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Abstract: A temperature model has been developed fundamental parameters, ice cohesion, internal friction 
that describes the ice strength in a multiaxial stress angle, and ice melting pressure, which all have a 
state over a wide spectrum of negative temperatures, definite physical meaning and are functions of 
The model takes into account the anomalous behavior temperature. The model has been verified using test 
of ice under high hydrostatic pressure, when its strength data on the strength of iceberg ice and laboratory- 
reaches a maximum, and then gradually decreases made polycrystalline freshwater ice under triaxial 
with the pressure increase. It has been shown that compression at strain rates between 10~3 and ^O^b s-' 
strength of ice under high hydrostatic pressure is de- over the temperature range between -1 ° and 
scribed by a parabolic yield criterion with only three -40°C. 
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NOMENCLATURE 

A ice melting coefficient 
B flow equation parameter 
b = tan <|), internal friction parameter 
b0 internal friction parameter at freezing 
bx component of the internal friction parameter at T < Tm 

Q material constant 
c ice cohesion 
c0 ice cohesion at freezing 
Cj component of ice cohesion at T < Tm 

d grain diameter 
E activation energy 
h Planck's constant 
h2 negative hydrostatic pressure at which the ice shear strength equals zero 
Ij first invariant of the stress tensor 
J2 second invariant of the stress deviator 
k Boltzmann's constant 
Lm- specific heat of melting of the unit mass 
n strain hardening parameter 
p hydrostatic pressure 
p* ice melting pressure 
R gas constant 
Se, Ss unit mass entropy of the liquid and solid state, respectively 
T absolute temperature 
Tm ice melting temperature 
t0 failure time at strain rate, t; = yio 

V(, Vs unit mass volume of the material in the liquid and solid state, respectively 
a empirical parameter of the cohesion 
ß, ßx parameters of the internal friction angle 
Y; octahedral strain rate 
yio octahedral (referenced) strain rate 

Yi octahedral strain 
yio octahedral (referenced) strain 
e axial strain 
e0 axial (referenced) strain 
e = £j axial strain rate 
e0 axial strain rate (referenced) 

T| viscosity coefficient 
6 temperature, Celsius 
amax hydrostatic pressure at which the shear strength of ice reaches a maxi- 

mum value 
ai,2,3 principal stress 
ij octahedral shear stress (strength) 
Tmax maximum shear stress (strength) 
(|> internal friction angle 
(!>! component of internal friction angle at T <Tm 

<|>0 internal friction angle at freezing 
co parameter of the internal friction angle at T < Tm 

IV 



Ice Strength as a Function of 
Hydrostatic Pressure and Temperature 

ANATOLY M. FISH AND YURI K. ZARETSKY 

INTRODUCTION 

Studies of ice strength in the second half of this 
century have attracted efforts of a number of re- 
searchers. Their attention has been focused on 
investigation of ice strength as a function of the 
strain rate, temperature, grain size, and other fac- 
tors mainly in simple stress-strain state, uniaxial 
compression. During the last two decades, how- 
ever, the attention of researchers was shifted to 
investigation of the mechanical behavior of ice, 
particularly the strength of ice, in a complex stress- 
strain state such as triaxial compression. 

In a general case, strength of ice in a multiaxial 
stress state, when other conditions (the type of 
ice, its structure, the grain size, etc.) are equal, can 
be presented as 

1i=<("i'i'P'T) (1) 

where t-   =   xi = .^ = octahedral (peak) shear 
stress 

J2 = second invariant of the stress devia- 
tor 

Yj   = octahedral constant shear strain rate 
p = Ix/3 = hydrostatic pressure 

Ix = first invariant of the stress tensor 
T = ice temperature, K. 

The first studies of the effect of low confining 
pressure on creep strength of ice under triaxial 
(o2 = 03) compression were carried out by Sayles 
(1974). The studies showed that the ice strength is 
a nonlinear function of the confining pressure. 
More detailed investigations of the effect of the 
strain rate and high confining pressures on the ice 
strength under triaxial (G2 = o3) compression were 

performed by Jones (1978,1982). The studies, car- 
ried out over a wide range of constant strain rates 
and confining pressures, revealed the anomalous 
behavior of ice when its shear strength (at a cer- 
tain magnitude of confining pressure) reaches a 
maximum attributable to melting of ice, and then 
gradually decreases with the pressure increase. 
Jones showed that the ice strength is a nonlinear 
(power) function of the axial (constant) strain rate 
(see eq lc below). Further experimental studies 
with various types of ice revealed effects of tem- 
perature, salinity, structure, and other factors on 
the ice strength (Hausier 1983, Nadreau and 
Michel 1986, Richter-Menge et al. 1986, Timco and 
Frederking 1986, Nadreau et al. 1991, Rist and 
Murrell 1994, Gagnon and Gammon 1995, Weiss 
and Schulson 1995 and others). 

