
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

K>

PHOENIX AUTONOMOUS UNDERWATER VEHICLE (AUV):
NETWORKED CONTROL OF MULTIPLE ANALOG AND

DIGITAL DEVICES USING LONTALK

by

Forrest C. Young

December 1997

Thesis Advisors: Xiaoping Yun
Don Brutzman

Approved for public release; distribution is unlimited.

MIC QUALITY INSPECTED ö

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204 Arlington VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
December 1997

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE

PHOENIX AUTONOMOUS UNDERWATER VEHICLE (AUV): NETWORKED CONTROL
OF MULTIPLE ANALOG AND DIGITAL DEVICES USING LONTALK

6. AUTHOR(S)
Young, Forrest C.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

5. FUNDING NUMBERS

8. PERFORMING
ORGANIZATION REPORT
NUMBER

10. SPONSORING/
MONITORING

AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
13

12b. DISTRIBUTION CODE

ABSTRACT "~ ~~

The purpose of this thesis is to simplify analog and digital device control inside the Phoenix autonomous underwater
vehicle (AUV). Phoenix is required to process many data information streams associated with a variety of different sensors. Real-
time processing is required both for input sensing and for output directing. As presently configured, hardware devices aboard the
Phoenix are manually connected and configured using parallel ports, serial ports, analog-to-digital (A/D) and digital-to-analog
(D/A) controller hardware. Current hardware control within Phoenix connects all devices individually to a single computer. This
approach is cumbersome, error-prone and does not scale.

This project investigates the feasibility of using Echelon LonWorks hardware and LonTalk protocol as a faster and
scalable networked robot control system. LonWorks/LonTalk is a flexible A/D D/A hardware networking technology that provides
reliable communication, decentralized topology with no single point of failure, easy extensibility, excellent throughput, and
interoperability for a wide variety of hardware.

This project builds and tests a prototype LonTalk network that connects all Phoenix devices. This network demonstrates
the capability of using LonWorks to control various types of hardware and support rapid component integration onboard the
Phoenix. Successful demonstration of a LonTalk solution eliminates a critical barrier to Phoenix progress and makes robot
execution much more robust.

14. SUBJECT TERMS] ~

Autonomous Underwater Vehicle, AUV, Networked Control, LonWorks Technology, LonTalk, LonBuilder

17. SECURITY CLASSIFICATION OF
REPORT
Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATION OF
THIS PAGE
Unclassified

19. SECURITY CLASSIFI- CATION
OF ABSTRACT
Unclassified

15. NUMBER OF
PAGES
113

16. PRICE CODE

20. LIMITATION
OF ABSTRACT

UL

J^C QMLUf ngppif *7>rro &
Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

11

Approved for public release; distribution is unlimited

PHOENIX AUTONOMOUS UNDERWATER VEHICLE (AUV): NETWORKED
CONTROL OF MULTIPLE ANALOG AND DIGITAL DEVICES USING

LONTALK

Forrest C. Young
Lieutenant, United States Navy

B.S., University of California at Berkeley, 1990

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
December 1997

Author:

rrestO? Young

Approved by:
■-».. C "\ 1.-'% , A T X- ̂ v

Xiaoping Yun, Thesis Advisor

Don BrutZman, Thesis Advisor

u^Cg C Sp*^—^
-jy^ Herschel H. Loomis, Jr., Chairman

Department of Electrical and Computer Engineering

in

IV

ABSTRACT

The purpose of this thesis is to simplify analog and digital device control inside

the Phoenix autonomous underwater vehicle (AUV). Phoenix is required to process

many data information streams associated with a variety of different sensors. Real-time

processing is required both for input sensing and for output directing. As presently

configured, hardware devices aboard the Phoenix are manually connected and configured

using parallel ports, serial ports, analog-to-digital (A/D) and digital-to-analog (D/A)

controller hardware. Current hardware control within Phoenix connects all devices

individually to a single computer. This approach is cumbersome, error-prone and does

not scale.

This project investigates the feasibility of using Echelon LonWorks hardware and

LonTalk protocol as a faster and scalable networked robot control system.

LonWorks/LonTalk is a flexible A/D D/A hardware networking technology that provides

reliable communication, decentralized topology with no single point of failure, easy

extensibility, excellent throughput, and interoperability for a wide variety of hardware.

This project builds and tests a prototype LonTalk network that connects all

Phoenix devices. This network demonstrates the capability of using LonWorks to control

various types of hardware and support rapid component integration onboard the Phoenix.

Successful demonstration of a LonTalk solution eliminates a critical barrier to Phoenix

progress and makes robot execution much more robust.

VI

TABLE OF CONTENTS

I. INTRODUCTION: MINE WARFARE AND PHOENK AUV 1

A. BACKGROUND j

B. THESIS MOTIVATION AND GOALS 5

C. THESIS ORGANIZATION 5

II. PREVIOUS WORK 7

A. INTRODUCTION 7

B. AUV DESCRIPTION 7

C. RATIONAL BEHAVIOR MODEL (RBM) ARCHITECTURE ...8

D. VIRTUAL AUV SOFTWARE DEVELOPMENT 10

E. BASIC STAMPS 10

F. RELATED PHOENK WORK n

G. SUMMARY H

III. PROBLEM STATEMENT \ 13

A. INTRODUCTION 13

B. 10 HZ DATA PROCESSING RATE 13

C. COMPLEXITY OF CENTRAL ARCHITECTURE NETWORK 13

D. ADDING OR REMOVING DEVICES IN THE NPS AUV 14

E. FEASIBILITY OF REAL-TIME RESPONSE 14

F. SUMMARY 14

IV. CONTROL NETWORK: FOUNDATION AND COMPONENTS 15

A. INTRODUCTION 15

B. BACKGROUND 15

C. CONTROL NETWORK AND LONWORKS TECHNOLOGY 16

1. Control Network 16

Vll

2. LonWorks Technology 16

D. CONTROL NETWORK COMPONENTS 18

1. Neuron Chips and Application Nodes 18

2. Neuron-Chip Based Application Node 22

3. Communication Media 23

4. Connective Devices 23

5. Development Tools 26

6. Network Services Tools 27

E. SUMMARY 27

V. PROTOCOL AND NETWORK STRUCTURE OF LONWORKS 29

A. INTRODUCTION 29

B. LONTALK PROTOCOL 29

1. LonTalk Protocol 29

2. ISO/OSIModel 29

3. LonTalk Addressing Schemes 31

4. LonTalk Messaging Services 32

C. DATA COMMUNICATION MODES 33

D. LONWORKS NETWORK VARIABLES 37

E. LONWORKS PROGRAMMING MODEL 38

F. SUMMARY 38

VI. HARDWARE IMPLEMENTATION 39

A. INTRODUCTION 39

B. THE LONBUILDER DEVELOPER'S KIT 43

1. LonBuilder Development Station Enclosure 43

2. LonBuilder Interface Adapter 43

3. LonBuilder Control Processor 46

4. LonBuilder Neuron Emulator 48

5. LonBuilder SMX Adapter 50

Vlll

6. LonBuilder Application Interface Kit 50

C. LONWORKS NEURON NODES 51

D. INPUT/OUTPUT DEVICES 57

E. THE NPS AUV'S NETWORK CONNECTION AND

IMPLEMENTATION 58

F. LONWORKS NETWORK'S UPGRADE, MAINTENANCE, AND

REPAIR 60

G. SUMMARY 61

VH. SOFTWARE METHODOLOGY 63

A. INTRODUCTION 63

B. LONBUILDER DEVELOPMENT ENVIRONMENT 64

1. State the Problem 64

2. Identify Nodes and Assign their Functions 65

3. Define the Interface of the External Device for Each Node 65

4. Write the Application Program for Each Node 66

5. Build, Debug, and Test Individual Nodes 70

6. Integrate Nodes into Networks and Test 71

C. SOURCE CODE DEVELOPMENT FOR THE APPLICATION NODES....71

D. SOURCE CODE DEVELOPMENT FOR THE INTEGRATED NETWORK

ONBOARD AUV 72

E. SUMMARY 74

VIE. CONCLUSIONS AND RECOMMENDATIONS 75

A. INTRODUCTION 75

B. RESEARCH CONCLUSIONS 75

1. Data Processing Rate Improvement 75

2. Network Architecture Simplification 75

3. No System Reconfiguration when Adding or Removing Devices 76

4. Real-Time Response 76

IX

5. Suitability for Other Robot Architectures 76

C. RECOMMENDATIONS FOR FUTURE WORK 77

1. Implement LonWorks to NPS AUV 77

2. TCP/IP-to-LonTalk Telemetry Bridge 77

D. SUMMARY 78

APPENDIX A - MASTER SNVTs LIST 79

APPENDDC B - ESTIMATED COST FOR THE NPS AUV USING LONWORKS

TECHNOLOGY '. 83

APPENDIX C - SOURCE CODE FOR THE AUV MANEUVERING EXERCISE 85

LIST OF REFERENCES 93

INITIAL DISTRIBUTION LIST 95

LIST OF FIGURES

Figure 1.1 External Components of theNPS AUV 2

Figure 1.2 Major Internal Components of the NPS AUV 3

Figure 1.3 Perspective View of the NPS AUV 4

Figure 2.1 RBM Tri-level Software Architecture for the Control of AUV 9

Figure 2.2 NPS AUV in a Virtual Environment 12

Figure 4.1 Neuron Chip Plan View 18

Figure 4.2 Function Blocks of Neuron Chip 19

Figure 4.3 Shared Memory Buffers with Three CPUs 20

Figure 4.4 Memory Maps of the Neuron Chip 22

Figure 4.5 Basic Structure of Free and Bus Topology 24

Figure 5.1 Differential Manchester Coding Scheme 35

Figure 5.2 Single-ended Mode Data Format 35

Figure 5.3 Differential Mode Data Format 36

Figure 5.4 Typical Packet Size for LonWorks Network .'. 37

Figure 6.1 Overall Networked Control System Block Diagram in the NPS

AUV 40

Figure 6.2 Picture of Networked Control System, Close View 41

Figure 6.3 Picture of Networked Control System, Far View 42

Figure 6.4 LonBuilder Developer's Kit 44

Figure 6.5 Block Diagram of LonBuilder Interface Adaper 45

Figure 6.6 Picture of Control Processor Board 47

XI

Figure 6.7 Block Diagram of LonBuilder Control Processor 48

Figure 6.8 Picture of LonBuilder Emulator 49

Figure 6.9 Block Diagram of LonBuilder Emulator 50

Figure 6.10 Picture of LonBuilder Application Kit 51

Figure 6.11 Picture of IEC Flexible I/O Node 52

Figure 6.12 Block Diagram of IEC Flexible I/O Node 53

Figure 6.13 Picture of EMUP Burner 54

Figure 6.14 Picture of Serial to LonTalk Adapter (SLTA/2) 56

Figure 6.15 Picture of Advance Motion Controls (ACS) Servo Amplifier 57

Figure 7.1 Integrated Development Environment 63

Figure 7.2 Neuron Chip I/O Pin Declarations 67

Figure 7.3 Neuron Nodes and Associated Network Variables 69

xu

LIST OF TABLES

Table 4.1

Table 5.1

Table 5.2

Table 6.1

Table 7.1

Table 7.2

Table 7.3

Table 7.4

Technical Data of Neuron Transceivers 25

Seven Layers of ISO/OSI Model 31

Neuron Chip's Data Rate over the LonWorks Network 34

Typical Input/Output Address Assignment in a PC 46

Neuron Node Names and their External Devices 64

Functions of Neuron Nodes 66

Neuron Node Names and their Network Variables 68

Time Frame for the AUV Maneuvering Exercise 74

Xlll

XIV

LIST OF ACRONYMS

A/D

ACKD

AMC

ANSI

AUV

CD

CMOS

CPU

CRC

CSMA

D/A

EEPROM

FTT

GPS

I/O

EC

ISO

LAN

LNS

LON

LPT

MAC

Analog to Digital

Acknowledged

Advanced Motion Controls

American National Standard Institute

Autonomous Underwater Vehicle

Collision Detection

Complementary Metal-Oxide Semiconductor

Central Processing Unit

Cyclic Redundancy Check

Carrier Sense Multiple Access

Digital to Analog

Electrically Erasable Programmable Read Only Memory

Free Topology Transceiver

Global Positioning System

Input/Output

Intelligent Technologies Corporation

International Standard Organization

Local-Area Network

LonWorks Network Services

Local Operating Network

Link Power Transceiver

Media Access Control

XV

NPS

NSI

NSS

OSI

PC

PCLTA

PCNSS

PSG

PWM

RAM

RBM

REQUEST

ROM

SLTA

SMX

SNVTs

TCP/IP

TPT

UNACKD

VLSI

WAN

XF

Naval Postgraduate School

Network Services Interface

Network Services Server

Open System Interconnects

Personal Computer

Personal Computer to LonTalk Adapter

Personal Computer to Network Services Server

Programmable Serial Gateway

Pulse Width Modulation

Random Access Memory

Rational Behavior Mode

Request/Response

Read Only Memory

Serial to LonTalk Adapter

Standard Modular Transceiver

Standard Network Variable Types

Transport Control Protocol/Internet Protocol

Twisted-Pair Transceivers

Unacknowledged

Very-Large-Scale Integration

Wide-Area Network

Transceiver

XVI

I. INTRODUCTION

A. BACKGROUND: MINE WARFARE AND PHOENIX AUV

As the cold war came to the end, naval threats posed by third world countries

became a major concern for the United States military forces. Most third world countries

do not have advanced weapon systems or elite military forces when compared to the

United States. Nevertheless, the mine warfare capabilities of these countries is notable

for low cost and simple technologies, and continues to be a great threat to the U.S.

military forces operating in littoral regions. Damages suffered by the USS Princeton

(CG-59), the Samuel B. Roberts (FFG-58), and the Tripoli (LPH-10) were due to

minefields (Boorda 95). Lost lives, injuries and ship damage result in enormous costs.

Alternative technologies are needed to reduce the threat posed by these minefields.

Although unmanned robots now appear to have the capability to search and detect

such minefields, low-cost versions of the technology have not been demonstrated. The

Naval Postgraduate School (NPS) Phoenix Autonomous Underwater Vehicle (AUV) has

been built to prove such low-cost robots are possible. It is designed primarily to support

research in autonomous under water mine hunting. It is also configured to complete

other tasks such as underwater survey, pollution monitoring and remote observation.

An AUV is a self-contained unmanned vehicle equipped with many sensors,

actuators, and controllers. The NPS Phoenix AUV design includes various motor

controllers, thruster controllers, sonar sensors, dive tracker acoustic navigation,

GPS/DGPS system, gyro system, and detectors. Figure 1.1 shows the external

components of the NPS AUV. Figure 1.2 shows the major internal components of the

vehicle. Figure 1.3 shows a perspective view of the NPS AUV.

The current NPS AUV uses OS-9 real-time operating system for its control code

and its computer system, running on a GESPAC 68030 microprocessor (Brutzman 98).

The hardware configuration of the NPS AUV is an assortment of devices connected to a

centralized computer. This configuration requires multiple interface cards and

independent wires connecting the central computer system to each individual device. As

more functions are added and improvements made to the NPS AUV, additional devices

and wires will be required to be added onboard. As a result, the vehicle becomes more

and more complicated to maintain and to troubleshoot.

