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ABSTRACT 

The purpose of this thesis is to simplify analog and digital device control inside 

the Phoenix autonomous underwater vehicle (AUV). Phoenix is required to process 

many data information streams associated with a variety of different sensors. Real-time 

processing is required both for input sensing and for output directing. As presently 

configured, hardware devices aboard the Phoenix are manually connected and configured 

using parallel ports, serial ports, analog-to-digital (A/D) and digital-to-analog (D/A) 

controller hardware. Current hardware control within Phoenix connects all devices 

individually to a single computer. This approach is cumbersome, error-prone and does 

not scale. 

This project investigates the feasibility of using Echelon LonWorks hardware and 

LonTalk protocol as a faster and scalable networked robot control system. 

LonWorks/LonTalk is a flexible A/D D/A hardware networking technology that provides 

reliable communication, decentralized topology with no single point of failure, easy 

extensibility, excellent throughput, and interoperability for a wide variety of hardware. 

This project builds and tests a prototype LonTalk network that connects all 

Phoenix devices. This network demonstrates the capability of using LonWorks to control 

various types of hardware and support rapid component integration onboard the Phoenix. 

Successful demonstration of a LonTalk solution eliminates a critical barrier to Phoenix 

progress and makes robot execution much more robust. 
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I. INTRODUCTION 

A.       BACKGROUND: MINE WARFARE AND PHOENIX AUV 

As the cold war came to the end, naval threats posed by third world countries 

became a major concern for the United States military forces. Most third world countries 

do not have advanced weapon systems or elite military forces when compared to the 

United States. Nevertheless, the mine warfare capabilities of these countries is notable 

for low cost and simple technologies, and continues to be a great threat to the U.S. 

military forces operating in littoral regions. Damages suffered by the USS Princeton 

(CG-59), the Samuel B. Roberts (FFG-58), and the Tripoli (LPH-10) were due to 

minefields (Boorda 95). Lost lives, injuries and ship damage result in enormous costs. 

Alternative technologies are needed to reduce the threat posed by these minefields. 

Although unmanned robots now appear to have the capability to search and detect 

such minefields, low-cost versions of the technology have not been demonstrated. The 

Naval Postgraduate School (NPS) Phoenix Autonomous Underwater Vehicle (AUV) has 

been built to prove such low-cost robots are possible. It is designed primarily to support 

research in autonomous under water mine hunting. It is also configured to complete 

other tasks such as underwater survey, pollution monitoring and remote observation. 

An AUV is a self-contained unmanned vehicle equipped with many sensors, 

actuators, and controllers. The NPS Phoenix AUV design includes various motor 

controllers, thruster controllers, sonar sensors, dive tracker acoustic navigation, 

GPS/DGPS system, gyro system, and detectors. Figure 1.1 shows the external 

components of the NPS AUV. Figure 1.2 shows the major internal components of the 

vehicle. Figure 1.3 shows a perspective view of the NPS AUV. 

The current NPS AUV uses OS-9 real-time operating system for its control code 

and its computer system, running on a GESPAC 68030 microprocessor (Brutzman 98). 

The hardware configuration of the NPS AUV is an assortment of devices connected to a 

centralized computer. This configuration requires multiple interface cards and 

independent wires connecting the central computer system to each individual device. As 

more functions are added and improvements made to the NPS AUV, additional devices 

and wires will be required to be added onboard. As a result, the vehicle becomes more 

and more complicated to maintain and to troubleshoot. 
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Figure 1.3 Perspective View of the NPS AUV (Marco 96) 



B. THESIS MOTIVATION AND GOALS 

The motivation for this project is to simplify the control of analog and digital 

devices within Phoenix. As presently configured, hardware devices onboard the NPS 

AUV are manually connected and configured using parallel ports, serial ports, analog-to- 

digital (A/D) and digital-to-analog (D/A) controller hardware. This approach is 

cumbersome, error-prone and does not scale. Phoenix is required to process many data 

information streams associated with many different onboard sensors, all within a very 

short period of time for both input sensing and output directing. The current approach to 

hardware control within the AUV is not satisfactory. 

Echelon Lonworks hardware and LonTalk protocol is a flexible A/D and D/A 

hardware networking technology that appears to provide reliable communication, 

decentralized (peer-to-peer) topology with no single point of failure, easy extensibility 

and interoperability for a wide variety of hardware devices (Echelon 97). It appears that 

the reliability and throughput of Phoenix onboard sensors and effectors can be greatly 

improved using LonWorks system. 

The primary goal of this thesis is to build and test a prototype LonWorks network 

that connects all Phoenix devices. The Echelon LonWorks development system is used 

to support rapid component integration, diagnosis and evaluation. If successful, this 

project will eliminate a critical barrier to Phoenix progress by making the execution level 

of the Rational Behavior Mode (RBM) (Byrnes 93) (Brutzman 98) software architecture 

much more robust. Finally, the thesis evaluates whether this approach is suitable as a 

general approach for other robot vehicles. 

C. THESIS ORGANIZATION 

The purpose of this thesis is to incorporate the LonWorks technology into the 

Phoenix in order to simplify analog and digital device control inside the vehicle. Chapter 

I presents the background, motivation and goals for this project. Chapter II reviews prior 

work which has significant relevance to this project, particularly the hardware 

configuration and software architecture of the system. Chapter III states in detail the 

problems addressed by this thesis. Chapter IV examines decentralized networked control 



and summarizes the technology and components of LonWorks. Chapter V explains the 

protocol, network services and programming model of the LonWorks technology. 

Chapter VI describes the development tools, hardware construction and LonWorks 

employed network configuration. Chapter VII describes the software source code 

development to implement the LonTalk protocol for the networked control system within 

Phoenix. Chapter VIII provides thesis conclusions and presents recommendations for 

future research. 



II. PREVIOUS WORK 

A. INTRODUCTION 

Much research has been conducted on Phoenix since 1987.  Phoenix is an 

unmanned underwater vehicle designed for research in adaptive control, mission 

planning, mission execution, and post-mission data analysis (Healey 90). 

This chapter summarizes the previous work conducted on Phoenix. A software 

architecture paradigm called the Rational Behavior Model (RBM) is written for the 

control of the NPS AUV system (Byrnes 93). A virtual world and computer simulation 

for the NPS AUV is created for speeding up the development of the NPS AUV 

(Brutzman 92) (Brutzman 95). 

B. AUV DESCRIPTION 

Physically, the Phoenix resembles a small-scale submarine. It has a cylindrical 

body shape, approximately 2.4 meters long, 0.46 meters wide and 0.31 meter deep. 

Externally, it has two aft propellers, two forward rudders, two aft rudders, two horizontal 

thrusters and two vertical thrusters to control its movement in the water. It is equipped 

with three different sonars: a Tritech ST 725 scanning sonar operating at 750 KHz 

(Tritech 92), a Tritech ST 1000 profiling sonar operating at 1250 MHz (Tritech 92), and a 

downward-looking altimeter. Additional devices include a depth cell for measuring the 

depth of AUV and a turbo-wheel probe for sensing water speed. 

Internally, Phoenix has a GESPAC M68030 computer and Sun Voyager Sparc 5 

Workstation (Brutzman 98). The GESPAC uses the OS-9 operating system for the 

real-time multitasking functions in the execution level for controlling the AUV's 

hydrodynamic stability (Byrnes 93). The GESPAC/OS-9 combination is a relatively 

slow computer system. The Sun Voyager 5 uses SunOS 5.4 for data storage in the 

tactical and strategic level. An Ethernet connects these two systems to form a Local-Area 

Network (LAN) inside the NPS AUV. This greatly simplifies remote monitoring and 

testing of Phoenix by providing Internet connectivity, either by cable connection or radio 

modem. A GPS system is installed for tracking the AUV's location via longitude and 

latitude. The gyro system is used for sensing the vehicle's orientation and angular rate 



about three degrees of rotational freedom (Burns 96). The power supply for the internal 

electronic components is provided by multiple 24 volt batteries. Numerous A/D and D/A 

converters for computer-hardware interfaces are currently at maximum capacity, with 

insufficient connectivity to control the full number of devices aboard. 

C.       RATIONAL BEHAVIOR MODEL (RBM) ARCHITECTURE 

The software architecture of the NPS AUV is a tri-level RBM architecture 

(Byrnes 93) (Brutzman 98). There are three levels in the model: the strategic level, 

tactical level, and execution level. Figure 2.1 shows these three levels and their 

interactions with each other. 

The strategic level is the highest level, responsible for the overall operating 

condition of the NPS AUV. It prepares plans and makes operational decisions for the 

vehicle. This level interacts with the tactical level in order to obtain valuable information 

to determine current status of vehicle and the operating environment and provides 

guidance to the tactical level. There is no timing restriction or quantitative analysis in 

this level, therefore, the strategic level operates in an asynchronous environment. 

The tactical level lies between the strategic and execution levels. It receives 

general guidance and objectives for a particular mission from the strategic level. It then 

issues various commands directly to the execution level to carry out the tasks necessary 

to accomplish the mission. The tactical level interacts with execution level via a 

message-passing protocol, and interacts with strategic level via function calls. The 

tactical level also operates in an asynchronous mode because it does not require 

interacting with the hardware in a hard-real-time manner (Byrnes 93). 

The execution level is the lowest level in RBM. This level is written in the 'C 

language. It interacts with the GESPAC operating system to issue all commands to 

various devices. This level is responsible for the control and stability of the Phoenix. It 

controls all the external devices, such as motors, thrusters, sonars, control planes and 

communications. It is required to handle these control tasks on a real-time basis for the 

safe operation of the vehicle. It has to operate in a synchronous mode. If any dangerous 

situations arise, such as flooding, low power supply, loss of communication or loss of 



depth control, the execution level can override the strategic and tactical level and abort its 

mission to assure the overall safety of the vehicle. 

STRATEGIC LEVEL 
Highest Level of Command 
Ultimate Decision Maker 
Asynchronous Environment 
Not Real Time 

I I 
TACTICAL LEVEL 

Receive Commands from Strategic Level 
Issue Commands to Execution Level 
Asynchronous Environment 
"Soft" Real Time 

I I 
EXECUTION LEVEL 

Receive Commands from Tactical Level 
Issues Commands to all External Devices 
Synchronous Environment 
Emergency Abort Mission Mode 
"Hard" Real Time 

Figure 2.1 RBM Tri-Level Software Architecture for the Control of AUV 



D. VIRTUAL AUV SOFTWARE DEVELOPMENT 

Construction and development of the Phoenix have historically been slow but 

steady. With the advent of computer simulation and its application to this project, many 

problem areas which would normally be detected in actual in-water experiments can now 

be discovered during virtual environment tests. Many problem areas that could cause 

catastrophic failure during in-water testing can be safely detected and corrected through 

the use of computer simulation. Also, the use of such simulation greatly speeds the 

problem detection-to-correction cycle and reduces overall testing costs. 

Once problem areas have been identified through the simulation, the source code 

can be corrected and the simulation run again to assess the alteration. When the AUV 

appears to operate correctly through the simulation and all source code corrections have 

been made, the source code on the Phoenix can be updated and in-water testing can 

begin. The simulator provides pre-mission testing, psuedo-mission testing, and post- 

mission playback. This virtual AUV environment has been created at NPS by Don 

Brutzman (Brutzman 94). Figure 2.2 depicts the virtual AUV in its computer generated 

environment. 

In addition to a pure virtual simulation, the simulation can run with the Phoenix 

in-the-loop to more quickly update source code on the robot. This combination of virtual 

and physical models has greatly increased the pace of progress in project development. 

A detailed description of this merging of virtual and physical AUV control software is 

provided by Burns (Burns 96). 

E. BASIC STAMPS 

An alternative control network technology was also examined: BASIC Stamps 

(Parallax 97). These are small microcomputer chips that run Parallax BASIC (PBASIC) 

programs to directly interface with TTL-level devices via programmable I/O pins. 

Typical examples of these devices are LEDs, speakers, and shift registers. BASIC 

Stamps can also interact with non-TTL devices such as solenoids, RS-232 serial devices, 

and other hardware using a variety of adapters. 

BASIC Stamps can control many different types of application nodes. The 

Stamps A/D converter application node provides the hardware and software required to 

interface an analog-to-digital converter to the Parallax BASIC Stamp. The Stamps servo 

10 



application node provides a program to control pulse-width proportional servos by using 

Parallax BASIC. The indoor sonar range-finding application node provides a circuit that 

allows the BASIC Stamp to measure distances for one to twelve feet using ultrasonic 

transducers. 

BASIC Stamps technology is promising, but it still has some shortfalls for robot 

use. BASIC Stamps are single analog-to-digital conversion devices that are hard to 

network. Problems with multiple devices are thus difficult to locate and isolate. Each 

device connected to a Stamp also is likely to require an individual computer connection - 

an approach that does not scale. BASIC Stamps may be useful on rare occasions to 

interface specialized analog equipment to LonTalk Neuron nodes. BASIC Stamps do not 

fully solve the need by the Phoenix AUV for a fully networked hardware control system. 

F. RELATED PHOENIX WORK 

Despite the great effort and numerous hours of research and development that 

have been conducted to date, much remains to be done. The research associated with this 

thesis is just a small part of this greater ongoing effort to continually improve the Phoenix 

AUV. This thesis focuses on reconfiguring and simplifying the analog and digital device 

controls presently installed in the Phoenix. Other research being conducted to improve 

Phoenix's performance include: precise compass calibration by Xiaoping Yun and Randy 

Knapp, virtual NPS AUV hydrodynamics model refinement by Kevin Byrne, RBM 

Tactical Level formalization, refinement, and generalization by Michael Holden, and the 

use of 3-D graphics for sonar and tactical environment visualization by Timothy 

Holliday. 

