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ABSTRACT

Since the US does not have the largest military force in the world, it relies on force
multipliers to achieve victory. One of these force multipliers is stealth technology. However,
when stealth technology is used in modern military aircraft, usually iny the forward sector of the
aircraft is treated and/or shaped. This forward sector treatment is effective against static, ground
based radars. However, the aircraft may be very susceptible to a look-down type of radar. This

thesis addresses the viability of using space-based radar to detect stealth aircraft.

Many papers have been written on how to use space-based radar to detect and track
targets. However, these papers neglect to develop the satellite constellation that would be
necessary to provide continuous radar coverage. These papers also do not address how
susceptible stealth aircraft would be to space-based radar. The approach of this thesis was to
select a target area, in this case Irag, and develop two satellite constellations that could provide
the required radar coverage. The next step was to determine if the system would be able to detect

and track stealth targets.

Based on the analysis, one satellite in geosynchronous orbit can detect stealth aircraft.
However, because the satellite is 35,786 km away, the power requirements, as well as the spot size
are too large to track stealth aircraft. On the other hand, a constellation of 32 satellites in low
earth orbit (1000 km) can both detect and track stealth aircraft. In conclusion, if the US does not
start applying stealth technology to the upper surface of stealth aircraft, they will be susceptible to

space-based radar.
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I. INTRODUCTION

The purpose of this thesis is to examine the impact space-based radar will have on
the combat susceptibility of current and future United States military aircraft. Combat
susceptibility, in simple terms, refers to the probability an aircraft will be hit by a
weapon. Several sequences lead to the aircraft getting hit by a round, missile, or
directed energy weapon. The first two phases are detection and tracking by a
surveillance or tracking sensor. Stealth, the ability of an aircraft to delay detection or
degrade tracking, can significantly lower an aircraft’s susceptibility. However, space-

based radar could pose a significant threat to stealth technology.

The currenf design trend for stealth aircraft is to take the incoming radar energy
and bounce what can not be absorbed into a direction away from the mono-static radar.
Th1s task is mainly accomplished by treating certain sections of the aircraft, namely the
frontal sector of the aircraft. The upper surface of most stealth aircraft is usually ignored
or receives very little treatment. For ground-based radars, this does not present a

problem. However, for a space-based radar, this neglect could pose a real problem.

With spacecraft launch costs dropping and the miniaturization of computer and
radar equipment (the lighter the payload, the cheaper the cost), more and more countries
are gaining access to space. Table 1 shows a list of countries that currently have access

to space as of October 1994 [Ref. 1: p. 7] .




Level ] Country

First Tier United States
Russia

Second Tier France

Great Britain
China

Japan

India

Israel

Third Tier’ Brazil

Italy

* Not all inclusive, only major nations | Australia
listed. Thailand

South Africa

Canada

Iran

Iraq

Pakistan

Table 1.

Tier 1 represents space-capable nations that possess both military and civilian
space capabilities that are on the cutting edge of technology. Second tier nations have
dual purpose space systems that serve both civilian and military purposes. The third tier

countries purchase or lease space capabilities from tier 1 and 2 countries. [Ref. 1]

Based on the data contained in Table 1, today, most countries do not pose a
threat to US stealth aircraft. However, the acquisition process for a new system can take
from 10 to 15 years and new weapons platforms are expected to last at least 30 years or
more. This means that the systems we design today, must be able to handle threats in the

year 2037 and beyond. At the given rate of technological growth, there will be many




more countries in the future with satellite capabilities. These satellites may carry radar

systems capable of detecting and tracking stealth aircraft.

It should be pointed out that while this thesis addresses the impact of space-based
radar, there are two other major counter stealth detection technologies available. The
first is optical detection. It is now possible to buy space-based optical systems off the
shelf that can give resolutions up to 1 meter [Ref.2]. These systems are not classified and
are available to anyone. The advantage of using optics is that very little power is
required to view the target (compared to radar). The reason for this is that unlike radar,
the visual image only has to make a one way trip to the satellite verses a round trip
required by radar. The disadvantage of using optics is that viewing times are limited by

the weather (clouds) and lighting conditions.

