ABSTRACT 
UL 

NSN 7540-01-280-5500 Standard From 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 

298-102 



-11- 



Approved for public release; distribution is unlimited 

THE DESIGN AND IMPLEMENTATION OF THE 
PETITE AMATEUR NAVAL SATELLITE (PANSAT) 

USER SERVICES SOFTWARE 

George Kenneth Hunter 
Lieutenant, United States Navy 

B.S., United States Naval Academy, 1990 

Submitted in partial fulfillment of the 
requirements for the degree of 

MASTER OF SCIENCE IN COMPUTER SCIENCE 

from the 

NAVAL POSTGRADUATE SCHOOL 

March 1998 

Author: 

Approved by: 

George K. Hunter 

ameaA. Horning^econdReader 

u±.c 
Dan Boger, Cl^irman 

Department of Computer Science 

-111- 



-IV- 



ABSTRACT 

PANSAT is an experimental spread spectrum, store-and-forward communications 

micro satellite. The Chief of Naval Operations C4I staff (N6) sponsors the project in order 

to determine the feasibility and effectiveness of using such a low-cost satellite to augment 

or eventually replace the existing military satellite communications architecture. While 

more than eight years of work has gone into the project, most of the nearly sixty theses 

thus far have dealt with hardware development. Prior to this thesis, the operations of the 

satellite were not formally defined, nor the desired software experiments specified. 

This thesis develops a detailed definition of the communications software and 

operating parameters for PANSAT. The formally specified communications software 

provides electronic mail, binary file transfer, and direct real-time information exchange. 

This research also designs and develops experimental features which are non-existent on 

current micro satellites. The new features included provide the spacecraft with a pseudo 

positional awareness for a system with no sensor support for such, implement a new 

application layer protocol to optimize data communications, and perform self analysis to 

find and correct the effects of space anomalies in conjunction with a ground station. 

This thesis also implements a subset of the formally specified software for initial 

operations to begin with spacecraft's launch in October of 1998. Further implementation 

and refinement will be based on actual operational results from PANSAT. 



-VI- 



TABLE OF CONTENTS 

I. INTRODUCTION 1 
A. THE PANSAT PROJECT OVERVIEW   1 
B. PANSAT USER SERVICES  4 

II. BACKGROUND ON PREVIOUS WORK 5 

III. DESCRIPTION OF USER SERVICES SOFTWARE  7 
A. INTRODUCTION 7 
B. SOFTWARE OVERVIEW 7 
C. SPACECRAFT MODULE DESCRIPTION 8 
D. GROUND STATION MODULE DESCRIPTION 13 

IV. SOFTWARE REQUIREMENTS SPECIFICATION 19 
A. INTRODUCTION 19 

1. Purpose   19 
2. Scope  19 
3. Overview 20 

B. GENERAL DESCRIPTION       ............... 20 
1. Product Perspective 20 

a. Software Description 20 
b. End Users 22 

2. Product Functions 23 
a. Spacecraft Module Functions 23 
b. Ground Station Module Functions 28 

3. User Characteristics  31 
4. General Constraints   31 

a. Timing Constraints  31 
b. Spacecraft Module Constraints 31 
c. Ground Station Module Constraints 32 

5. Assumptions    32 
C. SPECIFIC REQUIREMENTS  '..'.'.'. 32 

1. Spacecraft Module 33 
a. BBS Functions 33 
b. Housekeeping Functions  74 
c Special Notes 80 

2. Ground Station Module   81 
a. Display Terminal Functions 81 
b. Control Terminal Functions 96 
c. Linux Terminal Functions 136 
d Server Functions 138 

-vii- 



V. SOFTWARE DESIGN 155 
A. USE CASES 155 

1. Spacecraft Module Use Cases 156 
2. Spacecraft Module Use Case Diagram 181 

B. SYSTEM CONTEXT MODELS 187 
1. Spacecraft System Context Model  187 
2. Ground Station System Context Model 188 

C. SUBSYSTEM MODELS 189 
1. Spacecraft Subsystem Model   189 
2. Ground Station Subsystem Model 190 

VI. ENHANCEMENTS TO PANSAT MICRO SATELLITE SYSTEM 191 
A. POSITIONAL AWARENESS 191 

1. Introduction 191 
2. Background of Orbital Mechanics 193 
3. Implementing the Solution  196 

B. FAULT TOLERANCE PLAN 198 
1. Introduction 198 
2. System Evaluation 200 
3. Background of Previous Work 202 
4. Error Classification 203 
5. System Errors  205 
6. Program Errors 209 
7. Data Errors 211 
8. Acceptance Tests 215 
9. Conclusions 219 

C. OPTIMIZED PROTOCOL 219 
1. NPSterm Introduction 219 
2. Bytecode Commands 221 
3. Compression Algorithm    223 

VII. IMPLEMENTATION ISSUES 225 
A. REAL TIME TESTING    225 
B. TEST PLAN 227 

1. Satellite Module 228 
2. Ground Station Module  237 

C. PROGRAM SETUP 241 
1. Satellite Module 241 
2. Ground Station Module   242 

-vui- 



VIII.   CONCLUSIONS AND RECOMMENDATIONS 245 
A. FURTHER WORK REQUIRED   245 
B. LESSONS LEARNED 246 
C. CONCLUSION   247 

APPENDIX A.   SELECTED SOURCE CODE EXTRACTS 249 
A. POSITION DETERMINATION CODE 249 
B. COMPRESSION CODE 257 

APPENDIX B.   SOURCE CODE ORGANIZATION   271 

LIST OF REFERENCES  275 

INITIAL DISTRIBUTION LIST 277 

-IX- 





LIST OF FIGURES 

Figure 1 - PANSAT representation 2 

Figure 2 - Spread Spectrum Power Distribution 3 

Figure 3 - The Ground Station Network Logical Organization  22 

Figure 4 - Spacecraft Module Use Cases 181 

Figure 5 - Spacecraft User Services Context Diagram 187 

Figure 6 - Ground Station User Services Context Diagram 188 

Figure 7 - Spacecraft Module Subsystem Diagram 189 

Figure 8 - Ground Station Subsystem Diagram 190 

Figure 9 - Orbital Coordinate System and Keplerian Elements 194 

Figure 10 - Real Time Data Processing Testing Results 226 

Figure 11 - Ground Station Initialization Directory Structure  243 

-xi- 



-XU- 



LIST OF TABLES 

Table 1 - General user BBS commands -24- 

Table 2 - Additional BBS commands for the Ground station only -27- 

Table 3 - User services control settings, with default values -62- 

Table 4 - Archive file extensions -141- 

Table 5 - Software Fault Tolerant Error Classes -204- 

Table 6 - Fault Tolerant Acceptance Test Classifications -215- 

Table 7 - NPSterm Command Bytecodes   -222- 

-xin- 



-XIV- 



LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS 

The following list consists of abbreviations, acronyms and/or symbols that are used 

throughout this thesis. 

ASCII American Standard Code for Information Interchange - standard text 

representation on computers 

AX.25 Link-layer packet-switching radio communications protocol used by 

PANSAT 

BBS Bulletin Board System 

BIOS Basic Input/Output System - ROM embedded software 

BPS Bits per Second - data transfer rate 

CPU Central Processing Unit - the "brain" of a computer 

CS Computer Science 

CTRL Control key - is pressed simultaneously with the next key listed 

FAT File Allocation Table 

FCC Federal Communications Commission 

FTP File Transfer Protocol 

GUI Graphical User Interface 

HAM Amateur radio, governed by the FCC, derived from a term meaning poor 

operator 

HTML Hyper Text Mark-up Language, text format used for WWW pages. 

kB Kilobytes (or 1,024 bytes) 

LAN Local Area Network 

MB Megabytes (or 1,048,576 bytes) 

Mbps Mega bits per second, a data transmission rate 

MHz MegaHertz or frequency in millions of cycles per second 

MFC Microsoft Foundation Classes - Windows programming library 

NASA National Aeronautics and Space Administration 

-xv- 



NPS Naval Postgraduate School, Monterey California 

NPSterm One of two possible Application-layer communication protocols used by 

PANSAT (the other is ASCII character streams) 

PANSAT Petite Amateur Navy Satellite 

RAM Random Access Memory 

ROM Read Only Memory 

SCOS Spacecraft Operating System, written by the BekTek corporation 

SCC Serial Communications Controller 

SSAG Space Systems Academic Group 

SRS Software Requirements Specification 

TNC Terminal Node Controller 

UHF Ultra High Frequency 

WWW World Wide Web 

-xvi- 



ACKNOWLEDGMENTS 

I would like to thank Glenn Harrell for recruiting me into this project. Even 

though the chain of events leading up to me meeting Glenn seems nearly impossible, Glenn 

says "there are no accidents" and I believe him. 

My sheerest appreciation goes to the guidance of my thesis advisor, Man-Tak 

Shing. My tendency is to try to do everything. Man-Tak put blinders on me and forced 

me to focus on a tangible amount of work, of which I could produce a viable product. 

Without Man-Tak, I don't know if I would ever finish working on this project. 

Although labeled as a second reader, Jim Horning was much, much more. All of 

the work done in this thesis was done in collaboration with Jim. As the center of focus for 

all software engineering for PANSAT, Jim provided me ideas, guidance, assistance, 

coaching, honest feedback, and patience, as well as devoting an tremendous amount of 

time to working on this thesis. None of my work would have been possible without Jim. 

I owe a large gratitude to James Hetfield for, through his words, unknowingly 

providing the inspiration and motivation I needed to press forward through the dreary part 

of researching and compiling this thesis. 

Despite all these people I may thank, none of this would be have been worth the 

effort without the loving support of my wife. Acting as my "sounding board"and her 

enormous amount of proofreading, Antonietta was essentially my third reader. 

Furthermore, she patiently endured the countless hours when I was home, but not actually 

there since I working on this project. I can never repay what she has given me. 

-xvn- 



-XV111- 



I.  INTRODUCTION 

A. THE PANSAT PROJECT OVERVIEW 

Since 1989, the Space Systems Academic Group (SSAG) at the Naval 

Postgraduate School (NPS) has been developing PANSAT, a small communications 

satellite. The acronym PANSAT stands for Petite Amateur Navy Satellite. 

Under the auspices and sponsorship of the Navy Space Systems Division (N63), 

the PANSAT project fulfills a threefold objective. First, and primarily, the satellite is a 

proof-of-concept for a low-cost, packetized, spread spectrum communications system. By 

implementing and testing PANSAT, the capability to enhance military communications 

using a small satellite will be evaluated. 

The means to evaluate the first objective is actually encapsulated within the second 

objective. PANSAT will provide store-and-forward communications for the amateur 

radio community, commonly known as HAM radio. HAM operators have been involved 

with packet radio and satellite communications since the late 1960's. By providing this 

community with the PANSAT facility, HAM operators will be increasing their resources 

of a familiar functionality - store and forward satellite communications. Moreover, they 

will be exploring and testing a new mechanism to achieve this functionality {spread 

spectrum communications). Thus, while the HAM community receives a free new 

resource to experiment with, the SSAG obtains a vast knowledgeable user base to test and 

assess the platform. Furthermore, this PANSAT evaluation will be conducted without 

impacting current military communication facilities or operations, because it will use UHF 

amateur radio frequencies. 

The third objective of PANSAT is to enhance the education of military officers at 

NPS through the development of a digital communications satellite. Since the project's 

conception, nearly sixty PANSAT related theses have been completed. Furthermore, in 

this day and age, satellites are a mainstay for military communications and operations. 

Once the satellite is in orbit, it can be used as a "space-based instructional laboratory" for 

military officers to learn more about the mechanics of satellite communications. The 

-1- 



concepts learned while experimenting with PANS AT should prove extremely valuable in 

understanding current communication operations. 

Although labeled as "petite," the actual NASA classification for the satellite is 

"micro." Once completed, the twenty-six sided spacecraft will weigh 150 pounds and be 

nineteen inches in diameter. It will be a tumbling satellite with no attitude control or 

means of propulsion. PANS AT will continually work off of a pair of battery packs. When 

the Earth is not eclipsing the sun from the spacecraft, solar panels will recharge those 

batteries. To accommodate the tumbling nature of the satellite, solar panels will 

encompass almost the entire spacecraft's outer shell, providing power no matter what the 

spacecraft's attitude is. Also, four omni-directional antennas will allow communications 

with Earth no matter what the orientation is (see Figure 1 for spacecraft representation). 

Figure 1 - PANSAT representation 

PANS AT will be the first satellite of its class to utilize spread spectrum 

communications. Direct sequence spread spectrum modulation is a technique that spreads 

a conventional narrowband signal by mixing it with a bit stream over a wider frequency 

band in which the energy at any given frequency is much lower (see Figure 2). The result 

is a dilution of the signal energy with respect to bandwidth. The spread spectrum signal 



has the same energy per bit as the narrowband signal, but the power density at any one 

frequency is significantly lower. The signal can be spread to such a point that it is entirely 

below the noise level of a conventional receiver. Spread spectrum modulation provides 

the advantages of low probability-of-intercept, low probability-of-detection, resistance to 

jamming and low probability-of-interference (to and from other users in the band). 

Narrowband Waveform 

(n 
a 
<i> 
Q 

Q 2 
co T> 
a. <I> 

a. 
co 
i_ 
■© 
=s o 

CL 

Spread Waveform 

Noise Level 

Frequency 

Figure 2 - Spread Spectrum Power Distribution 

PANSAT will communicate at a center frequency of 436.5 MHz and at a data rate 

of 9.84 kilobits per second. The data link layer protocol used for communication will be 

the amateur packet radio protocol AX.25, the most widely used means for amateur packet 

radio communications. 

Since the satellite is orbiting the Earth, the window of opportunity to communicate 

with PANSAT is limited. The particulars every time the spacecraft is within line-of-sight 

of a ground station will be different (i.e. time satellite is line-of-sight and position on the 

horizon). A window of opportunity can last from approximately two to ten minutes, 

averaging around six minutes. Additionally, the windows will only occur a few times a 

day. Once the spacecraft is launched from the Space Shuttle, PANSAT will be tracked 

and an actual orbit will be established. With this established, the actual windows of 

opportunity can be pre-determined. 



PANS AT is scheduled to be launched from the Space Shuttle in October of 1998 

as a secondary payload through the NASA Hitchhiker Program. 

The Hitchhiker program was established to allow for low-cost and quick-reaction 

accommodation of secondary payloads on the Space Shuttle. The Hitchhiker carriers can 

carry payloads side mounted in the shuttle payload bay or mounted on a cross-bay 

"bridge" structure. PANSAT will be mounted within a canister to a small spring loaded 

ejection mechanism When the shuttle is positioned at the appropriate orbital position 

pyrotechnic bolts will fire releasing the satellite. 

B. PANSAT USER SERVICES 

PANSAT will provide a store and forward communications capability to HAM 

operators. This functionality will be implemented in an uploaded software package, only 

loaded once the spacecraft is orbiting and operational. The services that this uploaded 

software provides is the scope of this thesis. 

The satellite that is launched will have practically no functionality at the user level. 

Instead, programmed in its ROM, will be a routine such that as soon as the satellite 

becomes operational, it will try to establish contact with the ground station. Once contact 

is established, the ground station will upload the user services software, which the satellite 

will execute. 

Once the user services software is loaded, it will allow any HAM operator in the 

world to upload and download mail messages, as well as binary files. Also, the operators 

will be able to check the satellite telemetry, both current and historical. The user will also 

be able to immediately communicate with any other user that is currently in 

communications with PANSAT. Essentially the satellite will serve as a sort of bulletin 

board system (BBS), albeit one with enhanced functionality. 

The user services software not only implements this BBS system onboard the 

satellite, but also implements the ground station to remotely manage the satellite from 

NPS. A full description of the user services functionality is detailed in Chapter III of this 

thesis. 

-4- 



II.   BACKGROUND ON PREVIOUS WORK 

While numerous theses have been completed on the hardware aspect of 

PANSAT's design, construction and testing, very little has been written about the 

software side of the project. For the most part, the requirements of software have been 

ideas held by the members of the SSAG rather than being formally specified. Thus far, 

only two theses have held more than a paragraph description of the user services software. 

A brief description of user services is provided by Fred Severson in his 1995 thesis 

"An Overview of the Petite Amateur Navy Satellite (PANS AT) Project." However most 

of the short section of user services discusses communications protocol and means rather 

than the idea of what will be communicated. This section did provide a preliminary 

understanding of the purpose and functionality of PANSAT. The complete role of the 

satellite was determined in extensive interviews with Jim Horning and Dan Sakoda of the 

SSAG and is detailed in Chapter III of this thesis. 

Gregory Lawrence in his 1994 thesis "Preliminary PANSAT Ground Station 

Software Design and Use of an Expert System to Analyze Telemetry" does not focus on 

the user services portion of the ground station software. Rather, he concentrates on an 

artificial intelligence means of analyzing telemetry data retrieved from PANSAT. While 

the concepts presented in this thesis will be used in the telemetry display window on a 

ground station terminal, the program itself cannot be incorporated into the ground station. 

Lawrence's program was written in the Prolog computer language, which cannot be 

integrated with the C++ program the ground station will be written in. 

Beyond the scope of work that has been explicitly done for PANSAT, the 

commercial realm has obviously been working on various sorts of satellite projects for 

years. In fact, several programs already exist which provide at least some of the 

rudimentary elements that will be incorporated in PANSAT's user services functionality. 

Unfortunately, the companies that created these programs will not release their source 

code or methods in order for them to retain software proprietary. Thus the satellite's 

software building blocks must be designed and created from scratch. 



The result of this minimal available background of work is that the design and 

implementation detailed in this thesis is not forthcoming from or reliant on any other body 

of work. This work, however, will form the foundation for future work on the PANSAT 

user services software as well as any experiments that may be conceived during the 

spacecraft's lifetime. 



III.   DESCRIPTION OF USER SERVICES SOFTWARE 

A. INTRODUCTION 

As denoted in Chapter II, there did not exist a complete concept of the user 

services software. Consequently, the following description was based on a series of 

meetings between myself and Jim Horning from the SSAG. The initial meetings took 

place in January of 1997, but the document continued to mold and take shape for the 

remainder of the 1997 calendar year. 

This narrative was created to sum up the features and functionality of the 

PANSAT User Services Software package. After the contents were agreed upon by the 

members of the SSAG, this was used as the basis for Chapter IV, the formal requirements 

specification. 

Although the narrative is in paragraph format, each paragraph is organized as a list 

of functionality rather than a pure narrative. Each paragraph merely describes a program 

feature or group of features. The narrative starts out overviewing the entire system, then 

the spacecraft module and ground station module functions are separately described. 

B. SOFTWARE OVERVIEW 

The user services software is required to implement the ground station and 

onboard satellite bulletin board system operations, as well as performing satellite 

"housekeeping" functions detailed later. Existing onboard software, some of which will be 

interfaced by user services, already provides other housekeeping operations, as well as the 

operating system, telemetry features, file system, packet control, battery operations, 

automatic log keeping, etc. 

Throughout this narrative, the term "ground station" will refer only to the HAM 

radio site operated by the Space Systems Academic Group at NPS. This site is the only 

operational control node for the satellite. All other end users which may access the 

satellite will be referred to as "user." These "users" could be any amateur HAM radio 

operators located throughout the world. 'Users" can utilize the services provided by the 



satellite, but cannot change PANS AT's control settings. Only the ground station can 

modify the control settings. The difference in the options provided to these two different 

types of end users is provided throughout this narrative. 

The software required for the user services is divided into two separate modules. 

One part will be the ground station. A public domain user interface program will be 

extracted from elements of the ground station module and be made available via the 

Internet for downloading. This general user module will just have typical BBS user 

interface features - all the ground station controlling elements will be removed. 

The second part of user services software will be the software onboard the satellite 

which provides BBS functionality. Once initial contact is achieved between the satellite 

and the ground station, the ground station will upload the software for user services. 

PANSAT will then execute this program, which will provide the user interface and 

functionality with the satellite. 

Additional features to both modules will be added as the project matures and as 

new requirements develop after interacting with the functional satellite. 

C. SPACECRAFT MODULE DESCRIPTION 

The first module described is the system onboard the satellite. This program needs 

to run on Intel's 80C186 processor, executing on top of BekTek's spacecraft operating 

system (SCOS) and utilizing BekTek's AX.25 protocol utilities. Interfaces to both of 

these units are via Microsoft C version 5.0/5.1 object files. The user services program will 

most likely have about 300K out of 512K of memory left over for combined code and 

data, but the goal is to have the program use as little memory as possible. 

PANSAT will normally be in a receive-mode, waiting for a request-to-connect 

command from a user. Even when a connection is ongoing, the satellite will concurrently 

wait for another user to connect, until the maximum number of connections has been 

made. A user can connect with, or log onto, the spacecraft in either one of two modes. 

The first mode is via a generic ASCII interface, the standard BBS method for HAM 

operators. In this mode, all interaction between PANSAT and the user are via ASCII data 

-8- 



streams in a purely character environment. The second type of connection shall be called 

NPSterm, an NPS-propriety application level protocol. This is a GUI based interface to 

PANS AT and available only via the ground station software, or the user package derived 

there from. This connection will use shortcuts and data compression in transmissions. 

This decreases the interaction between the user and satellite - the less data transferred, the 

more utilization of the limited communications window is achievable. The user also works 

via a GUI interface to make things more robust and easier to use. The actual technical 

definition of NPSterm, which will still use/ride on top of the AX.25 data communication 

protocol, is defined in Chapter VI. 

The major requirement for the spacecraft services module is to perform BBS-like 

features. It will allow up to 16 simultaneous connections, one of which is reserved for the 

ground station, implemented with interleaved concurrency. A connection is an established 

communications link between a user or ground station and satellite. The connect process 

is implemented similar to logging onto a computer terminal. "Logging onto" user services 

will be identified by the caller trying to connect to call sign "PANS AT". If the caller is 

using callsign "KD6CXV" (the default value), the caller will be identified as the ground 

station. The ground station callsign can be changed from the default value, but only by the 

ground station. The satellite will then provide the time of its most recent connection with 

the ground station. For both users and the ground station, PANSAT will print out a 

happy face symbol with a welcome to PANSAT greeting. The happy face will be 

constructed with a few telemetry values. Next, the system will check to see if the 

connection is by a callsign which was previously disconnected during a file transfer. If it 

is, PANSAT will prompt the user whether or not to continue with the file transfer, exactly 

at the point the previous operation left off. After the file transfer, the connection process 

will continue with the next step. To facilitate continued file transfer, PANSAT will keep 

track of interrupted connections for a duration and maximum allowable number set by the 

ground station. The last step of the connection/login process will be to display broadcast 

messages, which can only be set by the ground station. 



If the means are developed, PANSAT should check a new connection's power 

(signal strength). If the connection is broadcasting over a ground station specified power 

level, PANSAT should warn the user. If the user doesn't lower the output level being 

used, PANSAT will disconnect that user. The too strong disconnect function is a 

secondary requirement. 

The user menu will provide the following services: It will allow a user to 

disconnect. Additionally, the connection will be automatically disconnected if no input is 

heard from the user in 2 minutes or a time duration set by the ground station. It will allow 

users to obtain two types of telemetry. By getting "current telemetry," the values at that 

moment in time will be displayed and broken out (put in a readable format with headings). 

The "stored telemetry" of the past few days, however, must be downloaded in file format 

(the proper file will be automatically selected from the spacecraft's storage), and the 

information will be in raw data and must be deciphered by the user. Further, the ground 

station can get a quick dump of all the current control settings. The user will be able to 

send mail to a single user or to all users of the system. They will be able to read any mail 

message on the system. They will be able to upload a file and tag it for a specific user or 

users, or for every user of PANSAT. They will be able to download any file. 

Additionally, to save the time required for uploading, a user may forward any message or 

file to another user. 

Anybody can access any of the general mail or files stored on the system. The 

difference in mail for a single user or for all is how the listings of the mail and files are 

made. The user can select to see a listing of every mail message on the system, just the 

messages directed at that user, just the messages directed at that user that have been 

posted within the last twenty-four hours, or just the messages directed at that user plus the 

messages sent to all. The same operations for mail exist for files, except where mail must 

be in text format, files can be in any format and are uploaded rather than directly entered 

in. Also, both mail and files may have a size limit set or disabled, by the ground station, 

the default limit is for files is 256 kB, for mail is 4 kB. To get a better idea on file size 

-10- 



limits, an initial experiment with the satellite will be to see how large a file can be put onto 

the system in three continuous days of connections. 

A user may delete a mail message or a file only if it was sent to them or they 

originated it. The ground station may delete any or all mail or files. Further, the system 

will autodelete files according to priorities set by the ground station. The priorities will be 

based on a combination of mail/file size, length of time on the system, and the amount of 

available free (unused) storage space. Also, mail/files sent to all users will have separate 

autodelete settings from those mail/files only to a single user. This includes an additional 

setting of the maximum number of mail/files to "all type" messages allowed on the system, 

which is set by the ground station. 

A user will be able to list all the other users currently connected to the system. 

That user will be able to send a one-line message to any other user currently connected, 

which will immediately be sent to the other user's terminal. Additionally, the sender can 

indicate the one-liner is for all, which will send the message to every user currently 

connected to PANSAT. For the machine, this is a high priority function, meaning it 

overrides other functions, but does not interrupt the other functions. 

A help feature on all these functions will be online. It will be very rninimal for the 

ASCII terminal, but much more extensive for the NPSterm because it will actually reside 

in the user's software. It will provide simple assistance to the BBS interface and 

functions. 

The ground station may terminate the user services program. The program is 

normally in a perpetual loop, always providing its services and never terminating. 

However, this command would allow the program to exit gracefully, which involves 

closing out all current work and conducting "garbage collection" (resource reclaiming). 

By exiting gracefully, the user services will be able start up retaining all the mail/files from 

the previous session, resulting in a minimal loss of continuity. Once the program is 

terminated, all the memory used by the program will be released back to the operating 

system for reuse. To restart the process, the user services program needs to be re- 

uploaded by the ground station. This procedure would allow for an updated version of 

-11- 



the program to be loaded on PANSAT, then allow operations to continue where they left 

off. 

Whenever a command reserved for the ground station is received, PANSAT will 

first check to ensure the command was received from the ground station connection. 

Next, the satellite will send a verification function back to the ground station. If the 

ground station responds with the correct answer, PANSAT will execute the command. 

For each and every ground station only command, a new verification set of numbers will 

be sent. If the ground station enters a general user command, however, no verification 

function will be queried. 

Every time the ground station connects, the user services software will generate 

an entry, with a data/time stamp, to the log manager. Additionally, every time a failed 

ground station only command is attempted, this information with a date/time stamp is sent 

to the log manager. The log manager is a separate driver running about the spacecraft, the 

interface to which will be provided by the SSAG. 

The second function of the user services will be to provide certain "housekeeping" 

operations. One such function will be a continuous calculation of the spacecraft's 

position. The ground station will periodically send an update of the position of the 

satellite to the spacecraft. Based on this, PANSAT will deadreckon its current position. 

When it determines that it is above water or areas that communication with the satellite is 

highly unlikely, the spacecraft will temporarily shut down non-essential equipment to 

conserve power, such as putting the modem in a listening duty-cycling mode. This 

function can be disabled by the ground station. Also, if no contact with the ground station 

has occurred in 24 hours, this function will be disabled. This deadreckoning feature is an 

experiment and a secondary requirement. 

Another "housekeeping" function will be to check the storage system for file 

fragmentation. It will conduct this check during periods of no-likely communications. If 

it is above a ground station set threshold, the system will defragment the storage memory. 

This is a secondary requirement. 

-12- 



Finally, to conserve on storage space, the system may use a data compression 

scheme to save mail and files. This would be completely transparent to the users, but 

could be disabled by the ground station. 

All of these "housekeeping" functions should be implemented as concurrent tasks 

to the normal BBS functions. 

All the ground station settings should be updated in a single information block, 

rather than having to go through a full set of commands for every operation. The only 

additional ground station's function not already mentioned would be the setting of 

PANSAT's onboard time/date stamp, which would be part of the single information block. 

If possible, the satellite module should use fault tolerance construction to be able 

to better survive the anomalies associated with space. This means the program will 

continually check itself for errors. If it finds one, it should try to correct itself, or notify 

the ground station if a reload of the software is necessary. 

D. GROUND STATION MODULE DESCRIPTION 

The second part of the user services is the ground station software. The bulk of 

this software needs to run on the Windows NT operating system on a PC. However, the 

PC controlling the modem will be implemented on a PC running the Linux operating 

system. The two operating systems will communicate with each other via the socket 

datagram protocol. 

The complete ground station software package will be used only at the SSAG at 

NPS, but a subset of functions will be bundled into a general user's package. This user's 

package will incorporate an interface to all the spacecraft functionality listed in Section C 

above, except for the functions listed as ground station only. Only the windows in this 

section specifically listed as such are the modules included in the general user package. 

This package would be available for downloading to anybody in the world via the Internet. 

The ground station will actually be operating on four computers simultaneously. 

The computers will be connected by a LAN using the TCP/IP protocol. One of the 

computers will be operating Linux, while the other three will use Windows NT. 

-13- 



The Linux machine will simply function as a relay between the satellite and the 

other ground station computers. This computer will serve as a Terminal Node Controller 

(TNC) emulator, providing AX.25 services and controlling the Serial Communications 

Controller (SCC) chip and modem. It will relay any packets received from PANS AT to 

other three computers. Any of these other computers can also send a packet to the Linux 

box, which it will then send to the satellite. All these packets, to and from PANSAT, will 

be backed up on a local hard drive for twenty-four hours. This will allow communication 

reconstruction with the satellite if required. 

An additional function of the Linux box will be to rotate the antenna as necessary, 

utilizing data from the satellite tracking window (on the display terminal), for optimal 

reception with the satellite. Drivers for these functions will be provided by the SSAG. 

The first Windows NT computer will be a display terminal with a large monitor. It 

will have a satellite tracking window, which will display a Mercator projection of the 

world, with the PANSAT's track and current position plotted. Color shading will denote 

the section of the satellite's track when the ground station is in its footprint. Also, the 

time for the next opportunity for the ground station to communicate with PANSAT will 

be displayed. This tracking window will also be included in the general user package. 

The display terminal will also have a window showing the latest telemetry and 

status of the satellite. This information will be defined later, but should be depicted 

graphically (i.e. represent battery power in line graphs) and use colors to denote 

thresholds (i.e. green, yellow, red) as much as possible. The telemetry window will also 

be included in the general user package. 

Another window for the display terminal will be a read-only "mirror" of the 

ongoing communication to and from the satellite. The window can be set to copy 

interaction between PANSAT and a single station (such as the ground station, which is the 

default), between multiple stations, or to copy all the communication to and from 

PANSAT. This window will also be included in the general user package. 

The final window on the display terminal will be the archive management window. 

This window will allow the viewing, deleting, printing, and searching of the archived files. 

-14- 



These files will contain PANS AT's telemetry data and the satellite's image. An image is a 

duplication of as much of PANSAT's storage as possible. For instance, an image may 

contain a copy of all the mail and file listings, as well as any mail or file that was obtained 

by the ground station. These images are acquired whenever the ground station interacts 

with the spacecraft. While the system will not explicitly load mail or files just for the 

image, any time the ground station does a download for any other purpose, that download 

will be included in the image. The system will, however, obtain a complete directory for 

the image automatically with each connection. The images will be stored automatically by 

the system, using a date stamp hierarchy for storage - a year directory contains the month 

subdirectories which contains the day subdirectories, which contain all the files from a 

single day. This window should also be available on the control computer. 

The second Windows NT computer that makes up the ground station will be the 

control terminal. The terminal will normally be in general access mode. If the operator of 

the terminal enters the super user password, however, the terminal will be put in super 

user mode. Super user mode will last for ten minutes, or until explicitly terminated by the 

user. The difference in the modes is that in super user mode, the operator can use the 

commands listed in section C above as for the ground station only. If in general access 

mode, only the user commands can be chosen. If in general access mode and one of the 

ground station commands is chosen, the operator will be warned. If in super user mode, 

when the operator uses one of the restricted commands, it will send the command to the 

satellite, then automatically respond to the satellite's verification function. The 

verification function responder will absolutely not be included in the general user package. 

Note that batch jobs, listed later, cannot use super user mode. These super user restricted 

commands must be done via active human intervention. 

The key window on the control terminal is the interaction window. This window 

is the typical BBS user interface, however this version has the NPSterm GUI. A 

difference between the user interface version and the ground station version, is that the 

ground station terminal window will offer more options. The additional ground station 

options are described in section C above. The operator will be able to create mail 

-15- 



messages for posting to PANSAT, even while not connected to the satellite. When 

connection with PANSAT is established, the mail messages will be sent to the spacecraft 

for posting. Likewise, the operator may read downloaded mail messages immediately, or 

store them for reading after the connection with PANSAT has been terminated. This 

storing is separate from the archiving function. 

Another window on this display will be the "control panel." This window will 

show all the settings controlled by user services for the satellite. The ground station user 

needs merely to modify one of the settings in this window and during the next connection, 

the entire setting block may be sent to the satellite, updating its settings.   The terminal 

must be in super user mode, however, to both modify the settings and to send the settings 

up to PANSAT. 

Also, the control terminal will be able to be set up to automatically do commands 

via a batch job. This batch job will be pre-compiled to check for validity. An example 

batch job could be to automatically log in to the satellite, download current telemetry, then 

logoff. This will allow for unattended interaction with PANSAT (such as operations at 

night) or for the automated beginning of a connection session before the terminal operator 

resumes control of the session. The batch command will be able to do any of the non- 

super user commands 

On both versions however (ground station and general user), if NPSterm on the 

satellite is a more recent version than the user program, the program will warn the user of 

the need to update the software, then shift into the pure ASCII terminal mode. This will 

allow the connection to continue, but will not be in the enhanced interface of NPSterm. 

The third Windows NT computer will perform as the network server. 

Additionally, it will collect the archive files, both the telemetry and images, as mentioned 

above. The archive files will be stored on this computer. 

The final function of the ground station software would be to have an Internet 

interface with the satellite/project. This will be implemented on the server as well. Via the 

Internet, anybody can access PANSAT via a virtual HAM user site, or a web site that 

allows a non-HAM operator to legally perform the functionality of one. The functions 

•16- 



provided by this site include the ability to post a message on the satellite's BBS, look at 

any of the archived files, view any messages or telemetry data from the storage images as 

desired, or request a message be downloaded for viewing during the next pass. An 

Internet viewer could see the desired message in the image directories, but the actual file 

may not be downloaded yet. After each pass, these Internet pages are recompiled with the 

latest telemetry and satellite image. 

A special feature for the Internet would be mail forwarding. As a mail message is 

being saved into the archive, the server will check the first line of the message. If the first 

line reads "Internet email:..." the server will forward the mail message to the Internet 

address specified after the colon on the first line. These Internet access features are 

secondary requirements. 

This ground station program will need to interface with other, as yet undefined, 

control modules. It may just be required to launch the execution of these other programs, 

which would use their own windows. Once such module is the program that performs the 

initial software upload. When contact with PANSAT is first made, this module will 

upload the user services module to the satellite for execution. None of the user services 

will be operational without this first step. Also, if PANSAT resets, for any reason, this 

module will need to be called to reload the spacecraft user services software. 

■17- 



■18- 



IV.   SOFTWARE REQUIREMENTS SPECIFICATION 

A. INTRODUCTION 

1. Purpose 

This Software Requirements Specification (SRS), prepared in the format as 

specified in IEEE Std. 830-1993, modified as required to adhere to the Thesis Preparation 

Manual guidelines, establishes the requirements for the PANS AT user services. This 

document is intended to form the basis for the design of the software product. 

2. Scope 

The PANSAT user services project will: 

»> Provide software to run a bulletin board system (BBS) onboard a satellite, 

allowing amateur HAM radio operators to read telemetry, send and read mail or 

files, and directly communicate with other operators. 

»> Provide software that will perform "housekeeping" experiments on the satellite, 

which are briefly described in section B.2.a of this chapter. 

»> Provide software to remotely manage the user services system and archive data 

received from the satellite. 

»>• Provide a software package deliverable to anybody in the world which would 

enable interaction with PANSAT. 

»»• Provide access to the satellite's user services via the Internet. 

»♦• Define and utilize a new application-layer communications protocol, designated 

NPSterm. 

The consumer for this software project is the Space Systems Academic Group 

(SSAG). The points of contact in SSAG for this project are Mr. Daniel Sakoda and Mr. 

■19- 



James Horning. The producer of the PANS AT user services software and documentation 

is LT Ken Hunter. 

3. Overview 

The remaining sections of this document are organized in the following manner: 

»> Section B of this chapter gives an overall description of the organization, 

functionality, and restrictions of the user services software. 

»*• Section C breaks down the software functions into individual elements, then 

provides the specific requirements for each element. 

One additional note: when sections are referred to in this specification, the sections 

implicitly refer to a section of this chapter. 

B. GENERAL DESCRIPTION 

1. Product Perspective 

This section covers the basic precepts on which the software package is based, for 

each software component and as a whole. 

a. Software Description 

The software required for the PANSAT user services is divided into two 

separate entities: the spacecraft and ground station modules. 

The first module is the spacecraft software. After initial contact with 

PANSAT is established, the ground station will upload this program. Prior to this 

upload, the satellite will have no user services functionality. Likewise, if PANSAT 

resets, this program will need to be reloaded because there is no permanent storage 

system on the satellite. After loading, the program will execute. The satellite will 

then be able to perform the BBS and "housekeeping" functions described in 

section B.2.a. 

-20- 



The second part of the user services software is the ground station module. 

This program will be used to manage the PANS AT user services system, as 

described in section B.2.b. Additionally, the ground station will have the following 

characteristics: 

TNC Emulation - The software will act as a high-level Terminal Node 

Controller (TNC) emulator. That is, TNC equipment will not be necessary 

for this system. The software will provide the functionality typically found 

in this equipment, such as packeting of data and control of hardware. 

Ground Station Composition - The ground station will actually be 

operating on four computers simultaneously. The computers will be 

connected and working together via a LAN using a TCP/IP network. 

Three of the computers will run Windows NT, the other will run Linux. 

The first NT computer will be a display terminal, which will incorporate a 

very large monitor. The purpose of this terminal is to view information 

relating to PANSAT without tying up the resources needed to manage the 

satellite. The second NT computer will be the control terminal. This 

terminal will have the resources to control/manage the satellite. The third 

NT computer will be the network server as well as manager of the 

Internet site set up to interact with PANSAT. To support this multi- 

computer architecture, the ground station module will actually be 

composed of several separate programs, one for each terminal. The 

network description for each terminal is depicted in Figure 3. The specific 

functionality incorporated in each program is listed in section B.2.b. 

Ground Station Derivative - The complete ground station software 

package will be used only at NPS, but a subset of functions will be bundled 

into a general user's package. The user's package will have all the options 

-21- 



listed for a general user, however, all the commands and windows listed as 

for "ground station only" will be omitted. This program will be available 

for downloading to anybody in the world via the Internet. 

Windows NT Server 
IP: 131.120.25.12 

GS_SERVER 
Remote dial in (. 128/. 129) 
Dial in number 656-3197 

Connets to network printer 
http/ftp host 

Maintain archives 

Communications Terminal 
Linux box 

IP: 131.120.25.127 
GS_COMM 

Control modem/antenna 
Communicate with PANSAT 

^ Display Terminal 
Windows NT Workstation 

IP: 131.120.25.126 
GS_DISPLAY 
Display satellite 
Track satellite 

Figure 3 - The Ground Station Network Logical Organization (Domain name: GS) 

b. End Users 

There are two distinct types of end users of PANSAT's user services. A 

reference to "end user" in this document will refer to both types, otherwise the 

name of the specific type will be used. The first type, called the "ground station," is 

the single HAM radio site operated by the Space Systems Academic Group at 

NPS. This site is the one and only control node for the satellite. All other 

-22- 



operators which may access the satellite are designated "users." A "user" could be 

any amateur HAM radio operator in the world. "Users" are allowed to use the 

BBS services provided by the satellite, but will not be able to change PANSAT's 

control settings. Only the ground station can modify the control settings. The 

specific differences in the functions available to these two types of operators is 

provided in section B.2.b, with the difference in the commands available to each is 

described in Tables 1 and 2. 

2. Product Functions 

This section gives a brief description of all the functions for each component of the 

user services software. A more complete and detailed description for these functions is 

given in section 3 of this document. 

a. Spacecraft Module Functions 

There are two main parts to the spacecraft module, the bulletin board 

system (BBS) and the special experimental "housekeeping" functions. 

The primary functionality of the PANSAT user services is the BBS. This is 

the interactive portion of the software, which is characteristically similar to a dial- 

in computer BBS. Up to 15 users will be allowed to be simultaneously connected 

to PANSAT, using an interleaved concurrency scheme. Further, an additional 

connection will be reserved for ground station use only, which will be identified by 

its callsign. After connecting (a description of which is in Table 1), PANSAT will 

send a greeting message to the connection containing a "happy face". This happy 

face will be composed of telemetry values, providing the HAM radio enthusiast 

with immediate status of the satellite. Next, the user or ground station will be 

allowed to continue a file transfer, if one had been interrupted during their 

previous connection. After the file transfer is complete, or immediately if the file 

transfer is not performed, PANSAT will send the connection a broadcast message. 

This message will be set by the ground station. Finally, the connection will be 

-23- 



offered a menu of choices, described in Table 1. After an option is performed, the 

menu is repeated until the disconnect command is received. In addition to the 

Table 1 commands, the ground station can perform the options listed in Table 2. 

However, after each one of the Table 2 commands, the satellite will query the 

ground station with a verification function. Only if the ground station sends the 

correct reply will the command be executed. 

Table 1 - General user BBS commands. Lexical composition: in the syntax column, a 
capital letter represents the exact character to use, a lower case word is replaced with an 
appropriate response, a "#" is replaced with an integer number, elements inside brackets 
are optional, and elements with "|" between them means that one, and only one, of the 
elements must chosen. A ' V indicates that although the syntactical description continues 
on the next line, the second line is really a continuation of the first line. 

Command Description Syntax 

Connect »*         Establish a communications link between a user or 
ground station and the satellite. 

»►          Similar to logging into a computer terminal. 

C PANSAT 

Get current 
telemetry 

•*         Display the telemetry values of PANS AT at that 
instant. 

»*          Will list out formatted, with headers. 

TC 

Get stored 
telemetry 

»>          Download PANSAT's telemetry for the past few 
days. 

»*          It will download in a file. 
»►          The file will be in raw data format, needing to be 

deciphered by the user. 

TS 

Send mail >►►          The command is entered on one line (excluding the 
message). 

»*         For callsignlist, one can enter as many callsigns as 
desired, each separated by a space. 

