
RL-TR-97-242
Final Technical Report
March 1998

DISTRIBUTED PLANNING AND CONTROL FOR
APPLICATIONS IN TRANSPORTATION
SCHEDULING

Brown University

Sponsored by
Advanced Research Projects Agency
ARPA Order No. 7684

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Advanced Research Projects Agency or the U.S. Government.

19980415 090
AIR FORCE RESEARCH LABORATORY

ROME RESEARCH SITE
ROME, NEW YORK

BUG QUALITY IKSPECJEED 8

This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

RL-TR-97-242 has been reviewed and is approved for publication.

APPROVED:
WAYNE A. BOSCO
Project Engineer

FOR THE DIRECTOR: ^y
WARREN H. DEBANY, JR., Technical Advisor
Command, Control, & Communications Directorate

If your address has changed or if you wish to be removed from the Air Force Research
Laboratory mailing list, or if the addressee is no longer employed by your organization,
please notify AFRL/IFTB, 525 Brooks Road, Rome, NY 13441-4505. This will assist us
in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

ALTHOUGH THIS REPORT IS BEING PUBLISHED BY AFRL, THE RESEARCH WAS
ACCOMPLISHED BY THE FORMER ROME LABORATORY AND, AS SUCH, APPROVAL
SIGNATURES/TITLES REFLECT APPROPRIATE AUTHORITY FOR PUBLICATION AT
THAT TIME.

DISTRIBUTED PLANNING AND CONTROL FOR APPLICATIONS
IN TRANSPORTATION SCHEDULING

Thomas Dean

Contractor: Brown University
Contract Number: F30602-91-C-0041
Effective Date of Contract: June 1991
Contract Expiration Date: May 1995
Program Code Number: 4E20
Short Title of Work: Distributed Planning and Control for

Applications in Transportation Scheduling

Period of Work Covered: Jun 91 - May 95

Principal Investigator: Thomas Dean
Phone: (401) 863-7645

AFRL Project Engineer: Louis J. Hoebel
Phone: (315)330-3655

Approved for public release; distribution unlimited.

This research was supported by the Advanced Research Projects
Agency of the Department of Defense and was monitored by
Louis J. Hoebel, AFRL/IFTB, 525 Brooks Road, Rome, NY.

DTIC QUALEfSr HESBEQIED S

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Weshington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Peperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY /Leave blank/ 2. REPORT DATE

March 1998

3. REPORT TYPE AND DATES COVERED

Final Jun 91 - May 95
4. TITLE AND SUBTITLE

DISTRIBUTED PLANNING AND CONTROL FOR APPLICATIONS IN
TRANSPORTATION SCHEDULING
6. AUTHOR(S)

Thomas Dean

7. PERFORMING ORGANIZATION NAMEIS) AND ADDRESS(ES)

Brown University
Computer Science Department
P.O. Box 1910
Providence. RI02912
9. SPONSORING/MONITORING AGENCY NAMEIS) AND ADDRESS(ES)

Advanced Research Projects Agency
3701 North Fairfax Drive
Arlington, VA 22203-1714

AFRL/IFTB
525 Brooks Road
Rome, NY 13441-4505

5. FUNDING NUMBERS

C - F30602-91-C-0041
PE -62702F
PR -G684
TA -00
WU-04

8. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-97-242

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Wayne Bosco/IFTB/(315) 330-4833

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The research addresses combinatorial problems in transportation planning and scheduling. This work addresses fundamental
problems n real-time planning and crisis decision making. Problems of uncertainty and incomplete information are dealt
with by employing a stochastic domain model called a Markov decision process (MDP). Complexity in decision making is
dealt with by using iterative techniques and decision theory to allocate computational resources at runtime. MASE is a
simulation and development environment for problems involving multiple interacting agents. MASE provides robust and
efficient communication and negotiation facilities to support distributed solutions to planning and utilities problems. MASE
or its underlying communication subsystem running in a stand-alone configuration can be used by distributed components
implemented in C, C+ + , or Common Lisp. Discusses a complementary approach to envelope-based methods for solving
large MDPs, i.e., MDPs involving a very large number of states. This approach works by decomposing a large MDP into
several smaller MDPs which are weakly coupled. A solution is obtained by solving each of the smaller MDPs individually
and then combining these local solutions to obtain a global solution. An overview is provided on a proposed new direction oi
research for embedded planning and scheduling. Described is a general model for embedded planning and control systems
This model describes the rudiments of a software specification framework that is critical to any significant progress on
real-time systems of any complexity.

14. SUBJECT TERMS

Scheduling System, Distributive Planning, Markov decision process (MDP), Transportation
Scheduling, Crisis Planning, MASE
17. SECURITY CLASSIFICATION

OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

15. NUMBER OF PAGES

56
16. PRICE CODE

20. LIMITATION OF
ABSTFJACT

UL
Standard Form 298 (Rev. 2-89) (EG)
Prescribed by ANSI Std. 239.18
Designed using Perform Pro, WHS/DIOR, Oct 94

Table of Contents

Table of Contents i

List of Figures ii

1. Introduction And Overview 1

2. Crisis Planning In Stochastic Domains 2

2-1. Markov Decision Models And Coping With Large State Spaces 3

2.2. Algorithms 5

2.3. Deliberation Scheduling 8

2.4. Experimental Results 9

2.5. Further Work 11

3. Distributed Planning And Scheduling 12

3.1. Coracle: The Message Exchange Subsystem 14

3.2. Agent Abstractions 16

3.2.1. MASE Support For Conflict Resolution 16

3.2.2. MASE Support For Temporal Reasoning 17

3.3 Using MASE to Build Applications 18

3.3.1 A Sample Application 18

3.4. Comparison Of MASE To KQML 20

3.5. Availability 21

4. Decomposition Methods For Large MDPs 21

5. Real-Time Planning And Problem Solving 27

5.1. Towards A Formal Theory Of Embedded Systems 29

5.2. Software Specifications For Embedded Systems 32

References • 33

i

List of Figures

Figures Title Page

1. Typical Sequence Of Changes To The Envelope 7

2. Comparison Of Planning Algorithm Using Greedy Deliberation Strategy 10

3. Comparison Of The Recurrent Algorithm (Varying Domain Size) 11

4. Class Agent Hierarchy And Helper Classes 13

5. The Organization Of Coracle 15

6. Result Of Default MASE Conflict Resolution Strategy 17

7. Agent Class Hierarchy 19

8. Some Snapshots Of A Running Application 20

9. Boundary And Periphery States 22

10. R Is Adjacent To S(RS) 23

11. Abstract Action For Moving From R To S 23

12. A Problem With Abstract Actions 25

13. Adjacent Aggregate States 26

14. Embedded Planning And Control Application 27

15. Model For Embedded Planning And Control System 28

16. Two Processes With Uniform Dispersion 29

17. Processes With Different Diffusion Characteristics 30

18. Dispersion And Diffusion Profiles For Processes 30

19. Process With Periodic Dispersion 31

20. Software Components For An Embedded Scheduling System 33

1 Introduction and Overview

This report describes research conducted at Brown University during the period from June
1991 to June 1995. Originally, the contract was due to expire on May 31, 1994, but we
applied for and were granted a one-year, no-cost extension. The research was supported by
the Air Force and the Advanced Research Projects Agency of the Department of Defense
under contract number F30602-91-C-0041. The research addresses combinatorial problems
in transportation planning and scheduling. The results of this research are summarized in
the four self-contained sections that make up the bulk of this report.

In Section 2, we describe our research on solving combinatorial planning problems under
time constraints. This work addresses fundamental problems in real-time planning and
crisis decision making. We deal with problems of uncertainty and incomplete information by
employing a stochastic domain model called a Markov decision process (MDP). We deal with
complexity in decision making by using iterative techniques and decision theory to allocate
computational resources at runtime. In a concession to computational complexity and real-
time constraints, we employ approximations rather than exact solutions and trade solution
accuracy and optimality for time to make the best use of the time available for decision
making. The various technical details behind this work appear in several papers, but
the most comprehensive presentation is in Planning Under Time Constraints in Stochastic
Domains (Thomas Dean, Leslie Kaelbling, Jak Kirman, and Ann Nicholson), Artificial
Intelligence 76 (1995).

In Section 3. we describe MASE, a simulation and development environment for prob-
lems involving multiple interacting agents. MASE provides robust and efficient communi-
cation and negotiation facilities to support distributed solutions to planning and utilities
problems. MASE or its underlying communication subsystem running in a stand-alone con-
figuration can be used by distributed components implemented in C, C++, or Common Lisp.
MASE is available for use within the planning initiative and both a programmers manual
and users manual have been produced as part of our effort for this contract. The technical
details behind this work appear in several articles and technical reports but the most up-
to-date and comprehensive presentation will appear in A Framework for the Development
of Multi-Agent Architectures (Moises Lejter and Thomas Dean), IEEE Expert.

In Section 4, we describe a complementary approach to our envelope-based methods for
solving large MDPs, i.e., MDPs involving a very large number of states. This approach
works by decomposing a large MDP into several smaller MDPs which are weakly coupled.
A solution is obtained by solving each of the smaller MDPs individually and then combining
these local solutions to obtain a global solution. Technical details will appear in Localized
Temporal Reasoning Using Subgoals and Abstract Events (Shieu-Hong Lin and Thomas
Dean), Journal of Computational Intelligence.