The second form of detection technology that could be used is infrared sensing.
Infrared systems also 'require less energy than radar and allow for nighttime viewing. |
Infrared systems provide better coverage in weather than optics, but they still have more
limitations than radal; (energy is still absorbed by clouds and rain). A realistic satellite
detection system would most likely encompass a combination of visual, infrared, and

radar technologies.

This thesis will examine space-based radar applications and determine if the
technology is a viable threat to US stealth aircraft. Chapter II will discuss basic radar

principles, Chapter III will provide a brief overview of orbital mechanics, and Chapter




IV will address the viability of using space-based radar to detect stealth aircraft. The

final chapter will discuss the conclusions.




II. BASIC RADAR PRINCIPLES

The purpose of this chapter is to provide a brief overview of radar fundamentals.
Radar is a very complicated subject and can not be adequately addressed in a few pages.
However, the basic principles and concepts will be presented in order to provide the

reader with the tools necessary to understand the premise of this thesis.

Radar (Radio Detection and Ranging) is the process of usiﬁg electromagnetic
waves to detect and track a target. Radio waves have a wide range of frequencies. The
frequency, f, is the number of times a radar wave passes a given point in space (in a
given amount of time) and is inversely related to the wavelength (wavelength, A=c/f,
where ¢ is the speed of light) . The higher the frequency, the smaller the wavelength.
Radar systems work by transmitting an electromagnetic wave from the radar antenna, to
the target at the speed of light (3X10® m/s).’ The energy that hits the target is scattered in
different directions. The energy that bounces back in the direction of the radar appears as
a blip on the radar screen. The goal is to get the largest amount of energy returned to the

radar.

An antenna is used to transmit and receive radio waves. An omni-directional
" antenna radiates energy equally in all directions. The target is going to be located in a
certain sector. By taking the energy being radiated into unoccupied sectors (wasted
energy) and focusing it in the direction of the target, larger signal returns will be received

and allow the target to be detected at greater distances. The red circle in Figure 1. shows




the radar energy being radiated equally in all directions. The b]ack. colored lobe shows
the energy being directed to a specific sector (referred to as gain, G) [Ref. 3]. The larger
the gain, the larger the directivity. If the radar energy is focused in a particular direction,
scans need to be performed to locate the target (radar dishes rotate in order to locate the
target). Scans can be performed rapidly, therefore, in most cases, the benefit from using

gain is not significantly hindered by limited exposure time.

Figure 1.

The equation for the received signal energy (without losses) is given below (one
form of the Radar Range Equation). The reader is directed to Appendix B of Professor

Ball’s book, The Fundamentals of Aircraft Combat Survivability Analysis and Design,

fora del_'ivation [Ref. 4].
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Where P; is the power transmitted, R is the range, and © is the radar cross section. The
radar cross section is a measure of how much energy is scattered in the direction of the
radar. Measurements are typically taken all the way around the aircraft (360° in azimuth)
with the nose located at 0°. Measurements are also taken with the aircraft pitched at
varying degrees (usually around +/- 5°). The data is measured in square meters or
decibels, with one square meter being the reference level (dBsm). Figure 2. shows a
typical signature pattern for an aircraft [Ref. 5]. An aircraft with a large signature will be

detected before an aircraft with a small signature.

Figure 2. Radar Cross Section Example




A more useful form of the of the Radar Range Equation incorporates a signal to
noise ratio, S/N. No radar system is perfect, and all radar systems encounter a certain
level of noise. The larger the signal to noise ratio the less likely the system is to have a
false alarm and the more likely it is to detect the target. By dividing both sides of the
Radar Range Equation by the noise, N, its effects on the system can be incorporated (this

form of the Radar Range Equation is used in Chapter IV).

There are two main types of radar: continuous wave radars and pulse radars.
Continuous wave radars are on all of the time (receive and send) and are primarily used
for acquisition (long range detection). Pulse radars repeatedly transmit for a certain
period of time (known as pulse width) and receive for the rest of the time. Pulse radars
are used to track targets. The closer the target, the higher the pulse repetition frequency
needs to be in order to track the target [Ref. 6].

