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EXECUTIVE SUMMARY 

Small cracks developing from rivet holes in lap joints of fuselage structure have been an issue of 
concern over the past decade. Stress-intensity factor solutions required to assess the structural 
integrity of such configurations are lacking. To address this need, the domain integral method 
was used in this research to obtain the mode I, normalized stress-intensity factor distributions for 
cracks emanating from a centrally located countersunk rivet hole in a square plate subjected to 
remote tension. Particular attention was focused on short cracks with an elliptical shape that 
have not propagated through the thickness. For these short cracks, the normalized stress- 
intensity factor distribution depended on the shape and size of the crack. Analysis was also 
conducted on long through-the-thickness cracks with a straight front for which the normalized 
stress-intensity factors were uniform. 

ix/x 



1. INTRODUCTION. 

During the last two decades, various methods, such as the finite element method (with or without 
singularity elements) and the boundary integral equation method, have been employed to obtain 
stress-intensity factor distributions for surface cracks and corner cracks in plates, see, Raju and 
Newman [1] and Newman and Raju [2]. Another well established and particularly useful method 
for evaluating fracture parameters is the domain integral method in which the crack tip integral is 
recast as an integral over a finite domain surrounding the crack tip. The calculation of the crack 
tip parameters of interest can then be carried out in a straightforward post processing step in the 
finite element method. The domain integral method has been employed by Shih, Moran, and 
Nakamura [3] to evaluate the energy release rate along a three-dimensional crack front in a 
thermally stressed body and has been used by Nikishkov and Atluri [4] to evaluate the mixed- 
mode stress-intensity factors along an arbitrary three-dimensional crack. 

In this report, we employ the domain integral method to obtain the mode I stress-intensity factor 
distributions for elliptical and straight cracks emanating from a centrally located countersunk 
rivet hole in a square plate subjected to remote tension. Particular attention is focused on short 
cracks—cracks that have not propagated beyond the edge of the countersink. Related work on 
elliptical cracks emanating at various locations from countersunk rivet holes has been recently 
carried out by Tan et al. [5] using the finite element alternating method. In the finite element 
alternating method, two solution procedures are required to obtain the stress-intensity factor 
distribution for a particular crack geometry in a finite body. First, the stress distribution in the 
uncracked solid is obtained by the finite element method. Second, the analytical solution for an 
embedded elliptical crack in an infinite solid is combined with the finite element solution. The 
resulting nonzero tractions on external surfaces and crack faces are then canceled in an iterative 
manner using suitable polynomial inverse functions and finite element solutions on the 
uncracked geometry. 

Although fracture parameters can be obtained very accurately using the domain integral method 
for arbitrary three-dimensional geometries, the method is expensive in terms of the time required 
to generate a mesh, in-core storage requirements for large three-dimensional calculations, and 
solution time. Mesh generation is particularly time consuming due to the difficulties associated 
with constructing a mesh which accurately captures the singular nature of the stress field in the 
vicinity of the crack front and near stress concentrations. On the other hand, the finite element 
alternating method is less time consuming because only the uncracked geometry needs to be 
meshed. The present work will compare stress-intensity factor solutions for a rivet hole 
geometry with solutions obtained by other techniques or by other finite element discretizations. 

We define the geometry of the problem in section 2 and present a general three-dimensional 
domain integral formulation and associated finite element implementation in section 3. The 
numerical results are presented in section 4, followed by a summary and some concluding 
remarks in section 5. 



2. PROBLEM FORMULATION. 

We consider the problem of a square plate with a centrally located countersunk rivet hole 
subjected to uniform tensile loading as shown in figure 1. The dimensions of the plate are 

W/H=1.0 

W/R = 9.6 

and the remote applied stress is taken to be unity cr0 = 1 MPa. A cross-sectional view illustrating 
the characteristic dimensions of the rivet hole is shown in figure 2. We choose a Cartesian 
coordinate system such that the load acts in the y direction as shown. The countersink angle <j) 
and the ratios h/t and R/t are taken to be that of a standard rivet configuration (§ = 50°, h/t = 0.2, 
R/t = 1.954). These dimensions are also consistent with the dimensions of the sample used in a 
recent experimental study by Fadragas and Fine [6]. The plate material is assumed to be linearly 
elastic and isotropic. The elastic constants of the plate are taken to be that of Alclad 2024-T3 
aluminum with a Young's modulus of 73 GPa and Poisson's ratio v = 0.3. 

