Technical Report ARQED-TR-97002

DETERMINATION OF COMPLEX ACOUSTIC IMPEDANCE AND METHODS OF ACOUSTIC SPECTRAL ANALYSIS

John K. Domen

February 1998

U.S. ARMY ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER
Quality Engineering Directorate
Picatinny Arsenal, New Jersey

Approved for public release; distribution is unlimited.

19980312 047
The views, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

The citation in this report of the names of commercial firms or commercially available products or services does not constitute official endorsement by or approval of the U.S. Government.

Destroy this report when no longer needed by any method that will prevent disclosure of its contents or reconstruction of the document. Do not return to the originator.
To expedite the efficient analysis for non-lethal acoustic data, a compilation of digital signal techniques was formulated and exercised on data being received from acoustic sources and experiments. This compilation with examples is presented as an initial guide to the practical extraction of material acoustic impedance and of signal frequency and energy distribution, for eventual use as inputs for finite element consideration of material-acoustic interaction.
CONTENTS

<table>
<thead>
<tr>
<th>Objective</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determination of Complex Acoustic Impedance</td>
<td>1</td>
</tr>
<tr>
<td>Method A: Vibration and Sound</td>
<td>3</td>
</tr>
<tr>
<td>Method B: Impedance from Principles of Modern Acoustics</td>
<td>4</td>
</tr>
<tr>
<td>Method C: ASTM Method C384-90A (one maximum and two minima)</td>
<td>5</td>
</tr>
<tr>
<td>Determination of Single Pulse Spectral and Energy Content</td>
<td>7</td>
</tr>
<tr>
<td>Acoustic Signal Conversions</td>
<td>8</td>
</tr>
<tr>
<td>Aural limits by MIL-STD-1474C</td>
<td>13</td>
</tr>
<tr>
<td>Beat Frequency from Multiple Acoustic Sources</td>
<td>14</td>
</tr>
<tr>
<td>Modal Frequencies in an Enclosure</td>
<td>16</td>
</tr>
<tr>
<td>References</td>
<td>45</td>
</tr>
<tr>
<td>Distribution List</td>
<td>47</td>
</tr>
</tbody>
</table>

FIGURES

1. Pressure profile in acoustic impedance tube | 17
2. Acoustic signal in time domain | 17
3. Fast Fourier transform of time signal pulse | 18
4. Energy spectral content of signal | 18
5. Integral of energy content of signal | 19
6. Recovered time signal by inverse FFT | 19
7. FFT of time signal pulse without time extension | 20
8. Inverse FFT of pulse signal without time extension | 20
9. Acoustic pulse with long time duration | 21
<table>
<thead>
<tr>
<th>FIGURES (cont)</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10. FFT of pulse with long time duration</td>
<td>21</td>
</tr>
<tr>
<td>11. FFT of pulse with long time duration (no filter used)</td>
<td>22</td>
</tr>
<tr>
<td>12. Regions of peak sound level and B duration for impulse noise</td>
<td>22</td>
</tr>
<tr>
<td>13. Acoustic pulse for B duration determination</td>
<td>23</td>
</tr>
<tr>
<td>14. Frequency mixing at microphone for beats</td>
<td>23</td>
</tr>
<tr>
<td>15. Composite time signal for 2000 and 2100 Hz</td>
<td>24</td>
</tr>
<tr>
<td>16. FFT of composite signals of 2000 and 2100 Hz</td>
<td>24</td>
</tr>
<tr>
<td>17. Composite time signal for 2000, 2100, and 2150 Hz</td>
<td>25</td>
</tr>
<tr>
<td>18. FFT of composite signals of 2000, 2100, and 2150 Hz</td>
<td>25</td>
</tr>
<tr>
<td>19. Experimental beat signal from 2000 and 2100 Hz</td>
<td>26</td>
</tr>
<tr>
<td>20. FFT of experimental beat signal</td>
<td>26</td>
</tr>
<tr>
<td>21. Detail of 2000 and 2100 Hz signal in FFT</td>
<td>27</td>
</tr>
<tr>
<td>22. Cumulative energy versus frequency of experimental beat signal</td>
<td>27</td>
</tr>
<tr>
<td>23. Number modes of specific frequencies in an enclosure</td>
<td>28</td>
</tr>
<tr>
<td>24. Finite element determined pressure modes in room driven at 75 Hz</td>
<td>29</td>
</tr>
<tr>
<td>25. Decibel plot of pressure modes in room driven at 75 Hz</td>
<td>30</td>
</tr>
<tr>
<td>26. Pressure along diagonal in room driven at 75 Hz</td>
<td>31</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>1.</td>
<td>Morse complex impedance FORTRAN program</td>
</tr>
<tr>
<td>2.</td>
<td>Swenson complex impedance FORTRAN program</td>
</tr>
<tr>
<td>3.</td>
<td>ASTM complex impedance FORTRAN program</td>
</tr>
<tr>
<td>4.</td>
<td>Maximum daily exposure to impulse noise</td>
</tr>
<tr>
<td>5.</td>
<td>Multiple array source beat frequency FORTRAN program</td>
</tr>
<tr>
<td>6.</td>
<td>Frequency modes in closed room FORTRAN program</td>
</tr>
</tbody>
</table>
OBJECTIVE

During the analysis of experimental acoustic data from the non-lethal program, a series of technical procedures was compiled to assist in a consistent and standard method of data interpretation. The addressed procedures in signal analysis represent a main core of these methods, and are given with a representative example with software programs (FORTRAN) to expedite the handling of data. Of specific concern was the extraction of material acoustic impedance, and a sequence based on literature is given with an example to facilitate this extraction, for use in finite element programs for acoustic interaction with material.

DETERMINATION OF COMPLEX ACOUSTIC IMPEDANCE

Though many references discuss the mathematical and experimental determination of complex acoustic impedance, the approach used by three references was selected. Their method uses the common procedure of determining material impedance by means of a single microphone in an impedance tube (refs 1 through 3).

A common numerical example is used for all three references, and English units are used [feet, seconds]. The first two methods are equivalent, though the mathematics is expressed differently. The third accounts for some attenuation of the signal down the tube.

FORTRAN programs are provided in tables 1 through 3, with an example and input and output files for the listed program. These methods use a sequence of complex quantities and logarithms. The third method can be solved with a calculator.

Because none of the three references give a thorough numerical example, a common one was generated for all three. Though the American Society for Testing Materials (ASTM) considers several experimental variations, only the more straightforward method of two minimum pressures is developed in depth. The ASTM result did not agree with the Morse and Swenson value. In this comparison, experimental data is not being used. Also, the ASTM approach used accommodates two minimum pressures, whereas the others consider only one.

The common example gave the following values for the REAL and IMAGINARY parts of the impedance, where the REAL part is related to the attenuation coefficient. This coefficient is not the surface absorption coefficient. Care must be given to note what specific physical quantity is being defined in the literature.

<table>
<thead>
<tr>
<th></th>
<th>REAL</th>
<th>IMAGINARY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morse</td>
<td>1.2630</td>
<td>0.7499</td>
</tr>
<tr>
<td>Swenson</td>
<td>1.2630</td>
<td>0.7499</td>
</tr>
<tr>
<td>ASTM</td>
<td>1.8717</td>
<td>-0.1858</td>
</tr>
</tbody>
</table>

REAL = 0 (complete absorption into open space)
REAL = 1 (complete absorption at item)
REAL goes to infinity (complete reflection at item)
The speaker (acoustic source) and sample location, with general wavelength profile, are illustrated in figure 1. During data acquisition, the microphone is moved from x=XL down toward the speaker at x=0.

<table>
<thead>
<tr>
<th>SPEAKER at X=0</th>
<th>X=XC</th>
<th>X=XB</th>
<th>X=XA</th>
<th>X=XL(face of sample)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRESSURE:</td>
<td>MIN</td>
<td>MAX</td>
<td>MIN</td>
<td></td>
</tr>
</tbody>
</table>

The system should follow these criteria in setup and operation:

1. Tube interior must be straight, smooth, with uniform cross-section and rigid enough to keep it from vibrating during testing.

2. Tube diameter D: For a given diameter, acoustic frequencies must be below the value f:
 \[f < \left(\frac{0.586 \times C}{D} \right) \]
 \[C = \text{sound speed} = 1,128 \text{ fps at } 20^\circ \text{C}. \]
 In inches:
 \[f < \left(\frac{7930}{D} \right) \]

<table>
<thead>
<tr>
<th>f (Hz)</th>
<th>D (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>79</td>
</tr>
<tr>
<td>500</td>
<td>16</td>
</tr>
</tbody>
</table>

 For a 4-in. diameter pipe, the highest frequency is 2,000 Hz, and 12,000 Hz for a 1-in. diameter. However, in practical use:

<table>
<thead>
<tr>
<th>Inside diameter (in.)</th>
<th>Use frequencies (Hz) below</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1500</td>
</tr>
<tr>
<td>1</td>
<td>6,000</td>
</tr>
</tbody>
</table>

3. Tube length L: For measuring at least two minimum pressures (if the ASTM method is used), and to avoid any measurement within one tube diameter from the speaker, the length should be:
 \[L > \left(\frac{0.75 \times C}{f} + D \right) \]
 For a frequency f=25 Hz, and D=4 in., L > 34 ft
 For a frequency f=50 Hz, and D=4 in., L > 17 ft
 For the other methods, a shorter tube would satisfy

4. Specimen: The specimen with its detachable holder must make an airtight fit at the tube end. The specimen should be flat and of the same cross-section of the tube. The holder should be a massive sound-reflective metal. Two or more specimens should be measured and the results averaged.

5. Speaker: The speaker may face directly into the tube or be mounted in an enclosure to the side if it is too large. Some absorbent material should be placed at the speaker end to avoid standing wave resonance. The speaker frequency should be determined to within 1%, or within 1 Hz.
6. **Microphone**: If the microphone is small enough, it can be placed inside the tube, and moved by a rod connection along the length of the tube. Or the microphone can be attached to a probe extended radially to the tube center from a longitudinally slotted tube. An axial position scale measurable to the nearest millimeter is needed.

A common example to determine material impedance is used for all three approaches.

METHOD A. Vibration and Sound (ref 1)

Experimental data needed: $XL, XA, XB, P_{MIN}, P_{MAX}$

This approach does not account for energy loss by sound waves through absorption in the tube.