At the same time mathematical models were 
also developed. Thus, Reinicke and Ralston (1977) 
and Hausier (1986) applied a parabolic equation 
of Smith (1974), developed originally for rocks, to 
describe the strength dependency of ice upon the 
hydrostatic pressure (in our notation): 

T-=T-(p) (la) 

* Denotes failure stress 

The absolute magnitudes and the physical mean- 
ing of the parameters in the Smith equation have 
not been defined. 

Nadreau proposed a model (Nadreau and 
Michel 1986) that described the nonlinear depen- 
dency of ice strength on confining pressure (o2 = 
o3) by means of a third-order polynominal func- 
tion with four phenomenological parameters, to 
be determined from a series of triaxial tests of ice 
at different strain rates, and the principal param- 
eter—the ice melting pressure p*. This pressure 
was suggested to be determined either from the 
ice state diagram or to be calculated by an empiri- 
cal equation. 



In the model of Fish (1991,1992,1993) the rela- 
tionship 

Ei(P'Yi) T = Const (lb) 

was described by a product of two functions: 1) a 
parabolic function—extended by Fish (1991) the 
Drucker-Prager yield criterion, and 2) a normal- 
ized (dimensionless) power function of the strain 
rate. The yield criterion describes the strength 
dependency of ice on the hydrostatic pressure by 
means of three parameters: the cohesion c, the 
friction angle ty and the magnitude of the hydro- 
static pressure omax, at which the shear strength 
of ice reaches a maximum xmax, related to the ice 
melting pressure p* (Fig. 1). The model described 
Jones' (1982) test data well. It was shown that the 
ice cohesion and the friction angle are functions 
of the strain rate. 

The temperature effect on ice strength under 
triaxial compression was studied by Rist and 
Murrell (1994) and Gagnon and Gammon (1995) 
using the Arrhenius-type (Norton-Glen) equation, 

e = Bexp(-E/RT)xf (lc) 

where e = 
B = 
E = 
R = 
T = 
n = 

axial (constant) strain rate 
empirical parameter 
activation energy 
universal gas constant 
absolute temperature, K 
4 = strain hardening parameter (Jones 
1982), 

in which the temperature variations of the ice 
strength are characterized by only one param- 
eter—the activation energy The apparent activa- 
tion energy magnitudes were found as E = 69 kj 
mol-1 in the temperature range between -20° and 
-40°C (Rist and Murrell 1994), and £ = 101 kj 
mol-1 in the temperature range between -1° and 
-16°C (Gagnon and Gammon 1995). The higher 
activation energy magnitudes were explained by 
grain-boundary softening associated with the pres- 
ence of liquid on grain boundaries. 

Equation lc implies that the nonlinear (with 
regard to stress) viscosity coefficient of ice, 

r\(T) = l/Bexp{E/RT), 

is independent of the hydrostatic pressure. In other 
words, ice is assumed to be incompressible. 

It has been shown earlier (Fish 1991) that the 
ice strength in a multiaxial stress state is charac- 
terized by two or more temperature-dependent 
parameters that can affect the magnitude of the 
apparent activation energy: the ice cohesion, the 
friction angle, and the hydrostatic pressure. So 
the predicted values of the ice strength, calcu- 
lated by eq lc, may deviate considerably from 
those obtained in the tests. 

A mathematical model (Zaretsky and Fish 
1996a, 1996b) takes into account the effect of all 
three variables in eq 1. The ice strength is de- 
scribed by three parameters: the ice cohesion, fric- 
tion angle and ice melting pressure. The ice cohe- 
sion and the friction parameter are assumed to be 

ij=(c + bp)-(c + bp*H-£j 

^ max = c + -p" "max 

p* = p*(T);c = c(T) 

b = b(T) 

b(T) = tan <t>(T) 

Hydrostatic Pressure 

Figure 1. Strength envelopes of ice at various temperatures: c, <j), p*, and T are the ice cohesion, 
friction angle, ice melting pressure, and absolute temperature, respectively. 



proportional to temperature. It has been shown 
that the hydrostatic pressure being applied to ice 
decreases its melting temperature and thus its 
strength under triaxial compression. 

In the present report a different approach has 
been undertaken. The authors considered the ice 
strength as a function of two variables: the hydro- 
static pressure and temperature, i.e., 

Tj=Ti(p,T);       Yi = Const. (Id) 

At a constant strain rate the strength of ice in a 
multiaxial stress state is described by the para- 
bolic yield criterion with three parameters: the 
cohesion, and the friction angle, which are differ- 
ent nonlinear functions of temperature, and the 
ice melting pressure. Then a strength criterion of 
ice, which takes into account the combined effect 
of all three variables in eq 1, the strain rate, hy- 
drostatic pressure and temperature, is obtained 
by combining eq lb and Id. 

STRAIN RATE EFFECT 

A constitutive equation for steady-state creep 
of homogeneous and isotropic ice in a multiaxial 
stress state at constant strain rate and constant 
temperature takes the following form (Fish 1991, 
1992,1993): 

C 

'o 
(2) 

It should be emphasized that eq 2 is fundamentally 
different from the Norton-Glen power flow law 
(eq lc), although it contains a power function of 
stress with exponent n. 

