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ABSTRACT 

Masses and radiator areas of typical space nuclear power 
concepts are estimated as a function of the continuous 
electrical power required during a ten-year mission. 
Results are presented as a function of power level in the 
range of 5 to 1000 kW electrical.  Three general reactor 
types will be discussed: (1) the radiatively cooled Star-C 
reactor technology with thermionic conversion external to 
the core; (2) liquid metal cooled technology with pin-type 
thermionic fuel element conversion in the core; and (3) the 
liquid metal cooled SP-100 reactor technology with 
thermoelectric, Brayton, Stirling, and Rankine conversion 
systems.  Mass estimates include all satellite subsystems 
except the payload itself.  Area estimates include 
radiators to dump waste heat from the power conversion, 
power conditioning, power transmission, and reactor control 
subsystems but not the payload.  All system components 
utilize near-term technology with the exception of the SP- 
100 Rankine and refractory Stirling concepts. 

This work was performed at Sandia National 
Laboratories, which is operated for the U. S. 
Department of Energy under contract number DE-AC04- 
76DP00789. 
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Executive Summary 

The design of nuclear reactors for space power applications 
is influenced by many technical, programmatic, and 
political considerations.  The desire to develop long- 
lived, safe, reliable power sources is paramount and has 
been the subject of many papers.  Those needs and some of 
the more important reactor characteristics are briefly 
mentioned here but this report focuses on how the mass and 
radiator area of the leading near-term reactor power system 
concepts vary over the range of 5 to 1000 kW(e). 

There are at least four competing technologies to choose 
from in United States within the 5 to 1000 kW(e) range: (1) 
Out-of-Core Thermionic Reactor (OTR) power systems, (2) 
Thermionic Fuel Element, (3) Gas-cooled reactors with 
Brayton turbines, and (4) SP-100.  Additional concept 
design and development work will have to be done utilizing 
the first three technologies before any advantages over SP- 
100, the technology presently being pursued in the U. S., 
can be confirmed.  Of the concepts listed above, the OTR, 
Thermionic Fuel Element, and SP-100 thermoelectric concepts 
offer static energy conversion systems while gas cooled 
Brayton concepts and SP-100 with Stirling, Brayton, or 
Rankine conversion subsystems are dynamic.  All of the 
concepts use coolant loops, except STAR-C which transfers 
heat from the core by conduction and radiation.  Those 
which use coolant loops utilize a liquid metal coolant 
except for the gas Brayton concept.  The thermionic fuel 
element concepts offer a conversion technique and choices 
of liquid metal coolants that are very different from the 
various SP-100 concepts.  (Note:  Due to financial 
constraints, gas-cooled reactors with Brayton conversion 
systems are not addressed in this study.) 

All of the power systems we considered utilize near-term 
technology with two exceptions; the SP-100 Rankine and the 
SP-100 Refractory Metal Stirling Engine concepts.  The 
Rankine conversion technology is further out in time 
because it requires two-phase flow in a micro-gravity 
environment.  In addition, turbines and vapor separators 
for use with liquid metals in the Rankine turbine concept 
and refractory metal components for the free piston 
Stirling engine must be developed and proven reliable for 
long term use at high temperatures.  These are issues that 
will not be resolved for several years. It is also 
important to recognize that technology risk and development 
costs are not the same even among systems labeled "near- 
term" . 

In any comparative systems analysis it is absolutely 
essential to pick a common set of ground rules against 
which to assess the various concepts.  When time and 
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resources are limited, as in this case, these ground rules 
must be simplified to the point where they address only the 
major issues.  As a result, we have performed top level 
system mass, area, and performance analyses based on the 
ground rules shown in Table 3.1.  Mass estimates include 
all satellite subsystems except the payload but do not 
include the means to survive enemy attack.  Since many of 
the concepts are not well defined and we have no specific 
satellite to serve as a guide for power system integration, 
we cannot determine system volumes at launch and during 
operation.  Instead, we present areas of the radiators 
required to dump waste heat as a general indication of 
those volumes.  Area estimates include radiators for power 
conversion, power conditioning, and reactor control 
subsystems but not the payload.  We have optimized 
component performance within the constraint of minimizing 
overall power system mass for all of the more massive 
components.  Our mass and area results may not be 
completely representative of real systems because many 
design details are unknown at this time.  They should 
however provide good relative comparisons among the various 
concepts.  Special care was taken to treat the SP-100 
Thermoelectric system in identical fashion to the other 
concepts since it has received more design funding and has 
therefore identified many additional contributors to total 
system mass.  We believe our approach is reasonable because 
our results agree well with those obtained from the SP-100 
program for the SP-100 thermoelectric and innovative SP-100 
concepts. 

Based on our mass and area estimates, which do not include 
the means to survive hostile threats, there is no 
compelling reason to choose one nuclear power system 
technology over another at power levels below 40 kW(e) 
until requirements become more firmly established. 
Differences in volume at launch and during operation may be 
more important than mass differences at the lower power 
levels.  However, differences in power system masses become 
more significant as the required power increases further 
and further beyond the 40 to 60 kW(e) range. 

Satellite designers must understand how the total system 
mass, volume at launch, and volume during operation change 
with the amount of power required by different satellites. 
These are major factors in determining cost and operational 
capabilities and the power system's contribution to 
satellite mass and volume must be well understood.  Since 
the required technology is not available, any proposed U.S. 
reactor will require many years for development, and the 
costs will be significant.  This means the technology 
selected will be expected to satisfy U.S. operational needs 
for 30 or 40 years to amortize the costs.  During this 
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time, new civilian and military missions could evolve and 
the required power levels are not well known this far in 
the future.  As a result, space reactors should have the 
flexibility to meet different power requirements in 
successive designs without excessive increases in specific 
mass (i.e., mass per unit of electrical power) or volume. 
Since our results show that the various concepts differ 
greatly in their ability to provide such flexibility, 
realistic appraisals of the range of future power 
requirements are essential to choosing the correct reactor 
technologies for space missions.  Even then, other power 
system characteristics will be equally important.  This is 
especially true if, as we expect, the power system will 
account for only 10 to 20% of the satellite's total mass 
and 25 to 50% of its area. 