FIN

DRAIN
PLUG

POWER PLUG

DIVE TRACKER
TRANSDUCER

GPS ANTENNA

ST725 SONAR

SIDE VIEW

ST1000 SONAR

TURBO PROBE

DIFFERENTIAL
GPS ANTENNA

THIN WIRE
ETHERNET PORT

REAR SCREWS ' THRUSTER ' ACCESS HATCH

TOP VIEW

Figure 1.1 External Components of the NPS AUV (Marco 96)

ST72S SONAR

DEPTH CELL
TRANSDUCER-

BOW LEAK
DETECTOR-
BOW LATERAL
THRUSTER

VERTICAL
GYRO

BOW VERTICAL
TH RÜSTER ^Q=-qp—q
COMPUTER POWER
SUPPLY (2)

MOTOR SERVO
CONTROLLER {6)

SUN VOYAGER
COMPUTER:
STERN VERTICAL
TH RÜSTER

FREE GYRO
POWER SUPPL
STERN LATERAL
THRUSTER

PSA 900
UNIT

CONTROL FINS (S)

ST1000 SONAR

PSA »00 SONAR
TRANSDUCER

TURBO PROBE

FIN SERVO (8)

3 AXIS RATE GYRO

12 VOLT BATTERY (2)
FOR COMPUTER

GESPAC CARD CAGE

DIVE TRACKER

12 VOLT BATTERY (2)
FOR GYROS/MOTORS
FREE GYRO

GPS UNIT

REAR LEAK DETECTOR

REAR SCREW MOTOR (2)

REAR SCREW (2)

Figure 1.2 Major Internal Components of the NPS AUV (Marco 96)

Figure 1.3 Perspective View of the NPS AUV (Marco 96)

B. THESIS MOTIVATION AND GOALS

The motivation for this project is to simplify the control of analog and digital

devices within Phoenix. As presently configured, hardware devices onboard the NPS

AUV are manually connected and configured using parallel ports, serial ports, analog-to-

digital (A/D) and digital-to-analog (D/A) controller hardware. This approach is

cumbersome, error-prone and does not scale. Phoenix is required to process many data

information streams associated with many different onboard sensors, all within a very

short period of time for both input sensing and output directing. The current approach to

hardware control within the AUV is not satisfactory.

Echelon Lonworks hardware and LonTalk protocol is a flexible A/D and D/A

hardware networking technology that appears to provide reliable communication,

decentralized (peer-to-peer) topology with no single point of failure, easy extensibility

and interoperability for a wide variety of hardware devices (Echelon 97). It appears that

the reliability and throughput of Phoenix onboard sensors and effectors can be greatly

improved using LonWorks system.

The primary goal of this thesis is to build and test a prototype LonWorks network

that connects all Phoenix devices. The Echelon LonWorks development system is used

to support rapid component integration, diagnosis and evaluation. If successful, this

project will eliminate a critical barrier to Phoenix progress by making the execution level

of the Rational Behavior Mode (RBM) (Byrnes 93) (Brutzman 98) software architecture

much more robust. Finally, the thesis evaluates whether this approach is suitable as a

general approach for other robot vehicles.

C. THESIS ORGANIZATION

The purpose of this thesis is to incorporate the LonWorks technology into the

Phoenix in order to simplify analog and digital device control inside the vehicle. Chapter

I presents the background, motivation and goals for this project. Chapter II reviews prior

work which has significant relevance to this project, particularly the hardware

configuration and software architecture of the system. Chapter III states in detail the

problems addressed by this thesis. Chapter IV examines decentralized networked control

and summarizes the technology and components of LonWorks. Chapter V explains the

protocol, network services and programming model of the LonWorks technology.

Chapter VI describes the development tools, hardware construction and LonWorks

employed network configuration. Chapter VII describes the software source code

development to implement the LonTalk protocol for the networked control system within

Phoenix. Chapter VIII provides thesis conclusions and presents recommendations for

future research.

II. PREVIOUS WORK

A. INTRODUCTION

Much research has been conducted on Phoenix since 1987. Phoenix is an

unmanned underwater vehicle designed for research in adaptive control, mission

planning, mission execution, and post-mission data analysis (Healey 90).

This chapter summarizes the previous work conducted on Phoenix. A software

architecture paradigm called the Rational Behavior Model (RBM) is written for the

control of the NPS AUV system (Byrnes 93). A virtual world and computer simulation

for the NPS AUV is created for speeding up the development of the NPS AUV

(Brutzman 92) (Brutzman 95).

B. AUV DESCRIPTION

Physically, the Phoenix resembles a small-scale submarine. It has a cylindrical

body shape, approximately 2.4 meters long, 0.46 meters wide and 0.31 meter deep.

Externally, it has two aft propellers, two forward rudders, two aft rudders, two horizontal

thrusters and two vertical thrusters to control its movement in the water. It is equipped

with three different sonars: a Tritech ST 725 scanning sonar operating at 750 KHz

(Tritech 92), a Tritech ST 1000 profiling sonar operating at 1250 MHz (Tritech 92), and a

downward-looking altimeter. Additional devices include a depth cell for measuring the

depth of AUV and a turbo-wheel probe for sensing water speed.

Internally, Phoenix has a GESPAC M68030 computer and Sun Voyager Sparc 5

Workstation (Brutzman 98). The GESPAC uses the OS-9 operating system for the

real-time multitasking functions in the execution level for controlling the AUV's

hydrodynamic stability (Byrnes 93). The GESPAC/OS-9 combination is a relatively

slow computer system. The Sun Voyager 5 uses SunOS 5.4 for data storage in the

tactical and strategic level. An Ethernet connects these two systems to form a Local-Area

Network (LAN) inside the NPS AUV. This greatly simplifies remote monitoring and

testing of Phoenix by providing Internet connectivity, either by cable connection or radio

modem. A GPS system is installed for tracking the AUV's location via longitude and

latitude. The gyro system is used for sensing the vehicle's orientation and angular rate

about three degrees of rotational freedom (Burns 96). The power supply for the internal

electronic components is provided by multiple 24 volt batteries. Numerous A/D and D/A

converters for computer-hardware interfaces are currently at maximum capacity, with

insufficient connectivity to control the full number of devices aboard.

C. RATIONAL BEHAVIOR MODEL (RBM) ARCHITECTURE

The software architecture of the NPS AUV is a tri-level RBM architecture

(Byrnes 93) (Brutzman 98). There are three levels in the model: the strategic level,

tactical level, and execution level. Figure 2.1 shows these three levels and their

interactions with each other.

The strategic level is the highest level, responsible for the overall operating

condition of the NPS AUV. It prepares plans and makes operational decisions for the

vehicle. This level interacts with the tactical level in order to obtain valuable information

to determine current status of vehicle and the operating environment and provides

guidance to the tactical level. There is no timing restriction or quantitative analysis in

this level, therefore, the strategic level operates in an asynchronous environment.

The tactical level lies between the strategic and execution levels. It receives

general guidance and objectives for a particular mission from the strategic level. It then

issues various commands directly to the execution level to carry out the tasks necessary

to accomplish the mission. The tactical level interacts with execution level via a

message-passing protocol, and interacts with strategic level via function calls. The

tactical level also operates in an asynchronous mode because it does not require

interacting with the hardware in a hard-real-time manner (Byrnes 93).

The execution level is the lowest level in RBM. This level is written in the 'C

language. It interacts with the GESPAC operating system to issue all commands to

various devices. This level is responsible for the control and stability of the Phoenix. It

controls all the external devices, such as motors, thrusters, sonars, control planes and

communications. It is required to handle these control tasks on a real-time basis for the

safe operation of the vehicle. It has to operate in a synchronous mode. If any dangerous

situations arise, such as flooding, low power supply, loss of communication or loss of

depth control, the execution level can override the strategic and tactical level and abort its

mission to assure the overall safety of the vehicle.

STRATEGIC LEVEL
Highest Level of Command
Ultimate Decision Maker
Asynchronous Environment
Not Real Time

I I
TACTICAL LEVEL

Receive Commands from Strategic Level
Issue Commands to Execution Level
Asynchronous Environment
"Soft" Real Time

I I
EXECUTION LEVEL

Receive Commands from Tactical Level
Issues Commands to all External Devices
Synchronous Environment
Emergency Abort Mission Mode
"Hard" Real Time

Figure 2.1 RBM Tri-Level Software Architecture for the Control of AUV

D. VIRTUAL AUV SOFTWARE DEVELOPMENT

Construction and development of the Phoenix have historically been slow but

steady. With the advent of computer simulation and its application to this project, many

problem areas which would normally be detected in actual in-water experiments can now

be discovered during virtual environment tests. Many problem areas that could cause

catastrophic failure during in-water testing can be safely detected and corrected through

the use of computer simulation. Also, the use of such simulation greatly speeds the

problem detection-to-correction cycle and reduces overall testing costs.

Once problem areas have been identified through the simulation, the source code

can be corrected and the simulation run again to assess the alteration. When the AUV

appears to operate correctly through the simulation and all source code corrections have

been made, the source code on the Phoenix can be updated and in-water testing can

begin. The simulator provides pre-mission testing, psuedo-mission testing, and post-

mission playback. This virtual AUV environment has been created at NPS by Don

Brutzman (Brutzman 94). Figure 2.2 depicts the virtual AUV in its computer generated

environment.

In addition to a pure virtual simulation, the simulation can run with the Phoenix

in-the-loop to more quickly update source code on the robot. This combination of virtual

and physical models has greatly increased the pace of progress in project development.

A detailed description of this merging of virtual and physical AUV control software is

provided by Burns (Burns 96).

E. BASIC STAMPS

An alternative control network technology was also examined: BASIC Stamps

(Parallax 97). These are small microcomputer chips that run Parallax BASIC (PBASIC)

programs to directly interface with TTL-level devices via programmable I/O pins.

Typical examples of these devices are LEDs, speakers, and shift registers. BASIC

Stamps can also interact with non-TTL devices such as solenoids, RS-232 serial devices,

and other hardware using a variety of adapters.

BASIC Stamps can control many different types of application nodes. The

Stamps A/D converter application node provides the hardware and software required to

interface an analog-to-digital converter to the Parallax BASIC Stamp. The Stamps servo

10

application node provides a program to control pulse-width proportional servos by using

Parallax BASIC. The indoor sonar range-finding application node provides a circuit that

allows the BASIC Stamp to measure distances for one to twelve feet using ultrasonic

transducers.

BASIC Stamps technology is promising, but it still has some shortfalls for robot

use. BASIC Stamps are single analog-to-digital conversion devices that are hard to

network. Problems with multiple devices are thus difficult to locate and isolate. Each

device connected to a Stamp also is likely to require an individual computer connection -

an approach that does not scale. BASIC Stamps may be useful on rare occasions to

interface specialized analog equipment to LonTalk Neuron nodes. BASIC Stamps do not

fully solve the need by the Phoenix AUV for a fully networked hardware control system.

F. RELATED PHOENIX WORK

Despite the great effort and numerous hours of research and development that

have been conducted to date, much remains to be done. The research associated with this

thesis is just a small part of this greater ongoing effort to continually improve the Phoenix

AUV. This thesis focuses on reconfiguring and simplifying the analog and digital device

controls presently installed in the Phoenix. Other research being conducted to improve

Phoenix's performance include: precise compass calibration by Xiaoping Yun and Randy

Knapp, virtual NPS AUV hydrodynamics model refinement by Kevin Byrne, RBM

Tactical Level formalization, refinement, and generalization by Michael Holden, and the

use of 3-D graphics for sonar and tactical environment visualization by Timothy

Holliday.

G. SUMMARY

During the development of the NPS Phoenix AUV, numerous sensors, actuators,

sonars, and controllers have been installed onboard the vehicle. These devices are

connected by using a centralized control networked system. The amount of wire and the

configuration of this system are complex, cumbersome, and inefficiently unorganized. In

this thesis, the concept of a decentralized peer-to-peer networked control system for

analog-digital communications is examined. This thesis investigates the feasibility of

11

using Echelon LonWorks Technology to reorganize and simplify the hardware control

system onboard of the NPS Phoenix AUV.

Figure 2.2 NPS AUV in Virtual Environment (Burns 96)

12

III. PROBLEM STATEMENT

A. INTRODUCTION

The increasing amount of information processed on the Phoenix has created a data

processing and communication bottleneck. The current system configuration onboard

Phoenix cannot provide adequate real-time response. This is a result of the 10 Hz

maximum processing rate, the complex network control system and architecture, and the

need to reconfigure the entire system if any component is added or removed. This

chapter addresses each of these in turn.

B. 10 HZ DATA PROCESSING RATE

The current AUV configuration uses a central architecture system, a GESPAC

computer system utilizing the OS-9 operating system, which uses a single central

computer to interact with all Phoenix hardware components. As previously stated the

maximum data processing rate is 10 Hz; this does not provide adequate bandwidth to

control all of the devices onboard Phoenix and subsequently results in severe control

problems.

This problem can be solved by using the LonWorks Technology with a 10 MHz

Neuron processor and a different networked control architecture. This increases the

potential aggregate bandwidth to 1.25 Mbits per second which will pass up to 1000

packet messages per second at peak load, and up to 800 packets per second continuously.

C. COMPLEXITY OF CENTRAL ARCHITECTURE NETWORK

The complexity of a centralized control system is cumbersome and inefficient.

Each component (motor controller, servo amplifier, sonar, etc.) in Phoenix requires

separate inputs into this central control system. The amount of wire and number of

required connections combine to make this centralized networked control system

extremely complicated and particularly difficult to troubleshoot.

This problem can be solved by using a decentralized (peer-to-peer) networked

control system to simplify the configuration and increase the overall efficiency of the

Phoenix.

13

D. ADDING OR REMOVING DEVICES IN THE NPS AUV

Presently, adding or removing any device from the Phoenix requires a change to

the entire software configuration with no guarantee of driver compatibility between the

existing component drivers and the new one. Troubleshooting these conflicts can be very

difficult and frustrating.

This problem can be solved by connecting each device to a LonWorks networked

Neuron node. Each Neuron node is independent and equipped with its own processor,

thus it greatly simplifies the removal or addition of components without having to

reconfigure the entire system.

E. FEASIBILITY OF REAL-TIME RESPONSE

The ultimate goal of the NPS AUV is to provide a real-time data analysis during

its mission. The current configuration does not provide this feature. This project

attempts to achieve real-time data analysis by using a Pentium 100 processor along with

the aforementioned decentralized networked control system. The target performance is

10 Hz or better for each sense-decide-act loop which queries and commands all sensors

and actuators in sequences.

F. SUMMARY

This chapter addressed the problems embedded in the current Phoenix using a

central networked control system. This project is designed to improve the overall

performance of the Phoenix and realizing the objective of real-time data analysis by

implementing improvements in each of these problem areas.

14

IV. CONTROL NETWORK: FOUNDATION AND COMPONENTS

A. INTRODUCTION

The use of a control network is a new approach to machine control intended to

improve the efficiency and reliability of many complex systems. The LonWorks

approach to distributed control utilizes network technology with many independent

Neuron nodes as its network foundation. Each Neuron node is an intelligent node that

has a local processor that can receive, process and send out local data in cooperation with

the entire network. This chapter discusses the basic ideas and individual components of

LonWorks technology. Detailed information can be found in Echelon LonWorks

technical manuals, listed in the references.

B. BACKGROUND

In the early stages of computer evolution, large mainframe computer systems

dominated the industry. They contained centralized systems with a master and slave

architecture. This architecture provided a single machine used by many users. As

computer technology and performance improved, the size of microprocessors and

peripherals shrank dramatically. Powerful personal desktop computers have flourished

that can perform various tasks, such as word processing, spreadsheet calculation and

computation-intensive graphics applications. Typically these personal computers are

independent machines used only by one person, and do not share information with each

other directly. An external device such as a floppy disk was, until relatively recently, the

only tool for sharing.data among computers. It is an inefficient way to share information.

Today's personal computers are more powerful and able to handle more tasks

using a client/server network system. Wide-Area Networks (WANs) and Local-Area

Networks (LANs) using TCP/IP are typical network systems with a decentralized

architecture. Despite the distributed nature of TCP/IP, many systems are designed as

client/server systems. A single point of failure in the central control server might lead to

failure for all systems using that server, and thus can be considered unreliable. For small

systems such as robots, a client/server central network system also requires additional

wiring and hardware.

15

The concept of distributed control networks has been introduced in an effort to

improve the current TCP/IP system. A control network connects smart nodes (nodes with

their own microprocessors) that function independently, and communicate with each

other. This allows nodes to implement sense and control applications locally. An

independent node contains a local processor for control functions, a transceiver for media

access and communication functions, an input/output interface to interact with I/O

devices, and the necessary software code for operating system, protocol, and local library

functions. A control network can increase overall system performance and avoid single

points of failure by distributing the processing power to each individual node.

C. CONTROL NETWORK AND LONWORKS TECHNOLOGY

1. Control Network

A control network is a group of intelligent nodes that communicate with each

other to implement input sensing and output directing functions. In an application such

as building control management, the building thermometers and lighting switches are the

input sensing devices. The air conditioning units and lighting systems respond to these

sensing devices and act as output control devices. Applying control network to an

application such as an automobile, the car's optical or radar detectors sense external

obstacles, and the system issues control commands via the network to actuate the brake

system and warn the driver.