G. SUMMARY 

During the development of the NPS Phoenix AUV, numerous sensors, actuators, 

sonars, and controllers have been installed onboard the vehicle. These devices are 

connected by using a centralized control networked system. The amount of wire and the 

configuration of this system are complex, cumbersome, and inefficiently unorganized. In 

this thesis, the concept of a decentralized peer-to-peer networked control system for 

analog-digital communications is examined. This thesis investigates the feasibility of 

11 



using Echelon LonWorks Technology to reorganize and simplify the hardware control 

system onboard of the NPS Phoenix AUV. 

Figure 2.2 NPS AUV in Virtual Environment (Burns 96) 
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III. PROBLEM STATEMENT 

A. INTRODUCTION 

The increasing amount of information processed on the Phoenix has created a data 

processing and communication bottleneck. The current system configuration onboard 

Phoenix cannot provide adequate real-time response. This is a result of the 10 Hz 

maximum processing rate, the complex network control system and architecture, and the 

need to reconfigure the entire system if any component is added or removed. This 

chapter addresses each of these in turn. 

B. 10 HZ DATA PROCESSING RATE 

The current AUV configuration uses a central architecture system, a GESPAC 

computer system utilizing the OS-9 operating system, which uses a single central 

computer to interact with all Phoenix hardware components. As previously stated the 

maximum data processing rate is 10 Hz; this does not provide adequate bandwidth to 

control all of the devices onboard Phoenix and subsequently results in severe control 

problems. 

This problem can be solved by using the LonWorks Technology with a 10 MHz 

Neuron processor and a different networked control architecture. This increases the 

potential aggregate bandwidth to 1.25 Mbits per second which will pass up to 1000 

packet messages per second at peak load, and up to 800 packets per second continuously. 

C. COMPLEXITY OF CENTRAL ARCHITECTURE NETWORK 

The complexity of a centralized control system is cumbersome and inefficient. 

Each component (motor controller, servo amplifier, sonar, etc.) in Phoenix requires 

separate inputs into this central control system. The amount of wire and number of 

required connections combine to make this centralized networked control system 

extremely complicated and particularly difficult to troubleshoot. 

This problem can be solved by using a decentralized (peer-to-peer) networked 

control system to simplify the configuration and increase the overall efficiency of the 

Phoenix. 
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D. ADDING OR REMOVING DEVICES IN THE NPS AUV 

Presently, adding or removing any device from the Phoenix requires a change to 

the entire software configuration with no guarantee of driver compatibility between the 

existing component drivers and the new one. Troubleshooting these conflicts can be very 

difficult and frustrating. 

This problem can be solved by connecting each device to a LonWorks networked 

Neuron node. Each Neuron node is independent and equipped with its own processor, 

thus it greatly simplifies the removal or addition of components without having to 

reconfigure the entire system. 

E. FEASIBILITY OF REAL-TIME RESPONSE 

The ultimate goal of the NPS AUV is to provide a real-time data analysis during 

its mission. The current configuration does not provide this feature. This project 

attempts to achieve real-time data analysis by using a Pentium 100 processor along with 

the aforementioned decentralized networked control system. The target performance is 

10 Hz or better for each sense-decide-act loop which queries and commands all sensors 

and actuators in sequences. 

F. SUMMARY 

This chapter addressed the problems embedded in the current Phoenix using a 

central networked control system. This project is designed to improve the overall 

performance of the Phoenix and realizing the objective of real-time data analysis by 

implementing improvements in each of these problem areas. 

14 



IV. CONTROL NETWORK: FOUNDATION AND COMPONENTS 

A. INTRODUCTION 

The use of a control network is a new approach to machine control intended to 

improve the efficiency and reliability of many complex systems. The LonWorks 

approach to distributed control utilizes network technology with many independent 

Neuron nodes as its network foundation. Each Neuron node is an intelligent node that 

has a local processor that can receive, process and send out local data in cooperation with 

the entire network. This chapter discusses the basic ideas and individual components of 

LonWorks technology. Detailed information can be found in Echelon LonWorks 

technical manuals, listed in the references. 

B. BACKGROUND 

In the early stages of computer evolution, large mainframe computer systems 

dominated the industry. They contained centralized systems with a master and slave 

architecture. This architecture provided a single machine used by many users. As 

computer technology and performance improved, the size of microprocessors and 

peripherals shrank dramatically. Powerful personal desktop computers have flourished 

that can perform various tasks, such as word processing, spreadsheet calculation and 

computation-intensive graphics applications. Typically these personal computers are 

independent machines used only by one person, and do not share information with each 

other directly. An external device such as a floppy disk was, until relatively recently, the 

only tool for sharing.data among computers. It is an inefficient way to share information. 

Today's personal computers are more powerful and able to handle more tasks 

using a client/server network system. Wide-Area Networks (WANs) and Local-Area 

Networks (LANs) using TCP/IP are typical network systems with a decentralized 

architecture. Despite the distributed nature of TCP/IP, many systems are designed as 

client/server systems. A single point of failure in the central control server might lead to 

failure for all systems using that server, and thus can be considered unreliable. For small 

systems such as robots, a client/server central network system also requires additional 

wiring and hardware. 
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The concept of distributed control networks has been introduced in an effort to 

improve the current TCP/IP system. A control network connects smart nodes (nodes with 

their own microprocessors) that function independently, and communicate with each 

other. This allows nodes to implement sense and control applications locally. An 

independent node contains a local processor for control functions, a transceiver for media 

access and communication functions, an input/output interface to interact with I/O 

devices, and the necessary software code for operating system, protocol, and local library 

functions. A control network can increase overall system performance and avoid single 

points of failure by distributing the processing power to each individual node. 

C.        CONTROL NETWORK AND LONWORKS TECHNOLOGY 

1. Control Network 

A control network is a group of intelligent nodes that communicate with each 

other to implement input sensing and output directing functions. In an application such 

as building control management, the building thermometers and lighting switches are the 

input sensing devices. The air conditioning units and lighting systems respond to these 

sensing devices and act as output control devices. Applying control network to an 

application such as an automobile, the car's optical or radar detectors sense external 

obstacles, and the system issues control commands via the network to actuate the brake 

system and warn the driver. 

Control networks use two types of communication: peer-to-peer (distributed 

control) and master-to-slave (centralized control). The network data processing loads are 

distributed among all nodes. The combined power of these distributed processors can 

increase the performance of a network system. The control functions can also be 

distributed in a peer-to-peer type of communication. It has no single point of failure, thus 

the reliability of a network system can be enhanced. 

2. LonWorks Technology 

A Local Operating Network (LON) consists of intelligent devices, or nodes, that 

are connected by one or more communications media and that communicate with one 

another using a common protocol. This technology allows a system to sense, process, 
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communicate, and control a system that is distributed over a network. This capability 

encompasses a multitude of applications. It allows products to be linked together and 

communicate to serve applications ranging from small instruments to large and complex 

process control systems (Echelon LonWorks Reference CD-ROM 97). 

As embodied in the LonWorks system, LON consists of intelligent nodes, each 

containing a local operating processor, a Neuron chip. The nodes on a LON receive 

various inputs from external devices. Those inputs are processed and broadcast to the 

network by using the local node's Neuron processor. The nodes also respond to changes 

in the network to produce desired outputs. Each node can perform different functions. In 

most cases, a single node is designed to perform a very simple function. However, by 

grouping different nodes together, they cooperate to perform more complex tasks. These 

tasks can be in a broad spectrum of applications, depending on the types of nodes in the 

network. 

A LON control network can range in size from two to 32,385 nodes in a domain, 

each with one or more sensors or actuators, plus localized computational capability. 

Sensors are used to collect data and information from external devices. Actuators are 

used to receive commands and control the external devices. The local processor is used 

to process local data, perform analysis and conversion, and then report any significant 

changes in its environment. 

In a LonWorks system, the design and development of hardware, software, and 

network are all independent tasks. A node's function is only specified and programmed 

for its intended external device, a LonMark "object." LonMark objects describe standard 

formats for how information is input to and output from a node and shared with other 

nodes on the network (LonMark 96). 

By simplifying the design of a single node and making it independent of most 

external influences, we can reduce development effort and cost. Nodes become generic 

building blocks that can be used and re-used in various environments. For example, a 

generic motor actuator node can be used to control propellers in various rotational speeds. 

In another application, it can control fin motors in a pulse width modulation mode, 

without any change to the application code or node hardware. 
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The flexibility and interoperability of a system can be increased by using this 

control network technology. New nodes can be added or removed. The connections 

between nodes can be changed. These changes can be just like the commercially 

desirable plug-and-play without reconfiguring the entire system. 

D.        CONTROL NETWORK COMPONENTS 

1. Neuron Chips and Application Nodes 

The Neuron Chip is the heart of the LonWorks technology. This section 

summarizes the design and functions of a Neuron chip from Echelon Neuron Chip data 

book listed in the references. Figure 4.1 shows the pin assignments and dimensions of 

the Neuron Chip. Each Neuron Chip includes all of the functions required to acquire and 

process information, make decisions, generate outputs and propagate control information 

via a standard protocol, across a wide variety of network media such as twisted pair 

cable, power line, infrared, radio frequency, or coaxial cable. 
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Figure 4.1 Neuron Chip Plan View (Echelon, Neuron Chip Data Book) 

There are three 8-bit CPUs on each Neuron chip. It has on-board EEPROM and 

RAM. Either on-board ROM or an external memory port is also used to support these 

three CPUs. The Neuron Chips can send and receive information on either the 5-pin 

communications port or the 11-pin I/O. The I/O port has 34 pre-programmed modes of 

operation to implement measurement, timing, and control application. Figure 4.2 shows 

the function blocks of a Neuron chip. 
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Figure 4.2 Function Blocks of Neuron Chip (Echelon, Neuron Chip Data Book) 

The three 8-bit CPUs on each Neuron are identical and they can perform many 

different networking functions. Basically, they are divided into three areas: the Media 

Access Control (MAC), Network interface, and Application interface. 

CPU-1 is the MAC CPU that handles layers one and two of the seven-layer 

LonTalk protocol stack. (Chapter V will describe the LonTalk Protocol in more detail). 

Its main function is to execute the user's application such as measuring input parameters, 

timing events, making logical decisions, and driving outputs. Its processing includes 

driving the communications subsystem hardware as well as executing the media access 

algorithm. It communicates with CPU-2 using network buffers located in shared 

memory. Figure 4.3 shows the shared memory buffers interact with all three CPUs. 

Access to them is mediated with hardware semaphores to resolve contention when 

updating shared data. 
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Figure 4.3 Shared Memory Buffers with Three CPUs (Echelon, Neuron Chip Data 

Book) 

CPU-2 is the Network CPU that handles layers three through six of the LonTalk 

protocol stack. Its main function is encoding and decoding the messages to be sent over 

the network. It handles network variable processing, addressing, transaction processing, 

authentication, background diagnostics, software timers, and network management. It 

uses network buffers to communicate with CPU-1, and application buffers to 

communicate with CPU-3. The buffers are also located in shared memory. 

CPU-3 is the Application CPU. Its main function is to control the Network 

Communication Port that physically sends and receives the packets of data. It runs code 

written by the user, together with the operating system services called by application 

code. The programming language used by the application programmer is Neuron C, a 

derivative of the ANSI C language modified for LonWorks distributed control 

applications. The major modifications include the following: 

• A declarative syntax for input/output objects directly mapping into the 

input/output capabilities of the Neuron chip. 

• A declarative syntax for network variables, which are Neuron C language objects 

whose values are automatically propagated over the network whenever values are 

assigned to them. 

• A declarative syntax for millisecond and second timer objects which activate user 

tasks on expiration. 
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•    A library of functions, which when called, can perform event checking, manage 

input/output activities, send and receive messages across the network, and control 

miscellaneous functions of the Neuron chip. 

Each Neuron chip has the memory components of EEPROM, RAM, ROM, and 

external memory. The internal EEPROM of each Neuron chip contains the following 

information: 

(1) Network configuration and addressing information 

(2) 48-bit Neuron chip identification code 

(3) User-written application code and read-mostly data 

User data in EEPROM can be written under program control. The Neuron chip 

uses an on-board charge pump to generate the required programming voltage. The 

charge pump operation is transparent to the user. The total erase and write time is 20ms 

per byte. The EEPROM may be written 10,000 times with no data loss. 

The EEPROM of each Neuron chip stores installation-specific information such 

as network addresses and communication parameters. Each Neuron chip has a 48-bit 

identifier, the Neuron ID, that is permanently written into the EEPROM during 

manufacture. This 48-bit Neuron ID is unique; the possibility of two Neuron chips have 

the same identical ID is zero. This can eliminate any confusion and overlapping 

problems for any network connection. 

The RAM of each Neuron chip is used to store: 

(1) Stack segment, application, and system data 

(2) LonTalk Protocol network buffers and application buffers 

The RAM State is retained as long as power is applied to the chip, even in sleep mode. 

However, when the node is reset, the RAM is cleared. 

The ROM of Neuron chip stores the Neuron chip firmware, including: 

(1) LonTalk protocol code 

(2) Event-driven task scheduler 

(3) Application function libraries 
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The Neuron 3150 chip uses external memory instead of on-chip ROM. This chip 

can support up to 59,392 bytes of addressing for the external memory. Application 

program data, the Neuron chip's firmware, and reserved space are stored in the external 

memory. Figure 4.4 shows the memory maps of the Neuron Chip. 
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Figure 4.4 Memory Maps of the Neuron Chip (Echelon, Neuron Chip Data Book) 

2. Neuron-Chip Based Application Node 

An application node has the capability of receiving data from sensors, processing 

input data locally, and executing the desired control task. A single Neuron node contains 

the following components as the minimum requirements: 1) a Neuron Chip, 2) a 

transceiver, 3) circuitry to connect the Neuron chip to input/output devices, 4) an optional 

host processor. 