►    x 

O0 

FIGURE 1. SPECIMEN GEOMETRY (W/H=1.0, W/R=9.6, aö =1 MPa) 
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FIGURE 2. SPECIMEN GEOMETRY (h/t=0.2, (|)=50o, R/t=1.954) 

In the present analysis, cracks with elliptical crack fronts of various shapes and lengths were 
assumed to initiate at the intersection between the countersunk and straight shank portion of the 
rivet hole as shown in figure 3. We define three crack growth regions as I, n, and HI respectively 
as shown in the figure. The extent of the crack growth regions is defined as follows: 

Region I 0 < a < h 
Region II h < a < d 
Region III  d < a 

where a is the major or minor axis of the elliptical crack measured from the origin of the 
coordinate system in figure 2, d is the dimension from the origin to the end of the countersink, 
and h is the height of the knee in the countersink. The crack front is assumed to be elliptical in 
regions I and II with various shapes defined by the ratio a/c. The crack front is assumed to be 
straight in region IH. 

FIGURE 3. THE THREE CRACK GROWTH REGIONS I, H, AND HI 



3. DOMAIN INTEGRAL METHOD. 

In this section we outline the formulation and finite element implementation of the domain 
integral method. Consider a curved crack front lying in the xi' - x3 plane as shown in figure 4. 
We denote by s and v(s) a point lying on the crack front and the in-plane unit outward normal 
vector at s, respectively. The pointwise energy release rate J(s) is given by 

J(s) = vk (s) lim J(s)[W£ik - o-ijUj k Kdr 
r-»o •*"« (1) 

where W is the strain energy density, CJJJ and Uj,k are the Cartesian components of the stress and 
displacement, and m; are the components of the unit outward normal to the curve F lying in the 
xi'- X2 plane which passes through point s as shown in figure 5. The energy released when a 
finite segment, Lc, of the crack front advances an amount Aalk(s) is given by 

JAa = Aa[ J(s)vk(s)/A(s)dS ,~\ 

where lk(s) are the components of an arbitrary unit vector at s lying in the plane of the crack. 

X3 

t 

Xl' 

FIGURE 4. A POINT s LYING ON A CURVED CRACK FRONT 

By substituting equation 1 into equation 2, we obtain the following expression for J 

' = J1™ lt 
[Wik " °'yuJ.k^*midA 

(3) 

where Tt is a tubular surface surrounding the crack segment Lc 



FIGURE 5. THE DOMAIN V ENCLOSED BY THE TUBULAR SURFACES St AND Tt 

In order to obtain a domain integral, we introduce another tubular surface St which surrounds Tt 

as shown in two dimensions in figure 5. In the figure, we denote by n the unit outward normal to 
the surface St and define V to be the volume enclosed by the surfaces Tt, St, and the upper and 
lower crack surfaces C+ and C" along the crack segment. In the absence of body forces, thermal 
strains, and crack face tractions, the bracketed quantity in equations 1 and 3 is divergence free. 
Hence, letting 

Hki=c7ijujk-W8ik (4) 
it follows that 

Hki j = 0     in V (5) 

We now define a vector-valued test function qk as follows: 

qk 
ft 
10 

onTt 
onSt 

(6) 

Assuming qk is sufficiently smooth to justify the following manipulations, we take the inner 
product of qk with the left-hand side of equation 5 to obtain 

IvHkuqkdv=o (7) 

Next, we employ the divergence theorem and the definition of the test function (equation 6) to 
obtain 

^H^dA^H^dV (8) 



Noting that n, = -mi on rt, we obtain an expression for J in terms of the volume integral 

J=JvHkiqk,idV (9) 