Beamwidth is another important concept in the study of radar. Beamwidth refers
to how wide the beam is and is measured in degrees or radians. Since the radar power
dissipates with angle, radar engineers use a term called the 3-dB beamwidth. When tﬁe
radar energy drops to half of its original strength (3-dB), that angular location defines the
boundary of the beam. The beam width for a circular aperture is given by the following

equation [Ref 6: p.136]:

93d]3=1 02 A
d




Where d is the diameter of the antenna and the results are in radians. Related to the
beamwidth is the foot print or spot size at the target location. Since the beamwidth is an
angular measure, the closer the target is to the radar, the smaller the spot size.
Conversely, the farther away the target is, the larger the spot size. In general, a large spot
size is used for detection and a small spot size is used for tracking. In order to cover a
specific region, the spots must move. The time it takes for the spot to sweep over the

entire region is considered one scan.
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III. BASIC ASTRONATICAL PRINCIPLES

The purpose of this section is to provide the reader with a brief overview of
orbital mechanics. Satellites can have a wide range of orbits. These orbits as well as the
satellite’s position are described by six classical elements. The first element is the semi
major axis, a. This is a measure of the size of the orbit. The second orbital element is
eccentricity, e . Eccentricity defines the shape of the orbit. For example, when e=0, the
orbit is a circular. When e is between 0 and 1, the shape of the orbit is an ellipse. The
larger e is, the greater the eccentricity. The third element is the inclination, i. Inclination

is the angle between the Earth’s equator and the satellite’s orbit (see Figure 3.).

0 = i= 1807

i~ 90" Polar

0" <i<90” Dircct  or  posigrade
{moves. in dircction off
Earth's rotation)

fmoves  againgt  the
divection af  Farth's
notatian)

o0 = §2180° Indirect  or mmaraﬂj

Figure 3. Inclination Examples, From Ref. [7]
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In order to discuss the three other orbital elements, a reference frame needs to be
established. Using the standard Cartesian coordinate system, i points toward the vernal
equinox, k points north through the center of the Earth, and j is defined by the right hand

rule (see Figure 4).

Figure 4. Satellite Coordinate Systems, From Ref. [7].

The fourth element, the Right assention of the ascending node (RAAN or ), is the angle
between the i direction and the ascending node. The ascending node is the point where
the satellite crosses the equatorial plane (moving south to north). The fifth element is the
argument of perigee, ®. The argument of perigee is the angular sweep from the

ascending node to perigee. Perigee is the point in the orbit where the satellite is the

12




closest to the Earth (apogee is the farthest point). The true anomaly, v, is the angular

location of the satellite from perigee. Figure 5. Shows a planer view of the orbit.

perigee

Figure 5. True Anomaly, From Ref. [7].

Another important aspect in understanding satellite orbits is their projection onto
the Earth’s surface. The projections are know as a ground tracks. Figure 6. shows a
sample orbit around the Earth (note that the Earth is not spinning). Projection of the

orbit onto a flat map yields a periodic track.

Figure 6. Ground Track, From Ref. [7]
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Since the Earth actually spins while the satellite rotates in its orbit, the ground track will
move over the surface of the Earth Figure 7. shows what the first and second orbital

passes would look like.

Figure 7. Rotating Earth Ground Track, From Ref. [7]

The lower the orbit (smaller period), the more ground tracks over time. The larger the
orbit (larger period) the fewer ground tracks over time. Figure 8. shows the ground
tracks for various orbits. At an altitude of 35,786 km a satellite with zero degree
inclination will have the same rotation rate as the Earth (24 hr period) and there will be
no ground track, only a single point (see Figure 8, item E). This is known as a
geosynchronous orbit. Item A has a period of 2.67 hours. Items B, C, and D have

corresponding periods of 8 hrs, 18 hrs, and 24 hrs.

14




Figure 8. Ground Tracks, From Ref. [7].
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IV. SPACE BASED RADAR THREAT

The purpose of this section is to determine whether it is feasible to use space
based radar to detect stealth aircraft from space. Two different scenarios have been
developed to determine if a space based radar can be used to pick up aircraft targets that
have not been treated on the upper surface. The hypothetical threat was chosen to be Iraq

(see Figure 9).

Figure 9. Iraq, From Ref. [8]
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The two extremes, geosynchronous orbit and low earth orbit, were chosen for analysis
purposes. There are an infinite number of orbits that could provide satellite coverage
and years could be spent creating the optimal satellite configuration. The goal of the
analysis is to show what problems would be encountered at each end of the spectrum and

determine if there are solutions.