In Section 5, we provide an overview of a new direction for our research on embedded
planning and scheduling. We describe a general model for embedded planning and control
systems. Using this model, we describe the rudiments of a software specification framework
that we believe critical to any significant progress on real-time systems of any complexity.
Note that most military applications and many real-world commercial applications have
significant real-time components; the world will not wait for us while we try to compute
exact solutions to the problems we are faced with.

Three graduate students earned Ph.D.s under this contract; they are Jak Kirman, Lloyd
Greenwald, and Shieu-Hong Lin. Several undergraduates were involved in the research at
one time or another; of these students, four went on to graduate school including one
to MIT, two to Pennsylvania University, and one to the University of Washington. Ann
Nicholson, who was a postdoctoral research scientist under this contract, is now an assistant
professor at Monash University in Victoria, Australia.

2 Crisis Planning in Stochastic Domains

In a completely deterministic world, it is possible for a planner simply to generate a se-
quence of actions, knowing that if they are executed in the proper order, the goal will
necessarily result. In nondeterministic worlds, planners must address the question of what
to do when things do not go as expected. In tradition planning, the world is assumed to
be deterministic for the purpose of planning, but its nondeterminism is accounted for by
performing execution monitoring or by generating reactions for world states not on the
nominal planned trajectory.

In our work, we address the problem of planning in nondeterministic domains by taking
nondeterminism into account from the very start. There is already a well-explored body of
theory and algorithms addressing the question of finding optimal policies (universal plans),
which specify the best action to take for every possible situation which may arise during plan
execution, for nondeterministic domains. Unfortunately, these methods are impractical in
large state spaces. However, if we know the start state, and have a model of the nature of
the world's nondeterminism, we can restrict the planner's attention to a set of world states
that are likely to be encountered on the way to the goal. Furthermore, the planner can
generate more or less complete plans depending on the time it has available. In this way,
we provide efficient methods, based on existing techniques of finding optimal strategies, for
planning under time constraints in non-deterministic domains. Our approach addresses the
uncertainty resulting from control error, but not sensor error; in most of the following, we
assume certainty in observations, but discuss relaxing this assumption in [lO].

We assume that the environment can be modeled as a stochastic automaton: a set of
states, a set of actions, and a matrix of transition probabilities. In our approach, con-
structing a plan to achieve a goal corresponds to finding a policy (a mapping from states to
actions) that maximizes expected performance. Performance is based on the expected accu-
mulated reward over sequences of state transitions determined by the underlying stochastic
automaton. The rewards are determined by a reward function (a mapping from states to
the real numbers) specially formulated for a given goal. A good policy in our framework
corresponds to a universal plan for achieving goals quickly on average.

There are dynamic programming algorithms for computing the optimal policy given a
stochastic model of the world. They are useful in small to medium-sized state-spaces, but
become intractable on very large state-spaces. We address this difficulty by making some
informal assumptions about the environments in which we are working that allow us to
generate approximate solutions efficiently. In particular, we assume that the environment
has the following properties:

• high solution density: it is relatively easy to find plausible (though perhaps not opti-
mal) solutions

• low dispersion rate: from any given state, there are only a few states to which tran-
sitions can be made

• continuity: it is reasonable to estimate the values of states by considering the values of
near-by states (where distance is measured as the expected number of steps between
states)

Many large, realistic planning problems, such as those involving high-level navigation or
scheduling, have these properties.

Our approach is motivated by the intuitively appealing work of Drummond and Bresina
on 'anytime synthetic projection' [13]. We reformulate their basic framework in terms of
Markov decision processes, cast the algorithmic issues in terms of approximations to specific
optimization problems, provide a disciplined approach to allocating computational resources
at run time, introduce techniques for specifying goals in stochastic domains, and describe
how to extend the framework to deal with uncertainty in observation.

2.1 Markov Decision Models and Coping with Large State Spaces

Following the work on Markov decision processes [2, 4], we model the entire environment as
a stochastic automaton, which we refer to as the system automaton. Let S be the finite set

of world states; we assume that they can be reliably identified by the system. Let A be the
finite set of actions; every action can be taken in every state. The transition model of the
environment is a function mapping elements of S x A into discrete probability distributions
over S. We write Pr(«i, a, «2) for the probability that the world will make a transition from
state si to state S2 when action a is taken.

A policy ■K is a mapping from S to A, specifying an action to be taken in each situation.
An environment combined with a policy for choosing actions in that environment yields a
Markov chain [20].

A reward function is a mapping from S to 3J, specifying the instantaneous reward that
the system derives from being in each state. Given a policy n and a reward function R, the
value of state s€<S, V^(s), is the sum of the expected values of the rewards to be received
at each future time step, discounted by how far into the future they occur. The discounting
factor, 0 < 7 < 1, controls the influence of rewards in the distant future.

One of the most common goals is to achieve a certain condition p as soon as possible.
If we define the reward function as R(s) = 0 if p holds in state s and R(s) = —1 otherwise,
and represent all goal states as being absorbing, then the optimal policy will result in the
system reaching a state satisfying p as soon as possible. A state is absorbing if all actions
result in that same state with probability 1; that is, Va E A, Pr(s, a, s) = 1. The language
of reward functions is quite rich, allowing us to specify much more complex goals, including
the maintenance of properties of the world and prioritized combinations of primitive goals;
this is explored in [lO].

Given a state-transition model, a reward function, and a value for 7, it is possible to
compute the optimal policy using either the policy iteration algorithm [18] or the value
iteration algorithm [2]. We use the policy iteration algorithm because it is guaranteed to
converge in a finite number of steps — polynomial in |5|, but generally a small number of
steps in the domains that we have experimented with — and thus simplifies debugging our
computational experiments.

As the size of our state spaces grows, even a polynomial-time algorithm such as policy
iteration becomes too inefficient. We assume that our environment is such that, for any
given reward function and initial starting state, it is sufficient to consider a highly-restricted
subset of the entire state space in our planning.

A partial policy is a mapping from a subset of S into actions; the domain of a partial
policy 7T is called its envelope, £„.. The fringe of a partial policy, Fn, is the set of states
that are not in the envelope of the policy, but that may be reached in one step of policy
execution from some state in the envelope. To construct a restricted stochastic automaton,
we take an envelope £ of states and add the distinguished state OUT, which is absorbing.

The cost of falling out of the envelope is a parameter that depends on the domain. For
example, if it is possible to re-invoke the planner when the system falls out of the envelope,
then one approach is to assign V(OUT) to be the estimated value of the state into which
the system fell minus some function of the time required to construct a new partial policy.

2.2 Algorithms

The basic algorithm starts with an initial policy and a restricted state space (or envelope),
extends that envelope, and then computes a new policy. We would like it to be the case
that the new policy TT' is an improvement over (or at the very least no worse than) the old
policy w in the sense that V„,{s0) - K(s0) > 0- In general, however, we cannot guarantee
that the policy will improve without extending the state space to be the entire space of the
system automaton, which results in computational problems. The best that we can hope for
is that the algorithm improves in expectation. Although it is possible to construct system
automata for which even this improvement in expectation is impossible, we believe many
moderately benign environments are well-behaved in this respect. In particular, navigation
environments (excluding mazes) and scheduling domains, in which transitions are restricted
by spatio-temporal constraints, generally satisfy our requirements.

There are two basic types of operations on the restricted automaton. The first is called
envelope alteration and serves to increase or decrease the number of states in the restricted
automaton. The second is called policy generation and determines a policy for the system
automaton using the restricted automaton. Note that, while the policy is constructed using
the restricted automaton, it is a complete policy and applies to all of the states in the system
automaton. For states outside of the envelope, the policy is denned by a set of reflexes that
implement some default behavior for the system.

Precursor Deliberation Model In the precursor deliberation model, there are two
separate phases of operation: planning and execution. The planner constructs a policy
that is followed by the execution system until a new goal must be pursued or until the
system falls out of the current envelope. In the simplest precursor models, a deadline is
specified indicating when planning stops and execution begins. The high-level planning
algorithm, given a description of the environment and start state s0 or a distribution over

start states, is as follows:

1. Generate an initial envelope £

2. While {£ ^ 5) and (not deadline) do

a. Extend the envelope £

b. Generate an optimal policy n for restricted automaton with state set £ U {OUT}

3. Return 7r

The algorithm first finds a small subset of world states and calculates an optimal policy
over those states. Then it gradually adds new states in order to make the policy robust by
decreasing the chance of falling out of the envelope. After new states are added, the optimal
policy over the new envelope is calculated. Note the interdependence of these steps: the
choice of which states to add during envelope extension may depend on the current policy,
and the policy generated as a result of optimization may be quite different depending on
which states were added to the envelope. The multiple-rounds of envelope alteration and
policy generation are terminated when a deadline has been reached or when the envelope
has been expanded to include the entire state space.