Finally, if we assume that J(s) is constant over the crack segment Lc, J(s) can be taken outside 

the integral in (2) and we obtain a simple expression for J(s) in terms of J 

J(s) = 
( ^vkds (10) 

In order to illustrate the numerical evaluation of equation 10, we consider a schematic 
discretization of the volume V surrounding the crack segment into 32 eight-node brick elements 
as shown in figures 6 and 7 (more refined meshes are used in the actual calculations). A cross 
section of the schematic finite element mesh perpendicular to the crack plane passing through 
node M on the crack surface is illustrated in figure 6. A view of the mesh cross section lying in 
the plane of the crack and passing through M is shown in figure 7. Consistent with a standard 
isoparametric finite element implementation, we define the test function qk within an element in 
V using the trilinear finite element shape functions, i.e., 

Qk ZNaQk
a 

a=l (11) 
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Xl 

FIGURE 6. CROSS SECTION OF A FINITE ELEMENT MESH PERPENDICULAR TO 
THE CRACK PLANE PASSING THROUGH NODE M 



FIGURE 7. CROSS SECTION OF A FINITE ELEMENT MESH PARALLEL TO 
THE CRACK PLANE AND PASSING THROUGH NODE M 

In equation 11, Qka are the discrete nodal values of the test function. In the present analysis we 
have chosen the nodal values such that 

M 

Qk
a = o 

if x3
a = 0 and |x2

a| < b and Ix/3] < a 

otherwise (12) 

In other words, the nodal value Qka is defined to be equal to the in-plane unit normal vector 
M 

vk at node M if the node lies in the plane perpendicular to the crack plane which passes through 
node M and does not lie on the boundary of V. In the present implementation, we have defined 
the volume V to be rectangular with height b and width a as shown in figure 6. 

The discrete form of the integral (9) is then written as 

JM = Z {Jne Hkiqk;idQ} 
eeV       e (13) 

where 

Qk,i = SNa,iQka 

a=l 
(14) 

In the present analysis, the integration (13) was carried out using 2x2x2 Gaussian quadrature. 



In order to evaluate the integral in the denominator of equation 10, we assume that the energy 
release rate is constant over the crack segment Lc and define the vector 4 along the crack segment 
as follows: 

''MHoVt 
M at node M 

at all other nodes on crack front (15) 

By taking 4 to vary linearly between the nodes M - 1, M, and M + 1 as shown in figure 7, we 
obtain the pointwise energy release rate at node M 

rM 2JM 

Li+L2 
(16) 

where Li and L2 are the lengths of the element edges containing nodes M -1, M, and M + 1. 

A typical finite element mesh used in the numerical calculations is shown in figure 8. Due to 
symmetry, only one quarter of the plate was analyzed. The mesh shown in the figure is made up 
of 5312 eight-node brick elements (with 6,497 nodes and 19,491 degrees of freedom) and was 
employed to obtain the stress-intensity factor distribution along an elliptical crack front located in 
region I. A magnification of the mesh in the vicinity of the edge of the countersink is shown in 
figure 9. In order to construct the finite element domains necessary for the present domain 
integral approach, a two-dimensional rectangular mesh composed of 51 elements was swept 
around the elliptical crack front to create the three-dimensional mesh as shown in figure 10. 

FIGURE 8. THE FINITE ELEMENT MESH FOR THE CASE OF AN ELLIPTICAL 
CRACK LOCATED IN REGION I 



FIGURE 9. A MAGNIFICATION OF THE MESH NEAR THE INTERSECTION BETWEEN 
THE COUNTERSUNK AND STRAIGHT SHANK PORTION OF THE RIVET 
HOLE 

FIGURE 10. THE FINITE ELEMENT DOMAINS ALONG AN ELLIPTICAL CRACK 
FRONT 

Before performing the numerical calculations, benchmark comparisons were carried out in order 
to validate the present three-dimensional domain integral implementation and to determine the 



necessary mesh refinement. Stress-intensity factor distributions were obtained for both an 
embedded elliptical crack and a quarter elliptical corner crack in a rectangular plate. As reported 
in Gosz and Moran [7], excellent agreement was observed between the finite element/domain 
integral solutions and the benchmark solutions from the literature. 