The Neuron chip is a microcontroller for processing data locally, and 

implementing the LonTalk protocol. The transceiver is used to communicate 

input/output data with the network. Circuitry is built to connect the Neuron chip and its 

input/output devices. These input /output devices can be motor servos, motor controller, 

sensors, and actuators. The optional host processor is a processor other than the Neuron 

chip. It is primarily used to execute the node's application in network management and 
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maintenance, which required more processing power. Most LonWorks nodes use the 

Neuron chips as the local processor, and for simple input/output tasks they are adequate. 

3. Communication Media 

LonWorks uses two types of communication media. One is wireless 

communication with radio frequency or infrared. The other type is wired communication 

using media such as twisted pair cable, power line, or coaxial cable. 

4. Connective Devices 

The connective devices of LonWorks include various types of transceivers, 

control modules, routers, and network services interface. 

The transceivers can be categorized into two groups depending on the networked 

topology. There are two types of topology used in LonWorks technology. The first one 

is Free Topology. It consists of devices connected to the communication channel in 

random multi-dropped fashion. There is only one termination box in this topology. The 

termination box is required for proper data transmission performance in the network 

segments. The termination box is used to absorb any signal and remove it from the 

network. The communication channel can have the configuration of a ring, star, bus, or 

mixed. The second one is Bus Topology. It consists of a central main communication 

channel. It is called the bus with two termination boxes, one at each end. Each device is 

attached through hardware interfacing, known as a node, to the communication channel 

in a multi-dropped fashion. The top box of Figure 4.5 shows a bus topology. Figure 4.5 

bottom box shows different configurations of free topology (Echelon, Training Manual). 
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Figure 4.5 Basic Structure of Free and Bus Topology (Echelon, Training Manual) 

There are two transceivers used in free topology. One is Link Power Transceiver 

(LPT-10), and the other one is Free Topology Transceiver (FTT-10). The LPT-10 

combines power and data on a common twisted wire pair. It only requires one 48 Volt 

DC external power supply for the network. Power flows through the LPT-10 Link Power 

Interface Module and twisted pair lines to all the nodes. The transceiver integrated a +5 

Volt DC regulator for all the nodes. It provides +5 Volts DC at up to 100 mA to all the 

nodes and eliminates a local power supply at each node. This voltage and current is high 

enough to power a Neuron Chip and associated components. Using this transceiver can 

eliminate local power supplies, resulting in equipment and labor cost saving (Echelon, 

LonWorks Products Manual). 

The FTT-10 is compatible with LPT-10. They can communicate with each other 

in the same twisted pair medium. If a node with its associated devices requires higher 

voltage and current than the link power segment can provide, then it needs an additional 

local power supply. A node equipped with FTT-10 transceiver can be operated by a local 

power supply. It can communicate with all the nodes in the link power network without 
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any electrical isolation. It is another cost saving design (Echelon, LonWorks Products 

Manual). 

These two transceivers can be used in any type of topology without any 

restriction. Table 4.1 describes the technical data for the transceivers. 

Transceiver Medium Bit Rate Topology Distance No. of 
Nodes 

LPT-10 Twisted 
Pair 

78 Kbps Free-Bus, Star, 
Loop, Others, 
Combinations 

500m free 
topology 

32 

FTT-10 Twisted 
Pair 

78 Kbps Free-Bus, Star, 
Loop, Others, 
Combinations 

500m free 
topology 

64 

TPT/xf-78 Twisted 
Pair 

78 Kbps Bus 1400m (3m 
stubs) 

64 

TPT/XF- 
1250 

Twisted 
Pair 

1.25 Mbps Bus 130m (0.3m 
stubs) 

64 

Table 4.1 Technical Data of Neuron Transceivers (Echelon, LonWorks Products Manual) 

The Twisted Pair Transceivers, TPT/XF-78 and TPT/XF-125, are used in Bus 

Topology. Table 4.1 also shows their technical data. Each transceiver includes a 

transformer-isolated communication transceiver and connectors for power, the neuron 

Chip communication port lines, and the twisted pair bus. The TPT/XF-78 operates at 

78kbps data transmission rate, and the TPT/XF-125 operates at 1.25Mbps. The TPT/XF- 

125 has the highest data transmission rate. It is the desired transceiver to meet the high 

speed networking application, like the NPS AUV (Echelon, LonWorks Products 

Manual). 

LonWorks control modules integrate a Neuron Chip, communication transceiver, 

memory, and clock oscillator in one compact module. They require a power supply, the 

local sensors/actuators, and the application program running on the Neuron Chip in order 

to build a complete node (Echelon, LonWorks Products Manual). 

When there are two or more different media in LonWorks network, a LonWorks 

Router can be used. It provides flexibility to the network system. The router can be used 
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to increase maximum number of nodes and total wire length in the network. It can also 

increase total system reliability by dividing network into many subsets. 

If additional processing power is needed for a node, a host processor can be part 

of LonWorks node in addition to the local Neuron Chip. Echelon LonWorks offers 

parallel ISA bus interfaces, serial (EIA-232) interfaces, PC Card interfaces, and Hayes- 

compatible modem interfaces for these applications. The PCLTA PC LonTalk Adapter is 

a PC plug-in card that provides access to a LonWorks network from any ISA bus PC with 

a compatible operation system. The SLTA serial LonTalk Adapter is an integrated 

LonWorks network interface that can be used to interface any host equipped with EIA- 

232 serial interface to a twisted pair LonWorks network. The PSG/2 is a programmable 

gateway version of the SLTA/2 adapter. It provides more flexibility for the designer to 

create more versatile control systems or devices (Echelon, LonWorks Products Manual). 

A LonWorks node with local host processor in addition to the Neuron Chip 

requires a network service interface to connect with LonWorks network. Such node 

usually performs more complex tasks, for example, monitor the entire system, record 

network data, and provide installation, maintenance, and diagnostic tools. This node can 

simultaneously support network communications and also support high-level interaction 

with a network tool. The Network Service Server (NSSs) and Network Service Interface 

(NSI) are designed to meet the above requirements (Echelon, LonWorks Products 

Manual). 

5.   Development Tools 

LonWorks technology provides a development tool, the LonBuilder Developer 

Kit, for helping the developer to design and develop the LonWorks based node 

applications and systems. These tools include a software program environment for 

developing and debugging applications at multiple nodes. There are two emulators used 

to simulate a node with its application in the development phase. A network manager is 

used to install and configure these nodes, and a protocol analyzer is used to record and 

analyze the network message traffic. This will provide information on the overall system 

performance. The developer can then adjust the network configuration to obtain the 
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maximum network performance and to debug any errors (Echelon, LonWorks Products 

Manual). 

6.   Network Services Tools 

LonWorks provides tools for installation, configuration changes, diagnostics, 

repair, and monitoring the entire system. It is the LonWorks Network Services (LNS) 

which has the software components for developing system-level applications. This 

LonWorks Network Services architecture ensures the compatibility and interoperability 

among all the nodes which are developed by different vendors. The LNS provides the 

tools to ensure the nodes from different developers will work together. As long as they 

meet the LonWorks interoperable specification for developing their node, each developer 

does not need to worry about the details of any other developer's design and loosing 

synchronization with the network's configuration. Therefore, system installation can be 

worked in parallel. System repair can be done at any possible problem spot in the 

network by using this LNS tool. LNS can save time for system installation and repair, 

reduce cost and increase the overall productivity (Echelon, LonWorks Products Manual). 

E.       SUMMARY 

This chapter introduced the background and technology of control networks as 

provided by LonWorks. This technology provides a reliable and efficient networked 

control system for many different industrial applications. These applications are used in 

a wide range of control and propulsion systems. This technology is an open, 

decentralized networked control system and is different from the proprietary control and 

centralized systems currently used in most industrial applications. Control network 

technology can provide reliable, interoperable and robust networked control systems for a 

variety of applications. 
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V. PROTOCOL AND NETWORK STRUCTURE OF LONWORKS 

A. INTRODUCTION 

Echelon LonWorks uses LONTALK as its networking protocol. This protocol 

follows the International Organization for Standardization Open Systems Interconnects 

(ISO/OSI) reference model. The addressing hierarchy of LonTalk has three levels. They 

are domain, subnet, and node. The data communication modes are single-ended, 

differential, and special-purpose. LonWorks uses Standard Network Variable Types 

(SNVTs) to standardize all the network communication variables. The programming 

model of LonWorks is Neuron C, a C language based on ANSI C. This chapter 

summarizes the LonTalk protocol and network communication methods for LonWorks. 

The complete information is stated in Echelon Neuron chip data book listed in the 

references. 

B. LONTALK PROTOCOL 

1. LonTalk Protocol 

The LonTalk protocol uses all three CPUs of the Neuron chip to implement a 

complete networking protocol. This protocol design follows the ISO/OSI reference 

model which is an open published protocol. It is a control protocol that implements all 

seven layers of ISO/OSI model. 

This protocol is media-independent. It supports many different communication 

media, including wireless radio frequency, infrared, wired twisted pair, power line, and 

coaxial cable. It also supports multiple communication channels. A channel is one type 

of physical transport medium for packets. LonWorks uses a router to connect two 

different channels with different communication media. The LonTalk protocol supports 

such a network configuration to increase system flexibility and reliability. 

2. ISO/OSI Model 

The LonTalk implements a seven-layer protocol that is a standard developed by 

the International Organization for Standardization (ISO). The purpose of this 

development is to have an open, published general-purpose data communications 
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architecture. Its structuring technique is layering. The communication functions are 

partitioned into one of the seven layers. Each layer accomplishes its assigned tasks 

independently. The lower layer performs primitive functions and related services for the 

next higher layer. The detailed tasks performed in each layer are hidden to the one 

above. Therefore, the changes in one layer do not affect other layers (Stallings 97). 

Table 5.1 shows the seven layers in OSI model, and their relationship to the LonTalk 

protocol. 

The first layer is the physical layer. This layer specifies the actual physical wiring 

that connects the network media and devices electrically. The specification of this layer 

consists of: types of media, range of network, number of devices per network segment, 

and network isolation scheme. 

The second layer is the link layer. This layer specifies the rules to access the 

physical layer. This layer also defines the rules for framing, data encoding, CRC error 

checking, predictive CSMA, collision avoidance, priority access scheme, and collision 

detection. 

The third layer is the network layer. This layer assigns the destination address for 

a message received from the upper layer. This destination address is part of a message 

packet sent to the network. This layer also provides the information for routing of 

messages for the network segment, and controls the bandwidth usage. 

The fourth layer is the transport layer. This layer provides different levels of 

reliability for the message packet sent to the network. The level of reliability varies 

depending on the application needs. These reliability levels are: broadcast addressing, 

unicast addressing, multicast addressing, repeated service, acknowledged service, 

unacknowledged service, and authentication. 

The fifth layer is the session layer. This layer initiates a request, response, or 

authentication message to the other nodes in the network. 

The sixth layer is the presentation layer. It provides the data translation between 

the network variables and applications. 

The seventh layer is the application layer. This layer provides the interface 

between the application program and the network devices. 
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OSI Layer Purpose Services Provided Neuron 
Chip's CPU 

7 Application Application 
compatibility 

LonMark Objects, 
Configuration properties, 
SNVTs, 
File transfer. 

Application 

6 Presentation Data 
interpretation 

Network variables, 
Application messages, 
Foreign frame transmission, 
Network services. 

Network 

5 Session Remote actions Request/Response, 
Authentication, 
Network services. 

Network 

4 Transport End-to-end 
reliability 

Acknowledged and unack message, 
Common ordering, 
Duplicate detection. 

Network 

3 Network Destination 
addressing 

Unicast and multicast addressing, 
Routing information 

Network 

2 Link Media access and 
framing 

Framing, 
Data encoding, 
CRC error checking, 
Predictive CSMA, 
Collision avoidance, 
Priority, 
Collision detection. 

MAC 

1 Physical Electrical Media-specific interfaces and MAC, 
interconnect modulation schemes XCVR 

Table 5.1 Seven Layers of ISO/OSI Model (Echelon, Neuron Chip Data Book) 

3.   LonTalk Addressing Schemes 

The addressing hierarchy of LonTalk consists of three levels. The top level is a 

domain, the middle level is a subnet, and the third level is a node. The addressing 

information is contained in the EEPROM on Neuron chip based node. This scheme is 

analogous to the addresses used by US postal service. The domain corresponds to a 

specific town, or city. The subnet corresponds to a road, and the node corresponds to a 

single house address. 

The domain identifiers are used in a control network with more than one type of 

communication medium. Different domain identifiers can keep the applications using the 
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same communication medium in one group. The domain identifier is selectable and can 

be 0,1,3, or 6 bytes long. 

The subset is the second level of addressing. There may be up to 255 subnets per 

domain. A subnet is a logical grouping of nodes from one or more channels. A router is 

used to divide nodes into different subnets in a domain. It can selectively forward 

packets to the desired subnet. 

The node is the third level of addressing. There may be up to 127 nodes per 

subnet. A node is the basic component of LonWorks network. It can be a node with a 

device that performs some simple input/output functions. It can also be a node with a 

host processor and application that performs more complex tasks, such as network 

monitoring and analyzing. 

Each Neuron chip based node contains a unique 48-bit Neuron ID. This ID is 

assigned during manufacturing and used as a network address during initial network 

installation and configuration. 

The LonTalk addressing capabilities are (Echelon, Neuron chip data book): 

Domains in a network: 2e48 
Subnets in a domain: 255 
Nodes in a subnet: 127 
Nodes in a domain: 32,385 

The addressing capability of LonWorks is enormous; it provides system flexibility 

and expandability. 

