. UN	CLASSIFIE	D						
ICURITY CL	ASSIFICATIO	N OF THIS	PAGE					
1				REPORT DOCUME	ENTATION PAGE			
1. REPORT	SECURITY CL	ASSIFICA	TION		15. RESTRICTIVE M	LAKINGS	5 . 5 . 5 . Sp	
2. SECURIT	Y CLASSIFIC	ATION AU	THORITY		1. DISTRIBUTION	2012011-019/11	DECENT A	
					Appro	ved tor public	release	
Th. DECLAS	SIFICATION/L	OWNGRA		,oct				
4. PERFORM	ING ORGANI	ZATION R	EPORT NUM	SER(S)	S. MONITORING OR	JANIZATION REPO	ORT NUMBER(\$)	
Sa NAME O Univers	FPERFORMIN	orth Te	IZATION	BD. OFFICE SYMBOL (If applicable)	7 NAME OF MONIT	ORING ORGANIZA	ATION	
Se ADDRES	s (City. Side Texas 7	6203- 50	e))70	1	Th ADDRESS (City, S	liete and ZIP Code)		
A NAME O ORGAN Office	FFUNDING/SIZATION	Researc	ia :h	80. OFFICE SYMBOL (If applicable)	9. PROCUREMENT I	NSTRUMENT IDEN	ITIFICATION NUM	IER
SC. ADDRES 81 A	is (City, State) 00 North rlington,	Quincy Quincy VA 222	(m) Street 17-5000	ved Economical &	10. SOURCE OF FU PROGRAM ELEMENT NO.	1998	30223	127
Environm	entally Be	enig h n F	Routes fo	or the Large-Sca	1. Synthesis of	TNA7'		
12. PERSON	Alan P. M	s) Iarchand	d (Princ	ipal Investigato	or)			
134 TYPE (F REPORT		135 TIME	COVERED /15/96 TO12/31/9	14. DATE OF REPOR	зт <u>(Yr. Me. Dey)</u> y 12	18. PAGE COU 11 + 77	NT
16. SUPPLE N0001	MENTARY NO 4-96-1-127	79			·····			
17.	COSATI	CODES		18 SUBJECT TERMS (Continue on reverse if no	cessary and identify	by block numbers	
FIELD	GROUP	SU	8. GR.	1,3,3-Trinitro 1,3-Dinitro-3 -	azetidine (TNAZ (1',3'=dinitroa	zetidin- S	structure Sml ₂ -promoted	≥s 1 coupling 1 dimenses
				3-y)azeti	dine		01 azer	Lainoues
th hi fc ti by c	Severa te most pro ighly strained ound that rea on across the y affording prrespondin	l routes f mising n ed C(3)-N action of e C(3)-N <i>N</i> -nitroso g dinitro	or the synthew method or bond i this highl bond with o-3-ethyl- azetidine,	thesis of 1,3,3-trinitro od involves studies in 3-ethyl-1-azabicy y strained bicyclic a concomitant N-nitro 3-nitroazacyclobuta N-nitro-3-ethyl-3-n	oazetidine (TNAZ) of additions of va clo[1.1.0]butane.] mine with <i>in situ</i> g osation of the resul ne (54%), which v itroazacyclobutane) have been inv arious reagents In the course of generated HNC ting intermedia was oxidized su e (89%). These	vestigated. Of the s, X-Y, across of this study, it w D ₂ resulted in acc ate azetidine, the ubsequently to be observations p	the was Idi- ere- the pro-

vide the basis of the method with which a novel synthesis of TNAZ has been developed. Our objectives include: (i) development of improved methods to permit scale-up of our previously published TNAZ synthesis and (ii) introduction of environmentally benign routes to prepare key synthetic intermediates.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT	21. ABSTRACT SECURITY CL	ASSIFICATION
UNCLASSIFIED/UNLIMITED - SAME AS APT.		
22L NAME OF RESPONSIBLE INDIVIDUAL	225. TELEPHONE NUMBER (Include Area Code)	224. OFFICE SYMBOL
DD FORM 1473, 83 APR ED	ITION OF 1 JAN 73 IS OBSOLETE.	UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

Table of Contents

		PAGE
Ι	Overview/Abstract	1
II	Scientific Issues Requiring Research	1
III	Key Results	
	A. Model Studies for Developing Novel Routes to 3-Substituted	
	Azetidines	2
	B. A Novel Synthesis of TNAZ.	2
	C. Synthesis and Thermal Properties of 1,3-Dinitro-3-(1',3'-dinitro-	
	azetidin-3'-yl)azetidine	3
	D. Application of Dave's Method for Generating 1-Azabicyclo-	
	[1.1.0] butane to the Synthesis of TNAZ	5
	E. A New Approach for Generating 1-Azabicyclo[1.1.0]butane	6
	F. Novel Routes to N-Substituted Azetidin-3-ones	6
	Experimental Section: Novel Routes to N-Substituted Azetidin-	
	3-ones	8
	G. Samarium Iodide Promoted Coupling of N-Substituted Azetidin-	
	3-ones. A Novel Route to Spiroannulated Heterocyclic Oxiranes	11
	Experimental Secction: Samarium Iodide Promoted Coupling of	
,	N-Substituted Azetidin-3-ones. A Novel Route to Spiroannulated	
	Heterocyclic Oxiranes	13
IV	Technology Transfer from Academics to Industry and DoD	18
V	References and Footnotes	20
Appendix I	X-ray Structure Data for Compound 41a	22
Appendix II	X-ray Structure Data for Compound 41b	34
Appendix III	X-ray Structure Data for Compound 43b	48
Appendix IV	X-ray Structure Data for Compound 47	67

ł

Improved Economical and Environmentally Benign Routes for the Large-Scale Synthesis of 1,3,3-Trinitroazetidine

Principal Investigator: Dr. Alan P. Marchand

Department of Chemistry, University of North Texas NT Station, Box 5068, Denton, Texas 76203-5070

ONR Contract Number N00014-96-1-1279 Mechanics & Energy Conversion S&T Division (ONR Code 333)

Final Report: Covers work done during the period 9/15/96 - 12/31/97

I. Overview/Abstract. Several routes for the synthesis of 1,3,3-trinitroazetidine (TNAZ) have been investigated. Of these the most promising new method involves studies of additions of various reagents, X-Y, across the highly strained C(3)-N σ -bond in 3-ethyl-1-azabicyclo[1.1.0]butane. In the course of this study, it was found that reaction of this highly strained bicyclic amine with *in situ* generated HNO₂ resulted in addi-tion across the C(3)-N bond with concomitant *N*-nitrosation of the resulting intermediate azetidine, thereby affording *N*-nitroso-3-ethyl-3-nitroazacyclobutane (54%), which was oxidized subsequently to the corresponding dinitroazetidine, *N*-nitro-3-ethyl-3-nitroazacyclobutane (89%). These observations provide the basis of the method with which a novel synthesis of TNAZ has been developed. Our objectives include: (i) development of improved methods to permit scale-up of our previously published TNAZ synthesis and (ii) introduction of environmentally benign routes to prepare key synthetic intermediates.

II. Scientific Issues Requiring Research. In 1969, Funke reported the synthesis of 3ethyl-1-azabicyclo[1.1.0]butane and some aspects of its chemistry.¹ Since that time, relatively little interest has been shown in this unusual ring system. Our own interest in this compound stems from its potential use as a key intermediate in the synthesis of N,3-disubstituted azetidines, which otherwise can be quite difficult to obtain [e.g., via S_N2 displacements on N-substituted-3tosyloxy- (or mesyloxy-) azdetidines].² Compounds of this type have attracted attention in recent years among members of the energetic materials community.³ In addition, natural products chemists have been attracted to azetidine alkaloids, a class of strikingly bioactive compounds which have been isolated from marine organisms.⁴ Finally, some unusual transformations of 3-functionalized azetidines that are of mechanistic interest have been reported recently.⁵

Previously,⁶ we investigated reactions of 3-ethyl-1-azabicyclo[1.1.0]butane with a variety of electrophiles, e.g., N₂O₄, ClCO₂Et, Tf₂O, and Ms₂O. In each case, the observed reaction product(s) resulted via addition of the reagent, X-Y, across the highly strained C(3)-N σ -bond in the substrate, thereby affording new *N*-,3-disubstituted azetidines. We now have extended the range of reagents studied in an effort to explore the scope and limitations of reactions of this type. In the course of this work, we performed several of the addition reactions in aqueous solution in an effort to design environmentally benign (i.e., "green") synthetic routes to novel 3-substituted azetidines.

III. Key Results.

(A) Model Studies for Developing Novel Routes to 3-Substituted Azetidines. Compound 2 (Scheme 1), synthesized by using a previously published modification⁶ of a literature procedure,¹ was employed as substrate in a model study.^{6b} In our hands, reaction of 2 with *in situ* generated aqueous HNO₂ resulted in addition of the elements of HNO₂ across the C(3)-N σ -bond with concomitant *N*-nitrosation of the resulting intermediate azetidine, thereby affording 3 (54% yield, Scheme 1). Subsequent oxidation of the *N*-NO functionality by using 98% HNO₃-(CF₃CO)₂O afforded the corresponding *N*-nitramine (4, 89% yield).^{6b}

Scheme 1

(B) A Novel Synthesis of TNAZ. Our success in achieving the synthesis of 4 via the route shown in Scheme 1 pointed the way toward a novel TNAZ synthesis. The key step in this synthesis, shown in Scheme 2, is the formation of 1-azabicyclo[1.1.0]butane, 8, which is removed rapidly from the reaction medium via azeotropic distillation and is trapped *in situ* in the distillation receiver via its reaction with aqueous NaNO₂-HCl, thereby affording *N*-nitroso-3-nitroazetidine (9) in low yield. The method by which 9 is converted subsequently into 1 is outlined in Scheme 2. The structure of 1,3-dinitroazetidine (10), an intermediate in the conversion of 9 to 1, was established unequivocally via application of X-ray crystallographic methods. It should be noted that the formation and trapping of 8, the key intermediate in the reaction sequence shown in Scheme 2, proceeds in poor yield (*ca.* 1%). In addition, the starting material, 2-amino-1,3-propanediol (5), although available commercially, nevertheless is very expensive.

In attempting to address these issues, we studied an alternative reaction sequence which like the method shown in Scheme 2 preserves the unique approach of formation and trapping of an intermediate 1-azabicyclo[1.1.0]butane. Pertinent results in this regard are outlined in Scheme 3. Thus, 1-aza-3-(bromomethyl)bicyclo[1.1.0]butane (13) is generated by the method shown in Scheme 3 and subsequently is trapped by *in situ* generated HNO₂. This results in the formation of two *N*-nitrosoazetidines, 14 and 15, each of which was oxidized^{6b,7} subsequently to the corresponding *N*-nitro derivative (i.e., 16 and 17, respectively). The structures of 16 and 17 have been established unequivocally via application of X-ray crystallographic methods. Hydrolysis⁸ of 17 produced the corresponding alcohol, 18, in good yield. Finally, under the reaction conditions shown in Scheme 3, 18 undergoes retro-Henry reaction,⁹ and the resulting α -nitro anion subsequently suffers oxidative nitration *in situ*, thereby affording 1 (37% yield from 18). Full experimental details regarding the syntheses shown in Schemes 2 and 3 have been published.¹⁰

Some important features of the reaction sequence shown in Scheme 3 should be noted. Thus, formation and trapping of the key intermediate in this reaction sequence, i.e., 13, proceeds in *ca*. 7% overall yield from the starting material, a significant improvement in yield *vis-à-vis* that of the corresponding reaction sequence shown in Scheme 2. In addition, the route shown in Scheme 3 offers the distinct advantage that the 3-bromomethyl functionality in 17 can easily be replaced by NO₂ via a two-step reaction sequence that employs the retro-Henry reaction with concomitant oxidative nitration of a carbanionic intermediate. Finally, in contrast to the prohibitively high cost of 5 (Scheme 2), the starting material for the reaction sequence shown in Scheme 3 [i.e., tris(hydroxymethyl)aminomethane, 11] is relatively inexpensive. We are continuing to pursue new high-yield routes to appropriately functionalized 1-azabicyclo[1.1.0]-butanes and to study the chemistry of these new systems as a potentially important class of alkylating agents.

(C) Synthesis and Thermal Properties of 1,3-Dinitro-3-(1',3'-dinitroazetidin-3'yl)azetidine. Although TNAZ is a powerful and insensitive explosive, its munitions applications have been limited by the fact that it is a low melting and relatively volatile solid. For this reason, it would be desirable to form a binary eutectic mixture of TNAZ with another structurally related but less volatile material. To this end, we have prepared 1,3-dinitro-3-(1',3'-dinitroazetidin-3'yl)azeti-dine (19, Scheme 1) in the hope that it might form a binary eutectic with TNAZ which would reduce the volatility of the resulting explosive relative to TNAZ without concomitant sacrifice of other advantageous physical and chemical properties of pure TNAZ.

Our synthesis of 19 is shown in Scheme 4. The starting material for this reaction sequence, i. e., 20, was prepared by using the method reported by Hiskey and Coburn.¹¹ Treatment of 20 with a solution of Br_2 in aqueous base resulted in retro-Henry reaction⁹ with concomitant bromination of the resulting nitro-stabilized anion, thereby producing 21. Subsequent

3

Scheme 2

Scheme 3

reaction of 21 with NaBH₄-EtOH resulted in selective reduction of the carbon-bromine bond in 21, thereby affording 22 in good yield.

Subsequent reaction of 22 with KOt-Bu-EtOH resulted in formation of the corresponding α -nitro carbanion which then was reacted with 21 to form a mixture of the corresponding 3'-azetidinyl-3-azetidine (23) along with unreacted 21 (as determined via analysis of the ¹H NMR spectrum of the crude product). In our hands, this mixture of 23 and 21 could not be separated, either by fractional recrystallization or by column chromatography. It proved advantageous to react this mixture as obtained with NaBH₄. Under these conditions, 21 is reduced to 22, but 23 remains unaffected. The resulting mixture of 23 and 22 can be separated readily via column chromatography. The structure of 23 was established unequivocally via application of X-ray crystallographic methods. Finally, when refluxed with fuming nitric acid, 23 was converted into the target molecule, 19, in good yield.

The foregoing results, along with a detailed analysis of thermal properties of **19** (alone and in binary mixtures with TNAZ), are summarized in a recent U. S. Air Force Technical Report and in a forthcoming publication.¹²

(D) Application of Dave's Method for Generating 1-Azabicyclo[1.1.0]butane to the Synthesis of TNAZ. In 1996, Dave¹³ reported a novel procedure for acylative dealkylation of 3-substituted *N*-*t*-butylazetidines that lends itself readily to a novel synthesis of 1-azabicyclo-[1.1.0]butane. His approach, shown in Scheme 5, represents a highly significant new development with potential application for improving a key step in our previously published TNAZ synthesis.

5

Subsequently, we have adapted the approach shown in Scheme 5 to a novel synthesis of TNAZ simply by trapping nascent 1-azabicyclo[1.1.0] butane *in situ* with aqueous nitrous acid. The reaction sequence used for this purpose is shown in Scheme 6.14

(E) A New Approach for Generating 1-Azabicyclo[1.1.0]butane. Allylamine (33) was chosen as an inexpensive and readily available starting material for this study. First, 33 was reacted with N-chlorosuccinimide. The reaction product was not isolated; instead, it was treated with a suspension of KOt-Bu in heptane-octane. The reaction mixture was subjected to distillation, whereupon 1-azabicyclo[1.1.0]butane (8) was removed from the reaction medium as soon as it was being generated. Nascent 8 thereby obtained was trapped in the distillation receiver via reaction with aqueous nitrous acid, thereby affording N-nitroso-3-nitroazetidine, 31. Subsequent oxidation of 31 to N,3-dinitroazetidine followed by oxidative nitration of this intermediate afforded TNAZ (1).¹⁵ The overall reaction sequence is summarized in Scheme 7.¹⁵

(F) Novel Routes to N-Substituted Azetidin-3-ones. N-Substituted azetidin-3-ones have proved to be valuable synthetic intermediates for the synthesis of novel energetic materials.^{11,16,17} Compounds of this type have also been used as intermediates in natural product synthesis¹⁸ and as starting materials for preparing compounds of biological and/or pharmacological interest.¹⁹

In the past, N-Substituted azetidin-3-ones were prepared by multistep synthesis by starting with acyclic starting materials.² As part of an ongoing study^{10,20-23} of the synthesis and chemistry of 3-substituted 1-azabicyclo[1.1.0]butanes,¹ we have developed new methodolgy that

Scheme 6

Scheme 7

employs these highly strained azabicyclic compounds as key intermediates for preparing *N*-substituted azetidine-3-ones. In this connection, we now report new methods for preparing *N*-ethoxycarbonyl-, *N*-acetyl-, and *N*-benzoyl-1-azabicyclo[1.1.0]butanes (**39a-39c**, respectively).

The methodology employed herein to prepare N-substituted azetidin-3-ones is summarized in Scheme 8.