The meshes employed in the present calculations had between 18,000 and 21,000 degrees of 
freedom, and the calculations were performed on a Silicon Graphics R4000 workstation 
equipped with 192 megabytes of random access memory (RAM). 

4. NUMERICAL RESULTS. 

In all of the numerical calculations, the pointwise energy release rates J(s) along the crack front 
were obtained by the domain integral method as described in the previous section. The mode I 
stress-intensity factors Ki (s) at each point along the crack front were obtained using the plane 
strain relation 

K,(s) = 0}"2 (17) 

where E is Young's modulus and v is Poisson's ratio. Although we recognize that the 
asymptotic field has a lower order singularity than 1 / Vr near intersections of the crack front 
and free surfaces, the extent of the boundary layer is known to be small and thus equation 1 was 
used throughout for the computation of Ki. 

The mode I stress-intensity factor at a point along the crack front can be expressed in terms of the 
remote applied stress a0 and a boundary correction factor F as 

K,(s) = F(a/c, a/t, 6)o0V»iaQ (18) 

where the parameter Q is the square of the complete elliptical integral of the second kind. In this 
report, Q was approximated by the formula given by Raju and Newman [1], 

( V-65 

Q = 1 + 1.464- *<i (19) 
W        c 

Boundary correction factors F for elliptical cracks located in region I are plotted versus physical 
angle 0 in figures 11-13. In figure 11, the boundary correction factors are plotted along the crack 
front for a/c = 0.4 for three different ratios of c/h (c/h = 0.4, 0.6, and 0.8). Note that c is the 
characteristic dimension of the ellipse as shown in figure 3, and h is the height of the straight 
shank portion of the rivet hole. The boundary correction factors for the case where a/c = 0.8 and 
a/c = 1.0 are plotted versus physical angle for four different ratios of c/h (c/h = 0.2, 0.4, 0.6, and 
0.8) in figures 12 and 13, respectively. As shown in the figures, the boundary correction factor 
distributions depend heavily on the ratio a/c, but the distributions for each ratio of a/c do not 
significantly differ for different values of c/h. 

10 
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FIGURE 11. BOUNDARY CORRECTION FACTORS F VERSUS PHYSICAL ANGLE 9 
FOR ELLIPTICAL CRACKS LOCATED IN REGION I (a/c = 0.4, c/h = 0.4, 
0.6, AND 0.8) 
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FIGURE 12. BOUNDARY CORRECTION FACTORS F VERSUS PHYSICAL ANGLE 0 
FOR ELLIPTICAL CRACKS LOCATED IN REGION I (a/c = 0.8, c/h = 0.2, 
0.4, 0.6, AND 0.8) 
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FIGURE 13. BOUNDARY CORRECTION FACTORS F VERSUS PHYSICAL ANGLE 0 
FOR ELLIPTICAL CRACKS LOCATED IN REGION I (a/c = 1.0, c/h = 0.2, 
0.4, 0.6, AND 0.8) 

The boundary correction factors for elliptical cracks located in region II are plotted versus 
physical angle in figures 14 and 15. In figure 14, the boundary correction factors are plotted for 
five different ratios of a/t (a/t = 0.16, 0.32, 0.5, 0.7, and 0.9) for the aspect ratio a/c = 0.4. The 
distributions for a/c = 0.8 and a/t = 0.32, 0.5, 0.7, and 0.9 are shown in figure 15. As shown in 
figure 14, the values of F tend to be relatively constant along the crack front until they drop off 
near the free edge where the crack front intersects the countersunk surface. As shown in 
figure 15, the values of F are highest at the intersection of the crack front with the bottom surface 
of the plate. We note that the boundary correction factors are significantly higher for smaller 
values of a/t within region II for both ratios of a/c considered. 