Until requirements are more firmly defined, especially 
those dealing with survivability, and power systems are 
designed to meet these and many other specific satellite 
integration requirements, comparisons of power system 
concepts will remain mostly a matter of conjecture because 
many system attributes, including mass, may be altered 
dramatically by these requirements. 
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1.0 Introduction 

In the United States, requirements for long-term continuous 
power in space have been modest and have been fulfilled 
using solar and radioisotope power sources.  Future 
requirements fall in the range of 5 to 1000 kW(e) where 
nuclear reactors could provide advantages in many 
applications.  In 1983, the United States embarked on a 
program, called the SP-100, to develop a space reactor 
technology capable of providing tens to hundreds of 
kilowatts of electrical power with the reference design to 
provide 100 kW(e).  During that time the Air Force 
continued to examine its military mission requirements and 
concluded that reactors capable of providing 5 to 40 kW(e) 
may serve Air Force needs for many years (Ref. 2).  As a 
result, reactor concepts other than the SP-100 which have 
been proposed for this low end of the power range have 
attracted attention within the Air Force.  This in turn has 
raised questions concerning similarities and differences in 
military and civilian requirements, possible needs for 
separate military and civilian space reactor programs and 
whether separate programs would lead to similar or 
different technologies.  The requirements are still 
evolving as are the concepts being proposed and this leads 
to continued evaluation of the direction and composition of 
the United States' space power program: a process which we 
think requires much more information concerning both 
requirements and reactor designs before rational changes 
can be considered. 

There are at least four competing nuclear technologies to 
choose from in United States within the 5 to 1000 kW(e) 
range: (1) Out-of-Core Thermionic Reactors (OTRs), (2) 
Thermionic Fuel Element (TFE) (3) gas-cooled reactors with 
Brayton turbines, and (4) SP-100.  Additional concept 
design and development work will have to be done utilizing 
the first three technologies before any advantages over SP- 
100, the technology presently being pursued in the U.S., 
can be confirmed.  Of the concepts listed above, the OTR, 
TFE, and SP-100 thermoelectric concepts offer static energy 
conversion systems while gas cooled Brayton concepts and 
SP-100 with Stirling, Brayton, or Rankine conversion 
subsystems are dynamic.  All of the concepts use coolant 
loops, except STAR-C which transfers heat from the core by 
conduction and radiation.  Those which use coolant loops 
utilize a liquid metal coolant except for the gas Brayton 
concept.  The thermionic fuel element concepts offer a 
conversion technique and choices of liquid metal coolants 
that are very different from the various SP-100 concepts. 
(Note:  Due to financial constraints, gas-cooled reactors 
with Brayton conversion systems are not addressed in this 
study.) 
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The objective of our analyses was to compare the total 
masses and areas of the various power system concepts. 
These are the only tangibles we can compare at this 
juncture because the concepts are in very different stages 
of development, some being no more than conceptual ideas 
produced by a few months of study while others have been 
through the first design iterations.  In addition, we have 
no specific satellite to serve as a guide for system 
integration as is necessary to determine volumes of the 
total system at launch and during operation.  There are 
other important issues such as safety, reliability, launch 
costs, development costs and schedules, etc. and we allude 
to some of these to point out that mass and radiator areas 
are only a subset of the total that must be considered in 
the final selection process. 

A general description of each of the power system concepts 
we analyzed in this study is given in Chapter 2.  Chapter 3 
lays out the ground rules that were used to obtain the 
system mass and area estimates.  The results of the 
analyses are presented in Chapter 4 and the conclusions are 
given in Chapter 5. 
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2.0 Power System Descriptions 

A general description of the six basic power system 
concepts that we analyzed is given below.  The descriptions 
are intentionally short, because details are not available 
for most of the concepts. 

2.1 The OTR Power System 

The Space Thermionic Advance Reactor-Compact (STAR-C) 
concept (Ref. 2), which is a specific version of an OTR 
power system, is depicted in Figure 1.  This concept 
consists of a radiatively cooled reactor core that is 
surrounded by flat plate thermionic devices, located in the 
reflector region.  Its two major advantages are that it 
does not have a coolant loop, which increases reliability 
and safety, and it has a small radiator.  Its major 
disadvantage is that it becomes increasingly heavy at power 
levels above about 50 kWe. 

STAR-C uses a solid core composed of segmented, annular 
fuel plates that are supported by graphite trays.  Each 
fuel plate is made up of six, pie-shaped, Uranium Dicarbide 
segments fully enriched in U-235.  The graphite trays are 
coated with Niobium Carbide to suppress carbon sublimation, 
which could result in carbon attack on the emitters of the 
thermionic devices.  The reactor core is built by stacking 
the graphite trays and fuel plates; the number of fuel-tray 
assemblies being dictated by the power level.  A 10 kW(e) 
system has a core that is approximately 26 cm in diameter 
and 48 cm long.  The thickness of the trays can be varied 
to improve the uniformity of the power profile.  Heat 
generated in the reactor core is conducted radially outward 
to the core surface where it is radiated to thermionic 
devices surrounding the core.  During operation, the 
maximum core and core surface temperatures are expected to 
be approximately 2300K and 2000K respectively. 

The thermionics, located in the radial reflector, collect 
heat radiated across a gap from the core.  Nominal 
operating temperature of the emitter is 1860K.  The 
collector is cooled by an integral heat pipe which conducts 
heat to the system radiator surrounding the reactor.  The 
radiator is sized so that the collector operating 
temperature is 1000K.  Under these conditions, the 
efficiency of the thermionic devices is approximately 14%. 
When the other electrical losses are considered, the 
overall system efficiency is approximately 12%.  The 
thermionic devices are connected in a series/parallel 
network to minimize the impact of device failures on the 
total system electrical output. 
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Reactor control is accomplished by movable rods located in 
the radial reflector.  The rods consist of a Boron Carbide 
poison section and a Beryllium reflector section.  When the 
reactor is shut down, the poison section of the rod is 
located in the reflector.  To start the reactor, the rods 
are moved upward to place the Beryllium section in the 
reflector. 

Radiation protection for the payload is provided by a 
separation boom, a Lithium Hydride neutron shield, and a 
Zirconium Hydride gamma shield.  The boom length and shield 
thicknesses are optimized based on system mass. 

The mass of the STAR-C power system in the 10 to 50 kWe 
range can be decreased significantly by making some minor 
changes in the concept.  These changes consist primarily of 
optimizing the core length to diameter ratio and maximizing 
the ratio of the inner to outer fuel radius (Ref. 3).  This 
"optimized OTR" is included in the mass comparisons in 
Chapter 4. 