Scheme 8

Experimental Section: Novel Routes to N-Substituted Azetidin-3-ones.

Melting points are uncorrected. Elemental microanalytical data was obtained by personnel at M-H-W Laboratories, Phoenix, AZ. High-resolution mass spectral data for **38b** were obtained at the Mass Spectrometry Facility at the Department of Chemistry and Biochemistry, University of Texas at Austin by using a ZAB-E double sector high-resolution mass spectrometer (Micromass, Manchester, England) that was operated in the chemical ionization mode.

N-Ethoxycarbonylazetidin-3-one (39a). A solution of $38a^{23}$ (1.50 g, 10.1 mmol) in CH₂Cl₂ (40 mL) was cooled to -40 °C via application of an external dry ice-CH₃CN cold bath Ozone gas was passed through the solution for ca. 2 h, at which time tlc analysis of the reaction mixture revealed the absence of 38a. Argon was bubbled through the cold reaction mixture to purge excess ozone, and the reaction was quenched via addition of (CH₃)₂S (4 mL, excess). The external cold bath then was removed, and the quenched reaction mixture was allowed to warm gradually to ambient temperature. The reaction mixture was concentrated *in vacuo*, and the residue was purified via column chromatography on silica gel by eluting with 30% EtOAchexane. Pure 39a (1.02 g, 71%) was thereby obtained as a colourless microcrystalline solid mp 45.0-46.5 °C (lit²³ mp 45-47 °C). The IR, ¹H NMR, and ¹³C NMR spectra of the material thereby obtained were essentially identical to the corresponding spectra which have been reported previously.²⁴

N-Acetyl 3-(bromomethyl)-3-chloroazetidine 37b). A solution of $13^{10,23}$ (1.48 g, 10 mmol) in Et₂O (50 ml) under argon was cooled to 0 °C via application of an external ice-water bath. To this cooled solution was added dropwise with stirring acetyl chloride (AcCl, 785 mg, 10 mmol). After the addition of AcCl had been completed, the external cold bath was removed, and the resulting mixture was allowed to warm gradually to ambient temperature while being stirred

for 12 h. The reaction mixture was concentrated *in vacuo*, and the residue was purified via column chromatography on silica gel by eluting with 50% acetone-hexane. Pure **37b** (1.5 g, 66%) was thereby obtained as a colorless oil; IR (neat) 2953 (m), 1650 (s), 970 (m), 877 cm⁻¹ (w); ¹H NMR (CDCl₃) δ 1.85 (s, 3 H), 3.75 (s, 2 H), 4.11-4.48 (m, 4 H); ¹³C NMR (CDCl₃) δ 18.8 (q), 38.3 (t), 59.1 (s), 60.7 (t), 63.1 (t), 170.1 (s). Anal. Calcd for C₆H₉ONClBr: C, 31.82; H, 4.01. Found: C, 32.09; H, 4.09.

N-Acetyl-3-methyleneazetidine (38b). Method A. A mixture of 37b (1.45 g, 6.4 mmol) and activated Zn²⁴ (3.0 g, 46 mmol) in dry THF (60 mL) under argon was heated with stirring at 65 °C for 12 h. The reaction mixture was allowed to cool gradually to ambient temperature and then was filtered. The filtrate was concentrated *in vacuo*, and the residue was purified via column chromatography on neutral alumina by eluting with 50% acetone-hexane. Pure **38b** (640 mg, 90%) was thereby obtained as a colorless oil; IR (neat) 3097 (w), 3002 (w), 2932 (s), 2876 (m), 1650 (s), 1446 (vs), 914 cm⁻¹ (s); ¹H NMR (CDCl₃) δ 1.80 (s, 3 H), 4.35-4.44 (m, 2 H), 4.51-4.60 (m, 2 H), 4.90-4.98 (m, 2 H); ¹³C NMR (CDCl₃) δ 18.7 (q), 56.7 (t), 58.9 (t), 108.1 (d), 134.8 (s), 170.5 (s). Anal. Chemical Ionization (CI) HRMS Calcd for C₆H₉NO: (M_r + 1)+ m/z 112.07624. Found: (M_r + 1)+ m/z 112.07572 (deviation -4.6 ppm).

Method B. A mixture of 37b (6.0 g, 26.5 mmol) and NaI (20 g, 134 mmol) in acetone (200 mL) was refluxed for 18 h. The reaction mixture was allowed to cool to ambient temperature and then was treated with 20% aqueous NaHSO₃ (15 mL). The resulting mixture was concentrated *in vacuo*. The residue was extracted with EtOAc (2 x 100 mL), and the combined extracts were washed successively with water (40 mL) and brine (2 x 30 mL). The organic layer was dried (MgSO₄) and filtered, and the filtrate was concentrated *in vacuo*. The residue was purified via column chromatography on neutral alumina by using 50% acetone-hexane as eluent. Pure **38b** (2.2 g, 74%) was thereby obtained as a colorless oil. The IR, ¹H NMR, and ¹³C NMR spectra of this material were identical in all respects with the corresponding spectra obtained for a sample of **38b** that was prepared previously (see Method A,*vide supra*).

N-Acetylazetidin-3-one (39b). A solution of 38b (2.0 g, 18 mmol) in CH₂Cl₂ (60 mL) was cooled to -40 °C via application of an external dry ice-CH₃CN cold bath Ozone gas was passed through the solution for *ca*. 2 h, at which time tlc analysis of the reaction mixture revealed the absence of 38b. Argon was bubbled through the cold reaction mixture to purge excess ozone, and the reaction was quenched via addition of $(CH_3)_2S$ (6 mL, excess). The external cold bath then was removed, and the quenched reaction mixture was allowed to warm gradually to ambient temperature. The reaction mixture was concentrated *in vacuo*, and the residue was purified via column chromatography on neutral alumina by eluting with 50% EtOAc-hexane. Pure 39b (1.4 g, 69%) was thereby obtained as a colorless oil. The IR, ¹H NMR, and ¹³C NMR spectra of the

material thereby obtained were essentially identical to the corresponding spectra which have been reported previously.¹³

N-benzoyl-3-(bromomethyl)-3-chloroazetidine (37c). A solution of $13^{10,23}$ (1.48 g, 10 mmol), NaOH (20 g, 0.5 mole) in Et₂O (50 ml) under argon was cooled to 0 °C via application of an external ice-water bath. To this cooled solution was added dropwise with stirring benzoyl chloride (1.40 g, 10 mmol). After the addition of benzoyl chloride had been completed, the external cold bath was removed, and the resulting mixture was allowed to warm gradually to ambient temperature while being stirred for 12 h. The reaction mixture was concentrated *in vacuo*, and the residue was purified via column chromatography on silica gel by eluting with 30% EtOAc-hexane. Pure **37c** (2.13 g, 74%) was thereby obtained as a colorless oil; IR (neat) 3067 (w), 2951 (m), 1640 (vs), 1419 (vs), 713 cm⁻¹ (vs); ¹H NMR (CDCl₃) δ 3.70 (s, 2 H), 4.30-4.64 (m, 4 H), 7.61-7.27 (m, 5 H); ¹³C NMR (CDCl₃) δ 38.3 (t), 60.0 (s), 61.5 (t), 65.8 (t), 127.7 (d), 128.4 (d), 131.4 (d), 132.0 (s), 170.2 (s). Anal. Calcd for C₁₁H₁₁OBrClN: C, 45.79; H, 3.84. Found: C, 45.63; H, 4.04.

N-benzoyl-3-methyleneazetidine (38c). A mixture of 37c (1.4 g, 4.8 mmol) and activated Zn²⁴ (2.18 g, 33.6 mmol) in dry THF (100 mL) under argon was heated with stirring at 65 °C for 12 h. The reaction mixture was allowed to cool gradually to ambient temperature and then was filtered. The filtrate was concentrated *in vacuo*, and the residue was purified via column chromatography on neutral alumina by eluting with 50% EtOAc-hexane. Pure 38c (730 mg, 88%) was thereby obtained as colorless oil; IR (neat) 3067 (m), 3001 (w), 2935 (s), 1647 (vs), 1578 (s), 883 cm⁻¹ (vs); ¹H NMR (CDCl₃) δ 4.75 (s, 4 H), 5.05 (s, 2 H), 7.30-7.48 (m, 3 H), 7.60-7.68 (m, 2 H); ¹³C NMR (CDCl₃) δ 57.8 (t), 61.7 (t), 107.6 (t), 127.6 (d), 128.2 (d), 130.9 (d), 133.0 (s), 136.8 (s), 170.1 (s). Anal. Calcd for C₁₁H₁₁NO: C, 76.28; H, 6.40. Found: C, 76.40; H, 6.64.

N-Benzoylazetidin-3-one (39c). A solution of 38c (200 mg, 1.16 mmol) in CH₂Cl₂ (20 mL) was cooled to -40 °C via application of an external dry ice-CH₃CN cold bath. Ozone gas was passed through the solution for *ca*. 2 h, at which time tlc analysis of the reaction mixture revealed the absence of 38c. Argon was bubbled through the cold reaction mixture to purge excess ozone, and the reaction was quenched via addition of $(CH_3)_2S$ (2 mL excess). The external cold bath was removed, and the quenched reaction mixture was allowed to warm gradually to ambient temperature. The reaction mixture was concentrated *in vacuo*, and the residue was purified via column chromatography on silica gel by eluting with 30% EtOAc-hexane. Pure 39c (139 mg, 68%) was thereby obtained as viscous, gummy oil. The IR, ¹H NMR, and ¹³C NMR spectra of the material thereby obtained were essentially identical to the corresponding spectra that have been reported previously for authentic 39c.¹⁸

(G) Samarium Iodide Promoted Coupling of N-Substituted Azetidin-3-ones. A Novel Route to Spiroannulated Heterocyclic Oxiranes. The chemistry of N-substituted azetidin-3-ones has received considerable attention in recent years.^{2,3c,6,10,13,16,21} In particular, functionalized azetidin-3-ones have been used as intermediates in the synthesis of new energetic materials, e.g., 1,3,3-trinitroazetidine ("TNAZ").^{2,3c,10,13,16} In the present study, samarium iodide promoted reductive coupling of N-substituted azetidin-3-ones have been investigated, and some aspects of the chemistry of the resulting "pinacols" have been explored.

Samarium iodide promoted reductive coupling was performed by using three *N*-substituted azetidin-3-ones, i.e., **40a-40c** as substrates (Scheme 9). In our hands, each of the three reductive coupling reactions proceeded smoothly to afford the corresponding pinacol (**41a-41c**, respectively). Each of the pinacols, in turn, could be converted into the corresponding dimesylate (**42a-42c**, respectively) via reaction with MsCl-Et₃N in the presence of dimethylaminopyridine (DMAP).

Initially, our interest in systems of the type 42 (Scheme 1) was to attempt base-promoted E2 elmination of two equivalents of MsOH, thereby producing an unusual, conjugated bis(enamine). However, despite several attemps, we were unable to promote elimination in this system (e.g., note our inability convert 42b into 46; see Scheme 2). This result is particularly vexing, since we have shown previously that *N*-tosyl-3-ethyl-3-mesyloxyazetidine (44) undergoes smooth base-promoted elimination of the elements of MsOH to afford the corresponding, substituted 2-azetine (45, Scheme 10).^{6a}

Scheme 10

Instead, in our hands, under the basic conditions employed (see the Experimental Section), competing nucleophilic displacement of one of the OMs groups in **42a** and **42b** by hydroxide ion (presumably either from water or from KOH that might have been present in KOt-Bu) occurred with concomitant intramolecular nucleophilic displacement of the remaining OMs group by -O:-. In this way, two novel, spiroannulated oxiranes (i.e., **43a** and **43b**) were prepared in excellent yield (91% and 84% from **42a** and **42b**, respectively, see Scheme 9). The structures of three compounds that are involved in the reaction sequence shown in Scheme 9, i.e., **41a**, **41b**, and **43b**, were established unequivocally via application of X-ray crystallographic methods.

Interestingly, 42c proved to be inert toward base under the same conditions that had been used previously to convert 42a and 42b into the corresponding oxiranes (i.e., 43a and 43b, respectively). The reasons for the failure of 42c to undergo base-promoted conversion into the corresponding spirocyclic oxirane, 43c, are not apparent to us and are being investigated further in our laboratory.

In the course of this study, some additional reactions of 41a were investigated; the results thereby obtained are summarized in Scheme 11. Thus, 41a was converted into the corresponding bis(*O*-acetyl) derivative, 47. The structure of 47, was established unequivocally via application of X-ray crystallographic methods. Subsequently, the *N*-benzyl groups in 47 were removed via hydrogenolysis, and the resulting product, 48, was converted into the corresponding bis(*N*-acetyl) derivative, 49.

Experimental Section. Samarium Iodide Promoted Coupling of *N*-Substituted Azetidin-3-ones.

Melting points are uncorrected. Elemental microanalytical data was obtained by personnel at M-H-W Laboratories, Phoenix, AZ. High-resolution chemical ionization mass spectral data for 10 were obtained by Professor Jennifer S. Brodbelt (Department of Chemistry, University of Texas at Austin).

N,*N*'-Bis(ethoxycarbonyl)-3-hydroxy-3-(3'-hydroxy-3'-azetidinyl)azetidine (41a). To a solution of 0.1 M solution of SmI₂ in THF (100 mL, 10 mmol) under argon was added *N*-(ethoxycarbonyl)azetidin-3-one²³ (40a, 1.43 g, 10 mmol), and the resulting mixture was stirred at ambient tem-perature for 8 h. To the reaction mixture was added 0.1 N aqueous HCl (20 mL, excess), and the resulting aqueous suspension was extracted with EtOAc (3 x 50 mL). The combined organic extracts were washed sequentially with 10% aqueous NaHCO₃ (2 x 20 mL), water (30 mL), and brine (2 x 20 mL). The organic layer was dried (MgSO₄) and filtered, and the filtrate was concentrated *in vacuo*. The residue was purified via column chromatography on silica gel by eluting with 60% EtOAc-hexane. Pure **41a** (1.0 g, 70%) was thereby obtained as colorless microcrystalline solid: mp 230 °C (dec.); IR (KBr) 3418 (vs), 2980 (s), 2532 (vs), 1700 (vs), 1471 (vs), 777 cm⁻¹ (s); ¹H NMR (DMSO-*d*₆) δ 1.22 (t, *J* = 7.3 Hz, 6 H), 3.80 (d, J = 9.4 Hz, 4 H), 3.96-4.13 (m, 8 H), 6.25 (br s, 2 H); ¹³C NMR (DMSO-*d*₆) δ 13.3 (q), 57.0 (t), 57.1 (t), 57.2 (t), 57.5 (t), 60.6 (t), 70.5 (s), 156.6 (s). Anal. Calcd for C₁₂H₂₀N₂O₆: C, 49.99: H, 6.99. Found: C, 49.78; H, 6.92. The structure of **41a** was established unequivocally via application of X-ray crystallographic techniques (*vide infra*).

N,N'-Bis(ethoxycarbonyl)-3-mesyloxy-3-(3'-mesyloxy-3'-azetidinyl)azetidine (42a). A solution of 41a (810 mg, 2.8 mmol) in CH₂Cl₂ (15 mL) under argon was cooled to 0 °C via application of an external ice-water bath. To this cooled solution was added MsCl (958 mg, 8.4

mmol). To the resulting solution under argon was added dropwise with stirring a solution of Et₃N (2.83 g, 28 mmol) and 4-dimethylaminopyridine (DMAP, 100 mg, 0.82 mmol) in CH₂Cl₂ (5 mL), and the reaction mixture was stirred at 0-10 °C for 3 h. The external ice-water bath was removed, and the reaction mixture was allowed to warm gradually to ambient temperature with stirring during 3 h. To the reaction mixture was added CH₂Cl₂ (80 mL), and the resulting mixture was washed sequentially with water (20 mL), 10% aqueous NaHCO₃ (20 mL), and brine (20 mL). The organic layer was dried (Na₂SO₄) and filtered, and the filtrate was concentrated *in vacuo*. The residue was purified via column chromatography on acid-free silica gel that had been pre-treated with Et₃N by eluting with 40% EtOAc-hexane. Pure **42a** (900mg, 73%) was thereby obtained as colorless microcrystalline solid: mp 124-125 °C; IR (KBr) 3022 (s), 1715 (vs), 1346 (vs), 1159 (vs), 885 cm⁻¹ (s); ¹H NMR (CDCl₃) δ 1.21 (t, *J* = 7.1 Hz, 6 H), 3.10 (s, 6 H), 4.05-4.26 (m, 8 H), 4.61 (d, *J* = 11.2 Hz, 4H); ¹³C NMR (CDCl₃) δ 14.4 (q), 40.3 (q), 56.3 (t), 61.8 (t), 81.2 (s), 156.2 (s). Anal. Calcd for C₁₄H₂₄N₂O₁₀S₂: C, 37.83; H, 5.44. Found: C, 38.09; H, 5.70.