The crack fronts are assumed to be straight in region m as depicted in figure 3. The mode I 
stress-intensity factors normalized with respect to the remote applied stress and the length 
a' = a + R are plotted versus a normalized length x/t for five values of a/t (a/t = 1.1, 1.2, 1.4, 1.6, 
and 2.0) in figure 16. As shown in the figure, for the largest value of a/t considered (a/t = 2.0), 
the normalized stress-intensity factors are relatively constant through the thickness of the plate 
except near the intersections of the crack front with the top and bottom surfaces of the plate. 

12 
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FIGURE 14. BOUNDARY CORRECTION FACTORS F VERSUS PHYSICAL ANGLE 0 
FOR ELLIPTICAL CRACKS LOCATED IN REGION H (a/c = 0.4, a/t = 0.16, 
0.32, 0.5, 0.7, AND 0.9) 
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FIGURE 15. BOUNDARY CORRECTION FACTORS F VERSUS PHYSICAL ANGLE 0 
FOR ELLIPTICAL CRACKS LOCATED IN REGION H (a/c = 0.8, a/t = 0.32, 
0.5, 0.7, AND 0.9) 
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To compare the present three-dimensional results with corresponding two-dimensional results 
obtained from the literature, we have also plotted in figure 16 the plane strain/stress value 
obtained by Fuhring [8] for a two-dimensional plate of width W having a centrally located hole 
of radius R for the largest value of a considered (shown as the dashed-dot line in the figure). It 
is interesting to note that the three-dimensional results obtained for the case where a/t = 2.0 
when the crack front is significantly beyond the edge of the countersink are higher than the two- 
dimensional value (approximately 12 percent higher). 

FIGURE 16. NORMALIZED MODE I STRESS-INTENSITY FACTORS ALONG 
STRAIGHT CRACK FRONTS IN REGION HI (a/t = 1.1, 1.2, 1.4, 1.6, 
AND 2.0) 

The numerical data for the plots shown in figures 11 to 16 are given in tables 1 to 6. 
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TABLE 1. TABULATED VALUES OF THE BOUNDARY CORRECTION FACTORS F 
VERSUS PHYSICAL ANGLE 6 FOR ELLIPTICAL CRACKS LOCATED IN 
REGION I (a/c = 0.4, c/h = 0.4,0.6, AND 0.8) 

c/h= =0.4 
e  ! F 

2.4198 2.2710 
4.8853 2.3030 
7.4453 2.3813 
10.155 2.4819 
13.082 2.5947 
16.309 2.7140 
19.946 2.8347 
24.137 2.9515 
29.082 3.0595 
35.049 3.1541 
42.393 3.2300 
51.532 3.2819 
62.834 3.3058 
76.300 3.2983 
91.154 3.2500 
105.88 3.1434 
119.04 2.8852 

c/h= =0.6 
0   1 F 

2.4198 2.2303 
4.8853 2.2596 
7.4453 2.3336 
10.155 2.4362 
13.082 2.5585 
16.309 2.6933 
19.946 2.8333 
24.137 2.9713 
29.082 3.0994 
35.049 3.2106 
42.393 3.3008 
51.532 3.3681 
62.834 3.4040 
76.300 3.3963 
91.154 3.3332 
105.88 3.1999 
119.04 2.9057 

c/h= =0.8 
6 F 

2.4198 2.2753 
4.8853 2.2872 
7.4453 2.3510 
10.155 2.4547 
13.082 2.5835 
16.309 2.7209 
19.946 2.8545 
24.137 2.9769 
29.082 3.0955 
38.299 3.2070 
49.457 3.3158 
62.605 3.3988 
77.057 3.4330 
91.402 3.3978 
104.23 3.2933 
114.86 3.1139 
123.33 2.7863 
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TABLE 2. TABULATED VALUES OF THE BOUNDARY CORRECTION FACTORS F 
VERSUS PHYSICAL ANGLE 6 FOR ELLIPTICAL CRACKS LOCATED IN 
REGION I (a/c = 0.8, c/h = 0.2, 0.4, 0.6, AND 0.8) 