**■         A special callsign is "all" (meaning to every user of 
PANSAT). 

**         The subject is optional and denoted by beginning 
with a "S:". 

»*•          After this line is entered, beginning on the 
following line and going until an end of message 
character is reached (CTRL-D), all lines are 
incorporated into the message. 

SM callsignlist =* 
[S:subject] 
message 

-24- 



Command Description Syntax 

Send file »>•          Uploads a file into PANSAT's storage. 
»*■          See callsignlist described in send mail. 
»>          The last entry on the line is the filename, which is 

as it will appear on PANSAT. 

SF callsignlist =*• 
filename 

Read mail «►>•          If a number is specified, the contents of the mail 
message denoted by the number is displayed onto 
the user's or ground station's terminal. 

»►          If the 'E' option is used instead of a number, every 
mail messages with the callsign of the end user in 
the "still to" line will be sent to the end user. 

»>          A user may read any mail on the system. 

RM#|E 

Read file »*■         Downloads the file denoted by the number. 
«H-          A user may download any file on the system. 

RF# 

Delete mail •*■         Using the 'E' option will delete every mail message 
that was sent to the ordinator of the command. 

«►>          If numbers are specified, the mail messages denoted 
by the number(s) are deleted. 

»>■          One can delete a single mail item, or a range of 
mail (e.g. DM 45-56). 

»*■          A user can only delete mail if that user was the 
originator or recipient ofthat particular mail. 

Note: deleting a mail sent to them only removes 
their callsign from the callsign list - once all 
callsigns are removed from the list, the message is 
removed from the system. When reading the mail, 
however, the original "to" list will always be 
displayed. 

Options: 
DME 
DM# 
DM#- 
DM-# 
DM#-# 

Delete file »>          The same as delete mail, except applies to files. Same as delete 
mail, except use DF 
instead of DM. A 
"DF E" option is 
not available. 

Forward mail »*•         Essentially adds new callsigns to a mail's "to" list. 
»►          Eliminates the need to re-upload a mail just to 

increase distribution. 
»*■         In reading the mail, however, the forward list will 

be a separate line from the original "to" list. 
»*■         See send mail for callsignlist description. 

FM callsignlist # 

Forward file   
»*          The same as forward mail, except applies to files. FF callsignlist # 

-25- 



Command Description Syntax 

List mail **          The user must pick one of four options: 
U - list the mail only to that particular user 
E - list every single mail on PANSAT 
N - lists out every mail on PANSAT that was 

stored within the previous 24 hours or 
every new message (no number range is 
allowed for this option) 

A - like the U option, but also include the 
mail sent to the "all" callsign 

•*■         The default is to list every mail that fits into the 
category, but user can specify a range 
(e.g. LM U 56 - means list all mail messages to that 

particular user beginning with and including mail 
number 56). 

Options: 
LM U|E|N|A 
LMU|E|A# 
LM U|E|A # - 
LMU|E|A-# 
LMU|E|A#-# 

List files »*■          The same as list mail, except applies to files. Same as list mail, 
except replace LM 
with LF 

Help »►          Briefly describes all the available commands. ? 

Switch to 
NPSterm 

»>          Switches into using the NPSterm application layer 
protocol. 

*»•          This mode is available only to those users using 
NPS software to communicate with PANSAT. 

NP 

Switch to 
ASCII 

•*■          Switches out of the NPSterm mode. NA 

Who **■         Lists all the users currently connected to PANSAT. W 

Send one-liner **          Sends the message immediately to a user currently 
connected to PANSAT. 

•*■         Can use special callsign "all" to send to every user 
currently connected to PANSAT. 

**         Message consists of everything after a single 
callsign until the end of the line. 

M callsign message 

Disconnect »>          Logs off PANSAT, formally disestablishing the 
link. 

X 

-26- 



Table 2 - Additional BBS commands for the Ground station only. The lexical 
composition is the same as in Table 1. 

Command Description Syntax 

Delete mail »►         The same as delete mail a for general user, however 
no restrictions apply to deleting mail. The ground 
station may delete any mail message, 
unconditionally. 

»*■         The 'E' option for delete mail, listed in Table 1, is 
not applicable for this unconditional delete. 

Options: 
DM# 
DM#- 
DM-# 
DM#-# 

Delete file **■         Same as delete mail, except applies to files. Same as delete 
mail, except replace 
DM with DF 

Post broadcast 
message 

»►          Replaces the broadcast message which is displayed 
when a user first connects to PANSAT. 

»*■         The message works the same as in send mail. 

P 
message 

Get BBS 
settings 

**■          The system will return a condensed block which 
will contain all of the current values for the user 
services software control settings. 

G 

Update BBS 
settings 

**■         Sends a condensed data block containing all of the 
PANSAT user services software settings - the values 
sent will replaces those onboard the satellite. 

»*•          The ground station software automatically will 
generate the block from an easy-to-use interface. 

U block 

Update ground 
station callsign 

**          If the ground station will be using a different 
callsign in future connections, this updates that 
callsign so that PANSAT will be able to recognize 
the ground station. 

»*•         If a new callsign is used without updating, the 
satellite will only give general user privileges to the 
new callsign for ground station. 

GS callsign 

Terminate user 
services 
program 

*►          Gracefully exits the user services program. 
»►          All users connected to PANSAT are warned, then 

automatically disconnected from system. 
**■          All program states are saved, dynamic memory is 

reclaimed, then all memory is turned over to the 
operating system. 

**■          The user services program must be reloaded to 
execute again. 

KI 

-27- 



The secondary role of the spacecraft user services software is to perform 

"housekeeping functions." These are experimental functions, any or all of which 

could be disabled or re-enabled by the ground station. Implementing these 

functions is a secondary priority after implementing the BBS. The "housekeeping 

functions" are as follows: 

Deadreckoning - Periodically, the ground statLu will update the satellite's 

position. From this data, PANSAT will continually deadreckon its current 

position. If the satellite is in an area of no-likely communications, such as 

over an ocean, it will conserve power by putting the modem into a duty 

cycling mode. Once the period is over, the system shifts the modem back 

into its normal operational mode. 

Fragmentation - The system will periodically check the fragmentation of 

the storage memory. If the fragmentation exceeds a ground station set 

threshold, during the next period of no-likely communications, determined 

using the deadreackon function detailed above, it will defragment the 

spacecraft's storage. 

Data Compression - This will compress all the data as it is put into the 

storage memory on the spacecraft. This will be transparent to the user, but 

will maximize the available storage space. 

b. Ground Station Module Functions 

These functions are broken down by the specific terminal the action is 

performed on. 

(1) Display Terminal. This terminal will have a window plotting 

PANSAT's current position and anticipated track onto a projection of the 

-28- 



world. The area along the track in which the satellite should be able to 

communicate withNPS will be colored. The next time the satellite is 

expected to be in this area will also be displayed. Another window will 

graphically display the spacecraft's latest telemetry. A third window will 

display the communications to and from PANS AT while it is in the window 

of reception. The final window on the display terminal will have full 

interaction with the PANSAT archive files. These archive files will contain 

telemetry and all the information from the satellite's storage that was 

received by the ground station. The general user's package will contain all 

of these windows except for the archive management window. 

(2) Control Terminal. The first window on this terminal will be the 

communications window. This window is the means for interacting with 

PANSAT, as all the commands will be entered here. While the commands 

work as described in Tables 1 and 2, mail does not have to be written or 

read during the time of connection. These operations can be done offline, 

but only while connected to PANSAT are the mail actually transmitted and 

received. The operator of this terminal can enter the terminal into a "super 

user" mode by entering a password. While in this mode, the operator will 

be able to enter Table 2 commands and the terminal will automatically 

respond to PANSAT's verification queries. Otherwise, if in normal mode, 

only Table 1 commands can be entered. Another window on this terminal 

will be the "control panel". This window contains all the satellite's user 

services settings. By changing the values in this window, the spacecraft's 

settings will be updated at the next opportunity. On the terminal, the time 

until the next possible communication with PANSAT will be displayed. 

Another window will be an archive management window, identical to the 

one on the display terminal. This terminal will also have a batch job 

-29- 



compiler, allowing unattended interaction with PANSAT with only Table 1 

commands. 

(3) Windows NT Server. This will perform all the network 

administration. This terminal will also channel the data received from the 

satellite into the archives. Additionally the server will act as the Internet 

Virtual station. This will allow anyone connected to the Internet to access 

PANSAT via a World Wide Web (WWW) site. The web page will be a 

virtual user's HAM radio station. The functions provided by this site 

include the ability to post a mail message on the satellite's BBS, list the 

archived files, download the archived files via the standard Internet file 

transfer protocol, view any saved mail message or telemetry data, or 

request a mail message be downloaded for viewing during the next pass. 

An Internet viewer could see a desired mail message in the mail listings, 

which are downloaded with every pass. However, the actual mail may not 

be yet downloaded. Thus this viewer would need to request the mail for 

downloading during the next pass. After each pass, these Internet pages 

are regenerated with the latest data. Implementing the Internet virtual 

station is a secondary requirement after the development of the control and 

display terminals. 

(4) Communication Terminal/Linux Box. This computer serves as 

the communication relay between the ground station and the satellite. It 

will act as the TNC, controlling the serial communication controller (SCC) 

chip and modem. Packets of data received from PANSAT are relayed to 

the three NT terminals, while data received from any of the terminals is 

transmitted to the satellite. All the packets transmitted or received are 

locally backed up for twenty-four hours. 

-30- 



3. User Characteristics 

While a level of competence is not assumed, both types of operators of the system 

(user and ground station) are expected to be fairly knowledgeable with HAM radio 

operations, with at least some familiarity with satellite communications and a BBS. 

4. General Constraints 

a. Timing Constraints 

PANS AT is a soft real-time system. That is, the timing of the information 

flow does not effect the integrity of the system. A piece of information that arrives 

slowly has no adverse impact on the system, other than just taking a long time. 

However, because this is a communications platform with a limited window of 

opportunity (two to ten minutes per pass, a few passes per day), the system is 

better utilized by speedy operations. To support optimized communications, the 

onboard satellite processing and system overhead needs to appear to the end user 

to take a nearly no processing time. That is, all the window of opportunity to 

communicate should not be "wasted" waiting on processing. Thus for the 

spacecraft module, the highest priority is code speed coupled with a small program 

size. The ground station module's highest priority is simply code speed, since 

program size is not a relative factor. 

b. Spacecraft Module Constraints 

This module will run on Intel's 80C186 processor, executing on top of 

BekTek's spacecraft operating system (SCOS) and utilizing BekTek's AX.25 

protocol utilities. The interfaces to both of BekTek's units are via Microsoft C 

version 5.0/5.1 object files. The user services program will have about 300 kB out 

of 512 kB of memory left over to work with (combined code and data), but the 

goal is to have the program use as little memory as possible. For storage space, 

PANSAT will use two 4.5 MB (4 MB of normal RAM, 0.5 MB of FLASH ROM) 

-31- 



memory banks. Initially the two memory banks will be mirroring each other for 

backup redundancy. However, if single-bank reliability experiments prove 

successful, the banks will be used in conjunction, providing 9 MB of storage. 

c Ground Station Module Constraints 

This module will run on two PCs. Initially, the software will execute on 

top of the Windows 95/NT operating system. Follow-on projects, however, will 

port the program over to DOS-based and Linux-based systems. The purpose of 

these ported versions is to offer diversity in the general user's package. However, 

these are secondary and tertiary requirements, respectively. Thus, for ease of 

portability, operating system dependent code needs to be localized as much as 

possible. 

5. Assumptions 

For the spacecraft module, the operating system, packet protocol, log and 

telemetry management utilities will be integrated with the user services software by the 

SSAG. These utilities provide all the hardware interfaces required by the user services 

program. Likewise, the hardware interfaces for the ground station will also be provided 

by the SSAG. This includes drivers to control the modem, the SCC, the antenna rotor, 

and AX.25 protocol utilities. 

C. SPECIFIC REQUIREMENTS 

This section breaks down the general descriptions provided in section B.2 into 

specific individual functional elements. 

-32- 



1. Spacecraft Module 

a. BBS Functions 

(1) Login User / Ground Station 

Introduction - PANSAT will normally be in a receive-mode, 

waiting for a request-to-connect command from a user. Even when 

a connection is ongoing, the satellite is concurrently waiting for 

another user to connect, until the maximum number of connections 

has been made. 

Inputs - The connection process is triggered by the input stream "C 

PANSAT" from a user or the ground station received via SCOS. 

The identity/origin of the data stream, which is determined by the 

callsign of the user sending the stream, will be provided by the 

AX.25 packet utilities. 

Processing - If one of the fifteen connection records are available, 

PANSAT will modify the available connection record from 

"inactive" to "active". If the identity of the new connection is the 

ground station, then the satellite will activate the reserved ground 

station connection record instead. The time and date that the 

ground station is connecting will be sent to the log manager, as well 

as unsuccessful ground station login attempts. After the connection 

record is updated, control for this record is passed to the function 

in next section. If no records are available, the user is notified of 

the failed connection, and no control is not passed. If the 

'terminate user services program" process is in progress, which 

-33- 



means the program is shutting down, all connection requests will be 

denied. While control for a particular connection record may pass 

to another function, this function will continue to process, waiting 

for another connection request. 

Outputs - The connection records are updated - the record is 

marked as "active", the callsign is stored in record, the terminal 

mode is set to ASCII, and the connection status is set to 

"connecting". The same occurs for the ground station, except 

callsign is not stored in the connection record, because it is already 

stored there. If no connections are available, the "Sorry, no 

connections available" message stream is sent to the attempting 

callsign via SCOS. The ground station is guaranteed a reserved 

connection, thus would never get this message. If the "terminate 

user services program" process is in progress, the message "System 

is temporarily unavailable" is sent to the user. 

External Interfaces - Note that before data is sent to SCOS for 

transmission, it must first be sent to the AX. 25 utilities for proper 

pocketing. Likewise any packet received from SCOS must be sent 

to the AX. 25 utilities to be deciphered/made readable. For sake of 

space, this fact will not be repeated in further interface sections. 

Interfacing in this function will be done via those two packages 

(SCOS and the AX.25 utilities). Additionally, if the ground station 

logs in, the log manager package will also be interfaced. 

Performance Requirements - This function needs to be 

continually running. When this function passes control to anther 

-34- 



function, it is for that connection or callsign only. This function 

continues to execute, waiting for another new connection. 

Design Constraints - The best way to implement this function will 

be to have an incoming stream parser. If a stream is from an 

ongoing connection, it sends the data to the appropriate function, 

based on the connection status field. Otherwise, the data stream is 

sent to this function. Every time an active connection receives data 

from the user, the "time of last input from user" field in the 

connection record will be updated. 

Attributes: 

Ground Station Identity: The initial ground station callsign 

will be "KD6CXV". This can be changed by the ground 

station. 

Maximum Connections: Maximum number of connections 

will be 15 concurrently interleaved users, with an additional 

connection reserved for the ground station. 

Other Requirements - None. 

(2) Send Greeting to New Connection 

Introduction - Once a connection has been established, a greeting 

message followed by a happy face is sent to the user or ground 

station. 

Inputs - None. 

-35- 



Processing - The stream "Welcome to PANS AT" is sent to the 

connection. If the connection is the ground station, also send "The 

last communication with the ground station was ..." followed by the 

"time of last input from user" field in the ground station's 

connection record. For any type connection, the greeting is ended 

with a happy face. The happy face will be made out of selected 

current telemetry values, the specifics of which will be determined 

later. 

Outputs - The canned greeting statements are sent to the 

connection via SCOS. 

External Interfaces - All interfacing in this function is done via the 

SCOS, AX.25, and telemetry manager utility packages. 

Performance Requirements - The happy face should not be very 

complicated. 

Design Constraints - The happy face only needs to contain a few 

simple telemetry values, just to quickly let the knowledgeable user 

view PANSAT's status. 

Attributes - None. 

Other Requirements - None. 

-36- 



(3) Check File Transfer Status 

Introduction - When a new connection has been established, this 

function compares the callsign to a list of callsigns that were 

previously disconnected in the middle of a file transfer. If the new 

callsign matches one on the list, the user will be asked if the file 

transfer is to continue. If affirmative, the file transfer continues 

exactly where it left off. 

Inputs - The answer whether to continue the file transfer or not is 

received from the user via SCOS. 

Processing - The connecting callsign is compared to the list of 

interrupted file transfer users. If a match exists, the user is queried 

if the file transfer is to continue. If yes and the file transfer was an 

upload, the status is set to "temp uploading"and the file on 

PANSAT is opened for append, then control is passed to the file 

upload function. If the file transfer was a download, the status is 

set to "temp downloading" and the position in the file is retrieved, 

then the file download function is called, beginning at the position 

indicated. After the file transfer is complete, control will return to 

this function and the callsign will be removed from the list. 

Additionally, if the connecting callsign was in the interrupted file 

transfer list, but the user chose not to continue the operation, the 

callsign will be removed from the list. When the file transfer is 

done or if the operation was skipped, control is passed to function 

in the next section. 

-37- 



Outputs - The question "Do you want to continue the file 

transfer?" is sent to the end user via SCOS. If an upload, an 

append command is sent to the file system, otherwise the file is 

opened and the file position pointer is set. The file transfer function 

then handles the rest of the input/output. 

External Interfaces - All interfacing in this function is done via the 

SCOS, with the Surrey file operations application, and AX.25 

utility packages. 

Performance Requirements - None. 

Design Constraints - The connection status is set to "temp 

download" or "temp upload", rather than the normal download or 

uploading status. That way, after the file transfer is complete, the 

program knows to return to the connection process, where it 

continues where it left off. 

Attributes - In the file-transfer interrupted list, the following values 

need to be stored: the callsign, date-time stamp of the disconnect, 

whether uploading or downloading, the filename accessing, and the 

position in the file. 

Other Requirements - None. 

(4) Broadcast Message 

Introduction - The last step in the connection status is to send the 

user the broadcast message. This message is generated solely by 

-38- 



the ground station, but is displayed to every user connecting to 

PANSAT. 

Inputs - The broadcast message is retrieved from the file system 

(the Surrey part of SCOS). 

Processing - First the broadcast message is relayed to the end user. 

Additionally, at this time the "time of last input from user" field in 

the connection record is updated with the current time and the 

connection status is set to "menu".   The connection process is now 

completed and control is passed to the function in next section. 

Outputs - The broadcast message is sent to the user via SCOS. 

The connection record is updated. 

External Interfaces - All interfacing in this function is done via the 

SCOS, with the Surrey file operations application, and AX.25 

utility packages. 

Performance Requirements - None. 

Design Constraints - This is the last part of the connection 

process. 

Attributes - None. 

Other Requirements - None. 

-39- 



(5) Options Menu. When the connection is in the menu state, the 

system sends a line with all the possible letter choices to the end user (i.e. 

TC, TS, SM, SF, RM, RF, DM, DF, LM, LF, FM, FF, NP, NA, NP, W, 

M, ?, X >), then waits for the user or ground station to send a command. 

If the command sent by the user does not fit the format described in Tables 

1 and 2, the end user is sent a warning. By receiving the command prompt, 

the end user knows the previous command is completed and PANSAT is 

ready for the next command. This function will repeat until the user enters 

the disconnect command or is automatically disconnected by the system. 

(a) Get Current Telemetry 

Introduction - See Table 1. 

Inputs - This function is triggered by the user or ground 

station sending a stream with the command "TC". Current 

telemetry values are obtained from the telemetry handler. 

Processing - The telemetry values are inserted into a 

Preformatted mask, then sent to the user or ground station. 

Control is returned to the menu after completion. 

Outputs - The filled-out mask is sent to the user via data 

streams in SCOS. 

External Interfaces - All interfacing in this function is done 

via the SCOS, the telemetry handler, and the AX.25 utility 

packages. 

-40- 



Performance Requirements - The telemetry values must 

be current. Turn around for the information must be quick 

enough so a time lag is not noticeable. 

Design Constraints - Since this is a one step operation, the 

connection status stays as "menu". 

Attributes - None. 

Other Requirements - The actual values of the telemetry 

have not yet been defined by the client. Additionally, the 

means of accessing the current telemetry values has not 

been provided. Both of these need to be completed before 

this function can be implemented. 

(b) Get Stored Telemetry 

Introduction - See Table 1. 

Inputs - This function is triggered by the user or ground 

station sending a stream with the command "TS". 

Processing - The file download function is called with the 

identity of the stored telemetry file. When the file transfer is 

completed, control loops back to menu function. 

Outputs - The connection status is set to "downloading". 

After completing the download, the status is set back to 

-41- 



"menu". The actual file to download is directed from the 

file system to the user via SCOS. 

External Interfaces - All interfacing in this function is done 

via the SCOS, the Scurry file system, and the AX.25 utility 

packages. 

Performance Requirements - None. 

Design Constraints - None. 

Attributes - The filename of the stored telemetry will be a 

hard coded program constant. 

Other Requirements - The client still needs to provide the 

name of the file in which the telemetry will be stored. 

(c) Send Mail 

Introduction - See Table 1. 

Inputs - This function is triggered by the user or ground 

station sending a stream with the command "SM". The mail 

input format is described in the send mail syntax of Table 1. 

These inputs are received from the end user via SCOS. 

Processing - After the send mail command is received, all 

input from the user until a end-of-message character is 

considered part of the mail message. In saving the message, 

-42- 



a file is created and a "to" line, a "from" line, and a 

"subject" line are added at the beginning of the text. 

Additionally, at the very beginning of the file a "still to" line 

is added. While this line is not viewed by the user, it is used 

by the system to tell who in the "to" line has yet to view the 

message. Initially, the "still to" will be a duplicate of the 

"to" line. If the restrict mail/file size setting is "ON" and the 

mail exceeds the threshold size, or if there is not enough 

room in storage to save the mail, the mail will not be saved 

and a warning will be sent to the user. When the end-of- 

message character is received, the file containing the mail 

message is closed. 

Outputs - After the SM line is received, the connection 

status is set to "sending mail". After the end-of-message 

character is received, the status is set back to "menu". If 

the sending mail is canceled due to a mail or storage size 

error, the user is notified that the "Mail size exceeds system 

maximum, not saved". 

External Interfaces - All interfacing in this function is done 

via the SCOS, with the Surrey file operations application, 

and AX.25 utility packages. 

Performance Requirements - None. 

Design Constraints - All mail is assumed to be in 

text/ASCII format. 

-43- 



Attributes - The end-of-message character is a CTRL-D. 

Other Requirements - None. 

(d) Send File 

Introduction - See Table 1. 

Inputs - This function is triggered by the user or ground 

station sending a stream with the command "SF". The 

format for the file input is described in the send file syntax 

of Table 1. All input after the "SF" line until an end-of-file 

is reached will be considered part of the file. These inputs 

are received from the end user via SCOS. 

Processing - The system attempts to create a file. Each file 

is identified by a user service's number, thus filenames on 

the system can be redundant. If the file is already opened in 

append mode by the interrupted file transfer continuation 

process, which is described in "check file transfer status" 

section above, use that opened file. Save "to", "from", and 

"still to" information is a separate file. This file information 

file will have the same name as the actual file, except the 

first character of filename extension will be replaced with a 

"!". This process is skipped for the appended file, as the 

information is already there. The connection status is set to 

"uploading" and all data from the user until the end-of-file is 

added to the file. After the file transfer has been completed, 

the file is closed. If the restrict mail/file size setting is "ON" 

-44- 



and the file exceeds the threshold size, or if there is not 

enough room in storage to save the file, do not save the file 

and send a warning to the end user. After the file transfer is 

completed, the connection status is returned to "menu". 

Outputs - If the filename already exists on the system, send 

a warning to the user. After the file transfer is completed, 

notify the user that transfer is complete and how much 

storage space was taken up by the file. During a file 

transfer, send all the file data to the storage system, via the 

Surrey file system. When transfer begins, set connection 

status mode to "uploading". If the upload is canceled due 

to a file or storage size error, notify user "File size exceeds 

system maximum, not saved". 

External Interfaces - All interfacing in this function is done 

via the SCOS, with the Surrey file operations application, 

and AX.25 utility packages. 

Performance Requirements - A file transfer protocol 

similar to the PACSAT level 0 ftp will be implemented for 

PANSAT. 

Design Constraints - Unlike mail, there is no assumption 

on the format of a file. It is treated as a binary file. 

Attributes - None. 

Other Requirements - None. 

-45- 



(e) Read Mail 

Introduction - See Table 1. 

Inputs - This function is triggered by the user or ground 

station sending a stream with the command "RM". The 

read mail input format is described in Table 1. This input is 

received via SCOS. 

Processing - If the mail identified by # exists, then the file 

holding the mail message is retrieved and sent to the user. 

If # does not exist, a warning is sent to the user. If the 'E' 

option was used instead of a number, every mail message 

with the end user's callsign in the "still to" line will be sent 

to end user in one continuous stream. When the operation 

is done, control is passed to the menu. 

Outputs - Simply dumps the contents of the mail to the end 

user.   However, the "still to" line is not relayed to the user 

or ground station. If mail does not exist, the warning "Mail 

# does not exist" is sent to the user or ground station. If the 

'E' option was used, but no mail for the end user exists, the 

warning "No mail for callsign" is sent to the end user. 

External Interfaces - All interfacing in this function is done 

via the SCOS, with the Surrey file operations application, 

and AX.25 utility packages. 

Performance Requirements - None. 

-46- 



Design Constraints - This function does not need to 

modify connection status. 

Attributes - None. 

Other Requirements - None. 

(f) Read File 

Introduction - See Table 1. 

Inputs - This function is triggered by the user or ground 

station sending a stream with the command "RF". The read 

file input format is described in Table 1. This input is 

received via SCOS. 

Processing - If file # exists, the size is sent to the user. The 

file is then opened and read until end of file, relaying the 

data to user. The position in file is continually updated in 

connection record. If file # doesn't exist, the user is sent a 

warning message. However, this warning is prefaced with 

an end-of-file signal, so that the end user will exit their 

downloading mode. When the file transfer is done, control 

is passed to the menu function. 

Outputs - The connection mode is set to "downloading". 

When complete, the status is reset to "menu". The file 

contents are sent to the user via SCOS. If the file # 

-47- 



specified by the user does not exist, the warning "File # 

does not exist, operation aborted" is sent to the user. 

External Interfaces - All interfacing in this function is done 

via the SCOS, with the Surrey file operations application, 

and AX.25 utility packages. 

Performance Requirements - None. 

Design Constraints - A file transfer protocol similar to the 

PACSAT level 0 ftp will be implemented for PANSAT. 

Attributes - None. 

Other Requirements - None. 

(g) Delete Mail 

Introduction - See Tables 1 and 2. Note the possible 

combinations of the command line, for example: "DM 43" 

deletes one mail; "DM - 43" deletes all mail up to and 

including mail number 43; "DM 43-56" deletes all mail 

between and including 43 and 56; and "DM 43 -" deletes all 

mail with a number equal to or greater than 43. 

Inputs - This function is triggered by the user or ground 

station sending a stream with the command "DM'. The 

delete mail input format is described in Table 1 or 2. This 

input is received via SCOS. 

-48- 



Processing - A user may only delete mail if that user was 

the originator or recipient ofthat particular mail. If the 

originator deletes it, it is immediately removed from the 

system. However, if user who received the mail deletes it, it 

really only deletes that user's callsign from the "still to" list. 

If the "still to" list becomes empty, then the mail is removed 

from the system. This way the users still on the "still to" list 

can read the mail before it is removed. If the # specified is 

unable to be deleted or does not exist, the user is warned, 

then the process continues by deleting what files it can from 

those specified in the command line. If the 'E' option is 

used instead of a number range, mail message with the end 

user's callsign in the "still to" line will be deleted, as 

described above. After this function completes, control is 

returned to menu. The ground station will normally use the 

delete mail command as a regular user. However, the 

ground station can purge any mail from the system by 

appending a "SU" at the end of the delete command. This 

means super user delete or unconditional removal of all files 

specified. The command line is put into a special command 

buffer and control is passed to the verification function, 

specified in its section below. After the ground station is 

verified, every file specified is removed from the system. 

Outputs - The user or ground station is notified if a number 

specified (or a number in the range they specified) is unable 

to be deleted, due to the # not existing or the user not 

having privileges to delete it. If the 'E' option was used, 

but no mails exist with the end user's callsign in the "still to" 

-49- 



line, the warning "No mails to delete" is sent to the end 

user. Otherwise, the end user is notified upon the successful 

completion of the delete operation. 

External Interfaces - All interfacing in this function is done 

via the SCOS, with the Surrey file operations application, 

and AX.25 utility packages. 

Performance Requirements - None. 

Design Constraints - This function does not require any 

connection status changes. 

Attributes - None. 

Other Requirements - None. 

(h) Delete File. This function works the exact same way as 

delete mail, except it applies to files and is triggered by a "DF" 

command. 

(i) List Mail 

Introduction - See Table 1. 

Inputs - This function is triggered by the user or ground 

station sending a stream with the command "LM". The list 

mail input format is described in Table 1. This input is 

received via SCOS. 

-50- 



Processing - The directory structure is simply accessed 

from file system and the file numbers matching the range 

specified in the input command are kept while the others are 

discarded. See Table 1 for the matching criteria. These 

matches are sent to the user. If the "N" option is used, 

however, instead of mail numbers, the date the mail was 

posted is checked. If the age of the mail is equal to or less 

than 24 hours, it is listed to the user, otherwise it is ignored. 

Outputs - Matching directory entries are sent in the 

following format, prefaced with this heading: 

Mail#    To     From     Date/Time Subject 

External Interfaces - All interfacing in this function is done 

via the SCOS, with the Surrey file operations application, 

and AX.25 utility packages. 

Performance Requirements - None. 

Design Constraints - This function does not require a 

connection status change. 

Attributes - None. 

Other Requirements - None. 

-51- 



(j) List File. Works the same as list mail except applies to 

files, is triggered by the "LF" command, and is in the following 

format: 

File #     To     From    Date/Time     Filename 

(k) Who 

Introduction - See Table 1. 

Inputs - This function is triggered by the user or ground 

station sending a stream with the command "W". This input 

is received via SCOS. 

Processing - A list of all the callsigns from the active 

connection records is sent to the end user via SCOS. 

Outputs - A data stream containing all the callsigns 

currently connected on the system is sent to the user. 

External Interfaces - All interfacing in this function is done 

via the SCOS and AX.25 utility packages. 

Performance Requirements - None. 

Design Constraints - To obtain the callsigns currently 

connected to PANSAT, the system only needs to examine 

the active connection records. There is no need to change 

connection status for this function. 

-52- 



Attributes - None. 

Other Requirements - None. 

(I) Help 

Introduction - See Table 1. 

Inputs - This function is triggered by the user sending a 

stream with the command "?". This input is received via 

SCOS. 

Processing - Whenever this command is received, PANSAT 

simply outputs the help table, then returns to the menu. 

Outputs - In the format of table 1, the Command Name and 

Syntax columns are listed out to the user via SCOS. 

External Interfaces - All interfacing in this function is done 

via the SCOS and AX.25 utility packages. 

Performance Requirements - None. 

Design Constraints - No change in connection status is 

required. 

Attributes - None. 

-53- 



Other Requirements - This command is performed on 

ASCII terminals only. If the connection is using NPSterm 

or NPS software, the command is intercepted by the host 

terminal and given a much more robust response. 

(m) Forward Mail 

Introduction - See Table 1. 

Inputs - This function is triggered by the user or ground 

station sending a stream with the command "FM". The 

forward mail input format is described in Table 1. This 

input is received via SCOS. 

Processing - If the mail # exists, a "Forward" line is added 

to the top of the mail file and the callsignlist is 

concatenated to the "still to" field. If the mail # does not 

exist, the end user is warned. 

Outputs - If mail # does not exist, the warning "Mail # does 

not exist" is sent to the end user. 

External Interfaces - All interfacing in this function is done 

via the SCOS, with the Surrey file operations application, 

and AX.25 utility packages. 

Performance Requirements - None. 

-54- 



Design Constraints - No change in the connection status is 

required for this function. 

Attributes - None. 

Other Requirements - None. 

(n) Forward File. The function works the same as forward 

mail, except it applies to files and is triggered by the "FF" 

command. 

(o) Switch to NPSterm 

Introduction - See Table 1. This application-level protocol 

uses two methods to cut the interaction between the end 

user and the satellite. The basic principle for the reduced 

interaction is the less data transferred, the less time is used 

conducting the interaction, making the limited window of 

communication with the satellite more productive. 

Shortcuts are used for standard commands and canned 

statements, and all information sent between the user and 

PANSAT is applied through a data compression scheme. 

The version of NPSterm is sent to the user/ground station 

to ensure that the sender and receiver are compatible. 

Inputs - This function is triggered by the user or ground 

station sending a stream with the command "NP". This 

input is received via SCOS. 

-55- 



Processing - The connection record is updated to indicate 

the end user is using NPSterm. 

Outputs - A quick statement is sent to the user notifying 

that NPSterm is about to be entered. Additionally, the 

version of NPSterm used by PANSAT is sent to the user. 

Both messages are sent via SCOS. 

External Interfaces - All interfacing in this function is done 

via the SCOS and AX.25 utility packages. 

Performance Requirements - It is desired to use a 

compression routine that is optimal towards text, as this is 

anticipated to encompass the bulk of communications for 

PANSAT. 

Design Constraints - All interaction between the end user 

and PANSAT after this command is executed will use 

shortcuts and data compression. 

Attributes - The version of NPSterm will be a hard coded 

program constant. 

Other Requirements - The listing of the NPSterm 

shortcuts has yet to be defined, so, for an initial version of 

the protocol, only the data compression will be 

implemented. 

-56- 



(p) Switch to ASCII 

Introduction - See Table 1. Drops the connection out of 

NPSterm mode. 

Inputs - This function is triggered by the user or ground 

station sending a stream with the command "NA". This 

input is received via SCOS. 

Processing - The connection record is updated to indicate 

that the end user is using an ASCII terminal interface. 

Outputs - Sends a quick statement that NPSterm is about 

to be exited to the user via SCOS. 

External Interfaces - All interfacing in this function is done 

via the SCOS and AX.25 utility packages. 

Performance Requirements - None. 

Design Constraints - None. 

Attributes - None. 

Other Requirements - None. 

(q) Send One-Liner 

Introduction - See Table 1. 

-57- 



Inputs - This function is triggered by the user or ground 

station sending a stream with the command "M". The send 

one-liner input format is described in Table 1. This input is 

received via SCOS. 

Processing - If in the callsign position the special callsign 

"all" is used, then the message is sent to every end user 

currently connected to PANS AT. Otherwise, after checking 

to ensure the callsign is currently connected to PANSAT, 

the message is immediately sent to the callsign. If the 

callsign is not currently connected, a warning is sent to the 

originator. 

Outputs - If the callsign is connected to PANSAT, the 

message is sent to them. Otherwise the warning "Callsign 

not connected to PANSAT" is sent to the originating user. 

External Interfaces - All interfacing in this function is done 

via the SCOS and AX.25 utility packages. 

Performance Requirements - While the line should get 

sent to the end user instantly, in no way should that actually 

interfere with the end user's current activity. 

Design Constraints - For an ASCII terminal, this operation 

can interrupt any operation without disrupting it, with the 

exception of file transfers. Thus, for ASCII terminals, the 

sending of the message will be delayed until the file transfer 

-58- 



is over. For NPSterm, however, all processes can be 

interrupted, even file transfers, with no harm. 

Attributes - None. 

Other Requirements - None. 

(r) Disconnect 

Introduction - See Table 1. 

Inputs - This function is triggered by the user or ground 

station sending a stream with the command "X". This input 

is received via SCOS. 

Processing - Reclaims the connection record used by that 

callsign. Marks the record as "inactive". 

Outputs - Sends "Disconnected from PANSAT" message 

to the end user just before disconnecting. 

External Interfaces - All interfacing in this function is done 

via the SCOS and AX.25 utility packages. 

Performance Requirements - None. 

Design Constraints - None. 

Attributes - None. 

-59- 



Other Requirements - None. 

(s) Post Broadcast Message 

Introduction - See Table 2. This is a ground station only 

function. 

Inputs - This function is triggered by the ground station 

sending a stream with the command "P". The broadcast 

message input format is described in the post broadcast 

message syntax of Table 2. These inputs are received from 

the user via SCOS. 

Processing - The command is placed in the special 

command buffer, then control is passed to the verification 

function. After the verification is authenticated, the 

message received from the input overwrites the file 

containing the old broadcast message. The message is 

updated similarly to uploading a mail message (see send 

mail section above). 

Outputs - A message is sent to ground station 

acknowledging that the broadcast message update has been 

sent, via SCOS. A file containing the broadcast message is 

sent to file system for storage. After the "P" line and 

verification have been received, the connection status is set 

to "sending broadcast". After the end-of-message character 

is received, the status is set back to  menu". 

-60- 



External Interfaces - All interfacing in this function is done 

via the SCOS, with the Surrey file operations application, 

and AX.25 utility packages. 

Performance Requirements - None. 

Design Constraints - There can only be one broadcast 

message, so by posting a new message, the old message is 

removed. If the old message is desired to be kept in 

addition to a new message, the two messages must 

concatenated by the ground station, then presented to 

PANSAT as a single broadcast message. 

Attributes - The end-of-message character is a CTRL-D. 

Other Requirements - None. 

(t) Get BBS Settings 

Introduction - See Table 2. This is a ground station only 

function. 

Inputs - This function is triggered by the ground station 

sending a stream with the command "G". This input is 

received via SCOS. 

Processing - The command is placed in the special 

command buffer and sent to the verification function. After 

the verification has been authenticated, PANSAT will send 

-61- 



all the control settings to the ground station in a 

concentrated block. 

Outputs - The settings are listed in a single concatenated 

string and made up of the following values (Table 3), in the 

order listed. 

Table 3 - User services control settings, with default values. 

Setting Description Setting Type Default Value 

Use the data compression algorithm on all data saved to the 
satellite's storage? 

Boolean FALSE 

Deadreckon the satellite's position from an initial position 
provided by the ground station? If so, put the modem in a 
duty-cycling mode if PANS AT is above areas with no-likely 
communication. 

Boolean FALSE 

Conduct defragmenting of the satellite's storage during 
periods of no-likely communications? (This value can only 
be TRUE if the deadreckoning flag is also TRUE) 

Boolean FALSE 

The percentage of fragmentation in the storage space below 
which to begin the defragmentation process. (This is 
ignored if the defragmenting flag is FALSE) 

Integer 85 

Check the signal strength of all received packets? If so and 
the signal is above a threshold set in software, warn the 
connection. If three more packets are received at the same 
high power, then disconnect the user. 

Boolean FALSE 

Number of minutes after no communication with an active 
connection to automatically disconnect it. 

Integer 2 

Restrict the size of stored mail message and files? Boolean TRUE 

The maximum mail size to allow in storage, in kB. (This is 
ignored if the restrict size flag is FALSE) 

Integer 4 

The maximum file size to allow in storage, in kB. (This is 
ignored if the restrict size flag is FALSE) 

Integer 256 

-62- 



Setting Description Setting Type Default Value 

The maximum number of files sent to "all" to allow on the 
system at any one time. 

Integer 25 

The maximum number of connection records to store for 
users who were disconnected during a file transfer. 

Integer 10 

The maximum number of days to store connection records 
for users who were disconnected during a file transfer. 

Integer 3 

The number of days after posting in which normal mail or 
files (those not sent to "all") should always be deleted. 

Integer 14 

The number of days after posting in which mail or files sent 
to "all" should always be deleted. 

Integer 7 

Perform the additional autodelete functions (listed below)? Boolean TRUE 

If the additional autodelete function is enabled (TRUE), this 
is the threshold amount of memory left in storage, in kB, to 
begin the autodelete process. Uses the next three settings as 
the conditional values in determining the autodelete. 

Integer 500 

Number of kB and days, respectively, to autodelete files. 
This means that only if a file is larger than the size indicated 
and older than the age threshold, the file is deleted. 

Integer, 
Integer 

40, 
4 

Second kB/days autodelete threshold. Integer, 
Integer 

30, 
5 

Third kB/days autodelete threshold. Integer, 
Integer 

20, 
6 

The current time and date to set PANS AT's clock. Time/date 
stamp 

N/A 

The time and date of the calculated satellite orbital elements 
(the next six table entries) 

Time/date 
stamp 

N/A 

Inclination (degrees) * Real N/A 

Right ascension of ascending node (degrees) * Real N/A 

Eccentricity * Real N/A 

Argument of Perigee (degrees) * Real N/A 

Mean Anomaly (degrees) * Real N/A 

-63- 



Setting Description Setting Type Default Value 

Mean Motion (revolutions/day) * Real N/A 

* These data elements provide a calculated position and track on which the deadreckoning 

functions calculations are based. 

External Interfaces - All interfacing in this function is done 

via the SCOS and AX.25 utility packages. 

Performance Requirements - None. 

Design Constraints - The block of information is sent in 

duplicate, so the ground station can detect if an error 

occurred in the transmission. This extra reliability is added 

since the ground station knowing PANSAT's control 

settings can be critical. No change in connection status is 

required for this function. 

Attributes - None. 

Other Requirements - None. 

(u) Update BBS Settings 

Introduction - See Table 2. This is a ground station only 

function. 

Inputs - This function is triggered by the ground station 

sending a stream with the command "U". The update 

-64- 



settings format is described in Table 2. The format of the 

information is provided in Table 3. These inputs are 

received from the user via SCOS. 

Processing - The command line is put into the special 

command buffer, then control is passed to the verification 

function. After the verification has been authenticated, the 

block of values are broken out and replace all of the current 

control settings onboard the satellite. 

Outputs - If settings are accepted, a message is sent to 

ground station confirming the change. Otherwise the 

ground station is notified of the need to retransmit the 

settings. 

External Interfaces - All interfacing in this function is done 

via the SCOS and AX.25 utility packages. 

Performance Requirements - None. 

Design Constraints - The settings are sent in duplicate. 

That way, if the two settings do not match, PANSAT 

knows there was an error in the transmission and the 

settings will be rejected. This is done since getting the 

correct value for the settings is highly important to satellite 

operations. No change in connection status is required for 

this function. 

Attributes - None. 

-65- 



Other Requirements - None. 

(v) Update Ground Station Callsign 

Introduction - See table 2. This is a ground station only 

function. 

Inputs - This function is triggered by the ground station 

sending a stream with the command "GS". The update 

ground station callsign format is described in Table 2. 

These inputs are received from the user via SCOS. 

Processing - The command line is placed inside the special 

command buffer, then control is passed to the verification 

function. If the verification is authenticated, the ground 

station callsign is replaced with the one in the command 

line. 

Outputs - A statement saying whether the ground station 

callsign has been changed or not is sent to the ground 

station, via SCOS. 

External Interfaces - All interfacing in this function is done 

via the SCOS and AX.25 utility packages. 