Control networks use two types of communication: peer-to-peer (distributed

control) and master-to-slave (centralized control). The network data processing loads are

distributed among all nodes. The combined power of these distributed processors can

increase the performance of a network system. The control functions can also be

distributed in a peer-to-peer type of communication. It has no single point of failure, thus

the reliability of a network system can be enhanced.

2. LonWorks Technology

A Local Operating Network (LON) consists of intelligent devices, or nodes, that

are connected by one or more communications media and that communicate with one

another using a common protocol. This technology allows a system to sense, process,

16

communicate, and control a system that is distributed over a network. This capability

encompasses a multitude of applications. It allows products to be linked together and

communicate to serve applications ranging from small instruments to large and complex

process control systems (Echelon LonWorks Reference CD-ROM 97).

As embodied in the LonWorks system, LON consists of intelligent nodes, each

containing a local operating processor, a Neuron chip. The nodes on a LON receive

various inputs from external devices. Those inputs are processed and broadcast to the

network by using the local node's Neuron processor. The nodes also respond to changes

in the network to produce desired outputs. Each node can perform different functions. In

most cases, a single node is designed to perform a very simple function. However, by

grouping different nodes together, they cooperate to perform more complex tasks. These

tasks can be in a broad spectrum of applications, depending on the types of nodes in the

network.

A LON control network can range in size from two to 32,385 nodes in a domain,

each with one or more sensors or actuators, plus localized computational capability.

Sensors are used to collect data and information from external devices. Actuators are

used to receive commands and control the external devices. The local processor is used

to process local data, perform analysis and conversion, and then report any significant

changes in its environment.

In a LonWorks system, the design and development of hardware, software, and

network are all independent tasks. A node's function is only specified and programmed

for its intended external device, a LonMark "object." LonMark objects describe standard

formats for how information is input to and output from a node and shared with other

nodes on the network (LonMark 96).

By simplifying the design of a single node and making it independent of most

external influences, we can reduce development effort and cost. Nodes become generic

building blocks that can be used and re-used in various environments. For example, a

generic motor actuator node can be used to control propellers in various rotational speeds.

In another application, it can control fin motors in a pulse width modulation mode,

without any change to the application code or node hardware.

17

The flexibility and interoperability of a system can be increased by using this

control network technology. New nodes can be added or removed. The connections

between nodes can be changed. These changes can be just like the commercially

desirable plug-and-play without reconfiguring the entire system.

D. CONTROL NETWORK COMPONENTS

1. Neuron Chips and Application Nodes

The Neuron Chip is the heart of the LonWorks technology. This section

summarizes the design and functions of a Neuron chip from Echelon Neuron Chip data

book listed in the references. Figure 4.1 shows the pin assignments and dimensions of

the Neuron Chip. Each Neuron Chip includes all of the functions required to acquire and

process information, make decisions, generate outputs and propagate control information

via a standard protocol, across a wide variety of network media such as twisted pair

cable, power line, infrared, radio frequency, or coaxial cable.

Ai4nr:
A13EE:
A12 0E:
AIICCC
A10CBZ
ABor:
ASZXCZ
A7nnr
AB ox:
A5DE:
A4ax=
A3 an
A2 0£=
Aim= *
A0OCS4

NEUBON» 3150 CHIP
• ECHELON

»S3DCP4
3DCP3
nncP2
anopi
=mcPo
I3DNC
nnvdd
3DV„
3T3CLK1
nncLK2
ZtDVdd
33V.
HDVdd
3DV«
zmtic
=rn-SERVICE

yyyyyyyuyyyyyyyg
285BSfi#»SS8&88g

i

Figure 4.1 Neuron Chip Plan View (Echelon, Neuron Chip Data Book)

There are three 8-bit CPUs on each Neuron chip. It has on-board EEPROM and

RAM. Either on-board ROM or an external memory port is also used to support these

three CPUs. The Neuron Chips can send and receive information on either the 5-pin

communications port or the 11-pin I/O. The I/O port has 34 pre-programmed modes of

operation to implement measurement, timing, and control application. Figure 4.2 shows

the function blocks of a Neuron chip.

18

SV ±10%

Reset "
Service

IO.0... I0.7 (0.8 I0.9 I0.1Ö
" t t t "

CP.O... CP.4

Figure 4.2 Function Blocks of Neuron Chip (Echelon, Neuron Chip Data Book)

The three 8-bit CPUs on each Neuron are identical and they can perform many

different networking functions. Basically, they are divided into three areas: the Media

Access Control (MAC), Network interface, and Application interface.

CPU-1 is the MAC CPU that handles layers one and two of the seven-layer

LonTalk protocol stack. (Chapter V will describe the LonTalk Protocol in more detail).

Its main function is to execute the user's application such as measuring input parameters,

timing events, making logical decisions, and driving outputs. Its processing includes

driving the communications subsystem hardware as well as executing the media access

algorithm. It communicates with CPU-2 using network buffers located in shared

memory. Figure 4.3 shows the shared memory buffers interact with all three CPUs.

Access to them is mediated with hardware semaphores to resolve contention when

updating shared data.

19

-«•

■ I ■ ■ I I >

 *"/MACV [^Network/
Communications r//</r /I Yt///s,c

i|i| > , nil.

/ CPÜ-2 ^

Port r

CPU-3 1
Application

<" / r f.f /1

ers Application Buffers I

input/Output
Port

Shared Memory

Figure 4.3 Shared Memory Buffers with Three CPUs (Echelon, Neuron Chip Data

Book)

CPU-2 is the Network CPU that handles layers three through six of the LonTalk

protocol stack. Its main function is encoding and decoding the messages to be sent over

the network. It handles network variable processing, addressing, transaction processing,

authentication, background diagnostics, software timers, and network management. It

uses network buffers to communicate with CPU-1, and application buffers to

communicate with CPU-3. The buffers are also located in shared memory.

CPU-3 is the Application CPU. Its main function is to control the Network

Communication Port that physically sends and receives the packets of data. It runs code

written by the user, together with the operating system services called by application

code. The programming language used by the application programmer is Neuron C, a

derivative of the ANSI C language modified for LonWorks distributed control

applications. The major modifications include the following:

• A declarative syntax for input/output objects directly mapping into the

input/output capabilities of the Neuron chip.

• A declarative syntax for network variables, which are Neuron C language objects

whose values are automatically propagated over the network whenever values are

assigned to them.

• A declarative syntax for millisecond and second timer objects which activate user

tasks on expiration.

20

• A library of functions, which when called, can perform event checking, manage

input/output activities, send and receive messages across the network, and control

miscellaneous functions of the Neuron chip.

Each Neuron chip has the memory components of EEPROM, RAM, ROM, and

external memory. The internal EEPROM of each Neuron chip contains the following

information:

(1) Network configuration and addressing information

(2) 48-bit Neuron chip identification code

(3) User-written application code and read-mostly data

User data in EEPROM can be written under program control. The Neuron chip

uses an on-board charge pump to generate the required programming voltage. The

charge pump operation is transparent to the user. The total erase and write time is 20ms

per byte. The EEPROM may be written 10,000 times with no data loss.

The EEPROM of each Neuron chip stores installation-specific information such

as network addresses and communication parameters. Each Neuron chip has a 48-bit

identifier, the Neuron ID, that is permanently written into the EEPROM during

manufacture. This 48-bit Neuron ID is unique; the possibility of two Neuron chips have

the same identical ID is zero. This can eliminate any confusion and overlapping

problems for any network connection.

The RAM of each Neuron chip is used to store:

(1) Stack segment, application, and system data

(2) LonTalk Protocol network buffers and application buffers

The RAM State is retained as long as power is applied to the chip, even in sleep mode.

However, when the node is reset, the RAM is cleared.

The ROM of Neuron chip stores the Neuron chip firmware, including:

(1) LonTalk protocol code

(2) Event-driven task scheduler

(3) Application function libraries

21

The Neuron 3150 chip uses external memory instead of on-chip ROM. This chip

can support up to 59,392 bytes of addressing for the external memory. Application

program data, the Neuron chip's firmware, and reserved space are stored in the external

memory. Figure 4.4 shows the memory maps of the Neuron Chip.

Neuron 3150 Chip
FFFF

FCOO

1K reserved space
for on-chip I/O

2.5K reserved

F1FF

FOOO
0.5K EEPROM

EFFF

E800
2KRAM

INTERNAL

ETFF

4000|
3FFFH

42K memory I
space available to I

the user I

16K Neuron Chip
firmware and

reserved space

Memory
Mapped I/O

FLASH

EXTERNAL
EEPROM

EPROM

Figure 4.4 Memory Maps of the Neuron Chip (Echelon, Neuron Chip Data Book)

2. Neuron-Chip Based Application Node

An application node has the capability of receiving data from sensors, processing

input data locally, and executing the desired control task. A single Neuron node contains

the following components as the minimum requirements: 1) a Neuron Chip, 2) a

transceiver, 3) circuitry to connect the Neuron chip to input/output devices, 4) an optional

host processor.

The Neuron chip is a microcontroller for processing data locally, and

implementing the LonTalk protocol. The transceiver is used to communicate

input/output data with the network. Circuitry is built to connect the Neuron chip and its

input/output devices. These input /output devices can be motor servos, motor controller,

sensors, and actuators. The optional host processor is a processor other than the Neuron

chip. It is primarily used to execute the node's application in network management and

22

maintenance, which required more processing power. Most LonWorks nodes use the

Neuron chips as the local processor, and for simple input/output tasks they are adequate.

3. Communication Media

LonWorks uses two types of communication media. One is wireless

communication with radio frequency or infrared. The other type is wired communication

using media such as twisted pair cable, power line, or coaxial cable.

4. Connective Devices

The connective devices of LonWorks include various types of transceivers,

control modules, routers, and network services interface.

The transceivers can be categorized into two groups depending on the networked

topology. There are two types of topology used in LonWorks technology. The first one

is Free Topology. It consists of devices connected to the communication channel in

random multi-dropped fashion. There is only one termination box in this topology. The

termination box is required for proper data transmission performance in the network

segments. The termination box is used to absorb any signal and remove it from the

network. The communication channel can have the configuration of a ring, star, bus, or

mixed. The second one is Bus Topology. It consists of a central main communication

channel. It is called the bus with two termination boxes, one at each end. Each device is

attached through hardware interfacing, known as a node, to the communication channel

in a multi-dropped fashion. The top box of Figure 4.5 shows a bus topology. Figure 4.5

bottom box shows different configurations of free topology (Echelon, Training Manual).

23

Figure 4.5 Basic Structure of Free and Bus Topology (Echelon, Training Manual)

There are two transceivers used in free topology. One is Link Power Transceiver

(LPT-10), and the other one is Free Topology Transceiver (FTT-10). The LPT-10

combines power and data on a common twisted wire pair. It only requires one 48 Volt

DC external power supply for the network. Power flows through the LPT-10 Link Power

Interface Module and twisted pair lines to all the nodes. The transceiver integrated a +5

Volt DC regulator for all the nodes. It provides +5 Volts DC at up to 100 mA to all the

nodes and eliminates a local power supply at each node. This voltage and current is high

enough to power a Neuron Chip and associated components. Using this transceiver can

eliminate local power supplies, resulting in equipment and labor cost saving (Echelon,

LonWorks Products Manual).

The FTT-10 is compatible with LPT-10. They can communicate with each other

in the same twisted pair medium. If a node with its associated devices requires higher

voltage and current than the link power segment can provide, then it needs an additional

local power supply. A node equipped with FTT-10 transceiver can be operated by a local

power supply. It can communicate with all the nodes in the link power network without

24

any electrical isolation. It is another cost saving design (Echelon, LonWorks Products

Manual).

These two transceivers can be used in any type of topology without any

restriction. Table 4.1 describes the technical data for the transceivers.

Transceiver Medium Bit Rate Topology Distance No. of
Nodes

LPT-10 Twisted
Pair

78 Kbps Free-Bus, Star,
Loop, Others,
Combinations

500m free
topology

32

FTT-10 Twisted
Pair

78 Kbps Free-Bus, Star,
Loop, Others,
Combinations

500m free
topology

64

TPT/xf-78 Twisted
Pair

78 Kbps Bus 1400m (3m
stubs)

64

TPT/XF-
1250

Twisted
Pair

1.25 Mbps Bus 130m (0.3m
stubs)

64

Table 4.1 Technical Data of Neuron Transceivers (Echelon, LonWorks Products Manual)

The Twisted Pair Transceivers, TPT/XF-78 and TPT/XF-125, are used in Bus

Topology. Table 4.1 also shows their technical data. Each transceiver includes a

transformer-isolated communication transceiver and connectors for power, the neuron

Chip communication port lines, and the twisted pair bus. The TPT/XF-78 operates at

78kbps data transmission rate, and the TPT/XF-125 operates at 1.25Mbps. The TPT/XF-

125 has the highest data transmission rate. It is the desired transceiver to meet the high

speed networking application, like the NPS AUV (Echelon, LonWorks Products

Manual).

LonWorks control modules integrate a Neuron Chip, communication transceiver,

memory, and clock oscillator in one compact module. They require a power supply, the

local sensors/actuators, and the application program running on the Neuron Chip in order

to build a complete node (Echelon, LonWorks Products Manual).

When there are two or more different media in LonWorks network, a LonWorks

Router can be used. It provides flexibility to the network system. The router can be used

25

to increase maximum number of nodes and total wire length in the network. It can also

increase total system reliability by dividing network into many subsets.

If additional processing power is needed for a node, a host processor can be part

of LonWorks node in addition to the local Neuron Chip. Echelon LonWorks offers

parallel ISA bus interfaces, serial (EIA-232) interfaces, PC Card interfaces, and Hayes-

compatible modem interfaces for these applications. The PCLTA PC LonTalk Adapter is

a PC plug-in card that provides access to a LonWorks network from any ISA bus PC with

a compatible operation system. The SLTA serial LonTalk Adapter is an integrated

LonWorks network interface that can be used to interface any host equipped with EIA-

232 serial interface to a twisted pair LonWorks network. The PSG/2 is a programmable

gateway version of the SLTA/2 adapter. It provides more flexibility for the designer to

create more versatile control systems or devices (Echelon, LonWorks Products Manual).

A LonWorks node with local host processor in addition to the Neuron Chip

requires a network service interface to connect with LonWorks network. Such node

usually performs more complex tasks, for example, monitor the entire system, record

network data, and provide installation, maintenance, and diagnostic tools. This node can

simultaneously support network communications and also support high-level interaction

with a network tool. The Network Service Server (NSSs) and Network Service Interface

(NSI) are designed to meet the above requirements (Echelon, LonWorks Products

Manual).

5. Development Tools

LonWorks technology provides a development tool, the LonBuilder Developer

Kit, for helping the developer to design and develop the LonWorks based node

applications and systems. These tools include a software program environment for

developing and debugging applications at multiple nodes. There are two emulators used

to simulate a node with its application in the development phase. A network manager is

used to install and configure these nodes, and a protocol analyzer is used to record and

analyze the network message traffic. This will provide information on the overall system

performance. The developer can then adjust the network configuration to obtain the

26

maximum network performance and to debug any errors (Echelon, LonWorks Products

Manual).

6. Network Services Tools

LonWorks provides tools for installation, configuration changes, diagnostics,

repair, and monitoring the entire system. It is the LonWorks Network Services (LNS)

which has the software components for developing system-level applications. This

LonWorks Network Services architecture ensures the compatibility and interoperability

among all the nodes which are developed by different vendors. The LNS provides the

tools to ensure the nodes from different developers will work together. As long as they

meet the LonWorks interoperable specification for developing their node, each developer

does not need to worry about the details of any other developer's design and loosing

synchronization with the network's configuration. Therefore, system installation can be

worked in parallel. System repair can be done at any possible problem spot in the

network by using this LNS tool. LNS can save time for system installation and repair,

reduce cost and increase the overall productivity (Echelon, LonWorks Products Manual).

E. SUMMARY

This chapter introduced the background and technology of control networks as

provided by LonWorks. This technology provides a reliable and efficient networked

control system for many different industrial applications. These applications are used in

a wide range of control and propulsion systems. This technology is an open,

decentralized networked control system and is different from the proprietary control and

centralized systems currently used in most industrial applications. Control network

technology can provide reliable, interoperable and robust networked control systems for a

variety of applications.