4.   LonTalk Messaging Services 

There are four basic types of messages, Acknowledged (ACKD), 

Request/Response (REQUEST), Repeated (UNACKD_RPT), and Unacknowledged 

(UNACKD).   The first two types require acknowledged messages between end-to-end 

nodes that provide better reliability services. The last two services do not require 

acknowledged messages from the receiving nodes. They conserve bandwidth and 

provide faster services with less reliability. 

When a sending node sends out a message to a node or group of nodes, it expects 

acknowledged messages from each receiving node. This type of message is 

Acknowledged (ACKD). The sending node will retry to send out the same message if it 
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doesn't receive the acknowledged messages in a preset time frame. The network CPU of 

a Neuron node is responsible for generating the messages and acknowledgements without 

intervention of the application CPU. Each message has its own transaction ID. The 

Neuron nodes use these IDs to keep track of all the network messages and 

acknowledgements. This can prevent any duplicated messages received by individual 

nodes. 

The Request/Response (REQUEST) service is similar to the ACKD. The only 

difference is that the incoming message is processed by the application CPU of the 

receiving node before a response is generated. The response message may include data 

or other useful information to the sending node. This service is designed primarily for 

client/server application. 

The third type of service is Repeated (UNACKD_RPT) without 

acknowledgements. A sending node sends out a message to a node or group of nodes in 

preset multiple times. It does not require acknowledged messages from the receiving 

nodes. This service is designed primarily for multicasting its messages to large groups of 

nodes. It conserves the network bandwidth without overloading the network and 

provides a better response time. 

The last type of service is Unacknowledged (UNACKD). A sending node only 

sends out its message once to the receiving nodes. It does not require acknowledged 

messages from the receiving nodes. This service provides the highest performance and 

transmission rate in the network traffic, and conserves the network bandwidth. However, 

it is a very unreliable service and the application must not be sensitive to the loss of a 

message. 

C.       DATA COMMUNICATION MODES 

There are three modes of operation in the LonWorks data communication. Those 

modes are single-ended, differential, and special-purpose. Differential Manchester 

coding is used by the single-ended and differential modes. This encoding scheme is 

polarity insensitive, and thus reversal of polarity in the communication link will not affect 

data reception. It is a widely used coding scheme and reliable format for transmitting 
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data over various media. Table 5.2 provides the data rate over the LonWorks network 

with various Neuron chip input clock rates. 

Network Bit Rate 
(Kbps) 

Minimum Input Clock 
(MHz) 

Maximum Input Clock 
(MHz) 

1250 10.0 10.0 
625 5.0 10.0 

312.5 2.5 10.0 
156.3 1.25 10.0 
78.1 0.625 10.0 
39.1 0.625 10.0 
19.5 0.625 10.0 
9.8 0.625 10.0 
4.9 0.625 5.0 
2.4 0.625 2.5 
1.2 0.625 1.25 
0.6 0.625 0.625 

Table 5.2 Neuron Chip's Data Rate over the LonWorks Network (Echelon, 
Neuron Chip Data Book) 

The single-ended mode and differential mode use the same data encoding scheme. 

In most respects, they are the same mode of operation. The difference is that the single- 

ended mode is used with external active transceivers interfacing to media such as free 

topology twisted pair, radio frequency, and coaxial cable. The differential mode is used 

with external passive transceivers, which are able to differentially drive and sense a 

twisted-pair transmission line. Both modes use differential Manchester coding to encode 

the transmitted data and decode received data. This scheme provides a transition at the 

beginning of every bit period for the purpose of synchronizing the receiver clock. It is 

referred as clock transition. 

Figure 5.1 shows the representation of zero and one for the differential 

Manchester coding. It is a common coding technique and provides the benefits of 

transmitting data over various media in a fast and reliable format. In every clock cycle, a 

transition occurs to represent a single bit of data. If there is no transition during the clock 

cycle, it represents a "one" bit. If there is a transition at the halfway point of the clock 

cycle, it represents a "zero" bit. 
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o o o 

4    800 ns @ 1.25 Mbps 

Figure 5.1 Differential Manchester Coding Scheme (Echelon, Neuron Chip Data 

Book) 

Figure 5.2 and 5.3 show the typical transmitting data formats for the single-ended 

mode and the differential mode. Each message packet consists of a preamble, a data 

frame and address information with 16 bits of CRC, and line code violation. 

«- mj-w\j\r\j\rv\r I _  
♦HMHMHHMHi 

Transmit 
Enable ~\ 

By BitSynC        !w      Date + 1Sb^CRC        Une-CodJ  BäTBäI 
Pr«amb!«       Sync Violation —a« H 

Figure 5.2 Single-ended Mode Data Format (Echelon, Neuron Chip Data Book) 
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Figure 5.3 Differential Mode Data Format (Echelon, Neuron Chip Data Book) 

A preamble is formed at the beginning of a packet. Its purpose is to synchronize 

the clock between sender and receiver. It consists of a bit-sync field and a byte-sync 

field. The bit-sync field is a series of differential Manchester 1 's; its duration is user 

selectable and is at least six bits long. The byte-sync field is a single bit differential 

Manchester 0 that marks the end of the preamble, and the beginning of the first byte of 

the packet. 

Followed the preamble, there is a string of data with address information. Figure 

5.4 shows the typical size of a packet. Each data frame may contain the CRC as an 

option. The Neuron chip accepts an active-low collision detect input from the 

transceiver. If collision detection is enabled and the Neuron chip is signaled by one of its 

own communication ports, a collision has occurred. The Neuron chip acknowledges the 

collision and resends the message by attempting to re-access the channel at later time. 

The message packet is terminated by forcing a differential Manchester line-code 

violation. This violation occurs when the output data is at a constant level without any 

transition. This level must hold long enough for the receiver to recognize an invalid 

code, which signals the end of the transmission. The data output can be either high or 

low for the duration of the line-code violation, depending on the state of the data output 

after transmitting the last bit. 
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Typical Packet Size Example 

Layer 2 Layer 3 
Header Addr*.'$s> infctmaiion 

Layer4 
Service; Type 

Layers.'6 
Header 

Layer 2 
CRC 

Service ype ID 

I     U 
Unsigned 

Network    Long  
Variable  
Selector 

Transaction Num- 

Addr Format, Domain Length 
Source Addr (Subnet/Node) - 
Dest Addr (Group)  

Backlog 
Priority- 
Ait Path 

Domain ID (Zero Len Domain). 

2 Bytes 

2 Bytes 

2 Bytes 

1 Byte 

1Byte 
2 Bytes 
1Byte 
0 Bytes 

1 Byte 

12 Bytes 
Figure 5.4 Typical Packet Size for LonWorks Network (Echelon 97) 

D.       LONWORKS NETWORK VARIABLES 

The LonWorks application programs use the Standard Network Variable Types 

(SNVTs) to provide the interoperability among all the network variables of the network 

nodes. The application programs declare the network variables. They can be input or 

output network variables. An output network variable transmits its assigned value 

through the network to all nodes whose input network variable is binding to this output 

network variable. The SNVTs provide a well-defined interface for communication 

between nodes made by different manufacturers. A node is installed in a network and 

logically connected to other nodes via network variables. These input and output 

network variables have to match their data type. The Master SNVT List is shown in 

Appendix A. It includes the types of measurement, names of network variable class, its 

range size, and the SNVT's number classification (The SNVT Master List). 
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E. LONWORKS PROGRAMMING MODEL 

Neuron C is the programming language used to write applications for the Neuron 

chip. It is based on ANSI C enhanced to support input/output, event processing, message 

passing, and distributed data objects. Several major differences exist between Neuron C 

and ANSI C. Neuron C does not include a standard run-time library supporting file I/O 

and other features common to larger target processors, such as floating point arithmetic. 

However, Neuron C has a special run-time library and language syntax extensions 

supporting intelligent distributed control applications using Neuron chips. These 

extensions include software timers, network variables, explicit messages, a multitasking 

scheduler, EEPROM variables, and miscellaneous functions. 

F. SUMMARY 

The LonTalk protocol supports reliable communication in a control network 

system. A system compliant with LonTalk protocol standard has the benefits of 

insulating the developer of LonWorks-compatible products from the detailed design of 

reliably moving information throughout a local operating network. It also provides 

installers of LonWorks networks enormous flexibility in selecting and configuring nodes 

to meet a particular application. Finally, the predictability of network behavior under all 

conditions is guaranteed, which is an important criteria for reliable robot use. 
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VI. HARDWARE IMPLEMENTATION 

A.        INTRODUCTION 

The NPS AUV uses the LonWorks technology to develop and simplify its 

networked control system onboard. This system consists of a host IBM-compatible 

personal computer, a LonBuilder Developer's kit, various Neuron nodes, and required 

input/output devices associated with the mission of the NPS AUV. The host personal 

computer is a 486SX-machine uses a QNX operating system to command and control all 

devices onboard the NPS AUV. The LonBuilder Developer's kit is a system-level 

development tool. It creates, compiles, and debugs the application programs for all the 

nodes in the system. Each Neuron node has a local processor, Neuron chip 3150, to 

receive, process, and transmit data via its local input/output transceiver. The NPS AUV 

contains various input/output devices to meet its mission requirements. The maintenance 

and upgrade of LonWorks network is minimal and simple since each Neuron node is 

developed and operated independently. 

This chapter describes all the components used in this project. The discussions of 

these components' functions are brief. The completed detailed information is stated in 

their technical manuals listed in the references. The list of all hardware components and 

estimated cost is stated in Appendix B. 

Figure 6.1 shows the overall networked control block diagram inside the NPS 

AUV. Figure 6.2 shows the picture of this project in close view and Figure 6.3 shows the 

far view. 
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Figure 6.1 Overall Networked Control System Block Diagram in the NPS AUV 
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Figure 6.2 Picture of Networked Control System, Close View 
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Figure 6.3 Picture of Networked Control System, Far View 
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B.        THE LONBUILDER DEVELOPER'S KIT 

The purpose of the LonBuilder developer's kit is to develop LonWorks 

application programs for Neuron nodes. The LonBuilder is also used to test and debug 

each Neuron node after the developing processes. A Neuron node is considered as a 

network ready device after a successful test. Connecting many Neuron nodes to a twisted 

pair communication media forms a LonWorks network. Once the network is formed, the 

network manager and protocol analyzer of the LonBuilder is used to manage the network 

control and analyze the efficiency and utilization of the network. Figure 6.4 shows the 

picture of LonBuilder developer's kit. 

The LonBuilder developer's kit used in this project consists of the following 

components 

• LonBuilder Development Station Enclosure 

• LonBuilder Interface Adapter 

• LonBuilder Control Processor 

• LonBuilder Neuron Emulator 

• LonBuilder SMX Adapter 

• LonBuilder Application Interface Kit 

This section summarizes the functions and usage of LonBuilder developer's kit 

from the Echelon LonBuilder Hardware Guide listed in the references. 
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Figure 6.4 LonBuilder Developer's Kit 

1. LonBuilder Development Station Enclosure 

A LonBuilder enclosure hosts a control processor, a protocol analyzer, and two 

Neuron emulators. This development station provides the power supply, connection to 

the host PC, and future expandable slots. It simplifies the control network development 

by connecting the network manager and protocol analyzer with two Neuron emulators in 

one cabinet. 

2. LonBuilder Interface Adapter 

Figure 6.5 shows the block diagram of LonBuilder interface adapter. 
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Figure 6.5 Block Diagram of LonBuilder Interface Adapter (Echelon, LonBuilder 

Hardware Guide) 

This adapter with its LonBuilder software is installed inside the host PC. The 

software provides the development environment for writing, compiling, and debugging of 

Neuron nodes' applications. The adapter provides the connection between the host PC 

and the LonBuilder developer's kit. The compiled application programs are then tested 

in one of two emulators within the kit. 

This LonBuilder interface adapter uses its eight input/output ports to 

communicate with the PC. Its default address assignment is set to occupy ports 310 to 

317hex. The dip switch (SW1) of the interface adapter can be adjusted to assign a 

different I/O address within the host PC to avoid any address conflict with other devices. 

Table 6.1 shows a typical I/O address usage in a PC compatible computer. 
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I/O Address Range 
OOOO-OIFF 
0200-0207 
0220-022F 
0278-027B 
02F8-02FF 
0310-0317 
0320-0327 
0330-033F 
0340-0347 
0350-0357 
0360-036B 
0378-037B 
0388-038F 
03B4-03BA 
03BC-03BF 
03C0-03DA 
03F0-03F7 
03F8-03FF 

Typical Use 
Reserved for PC motherboard hardware 

Joystick input 
Sound Controller 

LPT3 Parallel Port 
COM2 Serial Port 

LonBuilder Interface Adapter 
LonBuilder Protocol Analyzer 

MIDI Controller 
PC LonTalk Adapter 

PCNSS PC Interface Card 
PC Network 

LPT2 Parallel Port 
Sound Controller 
Video Subsystem 

LPT1 Parallel Port 
Video Subsystem and DAC 

Floppy Disk Controller 
COM1 Serial Port 

Table 6.1 Typical Input/Output Address Assignment in a PC (Echelon, 

LonBuilder Hardware Guide) 

3.        LonBuilder Control Processor 

The control processor provides control and network management between the 

interface adapter in the host PC and the processor board within the development station. 

It handles the commands and data communications between the interface adapter and the 

processor boards for the Neuron nodes. The control processor board contains a Network 

Manager node and a Protocol Analyzer node. The purpose of the network manager is to 

define, configure, load and control LonWorks nodes and the network's operations. The 

purpose of the Protocol Analyzer is to monitor, collect and display network traffic and 

network performance statistics. 