A. GEOSYNCHRONOUS ORBIT

The first scenario involves a satellite in geosynchronous orbit. From this vantage
point the satellite rotates around the earth at the same rate as the Earth’s rotation. This
allows the satellite to see the same geographic location at all times. Figure 10. shows a
satellite in geosynchronous orbit with its antenna pointed at Iraq. Figure 11. shows a

blow up of the same view (viewing angle changed for increased clarity).

Figure 10. Geostationary Satellite, Ref. [9]
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Figure 11. Zoom in, Ref. [9]

Note there is no ground track because relative to the earth there is no satellite motion (see

Figure 12.).

Figure 12. Ground Track
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The next two figures show a blow up over Iraq (Figures 13 and 14).

Figure 14. Larger Zoom in on Iraq, Ref. [9].
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The times that the satellite has access to Iraq is summed up in Figure 13. Only one day is

represented in the figure, but the coverage would be the same for each successive day.

AreaTarget-rag-To-Satellite-GEO_SAT: Access Times - 02 Oct 1988 10:08:12
GEQ-SAT . i
1 Jan 1997 00:00:00.00 1 Jan 1897 12:00:00.00 ' 2Jan 1887 00:00:00.00
Time (UTCG)

Figure 13. GEO Access Times

While having the advantage of being able to see the same area all the time, being
in geosynchronous orbit poses a few technical challenges. The satellite is 35,786 km
above the Earth’s surface. The first challenge is to determine if a satellite with enough
power for detection can be put in this type of orbit. We Will use the radar range equation

listed below to determine the power requirements of the satellite [Ref. 10:p. 49].

P=S(4n’’R*kTB.
NG*%c

For analysis purposes we are assuming a perfect radar (except for noise). P; is the power

needed to transmit, S/N is the signal to noise ratio, R is the range (35,786 km in
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geosynchronous orbit), k is Boltzmann’s constant (1.38 X 102 watt-second/°K), T is
temperature (°K), By is the bandwidth, G is the antenna gain, A is the wave length, and &
is the signature of the target. For analysis purposes we wish to have a probability of
detection of at least 90%. Figure 14. shows the relation between probability of detection
and the required S/N ratio (for the given false alarm rate). Case I is for a scan to scan
S/N ratio for an airplane type target and Case II is for a pulse to pulse S/N ratio for an

airplane type target. Using Case II, a 90% probability of detection corresponds to a S/N

ratio of 15.2 dB.
CASE H
99% —
|
z 50%
-
@
<
@
]
[+ 4
‘%
3
g 10% =1
Q
w
f=
[
o
1 1 1§ 1 L
0 2 6 10 14 18
REQUIRED S/N (dB)—»

Figure 14. Signal to Noise vs. Detection Probability, From Ref. [6].
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The antenna noise temperature for 1 GHz is about 70 °K [Ref. 11 and 12]. Lastly, the
bandwidth is a function of the pulse width (B,=2/pulse width, measured Hz) [Ref. 6: p.

259].

An acquisition radar usually has its radar on for extended periods of time
(continuous wave radars). However, for space based radar the background clutter of the
earth needs to be filtered out. This is done by pulsing the radar. From geosynchronous
orbit it takes the radar pulses 0.23857 seconds to reach the earth and bounce back
(assuming a uniform spherical earth; the numbers would vary form location to location,
i.e. mountainous terrain). Any return that is received before 0.23857 seconds is a
possible aircraft. In order to keep the pulses from overlapping the eéhoes, the pulses must
be spaced at least 0.2386 seconds apart, plus the pulse width time. For the acquisition
case, the pulse width was chosen to be 1 second (the larger the pulse width, the less
power required). For tracking, the pulse repetition frequency needs to be around 0.001
seconds or smaller and the pulse width should be on the same order or smaller [Ref. 6].

A pulse width of 0.001 seconds will be used in the tracking scenario.

One important feature of the geosynchronous radar is the very small difference in
range between the tgr'get and the backgroundvclutter (the Earth). A fighter aircraft flying
at an altitude of 3,048 meters (10,000 feet) would be 35,782,952 meters from the
satellite. At this distance, the satellite would receive a signal from the target 0.23855
seconds after it was sent, only‘0.0000Z seconds faster than the clutter return from the

ground. Current software and signal processing technologies can be used to discriminate
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the difference (examples are pulse modulation and pulse compression: For detailed
discussions on ways to solve the ground clutter problem, the reader is referred to the

references 13, 14, 15 and 16).

