
REPORT DOCUMENTATION PAGE
harm Approved

OMB No 0704-0188

,.,i\^*t,..n ■ i ■'«■■ -
•■««•*iM'ir■•!** ■.

;»n*1f*m». ■.■••Min«'. * ■*• - —

■ •<:•» .«/«mj--» „a Hill -

•*\t,nM'«* '■Ttf I

"l/Si-OW»rt-»\r*<f»*it<vn /<* /5S0 I

t. AGENCY USE ONLY (ü»dv« ttd/wj 2. REPORT OATE
1997

3. REPORT TYPE .4N0 OATES COVERED
Final fypOSfl-TT^ Ci 1 - O <= l

4. TITLE AND SUBTITLE

Analyzing Safety Properties of Requirements

6. AUTHOR(S)
Joanne Atlee, Marsha Chechik, and John Gannon

S. FUNDING NUMBERS

Grant F496209310034

7. PERFORMING ORGANIZATION NAME(S) AND AOORESS(ES)

University of Maryland
Department of Computer Science
College Park, MD 20742

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING /MONITORING AGENCY NAME(S) AND AOORESS(ES)

AFOSR/NM
110 Duncan Avenue Room B115
Boiling AFB DC 20332-8080

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES 19971204 190
12a. DISTRIBUTION /AVAILABILITY STATEMENT

Approved for public release;
distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 worts}

Precise notations have been developed to specify unambiguous requirements, and ensure
that all cases of appropriate system behavior are considered and documented. Using one
such notation, we have developed techniques to automatically analyze software artifacts at
early stages of the software development life cycle. We use model checking as our verification
technique because it can be fully automated and can check properties of large systems. This
report describes model checking and summarizes our efforts to use it to analyze software
requirements and designs. We prove that requirements model system safety properties and
that designs model consistency properties derived from requirements by creating abstractions
of these software artifacts and using model checking to determine if the abstractions are
models of the properties. We present results from a case study in which we analyzed the
requirements and design of a small but realistic system.

DTIC QUALITY INSPECTED £

14. SUBJECT TERMS

Formal methods, Requirement analysis, Model checking

17. SECURITY CLASSIFICATION
OF REPORT
unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

unclassified

15. NUMBER OF PAGES
34

16. PRICE COOE

20. LIMITATION OF ABSTRACT

UL

MSN /s.-.p-oi :HO-SSIO St.iPfldMl i-orm J9fl . **?v 2-89)

Analyzing Safety Properties of Requirements

Joanne Atlee Marsha Chechik John Gannon
Dept. of Computer Science Dept. of Computer Science Dept. of Computer Science

University of Waterloo University of Toronto University of Maryland
Waterloo, Ontario N2L 3G1 Toronto, Ontario, M5S 1A4 College Park, Maryland 20742

1 Introduction

Precise documentation of software requirements has several potential benefits[31]: designers know
what they are to build; reviewers can check that customers' intentions are met; testers can for-
mulate test cases independently from the system's implementation; and maintainers can use
the original requirements to learn about the system before making their changes. Several formal
requirements notations (e.g., the Software Cost Reduction (SCR) notation[3, 21, 23], the Require-
ments State Machine Language[27], and Statecharts[19]) have been used to specify the require-
ments of large, real-world avionics applications (the A-7E aircraft, the FAA's Traffic Collision
and Avoidance System, and the Lavi fighter's avionics system, respectively). These requirements
notations describe systems as sets of concurrently executing state machines which respond to
events in their environments.

The keys to winning acceptance for employing precise documentation during system devel-
opment include demonstrating that its use improves software quality, amortizing the cost of its
creation across several different analysis activities, and reducing the cost of analysis through
automation. Our research has focused on developing techniques that use formal methods to
enable automatic analysis of program artifacts at early stages of the software development life
cycle[5, 7, 6, 14, 15].