Reaction of 42a with Aqueous KOH. To a solution of dimesylate **42a** (200 mg, 0.46 mmol) in *t*-BuOH (5 mL), H₂O (18 mg, 1 mmol) and KOH (26 mg, 0.46 mmol) were added and the mixture was stirred at 40 °C for 3 h. The reaction mixture was extracted with Et₂O (2 x 50 mL) and the combined organic extracts were washed sequentially with water (2 x 50 mL) and brine (2 x 25 mL). The organic layer was dried (MgSO₄) and filtered, and the filtrate was concentrated *in vacuo*. The residue was purified via column chromatography on silica gel by eluting with 25% EtOAc-hexane. Pure **43a** (113 mg, 91%) was thereby obtained as colorless microcrystalline solid: mp: 126-127 °C; IR (KBr) 2991 (m), 1713 (vs), 1441 (vs), 1049 (s), 775 cm⁻¹ (s); ¹H NMR (CDCl₃) δ 1.22 (t, *J*=7.2 Hz, 6 H), 4.02-4.20 (m, 12 H); ¹³C NMR (CDCl₃) δ 14.6 (t), 55.4 (t), 61.3 (s), 61.5 (t), 156.5 (s). Anal. Calcd for C₁₂H₁₈N₂O₅: C, 53.33; H, 6.70. Found: C, 52.96; H, 6.86.

N,N'-Bis(toluenesulfonyl)-3-hydroxy-3-(3'-hydroxy-3'-azetidinyl)azetidine (41b). To a solution of 0.1 M solution of SmI₂ in THF (115 mL, 11.5 mmol) under argon was added 40b¹⁶ (2.54 g, 11.3 mmol), and the resulting mixture was stirred at ambient temperature for 8 h. To the reaction mixture was added 0.1 N aqueous HCl (5 mL, excess), and the resulting aqueous suspension was extracted with EtOAc (3 x 50 mL). The combined organic extracts were washed sequentially with 10% aqueous NaHCO₃ (2 x 20 mL), water (30 mL), and brine (2 x 20 mL). The organic layer was dried (MgSO₄) and filtered, and the filtrate was concentrated *in vacuo*. The residue was purified via column chromatography on silica gel by eluting with 10% CH₃OH-CH₂Cl₂. Pure **2b** (1.88 g, 73%) was thereby obtained as colorless microcrystalline solid: mp 260 °C (dec); IR (KBr) 3453 (vs), 3057 (w), 2949 (m), 1602 (m), 1153 (s), 670 cm⁻¹ (s); ¹H NMR (DMSO-*d*₆) δ 2.41 (s, 6 H), 3.33 (AB, *J*_{AB} = 7.7 Hz, 4 H), 3.51 (AB, *J*_{AB} = 7.7 Hz, 4 H), 5.87 (s, 2 H), 7.45 (AB, J_{AB} = 8.0 Hz, 4 H), 7.63 (AB, J_{AB} = 8.1 Hz, 4 H); ¹³C NMR (DMSO- d_6) δ 21.0 (q), 58.8 (t), 69.3 (s), 128.0 (d), 129.9 (d), 131.0 (s), 143.9 (s). Anal. Calcd for C₂₀H₂₄N₂O₆S₂: C, 53.08; H, 5.35. Found: C, 52.90; H, 5.33. The structure of **41b** was established unequivocally via application of X-ray crystallographic techniques (*vide infra*).

N,N'-Bis(toluenesulfonyl)-3-mesyloxy-3-(3'-mesyloxy-3'-azetidinyl)azetidine (42b). A solution of 41b (550 mg, 1.22 mmol) in CH₂Cl₂ (5 mL) under argon was cooled to 0 °C via application of an external ice-water bath. To this cooled solution was added MsCl (1.11 g, 9.76 mmol). To the resulting solution under argon was added dropwise with stirring a solution of pyridine (10 mL, excess) and DMAP (298 mg, 2.4 mmol) in CH₂Cl₂ (5 mL), and the reaction mixture was stirred at 0 °C for 10 h. The external ice-water bath was removed, and the reaction mixture was allowed to warm gradually to ambient temperature with stirring during 24 h. To the reaction mixture was added CH₂Cl₂ (80 mL), and the resulting mixture was washed sequentially with water (30 mL), 10% aqueous NaHCO₃ (30 mL), water (30 mL), and brine (30 mL). The organic layer was dried (MgSO₄) and filtered, and the filtrate was concentrated in vacuo. The residue was purified via column chromatography on acid-free silica gel that had been pretreated with Et₃N by eluting with 20% EtOAc-CHCl₃. Pure 42b (510 mg, 69%) was thereby obtained as colorless microcrystalline solid: mp 180-181 °C; IR (KBr) 3032 (m), 2937 (m), 1605 (s), 1354 (vs), 1180 (vs), 842 cm⁻¹ (vs); ¹H NMR (CDCl₃) δ 2.43 (s, 6 H), 2.97 (s, 6 H), 3.96 (AB, J_{AB} = 11.0 Hz, 4 H), 4.21 (AB, J_{AB} = 11.1 Hz, 4 H) 7.40 (AB, J_{AB} = 8,1 Hz, 4 H), 7.70 (AB, J_{AB} = 8.0 Hz, 4 H); ¹³C NMR (CDCl₃) δ 21.7 (q), 40.3 (q), 56.9 (t), 128.5 (d), 130.2 (s), 130.3 (d), 145.3 (s). Anal. Calcd for C₂₂H₂₈N₂O₁₀S₄: C, 43.41; H, 4.64. Found: C, 43.41; H, 4.58.

Reaction of 42b with Aqueous KOH. To a solution of **42b** (304 mg, 0.50 mmol) in *t*-BuOH (5 mL) were added H₂O (18 mg, 1 mmol) and KOH (28 mg, 0.50 mmol), and the resulting mixture was stirred at 40 °C for 3 h. The reaction mixture was extracted with Et₂O (2 x 50 mL), and the combined organic extracts were washed sequentially with water (2 x 50 mL) and brine (2 x 25 mL). The organic layer was dried (MgSO₄) and filtered, and the filtrate was concentrated *in vacuo*. The residue was purified via column chromatography on silica gel by eluting with 25% EtOAc-hexane. Pure **43b** (181 mg, 84%) was thereby obtained as colourless microcrystalline solid: mp: 219-220 °C; IR (KBr) 2961 (w), 2930 (m), 1609 (s), 1350 (vs), 1165 (vs), 679 cm⁻¹ (vs); ¹H NMR (CDCl₃) δ 2.47 (s, 6 H), 3.89 (dd, 10.7, 9.3 Hz, 8 H), 7.40 (d, 4 H, J = 8.2 Hz), 7.74 (d, 4 H, J = 8.3 Hz); ¹³C NMR (CDCl₃) δ 21.6 (q), 56.0 (t), 59.9 (s), 128.2 (d), 130.1 (d), 131.2 (s), 145.1 (s). Anal. Cacld for C₁₀H₂₂N₂O₅S₂: C, 55.28; H, 5.10. Found: C, 55.43; H, 5.04. The structure of **43b** was established unequivocally via application of X-ray crystallographic techniques (*vide infra*).

N,*N*'-Bis(benzhydryl)-3-hydroxy-3-(3'-hydroxy-3'-azetidinyl)azetidine (41c). To a solution of 0.1 M solution of SmI₂ in THF (200 mL, 20 mmol) under argon was added *N*-benzhydrylazetidin-3-one¹⁶ (**40c**, 4.74 g, 20 mmol), and the resulting mixture was stirred at ambient temperature for 12 h. To the reaction mixture was added 0.1 N aqueous HCl (20 mL, excess), and the resulting aqueous suspension was extracted with EtOAc (3 x 50 mL). The combined organic extracts were washed sequentially with 10% aqueous NaHCO₃ (2 x 20 mL), water (30 mL), and brine (2 x 20 mL). The organic layer was dried (MgSO₄) and filtered, and the filtrate was concentrated *in vacuo*. The residue was purified via column chromatography on silica gel by eluting with 50% EtOAc-hexane. Pure **41c** (3.4 g, 71%) was thereby obtained as colorless micro-crystalline solid: mp 260 °C (dec); IR (KBr) 3041 (br, s), 2865 (vs), 1455 (vs), 749 vs), 701 cm⁻¹ (vs); ¹H NMR (CDCl₃) δ 3.09-3.16 (m, 4 H), 3.38 -3.47 (m, 4 H), 4.44 (s, 2 H), 6.12 (br s, 2 H), 7.10-7.56 (m, 20 H); ¹³C NMR (CDCl₃) δ 127.1 (d), 127.4 (d), 128.6 (d), 141.1 (s). Anal. Calcd for C₃₂H₃₂N₂O₂: C, 80.64; H, 6.77. Found: C, 80.22; H, 6.72.

N,N'-Bis(benzhydryl)-3-mesyloxy-3-(3'-mesyloxy-3'-azetidinyl)azetidine (42c). A solution of 41c (320 mg, 0.67 mmol) in CH₂Cl₂ (10 mL) under argon was cooled to 0 °C via application of an external ice-water bath. To this cooled solution was added MsCl (262 mg, 2.30 mmol). To the resulting solution under argon was added dropwise with stirring a solution of Et₃N (700 mg, 7.0 mmol) and DMAP (70 mg, 0.57 mmol) in CH₂Cl₂ (5 mL), and the reaction mixture was stirred at 0-10 °C for 3 h. The external ice-water bath was removed, and the reaction mixture was allowed to warm gradually to ambient temperature with stirring during 3 h. To the reaction mixture was added CH₂Cl₂ (100 mL), and the resulting mixture was washed sequentially with water (20 mL), 10% aqueous NaHCO3 (20 mL), and brine (20 mL). The organic layer was dried (Na₂SO₄) and filtered, and the filtrate was concentrated in vacuo. The residue was purified via column chromatography on acid-free silica gel that had been pretreated with Et₃N by eluting with 40% EtOAc-hexane. Pure 42c (360 mg, 85%) was thereby obtained as colorless microcrystalline solid: mp 88-89 °C; IR (KBr) 3032 (m), 2953 (w), 2855 (w), 1608 (m), 1346 (vs), 1176 (vs), 891 (s), 711 cm⁻¹ (vs); ¹H NMR (CDCl₃) δ 3.06 (s, 6 H), 3.84 (d, *J* = 9.8 Hz, 4 H), 4.11 (d, J = 9.1 Hz, 4 H), 4.6 (s, 2 H), 7.25-7.50 (m, 10 H); ¹³C NMR (CDCl₃) δ 40.2 (q), 59.9 (t), 77.6 (d), 82.1 (s), 127.2 (d), 127.4 (d), 128.6 (d), 141.4 (s). Anal. Calcd for C₃₄H₃₆N₂O₆S₂: C, 64.54; H, 5.73. Found: C, 64.73; H, 5.92.

Attempted Reaction of 42c with Base. A solution of 42c (400 mg, 0.63 mmol) in *t*-BuOH (5 mL) was cooled to 0 °C via application of an external ice-water bath. To this cooled solution was added with stirring water (18 mg, 1 mmol) followed by portionwise addition of KOt-Bu (292 mg, 2.60 mmol). After all of the base had been added, the external cold bath was removed, and the reaction mixture was allowed to warm slowly to ambient temperature with stirring durng 3 h. The reaction mixture then was heated at 45 °C for 12 h. The reaction mixture was allowed to cool to ambient temperature and then was extracted with CH₂Cl₂ (2 x 50 mL). The combined extracts were washed sequentially with water (2 x 20 mL), 10% aqueous NaHCO₃ (2 x 20 mL), water (30 mL), and brine (2 x 30 mL). The organic layer was dried (MgSO₄) and filtered, and the filtrate was concentrated *in vacuo*. Analysis of the ¹H NMR spectrum of the crude product thereby obtained indicated only the presence of starting material (**42c**).

N,N'-Bis(benzhydryl)-3-acetoxy-3-(3'-acetoxy-3'-azetidinyl)azetidine (47). A solution of 41c (1.9 g, 4.0 mmol) in CH₂Cl₂ (20 mL) under argon was cooled to 0 °C via application of external ice-water bath. To this cooled solution was added Ac₂O (920 mg, 9.0 mmol). To the resulting solution under argon was added dropwise with stirring a solution of Et₃N (1.21 mg, 12 mmol) and DMAP (200 mg, 1.64 mmol) in CH₂Cl₂ (5 mL), and the reaction mixture was stirred at 0-10 °C for 3 h. The external ice-water bath was removed, and the reaction mixture was allowed to warm gradually to ambient temperature with stirring during 12 h. To the reaction mixture was added CH₂Cl₂ (100 mL), and the resulting mixture was washed sequentially with water (20 mL), 10% aqueous NaHCO3 (20 mL), and brine (20 mL). The organic layer was dried (MgSO₄) and filtered, and the filtrate was concentrated in vacuo. The residue was purified via column chromatography on silica gel by eluting with 50% EtOAc-hexane. Pure 47 (1.96 g, 88%) was thereby obtained as colorless microcrystalline solid: mp 198-199 °C; IR (KBr) 2857 (w), 1743 (s), 1250 (s), 760 (s), 712 cm⁻¹ (s); ¹H NMR (CDCl₃) δ 1.78 (s, 6 H), 3.02-3.18 (m, 4 H), 3.92-4.02 (m, 4 H), 4.28 (s, 2 H), 6.92-7.40 (m, 20 H); ¹³C NMR (CDCl₃) δ 21.4 (q), 61.4 (t), 76.8 (s), 78.2 (d), 127.2 (d), 127.3 (d), 128.5 (d), 142.1 (s), 169.7 (s). Anal. Calcd for C36H36N2O4: C, 77.12; H, 6.47. Found: C, 77.19; H, 6.13. The structure of 47 was established unequivocally via application of X-ray crystallographic techniques (vide infra).

N,N'-Bis(acetyl)-3-acetoxy-3-(3'-acetoxy-3'-azetidinyl)azetidine (49). A solution of 47 (1.96 g, 3.5 mmol) in Et₂O (50 mL) was cooled to 0 °C via application of an external ice-water bath. Dry HCl gas was passed through the solution for 5 minutes, during which time a precipitate formed. Argon then was bubbled through the reaction mixture to purge excess HCl (g), and the precipitate was collected subsequently via suction filtration. The residue was washed with Et₂O (2 x 20 mL) and then dried *in vacuo*. The dihydrochloride salt of 47 (i.e., 47 2HCl, 2.2 g, 100%) was thereby obtained as a colorless microcrystalline solid. This material was used as obtained in the next synthetic step.

To a solution of 47.2HCl (2.2 g, 3.5 mmol, *vide supra*) in dry MeOH (75 mL) was added 20% Pd(OH)₂ on powdered charcoal (700 mg, 1.0 mmol),²⁵ and the resulting mixture was hydrogenated with H₂ (g) at 58 psig) at ambient temperature by using a Parr hydrogenation apparatus for 65 h. At that time, tlc analysis of the reaction mixture indicated the complete absence of 47 (or of 47.2HCl). The reaction mixture was filtered to remove spent catalyst, and the filtrate was concentrated *in vacuo*. The residue was washed with Et₂O (3 x 30 mL); after each washing procedure, the organic layer was decanted carefully and discarded. The residue was dried *in*

vacuo, thereby affording **48** (780 mg, 74%) as a colorless microcrystalline solid. This material was used as obtained in the next synthetic step.

A solution of **48** (780 mg, 2.6 mmol, *vide supra*) in CH₂Cl₂ under argon was cooled to 0 °C via application of an external ice-water bath. To this cooled solution was added Ac₂O (2.04 g, 20 mmol). To the resulting solution under argon was added dropwise with stirring a solution of pyridine (5 mL) and DMAP (100 mg, 0.82 mmol) in CH₂Cl₂ (5 mL), and the reaction mixture was stirred at 0-10 °C for 3 h. The external ice-water bath was removed, and the reaction mixture was allowed to warm gradually to ambient temperature with stirring during 8 h. Dichloromethane (100 mL) was added, and the resulting mixture was washed sequentially with water (20 mL), 10% aqueous NaHCO₃ (20 mL), and brine (20 mL). The organic layer was dried (MgSO₄) and filtered, and the filtrate was concentrated *in vacuo*. The residue was purified via column chromatography on silica gel by eluting with 50% EtOAc-hexane. Pure **49** (650 mg, 80%) was thereby otbtained as a colorless microcrystalline solid: mp 181-182 °C; IR (KBr) 2962 (m), 1750 (vs), 1670 (vs), 1468 (s), 1250 cm⁻¹ (s); ¹H NMR (CDCl₃) δ 1.80 (s, 6 H), 1.98 (s, 6 H), 3.98-4.57 (m, 8 H); ¹³C NMR (CDCl₃) δ 18.9 (q), 19.0 (q), 20.8 (q), 20.9 (q), 55.5 (t), 55.9 (t), 57.6 (t), 58.4 (t), 169.6 (s), 170.4 (s). Exact Mass (CI-HRMS) Calcd for C₁₄H₂₀N₂O₆: [$M_{\rm r}$ + H]+ 313.139962 Found: [$M_{\rm r}$ + H]+ 313.139176.

