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1    Introduction and Overview 

This report describes research conducted at Brown University during the period from June 
1991 to June 1995. Originally, the contract was due to expire on May 31, 1994, but we 
applied for and were granted a one-year, no-cost extension. The research was supported by 
the Air Force and the Advanced Research Projects Agency of the Department of Defense 
under contract number F30602-91-C-0041. The research addresses combinatorial problems 
in transportation planning and scheduling. The results of this research are summarized in 
the four self-contained sections that make up the bulk of this report. 

In Section 2, we describe our research on solving combinatorial planning problems under 
time constraints. This work addresses fundamental problems in real-time planning and 
crisis decision making. We deal with problems of uncertainty and incomplete information by 
employing a stochastic domain model called a Markov decision process (MDP). We deal with 
complexity in decision making by using iterative techniques and decision theory to allocate 
computational resources at runtime. In a concession to computational complexity and real- 
time constraints, we employ approximations rather than exact solutions and trade solution 
accuracy and optimality for time to make the best use of the time available for decision 
making. The various technical details behind this work appear in several papers, but 
the most comprehensive presentation is in Planning Under Time Constraints in Stochastic 
Domains (Thomas Dean, Leslie Kaelbling, Jak Kirman, and Ann Nicholson), Artificial 
Intelligence 76 (1995). 

In Section 3. we describe MASE, a simulation and development environment for prob- 
lems involving multiple interacting agents. MASE provides robust and efficient communi- 
cation and negotiation facilities to support distributed solutions to planning and utilities 
problems. MASE or its underlying communication subsystem running in a stand-alone con- 
figuration can be used by distributed components implemented in C, C++, or Common Lisp. 
MASE is available for use within the planning initiative and both a programmers manual 
and users manual have been produced as part of our effort for this contract. The technical 
details behind this work appear in several articles and technical reports but the most up- 
to-date and comprehensive presentation will appear in A Framework for the Development 
of Multi-Agent Architectures (Moises Lejter and Thomas Dean), IEEE Expert. 

In Section 4, we describe a complementary approach to our envelope-based methods for 
solving large MDPs, i.e., MDPs involving a very large number of states. This approach 
works by decomposing a large MDP into several smaller MDPs which are weakly coupled. 
A solution is obtained by solving each of the smaller MDPs individually and then combining 
these local solutions to obtain a global solution. Technical details will appear in Localized 
Temporal Reasoning Using Subgoals and Abstract Events (Shieu-Hong Lin and Thomas 
Dean), Journal of Computational Intelligence. 



In Section 5, we provide an overview of a new direction for our research on embedded 
planning and scheduling. We describe a general model for embedded planning and control 
systems. Using this model, we describe the rudiments of a software specification framework 
that we believe critical to any significant progress on real-time systems of any complexity. 
Note that most military applications and many real-world commercial applications have 
significant real-time components; the world will not wait for us while we try to compute 
exact solutions to the problems we are faced with. 

Three graduate students earned Ph.D.s under this contract; they are Jak Kirman, Lloyd 
Greenwald, and Shieu-Hong Lin. Several undergraduates were involved in the research at 
one time or another; of these students, four went on to graduate school including one 
to MIT, two to Pennsylvania University, and one to the University of Washington. Ann 
Nicholson, who was a postdoctoral research scientist under this contract, is now an assistant 
professor at Monash University in Victoria, Australia. 

2    Crisis Planning in Stochastic Domains 

In a completely deterministic world, it is possible for a planner simply to generate a se- 
quence of actions, knowing that if they are executed in the proper order, the goal will 
necessarily result. In nondeterministic worlds, planners must address the question of what 
to do when things do not go as expected. In tradition planning, the world is assumed to 
be deterministic for the purpose of planning, but its nondeterminism is accounted for by 
performing execution monitoring or by generating reactions for world states not on the 
nominal planned trajectory. 

In our work, we address the problem of planning in nondeterministic domains by taking 
nondeterminism into account from the very start. There is already a well-explored body of 
theory and algorithms addressing the question of finding optimal policies (universal plans), 
which specify the best action to take for every possible situation which may arise during plan 
execution, for nondeterministic domains. Unfortunately, these methods are impractical in 
large state spaces. However, if we know the start state, and have a model of the nature of 
the world's nondeterminism, we can restrict the planner's attention to a set of world states 
that are likely to be encountered on the way to the goal. Furthermore, the planner can 
generate more or less complete plans depending on the time it has available. In this way, 
we provide efficient methods, based on existing techniques of finding optimal strategies, for 
planning under time constraints in non-deterministic domains. Our approach addresses the 
uncertainty resulting from control error, but not sensor error; in most of the following, we 
assume certainty in observations, but discuss relaxing this assumption in [lO]. 



We assume that the environment can be modeled as a stochastic automaton: a set of 
states, a set of actions, and a matrix of transition probabilities. In our approach, con- 
structing a plan to achieve a goal corresponds to finding a policy (a mapping from states to 
actions) that maximizes expected performance. Performance is based on the expected accu- 
mulated reward over sequences of state transitions determined by the underlying stochastic 
automaton. The rewards are determined by a reward function (a mapping from states to 
the real numbers) specially formulated for a given goal. A good policy in our framework 
corresponds to a universal plan for achieving goals quickly on average. 

There are dynamic programming algorithms for computing the optimal policy given a 
stochastic model of the world. They are useful in small to medium-sized state-spaces, but 
become intractable on very large state-spaces. We address this difficulty by making some 
informal assumptions about the environments in which we are working that allow us to 
generate approximate solutions efficiently. In particular, we assume that the environment 
has the following properties: 

• high solution density: it is relatively easy to find plausible (though perhaps not opti- 
mal) solutions 

• low dispersion rate: from any given state, there are only a few states to which tran- 
sitions can be made 

• continuity: it is reasonable to estimate the values of states by considering the values of 
near-by states (where distance is measured as the expected number of steps between 
states) 

Many large, realistic planning problems, such as those involving high-level navigation or 
scheduling, have these properties. 

Our approach is motivated by the intuitively appealing work of Drummond and Bresina 
on 'anytime synthetic projection' [13]. We reformulate their basic framework in terms of 
Markov decision processes, cast the algorithmic issues in terms of approximations to specific 
optimization problems, provide a disciplined approach to allocating computational resources 
at run time, introduce techniques for specifying goals in stochastic domains, and describe 
how to extend the framework to deal with uncertainty in observation. 

2.1    Markov Decision Models and Coping with Large State Spaces 

Following the work on Markov decision processes [2, 4], we model the entire environment as 
a stochastic automaton, which we refer to as the system automaton. Let S be the finite set 



of world states; we assume that they can be reliably identified by the system. Let A be the 
finite set of actions; every action can be taken in every state. The transition model of the 
environment is a function mapping elements of S x A into discrete probability distributions 
over S. We write Pr(«i, a, «2) for the probability that the world will make a transition from 
state si to state S2 when action a is taken. 

A policy ■K is a mapping from S to A, specifying an action to be taken in each situation. 
An environment combined with a policy for choosing actions in that environment yields a 
Markov chain [20]. 

A reward function is a mapping from S to 3J, specifying the instantaneous reward that 
the system derives from being in each state. Given a policy n and a reward function R, the 
value of state s€<S, V^(s), is the sum of the expected values of the rewards to be received 
at each future time step, discounted by how far into the future they occur. The discounting 
factor, 0 < 7 < 1, controls the influence of rewards in the distant future. 

One of the most common goals is to achieve a certain condition p as soon as possible. 
If we define the reward function as R(s) = 0 if p holds in state s and R(s) = —1 otherwise, 
and represent all goal states as being absorbing, then the optimal policy will result in the 
system reaching a state satisfying p as soon as possible. A state is absorbing if all actions 
result in that same state with probability 1; that is, Va E A, Pr(s, a, s) = 1. The language 
of reward functions is quite rich, allowing us to specify much more complex goals, including 
the maintenance of properties of the world and prioritized combinations of primitive goals; 
this is explored in [lO]. 

Given a state-transition model, a reward function, and a value for 7, it is possible to 
compute the optimal policy using either the policy iteration algorithm [18] or the value 
iteration algorithm [2]. We use the policy iteration algorithm because it is guaranteed to 
converge in a finite number of steps — polynomial in |5|, but generally a small number of 
steps in the domains that we have experimented with — and thus simplifies debugging our 
computational experiments. 