- $X=0 =$ location of speaker
- $X=XL =$ distance from speaker to specimen face = 30 ft
- $X=XA =$ location of pressure MIN from specimen = 26 ft
- $X=XB =$ location of pressure MAX = 20.36 feet.
- $XLAM =$ wavelength = 22.56 ft ($XLAM= C/f = 1,128$ fps at 20C/ 50 Hz signal)
- $P_{MIN} =$ pressure at XA = 0.1 Pascal or volt
- $P_{MAX} =$ pressure at XB = 0.2 Pascal or volt
- $PI = 3.141592654$

Find α and β from

$$\beta = 1 - 2 \times \frac{(XL-XA)}{XLAM} = 1 - 2 \times \frac{30 - 26}{22.56} = 0.64539 \quad (1)$$

$$\tanh (PI \times \alpha) = \frac{P_{MIN}}{P_{MAX}} = \frac{0.1}{0.2} = 0.5 \quad (2)$$

This method is accurate when α falls between 0.02 and 0.5.

Before equation 2 is solved, the following definitions illustrate the relevance to the real impedance Θ that is used in ANSYS finite element attenuation:

- $ZETA =$ Average specific acoustic impedance of item at XL
- $ZETA[pressure/velocity] = ZM[force/velocity]/S \text{ (area of tube)}$
- $ZM =$ mechanical impedance of item at XL
- $XSI =$ Dimensionless acoustic impedance ratio at XL
- $XSI =$ Average specific acoustic impedance at XL/fluid characteristic impedance

$$XSI = ZETA/(R*C) = \Theta - i*\chi = \tanh(PI\times\alpha - i\times\pi\times\beta) \quad (3)$$

$$XSI = P/(U*R*C)$$

$\Theta =$ ACOUSTIC RESISTANCE (dimensionless) = real part of XSI

$\chi =$ ACOUSTIC REACTANCE (dimensionless)

$R*C =$ fluid characteristic impedance (density \times sound speed)

$U =$ particle velocity
ANSYS employs the parameter \(\mu \):

\[
\mu = \frac{1}{\theta} = \frac{\text{Real part of material impedance}}{\text{R} \times \text{C}} = \frac{\text{R} \times \text{C}}{(\text{R} \times \text{C} \times \theta)}
\]

For \(\mu = 0 \) = high impedance at item. Item boundary reflects

\(\mu = 1 \) = all absorption at the item boundary

\(\mu \) around \(10^8 \) for open space

Solve equation 2 by a calculator. This gives \(\pi \times \alpha = 0.549306 \)

Solve equation 3 by complex exponentials in Morse FORTRAN program (table 1).

\[
\xi = \tanh S = \sinh S / \cosh S = (e^{S} - e^{-S}) / (e^{S} + e^{-S})
\]

where \(S = \pi \times \alpha - i \times \pi \times \beta \)

\(\xi \) is expressed in FORTRAN as complex natural exponents:

\[
\xi = \tanh S = \frac{[\exp(S) - \exp(-S)]}{[\exp(S) + \exp(-S)]}
\]

where \(\xi \) and \(S \) are declared complex.

For our case: \(\xi = \tanh (0.5493 - i \times 2.0275) \), \(S = S(0.5493, -2.0275) \)

With this complex value for \(S \) in Morse FORTRAN program, the real part of \(\xi \) is \(\theta \) (the acoustic resistance) and the imaginary part of \(\xi \) is the negative of \(\chi \) (the acoustic reactance).

For this example: \(\theta = 1.2630 \), \(\chi = 0.7499 \)

The absorption coefficient is easy to determine.

Find standing wave ratio: \(\text{SWR} = \frac{\text{P}_{\text{MAX}}}{\text{P}_{\text{MIN}}} \)

\[
\begin{align*}
\text{SWR} &= 1 = \text{ALL ABSORBED (PLANE WAVE)}. \\
\text{SWR} &= \infty = \text{NOTHING ABSORBED}. \\
R &= \text{REFLECTION COEFFICIENT} = (\text{(SWR-1)/(SWR+1)})^{2} = (1.3)^{2} = 0.111 \\
\text{IF} \ R &= 1, \ \text{ALL REFLECTED}. \\
\text{AB} &= \text{ABSORPTION COEFFICIENT} = 1 - R = 0.888
\end{align*}
\]

METHOD B. Impedance from Principles of Modern Acoustics (ref 2)

Experimental data needed: \(XL, XA, \text{P}_{\text{MIN}}, \text{P}_{\text{MAX}} \)

1. Same physical setup as for METHOD A.
2. Find \(A \) from: \(A = (XA - XL) / \lambda \text{LAM} \) where wavelength = \(\lambda \text{LAM} = C / f \), and \(C = 1128 \text{ ft/s at 20°C, and atmospheric pressure.} \)
3. Use \(f = 50 \text{ Hz, XLAM} = 22.56 \text{ ft, XL} = 30 \text{ ft, XA} = 26 \text{ ft.} \)
4. \(A = \frac{(26-30)}{22.56} = -0.1773 \) Minimum amplitudes relate to phase by: \(4\pi f (\frac{X_A - X_L}{c}) = (2n+1)\pi - \text{PHA} \). (n=0,1,2,3...)

\[
\text{PHA} = \text{phase angle of P(reflected)/P(incident)}.
\]

First min is related to phase PHA of wave:

\[
\text{PHA} = \pi - 4\pi f (\frac{X_A - X_L}{X_{\text{LAM}}}) = \pi (1 - 4A)
\]

\[
\text{PHA} = \pi (1 - 4(-0.1773)) = 5.3697 \text{ radians} = 307.7 \text{ degrees}
\]

5. Find: \(\frac{\text{SWR}-1}{\text{SWR}+1} = 1/3 = Q \) (where SWR = \(\text{P}_{\text{MAX}}/\text{P}_{\text{MIN}} = .2/.1 = 2 \))

6. Complex impedance = \(\frac{Z_0}{1-Q}\exp(i\times\text{PHA})/1-Q\exp(i\times\text{PHA}) \)

Complex impedance = \(\frac{Z_0}{[1+Q\exp(i5.3697)]/[1-Q\exp(i5.3697)]} \)

\[
Z_0 = R^*C = 413 [\text{kg/(m}^2\text{-sec)}] \text{ (not needed)}
\]

Use complex exponential:

\[
\text{THETA} - i\times\text{CHI} = \frac{\text{Complex impedance}}{Z_0} = [1+Q\expS]/[1-Q\expS], \text{ where complex S only has an imaginary part } = (0,5.3697)
\]

Then \(\text{XSI} = \text{THETA} - i\times\text{CHI} = [1+Q\times\text{CEXP(S)}]/[1-Q\times\text{CEXP(S)}] \).

Use the Swenson FORTRAN program to determine THETA.

Result: THETA = 1.2630 CHI = 0.7499

METHOD C. ASTM Method C384-90A (one maximum and two minima)

Data needed: \(X_{\text{LAM}}, X_A, X_C, \text{PMIN1, PMAX, PMIN2} \), with optional calibration. Same convention of \(x=0 \) at speaker location is used as in METHODS A and B.

This method requires at least two minimum pressures be detected.

Here the tube LENGTH should be: \(L > 0.75\times X_{\text{LAM}} + D \) (D=tube diameter)

Procedure: (Use \(X_{\text{LAM}} \text{(wavelength)} = 22.56 \text{ ft for a 50 Hz signal).} \)

1. Place METAL END REFLECTOR at \(x=X_L \), the position where the specimen face will be.
2. Measure XAC, the x coordinate for first minimum.
3. Measure XCC, the x coordinate for second minimum.
4. XL calculated as = \((3\times\text{XAC}- \text{XCC})/2 \).
5. Place front of SPECIMEN where front of the reflector had been.
6. Determine coordinates, \(X_A \) and \(X_C \), of the first two minimum pressures from specimen.
7. Calculate: \(D_1 = X_L - X_A = \text{distance of first minimum to face of specimen.} \)
8. Calculate: \(D_2 = X_A - X_C \) (which is about half wavelength).
9. Adjust signal so minimum pressures are more than 10 dB above the noise.
10. Don't measure MAX at face of specimen.
11. PMIN1 = first min pressure. PMAX = first maximum pressure. PMIN2 = second minimum pressure. These can be in Pascals or volts (one or the other).
12. Transform these pressures to dB:
13. PMIN1 = 20 \cdot \log(PMIN1/29E-6). PMAX = 20 \cdot \log(PMAX/29E-6).
14. PMIN2 = 20 \cdot \log(PMIN2/29E-6).
15. Calculate: L1 = PMAX - PMIN1
16. L2 = PMAX - PMIN2.
17. L0 = L1 + (L1-L2)/2
18. Calculate Ko = 10^{(L0/20)}
19. Calculate: M = (Ko + 1/Ko)/2
20. Calculate: N = (Ko - 1/Ko)/2
21. Reflection phase angle: PHI (radians) = (D1/D2 - 0.5)

Definitions for r (real part of impedance), and x (imaginary part of impedance):

1. The impedance ratio: \(z/(\rho \cdot c) = r/(\rho \cdot c) + i \cdot x/(\rho \cdot c) \)
2. Where: THETA = 1/(M-N*cos PHI) = \(r/(\rho \cdot c) \) = resistance ratio
3. Where: CHI = (N*sin PHI)/(M-N*cos PHI) = \(x/(\rho \cdot c) \) = reactance ratio

Notes:

1. If D1/D2 < 0.5, phi is negative, and \(x/(\rho \cdot c) \) is negative.
2. Specific admittance = \(1/z = y \)
3. Specific normal acoustic admittance ratio = \(y \cdot \rho \cdot c \)
4. Admittance ratio (\(y \cdot \rho \cdot c \)) is larger than specific admittance (y) by about 400 in SI units.