27

28

V. PROTOCOL AND NETWORK STRUCTURE OF LONWORKS

A. INTRODUCTION

Echelon LonWorks uses LONTALK as its networking protocol. This protocol

follows the International Organization for Standardization Open Systems Interconnects

(ISO/OSI) reference model. The addressing hierarchy of LonTalk has three levels. They

are domain, subnet, and node. The data communication modes are single-ended,

differential, and special-purpose. LonWorks uses Standard Network Variable Types

(SNVTs) to standardize all the network communication variables. The programming

model of LonWorks is Neuron C, a C language based on ANSI C. This chapter

summarizes the LonTalk protocol and network communication methods for LonWorks.

The complete information is stated in Echelon Neuron chip data book listed in the

references.

B. LONTALK PROTOCOL

1. LonTalk Protocol

The LonTalk protocol uses all three CPUs of the Neuron chip to implement a

complete networking protocol. This protocol design follows the ISO/OSI reference

model which is an open published protocol. It is a control protocol that implements all

seven layers of ISO/OSI model.

This protocol is media-independent. It supports many different communication

media, including wireless radio frequency, infrared, wired twisted pair, power line, and

coaxial cable. It also supports multiple communication channels. A channel is one type

of physical transport medium for packets. LonWorks uses a router to connect two

different channels with different communication media. The LonTalk protocol supports

such a network configuration to increase system flexibility and reliability.

2. ISO/OSI Model

The LonTalk implements a seven-layer protocol that is a standard developed by

the International Organization for Standardization (ISO). The purpose of this

development is to have an open, published general-purpose data communications

29

architecture. Its structuring technique is layering. The communication functions are

partitioned into one of the seven layers. Each layer accomplishes its assigned tasks

independently. The lower layer performs primitive functions and related services for the

next higher layer. The detailed tasks performed in each layer are hidden to the one

above. Therefore, the changes in one layer do not affect other layers (Stallings 97).

Table 5.1 shows the seven layers in OSI model, and their relationship to the LonTalk

protocol.

The first layer is the physical layer. This layer specifies the actual physical wiring

that connects the network media and devices electrically. The specification of this layer

consists of: types of media, range of network, number of devices per network segment,

and network isolation scheme.

The second layer is the link layer. This layer specifies the rules to access the

physical layer. This layer also defines the rules for framing, data encoding, CRC error

checking, predictive CSMA, collision avoidance, priority access scheme, and collision

detection.

The third layer is the network layer. This layer assigns the destination address for

a message received from the upper layer. This destination address is part of a message

packet sent to the network. This layer also provides the information for routing of

messages for the network segment, and controls the bandwidth usage.

The fourth layer is the transport layer. This layer provides different levels of

reliability for the message packet sent to the network. The level of reliability varies

depending on the application needs. These reliability levels are: broadcast addressing,

unicast addressing, multicast addressing, repeated service, acknowledged service,

unacknowledged service, and authentication.

The fifth layer is the session layer. This layer initiates a request, response, or

authentication message to the other nodes in the network.

The sixth layer is the presentation layer. It provides the data translation between

the network variables and applications.

The seventh layer is the application layer. This layer provides the interface

between the application program and the network devices.

30

OSI Layer Purpose Services Provided Neuron
Chip's CPU

7 Application Application
compatibility

LonMark Objects,
Configuration properties,
SNVTs,
File transfer.

Application

6 Presentation Data
interpretation

Network variables,
Application messages,
Foreign frame transmission,
Network services.

Network

5 Session Remote actions Request/Response,
Authentication,
Network services.

Network

4 Transport End-to-end
reliability

Acknowledged and unack message,
Common ordering,
Duplicate detection.

Network

3 Network Destination
addressing

Unicast and multicast addressing,
Routing information

Network

2 Link Media access and
framing

Framing,
Data encoding,
CRC error checking,
Predictive CSMA,
Collision avoidance,
Priority,
Collision detection.

MAC

1 Physical Electrical Media-specific interfaces and MAC,
interconnect modulation schemes XCVR

Table 5.1 Seven Layers of ISO/OSI Model (Echelon, Neuron Chip Data Book)

3. LonTalk Addressing Schemes

The addressing hierarchy of LonTalk consists of three levels. The top level is a

domain, the middle level is a subnet, and the third level is a node. The addressing

information is contained in the EEPROM on Neuron chip based node. This scheme is

analogous to the addresses used by US postal service. The domain corresponds to a

specific town, or city. The subnet corresponds to a road, and the node corresponds to a

single house address.

The domain identifiers are used in a control network with more than one type of

communication medium. Different domain identifiers can keep the applications using the

31

same communication medium in one group. The domain identifier is selectable and can

be 0,1,3, or 6 bytes long.

The subset is the second level of addressing. There may be up to 255 subnets per

domain. A subnet is a logical grouping of nodes from one or more channels. A router is

used to divide nodes into different subnets in a domain. It can selectively forward

packets to the desired subnet.

The node is the third level of addressing. There may be up to 127 nodes per

subnet. A node is the basic component of LonWorks network. It can be a node with a

device that performs some simple input/output functions. It can also be a node with a

host processor and application that performs more complex tasks, such as network

monitoring and analyzing.

Each Neuron chip based node contains a unique 48-bit Neuron ID. This ID is

assigned during manufacturing and used as a network address during initial network

installation and configuration.

The LonTalk addressing capabilities are (Echelon, Neuron chip data book):

Domains in a network: 2e48
Subnets in a domain: 255
Nodes in a subnet: 127
Nodes in a domain: 32,385

The addressing capability of LonWorks is enormous; it provides system flexibility

and expandability.

4. LonTalk Messaging Services

There are four basic types of messages, Acknowledged (ACKD),

Request/Response (REQUEST), Repeated (UNACKD_RPT), and Unacknowledged

(UNACKD). The first two types require acknowledged messages between end-to-end

nodes that provide better reliability services. The last two services do not require

acknowledged messages from the receiving nodes. They conserve bandwidth and

provide faster services with less reliability.

When a sending node sends out a message to a node or group of nodes, it expects

acknowledged messages from each receiving node. This type of message is

Acknowledged (ACKD). The sending node will retry to send out the same message if it

32

doesn't receive the acknowledged messages in a preset time frame. The network CPU of

a Neuron node is responsible for generating the messages and acknowledgements without

intervention of the application CPU. Each message has its own transaction ID. The

Neuron nodes use these IDs to keep track of all the network messages and

acknowledgements. This can prevent any duplicated messages received by individual

nodes.

The Request/Response (REQUEST) service is similar to the ACKD. The only

difference is that the incoming message is processed by the application CPU of the

receiving node before a response is generated. The response message may include data

or other useful information to the sending node. This service is designed primarily for

client/server application.

The third type of service is Repeated (UNACKD_RPT) without

acknowledgements. A sending node sends out a message to a node or group of nodes in

preset multiple times. It does not require acknowledged messages from the receiving

nodes. This service is designed primarily for multicasting its messages to large groups of

nodes. It conserves the network bandwidth without overloading the network and

provides a better response time.

The last type of service is Unacknowledged (UNACKD). A sending node only

sends out its message once to the receiving nodes. It does not require acknowledged

messages from the receiving nodes. This service provides the highest performance and

transmission rate in the network traffic, and conserves the network bandwidth. However,

it is a very unreliable service and the application must not be sensitive to the loss of a

message.

C. DATA COMMUNICATION MODES

There are three modes of operation in the LonWorks data communication. Those

modes are single-ended, differential, and special-purpose. Differential Manchester

coding is used by the single-ended and differential modes. This encoding scheme is

polarity insensitive, and thus reversal of polarity in the communication link will not affect

data reception. It is a widely used coding scheme and reliable format for transmitting

33

data over various media. Table 5.2 provides the data rate over the LonWorks network

with various Neuron chip input clock rates.

Network Bit Rate
(Kbps)

Minimum Input Clock
(MHz)

Maximum Input Clock
(MHz)

1250 10.0 10.0
625 5.0 10.0

312.5 2.5 10.0
156.3 1.25 10.0
78.1 0.625 10.0
39.1 0.625 10.0
19.5 0.625 10.0
9.8 0.625 10.0
4.9 0.625 5.0
2.4 0.625 2.5
1.2 0.625 1.25
0.6 0.625 0.625

Table 5.2 Neuron Chip's Data Rate over the LonWorks Network (Echelon,
Neuron Chip Data Book)

The single-ended mode and differential mode use the same data encoding scheme.

In most respects, they are the same mode of operation. The difference is that the single-

ended mode is used with external active transceivers interfacing to media such as free

topology twisted pair, radio frequency, and coaxial cable. The differential mode is used

with external passive transceivers, which are able to differentially drive and sense a

twisted-pair transmission line. Both modes use differential Manchester coding to encode

the transmitted data and decode received data. This scheme provides a transition at the

beginning of every bit period for the purpose of synchronizing the receiver clock. It is

referred as clock transition.

Figure 5.1 shows the representation of zero and one for the differential

Manchester coding. It is a common coding technique and provides the benefits of

transmitting data over various media in a fast and reliable format. In every clock cycle, a

transition occurs to represent a single bit of data. If there is no transition during the clock

cycle, it represents a "one" bit. If there is a transition at the halfway point of the clock

cycle, it represents a "zero" bit.

34

o o o

4 800 ns @ 1.25 Mbps

Figure 5.1 Differential Manchester Coding Scheme (Echelon, Neuron Chip Data

Book)

Figure 5.2 and 5.3 show the typical transmitting data formats for the single-ended

mode and the differential mode. Each message packet consists of a preamble, a data

frame and address information with 16 bits of CRC, and line code violation.

«- mj-w\j\r\j\rv\r I _
♦HMHMHHMHi

Transmit
Enable ~\

By BitSynC !w Date + 1Sb^CRC Une-CodJ BäTBäI
Pr«amb!« Sync Violation —a« H

Figure 5.2 Single-ended Mode Data Format (Echelon, Neuron Chip Data Book)

35

Hrh+H 11 o 11111 o I -hrhrl

** —r\j\r\ru~\f\.j\r\. i
1 -_» i-H , 1 1 ■-+-■-!

Bit Sync Byte Data+ 16 bit CRC Line-Code Betal Beta 2
. Preamble Sync VW»tion | • 1

Figure 5.3 Differential Mode Data Format (Echelon, Neuron Chip Data Book)

A preamble is formed at the beginning of a packet. Its purpose is to synchronize

the clock between sender and receiver. It consists of a bit-sync field and a byte-sync

field. The bit-sync field is a series of differential Manchester 1 's; its duration is user

selectable and is at least six bits long. The byte-sync field is a single bit differential

Manchester 0 that marks the end of the preamble, and the beginning of the first byte of

the packet.

Followed the preamble, there is a string of data with address information. Figure

5.4 shows the typical size of a packet. Each data frame may contain the CRC as an

option. The Neuron chip accepts an active-low collision detect input from the

transceiver. If collision detection is enabled and the Neuron chip is signaled by one of its

own communication ports, a collision has occurred. The Neuron chip acknowledges the

collision and resends the message by attempting to re-access the channel at later time.

The message packet is terminated by forcing a differential Manchester line-code

violation. This violation occurs when the output data is at a constant level without any

transition. This level must hold long enough for the receiver to recognize an invalid

code, which signals the end of the transmission. The data output can be either high or

low for the duration of the line-code violation, depending on the state of the data output

after transmitting the last bit.

36

Typical Packet Size Example

Layer 2 Layer 3
Header Addr*.'$s> infctmaiion

Layer4
Service; Type

Layers.'6
Header

Layer 2
CRC

Service ype ID

I U
Unsigned

Network Long
Variable
Selector

Transaction Num-

Addr Format, Domain Length
Source Addr (Subnet/Node) -
Dest Addr (Group)

Backlog
Priority-
Ait Path

Domain ID (Zero Len Domain).

2 Bytes

2 Bytes

2 Bytes

1 Byte

1Byte
2 Bytes
1Byte
0 Bytes

1 Byte

12 Bytes
Figure 5.4 Typical Packet Size for LonWorks Network (Echelon 97)

D. LONWORKS NETWORK VARIABLES

The LonWorks application programs use the Standard Network Variable Types

(SNVTs) to provide the interoperability among all the network variables of the network

nodes. The application programs declare the network variables. They can be input or

output network variables. An output network variable transmits its assigned value

through the network to all nodes whose input network variable is binding to this output

network variable. The SNVTs provide a well-defined interface for communication

between nodes made by different manufacturers. A node is installed in a network and

logically connected to other nodes via network variables. These input and output

network variables have to match their data type. The Master SNVT List is shown in

Appendix A. It includes the types of measurement, names of network variable class, its

range size, and the SNVT's number classification (The SNVT Master List).

37

E. LONWORKS PROGRAMMING MODEL

Neuron C is the programming language used to write applications for the Neuron

chip. It is based on ANSI C enhanced to support input/output, event processing, message

passing, and distributed data objects. Several major differences exist between Neuron C

and ANSI C. Neuron C does not include a standard run-time library supporting file I/O

and other features common to larger target processors, such as floating point arithmetic.

However, Neuron C has a special run-time library and language syntax extensions

supporting intelligent distributed control applications using Neuron chips. These

extensions include software timers, network variables, explicit messages, a multitasking

scheduler, EEPROM variables, and miscellaneous functions.

F. SUMMARY

The LonTalk protocol supports reliable communication in a control network

system. A system compliant with LonTalk protocol standard has the benefits of

insulating the developer of LonWorks-compatible products from the detailed design of

reliably moving information throughout a local operating network. It also provides

installers of LonWorks networks enormous flexibility in selecting and configuring nodes

to meet a particular application. Finally, the predictability of network behavior under all

conditions is guaranteed, which is an important criteria for reliable robot use.

38

VI. HARDWARE IMPLEMENTATION

A. INTRODUCTION

The NPS AUV uses the LonWorks technology to develop and simplify its

networked control system onboard. This system consists of a host IBM-compatible

personal computer, a LonBuilder Developer's kit, various Neuron nodes, and required

input/output devices associated with the mission of the NPS AUV. The host personal

computer is a 486SX-machine uses a QNX operating system to command and control all

devices onboard the NPS AUV. The LonBuilder Developer's kit is a system-level

development tool. It creates, compiles, and debugs the application programs for all the

nodes in the system. Each Neuron node has a local processor, Neuron chip 3150, to

receive, process, and transmit data via its local input/output transceiver. The NPS AUV

contains various input/output devices to meet its mission requirements. The maintenance

and upgrade of LonWorks network is minimal and simple since each Neuron node is

developed and operated independently.

This chapter describes all the components used in this project. The discussions of

these components' functions are brief. The completed detailed information is stated in

their technical manuals listed in the references. The list of all hardware components and

estimated cost is stated in Appendix B.

Figure 6.1 shows the overall networked control block diagram inside the NPS

AUV. Figure 6.2 shows the picture of this project in close view and Figure 6.3 shows the

far view.

39

- Motor -

Servo

Motor

Servo

Propeller

Flex I/O

Termi-
nator Node

Fin

a
14otor/Ser so

Thruster

Flex I/O
FIN

Flex I/O

Nodf. Nodi. Node. Nod«. Node

Propeller

Flex I/O

PSG-2
LonTall

Thruster

Flex I/O

Servo

Motor

FIN

Flex I/O

Servo 14otor/Ser /o

Motor Ü
Fin

24V
P/S

Node. Node. Node. Node. Node. Node -

RS-232
Sonar

LonBuilder
developer's
kit

Termi-
nator

LonBuilder
Host PC
(LonTalk.CS.
nps.navy.mil)

PSG-2
LonTall

RS-232
Sonar

Command
Center Source
Code
Development
Station
(QNX.CS.nps.
navy.mil)

Command
Center
(QNX PC)

Figure 6.1 Overall Networked Control System Block Diagram in the NPS AUV

40

Figure 6.2 Picture of Networked Control System, Close View

41

Figure 6.3 Picture of Networked Control System, Far View

42

B. THE LONBUILDER DEVELOPER'S KIT

The purpose of the LonBuilder developer's kit is to develop LonWorks

application programs for Neuron nodes. The LonBuilder is also used to test and debug

each Neuron node after the developing processes. A Neuron node is considered as a

network ready device after a successful test. Connecting many Neuron nodes to a twisted

pair communication media forms a LonWorks network. Once the network is formed, the

network manager and protocol analyzer of the LonBuilder is used to manage the network

control and analyze the efficiency and utilization of the network. Figure 6.4 shows the

picture of LonBuilder developer's kit.