In contrast to eq lc parameters C and t0 in eq 2 
have a definite physical meaning, and the denomi- 
nator of the stress function is a temperature-de- 
pendent yield criterion (eq 5 below). This yield 
criterion, which is a function of the first invariant 
of the stress tensor and temperature, relates the 
minimum shear strain rate and the shear stress in 
the whole spectrum of hydrostatic pressures (mean 
normal stresses). 

Equation 2 implies that the nonlinear viscosity 
coefficient of ice 

Tio(p,r) = t0x?)/c 

is a function of the hydrostatic pressure and tem- 
perature. For v < omax one can see that the higher 

the hydrostatic pressure is, the greater the viscos- 
ity coefficient, the lower the strain rate of ice, and 
the higher the ice strength will be. For p > omax the 
higher the hydrostatic pressure is, the smaller the 
viscosity coefficient, the higher the strain rate, 
and the lower the ice strength will be. This is 
confirmed well by test data (Jones 1982, Jones and 
Chew 1983). 

Equation 2 can be rewritten in terms of maxi- 
mum (peak) shear strength i\ = t; and presented 
as a product of two independent functions: a yield 
function Tio(p) and a nondimensional function 
O(Yi) of the constant strain rate 

"c*i{p,ii)='Cio(v)®(yi)- (2a) 

Function 0(7;) has been selected in its simplest 
form: 

4»(Yi) = 
fy-t W" 

V  no J 
(3) 

where Yi = applied octahedral constant shear 
strain rate 

tio =   Yio I lo = instantaneous (referenced) 
octahedral shear strain rate 

y-  =r - instantaneous octahedral shear strain '10    *- 
n = dimensionless parameter; for poly- 

crystalline ice,n~i (Jones 1982) 
t0 = temperature-dependent time to fail- 

ure, i.e., the time interval between 
the initiation of the test conducted at 
Yi = Yio and the moment when the 
ice strength reaches a maximum 
(peak) value. 

The temperature dependency of tQ is given by 

0   fcTexpUr (4) 

where E = 
R = 
h = 
k = 

activation energy 
gas constant 
Planck's constant 
Boltzmann's constant. 

In eq 3 the "instantaneous" (referenced) octahe- 
dral strain rate Yio is defined as a strain rate at 
which the shear strength of ice reaches a maxi- 
mum value, separating two different modes of 
failure: the brittle mode dominated by the cleavage 
mechanism of failure and the ductile mode domi- 
nated by the shear mechanism. At strain rates 
(ti > tio) the ice strength either decreases (Gagnon 



and Gammon 1995) or remains unchanged (Jones 
1982). Apparently, the magnitude of the instanta- 
neous strain rate depends on the type of ice, its 
structure and other factors and varies between 
10"1 and 10~3 s_1. Since the magnitude of ice 
strength is greatly affected by the strain rate, se- 
lection of an adequate value of this referenced 
strain rate is extremely important for an accurate 
prediction of the ice strength at lower strain rates. 

In experimental studies of ice under triaxial 
(biaxial) compression, the radial strains are as- 
sumed to be small and are usually ignored. In this 
case eq 3 can be replaced by 

0(Yi) = 0(e): 'eOV" f i ^'n 

(3a) 

where   e = axial strain rate 
e0, e0 = instantaneous (referenced) axial strain 

rate and strain respectively. 
<o=£o/eo= given by eq 4. 

Thus, the strain rate function varies in the limits 

l>O(yi) = O(e)>0. 

The effect of the strain rate on the strength of ice 
can be excluded from consideration by selecting 
the strength test data of ice corresponding to 
0(e) = l. 

EFFECT OF HYDROSTATIC PRESSURE 

When applied strain rate is equal to the instan- 
taneous strain rate y; = yio or e = e0,in eq 2a and 
3a' ^>(Yio) = <&(eo) = 1' and the strength depen- 
dency of ice upon the hydrostatic pressure is de- 
scribed by the parabolic yield criterion (Fish 1991) 
depicted in Figure 1, 

tio(p) = c + bp- 
2ar 

or 

iio(p) = (c + bp)-(c + bp*) 

(5) 

(5a) 

where = ice cohesion on the octahedral plane 
= tan <\>, where <)> is the angle of internal 

friction of ice on the octahedral plane 
p =   (o1 + a2 + o3)/3 = hydrostatic pres- 

sure (mean normal stress) 
02,02,03= principal stresses, 

T;   = 
A/6 ■ 

(<*i-o2)  +(o2-o3)2 

+   Oi 
\2 

-03) 
-1I/2 

octahedral shear stress (resultant) 
magnitude of the hydrostatic pres- 
sure at which the shear strength 
reaches a maximum 

p*2 

2,j + P = 

(6) 

(7) 

p*  - ice melting pressure at which the 
shear strength of ice equals to zero. 

Subscript (o) at xio in eq 5 indicates that param- 
eters c and b are referred to the instantaneous 
condition when the applied strain rate is equal to 
the instantaneous strain rate. 