2.2 TFE Based Power Systems 

Three in-core thermionic reactor concepts, which are based 
on the thermionic fuel element were evaluated in this 
study.  These concepts include (a) an all-TFE reactor 
(Ref. 4), (b)a moderated TFE reactor (TOPAZ, Ref. 5), and 
(c) a TFE reactor with SNAP driver fuel (Ref. 6).  All of 
these concepts incorporate rotating reflector/control drums 
within the pressure vessel, surrounding the core. 

The TFE based reactor concepts employ cylindrical 
fuel/converter elements that are stacked on end in a manner 
analogous to dry cells in a flashlight (Figure 2.2).  The 
converter stack is encased in a metallic cladding to form a 
thermionic fuel element (TFE).  Each cell consists of a 
stack of annular Uranium di-oxide fuel pellets surrounded 
by a tungsten emitter, a cesium vapor-filled gap, a 
collector and an insulator sheath (Figure 2.3).  During 
power operation, heat from the nuclear fuel boils electrons 
off the emitter surface (-1800 K) across the interelectrode 
gap to the cooler (-1000 K) collector surface.  The voltage 
potential between the emitter and collector is used to 
drive the current through the electrical load.  Total power 
system efficiencies are typically on the order of 8.5%. 

Waste heat is carried from the cladding surface to a 
radiator by a flowing NaK coolant.  Thermoelectromagnetic 
pumps and the SP-100 radiator design were assumed in our 
analysis.  Radiation shields consisting of Zirconium- 
Hydride plus Lithium Hydride layers and Tungsten plus 
Lithium Hydride layers were both considered in our 
calculations. 
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The all-TFE concept (Figure 2.4) is a fast reactor with no 
moderator or driver fuel.  This concept is more suitable 
for higher power levels (>100 KWe) since the critical mass 
requirements are relatively high.  The absence of a 
moderator or driver fuel permits coolant temperatures up to 
1000 K or more. 

The TOPAZ reactor (Figure 2.5) incorporates a Zirconium- 
Hydride moderator between the fuel elements to reduce 
critical mass requirements. The presence of a Zirconium- 
Hydride moderator limits coolant temperatures to about 
900 K.  Because the thermal neutron cross-section of 
natural tungsten is too high to permit its use in a 
moderated reactor, Tungsten-184 would have to be used for 
emitter fabrication.  Except for this substitution, the 
required thermionic fuel element design is virtually 
identical to the thermionic fuel element for the all- 
thermionic fuel element concept. 

In the driver fuel concept (Figure 2.6), auxiliary non- 
thermionic fuel elements are used to achieve criticality. 
The concept uses SNAP-reactor-type fuel elements (Zirconium 
hydride with 15 w/o uranium loading) as the driver fuel 
elements.  Nuclear heat produced in the driver fuel is not 
utilized for electrical power; consequently this approach 
is somewhat less efficient than the other two thermionic 
fuel element concepts.  The use of SNAP fuel also limits 
coolant temperatures to about 900 K. 

2.3 SP-100 

The SP-100 thermoelectric power system (Ref. 7) shown in 
Figure 2.7 converts heat generated within a compact high- 
temperature fast-spectrum reactor directly into electricity 
through the use of thermoelectric conversion.  The net 
efficiency for this system is about 4%.  Although this is 
quite low, the system mass in the 100 kWe range is 
moderate, and no moving components are required for power 
conversion or fluid flow. 

For the reference 100 kWe design being pursued in the on- 
going SP-100 thermoelectric program, the reactor core is 
about 35 cm in length and diameter and consists of bundles 
of 0.77 cm diameter fuel pins contained in a niobium alloy 
pressure vessel (see Figure 2.8).  The fuel pins are made 
up of uranium nitride fuel pellets within a rhenium-lined 
niobium alloy cladding.  Beryllium oxide reflector segments 
surround the core circumference and are external to the 
pressure vessel.  The reflector elements are hinged at one 
end and their radial position is adjusted at the opposite 
end of the reflector to control reactivity by regulating 
neutron leakage out of the core.  In-core safety rods are 
also provided to maintain the reactor in the shutdown 
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condition during potential accident scenarios.  A reentry 
heat shield surrounds the reactor to prevent core 
disruption during an accidental reentry. 

The payload and power system electronics are protected from 
reactor gamma and neutron radiation by a shadow shield at 
the aft end of the reactor.  The shield consists of layers 
of beryllium, tungsten, and lithium hydride.  Additional 
attenuation of the dose to the payload is achieved by 
separating the payload from the reactor by a boom. 
A flowing lithium coolant is used in the primary heat 
transport system to transfer heat from the reactor fuel 
pins to the thermoelectric power conversion modules.  The 
primary heat transport system is arranged into twelve 
identical heat transport loops and one separate auxiliary 
cooling loop. The primary heat transport loop consists of 
piping, accumulators, thermoelectromagnetic pumps, thaw 
heat pipes, micrometeoroid protection, and other hardware. 
Core coolability during a loss-of-coolant accident is 
insured by the auxiliary coolant loop which consists of in- 
core bayonet cooling tubes dispersed throughout the core. 

The thermoelectric power conversion modules convert the 
thermal energy, carried from the reactor by the flowing 
lithium coolant, directly to electric energy.  Silicon 
germanium thermoelectric cells are built up into modules 
which are conductively coupled to the primary loop lithium 
heat exchanger through compliant pads.  The heat rejection 
subsystem is also made up of twelve identical modules 
incorporating a lithium coolant and thermoelectromagnetic 
pumps.  Waste heat is carried by the flowing lithium 
coolant to the conical radiator, which is located between 
the shield and payload.  Finned, titanium heat pipes 
attached to the lithium radiator ducts reject the waste 
heat to space via radiation. 

At power levels below about 30 kWe, the secondary coolant 
loop can be eliminated by placing heat pipes on the cold 
side of the thermoelectric converters (Ref. 6).  By 
eliminating the secondary loop, the power system mass can 
be reduced by 10 to 20%.  This design is called the 
innovative SP-100. 