The LonBuilder developer's kit used in this project consists of the following

components

• LonBuilder Development Station Enclosure

• LonBuilder Interface Adapter

• LonBuilder Control Processor

• LonBuilder Neuron Emulator

• LonBuilder SMX Adapter

• LonBuilder Application Interface Kit

This section summarizes the functions and usage of LonBuilder developer's kit

from the Echelon LonBuilder Hardware Guide listed in the references.

43

Figure 6.4 LonBuilder Developer's Kit

1. LonBuilder Development Station Enclosure

A LonBuilder enclosure hosts a control processor, a protocol analyzer, and two

Neuron emulators. This development station provides the power supply, connection to

the host PC, and future expandable slots. It simplifies the control network development

by connecting the network manager and protocol analyzer with two Neuron emulators in

one cabinet.

2. LonBuilder Interface Adapter

Figure 6.5 shows the block diagram of LonBuilder interface adapter.

44

PC

I PC BUS CONNECTOR

PC BUS
INTERFACE
—f-

CONTROL

XM1T ID REGISTER

XMTT DATA REGISTER

RCV DATA REGISTER

STATUS REGISTER

IRCV ERROR REGISTER

h I/O ADDRESS
SWITCH

DEVELOPMENT
STATION
INTERFACE

INTERFACE
CONNECTOR

TO
DEVELOPMENT
STATION

Figure 6.5 Block Diagram of LonBuilder Interface Adapter (Echelon, LonBuilder

Hardware Guide)

This adapter with its LonBuilder software is installed inside the host PC. The

software provides the development environment for writing, compiling, and debugging of

Neuron nodes' applications. The adapter provides the connection between the host PC

and the LonBuilder developer's kit. The compiled application programs are then tested

in one of two emulators within the kit.

This LonBuilder interface adapter uses its eight input/output ports to

communicate with the PC. Its default address assignment is set to occupy ports 310 to

317hex. The dip switch (SW1) of the interface adapter can be adjusted to assign a

different I/O address within the host PC to avoid any address conflict with other devices.

Table 6.1 shows a typical I/O address usage in a PC compatible computer.

45

I/O Address Range
OOOO-OIFF
0200-0207
0220-022F
0278-027B
02F8-02FF
0310-0317
0320-0327
0330-033F
0340-0347
0350-0357
0360-036B
0378-037B
0388-038F
03B4-03BA
03BC-03BF
03C0-03DA
03F0-03F7
03F8-03FF

Typical Use
Reserved for PC motherboard hardware

Joystick input
Sound Controller

LPT3 Parallel Port
COM2 Serial Port

LonBuilder Interface Adapter
LonBuilder Protocol Analyzer

MIDI Controller
PC LonTalk Adapter

PCNSS PC Interface Card
PC Network

LPT2 Parallel Port
Sound Controller
Video Subsystem

LPT1 Parallel Port
Video Subsystem and DAC

Floppy Disk Controller
COM1 Serial Port

Table 6.1 Typical Input/Output Address Assignment in a PC (Echelon,

LonBuilder Hardware Guide)

3. LonBuilder Control Processor

The control processor provides control and network management between the

interface adapter in the host PC and the processor board within the development station.

It handles the commands and data communications between the interface adapter and the

processor boards for the Neuron nodes. The control processor board contains a Network

Manager node and a Protocol Analyzer node. The purpose of the network manager is to

define, configure, load and control LonWorks nodes and the network's operations. The

purpose of the Protocol Analyzer is to monitor, collect and display network traffic and

network performance statistics.

Figure 6.6 shows the picture of this control processor board and Figure 6.7 shows

the control processor block diagram.

46

Figure 6.6 Picture of Control Processor Board

47

NETWORK
MANAGER

PROTOCOL
ANALYZER

STATUS
LEO

-»- COMMUNICATIONS PORT

-•■-RESET

~~ CLOCK

TRANSCEIVER
EXPANSION

CONNECTOR BACKPLANE
TRANSCEIVER

32K
DUAL-PORT

RAM

CONFIGURABLE
CLOCK

CONFIGURABLE
CLOCK

NEURON
3150
CHIP

32K
DUAL-PORT

RAM

CONTROL
AND

BACKPLANE
INTERFACE

TRANSCEIVER
EXPANSION

CONNECTOR

BACKPLANE
TRANSCEIVER

PC
INTERFACE

B C
A O
C N
K N
P E
L C
A T
N O
E R

m INTERFACE
CONNECTOR

-CLOCK

•RESET

- COMMUNICATIONS PORT

TO ADDITIONAL
DEVELOPMENT
STATIONS

TO PC

Figure 6.7 Block Diagram of LonBuilder Control Processor (Echelon, LonBuilder
Hardware Guide)

4. LonBuilder Neuron Emulator

The purpose of LonBuilder Neuron Emulator is to test and debug the node

application programs and support hardware prototyping. Figure 6.8 shows the picture of

the Neuron emulator and Figure 6.9 shows the Neuron emulator block diagram.

A Neuron emulator contains a Neuron 3150 Chip, 64Kbytes of code and data

RAM, and 64Kbytes of control RAM to act a single Neuron node. It uses a LonBuilder

SMX adapter and transceiver to transmit data over the network. The emulator provides

hardware support for application loading, source-level breakpoints, single-stepping, reset,

start, stop, and memory read/write protection for each Neuron node's initial development.

48

Figure 6.8 Picture of LonBuilder Neuron Emulator

49

SERVICE
LEO

SERVICE
SWITCH

I/O
LED

UO
SWITCH

RESET
SWITCH

-»-CP
"*- SERVICE
■»-RESET

-CLOCK

TRANSCEIVER
EXPANSION
CONNECTOR

I I
NEURON

3150
CHIP

I

BACKPLANE
TRANSCEIVER

r
I/O
SERVICE
RESET

CLOCK

I/O
EXPANSION

CONNECTOR

B4K
DUAL-PORT
DATA RAM

CONFIGURABLE
CLOCK

S4K
DUAL-PORT
CONTROL

RAM

LOGIC
ANALYZER
INTERFACE

CONTROL
AND

BACKPLANE
INTERFACE

B C
AO
C N
K N
P E
L C
A T
N O
E R

Figure 6.9 Block Diagram of LonBuilder Emulator (Echelon, LonBuilder

Hardware Guide)

5. LonBuilder SMX Adapter

This adapter is an interface board that provides the connection between SMX-

compatible transceivers and LonBuilder processor boards (control processor boards and

emulator boards). It provides a modular, flexible solution for interfacing LonBuilder

processor boards with a wide variety of network media, such as twisted pair or power

lines.

6. LonBuilder Application Interface Kit

The LonBuilder application interface kit contains one application interface board,

one application cable, one application interface adapter, and one module application

interface. Figure 6.10 shows a picture of this kit.

The LonBuilder application interface board provides a means of connecting the

Neuron chip on a Neuron emulator directly into a user's target application hardware.

This kit provides a developer the ability to design and debug many different custom

nodes for the LonWorks networked control system.

50

Figure 6.10 Picture of LonBuilder Application Kit

LONWORKS NEURON NODES

A typical LonWorks Neuron node consists of

• A local processor, Neuron chip: it is a microcontroller that performs local data

processing and application functions, implements LonTalk protocol, and

accesses the network media.

• An input/output interface: it provides the interface between a Neuron node

and its input/output external devices, such as sensors, actuator, or controller.

• A transceiver: it provides the connection between the Neuron node and the

network communication media.

• A firmware and I/O application library: it provides the information of

protocol, scheduler, and I/O application library for each Neuron node.

51

• ROM, RAM, and EEPEOM: it stores the application code, firmware data,

system images, network images, and LonWorks network variables.

This project uses two different types of Neuron nodes for its initial bench testing

which uses LonWorks as its networked control system for the Phoenix. The first type of

Neuron node has the capability to control analog devices, such as motor controllers and

pulse width modulators. The second type of Neuron node has the capability to control

serial devices, such as sonar.

The first type of Neuron node used in this project is a Flexible I/O control module

made by the Intelligent Technologies Corporation (IEC). Figure 6.11 shows the picture

of this node and Figure 6.12 shows its block diagram.

Figure 6.11 Picture of IEC Flexible I/O Node

52

r"
o
I
in
OB

«W« TM»«
-t •(-* -* -' *< IwtwltWMXMMSWM 31

OXD®aXD(Da)<D

30IA83S

• S:

CEt- a <
>2

WS

o

axDaxDaxcaxDaxDaxD

? £ 1 SI
u

ooooooooot
OOOOQOOOO(

a0ivinw3

)

0 CD(D(D(D

i"i
(DCDOXD

I * > I- i- »• e-
«wtt www

S:

o
aa
<g

o
>-
<

R
E

LA
Y

2

<x

k

axDaxDaxDaxs
i- i' t- }• y- «• ».

«■"Mt W

OXDOXD

I

inou
UJU
MJ.O

o

*v

0XD(DGD

t*vK «h»£» o
.J

Figure 6.12 Block Diagram of IEC Flexible I/O Node (IEC, Flexible 10 Users Manual)

53

This node is designed to be a general purpose LonWorks node. It uses a Motorola

MC 143150 Neuron chip as its local processor running at 5 MHz clock speed. It is a node

for implementing, monitoring and controlling functions in a LonWorks control network.

Its application code is written, compiled and debugged by using the LonBuilder

developer's kit. The detail of this control module's software development is discussed in

Chapter VII, software methodology. Once the application code is successfully

developed, it is written into an off-chip EEPROM for the Flexible I/O node. An EMUP

chip burner is used to load the application code into the EEPROM. Figure 6.13 shows

this chip burner. The EEPROM with its application code is then inserted into the 27C256

PLCC socket onboard the Flexible I/O control module. A Flexible I/O node with its

EEPROM loaded with application code is a network ready Neuron node.

Figure 6.13 Picture of EMUP Burner

54

The Flexible I/O node consists of two sets of analog output, four sets of analog

input, four sets of digital input, four sets of relay output, two sets of open drain output,

and two sets of network connections. There are screw terminals, LED indicators, a

network SERVICE switch and a RJ-45 network connector which are used for network

installation and diagnostics (IEC, Flexible I/O users manual).

This project uses the analog output of a Flexible I/O node to control the servo

amplifiers that connect to many external devices. The servo amplifiers receive signals

from the control network to control the propeller and thruster motors onboard the NPS

AUV. The analog output signal is configured for 0-10 Volts DC (VDC) to control

various motor speeds.

The open drain output of this node controls the pulse width modulation (PWM)

for control of the fin motors on board the NPS AUV. It supports 1 Amp, 60 VDC with a

repetition rate of 19.531 KHz (IEC, Flexible I/O users manual).

The second type of Neuron node is a Serial to LonTalk Adapter (SLTA). This

project uses SLTAs to connect all the sonars that have EIA-232 serial interfaces to the

communication media. Figure 6.14 shows a picture of SLTA.

55

Figure 6.14 Picture of Serial to LonTalk Adapter (SLTA/2)

56

D. INPUT/OUTPUT DEVICES

The input and output external devices in the NPS AUV are the following:

• Analog devices: Servo Amplifiers with motors that control propellers, thrusters

and fins.

• Serial devices: ST725 Scanning sonar, ST1000 Profiling Sonar, and diver tracker

for altimeter.

This project uses Advanced Motion Controls (AMC) Servo Amplifiers, model

30A8 to control analog devices. This servo amplifier is designed to drive brush-type DC

motors. It is fully protected against over-voltage, over-current, over-heating and short-

circuits across motor ground and power leads (AMC PWM servo amplifier operating

manual). Figure 6.15 shows a picture of this servo amplifier with motors.

Figure 6.15 Picture of Advance Motion Controls (ACS) Servo Amplifier

57

This servo amplifier consists of 16 pins, 10 switches, and power supply

connections for itself and the connected motors. Its internal DC-to-DC converter allows

operation from a single power supply and outputs voltages of +/- 10 V at 5mA for

external use (AMC PWM servo amplifier operating manual). The servo amplifier

connects to a Neuron node and takes an input signal from the LonWorks network to its

differential pre-amp, pin 6 and 7. It uses the input signal to convert its 24 V input

voltage to variable output voltage of +/-10 V. This output voltage is used to drive the

motors for propellers, thrusters and fins onboard the NPS AUV.

The second type of external components are serial devices. There are two sonars

and a diver tracker. The first sonar is a ST725 scanning sonar operated at 725 kHz. It is

primarily used for the transit search due to its long-range search ability. The second

sonar is a ST1000 profiling sonar operated at 1250 MHz. It is primarily used for sector

search due to its superior range accuracy at near range. All communications with both

sonars are conducted using Asynchronous RS-232 signal level at 9600 Baud, one start

bit, one stop bit, and no parity bit. The network communicates to the Sonar Head via the

RS-232 serial communications port COM1. In order to establish hardware handshaking,

it requires some type of modem equipment (Tritech 92). This project uses the Echelon

SLTA to establish this hardware handshaking between the sonars and the LonTalk

network.

E. THE NPS AUV'S NETWORK CONNECTION AND IMPLEMENTATION

Once all individual devices have been developed and configured as LonWorks

components, they are physically attached to the LonWorks control network system in a

bus topology. Figure 6.3 shows the picture of this network. This system uses a Level IV,

22 AWG (0.65mm) twisted pair cable as the network's primary bus. This type of cable

can sustain 1.25 Mbps data communication with a TPT/XF-1250 control module and

transceiver on each Neuron node.

This project uses three IEC Flexible I/O nodes to control all of the analog devices.

One node is connected with two servo amplifiers for the propeller motors. Another node

is connected with two servo amplifiers for the thruster motors. The last node is

58

connected with two more servo amplifiers for the fin motors. It also uses one SLTA node

to connect one sonar serial device. Table 7.4 of Chapter VII lists the name of each

Neuron node and their network variables. They are created during the development of

application program source code.

The Neuron nodes are connected to the LonWorks control network one at a time.

Once a new Neuron node is connected to the network and powered up, its service pin is

pushed to identify itself by sending its 48-bit unique Neuron ID to the LonBuilder's

database. The LonBuilder accepts this incoming new node and issues a queue command

to extract all of its the network variables. These network variables are stored inside the

LonBuilder's database with its unique Neuron node.

When all the Neuron nodes have been connected to the network and all network

variables have been extracted and stored in the database, a binding process is carried out

by the LonBuilder. A binding process provides the interoperable communication

between Neuron nodes by using their network variables. The application program of

each Neuron node determines the types, directions, units, and ranges for its network

variables.

The propeller node uses two of its network variables to control the two servo

amplifiers for the propeller motors. The network variable Nvi_raw_analog_l and

Nvi_raw_analog_2 are of type SNVT_count and are scaled from 0-4096 for 0-10 VDC

(Flexible IO users manual). The various output voltages are used to control the propeller

turning speeds.

The thruster node is identical to the propeller node. The LonWorks network can

differentiate two different nodes by recognizing each node's unique 48-bit Neuron ID

even when the two nodes use the same names for their network variables.

The fin node uses Nvi_open_drain_l and Nvi_open_drain_2 to control the fin

motors. The open drain MOSFET transistor outputs support the pulse width modulation

(PWM). This node controls two fin motors, which are variable speed reversing DC

motors for -/+ 10 VDC. The scaling for these network variables are 0-255 for 0 to full

modulation. The repetition rate is 19.531 KHz and the pulse width frequency changes at

the end of the current cycle (EC, Flexible IO users manual).

59

The sonar node uses Charjn and Char_out as its input and output network

variables. This project uses a portable PC to simulate a serial device. It connects to a

SLTA via RS-232. The SLTA is connected to the network media via RJ-45 network

connector. The network variable browser of the network manager can be used to send

out a string of characters in a packet format. This packet message passes through the

SLTA and is received by the portable PC. This string of characters is then displayed on

the screen of the PC. Conversely, the portable PC can also send out a string of characters

that pass through the network and back to the LonBuilder, which can be viewed by the

network variable browser.