In this report, we summarize our work to analyze program requirements and designs. We
use model checking[17] because it can be fully automated and can check properties of large
systems. Developers are more likely to understand a proof technique like model checking, which
is based on search and which produces counter examples when proofs fail, than a technique
based inductive theorem proving. Model checking has been successfully applied to verifying and
debugging hardware designs (e.g., [10, 8, 16]). More recently it has been used to analyze software
artifacts. Model checking has been used to detect design flaws in software architecture designs[2]
and Z specifications[26], and to prove properties of cache coherence protocols[35] and concurrent
Ada programs[ll]. The key to success in these endeavors is creating an appropriate abstraction
of a system so that results obtained from analyzing the abstraction also apply to the system.

We analyze safety properties of software requirements and designs by creating models from
such artifacts and using model checking techniques to determine if the safety properties are true
for the model. We have developed automated techniques to translate requirements into a logical
model. We represent a system's safety assertions as logical formulas in a branching-time temporal
logic, Computation Tree Logic[18] (CTL), and use existing CTL model checkers[10, 28] to check
our models.

Analyzing the safety properties of system's requirements, however, fails to tell us whether or

not its implementation preserves these properties. To verify that a system design is consistent
with its requirements, we would like to ensure that the design's state transitions are enabled
by the same events as those of the requirements, and the requirement's safety properties also
hold in the design. To judge global properties like these, we need to determine the possible
system states which exist at different program points. The detailed bookkeeping necessary to do
this exceeds the capabilities of human reviewers for all but small implementations. We present
a language for specifying detailed designs and an analysis technique to create a model of a
design through abstract interpretation of the language constructs. We also show how to use
requirements information to automatically generate properties which ensure that required state
transitions appear in the design and systems goals hold, and how these properties are checked
against the design model.

The rest of the report is organized as follows: Section 2 introduces the SCR requirements
specification format. Section 3 explains basic principles behind model checking. In Section 4 we
show how to create a logic-model semantics that precisely models the operational semantics of
SCR modes and mode transitions, so that system goals can be translated into temporal logic
formulas and model checking techniques used to verify that these formulas hold in the require-
ments. Section 6 presents our techniques for verifying designs: how to generate first-order logic
properties from SCR tables, how build finite-state abstractions of designs, and how to check the
properties using a special-purpose model checker. Section 10 describes a case study in which we
analyzed the requirements and design of a Water-Level Monitoring System[33]. We present our
conclusions in Section 11.

2 SCR Requirements

The SCR requirements notation was developed by a research group at the Naval Research Lab-
oratory as part of the Software Cost Reduction project [3, 23]. A complete SCR requirements
specification contains behavioral, functional, precision, and timing requirements of a software
system as well as assumptions about the environment in which the system will operate. In SCR
requirements, environmental variables are monitored, and their values are translated to input
data values for a a set of finite state machines (FSMs). The FSMs record the system's states
and set the values of output data items. The values of output data items control variables in the
system's environment[29, 33].

2.1 Behavioral Requirements

The input language of each machine is a set of conditioned events. A condition is a predicate on
monitored or mode class variables, an event when the value of a condition changes. Let condition
SwitchOn represent predicate [On/Off switch = On], and condition PumpFail represent predicate
[Pump failure = true]. Primitive events @T(SwitchOn) and @F(SwitchOn) represent condition
SwitchOn becoming true and becoming false, respectively. Conditioned event

©T(SwitchOn) WHEN [~ PumpFail]

describes the event SwitchOn becomes true while PumpFail remains false. Formally, condi-
tioned event @T(SwitchOn) WHEN [PumpFail] occurs at time t if and only if primitive event
@T(SwitchOn) occurs at time t and condition PumpFail is true for some non-zero interval of

time leading up to and including time t [3]. SwitchOn is called the triggering event and Pump-

Fail is called the event's WHEN condition.
A state of the monitored environment is defined by the current values of the conditions, and

the state space is the set of possible combinations of values of conditions. However, the behavior
of the system is rarely affected by the values of all the conditions at once. A mode class defines
a set of states, called modes, that partition the monitored environment's state space. One mode
is designated as the initial mode. Assumptions about the initial state of the environment are
specified with the initial mode. Transitions between pairs of modes are activated by conditioned
events. If a conditioned event can trigger two or more transitions from the same mode, then, the
mode class is non-deterministic.