As the size of our state spaces grows, even a polynomial-time algorithm such as policy 
iteration becomes too inefficient. We assume that our environment is such that, for any 
given reward function and initial starting state, it is sufficient to consider a highly-restricted 
subset of the entire state space in our planning. 

A partial policy is a mapping from a subset of S into actions; the domain of a partial 
policy 7T is called its envelope, £„.. The fringe of a partial policy, Fn, is the set of states 
that are not in the envelope of the policy, but that may be reached in one step of policy 
execution from some state in the envelope. To construct a restricted stochastic automaton, 
we take an envelope £ of states and add the distinguished state OUT, which is absorbing. 



The cost of falling out of the envelope is a parameter that depends on the domain. For 
example, if it is possible to re-invoke the planner when the system falls out of the envelope, 
then one approach is to assign V(OUT) to be the estimated value of the state into which 
the system fell minus some function of the time required to construct a new partial policy. 

2.2    Algorithms 

The basic algorithm starts with an initial policy and a restricted state space (or envelope), 
extends that envelope, and then computes a new policy. We would like it to be the case 
that the new policy TT' is an improvement over (or at the very least no worse than) the old 
policy w in the sense that V„,{s0) - K(s0) > 0- In general, however, we cannot guarantee 
that the policy will improve without extending the state space to be the entire space of the 
system automaton, which results in computational problems. The best that we can hope for 
is that the algorithm improves in expectation. Although it is possible to construct system 
automata for which even this improvement in expectation is impossible, we believe many 
moderately benign environments are well-behaved in this respect. In particular, navigation 
environments (excluding mazes) and scheduling domains, in which transitions are restricted 
by spatio-temporal constraints, generally satisfy our requirements. 

There are two basic types of operations on the restricted automaton. The first is called 
envelope alteration and serves to increase or decrease the number of states in the restricted 
automaton. The second is called policy generation and determines a policy for the system 
automaton using the restricted automaton. Note that, while the policy is constructed using 
the restricted automaton, it is a complete policy and applies to all of the states in the system 
automaton. For states outside of the envelope, the policy is denned by a set of reflexes that 
implement some default behavior for the system. 

Precursor Deliberation Model In the precursor deliberation model, there are two 
separate phases of operation: planning and execution. The planner constructs a policy 
that is followed by the execution system until a new goal must be pursued or until the 
system falls out of the current envelope. In the simplest precursor models, a deadline is 
specified indicating when planning stops and execution begins. The high-level planning 
algorithm, given a description of the environment and start state s0 or a distribution over 

start states, is as follows: 

1. Generate an initial envelope £ 

2. While {£ ^ 5) and (not deadline) do 



a. Extend the envelope £ 

b. Generate an optimal policy n for restricted automaton with state set £ U {OUT} 

3. Return 7r 

The algorithm first finds a small subset of world states and calculates an optimal policy 
over those states. Then it gradually adds new states in order to make the policy robust by 
decreasing the chance of falling out of the envelope. After new states are added, the optimal 
policy over the new envelope is calculated. Note the interdependence of these steps: the 
choice of which states to add during envelope extension may depend on the current policy, 
and the policy generated as a result of optimization may be quite different depending on 
which states were added to the envelope. The multiple-rounds of envelope alteration and 
policy generation are terminated when a deadline has been reached or when the envelope 
has been expanded to include the entire state space. 

Recurrent Deliberation Model A more sophisticated model of interaction between 
planning and execution is one in which the planner runs concurrently with the execution, 
sending new or expanded strategies to the executor as they are developed. In recurrent- 
deliberation models, the system has to repeatedly decide how to allocate time to delibera- 
tion, taking into account new information obtained during execution. The details of such 
models are discussed in [8]; here we provide just a rough sketch. We assume two separate 
modules: one for planning and a second for execution. In the simplest model, the planner 
and executor operate in a rigid cycle with a period determined by fixed length of time. At 
the beginning of each cycle, the planner is given the current state by the execution module; 
the planner spends the fixed length of time working on a new policy; at the end of the fixed 
time, the planner gives the new policy to the execution module. 

In the recurrent models, it is often necessary to remove states from the envelope in order 
to lower the computational costs of generating policies from the restricted automata. For 
instance, in the transportation scheduling domain, it may be appropriate to remove states 
corresponding to portions of a schedule the transportation vehicles have already executed, 
if there is little chance of returning to those states. Figure 1 shows a typical sequence of 
changes to the envelope corresponding to the state space for the restricted automaton. The 
current state is indicated by ♦ and the goal state is indicated by D. 

The recurrent planning algorithm, given a description of the environment, the policy TTC 

that is currently being followed by the execution system, and the state of the system at the 
beginning of the planning interval, sc, is as follows: 

While (not goal) do 



Find path to the goal 

Extend the envelope 

Extend and then prune the envelope 

Find path back to the envelope 

Extend and then prune the envelope 

Figure 1: Typical sequence of changes to the envelope 

1. Set sc to be the current state for planning purposes 

2. While (not end of current planning interval) do 

a. Extend the envelope £ 

b. Prune the envelope £ 
c. Generate an optimal policy n' for restricted automaton with state set £ U {OUT} 

3. Set 7rc to be the new policy n' 

The details of the extension and pruning of the envelope will depend on the system's 
expected state at the end of the planning interval. 

The subcomponents of the precursor and recurrent algorithms - initial trajectory plan- 
ning, policy generation and envelope alteration - are described in [9]. Each subcomponent 
can be implemented as an anytime algorithm [7], one that can be interrupted at any point 
during execution to return an answer whose value, at least in certain classes of stochastic 
processes, improves in expectation as a function of the computation time. We cast the 
problem of allocating computational resources to the subcomponents as an optimization 
problem and use describe decision-theoretic techniques to compute approximations. 



2.3    Deliberation Scheduling 

Deliberation scheduling is the problem of allocating processor time to envelope alteration 
and policy generation. It is natural to think of deliberation scheduling in terms of opti- 
mization even if the combinatorics dictate that an optimal solution is not computationally 
feasible. Having said this, it still remains to determine what optimization problem we are 
trying to solve. We have to specify exactly what options are allowed and what information 
is available; such a characterization is generally referred to as a decision model. 

In [8] we present a number of decision models. The algorithms given in Section 2.2 are 
examples of particular precursor deliberation and recurrent deliberation decision models. 
It should be pointed out that for each instance of the problems that we consider there are 
a large number of possible decision models. By specifying different decision models, we 
can make deliberation scheduling easy or hard. Our selection of which decision models to 
investigate is guided by our interest in providing insight into the problems of time-critical 
decision making and our anticipation of the combinatorial problems involved in deliberation 
scheduling. At present, we ignore the time spent in deliberation scheduling; for practical 
reasons, however, we are interested in decision models for which the on-line time spent in 
deliberation scheduling is negligible. 

In recurrent deliberation models, the system has to decide repeatedly how to allocate 
time to deliberation, taking into account new information obtained during execution. In 
[8] we consider models for recurrent deliberation in which the system allocates time to 
deliberation only at prescribed intervals, which we call discrete, weakly-coupled, recurrent 
deliberation models. Discrete because each tick of the clock corresponds to exactly one 
state transition; recurrent because the execution module gets a new policy from the plan- 
ning module periodically; weakly coupled in that the two modules communicate by having 
the execution module send the planning module the current state and the planning mod- 
ule send the execution module the latest policy. The intervals between planner-executor 
communication may be fixed or variable length. 

In general, there are many more possible strategies for deploying envelope alteration 
and policy generation in recurrent models than in the case of precursor models. To cope 
with the attendant combinatorics, we raise the level of abstraction slightly and assume that 
we are given a small set of deliberation strategies that have been determined empirically to 
improve policies significantly in various circumstances. Each deliberation strategy corre- 
sponds to some fixed schedule for allocating processor time to envelope alteration and policy 
generation routines. For example, a strategy might consist of f indf irstpath (find a first 
path to be the initial envelope), robust if y [20] (add to the envelope the 20 fringe states 
most likely to be reached using the current policy), optimize (perform policy iteration un- 
til the optimal policy for the restricted automaton is generated), prune[15] (of the states 



that have a worse value than the current state, remove the 15 least likely to be reached 
using the current policy), optimize. Also, in anticipation of combinatorial issues that arise 
in our experimental studies, we adopt a simpler myopic decision model; we assume that 
the system will apply exactly one deliberation strategy and commit to the resulting policy 

thereafter. 