Example: No specimen is present, only the metal reflector.

\[
\begin{align*}
XA &= 30 - XLAM/4 = 24.36 \\
XC &= XA - XLAM/2 = 13.08 \\
XL &= (3 \cdot XA - XC)/2 = 30 \text{ ft}
\end{align*}
\]

The specimen is placed in position:

\[
\begin{align*}
XA &= 26 \\
XC &= 14.72 \\
D1 &= XL - XA = 30 - 26 = 4 \text{ ft} \\
D2 &= XA - XC = 11.28 \text{ ft}
\end{align*}
\]

Suppose pressures are: PMAX, PMIN1, PMIN2 = 0.2, 0.1, 0.09. Convert to dB gives: 76.77, 70.75, 69.83 = (20*\log(P(peak)/29E-6))

\[
\begin{align*}
L1 &= PMAX - PMIN1 = 76.77 - 70.75 = 6.02 \text{ dB} \\
L2 &= PMAX - PMIN2 = 76.77 - 69.83 = 6.94 \text{ dB} \\
L0 &= L1 + (L1-L2)/2 = 5.56 \text{ dB} \\
K0 &= 10^{(L0/20)} = 1.897 \\
M &= (K0 + 1/K0)/2 = 1.2122 \\
N &= (K0 - 1/K0)/2 = 0.6852 \\
PHI &= (D1/D2 - 0.5) = -0.1454 \text{ RADIANS} \\
THETA &= 1/(M-N*cos PHI) = 1.8717 \\
CHI &= (N*sin PHI)/(M-N*cos PHI) = -0.1858
\end{align*}
\]
DETERMINATION OF SINGLE PULSE SPECTRAL AND ENERGY CONTENT

The following procedure covers the essential steps in pulse analysis, with illustrations made with Vu-Point 3 software for an experimental impulse noise.

1. Scale the signal to actual Pascal pressure, and plot it linearly in pressure and time. Determine the peak pressure.

2. Determine the RMS value of the signal. This is generally not well defined for pulse signals. An arbitrary interval is from signal start to the time where the signal finally stays within the boundary of plus and minus ten percent of the peak pressure (20 dB down from the peak).

3. In preparation for the FFT (fast Fourier transform), use a Hanning \((A=0.50)\) or a Hamming \((A=0.54)\) filter on the \(N\) data points: \([A+(1-A)*\cos(2*\pi*n/N)]\). Also remove linear trends in the signal. For a pulse with ample time before and after the pulse, use or non-use of the filter is indifferent. This ample time should be present to avoid signal distortion if the filter is used. Obtain the FFT of the signal.

4. Obtain the real spectral ENERGY DENSITY, \(FF^*\), which is the FFT of the auto-correlation function.

5. Integrate the \(FF^*\) to obtain a step function showing relative energy content as a function of frequency.

6. If there are dominant frequencies, find the percent contribution to intensity (energy) from each dominant frequency by dividing each step increase by the overall maximum. First subtract, if present, any energy level around zero frequency.

This procedure is illustrated by these figures:

Figure 2 is a time signal from 440 ms to 820 ms. The sampling rate \((DT)\) is 20.833 \(\mu s\) (48,000 data/s). The recording time \((T)\) is 0.38 sec. Number of data points \((N)\) is \(T/DT = 0.38/20.833 \mu s = 18,240\).

If all the data points are used in the FFT, then in the FFT:

- Frequency resolution \((DF) = 1/T = 1/(N*DT) = 2.63 \text{ Hz}\)
- Frequency range \((F) = 1/(2*DT) = 24,000 \text{ Hz}\)

If the analysis program uses a number of data points \(N = 2^{**n}\) \((n=12,13,14..)\), then the program chooses \(n\) to have \(2^{**n}\) close to \(N\). As examples:

- \(2^{*14} = 16,384\)
- \(2^{*15} = 32,768\)
- \(2^{*16} = 65,536\)
- \(2^{*17} = 131,072\)
The program may choose 2^{14} points and eliminate data from the 18,240, or use 32,768 and pad the program with data. The frequency resolution (DF) of the resulting FFT can be checked.

Figure 3 is the FFT of figure 2. The frequency resolution is 1.46 Hz. Here, the program internally chose 2^{15} data by adding 14,528 points. A short recording time T for a pulse should be avoided. Dimensions are [Pascal/Hz].

Figure 4 is the real spectral energy density of the signal as a function of frequency. Dimensions are [Pascal/Hz]2.

Figure 5 is the integral of the spectral density, showing accumulative energy, as a function of frequency. Dimensions are [Pascal]2.

Figure 6 is the INVERSE of the FFT in figure 2. This fairly well reproduced the time signal. Dimensions are [Pascals].

Figure 7 is an FFT with the Hanning filter of the immediate pulse itself. Though it resembles the FFT in figure 3, its frequency resolution is coarse at 5.06 Hz. The recording time T of only the pulse length is insufficient.

Figure 8 is the INVERSE of the FFT in figure 7. Use of the filter has appreciably distorted the pulse representation.

Figure 9 is the original time pulse of figure 2, but with a broader time base of 2 sec. The number of data N here = $2/20.833\ \mu$s = 96,000.

Figure 10 is the FFT with a Hanning filter of figure 9. The frequency resolution is 0.366 Hz. The program chose 2^{17} and added 35,072 points to the available 96,000 for a total of 131,072.

Figure 11 is the FFT of figure 9, but no Hanning filter is used. This result is essentially the same as figure 10, since the signal in figure 9 is isolated in time in both directions.

ACOUSTIC SIGNAL CONVERSIONS

1. Determination of peak pressure of discrete signals in a composite signal:

If the fast Fourier transform is not cluttered and shows a signal composed of discrete frequencies, then the peak pressure in Pascals of each discrete frequency is obtained by multiplying by two (waves are positive and negative by FFT algorithms) the integrated area over each frequency occurrence in the FFT. This procedure is NOT used if a cluster of frequencies occurs around the various dominant frequencies.
2. Determination of pressure at distances from the source:

Estimating acoustic signal dB at various distances from the source must be done carefully. The effect of humidity, fog, ground hardness or porosity (snow), ground reflection and temperature gradient in the region above the ground, and size of the emitting source, have been reported, but with limited usefulness for some engineering applications. The final recourse is to do calibrated acoustic testing with sources and along distances where subsequent investigation is relevant.

The calculation of energy decreasing as inverse distance squared (pressure decreasing as inverse distance) from a point source, into a non-attenuating sphere, is simple, but not realistic:

This assumes intensity varies as inverse distance squared along a radial line between source and microphone:

\[I_2 = I_1 \times \left(\frac{R_1}{R_2}\right)^2 \]

- \(I_1 \) = intensity at radial distance \(R_1 \) (microphone location) from source.
- \(I_2 \) = estimated intensity at radial distance \(R_2 \) from sound source.

If \(I_1 = 1.79 \text{ W/m}^2 \) or 122.54 dB at \(R_1 = 25 \text{ meters} \), then at \(R_2 = 100 \text{ meters} \):

- \(I_2 = 1.79 \times (25/100)^2 \)
- \(I_2 = 0.11188 \text{ W/m}^2 \).

\[\text{dB (at distance } R_2 \text{)} = 10 \log \left(\frac{0.11188}{E-12}\right) = 110.49 \text{ dB} \]

However, if the pressure at the microphone is calibrated at two or more places, the distance-pressure data can be fit to a geometrical regression to obtain coefficients \(A \) and \(B \) to predict pressure at a location \(X \) that is in a reasonable vicinity where calibration was done: \(P = A \times (X^{**B}) \)

If two calibration points are made: \(P_1 = 2 \text{ Pascals at } x_1 = 3 \text{ ft} \), and \(P_2 = 0.3 \text{ Pascal at } x_2 = 10 \text{ ft} \), then the coefficients are:

- \(B = \log(P_2/P_1) / \log(x_2/x_1) = \log(0.3/2) / \log(10/3) = -1.576 \)
- \(A = P_1 / (x_1^{**B}) = 2 / (3^{**-1.576}) = 11.297 \)

At a distance \(X = 15 \text{ ft} \), the estimated pressure is \(P = 11.297 \times (15^{**-1.576}) = 0.158 \text{ Pa} \). For three or more points, a standard curve fit is used to generate \(A \) and \(B \) for the pressure fit.

3. Adding dB from composite sine-type signals:

Four frequencies, each with a peak Pascal pressure amplitude, are added to form a composite signal:
dB is from: dB = 20 log (P/29E-6) [P in peak Pascals]

This composite signal has a Pascal RMS of 8.69. The signal dB = 20 log(P[RMS]/20E-6) = 20 log(8.69/20E-6) = 112.76 dB

If the peak amplitudes (or dBs of the COMPOSITE signal) are known, take the highest value, and find the difference of the others:

Highest dB = 110.75
2nd-highest: 110.75 - 104.73 = 6.02 = DIF DB
3rd-highest: 110.75 - 104.73 = 6.02 = DIF DB
4th-highest: 110.75 - 90.75 = 20.0 = DIF DB

Use the quadratic expression, ADD DB, to find what additional dB is added to the dB of the dominant frequency, by each frequency other than the dominant one:

ADD DB = 3.0 - 0.427*(DIF DB) + 0.0153*(DIF DB)**2

In this case:

2nd: ADD DB = 3.0 - 0.427(6.02) + 0.0153*(6.02)**2 = 1.0
3rd: ADD DB = 3.0 - 0.427(6.02) + 0.0153*(6.02)**2 = 1.0
4th: ADD DB = 0. If DIF DB is 14 or more, there is no contribution.

Total dB of signal: 110.75+1+1 = 112.75. This is close to the known dB of the entire signal.

4. Pressure-Power-dB Conversions:

<table>
<thead>
<tr>
<th>Pressure (volts) (multiplying increment)</th>
<th>Power (watts) (multiplying increment)</th>
<th>dB (additive increment)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>1.0</td>
<td>0.0</td>
</tr>
<tr>
<td>1.122</td>
<td>1.26</td>
<td>1.0</td>
</tr>
<tr>
<td>1.26</td>
<td>1.59</td>
<td>2.0</td>
</tr>
<tr>
<td>1.414</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2.0</td>
<td>4.0</td>
<td>6.0</td>
</tr>
</tbody>
</table>
Pressure (volts) Power (watts) dB
<table>
<thead>
<tr>
<th>Voltage (multiplining increment)</th>
<th>Power (multiplining increment)</th>
<th>dB (additive increment)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.828</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td>3.162</td>
<td>10.0</td>
<td>10.0</td>
</tr>
<tr>
<td>4.0</td>
<td>16.0</td>
<td>12.0</td>
</tr>
<tr>
<td>5.0</td>
<td>25.0</td>
<td>14.0</td>
</tr>
<tr>
<td>10.0</td>
<td>100.0</td>
<td>20.0</td>
</tr>
<tr>
<td>100.0</td>
<td>10,000.0</td>
<td>40.0</td>
</tr>
<tr>
<td>1,000.0</td>
<td>1,000,000.0</td>
<td>60.0</td>
</tr>
</tbody>
</table>

A 12 dB increase of an 80 W signal is $16 \times 80 = 1280$ W.
A 12 dB increase and 3 dB decrease is $8 \times 80 = 640$ W.
A twofold increase in voltage results in a 6 dB signal increase.
Conversely, the increments can be dividing and subtractive.