Performance Requirements - None. 

Design Constraints - The new callsign will be in effect the 

next time the ground station connects. The new callsign 

-66- 



will be sent in triplicate in the command line. If there is any 

difference in the three callsigns, the entire operation is 

aborted and a message is sent to the ground station. 

Getting the callsign correct is critical since any further 

connections by the ground station would not be recognized 

with a wrong callsign. This would effectively prohibit the 

ground station from ever performing Table 2 commands 

again, until the satellite is reset. 

Attributes - The ground station callsign is stored in the 

connection record reserved for the ground station. 

Other Requirements - The initial ground station callsign 

willbe"KD6CXV". 

(w) Terminate User Services Program 

Introduction - See Table 2. This is a ground station only 

function. This command would only typically be used to 

allow an updated version of the user services program to be 

loaded on PANSAT, then have operations continue where 

they left off. 

Inputs - This function is triggered by the ground station 

sending a stream with the command "KI". This input is 

received via SCOS. 

Processing - The command is placed in the special 

command buffer and sent to the verification function. After 

-67- 



the verification has been authenticated, all connection 

requests received are denied and all users currently 

connected to PANSAT are sent a warning. After waiting 

for one minute, all users still connected to PANSAT will be 

automatically disconnected. All open files will then be 

closed, all dynamic memory will be deallocated, and the 

program will terminate. 

Outputs - The message "System will be temporarily shut 

down in one minute - please disconnect now" is sent to the 

users connected to PANSAT. 

External Interfaces - All interfacing in this function is done 

via the SCOS, with the Surrey file operations application, 

and AX.25 utility packages. 

Performance Requirements - After the warning to 

disconnect is delivered, a full minute is allowed before 

automatic disconnection occurs. This allows the users to 

finish their business at hand before being "kicked off' the 

system. 

Design Constraints - If a user is in the middle of a file 

transfer when the terminate command is received, the file 

transfer process must be terminated. If the file transfer was 

not interrupted, the user would never receive the disconnect 

warning, and thus would not understand what happened 

when the disconnection occurred. 

-68- 



Attributes - None. 

Other Requirements - None. 

(x) Verification Function 

Introduction - This is not a menu option, but rather a 

function called by certain menu options. Whenever a 

command specified in Table 2 is entered, PANSAT first 

checks to make sure the command is being issued by the 

ground station. If it is, control is passed into this function 

to ensure the identity is the true ground station. This is 

done by sending a short series of numbers to the alleged 

ground station. If the next communication from the ground 

station is the correct answer to the numbers based on the 

application of a mathematical formula, the command located 

in the special command buffer is executed. 

Inputs - From the alleged ground station, the data stream 

containing the an answer is obtained via SCOS. 

Processing - Once this function is called, it creates a short 

stream of numbers via random number generation. It sends 

the numbers to the ground station and compares the answer 

received to the internally calculated answer. If the answer is 

correct, the command located in the special command buffer 

is executed, according to the specifications listed in that 

commands respective section. Otherwise, the date and time 

-69- 



of the error is sent to the log manager and the special 

command buffer is ignored. 

Outputs - A short string of numbers is sent to the ground 

station via SCOS. If a wrong answer is received, the 

warning "Incorrect verification function, command not 

executed" is sent to the supposed ground station via SCOS. 

Further, the date/time stamp is sent to the log manager 

utility. 

External Interfaces - All interfacing in this function is done 

via the SCOS, the log manager, and AX.25 utility packages. 

Performance Requirements - To minimize errors, the 

stream will be sent in triplicate, one complete stream 

followed by another. That way, if a couple of numbers are 

damaged, a "best-two-out-of-three rule" should be able to 

provide the correct string of numbers. Likewise, the answer 

should be sent in triplicate as well. If two out of the three 

answers are correct, the answer is correct. However, to 

minimize overhead and time, the stream should fit into a 

single AX.25 data packet. 

Design Constraints - Integer/binary math should be used in 

the verify functions in order to keep the processor load to a 

minimum, since all floating point operations are emulated by 

the processor via software. 

-70- 



Attributes - For security, the actual function will not be 

published, but will be handed over to ground station 

personnel at the time of software turnover. 

Other Requirements - None. 

(6) Autodelete 

Introduction - This function is automatically run by the system. It 

deletes old files and mail messages from the system, so that storage 

does not get used up by old data. At the same time, all connections 

stored in the interrupted file transfer list are checked for purging. 

Inputs - The size and date/time stamp of every mail and file are 

obtained from the file system. 

Processing - This will compare the age, which is determined by 

current date minus the file date, of every mail and file to the delete 

file settings. There is one setting for the mail/files sent to "all", 

another setting for all other mail/files. If the mail or file is older 

than the setting, it will remove it from the system. Further, if the 

additional delete setting is "ON" and the amount of free memory 

remaining in storage is less than or equal to the threshold set, it will 

activate the second kind of autodelete. There can be up to three 

settings (see Table 3), each one specifying a file size and age. If a 

file is equal to or larger than the specified size and older than the 

specified age, it will be removed from the system This repeats for 

each one of the three settings. Additionally, the age of each 

interrupted file transfer connection record saved is compared to the 

-71- 



threshold age set in the control block. If the connection record is 

older than the age, it is purged from the list. 

Outputs - None. 

External Interfaces - All interfacing in this function is done via the 

Surrey file operations application utility. 

Performance Requirements - This function is automatically 

triggered once per day. 

Design Constraints - This is a concurrent task to the BBS 

functions. 

Attributes - None. 

Other Requirements - None. 

(7) Autodisconnect 

Introduction - If no input stream is received from a connection in a 

threshold set number of minutes, the user is automatically 

disconnected and the connection record is recycled for another 

user. 

Inputs - None. 

Processing - Every active connection's record time stamp is 

compared with the current time. If difference in time is greater than 

-72- 



the threshold set by the ground station, the user is disconnected. If 

the connection status was either "uploading" or "downloading", the 

connection record information will be saved in the file-transfer 

interrupted list, with the values as specified in attribute section of 

the "check file transfer status" description above. If the status was 

either "temp uploading" or "temp downloading", the connection 

record already stored in the file-transfer interrupted list is merely 

updated. 

Outputs - None. 

External Interfaces - No interfaces are used in this function. 

Performance Requirements - The connections should be checked 

once per minute. 

Design Constraints - Every time a data stream arrives from a 

connection, that connection record's "time of last input from user" 

field will be updated with the current time. This function needs to 

be a concurrent task from the BBS functions. 

Attributes - The number of minutes to autodisconnect a 

connection is set in the control settings block. 

Other Requirements - None. 

-73- 



b. Housekeeping Functions 

(1) Deadreckoning Function 

Introduction - PANSAT determines its current position based on 

an initial position provided by the ground station and time passed. 

Using this position, the satellite will determine when it is in periods 

of no- likely communications and switch the modem into an energy 

saving mode during these times. 

Inputs - None. 

Processing - Using the satellite position initialized by the ground 

station (it needs to be periodically updated by the ground station), 

PANSAT deadreckons its current position. It will then compare its 

current position with areas known to have no-likely 

communications. When it enters or exits these areas, the 

defragmenting function (next section) will be notified. When it 

enters the area, the modem will be shift into a duty-cycling mode to 

conserve power. The modem will be switched back to its normal 

mode upon exiting the area. 

Outputs - A signal is sent to the modem in order to switch it into 

and out of a duty-cycling mode 

External Interfaces - The only interface used is the driver for the 

modem. 

-74- 



Performance Requirements - The satellite should deadreckon its 

position once per minute. 

Design Constraints - This function needs to be a concurrent task. 

Attributes - Areas of no-likely communications will be hard coded 

program constants. 

Other Requirements - If no contact with the ground station is 

made within 24 hours, this feature is automatically disabled. To 

determine the time of the last ground station contact, the current 

date and time is compared to the date/time stamp stored in the 

"time of last input from user" field of the ground station's reserved 

connection record. 

(2) Defragment Function 

Introduction - If the defragmentation flag is set "ON", PANSAT 

periodically checks the fragmentation of the storage system. If 

fragmentation is below a threshold and the satellite is in a period of 

no-likely communications, the storage is defragmented. 

Inputs - None. 

Processing - A period of no-likely communications is determined in 

the previous section. Once the period is entered, a new 

fragmentation value is determined. If the defragmentation setting is 

ON, as many files as possible until the period of no-likely 

communications is over are defragmented. 

-75- 



Outputs - None, an unfragmented storage space is the result. 

External Interfaces - The SCOS with the Surrey file system is the 

only interface used by this function. 

Performance Requirements - Updating the fragmentation value 

should be done at the beginning of every no-likely communications 

period. Defragmentation needs to be a quick, interruptible process 

since the period of no-likely communications will be a short time. 

Design Constraints - Defragmentation should be performed one 

file at a time to allow maximum flexibility. 

Attributes - The fragmentation threshold is obtained from BBS 

control block settings. 

Other Requirements - This assumes the fragmentation value can 

be obtained from the file operating system, which has not yet been 

tested. 

(3) Data Compression Functions 

(a) Compress Data 

Introduction - If the compression flag is set to "ON", all 

the information being saved to PANSAT's storage is 

compressed. 

-76- 



Inputs - None specifically, this function uses the data 

obtained from other factions (i.e. send mail or send file). 

Processing - If the data compression setting is "ON", all the 

data sent to the storage system is compressed. The fact that 

the data is compressed is stored in the information block 

about the file. 

Outputs - The data sent to the file system is compressed. 

External Interfaces - All interfacing in this function is done 

via the SCOS, with the Surrey file operations application, 

and AX.25 utility packages. 

Performance Requirements - The data compression 

algorithm needs to be optimal towards text, since it is 

anticipated the majority of files will contain this type of 

information. 

Design Constraints - None. 

Attributes - Whether or not to use compression is a stored 

value set by the BBS control settings block. 

Other Requirements - None. 

-77- 



(b) Decompress Data 

Introduction - If the mail or file information is flagged that 

the contents are compressed, the data is decompressed 

before it is used. 

Inputs - The file information and the file contents, if the 

contents are not compressed, are retrieved from the file 

system. 

Processing - If the data is compressed, as it is read from the 

file in PANSAT's storage it is run through the 

decompression algorithm. It is then directed to SCOS, 

which sends the data to the appropriate connection. 

Outputs - The uncompressed mail or file is sent to SCOS. 

External Interfaces - All interfacing in this function is done 

via the SCOS, with the Surrey file operations application, 

and AX.25 utility packages. 

Performance Requirements - The data compression 

algorithm needs to be optimal towards text, since it is 

anticipated the majority of files will contain this type of 

information. 

Design Constraints - If the connection is using NPSterm, 

this function will be skipped, and the compressed file will be 

sent to the user. This will save effort and time, since the 

-78- 



data would only be recompressed before sending it to an 

NPSterm connection. Note: the storage's compression 

routine must be the same as NPSterm's compression 

routine. 

Attributes - None. 

Other Requirements - None. 

(4) Signal Strength Monitoring 

Introduction - The power, or signal strength, of incoming 

transmissions is checked. If the power is above a threshold, the 

originator of the signal is warned to turn the transmitting power 

down. If after three more transmissions the power is still too high, 

the user is disconnected. 

Inputs - For the last received transmission, the signal strength is 

obtained from the modem and the originators callsign is retrieved 

from SCOS. 

Processing - If the strength checking setting is "ON" and the 

modem reports a signal strength over the threshold, a counter is set 

for the connection. A warning is sent to the user to lower 

transmission power. If after three more transmissions from the user 

the power is still too high, the user is disconnect (as described in 

the menu option disconnect section above). 

-79- 



Outputs - If necessary, a warning notifying the user of the too high 

power transmissions is sent via SCOS. 

External Interfaces - All interfacing in this function is done via the 

SCOS, the modem driver, and AX.25 utility packages. 

Performance Requirements - The power level is checked for 

every connection with every transmission received. 

Design Constraints - This task should be concurrent to all other 

tasks. 

Attributes - This function is enabled by the setting in the control 

block. 

Other Requirements - None. 

c Special Notes 

(1) File and Mail Numbering. The numbers assigned to files and 

mail are independent of each other. That is the mail numbered 12 is not the 

same as a file numbered 12. The program will keep a rotating counter for 

each, with a range of 0 to 9999. Each new mail or file posted on PANS AT 

will be assigned the counter value, which will then be incremented by one. 

Because of deletions, number "holes" will probably appear in directories. 

For example, mail numbered 12 and 14 may exist, but 13 may have already 

been deleted. However, due to the autodelete function, by the time the 

counters toggle, there should be no conflict in numbers. 

-80- 



(2) Fault Tolerance. The spacecraft software will be made using 

fault tolerant technology, in order to better handle the anomalies of space. 

The software should be able to detect minor errors, typically radiation- 

caused "bit flips". The program will attempt to correct the errors and 

continue normal operations. If the errors are to monumental to continue 

operations, the ground station should be notified during their next 

connection of the problems. This will signal that the ground station is to 

shut down the user services program and reload the software. This is a 

secondary requirement, and will be implemented after spacecraft's BBS 

functions are operational. Details for the fault tolerant scheme are 

specified in Chapter VI, Section B. 

2. Ground Station Module 

The operator interface for the ground station module will be via a graphical user 

interface (GUI), centered around multiple windows. Each window in the interface will 

perform a unique function. Thus, the breakdown of functionality for this module will be 

centered around the purpose of each specific window, with underlying non-windowed 

functions listed as they appear. Each one of the windows and the underlying functions will 

be implemented as concurrent tasks. While the end user of this system is the "ground 

station" referred to in section B.l.b, to differentiate the actual person using the equipment 

versus the equipment itself, the individual using the terminal will be referred to as the 

"operator". 

a. Display Terminal Functions 

All the functionality for this terminal is incorporated into four windows. 

When user services is first started up, it launches a monitor program. From this 

monitor are options to launch any of the four module windows, to quit any of 

those windows that are executing, to tile or cascade the four windows, or quit the 

entire program.   The monitor will only be able to launch another if that other 

-81- 



window has not yet been run or it has been previously terminated, since only one 

instance of each window is allowed to be open at a given time.   If the monitor 

program is quit, all of the remaining windows will be terminated. If each window 

is closed without exiting the program, the monitor program will still remain active 

until it is explicitly terminated. 

(1) Displaying of Telemetry Data 

Introduction - The purpose of this window is to graphically 

display the latest telemetry values obtained from PANS AT. 

Inputs - The telemetry values are obtained from the latest telemetry 

file stored in the archives. A signal is received from the control 

terminal when an update to the telemetry files is made. The only 

user input is a "refresh" button on the window. 

Processing - When a signal is received that new telemetry values 

have been saved, the new values are loaded from the disk and 

converted to a graphical representation of the data. For instance, 

the battery power will be displayed in a line graph, using a green 

line for an acceptable power level, a yellow line for borderline 

power levels, and a red line for unacceptable power levels. At the 

top of the window, the date and time the telemetry was obtained 

from PANS AT will be displayed. Once this information has been 

displayed, no further action will be performed until the next signal is 

received, indicating a new telemetry has been stored. If the user 

clicks the refresh button, however, the last telemetry will be 

redisplayed in the window. 

-82- 



Outputs - A graphical representation of the telemetry is displayed 

in the telemetry window on the screen. 

External Interfaces - The screen, network, and file managers are 

utilized by this function. 

Performance Requirements - The function needs to continually 

monitor for a "new telemetry" signal on the network. This will 

allow the window to be updated nearly simultaneous to the data 

arriving from PANSAT. 

Design Constraints - None. 

Attributes - The time and date that the telemetry was obtained is 

stored within the file containing the telemetry information. 

Other Requirements - The actual values and format of the 

telemetry have not yet been defined by the client. Also, the 

thresholds by which to gage the telemetry values are unknown. 

Both of these will need to be provided by the client before this 

function can be implemented. 

(2) Tracking of the Satellite. This window is comprised of two 

displays: a graphic display of PANSAT's position and clock showing the 

time until the ground station is within the satellite's footprint. 

-83- 



(a) Display The Satellite Track 

Introduction - This portion of the display will have a 

Mercator projection of the world as a background. Plotted 

on this projection will be the location of the NPS ground 

station and the current position of PANS AT. Additionally, 

the track of the satellite will be plotted for its next entire 

world revolution. The area of the world currently within 

PANSAT's footprint will be highlighted.  The operator may 

also enter one additional fixed site to plot on the projection 

as well. The calculated position of PANS AT determined 

here will be sent to and used by the control terminal and 

Linux terminal via the network. 

Inputs - The Mercator projection is retrieved from a 

graphic file stored on the hard disk. An initial satellite 

position to base the position, track and footprint calculation 

will be obtained from the control panel window on the 

control terminal. Every time the position is updated in the 

control panel, a signal is sent notifying this function of the 

change, at which point the new information is retrieved. 

The operator also may input the latitude, longitude, and 

label of an optional fixed site. A refresh button is available 

to the operator to trigger a redrawing of the entire window. 

Processing - When either the window initially starts up or 

the refresh button in the window is pressed, the window is 

cleared and the map is displayed. The position of NPS and 

the optional site, if it was entered in, are plotted on the map. 

-84- 



If the operator changes the values for the optional site, the 

old site is erased before the new site is plotted. The current 

position of PANSAT, its track and footprint are calculated 

and plotted on the map. The position of PANSAT is then 

sent to the antenna orientation function on the Linux box 

and the communications module on control terminal. If a 

signal arrives from the control panel indicating an updated 

initial satellite position, the new position is retrieved from 

the control terminal. Once the new position, track and 

footprint values for PANSAT have been evaluated, the old 

ones are erased off the map and the new ones are plotted. 

Outputs - The positional output is plotted on the map 

background in the satellite tracking window on the screen. 

The position of PANSAT is also sent to the control terminal 

via the network. 

External Interfaces - The screen, network, and file 

managers are utilized by this function. 

Performance Requirements - The network is continually 

being monitored for a new position signal from the control 

panel. Once it is received, the new satellite position, track 

and footprint are immediately evaluated. Otherwise, the 

satellite information is reevaluated and plotted every 20 

seconds. 

Design Constraints - The color of the footprint should be 

such that the underlying map will still be visible. 

-85- 



Attributes - The position of the NPS ground station will be 

hard coded into the software. 

Other Requirements - None. 

(b) Display Time Until Contact 

Introduction - On top of the Mercator projection, the time 

until the NPS ground station is within PANS AT's footprint 

is displayed. If an optional fixed site has been entered in, 

the time until that site is within PANSAT's footprint is also 

displayed. Both of these values are used by the control 

terminal as well. 

Inputs - The current satellite and optional fixed site 

positions are obtained from the function listed in the 

previous section. 

Processing - Based on the positional data, the times until 

the ground station and optional site, if available, are within 

PANSAT's footprint are calculated and sent to the display. 

When these two times are calculated, they are sent to the 

communications module on the control terminal and the 

antenna orientation function on the Linux terminal. 

Outputs - The time is sent to the satellite tracking window 

on the screen and the control terminal via the network. 

-86- 



External Interfaces - The screen and network management 

utilities are used by this function. 

Performance Requirements - Once per second, the time 

on the display is updated, which makes it appear as a 

continual countdown. 

Design Constraints - Since a new satellite position is 

calculated only once per 20 seconds, the times until the 

ground station and the optional site are within the footprint 

should also be calculated once per 20 seconds. These 

calculated values are the values sent to the control terminal. 

Until a new position is determined, however, the time on the 

display is simply counted down. 

Attributes - None. 

Other Requirements - None. 

(3) Communications Repeater 

Introduction - This window merely acts as a repeater or "mirror" 

of the communications to and from PANSAT. The default is to 

show only the communications between the station operating this 

software module, such as the ground station, and the satellite. 

However, the operator can specifically list the callsign or callsigns 

whose communications are to be displayed, or the operator can 

choose to display all the communications to and from PANSAT. 

-87- 



Inputs - The callsign of the station operating the software is 

obtained from the control terminal. All the packets going to and 

from PANSAT are provided from the SCC (the modem controller) 

utilities. The list of callsigns whose communications are to be 

displayed is obtained via user input. 

Processing - When a packet of data is received, it is immediately 

checked with the filter settings. If the callsign of the originator, for 

a packet to PANSAT, or the callsign of the recipient, for a packet 

from PANSAT, matches a callsign set by the operator, the packet is 

copied to the display. Otherwise, the packet is ignored. This 

process is a continual loop. 

Outputs - The communication that meets the filter criteria is sent 

to the communication repeater window. The latest data is printed 

at the bottom of the window, scrolling the older information up, 

and eventually off, the window. 

External Interfaces - The network, screen, SCC/modem and 

. AX.25 manager utilities are utilized by this function. 

Performance Requirements - The communications to or from 

PANSAT should be sent to the display almost immediately after it 

is received by the modem, if the communication's callsign qualifies 

to be displayed per the operator set filter. Thus every packet 

received should be processed immediately by this function. This 

equates to less than a one second turn around from receipt to 

display. 

-88- 



Design Constraints - The default callsign to pass through the filter, 

or to be sent to the display, is the station's callsign which is 

operating this software. This default is set when the window is 

launched. 

Attributes - None. 

Other Requirements - None. 

(4) Archive Management Functions. The archive files are 

hierarchally organized by date (year, month, and day subdirectories). In 

each day's subdirectory, all the mail, files telemetry, and mail/file listings 

that were downloaded during the day are stored. Telemetry and listings are 

always received, which is set up in a default batch command, but the other 

elements are obtained only when requested by the operator. The file 

comprising the archives are stored on the server computer. This window 

allows five basic operations on the archive files. 

(a) Display A Day's Directory 

Introduction - This function lists out all the mail, files, 

telemetry, and mail/file listings obtained from PANS AT on 

the day specified by the operator. The operator may select, 

or choose, one of these entries. The other functions in this 

section will use this selection. 

Inputs - First, the day to list is inputted by the operator. 

The list of entries for this day is obtained from the file 

system. The user can then pick the entry to select. 

-89- 



Processing - Using the day supplied by the operator, the 

day's list is obtained from the file system. It is sent to the 

screen, with no entry being highlighted. The operator can 

then select an entry. The entry selected is then updated in 

the list - it is now shown highlighted. If user chooses the 

entry again, it is unselected and the highlighting is removed 

from it. The user can also choose another entry, which 

removes the selection and highlight from the first entry, then 

selects and highlights the new entry. 

Outputs - The list of entries is sent to the archive window 

on the screen. The entry the user selects is specially 

marked. 

External Interfaces - The screen and file system 

management utilities are utilized by this function. 

Performance Requirements - None. 

Design Constraints - Highlighting should make the entry 

boldface in the listing. Since the search function can also 

select an entry, only one of the search or directory functions 

can be viewed at one time. 

Attributes - None. 

Other Requirements - None. 

-90- 



(b) View File Contents 

Introduction - The contents of the entry that was selected 

in either the directory or search functions is displayed. If 

the contents are too large to fit in the window at one time, 

the user can use scroll bars to view up and down the 

contents. 

Inputs - The desired file is read from the file system. 

Processing - The file read is merely redirected to the 

window on the screen. The scroll bars feature is inherent in 

the Windows 95/NT architecture. 

Outputs - The file is sent to the archive window on the 

screen. 

External Interfaces - The screen and file system 

management utilities are utilized by this function. 

Performance Requirements - None. 

Design Constraints - Once a new file is selected by the 

operator, the old file is erased from the window. But as 

long as the same entry remains selected, it will continue to 

be displayed in the window. 

Attributes - None. 

-91- 



Other Requirements - None. 

(c) Print File Contents 

Introduction - The file that was selected by the directory or 

search functions is sent to the printer to make a hard copy. 

Inputs - The selected file is read in from the file system. 

Processing - The file inputted is merely directed to the print 

manager for output. 

Outputs - The entire file is sent to the print manager. 

External Interfaces - The file system and print manager 

utilities are utilized by this function. 

Performance Requirements - None. 

Design Constraints - The print manager handles all the 

hardware particulars of the printer. The data must be in the 

desired format when sent to the print manager, however. 

Attributes - None. 

Other Requirements - None. 

-92- 



(d) Delete a File 

Introduction - The operator of the terminal may delete a 

file that has been selected by the directory or search 

functions. Before the deletion occurs, the operator will be 

prompted to ensure that the file is meant to be deleted. This 

feature would be typically be used only if the contents of a 

file were garbled during transmission and contained no 

useful information. 

Inputs - The answer to confirm the deletion is received 

from the user. 

Processing - If the answer to the question is affirmative, the 

file is deleted from the system. This list of entries on the 

screen is updated and will not include the file that was just 

deleted. Also, since the selected file was just deleted, no 

entry will be selected. 

Outputs - The query confirming the delete is sent to the 

dialog box on the screen. The command to delete the file is 

sent to the file system. The list of entries on the screen is 

updated on the archive window. 

External Interfaces - The file system and screen 

management utilities are utilized by this function. 

Performance Requirements - None. 

-93- 



Design Constraints - The deleted file should be put into 

the Windows 95/NT recycle bin. That way it can be 

undeleted if need be. 

Attributes - None. 

Other Requirements - None. 

(e) Search Though Archives 

Introduction - Instead of listing out the entries for a 

particular day, as performed above, the operator can list out 

files that meet a certain criteria, even if the files come from 

different days. The operator can then select one entry from 

this list, just as in the directory function. The criteria to list 

the entries are: the beginning and ending dates to search 

within, pattern matching within the file, type of file (i.e. 

telemetry, file listings or mail), or any combination thereof. 

Inputs - First, the search criteria is entered in by the 

operator. The list of entries matching the criteria is 

obtained from the file system. The user can select one of 

the entries. 

Processing - After the criteria is entered by the operator, 

the directory for every day in the range specified is 

examined. If no range is specified, the entire archive is 

searched. Within each day's directory, only the files with 

matching types to the selection are examined. If no type is 

-94- 



specified, all the files are examined. Within each file 

examined, the pattern is searched for. If the pattern is 

found, the file is added to the list to select from. If no 

pattern is specified, the file will automatically be included in 

the list. Once all the files have been examined, the list of 

matches is sent to the archive window. The operator may 

then select one of the entries, which highlights the file in the 

list. If the operator selects the same entry, it is unselected 

and the highlighting is removed. If the operator selects 

another file, the first file is unselected and the highlighting is 

removed, then the second file is selected and highlighted. 

Outputs - The list of entries matching the search criteria are 

displayed in the archive window on the screen. If an entry is 

selected, the list is updated with the selected entry being 

highlighted. 

External Interfaces - The screen and file system 

management utilities are utilized by this function. 

Performance Requirements - The search results should be 

displayed as quick as possible, even for the pattern matching 

criteria. 

Design Constraints - Highlighting should make the entry 

boldface in the listing. Since the directory function can also 

select an entry, only one of the search or directory functions 

can be viewed at one time. 

-95- 



Attributes - None. 

Other Requirements - None. 

b. Control Terminal Functions 

The control terminal executes several windows, as well as a few underlying 

functions. These underlying operations need to continue working, even if all the 

windows are terminated. To support this infrastructure, when the user services 

program first begins, it launches a monitor program. From the monitor, the 

operator can open any of the windows, which are described below. This monitor 

will allow the user to open a window that was previously terminated, since only 

one instance of each window is allowed to be open at a given time. If all the 

windows are shut down, the monitor remains active along with the underlying 

functions. The monitor will also allow the operator to execute other applications 

on top of the user services program. However, these applications will be 

independent from the monitor. Once the application is launched, the user services 

program will not be "aware" of it. This is essentially a "launch and forget" policy. 

The user services program will only be terminated when the monitor is shut down. 

When exiting the monitor, all of the windows remaining open will be terminated, 

the underlying,functions will cease and the program will terminate. 

(1) Communications Window. This window is the centerpiece of 

the control terminal. This is the window by which the operator of the 

terminal directly interfaces with PANSAT. All the sub functions for the 

communications window are mutually exclusive, with the exception of 

write mail and read stored mail functions (see corresponding sections 

below). That is, to avoid race condition errors while interacting with 

PANSAT, a communications window function may operate only after the 

other communications window functions have completed. 

-96- 



(a) Interaction Interface 

Introduction - This is the central feature of the 

communications window. This displays the communications 

to and from PANSAT in an easy-to-read, scrolling format. 

All the possible commands to send to PANSAT are 

displayed as option buttons. The operator simply presses 

the desired command button and a dialog box will request 

any additional information required by the command (i.e. a 

list files command would then request the range of files to 

list). After the command has been accepted, it is sent to the 

satellite and displayed as outgoing communications in the 

window. The commands options possible are listed in Table 

1. If the terminal is in super user mode, the commands in 

the Table 2 are also listed. Any additional actions or 

information not explicitly listed in the either Table 1 or 2 is 

described in the remainder of this section. 

Inputs - The commands to send to PANSAT are obtained 

via user input. The communications from the satellite are 

obtained via the SCC and modem. 

Processing - Everything received from the satellite destined 

for the callsign of the station operating this software is sent 

to the display and processed accordingly. Once the 

complete command has been entered by the operator, it is 

processed then sent to the display and PANSAT 

simultaneously. All the processing is described in the 

remaining subsections the communications window. If not 

-97- 



listed there, no actual processing of the data is done, it is 

only sent to the display and, if appropriate, PANS AT. 

Outputs - All input, be it from the operator or PANSAT, is 

sent to the communications window on the screen. 

Additionally, if the input is a command from the operator, it 

is sent to PANSAT via the modem. 

External Interfaces - The screen, SCC/modem and AX.25 

manager utilities are utilized by this function. 

Performance Requirements - Due to the limited window 

of opportunity to communicate with PANSAT, the entering 

in of commands, the processing of the data, and the 

displaying of communications should take as little time as 

possible. 

Design Constraints - The communications window should 

look and act the same whether an ASCII interface protocol 

or NPSterm is used. The only difference is that using the 

NPSterm protocol will provide faster communications and 

some additional flexibility. 

Attributes - The packets which are destined for the station 

operating this software is determined by the callsign, which 

is set in this window (see subsection below). 

Other Requirements - The connect command is always 

available, unless the ground station is already connected 

-98- 



with PANSAT. This, along with write mail and read stored 

mail, are the only options available when not connected to 

the satellite. Once a connection has been established, 

however, all the commands except for connect become 

active until the disconnection. The connect command will 

remain available if no connection is ongoing, even if the 

tracking data indicates the ground station is not in the 

satellite's footprint. This allows the operator to still be able 

to connect with PANSAT, even if the tracking data is in 

error. 

(b) Update BBS Control Settings Onboard PANSAT 

Introduction - See Table 2. When the operator presses the 

update control settings button, all the values from the 

control panel window are obtained, then sent to PANSAT. 

Inputs - The user enters the update command. The values 

are obtained from the control panel function. 

Processing - Once the button is pressed the settings are 

obtained, concatenated together, and duplicated. The 

settings are then relayed to PANSAT. Control is then 

passed to the verification function, which will properly 

respond to PANSAT's query. After verification, this 

function ends. 

Outputs - The command with all the settings, which are in 

duplicate, are sent to PANSAT via the modem. 

-99- 



External Interfaces - The screen, SCC/modem and AX.25 

manager utilities are utilized by this function. 

Performance Requirements - None. 

Design Constraints - The settings are sent in duplicate to 

ensure proper receipt of the data by PANS AT. 

Attributes - None. 

Other Requirements - The terminal must be in super user 

mode to select this command, otherwise the button would 

not be available. Furthermore, the verification function 

necessary to confirm this command would only be 

operational in super user mode. 

(c) Getting BBS Control Settings From PANSAT 

Introduction - See Table 2. This command is sent up to 

PANSAT. The satellite sends back the current values it has 

for the BBS control settings. These settings are displayed in 

a new window, with the values that are different from the 

control panel settings highlighted in yellow. The operator is 

then prompted to replace the settings in the control panel 

window with the settings from PANSAT. If affirmative, the 

settings in the control panel are overwritten. Otherwise, the 

values are ignored. 

•100- 



Inputs - The command and "overwrite control panel" 

answer are entered in by the user. The settings are obtained 

from PANSAT via the modem. 

Processing - Once the command button has been pressed, 

the command is sent to PANSAT. The verification function 

is called to respond to PANSAT's query. Once control is 

returned and the settings have been received, the duplicate 

values are checked. If the values are the same, they are 

displayed in a new window. As they are being displayed, 

they are compared with the values in the control panel. If 

these values differ, the new value is displayed in yellow. If 

the operator chooses to update the control panel, then the 

values are sent to the control panel. Otherwise, the values 

are ignored and disappear from the system as soon as the 

new window is closed. If the duplicated values are 

different, however, the operator is warned of the error, then 

the information is ignored 

Outputs - The command is sent to PANSAT via the 

modem. The operator is asked the "overwrite control panel 

values" question or is told of the value errors via a dialog 

box on the display. 

External Interfaces - The screen, SCC/modem and AX.25 

manager utilities are utilized by this function. 

Performance Requirements - None. 

-101- 



Design Constraints - The duplicate values are used to 

ensure proper receipt of the control settings from PANSAT. 

Attributes - None. 

Other Requirements - The terminal must be in super user 

mode to select this command, otherwise the button would 

not be available. 

(d) Write Mail 

Introduction - This option may be selected at any time, 

whether connected to PANSAT or not. When the operator 

chooses this option, a dialog box comes up. The user fills in 

the "to", "subject" (which is optional), and "message" fields. 

Once the mail is complete, the operator presses the done 

button and the message is stored until the send mail button 

is pressed, which is only available when the terminal is 

connected to PANSAT. Only at that time is the mail 

actually sent to the satellite. 

Inputs - The command and mail message are entered in by 

the user. 

Processing - Once the command is received, the dialog box 

is sent to the display for the user to fill out. Once the 

operator is finished entering the message, which is indicated 

by the done button of the dialog box being pressed, the mail 

is put in the mail format described in Table 1. Lastly, the 

-102- 



mail message is appended at the end of the file which 

contains the mail message buffer. 

Outputs - The mail message is appended to the end file 

containing the mail message buffer. The mail message is in 

the Table 1 format, including the send mail command line. 

External Interfaces - The screen and file system manager 

utilities are utilized by this function. 

Performance Requirements - This is the one of the two 

functions in the communications window section that can 

operate concurrently with the other functions. All other 

functions, except for read stored mail, are mutually 

exclusive. 

Design Constraints - The mail buffer should be 

implemented as a file on the hard disk. Using this, no 

practical limit to the number of mail messages that could be 

stored for transmission would exist. Furthermore, the 

buffer would operate as a first-in-first-out queue. The first 

mail message written would be the first transmitted to 

PANSAT; the last message written would be the last sent. 

Attributes - The filename to store the mail messages would 

be a hard coded program constant. All the mails are stored 

in a single file in proper format to send to PANSAT. Then 

when the send mail button is pressed, all the mail messages 

are streamed to the spacecraft. 

■103- 



Other Requirements - The only time a mail message could 

not be written is when the buffer is actively being sent to 

PANSAT. The best time to write a mail message, however, 

is when the ground station is not within the satellite's 

footprint. This would allow for the best possible utilization 

of the limited communication window. 

(e) Send Outgoing Mail 

Introduction - When the send mail command is chosen by 

the operator, the mail message buffer is sent to PANSAT, 

each message being in the format listed in Table 1. This 

command will not allow the operator to write the mail, that 

is accomplished in the previous section. 

Inputs - The command is entered in by the operator. The 

mail message buffer is read from a file on disk. 

Processing - Once the command is received, the mail 

message buffer is sent to PANSAT, one message at a time. 

Although to the operator, it appears as if all mails are being 

sent together since no interaction is allowed until all the 

messages are sent. If the buffer is empty, the operator is 

warned that no messages were queued. Once all the mail in 

the buffer has been sent to PANSAT, the buffer is erased. 

Outputs - The contents of the mail message buffer file is 

sent to PANSAT via the modem. If no mail messages are 

-104- 



queued, a warning is sent to the user in a dialog box on the 

display. 

External Interfaces - The screen, file system, SCC/modem 

and AX.25 manager utilities are utilized by this function. 

Performance Requirements - None. 

Design Constraints - The mail messages are sent one at a 

time to allow for proper parsing by PANSAT. PANSAT 

will not be able to tell the difference if the mail messages 

had been typed in by a user at that time or earlier 

Attributes - The filename where the mail messages are 

stored will be a program constant. 

Other Requirements - None. 

(f) Store Incoming Mail 

Introduction - When a mail message is received from 

PANSAT, it is scrolled across the communications window 

just like most other communications from the satellite. The 

operator does not need to take the time to read the 

messages at that time, however. While the messages are 

sent to the display, they are simultaneously being saved in a 

"mail box". The operator can read the "mail box" using the 

function described in the next section. 

-105- 



Inputs - The mail message is received from PANS AT via 

the modem. 

Processing - The data obtained while receiving a mail 

message is appended to the file containing the "mail box". 

Outputs - The mail message is appended to the end of the 

"mail box" file, via the file system. 

External Interfaces - The screen, file system, SCC/modem 

and AX.25 manager utilities are utilized by this function. 

Performance Requirements - None. 

Design Constraints - If the "mail box" is currently being 

read, the mail will be stored in a temporary file until the 

"mail box" file is released from the reading function. At this 

time, the temporary file will be concatenated to the end of 

the "mail box" file. 

Attributes - The filenames for the "mail box" and 

temporary files will be hard coded program constants. 

Other Requirements - None. 

(g) Read Stored Mail 

Introduction - When this operation is selected, a dialog 

box opens displaying the first mail stored in the "mail box". 

-106- 



The operator can then save the mail in a file on disk, print 

the mail message, display the next mail message in the "mail 

box" or exit the read stored mail function. When "the 

display next mail massage" option is selected, the old mail is 

deleted from the "mail box". 

Inputs - Each mail is read from the "mail box" file via the 

file system. The operator then enters their choice from the 

operations listed. 

Processing - The first mail in the "mail box" is read and 

displayed for the operator. If the operator chooses to save 

the mail in a file, the name of the file is requested. If the 

print option is chosen, the mail message is sent to the print 

manager. If the "display the next mail" option is chosen, the 

next mail in the "mail box" replaces the one displayed in the 

dialog box. Additionally, the old mail is removed from the 

front of the "mail box" file. If the "display the next mail" 

option is selected and there are no more mail messages in 

the "mail box", the dialog box closes, the "mail box" is 

emptied, and a new dialog box notifies the operator that no 

mail messages are in the "mail box". This last dialog box is 

also displayed if the "mail box" is empty when the read 

stored mail command is first selected. If the operator exits 

the window, the mail message currently on the display is not 

deleted from the "mail box". 

QutPuts - Each mail is sent to a dialog box on the display. 

■107- 



External Interfaces - The screen, print and file manager 

utilities are utilized by this function. 

Performance Requirements - None. 

Design Constraints - This function will not be selectable if 

the save incoming mail function (see previous section) is 

actively adding mail to the "mail box." 

Attributes - The filename for the "mail box" will be a hard 

coded program constants. 

Other Requirements - None. 

(h) Upload A File 

Introduction - When this command is entered, a dialog box 

requests the extra information specified in Table 1. After 

that information is entered, a second dialog box pops up 

requesting the filename as it is appears on the local hard 

drive. When the name is entered, the file transfer begins. 

While the transfer is ongoing, a dialog box showing the 

progress of the file transfer in a line graph is displayed. 

Inputs - The operator enters in the filename. The file to be 

transferred is obtained via the file system. 

Processing - After the command is entered by the operator, 

the local name of the file is requested. The name of the file 

-108- 



as it will be stored on PANS AT is the same as it is on the 

local drive. After it is determined the file to send exists 

locally, the command is sent to PANSAT. The file is then 

opened and the contents are sequentially sent to PANSAT, 

finishing with the end-of-file character. At the beginning of 

the file transfer, the file size is retrieved from the file system. 

After each packet is sent to PANSAT, the cumulative 

amount of data sent is divided by the file size, resulting in 

the percentage of the file that has been transferred. This 

percentage is displayed for the operator. 

Outputs - The file is sent to PANSAT via the modem. The 

dialog boxes are sent to the display. 

External Interfaces - The screen, file system, SCC/modem 

and AX.25 manager utilities are utilized by this function. 

Performance Requirements - The percentage of the file 

transfer completed should be updated after the transmission 

of every packet of data. 

Design Constraints - A file transfer protocol similar to the 

PACSAT level 0 ftp will be implemented for PANSAT. 

Attributes - None. 

Other Requirements - None. 

-109- 



(i) Download A File 

Introduction - After the normal dialog box obtains the 

parameters for the command, an additional dialog box 

requests the operator to provide the local name for the file. 

The file is then downloaded from PANS AT and saved in a 

file on the hard disk. 

Inputs - The file is received from PANS AT via the modem. 

Processing - After the operator provides the local name for 

the file, the file is created. If the file already exists, the 

operator chooses to either overwrite the existing file, 

append to the end of the existing file, or specify a new local 

filename. Only then is the command sent to PANSAT. 

PANS AT will reply with the number of bytes in the file, 

then send the file contents. All the data from PANSAT 

after this point, and until number of bytes specified is 

received, is considered part of the file and is directed into 

the open file. Once the transfer is complete, the file is 

closed. While the transfer is ongoing, a flashing box on the 

display indicates that file downloading is taking place. 

Outputs - The data received from PANSAT is stored in the 

open file via the file system. The flashing box is sent to the 

display. 

External Interfaces - The screen, file system, SCC/modem 

and AX.25 manager utilities are utilized by this function. 

-110- 



Performance Requirements - None. 

Design Constraints - A file transfer protocol similar to the 

PACSAT level 0 ftp will be implemented for PANSAT. 

Attributes - None. 

Other Requirements - None. 

(j) Post the Broadcast Message 

Introduction - After this command is selected, a dialog box 

will request the name of the file containing the broadcast 

message. The broadcast message needs to have been 

previously saved in text format, such as if it were written in 

the Windows 95/NT Notepad utility, on the hard drive. 

After the filename is entered in, the message will be updated 

onboard the satellite. 

Inputs - The operator enters the filename of the broadcast 

message. The broadcast message is then obtained via the 

file system. 

Processing - After the command and filename are entered 

in, the command is sent to PANSAT. The verification 

function is then called to respond to the satellite's query. 

After the verification has been sent, then the file is sent to 

PANSAT. 

■Ill- 



Outputs - The file is sent to PANSAT via the modem. 

External Interfaces - The screen, file system, SCC/modem 

and AX.25 manager utilities are utilized by this function. 

Performance Requirements - None. 

Design Constraints - By choosing the filename, the 

operator can store several broadcast messages and select the 

appropriate one. Additionally, two or more messages can 

be concatenated into one file, then be sent as a single 

message to PANSAT. This would necessary if a new 

message wanted to be added to the end of the old message, 

since PANSAT simply replaces the old broadcast message 

with the new one. 