X-ray Crystal Structures of 41a, 41b, 43b, and 47.26 All data were collected on an Enraf-Nonius CAD-4 diffractometer by using the ω -2 θ scan technique, Mo K α radiation (λ = 0.71073 Å), and a graphite monochromator. Standard procedures used in our laboratory for this purpose have been described previously.²⁷ Pertinent X-ray data are given in Table 1. Data were corrected for Lorentz and polarization effects but not for absorption. The structures were solved by direct methods (41a and 43b were solved by using SIR²⁸, while 41b and 47 were solved by using SHELXS-86²⁹), and the models were refined by using full-matrix least-squares techniques. All atoms in 41b were refined with anisotropic thermal parameters, while those in 47 were refined by using isotropic thermal parameters. Sufficient data were available for the remaining two structures (i.e., 41a and 43b) to permit only some of the atoms to be refined anisotropically: i.e., (i) the oxygen atoms, nitrogen atoms, and the ethyl group carbon atoms in 41a and (ii) the sulfur atoms, oxygen atoms, nitrogen atoms, and the methyl carbon atoms in 43b. Hydrogen atoms were located on difference maps and then were included in the model in idealized positions $[U(H) = 1.3 B_{eq}(C)]$ and allowed to ride upon the attached carbon. All computations other than those specified were performed by using MolEN.³⁰ Scattering factors were taken from the usual sources.³¹

IV. Technology transfer from academics to industry and DoD. The development of improved methods for large-scale synthesis of TNAZ has involved extensive collaboration with

Dr. Thomas G. Archibald (Aerojet, Propulsion Division, Sacramento, CA). Dr. Archibald appears as co-author on all publications that have resulted thus far from work on this project.

Compound	41a	41b	43b	47	
		C ₂₀ H ₂₄ N ₂ O ₆ S ₂			
	$C_{12}H_{20}N_2O_6$	·2(DMSO) (C24H36N2O8S4)	$C_{20}H_{22}N_2O_5S_2$	C36H36N2O4	
Size (mm)	0.07 x 0.22 x 0.24	0.11 x 0.22 x 0.29	0.09 x 0.10 x 0.42	0.06 x 0.07 x 0.08	
Space Group	$P2_1/n$	P-1 bar	P21/c	$P2_1/n$	
a (Å)	10.251 (4)	6.2973 (8)	16.476 (2)	9.054 (1)	
b (Å)	5.782 (2)	8.4717 (6)	7.5480 (5)	15.426 (2)	
c (Å)	12.336 (3)	14.023 (1)	16.811 (1)	10.619 (1)	
α (°)	90	95.400 (6)	90	90	
β(°)	105.05 (2)	95.939 (9)	99.195 (7)	100.03 (1)	
γ(°)	90	97.494 (8)	90	90	
V (Å ³)	706.1 (4)	738.3 (1)	2063.8 (3)	1460.5 (4)	
Z-value	2	1	4	2	
D_{calc} (g-cm ⁻³)	1.356	1.379	1.398	1.275	
μ (cm ⁻¹)	1.023	3.56	2.79	0.77	
T (K)	293	295	293	295	
$2\theta_{\max}$ (°)	45	44	44	44	
Total reflections	1084	1787	2851	1998	
Unique	1030	1787	2755	1872	
reflections					
R _{int}	0.036		0.024	0.034	
$I \ge 3\sigma(I)$	410	1079	1440	493	
Parameters	71	172	172	85	
R, R _w	0.0673, 0.0708	0.050, 0.050	0.0497, 0.0550	0.0510, 0.0556	
$(\Delta/\sigma)_{\rm max}$	0.03	<0.01	<0.01	<0.01	
$\rho_{\text{max}}; \rho_{\text{min}} (e \text{Å}^{-3})$	0.22; -0.25	0.46; -0.33	0.32; -0.37	0.22; - 0.19	

Table 1. X-ray data collection and processing parameters for 41a, 41b, 43b, and 47.26

In addition, we have provided information in advance of publication to Drs. C. Rao Surapaneni (U. S. Army ARDEC, Picatinny Arsenal, NJ) and Paritosh R. Dave (GEO-CENTERS, Inc., Lake Hopatcong, NJ), both of whom are involved in the large-scale synthesis of TNAZ.

V. References and Footnotes.

1. Funke, W. Chem. Ber. 1969, 102, 3148. (b) Funke, W. Angew. Chem., Int. Ed. Engl. 1969, 8, 70.

- 2. Archibald, T. G.; Gilardi, R.; Baum, K.; George, C. J. Org. Chem. 1990, 55, 2920.
- (a) Archibald, T. G.; Garver, L. C.; Baum, K.; Cohen, M. C. J. Org. Chem. 1989, 54, 2869. (b) Axenrod, T.; Watnick, C.; Yazdehkasti, H.; Dave, P. R. Tetrahedron Lett. 1993, 34, 6677. (c) Axenrod, T.; Watnick, C.; Yazdehkasti, H.; Dave, P. R. J. Org. Chem. 1995, 60, 1959.
- 4. Kobayashi, J.; Cheng, J.-F.; Ishibashi, M.; Wälchli, M. R.; Yamamura, S.; Ohijumi, Y. J. Chem. Soc., Perkin Trans 1 1991, 1135.
- 5. (a) Bartholomew, D.; Stocks, M. J. *Tetrahedron Lett.* **1991**, *32*, 4795. (b) Bartholomew, D.; Stocks, M. J. *Ibid.* **1991**, *32*, 4799.
- (a) Marchand, A. P.; Rajagopal, D.; Bott, S. G.; Archibald, T. G. J. Org. Chem. 1994, 59, 1608. (b) Marchand, A. P.; Rajagopal, D.; Bott, S. G.; Archibald, T. G. J. Org. Chem. 1994, 59, 5499.
- 7. Bull, J. R.; Jones, E. R. H.; Meakins, G. D. J. Chem. Soc. 1965, 2601.
- 8. Dave, P.; Byun, H.-S.; Engel, R. Synth. Commun. 1986, 16, 1343. This paper reports the use of NaI-DMSO-NaHCO₃ to oxidize primary alkyl halides to aldehydes. In our hands, application of this regimen to 17 resulted simply in hydrolysis to afford the corresponding primary alcohol (18) without concomitant oxidation.
- 9. For a review of the Henry reaction, see: Baer, H. H.; Urbas, L. In: Feuer, H. (ed.) *The Chemistry of the Nitro and Nitroso Groups*, Wiley-Interscience: New York, **1970**, Part 2, pp 76-117.
- 10. Marchand, A. P.; Rajagopal, D.; Bott, S. G.; Archibald, T. G. J. Org. Chem. 1995, 60, 4943.
- 11. Hiskey, M. A.; Coburn, M. D. U. S. Patent 5,336,784; Chem. Abstr. 1994, 121, 300750s.
- (a) McKenney, R. L., Jr.; Floyd, T. G.; Stevens, W. E.; Marchand, A. P.; Sharma, G. V. M.; Bott, S. G.; Archibald, T. G. "Synthesis and Thermal Properties of 1,3-Dinitro-3-(1',2'-dinitroazetidin-3'-yl)azetidine (TNDAZ) and Its Admixtures with TNAZ", U. S. Air Force Technical Report WL-TR-96-7046, July, 1996, 39 + vii pp. (Distribution Unlimited). (b) McKenney, R. L.; Archibald, T. G.; Marchand, A. P. "Synthesis and Thermal Properties of 1,3-Dinitro-3-(1',3'-dinitroazetidin-3'-yl)azetidine", J. Energetic Materials In press.
- 13. Dave, P. R. J. Org. Chem. 1996, 61, 5453.
- 14. Marchand, A. P.; Kumar, K. A.; Devasagayaraj, A. Unpublished results.
- 15. Bartnik, R.; Marchand, A. P.; Kumar, K. A. Unpublished results.

- 16. Katritzky, A. R.; Cundy, D. J.; Chen, J. J. Heterocyclic Chem. 1994, 31, 271.
- 17. Bartnik, R.; Marchand, A. P. Synlett 1977, 1029.
- 18. See, e.g., Baumann, H.; Duthaler, R. O. Helv. Chim. Acta 1988, 71, 1035.
- 19. See, e.g., Morimoto, A.; Okutani, T.; Masuda, K. Chem. Pharm. Bull. 1973, 21, 228.
- 20. Mloston, G.; Galindo, A.; Bartnik, R.; Marchand, A. P.; Rajagopal, D. J. Heterocyclic Chem. 1996, 33, 93.
- 21. Marchand, A. P.; Sharma, G. V. M.; Rajagopal, D.; Shukla, R.; Mloston, G.; Bartnik. R. J. Heterocyclic Chem. 1996, 33, 837.
- 22. Moss, R. A.; Maksimovic, L.; Marchand, A. P.; Ramanaiah, K. C. V. Tetrahedron Lett. 1996, 37, 5849.
- 23. Marchand, A. P.; Devasagayaraj, A. J. Org. Chem. 1997, 62, 4434.
- 24. Vogel, A. I. Textbook of Practical Organic Chemistry, Longmans: New York, 5th Edition, 1978; p. 318.
- 25. Perlman, W. M. Tetrahedron Lett. 1967, 1663.
- X-ray crystal structure data for 41a, 41b, 43b, and 47 were kindly obtained by Dr. SimonG. Bott, Department of Chemistry, University of Houston, Houston, TX. We thank Dr.Bott for his kind assistance in this regard.
- 27. Mason, M. R.; Smith, J. M.; Bott, S. G.; Barron, A. R. J. Am. Chem. Soc. 1993, 115, 4971.
- 28. Burla, M. C.; Camalli, M.; Cascaraano, G.; Giacovazzo, C.; Polidori, G.; Spagna, R.; Viterbo, D. J. Appl. Cryst., 1989, 22, 389.
- 29. Sheldrick, G. M. Acta Crystallogr., Section A, 1990, A46, 467.
- 30. MolEN, An Interactive Structure Solution Program. Enraf-Nonius: Delft, The Netherlands, 1990.
- 31. Cromer, D. T.; Waber, J. T. International Tables for X-ray Crystallogarphy, Kynoch Press: Birmingham; Vol. IV, 1974, Table 2.

Improved Economical and Environmentally Benign Routes for the Large-Scale Synthesis of 1,3,3-Trinitroazetidine

Principal Investigator: Dr. Alan P. Marchand

Department of Chemistry, University of North Texas NT Station, Box 5068, Denton, Texas 76203-5070

ONR Contract Number N00014-96-1-1279 Mechanics & Energy Conversion S&T Division (ONR Code 333)

Appendix I: X-ray Structure Data for Compound 41a

.

.

.

•

_ # #					
	Atom	× -	У —	Z -	B(A2)
	01	0.4460(5)	0.210(1)	0.5869(5)	6.1(2)
	031	0.9407(6)	-0.061(1)	0.7237(5)	7.9(2)
	032	0.9367(5)	0.218(1)	0.5903(5)	7.6(2)
	N3	0.7475(6)	0.064(1)	0.6047(5)	5.1(2)
	C1	0.5422(8)	0.081(2)	0.5482(6)	4.4(2)*
	C2	0.6572(7)	0.215(2)	0.5230(6)	4.1(2)*
	C3	0.8799(8)	0.075(2)	0.6484(7)	5.8(2)*
	C4	0.6428(8)	-0.058(2)	0.6401(7)	5.6(2)*
	C31	1.093(1)	0.219(3)	0.617(1)	11.5(5)
	C32	1.147(2)	0.391(3)	0.655(1)	15.4(6)

Table of Positional Parameters and Their Estimated Standard Deviations

Starred atoms were refined isotropically. Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as: (4/3) * [a2*B(1,1) + b2*B(2,2) + c2*B(3,3) + ab(cos gamma)*B(1,2) + ac(cos beta)*B(1,3) + bc(cos alpha)*B(2,3)]

Table o	f Positiona	l Parameter	s and Their	Estimated	Standard	Deviations
		. <u></u>				
	Atom	x -	<u>ү</u>	Z _	B(A2)	
	H2a	0.6647	0.2002	0.4481	5*	
	H2b	0.6607	0.3735	0.5432	5*	
	H4a	0.6387	-0.0271	0.7147	7*	
	H4b	0.6413	-0.2209	0.6283	7*	
	H31a	1.1176	0.1887	0.5496	14*	
	H31b	1.1256	0.0986	0.6696	14*	
	H32a	1.2417	0.3737	0.6689	19*	
	H32b	1.1169	0.5145	0.6041	19*	
	H32C	1.1248	0.4243	0.7241	19*	

.

	Table of G	eneral Disp	lacement P	arameter Ex	pressions -	U's
Name	U(1,1)	U(2,2)	U(3,3)	U(1,2)	U(1,3)	U(2,3)
01	0.083(3)	0.057(4)	0.098(4)	0.001(4)	0.036(3)	-0.018(4)
031	0.084(4)	0.098(6)	0.099(5)	0.023(5)	-0.006(4)	0.012(5)
032	0.054(3)	0.122(6)	0.101(5)	-0.009(4)	0.004(3)	0.020(5)
N3	0.053(3)	0.076(5)	0.063(4)	0.018(4)	0.013(3)	0.027(5)
C31	0.131(9)	0.17(1)	0.112(9)	-0.00(1)	-0.002(8)	-0.05(1)
C32	0.20(1)	0.19(2)	0.15(1)	-0.01(1)	-0.01(1)	-0.07(1)

The form of the anisotropic displacement parameter is: exp[-2PI2{h2a2U(1,1) + k2b2U(2,2) + l2c2U(3,3) + 2hkabU(1,2) + 2hlacU(1,3) + 2klbcU(2,3)}] where a,b, and c are reciprocal lattice constants.

27

Atom 1 ======	Atom 2	Distance =======	Atom 1 =====	Atom 2 =====	Distance
01	C1	1.42(1)	N3	C4	1.44(1)
031	С3	1.25(1)	Cl	C1'	1.582(8)
032	C3	1.32(1)	C1	C2	1.51(1)
032	C31	1.55(1)	C1	C4	1.55(1)
N3	C2	1.47(1)	C31	C32	1.17(2)
N3	С3	1.33(1)			

Table of Bond Distances in Angstroms

Numbers in parentheses are estimated standard deviations in the least significant digits.

Table of Bond Distances in Angstroms

Atom 1 ======	Atom 2 =====	Distance	Atom 1 ======	Atom 2 =====	Distance
C2	H2a	0.95	C31	H31b	0.95
C2	H2b	0.95	C32	H32a	0.95
C4	H4a	0.95	C32	H32b	0.95
C4	H4b	0.95	C32	H32c	0.95
C31	H31a	0.95			

v.

Table of Bond Angles in Degrees

Atom 1 =====	Atom 2 =====	Atom 3 ======	Angle =====	Atom 1 =====	Atom 2 =====	Atom 3 ======	Angle =====
C3	032	C31	117.5(8)	C2	C1	C1'	117.0(6)
C2	N3	C3	130.4(8)	C4	C1	C1'	111.9(7)
C2	NJ	C4	96.5(6)	N3	C2	C1	86.6(6)
C3	N3	C4	131.6(7)	031	С3	032	126.1(8)
01	C1	C2	116.7(7)	031	С3	N3	122.1(9)
01	Cl	C4	114.7(7)	032	С3	N3	111.0(7)
01	C1	C1'	105.8(5)	N3	C4	C1	85.9(7)
C2	C1	C4	90.6(6)	032	C31	C32	116.(1)

Numbers in parentheses are estimated standard deviations in the least significant digits.

Table of Bond Angles in Degrees

-

Atom 1	Atom 2	Atom 3 ======	Angle =====	Atom 1 ======	Atom 2 ======	Atom 3 ======	Angle
N3	C2	H2a	115	032	C31	H31b	108
NJ	C2	H2b	115	C32	C31	H31a	108
C1	C2	H2a	115	C32	C31	H31b	108
C1	C2	H2b	115	H31a	C31	H31b	109
H2a	C2	H2b	110	C31	C32	H32a	109
N3	C4	H4a	115	C31	C32	H32b	109
N3	C4	H4b	115	C31	C32	H32C	109
C1	C4	H4a	115	H32a	C32	H32b	109
C1	C4	H4b	115	H32a	C32	H32C	109
H4a	C4	H4b	109	H32b	C32	H32C	109
032	C31	H31a	108				

.

31

.