The gain for a parabolic reflector is given below [Ref. 6].

G=(zD)’
)"2
The parabolic antenna is assumed to have a diameter of 20 meters (perfectly feasible in
space). In order to minimize atmospheric losses, a frequency of 1 GHz was selected. See

Figures 15. and 16. for plots of atmospheric loss verses frequency.

1000

100
50
_~ L
g L
f o
=
€ 1oL
: |
2 sk
- $° Elevation
2 -
iE
o5k
I Vertical path
0.2 15° Elevation
0.1 i TS KR Foaasl L sl ol |
0.01 0.02 005 01 0.2 6s 1 2 s 10 20 50 100 200

Frequency (GHz)

Figure 15. Atmospheric Losses 1, From Ref. [11]
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Figure 15. Atmospheric Losses 2, From Ref. [11]

The upper surface of the aircraft is assumed to have a signature of 100 m?, a very

reasonable assumption.

Based on the aforementioned assumptions and the equations in this Chapter, the

satellite would need to have about 12 kW of power for a 90% chance of detecting the
target. If we extrapolate the data given in figure 16., the power available in 1997 would
be about 5 kW. The power improvements over time are due to increased efficiency of the

solar cells, an increase in solar array size, and improved battery performance. Even with
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the pdwer improvements, there is still not enough power required to detect the target.
Even more power would be required to track the target (12,000 kW) due to the lower

pulse repetition frequency.
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Figure 16. Satellite Power , From Ref. [11]

To reduce the power requirement, instead of having a single pulse probability of
detection of 90%, a cumulative probability of detection of 90% could be specified. The

formula for the cumulative probability of detection is given below [Ref. 6].

P=1-(1- Po)"

26




P, is the cumulative probability of detection, Pqis the single scan probability of detection,
and n is the number of scans. By lowering the probability of detection to 37.5% (S/N=8
dB) and performing 5 scans (equivalent to 6.2 seconds), a cumulative probability of
detection of 90.4% is obtained. This results in a power requirement of 2.3 kW, well
within reason. When the cumulative probability of detection is applied to the tracking
scenario, power requirements are still unrealistic (2,290 kW) and the time delay would

make active tracking unrealistic.

The spot size for this particular scenario has a diameter of 548 km and covers an
area of 235,858 km?. Since Iraq has a square area of 441,839 km?, a rough |
approximation would indicate that the spot would have to be moved twice to cover the
entire area. Even if enough power were available for tracking, fhe spot size would be too

large to track the target.

Solutions to the power problem are forthcoming. The Air Force’s Phillips
Laboratory is currently working on developing a satellite system that can develop 20 kW
of continuos power and 50 kW of peak power [Ref. 17:p. 57]. The Air Force is also
working on “flexible blanket” solar arrays that can provide 150 kW per kilogram [Ref.
17:p 57]. Another possible solution to the power problem is a bi-static system. A larger
transmitting antenna could be placed on earth and the satellite would only need to receive
the signals (drastically reducing satellite power requirements). Bi-static systems are very

complex in nature and well beyond the scope of this thesis.
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B. LOW EARTH ORBIT

The second scénario involves using satellites in low earth orbit (LEO) to track
aircraft targets. By placing a satellite in low earth orbit the distance problem is solved
(GEO is at 35,786 km and the power required is a function of R*), but it creates new
technical challenges. In LEO, the satellite does not rotate at the same rate as the Earfh,
hence one satellite can not see the same location at all times. The closer the satellite is to
the Earth, the more satellites you need to provide continuous coverage. For this scenario

v

an altitude of 1000 km was chosen.

In order to provide continuous coverage at an altitude of 1000 km, 32 satellites are
needed. The satellites are placed in eight, 90° inclined, orbits with right assention of the
ascending node values of 0°, 45°, 90°, 135°, 180°, 225°, 270°, and 325°. Each orbit
contains 4 equally spaced satellites (true anomalies of 0°,90°,180° and 270°). Figure 17.

shows the orbits with Iraq once again being the target area.