Recurrent Deliberation Model A more sophisticated model of interaction between
planning and execution is one in which the planner runs concurrently with the execution,
sending new or expanded strategies to the executor as they are developed. In recurrent-
deliberation models, the system has to repeatedly decide how to allocate time to delibera-
tion, taking into account new information obtained during execution. The details of such
models are discussed in [8]; here we provide just a rough sketch. We assume two separate
modules: one for planning and a second for execution. In the simplest model, the planner
and executor operate in a rigid cycle with a period determined by fixed length of time. At
the beginning of each cycle, the planner is given the current state by the execution module;
the planner spends the fixed length of time working on a new policy; at the end of the fixed
time, the planner gives the new policy to the execution module.

In the recurrent models, it is often necessary to remove states from the envelope in order
to lower the computational costs of generating policies from the restricted automata. For
instance, in the transportation scheduling domain, it may be appropriate to remove states
corresponding to portions of a schedule the transportation vehicles have already executed,
if there is little chance of returning to those states. Figure 1 shows a typical sequence of
changes to the envelope corresponding to the state space for the restricted automaton. The
current state is indicated by ♦ and the goal state is indicated by D.

The recurrent planning algorithm, given a description of the environment, the policy TTC

that is currently being followed by the execution system, and the state of the system at the
beginning of the planning interval, sc, is as follows:

While (not goal) do

Find path to the goal

Extend the envelope

Extend and then prune the envelope

Find path back to the envelope

Extend and then prune the envelope

Figure 1: Typical sequence of changes to the envelope

1. Set sc to be the current state for planning purposes

2. While (not end of current planning interval) do

a. Extend the envelope £

b. Prune the envelope £
c. Generate an optimal policy n' for restricted automaton with state set £ U {OUT}

3. Set 7rc to be the new policy n'

The details of the extension and pruning of the envelope will depend on the system's
expected state at the end of the planning interval.

The subcomponents of the precursor and recurrent algorithms - initial trajectory plan-
ning, policy generation and envelope alteration - are described in [9]. Each subcomponent
can be implemented as an anytime algorithm [7], one that can be interrupted at any point
during execution to return an answer whose value, at least in certain classes of stochastic
processes, improves in expectation as a function of the computation time. We cast the
problem of allocating computational resources to the subcomponents as an optimization
problem and use describe decision-theoretic techniques to compute approximations.

2.3 Deliberation Scheduling

Deliberation scheduling is the problem of allocating processor time to envelope alteration
and policy generation. It is natural to think of deliberation scheduling in terms of opti-
mization even if the combinatorics dictate that an optimal solution is not computationally
feasible. Having said this, it still remains to determine what optimization problem we are
trying to solve. We have to specify exactly what options are allowed and what information
is available; such a characterization is generally referred to as a decision model.

In [8] we present a number of decision models. The algorithms given in Section 2.2 are
examples of particular precursor deliberation and recurrent deliberation decision models.
It should be pointed out that for each instance of the problems that we consider there are
a large number of possible decision models. By specifying different decision models, we
can make deliberation scheduling easy or hard. Our selection of which decision models to
investigate is guided by our interest in providing insight into the problems of time-critical
decision making and our anticipation of the combinatorial problems involved in deliberation
scheduling. At present, we ignore the time spent in deliberation scheduling; for practical
reasons, however, we are interested in decision models for which the on-line time spent in
deliberation scheduling is negligible.

In recurrent deliberation models, the system has to decide repeatedly how to allocate
time to deliberation, taking into account new information obtained during execution. In
[8] we consider models for recurrent deliberation in which the system allocates time to
deliberation only at prescribed intervals, which we call discrete, weakly-coupled, recurrent
deliberation models. Discrete because each tick of the clock corresponds to exactly one
state transition; recurrent because the execution module gets a new policy from the plan-
ning module periodically; weakly coupled in that the two modules communicate by having
the execution module send the planning module the current state and the planning mod-
ule send the execution module the latest policy. The intervals between planner-executor
communication may be fixed or variable length.

In general, there are many more possible strategies for deploying envelope alteration
and policy generation in recurrent models than in the case of precursor models. To cope
with the attendant combinatorics, we raise the level of abstraction slightly and assume that
we are given a small set of deliberation strategies that have been determined empirically to
improve policies significantly in various circumstances. Each deliberation strategy corre-
sponds to some fixed schedule for allocating processor time to envelope alteration and policy
generation routines. For example, a strategy might consist of f indf irstpath (find a first
path to be the initial envelope), robust if y [20] (add to the envelope the 20 fringe states
most likely to be reached using the current policy), optimize (perform policy iteration un-
til the optimal policy for the restricted automaton is generated), prune[15] (of the states

that have a worse value than the current state, remove the 15 least likely to be reached
using the current policy), optimize. Also, in anticipation of combinatorial issues that arise
in our experimental studies, we adopt a simpler myopic decision model; we assume that
the system will apply exactly one deliberation strategy and commit to the resulting policy

thereafter.

2.4 Experimental Results

Greedy Precursor Deliberation In general, computing the optimal deliberation sched-
ule for multiple-round precursor-deliberation models, such as that used in the algorithm
in Section 2.2, computationally complex. We have experimented with a number of simple,
greedy and myopic scheduling strategies; we report on one such strategy here.

We gathered a variety of statistics on how extending the envelope increases value. At
run time, we use the size of the automaton and the estimated value of the current policy
to index into a table of performance profiles giving expected improvement as a function of
number of states added to the envelope. Using an experimental domain with 664 states,
we generated 1,600,000 data points to compute these statistics plus estimates of the time
required for one round of envelope alteration followed by policy generation given the size
of the envelope, the number of states added, and value of the current policy. We use the
following simple greedy strategy for choosing the number of states to add to the envelope
on each round. For each round of envelope alteration followed by policy generation, we use
the statistics to determine the number of states which, added to the envelope, maximizes
the ratio of performance improvement to the time required for computation.

We compared the performance of (1) our planning algorithm using the greedy deliber-
ation strategy with (2) policy iteration optimizing the policy for the whole domain. Our
results show that the planning algorithm using the greedy deliberation strategy supplies a
good policy early, and typically converges to a policy that is close to optimal before the
whole domain policy iteration method does. Figure 2 shows average results from 620 runs,
where a single run involves a particular start state and goal state. The graph shows the
average value of the start state under the policy available at time t, V*(s0), as a function of
time. In order to compare results from different start/goal runs, we show the average ratio
of the value of the current policy to the value of the optimal policy for the whole domain,
plotted against the ratio of actual time to the time, Topt, that the policy iteration takes to
reach that optimal value.

The greedy deliberation strategy performs significantly better than the standard opti-
mization method. We also considered very simple strategies such as adding a small fixed
number of fringe states each iteration, and adding the whole fringe each iteration, which

0.00 1.00 time

Figure 2: Comparison of planning algorithm using greedy deliberation strategy (dashed
line) with the policy iteration optimization method (solid line): Average over 630 runs

performed fairly well for this domain, but not as well as the greedy policy. Further experi-
mentation is required to draw definitive conclusions about the comparative performance of
these deliberation strategies for particular domains.

Recurrent Deliberation We present results for recurrent-deliberation problems of in-
definite duration using statistical estimates of the value of a variety of deliberation strate-
gies. We use a discrete, weakly-coupled decision model with variable-length intervals for

deliberation.

We gathered 600,000 data points for the same experimental domain, with state space
size ranging from 632 to 15800 states, for 12 hand-crafted deliberation strategies. The
start/goal pairs were chosen uniformly at random. We simulated execution in parallel with
the planner until the goal was reached. The planner performed f indf irstpath (FFP) to
obtain the initial envelope, then entered the following loop: choose one of the 12 strategies
uniformly at random, execute that strategy, and then pass the new policy to the executor.

We found the following conditioning variables to be significant: the envelope size, \S\,
the estimated value of the current state Vw, the "fatness" of the envelope (the ratio of
envelope size to fringe size), and the Manhattan distance, M, between the start and goal
locations. We then built the lookup tables of the expected improvement in value as a
function of the attributes |£|, V„, the fatness, M and the strategy s. The lookup table
granularity used was 3 buckets per attribute dimension.

To test our algorithm, we took 50 pairs of start and goal states, chosen uniformly at
random. For each pair we ran the executor in parallel with the following deliberation
mechanisms: recurrent-deliberation with strategies chosen using statistical estimates of

10

average time to goal (ticks)

1500

1000

500
|
i
I _ ■-"«=

5000

! , WHOLE

ITER

10000 15000

LOOKUP

world size (states)

Figure 3: Comparison of the recurrent algorithm to policy iteration over varying domain
size

their expected improvement in value (LOOKUP); dynamic programming policy iteration
over the entire domain, with a new policy given to the executor, after each iteration (ITER),
and only after it has been completely optimized (WHOLE).

Figure 3 shows the average number of steps taken by the system to reach the goal for
the various algorithms. For the smaller domains, the recurrent-deliberation algorithm does
not perform better than either of the policy iteration algorithms. However, as we move to
larger domains, the improvement is marked. As we might expect, WHOLE is exponential
and becomes computationally infeasible as the size of the domain increases. ITER also
shows a non-linear degradation in the time to goal, LOOKUP shows linear behavior, clearly
performing better as the domain size increases.