Table of Torsion Angles in Degrees

Atom 1	Atom 2	Atom 3 ======	Atom 4	Angle		
031	032	<u>C3</u>	031	-0.37	(1.46)
C31	032	C3	NB	-169 78	\hat{i}	0 86)
	032	C31	C32	-114 82	\hat{i}	1.40)
C3	N3	C2	C1	-171 46	ì	0.88)
	NJ	C2	C1	-4.58	ì	0.66)
C2	NB	C3	031	175.27	ì	0.82)
C2	N3	C3	032	-14.82	ì	1.31)
C4	N3	C3	031	12.81	è	1.56)
C4	N3	C3	032	-177.28	ì	0.86)
C2	N3	C4	C1	4.47	è	0.65)
C3	N3	C4	C1	171.12	Ì	0.95)
01	C1	C2	N3	122.47	Ċ	0.69)
C4	C1	C2	NJ	4.25	Ċ	0.62)
C1'	C1	C2	NJ	-110.82	(0.73)
01	C1	C4	N3	-124.25	(0.73)
C2	C1	C4	N3	-4.31	(0.63)
C1'	C1	C4	N3	115.20	(0.69)
01	C1	C1'	01'	180.00	(0.66)
01	C1	C1'	C21	-48.11	(0.92)
01	C1	C1'	C4 '	54.40	(0.82)
C2	C1	C1'	01'	48.11	(0.92)
C2	C1	C1'	C2′	-179.98	(0.51)
C2	C1	C1'	C4 '	-77.49	(0.89)
C4	C1	C1′	01'	-54.40	- (0.82)
C4	C1	C1'	C2′	77.49	(0.89)
C4	C1	C1'	C4 '	180.00	(0.63)

Intermolecular Contacts (less than 3.60 Angstroms)

Hydrogen Bonding

	01	0311	2.67
Other			
	C3	C4 ′	3.42
	031	C1"	3.46
	031	C4"	3.55
	01	C32"/	3.55
	032	C31""	3.56
	031	C4 ′	3.57

Symmetry Codes

,	(x,y,z) ->	(3/2-x,y+1/2,3/2-z)
11	(x,y,z) ->	(3/2-x, y-1/2, 3/2-z)
tt 7	$(x, y, z) \rightarrow$	(x-1,y,z)
11 11	(x,y,z) ->	(2-x,-y,1-z)

Improved Economical and Environmentally Benign Routes for the Large-Scale Synthesis of 1,3,3-Trinitroazetidine

Principal Investigator: Dr. Alan P. Marchand

Department of Chemistry, University of North Texas NT Station, Box 5068, Denton, Texas 76203-5070

ONR Contract Number N00014-96-1-1279 Mechanics & Energy Conversion S&T Division (ONR Code 333)

Appendix II: X-ray Structure Data for Compound 41b

Table of Positional Parameters and Their Estimated Standard Deviations

Atom 	× -	<u>У</u>	Z _	B(A2)
S	0.1484(3)	0.1881(2)	0.2886(1)	4.97(4)
01a	0.0348(8)	0.3183(5)	0.3130(3)	6.7(1)
01b	0.3776(7)	0.2040(6)	0.3121(4)	6.6(1)
09	-0.0708(7)	-0.1840(4)	0.0527(3)	5.2(1)
N7	0.1095(7)	0.1538(5)	0.1725(3)	4.1(1)
Cl	0.030(1)	0.0194(7)	0.3367(4)	4.3(1)
C2	0.131(1)	-0.1147(8)	0.3389(5)	5.1(2)
C3	0.034(1)	-0.2487(8)	0.3731(5)	5.8(2)
C4	-0.164(1)	-0.2540(8)	0.4072(4)	5.5(2)
C4a	-0.271(2)	-0.401(1)	0.4430(6)	8.4(2)
C5	-0.260(1)	-0.1181(9)	0.4064(5)	5.9(2)
C6	-0.170(1)	0.0190(8)	0.3710(5)	5.5(2)
C8	0.215(1)	0.0331(7)	0.1164(4)	4.5(1)
C9	-0.0003(9)	-0.0207(6)	0.0509(4)	3.9(1)
C10	-0.1064(9)	0.0948(7)	0.1177(4)	4.1(1)
S1s	0.4593(3)	0.6461(2)	0.1610(2)	7.31(6)
01s	0.5283(8)	0.7333(6)	0.0752(5)	11.0(2)
Cls	0.216(1)	0.5345(8)	0.1137(6)	6.8(2)
C2s	0.615(1)	0.4878(9)	0.1722(6)	6.8(2)

Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as: (4/3) * [a2*B(1,1) + b2*B(2,2) + c2*B(3,3) + ab(cos gamma)*B(1,2) + ac(cos beta)*B(1,3) + bc(cos alpha)*B(2,3)] Table of Positional Parameters and Their Estimated Standard Deviations

.

Atom	x -	Y _	Z _	B(A2)
H2	0.2684	-0.1143	0.3166	6*
H3	0.1055	-0.3408	0.3732	7*
H4a1	-0.2093	-0.4147	0.5136	10*
H4a2	-0.2511	-0.4915	0.4014	10*
H4a3	-0.4210	-0.3941	0.4415	10*
H5	-0.3945	-0.1179	0.4312	7*
H6	-0.2424	0.1104	0.3701	7*
H8a	0.2795	-0.0606	0.1587	6*
H8b	0.3416	0.1076	0.0823	6*
H9	-0.2378	-0.1862	0.0757	6*
H10a	-0.1751	0.1936	0.0845	5*
H10b	-0.2180	0.0353	0.1595	5*
H1s1	0.2051	0.4383	0.0655	8*
H1s2	0.1333	0.6065	0.0841	8*
H1s3	0.1500	0.4986	0.1672	8*
H2s1	0.5745	0.4178	0.2373	8*
H2s2	0.7638	0.5309	0.1816	8* .
H2s3	0.5863	0.4159	0.1146	8*

38

•

Name	U(1,1)	U(2,2)	U(3,3)	U(1,2)	U(1,3)	U(2,3)
S	0.073(1)	0.0504(8)	0.062(1)	0.0051(8)	0.0050(9)	-0.0025(8)
01a	0.130(4)	0.052(2)	0.073(3)	0.025(2)	0.018(3)	-0.010(2)
01b	0.069(3)	0.078(3)	0.094(3)	-0.011(3)	-0.005(3)	0.002(3)
09	0.080(3)	0.038(2)	0.088(3)	0.011(2)	0.032(2)	0.019(2)
N7	0.054(3)	0.048(3)	0.054(3)	0.008(2)	0.006(2)	0.003(2)
C1	0.066(4)	0.052(3)	0.044(3)	0.012(3)	-0.003(3)	-0.003(3)
C2	0.070(4)	0.068(4)	0.062(4)	0.015(3)	0.016(3)	0.016(3)
С3	0.099(5)	0.071(4)	0.054(4)	0.025(4)	0.012(4)	0.014(3)
C4	0.095(5)	0.072(4)	0.040(4)	0.003(4)	0.005(4)	0.002(3)
C4a	0.144(7)	0.095(5)	0.072(5)	-0.021(5)	0.019(5)	0.022(4)
C5	0.058(4)	0.106(5)	0.058(4)	0.003(4)	0.013(3)	0.008(4)
C6	0.066(4)	0.082(4)	0.063(4)	0.026(3)	0.008(3)	0.000(4)
C8	0.057(3)	0.058(3)	0.056(4)	0.015(3)	0.011(3)	0.001(3)
C9	0.054(3)	0.036(3)	0.060(3)	0.007(3)	0.018(3)	0.008(3)
C10	0.058(3)	0.049(3)	0.051(3)	0.011(3)	0.013(3)	0.005(3)
Sls	0.063(1)	0.065(1)	0.143(2)	-0.0002(9)	0.025(1)	-0.023(1)
01s	0.076(3)	0.095(3)	0.267(6)	0.002(3)	0.069(4)	0.082(4)
Cls	0.068(4)	0.056(4)	0.134(6)	0.001(3)	0.006(5)	0.031(4)
C2s	0.068(4)	0.096(5)	0.098(5)	0.022(4)	0.009(4)	0.012(5)

Table of General Displacement Parameter Expressions - U's

The form of the anisotropic displacement parameter is: exp[-2PI2{h2a2U(1,1) + k2b2U(2,2) + l2c2U(3,3) + 2hkabU(1,2) + 2hlacU(1,3) + 2klbcU(2,3)}] where a,b, and c are reciprocal lattice constants.

Atom 1 =====	Atom 2	Distance	Atom 1 ======	Atom 2 ======	Distance
S	01a	1.425(5)	C3	C4	1.38(1)
S	01b	1.432(5)	C4	C4a	1.49(1)
S	N7	1.615(5)	C4	C5	1.37(1)
S	Cl	1.751(6)	C5	C6	1.38(1)
09	C9	1.400(6)	C8	C9	1.547(8)
N7	C8	1.498(8)	C9	C10	1.552(8)
N7	C10	1.491(7)	C9	C9′	1.503(6)
C1	C2	1.375(9)	Sls	01s	1.540(7)
C1	C6	1.391(9)	Sls	C1s	1.724(7)
C2	С3	1.368(9)	Sls	C2s	1.772(8)
		—			

Table of Bond Distances in Angstroms

Numbers in parentheses are estimated standard deviations in the least significant digits.

Table of Bond Distances in Angstroms

Atom 1 ======	Atom 2 =====	Distance =======	Atom 1 ======	Atom 2 ======	Distance
09	H9	1.13	C8	H8b	1.13
C2	H2	0.95	C10	H10a	1.11
С3	H3	0.95	C10	H10b	1.07
C4a	H4a1	1.05	Cls	H1s1	1.00
C4a	H4a2	0.95	C1s	H1s2	0.95
C4a	H4a3	0.95	Cls	H1s3	0.95
C5	Н5	0.95	C2s	H2s1	1.17
C6	H6	0.95	C2s	H2s2	0.95
C8	H8a	1.13	C2s	H2s3	0.95

Table of Bond Angles in Degrees

٤

Atom 1 =====	Atom 2 ======	Atom 3 ======	Angle	Atom 1 ======	Atom 2 ======	Atom 3 ======	Angle
01a	S	01b	120.3(3)	C3	C4	C5	117.0(6)
01a	S	N7	105.9(3)	C4a	C4	C5	121.0(7)
01a	S	C1	108.3(3)	C4	C5	C6	123.0(6)
01b	S	N7	104.7(3)	Cl	C6	C5	118.2(6)
01b	S	C1	108.8(3)	N7	C8	C9	89.4(4)
N7	S	C1	108.2(3)	09	C9	C8	111.2(5)
S	N7	C8	123.1(4)	09	C9	C10	115.4(5)
S	N7	C10	123.1(4)	09	C9	C91	111.0(4)
C8	N7	C10	92.5(4)	C8	C9	C10	88.3(4)
S	C1	C2	120.1(5)	C8	C9	C91	114.8(4)
S	C1	C6	120.2(5)	C10	C9	C91	114.5(4)
C2	Cl	C6	119.6(6)	N7	C10	C9	89.4(4)
Cl	C2	C3	120.1(6)	01s	S1s	C1s	102.8(4)
C2	C3	C4	121.9(7)	01s	S1s	C2s	107.5(4)
C3	C4	C4a	122.0(7)	C1s	S1s	C2s	98.8(3)

Numbers in parentheses are estimated standard deviations in the least significant digits.

•

Table of Bond Angles in Degrees

Atom 1	Atom 2	Atom 3 ======	Angle =====	Atom 1 ======	Atom 2 ======	Atom 3	Angle
С9	09	H9	104	H8a	C8	H8b	114
C1	C2	H2	120	N7	C10	H10a	111
СЗ	C2	H2	120	N7	C10	H10b	114
C2	С3	H3	119	C9	C10	H10a	117
C4	СЗ	H3	119	C9	C10	H10b	114
C4	C4a	H4a1	113	H10a	C10	H10b	111
C4	C4a	H4a2	109	Sls	C1s	H1s1	123
C4	C4a	H4a3	109	Sls	Cls	H1s2	106
H4al	C4a	H4a2	109	Sls	C1s	H1s3	106
H4al	C4a	H4a3	109	Hlsl	C1s	H1s2	106
H4a2	C4a	H4a3	110	H1s1	C1s	H1s3	106
C4	C5	H5	119	H1s2	Cls	H1s3	110
C6	C5	Н5	119	Sls	C2s	H2s1	111
C1	C6	H6	121	Sls	C2s	H2s2	109
C5	C6	H6	121	S1s	C2s	H2s3	109
N7	C8	H8a	116	H2s1	C2s	H2s2	109
N7	C8	H8b	104	H2s1	C2s	H2s3	109
C9	C8	H8a	116	H2s2	C2s	H2s3	110
C9	C8	H8b	115				

Table of Torsion Angles in Degrees

Atom 1 ======	Atom 2 === = ==	Atom 3	Atom 4 ======	Angle =====		
01a	S	N7	C8	175.40	(0.44)
01a	S	N7	C10	-65.45	(0.48)
01b	S	N7	C8	47.24	(0.49)
01b	S	N7	C10	166.40	(0.42)
C1	S	N7	C8	-68.71	(0.50)
C1	S	N7	C10	50.45	(0.49)
01a	S	C1	C2	-168.25	(0.50)
01a	S	C1	C6	13.21	(0.60)
01b	S	C1	C2	-35.83	(0.59)
01b	S	C1	C6	145.63	(0.51)
N7	S	C1	C2	77.44	(0.55)
N7	S	C1	C6	-101.10	(0.53)
S	N7	C8	C9	138.31	(0.40)
C10	N7	C8	C9	5.38	(0.42)
S	N7	C10	C9	-138.33	(0.40)
C8	N7	C10	C9	-5.37	((0.41)
S	C1	C2	C3	-177.47	(0.50)
C6	Cl	C2	C3	1.08	Ç	0.94)
S		06	C5 C5	1/8.5/	>	0.49)
C2		C6	C5	-0.03	$\frac{1}{2}$	1.05)
	C2	C3		178 99	$\left\{ \right\}$	1.00)
C2	C3	C4	C4a C5	-0.62	$\hat{\boldsymbol{\lambda}}$	0.04)
C2		C4 C5	C5 C6	-0.02	~	0.97)
	C4 C4	C5	C6	-177.83	$\hat{\epsilon}$	0.65)
	C5	C5	C1	-1.51	ì	1.00
N7	C8	C9	09	-121.84	è	0.46
N7	C8	C9	C10	-5.17	ì	(0.40)
N7	C8	C9	C9'	111.09	è	0.48)
09	C9	C10	N7	117.87	è	0.48)
C8	C9	C10	N7	5.19	ì	0.40)
C91	C9	C10	N7	-111.39	ì	0.49)
09	C9	C9'	091	-180.00	è	0.63)
09	C9	C9 '	C8 '	52.86	è	0.63)
09	C9	C9 1	C10'	-47.14	Ò	0.64)
C8	C9	C91	091	-52.86	Ċ	0.63)
C8	C9	C91	C8 1	180.00	Ċ	0.34)
C8	C9	C9′	C10′	80.00	Ċ	0.59)
C10	C9	C91	091	47.14	Ċ	0.64)
C10	C9	C91	C81	-80.00	Ċ	0.59)
C10	C9	C9′	C10′	180.00	Ì	0.66)

Table of Least-Squares Planes

Orthonorma	l Equati	on of Plane	e 1		
-0.3225	x + -0	.2366 Y +	-0.9165	Z4.09	969 = 0
0.0026	0	.0026	0.0010	0.0	096
Crystallog	raphic E	quation of	Plane		
-2.0307	x + -1	.6314 Y +	-11.8790	Z4.0	969 = 0
0.0162	C	.0600	0.1075	0.0	096
Atom	х	Y	Z	Distance	Esd
C1 C2 C3 C4 C5 C6	-0.3234 0.4598 -0.0515 -1.3429 -2.0960 -1.6294	-0.3493 -1.4794 -2.6569 -2.7531 -1.6106 -0.4053	4.6687 4.6985 5.1724 5.6456 5.6343 5.1437	$\begin{array}{r} 0.0049 + \\ -0.0075 + \\ 0.0016 + \\ 0.0072 + \\ -0.0101 + \\ 0.0039 + \end{array}$	- 0.0059 - 0.0064 - 0.0066 - 0.0062 - 0.0065 - 0.0065
Chi Square	ed =	6.2			
S C4a	0.3082 -1.9083	Other . 1.1407 -4.0399	Atoms 4.0015 6.1416	 0.0601 + 0.0394 +	- 0.0018 - 0.0080
Orthonorma	al Equat:	ion of Plan	e 2		
0.1830	x + 0	0.7662 Y +	-0.6160	Z0.6	711 = 0
0.0037	(0.0022	0.0026	0.0	058
Crystallo	graphic 1	Equation of	Plane		
1.1523	X +	6.2336 Y +	-9.9716	z0.6	5711 = 0
0.0236		0.0701	0.1193	0.0	058
Atom	x	Y	ż	Distance	Esd
N7 C8 C9 C10 Chi Squar	0.2697 1.1500 -0.0531 -0.9457 ed = 1	1.0294 0.1007 -0.2516 0.6167 75.8	2.3912 1.6132 0.7059 1.6325	0.0363 + -0.0350 + 0.0337 + -0.0350 +	0.0046 0.0060 0.0054 0.0057
and address					

Table of Least-Squares Planes (continued)

Dihedral Angles Between Planes:

Plane No.	Plane No.	Dihedral Angle
1	2	71.08 +- 0.21

.