F. LONWORKS NETWORK'S UPGRADE, MAINTENANCE AND REPAIR

Upgrading a LonWorks networked control system by adding or removing Neuron

nodes is an easy task. Adding a new Neuron node to the network is the same as the tasks

described in the above section. Removing a Neuron node is as simple as unplugging the

node's RJ-45 connector from the network. The LonBuilder's database can still keep the

Neuron ID of the removed node and other related information. It will not affect any

further network operation. In brief, adding or removing a Neuron node does not require

any network reconfiguration.

The maintenance of LonWorks network system is rendered by the network

manger and protocol analyzer in the LonBuilder. These two nodes are used to manage,

monitor, and log the LonWorks network activities. The network manager uses its

network statistics to display the network's performance and utilization. Its packet log is

used to collect copies of actual message packets on the network. It states the time, type,

and the addresses of the sender and receiver for each message packet.

The network variable browser of the protocol analyzer can display and monitor

the value of each network variable. When a device does not respond to its input

command, the network variable browser can display the values of the network variable

both in sending and receiving nodes. Therefore, the problem area can be easily located

and isolated.

60

G. SUMMARY

This chapter summarized all the hardware components used in this project. The

components used in this workbench testing are only a representative portion of actual

AUV components. However, this project includes all types of external devices used in

the NPS AUV and demonstrates a working model by using LonWorks technology. The

NPS AUV uses two types of Neuron nodes for its control network system. One is for

A/D D/A devices and the other one is for serial devices. Each Neuron node is developed

and installed into the network by LonBuilder. Since each Neuron node is developed and

operated independently, adding or removing a node is a simple task performed without

reconfiguring the entire network system. The LonWorks system in the NPS AUV

simplifies the maintenance and makes troubleshooting easier.

61

62

VII. SOFTWARE METHODOLOGY

A. INTRODUCTION

The software of the LonBuilder development kit provides the basic tool to

develop the application programs in each Neuron Chip based node in the network. This

software consists of project manager, network manager, protocol analyzer, program

editor, Neuron C compiler, and debugger. Figure 7.1 shows all components of this

development kit. These programs are combined together in the LonBuilder Integrated

Development Environment (IDE) which support the application programming of each

Neuron node. Section B of this chapter summarizes the basic development process of a

LonWorks application program. The completed description is in the Echelon LonBuilder

User's Guide, Neuron C Programmer's Guide and Neuron C Reference Guide, listed in

the references.

Interactive Symbolic Debugger
NEURON C Compiler

Program Editor / ..
Protocol Analyzer / ,•"

Network Manager / ••**' s

Project Manager

/■//

^sgggpgsg^^/gs^aswg^^/g?^^

User Interface Manager } Object Manager

Object
Database Network

Figure 7.1 Integrated Development Environment (Echelon, LonBuilder user's guide)

This chapter also describes the development of application programs for the two

types of Neuron nodes in this project. One is the A/D D/A application program, and the

other one is the application program for the serial data transmission. When all the

application programs have been developed and implemented into each Neuron node, they

63

are then connected and bonded together using their network variables. Using the network

manager of the LonBuilder development kit does the binding process and forms the

LonWorks network.

B. LONBUILDER DEVELOPMENT ENVIRONMENT

The workbench-testing phase for the NPS AUV consists of six nodes. Table 7.1

lists the names of nodes and external devices which connect to the nodes.

Name of Node
Command Center

Propeller
Thruster
Rudder

Indicator
Sonar

External devices attached to the node
one Host PC operated in QNX operating environment
two propellers with two motors and servos
two thruster with two motors and servos
two rudder with two PWM motors
two light indicators reside on two emulators of LonBuilder
one serial device, simulated by a portable computer

Table 7.1 Neuron Node Names and their External Devices

To develop a Lon Works application for this project involves six basic steps.

These steps are general and they can be used to develop a single node with one device or

many nodes with many devices in a very complex system. These steps are:

1. State the problem

2. Identify all nodes and assign their functions

3. Define the interface of the external device for each node

4. Write applications program for each device and node

5. Use LonBuilder to build, compile, debug, and test each node

6. Connect and integrate all nodes into network and test

1. State the Problem

The problems associated with current NPS AUV are slow data processing rate,

complex network architecture, and lack of real-time response. The communication and

networked system onboard the AUV is complicated and difficult to maintain and

upgrade. The goal of this project is to simplify the current system by using the

64

LonWorks Technology. As stated in previous chapters, this technology uses Neuron

nodes to connect external devices to form the networked control system. It is a

decentralized networked control system.

2. Identify Nodes and Assign their Functions

The second step is to identify all nodes used in this project and assign their

functions. This project consists of six nodes for the workbench testing of the NPS AUV.

Each Neuron node is developed independently. It consists of a Neuron Chip, one or two

external input/output devices, and a communication transceiver. Each of six nodes uses

the Neuron Chip as a local application processor. These are called Neuron Chip hosted

nodes. The communication transceiver is a TPT/XF 1250 twisted pair transceiver.

The six nodes consist of a central command node, a node to control two propeller

motors, a node to control two thruster motors, a node to control two rudder motors, a

node to control the serial devices' input and output, and a node to control two light

indicators.

3. Define the Interface of the External Device for Each Node

During the node interface definition, each interface of the node is needed to make

it visible to other nodes. The application-level LonMark objects are used to define these

interfaces. The LonMark objects are those external devices connected to the Neuron

nodes. They are the products that can meet the interoperable standard of the LonWorks

Technology. These objects build upon Standard Network Variable Types (SNVTs) and

provide an application layer interface with the Neuron nodes. The SNVTs are standard

variable types that define units, ranges, and type identification. These objects use the

SNVTs to provide semantic meaning about the information that has been transmitted and

received by each node over the network (LonMark 96).

The LonMark objects and the SNVTs of the nodes are visible to other nodes.

Each node is defined and configured base on its external device. This allows each node

to be developed independently. This type of development process can maximize the

interchangeability among different devices with different properties. It also can minimize

the reconfiguration requirement when there is a network or application change.

65

Each node and input/output external device requires defining two types of

network variables. One is an output network variable that is generated by the node and

exported out to the network for propagation across the network. The other one is an input

network variable that is received by a node from the network and used to update the

node's network variable.

Table 7.2 summarizes the functions of the six nodes.

Names of Neuron Node

Command Center as
Execution Level

Interface

Propeller

Thruster

Rudder

Indicator

Sonar

Functions
The central command of the AUV. It issues various
commands to different nodes to perform the desired
missions. These missions can be basic maneuvering, search
and detect external objects, etc.
This node controls the speed of two propeller motors via two
servo amplifiers.
This node controls the speed of two thruster motors via two
servo amplifiers.
This node controls the movement of two rudders.
This node controls the two light indicators for the status of
propeller motors.
This node sends and receives serial data to and from sonar
onboard the AUV.

Table 7.2 Functions of Neuron Nodes

4. Write the Application Program for Each Node

An application program defines the function of a node, its external VO object, the

SNVTs, and the tasks that the external devices to perform. The application programs for

the Neuron nodes are written and compiled in Neuron C provided by the LonBuilder

developer's kit. Each node uses the application program to perform its desired functions.

These application programs are processed and implemented by the Neuron Chip on the

node. This chip is both an application and a communication processor. The Neuron Chip

consists of eleven input/output pins (IO_0 to IO_10). These pins are used to

communicate with the input/output device that is connected to the node. Figure 7.2

shows the potential pin declaration.

66

Use of I/O Resources
Potential Pin Declarations

is?

iss

^ 8 12

Bit Input, Bit Output
Byte Input, Byte Output

Levektotoet input
Itfbbk» Input, Nibble Output
 Touch t/O

Parartel uo{
MuxbuaVO

MasterfSlaveA
Slave B

0 11 2 3T« m 6 7|8lB]lÖ

I I I M i I-

» I I I i I T
AnyPwuawntPw

Magcard Input
Magtrackl Input

BttshKt Input, Btehltt Output

/Master
Neurowire I/O t _.

V Stan«
1*0 I/O

Serial Input

Serial Output
 VMegand Input

;ii

Dualslope Input
Edgetog Input
Inhered Input
Ontitne input
Period Input

Putaecount Input

Quadrature Input
Totaicoont Input

EdgedMde Output
Frequency Output

Oneehot Output
Pubeeount Output

Putsewidth Output
Triac Output

Triggeredcount Output

cs |»w

OpMoml^IHWÖtf

Cp Cp c> C> CJO C'p Cp

opignrtempa—«

I I II I i
I I I I I I
I I i I I I

m

t et oi ei oi

1 2 3

Hr&tafiBD

□ I I

asc

□ i
i a

Won Sink

I I I I
4*i I t*7

T~l
Syrtcfccw J

I I I I
MM
MM
MM

^Ttt 7 18 ID
Putl Ups (Standard

Figure 7.2 Neuron Chip I/O Pin Declarations (Echelon, Neuron C Reference
Guide)

There are many different combinations can be used to configure and utilize these

10 pins. This design can increase the flexibility and minimize the overall circuitry for

each Neuron node.

The external devices, LonMark objects, and the network variables used to

implement them were defined in step 2. The application program of each node declares

the data type and direction of its network variables. Network variables are classified

based on their input or output direction. A node uses the output network variables to

send data to the network. The receiving node receives the data as input network

variables.

67

Table 7.3 summarizes the node names and their network variables for this project.

Figure 7.3 shows a graphical representation of each node and their network variables.

Names of Neuron
Node

Names of Network
Variable

Direction TypeofSNVTs

Command Central NvoJLprop Output SNVT count
Nvo_r_prop Output SNVT count
Nvo 1 thruster Output SNVT count
Nvo r thruster Output SNVT count
Nvo_l_rudder Output SNVT count
Nvo_r_rudder Output SNVT count
Nvo_l_indication Output SNVT lev disc
Nvo_r_indication Output SNVT lev disc
Nvi_l_feedbk Input SNVT count
Nvi_r_feedbk Input SNVT count
Nvo_char_central Output SNVT char ascii
Nvi_char_central Input SNVT char ascii

Propeller Nvi_raw_analog_ 1 Input SNVT count
Nvi_raw_analog_2 Input SNVT count
Nvo_raw_analog_ 1 Output SNVT count
Nvo_raw_analog_2 Output SNVT count

Thruster Nvi_raw_analog_ 1 Input SNVT count
Nvi_raw_analog_2 Input SNVT count

Rudder Nvi_raw_analog_ 1 Input SNVT count
Nvi_raw_analog_2 Input SNVT count

Indicator Nvi 1 ledstate Input SNVT lev disc
Nvi_r_ledstate Input SNVT lev disc

Sonar Nvo_char_sonar Output SNVT char ascii
Nvi char sonar Input SNVT_char_ascii

Table 7.3 Neuron Node Names and their Network Variables

68

Command Center

z

o
P

o
B

Z

o
P.
o
3

z Z

6«

[ßiäieatorä

z < z <

a IF

CTQ
I
to

Z

60
i—t-
ft

•Thruster

z z z

z

p

I
P
3

i.ittui.jj,-im

Z

Z

p

P a

I OQ

Z

Z

S
P _J 3

I

z

z <

e
,*
P a

cro

9»fOPropeUer>$^

CD
if

z

i-i

Z

3

P

%|%L—__

Mii

z

o a>
B
>-t
P

z
<;
i° o
B*

CO

O

z

.3

u. -m^':]

iSiSöhäri

Z <

1
I
P a

I
to

I I

Z <

I
o

CTQ

RudÄer I

Figure 7.3 Neuron Nodes and Associated Network Variables

69

5. Build, Debug, and Test Individual Nodes

The LonBuilder is used to perform three tasks for each application node during

the debugging step of development process. These tasks are:

(1) Install and configure a LonBuilder Neuron Emulator in a development station

(2) Compile and link the application code for the node, and load the application

program onto the installed and configured emulator

(3) Debug the node's application program running on the emulator using the

Neuron C Debugger.

These tasks are repeated for each application node.

After a successful debugging phase, the application code is implemented in

custom hardware. Custom hardware with its application code is called a custom node.

This Neuron Chip based custom node contains all the components required to function as

a LonWorks node.

Next, there are five tasks to build and test a custom node. These tasks are:

(1) Design and build the custom node hardware. A typical custom node consists

of a Neuron chip, an oscillator, a transceiver, off chip memory and I/O

hardware. The off-chip memory contains the Neuron chip firmware.

(2) Compile and link the application code for the node, and program the node's

memory with an initial image. The initial image includes system image,

application image, and network image.

(3) Install and configure the custom node on the target communications channel.

(4) Load the node's application program onto the installed and configured custom

node.

(5) Test the node's application program running on the custom node.

The LonBuilder network manager is used to verify that the node is functioning correctly,

and its network variable browser is used to test the external interface of a node.

These tasks are repeated for each custom node. Once all the desired nodes have

been installed and are functioning properly, the network can be disconnected from the

LonBuilder development station and operated in a stand-alone mode.

70

6. Integrate Nodes into Networks and Test

A Network is built and formed from many independent Neuron nodes. During the

network integration and test phase of the development process, it starts with a few nodes

and gradually adds new nodes to existing, functioning systems. The network integration

process involves three tasks.

(1) Physical placement and attachment: to locate nodes in their proper places and

to make any necessary attachment to the application hardware and network

communication media.

(2) Node installation: to load nodes with information that establishes the desired

logical connections to other nodes.

(3) Network test: to monitor and test communication among the nodes on the

development network.

These tasks are repeated when adding new nodes to the network.

C. SOURCE CODE DEVELOPMENT FOR THE APPLICATION NODES

This project is an initial startup and workbench test to investigate the feasibility of

using LonWorks for the NPS AUV networked control system. The major components of

the AUV are command center, propellers, thrusters, rudders, fins and sonar. This project

uses two different types of custom nodes for its external components. The first type of

custom node has the ability to convert A/D and D/A signals. This project employs the

IEC Flexible I/O node. The second type of custom node has a serial interface that

interacts with sonar for serial data transmission. This project uses the Echelon SLTA/2

Serial LonTalk Adapter.

The DEC Flexible I/O node is designed, developed and manufactured by the

Intelligent Technologies Corporation. It is a general purpose LonWorks based node.

This project uses these types of nodes to control the motors of propellers, thrusters,

rudders, and fins. The completed source code implemented in these nodes can be found

in the IEC Application program disk. The file names are FX78_12.nc and FANCOIL.nc.

This project uses a SLTA/2 to connect the serial devices in the NPS AUV. The

actual serial devices of interests are the sonars. However, for workbench testing

purposes, this project uses a portable computer to simulate a serial device that sends and

71

receives serial data to the LonWorks network. This is a convenient diagnosis technique

when testing any serial device. The SLTA/2 is a network interface that connects the

serial devices to the LonWorks network via RS-232 serial interface. It is a

preprogrammed device and its source files are included on the SLTA/2 software disk.

The completed descriptions of those files are in the Echelon Serial LonTalk Adapter and

Serial Gateway User's Guide.

D. SOURCE CODE DEVELOPMENT FOR THE INTEGRATED NETWORK

ONBOARD AUV

This project uses the following hardware devices for the workbench testing:

• Emulator one is simulated as the command center

• An IEC Flexible I/O node controls two propeller motors

• An IEC Flexible I/O node controls two thruster motors

• An DEC Flexible I/O node controls two rudder motors

• Emulator two uses its light indicator to indicate the status of the propeller

motors

• An SLTA/2 connects to a portable computer which simulates the sonar serial

port communications

A sample source code has been developed and implemented into the emulator one

node as the command center. The purpose of this source code is to demonstrate that the

command center has the ability to control various devices onboard the NPS AUV by

modifying many network variables in a LonWorks network environment. The source

code is included in Appendix C. It has 15 different time frames. The command center

issues many commands to different nodes. Those components then perform different

tasks based on the commands they received in each time frame. Table 7.4 summarizes

the functions of each time frame.

The first step of this network integration is to attach each node to the network

communication media. Connections include one network manager, one protocol

analyzer, two emulators, three IEC Flexible I/O nodes, and one SLTA/2. They are all

connected to a twisted-pair bus topology network.