5. **Intensity, Pressure (Peak, RMS) relations:**

<table>
<thead>
<tr>
<th>Effect</th>
<th>Intensity (dB)</th>
<th>Intensity (W/m²)</th>
<th>Peak pressure (Pascal)</th>
<th>Peak pressure/SQRT2 (Pascal RMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>--</td>
<td>194</td>
<td>25.1E6</td>
<td>143,340.0</td>
<td>101,360. (atm, 14.7psi)</td>
</tr>
<tr>
<td>--</td>
<td>191</td>
<td>12.6E6</td>
<td>101,360.0</td>
<td>71,700.0</td>
</tr>
<tr>
<td>--</td>
<td>180</td>
<td>1E6</td>
<td>28,900.0</td>
<td>20,400.0</td>
</tr>
<tr>
<td>--</td>
<td>160</td>
<td>10,000.0</td>
<td>2890.0</td>
<td>2040.0</td>
</tr>
<tr>
<td>--</td>
<td>140</td>
<td>100.0</td>
<td>289.0</td>
<td>204.0</td>
</tr>
<tr>
<td>Pain</td>
<td>120</td>
<td>1.0</td>
<td>28.9</td>
<td>20.4</td>
</tr>
<tr>
<td>Riveter</td>
<td>95</td>
<td>0.0032</td>
<td>1.631</td>
<td>1.15</td>
</tr>
<tr>
<td>Train</td>
<td>90</td>
<td>0.001</td>
<td>0.91</td>
<td>0.644</td>
</tr>
<tr>
<td>Busy Street</td>
<td>70</td>
<td>E-5</td>
<td>0.091</td>
<td>0.0644</td>
</tr>
<tr>
<td>Quiet radio</td>
<td>40</td>
<td>E-8</td>
<td>0.0029</td>
<td>0.002</td>
</tr>
<tr>
<td>Leaves</td>
<td>10</td>
<td>E-11</td>
<td>9.1 E-6</td>
<td>6.4 E-6</td>
</tr>
<tr>
<td>Threshold</td>
<td>0</td>
<td>E-12</td>
<td>28.9 E-6</td>
<td>20.4 E-6</td>
</tr>
</tbody>
</table>

6. **Acoustic wavelengths for 20C and 1 atmosphere:**

Wavelength for frequencies based on speed=344 m/s = 1128 ft/s:

<table>
<thead>
<tr>
<th>f (Hz)</th>
<th>Wavelength</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>56.4 ft</td>
</tr>
<tr>
<td>100</td>
<td>11.3 ft</td>
</tr>
<tr>
<td>500</td>
<td>27.1 in.</td>
</tr>
<tr>
<td>1000</td>
<td>13.5 in.</td>
</tr>
<tr>
<td>5000</td>
<td>2.7 in.</td>
</tr>
</tbody>
</table>
7. Direct conversions:

\[dB = 10 \log \left(\frac{I}{E^{-12}} \right) \quad [I \text{ in } W/m^2] \]
\[dB = 20 \log \left(\frac{P}{20E^{-6}} \right) \quad [P \text{ in Pascals, RMS}] \]
\[dB = 20 \log \left(\frac{P}{29E^{-6}} \right) \quad [P \text{ in Pascals, peak}] \]

\[P(\text{Pascals RMS}) = 20 \ E^{-6} \ast \text{antilog}(dB/20) = 20 \ E^{-6} \ast (10^{\ast(db/20)}) \]
\[P(\text{Pascals peak}) = 28.9E^{-6} \ast \text{antilog}(dB/20) \]
\[I[W/m^2] = \frac{(\text{Pascals, RMS})^2}{400} \]
\[I[W/m^2] = \frac{(\text{Pascals, peak})^2(2^{2}D*V)}{(2^{2}D*V)} = \frac{(\text{Pascals, peak})^2}{825.6} \text{ (air)} \]
\[1 \text{ Pascal} = \text{Newton/m}^{**2} = 10 \text{ dyne/cm}^{**2} \]
\[1 \text{ psi} = 6895 \text{ Pascals} \]
\[1 \text{ joule} = E^7 \text{ ergs} = E^7 \text{ dyne-cm} = \text{Newton-meter} \]
\[1 \text{ atm} = 1.01325E5 \text{ Pascals} = 14.7 \text{ psi} = 1.013E6 \text{ microbars (dyne/cm}^2) \]
\[1 \text{ bar} = E5 \text{ Pascals} \]
\[1 \text{ Watt} = \text{joule/sec} \]
\[1 \text{ Newton} = E5 \text{ dynes} \]

8. Technical notes:

Intensity (RMS) \(= [\text{Pressure(RMS)}]^2/(D*V)\)
\[D = \text{air density (kg/m}^{**3}) \]
\[V = \text{sound velocity in air (m/s)} \]
\[D*V = \text{impedance (at } 20\degree \text{C and 1 atmosphere):} \]
\[D*V \text{ (for air)} = 1.2 \text{ [kg/m}^{**3}] \ast 344 \text{ [m/sec]} = 412.8 \text{ [kg/(m}^{**2}\text{-sec}]} \]
\[D*V \text{ (for water)} = 1000 \ast 1480 = 1,480,000 \text{ [kg/(m}^{**2}\text{-sec}]} \]

For the same acoustic pressure, the intensity in air is \((1.48E6/413) = 3,580\) greater than in water.

For the same frequency and particle displacement, the intensity in water is 3,580 times greater than in air.

The displacement amplitude of air = \(A = P(\text{max})^*V/(2*PI*B*F).\)
\[P(\text{max}) = \text{maximum (not RMS) pressure amplitude. Use 30 Pascals.} \]
\[B = \text{air adiabatic bulk modulus at normal conditions = Gamma*air pressure = 1.4 *} \]
\[1.013E5 \text{ Pascals} = (142,000 \text{ Pascals}). \]
\[PI = 3.14159 \text{ and use F=1000 Hz.} \]
Gives: \(A = 1.2 \text{ E-5 meters} = 0.012 \text{ mm (extremely small).} \)

Wavelet transforms is an alternate method to the FFT for obtaining good frequency resolution (long recording time) up to higher frequencies (short sampling time) for pulses and portions thereof. Here, a signal region is expanded on an ‘analyzing wavelet’ function that is relevant to the signal under consideration. Examples of these transforms are not included in this report.
AURAL LIMITS BY MIL-STD-1474C

A distinction is made between steady state and impulse noise. If a steady state noise is below 85 dB or impulse noise is below 140 dB (determined from the peak pressure), no protection is needed.

Impulse noise is characterized by two parameters: the peak pressure level in dB ($dB = 20 \log (\text{Peak Pascal})/29E-6$) and the effective time duration (B-duration) of the sound in milliseconds. The dB and B duration lie in some area of figure 12 and by table 4, three of these areas: X, Y, and Z require specific hearing protection.

<table>
<thead>
<tr>
<th>Region</th>
<th>No protection</th>
<th>Either plugs or muffs</th>
<th>Both plugs and muffs</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>Unlimited Exposure</td>
<td>40,000</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>2,000</td>
<td>4,000</td>
<td>40,000</td>
</tr>
<tr>
<td>Y</td>
<td>100</td>
<td>2,000</td>
<td>2,000</td>
</tr>
<tr>
<td>Z</td>
<td>5</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

A single exposure consists of either a single impulse for non-repetitive system, or a burst as for an automatic weapon.

The sequence of steps to determine and A and B durations will be illustrated with the impulse time trace of figure 13, which is the same as figure 2. The 20 dB intervals are marked.

1. Find the peak pressure (voltage) of the time signal. Peak = 0.215 V.
2. Find A, time for pressure to go from zero, rise to first principal positive peak, and return to zero. $A = 546 \text{ ms} - 536 \text{ ms} = 10 \text{ ms}$.
3. Set two bands, L+ and L-, at 20 dB below the peak (10% of peak), and its mirror image about zero level. $L+ = 0.0215, L- = -0.0215 \text{ V}$.
4. Find B, time from first zero, to the time when pressure finally stays between $L+$ and $L-$. $B = 633 \text{ ms} - 536 \text{ ms} = 97 \text{ ms}$. $Q = \text{extreme time point } 633 \text{ ms}$.
5. Find $T1$. First estimate is $T1=5*A = 5*10 = 50 \text{ ms}$. However, $T1$ must be equal or less than 30 ms. And also, if $T1 > B$, then start reducing the integer from 5 to 4,3,2...
6. Sequence: $T1=4*A = 40 \text{ ms}$ (Still greater than 30 ms).
7. Sequence: $T1=3*A = 30 \text{ ms}$ (At least equal to 30 ms. Stop.)
8. Further test: Find $0.3*B = 0.3*97 = 29 \text{ ms}$.
9. Now if $T1$ is equal or greater than 0.3B, then $B = \text{duration of primary portion}$.
10. But if $T1$ is less than 0.3B, find the first point past 0.3B during which pressure lies entirely between $L+$ and $L-$. Let this time be Q. B duration is then $Q-536\text{ms}$. In this case, $T1 > 0.3B$.
11. If there are any subsequent fluctuations that vary outside the limits of $L+$ and $L-$, and whose time duration is greater than 10% of B, then add this time duration onto B. For this trace, there are none and the B duration is then 97 ms.
The transformation of peak volt to Pascals was $0.215 \times 12580 = 2700$ Pascal(peak). Then $\text{d}B = 20 \times \log(2700/28.9E-6) = 159.4$ dB. By figure 12, this dB and B duration fall into region X.