Hydrogen Bond	ing	00	но	S-0H		0-н0	
09-H901s'			2.59	1.54	121		152
Other Non-Bon	ding C	ontacts					
Molecule - Mo	lecule						
	01b 01a 01a	2 2 2	C6 " C4a"' C3""	3.49 3.56 3.69			
Molecule - So	lvent						
	09 C8 C9 C10 09 01a	2 1 1 2 2	Cls""' Ols""' Ols' Ols' Sls' C2s"""	3.30 3.46 3.46 3.54 3.66 3.66			

Symmetry Codes

1	$(x, y, z) \rightarrow$	(x-1, y-1, z)
11	$(x, y, z) \rightarrow$	(x+1, y, z)
11 7	$(x, y, z) \rightarrow$	(-x, -y, 1-z)
SS 98	$(x, y, z) \rightarrow$	(x, y+1, z)
11 11 7	$(x, y, z) \rightarrow$	(x, y-1, z)
88 88 88	(x,y,z) ->	(x-1, y, z)

•

Improved Economical and Environmentally Benign Routes for the Large-Scale Synthesis of 1,3,3-Trinitroazetidine

Principal Investigator: Dr. Alan P. Marchand

Department of Chemistry, University of North Texas NT Station, Box 5068, Denton, Texas 76203-5070

ONR Contract Number N00014-96-1-1279 Mechanics & Energy Conversion S&T Division (ONR Code 333)

Appendix III: X-ray Structure Data for Compound 43b

Atom	× -	Y _	2 -	B(A2)	
Sl	0.13889(9)	0.1990(2)	0.78790(9)	4.50(4)	
S15	0.49172(9)	-0.3372(3)	0.85968(9)	4.84(4)	
01a	0.1837(2)	0.3637(6)	0.7960(2)	5.7(1)	
01b	0.0936(2)	0.1440(6)	0.8489(2)	5.8(1)	
09	0.2543(2)	-0.2750(6)	0.6570(2)	5.5(1)	
015a	0.4982(3)	-0.4955(6)	0.9055(3)	7.0(1)	
015b	0.5635(2)	-0.2539(7)	0.8397(2)	6.2(1)	
N7	0.2069(2)	0.0469(7)	0.7829(3)	3.9(1)	
N13	0.4359(3)	-0.3878(6)	0.7734(3)	4.3(1)	
C1	0.0729(3)	0.2037(8)	0.6956(3)	3.7(1)*	
C2	0.0010(3)	0.1060(9)	0.6848(3)	4.6(1)*	
С3	-0.0500(3)	0.1086(9)	0.6108(4)	4.9(1)*	
C4	-0.0304(3)	0.2036(9)	0.5471(3)	4.7(1)*	
C4a	-0.0870(4)	0.208(1)	0.4673(4)	7.0(2)	
C5	0.0415(3)	0.2999(9)	0.5580(3)	5.0(1)*	

.

Table of Positional Parameters and Their Estimated Standard Deviations

.

,

.

Table of	Positional	Parameters a	and Their Es	timated St	andard Deviations	(cont.
	Atom	x -	Y -	Z -	B(A2)	
	C6	0.0928(3)	0.3031(9)	0.6323(3) 4.6(1)*	
	C8	0.1878(3)	-0.1477(8)	0.7748(3) 4.6(1)*	
	C9	0.2557(3)	-0.1596(8)	0.7243(3) 3.7(1)*	
	C10	0.2592(3)	0.0403(9)	0.7180(3) 4.4(1)*	
	C11	0.3222(3)	-0.2823(8)	0.7224(3) 3.8(1)*	
	C12	0.4092(3)	-0.2403(9)	0.7145(3) 4.4(1)*	
	C14	0.3490(4)	-0.4452(9)	0.7723(4) 5.0(1)*	
	C16	0.4363(3)	-0.1839(8)	0.9075(3) 3.9(1)*	
	C17	0.4406(4)	-0.0052(9)	0.8919(4) 5.0(1)*	
	C18	0.3915(4)	0.113(1)	0.9242(4) 6.0(2)*	
	C19	0.3367(4)	0.0596(9)	0.9723(4) 4.9(1)*	
	C19a	0.2810(4)	0.188(1)	1.0047(4) 8.8(2)	
	C20	0.3344(4)	-0.1193(9)	0.9887(4) 5.5(2)*	
	C21	0.3830(4)	-0.2409(9)	0.9574(4) 5.4(2)*	
		** ** ** ** ** ** ** ** **				

Starred atoms were refined isotropically. Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as: (4/3) * [a2*B(1,1) + b2*B(2,2) + c2*B(3,3) + ab(cos gamma)*B(1,2)

+ ac(cos beta) *B(1,3) + bc(cos alpha) *B(2,3)]

-

Atom	v		_		
	- -	<u>Y</u>	2 -	B(A2)	
H2	-0.0133	0.0373	0.7278	6*	
H3	-0.0997	0.0428	0.6040	6*	
H4a1	-0.1394	0.2492	0.4845	8*	
H4a2	-0.0930	0.0938	0.4432	9*	
H4a3	-0.0683	0.2890	0.4310	9*	
H5	0.0563	0.3651	0.5141	6*	
H6	0.1413	0.3731	0.6395	5*	
H8a	0.1962	-0.1802	0.8277	5*	
H8b	0.1296	-0.1681	0.7329	5*	
H10a	0.3141	0.1014	0.7349	5*	
H10b	0.2280	0.0864	0.6661	5*	
H12a	0.4325	-0.1374	0.7365	5*	
H12b	0.4168	-0.2781	0.6618	5*	
H14a	0.3178	-0.4544	0.8215	6*	
H14b	0.3332	-0.5419	0.7323	6*	
H17	0.4778	0.0365	0.8584	6*	
H18	0.3958	0.2359	0.9127	7*	
H19al	0.2290	0.2172	0.9710	9*	
H19a2	0.3107	0.2952	1.0157	11*	
H19a3	0.2685	0.1396	. 1.0535	11*	
H20	0.2978	-0.1601	1.0230	7*	
H21	0.3796	-0.3631	0.9700	7*	

Table of Positional Parameters and Their Estimated Standard Deviations

-

	Table of G	Table of General Displacement Parameter Expressions - U's							
Name	U(1,1)	U(2,2)	U(3,3)	U(1,2)	U(1,3)	U(2,3)			
S1	0.0546(8)	0.057(1)	0.0607(9)	0.0081(9)	0.0130(7)	-0.0092(9)			
S15	0.0566(9)	0.070(1)	0.0550(9)	0.0180(9)	0.0029(8)	0.005(1)			
01a	0.072(3)	0.055(3)	0.089(3)	-0.002(2)	0.007(2)	-0.024(3)			
01b	0.070(2)	0.094(4)	0.062(2)	0.007(3)	0.031(2)	-0.006(3)			
09	0.058(2)	0.090(3)	0.056(2)	0.018(2)	-0.008(2)	-0.019(3)			
015a	0.114(3)	0.075(3)	0.075(3)	0.044(3)	0.006(3)	0.033(3)			
015b	0.042(2)	0.117(4)	0.079(3)	0.001(3)	0.012(2)	-0.007(3)			
N7	0.041(2)	0.057(3)	0.054(3)	0.006(2)	0.013(2)	0.004(3)			
N13	0.060(3)	0.042(3)	0.059(3)	0.010(3)	0.005(2)	0.001(3)			
C4a	0.099(5)	0.075(5)	0.082(5)	0.015(5)	-0.014(4)	-0.006(5)			
C19a	0.095(5)	0.144(7)	0.091(5)	0.052(5)	0.002(4)	-0.050(5)			

The form of the anisotropic displacement parameter is: exp[-2PI2{h2a2U(1,1) + k2b2U(2,2) + l2c2U(3,3) + 2hkabU(1,2) + 2hlacU(1,3) + 2klbcU(2,3)}] where a,b, and c are reciprocal lattice constants.

. . . .

Atom 1	Atom 2 ======	Distance	Atom 1 ======	Atom 2	Distance
S1	01a	1.441(5)	C3	C4	1.370(9)
Sl	01b	1.423(4)	C4	C4a	1.506(8)
Sl	N7	1.617(5)	C4	C5	1.377(8)
S1	Cl	1.747(5)	C5	C6	1.393(7)
S15	015a	1.417(5)	C8	С9	1.510(8)
S15	015b	1.427(4)	C9	C10	1.515(9)
S15	N13	1.634(4)	C9	C11	1.439(8)
S15	C16	1.747(6)	C11	C12	1.494(8)
09	C9	1.425(7)	C11	C14	1.514(9)
09	C11	1.438(6)	C16	C17	1.378(9)
N7	C8	1.503(8)	C16	C21	1.378(9)
N7	C10	1.493(7)	C17	C18	1.37(1)
N13	C12	1.509(7)	C18	C19	1.367(9)
N13	C14	1.493(7)	C19	C19a	1.49(1)
C1	C2	1.383(8)	C19	C20	1.38(1)
C1	C6	1.383(8)	C20	C21	1.38(1)
C2	C3	1.386(7)			

Table of Bond Distances in Angstroms

C2 C3 1.386(7)

-

Numbers in parentheses are estimated standard deviations in the least significant digits.

Table of Bond Distances in Angstroms

-

Atom 1 ======	Atom 2	Distance	Atom 1 ======	Atom 2 =====	Distance
C2	H2	0.95	C12	H12a	0.92
С3	НЗ	0.95	C12	H12b	0.96
C4a	H4al	1.00	C14	H14a	1.04
C4a	H4a2	0.95	C14	H14b	1.00
C4a	H4a3	0.95	C17	H17	0.95
C5	Н5	0.95	C18	H18	0.95
C6	H6	0.95	C19a	H19a1	0.97
C8	H8a	0.91	C19a	H19a2	0.95
C8	H8b	1.11	C19a	H19a3	0.95
C10	H10a	1.02	C20	H20	0.95
C10	H10b	1.00	C21	H21	0.95

·

Table of Bond Angles in Degrees

-

|--|

Atom 1 ======	Atom 2	Atom 3 ======	Angle	Atom 1 ======	Atom 2 ======	Atom 3 ======	Angle
01a	S1	01b	120.2(3)	Cl	C2	C3	119.6(6)
01a	S1	N7	105.6(2)	C2	C3	C4	121.7(5)
01a	S1	C1	107.7(3)	C3	C4	C4a	121.2(5)
01b	S1	N7	106.2(3)	C3	C4	C5	118.5(5)
01b	S1	C1	108.8(2)	C4a	C4	C5	120.3(6)
N7	S1	C1	107.8(3)	C4	C5	C6	120.9(6)
015a	S15	015b	120.4(3)	Cl	C6	C5	119.7(5)
015a	S15	N13	105.6(3)	N7	C8	C9	86.9(4)
015a	S15	C16	107.9(3)	09	C9	C8	124.3(5)
015b	S15	N13	105.3(2)	09	C9	C10	123.3(5)
015b	S15	C16	109.3(3)	09	C9	C11	60.3(3)
N13	S15	C16	107.6(2)	C8	C9	C10	91.1(4)
C9	09	C11	60.4(3)	C8	C9	C11	133.3(5)
S1	N7	C8	124.2(3)	C10	C9	C11	127.0(5)
S1	N7	C10	123.2(4)	N7	C10	C9	87.1(4)
C8	N7	C10	92.2(4.)	09	C11	C9	59.4(3)
S15	N13	C12	118.3(4)	09	C11	C12	124.3(5)
S15	N13	C14	118.8(4)	09	C11	C14	125.3(5)
C12	N13	C14	91.5(4)	C9	C11	C12	127.6(5)
S1	C1	C2	120.3(4)	C9	C11	C14	131.8(5)
S1	. C1	C6	120.2(4)	C12	C11	C14	91.3(4)
C2	Cl	C6	119.5(5)	N13	C12	C11	88.2(4)

Bond Angles (cont.)

-

Atom 1 ======	Atom 2	Atom 3	Angle =====	Atom 1 ======	Atom 2 ======	Atom 3 ======	Angle
N13	C14	C11	88.1(4)	C18	C19	C19a	121.7(6)
S15	C16	C17	121.0(4)	C18	C19	C20	116.8(6)
S15	C16	C21	120.3(5)	C19a	C19	C20	121.6(6)
C17	C16	C21	118.6(6)	C19	C20	C21	122.7(6)
C16	C17	C18	120.8(6)	C16	C21	C20	119.4(6)
C17	C18	C19	121.8(7)				

Numbers in parentheses are estimated standard deviations in the least significant digits.

Table of Bond Angles in Degrees

-

Atom 1	Atom 2 ======	Atom 3	Angle	Atom 1 ======	Atom 2	Atom 3	Angle
C1	C2	H2	120	C9	C10	H10b	113
С3	C2	H2	120	H10a	C10	H10b	113
C2	С3	НЗ	119	N13	C12	H12a	107
C4	С3	НЗ	119	N13	C12	H12b	109
C4	C4a	H4a1	101	C11	C12	H12a	119
C4	C4a	H4a2	112	C11	C12	H12b	107
C4	C4a	H4a3	112	H12a	C12	H12b	121
H4al	C4a	H4a2	112	N13	C14	H14a	127
H4a1	C4a	H4a3	112	N13	C14	H14b	112
H4a2	C4a	H4a3	110	C11	C14	H14a	111
C4	C5	H5	120	C11	C14	H14b	102
C6	C5	H5	120	H14a	C14	H14b	112
Cl	C6	H6	120	C16	C17	H17	120
C5	C6	H6	120	C18	C17	H17	120
N7	C8	H8a	100	C17	C18	H18	119
N7	C8	H8b	110.	C19	C18	H18	119
C9	C8	H8a	121	C19	C19a	H19a1	118
C9	C8	H8b	106	C19	C19a	H19a2	107
H8a	C8	H8b	124	C19	C19a	H19a3	107
N7	C10	H10a	112	H19a1	C19a	H19a2	107
N7	C10	H10b	111	H19a1	C19a	H19a3	107
C9	C10	H10a	118	H19a2	C19a	H19a3	110

Bond Angles (cont.)

•

Atom 1 =====	Atom 2 ======	Atom 3 ======	Angle	Atom 1 ======	Atom 2 ======	Atom 3	Angle
C19	C20	H20	119	C16	C21	H21	120
C21	C20	H20	119	C20	C21	H21	120

Table of Torsion Angles in Degrees

.

Atom 1 ======	Atom 2 =====	Atom 3 ======	Atom 4	Angle	
01a	S1	N7	C8	179.40 (0.39)
01a	S1	N7	C10	-60.64 (0.46)
01b	S1	N7	C8	50.74 (0.45)
01b	S1	N7	C10	170.71 (0.41)
C1	S1	N7	C8	-65.73 (0.46)
C1	S1	N7	C10	54.24 (0.48)
01a	S1	C1	C2	-153.31 (0.48)
01a	S1	C1	C6	27.74 (0.56)
01b	S1	C1	C2	-21.52 (0.58)
01b	S1	C1	C6	159.52 (0.48)
N7	S1	C1	C2	93.22 (0.51)
N7	S1	C1	C6	-85.73 (0.54)
015a	S15	N13	C12	172.68	0.38)
015a	S15	N13	C14	63.42	0.49)
015b	S15	N13	C12	-58,91	0.45)
015b	S15	N13	C14	-168.17	(0.44)
C16	S15	N13	C12	57.60	0.44)
C16	S15	N13	C14	-51.66	0.50
0152	S15	C16	C17	160.51	0.45)
015a	815 815	C16	C21	-24 13	(0.40)
015a 015b	S15 S15	C16	C_{17}	24.13	(0.53)
0155	S15 S15	C16	C21	-156 73	(0.33)
UISD N12	515			-196.73	(0.45)
N12	515			-03.37	$\begin{pmatrix} 0.50 \end{pmatrix}$
NT2	212	CIO		-124 52	(0.43)
	09	C9 C0		-124.02	(0.03)
	09		C10 C12		$\left(\begin{array}{c} 0.57 \\ 0.66 \end{array}\right)$
C9 C9	09			-117.00	(0.00)
09	09			145 99	(0.00)
SI	N /		C9 C0	12 41	(0.37)
	N7		C9 60		(0.30)
SI	N/	C10	09	-146.54	(0.38)
C8	N7	C10	C9	-12.37	(0.38)
515	NI3	C12		-116.82	(0.40)
C14	N13	C12	C11	7.30	(0.43)
S15	N13	C14	C11	116.54	(0.41)
C12	N13	C14	C11	-7.21	(0.42)
S1	Cl	C2	C3	-178.87	(0.48)
C6	C1	C2	C3	0.09	(0.93)
S1	C1	C6	C5	177.29	(0.48)
C2	C1	C6	C5	-1.67	(0.90)
C1	C2	C3	C4	1.14	(0.95)
C2	C3	C4	C4a	-178.94	(0.61)
C2	C3	C4	C5 ,	-0.75	(0.97)
C3	C4	C5	C6	-0.88	(0,96)
C4a	C4	C5	C6	177.33	(0.61)
C4	C5	C6	C1	2.09	(0.96)
N7	C8	C9	09	-144.96	(0.51)

Atom 1 ======	Atom 2	Atom 3	Atom 4 ======	Angle	
N7	C8	C9	C10	-12.23	(0.38)
N7	C8	C9	C11	135.52	(0.62)
09	C9	C10	N7	145.74	(0.46)
C8	C9	C10	N7	12.31	(0.38)
C11	C9	C10	N7	-138.61	(0.52)
09	C9	C11	C12	111.82	(0.59)
09	C9	C11	C14	-111.78	(0.68)
C8	C9	C11	09	110.69	(0.68)
C8	C9	C11	C12	-137.49	(0.63)
C8	C9	C11	C14	-1.08	(1.04)
C10	C9	C11	09	-111.22	(0.57)
C10	C9	C11	C12	0.60	(0.86)
C10	C9	C11	C14	137.00	(0.62)
09	C11	C12	N13	-142.80	(0.55)
C9	C11	C12	N13	141.83	(0.54)
C14	C11	C12	N13	-7.20	(0.42)
09	C11	C14	N13	142.24	(0.49)
C9	C11	C14	N13	-139.59	(0.60)
C12	C11	C14	N13	7.28	(0.42)
S1 5	C16	C17	C18	174.26	(0.47)
C21	C16	C17	C18	-1.18	(0.85)
S15	C16	C21	C20	-174.15	(0.46)
C17	C16	C21	C20	1.32	(0.84)
C16	C17	C18	C19	-0.35	(0.94)
C17	C18	C19	C19a	-177.53	(0.59)
C17	C18	C19	C20	1.67	(0.91)
C18	C19	C20	C21	-1.52	(0.92)
C19a	C19	C20	C21	177.68	(0.59)
C19	C20	C21	C16	0.04	(0.94)

Table of Torsion Angles in Degrees (continued)

-

.