c/h= =0.2 
e F 

2.3831 3.2484 
5.2493 3.2098 
8.7088 3.1726 
12.908 3.1464 
18.047 3.1329 
24.414 3.1341 
32.435 3.1519 
42.756 3.1885 
56.320 3.2431 
71.669 3.3020 
86.316 3.3446 
99.665 3.3640 
111.39 3.3656 
121.45 3.3180 

c/h= =0.4 
0 F 

2.3831 3.3017 
5.2493 3.2717 
8.7088 3.2281 
12.908 3.1890 
18.047 3.1651 
24.414 3.1651 
32.435 3.1915 
42.756 3.2389 
56.320 3.2959 
67.951 3.3490 
78.982 3.3890 
89.171 3.4249 
98.363 3.4560 
106.51 3.4733 
113.65 3.4724 
119.88 3.4508 
125.29 3.3554 

c/h= =0.6 
0 F 

1.5479 3.3861 
3.5622 3.3609 
6.1887 3.2955 
9.6257 3.2187 
14.153 3.1486 
20.183 3.1037 
28.366 3.0985 
39.792 3.1469 
56.320 3.2521 
72.985 3.3582 
87.113 3.4194 
98.536 3.4433 
107.52 3.4644 
114.50 3.4873 
119.92 3.4947 
124.13 3.4681 
127.42 3.3443 

c/h= =0.8 
0 F 

1.5479 3.6473 
3.5622 3.5778 
6.1887 3.4623 
9.6257 3.3471 
14.153 3.2503 
20.183 3.1779 
28.366 3.1393 
39.792 3.1657 
56.320 3.2548 
72.985 3.3379 
87.113 3.4145 
98.536 3.4936 
107.52 3.5525 
114.50 3.5873 
119.92 3.5823 
124.13 3.5396 
127.42 3.4093 
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TABLE 3. TABULATED VALUES OF THE BOUNDARY CORRECTION FACTORS F 
VERSUS PHYSICAL ANGLE 9 FOR ELLIPTICAL CRACKS LOCATED IN 
REGION I (a/c = 1.0, c/h = 0.2,0.4,0.6, AND 0.8) 

c/h= 0.2 
6 F 

2.0303 3.6581 
4.6697 3.6342 
8.1009 3.5887 
12.561 3.5378 
18.360 3.4837 
25.899 3.4295 
35.698 3.3804 
48.438 3.3430 
65.000 3.3348 
81.522 3.3642 
94.244 3.4192 
104.04 3.4804 
111.58 3.5420 
117.39 3.6012 
121.86 3.6561 
125.31 3.7042 
127.96 3.7299 

c/h= =0.4 c/h= =0.6 c/h= =0.8 
e F 0 F 6 F 

2.0303 3.7680 2.0303 3.9051 2.0303 4.2155 
4.6697 3.7519 4.6697 3.8541 4.6697 4.0924 
8.1009 3.6925 8.1009 3.7450 8.1009 3.9201 
12.561 3.6166 12.561 3.6215 12.561 3.7531 
18.360 3.5345 18.360 3.5032 18.360 3.5984 
25.899 3.4559 25.899 3.3970 25.899 3.4601 
35.698 3.3880 35.698 3.3042 35.698 3.3456 
48.438 3.3326 48.438 3.2436 48.438 3.2638 
65.000 3.3145 65.000 3.2560 65.000 3.2326 
81.522 3.3665 81.522 3.3155 81.522 3.3011 
94.244 3.4616 94.244 3.3915 94.244 3.4032 
104.04 3.5521 104.04 3.4884 104.04 3.5057 
111.58 3.6372 111.58 3.6149 111.58 3.6246 
117.39 3.7218 117.39 3.7462 117.39 3.7475 
121.86 3.7999 121.86 3.8675 121.86 3.8752 
125.31 3.8594 125.31 3.9670 125.31 3.9953 