Attributes - None. 

Other Requirements - The terminal must be in super user 

mode to select this command, otherwise the button would 

not be available. 

(k) Process A "Delete Mail/File" Command 

Introduction - This command is handled differently 

depending on the mode the terminal is in. If the terminal is 

in normal mode, the delete command will behave exactly as 

it would for a general user accessing PANSAT (see Table 

1). If the terminal is in super user mode however, the 

-112- 



command will unconditionally delete every file specified by 

the ground station (see Table 2). In both cases, the system 

merely asks for the parameters of the delete command. 

However, in super user mode a notice is displayed in the 

dialog box reminding the operator of the special delete 

ability. 

Inputs - The parameters are entered in by the operator. 

Processing - After the information is obtained from the 

user, the command is sent to PANS AT. However if in 

super user mode, the text "SU" is added to the end of the 

command line. The verification function is then called. This 

"SU" flag notifies PANSAT of the unconditional delete 

option for this command. 

Outputs - The command is sent to PANSAT via the 

modem. 

External Interfaces - The screen, SCC/modem and AX.25 

manager utilities are utilized by this function. 

Performance Requirements - None. 

Design Constraints - This dual functionality for the delete 

command allows the operator to process mail, specifically 

this is the removing of the ground station's callsign from the 

"still to" list onboard the satellite, without unintentionally 

purging the mail from PANSAT. 

■113- 



Attributes - None. 

Other Requirements - None. 

(I) Process A "Terminate User Services" Command 

Introduction - See Table 2. This function would typically 

be used only when the ground station wants to replace the 

spacecraft's user services program with a new version. 

After this command is entered, the operator is queried to 

double check their intentions. If the double check is 

affirmative, the user services program aboard PANSAT is 

shut down. 

Inputs - The operator enters their answer to the double 

check question. 

Processing - When the dialog box is sent to the operator to 

verify operator intentions, the terminal will also generate 

several beeps. This should attract the attention of anybody 

else in the office, ensuring that the operator is double 

checked by other people. After an affirmative response to 

the double check question has been received from the 

operator, the command is sent to PANSAT and the 

verification function is called. After the satellite has been 

sent verification answer, the function ends. 

Outputs - The double check query is sent to the display. 

The command is sent to PANSAT via the modem. 

-114- 



External Interfaces - The screen, SCC/modem and AX.25 

manager utilities are utilized by this function. 

Performance Requirements - The "bells and whistles" 

should go off for a few seconds before the operator is 

allowed to answer the double check question. This not only 

will get the attention of the entire office, but should 

reinforce the seriousness of the proposed course of action. 

Design Constraints - After this command is executed, the 

spacecraft user services software must be reloaded to 

become operational again. The ground station will have a 

special program that loads executables to the satellite. This 

program is separate from the user services software, but 

may be executed via the application launcher function. 

Attributes - None. 

Other Requirements - The terminal must be in super user 

mode to select this command, otherwise the button would 

not be available. 

(m) Execute Batch Commands 

Introduction - If a batch job is enabled (see the batch job 

editor window below), the batch job is executed as soon as 

the NPS ground station is first within PANS AT's footprint. 

When the batch job begins to execute, the operator will no 

longer be able to enter any of the commands in the 

■115- 



communication window, with the exception of write mail 

and read stored mail. Once the batch job completes, control 

is returned to the operator and the commands will be 

enabled. 

Inputs - The time that the NPS ground station is within the 

satellite's footprint is obtained from the display terminal, via 

the network. The batch job commands are read from a file 

tagged by a batch job flag, via the file system. 

Processing - When the time switches from "time until 

within PANSAT's footprint" to "within PANSAT's 

footprint", the batch job flag is checked. If it is enabled, the 

commands the communications window are suspended. 

The file pointed to by the batch job flag is opened and the 

commands are read in. The commands are simultaneously 

sent to the communication window on screen and to 

PANSAT. After a command has been sent to PANSAT, the 

batch job pauses until the satellite is ready for the next 

command. The next command in the file is then read and 

the process repeats. Once the entire file is read, the file is 

closed and the command buttons are enabled once again. 

Outputs - The commands read from the file are 

simultaneously sent to the communications window on the 

display and to PANSAT via the modem. 

External Interfaces - The screen, file system, SCC/modem 

and AX.25 manager utilities are utilized by this function. 

■116- 



Performance Requirements - The commands cannot be 

"shotgunned" at the satellite. The system must wait for a 

response from PANS AT before the next command can be 

sent. 

Design Constraints - When the command prompt is 

received from PANSAT, this batch command processor 

knows the satellite is ready for the next command. 

Attributes - The batch job flag is set in the batch job editor. 

Other Requirements - Before it can be executed, the batch 

file must be "compiled" or checked to make sure that all the 

commands are complete and make sense (i.e. no commands 

should follow disconnect). This "compiled" flag is skipped 

over when reading the file. 

(n) Set The Ground Station's Callsign 

Introduction - This allows the operator to change the 

callsign identity of the ground station. It will be updated 

onboard PANSAT as well as locally. The operator enters in 

the new callsign via a dialog box, then is prompted to make 

sure the new callsign is correct. The new callsign will take 

effect as soon as the ground station is disconnected from 

PANSAT. 

Inputs - The user enters the new callsign. The response 

from PANSAT is received via the modem. 

•117- 



Processing - After the operator enters the new callsign, a 

dialog box displays the new callsign and asks the operator if 

the new callsign is correct. If it is, the new callsign is sent in 

triplicate to PANSAT. If PANSAT responds that the new 

callsign has been accepted, then the new callsign is set to 

take effect as soon as the operator disconnects. If 

PANSAT does not accept the callsign, nothing will be 

updated locally. If PANSAT reports that the callsign has 

been changed, but to not to the callsign specified locally, the 

local callsign will be changed to the wrong callsign until the 

operator can update PANSAT with the correct callsign. 

Once the new callsign takes effect, it is sent to the display 

terminal in order to update the communications repeater 

window. 

Outputs - The new callsign is sent to PANSAT via the 

modem. It is sent to the display terminal via the network. 

External Interfaces - The screen, network, SCC/modem 

and AX.25 manager utilities are utilized by this function. 

Performance Requirements - None. 

Design Constraints - The callsign is sent in triplicate to 

ensure its proper receipt by PANSAT. If a wrong callsign is 

assumed by PANSAT, the ground station will assume that 

wrong callsign so that PANSAT will still be able to 

recognize the ground station. If the ground station does not 

assume the wrong callsign, PANSAT will never recognize 

■118- 



the ground station as such until the spacecraft's user 

services program is reset. 

Attributes - The initial ground station callsign will be 

"KD6CXV". 

Other Requirements - The terminal must be in super user 

mode to select this command, otherwise the button would 

not be available. 

(o) Verification Function 

Introduction - After a command from Table 2 is sent to 

PANSAT, the satellite first ensures the command was 

received from the ground station's callsign. Next, to ensure 

the validity of the ground station, PANSAT sends it a series 

of random numbers. The next data sent up from the ground 

station must be the answer to these numbers after applied 

through a set of functions. If the wrong answer is received, 

the spacecraft ignores the command previously sent up and 

logs the incident. This function is automated - the operator 

is not involved with the response. It receives the numbers 

from the satellite and sends back the correct reply. 

Inputs - The series of random numbers is received from 

PANSAT via the modem. 

Processing - This function only operates if the terminal is in 

super user mode. The numbers received from PANSAT are 

■119- 



in triplicate. If there was an error in the transmission, the 

best-two-out-of-three rule will be used to determine the 

numbers. Once the numbers are determined, the response is 

immediately sent back in triplicate to PANSAT. After that, 

program control is returned to the function that called this 

verification procedure. 

Outputs - The answer in triplicate is sent to PANSAT via 

the modem. 

External Interfaces - The SCC/modem and AX.25 

manager utilities are utilized by this function. 

Performance Requirements - None. 

Design Constraints - To make the verification function less 

cumbersome for the satellite's process, the actual function 

will use only integers and bit level operations. 

Attributes - For security, the actual function will not be 

published, but will be handed over to ground station 

personnel at the time of software turnover. 

Other Requirements - The verification query and answer 

are sent in triplicate to ensure proper reception of each. 

■120- 



(p) NPSterm Version Check 

Introduction - Once the command for the communications 

between PANSAT and the ground station to use NPSterm 

has been sent to the satellite, it returns the NPSterm version 

number used by the spacecraft user services program. If the 

version is different from the version being used by the 

ground station, the NPSterm session is aborted. The 

operator is warned about the discrepancy. Communications 

with PANSAT may continue, but only using the ASCII 

interface. 

Inputs - The NPSterm version number is received from 

PANSAT via the modem. 

Processing - The version number received from PANSAT 

is compared to an internal NPSterm version number. If they 

are the same, the connection will continue operations using 

the NPSterm protocol. If the numbers are different, 

however, the "switch to ASCII" command is sent to the 

spacecraft. A dialog box is sent to the display warning the 

operator that the NPSterm versions differ and that the mode 

is switching to the default ASCII protocol for 

communications with PANSAT. 

Outputs - If the versions differ, the warning dialog box is 

sent to the display. The "switch to ASCII" command is sent 

to PANSAT via the modem. 

•121- 



External Interfaces - The screen, SCC/modem and AX.25 

manager utilities are utilized by this function. 

Performance Requirements - None. 

Design Constraints - In order to gracefully exit NPSterm, 

the "switch to ASCII" command must be always be 

accepted by PANSAT, no matter what terminal mode the 

satellite has set the connection to be in. 

Attributes - The NPSterm version number of the ground 

station will be a hard coded program constant. 

Other Requirements - None. 

(q) Display Time Until Satellite Contact 

Introduction - On top of the communications window, the 

time until the NPS ground station is within PANSAT's 

footprint is displayed. 

Inputs - The time to display is received from the satellite 

tracking window on the display terminal via the network. 

Processing - The time is received from the display terminal 

every twenty seconds. When it is received, the clock time is 

updated. For the time in between the receipts, the clock 

time is merely counted down. 

■122- 



Outputs - The time is sent to the communications window 

on the screen. 

External Interfaces - The screen and network manager 

utilities are utilized by this function. 

Performance Requirements - Once per second, the time 

on the display is updated, which makes it appear as a 

continual countdown. 

Design Constraints - None. 

Attributes - None. 

Other Requirements - None. 

(b) Control Panel 

Introduction - This window displays the BBS control settings for 

PANS AT as listed in Table 3. The operator can modify the values 

in this window. When the "update BBS control settings" command 

is selected in the communications window, the values displayed in 

this window are the values sent to PANSAT. If the settings are 

obtained from PANSAT, the operator has the choice of overwriting 

the values currently in the control panel with the new ones. 

Inputs - Modifications to the control settings are entered by the 

operator or by the new settings window from the "get BBS control 

settings" operation. 

-123- 



Processing - The operator can update the settings at any time, as 

long as the terminal is in super user mode. When the control 

settings are updated by the "get BBS settings" operation, the 

control panel is redisplayed with the new values. Whenever the 

satellite position fields are updated, the information is sent to the 

satellite tracking window on the display terminal. If the satellite 

position data is older than four weeks (28 days), the fields will be 

highlighted in red to indicate that the data needs updating. 

Outputs - The satellite position fields are sent to the display 

terminal via the network. 

External Interfaces - The screen manager utilities are utilized by 

this function. 

Performance Requirements - The current date and time fields 

displayed in the control panel should be updated every second with 

the values from the system clock. 

Design Constraints - While the control panel can be viewed in any 

mode, the terminal must be in super user mode to modify the 

control settings. 

Attributes - The default values for the settings are as listed in 

Table 3. 

Other Requirements - None. 

-124- 



(3) Batch Job Editor. This window has a vertically split screen. 

On the left side, which will encompasses about 20% of the window, the list 

of all the batch jobs available is always displayed. The right side is used to 

view and edit the contents of batch files. Additionally, at the top of the 

window is a status line indicated whether a batch job is enabled or not. 

(a) Select A Batch Job 

Introduction - The operator may select or choose one of 

the batch jobs listed on the left part of the split window. 

Only one job can be selected at a time. This selection is 

then used by the communications window. 

Inputs - The operator indicates the job to select. 

Processing - Once a batch job has been selected by the user, 

it will be highlighted on the display. If the operator selects 

the entry again, it will unselect the batch job and the 

highlighting will be removed. If the operator selects another 

entry while one is already selected, the original selected 

batch job will be unselected and unhighlighted, and the new 

entry will be selected and highlighted. 

Outputs - The batch job that is selected is updated in the 

batch job window by being highlighted. 

External Interfaces - The screen manager utilities are 

utilized by this function. 

•125- 



Performance Requirements - None. 

Design Constraints - Highlighting should make the entry 

boldface in the listing. 

Attributes - None. 

Other Requirements - None. 

(b) Display A Batch Job 

Introduction - The contents of the selected batch job file 

are displayed in the right portion of the window. If the 

contents are too large to fit in the window at one time, the 

operator can use scroll bars to view up and down the 

contents. 

Inputs - The command choice is entered by the operator. 

The file containing the batch job is read via the file system. 

Processing - The file indicated by the selection choice is 

opened and displayed to the window on the screen. The 

scroll bars feature is inherent in the Windows 95/NT 

architecture. 

Outputs - The batch job file is sent to the right side of the 

batch job window. 

■126- 



External Interfaces - The screen and file system manager 

utilities are utilized by this function. 

Performance Requirements - None. 

Design Constraints - Once a new batch job is selected by 

the operator, the old job that is being displayed is erased 

from the window. 

Attributes - None. 

Other Requirements - None. 

(c) Enable/Disable A Job 

Introduction - If the operator chooses this function, the 

selected batch job will be enabled. Once a batch job has 

been enabled, it will be executed the next time the ground 

station is within PANSAT's footprint (performed by the 

communication window). 

Inputs - The operator enters the command. 

Processing - The batch job flag is set to indicate the 

selected entry. If no job is selected, a warning is sent to the 

operator. A special symbol is put next to the enabled job. 

The status line at the top of the window is updated to 

"ENABLED". If the user chooses this function and the 

selected job is already enabled, that entry will then be 

-127- 



disabled - the special symbol will be removed, the batch job 

flag will be erased, and the status line will be updated to 

"DISABLED". If an entry is enabled while another job is 

already enabled, the new file will be enabled and the old file 

will be disabled. The special symbol will be removed from 

the old entry and placed next to the new one. The status 

line will not need to be updated, but the batch job flag will 

need updating. 

Outputs - The special symbol and the status line are sent to 

the batch job window on the display. 

External Interfaces - The screen manager utilities are 

utilized by this function. 

Performance Requirements - The enabled batch job will 

take affect the next time the ground station enters 

PANSAT's footprint. 

Design Constraints - Only one batch job can be enabled at 

a time. If the batch job does not have the special 

"compiled" flag at the beginning of the file, it cannot be 

enabled and a warning will be sent to the operator. 

Attributes - The special symbol placed next to the enabled 

batch job should an easy to see arrow which would leave no 

question as to which file has been enabled. 

Other Requirements - None. 

-128- 



(d) Edit A Job 

Introduction - If a batch job is selected when this function 

is chosen, that file is displayed on the right section of the 

batch job window and the cursor is placed at the beginning 

of the file. The operator then can edit the file much like 

using the Windows 95/NT Notepad program. The operator 

can also insert automatically formatted commands at the 

point of the cursor. When the editing is complete, a done 

button is pressed and the batch job is saved. If no batch job 

was selected when this function was chosen, the operator is 

queried if the system should create a new batch job. If 

affirmative, the batch job name is inputted by the operator, 

then a blank batch job is opened, ready to edit. 

Inputs - If the batch job exists, it is loaded from the file 

system. Otherwise the new batch job name is entered by the 

operator. The batch job is edited by the operator. 

Processing - Once a new batch file name is provided, it is 

added to the batch job list on the left side of the batch job 

window. When an existing batch job is opened for editing, 

the special "compiled" flag at the beginning of the file, if it 

exists, is removed. Editing any batch job file will be in a 

typical text editor style. A special buttons will be at the top 

of the editing box: "INSERT COMMAND". The insert 

command button brings up the list of the Table 1 

commands. The operator can choose one of the commands. 

Corresponding to the command, a dialog box requests any 

■129- 



extra information that the command requires (i.e. the range 

of mails to list for the list mail command). Once the 

information has been entered, the dialog box disappears and 

the command, in perfect format, is inserted at the point of 

the cursor's position. The cursor is then moved to the next 

line. 

Outputs - If the batch file exists, it is sent to the editing 

box, which is the right section of the batch job window. 

After editing, the batch job will be saved to a file on disk via 

the file system. 

External Interfaces - The screen and file system manager 

utilities are utilized by this function. 

Performance Requirements - None. 

Design Constraints - A single line may only contain one 

command. The next command must be on the next line. 

Attributes - Comments begin with a "//" and continue to 

the end of the line. A comment could be on its own line or 

at the end of a line with a command in it. 

Other Requirements - Only Table 1 commands can be 

entered since only those commands can be executed in a 

batch file. Super user commands (Table 2) must be sent 

manually to PANSAT by an operator. 

■130- 



(e) Compile A Job 

Introduction - Once a batch job has been edited, before it 

can be enabled, it must be "compiled". Actually, this 

process only checks the format and syntax of the file to 

ensure that it can be executed without errors. The selected 

batch job will be checked. With the first error found, 

"compilation" will cease and the batch job being checked 

will be put into the edit mode. In the editing portion of the 

batch job window, the cursor will be placed on the line with 

the error. Additionally, the window will be displayed with a 

description of the error. As soon as the operator moves the 

cursor, this error message will be replaced with the status 

message that was overwritten. When a successful 

compilation occurs, a dialog box announces the fact. 

Inputs - The batch job selected is retrieved from the file 

system. 

Processing - If no batch job is selected, the operator is 

warned that an entry must be selected to "compile". 

Otherwise, the file containing the selected batch job will be 

opened. Each line of the file will be checked to make sure it 

is in the format listed in Table 1. Any command not in 

Table 1 or any variation from the syntax listed therein will 

cause an error. The only exception to this is the read and 

send file commands, which will have a local filename 

appended to the end of the line. If "C PANSAT" is not the 

first command in the file, an error will be raised. Any 

■131- 



command after a disconnect command will cause an error. 

If an error is raised, the file is sent to the batch job editing 

function, the cursor is placed on the line causing the error, 

and the error message is displayed. After the file is fixed, it 

must be "compiled" all over again. If the compilation was 

successful, the operator is notified of this and a "compiled" 

flag is inserted at the beginning of the file containing the 

batch job. If a "compiled" flag is already at the beginning of 

the file when this option is chosen, it is removed from the 

file and the process continues. 

Outputs - If an error occurs, a descriptive error message is 

sent to a dialog window. Otherwise, when compilation is 

successful, a dialog box is sent to the display and the 

"compiled" flag is inserted at the beginning of the file 

containing the batch job. 

External Interfaces - The screen and file system manager 

utilities are utilized by this function. 

Performance Requirements - None. 

Design Constraints - A single line may only contain one 

command. The next command must be on the next line. 

Attributes - The "compiled" flag will be the code word 

"ABIE" in hexadecimal. 

-132- 



Other Requirements - Only Table 1 commands can be in 

the batch job since only those commands can be executed in 

a batch file.    Super user commands (Table 2) must be sent 

manually to PANSAT by an operator. 

(f) Default Batch Job. When the ground station is first 

implemented, it will include one premade batch job. This batch job 

will: connect to PANSAT, download the current telemetry, get the 

latest mail and file listings (LM N and LF N), post any mail that is 

in the mail message buffer, read then delete all mail to the ground 

station (RM E and DM E), then disconnect from PANSAT. These 

are the minimum functions to support the archive files and Internet 

site's operations. 

(4) Set Super User Mode 

Introduction - The control terminal in usually in the normal user 

mode. To enter the super user mode, the operator selects the super 

user option on the monitor program. The monitor is initially 

described in the control terminal section heading. The operator is 

then asked for a password. If the password is entered correctly, the 

terminal will be in super user mode for 10 minutes or until the mode 

is exited by the operator from the monitor, whichever comes first. 

Inputs - The operator enters in the password. 

Processing - When the operator requests super user mode, a dialog 

box querying for the password is displayed. If the correct password 

is entered, a timer is set for 10 minutes. The terminal is then put in 

-133- 



super user mode. While in super user mode, monitor display will 

show that fact. When the timer expires, normal mode is restored. 

If the operator manually turns off super user mode, the timer will be 

shut off. If the wrong password is entered the terminal beeps for a 

few seconds, then allow a retry. 

Outputs - While in super user mode the top of the terminal display 

will display that the terminal is in super user mode. When normal 

mode is restored, the display will be removed. If the wrong 

password is entered, beeps are emitted from the terminal. 

External Interfaces - The screen manager utilities are utilized by 

this function. 

Performance Requirements - The ten minute timer is long enough 

to last for an entire PANS AT communication window. 

Design Constraints - None. 

Attributes - The password will be hard coded in the program. To 

change it, the program needs to be regenerated. The mode setting 

is a program flag. 

Other Requirements - None. 

(5) Archive Management Functions. This is identical to window 

described on the display terminal, except the functions are now located on 

the control terminal. 

-134- 



(6) Launch Other Applications 

Introduction - This selection from the monitor program will allow 

the operator to launch another application from within the user 

services program. This new application will execute in tandem with 

user services, but each program will be completely independent of 

each other. This operation is similar to selecting the run option 

from the Windows 95/NT Start Menu, except it is all done from 

within the user services program. 

Inputs - The operator chooses the application to launch. 

Processing - A service call is made to the operating system to begin 

executing the application selected by the operator. 

Outputs - None. 

External Interfaces - The file system manager utilities are utilized 

by this function. 

Performance Requirements - None. 

Design Constraints - None. 

Attributes - None. 

Other Requirements - A typical application executed by this 

function would be to run the program which loads the spacecraft 

user services program onboard PANSAT. 

-135- 



c. Linux Terminal Functions. 

The Linux terminal will not have a window interface. Rather all its 

functions will be performed in the background. As long as the terminal in on, 

these programs are required to be operational. 

(1) Relay Communications Between PANS AT & Ground Station 

Introduction - The terminal will continually wait to receive data 

from the satellite as well as any of the other ground station 

terminals. If data is received from the satellite, the data is 

transmitted to all the other three ground station terminals. If data is 

received a ground station terminal, it is relayed to the satellite. All 

the relayed data, going both directions, is stored for twenty-four 

hours on the local hard drive. 

Inputs - Data from PANSAT is received via the modem. Data 

from a ground station terminal is received from the network via the 

socket datagram format. 

Processing - The data is simply relayed and stored as it is received. 

If the ground station is not withing the satellite window of 

opportunity for communication, the Linux terminal will still attempt 

to send the data to PANSAT. The responsibility for keeping track 

of when to transmit is kept by the control and display terminals. 

Outputs - The data for transmission is sent to PANSAT via the 

modem. The data received from PANSAT is broadcast to the other 

three ground station terminals on the network via the socket 

datagram format. 

-136- 



External Interfaces - The network and modem controller utilities 

are utilized by this function. 

Performance Requirements - Because of the time constraints in 

communicating with PANSAT, the receive to transmit time lag for 

the relay function should be almost instantaneous. 

Design Constraints - As the data is being relayed, it should 

simultaneously be saved on the local hard drive. No organization 

needs to be performed on the backup other than packet 

serialization. 

Attributes - None. 

Other Requirements - Once a day the backups of the daily 

transmitted packets should reviewed by the system. It should 

automatically purge any data packet older than twenty-four hours. 

(2) Control Antenna Orientation 

Introduction - This function is invisible to the operator. When the 

ground station is in PANSAT's footprint, the antenna is rotated to 

maintain the best possible reception with the satellite. 

Inputs - The position of the satellite and the time the ground 

station are received from the display terminal via the network. 

Processing - Once the ground station is within five minutes of 

being within PANSAT's footprint, the antenna is prepositioned for 

-137- 



the best reception. The best possible antenna position is based on 

PANS AT's provided position and the position of the NPS ground 

station. While in PANSAT's footprint, the antenna is updated with 

new positions as the satellite moves across the sky. Once PANSAT 

is beyond the horizon, this function stops updating the antenna until 

PANSAT's next revolution. 

Outputs - The desired antenna position is sent to the antenna 

housing via the antenna driver. 

External Interfaces - The network and antenna manager utilities 

are utilized by this function. 

Performance Requirements - A new antenna position should be 

reevaluated every twenty seconds, which is the rate that new 

PANSAT positions are being supplied to this function. 

Design Constraints - None. 

Attributes - The NPS ground station position is a hard coded 

program constant. 

Other Requirements - This function is contingent on a Windows 

95/NT antenna driver being supplied by the client. 

d. Server Functions. 

Besides acting as the Windows NT network server, this terminal performs 

the following functions. These functions are performed in the background, 

requiring no explicit window interface. 

■138- 



(1) Maintain Archives. These underlying functions add the data 

received from PANS AT into the archives. These functions are automatic 

and should not be noticeable to the operator. 

(a) Make Directory 

Introduction - At the beginning of a new day, a new 

subdirectory is automatically created for that day's archived 

files. 

Inputs - None. 

Processing - When the internal clock switches to the new 

day, the directory is created. If the ground station is 

currently connected to PANSAT, the files will be stored in 

the last day's directory until the next connection. 

Outputs - The make directory command is sent to the file 

system. 

External Interfaces - The file system manager utilities are 

utilized by this function. 

Performance Requirements - None. 

Design Constraints - The file structure will look like: 

. AARCHI VE\year\month\day\ 

where year, month, and day will be filled in with the 

appropriate values. 

■139- 



Attributes - None. 

Other Requirements - None. 

(b) Store An Archive File 

Introduction - This function is continually monitoring the 

data coming from PANS AT. If the data being received is 

telemetry, a mail message, a downloaded file, or a listing of 

mail/files, the data is captured and put into a archive file. 

The file is saved in the directory for the day it is captured. 

Inputs - The data received from PANS AT is obtained via 

the SCC/modem drivers. 

Processing - The data received from PANSAT is 

anticipated from the command that the operator sends to the 

satellite. When current telemetry is downloaded, after it is 

saved in a file, a signal is sent to the display telemetry data 

window on the display terminal. This signal gives the 

window the filename of the new telemetry data. 

Outputs - The data received from PANSAT is saved on the 

hard disk via the file system. The signal is sent to the 

display terminal via the network. 

External Interfaces - The network and file system manager 

utilities are utilized by this function. 

■140- 



Performance Requirements - This function needs to 

monitor the outgoing commands and incoming data at all 

times. No lag in processing can be permitted or data may 

be lost. 

Design Constraints - For saving the archive files, the 

following scheme is used: 

Table 4 - Archive file extensions. 

Archive Data Type File Extension 

Current telemetry .CT 

Stored telemetry .ST 

Mail .MAI 

Files .FIL 

Mail listings .MLI 

File listings .FLI 

Attributes - None. 

Other Requirements - As a mail message is being 

archived, the first line is checked. If the line is "Internet 

email:..." the mail message will be forwarded, via the 

Internet, to the email address specified after the colon. 

(2) Maintain Internet Services. While the Internet services will be 

incorporated into a web site, these functions maintain the operations 

selected by the Internet users. This function will perform the interaction 

-141- 



between PANS AT and the web site and will ensure that the Internet users 

have the latest information to work with. 

(a) Post mail to PANSAT 

Introduction - When an Internet user enters in a mail 

message to be delivered to PANSAT, it is stored in a buffer. 

This function takes the buffer and puts it into the mail 

message buffer file. Thus, when the ground stations sends 

out its mail, the mail from the Internet site will be sent with 

it. 

Inputs - The mail message(s) are retrieved from the 

Internet site's mail buffer via the network. 

Processing - When this function detects the Internet site's 

mail buffer has a mail message in it, the message is taken 

and appended to the end of the mail message buffer (see the 

control terminal's send mail function). If the mail message 

buffer is already open, this function will wait until the buffer 

is closed, then it will add the Internet site's mail. 

Outputs - The mail message(s) from the Internet site are 

sent to the file for the mail message buffer, via the file 

system. 

External Interfaces - The network and file system manager 

utilities are utilized by this function. 

■142- 



Performance Requirements - The Internet site mail buffer 

only needs to be checked once an hour, then processed until 

all mail messages have been removed from the buffer. 

Design Constraints - None. 

Attributes - The name of the Internet site's mail buffer and 

the mail message buffer will be hard coded program 

constants. 

Other Requirements - The system which will hold the 

Internet web site has not yet been identified by the client. 

For the sake of this function's design, however, it is 

assumed that the web site will be connected to the ground 

station via the network already in place between the control 

and display terminals. 

(b) Retrieve A Mail Message From PANSAT 

Introduction - If the user of the Internet web site requested 

a mail to be downloaded, a "read mail" command is inserted 

into the mail message buffer. During PANSAT's next pass, 

when the send outgoing mail is sent, the command 

requesting specific mail will also be sent. 

Inputs - The mail number to retrieve is obtained from the 

Internet site's download buffer via the network. 

■143- 



Processing - When a message number is obtained from the 

Internet site's download buffer, the archive files are first 

checked to make sure the number is not already 

downloaded. The mail message buffer will then be checked 

to make sure the request has not already been processed. If 

the mail number or request is not in either place, a read mail 

command with the number requested is appended to the 

mail message buffer. 

Outputs - The read mail command line is appended to the 

mail message buffer file via the file system. 

External Interfaces - The network and file system manager 

utilities are utilized by this function. 

Performance Requirements - The Internet site's download 

buffer will be checked once per hour, then processed until 

all requests are removed from the buffer. 

Design Constraints - When a mail number is requested, 

only the most recent mail message with that number will be 

obtained. All previous mail messages with that number will 

have been deleted or overwritten by PANSAT. 

Attributes - The name of the Internet site's download 

buffer and the mail message buffer will be hard coded 

program constants. 

■144- 



Other Requirements - The system which will hold the 

Internet web site has not yet been identified by the client. 

For the sake of this function's design, however, it is 

assumed that the web site will be connected to the ground 

station via the network already in place between the control 

and display terminals. 

(c) Update HTML Pages For The Internet Site 

Introduction - After a connection with PANSAT has 

ended, the most recently downloaded listing of mail, listing 

of files and the latest current telemetry values are converted 

into HTML pages and saved on the web site. 

Inputs - The mail/file listings and telemetry values are 

obtained from the archive files via the file system. 

Processing - The data from the archive files is put into a 

Preformatted HTML mask. The filled out form is then sent 

to the Internet site as a web page, where it replaces the file 

listing, mail listing, and telemetry pages. 

Outputs - The replacement web pages are sent to the 

Internet site via the network. 

External Interfaces - The network and file system manager 

utilities are utilized by this function. 

■145- 



Performance Requirements - This function will be 

activated as soon as a disconnect command is sent to 

PANS AT by the ground station. 

Design Constraints - None. 

Attributes - The web page filenames will be hard coded 

program constants. 

Other Requirements - The system which will hold the 

Internet web site has not yet been identified by the client. 

For the sake of this function's design, however, it is 

assumed that the web site will be connected to the ground 

station via the network already in place between the control 

and display terminals. 

(3) Internet Virtual Site Functions. These functions are separate 

from the ground station software. Although they interact with the ground 

station, the components in this section are incorporated within an Internet 

web site, maintained on the server computer. This web site will be 

implemented using a combination of HTML pages and applets written in 

the JAVA programming language. The web site is hinged together with a 

main page. AU of the functions listed in this section are branches from the 

main page. 

(a) View PANS A T 's Latest Directories 

Introduction - This function is located on two pages. 

These two pages are updated by the server's maintain 

■146- 



Internet services function. One page will display the latest 

listings of the mail messages on PANSAT. The other page 

will display the latest listings of the files. 

Inputs - The Internet user may select one of the mail 

messages. 

Processing - From the mail page, the user can select a mail 

message. The selected mail message will be sent to the read 

a mail message function (see below). From either page the 

Internet user may go back to the main page or one of the 

other sub pages. 

Outputs - The web pages are sent to the Internet user via 

the Internet. 

External Interfaces - None. 

Performance Requirements - None. 

Design Constraints - None. 

Attributes - None. 

Other Requirements - None. 

■147- 



(b) View The Latest Telemetry From PANSAT 

Introduction - This page simply displays the latest 

telemetry values obtained from PANSAT. This page is 

updated by the server's maintain Internet services function 

after every pass of the satellite. 

Inputs - None. 

Processing - The page is simply displayed. The Internet 

user may select to go back to the main page from here, or 

go to one of the other sub pages. 

Outputs - The web page is sent to the Internet user via the 

Internet. 

External Interfaces - None. 

Performance Requirements - None. 

Design Constraint - None. 

Attributes - None. 

Other Requirements - The actual values and format of the 

telemetry have not yet been defined by the client. These will 

need to be provided by the client before this function can be 

implemented. 

-148- 



(c) Read A Mail Message From PANSAT 

Introduction - If a mail message was selected from the 

displayed mail listings option (above), it will be attempted to 

be retrieved from the archives. If a previous selection was 

not already made however, this page will prompt for a mail 

number to read, then attempt to retrieve it from the 

archives. If the mail number exists in the archives, it will be 

displayed. All displayed items will be viewable by the 

Internet user's browser program. If the mail message does 

not exist in the archives, however, the Internet user will be 

informed that the mail is not in the archives. The user will 

then be asked if they want to download the mail message 

during the next satellite pass. 

Inputs - The mail number to display and the answer to the 

mail download query are entered by the Internet user, 

received via the Internet. The mail message, if it exists, is 

read from the archives files, via network and the file system. 

Processing - Once the mail number has been obtained from 

the Internet user, the archive directories are searched 

through, starting with the current day's directory working 

backwards. The search will work back through the 

directories for the past 15 days, if need be. If the mail 

number has not been found after the 15 day search, the 

Internet user will be prompted if they want to attempt to 

download the mail message from PANSAT. If the answer 

is yes, the mail number is placed in the download buffer to 

■149- 



be handled by the control terminal. Otherwise, if the answer 

is no, the Internet user will be placed back on the main 

page. 

Outputs - The mail message, if in the archives, will be sent 

to the Internet user via the Internet. The question to 

download may also be sent to the user. 

External Interfaces - The network and file system manager 

utilities are utilized by this function. 

Performance Requirements - None. 

Design Constraints - The download buffer will be stored in 

a file. 

Attributes - The filename for the download buffer will be a 

hard coded program constant. 

Other Requirements - None. 

(d) Post Mail On PANSAT 

Introduction - This page will display a form for filling out a 

mail message. After the Internet user has completed 

entering in the mail message form, the mail will be sent to 

PANSAT during its next pass. 

■150- 



Inputs - The mail message is inputted by the Internet user 

via the Internet. 

Processing - After the Internet user fills in the "from" line, 

"to" line, "subject" line (which is optional), and message 

body, the mail will be put into a mail message format. The 

"from" line will be replaced with the ground station's 

callsign, followed by the Internet user's identity in 

parenthesis. The mail message will then be placed in the 

mail buffer, to be processed by the control terminal of the 

ground station. The user will then be put onto the web 

site's main page. 

Outputs - The web page is sent to the Internet user via the 

Internet. 

External Interfaces - The file system manager utilities are 

utilized by this function. 

Performance Requirements - None. 

Design Constraints - The mail buffer will be stored in a file 

on the hard disk. 

Attributes - The filename of the mail buffer will be a hard 

coded program constant. 

Other Requirements - None. 

■151- 



(e) Display A Day's Archive File Directory. This function 

will behave identically as the "display a day's directory" function of 

the archive management window on the ground station (see display 

terminal functions above). The only difference is that it will be 

implemented as a web page, rather than a window feature. 

Additionally, the archive file directory will have to be accessed 

through the network as well as the file system management utilities. 

(f) Search The Archive Files. This function will behave 

identically as the "search through archives function" of the archive 

management window on the ground station (see display terminal 

functions above). The only difference is that it will be implemented 

as a web page, rather than a window feature. Every option 

available in the window version will be available on web page. 

Additionally, the archive file directories will have to be accessed 

through the network as well as the file system management utilities. 

(g) Download An Archive File 

Introduction - Once a file has been selected in the "display 

a day's archive file directory" or "search the archive files" 

functions (the above two sections), this option can be 

selected. This will transfer the selected file to the Internet 

user. 

Inputs - The selected file is obtained from the archives via 

the network and file system. 

-152- 



Processing - Using the standard Internet file transfer 

protocol, the selected file is sent to the Internet user. Once 

done, the Internet user is left in the directory or search 

listing functions they were previous in. 

Outputs - The selected file is sent to the Internet user via 

the Internet. 

External Interfaces - The network and file system manager 

utilities are utilized by this function. 

Performance Requirements - None. 

Design Constraints - The standard Internet file transfer 

protocol will operate very similarly to the download file 

operation with PANSAT. 

Attributes - None. 

Other Requirements - None. 

■153- 



■154- 



V.   SOFTWARE DESIGN 

A. USE CASES 

Use cases are analogous to a script of a play. A script describes the role of each 

actor in the play and how the actors behave in a scene. Similarly, use cases describe how 

each user of the system (actors) can perform in each possible instance. Unlike plays, 

however, use cases can be alternative and repetitive. Each use case describes a particular 

way of using the system in a goal-oriented manner. From the user's perspective, they 

precisely and concretely describe how the system can be used to achieve desired results. 

Each use case involves an interaction between the end users, which will be referred 

to as actors in the use cases, and the system. Interactions may be complex and may 

involve other actors. Each use case potentially describes a large set of different interaction 

sequences. However, the different interaction sequences are analyzed in detail in the 

analysis and design phases. 

Use cases can be hierarchically composed from parts. Use cases can not only have 

sub use cases, but can often share exceptions or sub activities. Using this structure makes 

the specification shorter and easier to understand. This hierarchy is represented in use 

case diagrams. The diamonds denote "parts of relations and the labels indicated whether 

the parts are sub use cases, sub activities, or exceptions. Use cases are specifically 

activated by the system or called by their "parent" use case, as required. Activities are 

always ongoing, regardless of the system or "parent" use case's condition. However, 

activities with "parents" other than the system will begin executing only once their parent 

is activated. Exceptions are called whenever required to resolve an error condition. 

The result of the use cases and diagrams is a description of the software's 

functional and dynamic behavior, which is a basis for the modeling in the system analysis 

phase [Awad pages 39 - 43]. 

-155- 



1. Spacecraft Module Use Cases 

The use cases for the spacecraft program are organized similar to a finite state 

automata. Data communication to and from a connection, or end user, is based on the 

state that the connection is in. Following that philosophy, the use cases work by tracing 

the data flow from when it arrives at the system through its various stages of processing. 

These stages of processing are determined according to the connection's status, which is a 

flag denoting its finite state. A few activities fall outside of the "follow the data flow" 

realm, but they still base their actions upon the connection status and/or program settings. 

Use Case (Ul) data packet is received from SCOS 

Actors User or ground station. 

Preconditions     A packet of data is received by PANSAT, it is delivered to user services by SCOS. 

Description When a data packet is delivered to user services from SCOS, this function first 
checks the originator of the packet. If the callsign is from an active connection, the 
packet is passed to (U20) for proper parsing. The only operation allowed by a non- 
connected end user is to connect. Thus, all packets from an un-connected callsign 
are routed to an appropriate connection process. If the callsign is the ground station, 
the packet is passed to (U13) to connect. Otherwise the packet is passed to (U14). 
Simultaneously, every packet that reaches the system is passed to (U21) for a signal 
strength evaluation. 

Sub Use Cases    (U13) connect the ground station 
(U14) connect a user 
(U20) process a data packet from an active connection 

Exceptions (1) If the identity of the packet is undeterminable: ignore the packet. 

Activities (U21) check the signal strength of the incoming data packet 

Postconditions    The incoming data packet is sent to the proper function for processing. 

■156- 



Use Case (U2) perform general autodelete check 

Actors Autonomous activity of system. 

Preconditions     Mail and/or files exist in storage. 

Description See page 71. Once a day, the time/date stamp of every mail and file in storage is 
checked. If the age of the normal mail/file (not sent to the "all" callsign) is greater 
than a threshold set by the ground station, delete it. Mail and files sent to "all" have 
their own threshold to compare, but if those are older than their threshold, they are 
deleted. If the additional autodelete settings are enabled and the amount of available 
memory in storage is equal to or less than the triggering amount, (U3) is activated. 

Sub Use Cases    (U3) perform additional settings autodelete check 

Postconditions    All mail and files which meet removal criteria have been removed. 

Use Case (U3) perform additional settings autodelete check 

Actors System use from of (U2). 

Preconditions     Additional delete control setting is ON. Amount of space in storage is equal to or 
less than the threshold set in the control block. Mail and/or files exist in storage. 

Description See page 71. Similar to (U2), once per day, the system checks all the mail and files 
in storage. However, in this case the date/time stamp of the file is compared with up 
to three ground station mandated settings. For each one of the settings, if a file in 
storage is larger than or equal to the specified size and equal to or older than the age 
indicated in the setting, the file is deleted. 

Exception (1) If the control setting is ON, but no criteria settings are made: switch control 
setting to OFF, exit function. 

Postconditions    All the mail and files which meet criteria will have been removed (in reality, only 
files will typically meet the criteria). 

Use Case (U4) perform interrupted file transfer record purge 

Actors Autonomous activity of system. 

Preconditions      Connection records are stored in the interrupted file transfer list. 

Description See page 72. Once a day, the time/date stamp of every connection record that was 
put into the list is compared to a ground station set threshold. If the age of the 
connection record is equal to or greater than the threshold, it is purged from the list. 

Postconditions    All mail and files which meet removal criteria have been removed. 

■157- 



Use Case (U5) deadreckon satellite's position 

Actors Autonomous activity of system. 

Preconditions Deadreckon flag is set to ON. 

Description See page 74. Once a minute, the current position of the satellite is calculated. The 
calculation is based on deadreckoning from an initial position (which is periodically 
set by the ground station). This position is passed to (U6) and to (U8), which require 
the information for their operations. 

Exceptions (1) If the deadreckon flag is set to ON, but the initial position is not set: set the 
deadreckon flag to OFF. 
(U7) supplied position of PANS AT is out of date 

Activities (U6) control the cycling rate of modem 
(U8) defragment storage 

Postconditions The latest position of PANSAT is determined. 

Use Case (U6) control the cycling rate of modem 

Actors Activity of (U5). 

Preconditions     Deadreckon flag is set to ON. 

Description        When positional data is received from (U5), the position is compared to hard coded 
constants. These constants indicate when the footprint of the satellite is in areas 
where communication is not expected with PANSAT (such as above the ocean). 
When the satellite is in one of these areas of no-likely communications, the modem 
is put into a duty-cycling mode. When the footprint exits this area, the modem is put 
back in a normal mode. 