BEAT FREQUENCY FROM MULTIPLE ACOUSTIC SOURCES

The usual approach of considering only two speakers is expanded into a more general arrangement of many acoustic sources on a panel perpendicular to the ground, and having microphones located anywhere in a region in front of this panel array. Some calibration must first be made for each speaker at various distances to obtain at least a geometric regression fit for sound received at each mike. The input data needed, and results, are calculated by the beat frequency FORTRAN program in table 5.

The acoustic sources are considered located on an X,Z plane, perpendicular to the ground, and the microphones are located anywhere at XM,YM, and ZM, where YM is the mike ground distance from the sources.

The program assumes there is complete mixing of the frequencies, though the degree of mixing is determined experimentally. The frequency content at the location of a microphone in the field is calculated by the program. This content is independent of the location, though there is a phase difference between various physical locations.

The following definitions are needed to describe the system and input to the program:

- $X_i = x$ coordinate of the ith speaker in X,M plane;
- $i=1,2,3,4...$ up to as many speakers as are present.
- $Z_i = z$ coordinate of the ith speaker
- $f_i = frequency$ of the ith speaker (frequency can be any explicit function of time)
- $X_Mj = x$ coordinate (lateral) of the jth mike in the vertical X,BM plane
- $Y_Mj = y$ coordinate (axial) of the jth mike from the plane of speakers.
- $Z_Mj = z$ coordinate (vertical) of the jth mike in the vertical X,BM plane
- $C = speed$ of sound = 1128 fps at 20 C.
- $R_{ij} = actual$ straight line distance from ith speaker to the jth mike.
- $t = time$
- $Pi=3.141592654$
- $i = square$ root of minus one

The acoustic signal that arrives at the mike has a peak pressure S_i, and is described by:

$$\text{Signal at jth mike from the ith speaker} = S_i \times \exp[i \times 2 \times \pi \times f_i \times (t+R_{ij}/C)]$$

For absolute pressure, the mike must be calibrated with the speakers, operating at some constant frequency. For a generic expression for pressure as a function of distance, each speaker is calibrated at two or more locations. The programs uses the regression coefficients and calculates the signal strength, S_i, at the jth mike from the ith speaker: $S_i = A \times (R_{ij}^B)$ where A and B are obtained from the curve fit. If only two calibration points are obtained, as 15 Pascals at a distance of 5 ft, and 2 Pascals at 30 ft, then $B = \ln(2/15) / \ln(30/5) = -2.01/(1.79) = -1.14$, and $A = 15/(5^B) = 94.$
The frequency content is added to the signal strength, and the signal is now expressed in cosines and sines from the complex form:

\[
\text{Signal} = S_i \left[\cos(2\pi f_i(t+R_{ij}/C)) + i \sin(2\pi f_i(t+R_{ij}/C)) \right]
\]

These are essentially vectors, and can be added as vectors. Figure 14 shows the addition of three such sources and the method is expanded in table 5.

The amplitude of the resultant vector is \(S_{\text{sum}} \), and the phase angle is the inverse tangent of the ratio of the imaginary and real components. The straight-line distance between any speaker \(j \) and the mike \(i \) is:

\[
R_{ij} = \sqrt{Q^2 + (\Delta L_{ij})^2}
\]

where \(Q = \sqrt{Y_{Mij}^2 + (\Delta Z_{ij})^2} \)

\[
\Delta L_{ij} = X_{Mij} - X_i \\
\Delta Z_{ij} = Z_{Mij} - Z_i
\]

Table 5 is the FORTRAN listing of the program illustrating three sources:

- \(f_1 = 2000 \text{ Hz} \)
- \(f_2 = 2100 \text{ Hz} \). If this frequency were amplitude modulated at 30 Hz, it would be expressed as \(f_2 = 2100 \sin(\pi \times 60 \times t) \), but such an expression must be recompiled in the program.
- \(f_3 = 2150 \text{ Hz} \)

For these three acoustic sources, and for complete signal mixing, the following figures document the results:

- Figure 15 is the composite time signal at mike 1 for two source signals: 2000 and 2100 Hz.
- Figure 16 is the FFT of figure 15, which extracts the beat of 100 Hz and harmonics.
- Figure 17 is the composite time signal at mike 1 for three source signals: 2000, 2100, and 2150.
- Figure 18 is the FFT of figure 17, which extracts the beat of 50, 100, and 150 Hz and harmonics.

An experimental beat frequency from 2000 and 2100 Hz sources is given in figure 19. The total recording time is \(T = 2 \text{ sec} \), and sampling time is \(DT = 20.833 \mu s \). The frequency range is \(1/(2DT) = 24 \text{ KHz} \). Instead of choosing the 96000 data points (\(T/DT \)), for a frequency resolution of 0.5 Hz (\(DF = 1/T \)), the VuPoint3 program chose \(2^{17} \) data points (131072), for a frequency resolution \(DF = 0.366 \text{ Hz} \).
The FFT of the positive signal is shown in figure 20. Whether a Hanning or no filter is used is irrelevant, except for magnitude. The sum and difference frequencies are extracted. Figure 21 is a finer detail of the carrier frequencies in the FFT. Figure 22 is the integral of the auto-correlation function, graphing the cumulative energy of the various frequencies. The zero frequency level is approximately 32% of the final sum in figure 22. When this zero level is subtracted out of the cumulative sum, the percent energy contained in the various frequencies becomes:

<table>
<thead>
<tr>
<th>Frequency (Hz)</th>
<th>Energy (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>11</td>
</tr>
<tr>
<td>200</td>
<td>1</td>
</tr>
<tr>
<td>2000</td>
<td>37</td>
</tr>
<tr>
<td>2100</td>
<td>38</td>
</tr>
<tr>
<td>4025</td>
<td>1</td>
</tr>
<tr>
<td>4100</td>
<td>11</td>
</tr>
<tr>
<td>4210</td>
<td>1</td>
</tr>
<tr>
<td>Total=100%</td>
<td></td>
</tr>
</tbody>
</table>

MODAL FREQUENCIES IN AN ENCLOSURE

The standard expression for the discrete frequencies, and the number of each, has been reduced to a FORTRAN program in table 6 for a rectangular closed structure. For a closed reflecting room, the fixed wavelengths that can exist are basically given as:

\[W = 2/[\sqrt{(N_x/L_x)^2 + (N_y/L_y)^2 + (N_z/L_z)^2}] \]

where the program varies the integers \(N_x, N_y, N_z \) independently from 0 to 38. \(L_x, L_y, L_z \) are the room dimensions. The longest wavelengths go as twice the room dimensions, and for one open end they go to four times the dimensions. Figure 23 plots the specific frequencies that can exist in a 6.6 x 9.3 x 20.6-ft room, and the number of each up to a frequency of 220 Hz.

To illustrate the capability of finite element determination of acoustic properties in an enclosure, a room with the dimensions described in figure 23 is driven by an acoustic source in one corner of the room at 75 Hz with a peak to peak signal of two Pascals. Figure 24 plots the pressure contour on the viewed walls at one instant in time. The resulting pattern is not simple.

The dB pattern of this pressure is plotted in figure 25. To illustrate the pressure along a diagonal extending from the source to the other end of the room, figure 26 shows three locations where pressure nulls exist. This illustration is for a closed room with reflecting walls. Variations in closure and wall absorption are readily treated.
Figure 1
Pressure profile in acoustic impedance tube

Figure 2
Acoustic signal in time domain
Figure 3
Fast Fourier transform of time signal pulse

Figure 4
Energy spectral content of signal
INTEGRAL OF ENERGY. FFT AUTO. CHANNEL 4. DT=28.833μs

Cursor= Set4: Intg of FFTofAuto-Correlat; Volts=hz

Pnt#274 3.83696E-3 @ 399.9829Hz

Figure 5

Integral of energy content of signal

INVERSE OF FFT. CHANNEL 4. DT=28.833μs Hanning.

Cursor= Set5: Inv_FFT of Set 2; Volts

Pnt#16861 0.8185735 @ 774.9998ms

Figure 6

Recovered time signal by inverse FFT

19
Figure 7
FFT of time signal pulse without time extension

Figure 8
Inverse FFT of pulse signal without time extension
Figure 9
Acoustic pulse with long time duration

Figure 10
FFT of pulse with long time duration
FFT. KRUH18. CH.4 NO FILTER. 0-2 SEC. DT=28.83US
Cursor= Set2: FFT KRUH18. CH.4 NO FILTER.: Volts
Pmt#547 1.22134E-3 @ 199.95437Hz

Figure 11
FFT of pulse with long time duration (no filter used)

Figure 12
Regions of peak sound level and B duration for impulse noise

NOTE: Formula for plotting the curves of Fig. 5 are:
\[P_{PL, X} = 160.5 + 6.64 \log_{10} \left(\frac{200}{T} \right), \text{ for } T \leq 200; \]
\[P_{PL, X} = 160.5, \text{ for } T > 200 \]

Where: \(P_{PL, X} \) = peak sound pressure level of curve X, in dB,
\(T \) = B-duration, in msec

also, curve Z is 19dB above curve X and curve Y is 6.5dB above X.
Figure 13
Acoustic pulse for B duration determination

Figure 14
Frequency mixing at microphone for beats
Figure 15
Composite time signal for 2000 and 2100 Hz

Figure 16
FFT of composite signals of 2000 and 2100 Hz
Figure 17
Composite time signal for 2000, 2100, and 2150 Hz

Figure 18
FFT of composite signals of 2000, 2100, and 2150 Hz
Figure 19
Experimental beat signal from 2000 and 2100 Hz

Figure 20
FFT of experimental beat signal
Figure 21
Detail of 2000 and 2100 Hz signal in FFT

Figure 22
Cumulative energy versus frequency of experimental beat signal
NUMBER MODES OF SPECIFIC FREQUENCIES IN 6.6 X 9.3 X 20.6 FT ROOM

Figure 23
Number modes of specific frequencies in an enclosure
Figure 24
Finite element determined pressure modes in room driven at 75 Hz

Enclosure-Corner 75 Hz source, 15 Jan 1998
Figure 25
Decibel plot of pressure modes in room driven at 75 Hz

Enclosure-Corner 75 Hz source, 15 Jan 1998
Figure 26
Pressure along diagonal in room driven at 75 Hz
Table 1
Morse complex impedance FORTRAN program