2.5 Further work

The implementation used to obtain the experimental results did not include a separate
trajectory planning phase that looks for new paths to goal states. The addition of trajectory
planning would reduce the extent to which the performance depended on the quality of the
first path used as the initial envelope, and hence should improve the performance of the
system as a whole.

In [lO] we outline an extension of our approach to handle uncertainty in observation,
based on the theory of partially observable Markov processes. We will be incorporating
this into our empirical investigations, together with the more complex goals which can also
be represented by reward functions.

We have described a general approach to planning in stochastic domains. We mentioned
at the start of this section that we were making informal assumptions about the character-
istics of the domains to which the general approach may apply — high solution density, low

11

dispersion rate, and continuity. We are now developing a precise specification off domain
characteristics that affect performance. This specification describes a space of problems
defined by the domain characteristics. An analysis of correlations and dependencies among
domain characteristics and how they affect performance will identify regions of this space to
which our approach applies. We are developing an experimental environment that supports
empirical verification of theoretical claims and assesses the applicability or our approach
for specified domains.

3 Distributed Planning and Scheduling

We have been working on the development of MASE, an environment for the simulation
of multiple interacting agents, as a vehicle for implementing software to test distributed
algorithms for applications such as transportation scheduling and crisis management.

The principal goal behind MASE was to provide developers with a set of very powerful
abstraction to facilitate the construction of distributed systems built using the agent model.
As such, it follows previous work done by Gasser et al [15] and Green [16]. For a survey of
distributed object-oriented systems in general, see [6].

MASE provides the following facilities to application developers:

• Message Exchange

MASE provides developers with a powerful message exchange subsystem that agents
can use to communicate with each other. The details of the actual implementation
of the communications channel (such as the protocol to be used, the mechanisms to
use in order to find the destination of any one message, or any details of local versus
remote message delivery) are hidden from the application developers.

The message exchange subsystem provides a useful set of abstractions for inter-process
communications in its own right, which we call the CoRaCLe library.

• Conflict Resolution

One of the first problems that must be addressed by developers of distributed control
systems is this issue of conflict resolution, which involves the coordination of possibly
conflicting goals generated by several of the agents in the system. MASE provides a
default general-purpose conflict resolution strategy that developers may rely upon,
using negotiation protocols based on game-theory.

• Temporal Reasoning

12

ä ■iwindow
_or«ptwiiwi«

üwTnSo
T^r

"^l*77äg«**rv«rDlaplay

M*s«ag*Fort

Aa*ntInfo

^

interact lY«Jlg«nt|
_U.pl.:

Dlr«ctöryÄfl»n^"

i
Figure 4: Class Agent Hierarchy and Helper Classes

MASE provides a simple general-purpose temporal reasoning engine that application
developers may rely upon. This facility provides agents with the ability to store time-
stamped information, and it automatically maintains the validity of the information
stored as new information is added to the database.

Development Support

MASE provides additional facilities to ease the development process, such as an inter-
active, graphical interface to the simulation environment. This interface supports the

13

interactive addition and deletion agents into a simulation run, single step and con-
tinuous simulation, interactive display and querying of the states of the agents in the
system and the messages exchanged between them, and additional control over the
characteristics of the communications channels that link the different objects (such
as propagation delays over the different communications channels).

MASE supports several execution models:

• single-process, single-thread execution: all the agents defined in a simulation run in
this model share the same process address space under UNIX. The simulator system
executes the different agents cyclically, in a user-defined sequence.

• multiple-process, multiple-thread: each agent in the simulation runs in its own process
under UNIX.

MASE is implemented as a library of classes written in C++ (including the communica-
tions facilities provided by CoRaCLe); it relies on the BWE windowing library [22] developed
at Brown University for the graphical facilities of its user interface.

3.1 CoRaCLe: The Message Exchange Subsystem

The CoRaCLe message exchange subsystem is the component of MASE responsible for pro-
viding support for the exchange and automatic handling of messages by the agents. It
provides abstractions to implement the different message-passing protocols supported by
MASE in an implementation-independent fashion, freeing applications developers from con-
cerns stemming from either the actual details of the message passing protocols supported
by the underlying operating system or the particular execution environment chosen for a
particular implementation.

CoRaCLe is an attempt to provide a basic set of powerful domain-independent commu-
nications abstractions for distributed processing. Its design goals are:

•

•

•

to provide the fundamental communications abstractions necessary to develop dis-
tributed applications;

to isolate developers as much as possible from the details of the underlying commu-
nications protocols at the operating systems or hardware levels;

to provide a communications paradigm flexible enough to support dynamic distributed
applications;

14

Figure 5: The Organization of CoRaCLe

• to be extensible enough to allow developers to build more complex, or application-
specific, communications paradigms on top of the basic abstractions provided.

The CoRaCLe library supports a particular style of communications — one-way asyn-
chronous message delivery — across a variety of underlying communications protocols. The
library provides developers with a general-purpose communications module built around
the notions of "named ports" that can exchange (send or receive) messages from any other
CoRaCLe ports. CoRaCLe supports two modes of message exchange:

• Requests to send a message can be addressed to a specific other CoRaCLe port, by
name;

• Ports can request to "eavesdrop" on the message traffic carried over CoRaCLe links.

The communications model CoRaCLe presents its clients postulates the existence of a
central message exchange. This central exchange determines which message ports to use
to forward messages to their destination ports and enables clients to "eavesdrop" on any
of the message traffic that may be of interest to them, as shown in Figure 5. In fact,
there need not be a physical central message repository. CoRaCLe allows its clients to
choose among several underlying communications protocols transparently. Some protocols
are in fact built around such a central repository (like the Central and Local versions),
while others provide direct port-to-port communications (like the Distributed version)
and simply provide a "virtual" message center, to preserve the semantics of the CoRaCLe
communications model.

The message exchange subsystem supports two different kinds of message exchange
protocols at the application developer's level:

• direct point-to-point communications (both one-to-one and one-to-many broadcast-
ing) (implemented using either TCP/IP or RPC);

15

• Communications via a shared tuple space in which messages are maintained. This
mechanism is the one used in Linda [3], as well as the basis for blackboard systems
[17].

These two protocols are enough to implement all commonly used communications protocols
for distributed systems (see [l]). Although the other protocols can be implemented in
terms of the two protocols listed above, MASE does not provide any other communications
protocols itself.

3.2 Agent Abstractions

All facilities MASE provides to application developers are captured by the Agent abstraction
provided by MASE. Application-specific agents are created as classes derived from this core
Agent, thus inheriting all the facilities that abstraction provides.

The basic facilities provided by the MASE Agent abstraction, in addition to the support
for inter-agent communications mentioned above, include automatic support for conflict
resolution and a general-purpose temporal reasoning engine.

3.2.1 MASE support for Conflict Resolution

MASE provides a general-purpose algorithm for conflict resolution among multiple compet-
ing agents, based on some previous work on inter-agent negotiation [23], [24], [25], [2l]. The
approach allows the interacting agents to maximize their cooperation (ie, to maximize the
number of actions of common interest) subject to the constraints imposed by the limited
horizon resulting from constraints on the processing time available to the agents.

The default strategy MASE provides assumes that there are at least three agents involved
in a conflict: an agent providing a service (call it the server) and at least two other agents
making conflicting requests of the server (call them the clients). In such a situation, the
default strategy will have the server ask each of the clients to evaluate its own and the
others' requests. If necessary, the server will continue to ask each of the clients "what-if"
questions, asking them to propose new actions to extend given sequences of actions and to
evaluate those actions and the resulting states until the server finds a sequence of actions
that will satisfy all of the agents involved in the conflict (or until it gives up).

Figure 6 illustrates the game tree built as a result of this procedure for an application in
which two planning agents are attempting to use a third agent in charge of controlling an
arm to achieve the conflicting goals. Each edge in the graph represents an action request

16

Figure 6: Result of default MASE conflict resolution strategy

from one of the planning agents for a given situation arising from the third agent's attempts
to solve the conflict; it is labeled by both agents evaluation of that action. The resulting
tree will be used by the third agent to execute an action sequence that will best satisfy
both planners' requests.

3.2.2 MASE support for Temporal Reasoning

The MASE Agent also provides a general-purpose temporal reasoning engine that developers
may rely upon when creating application-specific classes of agents. Initially it was provided
to be used in conjunction with the conflict resolution strategy specified above, but it is
available independently. The temporal reasoning engine allows agents to store time-stamped
facts into a database, and then determine whether those facts are true at later points in
time; the developers must provide application-specific routines to determine whether any
two facts contradict each other.

The temporal engine provided by MASE does not perform generic deduction. A future
release of MASE may provide a per-agent interface to an external Prolog-like reasoning
engine instead, to provide user-definable mechanisms for temporal reasoning, and to provide
agents the ability to do rule-based reasoning.

17

3.3 Using MASE to build applications

The design and implementation of systems of interacting agents using MASE involves the
customization of the core Agent abstractions to add whatever application- and task-specific
information each class of agent in the system will be responsible for maintaining. This is
easily done in our implementation of MASE by deriving new classes from class Agent (or
InteractiveAgent, if the interactive display capabilities are desirable) and adding to these
new classes the application- or task-specific information.