2.4    Experimental Results 

Greedy Precursor Deliberation In general, computing the optimal deliberation sched- 
ule for multiple-round precursor-deliberation models, such as that used in the algorithm 
in Section 2.2, computationally complex. We have experimented with a number of simple, 
greedy and myopic scheduling strategies; we report on one such strategy here. 

We gathered a variety of statistics on how extending the envelope increases value. At 
run time, we use the size of the automaton and the estimated value of the current policy 
to index into a table of performance profiles giving expected improvement as a function of 
number of states added to the envelope. Using an experimental domain with 664 states, 
we generated 1,600,000 data points to compute these statistics plus estimates of the time 
required for one round of envelope alteration followed by policy generation given the size 
of the envelope, the number of states added, and value of the current policy. We use the 
following simple greedy strategy for choosing the number of states to add to the envelope 
on each round. For each round of envelope alteration followed by policy generation, we use 
the statistics to determine the number of states which, added to the envelope, maximizes 
the ratio of performance improvement to the time required for computation. 

We compared the performance of (1) our planning algorithm using the greedy deliber- 
ation strategy with (2) policy iteration optimizing the policy for the whole domain. Our 
results show that the planning algorithm using the greedy deliberation strategy supplies a 
good policy early, and typically converges to a policy that is close to optimal before the 
whole domain policy iteration method does. Figure 2 shows average results from 620 runs, 
where a single run involves a particular start state and goal state. The graph shows the 
average value of the start state under the policy available at time t, V*(s0), as a function of 
time. In order to compare results from different start/goal runs, we show the average ratio 
of the value of the current policy to the value of the optimal policy for the whole domain, 
plotted against the ratio of actual time to the time, Topt, that the policy iteration takes to 
reach that optimal value. 

The greedy deliberation strategy performs significantly better than the standard opti- 
mization method. We also considered very simple strategies such as adding a small fixed 
number of fringe states each iteration, and adding the whole fringe each iteration, which 
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Figure 2: Comparison of planning algorithm using greedy deliberation strategy (dashed 
line) with the policy iteration optimization method (solid line): Average over 630 runs 

performed fairly well for this domain, but not as well as the greedy policy. Further experi- 
mentation is required to draw definitive conclusions about the comparative performance of 
these deliberation strategies for particular domains. 

Recurrent Deliberation We present results for recurrent-deliberation problems of in- 
definite duration using statistical estimates of the value of a variety of deliberation strate- 
gies. We use a discrete, weakly-coupled decision model with variable-length intervals for 

deliberation. 

We gathered 600,000 data points for the same experimental domain, with state space 
size ranging from 632 to 15800 states, for 12 hand-crafted deliberation strategies. The 
start/goal pairs were chosen uniformly at random. We simulated execution in parallel with 
the planner until the goal was reached. The planner performed f indf irstpath (FFP) to 
obtain the initial envelope, then entered the following loop: choose one of the 12 strategies 
uniformly at random, execute that strategy, and then pass the new policy to the executor. 

We found the following conditioning variables to be significant: the envelope size, \S\, 
the estimated value of the current state Vw, the "fatness" of the envelope (the ratio of 
envelope size to fringe size), and the Manhattan distance, M, between the start and goal 
locations. We then built the lookup tables of the expected improvement in value as a 
function of the attributes |£|, V„, the fatness, M and the strategy s. The lookup table 
granularity used was 3 buckets per attribute dimension. 

To test our algorithm, we took 50 pairs of start and goal states, chosen uniformly at 
random. For each pair we ran the executor in parallel with the following deliberation 
mechanisms:   recurrent-deliberation with strategies chosen using statistical estimates of 
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Figure 3: Comparison of the recurrent algorithm to policy iteration over varying domain 
size 

their expected improvement in value (LOOKUP); dynamic programming policy iteration 
over the entire domain, with a new policy given to the executor, after each iteration (ITER), 
and only after it has been completely optimized (WHOLE). 

Figure 3 shows the average number of steps taken by the system to reach the goal for 
the various algorithms. For the smaller domains, the recurrent-deliberation algorithm does 
not perform better than either of the policy iteration algorithms. However, as we move to 
larger domains, the improvement is marked. As we might expect, WHOLE is exponential 
and becomes computationally infeasible as the size of the domain increases. ITER also 
shows a non-linear degradation in the time to goal, LOOKUP shows linear behavior, clearly 
performing better as the domain size increases. 

2.5    Further work 

The implementation used to obtain the experimental results did not include a separate 
trajectory planning phase that looks for new paths to goal states. The addition of trajectory 
planning would reduce the extent to which the performance depended on the quality of the 
first path used as the initial envelope, and hence should improve the performance of the 
system as a whole. 

In [lO] we outline an extension of our approach to handle uncertainty in observation, 
based on the theory of partially observable Markov processes. We will be incorporating 
this into our empirical investigations, together with the more complex goals which can also 
be represented by reward functions. 

We have described a general approach to planning in stochastic domains. We mentioned 
at the start of this section that we were making informal assumptions about the character- 
istics of the domains to which the general approach may apply — high solution density, low 
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dispersion rate, and continuity. We are now developing a precise specification off domain 
characteristics that affect performance. This specification describes a space of problems 
defined by the domain characteristics. An analysis of correlations and dependencies among 
domain characteristics and how they affect performance will identify regions of this space to 
which our approach applies. We are developing an experimental environment that supports 
empirical verification of theoretical claims and assesses the applicability or our approach 
for specified domains. 

3    Distributed Planning and Scheduling 

We have been working on the development of MASE, an environment for the simulation 
of multiple interacting agents, as a vehicle for implementing software to test distributed 
algorithms for applications such as transportation scheduling and crisis management. 

The principal goal behind MASE was to provide developers with a set of very powerful 
abstraction to facilitate the construction of distributed systems built using the agent model. 
As such, it follows previous work done by Gasser et al [15] and Green [16]. For a survey of 
distributed object-oriented systems in general, see [6]. 

MASE provides the following facilities to application developers: 

• Message Exchange 

MASE provides developers with a powerful message exchange subsystem that agents 
can use to communicate with each other. The details of the actual implementation 
of the communications channel (such as the protocol to be used, the mechanisms to 
use in order to find the destination of any one message, or any details of local versus 
remote message delivery) are hidden from the application developers. 

The message exchange subsystem provides a useful set of abstractions for inter-process 
communications in its own right, which we call the CoRaCLe library. 

• Conflict Resolution 

One of the first problems that must be addressed by developers of distributed control 
systems is this issue of conflict resolution, which involves the coordination of possibly 
conflicting goals generated by several of the agents in the system. MASE provides a 
default general-purpose conflict resolution strategy that developers may rely upon, 
using negotiation protocols based on game-theory. 

• Temporal Reasoning 
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Figure 4: Class Agent Hierarchy and Helper Classes 

MASE provides a simple general-purpose temporal reasoning engine that application 
developers may rely upon. This facility provides agents with the ability to store time- 
stamped information, and it automatically maintains the validity of the information 
stored as new information is added to the database. 

Development Support 

MASE provides additional facilities to ease the development process, such as an inter- 
active, graphical interface to the simulation environment. This interface supports the 
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interactive addition and deletion agents into a simulation run, single step and con- 
tinuous simulation, interactive display and querying of the states of the agents in the 
system and the messages exchanged between them, and additional control over the 
characteristics of the communications channels that link the different objects (such 
as propagation delays over the different communications channels). 

MASE supports several execution models: 

• single-process, single-thread execution: all the agents defined in a simulation run in 
this model share the same process address space under UNIX. The simulator system 
executes the different agents cyclically, in a user-defined sequence. 

• multiple-process, multiple-thread: each agent in the simulation runs in its own process 
under UNIX. 

MASE is implemented as a library of classes written in C++ (including the communica- 
tions facilities provided by CoRaCLe); it relies on the BWE windowing library [22] developed 
at Brown University for the graphical facilities of its user interface. 

3.1     CoRaCLe: The Message Exchange Subsystem 

The CoRaCLe message exchange subsystem is the component of MASE responsible for pro- 
viding support for the exchange and automatic handling of messages by the agents. It 
provides abstractions to implement the different message-passing protocols supported by 
MASE in an implementation-independent fashion, freeing applications developers from con- 
cerns stemming from either the actual details of the message passing protocols supported 
by the underlying operating system or the particular execution environment chosen for a 
particular implementation. 