PROGRAM MORSE
C ***DETERMINE COMPLEX IMPEDANCE OF MATERIALS****
C ***PHILIP MORSE, 'VIBRATION AND SOUND,' 1948, PP.239-246
C ***USE COMPLEX FUNCTION OF NATURAL EXPONENT TO
C ***OBTAIN REAL AND IMAGINARY PARTS OF IMPEDANCE. 10/24/97
C **
C Enter 5 REAL data on one line in file MORSE separated by commas.
C Have the file MORSE in the directory, and run MORSE.EXE
C to output the REAL and IMAGINARY parts of the impedance,
C and the ordinary absorption coefficient.
C---
C 1. XLAM - wavelength in ft=sound speed/frequency: 1128/50=22.56'
C 2. XL - distance in ft between speaker and specimen face.
C NOTE: Speaker at x=0; specimen face at x=L.
C 3. XA - x coordinate of first min pressure (from specimen face)
C 4. PMAX - maximum pressure (pascals or volts) found after moving
C from XA toward the speaker.
C 5. PMIN1 - minimum pressure (pascals or volts) at location XA.
C **
C The program will calculate PI*ALPHA and PI*BETA and insert them
C as the real and imaginary components of S:
C S=PI*ALPHA - i*PI*BETA
C FIND ALPHA AND BETA FROM IMPEDANCE TUBE:
C ---
C ..ALPHA FROM: TANH(PI*ALPHA) =PRESS(MIN)/PRESS(MAX)
C ..BETA FROM: BETA= 1- 2.*(XL-XA)/XLAM
C XSI=DIMENSIONLESS ACOUSTIC IMPEDANCE OF MATERIAL
C XSI=THETA - i*CHI = TANH(PI*ALPHA- i*PI*BETA)
C THETA IS THE DIMENSIONLESS MATERIAL ACOUSTIC RESISTANCE.
C CHI IS THE DIMENSIONLESS MATERIAL ACOUSTIC REACTANCE.
C THETA = 1./MU, WHERE MU IS USED IN ANSYS PROGRAM.
C ... TAKE AS AN EXAMPLE:
C MAX PRESSURES OCCUR HALF WAVELENGTH APART.
C MIN PRESSURES OCCUR HALF WAVELENGTH APART ALSO.
C THEN, DISTANCE BETWEEN MAX AND MIN IS ABOUT QUARTER WAVELENGTH.
C...... NUMERICAL EXAMPLE............
C XA = 26 FEET AS LOCATION OF FIRST MIN
C XLAM = 22.56 FT =(C/F=1128/50).
C BETA = 1- 2.*(XL-XA)/XLAM = .64539
C PI*BETA = 2.02753
C PI*ALPHA= INVERSE TANH (PMIN1/PMAX)= ATANH(0.1/0.2)
C PI*ALPHA= 0.5*LN((1+PP)/(1-PP))
C WHERE PP = PMIN1/PMAX = 0.1/0.2 = 0.5
C PI*ALPHA = .54931
C XLAM=22.56
C XL=30.
C XA=26.
C PMAX=.2
C PMIN1=.1
Table 1
(cont)

```
COMPLEX S,XSI
REWIND 1
OPEN(1,FILE='MORSE')
READ(1,111) XLAM,XL,XA,PMAX,PMIN1
111 FORMAT(5F10.5)
WRITE(*,222) XLAM,XL,XA,PMAX,PMIN1
222 FORMAT(1X,'XLAM=',F9.4,' XL=',F9.4,' XA=',F9.4,
1 ' PMAX=',F9.4,’ PMIN1=',F9.4)
RATIO=PMAX/PMIN1
AC=1.-((RATIO-1.)/(RATIO+1.))**2
PI=3.14159265
PIBETA=PI*(1.-2.*(XL-XA)/XLAM)
C PIALPHA IS INVERSE HYPERBOLIC TANGENT OF (PMIN1/PMAX)
PP=PMIN1/PMAX
PIALPHA=0.5*LOG((1.+PP)/(1.-PP))
C LOG IS TO THE BASE E.
S=CMPLX(PIALPHA,-PIBETA)
C FORTRAN HAS COMPLEX EXPONENTIAL FUNCTION FOR TANH.
C TANH=[E(S) - E(-S)] / [E(S) + E(-S)]
C E(S) IS E TO THE POWER S.
XSI=(CEXP(S)-CEXP(-S))/(CEXP(S)+CEXP(-S))
WRITE(*,100) XSI
WRITE(*,101)
WRITE(*,102)
WRITE(*,103)
WRITE(*,104) AC
100 FORMAT(1X,'THETA = ',F10.4,' CHI  = ',F10.4)
101 FORMAT(1X,'THETA=DIMENSIONLESS REAL PART OF IMPEDANCE.')
102 FORMAT(1X,' CHI=DIMENSIONLESS IMAGINARY PART OF IMPEDANCE.')
103 FORMAT(1X,'THETA=ACOUSTIC RESISTANCE, CHI=ACOUSTIC REACTANCE.')
104 FORMAT(1X,'ABSORPTION COEFFICIENT = ',F8.4)
STOP
END
```

Input file for 'MORSE' or 'SWEN':

```
22.56,30.,26.,2,1
```

Output file from 'MORSE' or 'SWEN':

```
XLAM= 22.56000 XL= 30.00000 XA= 26.00000 PMAX= 0.200000 PMIN1= 0.10000
THETA = 1.26300 CHI = 0.7499
THETA=DIMENSIONLESS REAL PART OF IMPEDANCE.
CHI=DIMENSIONLESS IMAGINARY PART OF IMPEDANCE.
THETA=ACOUSTIC RESISTANCE, CHI=ACOUSTIC REACTANCE.
ABSORPTION COEFFICIENT = 0.8889
Stop - Program terminated.
```
Table 2
Swenson complex impedance FORTRAN program

PROGRAM SWEN
C ***DETERMINE COMPLEX IMPEDANCE OF MATERIALS
C ***USE COMPLEX FUNCTION OF NATURAL EXPONENT TO
C ***OBTAIN REAL AND IMAGINARY PARTS OF IMPEDANCE. 10/24/97
C **
C Enter 5 REAL data on one line in file SWEN separated by commas.
C Have the file SWEN in the directory, and run SWEN.EXE
C to out REAL and IMAGINARY parts of the impedance,
C and the ordinary absorption coefficient.
C***
C 1. XLAM - wavelength in ft=sound speed/frequency: 1128/50=22.56'
C 2. XL - distance in ft between sound speaker and specimen face.
C NOTE: Speaker at x=0; specimen face at x=L.
C 3. XA - x coordinate at first min pressure from the specimen face.
C 4. PMAX - max pressure (pascals or volt) found after moving
C from XA toward the speaker.
C 5. PMIN1 = min pressure (pascals or volt) at location XA.
C ***
C Programs calculates PI*ALPHA and PI*BETA and inserts them
C as real and imaginary components of S:
C S = PI*ALPHA - i*PI*BETA
C ** FIND ALPHA AND BETA FROM IMPEDANCE TUBE.
C ***
C .ALPHA FROM: TANH(PI*ALPHA) = PRESS(MIN)/PRESS(MAX)
C .BETA FROM: BETA = 1.- ((L-XA)/(XA-XB))
C .XL = LENGTH OF IMPEDANCE TUBE.
C .XA = X COORDINATE OF FIRST PRESS(MIN) FROM SPECIMEN.
C .XB = X COORDINATE OF FIRST PRESS(MAX) FROM SPECIMEN. XB<XA
C .XSI = DIMENSIONLESS ACOUSTIC IMPEDANCE OF MATERIAL
C .XSI = THETA - i*CHI = TANH(PI*ALPHA-i*PI*BETA)
C .THETA IS THE DIMENSIONLESS MATERIAL ACOUSTIC RESISTANCE.
C .CHI IS THE DIMENSIONLESS MATERIAL ACOUSTIC REACTANCE.
C .THETA = 1./MU, WHERE MU IS USED IN ANSYS PROGRAM.
C ** TAKE AS AN EXAMPLE:
C L=30 FEET, XA =26.
C A= (XA-L)/XLAM
C LAMB = 22.56 FEET WAVELENGTH = (C/F = 1128 FPS/ 50 HZ).
C A= (26-30)/22.56 = -.1773
C PHI = PI*(1.- 4*A) = PI* (1-4*(-.1773)) = 5.36967
C S HAS (0.,PHI)
C COMPLEX S,XSI
CREWIND 1
OPEN(1,FILE='SWEN')
READ(1,111) XLAM,XL,XA,PMAX,PMIN1
111 FORMAT(5F10.5)
WRITE(*,222) XLAM,XL,XA,PMAX,PMIN1
222 FORMAT(1X,'XLAM=',F9.4,' XL=',F9.4,' XA=',F9.4,
1 ' PMAX=',F9.4,' PMIN1=',F9.4)
RATIO=PMAX/PMIN1
AC=1.-((RATIO-1.)/(RATIO+1.))**2
XL=30.
XA=26.
XLAM=22.56
PMAX=0.2
PMIN1=0.1
A=(XA-XL)/XLAM
PHI=3.14159265*(1.-4.*A)
C CALCULATE PHI, AND PLACE THE REAL NUMBER IN SECOND T POSITION:
S=CMPLX(0.,-PHI)
C FORTRAN HAS COMPLEX EXPONENTIAL FUNCTION FOR TANH.
C TANH=[E(S) - E(-S)] / [E(S) + E(-S)]
C E(S) IS E TO THE POWER S.
RATIO=PMAX/PMIN1
Q=(RATIO-1.)/(RATIO+1.)
XSI=(1.+Q*CEXP(S))/(1.-Q*CEXP(S))
WRITE(*,100) XSI
WRITE(*,101)
WRITE(*,102)
WRITE(*,103)
WRITE(*,104) -AC
100 FORMAT(1X,'THETA = ', F10.4, ' ; CHI = ', F10.4)
101 FORMAT(1X,'THETA=DIMENSIONLESS REAL PART OF IMPEDANCE.')
102 FORMAT(1X,' CHI=DIMENSIONLESS IMAGINARY PART OF IMPEDANCE.')
103 FORMAT(1X,'THETA=ACOUSTIC RESISTANCE, CHI=ACOUSTIC REACTANCE.')
104 FORMAT(1X,'ABSORPTION COEFFICIENT = ',F8.4)
STOP
END
PROGRAM ASTM
C ASTM C384-77 IMPEDANCE AND ABSORPTION OF ACOUSTICAL
C MATERIALS BY IMPEDANCE TUBE METHOD. (24 OCT 1997)
C **
C Enter 7 REAL data on one line in file ASTM separated by commas.
C Have file ASTM in directory, and run ASTM.EXE
C to output REAL and IMAGINARY parts of impedance,
C and the ordinary absorption coefficient.
C ***
C 1. XLAM - wavelength in feet=sound speed/frequency: 1128/50=22.56'
C 2. XAC - x coordinate of first MIN pressure (from end plate face)
C during calibration (metal end only in place; NO SPECIMEN).
C 3. XCC - x coordinate of second MIN pressure (going toward speaker)
C during calibration (metal end only in place; NO SPECIMEN).
C 4. XA - x coordinate of first MIN pressure (from specimen face).
C 5. PMAX - MAX pressure (pascal or volt) between the two MINS.
C 6. PMIN1 - MIN pressure at XA (location of 1st min: SPECIMEN)
C 7. PMIN2 - MIN pressure at XC (location of 2nd min; SPECIMEN)
C ************* NUMERICAL EXAMPLE *************
C STEP 1: CALIBRATION. METAL PLATE AT CLOSURE END X=XL=30 FT.
C XA=FIRST MIN (NO SPECIMEN) = XL-LAM/4 = 30-5.64 = 24.36
C XC=SECOND MIN (NO SPECIMEN) = XA-XLAM/2 = 24.36-11.28 = 13.08
C C XA=24.36
C XAC=24.36
C XCC=13.08
C XL=(3*XAC-XCC)/2.
C STEP 2: SPECIMEN FACE IN POSITION AT X=XL:
C REMEASURE FIRST AND SECOND MIN PRESSURES: (LOCATION XC NOT NEEDED)
C C XA=26.
C XC=14.72
C D1=XL-XA
C D2 IS ABOUT HALF WAVELENGTH..... D2=XLAM/2 = 11.28
C D2=11.28
C PMIN1,PMAX,PMIN2 ARE PRESSURES AT XA,XB,XC:
C THESE UNITS CAN BE PASCALS OR VOLS:
C PMAX=.2, PMIN1 = .1, PMIN2= .09
CREWIND 1
OPEN(1,FILE='ASTM')
READ(1,110) XLAM,XAC,XCC,XA,PMAX,PMIN1,PMIN2
110 FORMAT(7F8.3)
WRITE(*,111) XLAM,XAC,XCC,XA
WRITE(*,112) PMAX,PMIN1,PMIN2
111 FORMAT(1X,'XLAM,XAC,XCC,XA= ',5(1X,F8.3))
112 FORMAT(1X,'PMAX,PMIN1,PMIN2= ',3(1X,F8.3))
XL=(3*XAC-XCC)/2.
D1=XL-XA
D2=XLAM/2.
C USE FORMULAS 11,13 IN ASTM FOR ABSORPTION COEFFICIENT:
C RATIO1=PMAX/PMIN1
C RATIO2=PMAX/PMIN2
C AB1=1.-(RATIO1-1.)/(RATIO1+1.)**2
C AB2=1.-(RATIO2-1.)/(RATIO2+1.)**2
C AB11=AB1-(AB2-AB1)/2.
C AB13=AB1-(D1/D2)*(AB2-AB1)
Table 3 (cont)