Figure 6.6 shows the picture of this control processor board and Figure 6.7 shows 

the control processor block diagram. 
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Figure 6.6 Picture of Control Processor Board 
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Figure 6.7 Block Diagram of LonBuilder Control Processor (Echelon, LonBuilder 
Hardware Guide) 

4.        LonBuilder Neuron Emulator 

The purpose of LonBuilder Neuron Emulator is to test and debug the node 

application programs and support hardware prototyping. Figure 6.8 shows the picture of 

the Neuron emulator and Figure 6.9 shows the Neuron emulator block diagram. 

A Neuron emulator contains a Neuron 3150 Chip, 64Kbytes of code and data 

RAM, and 64Kbytes of control RAM to act a single Neuron node. It uses a LonBuilder 

SMX adapter and transceiver to transmit data over the network. The emulator provides 

hardware support for application loading, source-level breakpoints, single-stepping, reset, 

start, stop, and memory read/write protection for each Neuron node's initial development. 
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Figure 6.8 Picture of LonBuilder Neuron Emulator 
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Figure 6.9 Block Diagram of LonBuilder Emulator (Echelon, LonBuilder 

Hardware Guide) 

5. LonBuilder SMX Adapter 

This adapter is an interface board that provides the connection between SMX- 

compatible transceivers and LonBuilder processor boards (control processor boards and 

emulator boards). It provides a modular, flexible solution for interfacing LonBuilder 

processor boards with a wide variety of network media, such as twisted pair or power 

lines. 

6. LonBuilder Application Interface Kit 

The LonBuilder application interface kit contains one application interface board, 

one application cable, one application interface adapter, and one module application 

interface. Figure 6.10 shows a picture of this kit. 

The LonBuilder application interface board provides a means of connecting the 

Neuron chip on a Neuron emulator directly into a user's target application hardware. 

This kit provides a developer the ability to design and debug many different custom 

nodes for the LonWorks networked control system. 
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Figure 6.10 Picture of LonBuilder Application Kit 

LONWORKS NEURON NODES 

A typical LonWorks Neuron node consists of 

• A local processor, Neuron chip: it is a microcontroller that performs local data 

processing and application functions, implements LonTalk protocol, and 

accesses the network media. 

• An input/output interface: it provides the interface between a Neuron node 

and its input/output external devices, such as sensors, actuator, or controller. 

• A transceiver: it provides the connection between the Neuron node and the 

network communication media. 

• A firmware and I/O application library: it provides the information of 

protocol, scheduler, and I/O application library for each Neuron node. 
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•    ROM, RAM, and EEPEOM: it stores the application code, firmware data, 

system images, network images, and LonWorks network variables. 

This project uses two different types of Neuron nodes for its initial bench testing 

which uses LonWorks as its networked control system for the Phoenix. The first type of 

Neuron node has the capability to control analog devices, such as motor controllers and 

pulse width modulators. The second type of Neuron node has the capability to control 

serial devices, such as sonar. 

The first type of Neuron node used in this project is a Flexible I/O control module 

made by the Intelligent Technologies Corporation (IEC). Figure 6.11 shows the picture 

of this node and Figure 6.12 shows its block diagram. 

Figure 6.11 Picture of IEC Flexible I/O Node 
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Figure 6.12 Block Diagram of IEC Flexible I/O Node (IEC, Flexible 10 Users Manual) 
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This node is designed to be a general purpose LonWorks node. It uses a Motorola 

MC 143150 Neuron chip as its local processor running at 5 MHz clock speed. It is a node 

for implementing, monitoring and controlling functions in a LonWorks control network. 

Its application code is written, compiled and debugged by using the LonBuilder 

developer's kit. The detail of this control module's software development is discussed in 

Chapter VII, software methodology. Once the application code is successfully 

developed, it is written into an off-chip EEPROM for the Flexible I/O node. An EMUP 

chip burner is used to load the application code into the EEPROM. Figure 6.13 shows 

this chip burner. The EEPROM with its application code is then inserted into the 27C256 

PLCC socket onboard the Flexible I/O control module. A Flexible I/O node with its 

EEPROM loaded with application code is a network ready Neuron node. 

Figure 6.13 Picture of EMUP Burner 
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The Flexible I/O node consists of two sets of analog output, four sets of analog 

input, four sets of digital input, four sets of relay output, two sets of open drain output, 

and two sets of network connections. There are screw terminals, LED indicators, a 

network SERVICE switch and a RJ-45 network connector which are used for network 

installation and diagnostics (IEC, Flexible I/O users manual). 

This project uses the analog output of a Flexible I/O node to control the servo 

amplifiers that connect to many external devices. The servo amplifiers receive signals 

from the control network to control the propeller and thruster motors onboard the NPS 

AUV. The analog output signal is configured for 0-10 Volts DC (VDC) to control 

various motor speeds. 

The open drain output of this node controls the pulse width modulation (PWM) 

for control of the fin motors on board the NPS AUV. It supports 1 Amp, 60 VDC with a 

repetition rate of 19.531 KHz (IEC, Flexible I/O users manual). 

The second type of Neuron node is a Serial to LonTalk Adapter (SLTA). This 

project uses SLTAs to connect all the sonars that have EIA-232 serial interfaces to the 

communication media. Figure 6.14 shows a picture of SLTA. 
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Figure 6.14 Picture of Serial to LonTalk Adapter (SLTA/2) 
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D.       INPUT/OUTPUT DEVICES 

The input and output external devices in the NPS AUV are the following: 

• Analog devices: Servo Amplifiers with motors that control propellers, thrusters 

and fins. 

• Serial devices: ST725 Scanning sonar, ST1000 Profiling Sonar, and diver tracker 

for altimeter. 

This project uses Advanced Motion Controls (AMC) Servo Amplifiers, model 

30A8 to control analog devices. This servo amplifier is designed to drive brush-type DC 

motors. It is fully protected against over-voltage, over-current, over-heating and short- 

circuits across motor ground and power leads (AMC PWM servo amplifier operating 

manual). Figure 6.15 shows a picture of this servo amplifier with motors. 

Figure 6.15 Picture of Advance Motion Controls (ACS) Servo Amplifier 
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This servo amplifier consists of 16 pins, 10 switches, and power supply 

connections for itself and the connected motors. Its internal DC-to-DC converter allows 

operation from a single power supply and outputs voltages of +/- 10 V at 5mA for 

external use (AMC PWM servo amplifier operating manual). The servo amplifier 

connects to a Neuron node and takes an input signal from the LonWorks network to its 

differential pre-amp, pin 6 and 7.   It uses the input signal to convert its 24 V input 

voltage to variable output voltage of +/-10 V. This output voltage is used to drive the 

motors for propellers, thrusters and fins onboard the NPS AUV. 

The second type of external components are serial devices. There are two sonars 

and a diver tracker. The first sonar is a ST725 scanning sonar operated at 725 kHz. It is 

primarily used for the transit search due to its long-range search ability. The second 

sonar is a ST1000 profiling sonar operated at 1250 MHz. It is primarily used for sector 

search due to its superior range accuracy at near range. All communications with both 

sonars are conducted using Asynchronous RS-232 signal level at 9600 Baud, one start 

bit, one stop bit, and no parity bit. The network communicates to the Sonar Head via the 

RS-232 serial communications port COM1. In order to establish hardware handshaking, 

it requires some type of modem equipment (Tritech 92). This project uses the Echelon 

SLTA to establish this hardware handshaking between the sonars and the LonTalk 

network. 

E.        THE NPS AUV'S NETWORK CONNECTION AND IMPLEMENTATION 

Once all individual devices have been developed and configured as LonWorks 

components, they are physically attached to the LonWorks control network system in a 

bus topology. Figure 6.3 shows the picture of this network. This system uses a Level IV, 

22 AWG (0.65mm) twisted pair cable as the network's primary bus. This type of cable 

can sustain 1.25 Mbps data communication with a TPT/XF-1250 control module and 

transceiver on each Neuron node. 

This project uses three IEC Flexible I/O nodes to control all of the analog devices. 

One node is connected with two servo amplifiers for the propeller motors. Another node 

is connected with two servo amplifiers for the thruster motors. The last node is 
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connected with two more servo amplifiers for the fin motors. It also uses one SLTA node 

to connect one sonar serial device. Table 7.4 of Chapter VII lists the name of each 

Neuron node and their network variables. They are created during the development of 

application program source code. 

The Neuron nodes are connected to the LonWorks control network one at a time. 

Once a new Neuron node is connected to the network and powered up, its service pin is 

pushed to identify itself by sending its 48-bit unique Neuron ID to the LonBuilder's 

database. The LonBuilder accepts this incoming new node and issues a queue command 

to extract all of its the network variables. These network variables are stored inside the 

LonBuilder's database with its unique Neuron node. 

When all the Neuron nodes have been connected to the network and all network 

variables have been extracted and stored in the database, a binding process is carried out 

by the LonBuilder. A binding process provides the interoperable communication 

between Neuron nodes by using their network variables. The application program of 

each Neuron node determines the types, directions, units, and ranges for its network 

variables. 

The propeller node uses two of its network variables to control the two servo 

amplifiers for the propeller motors. The network variable Nvi_raw_analog_l and 

Nvi_raw_analog_2 are of type SNVT_count and are scaled from 0-4096 for 0-10 VDC 

(Flexible IO users manual). The various output voltages are used to control the propeller 

turning speeds. 

The thruster node is identical to the propeller node. The LonWorks network can 

differentiate two different nodes by recognizing each node's unique 48-bit Neuron ID 

even when the two nodes use the same names for their network variables. 

The fin node uses Nvi_open_drain_l and Nvi_open_drain_2 to control the fin 

motors. The open drain MOSFET transistor outputs support the pulse width modulation 

(PWM). This node controls two fin motors, which are variable speed reversing DC 

motors for -/+ 10 VDC. The scaling for these network variables are 0-255 for 0 to full 

modulation. The repetition rate is 19.531 KHz and the pulse width frequency changes at 

the end of the current cycle (EC, Flexible IO users manual). 
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The sonar node uses Charjn and Char_out as its input and output network 

variables. This project uses a portable PC to simulate a serial device. It connects to a 

SLTA via RS-232. The SLTA is connected to the network media via RJ-45 network 

connector. The network variable browser of the network manager can be used to send 

out a string of characters in a packet format. This packet message passes through the 

SLTA and is received by the portable PC. This string of characters is then displayed on 

the screen of the PC. Conversely, the portable PC can also send out a string of characters 

that pass through the network and back to the LonBuilder, which can be viewed by the 

network variable browser. 

F.        LONWORKS NETWORK'S UPGRADE, MAINTENANCE AND REPAIR 

Upgrading a LonWorks networked control system by adding or removing Neuron 

nodes is an easy task. Adding a new Neuron node to the network is the same as the tasks 

described in the above section. Removing a Neuron node is as simple as unplugging the 

node's RJ-45 connector from the network. The LonBuilder's database can still keep the 

Neuron ID of the removed node and other related information. It will not affect any 

further network operation. In brief, adding or removing a Neuron node does not require 

any network reconfiguration. 

The maintenance of LonWorks network system is rendered by the network 

manger and protocol analyzer in the LonBuilder. These two nodes are used to manage, 

monitor, and log the LonWorks network activities. The network manager uses its 

network statistics to display the network's performance and utilization. Its packet log is 

used to collect copies of actual message packets on the network. It states the time, type, 

and the addresses of the sender and receiver for each message packet. 

The network variable browser of the protocol analyzer can display and monitor 

the value of each network variable. When a device does not respond to its input 

command, the network variable browser can display the values of the network variable 

both in sending and receiving nodes. Therefore, the problem area can be easily located 

and isolated. 
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G.       SUMMARY 

This chapter summarized all the hardware components used in this project. The 

components used in this workbench testing are only a representative portion of actual 

AUV components. However, this project includes all types of external devices used in 

the NPS AUV and demonstrates a working model by using LonWorks technology. The 

NPS AUV uses two types of Neuron nodes for its control network system. One is for 

A/D D/A devices and the other one is for serial devices. Each Neuron node is developed 

and installed into the network by LonBuilder. Since each Neuron node is developed and 

operated independently, adding or removing a node is a simple task performed without 

reconfiguring the entire network system. The LonWorks system in the NPS AUV 

simplifies the maintenance and makes troubleshooting easier. 
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VII. SOFTWARE METHODOLOGY 

A.       INTRODUCTION 

The software of the LonBuilder development kit provides the basic tool to 

develop the application programs in each Neuron Chip based node in the network. This 

software consists of project manager, network manager, protocol analyzer, program 

editor, Neuron C compiler, and debugger. Figure 7.1 shows all components of this 

development kit. These programs are combined together in the LonBuilder Integrated 

Development Environment (IDE) which support the application programming of each 

Neuron node. Section B of this chapter summarizes the basic development process of a 

LonWorks application program. The completed description is in the Echelon LonBuilder 

User's Guide, Neuron C Programmer's Guide and Neuron C Reference Guide, listed in 

the references. 

Interactive Symbolic Debugger 
NEURON   C Compiler 

Program Editor / .. 
Protocol Analyzer /     ,•" 

Network Manager /    ••**' s 

Project Manager 

/■// 

^sgggpgsg^^/gs^aswg^^/g?^^ 

User Interface Manager  } Object Manager 

Object 
Database Network 

Figure 7.1 Integrated Development Environment (Echelon, LonBuilder user's guide) 

This chapter also describes the development of application programs for the two 

types of Neuron nodes in this project. One is the A/D D/A application program, and the 

other one is the application program for the serial data transmission. When all the 

application programs have been developed and implemented into each Neuron node, they 
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are then connected and bonded together using their network variables. Using the network 

manager of the LonBuilder development kit does the binding process and forms the 

LonWorks network. 

B.   LONBUILDER DEVELOPMENT ENVIRONMENT 

The workbench-testing phase for the NPS AUV consists of six nodes. Table 7.1 

lists the names of nodes and external devices which connect to the nodes. 