CoRaCLe is an attempt to provide a basic set of powerful domain-independent commu- 
nications abstractions for distributed processing. Its design goals are: 

• 

• 

• 

to provide the fundamental communications abstractions necessary to develop dis- 
tributed applications; 

to isolate developers as much as possible from the details of the underlying commu- 
nications protocols at the operating systems or hardware levels; 

to provide a communications paradigm flexible enough to support dynamic distributed 
applications; 
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Figure 5: The Organization of CoRaCLe 

• to be extensible enough to allow developers to build more complex, or application- 
specific, communications paradigms on top of the basic abstractions provided. 

The CoRaCLe library supports a particular style of communications — one-way asyn- 
chronous message delivery — across a variety of underlying communications protocols. The 
library provides developers with a general-purpose communications module built around 
the notions of "named ports" that can exchange (send or receive) messages from any other 
CoRaCLe ports. CoRaCLe supports two modes of message exchange: 

• Requests to send a message can be addressed to a specific other CoRaCLe port, by 
name; 

• Ports can request to "eavesdrop" on the message traffic carried over CoRaCLe links. 

The communications model CoRaCLe presents its clients postulates the existence of a 
central message exchange. This central exchange determines which message ports to use 
to forward messages to their destination ports and enables clients to "eavesdrop" on any 
of the message traffic that may be of interest to them, as shown in Figure 5. In fact, 
there need not be a physical central message repository. CoRaCLe allows its clients to 
choose among several underlying communications protocols transparently. Some protocols 
are in fact built around such a central repository (like the Central and Local versions), 
while others provide direct port-to-port communications (like the Distributed version) 
and simply provide a "virtual" message center, to preserve the semantics of the CoRaCLe 
communications model. 

The message exchange subsystem supports two different kinds of message exchange 
protocols at the application developer's level: 

• direct point-to-point communications (both one-to-one and one-to-many broadcast- 
ing) (implemented using either TCP/IP or RPC); 
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• Communications via a shared tuple space in which messages are maintained. This 
mechanism is the one used in Linda [3], as well as the basis for blackboard systems 
[17]. 

These two protocols are enough to implement all commonly used communications protocols 
for distributed systems (see [l]). Although the other protocols can be implemented in 
terms of the two protocols listed above, MASE does not provide any other communications 
protocols itself. 

3.2    Agent Abstractions 

All facilities MASE provides to application developers are captured by the Agent abstraction 
provided by MASE. Application-specific agents are created as classes derived from this core 
Agent, thus inheriting all the facilities that abstraction provides. 

The basic facilities provided by the MASE Agent abstraction, in addition to the support 
for inter-agent communications mentioned above, include automatic support for conflict 
resolution and a general-purpose temporal reasoning engine. 

3.2.1     MASE support for Conflict Resolution 

MASE provides a general-purpose algorithm for conflict resolution among multiple compet- 
ing agents, based on some previous work on inter-agent negotiation [23], [24], [25], [2l]. The 
approach allows the interacting agents to maximize their cooperation (ie, to maximize the 
number of actions of common interest) subject to the constraints imposed by the limited 
horizon resulting from constraints on the processing time available to the agents. 

The default strategy MASE provides assumes that there are at least three agents involved 
in a conflict: an agent providing a service (call it the server) and at least two other agents 
making conflicting requests of the server (call them the clients). In such a situation, the 
default strategy will have the server ask each of the clients to evaluate its own and the 
others' requests. If necessary, the server will continue to ask each of the clients "what-if" 
questions, asking them to propose new actions to extend given sequences of actions and to 
evaluate those actions and the resulting states until the server finds a sequence of actions 
that will satisfy all of the agents involved in the conflict (or until it gives up). 

Figure 6 illustrates the game tree built as a result of this procedure for an application in 
which two planning agents are attempting to use a third agent in charge of controlling an 
arm to achieve the conflicting goals. Each edge in the graph represents an action request 
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Figure 6: Result of default MASE conflict resolution strategy 

from one of the planning agents for a given situation arising from the third agent's attempts 
to solve the conflict; it is labeled by both agents evaluation of that action. The resulting 
tree will be used by the third agent to execute an action sequence that will best satisfy 
both planners' requests. 

3.2.2    MASE support for Temporal Reasoning 

The MASE Agent also provides a general-purpose temporal reasoning engine that developers 
may rely upon when creating application-specific classes of agents. Initially it was provided 
to be used in conjunction with the conflict resolution strategy specified above, but it is 
available independently. The temporal reasoning engine allows agents to store time-stamped 
facts into a database, and then determine whether those facts are true at later points in 
time; the developers must provide application-specific routines to determine whether any 
two facts contradict each other. 

The temporal engine provided by MASE does not perform generic deduction. A future 
release of MASE may provide a per-agent interface to an external Prolog-like reasoning 
engine instead, to provide user-definable mechanisms for temporal reasoning, and to provide 
agents the ability to do rule-based reasoning. 
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3.3    Using MASE to build applications 

The design and implementation of systems of interacting agents using MASE involves the 
customization of the core Agent abstractions to add whatever application- and task-specific 
information each class of agent in the system will be responsible for maintaining. This is 
easily done in our implementation of MASE by deriving new classes from class Agent (or 
InteractiveAgent, if the interactive display capabilities are desirable) and adding to these 
new classes the application- or task-specific information. 

In addition to any additional data that may be required, each class of agents derived 
from class Agent must provide its own methods for initializing, executing, and terminating 
any agents of that class created by the application. These three methods are responsible 
for the initialization and termination of each individual class of agent, as well as specifying 
the specific behavior that the agent will execute on every cycle. 

3.3.1     A Sample Application 

One of the applications built using MASE was designed to explore the behaviors of several 
different algorithms for routing and processing packages in a processing network. Each 
processing node in this network is capable of processing packages itself; it has a finite queue 
of incoming packages to be processed, and a set of pathways connecting it to neighboring 
nodes that it can use to forward packages from its own queue. 

The application was designed to explore the behaviors of networks of processing nodes, 
where each node would be controlled by some of the following algorithms: 

DumbDistributor A node following this algorithm would never forward packages to its 
neighbors; 

InitRandom A node following this algorithm would initially choose randomly a single 
neighbor to forward packages to, and would then forward packages to it whenever it 
estimated its own queue was in danger of overflowing; 

InitBest A node following this algorithm would initially choose the neighbor with the 
best chance of being able to handle packages forwarded to it (in the estimation of this 
node), and would then forward packages to it at need; 

RandomDeliv A node following this algorithm would choose at random a neighbor to 
forward a package to, every time it chose to forward a package elsewhere; 
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Figure 7: Agent Class Hierarchy 

BestDistributor A node following this algorithm would keep track of the status of its 
neighbors, and would choose the neighbor most likely to be able to process a forwarded 
package, every time it chose to forward a package elsewhere. 

We created a class DistributionAgent, to capture the information and behaviors relevant 
to the controllers in charge of all nodes in the network. This class was derived from In- 
teractiveAgent, to gain access to all the support mechanisms provided by MASE. We then 
derived five classes from DistributionAgent, to capture the details of the five decision proce- 
dures described above. Figure 7 shows these relations graphically. Figure 8 shows several 
snapshots of a sample run of the resulting application, configured to study a network of 3 
processing nodes plus a node to generate the packages to be processed. 
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Figure 8: Some snapshots of a running application 

3.4    Comparison of MASE to KQML 

Knowledge Query Manipulation Language (KQML) is a protocol developed for the planning 
initiative to support high-level communication among independent knowledge-based soft- 
ware components. Both MASE and KQML provide layers of abstractions for inter-process 
communications that can be used to build sophisticated distributed applications. 

In the case of KQML, emphasis was placed on the efficient transmission of the messages 
between processes over the underlying network; the set of communications abstractions pro- 
vided by KQML are not much higher than the traditional operations provided by TCP/IP, 
concentrating on point-to-point message transfers using a single protocol (TCP/IP). 
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MASE (or more precisely, CoRaCLe) concentrates on providing very high-level commu- 
nications abstractions, perhaps at the expense of transmission efficiency. At the protocol 
level, it provides the ability to transparently mix and match a variety of communications 
protocols (TCP/IP, RPC, shared-memory). In addition, it provides a more powerful model 
of inter-process communications, allowing processes to receive messages based on message 
contents, without requiring the creation of explicit communication links between sender 
and all the potential recipients of the message. MASE itself also provides abstractions for 
other purposes (like agent coordination and temporal reasoning) that fall outside the scope 
of KQML. 