In addition to any additional data that may be required, each class of agents derived
from class Agent must provide its own methods for initializing, executing, and terminating
any agents of that class created by the application. These three methods are responsible
for the initialization and termination of each individual class of agent, as well as specifying
the specific behavior that the agent will execute on every cycle.

3.3.1 A Sample Application

One of the applications built using MASE was designed to explore the behaviors of several
different algorithms for routing and processing packages in a processing network. Each
processing node in this network is capable of processing packages itself; it has a finite queue
of incoming packages to be processed, and a set of pathways connecting it to neighboring
nodes that it can use to forward packages from its own queue.

The application was designed to explore the behaviors of networks of processing nodes,
where each node would be controlled by some of the following algorithms:

DumbDistributor A node following this algorithm would never forward packages to its
neighbors;

InitRandom A node following this algorithm would initially choose randomly a single
neighbor to forward packages to, and would then forward packages to it whenever it
estimated its own queue was in danger of overflowing;

InitBest A node following this algorithm would initially choose the neighbor with the
best chance of being able to handle packages forwarded to it (in the estimation of this
node), and would then forward packages to it at need;

RandomDeliv A node following this algorithm would choose at random a neighbor to
forward a package to, every time it chose to forward a package elsewhere;

18

tgentl

Agent

Agent

runnuT*

■tatus
TTSTEKT

DirectoryAc»nt Tl»«rX0«Qt

WMiMimi' TUMrAgant

axecuta axacuta
initialize initlalii*

terminate t«x»ia*t»

■*•—»—•
■»—MM

o«a«r*tor*g«at

•—«——
——»—

craata
axacuta

initialize
terminate

-•—*•-»•—

DumbDiatrlbutox RkndoiUMllvDlat

—'■»"■"- »"—""»■'

•—*—*— ' ' ' ""*"
create create

-»MM.UU.U.
• "l,r "■"*"

XnltBastDlat BaatDiatributor

•—"""*■*-

**«—<«« MUH.UU-..

create create
-•—«•»**—

Figure 7: Agent Class Hierarchy

BestDistributor A node following this algorithm would keep track of the status of its
neighbors, and would choose the neighbor most likely to be able to process a forwarded
package, every time it chose to forward a package elsewhere.

We created a class DistributionAgent, to capture the information and behaviors relevant
to the controllers in charge of all nodes in the network. This class was derived from In-
teractiveAgent, to gain access to all the support mechanisms provided by MASE. We then
derived five classes from DistributionAgent, to capture the details of the five decision proce-
dures described above. Figure 7 shows these relations graphically. Figure 8 shows several
snapshots of a sample run of the resulting application, configured to study a network of 3
processing nodes plus a node to generate the packages to be processed.

19

I First*g*nt j

I teconcttcpnt]

| ThirdJUnnt I

I Generator 1

iThlrdfcgentl

5*loct »iiftbor» fag n**Biwtri}mt*T: :FirttAgwt:

to*pt|

[G«tMrator]

Jv.Jiaaafeg^w].^ -'='^-^ Tj^S^ga

Figure 8: Some snapshots of a running application

3.4 Comparison of MASE to KQML

Knowledge Query Manipulation Language (KQML) is a protocol developed for the planning
initiative to support high-level communication among independent knowledge-based soft-
ware components. Both MASE and KQML provide layers of abstractions for inter-process
communications that can be used to build sophisticated distributed applications.

In the case of KQML, emphasis was placed on the efficient transmission of the messages
between processes over the underlying network; the set of communications abstractions pro-
vided by KQML are not much higher than the traditional operations provided by TCP/IP,
concentrating on point-to-point message transfers using a single protocol (TCP/IP).

20

MASE (or more precisely, CoRaCLe) concentrates on providing very high-level commu-
nications abstractions, perhaps at the expense of transmission efficiency. At the protocol
level, it provides the ability to transparently mix and match a variety of communications
protocols (TCP/IP, RPC, shared-memory). In addition, it provides a more powerful model
of inter-process communications, allowing processes to receive messages based on message
contents, without requiring the creation of explicit communication links between sender
and all the potential recipients of the message. MASE itself also provides abstractions for
other purposes (like agent coordination and temporal reasoning) that fall outside the scope
of KQML.

3.5 Availability

MASE and its communications subsystem, CoRaCLe, are available as libraries of C++ classes
that implement all of the abstractions defined. In addition, a simple interface program
is supplied that users can take advantage of to interact with a system that uses MASE.
This program can also be used to provide MASE interfaces for systems that would find
it awkward to invoke C++ code directly, such as systems built using Common Lisp. The
solution involves the creation of a subprocess that will act as the Common Lisp system's
proxy to the rest of the MASE universe. The Common Lisp system would then simply
interact with this subprocess using the supported basic I/O operations. Sample code that
implements this for Sun Common Lisp is included in the software distribution.

The software and documentation are available via anonymous FTP from the Internet
host wilma.cs.brown.edu, in the directory ftp/pub. The two files "libMASE.tar.Z" and
"libMASE.doc.tar.Z" contain the complete source code and the documentation for MASE,
respectively. The two files "libCoRaCLe.tar.Z" and "libCoRaCLe.doc.tar.Z" contain the
complete source code and the documentation for the communications subsystem (CoRaCLe)
alone.

The MASE library was written for C++ version 3.0. The implementation of MASE relies
on compiler support for the template mechanism introduced in that version of C++, so
porting it to an older release may be a chore. It has been tested using the AT&T C++
compiler on Sun SparcStations running SunOS 4.1.3.

4 Decomposition Methods for Large MDPs

Having found MDPs appropriate for planning in stochastic domains in our work on envelope
based methods, we continued to search for a general method for constructing abstract

21

Figure 9: Boundary and periphery states

Markov decision processes for planning and scheduling in very large state spaces. In the
latter part of the contract, our attention turned to various decomposition techniques. This
section presents a very general approach which subsumes and considerably extends our
envelope-based methods.

Let M = (X,A,p, c) be a Markov decision process with finite state space X, actions
A, state transition matrix p,j, and cost matrix Cij. Let P be any partition of X, P =
{Ri,..., Rn} such that X = U"=i Ri and Rin Ri = 0 for ill« # J • We refer to each R € P
as an aggregate state.

Definition: The boundary of an aggregate state R (denoted Boundary(Ä)) is the set of all
base-level states not in R but reachable in a single transition from a base-level state in R.

Boundary(Ä) = {j\j 0 R A 3t € R,Pij > 0}

Definition: The periphery of an aggregate state R (denoted Periphery(R)) is the set of all
base-level states in R from which you can reach a state not in R in a single transition.

Periphery(Ä) = {t|t € R A 3j•$ R,pij > 0}

In Figure 9 the boundary states are shaded light gray and the periphery states are shaded
darker gray.

Definition: We say that aggregate state R in P is adjacent to aggregate state 5 in P
(denoted R^*S) just in case Boundary(R) f\ S ^ 0 (see Figure 10).

We construct an abstract action for £~»S as follows.

1. Local state space R U Boundary(R)

2. Local transition matrix qij

22

Figure : R is adjacent to 5 (B~»S)

,vÄ-»5

o o o
o o o
O O'i

o o o
o o o

>;0 O
7C> ^o

Figure 11: Abstract action for moving from R to S

• lij = Pij f°r V* £ -R
• g.-j- = 1 for Vi G Boundary (R)

3. Local cost matrix kij

• kij = Cij for Vj € fi

• kij = 0 for Vj G S

• fc.j = 1 for V? G Boundary(R) — S

4. Compute the local policy TTR-+S optimal for (Ä U Boundary (J?), A, q, k).

The set of all abstract actions is denoted

U = {irRi-+Rj\i ^ j A 1 < i, j < n}

Figure 11 illustrates the difference between abstract actions defined as local policies (ITR-+S €
U) and base-level actions (;TA-+S(0 G A).

23

The probability of ending up in T starting in R and following TTR^S is defined by

<t>i

PRA^R-^S) =

H pij
j'6TuBoundary(Ä)

(Periphery (Ä) | £ 4>i
iePeriphery(Ä)

where Pij = Pij{nR^s{i)).

The cost of ending up in T starting in R and following nR^s is defined by

& =

c/jr(7rÄ-+s) =

£ PiJ
i€TuBoundary(ß)

+ £j*[i + fc]
J€R

| Periphery (R) \
tePeriphery(Ä)

where Cy = c,j(7rÄ^s(i))-

The resulting abstract decision process is then defined by (P,U,p',c'). The approach
described in [Dean et aZ., 1994] and appearing in the special issue of Artificial Intelligence
on planning represents a special case of the above general framework with two sets in P,
one corresponding to the envelope and the other to everything outside the envelope. There
is a rich literature based on related notions of decomposition and aggregation. Some of the
classic papers that most of the techniques appear to be based on are listed below.