Note that the yield curve may also intersect the 
hydrostatic axis in the domain of the negative 
hydrostatic pressures (-p) at point h2 (not shown 
in Fig. 1), the abscissa of which is equal to 

h7 = - 

h- (8) 

Equation 5 can be considered an extended Von 
Mises-Drucker-Prager yield criterion. At low 
stress level p « omax the third term in the right 
side of eq 5 approaches zero and eq 5 transforms 
into the Drucker-Prager (1952) (extended Von 
Mises) yield criterion: 

■ c + bp. (9) 

For frictionless materials (b = 0) eq 5 reduces to 
the Von Mises yield criterion 

\o = c . (10) 

Thus, in a multiaxial stress state, the strength 
of ice as well as its strength characteristics are 
functions of only three parameters: p*, c and b 
which all have a definite physical meaning and are 
easily determined from test data. Studies show 
that all these parameters are functions of tem- 
perature, i.e., 

p* = p*(T),    c = c(T),   b = b(T). 

Consequently, the shear strength of ice as well as 
the strength characteristics of ice are also func- 
tions of temperature: 



Tio^ioCO'    x max      "max (T), 

*max     "max <(T), h2=h2(T). 

Thus, if a series of strength tests of ice is carried 
out at a constant strain rate instead of one yield 
curve, one obtains a family of curves for various 
temperatures (Fig. 1). It should be emphasized 
that parameters c, b and xmax are also strain-rate 
dependent, while parameters omax, p* and h2 are 
independent of the strain rate (Fish 1992,1993). 

TEMPERATURE EFFECT 

Ice melting pressure 
It is well known that the ice melting tempera- 

ture, as well as the melting temperature of other 
crystalline materials, is a function of the hydro- 
static pressure. This pressure can be determined 
(Zaretsky and Fish 1996a) from the Clapeyron 
equation, according to which a small change in 
the equilibrious melting temperature of a solid 
ATm attributable to a small change in the hydro- 
static pressure Ap can be calculated from the rela- 
tionship 

rfTm = V. 
Se — D, 

where V9 and Vc 

^♦-T„»^* (11) 

Se and Ss 

unit mass volume of the ma- 
terial in the liquid and in the 
solid state, respectively 
unit mass entropy of the liq- 
uid and of the solid state, re- 
spectively 
specific heat of melting of the 
unit mass. 

Since at melting the volume Ve < Vs,dTm < 0, i.e., 
the equilibrious melting temperature of ice Tm 

decreases as well, 

(12) 

i-3 

dTm = -Adp . 

Thus, for ice when p = 0, Tm = 273.1 K, Ve = 10 
m3 kg-1, Vs = 1.09 x 10"3 m3 kg"1, Lm = 3.336 x 105 

J kg-1, and parameter A for ice at temperature 
9 = 0°C is equal to 

A = 0.074 K/MPa. 

The magnitude of parameter A coincides with 
that calculated by Barnes et al. (1971). It is not 
difficult at this point to calculate the critical hy- 

drostatic pressure p* at which the shear resistance 
of ice equals zero, i.e., 

Tm+Q = Tm-Ap* 

and 

(13) 

(14) 

where 0 = ice temperature (°C) and Tm = 273.1 K 
is the ice melting temperature at the atmospheric 
pressure. Note that the ice melting pressure is 
unrelated to the grain size or the structure of ice. 
The magnitudes of ice melting pressures p* for 
various temperatures are presented in Table 1. 

Ice cohesion 
The ice cohesion defines the ice strength when 

the hydrostatic pressure p = 0. Ice strength is a 
stochastic event, a culmination point of failure of 
intermolecular bonds and growth of cracks. A cer- 
tain number of these bonds in the unit volume of 
ice are formed during freezing of water at tem- 
perature 0°C. Further temperature decrease brings 
about formation of new bonds, attributable to 
freezing of the liquid phase on grain boundaries, 
and a sharp increase of the ice strength (cohe- 
sion). Thus, one may conclude that the ice cohe- 
sion is a function of temperature and consists of a 
sum of two components: 

c(r) = c0 + Cl(r) (15) 

where c0 is the component of the ice cohesion 
brought about at the time of ice formation at 0°C 
and c^T) is the temperature-dependent compo- 
nent of the cohesion brought about by freezing of 
liquid phase at temperature below 0°C. 

Since the physical nature of c0 and c^ is the 
same, and taking into account that at temperature 
T = Tm, cx = 0, the temperature dependency of 
component q can be presented in the form 

Cl(T) = c0a(l-r/Tm) (16) 

where a is a parameter. Combining eq 15 and 16 

c(r) = c0[l + a(l-T/Tm)]. (17) 

Equation 17 establishes a linear dependency of 
the ice cohesion upon temperature. Test data show 
that such a relationship is valid in the domain of 
relatively low temperatures below -20°C. In the 
range of moderate temperature, this relation- 
ship becomes nonlinear and somewhat better 



o ü 

b(T) = b0+bl(T) (19) 

c(D=c0e"<1-T'Tm> 

T, Temperature (K) 
a. Ice cohesion, c(T). 