3.5    Availability 

MASE and its communications subsystem, CoRaCLe, are available as libraries of C++ classes 
that implement all of the abstractions defined. In addition, a simple interface program 
is supplied that users can take advantage of to interact with a system that uses MASE. 
This program can also be used to provide MASE interfaces for systems that would find 
it awkward to invoke C++ code directly, such as systems built using Common Lisp. The 
solution involves the creation of a subprocess that will act as the Common Lisp system's 
proxy to the rest of the MASE universe. The Common Lisp system would then simply 
interact with this subprocess using the supported basic I/O operations. Sample code that 
implements this for Sun Common Lisp is included in the software distribution. 

The software and documentation are available via anonymous FTP from the Internet 
host wilma.cs.brown.edu, in the directory ftp/pub. The two files "libMASE.tar.Z" and 
"libMASE.doc.tar.Z" contain the complete source code and the documentation for MASE, 
respectively. The two files "libCoRaCLe.tar.Z" and "libCoRaCLe.doc.tar.Z" contain the 
complete source code and the documentation for the communications subsystem (CoRaCLe) 
alone. 

The MASE library was written for C++ version 3.0. The implementation of MASE relies 
on compiler support for the template mechanism introduced in that version of C++, so 
porting it to an older release may be a chore. It has been tested using the AT&T C++ 
compiler on Sun SparcStations running SunOS 4.1.3. 

4    Decomposition Methods for Large MDPs 

Having found MDPs appropriate for planning in stochastic domains in our work on envelope 
based methods, we continued to search for a general method for constructing abstract 

21 



Figure 9: Boundary and periphery states 

Markov decision processes for planning and scheduling in very large state spaces. In the 
latter part of the contract, our attention turned to various decomposition techniques. This 
section presents a very general approach which subsumes and considerably extends our 
envelope-based methods. 

Let M = (X,A,p, c) be a Markov decision process with finite state space X, actions 
A, state transition matrix p,j, and cost matrix Cij. Let P be any partition of X, P = 
{Ri,..., Rn} such that X = U"=i Ri and Rin Ri = 0 for ill« # J • We refer to each R € P 
as an aggregate state. 

Definition: The boundary of an aggregate state R (denoted Boundary(Ä)) is the set of all 
base-level states not in R but reachable in a single transition from a base-level state in R. 

Boundary(Ä) = {j\j 0 R A 3t € R,Pij > 0} 

Definition: The periphery of an aggregate state R (denoted Periphery(R)) is the set of all 
base-level states in R from which you can reach a state not in R in a single transition. 

Periphery(Ä) = {t|t € R A 3j•$ R,pij > 0} 

In Figure 9 the boundary states are shaded light gray and the periphery states are shaded 
darker gray. 

Definition: We say that aggregate state R in P is adjacent to aggregate state 5 in P 
(denoted R^*S) just in case Boundary(R) f\ S ^ 0 (see Figure 10). 

We construct an abstract action for £~»S as follows. 

1. Local state space R U Boundary(R) 

2. Local transition matrix qij 

22 



Figure   : R is adjacent to 5 (B~»S) 
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Figure 11: Abstract action for moving from R to S 

• lij = Pij f°r V* £ -R 
• g.-j- = 1 for Vi G Boundary (R) 

3. Local cost matrix kij 

• kij = Cij for Vj € fi 

• kij = 0 for Vj G S 

• fc.j = 1 for V? G Boundary(R) — S 

4. Compute the local policy TTR-+S optimal for (Ä U Boundary (J?), A, q, k). 

The set of all abstract actions is denoted 

U = {irRi-+Rj\i ^ j A 1 < i, j < n} 

Figure 11 illustrates the difference between abstract actions defined as local policies (ITR-+S € 
U) and base-level actions (;TA-+S(0 G A). 
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The probability of ending up in T starting in R and following TTR^S is defined by 

<t>i 

PRA^R-^S)   = 

H     pij 
j'6TuBoundary(Ä) 

(Periphery (Ä) | £ 4>i 
iePeriphery(Ä) 

where Pij = Pij{nR^s{i)). 

The cost of ending up in T starting in R and following nR^s is defined by 

&   = 

c/jr(7rÄ-+s)   = 

£ PiJ 
i€TuBoundary(ß) 

+ £j*[i + fc] 
J€R 

| Periphery (R) \ 
tePeriphery(Ä) 

where Cy = c,j(7rÄ^s(i))- 

The resulting abstract decision process is then defined by (P,U,p',c'). The approach 
described in [Dean et aZ., 1994] and appearing in the special issue of Artificial Intelligence 
on planning represents a special case of the above general framework with two sets in P, 
one corresponding to the envelope and the other to everything outside the envelope. There 
is a rich literature based on related notions of decomposition and aggregation. Some of the 
classic papers that most of the techniques appear to be based on are listed below. 

• Dantzig-Wolfe Decomposition [Dantzig & Wolfe, 1961], 

• Krohn-Rhodes Decomposition [Krohn & Rhodes, 1965], 

• Aggregation Disaggregation Techniques [Schweitzer, 1984], and 

• Hierarchical Discrete Event Systems [Zhong & Wonham, 1990] 

Now let's consider some potential problems with the above approach. We begin by 
reconsidering the method for defining an abstract action irR^s for moving from aggregate 
state R to aggregate state 5. Let R U Boundary(Ä) be the local state space and Q = 
SnBoundary(Ä) be the local target set. Let the transition probabilities be the same on R 
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Initial State Goal State 

Figure 12: A problem with abstract actions 

as in the base-level process and make each base-level state in Boundary (R) correspond to 
a sink (closed singleton set). Assign a cost of 1 to each state in R and a cost of 0 to each 
state in Q. What cost do we assign to Q = Boundary (i?) - Q? If we assign states in Q 
a cost of 0, then KR-^S may not move toward 5 any faster or more efficiently than toward 
any other aggregate state adjacent to R. If we assign states in Q a cost of 1, then since the 
states in Q are sinks the policy will avoid them in the face of any finite cost. If we assign 
states in Q a one time (first passage) cost of A, then we introduce a parameter that can 
affect the performance of ITR^S in potentially subtle ways. 

To illustrate, consider the example shown in Figure 12. Suppose that the base-level 
state space is partitioned into three aggregate states {R, S, T] as shown above. The shaded 
portion of R represents a portion of the state space through which it is difficult to pass. 
Starting from R the best strategy would be to head directly for 5 and hence a policy nji-ts 
seems desirable. However, in attempting to get to S from R it is possible (though unlikely) 
to pass through the shaded portion, in which case it is best to head for T and from there 
to S. The problem is that no abstract action of the form we have considered so far, in this 
case TTR^S or ITR-IT, is optimal. 

So the immediate questions are as follows. Is it possible to establish an interesting worst 
case bound using the definition for abstract actions given above? Is there an alternative 
method for constructing abstract actions that would ensure better bounds? For example, 
perhaps there is some way of automatically tuning the A parameters mentioned above. We 
will consider this latter suggestion in a little more detail. 

Consider the situation shown in Figure 13 in which the aggregate state R is adjacent 
to two other aggregate states 5 and T. We construct the local decision process for R 
but this time we introduce two parameters, XRS and XRT, 

one f°r eacn region adjacent to 
R. We construct one abstract action KR for R, rather than one action for each aggregate 
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Figure 13: Adjacent aggregate states 

state adjacent to R. We define the cost matrix as before except that Cij = XRS for j € R 
and Cij = \RT for j G T. We want XRS to be an estimate of the cost of ending up in the 
aggregate state S and so we define ARS to be the average of V*s(i) over all i € Boundary(S) 
(similarly for XRT)- NOW you can develop an iterative procedure for updating the A values 
akin to policy iteration [Howard, 1960] or value iteration [2]. In the degenerate case (all 
singleton sets), abstract value iteration amounts to asynchronous dynamic programming. 
In the following, we present a sketch for abstract policy iteration. 