• Dantzig-Wolfe Decomposition [Dantzig & Wolfe, 1961],

• Krohn-Rhodes Decomposition [Krohn & Rhodes, 1965],

• Aggregation Disaggregation Techniques [Schweitzer, 1984], and

• Hierarchical Discrete Event Systems [Zhong & Wonham, 1990]

Now let's consider some potential problems with the above approach. We begin by
reconsidering the method for defining an abstract action irR^s for moving from aggregate
state R to aggregate state 5. Let R U Boundary(Ä) be the local state space and Q =
SnBoundary(Ä) be the local target set. Let the transition probabilities be the same on R

24

Initial State Goal State

Figure 12: A problem with abstract actions

as in the base-level process and make each base-level state in Boundary (R) correspond to
a sink (closed singleton set). Assign a cost of 1 to each state in R and a cost of 0 to each
state in Q. What cost do we assign to Q = Boundary (i?) - Q? If we assign states in Q
a cost of 0, then KR-^S may not move toward 5 any faster or more efficiently than toward
any other aggregate state adjacent to R. If we assign states in Q a cost of 1, then since the
states in Q are sinks the policy will avoid them in the face of any finite cost. If we assign
states in Q a one time (first passage) cost of A, then we introduce a parameter that can
affect the performance of ITR^S in potentially subtle ways.

To illustrate, consider the example shown in Figure 12. Suppose that the base-level
state space is partitioned into three aggregate states {R, S, T] as shown above. The shaded
portion of R represents a portion of the state space through which it is difficult to pass.
Starting from R the best strategy would be to head directly for 5 and hence a policy nji-ts
seems desirable. However, in attempting to get to S from R it is possible (though unlikely)
to pass through the shaded portion, in which case it is best to head for T and from there
to S. The problem is that no abstract action of the form we have considered so far, in this
case TTR^S or ITR-IT, is optimal.

So the immediate questions are as follows. Is it possible to establish an interesting worst
case bound using the definition for abstract actions given above? Is there an alternative
method for constructing abstract actions that would ensure better bounds? For example,
perhaps there is some way of automatically tuning the A parameters mentioned above. We
will consider this latter suggestion in a little more detail.

Consider the situation shown in Figure 13 in which the aggregate state R is adjacent
to two other aggregate states 5 and T. We construct the local decision process for R
but this time we introduce two parameters, XRS and XRT,

one f°r eacn region adjacent to
R. We construct one abstract action KR for R, rather than one action for each aggregate

25

Figure 13: Adjacent aggregate states

state adjacent to R. We define the cost matrix as before except that Cij = XRS for j € R
and Cij = \RT for j G T. We want XRS to be an estimate of the cost of ending up in the
aggregate state S and so we define ARS to be the average of V*s(i) over all i € Boundary(S)
(similarly for XRT)- NOW you can develop an iterative procedure for updating the A values
akin to policy iteration [Howard, 1960] or value iteration [2]. In the degenerate case (all
singleton sets), abstract value iteration amounts to asynchronous dynamic programming.
In the following, we present a sketch for abstract policy iteration.

Notation

• n,: abstract policy at the ith iteration

• 7r'R: local policy for R at the ith iteration

• ^'RS
:
 ^ parameter for R adjacent to S at the ith iteration

• c: termination threshold e > 0

Algorithm

1. Set i to be 0.

2. Set Vh0(£) = 0 for all R in partition P.

3. Set \RS = Vx\i{S) for all R and S in partition P such that R~~*S.

4. Compute local policies irR for all R [policy improvement].

5. Compute costs and transitions for the abstract decision process.

6. Compute Vht(5) for all S [value determination].

7. If Vh;(S) < Vh;_, (S) + e for all 5 then quit [termination criterion].

26

Planning
System

:^t runway assignments

Real Time
System

course corrections

Figure 14: Embedded planning and control application

8. Set i to be i + 1 and go to Step 3.

Will the above algorithm converge and if so how quickly? Will specific classes of parti-
tions converge more quickly? A technical report answering these questions and many more
was produced during the last few month of the contract [ll] and a paper summarizing our
theoretical contributions will appear in IJCAI-95 [12].

5 Real-Time Planning and Problem Solving

For some time, we have been interested in the problem of how slow, high-level systems
(e.g., for planning and scheduling) might interact with faster, more reactive systems (e.g.,
for real-time execution and monitoring). This issue arises in crisis-management systems,
time-critical decision support, and any application in which computation time can delay
decision making thereby affecting performance. For instance, in air traffic control, there is a
combinatorial problem in scheduling the use of gates and runways so as to maximize airport
throughput and there is also the problem of issuing course corrections to avoid collisions
and ensure passenger safety and comfort (see Figure 14). The course corrections affect the
feasibility of gate schedules and the gate schedules ultimately require course corrections.
Passenger safety is the first priority but wherever passenger safety can be assured time
should be spent improving throughput. We are interested in the design of systems that
make the best use of the time available for decision making by explicitly accounting for the
costs and benefits of computational delays.

We define embedded planning to be the problem of determining actions for a system
embedded in an uncertain environment governed by dynamics outside of the system's con-

27

40 /WÖ,«(0)

u(t)

rwo) >«—1

«,WO)

Figure 15: Model for embedded planning and control system

trol. Figure 15 provides the basic dynamical model for an embedded planning and control
system. In Figure 15, x(t) is the state at time t of the system we are seeking to control,
u(t) is the control action at time t taken by the composite planning and control system,
and the function f(x(t), u(t)) determines the dynamics of the system that we are seeking to
control. The control action is determined by a policy that can be executed by a real-time
control system. To satisfy real-time constraints, the size of the policy must be bounded in
accord with available computing resources. The policy nt has a temporal index because it
changes under the control of the planning component T. Due to the combinatorics involved
in planning there is typically a delay A between when a state is observed and when a policy
is available for execution. The dynamical system depicted in Figure 15 captures the essen-
tial properties of embedded planning and control systems: a changing environment that is
not under the complete control of the planning system and delays in transmitting results
between planning and control components. The system described in Section 2 represents a
specific instance of the general model in shown Figure 15.

We are interested in this model for a number of reasons. First, it provides the basis for
a mathematical model that supports detailed analyses of embedded planning and control
systems. Second, we can generalize on the model to describe more complicated software
systems consisting of many components. This more general model suggests an approach
to specifying real-time systems that supports software reusability. We will consider each of
these two aspects in turn.

28

Figure 16: Two processes with uniform dispersion

5.1 Towards a Formal Theory of Embedded Systems

In planning problems that require predicting the behavior of complex processes, compu-
tational costs are typically a function of how such processes evolve over time. A slowly
evolving process requires us to cope with small numbers of possible outcomes while a
quickly evolving process can make prediction very difficult. Generally speaking, the greater
the number of possible outcomes the more difficult decision making. It would be useful
to develop some means of characterizing how processes evolve so that we can anticipate
computational demands. In the following, we consider some simple properties of processes
that serve to describe how they evolve over time. This analysis relates to the issues raised
in connection with the generality of the techniques discussed in Section 2.

Figure 16 shows the state transition diagrams for two different stochastic processes.
The number of states reachable from a given state is called the dispersion rate (or just the
dispersion) of the state. If the dispersion is the same for all of the states of a given process,
then the process is said to have uniform dispersion. The processes in Figure 16 are uniform
with a dispersion rate of two.

In the process on the left in Figure 16, there are only two distinct states reachable
following the initial state. In the process on the right in Figure 16, there are eight distinct
states reachable from the initial state. The number of states reachable from a given state
after n or less transitions is called the diffusion characteristic for an n step lookahead.
Figure 17 illustrates graphically the diffusion characteristics for the two processes shown in
Figure 16.

Suppose that in order to control a process it is enough to construct a table (correspond-
ing to a policy) that maps states to actions to execute in those states. For the process on
the left in Figure 16, the table would have to be of size two; for the process on the right in
Figure 16, the table would have to be of size eight. If we make the obvious extrapolation for
the process on the right in Figure 16, the table would have to be of size 2" to account for
all the possible states reachable in n transitions. A control system using a bounded policy
will have to periodically compute a new table. To make optimal use of the time available,

29

© © ©

© © © ©

© © © ©

Figure 17: Processes with different diffusion characteristics

monotonic
increasing

of states al the nth stage # of states fex the nth stage

Figure 18: Dispersion and diffusion profiles for processes

the system will have to anticipate the costs of computing a new table which will depend on
the properties of the process being controlled.

In anticipating the computational requirements for computing a new policy online, we
would like to predict the behavior of the process over time. We can summarize aspects of
this behavior using a dispersion profile that indicates the number of states the process might
be in after the nth transition and a diffusion profile that indicates the number of states the
process might have passed through by the nth transition. Figure 18 shows examples of each
of these different types of profiles. Note that a diffusion profile is monotonic increasing.

Consider a particular instance of the problem of designing an embedded planning and
control system that makes optimal use the time available for computing. Suppose that irt
corresponds to a table of size < K. Suppose that T takes three arguments: the current
state x(t), a lookahead parameter n corresponding to the number of transitions we looking
forward, and a window size m corresponding to a target interval of time, t+n to t+n+m. T

30

Figure 19: Process with periodic dispersion

computes the policies n+n through nt+n+m, for the times t+n through t+n+m, respectively,
subject to the table-size bound K under some optimality criterion. We assume that the
computation time required by T for a given, x, n, and m, is determined by a function
h(x,n,m). h(x,n,m) determines the delay A between when T is invoked and when its
resulting policy is available for use as given in the model of Figure 15. The design task is
to determine a strategy for invoking T in particular states with particular lookaheads and
window sizes. Such a rule could invoke T and then terminate it before completion. The
objective is to ensure that if the system arrives in a state at time t then x{t) will be in the

table defined by nt.