C CONVERT PRESSURE UNITS TO DB:
PMAX=20.*LOG10(PMAX/29E-6)
PMIN1=20.*LOG10(PMIN1/29E-6)
PMIN2=20.*LOG10(PMIN2/29E-6)
XL1=PMAX-PMIN1
XL2=PMAX-PMIN2
XL0=XL1+(XL1-XL2)/2.

C XK0 = 10**(XL0/20)
XK0=EXP((XL0/20)*ALOG(10.))
XM=(XK0+(1./XK0))/2.
XN=(XK0-(1./XK0))/2.
PHI=(D1/D2 -0.5)
PHID=360.*PHI
THETA=1./(XM-XN*COS(PHI))
CHI= (XN*SIN(PHI))/(XM-XN*COS(PHI))

WRITE(*, 100) XL1,2,0,K0
WRITE(*, 200) D1,D2,XM,XN,PHI
WRITE(*, 300) THETA, CHI
WRITE(*, 400) AB11,AB13

STOP
END

Input file for ‘ASTM’:

22.56,24.36,13.08,26.,2,1,09

Output file from ‘ASTM’:

XLAM,XAC,XCC,XA = 22.560 24.360 13.080 26.000
PMAX,PMIN1,PMIN2= .200 .100 .090
XL1,2,0,K0 = 6.02060 6.93575 5.56302 1.89737
D1,D2,M,N,PHI = 4.00000 11.28000 1.21221 .68516 -.14539
THETA, CHI = 1.8717 -.1858

ABSORPTION COEFFICIENT (EQ.11,13)= .9053 .9005
Stop - Program terminated.
Table 5
Multiple array source beat frequency FORTRAN program

PROGRAM BEAT
C BEAT FREQUENCY FOR MULTIPLE POINT ACOUSTIC SOURCES FOR OPEN REGION.
C FOR RESPONSE FOR UP TO THREE MICROPHONE LOCATIONS.
C INPUT FILE IS ARRANGED AS FOLLOWS:(COMMA SEPARATION BETWEEN DATA)
C 1.NUMBER OF SPEAKER SOURCES(MAX=20); NUMBER MIKES(MAX=3)
C 2.THE FREQUENCIES OF THE SOURCES (IN ORDER)
C 4.THE Z COORDINATE (VERTICAL) OF THE SOURCES (ALL IN X,Z PLANE)
C 5.THE A GEOMETRIC REGRESSION COEFFICIENT FOR THE SOURCES.
C 6.THE B GEOMETRIC REGRESSION COEFFICIENT FOR THE SOURCES (S=A*DIST**B)
C 7.THE XM COORDINATE (LATERAL) OF THE MIKES.
C 8.THE YM COORDINATE (AXIS) OF THE MIKES. (SOURCES ARE AT YM=0.)
C 9.THE ZM COORDINATE (VERTICAL) OF THE MIKES.
C 10.NUMBER OF CYCLES OF FIRST FREQUENCY, AND DATA POINTS/CYCLE.
C 11.SPEED OF SOUND.
C++NOTE: IF SOUND SPEED IN M/SEC, ALL DISTANCES IN METERS. (344 M/S)
C++NOTE: IF SOUND SPEED IN FT/SEC, ALL DISTANCES IN FEET. (1128 FPS)
CIF A FREQUENCY IS A FUNCTION OF TIME, IT MUST BE PROGRAMMED.
C ...EXAMPLE OF THE SOURCE FILE WITH THREE SOURCES, TWO MIKES:
C 32 :THREE SOURCES, TWO MIKES
C 2000,2100,2150 :FREQUENCIES OF THE THREE SOURCES.
C 0,0,0 :LATERAL X COORDINATE OF SOURCES 1,2,3.
C 0,4,8 :VERTICAL Z COORDINATE OF SOURCES 1,2,3.
C 110.,150.,180. :A COEFFICIENT FOR SOURCES 1,2,3
C -1.13,-1.17,-1.22 :B EXPONENT FOR SOURCES 1,2,3
C 0.,4. :LATERAL XM COORDINATE FOR MIKES 1,2
C 100.,50. :AXIS YM COORDINATE FOR MIKES 1,2
C 2.,2. :VERTICAL ZM COORDINATE FOR MIKES 1,2
C 500.,20. :NUMBER CYCLES OF 2000 HZ WITH 20 DATA/CYCLE
C 1128.:SPEED OF SOUND (HERE 1128 FT/SEC FOR 20 C)
C C---- PLOT AMP1,AMP2,AMP3 FOR RESULTANT AMPLITUDE AT MIKES 1,2,3
C C---- PLOT PHA1,PHA2,PHA3 FOR RESULTANT PHASE (NOT AS SIGNIFICANT).
DIMENSION F(20),X(20),Z(20),A(20),B(20),XM(3),YM(3),ZM(3)
DIMENSION R(20),S(20),DELX(20),DELZ(20)
REWIND 10
OPEN(10,FILE='BEAT')
READ(10,111) NSOURCE,NMIKE
READ(10,112) (F(I),I=1,NSOURCE)
READ(10,112) (X(I),I=1,NSOURCE)
READ(10,112) (Z(I),I=1,NSOURCE)
READ(10,112) (A(I),I=1,NSOURCE)
READ(10,112) (B(I),I=1,NSOURCE)
READ(10,112) (XM(I),I=1,NMIKE)
READ(10,112) (YM(I),I=1,NMIKE)
READ(10,112) (ZM(I),I=1,NMIKE)
READ(10,112) CY,DCY
READ(10,112) C
111 FORMAT(213)
112 FORMAT(10F8.3)
113 FORMAT(10F8.2)
WRITE(*,111) NSOURCE,NMIKE
WRITE(*,113) (F(I),I=1,NSOURCE)
WRITE(*,112) (X(I),I=1,NSOURCE)
WRITE(*,112) (Z(I),I=1,NSOURCE)
WRITE(*,112) (A(I),I=1,NSOURCE)
WRITE(*,112) (B(I),I=1,NSOURCE)
WRITE(*,112) (XM(I),I=1,NMIKE)
WRITE(*,112) (YM(I),I=1,NMIKE)
WRITE(*,112) (ZM(I),I=1,NMIKE)
WRITE(*,112) CY,DCY,C
REWIND 1
REWIND 2
REWIND 3
REWIND 4
REWIND 7
REWIND 8
OPEN(1,FILE='AMP1')
OPEN(2,FILE='AMP2')
OPEN(3,FILE='AMP3')
OPEN(4,FILE='PHA1')
OPEN(7,FILE='PHA2')
OPEN(8,FILE='PHA3')
PI=3.141592654
C NUMBER OF MICROPHONES IN FIELD
DO 1 I=1,NMIKE
C CY=NUMBER OF CYCLES OF FIRST FREQUENCY F(1) TO BE CONSIDERED =500.
C DCY=POINTS PER CYCLE FOR DIGITIZING = 20
C DT=SAMPLING TIME = 1/(F(1)*DCY) = 1/(2000*20) =2.5E-5
C T=TOTAL TIME = CY/F(1) = 500/2000 = .25 SEC
C N=NUMBER DATA = T/DT = 25/2.5E-5 = 10000
N=CY*DCY
DT=1./(F(1)*DCY)
WRITE(*,400)
400 FORMAT(15X,'SIGNAL STRENGTH DISTANCE R BETWEEN',/ 1 5X,'MIKE SOURCE S AT R SOURCE AND MIKE')
C FIND DISTANCE OF THE SOURCES AND SOURCE PEAK TO THIS MIKE:
DO 3 J=1,NSOURCE
DELX(J)=XM(I)-X(J)
DELZ(J)=ZM(I)-Z(J)
RS=SQRT(YM(I)*YM(I)+DELZ(J)*DELZ(J))
R(J)=SQRT(RS*RS+DELX(J)*DELX(J))
C CALCULATE SIGNAL SOURCE AT THE MIKE FROM GEOMETRIC REGRESSION A,B:
S(J)=A(I)*(R(J))**B(I)
WRITE(*,401) I,J,S(J),R(J)
401 FORMAT(2X,2I6,2(3X,F10.3))
3 CONTINUE
C DO TIME CALCULATIONS
DO 2 K=1,N
T=DT*(K-1)
C SUM UP ALL THE CONTRIBUTIONS OF SIGNAL SOURCES
SUMREAL=0.
SUMIMAG=0.
DO 22 KK=1,NSOURCE
SREAL=S(KK)*COS(2.*PI*F(KK)*(T+R(KK)/C))
SIMAG=S(KK)*SIN(2.*PI*F(KK)*(T+R(KK)/C))
SUMREAL=SUMREAL+SREAL
SUMIMAG=SUMIMAG+SIMAG
22 CONTINUE
C FIND AMPLITUDE AND PHASE OF COMPOSITE SIGNAL AT MIKE (I):
IFI(SUMIMAG.EQ.0.) SUMIMAG=1E-8
AMP=SQRT(SUMREAL*SUMREAL+SUMIMAG*SUMIMAG)
PHA=180.*2.*ATAN(SUMREAL/SUMIMAG)/(PI*2.)
IFI(I.EQ.1)WRITE(1,500) T,AMP
IFI(I.EQ.2)WRITE(2,500) T,AMP
IFI(I.EQ.3)WRITE(3,500) T,AMP
IFI(I.EQ.1)WRITE(4,500) T,PHA
IFI(I.EQ.2)WRITE(7,500) T,PHA
IFI(I.EQ.3)WRITE(8,500) T,PHA