Notation 

• n,: abstract policy at the ith iteration 

• 7r'R: local policy for R at the ith iteration 

• ^'RS
:
 ^ parameter for R adjacent to S at the ith iteration 

• c: termination threshold e > 0 

Algorithm 

1. Set i to be 0. 

2. Set Vh0(£) = 0 for all R in partition P. 

3. Set \RS = Vx\i{S) for all R and S in partition P such that R~~*S. 

4. Compute local policies irR for all R [policy improvement]. 

5. Compute costs and transitions for the abstract decision process. 

6. Compute Vht(5) for all S [value determination]. 

7. If Vh;(S) < Vh;_, (S) + e for all 5 then quit [termination criterion]. 
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Figure 14: Embedded planning and control application 

8. Set i to be i + 1 and go to Step 3. 

Will the above algorithm converge and if so how quickly? Will specific classes of parti- 
tions converge more quickly? A technical report answering these questions and many more 
was produced during the last few month of the contract [ll] and a paper summarizing our 
theoretical contributions will appear in IJCAI-95 [12]. 

5    Real-Time Planning and Problem Solving 

For some time, we have been interested in the problem of how slow, high-level systems 
(e.g., for planning and scheduling) might interact with faster, more reactive systems (e.g., 
for real-time execution and monitoring). This issue arises in crisis-management systems, 
time-critical decision support, and any application in which computation time can delay 
decision making thereby affecting performance. For instance, in air traffic control, there is a 
combinatorial problem in scheduling the use of gates and runways so as to maximize airport 
throughput and there is also the problem of issuing course corrections to avoid collisions 
and ensure passenger safety and comfort (see Figure 14). The course corrections affect the 
feasibility of gate schedules and the gate schedules ultimately require course corrections. 
Passenger safety is the first priority but wherever passenger safety can be assured time 
should be spent improving throughput. We are interested in the design of systems that 
make the best use of the time available for decision making by explicitly accounting for the 
costs and benefits of computational delays. 

We define embedded planning to be the problem of determining actions for a system 
embedded in an uncertain environment governed by dynamics outside of the system's con- 
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Figure 15: Model for embedded planning and control system 

trol. Figure 15 provides the basic dynamical model for an embedded planning and control 
system. In Figure 15, x(t) is the state at time t of the system we are seeking to control, 
u(t) is the control action at time t taken by the composite planning and control system, 
and the function f(x(t), u(t)) determines the dynamics of the system that we are seeking to 
control. The control action is determined by a policy that can be executed by a real-time 
control system. To satisfy real-time constraints, the size of the policy must be bounded in 
accord with available computing resources. The policy nt has a temporal index because it 
changes under the control of the planning component T. Due to the combinatorics involved 
in planning there is typically a delay A between when a state is observed and when a policy 
is available for execution. The dynamical system depicted in Figure 15 captures the essen- 
tial properties of embedded planning and control systems: a changing environment that is 
not under the complete control of the planning system and delays in transmitting results 
between planning and control components. The system described in Section 2 represents a 
specific instance of the general model in shown Figure 15. 

We are interested in this model for a number of reasons. First, it provides the basis for 
a mathematical model that supports detailed analyses of embedded planning and control 
systems. Second, we can generalize on the model to describe more complicated software 
systems consisting of many components. This more general model suggests an approach 
to specifying real-time systems that supports software reusability. We will consider each of 
these two aspects in turn. 
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Figure 16: Two processes with uniform dispersion 

5.1    Towards a Formal Theory of Embedded Systems 

In planning problems that require predicting the behavior of complex processes, compu- 
tational costs are typically a function of how such processes evolve over time. A slowly 
evolving process requires us to cope with small numbers of possible outcomes while a 
quickly evolving process can make prediction very difficult. Generally speaking, the greater 
the number of possible outcomes the more difficult decision making. It would be useful 
to develop some means of characterizing how processes evolve so that we can anticipate 
computational demands. In the following, we consider some simple properties of processes 
that serve to describe how they evolve over time. This analysis relates to the issues raised 
in connection with the generality of the techniques discussed in Section 2. 

Figure 16 shows the state transition diagrams for two different stochastic processes. 
The number of states reachable from a given state is called the dispersion rate (or just the 
dispersion) of the state. If the dispersion is the same for all of the states of a given process, 
then the process is said to have uniform dispersion. The processes in Figure 16 are uniform 
with a dispersion rate of two. 

In the process on the left in Figure 16, there are only two distinct states reachable 
following the initial state. In the process on the right in Figure 16, there are eight distinct 
states reachable from the initial state. The number of states reachable from a given state 
after n or less transitions is called the diffusion characteristic for an n step lookahead. 
Figure 17 illustrates graphically the diffusion characteristics for the two processes shown in 
Figure 16. 

Suppose that in order to control a process it is enough to construct a table (correspond- 
ing to a policy) that maps states to actions to execute in those states. For the process on 
the left in Figure 16, the table would have to be of size two; for the process on the right in 
Figure 16, the table would have to be of size eight. If we make the obvious extrapolation for 
the process on the right in Figure 16, the table would have to be of size 2" to account for 
all the possible states reachable in n transitions. A control system using a bounded policy 
will have to periodically compute a new table. To make optimal use of the time available, 
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Figure 17: Processes with different diffusion characteristics 
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Figure 18: Dispersion and diffusion profiles for processes 

the system will have to anticipate the costs of computing a new table which will depend on 
the properties of the process being controlled. 

In anticipating the computational requirements for computing a new policy online, we 
would like to predict the behavior of the process over time. We can summarize aspects of 
this behavior using a dispersion profile that indicates the number of states the process might 
be in after the nth transition and a diffusion profile that indicates the number of states the 
process might have passed through by the nth transition. Figure 18 shows examples of each 
of these different types of profiles. Note that a diffusion profile is monotonic increasing. 

Consider a particular instance of the problem of designing an embedded planning and 
control system that makes optimal use the time available for computing. Suppose that irt 
corresponds to a table of size < K. Suppose that T takes three arguments: the current 
state x(t), a lookahead parameter n corresponding to the number of transitions we looking 
forward, and a window size m corresponding to a target interval of time, t+n to t+n+m. T 
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Figure 19: Process with periodic dispersion 

computes the policies n+n through nt+n+m, for the times t+n through t+n+m, respectively, 
subject to the table-size bound K under some optimality criterion. We assume that the 
computation time required by T for a given, x, n, and m, is determined by a function 
h(x,n,m). h(x,n,m) determines the delay A between when T is invoked and when its 
resulting policy is available for use as given in the model of Figure 15. The design task is 
to determine a strategy for invoking T in particular states with particular lookaheads and 
window sizes. Such a rule could invoke T and then terminate it before completion. The 
objective is to ensure that if the system arrives in a state at time t then x{t) will be in the 

table defined by nt. 

The above discussion just begins to describe the types of problems and formal analyses 
that are possible in describing embedded planning and control systems. Most the problems 
that involve the design of such systems are computationally complex and it is necessary to 
exploit additional structure in the problem to make progress. One source of structure comes 
from the fact that most of the processes that we are concerned with exhibit predictable 
periodic behavior. For instance, consider the task faced by medical professionals in antic- 
ipating injuries and stocking supplies for an emergency room. Early in the week, changes 
occur slowly and there are not too many states that the system could transition to. As the 
weekend nears, the number of states that the system could transition to grows. Figure 19 
depicts a process with a period of one week in which there are two possible Monday states, 
four each of Tuesday, Wednesday, Thursday, and Sunday states, and six each of Friday 
and Saturday states. Given that different states require different supplies and obtaining 
supplies takes time and given that only a limited number of supplies can be stocked, the 
problem is to determine when the emergency room should place their order for supplies and 
for which states it should prepare. This simple example has counterparts in transportation 
scheduling, vehicle routing, and other difficult problems with real-time constraints. 
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5.2    Software Specifications for Embedded Systems 

Coping with combinatorial problems in a real-time setting demands making concessions [7, 
5]. Typically, concessions are in the form of algorithms that compute approximations. For 
instance, instead of computing an optimal solution to a scheduling problem, a system might 
compute a solution that is within a small factor of optimal but do so in a fraction of the 
time required for computing the optimal solution. In a complex, multicomponent software 
system, approximations will be passed along as arguments between subsystems. For in- 
stance, in a target tracking application, one component might compute the approximate 
location of a target, another the approximate orientation of a surveillance device, and a 
third component might take these two approximations and compute a trajectory for the 
surveillance device that approximates the optimal trajectory. 

A useful specification for real-time software systems will include measures characteriz- 
ing the quality of different approximations. A specification will have to describe different 
modes of interaction whereby one module can ask for an approximation of a particular 
quality and receive information about how long it will take to compute such an approxima- 
tion. In general, we need ways of specifying interfaces that deal with approximations and 
computational delays. 