I 127.96 3.8744 127.96 I 4.0070 127.96 4.0634 
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TABLE 4. TABULATED VALUES OF THE BOUNDARY CORRECTION FACTORS F 
VERSUS PHYSICAL ANGLE 9 FOR ELLIPTICAL CRACKS LOCATED IN 
REGION H (a/c = 0.8, a/t = 0.16, 0.32, 0.5, 0.7, AND 0.9) 

a/t= 0.16 
e F 

37.092 3.4958 
38.746 3.4429 
40.843 3.4164 
43.532 3.3985 
47.029 3.3885 
51.650 3.3873 
57.853 3.3941 
66.278 3.4052 
77.662 3.4111 
94.614 3.3897 
109.39 3.2904 
121.09 2.9949 

a/t= 0.32 
6 F 

60.863 2.8917 
63.101 2.9136 
65.649 2.9163 
68.550 2.9195 
71.854 2.9231 
75.611 2.9281 
79.867 2.9348 
84.658 2.9422 
90.000 2.9492 
97.692 2.9519 
105.16 2.9374 
112.21 2.8862 
118.73 2.7689 
124.66 2.4829 

a/t= =0.5 
e F 

69.678 2.5243 
70.832 2.5635 
72.235 2.5759 
73.943 2.5867 
76.025 2.5959 
78.564 2.6042 
81.662 2.6120 
85.433 2.6193 
90.000 2.6252 
93.632 2.6295 
98.314 2.6299 
104.26 2.6210 
111.60 2.5860 
120.29 2.4103 

a/t= =0.7 
e F 

76.268 2.3297 
77.804 2.3681 
79.666 2.3759 
81.926 2.3822 
84.664 2.3850 
87.977 2.3836 
91.966 2.3817 
96.728 2.3805 
102.34 2.3758 
108.44 2.3626 
113.65 2.3305 
118.07 2.2686 
121.81 2.1749 
124.99 2.0342 
127.69 1.7791 

a/t= :0.9 
e F 

79.491 2.2005 
80.857 2.2372 
82.508 2.2426 
84.503 2.2445 
86.912 2.2445 
89.814 2.2430 
93.296 2.2381 
97.446 2.2288 
102.34 2.2132 
108.44 2.1883 
113.65 2.1489 
118.07 2.0948 
121.81 2.0138 
124.99 1.8794 
127.69 1.6325 
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TABLE 5. TABULATED VALUES OF THE BOUNDARY CORRECTION FACTORS F 
VERSUS PHYSICAL ANGLE 9 FOR ELLIPTICAL CRACKS LOCATED IN 
REGION H (a/c = 0.8, a/t = 0.32,0.5, 0.7, AND 0.9) 

a/t= 0.32 a/t= =0.5 
e F 0 F 

57.705 3.9931 70.001 3.3344 
59.911 3.7430 71.912 3.2227 
62.486 3.6313 74.224 3.1616 
65.492 3.5400 77.022 3.1101 
69.007 3.4701 80.409 3.0697 
73.116 3.4194 84.504 3.0423 
77.917 3.3859 89.444 3.0287 
83.513 3.3673 95.373 3.0278 
90.000 3.3615 102.43 3.0392 
98.706 3.3747 108.42 3.0593 
106.00 3.4031 113.41 3.0784 
112.06 3.4298 117.56 3.0930 
117.09 3.4472 121.01 3.0982 
121.26 3.4475 123.89 3.0858 
124.72 3.4153 126.30 3.0417 
127.60 3.2911 128.31 2.9107 

a/t= =0.7 a/t= 0.9 
e F e F 

76.042 3.0215 79.387 2.8432 
77.622 2.9441 80.776 2.7791 
79.526, 2.8887 82.447 2.7243 
81.822 2.8437 84.459 2.6773 
84.589 2.8100 86.879 2.6422 
87.921 2.7848 89.788 2.6167 
91.926 2.7687 93.279 2.5995 
96.721 2.7621 97.456 2.5908 
102.43 2.7638 102.43 2.5840 
108.42 2.7727 108.42 2.5737 
113.41 2.7865 113.41 2.5716 
117.56 2.8004 117.56 2.5740 
121.01 2.8066 121.01 2.5712 
123.89 2.7968 123.89 2.5575 
126.30 2.7608 126.30 2.5294 
128.31 2.6466 128.31 2.4373 
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TABLE 6. TABULATED VALUES OF THE NORMALIZED STRESS-INTENSITY 
FACTORS ALONG STRAIGHT CRACK FRONTS LOCATED IN REGION 
m (a/t = 1.1, 1.2, 1.4, 1.6, AND 2.0). THE VALUES WERE OBTAINED FOR 
A REMOTE APPLIED STRESS OF UNITY. 