2.4 SP-100 With Stirling Power Conversion 

For this study, the SP-100 Stirling power system shown in 
Figure 2.9 and Figure 2.10 is assumed to be composed of the 
same components as the SP-100 thermoelectric power system 
except for the method used to convert thermal energy to 
electric energy.  We assumed that the SP-100 Stirling power 
system uses six free-piston Stirling engines (Figure 2.11) 
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with linear alternators instead of thermoelectric modules. 
As explained in the Ground Rules reliability section, six 
engines are required to provide 20% redundancy.  Based on 
information from NASA (Ref. 9) we assumed that the specific 
mass of the Stirling engines is constant with power level. 
Our calculations assumed the use of two different free 
piston Stirling engines; one a superalloy engine with 
temperature limits of 1050 K, and the other a refractory 
engine which might permit operation up to 1350 K. Heat 
energy from the reactor is carried to the Stirling engines 
by a flowing lithium coolant.  Helium is the engine working 
fluid.  Since the Stirling cycle approaches a Carnot cycle, 
high cycle efficiencies, typically around 30%, are 
achievable.  System optimization for refractory Stirling 
power systems results in effective heat rejection 
temperatures of only about 620 K.  For superalloy engines 
this temperature is about 52OK.  These low heat rejection 
temperatures require systems with relatively large 
radiators, but because the cycle efficiency is so much 
higher, they are still smaller than the thermoelectric 
system radiators. 

2.5 SP-100 With Rankine Power Conversion 

Here, as with the SP-100 Stirling power system, we assumed 
that six conversion systems would be used for reliability 
and that the specific mass of the conversion system was 
constant with power level.  This potassium Rankine system 
utilizes a primary lithium heat transport loop, as depicted 
in Figure 2.12, to deliver heat from the nuclear reactor 
core to the potassium working fluid of the Rankine cycle 
via the intermediate heat exchanger.  A vapor separator in 
the potassium loop is located at the outlet to the 
intermediate heat exchanger and provides nearly 100% 
quality vapor to the turbine inlet.  The potassium vapor is 
then expanded through the axial flow turbine and completely 
condensed in the condenser heat exchanger.  Waste heat is 
radiated to space with a heat pipe radiator that is 
directly connected to the condenser heat exchanger.  The 
liquid potassium is finally pumped back through the 
intermediate heat exchanger to complete the cycle. 

The lithium heat transport loop and nuclear reactor core 
are similar in construction to the SP-100 thermoelectric 
and Stirling power systems.  Electrical energy is provided 
by a turbine driven iron-core generator, with a net system 
efficiency of about 22% for operating temperatures between 
1300K (boiling) and 800K (condensing).  Most materials of 
construction are expected to be nickel superalloys at these 
temperatures, although refractory based alloys may also be 
considered. 
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2.6 SP-100 With Brayton Power Conversion 

The SP-100 nuclear reactor and primary heat transport loop 
were also mated with a simple Brayton power conversion 
cycle.  Again, six power conversion units (each unit 
composed of a compressor, turbine, and alternator on the 
same rotating shaft) were provided for the required 
redundancy.  Thermal energy from the lithium primary heat 
transport loop was provided to the helium-xenon working 
fluid of the Brayton cycle by the intermediate heat 
exchanger.  The high pressure He-Xe enters the turbine at 
temperatures of about 1345K, expands through the turbine, 
is cooled in the heat pipe radiator, and is recompressed 
before entering the intermediate heat exchanger to complete 
the cycle.  Turbine work provided by the expanding gas 
powers both the compressor and alternator.  No recuperator 
is employed in this simple Brayton cycle.  With compressor 
and turbine efficiencies of 85% and 90%, respectively, the 
overall cycle efficiency is about 22% to obtain the minimum 
total power system mass. 

The Brayton cycle upper temperature limit would allow 
fabrication from nickel alloys for most components, 
although the intermediate heat exchanger is assumed to be 
made of niobium allow.  The turbines do not have blade 
cooling at these temperatures, although center-shaft and 
disk cooling would be required to provide less massive 
rotating parts. 

The SP-100 Brayton flow diagram is the same as the SP- 
100/Rankine flow diagram (Figure 2.12) with two exceptions. 
First, the Brayton system does not have a vapor separator. 
Second, the Brayton system has a compressor rather than a 
pump, and the compressor is on the same shaft as the 
turbine. 

2.7 Electrical Subsystems 

The flow of electrical power is shown in Figure 2.13.  Heat 
from the reactor is converted to ac or dc electrical power 
by the power conversion subsystem as described in the 
Sections 2.1 through 2.6.  The electrical power is then 
carried down the separation boom via a transmission line 
and converted to the appropriate voltages by the power 
conditioning subsystem. 

The transmission line is sized to have a minimal mass while 
at the same time having a reasonably small power loss. 
This is achieved by calculating the mass, power loss, and 
temperature of the transmission line and, using standard 
wire size data, determining the optimum cable diameter and 
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number of conductors as a function of power level, boom 
length, operating voltage, conductor material properties, 
etc. 

For power system concepts with conversion devices that 
supply dc power, the power conditioner is a dc to dc 
converter utilizing power MOSFET switch technology 
operating at 20 kHz.  Separate converter modules supply 
each of the required voltage outputs.  For concepts with 
conversion devices which produce ac power, the power 
conditioner consists of a rectifier/filter circuits for 
each output voltage.  This assumes that a tapped 
alternator having the necessary number of output windings 
is used.  The electronics technology used for the power 
conditioning subsystems is described in Reference 10. 
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3.0 Analysis Approach 

In any comparative systems analysis it is absolutely 
essential to pick a common set of ground rules against 
which to assess the various concepts.  When time and 
resources are limited, as in this case, these ground rules 
must be simplified to the point that they address only 
major issues.  As a result, we have performed top level 
system mass, area, and performance analyses and presented 
results as part of the general discussion.  We have 
optimized component performance within the constraint of 
minimizing overall power system mass for all of the more 
massive components, intentionally omitting many minor 
components which when added together may make real system 
masses different than the estimates shown here.  However, 
special care was taken to treat the SP-100 thermoelectric 
concept in identical fashion to the other concepts since it 
has received more design funding and has therefore 
identified many additional contributors to total system 
mass.  We did not permit major concept re-design in our 
optimization process but only varied component parameters 
within the range permitted by each design.  Because of the 
simplifying assumptions, our results will not be completely 
representative of real systems nor are they intended to be 
because many design details are unknown at this time.  They 
should however provide good relative comparisons among the 
various concepts.  We believe our approach is reasonable 
because our results agree well with those obtained from the 
SP-100 program for the SP-100 thermoelectric and innovative 
SP-100 concepts. 

The remainder of this chapter describes the approach that 
was used in our analyses to obtain consistent mass and area 
estimates among the various power system options. 