Exceptions (1) When there have been no communications with the ground station in 24 hours: 
disable the deadreckon flag and ensure the modem is in normal mode. 

Postconditions    The modem is in either a duty-cycle or normal mode. 

Use Case (U7) supplied position of PANSAT is out of date 

Actors Exception of (U5). 

Preconditions     The date of the PANSAT's basis position, supplied by the ground station, is older 
than 21 days, compared to the satellite's internal clock, which was also initialized by 
the ground station. 

Description The next time the ground station is connected to the satellite, it is sent a message 
warning that the positional data is out of date. The deadreckon and defragment flags 
are set to OFF. 

Postconditions    The deadreckon and defragment flags are set to OFF. 

■158- 



Use Case (U8) defragment storage 

Actors Activity of (U5). 

Preconditions     The defragment and deadreckon flags are set to ON. 

Description See page 75. When positional data is received from (U5), the position is compared 
to hard coded constants. These constants indicate when the footprint of the satellite 
is in areas where communication is not expected with PANSAT (such as above the 
ocean). When PANSAT enters this area, it determines the fragmentation value of 
the storage. If the overall file fragmentation percentage is below the ground station 
set threshold, then the files are defragmented, one file at a time, until the area of no 
likely communications is exited. Next time that area is entered, the process repeats. 

Exceptions (1) If the defragment flag is ON, but the deadreckoning flag is OFF: set defragment 
flag to OFF. 

Postconditions    After each time activated, at least one file is defragmented. 

Use Case (U9) check connection for autodisconnect 

Actors Autonomous activity of system. 

Preconditions      One user or ground station is currently connected. 

Description        See page 72. Once per minute all the active connection records are checked. If the 
time the last input was received from a connection is over the threshold (set by 
ground station), the user is disconnected (U64). If the user was in the middle of a 
file transfer, (U10) is called to save the connection information in order to continue 
the file transfer later. 

Sub Use Cases    (U10) save user's file-transfer status 
(U64) disconnect 

Postconditions    All idle connections are disconnected, freeing up their connection records. 

Use Case (U10) save user's file-transfer status 

Actors System use from (U9). 

Preconditions      A user about to be disconnected is still conducting a file transfer. 

Description        If the connection status is "temp uploading/downloading", the record currently in the 
list for this connection is updated. Otherwise, the record of the file transfer is added 
to the list. If the list already has the maximum number, the connection is not saved, 
but erased. When the user reestablishes the connection, the information from the list 
is used to continue the file transfer exactly where it left off. See page 38 for the 
attributes to be saved. 

Exceptions (1) If the number of connection records stored exceeds the number set by ground 
station: abort operation. 

Postconditions    All the necessary file transfer information for the user is saved. 

■159- 



Use Case (Ul 1) compress data. 

Actors Autonomous activity of the system 

Preconditions     Data is ready to be passed to the AX.25 packet utility in preparation for transmission 
to an end user or data is ready to be passed to the Surrey file system for saving in 
storage. 

Description See page 76. If the data is going to be sent to an NPSterm connection, the data is 
compressed before it is sent to the AX.25 utilities. If the data compression flag is set 
to ON and the data is going to be saved in storage, then the data is compressed. 
Otherwise, the data is left unmodified. 

Exception (1) If the data is already compressed: do not compress again, skip the function. The 
data is known to be compressed by a marker saved in the file information data. 

Postconditions    The data is ready to packeted by the AX.25 utilities or saved in storage. 

Use Case 

Actors 

Preconditions 

(U12) decompress data. 

Autonomous activity of the system 

Data has been received from the AX.25 packet utilities that originated from an end 
user or data is retrieved from the Surrey file system. 

Description See page 78. If the packet coming from the AX.25 utilities originated from an 
NPSterm connection, the data is decompressed upon arrival at PANSAT. If the file 
information for the data retrieved from storage denotes a compressed file, the data is 
also decompressed. However, two special cases to skip decompression exist. The 
first case is if the data coming from an NPSterm is going directly into storage and 
the data compression flag is ON. The second case, in transmitting a file from 
PANSAT, is if the file information indicates the file is compressed and the file is to 
be sent directly to an NPSterm connection. In either case, the data is not 
decompressed, since if it was, it would only be compressed again immediately after. 

Exception (1) The information indicates that the data should be compressed, but the data is not: 
pass the data through with no modification or error raising. 

Postconditions    The data is uncompressed, ready to use or manipulate. 

-160- 



Use Case (Ul 3) connect the ground station 

Actors Ground station from (Ul). 

Preconditions     The ground station is not yet connected and a packet is received from the ground 
station's callsign. 

Description        See page 33. If the ground station sends the "request to connect" command, the 
ground station's connection record is set to "active" and updated, setting the 
connection status to "connecting". The time and date of the connection attempt is 
sent to the log manager utility. Control is then passed to (U16). 

Sub Use Cases    (U16) display the greeting message 

Exceptions (1) The packet does not contain the command "C PANSAT": abort the connection 
process and ignore the packet. 
(2) The ground station tries to connect, but a connection with the ground station is 
already ongoing: deny the second connection and log the failed attempt. 

Postconditions    The ground station is connected and the connection record is updated. 

Use Case (U14) connect a user 

Actors User from (Ul). 

Preconditions      A packet is received from a callsign of a user who is not currently connected. 

Description See page 33. If there is a connection record available (there is a maximum of 15), 
the available record is marked as active and filled out, including setting the 
connection status to "connecting". Control is then passed to (U16). If there are no 
available connection records or the "terminate user services" process has 
commenced, then control is passed to (U15). 

Sub Use Cases    (Ul 6) display the greeting message 

Exceptions (1) The packet does not contain command "C PANSAT": abort the connect process 
and ignore the packet. 
(U15) connection request is denied 

Postconditions    The user is connected and the connection record is updated. 

Use Case (U15) connection request is denied 

Actors Exception of (Ul 1). 

Preconditions     A user has tried to connect, but PANSAT cannot allow the connection. 

Description If the reason for the denied connection is all connection records are active, the user is 
sent a message saying "All connections are occupied, please try again in one 
minute". If the "terminate user services" process has commenced however, the user 
is sent "System temporarily unavailable - disconnect now". The control thread for 
this particular packet terminates after the proper warning has been sent. 

Postconditions    The connection process terminates without a new connection being established. 

■161- 



Use Case (U16) display the greeting message 

Actors User from (U13) or ground station from (U14). 

Preconditions     A connection has just been established with PANSAT. 

Description See page 35. "Welcome to PANSAT'is sent to the connection. If the connection is 
the ground station, it is sent the time and date of the last ground station connection. 
Next, a happy face is sent to the end user. The happy face is made out of simply 
telemetry values. Finally, the "time of last input from user" field in the connection 
record is set to the current time. Control is then passed to (U17). 

Sub Use Cases    (Ul 7) check if callsign is in the list of interrupted file transfers 

Postconditions    A greeting message has been sent to the end user. 

Use Case (Ul 7) check if callsign is in the list of interrupted file transfers 

Actors User or ground station from (U16). 

Preconditions     A connection has just been established with PANSAT and has been sent a greeting 
message. 

Description        See page 37. The callsign of the connection is compared to the callsigns in the 
interrupted file transfer list. If one of the callsigns matches, the end user is queried 
"Continue previous file transfer?". The control thread is then terminated for this 
packet (the end user's response will be properly parsed, identified by the connection 
status). Otherwise, control is directly passed to (Ul 8). 

Sub Use Cases    (Ul 8) display the broadcast message 

Postconditions    If the end user was previously interrupted in a file transfer, they have the opportunity 
to continue the file transfer exactly where they left off. 

Use Case - (Ul 8) display broadcast message 

Actors Ground station or user from (U17), (U23), (U24), or (U26). 

Preconditions     All other steps in the connection process are complete. Connection status is 
"connecting". 

Description See page 38. The broadcast message (set by the ground station) is sent to the user or 
ground station, then control is passed to (U19). 

Sub Use Cases    (Ul 9) display the menu options 

Postconditions    The broadcast message has been sent to the user/ground station. 

■162- 



Use Case 

Actors 

Preconditions 

Description 

Postconditions 
this. 

(U19) display the menu options 

Ground station or user from (U18), (U22), (U23), (U24), (U29), (U30), (U31), (U32), 
(U34), (U35), (U36), (U37), (U38), (U42), (U43), (U44), (U45), (U46), (U47), (U48), 
(U49), (U51), (U53), (U54), (U56), (U59), (U60), (U62), (U63), (U65) or (U66). 

The system is ready to process a command from the user or ground station. 

See page 40. A prompt is sent to the user or ground station with all the menu 
options.   The connection status is set to "menu". This control thread is now finished 
and the connection is waiting for a command from the user or ground station. 

The connection is ready to receive a BBS command and end user has been notified of 

Use Case (U20) process a data packet from an active connection 

Actors Ground station or user from (Ul). 

Preconditions      A packet has been received by PANSAT from either a user or the ground station 
whom is currently connected. 

Description This function merely directs the incoming packet to the correct sub-function, based 
solely on the connection status value for the particular callsign. The connection 
record's "time of last input from the user" field is updated with PANSAT's current 
time. The connection must be in one of seven possible statuses, with the matching 
sub use case being passed the control. 

Sub Use Cases    (U23) Status: uploading or temp uploading 
(U24) Status: downloading or temp downloading 
(U25) Status: connecting 
(U27) Status: verifying 
(U28) Status: menu 
(U29) Status: sending broadcast 
(U30) Status: sending mail 

Exceptions (1) If the connection isn't in one of the seven states, send a warning to user of 
"Software fault-status error", then disconnect the user by executing (U64). 

Postconditions    Control is passed to the proper function to process the packet from the user/ground 
station. 

■163- 



Use Case (U21) check the signal strength of the incoming data packet 

Actors Ground station or user from (Ul) 

Preconditions A packet is received by the SCOS. 

Description See page 79. All packets received by PANSAT are sent to this function, along with 
the signal strength of the transmission carrying the packet. If the power of the signal 
received is greater than a program constant threshold, the end user sending the 
signal is warned of the overbearing power. If three more packets are received from 
the same user without the power being reduced, the user is disconnected. 

Sub Use Cases (U64) disconnect 

Postconditions Either the user's power is within power specifications or an offending user has been 
disconnected from PANSAT. 

Use Case (U22) file size over threshold 

Actors Exception from (U23). 

Preconditions The latest data packet received from the user during a file upload, when added to the 
file, makes the file larger than the threshold size set by the ground station. 

Description The file upload is terminated. A message is sent to the user telling them the file size 
limit was exceeded. The file is deleted from the system. Control is then transferred 
to(U19). 

Sub Use Cases (U19) display the menu choices 

Postconditions The file which would have been too large is removed from the system. 

Use Case (U23) status: uploading or temp uploading 

Actors Ground station or user from (U20). 

Preconditions The file has been created and is open in PANSAT's storage. 

Description All the data received from the connection is merely directed into the open file. 
When the end-of-file character is received, the file is closed. After which, a message 
is sent to the user stating that the file transfer is complete and how much memory the 
file took up. Next, the control thread is passed. If the connection status is "temp 
uploading", control is switched to (U18). Otherwise, control is passed to (U19). 
After each packet received is added to the file, the file size is checked. If the restrict 
mail/file size option is set and the file is over the maximum (both value set by the 
ground station), (U22) is executed. 

Sub Use Cases (U18) display broadcast message 
(U19) display the menu options 

Exceptions (U22) file size over threshold 

Postconditions The file is uploaded and saved in PANSAT's storage. 

-164- 



Use Case (U24) status: downloading or temp downloading 

Actors Ground station or user from (U20). 

Preconditions     While PANSAT is downloading to a connection, that connection transmits a data 
packet. 

Description        Since a connection that is receiving a file should only be able to transmit 
acknowledgments, this action is deemed as a user abort of the download. The file 
transfer is ceased and the message "Downloading interrupted by user" is sent to the 
end user. If the connection status was "temp downloading", control is passed to 
(U18). Otherwise, control is passed to (U19). 

Sub Use Cases    (Ul 8) display broadcast message 
(U19) display the menu options 

Postconditions    The file transfer is canceled by the user/ground station. 

Use Case 

Actors 

Preconditions 

Description 

Sub Use Cases 

Exceptions 

Postconditions 

(U25) status: connecting 

Ground station or user from (U20). 

In their last connection, a user or the ground station was interrupted during a file 
transfer. The connection was sent a query asking if it wants to continue the file 
transfer. 

If the packet from the end user contains an affirmative answer: if the file transfer was 
uploading, the destination file is open for append and the connection status is set to 
"temp uploading". However, if the file transfer was downloading, the file being 
copied is opened with the file pointer placed where the transfer left off, then the 
connection status is set to "temp downloading".   In either case, the control thread is 
terminated as further data from the connection will be appropriately handled. If the 
file transfer is to be skipped (the answer from the end user was negative), control is 
passed to (U18). No matter what the user answered, once control leaves this 
function, the corresponding connection record is removed from the interrupted file 
transfer list. If neither a discernable yes or no was received, exception (U26) is 
raised. 

(U18) display broadcast message 

(U26) illegal command received 

If the user/ground station desired it, the file transfer has been completed. 

-165- 



Use Case (U26) illegal command received 

Actors Exception from (U25) or (U28). 

Preconditions     A response that PANSAT expected from the ground station or user was not the one 
received. 

Description The user is notified which one of the three errors is committed: an option sent is not 
available, an option sent is restricted from that user, or the parse of a legal command 
sent failed - it was in a wrong format (the portion that failed is shown to the user). 

Postconditions    The connection status is unchanged, and control is passed back to the function that 
called this exception, where it is waiting for a correct response. 

Use Case (U27) status: verifying 

Actors Ground station from (U20). 

Preconditions      The ground station sent a restricted command for PANSAT. The command line 
received was placed in the special command buffer and the ground station was sent a 
verification query. 

Description        See page 69. If the packet received from the ground station contains the correct 
answer to the verification query sent in (U55), (U56) or (U60), then the special 
command buffer is checked. Control is then passed to one of the six sub cases, based 
on the command line in the buffer. However, if the verification answer was wrong, 
exception (U32) is raised. 

Sub Use Cases    (U33) process a "post broadcast" command 
(U34) process a "get BBS settings" command 
(U35) process a "ground station delete mail" command 
(U36) process a "ground station delete file" command 
(U37) process a "update ground station callsign" command 
(U39) process a "terminate user services program" command 
(U42) process a "update BBS settings" command 

Exceptions (U32) incorrect verification response received 

Postconditions    The ground station connection is allowed to continue or it is terminated. 

-166- 



Use Case (U28) status: menu 

Actors Ground station or user from (U20). 

Preconditions     Connection status is "menu" and the system is ready to accept a command from the 
user/ground station. 

Description        The command line sent by the user or ground station is parsed, obtaining the fields 
as shown in the syntax column of Tables 1 and 2 (see page 24). If the command line 
parses without errors, the parsed fields are sent as parameters to the appropriate one 
of the twenty-two commands listed as sub use cases. Control is then passed to this 
sub use case. If the command doesn't parse or the command is not allowed for a 
user, exception (U28) is raised. 

Sub Use Cases    (U43-U47), (U49), (U51-U52), (U54-56), (U58-U60) or (U62-U66) is appropriately 
selected based on the command sent by the user or ground station. 

Exceptions (U26) illegal command received 

Postconditions    The command from the user/ground station has been parsed and sent to the 
appropriate function. 

Use Case (U29) status: sending broadcast 

Actors Ground station from (U20). 

Preconditions      The ground station is in the process of updating the broadcast message. The 
verification function was correctly answered and broadcast file is open. 

Description Until the end-of-message character is reached, all data received from the ground 
station is put into the broadcast file. When the end-of-message character is reached, 
the broadcast file is closed and control is switched to (U19). 

Sub Use Cases    (U19) display the menu options 

Exceptions (1) If a user (not the ground station) is in this connection status: the message 
"Software fault-not super user" is sent to the user, then control is switched to (U19). 

Postconditions    The broadcast message has been replaced with a new message. 

■167- 



Use Case (U30) status: sending mail 

Actors Ground station or user from (U20) 

Preconditions     The user/ground station is in the process of sending a mail message. The file 
containing the mail message is open and waiting for data. 

Description        Until the end-of-message character is reached, all data received from the user or 
ground station is placed in the mail file. When the end-of-message character is 
reached, the mail file is closed and control is switched to (U19). After each packet 
received is added to the mail message, the mail size is checked. If the restrict 
mail/file size option is set and the mail messsage is over the maximum (both value 
set by the ground station), (U31) is executed. 

Sub Use Cases    (Ul 9) display the menu options 

Exceptions (U31) mail size over threshold 

Postconditions    The mail message is saved and available in PANSAT's storage for the ground station 
or any user. 

Use Case (U31) mail size over threshold 

Actors Exception from (U30). 

Preconditions      The latest data packet received from the user during the sending of mail, when added 
to the mail message, makes the mail larger than the threshold size set by the ground 
station. 

Description Sending of mail is terminated. A message is sent to the user telling them the mail 
size limit was exceeded. The mail is deleted from the system. Control is then 
transferred to (Ul 9). 

Sub Use Cases    (Ul 9) display the menu choices 

Postconditions    The file which would have been too large is removed from the system. 

Use Case (U32) incorrect verification response received 

Actors Exception of (U27). 

Preconditions      The ground station has sent the wrong answer to the verification query. 

Description The ground station is sent the warning "Verification incorrect - access denied". The 
time and date, and command attempted are sent to the log manager. Control is then 
passed to (Ul 9). 

Sub Use Cases    (U19) display the menu options 

Postconditions    The command attempted is aborted and control is back at the menu. 

■168- 



Use Case (U33) process a "post broadcast" command 

Actors Ground station from (U27). 

Preconditions     The proper command is in the special command buffer and the correct verification 
answer was received. 

Description        See page 60. The file containing the broadcast message is opened, overwriting the 
old message. The connection status is set to "sending broadcast". The control 
thread is then terminated. The next packets from the ground station will be properly 
parsed. 

Postconditions    The broadcast message file is open and ready to receive the new message. 

Use Case (U34) process a "get BBS settings" command 

Actors Ground station from (U27) 

Preconditions      The proper command is in the special command buffer and the correct verification 
answer was received. 

Description        See page 61. The control setting values are sent to the ground station in a compact 
format, the break out of which is described in Table 3. When done, control is 
switched to (U19). 

Sub Use Cases    (Ul 9) display the menu options 

Postconditions    The control settings are passed from PANSAT to the ground station. 

Use Case (U35) process a "ground station delete mail" command 

Actors Ground station from (U27). 

Preconditions     The proper command is in the special command buffer and the correct verification 
answer was received. 

Description See page 48. For every single mail specified in the command line, unconditionally 
remove it from PANSAT's storage. If a mail attempting to be deleted is not on the 
system, call exception (U61). Once done, control is passed to (U19). 

Sub Use Cases    (Ul 9) display the menu options 

Exception (U61) mail not found 

Postconditions    All the mail specified by the ground station have been removed from the system. 

■169- 



Use Case (U36) process a "ground station delete file" command 

Actors Ground station from (U27). 

Preconditions The proper command is in the special command buffer and the correct verification 
answer was received. 

Description See page 50. For every single file specified in the command line, unconditionally 
remove it from PANSAT's storage. If a file attempting to be deleted is not on the 
system, exception (U50) is called, then the deletion attempts are continued with the 
next specified file. Once done, control is passed to (U19). 

Sub Use Cases (U19) display the menu options 

Exception (U50) file not found 

Postconditions All the files specified by the ground station have been removed from the system. 

Use Case (U37) process a "update ground station callsign" command 

Actors Ground station from (U27). 

Preconditions The proper command is in the special command buffer and the correct verification 
answer was received. 

Description See page 66. The callsign for the ground station is replaced with the one parsed in 
the command line. This callsign is repeated back to the ground station for a non- 
active verification, after which control is passed to (U19). If any of the repeated new 
callsign values differ, exception (U38) is raised. 

Sub Use Cases (U19) display the menu options 

Exceptions (U38) redundant data received does not match 

Postconditions The callsign for the ground station is updated and will be in affect for the ground 
station's next connection. 

Use Case (U38) redundant data received does not match 

Actors Exception from (U37) or (U42) 

Preconditions The repeated values passed to PANSAT do not match. 

Description This indicates an error in transmission occurred while PANSAT was receiving the 
packet. Since the information in the packet is critical (software settings), the packet 
is discarded. The ground station is sent the warning "Error in critical packet, 
command aborted". Control is then passed to (U19). 

Sub Use Cases (U19) display the menu options 

Postconditions The callsign for the ground station is updated and will be in affect for the ground 
station's next connection. 

-170- 



Use Case (U39) process a "terminate user services program" command 

Actors Ground station from (U27). 

Preconditions     The proper command is in the special command buffer and the correct verification 
answer was received. 

Description        See page 67. A flag indicating that user services is terminating is set to ON (this 
disables further connections with PANSAT). (U40) is called to let all the users 
connected to the satellite of the pending shutdown. The system then waits one 
minute. Then (U41) is called to disconnect every user currently connected to the 
PANSAT. Finally, all files are closed, all dynamic memory is deallocated, and the 
program exits out to the operating system. 

Sub Use Cases    (U40) warn all users 
(U41) disconnect all users 

Postconditions    The user services program has gracefully exited to the operating system. 

Use Case (U40) warn all users 

Actors Ground station from (U39). 

Preconditions      The "terminate user services" process has commenced. 

Description If any connections are conducting file transfers, the operation is terminated. Then 
the message "System will temporarily shut down in one minue - disconnect now" 
will be sent to every user currently connected to PANSAT. Control then returns to 
the calling function. 

Postconditions    Every user connected to PANSAT has been warned of the user services shutdown. 

Use Case (U41) disconnect all users 

Actors Ground station from (U39). 

Preconditions     The "terminate user services" process has commenced and one minute has passed 
since all connected users were warned. 

Description 

Postconditions    The control settings are updated 

Every single connection record is set to inactive, then control is returned to the 
calling function. 

■171- 



Use Case 

Actors 

Preconditions 

Description 

Sub Use Cases 

Postconditions 

(U43) get current telemetry. 

Ground station or user from (U28). 

The proper command has been received as per Table 1. 

See page 40. The telemetry values in a formatted mask is sent to ASCII terminal. If 
the connection is an NPSterm, then the telemetry values are sent in a concatenated 
list, letting the terminal software format it. When done, control is returned to (U19). 

(U19) display the menu options 

The telemetry at the instant the command was received is delivered to the 
user/ground station. 

\he Case (U44) get stored telemetry 

Actors Ground station or user from (U28). 

Preconditions     The proper command has been received as per Table 1. 

Description See page 41. First the telemetry file is opened and the connection status is set to 
"downloading". Next, the contents of the open file are copied to the user, packet by 
packet, until done. After each packet is sent to the user, the file position pointer in 
the connection record is updated. When entire file has been copied, the file is closed 
and control is switched to (U19). 

Sub Use Cases    (Ul 9) display the menu options 

Postconditions    The file containing the telemetry values for the past few days has been downloaded. 

Use Case (U45) switch to ASCII 

Actors Ground station or user from (U28). 

Preconditions      The  roper command has been received as per Table 1 and the end user is switching 
out ui NPSterm. 

Description See page 57. The connection record is updated to indicate ASCII interface will now 
be used. From now on normal character data streams and no data compression will 
be used in communicating with the connection. Control is then switched to (U19). 

Sub Use Cases    (Ul 9) display the menu options 

Postconditions    The connection is in ASCII mode. 

-172- 



Use Case (U46) switch to NPSterm 

Actors Ground station or user from (U28). 

Preconditions     The proper command has been received as per Table 1 and the end user is using 
NPSterm software. 

Description        See page 55. The connection record is updated to indicate that NPSterm is being 
used. The version number of NPSterm is sent to user or ground station (so the mode 
switch can be canceled if need be). From now on, shortcuts and data compression 
will be used in communicating with the connection. After the update, control is 
switched to (U19). 

Sub Use Cases    (Ul 9) display the menu options 

Postconditions    The connection is in NPSterm mode. 

Use Case 

Actors 

Preconditions 

Description 

(U47) send one-liner 

Ground station or user from (U28) 

The proper command has been received as per Table 1. 

See page 57. The one line message parsed from the command line is immediately 
sent to the callsign indicated. The only exception to this rule is if the callsign is 
using an ASCII terminal and is conducting a file transfer. In that case, the message 
is sent to the callsign as soon as the file transfer completes. If the callsign indicated 
is not currently connected to PANSAT, control is switched to (U48). If "all" is used 
instead of a callsign, every user connected to PANSAT at the instant the command is 
received will be sent the message. When the process is completed, control is passed 
to(U19). 

Sub Use Cases    (Ul 9) display the menu options 

Exceptions (U48) user not connected 

Postconditions    A one line message has been sent to the specified user. 

Use Case (U48) user not connected 

Actors Exception from (U47). 

Preconditions      A one-liner was attempted to be sent to a callsign not currently connected to 
PANSAT. 

Description The originator of the one line message is sent the warning, "callsign not currently 
connected to PANSAT, message not sent." Control is then passed to (U19). 

Sub Use Cases    (U19) display the menu options 

Postconditions    The user or ground station is at command prompt, but the one-liner message was not 
sent. 

-173- 



Use Case (U49) read a file 

Actors Ground station or user from (U28). 

Preconditions     The proper command has been received as per Table 1. 

Description See page 47. First the file identified by the number in the command line is opened 
and the connection status is set to "downloading". Next, packet by packet, the 
contents of the file are copied to the user, until the end of file is reached. After each 
packet is sent to the user, the file position pointer is updated in the connection 
record. When the copying process is completed, control is passed to (Ul 9). If the 
file number specified does not exist in PANS AT's storage, the user is sent an 
interrogative packet to stop them from downloading. Then exception (U50) is raised 
before passing control to (U19). 

Sub Use Cases    (U19) display the menu options 

Exceptions        (U50) file not found 

Postconditions    The desired file has been sent to the user. 

Use Case (U50) file not found 

Actors Exception from (U36), (U49), (U51), or (U56). 

Preconditions     The file number requested does not exist in PANS AT's storage. 

Description A warning "File # does not exist" is sent to the user or ground station, then control is 
returned to the use case raising the exception to handle the error condition. 

Postconditions    Control is returned to the function which called this exception. 

Use Case (U51) forward file 

Actors Ground station or user from (U28). 

Preconditions     The proper command has been received as per Table 1. 

Description See page 55. If the file number specified in the command line exists, all the 
callsigns parsed from the command line are added to the file's "still to" list. 
Additionally, a new forward line is also added to the file information, with each of 
the newly specified callsigns. Control is then transferred to (Ul 9). If the file 
number does not exist, however, exception (U50) is raised before transferring control 
to(U19). 

Sub Use Cases    (U19) display the menu options 

Exceptions (U50) file not found 

Postconditions    The file has been forwarded/sent to new callsigns. 

-174- 



Use Case (U52) send file 

Actors Ground station or user from (U28) 

Preconditions     The proper command was received as per Table 1. 

Description See page 44. First the file system is checked to ensure that the filename is not 
already being used in storage. If the filename is already in use, control is switched to 
exception (U53). Otherwise, the connection status is set to "uploading". Then the 
next available file number is assigned to the file and the file is created - opening it, 
ready for input. A second file is created, the "information file". This second file 
contains the "to", "from", "still to", and "filename" information, obtained from the 
command line. The second file is closed. The control thread is terminated as all 
further input from the connection will be properly parsed and directed to the open 
file until the end of file is reached. 

Exceptions (U53) filename already exists 

Postconditions    The file is open and ready to receive data. 

Use Case (U53) filename already exists 

Actors Exception from (U52). 

Preconditions      While creating a new file, a file already exists in PANSAT's storage with the same 
filename. 

Description The warning "Filename already exists, command aborted" is sent to the user or 
ground station, then control is transferred to (U19). This error is raised to prevent 
duplicate files from being stored to the memory-limited satellite. 

Sub Use Cases    (Ul 9) display the menu options 

Postconditions    The filename was not duplicated and the user was put back at the "command 
prompt." 

■175- 



Use Case (U54) list files 

Actors Ground station or user from (U28). 

Preconditions     The proper command has been received as per Table 1. 

Description See page 52. If the "N" option is used, all files posted within the last 24 hours are 
listed. Otherwise, the files with numbers matching the range specified in the 
command line are listed to the user. The default is to list all files in the range, but if 
the command line has the flag "A", all the files without the end user's callsign in the 
"still to" list are not listed out, except if the files were sent to "all". If the flag "U" 
was used, files are restricted from being listed just as with the "A" option, but the 
files sent to "all" are restricted as well. If no file numbers are in the range specified 
in the command line, an error is not raised, rather nothing is listed. After the list 
has been sent to the user or ground station, control is passed to (U19). 

Sub Use Cases    (Ul 9) display the menu options 

Postconditions    The list of files has been supplied to the user/ground station. 

Use Case 

Actors 

Preconditions 

Description 

Postconditions 

(U55) ground station only command received. 

Ground station from (U28). 

One of the commands listed in Table 2 (except the delete commands - they are 
handled in the regular delete use cases) was received from the ground station. 

See page 69. The restricted command being requested is put into the special 
command buffer and the connection status is set to "verifying". For a verification 
query, a series of random numbers are sent to the ground station. The control thread 
is terminated, as the correct response will be properly parsed by the system. 

The command sent up by the ground is prepared to be executed, following receipt of 
the correct answer to the verification query. 

-176- 



Use Case (U56) delete a file 

Actors Ground station or user from (U28). 

Preconditions     The proper command has been received as per Table 1. 

Description        See page 50. If the command line ends with a "SU" and the originator of the 
command is the ground station, then the command line is entered into the special 
command buffer and the connection status is set to "verifying". The ground station 
is sent a verification query (set of random numbers), then control for the thread 
terminates (waiting for the correct answer reply). Otherwise, if no "SU" flag is set, a 
temporary list is made out of every file number specified in the command line. This 
list is processed sequentially, examining each file to be deleted separately. If the end 
user was the originator of the file attempting to be deleted, the file is removed from 
the system. If the end user was a recipient of the file, the end user's callsign is 
removed from the "still to" list (if "still to" list becomes empty, then the file is 
removed from system). If the end user was neither the originator or a recipient, 
exception (U57) is called, then the next number in the list is processed. If the file 
number attempting to be deleted does not exist, exception (U50) is called, then the 
next number in list is processed. When every number in the list has been processed, 
control is switched to (U19). 

Sub Use Cases    (Ul 9) display the menu options 

Exceptions (U50) file not found 
(U57) no privilege to delete 

Postconditions    All the specified files have been deleted. 

Use Case (U57) no privilege to delete 

Actors Exception from (U56) or (U60). 

Preconditions      A user has tried to delete mail or a file for which they were neither the originator nor 
recipient. 

Description        A message is sent to the user warning that the deletion was not allowed for that 
number. 

Postconditions    Control is returned to the function which called this exception. 

-177- 



Use Case (U58) send mail 

Actors Ground station or user from (U28). 

Preconditions     The proper command has been received. 

Description See page 42. First a file is created and left open for the mail using a unique mail 
number. The file is started with the "to", "from", "still to" and "subj" lines, filled 
out with the values parsed from the command line (the "still to" is initialized to be 
identical to the "to" line). The connection status is set to "sending mail" and the 
control thread is terminated. 

Postconditions    The file is open and ready to receive the mail message. 

Use Case (U59) list mail 

Actors Ground station or user from (U28). 

Preconditions      The proper command has been received as per Table 1. 

Description See page 50. If the "N" option is used, all mail posted within the last 24 hours are 
listed. Otherwise, the mail with numbers matching the range specified in the 
command line are listed to the user. The default is to list all mail in the range, but if 
the command line has the flag "A", all the mail without the end user's callsign in the 
"still to" list are not listed out, except if the mail was sent to "all". If the flag "U" 
was used, mail are restricted from being listed just as with the "A" option, but the 
mail sent to "all" are restricted as well. If no mail numbers are in the range specified 
in the command line, an error is not raised, simply nothing is listed. After the list 
has been sent to the user or ground station, control is passed to (U19). 

Sub Use Cases    (Ul 9) display the menu options 

Postconditions    The list of mail has been supplied to the user/ground station. 

■178- 



Use Case (U60) delete mail 

Actors Ground station or user from (U28). 

Preconditions     The proper command has been received as per Table 1. 

Description        See page 48. If the command line ends with a "SU" and the originator of the 
command is the ground station, then the command line is entered into the special 
command buffer and the connection status is set to "verifying". The ground station 
is sent a verification query (set of random numbers), then control for the thread 
terminates (waiting for the correct answer reply). Otherwise, if no "SU" flag is set, a 
temporary list is made out of every mail number specified in the command line. This 
list is processed sequentially, examining each mail to be deleted separately. If the 
end user was the originator of the mail attempting to be deleted, the mail is removed 
from the system. If the end user was a recipient of the mail, the end user's callsign is 
removed from the "still to" list (if "still to" list becomes empty, then the mail is 
removed from system). If the end user was neither the originator or a recipient, 
exception (U57) is called, then the next number in the list is processed. If the mail 
number attempting to be deleted does not exist, exception (U61) is called, then the 
next number in list is processed. When every number in the list has been processed, 
control is switched to (U19). 

Sub Use Cases    (U19) display the menu options 

Exceptions (U61) mail not found 
(U57) no privilege to delete 

Postconditions    All the specified mail have been deleted. 

Use Case (U61) mail not found 

Actors Exception from (U35), (U60), (U62), or (U66). 

Preconditions      The mail number requested does not exist in PANSAT's storage. 

Description A warning "Mail # does not exist" is sent to the user or ground station, then control 
is returned to the use case raising the exception to handle the error condition. 

Postconditions    Control is returned to the function which called this exception. 

-179- 



Use Case 

Actors 

Preconditions 

Description 

Sub Use Case 

Exceptions 

Postconditions 

(U62) read mail 

Ground station or user from (U28). 

The proper command has been received as per Table 1. 

See page 46. The file number designated is opened and the connection status is set 
to "downloading". The contents of the file are copied to the end user. When the end 
of message is reached, the file is closed. If the mail number doesn't exist, however, 
exception (U61) is called. After each case, control is transferred to (U19). 

(U19) display the menu options. 

(U61) mail not found 

The desired mail was sent to the user. 

Use Case (U63) help 

Actors User from (U28) (the ground station will not send this command or any user using 
NPSterm, as NPSterm will intercept the command and provide a more robust help 
feature). 

Preconditions     The proper command has been received as per Table 1. 

Description See page 53. All the commands and their syntax (the first and third columns of 
Table 1) are listed out to the user, then control is switched to (U19). 

Sub Use Cases    (Ul 9) display the menu options 

Postconditions    The user has been given help, but is that what they really need? 

Use Case (U64) disconnect 

Actors Ground station or user from (U28), or system from (U9), or (U21). 

Preconditions     The callsign specified is connected. 

Description See page 59. The connection record for the callsign is updated as being inactive, 
making it available for another connection. 

Postconditions    The user or ground station is disconnected and must reconnect to communicate with 
PANSAT. 

-180- 



Use Case (U65) who 

Actors Ground station or user from (U28). 

Preconditions The proper command has been received as per Table 1. 

Description See page 52. The callsign of each connection currently active is listed to the 
requesting user or ground station, then control is switched to (U19). 

Sub Use Cases (Ul 9) display the menu options 

Postconditions The callsigns of all the users currently connected to PANS AT are listed out. 

Use Case (U66) forward mail 

Actors Ground station or user from (U28). 

Preconditions      The proper command has been received as per Table 1. 

Description See page 54. If the mail number specified in the command line exists, all the 
callsigns parsed from the command line are added to the mail's "still to" list. 
Additionally, a new forward line is also added to the beginning of the file, with each 
of the newly specified callsigns. Control is then transferred to (U19). If the mail 
number does not exist, however, exception (U61) is raised before transferring control 
to (U19). 

Sub Use Cases    (Ul 9) display the menu options 

Exceptions (U61) mail not found 

Postconditions    The mail has been forwarded/sent to new callsigns. 

2. Spacecraft Module Use Case Diagram 

Due to the size and complexity of this diagram, it has been split into five parts. 

The use cases boxes are color coded: a blue box appears only once throughout the 

diagram parts, a red box appears multiple times (but all of the instances should be 

considered as just a single instance), and a green box also appears multiple times, but it is 

used as a hinge between the diagram parts (i.e. if space permitted, the entire Part II 

diagram would be placed inside Part I, connected with Ul). Additionally, the PANSAT 

User Services System as a whole is denoted by a pink box. 

-181- 



Spacecraft Module Use Case Diagram Part I 

Spacecraft System 

use case 
^SSSJSSS^!miSl£i!^SäliiSJäSS3!BiS 

(U1) data packet is 
received from SCOS 
(continued in part II) 

jsiiiiau^MBfiaaasigBi^rjga^ 

(U2) perform general 
autodelete check 

I use case 

(U3)peform 
additional settings 
autodelete check 

(U4)perform 
interrupted file 

transfer record purge 

(U5) deadreackon 
satellite's 
position 

I activity 

activity 

(U9) check 
connection for 
autodisconnect 

I use case 

(U10) save user's 
file-transfer status 

1 
(U64) disconnect 

(U11) compress 
data 

(U12) decompress 
data 

exception 

(U6) control the 
cycyling rate 

of the modem 

(U8) defragment 
storage 

(U7) supplied 
position of PANSAT 

is out of date 

Figure 4 - Spacecraft Module Use Cases (includes Parts I - V) 

-182- 



Spacecraft Module Use Case Diagram Part II 

(U1)data packet is 
received from SCOS 

(continued from part I) 

use case 

(U13) connect 
the ground station 

(U14) connect 
a user 

1 activity 

(U20) process a 
data packet from an 

active connection 
(continued in part III) 

(U21)check the 
signal strength 
of the incoming 

data packet 

use case I use case     exception! 

(U16) display the 
greeting message 

use case 

(U17) check if 
callsign is in the 
list of interrupted 

file transfers 

use case 

(U18) display 
the broadcast 

message 

use case I 
(U19) display the 

menu options 

use case 

(U15) connection 
request is 

denied 

-183- 



Spacecraft Module Use Case Diagram Part I 

use case 

exception 

use 
case' 

use. 
case 

(U20) process a 
data packet from an 

active connection 
(continued from part II) 

(U22) file size 
over threshold 

(U23) status: 
uploading or 

temp uploading 

(U24) status: 
downloading or 

temp downloading 

(U25) status: 
connecting 

use case 

I use case   exception 

(U18) display 
broadcast 
message 

(U26) illegal 
command 
received 

(U27) status: 
verifying 

(continued in part IV) 

(U28) status: 
menu 

(continued in part V) 

(U29) status: 
sending broadcast 

(U30) status: 
sending mail 

use case 

use case 

exception 

(U31) mail size 
over threshold 

use case 

(U19) display the 
menu options 

use case 

-184- 



Spacecraft Module Use Case Diagram Part IV 

(U27) status: 
verifying 
^ 

exception 

(U32) incorrect 
verification 

response received 

(U33) process a 
"post broadcast" 

command 

use case 

(U35) process a 
"ground station 

delete mail" command 

use case 

exception 

(U61)mall 
not found 

use case 

(U37) process a 
"update ground 

station callsign" command 

use 
case 

(U38) redundant 
data received 

does not match 

exception 

exception 

(U42) process a 
"update BBS settings" 

command 

use case 

(U19) display the 
menu options 

use case 

(U34) process a 
"get BBS settings" 

command use case 

(U36) process a 
"ground station 

delete file" command 

I 
use case 

exception 

(U50) file not 
found 

use case 

(U39) process a 
"terminate user services 

program" command 

(U40) warn 
all users 

1 
(U41) disconnect 

all users 

-185- 



Spacecraft Module Use Case Diagram PartV 

(U28) status: 
menu 

(continued from part III) 

(U43) get current 
telemetry * 

(U47) send 
one-liner * 

f exception 

(U48) user 
not connected * 

(U54) list 
files * 

(U59) list 
mail* 

(U64) disconnect 

use case r 

(U44) get stored 
telemetry * 

(U45) switch 
to ASCII * 

(U49) read a 
file* 

f exception 

(U51) forward 
file* 

(U50) file not 
found 

(U55) ground 
station only 

command received 

exception 

exception 

(U56) delete 
a file* 

exception 

I 
exception 

(U57) no privilege 
to delete 

(U60) delete 
mail* 

(U62) read mail * 

exception 

(U61)mail 
not found 

exception 

exception 

(U65) who * (U66) forward 
mail* 

exception 

(U46) switch 
to NPSterm * 

(U26) illegal 
command 
received 

(U52) send 
file 

f exception 

(U53) filename 
already exists * 

(U58) send 
mail 

(U63) help * 

(U19) display the 
menu options 

(all use cases ending 
with a * have (U19) for 

a sub use case) 

-186- 



B. SYSTEM CONTEXT MODELS 

The System Context Model gives a structural overview of the system's 

environment. The diagram shows the component being developed relates to the other 

elements in the entire system [Awad page 43].   The purpose of this model is to give an 

external perspective of the package being developed as a whole. 

1. Spacecraft System Context Model 

This figure represents the message flow and content of the messages passing 

between the components on the satellite, with the User Services module being the center 

of focus. The other system wrappers are in the brown boxes and the PANS AT User 

Services system is in the pink box. 

/raw data-* 
packet data 

Queries-* 
^Responses 

PANSAT Spacecraft 
User Services 

> 
1 
o 

GO 
ffi. 

O 

t 
J Stored mail/ w 

«-Stored mail/ <3 

Log entries-» 

Figure 5 - Spacecraft User Services Context Diagram 

-187- 



2. Ground Station System Context Model 

Once again, this figure represents the message flow and content of the messages 

passing between the components, with the User Services program being the center of 

focus. However, in this case, the other components are elements of the Windows NT 

operating system and network. The only component which is an exception to this is 

labeled with an '*'. The other Windows NT and other wrappers are in the brown boxes 

and the PANSAT User Services system is in the pink box. 

File System 

O.S kernel 

*-Eventt 

£ o 

on 

1 
I 

| 

I 

from http 

! 

g-responses- 
Internet 
Services 

PANSAT Ground 
Station User Services 

«-Data 

t 
B? 
orrj 

wo 

t 
I 
r 
i 
B 
PANSAT-» 

PANSAT 
Communications 

equipment * 

Network 
Interface 

Figure 6 - Ground Station User Services Context Diagram 

■188- 



C. SUBSYSTEM MODELS 

Whereas the context model focused on the relation of the developed component to 

the other components comprising the system, the subsystem model describes the relation 

of the parts within the developed component. A subsystem envelops all the elements of 

the program which can be defined in a single domain. Elements will only make sense in 

that domain and are conceptually partitioned from elements not in the same domain. 