An SCR requirements document contains the specification of one or more mode classes. At
all times, the system is in exactly one mode of each mode class. Each mode class specifies one
aspect of the system's behavior, and the system's global behavior is defined to be the composition
of the specification's mode classes.

Table 1 shows a mode transition table for a Simplified Water-Level Monitoring System
(SWLMS). A switch controls whether the system is on or off. If the system is on and its sensors
detect too much (too little) water, a pump is turned on for a fixed period to remove (add) some
water. If the sensor or the pump fails, the system enters an error state. This simplified version of
the system has no error recovery, so there are no transitions from the error state. This system has
one mode class MC with modes Off, Operating, and Error; four monitored variables SwitchOn,
PumpFail, TooHigh, and TooLow; and a single controlled variable PumpOn. Below the mode
transition table is the specification of the system's initial mode. Mode class MC starts in mode
Off, and all monitored variables are initially false. The specification of a mode class's transition
relation has a tabular format. Each row in the table specifies a conditioned event that activates
a transition from the mode on the left to the mode on the right. For example, a table entry of
"@T" (or "@F") under a column represents a triggering event for the condition represented by
the variable labelling the column, a table entry of "t" (or "f") represents a WHEN condition for
the condition. If the value of a condition does not affect the occurrence of a conditioned event,
then the table entry is marked with a hyphen ("-"). If during time interval [t — e, t) the system
is in mode Off, the switch is in the Off position and the pump is operating; and if at time t the
switch is moved to the On position while the pump continues to operate; then the system is in
mode Operating at time t.

Current Mode SwitchOn PumpFail New Mode

Off @T f
@T

Operating
Error

Operating @F f
@T

Off
Error

Initial: Off (-SwitchOn & -PumpFail & -TooHigh & -TooLow)
Assumptions: TooLow— >> — TooHigh

Table 1: Mode transition table for SWLMS.

Values of controlled variables change in response to events when the system is in particular

modes. Table 2 shows an event table for the controlled variable PumpOn, which represents the
pump being turned on or off. This variable starts with value false and becomes true when the
system is in mode Operating and either event @T(TooHigh) or @T(TooLow) occurs.

Mode Triggering Event
Operating @T(TooHigh)

@T(TooLow)
@F(TooHigh)
@F(TooLow)

@T(PumpFail)
Off - @T(PumpFail)

PumpOn = True False

Initial: False

Table 2: Event table for controlled variable PumpOn.

2.2 Environmental Assumptions

An SCR requirements document also specifies assumptions of the behavior of the environment.
Similar to the NAT relation in Parnas's 4-variable model of system requirements [29], an as-
sumption specifies constraints on the values of conditions, imposed either by laws of nature or by
other mode classes in the system. As such, assumptions are invariant constraints that must hold
in all system states.

The syntax and semantics of assumption specifications are described in [4]; for the purposes of
this report, symbol "|" denotes exclusive-or, "- >" denotes implication, "- >>" denotes strict
implication, and "<" denotes an ordering on the lengths of time that conditions are true1. The
assumptions specified in Figure 1 state that the water level cannot be too high and too low at
the same time.

2.3 System Goals

Finally, an SCR requirements specification often includes a set of goals that the system is required
to meet. These goals are not additional constraints on the required behavior; it is expected that
the SCR tabular specification enforces these goals. Specified goals are redundant information that
are included in the specification because the reader might not deduce these properties from the
tabular specifications. Most of the goals specified in the SWLMS example are mode invariants:

• // the system is in mode Off, then conditions SwitchOn and PumpFail are false.

Other goals express global behavioral requirements on the occurrence of an event:
• If event @T(^SwitchOnj occurs, the system cannot remain in mode Off.

*In a — >> b the state space in which a is true is a strict subset of the state space in which b is true. As with
implication, whenever a is true, b must also be true. Because of the relationship between their state spaces, b must
be true whenever a is changing value, and a must be false whenever b changes value.