3.1 Description of System Models 

The mass and area estimates presented in this paper were 
derived from models developed at Sandia.  The objective of 
these models was to develop a consistent set of estimates 
based on design approximations and to a lesser extent on 
known component masses.  For example, design approximations 
are used to determine reactor fuel mass.  The fuel masses 
required to meet criticality limits, fuel damage limits, 
burn-up limits, thermal limits, etc. are calculated and the 
fuel mass selected is the largest of these cases (Ref. 11, 
12, 13, 14, 15, 16).  The mass of the radiation shield for 
the power conditioning system is also based on design 
approximations but power conditioning mass and volume are 
estimated from known component values (Ref. 10).  The level 
of detail in each of the models is consistent and some of 
the subsystem models used in the various system models are 
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the same.  As a result, we believe the relative comparison 
between the various power systems is quite good. 
Furthermore, the SP-100 program's own detailed mass 
estimates indicate that our absolute values should be 
reasonably representative of actual mass. 

Another important characteristic of the models developed 
for each system is that all of the subsystems are contained 
in one model.  Therefore, the interactions between the 
various subsystems is modeled.  For example, the thermal 
power required from the reactor is not known until the 
efficiency of the electrical system is known.  This is 
further complicated by the fact that each component of the 
electrical system cannot be designed until the efficiency 
of the other electrical components is known.  By having all 
of the subsystem models contained within a single model, 
these interactions are taken into account. 

The final, major characteristic of the models is that the 
mass of the power systems can be optimized at each power 
level.  The optimization is based on the important system 
parameters.  In the OTR concept, for example, the amount of 
power obtained is directly proportional to the surface area 
of the reactor core.  Therefore, the model varies the 
height to diameter ratio of the core as specified by the 
user.  The system mass is calculated for as many ratios as 
desired and the code selects the optimum ratio based on 
minimum total power system mass. 

The differences between military and civilian programs are 
not reflected in our calculations, because we did not 
require the power systems to survive hostile threats that 
could be postulated for military missions.  The mass and 
area estimates are therefore applicable to either civilian 
or military missions at the selected orbit altitude. 

3.2 Study Ground Rules 

The specific ground rules for this study are shown in 
Table 3.1 and are discussed in detail below. 

3.2.1 Technology Status 

Perhaps the most significant ground rule and the one most 
often neglected in many conceptual proposals requires us to 
consider only near-term or nearer technology in our 
conceptual system estimates.  This has far reaching 
implications.  For example, we believe that power 
conditioning devices can be developed that will tolerate 
higher radiation doses and operating temperatures than 
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presently possible; but not in the near-term.  This means 
that the reactor shield and the power conditioning radiator 
will be heavier in a near-term system than one built later 
using power conditioning devices which could operate in 
higher temperature and radiation environments. 
There are of course many different opinions regarding what 
is and is not "near-term" technology and our opinion is 
only one of a very large set.  We have used the following 
general definition for "near-term" technology: 

"We expect that necessary parts and materials could be 
developed and a prototype proven by hardware testing on 
the ground within 5 years if a concerted effort is made 
and funding is available to do so." 

It is also important to recognize that technology risks and 
development costs are not the same among the systems 
labeled as near-term.  For example, the SP-100 
Thermoelectric Program has been under way since 1983 
although the thermoelectric energy conversion devices 
employed in SP-100 have not yet been tested.  A test 
program is in place which is successfully addressing the 
technical issues associated with thermionic fuel element 
energy conversion devices and STAR-C utilizes a flat plate 
thermionic diode conversion approach that has been under 
development for years.  Nonetheless, the Thermionic Fuel 
Element and STAR-C concepts are based primarily on studies 
and the fuel form STAR-C proposes has never been produced 
in the United States.  None of the systems have 
demonstrated the ability of either the reactor or energy 
conversion systems to operate in an unattended mode for up 
to ten years.  Free piston Stirling engines with linear 
alternators must overcome problems associated with wear, 
creep, and material degradation over the long system 
lifetimes at high temperature.  The flat thermionic diodes 
used in STAR-C, the thermoelectrics used in SP-100, and the 
thermionic fuel pin devices must overcome problems of long 
term material degradation at high operating temperatures. 
Brayton turbines using helium-xenon as a working fluid have 
not been used to any great extent but one has been built by 
Garrett (Ref. 17) and it is reasonable to expect that this 
is the most mature conversion technology. 

With two exceptions, the SP-100 reactor technology when it 
is coupled with liquid metal Rankine or refractory metal 
Stirling energy conversion systems, we have analyzed near- 
term concepts which we believe offer the greatest potential 
for small mass and radiator area.  The exceptions were 
included to show the potential benefit of pursuing the two 
different conversion technologies for future systems.  In 
both cases we assumed the use of advanced conversion 
technology while retaining the use of near-term technology 
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for the remainder of the system (i. e. SP-100 reactor 
technology, control electronics, etc.)«  The Rankine 
conversion technology is further out in time because it 
requires two-phase flow in a micro-gravity environment and 
turbines and vapor separators must be developed and proven 
reliable for long term use with liquid metals at high 
temperatures. These are issues that will not be resolved 
for several years.  The free piston Stirling engine must 
use refractory metals at the hot end in place of 
superalloys if it is to operate at 1350K as we assumed in 
one of our system analyses.  The superalloy version of this 
engine is currently under development at NASA's Lewis 
Research Center and should be available in the near-term. 
The refractory metal engine would result in a lighter 
system but it would not be available in the near-term if 
the present evolutionary approach being pursued by NASA is 
continued (Ref. 18).  In this approach, a superalloy engine 
is being developed for initial testing up to 1050K.  It is 
being designed in such a way that, once the design is 
proven, refractory metals could hopefully be substituted 
for superalloys in certain components without redesign. 
Then a refractory metal engine could be put on test.  This 
requires that test facilities be upgraded to provide a 
vacuum of 10 to the minus 7 to 10 to the minus 8 torr, and 
that materials fabrication and joining processes be 
developed.  If their were sufficient demand for a 
refractory Stirling engine, a revolutionary approach to go 
directly to that engine could conceivably develop one in 
the near-term but at much higher development risk.  For 
these reasons, we conclude that superalloy Stirling engines 
are near-term and refractory engines are far-term. 