The above discussion just begins to describe the types of problems and formal analyses
that are possible in describing embedded planning and control systems. Most the problems
that involve the design of such systems are computationally complex and it is necessary to
exploit additional structure in the problem to make progress. One source of structure comes
from the fact that most of the processes that we are concerned with exhibit predictable
periodic behavior. For instance, consider the task faced by medical professionals in antic-
ipating injuries and stocking supplies for an emergency room. Early in the week, changes
occur slowly and there are not too many states that the system could transition to. As the
weekend nears, the number of states that the system could transition to grows. Figure 19
depicts a process with a period of one week in which there are two possible Monday states,
four each of Tuesday, Wednesday, Thursday, and Sunday states, and six each of Friday
and Saturday states. Given that different states require different supplies and obtaining
supplies takes time and given that only a limited number of supplies can be stocked, the
problem is to determine when the emergency room should place their order for supplies and
for which states it should prepare. This simple example has counterparts in transportation
scheduling, vehicle routing, and other difficult problems with real-time constraints.

31

5.2 Software Specifications for Embedded Systems

Coping with combinatorial problems in a real-time setting demands making concessions [7,
5]. Typically, concessions are in the form of algorithms that compute approximations. For
instance, instead of computing an optimal solution to a scheduling problem, a system might
compute a solution that is within a small factor of optimal but do so in a fraction of the
time required for computing the optimal solution. In a complex, multicomponent software
system, approximations will be passed along as arguments between subsystems. For in-
stance, in a target tracking application, one component might compute the approximate
location of a target, another the approximate orientation of a surveillance device, and a
third component might take these two approximations and compute a trajectory for the
surveillance device that approximates the optimal trajectory.

A useful specification for real-time software systems will include measures characteriz-
ing the quality of different approximations. A specification will have to describe different
modes of interaction whereby one module can ask for an approximation of a particular
quality and receive information about how long it will take to compute such an approxima-
tion. In general, we need ways of specifying interfaces that deal with approximations and
computational delays.

The top diagram in Figure 20 shows the three components of an embedded scheduling
system. Component #3 does the actual scheduling but it relies on the output of Com-
ponents #1 and #2 which are responsible for gathering and interpreting data concerning
the current availability of transportation assets and the readiness of crews. The more time
available for checking on assets and crews the more precise the estimates that Compo-
nents #1 and #2 provide. Similarly the more time allowed for scheduling the better the
resulting schedules. The overall value is determined by the schedules which are depen-
dent on the time allocated to scheduling and the precision of the asset and crew estimates.
These dependencies and the corresponding value model are depicted in the diagram (called
an influence diagram [19]) shown in the bottom of Figure 20. We are working on a model
for specifying the embedded behavior of software modules. This model would cover more
than just input/output behavior by addressing performance deficits due to delays, reduced
bandwidth in communications, and accounting explicitly for the time spent in computation.
The model will include standards for specifying delays, performance measures, and proto-
cols for modules to communicate with one another regarding trading precision for time.
Our model represents an extension and refinement of work in the data fusion community
concerned with combining data interpretation routines [14]. To determine if one software
module can be substituted for another we envision using Bayesian decision theory in the
form of influence diagrams to assess the costs and benefits of the substitution. It is our
contention that such a model is necessary to support real-time software development for a

32

Figure 20: Software components for an embedded scheduling system and an influence dia-
gram characterizing the dependencies between components and how they affect the expected
value of the computed schedules. The D{ correspond to sources of data, the T, to allocations
of time, the P; to normalized measures of precision, 5 to the resulting schedules, and V to
a measure of value for the resulting schedules.

growing number of military and commercial applications.

References

[l] Andrews, Gregory R., Paradigms for Process Interaction in Distributed Programs,
ACM Computing Surveys, 23(1) (1991) 49-90.

[2] Bellman, Richard, Dynamic Programming, (Princeton University Press, 1957).

[3] Ben-Ari, M, Hoare, C. A. R., (Ed.), Principles of Concurrent and Distributed Pro-
gramming, International Series in Computer Science, (Prentice-Hall, 1990).

[4] Bertsekas, Dimitri P., Dynamic Programming: Deterministic and Stochastic Models,
(Prentice-Hall, Englewood Cliffs, N.J., 1987).

33

[5] Boddy, Mark and Dean, Thomas, Decision-Theoretic Deliberation Scheduling for Prob-
lem Solving in Time-Constrained Environments, Artificial Intelligence, 67(2) (1994)
245-286.

[6] Chin, Roger S. and Chanson, Samuel T., Distributed Object-Based Programming Sys-
tems, ACM Computing Surveys, 23(1) (1991) 91-124.

[7] Dean, Thomas and Boddy, Mark, An Analysis of Time-Dependent Planning, Proceed-
ings AAAI-88, St. Paul, Minnesota, AAAI, 1988, 49-54.

[8] Dean, Thomas, Kaelbling, Leslie, Kirman, Jak, and Nicholson, Ann, Deliberation
Scheduling for Time-Critical Sequential Decision Making, Ninth Conference on Uncer-
tainty in Artificial Intelligence, Washington, D.C., 1993, 309-316.

[9] Dean, Thomas, Kaelbling, Leslie, Kirman, Jak, and Nicholson, Ann, Planning With
Deadlines in Stochastic Domains, Proceedings AAAI-93, Washington, D.C., AAAI,
1993,574-579.

[lO] Dean, Thomas, Kaelbling, Leslie, Kirman, Jak, and Nicholson, Ann, Planning Under
Time Constraints in Stochastic Domains, Artificial Intelligence, 76(1-2) (1995) 35-74.

[ll] Dean, Thomas and Lin, Shieu-Hong, Decomposition Techniques for Planning in
Stochastic Domains, Technical Report CS-95-10, Brown University Department of
Computer Science, 1995.

[l2] Dean, Thomas and Lin, Shieu-Hong, Decomposition Techniques for Planning in
Stochastic Domains, Proceedings IJCAI14, Montreal, Canada, IJCAII, 1995, 1121-
1127.

[l3] Drummond, Mark and Bresina, John, Anytime Synthetic Projection: Maximizing the
Probability of Goal Satisfaction, Proceedings AAAI-90, Boston, Massachusetts, AAAI,
1990, 138-144.

[l4J Durrant-Whyte, Hugh F., Integration, Coordination and Control of Multi-Sensor Robot
Systems, (Kluwer, Boston, Massachusetts, 1988).

[l5] Gasser, Les, Braganza, Carl, and Nava, Herman, MACE: A Flexible Testbed for Dis-
tributed AI Research, Huhns, Michael N., (Ed.), Distributed Artificial Intelligence,
(Morgan Kauffman, Los Altos, CA, 1987).

[l6] Green, Peter E., AF: A Framework for Real-Time Distributed Cooperative Problem
Solving, Huhns, Michael N., (Ed.), Distributed Artificial Intelligence, (Morgan Kauff-
man, Los Altos, CA, 1987).

34

[l7] Hayes-Roth, Barbara, A Blackboard Architecture for Control, Artificial Intelligence,
26 (1985) 251-321.

[18] Howard, Ronald A., Dynamic Programming and Markov Processes, (MIT Press, Cam-
bridge, Massachusetts, 1960).

[19] Howard, Ronald A. and Matheson, James E., Influence Diagrams, Howard, Ronald A.
and Matheson, James E., (Eds.), The Principles and Applications of Decision Analysis,
(Strategic Decisions Group, Menlo Park, CA 94025, 1984).

[20] Kemeny, J. G. and Snell, J. L., Finite Markov Chains, (D. Van Nostrand, New York,
1960).

[2l] Kraus, Sarit and Wilkenfeld, Jonathan, Negotiations Over Time in a Multi-Agent
Environment, Technical Report UMIACS-TR-91-51, Institute for Advanced Computer
Studies, University of Maryland, April 1991.

[22] Reiss, Steven P. and Stasko, John T., The Brown Workstation Environment: A User
Interface design Toolkit, Preprints of the IFIP WG2.7 Working Conference on Engi-
neering for Human-Computer Interaction, August 1989.

[23] Rosenschein, Jeffrey S. and Genesereth, Michael R., Deals Among Rational Agents,
Proceedings IJCAI 9, Los Angeles, California, 1985, 91-99.

[24] Zlotkin, Gilad and Rosenschein, Jeffrey S., Negotiation and Task Sharing Among Au-
tonomous Agents in Cooperative Domains, Proceedings IJCAI 11, Detroit, Michigan,
IJCAII, 1989, 912-917.

[25] Zlotkin, Gilad and Rosenschein, Jeffrey S., Negotiation and Conflict Resolution in Non-
Cooperative Domains, Proceedings AAAI-90, Boston, Massachusetts, AAAI, 1990,
100-105.