0) 

E 
2 a 
0. 

b(T)=b0eP(1-T^JV 

T, Temperature (K) 

b. Friction parameter b(T). 

Figure 2. Temperature diagrams of the 
strength parameters of ice. 

described by 

c{T) = c0e^-T/T^ (18) 
or 

c(0) = coeal9l/rm (18a) 

in which u = 1 and 181 = (Tm - T) is ice tempera- 
ture (°C). 

Equations 18 and 18a can be considered ap- 
proximate forms of eq 17. Note that at freezing 

r = Tm = 273.1 K(0°C);  c(0) = co 

when 

T = 0 (-273.1°C);   c* = c0ea. 

The temperature diagram of parameter c is shown 
in Figure 2a. 

Angle of internal friction 
The parameter of internal friction of ice b(T) 

can also be presented as a sum of two components: 

where b0 = tan <j)0 and §0 is the angle of internal 
friction of ice brought about at the time of ice 
formation at 0°C; ba(T) = tan fa (T), and fa (T) is 
the angle of internal friction attributable to the 
increased viscosity of the liquid phase (lubricant) 
at grain boundaries at temperatures below 0°C. 

One may assume that the component b-^T) is 
proportional to b0 and to the temperature melting 
function, i.e., 

MT) = b0ß(l-T/Tm) (20) 

where ßis a parameter. Combining eq 19 and 20 

&(T) = b0[l + ß(l-T/Tm)]. (21) 

To simplify the parameter evaluation procedure, 
eq 21 can approximately be presented in the form 

or 

b(T) = b0eW-T/Tmy 

b(Q) = b0e^W 

(22) 

(22a) 

where ßx = ß / T^ • It was found that v = V2 is 
m 

agreement with test data. 
At freezing when 

T = Tm=273.1K(0°C);   b(0) = bo 

at the absolute zero 

T = 0 (-273.1°C);  b* = b0e$. 

The temperature diagram of parameter b(T) is 
given in Figure 2b. Note that at very low tem- 
peratures certain adjustments of eq 15 through 22 
will probably be required. 

TEMPERATURE CRITERIA 
OF ICE STRENGTH 

Since temperature dependencies of the ice 
strength parameters have been established, eq Id 
taking into account eq 5 can be presented in an 
explicit form 

xio(p,T) = c(T) + b(T)p- 
b(T) 

2omax(r) 
(23) 

in which c(T), b(T) and amax(T) are given by eq 7 
and 14 through eq 22a. Equation 23 is a tempera- 
ture criterion of ice strength in a multiaxial stress 
state. To take into account the strain rate effect, eq 



23 should be combined with eq 2a through 4. 
Then eq 1 can be written as 

Tj(p,e,T) = Ti0(p/T)4.(e) 

c(T) + HT)p-     HT)     v2 

2<Vax(T) 

1/n (24) 

In the range of the hydrostatic pressures p « 
0max, eq 24 takes the form 

T*(p,ä,T) = [c(T) + b(T)p] 

when p = 0 (pure shear) 

f k W« 

Tt(e,T) = c(e,T) = c(T) 

Accordingly 

. fe V» 

b{t,T) = b(T) 
( t *'" 

(25) 

(26) 

(25a) 

where parameters c(T) and b(T) are correspond- 
ing to the strain rate e = e0. 

If the radial strain rates are taken into account 
function O(e) in eq 24, 25 and 26 should be re- 
placed by function O(y). 

TEST DATA 

The validity of the temperature dependencies 
of the strength parameters of ice presented above 
was verified using test data of Gagnon and 
Gammon (1995). The triaxial (o2 = o3) compres- 
sion tests were carried out using cylindrical speci- 
mens of Labrador iceberg ice, 9.58 cm in diameter 
and 26 cm long. Mean grain diameter d ~ 8.1 mm. 
The test temperature varied between -1°C and 
-16°C. The tests were conducted at constant axial 
strain rates between 10-2 and 10"5 s-1. Test data 
corresponding to the strain rate e0 =5xl0~3s_1 

were selected in the following analysis to evalu- 
ate the strength parameters of ice. This strain rate 
was defined by the authors of this report as the 
instantaneous strain rate because the test strength 
magnitudes at this rate reached their maximum 
values. The tests were carried out at four different 
confining pressures: 1.38,3.45,6.89 and 13.79 MPa. 
The test data replotted by the authors of this re- 
port in terms of the shear strength T , = (oi - 03) A/3 
vs. the hydrostatic pressure p = (oj+o2+o3)/3 
are presented in Figure 3. Note that each point in 
Figure 3 represents the mean of five tests. 