Name of Node 
Command Center 

Propeller 
Thruster 
Rudder 

Indicator 
Sonar 

External devices attached to the node 
one Host PC operated in QNX operating environment 
two propellers with two motors and servos 
two thruster with two motors and servos 
two rudder with two PWM motors 
two light indicators reside on two emulators of LonBuilder 
one serial device, simulated by a portable computer 

Table 7.1 Neuron Node Names and their External Devices 

To develop a Lon Works application for this project involves six basic steps. 

These steps are general and they can be used to develop a single node with one device or 

many nodes with many devices in a very complex system. These steps are: 

1. State the problem 

2. Identify all nodes and assign their functions 

3. Define the interface of the external device for each node 

4. Write applications program for each device and node 

5. Use LonBuilder to build, compile, debug, and test each node 

6. Connect and integrate all nodes into network and test 

1.   State the Problem 

The problems associated with current NPS AUV are slow data processing rate, 

complex network architecture, and lack of real-time response. The communication and 

networked system onboard the AUV is complicated and difficult to maintain and 

upgrade. The goal of this project is to simplify the current system by using the 
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LonWorks Technology. As stated in previous chapters, this technology uses Neuron 

nodes to connect external devices to form the networked control system. It is a 

decentralized networked control system. 

2. Identify Nodes and Assign their Functions 

The second step is to identify all nodes used in this project and assign their 

functions. This project consists of six nodes for the workbench testing of the NPS AUV. 

Each Neuron node is developed independently. It consists of a Neuron Chip, one or two 

external input/output devices, and a communication transceiver. Each of six nodes uses 

the Neuron Chip as a local application processor. These are called Neuron Chip hosted 

nodes. The communication transceiver is a TPT/XF 1250 twisted pair transceiver. 

The six nodes consist of a central command node, a node to control two propeller 

motors, a node to control two thruster motors, a node to control two rudder motors, a 

node to control the serial devices' input and output, and a node to control two light 

indicators. 

3. Define the Interface of the External Device for Each Node 

During the node interface definition, each interface of the node is needed to make 

it visible to other nodes. The application-level LonMark objects are used to define these 

interfaces. The LonMark objects are those external devices connected to the Neuron 

nodes. They are the products that can meet the interoperable standard of the LonWorks 

Technology. These objects build upon Standard Network Variable Types (SNVTs) and 

provide an application layer interface with the Neuron nodes. The SNVTs are standard 

variable types that define units, ranges, and type identification. These objects use the 

SNVTs to provide semantic meaning about the information that has been transmitted and 

received by each node over the network (LonMark 96). 

The LonMark objects and the SNVTs of the nodes are visible to other nodes. 

Each node is defined and configured base on its external device. This allows each node 

to be developed independently. This type of development process can maximize the 

interchangeability among different devices with different properties. It also can minimize 

the reconfiguration requirement when there is a network or application change. 
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Each node and input/output external device requires defining two types of 

network variables. One is an output network variable that is generated by the node and 

exported out to the network for propagation across the network. The other one is an input 

network variable that is received by a node from the network and used to update the 

node's network variable. 

Table 7.2 summarizes the functions of the six nodes. 

Names of Neuron Node 

Command Center as 
Execution Level 

Interface 

Propeller 

Thruster 

Rudder 

Indicator 

Sonar 

Functions 
The central command of the AUV. It issues various 
commands to different nodes to perform the desired 
missions. These missions can be basic maneuvering, search 
and detect external objects, etc. 
This node controls the speed of two propeller motors via two 
servo amplifiers. 
This node controls the speed of two thruster motors via two 
servo amplifiers. 
This node controls the movement of two rudders. 
This node controls the two light indicators for the status of 
propeller motors. 
This node sends and receives serial data to and from sonar 
onboard the AUV. 

Table 7.2 Functions of Neuron Nodes 

4.   Write the Application Program for Each Node 

An application program defines the function of a node, its external VO object, the 

SNVTs, and the tasks that the external devices to perform. The application programs for 

the Neuron nodes are written and compiled in Neuron C provided by the LonBuilder 

developer's kit. Each node uses the application program to perform its desired functions. 

These application programs are processed and implemented by the Neuron Chip on the 

node. This chip is both an application and a communication processor. The Neuron Chip 

consists of eleven input/output pins (IO_0 to IO_10). These pins are used to 

communicate with the input/output device that is connected to the node. Figure 7.2 

shows the potential pin declaration. 
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Figure 7.2 Neuron Chip I/O Pin Declarations (Echelon, Neuron C Reference 
Guide) 

There are many different combinations can be used to configure and utilize these 

10 pins. This design can increase the flexibility and minimize the overall circuitry for 

each Neuron node. 

The external devices, LonMark objects, and the network variables used to 

implement them were defined in step 2. The application program of each node declares 

the data type and direction of its network variables. Network variables are classified 

based on their input or output direction. A node uses the output network variables to 

send data to the network. The receiving node receives the data as input network 

variables. 
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Table 7.3 summarizes the node names and their network variables for this project. 

Figure 7.3 shows a graphical representation of each node and their network variables. 

Names of Neuron 
Node 

Names of Network 
Variable 

Direction TypeofSNVTs 

Command Central NvoJLprop Output SNVT count 
Nvo_r_prop Output SNVT count 
Nvo 1 thruster Output SNVT count 
Nvo r thruster Output SNVT count 
Nvo_l_rudder Output SNVT count 
Nvo_r_rudder Output SNVT count 
Nvo_l_indication Output SNVT lev disc 
Nvo_r_indication Output SNVT lev disc 
Nvi_l_feedbk Input SNVT count 
Nvi_r_feedbk Input SNVT count 
Nvo_char_central Output SNVT char ascii 
Nvi_char_central Input SNVT char ascii 

Propeller Nvi_raw_analog_ 1 Input SNVT count 
Nvi_raw_analog_2 Input SNVT count 
Nvo_raw_analog_ 1 Output SNVT count 
Nvo_raw_analog_2 Output SNVT count 

Thruster Nvi_raw_analog_ 1 Input SNVT count 
Nvi_raw_analog_2 Input SNVT count 

Rudder Nvi_raw_analog_ 1 Input SNVT count 
Nvi_raw_analog_2 Input SNVT count 

Indicator Nvi 1 ledstate Input SNVT lev disc 
Nvi_r_ledstate Input SNVT lev disc 

Sonar Nvo_char_sonar Output SNVT char ascii 
Nvi char sonar Input SNVT_char_ascii 

Table 7.3 Neuron Node Names and their Network Variables 
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Figure 7.3 Neuron Nodes and Associated Network Variables 
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5.   Build, Debug, and Test Individual Nodes 

The LonBuilder is used to perform three tasks for each application node during 

the debugging step of development process. These tasks are: 

(1) Install and configure a LonBuilder Neuron Emulator in a development station 

(2) Compile and link the application code for the node, and load the application 

program onto the installed and configured emulator 

(3) Debug the node's application program running on the emulator using the 

Neuron C Debugger. 

These tasks are repeated for each application node. 

After a successful debugging phase, the application code is implemented in 

custom hardware. Custom hardware with its application code is called a custom node. 

This Neuron Chip based custom node contains all the components required to function as 

a LonWorks node. 

Next, there are five tasks to build and test a custom node. These tasks are: 

(1) Design and build the custom node hardware. A typical custom node consists 

of a Neuron chip, an oscillator, a transceiver, off chip memory and I/O 

hardware. The off-chip memory contains the Neuron chip firmware. 

(2) Compile and link the application code for the node, and program the node's 

memory with an initial image. The initial image includes system image, 

application image, and network image. 

(3) Install and configure the custom node on the target communications channel. 

(4) Load the node's application program onto the installed and configured custom 

node. 

(5) Test the node's application program running on the custom node. 

The LonBuilder network manager is used to verify that the node is functioning correctly, 

and its network variable browser is used to test the external interface of a node. 

These tasks are repeated for each custom node. Once all the desired nodes have 

been installed and are functioning properly, the network can be disconnected from the 

LonBuilder development station and operated in a stand-alone mode. 
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6.   Integrate Nodes into Networks and Test 

A Network is built and formed from many independent Neuron nodes. During the 

network integration and test phase of the development process, it starts with a few nodes 

and gradually adds new nodes to existing, functioning systems. The network integration 

process involves three tasks. 

(1) Physical placement and attachment: to locate nodes in their proper places and 

to make any necessary attachment to the application hardware and network 

communication media. 

(2) Node installation: to load nodes with information that establishes the desired 

logical connections to other nodes. 

(3) Network test: to monitor and test communication among the nodes on the 

development network. 

These tasks are repeated when adding new nodes to the network. 

C.   SOURCE CODE DEVELOPMENT FOR THE APPLICATION NODES 

This project is an initial startup and workbench test to investigate the feasibility of 

using LonWorks for the NPS AUV networked control system. The major components of 

the AUV are command center, propellers, thrusters, rudders, fins and sonar. This project 

uses two different types of custom nodes for its external components. The first type of 

custom node has the ability to convert A/D and D/A signals. This project employs the 

IEC Flexible I/O node. The second type of custom node has a serial interface that 

interacts with sonar for serial data transmission. This project uses the Echelon SLTA/2 

Serial LonTalk Adapter. 

The DEC Flexible I/O node is designed, developed and manufactured by the 

Intelligent Technologies Corporation. It is a general purpose LonWorks based node. 

This project uses these types of nodes to control the motors of propellers, thrusters, 

rudders, and fins. The completed source code implemented in these nodes can be found 

in the IEC Application program disk. The file names are FX78_12.nc and FANCOIL.nc. 

This project uses a SLTA/2 to connect the serial devices in the NPS AUV. The 

actual serial devices of interests are the sonars. However, for workbench testing 

purposes, this project uses a portable computer to simulate a serial device that sends and 
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receives serial data to the LonWorks network. This is a convenient diagnosis technique 

when testing any serial device. The SLTA/2 is a network interface that connects the 

serial devices to the LonWorks network via RS-232 serial interface. It is a 

preprogrammed device and its source files are included on the SLTA/2 software disk. 

The completed descriptions of those files are in the Echelon Serial LonTalk Adapter and 

Serial Gateway User's Guide. 

D.       SOURCE CODE DEVELOPMENT FOR THE INTEGRATED NETWORK 

ONBOARD AUV 

This project uses the following hardware devices for the workbench testing: 

• Emulator one is simulated as the command center 

• An IEC Flexible I/O node controls two propeller motors 

• An IEC Flexible I/O node controls two thruster motors 

• An DEC Flexible I/O node controls two rudder motors 

• Emulator two uses its light indicator to indicate the status of the propeller 

motors 

• An SLTA/2 connects to a portable computer which simulates the sonar serial 

port communications 

A sample source code has been developed and implemented into the emulator one 

node as the command center. The purpose of this source code is to demonstrate that the 

command center has the ability to control various devices onboard the NPS AUV by 

modifying many network variables in a LonWorks network environment. The source 

code is included in Appendix C. It has 15 different time frames. The command center 

issues many commands to different nodes. Those components then perform different 

tasks based on the commands they received in each time frame. Table 7.4 summarizes 

the functions of each time frame. 

The first step of this network integration is to attach each node to the network 

communication media. Connections include one network manager, one protocol 

analyzer, two emulators, three IEC Flexible I/O nodes, and one SLTA/2. They are all 

connected to a twisted-pair bus topology network. 
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Next, the network manager recognizes and assigns each node's address by 

sequentially pushing each node's service pin when ready to be recognized. The node 

then sends out its unique 48-bit Neuron ID to the network manager. Table 7.1 describes 

the names of all nodes in this project. These node addresses are logical addresses that 

uniquely identify each the node in the network. 

The LonWorks network's use of the logical addresses, rather than a physical 

serial number for each node has several advantages. First, a single message can be sent 

to multiple nodes without any confusion. Second, the network maintenance can be 

simplified. A new node can replace a damaged node without reconfiguring the entire 

network. The new node can be given the same network logical address and connection 

information as the damaged node. Therefore, the replacement of a physical device is 

apparent to hardware and software-controlled devices in the network. 

After the network manager recognizes each node, it is required to queue each 

node's network variables. The network variables defined in Table 7.2 provide all 

interoperable communication between nodes in LonWorks network. 

The final step of this project is to make desired logical connections using these 

network variables. This is called a binding process. Figure 7.3 shows the connection and 

directions of these network variables. 

After the binding process, the LonBuilder performs an automatic build for the 

network (Echelon, LonBuilder User's Guide). -When the automatic build process is 

completed and successful, the emulator with the sample source code is ready to simulate 

a maneuvering exercise for the workbench testing of the NPS AUV. 
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Time frame Functions 
Frame 1 Go forward straight at 20% of full speed 
Frame 2 Change speed to 40% of full speed 
Frame 3 Change speed to 80% of full speed 
Frame 4 Change speed to full speed 
Frame 5 Change speed to 80% of full speed 
Frame 6 Change speed to 40% of full speed 
Frame 7 Change speed to 20% of full speed 
Frame 8 Stop and rudders amidships 
Frame 9 Go forward straight at full speed 
Frame 10 All stop 
Frame 11 Turn right at 10% of full speed 
Frame 12 Stop and rudders amidships 
Frame 13 Turn left at 50% of full speed 
Frame 14 Stop and rudders amidships 
Frame 15 Go forward straight at 10% of full speed 

Table 7.4 Time Frame for the AUV Maneuvering Exercise 

E.        SUMMARY 

This chapter demonstrates the ease and flexibility of using LonWorks technology 

onboard the NPS AUV. There are numerous general-purpose application nodes that have 

been developed by third party companies. Nodes are off-the-shelf products with 

hardware ready to be used in a LonWorks network environment. Network integration is 

not a difficult task. The LonWorks network uses SNVTs to communicate among all 

nodes. The LonWorks network manager provides the binding process to all the network 

variables. Once all the nodes are logically connected by their network variables, a 

sample application program can run in the networked environment. The sample program 

described in this chapter makes a simulated AUV perform many different tasks using 

"when" clause statements for each time frame. These "when" clause statements are 

straightforward and simple, and only changes the values of the network variables to 

accomplish its desired mission. 
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VIII.   CONCLUSIONS AND RECOMMENDATIONS 

A. INTRODUCTION 

Although this project demonstrated a method of simplifying the command and 

control of devices onboard Phoenix through the LonWorks networked control system, it 

represents only a starting point for further evaluation of the application of Echelon 

LonWorks technology onboard the NPS AUV. Many of the problems discussed in 

Chapter III have been solved by this approach but additional research and testing must be 

completed before a working model of LonWorks networked control system can be 

implemented within Phoenix. 