Subsystems, however do not partition the conceptual space of requirements [Shing]. 

1. Spacecraft Subsystem Model 

On the satellite, all the functionality can be grouped into six major categories. 

While these groups are not physically separated in the source code, they are distinct. The 

elements of the PANSAT user services software are in pink, the hardware wrapper is in 

brown, and the overall system is in black. Dotted and dashed lines are used to 

differentiate between different dependency cases. 

System 

Applications Subsystems 
(PANSAT User Services) 

Hardware Wrapper 
Subsystem 

Positional 
Evalution 

Connection 
Management 

BBS file 
Management 

!    1 

1 
Settings 

Management 
Command 
Processing 

t    i 

Packet 
Control 

—J—T 
1 

uses! 
■buses' 

Figure 7 - Spacecraft Module Subsystem Diagram 

-189- 



2. Ground Station Subsystem Model 

Unlike the spacecraft module, the ground station's subsystems are not only 

conceptually separated from each other, by are physically isolated as well. Each 

subsystem is an independently executing thread, connected with each other only through 

the message passing depicted in the diagram. Once again the elements of the PANS AT 

user services software are in pink, the hardware wrapper is in brown (which is mostly the 

Windows NT operating system), and the overall system is in black. Dotted and dashed 

lines are used to differentiate between different dependency cases. 

System 

Applications Subsystems 
(PANSAT User Services) 

Hardware Wrapper 
Subsystem 

1 1 1 

Server Display 
Terminal 

Control 
Terminal 

Comms 
Terminal 

1 i 

i 
: 

i 

i uses —> 1 i 
i J 

*~uses i 
"•"uses ! 

..i 

uses -* 

Figure 8 - Ground Station Subsystem Diagram 

-190- 



VI.   ENHANCEMENTS TO PANSAT MICRO SATELLITE SYSTEM 

This chapter details the initial software experimental features implemented on 

PANSAT. The three subsystems described have not been incorporated into any existing 

micro satellite. 

A. POSITIONAL AWARENESS 

1. Introduction 

As previously mentioned, PANSAT has no inherent awareness of its attitude or 

position over the Earth. Normally, this is not an issue since the antenna configuration is 

omnidirectional and the satellite's primary mode of operation is to simply respond to data 

received in a transmission. This passive operational mode is thus event driven rather than 

position driven. Furthermore, typical internal functions are time-based rather than 

position-based, meaning they occur on a clock schedule instead of where the satellite is 

located. 

With PANSAT, however, better utilization of resources can be achieved if the 

spacecraft knows its own approximate position. Power is a premium commodity onboard 

the satellite. Conserving energy increases the efficiency of the satellite, ensuring power is 

available at critical times. Additionally, power conservation also extends the lifetime of 

the batteries by reducing the number of charging cycles, a fixed lifetime number. 

PANSAT's biggest consumer of power is the communications system 

(transmitter/receiver). The desire is to temporarily shut off the power on this piece of 

equipment when the satellite is over areas where there is little chance of communications. 

Since PANSAT's user base is ground-based HAM radio operators, when the satellite is 

over water, no communications are likely to take place. Using this premise and factoring 

in that over two-thirds of the Earth's surface is water, a large energy savings would be 

reaped if the spacecraft were to reduce power consumption while over the oceans. 

■191- 



A further better utilization of resources would be selective invocation of 

"housekeeping" functions. Some of the "housekeeping" functions can be processor 

intensive, yet need not to be performed at a specific time. Examples of this are 

defragmentation of memory storage or purging old data from the system. By relegating 

these activities to periods when there are no likely communications, operations will not be 

impaired by their performance. Also it is preferable to perform the "housekeeping" 

operations while PANS AT is in sun-light. In sun-light there can be extra solar power that 

is not used to charge the batteries. Thus once again, positional awareness provides a 

better utilization of resources. 

Since it is impossible for PANSAT to know its position, the solution to this 

problem is to provide the satellite with a pseudo positional awareness. By furnishing some 

initial orbital data, the satellite should be able to deadreckon, or predict, where its position 

should be using the theory of orbital mechanics. This approach appears not to have been 

previously implemented on any micro satellite. 

This pseudo positional approach consists of three steps. First, the ground station 

needs to provide an initial orbital position and the time ofthat position. The satellite 

stores this data and uses it as the basis for position calculations until the data is updated by 

the ground station. Second, PANSAT performs the estimation of its position. The 

process of arriving at this estimation is explained in the next section. Lastly, the derived 

position is compared to a table containing the bounds of the world's oceans. If PANSAT 

is within these bounds, it can assume that it is over water and, thus, in an area of no likely 

communication. The first and third step are straight forward. The second step, however, 

needs to be mathematically derived. 

Before developing the algorithm to estimate the satellite's position, two mitigating 

circumstances need to be considered. The first is that the PANSAT CPU is a 7.4 MHz 

80186 without a math coprocessor. Floating point operations must be simulated by the 

system software. These operations take a relatively large amount of instructions, and 

correspondingly CPU cycles, to perform. Therefore, to avoid "bogging down" the CPU, a 

minimum of floating point mathematical operations per unit time is desirable. Balancing 

■192- 



out a desire for no floating point operations with the need for a continuously accurate 

position, a compromise was estimated that one position evaluation per minute would 

suffice. 

Another element for consideration is that any algorithm implementable onboard the 

satellite's computer will have its accuracy deteriorate with time. Therefore, periodic 

updates by the ground station of an initial position are required. The routine onboard 

PANS AT should be able to accurately maintain itself for a couple weeks, however, in the 

event that an update is not available for an extended period of time. 

2. Background of Orbital Mechanics 

The model for developing PANS AT's positional algorithm is Keplerian Theory, 

which indicates how stellar bodies act under the influence of gravitational forces. This is a 

simplification of the problem in that only two bodies are considered in this model. In 

reality, not only do the satellite and the Earth need to be considered, but the other effects 

need to be factored in as well, including the Sun, the Moon, drag due to atmosphere, and 

lumpiness of the Earth's gravitational field. In the case of deadreckoning, however, this 

simplification is satisfactory [Battin pages 191-192]. The orbital accuracy can be 

maintained by Keplerian theory for several weeks before the other factors become 

significant. As long as the ground station provides periodic updates, the deadreckoning 

should not go long enough to transcend the bounds of Keplerian accuracy. 

The periodic updates of the satellite's position will be obtained by the ground 

station via NORAD/NASA's two-liner messages. Every few days, NORAD publishes a 

complete listing of the positions of over eight thousand orbiting objects. These positions 

are derived from active tracking of all objects rotating around the Earth, and the 

application of extremely detailed orbital modeling. The two-liner message provides the 

satellite positions in terms of Keplerian Elements [Kelso pages 1-3]. 

Keplerian Elements are a means of precisely identifying an orbit. All the elements 

are measured in real numbers representing angles. There are six primary elements, 

although more data is given in NORAD's message. Any data aside from the six primary 

-193- 



elements, however, can be derived from those six elements. Therefore, when a position 

report is forwarded up to PANS AT, only the six primary elements will be included. The 

graphic representation of the Keplerian Elements is displayed in Figure 9, which also 

shows the elements being mapped to a solar system fixed, three dimensional coordinate 

system (Xl5 Yl5 Zx). 

R 

NORTH POLE 

z. 
J 

SUN 

* Y, 

VERNAL 
EQUINOX 
Figure 9 - Orbital Coordinate System and Keplerian Elements 

The first element is the inclination (i) or orbital plane. This data indicates the tilt 

between the orbital plane and the equatorial plane. Secondly, the Right Ascension of 

■194- 



Ascending Node (Q) indicates the point that the orbital plane crosses the equator going 

south to north, in degrees from the vernal equinox. Eccentricity describes the elliptical 

shape of the orbit. An eccentricity of zero means the shape of the orbit is a circle. Next, 

the Argument of Perigee signals the point on the orbit at which the satellite is closest to 

Earth. This defines the orientation of the ellipse. Obviously, if the orbit is a circle, this 

parameter is meaningless. Mean Anomaly tells the degree between the perigee and the 

current position on the orbit at the epoch. This distinguishes exactly at what point in its 

orbit the satellite is in, at the time that the position is determined. Finally, the sixth 

element is Mean Motion, which is the mean angular rotation rate of the satellite in 

revolutions per day. This translates to the speed of the satellite [Antonio pages 1-4]. 

While not explicitly listed as a Keplerian element, a seventh element needs to be 

used with the above positional data. The Epoch, or time of the position, must be supplied 

for the positional data or the position is meaningless. The Epoch is included in NORAD's 

two-liner message and must be sent up to the satellite with the other elements. 

As depicted in Figure 9, the coordinate system that the Keplerian Elements is 

translated to is solar system fixed. In the (X„ Yu Zj) coordinate system displayed, the X 

axis points to the sun at the instance of the vernal equinox. The Z axis corresponds to the 

North Pole. The Y axis is then derived from the "right hand rule" applied to the previous 

two axis. This system is not affected by the rotation of the earth and is constant within the 

entire solar system. 

It is necessary to translate the satellite's non-fixed coordinate system to a fixed 

system in order to give it a frame of reference. This frame of reference can then be 

translated into Earth's non-fixed coordinate system, latitude and longitude. Thus the 

satellite position problem is actually broken into two parts: (1) determine the current 

position of the satellite along its orbit in terms of the solar system fixed coordinate, and 

(2) translate the solar system fixed coordinate into Earth coordinates. 

The means of determining the first part problem is by applying the following 

differential equation: 

■195- 



Mm 
r 

y = ratio of inertial to gravitational mass 

M = mass of Earth 

m = mass of satellite 

r = radius from center of Earth to satellite 

T = vector direction of F 

Unlike many physical body motion differential equations, not only does numerical 

integration provide a solution, but an analytical solution can be determined as well [Battin 

pages 192-198]. 

Much like typical vector problems in physics, such a cannon ball trajectory 

problem, the future position of satellite is determined using the current position, velocity, 

and acceleration values of the object. The position and velocity values are provided by the 

Keplerian Elements. The acceleration is provided by the given equation provided above. 

Since velocity is first order differential equation of position and acceleration is the second 

order derivative of position, integration can be use to determine the satellite's next 

position for any specified given time frame. 

There are several methods of numerical integration, ranging from the simple and 

not very accurate to the complex and highly accurate. Furthermore, as mentioned above, 

an analytical solution exists which, if used precludes the necessity to use numerical 

integration. The method to employ onboard PANSAT needs to be determined via 

experimentation [McGhee]. 

3. Implementing the Solution 

The process of choosing a better solution method is comprised of determining the 

best numerical integration method and comparing it to the analytical solution. Once again, 

the constraints on the solution must be that it can maintain orbital tracking in one minute 

-196- 



intervals, for a period of a couple weeks. Additionally, it must use a minimum of floating 

point operations. While "use a minimum" is a bit vague, the goal was to have six or less 

operations, but that number was somewhat flexible. The following results were obtained 

through experimentation. 

The Euler method of numeric integration has a linear convergence on the solution. 

While the number of floating point operations is better than anticipated, its performance 

was substandard. In practice, it was not even able to keep an accurate track for one 

revolution, using a one minute integration interval. At intervals of one-half second, the 

Euler method tracked accurately, but this greatly exceeds the maximum workload of the 

CPU. 

The Heun method of number integration has a quadratic converge. Naturally, the 

number of floating point operations increases over the Euler method. In fact, the 

complexity of the algorithm is right at the acceptable level for use on the satellite. The 

performance of the tracking, notwithstanding, was a vast improvement over Euler, with 

Heun being able to accurately track the satellite for about a week. Unfortunately, at about 

the seven day point, the accuracy drops off to an unsatisfactory level. Therefore, Heun 

integration does not meet with the specifications of a couple of weeks of accurate 

tracking. 

The third method of numerical integration tried is called Runge-Kutta 4. This 

method has a convergence of the forth power. In fact, the algorithm was able to correctly 

track the satellite for several weeks, well beyond expectations. Regrettably, however, the 

complexity of the algorithm was way above the floating point operation limit dictated in 

the specifications. There, the algorithm was too "expensive" to implement [McGhee]. 

None of the numerical integration solutions to the position determination problem 

met with the restrictions incurred by the limited hardware of PANS AT. When 

implementing the analytical solution, conversely, the tracking results compared with those 

of the Runge-Kutta 4 method. The analytical algorithm was able to keep accurate track of 

the satellite at one minute intervals for several weeks. Additionally, the complexity of the 

-197- 



algorithm corresponded to the level of the Heun method, or roughly matched desires for 

the number of floating point operations. 

Clearly, the optimal choice was the analytical solution. The function was 

implemented by taking the six Keplerian Elements as well as the time since the elements 

were obtained as parameters. The function then returns the current latitude and longitude 

corresponding to the point on the Earth's surface the satellite is over. The source code for 

the positional determination function is listed in Appendix A. 

B. FAULT TOLERANCE PLAN 

1. Introduction 

As described in Chapter I, the PANSAT project is funded by the Navy Space 

Systems Division (N63). Primarily, the goal of this project is to be an educational tool for 

military officers as well as a learning experience for the Space Systems Academic Group. 

However, PANSAT also serves a significant secondary purpose. Currently, the military 

uses an eclectic, yet expensive, group of satellites for its communications. Many of these 

satellites are leased, and most of those that are not are quickly approaching their 

programmed lifetime. Replacing the satellites under the current architecture is expensive. 

Therefore, the Navy is evaluating the communications capabilities of inexpensive, yet 

dependable, small satellites with the idea of using them to augment or replace the current 

system. With this in mind, the PANSAT project is implemented with a minimum of cost, 

meaning that hardware resources are limited and redundant features are minimal. The 

inexpensive PANSAT satellite will be evaluated in an established communications 

environment to see if it can provide the reliable functionality that the military requires. If 

the experiment proves successful, PANSAT may very well become the cornerstone for a 

new military satellite communications network. 

One of the difficulties with operating satellites, and one that severely impacts its 

reliability, is that all problems which might arise with the unit must be detected and 

handled either remotely or by the spacecraft itself. Despite this difficulty, there are means 

-198- 



of obtaining a reliable system, however. Unfortunately, mitigating circumstances in 

making this particular system dependable are PANS AT's counteractive goals of reliability 

and low cost. This makes detecting and handling errors even more of a problem to 

implement. Typically, to ensure a reliable space system, subsystems are implemented 

redundantly. However, this dramatically raises the costs - a luxury that cannot be afforded 

in the PANSAT project. 

Space itself is a compounding factor for errors occurring. In space radiation is 

much stronger and thus has much more of an impact on the operations of digital 

mechanisms. This effect, commonly referred to as "space anomalies," typically reveals 

itself in the flipping of bits in digital circuits. The side effects of bit flipping are specifically 

addressed later, but could range from being no effect to crashing the entire system. 

Another feature of operating in space is that if one element on the satellite fails, it cannot 

be replaced. However, the entire mission should not be terminated because of a single 

part failure. Rather the system should be able to respond and adapt to overcome the 

failure using the resources available to it. 

Responding to the two above mentioned space related problems, as well as any 

others that might arise, is covered under the auspice of fault tolerance. Fault tolerance is 

the means of making a system able to handle errors or problems that might occur during 

operation.   Developing a complete and proper fault tolerant plan should enable the 

system to gracefully detect and handle every type of problem that might arise during 

operations. There are many different methods involved with fault tolerance, thus only the 

areas pertaining to the particular situation of the PANSAT implementation need to be 

identified [Lee pages 4-8]. 

While some fault tolerant techniques may have been applied to previous micro 

satellites, none has instituted as comprehensive a plan as designed for PANSAT. 

Additionally, this is the initial implementation of the Watchdog concept. Watchdog, 

explained later, was developed for PANSAT in order to conduct system evaluations. 

■199- 



2. System Evaluation 

Before a fault tolerant plan can be developed, a survey of the resources available to 

the system needs to be conducted. PANS AT uses a space-rated Intel 80186 central 

processing unit (M80C186XL). While this is an older processor, it is space hardened - 

meaning that it is resistant to space anomalies. Furthermore, the 80186 is inexpensive and 

ftilly capable of handling the work load expected of it. The spacecraft has two processors. 

The second processor merely monitors the first processor. If the first suffers a complete 

failure - meaning it shuts down due to some other independent power control system 

turning off the processor - the second processor takes over for the first. 

The system has 512 kilobytes of working memory. This is error-checking, volatile 

random access memory (RAM). There is no redundancy of working memory, however 

this memory bank uses error-correcting Hamming codes to correct single bit flips. These 

codes can detect two bit flips, but not correct them. For three of more bit flips, the errors 

may not be detected. For long term storage, there are two four megabyte memory banks. 

These memory banks are also volatile RAM, however they do not use an error correction 

scheme. Initially, these two banks will be set up "mirroring" each other. If data is lost in 

one bank, the other bank may still contain it. However, if the two banks disagree about 

the contents of the data, the system will be unable to determine which data bank contains 

the correct version. The data stored in these memory banks will be the communication 

data, such as e-mails and binary files. 

In addition the four megabyte storage, there are two 512 kilobyte non-volatile 

flash memory banks. Unlike the other memory banks, if the power is temporarily lost on 

the satellite, these banks will not lose their contents. Both working memory and the large 

storage banks will be completely erased even for a minuscule power outage. As the large 

store banks, these banks will be initially mirroring each other. These memory banks will 

be used to store telemetry and other important data. 

If experiments prove that the mirror memory configuration is not required, the 

mirroring will be turned off by the ground station. Without mirroring, the memory banks 

-200- 



will put in tandem, doubling the storage memory capacity of the system. The working 

memory, however, will be unaffected. 

The operating software for PANSAT will not be launched with the satellite. 

Rather, only a small bootstrap program is located in the system's read-only memory 

(ROM). This bootstrap is set up to establish contact with the ground station, then have 

the operating system and functional programs uploaded to the satellite. After uploading, 

the programs are executed. Only then will PANSAT become an operational 

communications facility. 

This uploading software concept has the benefit of being able to upload new 

versions of the software as required, allowing bug fixes or incorporation of additional 

features. Unfortunately, if the satellite resets due to a power loss or some unforseen error, 

all the working programs must be reloaded from the ground station. In fact, if one 

program is unexpectedly terminated, then that one program needs to be re-uploaded. 

Termination means purged from working memory and no other copy of a program exists 

onboard the satellite. 

The operating system is a multi-threaded kernel made by the BekTek corporation 

called SCOS. All the satellite functional programs execute as threads on top of the 

operating system. The threads can communicate with each other using data streams, 

which are sent via SCOS. Of course, since only one processor is actually operating, the 

multi-threaded environment is obtained by interleaving the thread executions. 

The main and largest thread running on PANSAT will be the User Services 

module. This is the program that actually performs the communications interface 

functions for the satellite. Most of the other threads support the operation of, or interface 

with, User Services. The scope of the fault tolerance plan defined later is centered around, 

and in terms of, this main software module. 

Some redundancy is obtained in the solar panels, sensors and batteries. 

Essentially, if one solar panel fails, it will be discounted by the system. If more than a 

couple of solar panels fail, however, the satellite will not be able to generate enough 

power for the requirements. Thereafter, PANSAT's performance would be sporadic at 

-201- 



best. If one of the two battery packs fails, the life of the spacecraft is not just halved, it is 

cut exponentially. This is due to the life cycle of the batteries depending on full charges 

and discharges. One battery pack would not be able to be fully charged before it is started 

to be drained, thus is would not get the full cycles necessary for a healthy battery. Finally, 

failed sensors will simply have to be ignored and not factored into the telemetry analysis 

[Bible]. 

These hardware resources listed do provide some fault tolerance, in that most of 

the subsystems have backups that can take over if the first element fails. However, if an 

error less than complete failure occurs, the system can not gracefully recover from it. 

Because that level of error handling is not furnished in hardware, it is necessary to provide 

that functionality in software, which is the scope of the plan defined herein. 

3. Background of Previous Work 

Some of the typical methods associated with fault tolerance cannot be used for 

PANSAT. The limitations in hardware mentioned essentially precludes their use. One 

primary method used often is called N-version. In this method, several different versions 

of the same software are made in complete independence and isolation from each other. 

The results from each are then compared. The answer that has the most matches is 

assumed to be the correct one. Comparing answers this way is called voting. Voting not 

only can be used to compare N-versions, but also the exact same software run on different 

hardware. For instance, nuining the same program on multiple processors simultaneously 

could provide different results if one processor was faulty [Kreutzfeld]. 

PANSAT cannot use N-version or voting simply because the resources are not 

available to do so. Since one processor is running at a time, voting is pointless. Also N- 

version is impractical because of the limited amount of working RAM. There is not 

enough memory to spend it on multiple versions of the same program. 

Another commonly used fault tolerant method is called "recovery blocks." This 

involves conducting "acceptance tests" on the system. At various phases in the program, 

the entire program state is recorded. If any one of the acceptance tests fails, the 

-202- 



appropriate state is restored, essentially pushing the system time back to that before the 

error occurred. If the same state is required to be restored multiple times, an alternate 

error handling routine is executed. The alternate method may be anything from running a 

substitute method, ignoring the process that generated the error, if possible, or requesting 

human intervention to correct a procedure [Kreutzfeld]. 

While there is enough slack in the system to perform the acceptance tests, there is 

not enough memory nor extra processing time to keep track of multiple program states. 

We can, and do as described later, use the acceptance tests in conjunction with other 

methods. 

4. Error Classification 

Keeping in mind the hardware restrictions incurred with the PANS AT system, the 

first step in identifying the fault tolerant plan for the satellite is to determine what kinds of 

problems could occur. It is impossible to identify every possible error that could occur, 

since the circumstances under which these errors occur is nearly infinite. However, by 

creating classes of errors, any fault that might arise should fall into one of the 

classifications and be properly handled, given the assumption that the error classes are 

correctly designed [Kopetz page 14]. 

Only after the types of errors have been classified are the tests which identify these 

errors developed. These tests, the acceptance tests mentioned above, are created for each 

and every subsystem in the program which is being made fault tolerant. The approach is 

to identify each subsystem and match up all the possible error classes that could occur in 

the subsystem. Every possible symptom for each error class is then identified and a test to 

detect these symptoms is developed. The conglomeration of these test are the acceptance 

tests for that subsystem. This process must be repeated for each subsystem in the program 

since each has independent behavior and an error must be isolated as much as possible to 

aid in correction. Acceptance tests are discussed in more detail after completing the 

description of the error classes [Pradhan pages 677 - 686]. 

-203- 



For the PANS AT project, three types of error classes are evident. The first type is 

those errors that occur outside of the scope of the User Services software. These are 

denoted as system errors. Essentially this includes any problem with any of the uploaded 

software, including the operating system kernel, or any system wide problem. System 

wide problems are those that cannot be identified with any single program, but affect all 

the software elements. The second type of error class is problems that could occur within 

the User Services program itself. These are labeled program errors. This includes design 

as well as incurred errors. The final error class type for the spacecraft is data errors. 

These errors are not execution errors, like the other two types. Rather data errors are 

problems that occur with the information utilized or stored by the User Services program. 

Table 5 lists all the error classes specified for the satellite, grouped into one of the 

three types mentioned above. The following paragraphs detail the problems and solutions, 

if they exist, of each error class. 

Table 5 - Software Fault Tolerant Error Classes 

System Errors Program Errors Data Errors 

• Complete system failure 
• Operating system failure 
• Operating system livelock 
• Watchdog program failure 
• User Services terminates 
• User Services livelock 

• Logic error in module 
• Executable modification 
• Program evaluation 

system failure 

• Dump of all files 
• Corrupt file 
• System log dump 
• Data structure integrity 

violation 

While each of these error classes is distinct, the schemes for handling these errors 

can often overlap. Thus, before each of the individual error classes are addressed, the 

overall scheme for fault detection needs to be defined. The main method developed for 

PANSAT is designated the Watchdog system. The Watchdog system overlaps several of 

the error class areas and, in many cases, can comprise the entire solution to the problem. 

The sole function of the Watchdog system is simply to periodically send all of the 

other operating threads a query. Each one of the threads would then respond with a status 

-204- 



message. If no message is received or a bad status report comes back, Watchdog then 

takes appropriate action. According to initial estimations, performing the query cycle 

once every ten minutes should be more than sufficient, such that the system does not get 

bogged down performing tests, yet still occurs often enough to catch errors as they 

develop. The check that each program performs in response to the query is tailored for 

that particular application. The details for the specific action taken for an error are in the 

discussion of the error classes. 

The Watchdog program is unique in its functionality of regulating faulty 

components in the PANSAT system. Watchdog interacts with the other elements in the 

system to identify and error the error. On more systems with more available resources, a 

typical monitoring program would function as an arbitrator in the voting method, previous 

described. The monitor would evaluate the multiple answers provided by the system and 

attempt to choose the correct one. An example of this common monitoring 

implementation is the Space Shuttle. On the Space Shuttle, one computer monitors the 

results of two banks of two computers. If the two banks agree, the answer is propagated. 

If the answers disagree, intervention is required and some computers may be shut down 

[Lee pages 102,192]. 

Unfortunately, PANSAT does not have the resource capability to achieve multiple 

independent answers. Instead, the Watchdog function oversees activity to isolate an error, 

then eliminate it. Only then can the correct answer be determined. Thus, Watchdog's 

critical function is to repair the system rather than masking over erroneous results. This is 

the only way to overcome faulty behavior in a resource limited environment. 

5. System Errors 

The first error class is one of the most disastrous. A complete system crash means 

the entire system resets or starts over. This could happen as the result of a power failure, 

which is hopefully a remote possibility. It is still a possibility, however, in that it could 

happen as the result of a traumatic experience, such as the satellite being hit by a foreign 

object. Unfortunately, once the system is reset, all volatile memory is reset as well. This 

-205- 



means that the operating system and working threads, including User Services, are erased 

from memory. They need to be reloaded from the ground station. The only way that the 

ground station will become aware that the software needs to reloaded, or even fixed, is by 

the lack of responsiveness from the satellite. Once normal operations begin, all 

communications with PANSAT will be done directly with the User Services software, 

implicitly handled by the operating system. When User Services fails to respond to the 

ground station, the ground station can make a connection to the BIOS level of the 

satellite's hardware. The BIOS level connection is restricted to the NPS ground station 

only. This is the connection mode that the SCOS and User Services modules are uploaded 

to the satellite. From this level, the ground station can determine that the operating 

system and threads are no longer on the system and need to be reloaded. 

Once the software is reloaded, operations can resume. However, all the e-mail and 

binary files that were previously sent up to PANSAT would be lost, since they will be 

located in the volatile storage banks. The telemetry, system settings and log data should 

not be lost as they are stored in the non-volatile flash memory. Thus, when the new file 

system program starts up, it can assume the four megabyte storage banks are blank and 

create a new file structure in that memory block. In the case of the flash memory, 

however, the file system needs to check these banks for an existing file structure. If a 

proper file data structure exists, the system should not create a new file structure, but 

rather incorporate the files that already exist. Once the file system re-accesses these files, 

the ground station can download them and view them. Inside these telemetry and log files 

may be an indication of the reason of the failure. While a random event, such as being 

struck by a foreign object, may not be avoidable, if an internal reason for the failure exists, 

the ground station may be able to implement a solution to prevent the failure from 

repeating. Unfortunately, each system crash must be handled on a case-by-case basis and 

involves active intervention on the part of the ground station. 

Two more types of disastrous errors are the operating system failure and operating 

system livelock error classes. In terms of a fault tolerant plan, both error classes are 

handled identically. Livelock is the condition where the program is performing an action, 

-206- 



but no real progress is being made. An example of this would be if the program 

surreptitiously jumps into an infinite loop with no means to exit. The program is working, 

there is just no means of accessing it. In both error cases, the symptoms will resemble a 

system crash to the ground station - no connection to User Services will be possible. This 

is due to all communications with the satellite being directed or channeled by the operating 

system. 

When the ground station enters the BIOS level connection, however, the operator 

will be able to tell that SCOS and the threaded programs are still active. Since the 

operating system has been extensively tested and used, such an occurrence generally 

should not be attributed to a bug in the program. More than likely, an element of the 

operating system has been altered by a space anomaly. In order to return PANS AT to 

working order in the quickest time, SCOS and the operating threads should be terminated 

at the BIOS level, then reloaded from the ground station. Just as in the system crash 

scenario, the flash memory will still retain all its data. However, in this case, the four 

megabyte storage banks will also not have lost any data. The file system should, instead 

of creating a new file structure, use the preexisting structure. Once the system has 

become operational, there should be no loss of data. The net loss from these errors would 

be just the operational time lost before the error was found. Once again, however, this 

error must be handled manually by the ground station. The remaining error classes are 

less traumatic and have solutions that can be, at least in part, handled by the system itself. 

The next error class that might occur would be an error in the Watchdog program 

itself. As mentioned earlier, the Watchdog program periodically queries the operating 

threads. In order to determine when it has errors, the User Services also serves as the 

Watchdog's watchdog. In particular, if the User Services does not get queried for a 

period of fifteen minutes (a grace period in addition to the standard polling cycle time), a 

software flag is raised. The Watchdog program has either unexpectedly terminated or 

jumped into its own livelock condition. In either case, the User Services program 

continues communications operations as normal. The first error solving action User 

Services does, however, is to send a stream to the operating system to restart the 

-207- 



Watchdog - which equates to setting the Watchdog's program counter to zero. If fifteen 

minutes after this stream has been sent to SCOS and no query has been received from the 

Watchdog program, the User Services logs the event that the Watchdog is not performing. 

Since Watchdog's performance is not critical to operations, no other programs need to 

cease. However, during their next connection, the ground station will be notified that 

Watchdog needs to be terminated, if it is still resident in memory, and reloaded. With the 

program reloaded, operations should continue as normal. In this case, the system tries to 

handle the error by restarting the Watchdog program. Only if the error is more 

complicated than Watchdog can handle does the ground station need to intervene. 

Just as the Watchdog program may crash or go into livelock, the User Services 

program may do so as well. The Watchdog program detects either of these two error 

classes when the User Services program fails to respond to the query message. If the 

operating system reports back to Watchdog that the thread it is trying to send the query to 

does not exist, the User Services in this case, Watchdog determines the program has 

terminated and is no longer in memory. The Watchdog then logs the error. Next, 

Watchdog claims the User Services callsign. By doing this, when the ground station tries 

to connect into the User Services - the communications functionality - they will get 

Watchdog instead, which will simply provide an error message informing that the User 

Services needs to be re-uploaded. The benefit of doing this is to lessen the time the 

ground station takes in finding the error. Otherwise, the ground station would have to fail 

trying to connect to User Services, make a BIOS level connection, then determine the 

problem from there. This way provides the error detection up front. 

If, however, the operating system believes that the User Services program is still in 

memory and just not responding to messages, the User Services thread is probably in 

livelock. The next step is for the Watchdog program to request the operating system to 

reset User Services, as described above. If after a reset, the User Services module does 

not respond to the next round of queries, Watchdog logs the fact, then requests 

termination of User Services from the operating system. This allows the Watchdog to 

perform the above paragraph's actions just as if the program had already been terminated. 

-208- 



Just as in the Watchdog error class, simple errors may be handled by the system before the 

ground station is required to intervene to correct a problem. 

That completes the error classes in the system errors type group. This fault 

tolerant plan centers around the User Services module, since it is the cornerstone of 

PANS AT's operations. However, just like when the User Services module crashes, 

Watchdog can detect when any of the other threads that might be on the system fail or 

enter a livelock state. Watchdog handles these errors the same way it handles User 

Services failing. The exception, however, is that the other threads do not have their own 

callsigns to connect to. Therefore, the ground station will have to check the system log 

entries to rind an error in one of these other modules. This is not a problem however, 

since the ground station will be downloading the log record during every pass of the 

satellite. Since the User Services module should be working perfectly if the error is in 

another module, getting and reviewing the log entries would be performed normally. 

6. Program Errors 

The next type of errors that might occur is the program errors. While the system 

errors dealt with a complete program, or even the entire PANSAT system, failing, 

program errors are problems that arise within the program itself during execution. These 

problems however, do not cause the entire program to fail. Rather, a single component of 

the program fails or produces a wrong result while the rest of the program works as 

expected. Without fault tolerance, the program would normally continue executing, using 

the wrong result obtained from the faulty component. Fault tolerant techniques are used 

so that when a wrong result is determined, it is evident and can be invalidated or 

corrected. As stated before, the User Services program is the focus of this determination. 

The first error class in this type, a logic or programming error, can be found in any 

program. Ideally, all logic errors would be identified in the testing phase of program 

development. Realistically, however, some bugs will be missed and not found until actual 

operational use reveals them. Unfortunately, the system will not be able to tell the 

difference between this type of error class and the error of program modification by space 

-209- 



anomaly. Program modifications have the consequence of a module that was once 

providing correct results now providing faulty results. If the program modification was so 

severe that it locks the whole program or livelocks when the procedure is invoked, the 

error class is no longer within the program error types, but becomes one of the system 

error types. Although both the logic error and program modification error have different 

causes, the system only sees the same result - incorrect results. 

These wrong results are generally found in response to a Watchdog query 

message. When the User Services program receives a query message, before it replies, it 

conducts a series of tests to ensure that its subsystems are preforming normally. These 

tests are the acceptance tests mentioned previously and defined later. 

Once a bad subsystem has been identified by the acceptance tests, User Services 

notifies the Watchdog program, which logs the problem. The ground station can then 

review the problem and upload the solution. Of course, uploading the fix most likely 

involves gracefully terminating the User Services program and sending up a fixed version 

of the code. By performing the graceful termination, the ground station will be able to 

preserve all the data on the system. Thus none of the communications files will be lost, 

minimizing the impact of the error. If the program errors caused incorrect data to be 

stored, however, some of the data may be permanently lost. Meanwhile, if the problem 

was just a program modification, the code would not need to be modified from the original 

form A logic error would require an updated version of the software to be created. The 

ground station is responsible for determining which of the two error classes caused the 

problem. This determination will be made by viewing the log data and comparing the 

results with backups of the satellite software maintained at the ground station. 

While the solution to the error is being handled by the ground station, the satellite 

may be able to keep performing, albeit in a diminished mode. The User Services software 

will maintain a table of subsystems which correspond to particular services provided by 

the program. When a subsystem is determined to be faulty, User Services will simply not 

use or offer the corresponding service obtained from the table. If the denied service is 

mission critical, such as ability to put data into a tranmissionable packet, the program will 

-210- 



terminate. If the service is not mission critical, it will notify users who log into the satellite 

that a particular feature is temporarily unavailable, for instance, retrieving the current 

telemetry might be removed from the menu list if the telemetry subsystem failed. The goal 

of handling this error is to provide as much communications functionality as possible until 

the problem is rectified. 

A special case of the program modification error is the program evaluation 

subsystem of User Services itself suffering from a space anomaly. The Watchdog program 

checks the response sent by the User Services program. If all of a sudden User Services 

reports errors in every single one of its subsystems, the error most likely lies inside the 

subsystem conducting the testing, not the other parts. In this case, Watchdog logs the 

suspected error and keeps operations as usual. The Watchdog program will continue to 

query User Services, just to determine if an unexpected termination or livelock occurs. 

The actual response sent back the User Services will be ignored, since the testing system 

would be expected to be flawed. 

In all three of the error classes in the program error type, the ground station is 

required to intervene to correct the problem This is due to the programs being held in the 

volatile working RAM. No copy of the code exists on the satellite to determine which bits 

might have been flipped. However the key to this fault tolerant technique is that service 

interruption is kept to a minimum. Early error detection and notification of the ground 

station, coupled with temporary work-arounds by the system software itself, allows 

continued services to be provided to the end user until those fixes can be implemented. 

7. Data Errors 

The final of the three error class types is data errors. For the most part, the 

previous errors described were dealing with the executable part of the program being 

incorrect or altered. Data errors, on the other hand, involve the programs working 

perfectly. The data that is being worked on, however, has been damaged in some way. 

This means that most of these errors are detected via the acceptance tests. 

-211- 



The data error with the largest scope is the event of all the files in the storage 

banks being dumped or erased. When this occurs, and the User Services program is still 

executing, a system reset is not the cause of the storage dump. In this special case, the 

contents of memory may still be intact, only the file allocation table (FAT) may have been 

corrupted. The system will first attempt to reconstruct the FAT from what information 

can be found in the memory location where the FAT is normally kept. Aiding in the 

chances of rebuilding the FAT is the fact that the FAT is created in duplicate. Thus, out 

of two corrupted FAT's, the possibility exists for a complete and correct table to be 

created. Also helping with the recovery of the FAT is the fact the files are created by User 

Services in a very methodical way. Only two groups of files exist in mass storage, e-mail 

files and binary files. They all use the name scheme of m#### and f####, where # 

represents a digit from 0 to 9. Conducting a search through the memory banks may reveal 

the files are still present and reconstructable. Knowing this and the data structure format 

of the FAT, there may be enough information obtained to create new FATs from the files 

left in memory. 

If attempting to recreate the FAT fails, the files are unrecoverable. PANS AT will 

have to establish a new file structure in the four megabyte storage area and start from 

scratch. For one week after such an incident, any user who communicates with the 

satellite will receive a warning message that all data was lost on the date that it occurred. 

That way a user can re-upload an e-mail or file as necessary. In either case, the problem is 

logged so the ground station can review it. While the ground station cannot restore the 

files, if the cause of the problem was more than an isolated incident, the ground station 

may be able to determine the error source and fix it. 

A less severe data error is the corruption or loss of a single file in storage. 

Hopefully, since the storage area is using mirrored files, one of the two storage banks 

contains a correct version of the file. However, corruption of a file can still occur in both 

memory banks. Typically, a corrupted file only has a section of the file lost. When a file is 

determined to be corrupted, User Services will rebuild the file with all the information that 

could be recovered. A marker will be put in the place where the data was lost. For 

-212- 



instance, in an e-mail message, the place with the missing text would be replaced with the 

"[text missing]" caveat. Additionally, the originator of the message will be sent an 

administrative message indicating which message was damaged and indicating a 

retransmission may be necessary. Of course, the originator would get this warning in the 

next communication with PANS AT. If no discernable data is retrievable from the 

corrupted file, specifically the originator of the file, the file is simply deleted from the 

system. Just as with the file system dump error above, the ground station is notified of the 

error for evaluation, but will be unable to do anything more in the recovery ofthat 

particular corrupted file. 

While the Watchdog program would determine a problem in the program that 

managed the logging system, it would be unable to know if the log file itself had 

unexpectedly been erased. This is the next type of data error. Since the log file will be 

maintained in the non-volatile flash memory, erasing it would most likely be the result of 

an inappropriate software action rather than a hardware glitch. When the system logging 

program responds to the query from the Watchdog program, it checks to ensure the 

contents of the log file are intact. If not, the Watchdog program is notified. 

Unfortunately, with the logging system temporarily non-functional, the Watchdog system 

is unable to use its primary method of notifying the ground station of errors. In this 

special case, the Watchdog program sends the User Services a special message informing 

it that the logging system has an error. In its next communication with PANS AT, the 

User Services will notify the ground station of the logging problem. 

Note that this procedure is used not only for a problem in the log file, but if the 

system logging program has a fault as well. The ground station will have to determine the 

nature of the error. If the logging program is faulty, it will be reloaded. If the log file is 

accidentally deleted, the ground station must determine which program deleted the log 

file. This will have to be done via a recreation of the satellite's environment at the ground 

station. As much information about the current state of the satellite will have to be 

provided by User Services in order to aid in the recreation process. These errors are a 

special case in that the normal means of error notification, and thus error rectifying, is 

-213- 



removed from the system. Thus, even though operations continue for the satellite, the 

ability to handle and fix any other error that might happen is drastically reduced until the 

logging system error is fixed. 

The final error class identified for the PANS AT project is the corruption of a 

program data structure used within the User Services program. The User Services 

program functions as an automata state machine, acting on data from an end user based on 

what state the system is in for that particular user. Thus, if a data structure becomes 

corrupted, a user connection may act unpredictably. Fortunately, the corrupting of a data 

structure will most likely affect only a single user - the other connections will be 

unaffected. Once a data structure is determined to be corrupt, there is a good chance that 

it can be rebuilt. The operating system provides many of the state information as it 

delivers a packet of data received from the user to the User Services program Thus, 

using that information, much of data maintained about the connection can be determined. 

If, however, a complete data structure cannot be rebuilt from the data provided, the User 

Services needs to interrupt the connection by sending the user a series of "interrogative" 

messages. After these messages are sent, the program should put the connection back into 

the default state - print out the main menu of choices for the user to pick. The user would 

then be responsible for salvaging the session and retrying to complete the work that was 

ongoing at the time of the fault. 

As with all other data errors, the corrupt data structure error will be logged and as 

much data will be recovered as possible. The ground station will be notified of the error, 

but will not be able to fix that particular instance. Using the data, however, a solution to 

the problem that created the data loss in the first place may be determined, hopefully 

eliminating future errors of the same kind. 

This concludes the classification and handling of errors that PANS AT might see. 

Although each specific error that might occur is not detailed in this plan, most likely any 

error that arises will fall into one of the error classes and be handled appropriately. No 

matter what, PANSAT always has the BIOS level connection which can be used to reset 

the system to start over. If for some reason this connection is unable to be made, the 

-214- 



satellite has suffered a major catastrophe and, for all practical purposes, is dead. While 

there can be no mechanism to handle this type of an error, the likelihood of this happening 

is extremely small. 

8. Acceptance Tests 

When discussing the program and data errors above, it was taken for granted that 

these errors would be detected by the acceptance tests mentioned. As mentioned 

previously, without a complete idea of the errors to create the tests for, the acceptance 

tests can not be fully designed. Once the error class plan is formulated, however, it is 

possible to develop the precise tests to fulfill the plan. As implied above, the acceptance 

tests should test all of the subsystems and data organizations to determine their reliability 

and integrity [Pradhan pages 677 - 686]. Table 6 shows the four types of acceptance tests 

the PANSAT User Services program will perform to conduct a self-evaluation. Each one 

of the classifications is discussed in the following the table. 

Table 6 - Fault Tolerant Acceptance Test Classifications 

Acceptance Test Classifications 

Satisfaction of requirements 

Accountability tests 

Reasonableness tests 

Computer run-time checks 

The first acceptance test type is satisfaction of requirements. This means the 

subsystem provides the expected results. Naturally, each subsystem will have a different 

method for checking its results. A standard means for procedures that take data in, 

process it, and return an answer is to use table comparison. Obviously, it is impossible 

and impractical to maintain a list of all legitimate answers for any given input. Rather, 

when the Watchdog program's query message is received, the User Services testing 

-215- 



procedure refers to a table of predefined tests for each subsystem. There should be only 

one or two tests per subsystem or the program could get bogged down performing all the 

tests. The tests, however, should be a good representation of the type of calculations 

required by the system. Included in the table is the correct answer the subsystem should 

return for the test. Any variance between the table answer and the subsystem provided 

result would be a logic or program modification error, as described above, and reported to 

the Watchdog system. 