. GOVERNMENT PRINTING OFF.CE: 1998-610-130-61163

35

DISTRIBUTION LIST

addresses number
of copies

WAYNE 30SC0
RL/C3C4
525 BROOKS «DAD
ROME NY 13441-4505

5

3R0WN UNIVERSITY
COMPUTER SCIENCE DEPARTMENT

5

80X 1910
PROVIDENCE, RI 02912

ROME LABORATORY/SUL
TECHNICAL LIBRARY
26 ELECTRONIC PKY
ROME NY 13441-4514

1

ATTENTION: DTIC-OCC
DEFENSE TECHNICAL INFO CENTER
8725 JOHN J. KINGMAN ROAD, STE 0944

FT. BELVOIR, VA 22060-6213

2

ADVANCED RESEARCH PROJECTS AGENCY
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

1

OR JAMES ALLEN
COMPUTER SCIENCE OEPT/SLDG RM 732
UNTV OF ROCHESTER
WILSON 8LVD
ROCHESTER NY 14627

1

OR YIGAL AREN5
USC-ISI
4676 ADMIRALTY WAY
MARINA DEL RAY CA 90292

1

DR MARIE A. BIENKOWSKI
SRI INTERNATIONAL
333 RAVENSWOOÖ AVE/EK 337
MENLO PRK CA 94025

1

OL-1

DR MARK S. 3QDDY
HONEYWELL SYSTEMS t RSCH CENTER
3660 TECHNOLOGY DRIVE
MINNEAPOLIS MN 554.18

DR MARK BURSTEIN
BEN SYSTEMS £ TECHNOLOGIE
10 «OULTON STREET
CAMBRIDGE .MA 02133

OR GREGG COLLINS
INST FOR LEARNING SCIENCES
1890 MAPLE AVE
EVANSTON IL 60201

MS. LAURA DAVIS
CODE 5510
NAVY CTR FOR APPLIED RES IN AI
NAVAL RESEARCH LABORATORY
WASH DC 20375-5337

DR THOMAS L. DEAN
BROWN UNIVERSITY
DEPT OF COMPUTER SCIENCE
P.O. BQX 1910
PROVIDENCE RI 02912

OR PAUL R. COHEN
UNIV OF MASSACHUSETTS
COINS DEPT
LEDERLE GRC
AMHERST MA 01003

OR JON DOYLE
LABORATORY FOR COMPUTER SCIENCE
MASS INSTITUTE OF TECHNOLOGY
545 TECHNOLOGY SQUARE
CAMBRIDGE MA 02139

MR, STU DRftPER
MITRE
EAGLE CENTER 3, SUITE 3
O'^ALLON IL 62269

DR HICHÄEL FEHLING
STANFORD UNIVERSITY
ENGINEERING ECO SYSTEMS
STANFORD Cfi 943C5

DL-2

RICK HAYES-ROTH
CIMFLEX-TEKNOWLEDSc
1810 EM3ARCADER0 R0
PALO ALTO CA 94303

OR JIM HÄNDLER
UNIV 0= MARYLAND
OEPT 0!= COMPUTER SCIENCE
COLLEGE PARK MO 20742

MR. MORTON A. HIRSCHBERG, DIRECTOR
US ARMY R£.ScARCH LABORATORY
ATTN; AMSRL-CI-C8
ABERDEEN PROVING GROUND WO
21005-5066

MR. MARK A. HOFFMAN
ISX CORPORATION
1165 N3RTHCHASE PARKWAY
MARIETTA GA 30067

OR RON LARSEN
NAVAL CMO, CONTROL L OCEAN SUR CTR
RESEARCH, DEVELOP, TEST £ EVAL DIV
CODE 444
SAN DIF.GO CA 92152-5000

OR. ALAN MEYROWITZ
NAVAL RESEARCH LABORATORY/CODE 5510
4555 OVERLOOK AVE
WASH OC 20375

ALICE MULVEHILL
BBM
10 MOULTON STREET
CAMBRIDGE MA 02238

OR OR£W MCDERMOTT
YALE COMPUTER SCIENCE OEPT
P.O. BOX 2158, YALE STATION
51 PRQPSPECT STREET
MEW HAVEN CT 06520

OR DOUGLAS SMITH
KESTREL INSTITUTE
3260 HILLVIEW AVE
»ALQ ALTO CA 94304

OL-3

DR. AUSTIN TÄTE 1
AI APPLICATIONS INSTITUTE
UNIV OF EDINBURGH
80 SOUTH BRIDGE
EDINBURGH PHI IHN - SCOTLAND

DIRECTOR 1
DARPA/ITO
3751 N. FAIRFAX DR., 7TH FL
ARLINGTON VA 22209-1714

DR STEPHEN F. SMITH 1
ROBOTICS INSTITUTE/CMU
SCHENLEY ?%K
PITTSBURGH PA 15213

DR JONATHAN P. STILLMAN 1
GENERAL ELECTRIC CRD
1 RIVER RO, RM K1-5C31A
P. 0. BOX 8
SCHENECTADY NY 12.345

OR EDW4R0 C.T. WALKER 1
38N SYSTEMS & TECHNOLOGIES
10 MOULTON STREET
CAMBRIDGE MA 02133

DR BILL SWARTOUT 1
USC/ISI
4676 ADMIRALTY WAY
MARINA DEL RAY CA 90292

OR MATTHEW L. GINSBERG 1 CIRL, 1269
UNIVERSITY OF OREGON
EUGENE OR 97403

MR IRA GOLDSTEIN 1
OPEN SW FOUNDATION RESEARCH INST
ONE CAMBRIDGE CENTER
CAMBRIDGE MA 02142

MR JEFF GROSSMAN, CO 1
NCCOSC ROTE DIV 44
5370 SILVERGATE AVE, ROOM 1405
SAN DIEGO CA 92152-5146

DL-4

■

OS ADELE E. HOME
COMPUTER SCIENCE OEPT
COLORADO STATE UNIVERSITY
FORT COLLINS CO 80523

DR LESLIE PACK KAEL8LING
COMPUTER SCIENCE DEPT
8R0WN UNIVERSITY
PROVIDENCE RI 02912

OR SUB3ARA0 KAM3MAMPATI
OEPT OF COMPUTER SCIENCE
ARIZONA STATE UNIVERSITY
TEMPE AZ 85287-5*06

OR MARK T. MAY8URY
ASSOCIATE DIRECTOR OF AI CENTER
ADVANCED INFO SYSTEMS TECH G041
MITRE CORP, BURLINGTON RO, MS K-329
BEDFORD MA 01730

MR DONALD P. MCKAY
PARAMAX/UNISYS
P 0 3QX 517
PAOLI PA 19301

OR MARTHA E POLLACK
DEPT OF COMPUTER SCIENCE
UNIVERSITY OF PITTSBURGH
PITTSBURGH PA 15260

DR MANUELA VELOSO
CARNEGIE MELLON UNIVERSITY
SCHOOL OF COMPUTER SCIENCE
PITTSBURGH PA 15213-3891

DR DAN WELD
DEPT Or- COMPUTER SCIENCE & ENS
MAIL STOP FR-35
UNIVERSITY OF WASHINGTON
SEATTLE WA 98195

DR TOM GARVEY
OARPA/ISO
3701 NORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

DL-

DIRECTOR 1
OflPPA/ISO
3701 WORTH FAIRFAX DRIVE
ARLINGTON VA 22203-1714

OFFICE OF THE CHIEF OF NAVAL RSCH 1
ATTN: HR PAUL QUINN
CODE 311
500 N. QUI.MCY STREET
ARLINGTON VA 22217

OR GEORGE FERGUSON 1
UNIVERSITY OF ROCHESTER
COMPUTER .STUDIES 3LQG, RM 732
WILSON 3LVO
ROCHESTER NY 14627

OR STEVE HANKS 1
OEPT OF COMPUTER SCIENCE & ENG'G
UNIVERSITY OF WASHINGTON
SEATTLE VIA 98195

OR ADMAN OARWICHE 1
INFORMATION & DECISION SCIENCES
ROCKWELL INT'L SCIENCE CENTER
1049 CAMINO 005 RIOS
THOUSAND OAKS CA 91360

ROBERT J. KRUCHTEN 1
HQ AMC/SCA
2OB V LOSSY ST, SUITE 1016
SCOTT AFR IL 62225-5223

DR. MAREK RUSINKIEMICZ 1
MICROELECTRONCS £ COMPUTER TECH
3500 WEST SALCONES CENTE* DRIVE
AUSTIN, TX 73759-6509

MAJOR DOUGLAS DYER/ISO 1
DEFENSE ADVANCED PROJECT AGENCY
3701 NORTH FAIPFAX DRIVE
ARLINGTON, VA 22203-1714

OR. STEVE LITTLE 1
MAYA OFSTGN GROUP
2100 W4ART0N STREET S6.E 702
PITTSBURGH, ?A 15203-1944

DL-6

NEAL GLASSHAN
AFOSR
110 DUNCAN AVENUE
30LLING ÄF3, WASHINGTON,
29332

O.C.

OL-7