3.2.2 Reliability 

In a top-level systems study such as this, with most of the 
concepts in very preliminary form, it is not possible to 
adequately treat the effect of required reliability and 
therefore component redundancy on system mass.  No system 
reliability analyses were done.  However, we have included 
cursory estimates where possible by arbitrarily assuming 
that the probability of producing 100% of the design power 
level after 10 years should be 95%.  Of the 5% 
unreliability, 2.5% was assigned to degradation of the 
various heat rejection radiators due to micrometeoroid 
damage to heat pipes and the other 2.5% to the balance of 
the system.  Thus, since there would be a large number of 
heat pipes whose failure would only reduce system power 
incrementally, there is a 97.5% probability of the system 
producing a significant percentage of system power after 10 
years.  We assumed 10% redundancy in the power 
conditioning subsystem and 20% for the transmission lines. 
In the case of turboalternators and Stirling conversion 
systems we assumed 20% redundancy, which means these 

-38- 



systems would use six conversion units with five operating 
and one in the standby mode.  Using a large number of 
conversion units may or may not practical, but the 
assumption is adequate for mass estimation purposes.  In 
the turboalternator case, the spare engine would probably 
be running but producing no power in the standby mode to 
counter-balance torques generated during turbine start-up 
and any other operations that require changes in speed. 

3.2.3 Component Mass Estimates 

Our power system mass estimates include the reactor, 
shield, power conversion, power conditioning, power 
transmission, heat exchanger, and radiator subsystems plus 
the structure required to interface with the user satellite 
but not the satellite itself.  Area estimates include 
radiators to dump the waste heat from reactor and power 
conversion equipment, power conditioning and transmission 
equipment, and reactor control electronics but do not 
include a satellite electronics radiator. 

The mass estimates for the reactors were obtained based on 
the following considerations.  The structural mass 
associated with the reactor such as cladding and TFE 
internal structure is explicitly included.  In addition a 
number of miscellaneous structural components such as 
reflector supports, fittings, springs, etc. are included by 
multiplying the core volume by a core-average miscellaneous 
structural density that was obtained by dividing the 
miscellaneous structural mass for the SP-100 100 kWe 
reactor core by its volume.  Safety system mass estimates 
are based on the assumption that all reactors will require 
a redundant reactivity control safety system plus a re- 
entry aeroshell.  The reactor core volumes are arbitrarily 
increased by 20% to account for the in-core redundant 
reactivity control system unless they already have enough 
space for this system.  The mass of the redundant 
reactivity control system is then estimated for all 
concepts by multiplying the resultant core radius by a 
number obtained by dividing the redundant reactivity 
control system mass for the SP-100 100 kWe design by its 
core radius.  The mass of the re-entry aeroshell is taken 
from the SP-100 program and scaled to other systems based 
on reactor geometry.  In addition to these two safety 
system components, all concepts except the OTRs include an 
auxiliary coolant loop to prevent meltdown in case of a 
loss of coolant accident.  The mass of a rhenium barrier is 
also included to provide negative reactivity for core 
flooding accidents in all concepts except the OTRs.  The 
OTRs are excluded because their tungsten emitter could 
concievably be replaced with a rhenium emitter that would 
meet this requirement.  The instrumentation and control 
mass is broken down into three components:  1) fixed items 
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that change very little with power level or reactor size, 
e.g., controllers and multiplexers, 2) size dependant items 
that increase appreciably with power level or reactor size, 
e.g., control and safety drives and actuators, and 3) items 
dependent on boom length, e.g., I&C cabling.  The mass 
densities and linear densities for these components were 
obtained from the SP-100 100 kWe reference design.  (Note: 
Since OTRs do not have to control an active coolant loop 
the components used for that function were omitted from the 
OTR estimates.) 

Mass estimates for all of the radiators include armor to 
protect them against micro-meteoroids.  We assume that 
armoring is provided by simply increasing the thickness of 
the heat pipe radiator walls since these are near-term 
systems.  If graphite armor were available, the associated 
mass could be reduced.  The armor is thick enough that the 
radiators have a 97.5% probability of being fully 
operational after ten years operation at the selected orbit 
altitude.  Any penetration of the armor would cause only 
limited degradation due to redundancy of the heat pipes in 
each radiator.  The specific masses used for the waste heat 
radiators are 6.8 kg/m2 for temperatures below 690K and 
8.2 kg/m2 for temperatures above 690K.  Micro-meteoroid 
protection was not included for any other components since 
we lack both the design detail and the time to do so.  It 
is of interest to note that space debris is not yet a 
threat at the selected orbit altitude which is fortunate 
because it is impossible to protect against space debris 
without huge mass penalties. 

Mass estimates also include aluminum shielding around all 
electronics of sufficient thickness to limit the dose from 
protons and electrons in the Van Allen belt to 20% of the 
total dose that the electronics must survive. 

Mass estimates for the radiation shields consider: 

reactor control electronics which operate at 30OK and 
can withstand 1016 neutrons/cm2 and 0.5 Mrad of gamma 
radiation 

power conditioning electronics which operate at 425K 
and can withstand 1013 neutrons/cm2 and 1 Mrad of gamma 
radiation. 

satellite payload devices which operate at 30OK and can 
withstand 1013 neutrons/cm2 and 1 Mrad of gamma 
radiation.  Since the power conditioning electronics 
are limited to 1013 neutrons/cm2, the payload need be no 
harder than that and we arbitrarily assume that all 
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payload electronics, sensors, and other functions can 
meet or be locally shielded to survive the above 
payload environment. 

that all components are shielded so that no more than 
80% of the above specified doses comes from the reactor 
and no more than 20% from the natural environment. 

a varying separation distance between the reactor and 
the satellite payload optimized to minimize total 
system mass (See Figure 4.4 for a typical example). 

Boom mass is assumed to be 9 kg/meter which is typical of 
the berylium design proposed for the SP-100 thermoelectric 
system.  We calculate that such 20 m boom cantilevered 
horizontally could support a 1100 kg load at 1 g without 
exceeding yield stresses in the materials.  This assumes 
that the joints of the fully extended boom could be made as 
strong as the parent material.  Such a boom would permit 
significant g-loading during maneuvers to avoid hostile 
threats if necessary. 
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TABLE 3.1:  GROUND RULES FOR MASS AND AREA ESTIMATES 

Application: 

Technology: 

Mission Duration: 

Power: 

Payload Voltage 
Requirements: 

Electronics Hardness: 

Orbit: 

Durability: 

Survivability: 

General civilian or military 
satellites 

Near-term 

10 years 

Variable from 5 to 1000 kWe 

15 % at 5 volts dc 
55 % at 28 volts dc 
30 % at 100 volts dc 

0.5 Mrad gammas and 1013 neutrons/cm2 

Circular, 3000 km, 90 degree 
inclination 

Must endure natural and reactor 
induced environments - 
micro-meteoroids, Van Allen belts, 
cosmic and reactor induced radiation 