B. RESEARCH CONCLUSIONS 

1. Data Processing Rate Improvement 

This project has developed a LonWorks networked control system with a 

bandwidth of 1.25 Mbps at peak rate which can handle a peak network traffic load of 

1000 packet messages per second and a sustained continuous packet load can be 600-800 

packet messages per second. Typical packet size is about 12 bytes. 

The major component that provides this system with a bandwidth of 1.25 Mbps is 

the 10 MHz Neuron processor in each Neuron node. There are three 8-bit CPUs in each 

Neuron processor. This allows each Neuron node to collect and process all data locally. 

This added processing power from each Neuron node in the network system improves the 

overall network processing rate dramatically. 

This project provides evidence that the LonWorks networked control system can 

solve the data rate problem (see Chapter III) and provide extensive future growth 

capability. This feature needs to be explicitly tested once all components are connected 

and operating. 

2. Network Architecture Simplification 

This project uses a simple bus-topology LonWorks networked control system. 

Two terminators are located at either end of a twisted pair bus lineup with multiple 

Neuron nodes in between. All Neuron nodes are configured to meet the interoperability 
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requirements of LonWorks technology before attaching to the network. External devices 

can then simply be plugged into nodes and are ready for operation. 

The network architecture developed for this project simplifies the current 

architecture implemented onboard the NPS AUV. It reduces the amount of wiring 

required to connect the myriad of external devices to meet the operational requirements 

of the NPS AUV. The project successfully used the LonBuilder network manager to 

make logical connections between components without adding more wires. 

3. No System Reconfiguration when Adding or Removing Devices 

Every time a device is added or removed from the current system, a change to the 

entire software configuration is required. It is a long, tedious, and often frustrating 

experience to rework these configurations. Each Neuron node in the LonWorks network 

operates independently, and all external devices interact with a single Neuron node 

without affecting other nodes. There is no longer a need to perform a complete system 

reconfiguration when adding or removing devices. This greatly simplifies network 

maintenance and component upgrades. 

4. Real-Time Response 

This project has demonstrated that the new network system has higher data 

bandwidth, increased speed at each Neuron node, and a more scalable network 

architecture. This is a vast improvement over the current system onboard the NPS AUV. 

It has much greater potential to provide real-time data acquisition for vehicle operation. 

5. Suitability for Other Robot Architectures 

Control network technology provides rapid and expanded data processing 

capability for each Neuron node through an architecture that supports a large data 

bandwidth. The superior data bandwidth will expedite response for any large robot 

control system. Applying this technology to robot control systems can enhance 

coordination among all of the system's components since each component attached to a 

Neuron node is also provided additional local data processing power. This control 

network appears suitable for a variety of different robot types. 
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C.       RECOMMENDATIONS FOR FUTURE WORK 

This project provides a workbench implementation of selected portions the NPS 

AUV control system using the Echelon LonWorks technology.   More work and research 

is needed before a working model can be installed in the actual vehicle for in-water 

testing and use. 

1. Implement LonWorks to NPS AUV 

This project only uses one of each kind of component on board the AUV to 

investigate the feasibility of using control network technology in the NPS Phoenix AUV. 

The workbench testing successfully demonstrated that LonWorks hardware and the 

LonTalk protocol can be implemented in the Phoenix to improve its current network 

system. This workbench setup needs expansion to include all necessary devices inside 

the AUV, listed in Table 7.3 and Figure 7.3. Previous chapters have described all of the 

essential steps and procedures required to build and complete a control network system. 

This new control network system should be implemented in the actual NPS AUV for its 

in-water testing. 

2. TCP/IP-to-LonTalk Telemetry Bridge 

The current execution level programming source code of Phoenix is written in C 

running in a TCP/IP networking environment. Because of the large amount of source 

code involved, a mapping between the TCP/IP protocol and the LonTalk protocol is a 

must. Otherwise the execution level source code may have to be rewritten in many 

pieces of Neuron C, the programming language for LonTalk. Such a partition is unlikely 

to be compatible with the RBM architecture. There are now several types of 

commercially available routers that can provide the connectivity to LonTalk from 

Ethernet or from the Internet using TCP/IP. A suitability test is needed to assess the 

feasibility of this technology for the telemetry between two different network protocols. 

Currently available router hardware may be too large to fit inside Phoenix. Detailed 

information about this technology is available in the references (Coactive 97). 
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D.       SUMMARY 

This project demonstrated the feasibility of using the LonWorks technology to 

implement a faster and more scalable networked control system onboard the NPS AUV. 

This technology has proven that it can provide reliable communication, decentralized 

(peer-to-peer) topology with no single point of failure, and easy extensibility and 

interoperability for a wide variety of hardware devices. It can greatly increase the 

reliability and throughput of Phoenix onboard sensors. This provides the required 

real-time data analysis capability needed for the Phoenix's missions. Implementing the 

Echelon LonWorks technology onboard the NPS AUV fulfills the ultimate goal of this 

thesis. 
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APPENDIX A- MASTER SNVTs LIST 

This list provides all available SNVTs and details of their definitions. Standard Network 
Variable Types facilitate interoperability by providing a well-defined interface for 
communication between different Neuron nodes (The SNVT Master List and Programmer's 
Guide). 

Measurement Name Range (Resolution)                                   |SNVT# 

Address, SNVT_address 0x4000 .. OxFlFF (hexadecimal) 114 
Neuron Chip 
Alarm state SNVT_alarm see Structures below 88 
Angular SNVT_angle_vel -3,276.8 .. 3,276.7 radians/sec 4 
velocity (0.1 radians/sec) 

SNVT_angle_vel_f -1E38..1E38 radians/sec 50 

SNVT_rpm3 0 .. 65,534 revolutions/minute (1 <ym) 102 

Area SNVT_area3 0 .. 13.1068 m2 (200 mm2) 110 

Character SNVT_char_ascii 0..255 7 
Char string SNVT_str_asc see Structures below 36 

SNVT_str_int see Structures below 37' 
Color SNVT_color see Structures below 70 
Concentration SNVT_ppm 0 .. 65,535 parts per million (1 ppm) 29 

SNVT_ppm_f 0.. 1E38 ppm 58 
Count, event SNVT_count 0.. 65,535 counts (1 count) 8     . 

SNVT_count_f -1E38.. 1E38 counts 51 
Count, SNVT_count_inc -32,768.. 32,767 counts  (1 count) 9 
incremental SNVT_count_inc_f -1E38.. 1E38 counts 52 
Currency SNVT_curxency see Structures below 89 
Current SNVT_amp -3,276.8 :. 3,276.7 amps (0.1 A) 1 

SNVT_amp_f -1E38.- 1E38 A 48 
SNVT_amp_m il -3,276.8 .. 3,276.7 mA (0.1 mA) 2 

Date SNVT_date_cal Use SNVT_timestamp Instead 10 
Day of week SNVT_date_day see Enum Lists below 11 
Density SNVT_density 0.. 32,7675 kg/m3 (0.5 kg/m3) 100 

SNVT_density_f 0.. 1E38 kg/m3 101 
Emergency SNVT_hvac_emerg see Enum Lists below 103    . 
mode, HVAC 
Energy, elec SNVT_elec_kwh 0 .. 65,535 kilowatt-hour (1 kWH) 13 

SNVT_elec_whr 0 .. 6,553.5 watt-hours   (0.1 WHR) 14 
SNVT_elec_whrJ 0 .. 1E38 watt-hour 68 

Energy, thermal SNVT_btu_f -1E38.. 1E38 btu 67 
SNVT_btu_kilo 0 .. 65^35 kilo btu 5 
SblVT_btu_mega 0 .. 65,535 mega btu 6 

File position SNVT_file_pos see Structures below 90 
File request SNVT_file_req see Structures below 73 
File status SNVT_file_status see Structures below 1      74 
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Measurement Name Range (Resolution) SNVT# 

Flow 

Frequency 

Gain 
Grammage 

HVAC mode 

HVAC override 

HVAC status 

Humidity 
Illumination 
Installation source 
Length 

Level, continuous 

Level, discrete 
Level, percent 
Magnetic cards 

Mass 

Multiplier 
Object request 
Object status 
Occupancy 
Override 
Phase/rotation 

Phone state 
Power 

SNVT_flow3 

SNVTJlowJ 
SNVT_flow_.mil 
SNVT_freq_f 
SNVT_freq_hz 
SNVT_freq_kilohz 
SNVT_freq_milhz 
SNVT.muldiv 
SNVT_grammage 
SNVT_grammage_f 

SNVT_hvac_mode2 

SNVT_hvac_overid2 

SNVT_hvac_status2 

SNVT_lev_percent 
SNVT_lux 
SNVT_config_src 
SNVT_length 
SNVT_length_f 
SNVT_length_kilo 
SNVT_length_micr 
SNVT_length_mil 
SNVT_lev_cont 
SNVTJev_cont_f 
SNVT_lev_disc 
SNVT_lev_percent4 

SN"VT_magcard 
SNVT_ISO_7811 
SNVT_mass 
SNVT_mass_f 
SNVT_mass_kilo 
SNVT_mass_mega 
SNVT_mass_mil 
SNVT_multiplier 
SNVT_obj_request 
SNVT_obj_status 
SNVT_occupancy 
SNVT_override 
SNVT_angle 
SNVT_angle_deg4 
SNVT_angle_f 
SNVT_telcom 
SNVT_power 
SNVT_power_f 
SNVT_power_kilo 

0.. 65,534 üters/sec(l 1/sec) 

-1E38.. lE381/sec 
0 .. 65,535 milLUjters/sec (1 ml/sec) 
-1E38 .. 1E38 Hertz 
0.. 6553.5 Hz (0.1 Hz) 
0 .. 6553.5 kHz (0.1 kHz) 
0 .. 6.5535 Hz (0.0001 Hz) 
see Structures below 
0 .. 6,553.5 gsm (0.1 gsm) 
-1E38 .. 1E38 gsm 
see Enum Lists below 

see Structures below 

see Structures below 

See Level, percent below 
0 ..65,535 lux (1 lux) 
see Enum Lists below 
0... 6,553.5 meters (0.1m) 
-1E38 .. 1E38 meters 
0 .. 6,533.5 km (0.1 km) 
0 .. 6,553.5 urn (0.1 jim) 
0 .. 6,533.5 mm (0.1 mm) 
0 '.. 100 % (0.5%) 
0.. 100 % 
see Enum Lists below 
-163.84% .. 163.83% (0.005% or 50 ppm) 
see Structures below 
Use SNVTjnagcard instead 
0 .. 6,553.5 grams (0.1 g) 
0.. 1E38 g 
0 .. 6,553.5 kg (0.1 kg) 
0 .. 6,553.5 metric tons (0.1 tonne) 
0 .. 6,553.5 milligrams (0.1 mg) 
0 .. 32.7675 (0.0005) 
see Structures below 
see Structures below 
see Enum Lists below 
see Enum Lists below 
0 .. 65.535 radians (0.001 radians) 
-359.98 .. +360.00 degrees (0.02 degrees) 
-1E38 .. 1E38 radians 
see Enum Lists below 
0 .. 6,553.5 watts (0.1 W) 
-1E38 .. 1E38 watts 
0 .. 6,553.5 kW (0.1 kW) 

15 

53 
16 
75 
76 
77 
78 
91 
71 
72 
10S 

111 

112 

81 
79 
69 
17 
34 
18 
19 
20 
21 
55 

; 22 
81 
86 

'. 80 
23 
56 
24 
25 
26 
82 
92 
93 
109 
97 
3 

104 

49 
38 
27 
57 
•5R 
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Measurement 

Power factor 

Preset 
Pressure - gauge 
Pressure - absolute 
Pressure - gauge 

Resistance 

Sound level 

Speed 

State 
Switch 
Temperature 

Temperature setpts 
Time of day 
Time - elapsed 

Time stamp 
Translation table 
Volume 

Voltage 

Zero and Span 

Nam« 

SNVT_pwr_fact 
SNVT_pwr_fact_f 
SNVT_preset 
SNVT_press 
SNVT_press_f 

SNVT_press_p4 

SNVT_res 
SNVT_res_f 
SNVT_res_kilo 
SNVT_sound_db 
SNVT_sound_db_f 
SNVT_speed 
SNVT_speed_f ■ 
SNVT_speed_mil 
SNVT_state 
SNVT_switch 
SNVT_temp 1 

SNVT_temp_p2' 4 

SNVT_temp_f 
SNVT_temp_setpt 
SNVT_date_time 
SNVT_time_f 
SNVT_elapsed_tm 
SNVT_time_sec3 

SNVT_time_passed 
SNVT_time_stamp 
SNVT_trans_table 
SNVT_vol 
SNVT_vol_f 
SNVT_vol_kilo 
SNVT_vol_mil 
SNVT_volt 
SNVT_volt_dbmv 
SNVT_volt_f 
SNVT_volt_kilo 
SNVT_volt_mil 
SNVT_zero sp an 

Range (Resolution) 