In Figure 3 for comparison tests, data are pre- 
sented on triaxial compression of freshwater poly- 
crystalline ice obtained by Jones (1982). The ran- 

15 30 

p, Hydrostatic Pressure (MPa) 

Figure 3. Strength test data of ice under triaxial compression. Data from Gagnon 
and Gammon (1995) and Jones (1982). 



domly oriented laboratory-made ice 
samples were 20 mm in diameter and 60 
mm long with mean grain diameter less 
than 1 mm. The test data selected for 
comparison refer to the axial constant 
strain rate e = 5.4 x 10"3 s"1. The test tem- 
perature was -11.8 ± 0.9°C. The confin- 
ing pressure (o2 = o3) varied between ~5 
and ~ 85 MPa. 

In Figure 10 (below), results of triaxial 
constant strain rate compression tests 
are presented of freshwater, randomly 
oriented, polycrystalline ice carried out 
by Rist and Murrell (1994). In these tests 
laboratory-made samples of ice were 40 mm in 
diameter and 100 mm long. Mean grain diameter 
was ~ 1.7 mm. The tests were conducted at con- 
stant strain rates from 10"2 to 10~5 s"1; the test 
temperatures varied between -20° and -45°C The 
data selected for this analysis are referred to as 
the axial strain rate, e ~ 10~3 s_1. 

Table 1. Strength parameters of ice at various temperatures*. 

0<€        c(MPa) b ~f     amax(MPa)   Tmax (MPa)     p*(MPa) 

^0 12.93+ 0.241 14 245.87 43.52 540.54 
-16 9.43 0.125 7 80.15 14.44 216.22 
-11.8 8.14 0.106 6 53.81 10.99 159.46 
-11 7.91 0.103 6 49.0 10.43 148.65 
-6 6.63 0.08 4°30' 20.05 7.43 81.08 
-1 

0 

5.56 

5.37++ 

0.053 

0.04++ 

3 

2++ 
(4.79)" (5.69)" (36.85)" 

*  Data in this table for strain rate E = 5 x 20" 
+  Calculated by eq 17. 
** From the best fit of eq 5. 
++ At freezing. 

are indeed nonlinear and can be described by eq 
18a and 22a. The evaluation procedures of pa- 
rameters that enter these equations are shown in 
Figures 5 and 6. It was found that for the Labra- 
dor iceberg ice 

■■ 5.37 MPa 0.04 

16 

12 

PARAMETER EVALUATION 

Temperature variations of ice strength in a mul- 
tiaxial stress state were shown to be defined by 
three temperature-dependent parameters: the ice 
melting pressure p(T), ice cohesion c(T) and fric- 
tion parameter b(T). The magnitudes of 
the ice melting pressure p(T) were cal- 
culated by eq 14 for the test tempera- 
tures and are included in Table 1. The 
magnitudes of p* for 6 = -11.8°C was 
found to be in agreement with p* = 123.7 
MPa obtained earlier (Fish 1991) from 
the analysis of Jones' data and with that 
calculated by an empirical equation of 
Hallam and Nadreau (1988). 

The temperature dependencies of pa- 
rameters c(0) and b(Q) can be determined 
based upon the considerations that in 
the range of low hydrostatic pressures p 
« Gmax (test pressures in Fig. 3). As a 
first approximation, eq 5 can be replaced 
by eq 9. Then, the slopes of the straight 
lines and their intersects with the Ordi- 
nate axis obtained by a regression analy- 
sis of the test data define the magni- 
tudes of friction parameter b(Q) and 
cohesion c(0) for corresponding tem- 
peratures. The results of the analysis are 
presented in Figure 4. 

One can see in Figure 4 that tempera- 
ture dependencies of parameters c and b 

a = 9.61 ß = 4.69. 

o 
O 

Using these parameters, we calculated the magni- 
tudes of the ice cohesion c(9), the friction param- 
eter b(Q) and the friction angle §(Q) by eq 18a and 
22a (Table 1). The magnitudes of omax(9) and 

1       1 1 1               1 

y b(8) - 

>^c(6) 

o        / 
/       0 

A— 

/        s*s* 
— 

bo 

•    O  Labrador Ice 
▲  A Polycrystalline Ice 

I 

e~5x10~3s~1 

I 

- 

1                1 

16 x 10-2 

12 

-10 -20 

0, Temperature (°C) 

-30 

Figure 4. Temperature dependencies of the strength parameters of 
ice. Data from Gagnon and Gammon (1995) and Jones (1982). 
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Figure 5. Determination of parameters c0 and a. 

(Tm-T) 2=iei 2 

0                 4               8              12             16 20 
-1 1 1 1 1 1 1 1 r— 

In bo 

-10 

b = b0e 
MTm-T) 

Figure 6. Determination of parameters b0 and ß. 

xmax(6) in Table 1 were calculated by eq 6 and 7 
using corresponding values of c(0), b(Q) and p*(Q). 
Predicted temperature dependencies of param- 
eters c and b are presented in Figure 4. From Table 
1 and Figure 4, it follows that major changes of 
parameters b and c, and ice strength take place at 
temperature below -10°C. Between -10° and 
-12°C the ice strength changes insignificantly. 