The top diagram in Figure 20 shows the three components of an embedded scheduling 
system. Component #3 does the actual scheduling but it relies on the output of Com- 
ponents #1 and #2 which are responsible for gathering and interpreting data concerning 
the current availability of transportation assets and the readiness of crews. The more time 
available for checking on assets and crews the more precise the estimates that Compo- 
nents #1 and #2 provide. Similarly the more time allowed for scheduling the better the 
resulting schedules. The overall value is determined by the schedules which are depen- 
dent on the time allocated to scheduling and the precision of the asset and crew estimates. 
These dependencies and the corresponding value model are depicted in the diagram (called 
an influence diagram [19]) shown in the bottom of Figure 20. We are working on a model 
for specifying the embedded behavior of software modules. This model would cover more 
than just input/output behavior by addressing performance deficits due to delays, reduced 
bandwidth in communications, and accounting explicitly for the time spent in computation. 
The model will include standards for specifying delays, performance measures, and proto- 
cols for modules to communicate with one another regarding trading precision for time. 
Our model represents an extension and refinement of work in the data fusion community 
concerned with combining data interpretation routines [14]. To determine if one software 
module can be substituted for another we envision using Bayesian decision theory in the 
form of influence diagrams to assess the costs and benefits of the substitution. It is our 
contention that such a model is necessary to support real-time software development for a 
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Figure 20: Software components for an embedded scheduling system and an influence dia- 
gram characterizing the dependencies between components and how they affect the expected 
value of the computed schedules. The D{ correspond to sources of data, the T, to allocations 
of time, the P; to normalized measures of precision, 5 to the resulting schedules, and V to 
a measure of value for the resulting schedules. 

growing number of military and commercial applications. 

References 

[l]    Andrews, Gregory R., Paradigms for Process Interaction in Distributed Programs, 
ACM Computing Surveys, 23(1) (1991) 49-90. 

[2]    Bellman, Richard, Dynamic Programming, (Princeton University Press, 1957). 

[3]    Ben-Ari, M, Hoare, C. A. R., (Ed.), Principles of Concurrent and Distributed Pro- 
gramming, International Series in Computer Science, (Prentice-Hall, 1990). 

[4]    Bertsekas, Dimitri P., Dynamic Programming: Deterministic and Stochastic Models, 
(Prentice-Hall, Englewood Cliffs, N.J., 1987). 

33 



[5] Boddy, Mark and Dean, Thomas, Decision-Theoretic Deliberation Scheduling for Prob- 
lem Solving in Time-Constrained Environments, Artificial Intelligence, 67(2) (1994) 
245-286. 

[6] Chin, Roger S. and Chanson, Samuel T., Distributed Object-Based Programming Sys- 
tems, ACM Computing Surveys, 23(1) (1991) 91-124. 

[7] Dean, Thomas and Boddy, Mark, An Analysis of Time-Dependent Planning, Proceed- 
ings AAAI-88, St. Paul, Minnesota, AAAI, 1988, 49-54. 

[8] Dean, Thomas, Kaelbling, Leslie, Kirman, Jak, and Nicholson, Ann, Deliberation 
Scheduling for Time-Critical Sequential Decision Making, Ninth Conference on Uncer- 
tainty in Artificial Intelligence, Washington, D.C., 1993, 309-316. 

[9] Dean, Thomas, Kaelbling, Leslie, Kirman, Jak, and Nicholson, Ann, Planning With 
Deadlines in Stochastic Domains, Proceedings AAAI-93, Washington, D.C., AAAI, 
1993,574-579. 

[lO] Dean, Thomas, Kaelbling, Leslie, Kirman, Jak, and Nicholson, Ann, Planning Under 
Time Constraints in Stochastic Domains, Artificial Intelligence, 76(1-2) (1995) 35-74. 

[ll] Dean, Thomas and Lin, Shieu-Hong, Decomposition Techniques for Planning in 
Stochastic Domains, Technical Report CS-95-10, Brown University Department of 
Computer Science, 1995. 

[l2] Dean, Thomas and Lin, Shieu-Hong, Decomposition Techniques for Planning in 
Stochastic Domains, Proceedings IJCAI14, Montreal, Canada, IJCAII, 1995, 1121- 
1127. 

[l3] Drummond, Mark and Bresina, John, Anytime Synthetic Projection: Maximizing the 
Probability of Goal Satisfaction, Proceedings AAAI-90, Boston, Massachusetts, AAAI, 
1990, 138-144. 

[l4J Durrant-Whyte, Hugh F., Integration, Coordination and Control of Multi-Sensor Robot 
Systems, (Kluwer, Boston, Massachusetts, 1988). 

[l5] Gasser, Les, Braganza, Carl, and Nava, Herman, MACE: A Flexible Testbed for Dis- 
tributed AI Research, Huhns, Michael N., (Ed.), Distributed Artificial Intelligence, 
(Morgan Kauffman, Los Altos, CA, 1987). 

[l6] Green, Peter E., AF: A Framework for Real-Time Distributed Cooperative Problem 
Solving, Huhns, Michael N., (Ed.), Distributed Artificial Intelligence, (Morgan Kauff- 
man, Los Altos, CA, 1987). 

34 



[l7] Hayes-Roth, Barbara, A Blackboard Architecture for Control, Artificial Intelligence, 
26 (1985) 251-321. 

[18] Howard, Ronald A., Dynamic Programming and Markov Processes, (MIT Press, Cam- 
bridge, Massachusetts, 1960). 

[19] Howard, Ronald A. and Matheson, James E., Influence Diagrams, Howard, Ronald A. 
and Matheson, James E., (Eds.), The Principles and Applications of Decision Analysis, 
(Strategic Decisions Group, Menlo Park, CA 94025, 1984). 

[20] Kemeny, J. G. and Snell, J. L., Finite Markov Chains, (D. Van Nostrand, New York, 
1960). 

[2l] Kraus, Sarit and Wilkenfeld, Jonathan, Negotiations Over Time in a Multi-Agent 
Environment, Technical Report UMIACS-TR-91-51, Institute for Advanced Computer 
Studies, University of Maryland, April 1991. 

[22] Reiss, Steven P. and Stasko, John T., The Brown Workstation Environment: A User 
Interface design Toolkit, Preprints of the IFIP WG2.7 Working Conference on Engi- 
neering for Human-Computer Interaction, August 1989. 

[23] Rosenschein, Jeffrey S. and Genesereth, Michael R., Deals Among Rational Agents, 
Proceedings IJCAI 9, Los Angeles, California, 1985, 91-99. 

[24] Zlotkin, Gilad and Rosenschein, Jeffrey S., Negotiation and Task Sharing Among Au- 
tonomous Agents in Cooperative Domains, Proceedings IJCAI 11, Detroit, Michigan, 
IJCAII, 1989, 912-917. 

[25] Zlotkin, Gilad and Rosenschein, Jeffrey S., Negotiation and Conflict Resolution in Non- 
Cooperative Domains, Proceedings AAAI-90, Boston, Massachusetts, AAAI, 1990, 
100-105. 