Temporal requirements on state changes can also be specified.

• When the water level becomes too high while the system is in mode Operating, the

pump will immediately be turned on.

3 Model Checking

Temporal logic permits us to make statements about changes in time, e.g., that a formula may
be true at some point in the future. Computational tree logic (CTL) is a propositional branching
time logic, whose operators permit explicit quantification over all possible futures[18]. The syntax

for CTL formulas is summarized below:

1) Every atomic proposition is a CTL formula.
2) If / and g are CTL formulas, then so are: ~/, / A#, fVg, AXf, EXf, A[fUg],

E[fUg], AFf, EFf, AGf,EGf.

Note that temporal operators occur only in pairs in which a quantifier A (always) or E (exists)

is followed by F (future), G (global), U (until), or X (next).
The value of a formula is defined with respect to a model M = (V, S, so, R, I) where V is a set

of propositional variables, S is a set of states, SQ € S is the start state, R is a transition relation,
and I is a set of interpretations specifying which propositions are true in each state. Temporal
logic formulas are evaluated with respect to a state in the model. For example, formula EXf
(AXf) is true in state S{ if formula / is true in some (every) successor state of s;. Formula
E[f U g] (A[f U g\) is true in state S{ if along some (every) path emanating from st- there exists
a future state Sj at which g holds and / is true until state Sj is reached. EFf (AFf) is true in
state Si if along some (every) path from Si there exists a future state in which / holds. Finally,
EGf (AGf) is true in state s; if / holds in every state along some (every) path emanating from

S{.

We capture these ideas more formally with the following definitions. If formula / is true in
state s of model M, we write M, s \= f. A formula / is true for the model, if it is true in the
model's start state, i.e., M,SQ (= /■ When we are concerned with a single model, we abbreviate
M, s \= f as s \= f. Let p £ V be a proposition, s € S be a state, and / be a formula.

(I(S))(P)

s \= / or s \= g

for some path (SQ, S\, .. .),Si |= /

for all paths (so, «i,...), si j= /

for some path («o, «i, • • •), for some i s, \= g and for all j < i Sj (= /

for all paths (SQ, «I, • ■ •), for some i s,- (= g and for all j < i Sj \= f
Several abbreviations will also be used to write formulas. These include abbreviations for propositional
formulas, abbreviations for commonly used until operations (e.g., reachability and invariance), and uni-
versally quantified temporal formulas (defined in terms of existentially quantified temporal formulas).

s\=p iff

s^~f iff

s\=fvg iff

so N EX f iff
so \= AX f iff

so N E(fUg) iff
so \= A(fUg) iff

(/Äff) HE ~(~/V~<7

(/-<?) = (~/vff)
AXf EE ~EX{~f)
EFf EE £[true U f]
AFf = A[tvue U f]
EGf = ~AF(~f)
AGf EE ~EF(~f)

The abbreviation for invariance, AG, is used often in this report. AG(f) is true in state s, if for all paths

(s,-, s,-+i, • • .)> formula / holds in all states.
Model checking determines the value of a formula / for a particular model by computing the set of states

in which the formula is true, i.e., {s | s (= /}. Automating model checking is quite easy, except that the
entire state space of the model must be constructed before the fixed-point algorithms can be applied. Model
checking can be performed symbolically by manipulating quantified boolean formulas without constructing
a model's state space[28]. To perform symbolic model checking, sets of states and transition relations are
represented by formulas, and set operations are defined in terms of formula manipulations.

4 Model-Checking Requirements

In this section, we define a logic-model semantics for SCR specifications that precisely models the oper-
ational semantics of SCR modes and mode transitions. System goals are translated into temporal logic
formulas, and model checking is used to analyze if the requirements are a model of each of the formulas.

4.1 SCR Logic Model of Mode Transitions

System modes and environmental conditions are represented by temporal propositional variables. A prepo-
sitional variable representing a condition is true if and only if the condition is true. Similarly, a proposi-
tional variable representing a mode is true if and only if the mode is the current mode of its mode class. An
interpretation maps propositional variables to truth values. Because the values of conditions and current
modes vary over time, the logic model consists of a set of interpretations and a transition relation among
the interpretations.