72

Next, the network manager recognizes and assigns each node's address by

sequentially pushing each node's service pin when ready to be recognized. The node

then sends out its unique 48-bit Neuron ID to the network manager. Table 7.1 describes

the names of all nodes in this project. These node addresses are logical addresses that

uniquely identify each the node in the network.

The LonWorks network's use of the logical addresses, rather than a physical

serial number for each node has several advantages. First, a single message can be sent

to multiple nodes without any confusion. Second, the network maintenance can be

simplified. A new node can replace a damaged node without reconfiguring the entire

network. The new node can be given the same network logical address and connection

information as the damaged node. Therefore, the replacement of a physical device is

apparent to hardware and software-controlled devices in the network.

After the network manager recognizes each node, it is required to queue each

node's network variables. The network variables defined in Table 7.2 provide all

interoperable communication between nodes in LonWorks network.

The final step of this project is to make desired logical connections using these

network variables. This is called a binding process. Figure 7.3 shows the connection and

directions of these network variables.

After the binding process, the LonBuilder performs an automatic build for the

network (Echelon, LonBuilder User's Guide). -When the automatic build process is

completed and successful, the emulator with the sample source code is ready to simulate

a maneuvering exercise for the workbench testing of the NPS AUV.

73

Time frame Functions
Frame 1 Go forward straight at 20% of full speed
Frame 2 Change speed to 40% of full speed
Frame 3 Change speed to 80% of full speed
Frame 4 Change speed to full speed
Frame 5 Change speed to 80% of full speed
Frame 6 Change speed to 40% of full speed
Frame 7 Change speed to 20% of full speed
Frame 8 Stop and rudders amidships
Frame 9 Go forward straight at full speed
Frame 10 All stop
Frame 11 Turn right at 10% of full speed
Frame 12 Stop and rudders amidships
Frame 13 Turn left at 50% of full speed
Frame 14 Stop and rudders amidships
Frame 15 Go forward straight at 10% of full speed

Table 7.4 Time Frame for the AUV Maneuvering Exercise

E. SUMMARY

This chapter demonstrates the ease and flexibility of using LonWorks technology

onboard the NPS AUV. There are numerous general-purpose application nodes that have

been developed by third party companies. Nodes are off-the-shelf products with

hardware ready to be used in a LonWorks network environment. Network integration is

not a difficult task. The LonWorks network uses SNVTs to communicate among all

nodes. The LonWorks network manager provides the binding process to all the network

variables. Once all the nodes are logically connected by their network variables, a

sample application program can run in the networked environment. The sample program

described in this chapter makes a simulated AUV perform many different tasks using

"when" clause statements for each time frame. These "when" clause statements are

straightforward and simple, and only changes the values of the network variables to

accomplish its desired mission.

74

VIII. CONCLUSIONS AND RECOMMENDATIONS

A. INTRODUCTION

Although this project demonstrated a method of simplifying the command and

control of devices onboard Phoenix through the LonWorks networked control system, it

represents only a starting point for further evaluation of the application of Echelon

LonWorks technology onboard the NPS AUV. Many of the problems discussed in

Chapter III have been solved by this approach but additional research and testing must be

completed before a working model of LonWorks networked control system can be

implemented within Phoenix.

B. RESEARCH CONCLUSIONS

1. Data Processing Rate Improvement

This project has developed a LonWorks networked control system with a

bandwidth of 1.25 Mbps at peak rate which can handle a peak network traffic load of

1000 packet messages per second and a sustained continuous packet load can be 600-800

packet messages per second. Typical packet size is about 12 bytes.

The major component that provides this system with a bandwidth of 1.25 Mbps is

the 10 MHz Neuron processor in each Neuron node. There are three 8-bit CPUs in each

Neuron processor. This allows each Neuron node to collect and process all data locally.

This added processing power from each Neuron node in the network system improves the

overall network processing rate dramatically.

This project provides evidence that the LonWorks networked control system can

solve the data rate problem (see Chapter III) and provide extensive future growth

capability. This feature needs to be explicitly tested once all components are connected

and operating.

2. Network Architecture Simplification

This project uses a simple bus-topology LonWorks networked control system.

Two terminators are located at either end of a twisted pair bus lineup with multiple

Neuron nodes in between. All Neuron nodes are configured to meet the interoperability

75

requirements of LonWorks technology before attaching to the network. External devices

can then simply be plugged into nodes and are ready for operation.

The network architecture developed for this project simplifies the current

architecture implemented onboard the NPS AUV. It reduces the amount of wiring

required to connect the myriad of external devices to meet the operational requirements

of the NPS AUV. The project successfully used the LonBuilder network manager to

make logical connections between components without adding more wires.

3. No System Reconfiguration when Adding or Removing Devices

Every time a device is added or removed from the current system, a change to the

entire software configuration is required. It is a long, tedious, and often frustrating

experience to rework these configurations. Each Neuron node in the LonWorks network

operates independently, and all external devices interact with a single Neuron node

without affecting other nodes. There is no longer a need to perform a complete system

reconfiguration when adding or removing devices. This greatly simplifies network

maintenance and component upgrades.

4. Real-Time Response

This project has demonstrated that the new network system has higher data

bandwidth, increased speed at each Neuron node, and a more scalable network

architecture. This is a vast improvement over the current system onboard the NPS AUV.

It has much greater potential to provide real-time data acquisition for vehicle operation.

5. Suitability for Other Robot Architectures

Control network technology provides rapid and expanded data processing

capability for each Neuron node through an architecture that supports a large data

bandwidth. The superior data bandwidth will expedite response for any large robot

control system. Applying this technology to robot control systems can enhance

coordination among all of the system's components since each component attached to a

Neuron node is also provided additional local data processing power. This control

network appears suitable for a variety of different robot types.

76

C. RECOMMENDATIONS FOR FUTURE WORK

This project provides a workbench implementation of selected portions the NPS

AUV control system using the Echelon LonWorks technology. More work and research

is needed before a working model can be installed in the actual vehicle for in-water

testing and use.

1. Implement LonWorks to NPS AUV

This project only uses one of each kind of component on board the AUV to

investigate the feasibility of using control network technology in the NPS Phoenix AUV.

The workbench testing successfully demonstrated that LonWorks hardware and the

LonTalk protocol can be implemented in the Phoenix to improve its current network

system. This workbench setup needs expansion to include all necessary devices inside

the AUV, listed in Table 7.3 and Figure 7.3. Previous chapters have described all of the

essential steps and procedures required to build and complete a control network system.

This new control network system should be implemented in the actual NPS AUV for its

in-water testing.

2. TCP/IP-to-LonTalk Telemetry Bridge

The current execution level programming source code of Phoenix is written in C

running in a TCP/IP networking environment. Because of the large amount of source

code involved, a mapping between the TCP/IP protocol and the LonTalk protocol is a

must. Otherwise the execution level source code may have to be rewritten in many

pieces of Neuron C, the programming language for LonTalk. Such a partition is unlikely

to be compatible with the RBM architecture. There are now several types of

commercially available routers that can provide the connectivity to LonTalk from

Ethernet or from the Internet using TCP/IP. A suitability test is needed to assess the

feasibility of this technology for the telemetry between two different network protocols.

Currently available router hardware may be too large to fit inside Phoenix. Detailed

information about this technology is available in the references (Coactive 97).

77

D. SUMMARY

This project demonstrated the feasibility of using the LonWorks technology to

implement a faster and more scalable networked control system onboard the NPS AUV.

This technology has proven that it can provide reliable communication, decentralized

(peer-to-peer) topology with no single point of failure, and easy extensibility and

interoperability for a wide variety of hardware devices. It can greatly increase the

reliability and throughput of Phoenix onboard sensors. This provides the required

real-time data analysis capability needed for the Phoenix's missions. Implementing the

Echelon LonWorks technology onboard the NPS AUV fulfills the ultimate goal of this

thesis.

78

APPENDIX A- MASTER SNVTs LIST

This list provides all available SNVTs and details of their definitions. Standard Network
Variable Types facilitate interoperability by providing a well-defined interface for
communication between different Neuron nodes (The SNVT Master List and Programmer's
Guide).

Measurement Name Range (Resolution) |SNVT#

Address, SNVT_address 0x4000 .. OxFlFF (hexadecimal) 114
Neuron Chip
Alarm state SNVT_alarm see Structures below 88
Angular SNVT_angle_vel -3,276.8 .. 3,276.7 radians/sec 4
velocity (0.1 radians/sec)

SNVT_angle_vel_f -1E38..1E38 radians/sec 50

SNVT_rpm3 0 .. 65,534 revolutions/minute (1 <ym) 102

Area SNVT_area3 0 .. 13.1068 m2 (200 mm2) 110

Character SNVT_char_ascii 0..255 7
Char string SNVT_str_asc see Structures below 36

SNVT_str_int see Structures below 37'
Color SNVT_color see Structures below 70
Concentration SNVT_ppm 0 .. 65,535 parts per million (1 ppm) 29

SNVT_ppm_f 0.. 1E38 ppm 58
Count, event SNVT_count 0.. 65,535 counts (1 count) 8 .

SNVT_count_f -1E38.. 1E38 counts 51
Count, SNVT_count_inc -32,768.. 32,767 counts (1 count) 9
incremental SNVT_count_inc_f -1E38.. 1E38 counts 52
Currency SNVT_curxency see Structures below 89
Current SNVT_amp -3,276.8 :. 3,276.7 amps (0.1 A) 1

SNVT_amp_f -1E38.- 1E38 A 48
SNVT_amp_m il -3,276.8 .. 3,276.7 mA (0.1 mA) 2

Date SNVT_date_cal Use SNVT_timestamp Instead 10
Day of week SNVT_date_day see Enum Lists below 11
Density SNVT_density 0.. 32,7675 kg/m3 (0.5 kg/m3) 100

SNVT_density_f 0.. 1E38 kg/m3 101
Emergency SNVT_hvac_emerg see Enum Lists below 103 .
mode, HVAC
Energy, elec SNVT_elec_kwh 0 .. 65,535 kilowatt-hour (1 kWH) 13

SNVT_elec_whr 0 .. 6,553.5 watt-hours (0.1 WHR) 14
SNVT_elec_whrJ 0 .. 1E38 watt-hour 68

Energy, thermal SNVT_btu_f -1E38.. 1E38 btu 67
SNVT_btu_kilo 0 .. 65^35 kilo btu 5
SblVT_btu_mega 0 .. 65,535 mega btu 6

File position SNVT_file_pos see Structures below 90
File request SNVT_file_req see Structures below 73
File status SNVT_file_status see Structures below 1 74

79

Measurement Name Range (Resolution) SNVT#

Flow

Frequency

Gain
Grammage

HVAC mode

HVAC override

HVAC status

Humidity
Illumination
Installation source
Length

Level, continuous

Level, discrete
Level, percent
Magnetic cards

Mass

Multiplier
Object request
Object status
Occupancy
Override
Phase/rotation

Phone state
Power

SNVT_flow3

SNVTJlowJ
SNVT_flow_.mil
SNVT_freq_f
SNVT_freq_hz
SNVT_freq_kilohz
SNVT_freq_milhz
SNVT.muldiv
SNVT_grammage
SNVT_grammage_f

SNVT_hvac_mode2

SNVT_hvac_overid2

SNVT_hvac_status2

SNVT_lev_percent
SNVT_lux
SNVT_config_src
SNVT_length
SNVT_length_f
SNVT_length_kilo
SNVT_length_micr
SNVT_length_mil
SNVT_lev_cont
SNVTJev_cont_f
SNVT_lev_disc
SNVT_lev_percent4

SN"VT_magcard
SNVT_ISO_7811
SNVT_mass
SNVT_mass_f
SNVT_mass_kilo
SNVT_mass_mega
SNVT_mass_mil
SNVT_multiplier
SNVT_obj_request
SNVT_obj_status
SNVT_occupancy
SNVT_override
SNVT_angle
SNVT_angle_deg4
SNVT_angle_f
SNVT_telcom
SNVT_power
SNVT_power_f
SNVT_power_kilo

0.. 65,534 üters/sec(l 1/sec)

-1E38.. lE381/sec
0 .. 65,535 milLUjters/sec (1 ml/sec)
-1E38 .. 1E38 Hertz
0.. 6553.5 Hz (0.1 Hz)
0 .. 6553.5 kHz (0.1 kHz)
0 .. 6.5535 Hz (0.0001 Hz)
see Structures below
0 .. 6,553.5 gsm (0.1 gsm)
-1E38 .. 1E38 gsm
see Enum Lists below

see Structures below

see Structures below

See Level, percent below
0 ..65,535 lux (1 lux)
see Enum Lists below
0... 6,553.5 meters (0.1m)
-1E38 .. 1E38 meters
0 .. 6,533.5 km (0.1 km)
0 .. 6,553.5 urn (0.1 jim)
0 .. 6,533.5 mm (0.1 mm)
0 '.. 100 % (0.5%)
0.. 100 %
see Enum Lists below
-163.84% .. 163.83% (0.005% or 50 ppm)
see Structures below
Use SNVTjnagcard instead
0 .. 6,553.5 grams (0.1 g)
0.. 1E38 g
0 .. 6,553.5 kg (0.1 kg)
0 .. 6,553.5 metric tons (0.1 tonne)
0 .. 6,553.5 milligrams (0.1 mg)
0 .. 32.7675 (0.0005)
see Structures below
see Structures below
see Enum Lists below
see Enum Lists below
0 .. 65.535 radians (0.001 radians)
-359.98 .. +360.00 degrees (0.02 degrees)
-1E38 .. 1E38 radians
see Enum Lists below
0 .. 6,553.5 watts (0.1 W)
-1E38 .. 1E38 watts
0 .. 6,553.5 kW (0.1 kW)

15

53
16
75
76
77
78
91
71
72
10S

111

112

81
79
69
17
34
18
19
20
21
55

; 22
81
86

'. 80
23
56
24
25
26
82
92
93
109
97
3

104

49
38
27
57
•5R

80

Measurement

Power factor

Preset
Pressure - gauge
Pressure - absolute
Pressure - gauge

Resistance

Sound level

Speed

State
Switch
Temperature

Temperature setpts
Time of day
Time - elapsed

Time stamp
Translation table
Volume

Voltage

Zero and Span

Nam«

SNVT_pwr_fact
SNVT_pwr_fact_f
SNVT_preset
SNVT_press
SNVT_press_f

SNVT_press_p4

SNVT_res
SNVT_res_f
SNVT_res_kilo
SNVT_sound_db
SNVT_sound_db_f
SNVT_speed
SNVT_speed_f ■
SNVT_speed_mil
SNVT_state
SNVT_switch
SNVT_temp 1

SNVT_temp_p2' 4

SNVT_temp_f
SNVT_temp_setpt
SNVT_date_time
SNVT_time_f
SNVT_elapsed_tm
SNVT_time_sec3

SNVT_time_passed
SNVT_time_stamp
SNVT_trans_table
SNVT_vol
SNVT_vol_f
SNVT_vol_kilo
SNVT_vol_mil
SNVT_volt
SNVT_volt_dbmv
SNVT_volt_f
SNVT_volt_kilo
SNVT_volt_mil
SNVT_zero sp an

Range (Resolution)

-1.0 .. 1.0 (0.00005)
-1.0.. 1.0
see Structures below
-3,276.8 .. 3,276.7 kilopascals (0.1 kPa)
0 .. 1E38 pascals
-32,768 .. 32,766 pascals (1 Pa)

0 .. 6,553.5 ohms (0.1 Q)
-1E38 .. 1E38 D.
0 .. 6,553.5 kft (0.1 kD.)
-327.68 .. 327.67 decibels (0.01 dBl
-1E38 .. 1E38 dBspl
0.. 6,553.5 meters/sec (0.1 m/s)
-lE38...1E38m/s
0.. 65.535 m/s (0.001 m/s)
see Structures below
see Structures below

-274 .. 6,279.5 °C (0.1 °C)

-273.17 .. +327.66 °C (0.01 °C)
-273.17.. 1E38 °C
see Structures below
Use SNVT_timestamp instead
-1E38.. 1E38 sec
See Structures below
0.0 .. 6553.4 sec (0.1 sec)

Use SNVT_elapsed_tm instead
see Structures below
see Structures below
0 .. 6,553.5 liters (0.1 1)
0.. 1E38 1
0 .. 6,553.5 kiloliters (0.1 kl)
0 .. 6^53.5 milliliters (0.1 ml)
-3,276.8 .. 3,276.7 volts (0.1 V)
-327.68 .. 327.67 dB uv (0.01 db uv dc)
-1E38 .. 1E38 volts
-3,276.8 .. 3,276.7 kilovolts (0.1 kV)
-3,276.8 .. 3,276.7 millivolts (0.1 mV)
see Structures below

SN\nr;

98
99
94
30
59
113

31
60
32
33
61
34
62
35
83
95
39

105

63
106
12
64
87

107

40
84,
96'
41
65
42
43
44
45
66
46
47
85

1 SNV7-temP represents tenths of a degree Celsius above -274 °C. To eet SNVT temo

Z*to^~ CJ°-K eqUal t0 274° WhKh * add6d t0 ^^ -P—d -
To be used for heating, ventilation and air conditioning applications.