This type of comparison test is used on the subsystem which performs the 

"packetizing" of data. All data sent from the satellite must be in AX.25 packet format. 

By providing preselected raw data to the procedure that forms these packets, then 

comparing the format of the packet to what is expected, a determination of a flaw arising 

in the procedure is be achieved. Additionally, the comparison test is performed on the 

data compression/decompression algorithm. A set of compressed data is sent to the 

procedure to see if the correct data is extracted, and vice-a-versa. Finally, the position 

determination routine is tested with this technique. The routine takes a initial position and 

a change in time since the position and produces the current position. The comparison 

test table contains all three elements to determine the position's routines accuracy. 

If the subsystem is not answer based, but rather performance based, the User 

Services could check that the action performed was actually the expected result. While 

the answer based checking would be done only in response of a Watchdog query message, 

the performance based procedures would be checked after the completion of every action. 

On PANSAT, the system that saves a file into the storage memory banks is be 

checked by determining whether the file name and size of the newly created object is the 

same as that provided to the file system. Once again, a mismatch would be classified as 

either logic error or program modification error. Additionally, when an entry is sent to the 

event logging subsystem, the event log file is checked to ensure the entry was appended to 

the end of the file. The defragmentation module also uses a performance based 

satisfaction test. After a file has been defragmented, the file data is looked up in the FAT 

to ensure that it is now taking up on contiguous block in storage. 

-216- 



The second type of acceptance tests are accounting tests. That is, User Services 

keeps a tally of certain information about the rest of the system. When a particular 

subsystem is queried about its tally, if it does not match User Services's version, an error 

is declared. 

Accounting tests are used to compare a file counter held by User Services with a 

directory count provided by the file system. A variation in the number could indicate a 

corrupted FAT, which is handled as a dump of the file system error. In addition to that 

procedure, the number of packets returned from the packetizing system for a certain sized 

block of data should be a predetermined amount. A variation would be a logic or program 

modification error. Next, a timestamp is placed on all recorded activities of the User 

Services program, such as saved files, transmitted packets, or positional estimates. If the 

timestamps are not ordered, the system's clock interface system may be flawed. Finally, 

connection records are checked to ensure that the number of in use records matches a 

counter which indicates the number of ongoing connections. If the numbers differ, a 

connection has been lost. The handler for a data structure integrity violation is invoked. 

The next acceptance test type is called reasonable tests. This name says it all - 

whether the system provides a reasonable result. This is the most common acceptance test 

and is used with almost every subsystem in the User Services package. 

For instance, this test is used when telemetry values are obtained. Each value 

procured has a possible value range located in a table. If the value is outside of the range, 

or the value has changed within the range, but at a rate that is not physically possible, then 

the means of getting the values or the sensor providing the value may be faulty. 

Manifestly, if an end user requests an operation that "does not make sense," the operation 

should be rejected and a warning sent back to the user. If data returned from a function is 

not the correct size, it is faulty. This includes the size of packet received from SCOS to 

the length of a datastream connecting processes. A position returned by the 

deadreckoning procedure must be within a range of possible positions on the satellite's 

orbit. A position of the North Pole would be flagged as faulty since PANSAT's orbit does 

not come close to the North Pole. Finally, settings commands received from the ground 

-217- 



Station must make "sense." That is, the settings must correspond to feasible operations. 

For example, performing a auto-purge of the storage banks every minute is not a 

practicable operation. 

The last type of acceptance tests are labeled computer run-time checks. These are 

handling typical run-time errors that usually cause a program to terminate. Also called 

exception handling, these functions catch divide by zero, overflow, underflow, and other 

errors by abstracting their operation into a single safe procedure. By trapping their 

execution, the program will continue to execute, and the subsystem that requested the 

illegal operation can be determined. This is implemented by placing all the exception 

possible routines into a single checked module. Once the module is proven safe from 

crashing, any element that uses the module is safe from crashing due to checked run-time 

error. It is important to keep the program from terminating since, as mentioned before, 

once the program terminates, it is removed from memory. Removal would prohibit 

determination of the offending subsystem thus exacerbating the fixing of the error. 

Another run-time check is for each procedure to check the program stack upon 

being called. If the stack is not formatted correctly, the procedure may have been illegally 

jumped to. A correct stack format would be indicated by the proper type and number of 

parameters being placed on the stack. It may be impossible to determine where to resume 

execution from when returning from an improperly called function, so a safety point of 

reference, the main menu in this case, may have to be jumped to in order to continue 

execution. 

These acceptance tests are very specific to the individual subsystem that they are 

evaluating or protecting. The basic concepts presented here form a comprehensive 

coverage for many systems, however. When developing a list of tests, every subsystem 

should be evaluated. In general this type of fault tolerance plan increases the overall work 

load by 25 percent, an acceptable amount. 

-218- 



9. Conclusions 

None of the technologies applied in this fault tolerance plan are difficult in and of 

themselves. However their application in conjunction provides integrated comprehensive 

coverage, which dramatically increases the reliability of PANSAT. As mentioned at the 

beginning, most fault tolerant research has been working with distributed systems, 

working with a large pool of hardware resources [Kreutzfeld]. Unfortunately, the 

particulars of space, especially in this project, preclude the use of most of those features. 

The methods instituted on PANSAT are tried and true fault tolerant methods, only they 

have not been previously linked together to form a consolidated fault protection for a 

system. Using this innovative plan, the satellite should be able to operate and provide a 

level of reliability expected by the military for a communications satellite. 

Limited resource fault tolerance can be successfully implemented. While it may 

not provide the same level of .se/^correction that is expected of a large resource system, 

the errors are still trapped and handled by the limited system - with a little bit more of an 

active role by the ground station. 

C. OPTIMIZED PROTOCOL 

1. NPSterm Introduction 

Due to the nature of its orbit, PANSAT has a limited window of opportunity for 

communication with a user during a pass over the user's facility. Typically, 

communications can be maintained with the satellite for periods of two to nine minutes, 

depending on the particular orbital pass. The average length of the window of opportunity 

time is approximately six minutes. Since time is at a premium and the bulk of operational 

time is consumed transmitting data, PANSAT implements a new application-layer 

protocol to optimize communications. This new protocol, designated NPSterm, reduces 

the size of the information required to be transmitted to and from the satellite. Fewer 

bytes of data required to be transmitted means less time consumed by the transmission. 

-219- 



Thus, in the same amount of time, NPSterm allows more operations to be performed than 

when an ASCII interface is used. 

The standard application protocol utilized by the HAM community is a simple 

ASCII interface. Characters are transmitted exactly as they are typed by a user. While 

this has the ability to be universally understood by almost any terminal, it is a wasteful 

protocol in that the information is contained in a comparatively large number of bits. 

Even though PANSAT maintains the ability to communicate using this ASCII 

interface, ensuring capability with other HAM communications facilities, NPSterm is 

implemented and is the preferred protocol. To employ NPSterm, the end user must 

download PANSAT specific terminal software. This software will be available via the 

Internet from the PANSAT Ground Station Home Page (http://131.120.25.124A). All 

connections to the satellite must be started in ASCII mode, but will then shift to NPSterm 

via a command sent from the terminal software. The use of the protocol and switching of 

protocols is transparent to the end user. The software handles these operations 

automatically. The only difference an operator can discern is a dramatic increase in data 

throughput. 

NPSterm incorporates two methods to optimize the information flow. First, 

instead of a series of characters representing the user's command to the satellite, a single 

bytecode contains the entire command (sans parameters). Secondly, the data in a packet 

to be sent to or from the satellite is compressed via a zero loss algorithm. NPSterm uses 

the LZSS algorithm (Nelson). This relatively straight forward algorithm provides an 

LZ77 style compression. Using this algorithm, the size of normal text data is compressed 

58.83 percent. Graphics are reduced an average of 43.45 percent and binary files shrink 

41.44 percent (Nelson p. 512). Combined with the command encoding bytecode method, 

an average data packet using NPSterm will be reduced in size by half. 

Although it is beyond the scope of this thesis, a third optimization method can be 

integrated into NPSterm. Typically seen in modern microprocessor structures, pipelining 

can be designed into NPSterm. Although pipelining would not cut down on the 

transmission time of the data, it would allow streamlined processing of commands by the 

-220- 



satellite. Although time processing a single command would remain the same, throughput 

for a series of commands would increase. Implementing this, however, would take 

extensive command processing experimentation and evaluation, an undertaking for a 

follow-on project. 

The details used in implementing each of the two methods follow. 

2. Bytecode Commands 

The concept behind this method is to reduce the number of bytes to represent a 

specific command to PANSAT to one. In ASCII mode, a command, not including the 

parameters, can take up from one to eight bytes. Each of these ASCII commands are 

unique and can be mapped with a one-to-one correspondence to a single byte value. Note 

that some of the bytes that are saved are due to whitespace delimiters required in the 

ASCII mode. 

Additional savings of up to two bytes by binary encoding numbers in the 

parameters rather than sending the numbers up in their ASCII format. Whether or not the 

savings occurs is due to the number of digits used in the ASCII encoding of the number. 

In a very small number of cases, one in a thousand, the number encoding actually takes up 

an extra byte from the number encoding. This is due to binary encoding using a static 

length of two bytes. This may simply negate the gain from removing whitespace. In 99.9 

percent of the cases, however, no loss of data size occurs. 

Table 7 contains all the possible commands to send to PANSAT. The commands 

are derived from all text permutations described in Tables 1 and 2. Once the satellite 

receives one of the bytecodes, the system translates the number back into its 

corresponding ASCII command, then processes the command as usual. 

-221- 



Table 7 - NPSterm Command Bytecodes (# represents a 16-bit integer, data means any 

number of unchanged text parameters) 

Command Title 
ASCII 

Representation 
Bytecode 

Minimum 
Bytes saved 

Get current telemetry TC 1 1 

Get stored telemetry TS 2 1 

Send mail SM data 3data 2 

Send file SF data Adata 2 

Read mail RM# 5# 2 
RME 6 3 

Read file RF# 7# 2 

Delete mail DME 8 3 
DM# 9# 2 
DM#- 10# 4 
DM-# 11# 4 
DM#-# 12## 6 

Delete file DF# 13# 2 
DF#- 14# 4 
DF-# 15# 4 
DF#-# 16## 6 

List mail LMN 17 3 
LMU 18 3 
LME 19 3 
LMA 20 3 
LMU# 21# 4 
LMU#- 22# 6 
LMU-# 23# 6 
LMU#-# 24## 7 
LME# 25# 4 
LME#- 26# 6 
LME-# 27# 6 
LM E # - # 28## 7 
LMA# 29# 4 

8 LMA#- 30# 6 
8 LMA-# 31# 6 

I LM A # - # 32## 7 

-222- 



Command Title ASCII 
Representation 

Bytecode 
Minimum 

Bytes saved 

List file LFN 
LFU 
LFE 
LFA 
LFU# 
LFU#- 
LFU-# 
LFU#-# 
LFE# 
LFE#- 
LFE-# 
LF E # - # 
LFA# 
LFA#- 
LFA-# 
LF A # - # 

33 
34 
35 
36 
37# 
38# 
39# 
40## 
41# 
42# 
43# 
44## 
45# 
46# 
47# 
48## 

3 
3 
3 
3 
4 
6 
6 
7 
4 
6 
6 
7 
4 
6 
6 
7 

Forward mail FM data # 49#data 3 

Forward file FF data # 50#data 3 

Switch to ASCII NA 51 1 

Who W 52 0 

Send one-liner Mdata 53data 1 

Disconnect X 54 0 

Post broadcast message Pdata SSdata 1 

Get BBS settings G 56 0 

Update BBS settings Mdata 51data 1 

Update ground station callsign GS data S%data 2 

Terminate User Services KI 59 1 

3. Compression Algorithm 

For NPSterm, the LZSS compression routine was selected because of its high 

compression rate and relative code simplicity. Additionally, the operating parameters of a 

12 bit index size and 4 bit length were chosen to keep the execution time minimal. Using 

larger parameters would result in an exponentially longer time required to navigate and 

-223- 



maintain the data dictionary. Furthermore, using these parameters keeps the algorithm's 

support data structures from consuming an exceptionally large block of memory. 

A drawback of LZSS is that when the User Services program first starts up, the 

compression routine will operate slower than normal. After several uses of the routine, 

however, the data dictionary will have built up enough to perform quicker compression. 

Expansion performs extremely efficient all the time, however. A second drawback of 

LZSS is that it works better on small files rather than large ones. This has small impact, 

however, since most of the files anticipated to be sent to PANS AT will probably be only a 

few kilobytes in size. 

A shortcut of using the NPSterm is that data received from an end user will already 

be compressed. Thus, no operations are needed to save the data compressed. It is simply 

copied compressed from packet straight to mass storage. If a compressed file is requested 

for download by a user not using NPSterm, expansion of the data is performed onboard 

the satellite. Because the algorithm needs a minimal of data structures and operations to 

expand data, it is considered a low cost operation. Thus, these steps save CPU cycles 

onboard the satellite. 

The original LZSS routine, taken from Nelson's The Data Compression Book was 

designed to work only on files. In order to work in the serial data communications 

environment of PANS AT, the code has been modified to operate on generic data streams. 

This abstraction allows operations on both files and packets of data held in memory. 

The source code for the modified LZSS routine is located in Appendix A. 

-224- 



VII.  IMPLEMENTATION ISSUES 

A. REAL TIME TESTING 

The ground station normally has relatively little exorbitant processing activity 

ongoing during the times when communication is not possible with PANSAT. Since the 

satellite is only within line-of-site of NPS approximately five percent of the time, 95 

percent of the ground station's time will be spent relatively idle. However, during that 

five percent when communications are occurring with the satellite, it is critical that the 

ground station can process all the incoming and outgoing data as well as perform all of its 

own processing. 

The goal is to ensure that during the periods of communications, all processing can 

be accomplished in essentially real time. What real time translates to in this instance is the 

operator at the ground station not being able to notice a delay in processing, other than 

the inherent transmission delay incurred when communicating with satellites. An example 

of this is when the operator types in the command to get current satellite telemetry values. 

As soon as the command is entered, it is immediately sent to PANSAT and, as soon as the 

reply is received, it is immediately displayed on both the display (in graphic format) and 

control terminals. 

To verify that the network configuration described in early chapters can handle this 

workload, a series of timing tests were performed on the network. The tests simulated 

data being received by the communication terminal. The generated data is then 

disseminated to the other ground station terminals via the 10Mbps Ethernet network. The 

other terminals then simulate processing the data by repeating all the data back to the 

communications terminal. The distributed system of the ground station ought to be able 

to manage all of the processing at a data rate of approximately two times the maximum 

data rate possible receivable from PANSAT (to allow slack in the system). 

For a matter of comparison, not only is a test data packet size of 256 bytes used, 

which is the maximum packet size expected to be utilized with PANSAT, but also packets 

of two, three, and four times this size are used as well. Furthermore, the same packet 

-225- 



passing tests are performed on a single PC, with separate threads representing the 

individual terminals of the ground station. This displays the response rates if the 

functionality from all four terminals comprising the ground station were implemented on a 

single PC. These results could be useful if reconfiguring the network is required. 

Reconfiguration would be necessary, however, only if the rate of processing the data on 

the network's current configuration does not meet expectations. Although used as a 

reference point, a single PC implementation is not an ideal operating environment for the 

ground station management. Finally, the test results include the maximum data rate 

expected from PANS AT. To put perspective on the results, the maximum data rate of a 

Tl line is shown as well. The results of the experiment are displayed in Figure 10. 

/r 

V 
Data Transfer Rates ̂

y 

256 512       1024 
Packet size in bytes 

2048 

Packet passing on the ground station 
Data transfer between single PC processes 
T1 line data rate (for comparison) 
PANSAT data rate 

Figure 10 - Real Time Data Processing Testing Results 

-226- 



The results prove that the ground station in the configuration described in this 

thesis can easily handle the maximum load offered by PANSAT and still have enough 

leeway to perform all of the ground station processing as well. Using a 256 byte packet 

size, the response greatly exceeds the goal of two times PANSAT's data rate. In fact, the 

ground station processing rate is nearly 100 times PANSAT's data rate, almost equaling a 

full data load supplied by a Tl line. By using larger packet sizes, even a load comparable 

to that on a Tl line is exceeded. Processing the entire ground station on one PC is 

significantly faster than a distributed operation, but this is not even a factor since the 

network performs so well. 

Most likely changing the network configuration will not become an issue because 

of the vast difference between processing capability and data transmission rates. 

However, if the network configuration of the ground station is significantly modified in the 

future, these timing tests should be repeated to ensure the new configuration still handles 

the work load in real time. 

The Space Systems Academic Group conducted their own test to ensure that the 

spacecraft's processor could manage the maximum anticipated data rate, 9842 bps. 

Although not formally documented, the results indicated that PANSAT's processing 

capability was sufficient to handle the maximum communications load and still be able to 

perform all the required systems processing. 

Although not projected at this time, if the satellite were to stop operations in 

spread spectrum mode and use narrow band communications, the data rate would jump up 

to 78,125 bps. This eventuality would required reevaluation of the load bearing capacity 

for both the ground station and satellite. 

B. TEST PLAN 

To ensure that each module is functional and as error free as possible, rigorous 

testing must be performed on the software before it becomes operational. Following is the 

script by which programs are to be tested. These scripts attempt to ensure all the basic 

functionality of the program is operational and that the boundary conditions do not result 

-227- 



in unpredictable behavior. Unfortunately, it is impossible to eliminate all errors from a 

program, especially one the size of the PANSAT project. Thus the software's 

performance must be continually monitored by the ground station, which will generate 

corrections as warranted. 

1. Satellite Module 

Although a simulator board for a PC exists which emulates the processor of the 

satellite, this is not sufficient for a full system test of the User Services software. The 

simulator board does not have a file system or access to storage banks, which are required 

elements for the program. Therefore, testing can only be accomplished on a fully 

functional PANSAT platform. 

Fortunately, the Space Systems Academic Group is constructing a duplicate 

PANSAT satellite for testing purposes. Once this satellite is complete and connected to 

the ground station, either by direct physical connection or by radio transmission, testing 

can commence. 

For testing purposes, instead of using the User Services ground station software, a 

simple ASCII repeater should be used. The only stipulation is that the data sent from the 

ASCII repeater must be encoded into an AX.25 packet before it is sent to the satellite. 

This way, an error with the ground station software will not be misinterpreted as an error 

within the satellite software, a confusion which could occur in testing two separate 

packages simultaneously. Several sessions of the ASCII repeater should be brought up 

simultaneously, each one representing an independent user communicating with PANSAT. 

For the purposes of this test, the callsign of the first repeater will be "A," the second 

repeater will "B," and so on. 

Since the testing satellite is ground based, the window of opportunity to 

communicate with PANSAT never actually expires. However, to perform an accurate 

test, that factor needs to be accounted for. Therefore, the operators conducting the test 

will have to time themselves. After a suitable time, no further data should be sent to the 

test platform and any data transmitted from the platform should be ignored. 

-228- 



The script for the spacecraft module testing is very explicitly detailed. Normally, 

an interface will be wrapped around the communications between a user and PANSAT. 

However, the testing at this level is conducted with a minimal testing-only interface. The 

goal is to merely test the functionality of the satellite - the interface will be incorporated 

and tested with the ground station software. Therefore, the following testing indicates 

exactly when and what to type: 

Test 

Connection to PANSAT 

Rejection of too many 
connections (each one of the 
connection commands is 
performed from a different 
thread on the testing machine) 

Test ground station being able 
to connect on top of full 
connection load 
(this should be done from P's 
failed thread, since ft should 
be available) 

Test autodisconnect for users 
that do not transmit for two 
minutes 

A sends an e-mail to B and C 
(switch to A thread) 
(note that after the connection 
and until disconnection, the 
thread automatically uses tiie 
connection callsign for all the 
remaining commands on the 
testing platform) 

From A, display all the e-mails 
on PANSAT 

Display any e-mail for A 

Command 

CPANSATA 
(note that in this case, the 
originators callsign must be 
explicitly stated. Once using 
the ground station software, 
this will be done 
automatically) 

C PANSAT B 
CPANSATC 

CPANSATO 
C PANSAT P 

C PANSAT KD6CXV 

None for several minutes 

CPANSATA 
SMBCS:Test 
This is a Test messaged 

LME 

LMU 

Result 

PANSAT should return series 
of initial log on messages, 
broadcast message, and 
menu of choices 

Each one of ttie connections 
through O should be 
accepted, connection P should 
be rejected 

Connection should be 
accepted, as described above, 
with additional print out of last 
time ground station was 
connected, which should be 
never. 

Each one of the connections 
should see a disconnection 
message 

After the connection 
messages are viewed, the 
send mail command is 
entered, after which tiie menu 
should be redisplayed 
(In fact after all the commands 
performed in this test, the 
menu should be listed after 
completion unless otherwise 
stated) 

Should list the one e-mail 

No e-mails should be listed 

-229- 



Display any e-mail for B 
(switch to B thread) 

C PANSAT B 
LMU 

After the connection 
messages are displayed, the 
one e-mail should be listed 

Read the e-mail for B RM# 
(where # is the e-mail number 
obtained from the listing 
above) 

"This is a Test message" 
should be displayed to user 

Delete the e-mail for B DM# No error messages should be 
seen 

List any e-mail for B LMU No e-mails should be listed, 
as it was deleted in the 
previous command 

List any e-mail for C 
(switch to C thread) 

C PANSAT C 
LMU 

After the connection 
messages are displayed, the 
one e-mail should be listed 

Delete the e-mail for C DM# No error messages should be 
seen 

List any e-mail for C LMU No e-mails should be listed 

List any e-mail on the system LME No e-mails should be listed, 
as all recipients have deleted 
the e-mail 

A sends an e-mail to all 
(switch to thread A) 

SMallS:Test2 
This is a second Test 
messaged 

After sending, no results 
should be displayed on the 
screen 

A sends an e-mail to B SM B S:Private 
This is a third Test 
messaged 

After sending, no results 
should be displayed on the 
screen 

List any e-mails for C 
(switch to C thread) 

LMU No e-mails for C should be 
listed 

List any e-mails for all LMA "Test2" e-mail should be listed 

List any e-mails for B 
(switch to B thread) 

LMU "Private" e-mail should be 
listed 

List any e-mails for all LMA "Test2M and "Private" e-mails 
should be listed 

List e-mail ranges LME#- 
(where # is the number of the 
"Private" e-mail) 

-230- 

Only "Private" e-mail should 
be listed 



List e-mail ranges 

See who is currently 
connected to PANSAT 

Send a one-liner message to 
A 

Send a one-liner message to 
all 

Forward e-mail to C 

Check disconnect of A 
(switch to A thread) 

Verify disconnect 

Verify e-mail was forwarded 
(switch to C thread) 

Get Help 

Attempt to delete an all 
message 

Verify message not deleted 

Have originator delete the all 
message 
(switch to A thread) 

Verify deletion 

Verify originator removing e- 
mail from system 

Verify deletion 

LME-# 
(where # is the number of the 
Test2" e-mail) 

W 

MA One-Liner Test 

M all One-Liner Test 

FMC# 
(where # is the number of the 
Test2" e-mail) 

LME 

LMU 

LMA 
(to get number of Test2 e- 
mail, which is used for # in 
next command) 
DM# 

LMA 

CPANSATA 
DM# 
(where # is the number of the 
"Test2" e-mail) 

LME 

DM# 
(where # is the number of the 
"Test2" e-mail) 

LME 

Only "Test2" e-mail should be 
listed 

A, B, and C should be listed 

"One-Liner Test" should be 
displayed in As thread window 

"One-Liner Tesf should be 
displayed in A, B & C's thread 
window 

After sending, no results 
should be displayed on the 
screen 

A should get a disconnect 
message 

An error message should be 
displayed 

The forwarded "Private" e- 
mail should be displayed 

A short description of all the 
general user BBS commands 
should be listed out 

An error message should be 
displayed not allowing deletion 

Both "Private" and Test?' e- 
mails should be listed 

No error messages should be 
displayed 

Only the "Private" e-mail 
should be listed 

No error messages should be 
displayed 

No e-mails should be listed 

-231- 



Get current telemetry 
(switch to B thread) 

TC Current telemetry values 
should be listed out 

Get stored telemetry TS A file download should occur, 
which will contain several 
days of telemetry (this file 
needs to be constructed on 
PANSAT) 

Check maximum e-mail 
length 

SM A S:BigTest 
(repeat a character for over 
4096 times) AD 

An error message should be 
returned, indicating e-mail 
message was too big 

Check e-mail was not saved LME Test2" should be the only e- 
mail on the system 

Disconnect remaining 
sessions before continuing 

X 
(fromA,B&C) 

Each should receive a 
disconnection message 

Connect as ground station 
(switch to ground station 
thread) 

C PANSAT KD6CXV Should see connection 
messages, with last ground 
station connection time of the 
beginning of this test 

Verify current connections on 
PANSAT 

W KD6CXV should be only entity 
listed 

List all e-mails on system LME "Test2" should be the only e- 
mail on the system 

Delete an e-mail not destined 
for the ground station 

DM# 
(where # is the number of the 
Test2" e-mail) 

A query of eight integers 
should be sent to the ground 
station (these are verification 
numbers - for security reasons 
the algorithm to answer the 
query has not been published 
but separately handed over to 
the SSAG, which should have 
implemented a quick 
calculation routine to 
determine the answer) 

Provide the wrong answer # 
(where # is a wrong answer) 

An error message should be 
displayed 

Verify e-mail was not deleted LME Test2" should still be listed 

Delete an e-mail not destined 
for the ground station, 
correctly this time 

DM# 
(where # is the number of the 
Test2" e-mail) 
# 
(where # is the correct answer 
to the query) 

-232- 

After the eight integers are 
displayed and the correct 
response is sent to the 
satellite, no reply should be 
seen 



Verify e-mail was deleted 

Change broadcast message 

Test broadcast message 
(switch to A thread) 

Send an e-mail to ground 
station 

Send an e-mail just to B 

Check all e-mails on PANSAT 
(switch to ground station 
thread) 

Check e-mails to ground 
station 

Delete e-mail to ground 
station 

Verify e-mail deleted 

Terminate program 

Verify program exited 
(switch to A thread) 

After reloading User Services 
software to PANSAT, verify 
that file structure was 
maintained 

LME 

This is a new broadcast 
messaged 
# 
(where # is the correct answer 
to the eight integer query) 

CPANSATA 

SMBKD6CXVS:ToGS 
This is even another test 
messageAD 

SM B S:ToBee 
This message is only for BAD 

LME 

LMU 

DME 

LME 

KI 
# 
(where # is the correct answer 
to the query from PANSAT) 

CPANSATA 

CPANSATA 
LME 

No e-mails should be listed 

After receiving eight integers 
for a query, there should be 
no further messages 

The normal connection 
messages should be 
displayed, with the addition of 
the new broadcast message 
"This is a new broadcast 
message" 

No error messages should be 
displayed 

No error messages should be 
displayed 

Both ToGS" and ToBee" e- 
mails should be listed 

Only "ToGS" should be listed 

No error messages should be 
displayed 
(Note no verification query 
should be sent) 

Only "ToBee" should be listed 

After the eight integer query is 
received and answered, a 
message to all connected 
users (A & the ground station) 
should be sent indicating the 
program is terminated, then 
the connection should 
automatically be disconnected 

No response should be 
received - none at all 

After the connection 
messages are displayed, the 
e-mail "ToBee" should be 
listed 

-233- 



Attempt to change the ground 
stations callsign 
(switch to ground station 
thread) 

Change ground station 
callsign 

C PANSAT KD6CXV 
GS newcall 

GS newcall newcall newcall 
# 
(where # is the correct answer 
to the query from PANSAT) 

After the connection 
messages are displayed, the 
GS operation should result in 
an error message - the 
callsign was not sent in 
triplicate 

After the eight integer query is 
sent and answered, a 
message saying "ground 
station callsign changed to 
GS" 

Disconnect ground station Disconnection message 
should be displayed, with 
reminder ground station 
callsign is changed and will be 
effective on the next 
connection 

Connect to PANSAT with old 
ground sation callsign 

Attempt ground station 
command 

Disconnect 

Connect with new ground 
station callsign 

C PANSAT KD6CXV 

Kl 

C PANSAT newcall 

Normal connection messages 
should be displayed, without 
last ground station connection 
time listed 

Error message should be sent 
indication command is 
reserved for ground station 

Normal disconnection 
message 

Connection messages should 
be displayed including the last 
time the ground station was 
connected 

Do a ground station only 
command to get BBS settings 

Disconnect ground station 

G 
# 
(where # is the correct 
response to PANSATs query) 

After the eight integer query is 
sent and replied to, a stream 
of numbers should be 
displayed 

Normal disconnection 
messages should be shown 

-234- 



A sends an file to B and C 
(switch to A thread) 
(Although A was not 
previously disconnected, most 
likely at this point more than 
two minutes most likely has 
elapsed since activity on A 
occurred - A should have 
been automatically 
disconnected - if not, ignore 
the connection command) 

Display all the files on 
PANSAT 

CPANSATA 
SFBCFilel 
(the tester program needs to 
now send the contents of the 
file to PANSAT) 
(Note that unless specifically 
stated, all test files need to be 
under 256 kB) 

LFE 

After the file is saved, 
PANSAT will send a file status 
report indicating how many 
bytes were stored 

Should list the one file 

Display any files for A 

Display any files for B 
(switch to B thread) 

LFU 

C PANSAT B 
LFU 

No file should be listed 

After the connection 
messages are displayed, the 
one file should be listed 

Download the file for B RF# 
(where # is the file number 
obtained from the listing 
above, tine ASCII repeater will 
now have to save the 
contents of the download in a 
file) 

Delete the file for B DF# 

List any files for B LFU 

List any files for C 
(switch to C thread) 

C PANSAT C 
LFU 

Delete the file for C DF# 

List any files for C LFU 

List any files on the system LFE 

A sends a file to all 
(switch to thread A) 

SFallRle2 

The file should be 
downloaded, after which a 
operating system provided file 
compare command should be 
used to ensure the file is the 
same as the original 

No error messages should be 
seen 

No files should be listed, as it 
was deleted in the previous 
command 

After the connection 
messages are displayed, the 
one file should be listed 

No error messages should be 
seen 

No files should be listed 

No files should be listed, as all 
recipients have deleted the e- 
mail 

After sending, no results 
should be displayed on the 
screen 

-235- 



A sends a file to B SF B File3 After sending, no results 
should be displayed on the 
screen 

List any files for C 
(switch to C thread) 

LFU No files for C should be listed 

List any files for all LFA File2 should be listed 

List any files for B 
(switch to B thread) 

LFU File3 should be listed 

List any files for all LFA File2 and File3 should be 
listed 

List file ranges LFE#- 
(where # is the number of 
File3) 

Only File3 should be listed 

List e-mail ranges LME-# 
(where # is the number of 
File2) 

Only File2 should be listed 

Forward file to C FMC# 
(where # is the number of 
File3) 

After sending, no results 
should be displayed on the 
screen 

Verify file was forwarded 
(switch to C thread) 

LFU The forwarded File3 should be 
displayed 

Check maximum e-mail 
length 

SFABigFile 
(BigFile should be over 256 
kB in size) 

An error message should be 
returned, indicating file 
message was too big 

Check file was not saved LFE File2 and File2 should be the 
only files on the system 

Ensure mail-only delete option 
does not work on files 

DFE An error message saying 
option not available for files 
should be returned 

Note that if during the testing a connection to PANS AT is disconnected due to no 

activity for over two minutes, merely reconnect the thread window to the satellite the next 

time activity is required by the callsign as indicated in the script. 

The remainder of the features of PANSAT can only be tested once the ground 

station is operational. Therefore, the features not tested in this section will be 

incorporated into the tests for the ground station. 

-236- 



2. Ground Station Module 

In testing the ground station, the scenario presented in the spacecraft module's 

testing should be replicated, with the following exceptions. First, instead of using the 

ASCII repeater, the actual ground station software should be used. Second, only the 

communications terminal should be able to send data to the PANS AT replica. This will 

happen naturally if the test platform is not physically connected to the ground station, but 

is rather communicated with via radio transitions. However, if the replica is directly 

connected to the network, it should be programmed to ignore any data packets except for 

those sent explicitly to PANSAT from the communications terminal. 

While some individual elements of the ground station software package can be 

tested individually, most of them need to interact with a satellite in order to function 

correctly. Thus, ground station testing should commence after the spacecraft module has 

been fully tested. This way, errors in the spacecraft software will not be mistaken for 

being in the ground station software. 

Unlike the spacecraft module, the ground station testing script does not explicitly 

indicate what keystrokes to type. Rather, the action required is listed. Part of the test is 

for the user to be able to easily determine the means to accomplish this action. Thus, not 

only the functionality of the software it tested, but the interface to that functionality is 

evaluated as well. The script for the ground station testing is as follows: 

Module Test/Action 

Control Terminal Monitor 1.        Once the Monitor activates, launch the other four 
programs shown in the Monitor window. 

2. Ensure that the status for each program is active and 
that the action button for each has changed to 
terminate. 

3. Using the action button, terminate any one program 
from monitor. Ensure the status and action button label 
change accordingly to what they were before the 
program was originally launched. 

-237- 



Control Terminal Monitor 
(cont.) 

Control Panel 

Batch Editor 

4. Now choose another program and terminate that 
program from within itself by clicking the "X" in the top 
right hand corner. Once again, ensure that the status 
line and the action button for that program are updated 
in the Monitor window. 

5. Enter super user mode using a password that has been 
separately provided to the SSAG personnel. 

6. Do nothing for ten minutes. Super user mode should 
expire. 

7. Reenter super user mode, then try to exit it manually. 
The results should be the same as when time expired. 

8. First change the data in one of the two remaining 
operating programs, but don't save it - thus when it 
terminates it should prompt the user. Next, terminate 
the ground station by pressing that button in the Monitor 
window. All programs should exit gracefully, including 
prompting the user to save data. 

9. Visually inspect the displayed settings. They should 
match the default values indicated in Table 3 (on page 
63). 

10. Modify a couple of the values, ensuring the new 
parameters are within the bounds listed. Press the send 
settings to PANSAT button in the Terminal window. 

11. Change the values once again. However, this time do 
not send the values to PANSAT. Instead, press the get 
BBS settings button in the Terminal window. The 
Control Panel window should now display the values 
made after the first change. 

12. Enter several meaningless values, ensure that the errors 
are caught before a transmission is attempted. 

13. Create a new batch file. 
14. Using the command dialog, make a batch file that 

connects to PANSAT, reads the current telemetry 
values, then disconnects. 

15. Save the file, then compile it. Resave the file. 
16. Select the new batch on batch list by checking the box 

next to the file name. 
17. Wait, when the satellite tracking window indicates 

PANSAT enters the ground station's window of 
opportunity for communications, ensure 
communications window on the display terminal shows 
that batch executed. 

18. Create a new batch file. 
19. Attempt to make random illegal commands by typing 

them in. Compile the program, fixing the errors as they 
are pointed out Ensure all errors are detected. 

20. Now try to insert illegal commands using command 
dialog. No illegal commands should be able to be 
entered. 

-238- 



Terminal 21.       Connect to PANSAT in normal user mode (set by 
Monitor program). 

22. Generate and send an e-mai! Testl to all. 
23. Generate and send an e-maH Test2 to A. 
24. Generate and send e-mail Test3 to the ground station. 
25. Generate and send e-mail Test4 to the ground station 

and A. 
26. Get a listing for all e-mails for the ground station. Test3 

and Test4 should be listed. 
27. Get a listing of all the e-mails sent to the special callsign 

all. Testl, Test3 and Test4 should be listed. 
28. Get a listing of all e-mails on PANSAT. All four Test 

e-mails should be listed. 
29. Read the Test3 e-mail. 
30. Delete the Test3 e-mail. 
31. Get a listing of all the e-mail for the ground station. 

Only Test4 should be listed. 
32. Get a listing of all the e-mails on PANSAT. Testl, Test2 

and Test4 should be listed. 
33. Send a one-liner message to all. It should be displayed 

in the Terminal window. 
34. Send a one-liner message to the ground station. It 

should be displayed in the Terminal window. 
35. Upload a file to PANSAT with the ground station as the 

recipient. It should be less than 256 kB. 
36. Get a file listing of all files on the system. Only the 

single file should be shown. Then download the file and 
do a file compare with the original. 

37. Delete the file, do a listing to ensure that it was properly 
removed. 

38. Upload another file, but terminate the program in the 
middle of transmission. 

39. Reconnect to PANSAT, and when prompted, continue 
the upload. Then download the file and compare it to 
the original. 

40. Download the stored telemetry file. 
41. Attempt to post a new broadcast message. The try 

should be unsuccessful. 
42. In the Monitor window, enter super user mode. Now try 

to post the new broadcast message again. This time the 
function should be successful. The verify function 
handler in the ground station should have intercepted 
the query by the satellite and answered it automatically. 

43. View the descriptive help files. 
44. Repeat this entire section using NPSterm (steps 21 - 

43). 

Control Archive Manager 45.      Attempt to view the file with the latest telemetry values. 
46. Attempt to view the current system directory. All the 

e-mails and files from the terminal test should be listed. 
47. Conduct a search for an e-mail to the ground station. 

Two e-maHs should be returned. 
48. Print one of the two e-mails to ensure that the interface 

to the print manager is functioning. 

-239- 



Control Archive Manage 
(cont.) 

Display Terminal Monitor 

Telemetry Display 

Communications Repeater 

Display Archive Manager 

Satellite Tracking 

Internet Web Site 

49. Delete one of the two e-mails. It should be put into the 
recycle bin on the Server terminal. 

50. View the file contents of the e-mail that was not deleted. 

51. Repeat steps for Control Terminal Monitor (steps 1-8), 
except for the super user setting, which is not available 
on this terminal. 

52. Verify the data displayed is the same as displayed in the 
archive test performed above. The data should match 
and the representation should match specification 
correctly (color coding). 

53. In the Terminal window, press the download current 
telemetry button. The Telemetry Display window should 
update its display automatically when the new data 
arrives. 

54. This test is actually performed when doing the Terminal 
test. 

55. When the Terminal test is ongoing, have another tester 
monitor this window to ensure the entire activity 
displayed on the Terminal output is identically displayed 
here. 

56. Perform the identical tests conducted on the Control 
Archive Manger, then do the following additional tests: 

57. Ensure file locking is working by opening a file for edit 
on the Control Terminal, the trying to delete the same 
file from the Display terminal. An error message should 
display and the file should not be deleted. 

58. The same should happen if modifying an already open 
file, it should be labeled as read only and cannot be 
saved. 

59. First, the window merely needs to be visually checked to 
ensure active tracking is occurring. A highlighted 
window of opportunity needs to include the ground 
stations and the satellite position indicator needs to 
move in real time. The accuracy of the tracking can be 
checked with an orbital program maintained by the 
SSAG. 

60. Secondly, an updated initial position needs to be put into 
the Control Panel module, then transmitted. The 
Satellite tracking window needs to update its position to 
this new data as well. 

61. The following tests should be performed on a computer 
with access to the Internet, but not directly connected to 
the SSAG subnet, as the ground station is. 

62. Connect to the ground station's Internet home page, IP 
address http://131.120.25.124/. 

63. Search through the archives and display the data in any 
archive file. 

-240- 



Internet Web Site (cont.) 64. Get the current system directory. Compare the directory 
to the files listed today's archive files. All the binary 
files on the satellite should be included. However, only 
one of the e-mails listed should be included. 

65. Generate an e-mail and send it. Now from the Terminal 
window, generate another e-mail and send it. From the 
Communications Repeater window, verify that both 
e-mails get sent to PANSAT. 

66. While the e-mails are being sent, have another person 
generate an e-mail and send it. This third e-mail should 
not interfere with the original e-mails. Once again, at 
the Terminal window, generate and send another e-mail. 
Ensure that both e-mails get sent to PANSAT. 

67. From the Terminal Window, send up a file to PANSAT. 
Then perform a file listing. After this is completed, 
ensure that the system directory has been updated to 
include the new file. The new file should not be 
indicated that it is locally saved, however. Request the 
file be download. After a small delay, ensure that the 
file is downloaded from PANSAT (since the ground 
station's connection with the satellite should be 
ongoing). 

68. Send an e-mail to the ground station with the first line 
formatted "Send: o", where <> is your Internet e-mail 
address. From the Terminal window, send an arbitrary 
e-mail, the send a get all e-mails command. After a 
reasonable delay, ensure the e-mail originated via the 
web page was forwarded to your Internet e-mail site. 

C. PROGRAM SETUP 

This section describes how to install, organize and execute the programs that 

comprise the User Services package for PANSAT. 

1. Satellite Module 

The User Services program for the satellite is contained in a single executable file, 

called US.exe. To upload the software to PANSAT, a BIOS level connection needs to be 

made with the satellite from the ground station. After the SCOS has been loaded, the 

command "scload US" is entered. This command sends the program file up to the 

spacecraft. Once loaded, the program automatically begins running and User Services 

becomes available for use. 

-241- 



If a new version of User Services becomes available, the ground station must send 

the "KI" command to the User Services program operating on the satellite. This 

command saves all the program data and gracefully terminates the program. Once this 

occurs, a BIOS level connection can be established and the new executable can be 

uploaded, as described in the previous paragraph. 

2. Ground Station Module 

On the hard drive of each one of the terminals of the ground station, the directory 

"PANSAT" needs to be created under the root directory. Under this directory, a "BIN" 

subdirectory needs to be created. All the executable and help files for each terminal are 

placed in the "BIN" subdirectory, which is where the ground station software "expects" 

them to be. If they are not located as such, the program will not work correctly. 

Further, on the control terminal, a "BATCH" subdirectory under PANSAT needs 

to be created. All the batch files, including the system default, need to be located in this 

subdirectory or they will not be found. All further subdirectories under the "PANSAT" 

directory will be automatically created as required. 

On the communications terminal and server, the directory "ARCHIVE" will be 

created under the root directory if it does not already exist. No setup is required for this 

directory, the ground station programs will manage this directory and any subdirectories it 

creates under it automatically. See Figure 11 for a representation of the directory 

structure required at installation. 

On the desktop of each of the Window NT terminals, a shortcut needs to be made 

to that terminal's corresponding monitor program. For instance, on the control terminal, a 

shortcut to the "PANSAT\BrN\ControlTermMonitor.exe" program should be made. 

These are the only shortcuts required. To start the ground station program for each 

terminal, the icon on the desktop is simply double clicked. Initial setup is automatically 

performed by the program, with options to change default settings available in each 

program. From inside the monitor program, each of the other modules for that particular 

terminal can be started, dismissed, or controlled. 