Hostile military threats not 
considered 
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4.0 Nass and Area Results 

4.1 Power System Mass Comparison 

The estimated masses of the 9 reactor power systems we 
investigated are shown in Figures 4.1 and 4.2 as a function 
of power level.  Figure 4.3 is a plot of specific mass 
versus power level.   It is worth reiterating that the 
absolute values shown for mass are our best estimates, and 
we have not yet made a large effort to estimate the error 
associated with them.  However, by looking at the SP-100 
thermoelectric system mass at 100 kWe, it can be seen that 
our estimate is about ???% higher than the estimate 
currently being made by the SP-100 program (Ref. 7).  Our 
estimates for the 10 kWe innovative SP-100 are 7% lower 
than the DOE estimate (Ref. 19).  Also, although we believe 
the best use for the mass curves is for relative 
comparisons, they should not be interpreted too literally. 
Single curves depicting these results can be misleading 
unless broader issues are considered.  For example, our 
estimates show the cross-over between the STAR-C and SP-100 
thermoelectric concepts to occur at 22 kWe.  However, from 
separate sensitivity analyses we know that with the 
uncertainties in actual performance the masses of STAR C 
and SP-100 thermoelectric systems could occur anywhere 
between 15 and 30 kW(e).  With these caveats in mind, the 
physical significance of the curves is described below. 

4.1.1 OTR Power Systems 

The slope of the STAR-C mass curve is steep throughout the 
power range of 5 to 50 kWe.  The reason for this poor 
scalability is two-fold.  First, the OTR concepts are 
fundamentally different from all of the other concepts. 
Above about 8 kWe, the size of the reactor core is set by 
the core surface area needed for heat transfer.  Thus, the 
core size increases linearly with electrical power. 
Second, the STAR-C design is not optimized.  The optimized 
OTR curve shows the potential that this design concept has 
to scale with power.  The optimized OTR is the least 
massive system below about 25 kWe and is less massive than 
the SP-100 thermoelectric and innovative SP-100 at power 
levels below 50 kWe.  (It should be noted, however, that 
the masses for the OTR above 30 kWe do not reflect problems 
with fitting the heat rejection radiator above the 
radiation shield.  A minor mass penalty will probably be 
incurred when this is done.)  A detailed discussion on the 
scalability of OTR power system can be found in Reference 
3. 
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4.1.2 The SP-100 Power System. 

Figures 4.1 to 4.3 have two curves representing the mass of 
the SP-100 power system.  The more massive of the concepts 
is for a scaled version of the system being developed in 
the SP-100 program.  The less massive is the innovative SP- 
100, which does not have a secondary coolant loop and only 
applies to power levels below about 30.  The slope of both 
of the SP-100 systems is much steeper than the slopes of 
the other liquid metal cooled concepts.  In fact, the slope 
is the same as that of the optimized OTR.  The steep slope 
can be seen best in Figure 4.2.  There are two reasons for 
the steep slope.  The main reason is the low efficiency of 
the thermoelectric conversion system; the multicouple 
efficiency is 4.7% and the total system efficiency 4.2%. 
As a result, the masses of the reactor and heat rejection 
radiator both increase faster with increasing power 
requirement than for the other liquid metal reactor 
options.  The second reason for the steep slope is that the 
specific mass (in kg/kWe) of the thermoelectric conversion 
units is high. 

4.1.3 The SP-100 With Brayton Power Conversion 

Aside from the potential reductions in mass of the STAR-C 
concept, probably the most interesting result obtained in 
our analyses is the excellent scalability of the SP-100 
reactor used in conjunction with a Brayton power conversion 
system.  It is the least massive of all of the near-term 
power systems at power levels above 25 kWe.  In fact, it 
even scales better than the SP-100 with a refractory 
Stirling power conversion system, which is not a near-term 
system.  The only power system that scales better is the 
SP-100/Rankine system.  It is 14% lighter than the SP- 
100/Brayton system at 100 kWe and 34% lighter at 1000 kWe. 

As was mentioned earlier, the gas-cooled reactor/Brayton 
power system was not analyzed in detail because of 
financial constraints; we did not have the time to develop 
the criticality model for the reactor.  However, our mass 
estimate for this power system at 1000 kWe, which will not 
have a reactor that is criticality limited, is within 1% of 
the mass estimate of the SP-100/Brayton estimate. 

4.1.4 TFE Based Power Systems 

The TFE based power systems do not scale very well at the 
very low power levels.  They are the most massive power 
system below about 22 kWe.  However, as the power level 
increases, they become much more attractive.  Above 85 kWe, 
they are lighter than all other near-term power systems 
except the SP-100/Brayton system.  The reason for the poor 
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system performance at low power levels is that the reactor 
and shield are much more massive than for the other 
systems.  The reactor is more massive, because it contains 
moderator and more structure and has larger dimensions. 
The shield is more massive, because it has a larger 
diameter, which is caused by a larger reactor.  TFE based 
systems perform better at higher power levels for two 
reasons.  First, they have a high temperature radiator 
(-1000K), which means that it will be smaller and less 
massive.  Second, at the higher power levels, the power 
conversion systems of the dynamic systems contribute a 
substantially higher fraction of .the total system mass than 
at lower power levels (See Section 4.2). 

4.1.5 SP-100 With Stirling Power Conversion 

Two SP-100/Stirling power systems are shown on Figures 4.1 
to 4.3.  The masses represented by the broken line is for a 
near-term, superalloy power conversion system, and the 
dotted line is for a future, refractory metal power 
conversion system.  The near-term Stirling scales much 
better than the SP-100 thermoelectric system.  It is 32% 
less massive at 100 kWe and 38% less massive at 1000 kWe. 
The refractory Stirling version scales better than the 
superalloy Stirling, mainly because it has a higher heat 
rejection temperature, and therefore, a smaller radiator. 
Although the efficiencies of the SP-100/Stirling systems 
are 3 to 6% higher than that of the SP-100/Brayton system, 
they are still more massive.  This is due primarily to the 
fact that the Stirling engines themselves are so massive. 
At 1000 kWe, the superalloy engine is 40% of the total 
power system mass and the refractory engine is 50% of the 
total system mass.  (Note:  The Stirling engine mass 
algorithm was obtained from the NASA/Lewis Research 
Center.) 