The value OxFFFF represents invalid data.

4 The' value 0x7FFF represents invalid data.

81

82

APPENDIX B -ESTIMATED COST FOR THE NPS AUV USING
LONWORKS TECHNOLOGY

Hardware Devices Part
Number

Educational
discount
Cost(50% off
original cost)

Quantity Function Total Cost

Echelon
LonBuilder
Developer's kit

Model
20300

$9,398.00 1 Network
Development tools

$9,398.00

EC Flexible I/O
Boards

None $450.00 6 Neuron Node for
A/D D/A Devices
(Servo amplifiers)

$2,700.00

SLTA/2 730-00-1-
310-1

$270.00 3 Neuron Node for
Serial Devices
(Sonars)

$810.00

PCLTA 731-00-11 $158.00 1 PC to LonTalk
Adapter for QNX
Platform

$158.00

RJ-45 Phone Jacks None $7.00 12 Connectors in the
Bus Topology

$84.00

Terminators None $10.00 2 Eliminate
Unwanted
Message Packets

$20.00

Twist-pair wiring None $20.00/50fts 1 Bus Wiring $20.00
Command Center
(QNX PC)

None $1,300.00 1 Command Center $1,300.00

Personnel Training None $1,000.00 per
person

2 $2,000

Total Cost $16,490

83

84

APPENDIX C - SOURCE CODE FOR THE AUV MANEUVERING EXERCISE

Z**^^
* *

**
**
**
* *
* *
* *
* *
* *

* *

/*
* *

File_name: nav_plan.c

Author: Forrest Young

Date: December 20, 1997

Purpose: Provide a sample maneuvering exercise for the NPS AUV.
All networked control functions are provided by LonWorks

Neuron C language.

***,l.,t*^^.

7***^.,,.*,,.^^

Compiler Pragmas
** **********************^^^

/

/* The following line contains the node's Self Documentation string. */

#pragma enable sd nv names

Z***,,.^,^^^

Include Files
.it,tvtvt.^itit I

#include <snvt_rq.h>
#include <snvt lev.h>

Constant Declarations
**,t + ^^^^

I

unsigned int brightness = 0;

Z**

Input/Output Declarations
**,l:,^^,t^^/

IO_4 input bit ioSwitch4;
IO_0 output pulsewidth clock (7) ioLedO;

85

fie***.,.*****************

Network Variables Declarations

network output SNVT_count nvo_l_prop;
network output SNVT_count nvo_r_prop;
network output SNVT_count nvo_l_rudder;
network output SNVT_count nvo_r_rudder;
network output SNVT_count nvo_l_thruster;
network output SNVT_count nvo_r_thruster;

network output SNVT_lev_disc nvo_l_indicator;
network output SNVT_lev_disc nvo_r_indicator;

/*left propeller*/
/*right propeller*/
/*left rudder*/
/*right rudder*/
/*left thruster*/
/*right thruster*/

/* left indicator*/
/* right indicator*/

Timer Declarations

mtimer framel = 2500
mtimer frame2 = 5000
mtimer frame3 = 7500
mtimer frame4 = 10000
mtimer frame5 = 12500
mtimer frame6 = 15000
mtimer frame7 = 17500
mtimer frame8 = 20000
mtimer frame9 = 22500
mtimer framelO = 25000
mtimer framel1 = 27500
mtimer framel2 = 30000
mtimer framel3 = 32500
mtimer framel4 = 35000
mtimer frame15 = 37500

/It***

Reset Task

when (reset)
{

io_change_init (ioSwitch4);
io_out (ioLedO,0);

nvo_l_prop = 0
nvo_r_prop = 0
nvo_l_rudder = 0
nvo_r_rudder = 0
nvo_l_thruster = 0
nvo_r_thruster = 0

/*left propeller*/
/*right propeller*/
/*left rudder*/
/*right rudder*/
/*left thruster*/
/*right thruster*/

86

nvo_l_indicator = 1; /* left indicator*/
nvo_r_indicator =1; /* right indicator*/

}

Framel task
Task: direction: Go forward straight

speed: 2 0% of full speed
Indication: 20% of full brightness

when (timer_expires(framel))
{

nvo_l_prop = 800;
nvo_r_prop = 800;
nvo_l_indicator = 52;
nvo_r_indicator = 52;
io_out (ioLedO, 52);

}

Frame2 task
Task: direction: Go forward straight

speed: 40% of full speed
Indication: 40% of full brightness

tit**/

when (timer_expires(frame2))
{

nvo_l_prop =1600;
nvo_r_prop = 1600;
nvo_l_indicator = 104;
nvo_r_indicator = 104;
io_out (ioLedO, 104);

}

Frame3 task
Task: direction: Go forward straight

speed: 80% of full speed
Indication: 80% of full brightness

/
*************************************-k**-k***.k* + + *ir*i<*iririric±it + iciri!iricj.iCiCirir

when (timer_expires(frame3))
{

nvo_l_prop = 3200;
nvo_r_prop = 3200;
nvo_l_indicator = 204;
nvo_r_indicator = 204;
io_out (ioLedO, 204);

87

}

/**

Frame4 task
Task: direction: Go forward straight

speed: full speed
Indication: full brightness

** + + + + +. + + + + +,

when (timer_expires(frame4))
{

nvo_l_prop = 4095;
nvo_r_prop =4095;
nvo_l_indicator = 255;
nvo_r_indicator = 255;
io_out (ioLedO, 255);

}

/it***

Frame5 task
Task: direction: Go forward straight

speed: 80% of full speed
Indication: 80% of full brightness

**

when (timer_expires(frame5))
{

nvo_l_prop = 32 00;
nvo_r_prop =32 00;
nvo_l_indicator = 204;
nvo_r_indicator = 204;
io_out (ioLedO, 204);

}

/**

Frame6 task
Task: direction: Go forward straight

speed: 40% of full speed
Indication: 40% of full brightness

**/

when (timer_expires(frame6))

{
nvo_l_prop = 1600;
nvo_r_prop = 1600;
nvo_l_indicator = 104;
nvo_r_indicator = 104;
io_out (ioLedO, 104);

}

/**

Frame7 task

88

Task: direction: Go forward straight
speed: 20% of full speed
Indication: 20% of full brightness

when (timer_expires(frame7))
{

nvo_l_prop = 800;
nvo_r_prop = 800;
nvo_l_indicator = 52;
nvo_r_indicator = 52;
io_out (ioLedO, 52);

}

Frame8 task
Task: direction: idle

speed: stop
Indication: off

when (timer_expires(frame8))
{

nvo_l_prop = 0
nvo_r_prop = 0
nvo_l_indicator = 0
nvo_r_indicator = 0
io_out (ioLedO, 0);

}

Frame9 task
Task: direction: Go forward straight

speed: full speed
Indication: full brightness

when (timer_expires(frame9))
{

nvo_l__prop =4095;
nvo_r_prop = 4095;
nvo_l_indicator = 255;
nvo_r_indicator = 255;
io_out (ioLedO, 255);

}

FramelO task
Task: direction: idle

speed: stop
Indication: off

********************************Vr******************************^^.*^.vt^.^

89

/

when (timer_expires(framelO))
{

nvo_l_prop = 0;
nvo_r_prop = 0;
nvo_l_indicator = 0;
nvo_r_indicator = 0,
io_out (ioLedO, 0);

}

Z**,^^.^^

Framell task
Task: direction: turn right

speed: 10% of full speed
Indication: 10% of full brightness

**vfc.*.Jl..it.Jk..Jfc.,

when (timer_expires(framell))
{

nvo_l_prop = 0;
nvo_r_prop = 400;
nvo_l_thruster = 0;
nvo_r_thruster = 0;
nvo_l_rudder = 12 8;
nvo_r_rudder = 255;
nvo_l_indicator = 0;
nvo_r_indicator = 26;
io_out (ioLedO, 0);

}

/**

Framel2 task
Task: direction: Stop and Point straight

speed: stop
Indication: off

when (timer_expires(framel2))
{

nvo_l_prop = 0;
nvo_r_prop = 0;
nvo_l_thruster = 0;
nvo_r_thruster = 0;
nvo_l_rudder = 128;
nvo_r_rudder = 128;
nvo_l_indicator = 0;
nvo_r_indicator = 0;
io_out (ioLedO, 0);

}

/*** *****************************

90

Framel3 task
Task: direction: turn left

speed: 50% of full speed
Indication: 50% of full brightness

when (timer_expires(framel3))
{

nvo_l_prop = 2020;
nvo_r_prop = 0;
nvo_l_thruster = 0,
nvo_r_thruster = 0,
nvo_l_rudder = 255;
nvo_r_rudder = 128;
nvo_l_indicator = 127,
nvo_r_indicator = 0;
io_out (ioLedO, 127);

}

Framel4 task
Task: direction: Stop and Point straight

speed: stop
Indication: off

when (timer_expires(framel4))
{

nvo_l_prop = 0,
nvo_r_prop = 0,
nvo_l_thruster = 0;
nvo_r_thruster = 0;
nvo_l_rudder = 128;
nvo_r_rudder = 128;
nvo_l_indicator = 0;
nvo_r_indicator = 0;
io_out (ioLedO, 0);

}

Framel5 task
Task: direction: Go forward straight

speed: 10% of full speed
Indication: 10% of full brightness

when (timer_expires(framel5))
{

nvo_l_prop = 400;
nvo_r_prop = 400;
nvo_l_indicator = 26;
nvo_r_indicator = 26;

91

io_out (ioLedO, 26);
}

Input/Output event tasks
Task: When push io_4 switch, abort the mission

Stop the vehicle
Point direction straight ahead
turn off both indicators

/
****************************±**-k.kicic±irie*****ic*ir*i<icir*i.iricj.i.iririfiritir + ir^ + ititi<ic

when (io_changes (ioSwitch4)
{

nvo_l_prop = 0;
nvo_r_prop = 0;
nvo_l_thruster = 0,
nvo_r_thruster = 0;
nvo_l_rudder = 12 8;
nvo_r_rudder = 12 8;
nvo_l_indicator = 0 ;
nvo_r_indicator = 0;
io_out (ioLedO, 0);

/*end of sample navigation exercise*/

92

LIST OF REFERENCES

Boorda, J. M., "Mine Countermeasures-An Integral Part Of Our Strategy And Our
Forces," U.S. Navy, White Paper, December 1995.

Brutzman, Donald P., From Virtual World to Reality: Designing an Autonomous
Underwater Robot, Proceedings of the Autonomous Vehicles in Mine Countermeasures
Symposium, Naval Postgraduate School, Monterey, California, April, 1995.
Available at http://www.cs.nps.navy.mil/research/auv

Brutzman, Donald P., NPS AUV Inter grated Simulator, Master's Thesis, Naval
Postgraduate School, Monterey, California, March 1992.

Brutzman, Don, Healey, Tony, Marco, Dave and McGhee, Bob, "The Phoenix
Autonomous Underwater Vehicle," AI-Based Mobile Robots, editors David Kortenkamp,
Pete Bonasso and Robin Murphy, MIT/AAAI Press, Cambridge Massachusetts, to appear
1998. Available at http://www.stl.nps.navy.mil/~auv/aimr.ps

Burns, Michael L., Merging Virtual and Real Execution Level Control Software for the
Phoenix Autonomous Underwater Vehicle, Master's Thesis, Naval Postgraduate School,
Monterey, California, September 1996. Available at
http://www.cs.nps.navy.mil/research/auv

Byrnes, R.B., The Rational Behavior Model: A Multi-Paradigm, Tri-level Software
Architecture for the Control of Autonomous Vehicles, Ph.D. Dissertation, Naval
Postgraduate School, Monterey, California, March 1993.

Campbell, Michael, Real-Time Sonar Classification for Autonomous Underwater
Vehicles, Master's Thesis, Naval Postgraduate School, Monterey, California, March
1996. Available at http://www.cs.nps.navy.mil/research/auv

Coactive Aesthetics, Web Pages at http://www.coactive.com. Sausalito, California, 1997.

Echelon Corp., An Introduction to the LonWorks Standard, Palo Alto, California, 1997.
Available at http://www.echelon.com/

Echelon Corp., LonBuilder Hardware Guide, Palo Alto, California, 1995.

Echelon Corp., LonBuilder User's Guide, Palo Alto, California, 1995.

Echelon Corp., LonWorks Product Manual, Palo Alto, California, 1995.

Echelon Corp., LonWorks Reference CD-ROM, Palo Alto, California, 1997.
Available at http://www.echelon.com/

Echelon Corp., Neuron C Programmer's Guide, Palo Alto, California, 1995.

93

Echelon Corp., Neuron C Reference Guide, Palo Alto, California, 1995.

Echelon Corp., Neuron Chip Data Book, Palo Alto, California, 1995.

Echelon Corp., SNVT Master List and Programmer's Guide, Palo Alto, California, March
1996.

Echelon Corp., LonWorks Training Manual, Palo Alto, California, 1997

Healey, A.J., Mission Planning, Execution, and Data Analysis for the NPS AUVII
Autonomous Underwater Vehicle, Proceedings of the First IARP Workshop on Mobile
Robots for Subsea Environments, Monterey, California, October, 1990.

Intelligent Technologies Corp., Flexible 10 Users Manual, Golden, Colorado, 1997.

Leonhardt, Bradley, Mission Planning and Mission Control Software for the Phoenix
AUV: Implementation and Experimental Study, Master's Thesis, Naval Postgraduate
School, Monterey, California, March 1996. Available at
http://www, cs. nps. navy, mil/research/auv

LonMark Interoperability Association, LonMark Application Layer Interoperability
Guidelines, Palo Alto, California, 1996.

Marco, D. B., Autonomous Control of Underwater Vehicles and Local Area
Maneuvering, Ph.D. Dissertation, Naval Postgraduate School, Monterey, California,
September 1996. Available at http://www.cs.nps.navy.mil/research/auv

Parallax Inc., Web pages at http://www.parallaxinc.com, Rocklin, California, 1997.

Stallings, William, Data and Computer Communications, Prentice-Hall, Inc., 1997.

Tritech International Ltd, Tritech User Manual, Mike E. Chapman Company, Duvall,
Washington, 1992.

94

INITIAL DISTRIBUTION LIST

No. Copies
1. Defense Technical Information Center 2

8725 John J. Kingman Road, Suite 0944
Ft. Belvoir, VA 22060-6218

Dudley Knox Library
Naval Postgraduate School
411 DyerRd.
Monterey, CA 93943-5101

Chairman, Code EC
Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

4. Curr Officer, Code 37
CDR McMaster
Naval Postgraduate School
Monterey, CA 93943-5121

5. Dr. Xiaoping Yun, Code EC/Yx
Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

Dr. Don Brutzman, Code UW/Br.
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5118

Dr. Tony Healey, Code ME/Hy.
Mechanical Engineering Dept
Naval Postgraduate School
Monterey, CA 93943-5121

Dr. Robert B. McGhee, Code CS/Mz.
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5118

Lt. Forrest Young
9638 La Capilla Ave
Fountain Valley, CA 92708

95

10. CDR Mike J. Holden, USN, Code ME/Hm.
Mechanical Engineering Dept
Naval Postgraduate School
Monterey, CA 93943-5121

11. Dr. Jim Eagle, Chair, Code UW/Ea.
Naval Postgraduate School
Monterey, CA 93945-5101

96