Table of Least-Squares Planes

-

0.5465 X + -0.7867 Y + -0.2872 Z4.8942 = 0 0.0022 0.0016 0.0024 0.0240 Crystallographic Equation of Plane 9.0043 X + -5.9378 Y + -6.2341 Z4.8942 = 0 0.0360 0.0124 0.1320 0.0240 Atom X Y Z Distance Esd C1 -0.6673 1.5379 11.5431 0.0046 +- 0.0057 C2 -1.8226 0.7998 11.3642 0.0052 +- 0.0062 C3 -2.4640 0.8195 10.1363 -0.0082 +- 0.0062 C4 -1.9703 1.5367 9.0787 0.0012 +- 0.0062 C5 -0.8150 2.2639 9.2593 0.0087 +- 0.0065 C6 -0.1690 2.2877 10.4931 -0.0114 +- 0.0062 Chi Squared = 8.2 S1 0.1718 1.5023 13.0752 0.0511 +- 0.0017 C4a -2.6893 1.5692 7.7556 -0.0374 +- 0.0075 Orthonormal Equation of Plane 2 -0.6356 X + 0.0857 Y + -0.7673 Z10.6860 = 0 0.0027 0.0034 0.0022 0.0230 Crystallographic Equation of Plane -10.4719 X + 0.6472 Y + -11.0252 Z10.6860 = 0 0.0445 0.0255 0.1442 0.0230 Atom X Y Z Distance Esd N7 1.3066 0.3538 12.9916 -0.0820 +- 0.0040 C8 1.0133 -1.1145 12.8578 0.0811 +- 0.0054 C1 -0.0804 +- 0.0055 C1 -0.3744 + 0.0054 C1 -0.0804 +- 0.0055 C1 -0.3244 0.3044 11.9160 0.0814 +- 0.0054	Orthonormal Equation of Plane 1						
0.00220.00160.00240.0240Crystallographic Equation of Plane9.0043 X + -5.9378 Y + -6.2341 Z4.8942 = 00.03600.01240.13201AtomXYZDistanceAtomXYZDistanceEsdC1-0.66731.537911.54310.0046 +- 0.0057C2-1.82260.799811.36420.0052 +- 0.0062C3-2.46400.819510.1363-0.0082 +- 0.0063C4-1.97031.53679.07870.0012 +- 0.0062C5-0.81502.26399.25930.0087 +- 0.0065C6-0.16902.287710.4931-0.0114 +- 0.0062Chi Squared =8.20ther AtomsS10.17181.502313.07520.0511 +- 0.0017C4a-2.68931.56927.7556-0.0374 +- 0.0075Orthonormal Equation of Plane2-0.6356 X +0.0857 Y +-0.7673 Z10.6360 = 00.00270.00340.00220.0230Crystallographic Equation of Plane-10.4719 X +0.6472 Y +-11.0252 Z10.64500.02550.14420.0230AtomXYZDistanceEsdN71.30660.35381.0133-1.114512.85780.0811 +-0.0814 +-0.00541.0133-1.24912.0202-0.0804 ++0.0814 +-0.00541.0133-1.24912.0202	0.5465	X + −0.	7867 Y +	-0.2872	Z4.894	2 = 0	
Crystallographic Equation of Plane 9.0043 X + -5.9378 Y + -6.2341 Z4.8942 = 0 0.0360 0.0124 0.1320 0.0240 Atom X Y Z Distance Esd C1 -0.6673 1.5379 11.5431 0.0046 +- 0.0057 C2 -1.8226 0.7998 11.3642 0.0052 +- 0.0062 C3 -2.4640 0.8195 10.1363 -0.0082 +- 0.0063 C4 -1.9703 1.5367 9.0787 0.0012 +- 0.0065 C5 -0.1690 2.2639 9.2593 0.0087 +- 0.0065 C6 -0.1690 2.2877 10.4931 -0.0114 +- 0.0062 Chi Squared = 8.2 Other Atoms S1 0.1718 1.5023 13.0752 0.0511 +- 0.0017 C4a -2.6893 1.5692 7.7556 -0.0374 +- 0.0075 Orthonormal Equation of Plane 2 -0.6356 X + 0.0857 Y + -0.7673 Z10.6860 = 0 0.0027 0.0034 0.0022 0.0230 Crystallographic Equation of Plane -10.4719 X + 0.6472 Y + -11.0252 Z10.6860 = 0 0.0445 0.0255 0.1442 0.0230 Atom X Y Z Distance Esd N7 1.3066 0.3538 12.9916 -0.0820 +- 0.0040 C8 1.0133 -1.1145 12.8578 0.0811 +- 0.0056 C10 2.3414 0.3044 11.9160 0.0814 +- 0.0054	0.0022	0.	0016	0.0024	0.024	0	
9.0043 X + -5.9378 Y + -6.2341 Z4.8942 = 0 0.0360 0.0124 0.1320 0.0240 Atom X Y Z Distance Esd C1 -0.6673 1.5379 11.5431 0.0046 +- 0.0057 C2 -1.8226 0.7998 11.3642 0.0052 +- 0.0062 C3 -2.4640 0.8195 10.1363 -0.0082 +- 0.0063 C4 -1.9703 1.5367 9.0787 0.0012 +- 0.0065 C5 -0.8150 2.2639 9.2593 0.0087 +- 0.0065 C6 -0.1690 2.2877 10.4931 -0.0114 +- 0.0062 Chi Squared = 8.2 Other Atoms S1 0.1718 1.5023 13.0752 0.0511 +- 0.0017 C4a -2.6893 1.5692 7.7556 -0.0374 +- 0.0075 Orthonormal Equation of Plane 2 -0.6356 X + 0.0857 Y + -0.7673 Z10.6860 = 0 0.0027 0.0034 0.0022 0.0230 Crystallographic Equation of Plane -10.4719 X + 0.6472 Y + -11.0252 Z10.6860 = 0 0.0445 0.0255 0.1442 0.0230 Atom X Y Z Distance Esd N7 1.3066 0.3538 12.9916 -0.0820 +- 0.0040 C8 1.0133 -1.1145 12.8578 0.0811 +- 0.0056 C9 2.2665 -1.2049 12.0202 -0.0804 +- 0.0054 Chi Squared = 0 0.0814 +- 0.0054	Crystallog	raphic Eq	uation of	Plane			
0.0360 0.0124 0.1320 0.0240 AtomXYZDistanceEsdC1 -0.6673 1.5379 11.5431 0.0046 $+ 0.0057$ C2 -1.8226 0.7998 11.3642 0.0052 $+ 0.0062$ C3 -2.4640 0.8195 10.1363 -0.0082 $+ 0.0062$ C4 -1.9703 1.5367 9.0787 0.012 $+ 0.0062$ C5 -0.8150 2.2639 9.2593 0.0087 $+ 0.0062$ C6 -0.1690 2.2877 10.4931 -0.0114 $+ 0.0062$ Chi Squared = 8.2 Conter AtomsS1 0.1718 1.5023 13.0752 0.0511 $+ 0.0017$ C4a -2.6893 1.5692 7.7556 -0.0374 $+ 0.0075$ Orthonormal Equation of Plane -0.6356 X + 0.0857 Y + -0.7673 Z - -10.6860 $=$ 0 0.0027 0.0034 0.0022 0.0230 0.0230 0.0445 0.0255 0.1442 0.0230 AtomXYZDistanceEsdN7 1.3066 0.3538 12.9916 -0.0820 $+ 0.0040$ C8 1.0133 -1.145 12.8578 0.0811 $+ 0.0844$ $+ 0.0844$ N7 1.3066 0.3538 12.9916 -0.0804 $+-$	9.0043	X + -5.	9378 Y +	-6.2341	Z4.894	2 = 0	
AtomXYZDistanceEsdC1 -0.6673 1.5379 11.5431 $0.0046 + - 0.0057$ C2 -1.8226 0.7998 11.3642 $0.0052 + - 0.0062$ C3 -2.4640 0.8195 10.1363 $-0.0082 + - 0.0063$ C4 -1.9703 1.5367 9.0787 $0.0012 + - 0.0062$ C5 -0.8150 2.2639 9.2593 $0.0087 + - 0.0062$ C6 -0.1690 2.2877 10.4931 $-0.0114 + - 0.0062$ Chi Squared = 8.2 Conter AtomsS1 0.1718 1.5023 13.0752 $0.0511 + - 0.0017$ C4a -2.6893 1.5692 7.7556 $-0.0374 + - 0.0075$ Orthonormal Equation of Plane2 $-0.6356 X + 0.0857 Y + -0.7673 Z10.6860 = 0$ 0.0027 0.0034 0.0022 0.0230 Crystallographic Equation of Plane $-10.4719 X + 0.6472 Y + -11.0252 Z10.6860 = 0$ 0.0445 0.0255 0.1442 0.0230 AtomXYZDistanceEsdN7 1.3066 $0.3538 12.9916$ $-0.0820 + - 0.0040$ C8 $1.0133 - 1.145 12.8578$ $0.0811 + - 0.0050$ C9 $2.2665 - 1.2049 12.0202$ $-0.0804 + - 0.0050$ C10 2.3414 $0.3044 11.9160$ $0.0814 + - 0.0054$	0.0360	0.	0124	0.1320	0.024	0	
C1 -0.6673 1.5379 11.5431 0.0046 +- 0.0057 C2 -1.8226 0.7998 11.3642 0.0052 +- 0.0062 C3 -2.4640 0.8195 10.1363 -0.0082 +- 0.0063 C4 -1.9703 1.5367 9.0787 0.0012 +- 0.0065 C5 -0.8150 2.2639 9.2593 0.0087 +- 0.0055 C6 -0.1690 2.2877 10.4931 -0.0114 +- 0.0062 Chi Squared = 8.2 Other Atoms S1 0.1718 1.5023 13.0752 0.0511 +- 0.0017 C4a -2.6893 1.5692 7.7556 -0.0374 +- 0.0075 Orthonormal Equation of Plane 2 -0.6356 X + 0.0857 Y + -0.7673 Z10.6860 = 0 0.0027 0.0034 0.0022 0.0230 Crystallographic Equation of Plane -10.4719 X + 0.6472 Y + -11.0252 Z10.6860 = 0 0.0445 0.0255 0.1442 0.0230 Atom X Y Z Distance Esd N7 1.3066 0.3538 12.9916 -0.0820 +- 0.0040 C8 1.0133 -1.1145 12.8578 0.0811 +- 0.0056 C10 2.3414 0.3044 11.9160 0.0814 +- 0.0054	Atom	х	Y	Z	Distance	Esd	
Chi Squared = 8.2 S1 0.1718 1.5023 13.0752 0.0511 +- 0.0017 C4a -2.6893 1.5692 7.7556 -0.0374 +- 0.0075 Orthonormal Equation of Plane 2 -0.6356 X + 0.0857 Y + -0.7673 Z10.6860 = 0 0.0027 0.0034 0.0022 0.0230 Crystallographic Equation of Plane -10.4719 X + 0.6472 Y + -11.0252 Z10.6860 = 0 0.0445 0.0255 0.1442 0.0230 Atom X Y Z Distance Esd N7 1.3066 0.3538 12.9916 -0.0820 +- 0.0040 C8 1.0133 -1.1145 12.8578 0.0811 +- 0.0056 C9 2.2665 -1.2049 12.0202 -0.0804 +- 0.0054 C10 2.3414 0.3044 11.9160 0.814 +- 0.0054	C1 C2 C3 C4 C5 C6	-0.6673 -1.8226 -2.4640 -1.9703 -0.8150 -0.1690	1.5379 0.7998 0.8195 1.5367 2.2639 2.2877	11.5431 11.3642 10.1363 9.0787 9.2593 10.4931	0.0046 +- 0.0052 +- -0.0082 +- 0.0012 +- 0.0087 +- -0.0114 +-	0.0057 0.0062 0.0063 0.0062 0.0065 0.0062	
S1 0.1718 1.5023 13.0752 0.0511 += 0.0017 C4a -2.6893 1.5692 7.7556 -0.0374 += 0.0075 Orthonormal Equation of Plane 2 -0.6356 X + 0.0857 Y + -0.7673 Z10.6860 = 0 0.0027 0.0034 0.0022 0.0230 Crystallographic Equation of Plane -10.4719 X + 0.6472 Y + -11.0252 Z10.6860 = 0 0.0445 0.0255 0.1442 0.0230 Atom X Y Z Distance Esd N7 1.3066 0.3538 12.9916 -0.0820 += 0.0040 C8 1.0133 -1.1145 12.8578 0.0811 += 0.0056 C9 2.2665 -1.2049 12.0202 -0.0804 += 0.0054 C10 2.3414 0.3044 11.9160 0.0814 += 0.0054	Chi Square	ed = 8	3.2				
Orthonormal Equation of Plane 2 -0.6356 X + 0.0857 Y + -0.7673 Z10.6860 = 0 0.0027 0.0034 0.0022 0.0230 Crystallographic Equation of Plane -10.4719 X + 0.6472 Y + -11.0252 Z10.6860 = 0 0.0445 0.0255 0.1442 0.0230 Atom X Y Z Distance Esd N7 1.3066 0.3538 12.9916 -0.0820 +- 0.0040 C8 1.0133 -1.1145 12.8578 0.0811 +- 0.0056 C9 2.2665 -1.2049 12.0202 -0.0804 +- 0.0056 C10 2.3414 0.3044 11.9160 0.0814 +- 0.0054	S1 C4a	0.1718 -2.6893	- Other 1.5023 1.5692	Atoms 13.0752 7.7556	0.0511 +- -0.0374 +-	0.0017 0.0075	
-0.6356 X + $0.0857 Y +$ $-0.7673 Z -10.6860 = 0$ 0.0027 0.0034 0.0022 0.0230 Crystallographic Equation of Plane $-10.4719 X +$ $0.6472 Y +$ $-11.0252 Z -10.6860 = 0$ 0.0445 0.0255 0.1442 0.0230 AtomXYZDistanceEsdN7 1.3066 $0.3538 12.9916$ $-0.0820 +$ 0.0040 C8 $1.0133 -1.1145 12.8578$ $0.0811 +$ 0.0056 C9 $2.2665 -1.2049 12.0202$ $-0.0804 +$ 0.0050 C10 $2.3414 0.3044 11.9160$ $0.0814 +$ 0.0054	Orthonorma	al Equatio	on of Plar	ne 2			
0.0027 0.0034 0.0022 0.0230 Crystallographic Equation of Plane $-10.4719 X +$ $0.6472 Y +$ $-11.0252 Z -10.6860 = 0$ 0.0445 0.0255 0.1442 0.0230 AtomXYZDistanceEsdN7 1.3066 0.3538 12.9916 $-0.0820 + -0.0040$ C8 $1.0133 - 1.1145$ 12.8578 $0.0811 + -0.0056$ C9 $2.2665 - 1.2049$ 12.0202 $-0.0804 + -0.0050$ C10 2.3414 0.3044 11.9160 $0.0814 + -0.0054$	-0.6356	x + 0.	.0857 Y +	-0.7673	Z10.686	50 = 0	
Crystallographic Equation of Plane $-10.4719 \times +$ $0.6472 \times +$ $-11.0252 \times -10.6860 = 0$ 0.0445 0.0255 0.1442 0.0230 AtomXYZDistanceEsdN7 1.3066 0.3538 12.9916 $-0.0820 + -0.0040$ C8 $1.0133 - 1.1145$ 12.8578 $0.0811 + -0.0056$ C9 $2.2665 - 1.2049$ 12.0202 $-0.0804 + -0.0050$ C10 2.3414 0.3044 11.9160	0.0027	0	.0034	0.0022	0.023	30	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Crystallographic Equation of Plane						
0.0445 0.0255 0.1442 0.0230 Atom X Y Z Distance Esd N7 1.3066 0.3538 12.9916 -0.0820 +- 0.0040 C8 1.0133 -1.1145 12.8578 0.0811 +- 0.0056 C9 2.2665 -1.2049 12.0202 -0.0804 +- 0.0050 C10 2.3414 0.3044 11.9160 0.0814 +- 0.0054	-10.4719	X + 0	.6472 Y +	-11.0252	Z10.680	50 = 0	
Atom X Y Z Distance Esd N7 1.3066 0.3538 12.9916 -0.0820 +- 0.0040 C8 1.0133 -1.1145 12.8578 0.0811 +- 0.0056 C9 2.2665 -1.2049 12.0202 -0.0804 +- 0.0050 C10 2.3414 0.3044 11.9160 0.0814 +- 0.0054	0.0445	0	.0255	0.1442	0.02	30	
N7 1.3066 0.3538 12.9916 -0.0820 $+ 0.0040$ C8 1.0133 -1.1145 12.8578 0.0811 $+ 0.0056$ C9 2.2665 -1.2049 12.0202 -0.0804 $+ 0.0050$ C10 2.3414 0.3044 11.9160 0.0814 $+ 0.0054$	Atom	х	Y	ż	Distance	Esd	
$Cn1 \ Sm2red = 1105 \ 1$	N7 C8 C9 C10	1.3066 1.0133 2.2665 2.3414	0.3538 -1.1145 -1.2049 0.3044	12.9916 12.8578 12.0202 11.9160	-0.0820 +- 0.0811 +- -0.0804 +- 0.0814 +-	0.0040 0.0056 0.0050 0.0054	