4.1.6 SP-100 With Rankine Power Conversion 

The SP-100 with a Rankine power conversion system, which is 
not a near-term power system, scales better than any other 
power system above 25 kWe.  The reasons for this are that 
it is a relatively high efficiency system with a small, 
high temperature, waste heat radiator and the Rankine 
turbo-alternator scales well with power level.  At 300 kWe, 
it is less massive than the refractory Stirling and the 
Brayton systems by 40% and 24%, respectively. 

4.2 Power System Mass Characteristics 

During the course of our analyses we discovered several 
interesting characteristics of power system masses.  Three 
of these characteristics are discussed below. 
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4.2.1 Length Of The Separation Boom 

Figure 4.4 shows the relative mass of a 100 kWe SP-100 
thermoelectric system as a function of boom length.  Our 
calculations give a minimum system mass with a separation 
of 16 m.  This is substantially shorter than the 22.5 m the 
SP-100 program uses.  Also, if the separation distance is 
reduced to 9 m, the system mass increases by only 2.4%. 
This indicates that if shorter booms were required by the 
satellite payload that only a small mass penalty would have 
to be paid. 

4.2.2 Power System Mass Breakdown 

The mass breakdown for a power system varies significantly 
as the power level varies (Figure 4.5).  At low power 
levels, the reactor and shield make up the majority of the 
mass.  A substantial contribution is also made by the 
balance of system, i.e., instrumentation and control, 
safety systems, the electrical subsystem, and the boom.  As 
the power level increases, the power conversion system and 
radiator become more important. 

4.2.3 Rad-Hard Electronics 

The radiation hardness of the electrical subsystem and 
payload electronics can have a significant impact on system 
mass.  This is particularly true at lower power levels.  If 
it is assumed that electronics that should be available in 
1995 are used, the radiation shield only needs to be 
designed to reduce radiation levels to 100 Mrad and 1015 

nvt (Ref. 20 and 21).  These values compare to 0.5 Mrad and 
1013 nvt, which are used in this report.  Figure 4.6 shows 
how the mass of an optimized OTR is reduced with these 
advanced electronics.  At 10 kWe the mass decreases by 26%, 
and at 30 kWe it decreases by 21%.  At the same time, the 
length of the separation boom for the 30 kWe system 
decreases by more than a factor of two. 

4.3 Power System Area Results 

A comparison of the specific areas of the heat rejection 
radiators for each of the power systems as well as the 
power conditioning radiators is given in Figure 4.7.  The 
specific areas are for the power system beginning of life 
(BOL), i.e., they include an additional 10% area to account 
for heat pipe redundancy.  It should be noted that the 
power systems were optimized based on total power system 
mass.  Therefore, the radiator areas shown here could be 
reduced at the expense of mass, i.e., by using higher heat 
rejection temperatures and less efficient energy 
conversion. 
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The largest radiator belongs to the SP-100 thermoelectric 
power systems.  This is due in large part to the fact that 
the system efficiency is 4.2%, which is very low compared 
to the other systems, and so almost 96% of the power 
generated in the reactor must be rejected.  The next 
largest radiator is for the SP-100 with a near-term 
Stirling power conversion system.  Its large size is due to 
the fact that it operates at relatively low temperatures: 
between 490 and 54OK. 

The third largest radiator belongs to the SP-100/Brayton 
power system.  Its large size is also due to the fact that 
it has a relatively low temperature.  The 20% change in the 
specific mass between 30 and 50 kWe is due to an increase 
in the effective radiator temperature.  The temperature 
goes from a range of 379 to 843K to a range of 428 to 846K. 
This increase in temperature reduces the system efficiency 
from 24.8% to 22.9%, but reduces overall system mass.  It 
should be mentioned that the specific area of the radiator 
drops again for the 1000 kWe SP-100 Brayton system.  The 
drop results from an increase in the effective radiator 
temperature; the temperature range becomes 476 to 843K. 
This temperature increase is accompanied by a decrease in 
system efficiency to 20.2%. 

The radiator specific area for the SP-100 with a refractory 
Stirling power conversion system is 0.42 m2/kWe for all 
power systems above 20 kWe.  This power system has a much 
smaller radiator than the SP-100/ 
superalloy Stirling mainly because of its higher 
temperature.  The radiator temperature range is 590 to 
64OK, which is 100K higher than the range of the superalloy 
version. 

The shape of the specific area curve for TFE based power 
systems is driven by the technologies involved.  The 5 kWe 
system has both moderator, which forces the coolant 
temperature to be held at or below 900K, and driver fuel. 
Thus, it has a very low thermal efficiency, 2.1%, and a 
relatively low radiator temperature range, 840 to 890K. 
Between 10 and 50 kWe, driver fuel is no longer used, and 
so the thermal efficiency increases to 8.3%.  Above 
100 kWe, the moderator is no longer required and so the 
primary coolant temperature, and therefore the radiator 
temperature can be raised.  In our calculations the 
temperature range increases to 990 to 104OK. 

The specific areas of the STAR-C and OTR power systems are 
the next to smallest of all power systems investigated in 
this report.  The small size is a result of good 
efficiency, 12 to 13%, and a high heat rejection 
temperature, 1000K.  The system with the smallest specific 
area for the heat rejection radiator is the SP-100/Rankine 
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system.  The small size is achieved through a high 
efficiency, 22%, and a relatively high heat rejection 
temperature, 90OK. 

The specific areas for the power conditioning radiators 
were based on a radiator temperature of 425K.  The 
difference between the areas of the ac and dc power 
conditioning curves result from the fact that they have 
different efficiencies:  91% for dc and 96% for dc. 
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5.0 Conclusions 

Based on our mass and area estimates, which do not include 
the means to survive hostile threats, there is no 
compelling reason to choose one nuclear power system 
technology over another at power levels below 40 kW(e) 
until requirements become more firmly established. 
Differences in volume at launch and during operation may be 
more important than mass differences at the lower power 
levels.  However, differences in power system masses become 
more significant as the required .power increases further 
and further beyond the 40 to 60 kW(e) range.  The near-term 
system that looks promising from the mass perspective at 
the higher power levels is the SP-100/Brayton system.  In 
the far-term, substantial mass and area savings could be 
realized by going to a SP-100/Rankine power system. 

Until requirements are more firmly defined, especially 
those dealing with survivability, and power systems are 
designed to meet these and many other specific satellite 
integration requirements, comparisons of power system 
concepts will remain mostly a matter of conjecture because 
many system attributes, including mass, may be altered 
dramatically by these requirements. 
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