-1.0 .. 1.0 (0.00005) 
-1.0.. 1.0 
see Structures below 
-3,276.8 .. 3,276.7 kilopascals (0.1 kPa) 
0 .. 1E38 pascals 
-32,768 .. 32,766 pascals (1 Pa) 

0 .. 6,553.5 ohms (0.1 Q) 
-1E38 .. 1E38 D. 
0 .. 6,553.5 kft (0.1 kD.) 
-327.68 .. 327.67 decibels (0.01 dBl 
-1E38 .. 1E38 dBspl 
0.. 6,553.5 meters/sec (0.1 m/s) 
-lE38...1E38m/s 
0.. 65.535 m/s (0.001 m/s) 
see Structures below 
see Structures below 

-274 .. 6,279.5 °C (0.1 °C ) 

-273.17 .. +327.66 °C (0.01 °C ) 
-273.17.. 1E38 °C 
see Structures below 
Use SNVT_timestamp instead 
-1E38.. 1E38 sec 
See Structures below 
0.0 .. 6553.4 sec (0.1 sec) 

Use SNVT_elapsed_tm instead 
see Structures below 
see Structures below 
0 .. 6,553.5 liters (0.1 1) 
0.. 1E38 1 
0 .. 6,553.5 kiloliters (0.1 kl) 
0 .. 6^53.5 milliliters (0.1 ml) 
-3,276.8 .. 3,276.7 volts (0.1 V) 
-327.68 .. 327.67 dB uv (0.01 db uv dc) 
-1E38 .. 1E38 volts 
-3,276.8 .. 3,276.7 kilovolts (0.1 kV) 
-3,276.8 .. 3,276.7 millivolts (0.1 mV) 
see Structures below 

SN\nr; 

98 
99 
94 
30 
59 
113 

31 
60 
32 
33 
61 
34 
62 
35 
83 
95 
39 

105 

63 
106 
12 
64 
87 

107 

40 
84, 
96' 
41 
65 
42 
43 
44 
45 
66 
46 
47 
85 

1 SNV7-temP represents tenths of a degree Celsius above -274 °C. To eet SNVT temo 

Z*to^~ CJ°-K eqUal t0 274° WhKh * add6d t0 ^^ -P—d - 
To be used for heating, ventilation and air conditioning applications. 

The value OxFFFF represents invalid data. 

4 The' value 0x7FFF represents invalid data. 
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APPENDIX B -ESTIMATED COST FOR THE NPS AUV USING 
LONWORKS TECHNOLOGY 

Hardware Devices Part 
Number 

Educational 
discount 
Cost(50% off 
original cost) 

Quantity Function Total Cost 

Echelon 
LonBuilder 
Developer's kit 

Model 
20300 

$9,398.00 1 Network 
Development tools 

$9,398.00 

EC Flexible I/O 
Boards 

None $450.00 6 Neuron Node for 
A/D D/A Devices 
(Servo amplifiers) 

$2,700.00 

SLTA/2 730-00-1- 
310-1 

$270.00 3 Neuron Node for 
Serial Devices 
(Sonars) 

$810.00 

PCLTA 731-00-11 $158.00 1 PC to LonTalk 
Adapter for QNX 
Platform 

$158.00 

RJ-45 Phone Jacks None $7.00 12 Connectors in the 
Bus Topology 

$84.00 

Terminators None $10.00 2 Eliminate 
Unwanted 
Message Packets 

$20.00 

Twist-pair wiring None $20.00/50fts 1 Bus Wiring $20.00 
Command Center 
(QNX PC) 

None $1,300.00 1 Command Center $1,300.00 

Personnel Training None $1,000.00 per 
person 

2 $2,000 

Total Cost $16,490 
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APPENDIX C - SOURCE CODE FOR THE AUV MANEUVERING EXERCISE 

Z******************************************************************^^ 
* * 

** 
** 
** 
* * 
* * 
* * 
* * 
* * 

* * 

/* 
* * 

File_name:  nav_plan.c 

Author:     Forrest Young 

Date:      December 20, 1997 

Purpose:    Provide a sample maneuvering exercise for the NPS AUV. 
All networked control functions are provided by LonWorks 

Neuron C language. 

********************************************************************* 
*************************************************************,l.,t*^^. 

7***************************************************************^.,,.*,,.^^ 

Compiler Pragmas 
**************************************** **********************^^^ 

/ 

/* The following line contains the node's Self Documentation string. */ 

#pragma enable sd nv names 

Z*************************************************************,,.^,^^^ 

Include Files 
************************************************************.it**,tvtvt.^itit I 

#include <snvt_rq.h> 
#include <snvt lev.h> 

Constant Declarations 
************************************************************,t + ^^^^ 

I 

unsigned int brightness = 0; 

Z********************************************************************** 

Input/Output Declarations 
************************************************************,l:,^^,t^^/ 

IO_4 input bit ioSwitch4; 
IO_0 output pulsewidth clock (7) ioLedO; 
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fie***************************************************.,.***************** 

Network Variables Declarations 

network output SNVT_count nvo_l_prop; 
network output SNVT_count nvo_r_prop; 
network output SNVT_count nvo_l_rudder; 
network output SNVT_count nvo_r_rudder; 
network output SNVT_count nvo_l_thruster; 
network output SNVT_count nvo_r_thruster; 

network output SNVT_lev_disc nvo_l_indicator; 
network output SNVT_lev_disc nvo_r_indicator; 

/*left propeller*/ 
/*right propeller*/ 
/*left rudder*/ 
/*right rudder*/ 
/*left thruster*/ 
/*right thruster*/ 

/* left indicator*/ 
/* right indicator*/ 

Timer Declarations 

mtimer framel = 2500 
mtimer frame2 = 5000 
mtimer frame3 = 7500 
mtimer frame4 = 10000 
mtimer frame5 = 12500 
mtimer frame6 = 15000 
mtimer frame7 = 17500 
mtimer frame8 = 20000 
mtimer frame9 = 22500 
mtimer framelO = 25000 
mtimer framel1 = 27500 
mtimer framel2 = 30000 
mtimer framel3 = 32500 
mtimer framel4 = 35000 
mtimer frame15 = 37500 

/It********************************************************************* 

Reset Task 

when (reset) 
{ 

io_change_init (ioSwitch4); 
io_out (ioLedO,0); 

nvo_l_prop = 0 
nvo_r_prop = 0 
nvo_l_rudder = 0 
nvo_r_rudder = 0 
nvo_l_thruster = 0 
nvo_r_thruster = 0 

/*left propeller*/ 
/*right propeller*/ 
/*left rudder*/ 
/*right rudder*/ 
/*left thruster*/ 
/*right thruster*/ 
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nvo_l_indicator = 1; /* left indicator*/ 
nvo_r_indicator =1; /* right indicator*/ 

} 

Framel task 
Task:   direction:     Go forward straight 

speed: 2 0% of full speed 
Indication:     20% of full brightness 

when (timer_expires(framel)) 
{ 

nvo_l_prop      = 800; 
nvo_r_prop     = 800; 
nvo_l_indicator = 52; 
nvo_r_indicator = 52; 
io_out (ioLedO, 52); 

} 

Frame2 task 
Task:   direction:      Go forward straight 

speed: 40% of full speed 
Indication:     40% of full brightness 

tit********************************************************************/ 

when (timer_expires(frame2)) 
{ 

nvo_l_prop =1600; 
nvo_r_prop = 1600; 
nvo_l_indicator = 104; 
nvo_r_indicator = 104; 
io_out (ioLedO, 104); 

} 

Frame3 task 
Task:   direction:      Go forward straight 

speed: 80% of full speed 
Indication:     80% of full brightness 

/ 
*************************************-k**-k***.k* + + *ir*i<*iririric±it + iciri!iricj.iCiCirir 

when (timer_expires(frame3)) 
{ 

nvo_l_prop = 3200; 
nvo_r_prop = 3200; 
nvo_l_indicator = 204; 
nvo_r_indicator = 204; 
io_out (ioLedO, 204); 
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} 

/********************************************************************** 

Frame4 task 
Task:   direction:      Go forward straight 

speed: full speed 
Indication:     full brightness 

************************************************************ + + + + +. + + + + +, 

when (timer_expires(frame4)) 
{ 

nvo_l_prop = 4095; 
nvo_r_prop =4095; 
nvo_l_indicator = 255; 
nvo_r_indicator = 255; 
io_out (ioLedO, 255); 

} 

/it********************************************************************* 

Frame5 task 
Task:   direction:      Go forward straight 

speed: 80% of full speed 
Indication:     80% of full brightness 

********************************************************************** 

when (timer_expires(frame5)) 
{ 

nvo_l_prop = 32 00; 
nvo_r_prop =32 00; 
nvo_l_indicator = 204; 
nvo_r_indicator = 204; 
io_out (ioLedO, 204); 

} 

/********************************************************************** 

Frame6 task 
Task:   direction:      Go forward straight 

speed: 40% of full speed 
Indication:     40% of full brightness 

**********************************************************************/ 

when (timer_expires(frame6)) 

{ 
nvo_l_prop = 1600; 
nvo_r_prop = 1600; 
nvo_l_indicator = 104; 
nvo_r_indicator = 104; 
io_out (ioLedO, 104); 

} 

/********************************************************************** 

Frame7 task 
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Task:   direction:      Go forward straight 
speed: 20% of full speed 
Indication:     20% of full brightness 

when (timer_expires(frame7)) 
{ 

nvo_l_prop = 800; 
nvo_r_prop = 800; 
nvo_l_indicator = 52; 
nvo_r_indicator = 52; 
io_out (ioLedO, 52); 

} 

Frame8 task 
Task:   direction:      idle 

speed: stop 
Indication:     off 

when (timer_expires(frame8)) 
{ 

nvo_l_prop =  0 
nvo_r_prop =  0 
nvo_l_indicator = 0 
nvo_r_indicator = 0 
io_out (ioLedO, 0); 

} 

Frame9 task 
Task:   direction:      Go forward straight 

speed: full speed 
Indication:     full brightness 

when (timer_expires(frame9)) 
{ 

nvo_l__prop     =4095; 
nvo_r_prop      = 4095; 
nvo_l_indicator = 255; 
nvo_r_indicator = 255; 
io_out (ioLedO, 255); 

} 

FramelO task 
Task:   direction:      idle 

speed: stop 
Indication:     off 

********************************Vr******************************^^.*^.vt^.^ 
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when (timer_expires(framelO)) 
{ 

nvo_l_prop = 0; 
nvo_r_prop = 0; 
nvo_l_indicator = 0; 
nvo_r_indicator = 0, 
io_out (ioLedO, 0); 

} 

Z****************************************************************,^^.^^ 

Framell task 
Task:   direction:     turn right 

speed: 10% of full speed 
Indication:     10% of full brightness 

****************************************************************vfc.*.Jl..it.Jk..Jfc., 

when (timer_expires(framell)) 
{ 

nvo_l_prop      = 0; 
nvo_r_prop      = 400; 
nvo_l_thruster  = 0; 
nvo_r_thruster  = 0; 
nvo_l_rudder    = 12 8; 
nvo_r_rudder    = 255; 
nvo_l_indicator = 0; 
nvo_r_indicator = 26; 
io_out (ioLedO, 0); 

} 

/********************************************************************** 

Framel2 task 
Task:   direction:      Stop and Point straight 

speed: stop 
Indication:     off 

when (timer_expires(framel2)) 
{ 

nvo_l_prop      = 0; 
nvo_r_prop      = 0; 
nvo_l_thruster  = 0; 
nvo_r_thruster  = 0; 
nvo_l_rudder   = 128; 
nvo_r_rudder    = 128; 
nvo_l_indicator = 0; 
nvo_r_indicator = 0; 
io_out (ioLedO, 0); 

} 

/***************************************** ***************************** 
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Framel3 task 
Task:   direction:      turn left 

speed: 50% of full speed 
Indication:     50% of full brightness 

when (timer_expires(framel3 ) ) 
{ 

nvo_l_prop = 2020; 
nvo_r_prop = 0; 
nvo_l_thruster = 0, 
nvo_r_thruster = 0, 
nvo_l_rudder = 255; 
nvo_r_rudder = 128; 
nvo_l_indicator = 127, 
nvo_r_indicator = 0; 
io_out (ioLedO, 127); 

} 

Framel4 task 
Task:   direction:      Stop and Point straight 

speed: stop 
Indication:     off 

when (timer_expires(framel4)) 
{ 

nvo_l_prop = 0, 
nvo_r_prop = 0, 
nvo_l_thruster = 0; 
nvo_r_thruster = 0; 
nvo_l_rudder = 128; 
nvo_r_rudder = 128; 
nvo_l_indicator = 0; 
nvo_r_indicator = 0; 
io_out (ioLedO, 0); 

} 

Framel5 task 
Task:   direction:      Go forward straight 

speed: 10% of full speed 
Indication:     10% of full brightness 

when (timer_expires(framel5)) 
{ 

nvo_l_prop =  400; 
nvo_r_prop =   400; 
nvo_l_indicator = 26; 
nvo_r_indicator = 26; 
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io_out (ioLedO, 26); 
} 

Input/Output event tasks 
Task:   When push io_4 switch, abort the mission 

Stop the vehicle 
Point direction straight ahead 
turn off both indicators 

/ 
****************************±**-k.kicic±irie*****ic*ir*i<icir*i.iricj.i.iririfiritir + ir^ + ititi<ic 

when (io_changes (ioSwitch4) 
{ 

nvo_l_prop = 0; 
nvo_r_prop = 0; 
nvo_l_thruster = 0, 
nvo_r_thruster = 0; 
nvo_l_rudder = 12 8; 
nvo_r_rudder = 12 8; 
nvo_l_indicator = 0 ; 
nvo_r_indicator = 0; 
io_out (ioLedO, 0); 

/*end of sample navigation exercise*/ 
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