It is curious to compare, at least approximately 
parameter b(T) and the kinetic friction coefficient 
|J.C of ice, although the physical nature of these 
two parameters is quite different. Thus, Jones et 

al. (1991) reported that for 9 = -10°C and for the 
sliding velocity of 10~3 m s-1, Hc = 0.13. In Table 1 
we found that for -10°C, b = 0.098 that is in agree- 
ment with the test data. 

Comparing parameter b0 with the kinetic dry 
friction coefficient |id of ice on ice is particularly 
interesting. Since the latter is temperature-depen- 
dent, the comparison should be made for a low 
ice temperature when the effect of the liquid phase 
(lubricant) is minimal. Thus, from Casassa et al. 
(1991) we find that for 0 = -35°C, \id = 0.019, 
which is in correlation with b0 = 0.04 obtained 
above. Obviously a more accurate comparison 
would require certain adjustments of both pa- 
rameters to account for the differences in the test 
velocities. 

Note that a seeming contradiction may arise 
when one compares the ice strength values in 
Table 1 with eq 5a. From Table 1 it follows that ice 
possesses a certain strength at 0°C. On the other 
hand, from a comparison of eq 5a and 14 one 
concludes that the shear strength of ice at this 
temperature should be zero. Such a contradiction 
arises from a peculiar property of ice: ice is formed 
and melts at the same temperature, 0°C. This con- 
tradiction is easily eliminated when one remem- 
bers that melting of ice (in accordance with eq 5a) 
will take place over a certain time. 

ICE COHESION 

Ice cohesion is the principal strength param- 
eter of ice; therefore, it is important to examine 
the relationship of ice cohesion with the other 
physical characteristics of ice, such as the grain 
size, ice structure, etc. Although we have limited 
information on the effects of these factors on the 
behavior of ice under triaxial compression, some 
preliminary conclusions can still be made. Note, 
in Figures 4,5 and 6, test points corresponding to 
Jones' (1982) tests on polycrystalline ice with the 
grain size of less than 1 mm follow the same 
trends as the test data of Gagnon and Gammon 
on the Labrador ice with an average grain size of 
8.1 mm, i.e., eight times larger than the ice in 
Jones' tests. Such correlation suggests that the ice 
cohesion magnitudes may not be sensitive to varia- 
tions of the grain size. 

To make sure that this conclusion extends 
beyond the temperature range between -1° and 
-16°C, and that it is valid in the strain rate range 
different from ~ 5 x 10~3 s_1 used above in the 
evaluation of the cohesion, a comparative analy- 



sis of ice strength was carried out using test data 
of Rist and Murrell (1994). This polycrystalline ice 
had a grain size of 1.7 mm. The comparison was 
performed for temperature -20°C and the strain 
rate range between ~1(T3 s_1 and ~ 10"5 s-1. The 
results of the analysis confirmed the above con- 
clusion. At the same time our studies indicate 
that the ice cohesion magnitude is strongly de- 
pendent on the ice structure. 

ANGLE OF INTERNAL FRICTION 

From the above studies an important conclu- 
sion can also be made regarding the physical na- 
ture of the angle of internal friction of ice. While 
the temperature dependency of the friction pa- 
rameter b(Q) = tan <j>(0) is nonlinear (Fig. 4), the 
test data from Table 1 plotted in Figure 7 suggest 
that the friction angle is a simplest linear function 
of temperature: 

<l>(e) = <j)0 + (o i e i (27) 

where (|)0 = 2°50', co = 16.4' degree"1 and 16 | = (Tm 

- T) is ice temperature (°C). It should be remem- 
bered that the magnitudes of the parameters in eq 
27 refer to a strain rate e ~ 10"3 s-1. 

Note that the magnitudes of the internal fric- 
tion angles (|> in Table 1 and Figure 7 were calcu- 
lated based mainly upon test data on the Labra- 
dor iceberg ice (d = 8.1 mm) at the temperature 

range between -1° and -16°C. These data were 
extrapolated to calculate the friction angle <j> and 
the ice strength for temperature -40°C (Fig. 7) and 
compared (see Fig. 10 below) with test data of 
Rist and Murrell (1994) obtained for this tempera- 
ture and for the grain size of 1.7 mm. 

One can see that despite the considerable dif- 
ference (almost five times) in the grain sizes of 
these two types of ice and the difference in the 
test temperatures, the predicted angle of internal 
friction correlates well with the test data. We find 
the friction angle magnitudes are unaffected by 
variations of the grain size of ice. 

Thus, eq 27 can be used for calculations of 
parameter b(T) in the above equations and for 
prediction of the ice strength over a wide spec- 
trum of temperatures between 0° and -40°C. It 
should be remembered that the ice friction angle 
is a function of the strain rate as well. It decreases 
rapidly with the strain rate decrease. Fish (1991, 
1993) showed that at low strain rates ~10"7 s_1 and 
below, ice at -10°C can be considered as an ide- 
ally cohesive (<)> = 0) material, the strength of which 
is defined by eq 10 and 26. At high temperatures 
the internal friction angle is small and so is its 
effect on the ice strength. However, at low tem- 
peratures or at high strain rates and high confin- 
ing pressures, the effect of the internal friction 
angle on the strength of ice can be considerable. 