aJt= = 1.1 
x/t K, 14nd 

0.184 1.065 
0.164 1.101 
0.138 1.118 
0.104 1.126 
0.061 1.133 
0.004 1.141 
-0.069 1.144 
-0.165 1.138 
-0.295 1.125 
-0.408 1.107 
-0.500 1.090 
-0.576 1.071 
-0.637 1.048 
-0.686 1.023 
-0.725 0.996 
-0.756 0.963 
-0.781 0.918 

a/t= = 1.2 
x/t K, 1 -hd 

0.184 1.071 
0.162 1.107 
0.135 1.125 
0.099 1.138 
0.053 1.149 
-0.006 1.154 
-0.083 1.151 
-0.185 1.147 
-0.322 1.141 
-0.431 1.128 
-0.520 1.110 
-0.591 1.091 
-0.649 1.075 
-0.695 1.062 
-0.731 1.047 
-0.760 1.026 
-0.782 0.988 

a/t= :1.4 
x/t K, 14iu£ 

0.184 1.074 
0.164 1.112 
0.138 1.131 
0.104 1.141 
0.060 1.147 
0.003 1.154 
-0.072 1.162 
-0.169 1.170 
-0.298 1.169 
-0.415 1.160 
-0.509 1.150 
-0.584 1.142 
-0.644 1.133 
-0.692 1.119 
-0.730 1.102 
-0.759 1.081 
-0.782 1.042 

a/t= 1.6 
x/t K,l4rid 

0.162 1.113 
0.121 1.144 
0.076 1.156 
0.026 1.160 
-0.029 1.163 
-0.089 1.169 
-0.155 1.176 
-0.229 1.181 
-0.311 1.183 
-0.391 1.179 
-0.463 1.174 
-0.528 1.172 
-0.586 1.169 
-0.638 1.159 
-0.686 1.148 
-0.728 1.137 
-0.766 1.104 

a/t=2.0 
x/t K,l- «Tea 

0.164 1.117 
0.125 1.146 
0.083 1.156 
0.036 1.161 
-0.016 1.162 
-0.073 1.162 
-0.135 1.168 
-0.204 1.176 
-0.281 1.181 
-0.368 1.186 
-0.445 1.182 
-0.515 1.175 
-0.577 1.171 
-0.632 1.168 
-0.681 1.165 
-0.726 1.160 
-0.765 1.134 
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5. SUMMARY AND CONCLUDING REMARKS. 

Mode I stress-intensity factors along three-dimensional elliptical and straight crack fronts are 
obtained for the problem of a plate with a centrally located countersunk rivet hole subjected to 
uniform tensile loading. Attention is focused on short, symmetrically located cracks initiating at 
the intersection between the countersunk and straight shank portion of the rivet hole. The stress- 
intensity factors for cracks of various shapes and lengths are obtained by the domain integral 
method. 

For cracks that have not propagated beyond the edge of the countersink (short cracks), we 
assumed the crack fronts to be elliptical and obtained stress-intensity factor distributions along 
crack fronts for a variety of shapes and sizes. For the shortest cracks considered (cracks that did 
not extend beyond the straight shank portion of the countersink), it was found that the boundary 
correction factors depend significantly on the shape of the elliptical front but do not depend 
heavily on the size of the crack. For elliptical crack fronts beyond the straight shank portion of 
the countersink but not yet through cracks, it was found that the dependence of the boundary 
correction factors on both crack size and shape was significant. For the case of straight crack 
fronts in region HI, the normalized stress-intensity factors were relatively uniform through the 
thickness of the plate for the longest cracks considered (i.e., once the cracks had extended beyond 
the influence of the countersunk rivet hole) and the values were significantly higher than two- 
dimensional results for corresponding geometry obtained from the literature. 
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