Figure 17. LEO Access, Ref. [9]
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Figure 18. Iraq Coverage, Ref. [9]

larity, figure 19 show the same area with

C

Figure 18. shows a blow up of the ground tracks and the area of coverage. Note that
there are so many ground tracks that if we zoomed out (entire Earth view) the entire

picture would be yellow with ground tracks.

To improve picture

Figure 19. Iraq with Ground Tracks Removed, Ref. [9]
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The access times between the satellites and Iraq are summed up in figure 20 (a detailed

list of access times is listed the Appendix).

1 Jan 1897 0C:00:00.00

1 Jan 1857 1200:00.00 2 Jan 1997 00:00:00.00

Time (UTCG)
Low Ewth Orbit Accass $0 Ireq {32 Sebelites)

Figure 20. LEO Access times to Iraq, Ref. [9].

Tt should be mentioned that there are certain instances where the target area can be

covered by more than one satellite (see Figure 21). Further orbital analysis could be

performed to try to reduce the number of satellites (the purpose of this thesis is to

evaluate the two extremes, years could be spent trying to find the optimal satellite

configuration for a given target area) or the satellites could be configured for a bi-static

configuration (again beyond the scope of this thesis).
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Figure 21. Multiple Access, Ref. [9]

Using the same radar range equation used in section I'Va, a single probability of
detection of 90%, and a 5 meter antenna, a LEO satellite would only need 0.78 kW of
power to detect the target. Using an 8 meter diameter antenna the power needed to track
the target (using a pulse width of 0.001 s) is 2.02 kW, again very feasible. The time it
takes for the radar signal to reach the Earth and bounce back is 0.0067 seconds. The
time it takes to receive the signal from an aircraft flying at an altitude of 10,000 feet is
0.0064 seconds. The time difference is better than GEO, but still very small (0.0003 s).
The target can be puled out of the clutter by using modern pulse compression techniques

[Ref. 13,14,15,16].
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The spot sizes for the 5 meter and 8 meter dishes have diameters 61 km and 38
km respectively. This corresponds to square areas of 2922 km? and 1134 kmz. Again,
nbting that Iraq has a square area of 441,839 km® and using a rough approximation, it
would take the 5 meter dish 390 spots or about 3 seconds to complete one scan of the
area. For the 8 meter dish it would take about 151 spots or about 1.2 seconds for one
scan of the area. A LEO satellite constellation poses a real threat to the US’s stealth

aircraft.
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V. CONCLUSIONS

Based on the analysis and simplified assumptions, future space-based radar
systems may pose a significant threat to current stealth technology design trends.
Although challenging, using today’s technology, a satellite in GEO can détect aircraft
targets on the earth. Because of the large power requirements and spot size, this type of
systems would only be useful for early warning. Target discrimination would not be
possible and therefore it is not yet feasible to track in GEO. However, as power

generation and processing techniques improve, this could all change.

A satellite in LEO can both detect and track targets. The tracking rate in LEO is
not yet high enough for missile guidance, but it is high enough that a fighter could be
given coordinates and vectored to the general area. The number of satellites needed in
LEO (32 in the Iraq scenario) might seem excessive and unrealistic, but there are several
satellite constellations with the number of satellites ranging from 8 to 66 that will be put
into LEO between now and 2002 [Ref. 18]. In the future, advanced satellite systems may
be able to detect the target, track the target, and guide missiles close enough for their

own internal guidance systems to take over.

The are a few solutions to the problem. The first would be to apply radar
absorbing materials to the upper surface of stealth aircraft. This would reduce the
aircraft’s signaturé and make it more difficult to detect and track. Another solution is to

use jamming. A ground or space-based system could be set up to saturate the satellite’s
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receiving antenna. Going one step farther, the satellites could be destroyed before the
aircraft are sent into a hostile area. This of course would go against the International
agreement for non aggression in space [Ref. 19]. However, as this thesis is being written,
the Air Force is currently waiting for approval to fire one of it high powered, ground
based lasers at one of its own (old and dying) satellites to see how badly it would be

damaged [Ref. 20]. The wars in the future are going to get a lot more complicated.
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APPENDIX-LEO ACCESS TIMES TO IRAQ
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