Formally, a logic model of an SCR mode class is a tuple (V, S, so, R, I), where
• V is the set of modes and conditions.
• 5 is the set of possible states.
• so C S is the set of possible initial states
• R C (S x S) is a binary transition relation on 5.
• I is an interpretation function. I(s) assigns a truth value to each mode and condition in state s.
A conditioned event is modeled by any pair of states s; and Sj related by R (i.e., (s,-, Sj) 6 R), in which

the event's triggering conditions are unsatisfied in state s*, the triggering conditions are satisfied in state
Sj, and the event's WHEN conditions are satisfied in both states. If the conditioned event triggers a mode
transition, then the pair of states must also model the mode change: in state s,-, the source mode must be
true and the destination mode false; and in state Sj, the source mode must be false and the destination
mode true.

Our logic-model representation of an SCR requirements specification deviates from its operational
semantics in two respects. First, SCR operational semantics forbids the simultaneous occurrence of two
or more primitive events, because its operational model assumes that the implemented system will react
to events one at a time, regardless of when the events occur. Traditionally, implementations of reactive
systems queue primitive events as their occurrences are detected; when a primitive event reaches the head

of the queue, the system checks the values of other conditions to determine if a significant conditioned
event (e.g., one that might activate a mode transition) has occurred [20].

An unconditional restriction on the occurrence of simultaneous events may violate environmental
assumptions. Rather than incorporating a restriction on simultaneous events into the semantics of an
SCR logic model, we express the restriction as an environmental assumption of the specification. This
arrangement allows us to specify and analyze a system that does not assume that events will be reported
sequentially. In addition, it allows the specification of tailored restrictions that model both the sequential
occurrence of independent events and the simultaneous occurrence of related events.

The second difference between operational and logic-model semantics of SCR specifications pertains to
the value of WHEN conditions at the time of a conditioned event. In an SCR logic-model, WHEN conditions
must be satisfied both immediately before and during the occurrence of a conditioned event. According
to the latest operational semantics of SCR, a WHEN condition must be satisfied immediately before the
occurrence of a conditioned event, but its value at the time of the event is unknown [22]. Given the above
restriction on the occurrence of simultaneous events, one can to infer the value of most WHEN conditions:
WHEN conditions that are unrelated to the triggering event have the same value during the event as they
had immediately before the event. However, WHEN conditions that are related to the triggering event may
or may not be changing value along with the triggering event.

We chose to model the older conditioned-event semantics [3] because we found it easier to write a
correct SCR specification given these semantics. If one wants to write a specification that guarantees a
particular formula / is always true in a particular mode M, one needs to specify that / is always true
upon entry into M and that the system always exits mode M if / becomes false. Such a specification is
difficult (if not impossible) to write if one cannot infer from a WHEN condition WHEN[/] on a transition
into the mode that / is true when the mode is entered.

4.2 Behavioral Requirements

We express the logic model of SCR mode transition requirements as a temporal logic formula. A logic-
model state is expressed as a conjunction of the conditions and modes interpreted to be true in that state.
The transition relation R is expressed as a formula over conditions and modes in both the current and the
next state.

Consider the SCR mode transition table presented in Table 1. The following formula specifies the
logic formula that holds in the initial state so- Since only mode transitions are being modelled, we have
simplified the initial state to include only those monitored variables which affect mode transitions,

«o —► (Off A ~ SwitchOn A ~ PumpFail)
Each row in the mode transition table is expressed as a conjunction of the current mode, the conditioned

event, and the next mode. For example, the first row in the mode transition table is represented by the
following formula.