. GOVERNMENT PRINTING OFF.CE:     1998-610-130-61163 

35 



DISTRIBUTION LIST 

addresses number 
of copies 

WAYNE 30SC0 
RL/C3C4 
525 BROOKS «DAD 
ROME NY 13441-4505 

5 

3R0WN UNIVERSITY 
COMPUTER SCIENCE DEPARTMENT 

5 

80X 1910 
PROVIDENCE, RI 02912 

ROME LABORATORY/SUL 
TECHNICAL LIBRARY 
26 ELECTRONIC PKY 
ROME NY 13441-4514 

1 

ATTENTION: DTIC-OCC 
DEFENSE TECHNICAL INFO CENTER 
8725 JOHN J. KINGMAN ROAD, STE 0944 

FT. BELVOIR, VA 22060-6213 

2 

ADVANCED RESEARCH PROJECTS AGENCY 
3701 NORTH FAIRFAX DRIVE 
ARLINGTON VA 22203-1714 

1 

OR JAMES ALLEN 
COMPUTER SCIENCE OEPT/SLDG RM 732 
UNTV OF ROCHESTER 
WILSON 8LVD 
ROCHESTER NY 14627 

1 

OR YIGAL AREN5 
USC-ISI 
4676 ADMIRALTY WAY 
MARINA DEL RAY CA 90292 

1 

DR MARIE A. BIENKOWSKI 
SRI INTERNATIONAL 
333 RAVENSWOOÖ AVE/EK 337 
MENLO PRK CA 94025 

1 

OL-1 



DR MARK S. 3QDDY 
HONEYWELL SYSTEMS t   RSCH CENTER 
3660 TECHNOLOGY DRIVE 
MINNEAPOLIS MN 554.18 

DR MARK BURSTEIN 
BEN SYSTEMS £ TECHNOLOGIE 
10 «OULTON STREET 
CAMBRIDGE .MA 02133 

OR GREGG COLLINS 
INST FOR LEARNING SCIENCES 
1890 MAPLE AVE 
EVANSTON IL 60201 

MS. LAURA DAVIS 
CODE 5510 
NAVY CTR FOR APPLIED RES IN AI 
NAVAL RESEARCH LABORATORY 
WASH DC 20375-5337 

DR THOMAS L. DEAN 
BROWN UNIVERSITY 
DEPT OF COMPUTER SCIENCE 
P.O. BQX 1910 
PROVIDENCE RI 02912 

OR PAUL R. COHEN 
UNIV OF MASSACHUSETTS 
COINS DEPT 
LEDERLE GRC 
AMHERST MA 01003 

OR JON DOYLE 
LABORATORY FOR COMPUTER SCIENCE 
MASS INSTITUTE OF TECHNOLOGY 
545 TECHNOLOGY SQUARE 
CAMBRIDGE MA 02139 

MR, STU DRftPER 
MITRE 
EAGLE CENTER 3, SUITE 3 
O'^ALLON IL 62269 

DR HICHÄEL FEHLING 
STANFORD UNIVERSITY 
ENGINEERING ECO SYSTEMS 
STANFORD Cfi 943C5 

DL-2 



RICK HAYES-ROTH 
CIMFLEX-TEKNOWLEDSc 
1810 EM3ARCADER0 R0 
PALO ALTO CA 94303 

OR JIM HÄNDLER 
UNIV 0= MARYLAND 
OEPT 0!= COMPUTER SCIENCE 
COLLEGE PARK MO 20742 

MR. MORTON A. HIRSCHBERG, DIRECTOR 
US ARMY R£.ScARCH LABORATORY 
ATTN;  AMSRL-CI-C8 
ABERDEEN PROVING GROUND WO 
21005-5066 

MR. MARK A. HOFFMAN 
ISX CORPORATION 
1165 N3RTHCHASE PARKWAY 
MARIETTA GA 30067 

OR RON LARSEN 
NAVAL CMO, CONTROL L   OCEAN SUR CTR 
RESEARCH, DEVELOP, TEST £ EVAL DIV 
CODE 444 
SAN DIF.GO CA 92152-5000 

OR. ALAN MEYROWITZ 
NAVAL RESEARCH LABORATORY/CODE 5510 
4555 OVERLOOK AVE 
WASH OC 20375 

ALICE MULVEHILL 
BBM 
10 MOULTON STREET 
CAMBRIDGE MA  02238 

OR OR£W MCDERMOTT 
YALE COMPUTER SCIENCE OEPT 
P.O. BOX 2158, YALE STATION 
51 PRQPSPECT STREET 
MEW HAVEN CT 06520 

OR DOUGLAS SMITH 
KESTREL INSTITUTE 
3260 HILLVIEW AVE 
»ALQ ALTO CA 94304 

OL-3 



DR. AUSTIN TÄTE 1 
AI APPLICATIONS INSTITUTE 
UNIV OF EDINBURGH 
80 SOUTH BRIDGE 
EDINBURGH PHI IHN - SCOTLAND 

DIRECTOR 1 
DARPA/ITO 
3751 N. FAIRFAX DR., 7TH FL 
ARLINGTON VA 22209-1714 

DR STEPHEN F. SMITH 1 
ROBOTICS INSTITUTE/CMU 
SCHENLEY ?%K 
PITTSBURGH PA 15213 

DR JONATHAN P. STILLMAN 1 
GENERAL ELECTRIC CRD 
1 RIVER RO, RM K1-5C31A 
P. 0. BOX 8 
SCHENECTADY NY 12.345 

OR EDW4R0 C.T. WALKER 1 
38N SYSTEMS & TECHNOLOGIES 
10 MOULTON STREET 
CAMBRIDGE MA 02133 

DR BILL SWARTOUT 1 
USC/ISI 
4676 ADMIRALTY WAY 
MARINA DEL RAY CA 90292 

OR MATTHEW L. GINSBERG 1 CIRL, 1269 
UNIVERSITY OF OREGON 
EUGENE OR 97403 

MR IRA GOLDSTEIN 1 
OPEN SW FOUNDATION RESEARCH INST 
ONE CAMBRIDGE CENTER 
CAMBRIDGE MA 02142 

MR JEFF GROSSMAN, CO 1 
NCCOSC ROTE DIV 44 
5370 SILVERGATE AVE, ROOM 1405 
SAN DIEGO CA 92152-5146 

DL-4 

■ 



OS ADELE E. HOME 
COMPUTER SCIENCE OEPT 
COLORADO STATE UNIVERSITY 
FORT COLLINS CO 80523 

DR LESLIE PACK KAEL8LING 
COMPUTER SCIENCE DEPT 
8R0WN UNIVERSITY 
PROVIDENCE RI 02912 

OR SUB3ARA0 KAM3MAMPATI 
OEPT OF COMPUTER SCIENCE 
ARIZONA STATE UNIVERSITY 
TEMPE AZ 85287-5*06 

OR MARK T. MAY8URY 
ASSOCIATE DIRECTOR OF AI CENTER 
ADVANCED INFO SYSTEMS TECH G041 
MITRE CORP, BURLINGTON RO, MS K-329 
BEDFORD MA 01730 

MR DONALD P. MCKAY 
PARAMAX/UNISYS 
P 0 3QX 517 
PAOLI PA 19301 

OR MARTHA E POLLACK 
DEPT OF COMPUTER SCIENCE 
UNIVERSITY OF PITTSBURGH 
PITTSBURGH PA 15260 

DR MANUELA VELOSO 
CARNEGIE MELLON UNIVERSITY 
SCHOOL OF COMPUTER SCIENCE 
PITTSBURGH PA 15213-3891 

DR DAN WELD 
DEPT Or-   COMPUTER SCIENCE & ENS 
MAIL STOP FR-35 
UNIVERSITY OF WASHINGTON 
SEATTLE WA 98195 

DR TOM GARVEY 
OARPA/ISO 
3701 NORTH FAIRFAX DRIVE 
ARLINGTON VA 22203-1714 

DL- 



DIRECTOR 1 
OflPPA/ISO 
3701 WORTH FAIRFAX DRIVE 
ARLINGTON VA 22203-1714 

OFFICE OF THE CHIEF OF NAVAL RSCH 1 
ATTN:  HR PAUL QUINN 
CODE 311 
500 N. QUI.MCY STREET 
ARLINGTON VA 22217 

OR GEORGE FERGUSON 1 
UNIVERSITY OF ROCHESTER 
COMPUTER .STUDIES 3LQG, RM 732 
WILSON 3LVO 
ROCHESTER NY 14627 

OR STEVE HANKS 1 
OEPT OF COMPUTER SCIENCE & ENG'G 
UNIVERSITY OF WASHINGTON 
SEATTLE VIA 98195 

OR ADMAN OARWICHE 1 
INFORMATION & DECISION SCIENCES 
ROCKWELL INT'L SCIENCE CENTER 
1049 CAMINO 005 RIOS 
THOUSAND OAKS CA 91360 

ROBERT J. KRUCHTEN 1 
HQ AMC/SCA 
2OB V LOSSY ST, SUITE 1016 
SCOTT AFR  IL  62225-5223 

DR. MAREK RUSINKIEMICZ 1 
MICROELECTRONCS £ COMPUTER TECH 
3500 WEST SALCONES CENTE* DRIVE 
AUSTIN, TX  73759-6509 

MAJOR DOUGLAS DYER/ISO 1 
DEFENSE ADVANCED PROJECT AGENCY 
3701 NORTH FAIPFAX DRIVE 
ARLINGTON, VA 22203-1714 

OR. STEVE LITTLE 1 
MAYA OFSTGN GROUP 
2100 W4ART0N STREET S6.E 702 
PITTSBURGH, ?A 15203-1944 

DL-6 



NEAL GLASSHAN 
AFOSR 
110 DUNCAN AVENUE 
30LLING ÄF3, WASHINGTON, 
29332 

O.C. 

OL-7 