Since parameters c, b and p* were found to be 
unaffected by variations of the grain size. Table 1 
data can be used to predict strength of various 

24° 

B   16c 

T 

Data from 

• Gagnon and Gammon (1995) 
O Jones (1982) 
▲ Rist and Murrell (1994) (predicted) 

-40 

6, Temperature (°C) 

Figure 7. Angle of internal friction of ice as a function of temperature. Data from 
Gagnon and Gammon (1995), Jones (1982), and Rist and Murrell (1994). 
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types of iceberg ice and freshwater randomly ori- 
ented polycrystalline ice in a multiaxial stress state. 

STRENGTH PREDICTIONS 

Let us verify the accuracy of strength predic- 
tion by comparing the computed and the test re- 
sults of ice strength as functions of temperature, 
strain rate and hydrostatic pressure. 

For low hydrostatic pressures p « amax and 
the strain rate e = e0, ice strength can be calcu- 
lated by eq 9 using data of Table 1 and the hydro- 
static pressure magnitudes p from Figure 3, corre- 
sponding to confining pressures G3 = 1.38 MPa 
and 6.89 MPa. The results of such calculations for 
the temperature range between -1° and -16°C are 
presented in Figure 8 together with the test data 
from Gagnon and Gammon (1995). One can con- 
clude that the predicted ice strength values are in 
agreement with the test data. 

The data in Table 1 can also be used to evaluate 
the ice strength in those cases when the strain rate 
e < e0. For p « amax the ice strength is calculated 
by eq 25. To simplify the comparison with the 
published data, the latter can be rewritten in terms 
of deviator stress: 

16 

Table 2. Strength predictions of Labrador iceberg ice. 
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Figure 8. Strength of ice as a function of temperature and 
confining pressure. Data from Gagnon and Gammon (1995). 

In Table 2 the results of such calculations are pre- 
sented for n = 4, e0 =5xl0"3s_1, two different 
confining pressures (assuming that p = a3), and 
two different strain rates together with the test 
results from Table 2 of Gagnon and Gammon 
(1995). 

From Table 2 it follows that predicted values of 
ice strength practically coincide with the test data. 
Unfortunately only two tests of this ice type were 
available for comparison. 

In Figure 9 predicted dependencies of the ice 
strength are presented calculated by eq 5 using 
test values of hydrostatic pressures and the 
strength parameters from Table 1. One can see 
that in the moderate temperature range between 

-6° and -16°C the calculated values of the ice 
strength are in good agreement with test data 
of Gagnon and Gammon (1995). An exception 
is the test data for -1°C for which the magni- 
tude of the ice melting pressure p* = 13.51 
MPa calculated by eq 14 turned out to be 
considerably smaller than p* = 36.85 MPa ob- 
tained from the best fit of the experimental 
points in eq 5. Apparently, as the ice tempera- 
ture approaches the ice melting temperature, 
the relationship between the ice melting pres- 
sure and temperature becomes nonlinear. Fur- 
ther studies of the temperature-dependency 
of the ice melting pressure are obviously nec- 
essary. 

Equation 5 and the data in Table 1 were 
used to predict the ice strength over the range 
of high hydrostatic pressures. The results of 
such an extrapolation are presented in Figure 
10 and compared with test data of Jones (1982) 
for temperature -11.8°C, and of Rist and 
Murrell (1994) for temperature -40°C. In the 
latter case parameter c was calculated by eq 
17 to fit the test data, suggesting that further 
studies of the temperature dependency of ice 
cohesion in the temperature domain below 
-20°C are required. At the same time the gen- 
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eral trend of predicted values of ice strength as 
functions of the hydrostatic pressure is well con- 
firmed by Jones' test data. 

SUMMARY AND CONCLUSIONS 

1. A temperature model has been developed 
that describes the ice strength in a multiaxial stress 
state over a wide spectrum of negative (subfreez- 
ing) temperatures. 

2. The strength dependency of ice on the hy- 
drostatic pressure and temperature is well de- 
scribed by eq 5a, which is a parabolic yield crite- 
rion: 

xto(p,T) = (c + bp)-(c + bp*) 
fv* (5a) 

with only three fundamental physically well- 
founded parameters: the ice cohesion c(T), angle 
of internal friction <])(T) or b(T), and ice melting 
pressure p*{T). They all have a definite physical 
meaning and are functions of temperature. 

3. The temperature model was developed 
based upon data on over 100 triaxial compression 
tests of iceberg ice and laboratory-made fresh- 
water randomly oriented polycrystalline ice with 
a grain diameter between ~ 1 mm and ~ 8 mm in the 
temperature range between -1° and -40°C at the 
range of strain rates between 10~3 s"1 and 10~5 s"1. 

4. Further studies are required of the tempera- 
ture dependencies of the ice strength parameters 
for various types of ice, particularly the ice melt- 
ing pressure over a wider spectrum of tempera- 
tures, strain rates, and confining pressures. 
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