Table of Least-Squares Planes (continued)

•

Orthonorma	al Equation	on of Plar	ne 3			
0.1214	X + -0	.5864 Y +	-0.8008	z –	-7.894	1 = 0,
0.0036	0	.0031	0.0022		0.038	33
Crystallog	graphic Ed	quation of	f Plane			
2.0008	X + -4	.4264 Y +	-13.6162	z –	-7.894	1 = 0
0.0591	0	.0235	0.1650		0.038	33
Atom	х	Y	Z	Dist	ance	Esd
C11 C12 N13 C14	3.3675 4.8219 5.1050 3.6760	-2.1309 -1.8135 -2.9274 -3.3602	11.9875 11.8569 12.8345 12.8159	-0.0 0.0 -0.0 0.0	474 +- 476 +- 477 +- 475 +-	0.0055 0.0058 0.0045 0.0062
Chi Square	ed = 31	1.4				
Orthonorma	al Equati	on of Pla	ne 4			
-0.5897	X + -0	.1146 Y +	-0.7995	z -	-14.692	27 = 0
0.0020	0	.0025	0.0015		0.010	56
Crystallo	graphic E	quation o	f Plane			
-9.7152	X + -0	.8648 Y +	-11.6834	z –	-14.693	27 = 0
0.0323	0	.0188	0.1215		0.01	66
Atom	x	Y	Z	Dist	ance	Esd
C16 C17 C18 C19 C20 C21	4.7513 4.8627 3.9677 2.9348 2.8537 3.7376	-1.3881 -0.0389 0.8555 0.4500 -0.9003 -1.8185	15.0605 14.8014 15.3369 16.1354 16.4081 15.8882	0.0 -0.0 0.0 -0.0 -0.0)095 +-)036 +-)065 +-)106 +-)048 +-)052 +-	0.0052 0.0058 0.0064 0.0058 0.0062 0.0060
Chi Squar	ed =	9.6				

Dihedral Angles Between Planes:

-

Plane No.	Plane No.	Dihedral Angle
1	2	101.21 +- 0.23
1	3	40.74 + - 0.34
1	4	90.14 +- 0.19
2	3	60.86 +- 0.26
2	4	11.94 +- 0.81
3	4	50.52 +- 0.25

Intermolecular Contacts (less than 3.60 Angstroms)

01a	C14′	3.16
015a	015a"	3.17
09	C4a"/	3.22
015a	C12""	3.29
015b	N13""/	3.36
015b	C19a"""	3.39
09	C20"""'	3.40
015a	C21"	3.41
01a	C3""""	3.44
015b	C14""'	3.45
015a	C18""""'	3.48
015b	C10""	3.58

Symmetry Codes

,	(x,y,z)	->	(x,y+1,z)
18	(x,y,z)	->	(1-x, -1-y, 2-z)
11 /	(x, y, z)	->	(-x, -y, 1-z)
** **	(x, y, z)	->	(1-x, y-1/2, 3/2-z)
11 11 <i>/</i>	(x,y,z)	->	(1-x, y+1/2, 3/2-z)
98 88 98	(x,y,z)	->	(1-x, 1-y, 2-z)
11 11 11 /	(x,y,z)	->	(x, -1/2-y, z-1/2)
18 81 88 88	(x, y, z)	->	(-x, y+1/2, 3/2-z)
11 11 11 11 7	(x,y,z)	->	(x,y-1,z)

Improved Economical and Environmentally Benign Routes for the Large-Scale Synthesis of 1,3,3-Trinitroazetidine

Principal Investigator: Dr. Alan P. Marchand

Department of Chemistry, University of North Texas NT Station, Box 5068, Denton, Texas 76203-5070

ONR Contract Number N00014-96-1-1279 Mechanics & Energy Conversion S&T Division (ONR Code 333)

Appendix IV: X-ray Structure Data for Compound 47

•

-

 Atom	x	У	Z	B(A2)	
 03a	- 0.0785(7)	- 0.4699(4)	- 0.6640(6)	3.4(1)*	
03b	-0.1045(8)	0.5265(5)	0.7555(7)	5.1(2)*	
Nl	-0.1391(9)	0.3621(5)	0.4323(8)	3.1(2)*	
C2	-0.172(1)	0.4274(6)	0.5276(9)	2.9(2)*	
C3	-0.013(1)	0.4599(6)	0.5393(9)	2.7(2)*	
C3a	0.026(1)	0.5093(7)	0.762(1)	4.0(3)*	
C3b	0.150(1)	0.5211(7)	0.871(1)	4.5(3)*	
C4	0.026(1)	0.3719(7)	0.484(1)	3.4(2)*	
C10	-0.199(1)	0.2763(7)	0.4421(9)	3.1(2)*	
C11 ·	-0.122(1)	0.2117(6)	0.3668(8)	2.3(2)*	
C12	-0.033(1)	0.1463(7)	0.4275(9)	3.5(2)*	
C13	0.033(1)	0.0842(7)	0.357(1)	4.3(3)*	
C14	0.012(1)	0.0882(7)	0.228(1)	3.8(3)*	
C15	-0.074(1)	0.1524(7)	0.169(1)	3.8(2)*	
C16	-0.143(1)	0.2155(7)	0.236(1)	3.8(3)*	
C17	-0.369(1)	0.2747(7)	0.3965(9)	3.3(2)*	
C18	-0.443(1)	0.3409(6)	0.3265(9)	2.8(2)*	
C19	-0.598(1)	0.3386(7)	0.282(1)	4.1(3)*	
C20	-0.678(1)	0.2674(7)	0.311(1)	4.4(3)*	
C21	-0.604(1)	0.2024(7)	0.379(1)	4.2(3)*	
C22	-0.450(1)	0.2040(7)	0.429(1)	3.9(3)*	

Table of Positional Parameters and Their Estimated Standard Deviations

-

Starred atoms were refined isotropically.
Atom	x -	У _	z -	B(A2)	
H2a	-0.2966	0.4587	0.4971	3*	
H2b	-0.1862	0.4146	0.6060	3*	
H3b1	0.2426	0.4689	0.8893	5*	
H3b2	0.1058	0.5243	0.9464	5*	
H3b3	0.1967	0.5747	0.8590	5*	
H4a	0.0487	0.3355	0.5606	4*	
H4b	0.0799	0.3688	0.4044	4*	
H10	-0.1806	0.2599	0.5296	3*	
H12	-0.0166	0.1428	0.5181	4*	
H13	0.0919	0.0390	0.4004	5*	
H14	0.0573	0.0468	0.1799	4*	
H15	-0.0884	0.1556	0.0787	4*	
H16	-0.2029	0.2597	0.1912	4*	
H18	-0.3879	0.3900	0.3072	3*	
H19	-0.6477	0.3851	0.2335	5*	
H20	-0.7830	0.2641	0.2834	5*	
H21	-0.6588	0.1522	0.3939	5*	
H22	-0.4030	0.1589	0.4826	5*	

-

•

	. –				
Atom 1 ======	Atom 2	Distance	Atom 1	Atom 2 ======	Distance ======
03a	C3	1.44(1)	C11	C12	1.38(1)
03a	C3a	1.36(1)	C11	C16	1.37(1)
03b	C3a	1.20(1)	C12	C13	1.41(2)
Nl	C2	1.49(1)	C13	C14	1.35(2)
Nl	C4	1.51(1)	C14	C15	1.34(1)
Nl	C10	1.44(1)	C15	C16	1.41(2)
C2	С3	1.51(1)	C17	C18	1.37(1)
C3	C3 ′	1.54(1)	C17	C22	1.39(1)
C3	C4	1.55(1)	C18	C19	1.40(1)
C3a	C3b	1.48(1)	C19	C20	1.37(2)
C10	C11	1.52(1)	C20	C21	1.34(1)
C10	C17	1.53(1)	C21	C22	1.40(1)

Numbers in parentheses are estimated standard deviations in the least significant digits.

Table of Bond Distances in Angstroms

•

.

Table of Bond Distances in Angstroms

Atom 1 ======	Atom 2 ======	Distance ======	Atom 1 ======	Atom 2 =====	Distance
C2	H2a	1.22	C13	H13	0.95
C2	H2b	0.89	C14	H14	0.95
СЗЪ	H3b1	1.16	C15	H15	0.95
C3b	H3b2	0.95	C16	H16	0.95
C3b	H3b3	0.95	C18	H18	0.95
C4	H4a	0.98	C19	H19	0.95
C4	H4b	1.04	C20	H20	0.95
C10	H10	0.95	C21	H21	0.95
C12	H12	0.95	C22	H22	0.95

Table of Bond Angles in Degrees

Atom 1 ======	Atom 2	Atom 3 ======	Angle	Atom 1 ======	Atom 2 ======	Atom 3	Angle
С3	03a	C3a	121.8(7)	C11	C10	C17	110.7(8)
C2	N1	C4	89.4(7)	C10	C11	C12	121.2(8)
C2	Nl	C10	116.6(8)	C10	C11	C16	120.6(8)
C4	Nl	C10	115.4(7)	C12	C11	C16	118.2(9)
N1	C2	C3	88.9(7)	C11	C12	C13	120.9(9)
03a	C3	C2	120.0(8)	C12	C13	C14	121(1)
03a	C3	C4	108.1(7)	C13	C14	C15	118.(1)
03a	C3	C3′	107.0(6)	C14	C15	C16	123(1)
C2	С3	C4	87.5(7)	C11	C16	C15	119.0(9)
C2	С3	C3′	117.5(7)	C10	C17	C18	122.0(9)
C4	C3	C3′	115.5(8)	C10	C17	C22	118.5(8)
03a	C3a	03b	121.7(9)	C18	C17	C22	119.5(9)
03a	C3a	C3b	109.7(9)	C17	C18	C19	122.0(9)
03b	C3a	C3b	128.(1)	C18	C19	C20	118.5(9)
Nl	C4	С3	86.9(7)	C19	C20	C21	119(1)
N1	C10	C11	110.3(8)	C20	C21	C22	124.(1)
Nl	C10	C17	111.3(8)	C17	C22	C21	116.7(9)

Numbers in parentheses are estimated standard deviations in the least significant digits.

.

Table of Bond Angles in Degrees

-

Atom 1 ======	Atom 2	Atom 3 ======	Angle =====	Atom 1 ======	Atom 2 ======	Atom 3	Angle =====
Nl	C2	H2a	112	C13	C12	H12	120
Nl	C2	H2b	124	C12	C13	H13	120
С3	C2	H2a	136	C14	C13	H13	120
С3	C2	H2b	107	C13	C14	H14	121
H2a	C2	H2b	93	C15	C14	H14	121
C3a	C3b	H3b1	118	C14	C15	H15	118
C3a	C3b	H3b2	107	C16	C15	H15	118
C3a	C3b	НЗЪЗ	107	C11	C16	H16	121
H3b1	C3b	H3b2	107	C15	C16	H16	121
H3b1	C3b	НЗЪЗ	107	C17	C18	H18	119
H3b2	СЗЪ	H3b3	109	C19	C18	H18	119
Nl	C4	H4a	107	C18	C19	H19	121
Nl	C4	H4b	106	C20	C19	H19	121
C3	C4	H4a	102	C19	C20	H20	121
C3	C4	H4b	121	C21	C20	H20	121
H4a	C4	H4b	126	C20	C21	H21	118
Nl	C10	H10	108	C22	C21	H21	118
C11	C10	H10	109	C17	C22	H22	122
C17	C10	H10	108	C21	C22	H22	122
C11	C12	H12	120				

Table of Torsion Angles in Degrees

Atom 1	Atom 2	Atom 3	Atom 4	Angle	
				هم جيد خيد خيد	
C3a	03a	C3	C2	-46.46 (1.18)
C3a	03a	C3	C4	-144.23 (0.85)
C3a	03a	C3	C3′	90.76 (0.98)
C3	03a	C3a	03b	10.83 (1.45)
C3	03a	C3a	C3b	-172.17 (0.80)
C4	N1	C2	C3	20.69 (0.69)
C10	N1	C2	C3	139.08 (0.79)
C2	N1	C4	C3	-20.14 (0.68)
C10	Nl	C4	C3	-139.51 (0.78)
C2	N1	C10	C11	-163.83 (0.75)
C2	N1	C10	C17	72.82 (1.00)
C4	N1	C10	C11	-60.79 (1.01)
C4	N1	C10	C17	175.87 (0.77)
N1	C2	C3	03a	-129.61 (0.79)
Nl	C2	C3	C4	-20.15 (0.67)
Nl	C2	C3	C31	97.46 (0.85)
03a	C3	C4	N1	140.78 (0.72)
C2	C3	C4	N1	19.99 (0.66)
C3′	C3	C4	Nl	-99.43 (0.85)
03a	C3	C3′	03a'	-180.00 (0.86)
03a	C3	C31	C2′	41.55 (1.05)
03a	C3	C3 1	C4′	-59.64 (1.02)
C2	C3	C3′	03a'	-41.55 (1.05)
C2	C3	C3′	C2′	179.98 (0.43)
C2	C3	C3′	C4′	78.81 (1.06)
C4	C3	C3′	03a'	59.64 (1.02)
C4	C3	C3′	C2′	-78.81 (1.06)
C4	C3	C3′	C4′	-180.00 (0.86)
Nl	C10	C11	C12	114.37 (0.99)
Nl	C10	C11	C16	-68.11 (1.14)
C17	C10	C11	C12	-121.92 (0.97)
C17	C10	C11	C16	55.60 (1.19)
Nl	C10	C17	C18	15.28 (1.30)
Nl	C10	C17	C22	-163.92 (0.87)
C11	C10	C17	C18	-107.86 ((1.05)
C11	C10	C17	C22	72.95 ((1.12)
C10	C11	C12	C13	177.01 ((0.91)
C16	C11	C12	C13	-0.56 ((1.46)
C10	C11	C16	C15	-177.58 ((0.89)
C12	C11	C16	C15	0.03 ((1.59)
C11	C12	C13	C14	0.91 ((1.59)
C12	C13	C14	C15	-0.64	(1.58)
C13	C14	C15	C16 ·	0.08	(1.50)
C14	C15	C16	C11	0.24	(1.61)
C10	C17	C18	C19	178.53	(0.92)
C22	C17	C18	C19	-2.29	(1.52)
C10	C17	C22	C21	-176.20	(0.90

Table of Torsion Angles in Degrees (continued) Atom 1 Atom 2 Atom 3 Atom 4 Angle ====== ======

C18C17C22C21 4.58 (1.C17C18C19C20 0.26 (1.C18C19C20C21 -0.77 (1.C19C20C21C22 3.47 (1.C20C21C22 -5.37 (1.						
C17C18C19C20 0.26 (1.C18C19C20C21 -0.77 (1.C19C20C21C22 3.47 (1.C20C21C22 -5.37 (1.	C18	C17	C22	C21	4.58 (1.	47)
C18C19C20C21 -0.77 (1.C19C20C21C22 3.47 (1.C20C21C22C17 -5.37 (1.	C17	C18	C19	C20	0.26 (1.	56)
C19 C20 C21 C22 3.47 (1. C20 C21 C22 C17 -5.37 (1.	C18	C19	C20	C21	-0.77 (1.	58)
C_{20} C_{21} C_{22} C_{17} -5.37 (1)	C19	C20	C21	C22	3.47 (1.	70)
	C20	C21	C22	C17	-5.37 (1.	62)