500 FORMAT(2F10.5)

2 CONTINUE
WRITE(*,402)
402 FORMAT(1X,50(1H*))
1 CONTINUE
WRITE(*,403) N,DT
403 FORMAT(1X,‘N,DT = ’,I6,1X,F12.6)
STOP
END

Input file for ‘BEAT’:

3.2
2000. 2100. 2150.
0.0.0.0.
0.4.8.
110. 150. 180.
-1.13. -1.17. -1.22
20.2.
100. 50.
20.12.
500.20.
1128.

Output file from ‘BEAT’:

.000 .000 .000
.000 4.000 8.000
110.000 150.000 180.000
-1.130 -1.170 -1.220
20.000 2.000
100.000 50.000
20.000 12.000
500.000 20.00001128.000

SIGNAL STRENGTH DISTANCE R BETWEEN
MIKE SOURCE S AT R SOURCE AND MIKE
1 1 .579 103.923
1 2 .583 103.228
1 3 .587 102.684

SIGNAL STRENGTH DISTANCE R BETWEEN
MIKE SOURCE S AT R SOURCE AND MIKE
2 1 1.492 51.459
2 2 1.519 50.675
2 3 1.536 50.200

N,DT = 10000
000025
Stop - Program terminated.
Table 6
Frequency modes in closed room FORTRAN program

PROGRAM MODES
C M modes in shoebox room. D(X), D(Y), D(Z)
C room in sizes up to (X, Y, Z) in increments in each.
C do for single size: X = 9.32, Y = 6.562, Z = 20.6 ft
C sound speed C taken as 1128 ft/sec.
C find f(i, j, k) frequencies, and assoc wavelength w(i, j, k)
C w(x) = C / f(x) w(i) = C / f(i)
C for each room condition, integers nx, ny, nz vary from 1 on.
C for closed walls: w(x) = 2 * D(x) / nx
C for each dimension D, integers go from 1, 2, 3, ...
C conditions:
C w(i) .LE. 2 * D(i) / N(i) OR: w(x) .LE. 2 * D(x) / nx
C [if one end closed, other open: w(i) .LE. 4 * D(i) / N(i)]
C ...method: for fixed size room, vary integers for
C simple frequencies in uncluttered room...
C i, j, k = x, y, z directions...... distances in feet.
D Dimension dx(50), dy(50), dz(50), nx(50), ny(50), nz(50),
C 1 w(38, 38, 38), f(38, 38, 38), a(1000), b(1000)
REWIND 1
REWIND 2
REWIND 3
OPEN(1, FILE = 'freq')
OPEN(2, FILE = 'wave')
OPEN(3, FILE = 'freqn')
C file freq gives frequencies allowed, and modes at each frequency
C file freqn gives frequencies allowed, and accumulated number..
C find number mode in 2 Hz intervals, up to IA*2 Hertz (IA groups)
C IA maximum = 1000
IA = 110
DO 77 I = 1, IA
A(I) = 0.
B(I) = 0.
77 CONTINUE
FMN = 100000.
C = 1128.
C2 = C / 2.
INDEX = 10
DO 1 K = 1, 1
C DZ(K) = K
DZ(K) = 20.6
KS = K
DO 2 J = 1, 1
C DY(J) = J
DY(J) = 9.32
JS = J
DO 3 I = 1, 1
C DX(I) = I
DX(I) = 6.562
IS = I
C vary the integers...
NUM = 38
DO 4 KK = 1, NUM
NZ(KK) = KK - 1
DO 5 JJ = 1, NUM
NY(JJ) = JJ - 1
Table 6
(cont)

DO 6 II=1,NUM
NX(II)=II-1
FF=C2*(SQRT((NX(II)/DX(I))**2 + (NY(JJ)/DY(J))**2
1 + (NZ(KK)/DZ(K))**2))
IF(FF.GT.0.) WW=2./((SQRT((NX(II)/DX(I))**2 + (NY(JJ)/DY(J))**2
1 + (NZ(KK)/DZ(K))**2))
C STORE AN ACCEPTABLE STANDING WAVELENGTH
W(II,JJ,KK)=WW
F(II,JJ,KK)=FF
200 FORMAT(F10.2)
C FIND CONDITIONS WHEN LOWEST FREQUENCY OCCURS..
IF(FF.LT.FMIN) GO TO 50
GO TO 51
50 XL=DX(I)
YL=DY(J)
ZL=DZ(K)
IXN=II-1
JYN=JJ-1
KZN=KK-1
FMIN=FF
51 CONTINUE
100 FORMAT(IX,'ROOM, K#, WAVEL, FREQ= ',3I3,2X,3I3,2(1X,F8.2))
WRITE(2,600) WW,FF
DELF=2.
DO 300 IN=1,IA
DFB=DELF*IN
DFA=DELF*(IN-1)
C A GIVES THE FREQUENCY(MEAN OF 1 HZ), B GIVES NUMBER MODES.
IF(FF.GT.DFA.AND.FF.LE.DFB) A(IN)=(DFB+DFA)/2.
IF(FF.GT.DFA.AND.FF.LE.DFB) B(IN)=B(IN)+1.
300 CONTINUE
10 CONTINUE
6 CONTINUE
5 CONTINUE
4 CONTINUE
3 CONTINUE
2 CONTINUE
1 CONTINUE
BMODES=0
9 DO 90 IN=1,IA
C DO NOT WRITE IF NO FREQUENCIES WERE FOUND:
IF(B(IN).EQ.0.) GO TO 90
WRITE(1,600) A(IN),B(IN)
600 FORMAT(2F10.2)
BMODES=BMODES+B(IN)
WRITE(3,600) A(IN),BMODES
WRITE(*,400) B(IN),BMODES,A(IN)
400 FORMAT(IX,'FREQ INTERVAL, NUMBER IN, TOT MOD= ',3(1X,F10.2))
90 CONTINUE
WRITE(*,222) XL,YL,ZL,IXN,JYN,KZN
222 FORMAT(IX,'ROOM SIZE; INDEX FOR LOWEST FREQ= ',3F6.2,2X,314)
STOP
END
REFERENCES

1. Philip Morse, 'Vibration and Sound,' 1948, pp. 239-246.
DISTRIBUTION LIST

Commander
Armament Research, Development and Engineering Center
U.S. Army Tank-automotive and Armaments Command
ATTN: AMSTA-AR-WEL-T (2)
 AMSTA-AR-GCL
 AMSTA-AR-CCL-D, H. Moore (2)
 C. Freund
 D. O'Malley
 AMSTA-AR-CCL-E, L. Sadowski (2)
 AMSTA-AR-QAC, K. Yagrich (3)
 T. Hartmann (2)
 AMSTA-AR-QE2, J. Domen (8)
Picatinny Arsenal, NJ 07806-5000

Defense Technical Information Center (DTIC)
ATTN: Accessions Division (12)
8725 John J. Kingman Road, Ste 0944
Fort Belvoir, VA 22060-6218

Director
U.S. Army Materiel Systems Analysis Activity
ATTN: AMXSY-EI
392 Hopkins Road
Aberdeen Proving Ground, MD 21005-5071

Commander
Chemical/Biological Defense Agency
U.S. Army Armament, Munitions and Chemical Command
ATTN: AMSCB-CII, Library
Aberdeen Proving Ground, MD 21010-5423

Director
U.S. Army Edgewood Research, Development and Engineering Center
ATTN: SCBRD-RTB (Aerodynamics Technology Team)
Aberdeen Proving Ground, MD 21010-5423

Director
U.S. Army Research Laboratory
ATTN: AMSRL-OP-CI-B, Technical Library
Aberdeen Proving Ground, MD 21005-5066

Chief
Benet Weapons Laboratory, CCAC
Armament Research, Development and Engineering Center
U.S. Army Tank-automotive and Armaments Command
ATTN: AMSTA-AR-CCB-TL
Watervliet, NY 12189-5000

47