-242- 



^——J 

Server 

p^^         Hard Disk 
gBr       Directory 
Ipr           Heirarchy 

Control Terminal 

Root Root 

1 
I                 I 

PANSAT 
Archive      PANSAT 

1 

bin 

Display Terminal 

1            1 
bin      batch 

Communications Terminal 

Root Root 
1 

1                  1 
PANSAT Archive      PANSAT 

bin bin 

Figure 11 - Ground Station Initialization Directory Structure 

The monitor program is the essence of a terminal's ground station activity. While 

some of the modules do not need to be active for the terminal to perform its required 

processing, once the monitor program is terminated, the terminal ceases to function as a 

component of the ground station. 

Once these steps have been completed, the ground station should be setup and 

fully operational. 

-243- 



VIII.   CONCLUSIONS AND RECOMMENDATIONS 

A. FURTHER WORK REQUIRED 

There still exists work to be done on the User Services package. Unfortunately, 

due to time constraints, only a subset of the programs defined in this thesis could be 

implemented. While a working product which performs the basic functionality was 

completed, follow-on work needs to be carried out to finish the project. Future work 

should start by completing the program to the specifications detailed in this thesis. 

After the User Services program is completed, further experiments not elaborated 

in this thesis could easily be integrated as extra modules into the existing software. Some 

of the areas that should be considered are: 

o        Security - if the knowledge gained from PANSAT were to be applied to a 

larger scale project for the military, the system would have to be known to 

have the capability to be secure. A system needs to be developed which 

guarantees the privacy of e-mail to their recipients. Also the means of 

identifying the ground station either needs to be proven secure or 

improved, 

o        Network development - the distributed system of four computers 

comprising the ground station is not proven to be implemented in the most 

efficient manner. A study could examine the work load on the different 

machines, the network traffic between them, and the means of passing the 

network traffic to determine if the implementation can be improved, 

o        Interactive web site design - the web site described in this thesis was not 

developed with a full knowledge of all the capabilities of web technology. 

An improved web site could be designed with more powerful applications, 

quicker response, better organization, and easier interface for the end user, 

o        Human-computer interface improvements - The interface on the Control 

and Display terminals was not tested to determine if it is intuitive,- efficient, 

-245- 



and "user friendly." A study could determine a better methodology for 

interaction or a better paradigm for interface. 

o        Communications improvements - as mentioned in the section on NPSterm, 

only the rudimentary elements are implemented in the protocol. The 

application layer protocol could be improved with advanced techniques and 

experimental ideas to provide even more optimized performance. 

o Operating system development - SCOS, the current operating system on 

PANS AT is proprietary and may not support all the future activities 

requested of the satellite. An in-house developed operating system could 

be tailor to be PANSAT optimal, and adjusted as many times as necessary 

to fulfill future needs. 

o        Experimental features - Just as the positional awareness feature provides 

new functionality not hereto before seen on a micro satellite, many new 

features may be put on PANSAT which this author cannot even conceive. 

Almost any future ideas could be attempted on the satellite, as coordinated 

with the SSAG. 

B. LESSONS LEARNED 

The biggest lesson learned from developing the User Services was the complexity 

and diversity of knowledge required for the project, which was initially underestimated. 

For example, in preparing for the ground station programming, the author realized the 

need to learn the Windows NT development environment. While correctly identifying the 

need to learn event-driven programming paradigm and a Win32 kernel accessing 

framework (Microsoft Foundation Classes, in this case), the actual time required to learn 

these concepts was not realized. An estimation of six weeks turned into nearly six months 

used to cover enough concepts to implement the intricate requirements of the ground 

station. Future work on the project should identify the concepts required to implement 

the feature, then budget enough time to research the concepts. Along the same lines, 

-246- 



future work should limit itself in scope so as to not try to cover too many topics at once, 

which becomes overwhelming. 

A characteristic which would increase the software development resources of the 

SSAG would be stronger ties to the Computer Science (CS) Department. The author of 

this thesis almost accidently got involved with the SSAG. In fact, most students in the CS 

curriculum are unaware of PANSAT project or even SSAG's existence. Those that did 

become aware were generally already involved with their own research or predisposed to a 

field of study precluding SSAG due to late exposure in their matrix. Hopefully future 

projects for PANSAT can get the CS faculty involved, increasing that departments 

cognizance of the research possibilities with the SSAG. Exacerbating this situation, the 

SSAG's software section consists of only one individual, which is only a fraction of the 

manpower necessary to perform the work requirement in software development for the 

PANSAT project. 

Finally, as evidenced by this thesis being the first formal specification for the bulk 

of PANSAT's software, software engineering did not play an early enough role in the 

development of the satellite. Hardware design took place long before software 

consideration began. This, unfortunately, cuts off a valuable resource in the development 

of the overall system. If possible, in the future, software engineers should assist the 

hardware developers at an early stage to allow for design considerations which would aid 

the software in fulfilling the overall system goals. 

C. CONCLUSION 

This thesis provides the necessary documentation to formally specify the 

communication service software requirements and functionality. Additionally, several 

satellite experiments are defined, as well as the means to conduct further experiments 

offered. The definition is much more complex and encompassing than originally 

anticipated, not only qualifying the internal details of several systems, but the entire 

external interactions of those systems as well. 

-247- 



The foundation of the PANSAT project is an educational tool. This basis means 

that the scope of the User Services software will most likely change in the time to come. 

For all future work on the User Services, experimental features, or ground station 

implementation, this thesis forms the framework. Any modifications, however slight, 

should refer to the outline herein to identify the scope of the code to be modified, thus 

preventing unwanted side effects. 

-248- 



APPENDIX A.   SELECTED SOURCE CODE EXTRACTS 

Due to the enormous size of the source code, it is not included in this thesis 

publication.   Rather only the portions which implement the experimental features are 

included. The entire program source can be obtained from myself (gkhunter@,msn.coin) 

or Jim Horning (JHorning@nps.naw.milY 

A. POSITION DETERMINATION CODE 

This program was referred to in Chapter 6, Section A. 

File: orb cal.h 

/•♦•♦••••♦••♦•♦♦•••♦♦♦♦♦♦♦♦♦♦♦♦♦»^^.^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 

/  File:   orb_cal.h 
/  Operating Environment:   SCOS 
/  Compiler:  Microsoft C ver 5.0/5.1 
/ Last Modified:   01 MAR 98 
/ 
/ Description: 
/    - This module returns the latitude and longitude of the satellite 
/     based on a Keplerian Element initial position 
/   - The initial position is provided by the ground station and is 
/     periodically updated 
/     - The calculated position is based on the time the calculation 
/       is performed 
/    - The function returns a structure with two real numbers 
/     - A positive latitude means north 
/     - A positive longitude means east 
/    - This program is based on the public domain program by Karl 
/     Meinzer and James Miller, modified to perform spacecraft 
/     specific calculations 

-249- 



File: orb_caI.h (cont.) 

/* Structure for satellite element set - input for the function */ 
struct sat_elements { 

double epoch_yr; 
double epoch_day; 
double inc; 
double raan; 
double eccen; 
double arg_peri; 
double m_anomaly; 
double m_motion; 

}; 

/* Structure for saving calculated satellite 
position - results of the function */ 

struct sat_position { 

double lat; 
double Ion; 

}; 

/* based on sat_elements input, returns the current position 
of the satellite in lat/long in sat_postion */ 

void calculate_pos(struct sat_elements *, struct sat_position *); 

File: orb caLc 

/it********************************************************************** 

/ File: orb_cal.c 
/ Operating Environment: SCOS 
/ Compiler: Microsoft C ver 5.0/5.1 
/ Last Modified: 01 MAR 98 
/ 
/ Description: 
/   - This module returns the latitude and longitude of the satellite 
/     based on a Keplerian Element initial position 
/   - The initial position is provided by the ground station and is 
/     periodically updated 
/     - The calculated position is based on the time the calculation 
/       is performed 

-250- 



File: orb_calc (cont.) 

/   - The function returns a structure with two real numbers 
/     - A positive latitude means north 
/     - A positive longitude means east 
/   - This program is based on the public domain program by Karl 
/     Meinzer and James Miller, modified to perform spacecraft 
/     specific calculations 
/ 
/ Input: Keplerian Elements in the sat elements structure 
/ 
/ Output: Lat/Long in the sat_position structure 
/ 
/ Process: - Get the current time 
/ - Project Earth position to the current time based on the 
/ known position on Jan 1, 1978, at 0000. 
/ - Project the satellite's orbit position from the given 
/ position to the current time. 
/        - Map the satellite's coordinates to a solar system fixed 
/ coordinate system 
/ - Map the solar system fixed coordinate system to the Earth's 
/ coordinates 
/ - Return the results. 
/ 
/ Assumptions: The floating point module needs to be linked with this 
/ function in order to produce a working program 
/ 
/ Warnings: None 

/**********************************•***********************************/ 

/* K, 

I* . Included Headers */ 
/* il/ 

#include <stdlib.h>   /* for atoi */ 
ttinclude <math.h> 
#include <string.h> 
#include <time.h> 
#include <sys\timeb.h> /* for timeb struct */ 

#include "orb cal.h" 

/* ic/ 

/*  Orbital Mechanic Constants  */ 
/* +1 
#define PI     3.14159265359 

-251- 



File: orb_cal.c (cont.) 

/* Siderial starting point-1978 Jan 01 @ 0000 utc */ 
#define GHAA   100.29 
#define EROTRAT 360.985647 /* Earth's rotation rate in deg/day */ 
#define ERADIUS 6378.0    /* Earth's radius in km */ 
#define MINDAY  1440      /* Minutes per day */ 
#define DAYYR  365.25    /* Days per year */ 
#define DAYMO  30.6      /* Days per month */ 
#define HRSDAY 24        /* Hours per day */ 
#define DAY1978 28125     /* Days since 1978 Jan 01 @ 0000 utc */ 
/* Numerical value of G * 4 * Earth Mass * PIA2 */ 
#define GM4PI2  331.25 

/* v 

/* Local Function Declarations */ 
/* v 

double current_time (void); 
void rad_to_polar (double x, double y, double *p, double *r); 
void polar_to_rad (double p, double r, double *x, double *y) ; 
double rad_to_deg (double x) ; 
double deg_to_rad (double x); 
double sgn (double x); 
double dabs (double x); 
void strmid (char str_out[10], char str_in[10], int x, int y); 

/* v 

/* Function Definitions */ 
/* 1/ 

I*  Public function call to calculate position */ 
void calculate_pos (struct sat_elements *se_ptr, 

struct sat_position *sp_ptr) { 

double period, x, y, d, m, n, p, a, u, g, h, q, v, k, r, s, t; 

x = 0; 
y = 0; 

period —  MINDAY / se_ptr->m_motion; 

g = floor(DAYYR * (se_ptr->epoch_yr -1)) - 
DAY1978 + se_ptr->epoch_day - 
se_ptr->m_anomaly / se__ptr->m_motion / 360; 

/♦Calculate orbital period*/ 
n = se_ptr->m_motion * 2 * PI; 

-252- 



File: orb_caI.c (cont.) 

/* Calculate semi-major axis */ 
a = GM4PI2 * pow (period, 0.6666666666667) / ERADIUS; 

/* Calculate rate of change of Argument of Perigee */ 
v = 4.97 * pow (a, -3.5) * 

(5 * pow (cos (deg_to_rad (se_j>tr->inc)), 2) - 1) / 
pow(l - pow (se_ptr->eccen, 2), 2); 

/* Calculate rate of change of R.A.A.N. */ 
q = -9.95 * pow (a, -3.5) * cos (deg_to_rad (se_ptr->inc)) / 

pow(l - pow (se__ptr->eccen, 2), 2) ; 

t = current_time (); 
d = t - g; 

k = deg_to_rad (d * q + se_ptr->raan - GHAA - t * 360.985647); 

m = d * n; 
r = se_ptr->eccen; 
p = m; 

/* Begin calculating True Anomaly and satellite geocenter distance */ 
do { 

polar_to_rad (p, r, &x, &y); 
h = (m - p + y) / (1 - x) ; 
P = P + h; 

} while (dabs (h) > 0.001);        /*Check for convergence*/ 

r = 1; 
polar_to_rad (p, r, &x, &y); 
y = y * sqrt (1 - se_ptr->eccen * se_ptr->eccen); 
x —  x - se__ptr->eccen; 

rad_tojpolar   (x,   y,   Sp,   &r); 
r - a *  r; 
p = p + deg_to_rad (sejptr->arg_peri + d * v); 

polar_to_rad (p, r, fix, &y); 
h = x; 
r = y; 
p = deg_to_rad (se_ptr->inc) ; 

polar_to_rad (p, r, fix, &y); 
s = y; 
y = x; 
x = h; 

-253- 



File: orb_cal.c (cont.) 

rad_to_polar (x, y, &p, &r); 
k = p + k; 
u = r; 

k = k / 2 / PI; 
k = (k - floor(k)) * 2 * PI; 
x = u; 
y = s; 

rad_to_polar (x, y, &p, &r); 
sp_ptr->lat = rad_to_deg (p); 
sp_ptr->lon = rad_to_deg (k); 

return; 

} // end calculate_pos 

double current_time (void) { 

struct timeb time_buffer; 
char pos_date[8], pos_time[8] , temp[15]; 
double hr, min, sec; 
int day, mon, year; 

_strdate (pos_date); 
_strtime (pos_time) ; 

/* Extract and save month from date string */ 
temp[0] = '\0'; 
strmid (temp, pos_date, 1, 2); 
mon = atoi (temp); 

/* Extract and save day from date string */ 
strmid (temp, pos_date, 3, 2); 
day = atoi (temp) ; 

/* Extract and save year from date string */ 
strmid (temp, pos_date, 6, 2); 
year = atoi (temp); 

/* Extract and save hour from time string */ 
strncpy (temp, pos_time, 2); 
hr = (double) (atoi (temp) + time_buffer.timezone / 60); 

/* Extract and save minutes from time string */ 
strmid (temp, pos_time, 3, 2); 
min = (double) atoi (temp); 

-254- 



File: orb_cal.c (cont.) 

/* Extract and save seconds from time string */ 
strmid (temp, pos_time, 6, 2) ; 
sec = (double) atoi (temp); 

/* The following calculates # of days and fraction of a day */ 
mon = mon +1; 

/* since GHAA reference point 1978 Jan 01 @0000 utc. */ 
if (mon < 4) ( 

year = year - 1; 
mon = mon + 12; 

} // end if 

day = day + (int) floor (year * DAYYR) + 
(int) floor (mon * DAYMO) - 28553; 

return ( hr + min / 60 + sec / 3600) / 24 + (double) day; 

} /* end current time */ 

/* Rectangular to polar transformation */ 
void rad_to_polar (double x, double y, double *p, double *r) { 

*r = sqrt (x * x + y * y) ; 

if (x — 0) 
*p = PI / 2 * sgn (y); 

else 
*p = atan2 (y , x); 

return; 

) /* end rad_to_polar */ 

/* Polar to rectangular transformation */ 
void polar_to_rad (double p, double r, double *x, double *y) { 

*x as r * cos (p) ; 
*y = r * sin(p); 

return; 

} /* end polar_to_rad */ 

-255- 



File: orb_cal.c (cont.) 

/* Return sign of a number */ 
double sgn (double x) { 

if (x >= 0) 
return (1); 

else 
return (-1); 

} /* end sgn */ 

/* Return absolute value of a double type */ 
double dabs (double x) { 

if (x >= 0) 
return (x); 

else 
return (x * -1.0); 

} /* end dabs */ 

/* Convert radians to degrees */ 
double rad_to_deg (double x) { 

return (x * 180 / PI) ; 

} /* end rad_to_deg */ 

/* Convert degrees to radians */ 
double deg_to_rad (double x) { 

return (PI * x / 180); 

} /* end deg_to_rad */ 

/* Extract y characters from a string starting at x */ 
void strmid (char str_out[], char str_in[], int x, int y) { 

int i; 

for   (i = x;   i <   (x + y);   str_out[i  - x]   = str_in[i],   i++); 
str_out[i-x]   =   'Non- 

return ; 

}   /* end strmid */ 

-256- 



B. COMPRESSION CODE 

This program was referred to in Chapter 6, Section C. This is a modification of 

the LZSS program by Mark Nelson and Jean-Loup Gailly. 

File: Lzss.c 

/•♦•••♦•••♦♦♦••♦••♦•♦♦•♦•♦♦♦♦♦♦♦♦♦♦♦♦♦♦^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ 

/ File:  Lzss.c 
/ Operating Environment:   SCOS 
/  Compiler:  Microsoft C ver 5.0/5.1 
/  Last Modified:   01 MAR 98 
/ 
/ Description: 
/   - This is the LZSS module, which implements an LZ77 style 
/     compression algorithm.  As iplemented here it uses a 12 bit index 
/     into the sliding window, and a 4 bit length, which is adjusted to 
/     reflect phrase lengths of between 2 and 17 bytes. 
/   - This program is a modification of a program by Mark Nelson and 
/     Jean-Luc Gaily 
/ 
/ Input: The file to be compressed or decompressed 
/ 
/ Output: The compressed or decompressed file, as directed 
/ 
/ Process: - Open the file, compress/decompress the data 
/ - Save compressed/decompressed data in temp file 
/ - Copy temp file over original 
/ - Maintain compression tables throughout execution lifetime 
/ 
/ Assumptions: None 
/ 
/ Warnings: None 

/* 1l/ 

I* Included Headers */ 
/* il/ 

#include <stdio.h> 
#include <stdlib.h> 
#include <string.h> 
#include <ctype.h> 

#include "bitio.h" 

-257- 



File: Lzss.c (cont.) 

/* */ 
/* Compression Constants */ 
/* */ 

/* Various constants used to define the compression parameters.  The 
INDEX_BIT_COUNT tells how many bits we allocate to indices into the 
text window.  This directly determines the WINDOW_SIZE.  The 
LEN6TH_BIT_C0UNT tells how many bits we allocate for the length of 
an encode phrase. This determines the size of the look ahead buffer. 
The TREE_ROOT is a special node in the tree that always points to 
the root node of the binary phrase tree.  END_OF_STREAM is a special 
index used to flag the fact that the file has been completely 
encoded, and there is no more data.  UNUSED is the null index for 
the tree. MOD_WINDOW() is a macro used to perform arithmetic on tree 
indices. */ 

#define INDEX_BIT_COUNT 12 
#define LEN6TH_BIT_C0UNT 4 
#define WINDOW_SIZE (1 « INDEX_BIT_COUNT) 
#define RAW_LOOK_AHEAD_SIZE  (1 « LENGTH_BIT_COUNT) 
#define BREAK_EVEN ((1 + INDEX_BIT_COUNT + LENGTH_BIT_COUNT) / 9) 
#define LO0K_AHEAD_SIZE (RAW_LOOK_AHEAD_SIZE + BREAK_EVEN) 
#define TREE_ROOT WINDOW_SIZE 
#define END_OF_STREAM 0 
#define UNUSED 0 
#define MOD_WINDOW(a) ((a) & (WINDOW_SIZE -1)) 

char *CompressionName = "LZSS Encoder"; 
char *Usage = "in-file out-file\n\n"; 

/* These are the two global data structures used in this program. 
The window[] array is exactly that, the window of previously seen 
text, as well as the current look ahead text.  The tree[] structure 
contains the binary tree of all of the strings in the window sorted 
in order. */ 

unsigned char window[WINDOW_SIZE] ; 

struct { 
int parent; 
int smaller_child; 
int larger_child; 

} tree[ WINDOW SIZE + 1]; 

-258- 



File: Lzss.c (cont.) 

/* v 

/* Local Function Declarations */ 
/* v 

void InitTree (int); 
void ContractNode (int, int); 
void ReplaceNode (int, int); 
int PindNextNode (int); 
void DeleteString (int); 
int AddString (int, int *); 
void CompressFile (FILE *, BIT_FILE *); 
void ExpandFile (BIT_FILE *, FILE *) ; 

/* it/ 

/* Function Definitions */ 
/* 1/ 

/*  Since the tree is static data, it comes up with every node 
initialized to 0, which is good, since 0 is the UNUSED code. 
However, to make the tree really usable, a single phrase has to be 
added to the tree so it has a root node.  That is done right here. */ 

void InitTree (int r) { 

tree[TREE_ROOT].larger_child = r; 
treetr].parent = TREE_ROOT; 
treefr].larger_child = UNUSED; 
tree[r]. smaller_child = UNUSED; 

return; 

} /* end InitTree */ 

/* This routine is used when a node is being deleted.  The link to 
its descendant is broken by pulling the descendant in to overlay 
the existing link. */ 

void ContractNode (int old_node, int new node ) { 

tree[ new_node ].parent = tree[ old_node ].parent; 

if (tree[tree[old_node].parent].larger_child — old_node) 
tree[tree[old_node].parent].larger_child = new_node; 

else 
tree[tree[old_node].parent].smaller_child = new_node; 

tree[old_node].parent = UNUSED; 
return; 

} /* end ContractNode */ 

-259- 



File: Lzss.c (cont.) 

/* This routine is also used when a node is being deleted.  However, 
in this case, it is being replaced by a node that was not previously 
in the tree. */ 

void ReplaceNode (int old_node, int new_node ) { 

int parent = tree[ old_node ].parent; 

if (tree[parent].smaller_child = old_node) 
tree[parent].smaller_child = new_node; 

else 
tree[parent].larger_child = new_node; 

tree[new_node] = tree[old_node]; 
tree[tree[new_node].smaller_child].parent = new_node; 
tree[tree[new_node],larger_child].parent = new_node; 
tree[old_node].parent = UNUSED; 

return; 

} /* end ReplaceNode */ 

/* This routine is used to find the next smallest node after the node 
argument.  It assumes that the node has a smaller child.  We find 
the next smallest child by going to the smaller_child node, then 
going to the end of the larger_child descendant chain. */ 

int FindNextNode (int node) { 

int next = tree[node].smaller_child; 

while (tree[next].larger_child != UNUSED) 
next = tree[next].larger_child; 

return(next); 

} /* end FindNextNode */ 

-260- 



File: Lzss.c (cont.) 

/* This routine performs the classic binary tree deletion algorithm. 
If the node to be deleted has a null link in either direction, we 
just pull the non-null link up one to replace the existing link. 
If both links exist, we instead delete the next link in order, which 
is guaranteed to have a null link, then replace the node to be 
deleted with the next link. */ 

void Deletestring (int p) { 

int replacement; 

if (treefp].parent — UNUSED) 
return; 

if (tree[p].larger_child = UNUSED) 
ContractNode (p, tree[p].smaller_child); 

else if (tree[p].smaller_child = UNUSED) 
ContractNode (p, tree[p].larger_child); 

else { 
replacement —  FindNextNode (p); 
DeleteString (replacement); 
ReplaceNode (p, replacement); 

} /* end if */ 

return; 

} /* DeleteString */ 

/* This where most of the work done by the encoder takes place. This 
routine is responsible for adding the new node to the binary tree. 
It also has to find the best match among all the existing nodes in 
the tree, and return that to the calling routine. To make matters 
even more complicated, if the new_node has a duplicate in the tree, 
the old_node is deleted, for reasons of efficiency. */ 

int AddString (int new_node, int * match_position) { 

int i; 
int test_node; 
int delta; 
int match_length; 
int * child; 

if (new_node = END_OF_STREAM) 
return (0); 

test_node = tree[TREE_ROOT].larger_child; 
match_length = 0; 

-261- 



File: Lzss.c (cont.) 

for   (   ;   ;   )   { 

for (i = 0; i < LOOK_AHEAD_SIZE; i++)  { 

delta = window[MOD_WINDOW (new_node + i)] - 
window[MOD_WINDOW (test_node + i)]; 

if (delta != 0) 
break; 

} /* end for */ 

if (i >= match_length) { 

match_length = i; 
*match_position = test_node; 

if (match_length >= LOOK_AHEAD_SIZE) { 
ReplaceNode (test_node, new_node); 
return (match_length); 

} /* end if */ 

} /* end if */ 

if (delta >= 0) 
child = &tree[test_node].larger_child; 

else 
child = &tree[test_node].smaller_child; 

if (*child — UNUSED) { 
♦child = new_node; 
tree[new_node].parent = test_node; 
tree[new_node].larger_child = UNUSED; 
tree[new_node].smaller_child = UNUSED; 
return (match_length); 

} /* end if */ 

test_node — *child; 

} /* end for (endless) */ 

} /* end DeleteString */ 

-262- 



File: Lzss.c (cont.) 

This is the compression routine.  It has to first load up the look 
ahead buffer, then go into the main compression loop.  The main loop 
decides whether to output a single character or an index/length 
token that defines a phrase.  Once the character or phrase has been 
sent out, another loop has to run.  The second loop reads in new 
characters, deletes the strings that are overwritten by the new 
character, then adds the strings that are created by the new 
character. 

void CompressFile(FILE * input, BIT_FILE * output) { 

int i; 
int c; 
int look_ahead_bytes; 
int current_position; 
int replace_count; 
int matchJLength; 
int match_position; 

current_position = 1; 
for (i = 0; i < LOOK_AHEAD_SIZE; i++) { 

if ((c = getc(input)) = EOF) 
break; 

window[current_position + i] = (unsigned char) c; 
} /* end for */ 

look_ahead_bytes = i; 
InitTree (current_position); 
matchJLength = 0; 
match_position = 0; 
while (look_ahead_bytes > 0) { 

if (match_length > look_ahead_bytes) 
match_length = look_ahead_bytes; 

if (match_length <= BREAKJEVEN) { 

replace_count = 1; 
OutputBit (output, 1); 
OutputBits (output, 

(unsigned long) window[current_position] , 8) ; 

} else { 

-263- 



File: Lzss.c (cont.) 

OutputBit   (output,   0); 
OutputBits   (output, 

(unsigned long)   matchjposition, 
INDEX_BIT_COUNT); 

OutputBits   (output, 
(unsigned long)(match_length  - (BREAKJEVEN +  1)), 

LENGTH_BIT_COUNT); 
replace_count = matchJLength; 

}   /* end if */ 

for   (i =  0;   i < replace_count;   i++)   { 

DeleteString   (MODJWINDOW   (current_position + 
LOOK_AHEÄD_SIZE)); 

if   ((c = getc(input))   = EOF) 
look_ahead_bytes—; 

else 
window[MOD_WINDOW (current_j>osition + LOOK_AHEAD_SIZE)] 

= (unsigned char) c; 

current_position = MOD_WINDOW (current_position + 1); 
if (look_ahead_bytes) 

match_length = AddString (current_position, 
&match_position); 

} /* end for */ 

} /* end while */ 

OutputBit (output, 0); 
OutputBits (output, (unsigned long) END_OF_STREAM, INDEX_BIT_COUNT); 

} /* CompressFile */ 

/* This is the expansion routine for the LZSS algorithm.  All it has 
to do is read in flag bits, decide whether to read in a character or 
a index/length pair, and take the appropriate action. 

*/ 
void ExpandFile(BIT_FILE * input, FILE * output) { 

int i; 
int current__position; 
int c; 
int match_length; 
int matchjposition; 

current_position = 1; 

-264- 



File: Lzss.c (cont.) 

for ( ; ; ) { 

if (InputBit(input)) { 

c= (int) InputBits(input, 8); 
putc (c, output); 
window [current_position] = (unsigned char) c; 
currentjposition = M0D_W1ND0W (currentjposition + 1) ; 

} else { 

matchjaosition = (int) InputBits (input, INDEX_BIT_COUNT); 
if (match_position = END_OF_STREAM) 

break; 
match_length = (int) InputBits (input, LENGTH_BIT_COUNT); 
match_length += BREAK EVEN; 

for (i = 0; i <= match_length; i++) { 

c = window [MOD_WINDOW (match__position + i) ] ; 
putc(c, output); 
window[currentjposition] = (unsigned char) c; 
current_position = MOD_WINDOW (current_position + 1) ; 

) /* end for */ 

} /* end if */ 

} /* end for (endless) */ 

} /* end ExpandFile */ 

File: Bitio.h 

/*****************************************************^^^^^^^^^ 
/  File:   Bitio.c 
/ Operating Environment: SCOS 
/ Compiler: Microsoft C ver 5.0/5.1 
/ Last Modified: 01 MAR 98 
/ 
/ Description: 
/   - This utility file contains all of the routines needed to 
/     implement bit oriented routines. 
/   - The utility functions perform file 10 bit per bit rather than 
/     by the standard byte 

-265- 



File: Bitio.h (cont.) 

/    - This program is a modification of a program by Mark Nelson and 
/     Jean-Luc Gaily 
/lit********************************************************************* 

#ifndef _BITIO_H 
#define BITIO H 

typedef struct bit_file { 
FILE *file; 
unsigned char mask; 
int rack; 

} BIT FILE; 

BIT_FILE * OpenlnputBitFile (char); 
BIT_FILE * OpenOutputBitFile (char *); 
void OutputBit (BIT_FILE *, int); 
void OutputBits (BIT_FILE *, unsigned long, int); 
int InputBit (BIT_FILE *); 
unsigned long InputBits (BIT_FILE *, int); 
void CloselnputBitFile (BIT_FILE *); 
void CloseOutputBitFile (BIT_FILE *); 
void FilePrintBinary (FILE *, unsigned int, int); 

#endif  /*  BITIO H */ 

File: Bitio.c 

/♦•a******************************************************** 
/*********************************************************************** 
/  File:   Bitio.c 
/ Operating Environment: SCOS 
/ Compiler: Microsoft C ver 5.0/5.1 
/ Last Modified: 01 MAR 98 
/ 
/ Description: 
/ - This utility file contains all of the routines needed to 
/ implement bit oriented routines. 
/ - The utility functions perform file 10 bit per bit rather than 
/ by the standard byte 
/ - This program is a modification of a program by Mark Nelson and 
/ Jean-Luc Gaily 

-266- 



File: Bitio.c (cont.) 

/ 
/ Assumptions: None 
/ 
/ Warnings: None 

/A*********************************************************************/ 

/* */ 
/* Included Headers */ 
/* */ 
#include <stdio.h> 
ttinclude <stdlib.h> 

#include "bitio.h" 

/* */ 
/*  Function Definitions  */ 
/* */ 
BIT_FILE * OpenOutputBitFile (char * name) { 

BIT_FILE * bit_file; 

bit_file = (BIT_FILE *) calloc (1, sizeof (BIT_FILE)) ; 
if (bit_file = NULL) 

return (bit_file); 

bit_file->file = fopen (name, "wb"); 
bit_file->rack = 0; 
bit_file->mask = 0x80; 

return( bit_file ); 

} /* OpenOutputBitFile */ 

BIT_FILE * OpenlnputBitFile (char name) { 

BIT_FILE * bit_file; 

bit_file = (BIT_FILE *) calloc (1, sizeof (BIT_FILE)); 
if (bit_file = NULL) 

return (bit_file); 

bit_file->file = fopen (name, "rb"); 
bit_file->rack = 0; 
bit file->mask = 0x80; 

-267- 



File: Bitio.c (cont.) 

return( bit_file ); 

} /* OpenlnputBitFile */ 

void CloseOutputBitFile (BIT_FILE * bit_file) { 

if (bit_file->mask != 0x80) 
if (putc (bit_file->rack, bit_file->file) != bit_file->rack) 

halt (); /* Fatal error in CloseBitFile! */ 

fclose (bit_file->file); 
free ((char *) bit_file); 

return; 

} /* CloseOutputBitFile */ 

void CloselnputBitFile (BIT_FILE * bit_file) { 

fclose (bit_file->file); 
free ((char *) bit_file); 

return; 

} /* CloselnputBitFile */ 

void OutputBit (BIT_FILE * bit_file, int bit) ( 

if (bit) 
bit_file->rack |= bit_file->mask; 

bit_file->mask »= 1; 

if (bit_file->mask =0) { 

if (putc (bit_file->rack, bit_file->file) != bit_file->rack) 
halt (); /* Fatal error in OutputBit! */ 

bit_file->rack = 0; 
bit_file->mask = 0x80; 

} /* end if */ 

} /* end OutputBit */ 

-268- 



File: Bitio.c (cont.) 

void OutputBits(BIT_FILE * bit_file, unsigned long code, int count) { 

unsigned long mask = 1L « (count - 1); 

while (mask != 0) { 

if (mask & code) 
bit_file->rack |= bit_file->mask; 

bit_file->mask »= 1 ; 

if (bit_file->mask =0) { 

if (putc (bit_file->rack, bit_file->file) != 
bit_file->rack) 

halt (); /* "Fatal error in OutputBit! */ 

bit_file->rack = 0; 
bit_file->mask = 0x80; 

} /* end if */ 

mask »= 1; 

} /* end while */ 

} /* end OutputBits */ 

int InputBit (BIT_FILE * bit_file) { 

int value; 

if (bit_file->mask == 0x80) { 

bit_file->rack = getc (bit_file->file); 

if (bit_file->rack = EOF) 
halt (); /* Fatal error in InputBit! */ 

} /* end if */ 

value —  bit_file->rack & bit_file->mask; 
bit_file->mask »= 1; 
if (bit_file->mask = 0) 

bit_file->mask = 0x80; 

return(value ? 1 : 0); 
} /* end InputBit */ 

-269- 



File: Bitio.c (cont.) 

unsigned long InputBits (BIT_FILE * bit_file, int bit_count) { 

unsigned long mask; 
unsigned long return__value; 

mask = 1L « (bit_count - 1) ; 
return_value = 0; 

while (mask != 0) { 
if (bit_file->mask — 0x80) { 

bit_file->rack -  getc (bit_file->file); 

if (bit_file->rack = EOF) 
halt (); /* "Fatal error in InputBit! */ 

} /* end if */ 

if   (bit_file->rack & bit_file->mask) 
retum_value   |= mask; 

mask »= 1; 
bit_file->mask »= 1; 

if (bit_file->mask = 0) 
bit_file->mask = 0x80; 

} /* end while */ 

return (return_value); 

} /* end InputBits */ 

void FilePrintBinary (FILE * file, unsigned int code, int bits) { 

unsigned int mask = 1 « (bits - 1); 

while (mask != 0) { 

if (code & mask) 
fputc('1', file); 

else 
fputc CO', file) ; 

mask »= 1; 

} /* end while */ 

} /* end FilePrintBinary */ 

-270- 



APPENDIX B.   SOURCE CODE ORGANIZATION 

As stated in Appendix A, except for two excerpts, the source code for the User 

Services in not included in this thesis. It is simply too voluminous, adding several hundred 

more pages to this document. To obtain copies of the source code, just e-mail a request 

to LT Ken Hunter at gkhunterffimsn. com or Jim Horning at JHorning@nps.naw.mil. 

Either one will be happy to e-mail anybody a copy of the program listings. 

The purpose of this section, however, is to give a brief description of the source 

code organization and philosophy. This will help in future efforts to modify or add to the 

existing User Services software. 

All of the source code for the User Services programs, both ground station and 

satellite, are extensively commented. Not only does this aid in readability, it also makes 

learning the exact behavior of the program easier. Each function or class method is 

labeled with the required input, the behavior, and the result of the procedure. 

Additionally, inside each procedure any non-intuitive block of code is labeled with the 

desired effect and behavior ofthat block. Finally, each file contains a header summarizing 

the purpose and interface with the rest of the program for that particular module. 

The ground station software is organized into a separate program for each of the 

modules described in the description. For example, the module to display the telemetry is 

a separate .EXE file from the archive manager module. On each terminal however, each 

of the .EXE files is treated as a thread by the monitor program. The monitor program for 

each terminal launches each of the other programs, as required. It retains pointers to these 

other programs, however, in order for the monitor to conduct thread-like interaction with 

the programs it launches. It is possible for a user to explicitly launch one of the non- 

monitor programs on a terminal without going through the monitor. This is unadvisable 

since the monitor would therefore be unable to interact with the newly launched program, 

reducing the functionality of the software. Towards this end, only the monitor program 

has an icon on the desktop. 

-271- 



The composition of each ground station program is based on the Microsoft Visual 

C++ View/Document architecture. This architecture is based around the use of the 

Microsoft Foundation Classes (MFC). Each program is centered around the interaction of 

four primary classes. The first class represents the program itself and processes anything 

not handled by the other four classes. The second class represents the visible window. 

This class processes any interaction with the user outside the scope of the data being 

handled by the program. The third class is the document class. The document class 

maintains the data that is being manipulated. For instance, in the telemetry viewing 

program, the actual telemetry values being displayed are stored in this class. Finally, the 

view class visually represents the data held in the document class onto the displayed 

window. Most of a program's interaction is handled by this class since the view also 

processes input directed towards document manipulation. This is a quick purview of the 

primary classes used for each one of the User Services programs for the Windows NT 

operating system. For a detailed description of the View/Document architecture and the 

intricate interaction between the primary classes, an MFC tutorial should be referenced. 

The source code file names are comprised of the program name, followed by the 

class name. Thus, for the telemetry's view class, the source code file name is 

"TelemetryView." Using standard C++ format, there are two files with this name, an "H" 

file and a "CPP" file. The "H" file contains the interface to the class, while the "CPP" file 

contains the implementation of the class. Each pair of files contains only one class. Any 

subclass used by a primary class is defined in separate files. 

Each one of the ground station's programs was created using Visual C++'s 

Class Wizard. This merely simplifies the interface into each one of the programs functions 

or class methods. Most of the code was hand generated, although some of it was machine 

generated by the Class Wizard. After loading the program source into the Visual C++ 

editor, invoking up the Class Wizard will display all the class methods that were 

implemented. Further, all the possible methods under the MFC architecture are 

additionally listed. By choosing an implemented method, the source for that method is 

displayed. If a new method is created, the Class Wizard will automatically create the blank 

-272- 



function with all the required overhead for that particular instance. The area for the 

developer to add the new relevant code is clearly marked. Essentially, for learning the 

structure of a program, modifying existing code, or adding new methods to the classes in a 

program, the Class Wizard is an invaluable tool. 

One further note on the ground station software. Due to its networking nature, 

the ground station software must be executed on an Windows NT platform Windows 95 

does not support the required networking elements used by the programs. The result is 

that the ground station will crash on Windows 95. 

The software for the satellite is incorporated into a single .EXE file, called 

"US.EXE." Furthermore, the source code is not broken into classes since it is written 

entirely in C. A pseudo class organization is used, however. The source for each major 

function point of the program is grouped into a separate file, which is labeled according to 

the functionality contained therein. 

Unfortunately, since the MS-DOS like operating system is used, only eight 

character file names can be used. Thus the orbital calculation module is called 

"orbcalc." Once again, the comment heading in each file thoroughly explains the 

purpose of the module and its integration into the whole program. 

The center module for the program is the file "main.c." The function in this 

module performs as an automata state machine processor. It continually loops, checking 

the states of its communications connections and internal processing states. Based on 

these states, and in conjunction with any input received by the system, the appropriate 

submodule is called. All the other files comprising the satellite User Services are 

submodules to the "main" function. 

-273- 



-274- 



LIST OF REFERENCES 

Antonio, Franklin, Keplerian Elements Tutorial, AMSAT, 1997. 

Awad, Maher, Object-Oriented Technology for Real-Time Systems, Prentice Hall, Inc., 
1996. 

Battin, Richard H., An Introduction to the Mathematics and Methods ofAstrodynamics, 
American Institude of Aeronautics and Astronautics, 1987. 

Bible, Steven R., and Daniel Sakoda, "Petite Amateur Navy Satellite," NPS. 

Davidoff, Martin, The Satellite Experimenter's Handbook, The American Radio Relay 
League, 1990. 

Horzepa, Steve, Practical Packet Radio, First Edition, The American Radio Relay 
League, 1995. 

Kelso, T.S, ed., Space Track Report #3: Models for Propagation ofNORAD Element 
Sete,NORAD, 1980. 

Kopetz, H., Software Reliability, Springer-Verlag, 1979. 

Kreutzfeld, Robert J., and Neese, Richard E., Methodology for Cost-Effective Software 
Fault Tolerance for Mission-Critical Systems, IEEE AES Systems Magazine, 
September 1997. 

Lawrence, Gregory Wade, Preliminary PANSAT Ground Station Software Design and 
Use of an Expert System to Analyze Telemetry, NPS thesis, March 1994. 

Lee, P.A., and Anderson, T., Fault Tolerance Principles and Practice, Springer-Verlag, 
1990. 

McGhee, Robert, CS4314 (Symbolic Computing) Class Notes, Winter 1998. 

Nelson, Mark and Gailly, Jean-Loup, The Data Compression Book, M&T Books, 1996. 

Pradhan, D.K., ed., Fault-Tolerant Computer: Theory and Techniques, Volume II, 
Prentice-Hall, 1986. 

Severson, Fred J., An Overview of the Petite Amateur Navy Satellite (PANSAT) Project, 
NPS thesis, December 1995. 

-275- 



Shing, Man-Tak, CS3460 (Software Methodology) Class Notes, Fall 1996. 

Shing, Man-Tak, CS4580 (Design of Embedded Real-Time Systems) Class Notes, Winter 
1997. 

Ward, Jeff and Price, Harold E., PACSAT Protocol Suite: An Overview, Space Systems 
Academic Group Dissertation Holdings. 

-276- 



INITIAL DISTRIBUTION LIST 

Number of 
Copies 

1. Defense Technical Information Center 2 
8725 John J. Kingman Road, Ste 0922 
Ft. Belvoir, VA  22060-6218 

2. Dudley Knox Library 2 
Naval Postgraduate School 
Monterey, CA 93943-5002 

3. ECJ6-NP 1 
HQ USEUCOM 
Unit 30400 Box 1000 
APOAE   09128 

4. Chairman, Code CS 1 
Computer Science Department 
Naval Postgraduate School 
Monterey, CA  93943-5101 

5. Man-Tak Shing, Code CS/SH   1 
Department of Computer Science 
Naval Postgraduate School 
Monterey, CA  93943-5101 

6. Chairman, Code SP  1 
Space Systems Academic Group 
Naval Postgraduate School 
Monterey, CA  93943-5002 

7. Daniel Sakoda, Code SP/DS   1 
Space Systems Academic Group 
Naval Postgraduate School 
Monterey, CA  93943-5002  1 

8. James Horning, Code SP/JH    1 
Space Systems Academic Group 
Naval Postgraduate School 
Monterey, CA  93943-5002 

-277- 



9. LTKenHunter   1 
940 Gravenstein Hwy S 
Sebastopol, CA  95472 

10. MAJ Nelson Ludlow 1 
5928 South 4075 West 
Roy,UT   84067 

11. CDR Gus Lott, Code EC/LT 1 
Naval Postgraduate School 
Monterey, CA  93943-5121 

12. Commanding Officer, Code 30 2 
Naval Information Warfare Activity 
9800 Savage Rd. 
Ft.Meade,MD  20755-6000 

-278- 