Off A ~SwitchOn A ~PumpFail A SwitchOn/A ~PumpFail/A Operating/,
where a unprimed and the primed versions of a variable indicate the value of this variable in the current
and the next states, respectively. Each row in a mode transition table specifies an element in the logic
model's transition relation. The set of mode transitions is expressed as a disjunction of the transitions'
formulas. Finally, the table also states implicitly that if a conditioned event occurs that does not trigger
any of the transitions leaving the current mode, then the current mode remains the same. To capture this
latter behavior, we add a new transition for each mode. The new transition states that the mode is true
in the current state, all of the conditioned events triggering transitions leaving the mode are false in the
next state, and the mode remains true in the next state. The resultant transition relation is a tautology;
thus, an SCR logic model has a total transition relation. Figure 1 shows a partial logic model for the SCR
mode transitions of the SWLMS specified in Table 1.

If an SCR specification consists of several mode classes, then the logic model of the specification is a
conjunction of the logic models of the mode classes.

so -<■ (Off A ~ SwitchOn A ~ PumpFail)

A
((Off A ~ SwitchOn A ~ PumpFail A SwitchOn'A ~ PumpFail' A Operating') V

(Off A ~ PumpFail A PumpFail' A Error') V

(Off A ~ (SwitchOn A ~ PumpFail A SwitchOn' A ~ PumpFail') A

~ (~ PumpFail A PumpFail') A Off') V

(Operating A SwitchOn A ~ PumpFailA ~ SwitchOn'A ~ PumpFail' A Off') V

(Operating A ~ PumpFail A PumpFail' A Error') \/

(Operating A ~ (SwitchOn A ~ PumpFailA ~ SwitchOn'A ~ PumpFail') A

~ (~ PumpFail A PumpFail') A Operating') V

(Error A Error'))

Figure 1: SCR logic model of SWLMS mode transition table.

4.3 Environmental Assumptions

The formula in Figure 1 represents the unconstrained transition relation of the SWLMS. For example,
the formula expresses no constraints on the number of modes that can be true in any logic-model state.
Furthermore, the SCR specification's environmental assumptions are not represented in the logic model.

Environmental assumptions can be represented as logic formulas.

/\ (Off V Operating V Error) f\ (Off -+ (~ Operating A ~ Error)) /\

(Operating — (~ Off A ~ Error)) /\ (Error -* (~ Off A ~ Operating)) /\

(TooLow ->~ TooHigh))
Because the environmental assumptions hold invariantly and constrain the specification's transition rela-
tion, each of the assumptions' representative formulas is conjoined with the formula representing the mode
transition table.

4.4 System Goals and Model Checking

Most of the SWLMS system's goals can be easily expressed as CTL formulas and proved using the SMV
model checker[28]. The following formulas state properties that hold invariantly when the system is in a
particular mode. For example, if the system is in mode Operating, it is invariantly true that the switch is
on and the pump is working.

ylG(Off-+ (~ SwitchOn A ~ PumpFail))

AG(Operating —> (SwitchOn A ~ PumpFail))

AG(Error -» PumpFail)

The last formula is false, and the SMV checker produces a counter example in which the system remains
in mode Error while PumpFail changes value from true to false. We could rewrite the last formula as
ylG(PumpFail —+ Error), which can be verified.

The following goal of the SWLMS example is more difficult to express as a CTL formula because it
refers to the occurrence of a conditioned event:

// event @TfSwitchOnj occurs, the system cannot remain in mode Off.

Since conditioned events are represented by consecutive logic-model states, a CTL formula referring to the
occurrence of a conditioned event must refer to the values of the event's conditions in two states.

AG(~SwitchOn -► ~£;f(SwitchOn A Off))

If SwitchOn is false, there is no next state in which SwitchlsOn is becoming true and mode Off is true.
To ease the phrasing of CTL formulas that refer to the occurrence of conditioned events, we use unary

logic connectives @T and @F to express propositional formulas that are becoming true and becoming false,
respectively. We could simulate the new connectives using their definitions: evaluation of their operands
in the current and next states. SMV, however, can only check formula with respect to the current values
of variables. Therefore, the SMV behavioral requirements must evaluate events using the current and next
values of the their operands. Let / be an arbitrary propositional CTL formula (i.e., a CTL formula with
no modal operators). The connectives have the following definitions.

@T(/) iff ~/A/'

@F(/) iff /A~/'

The above invariant is more simply expressed when formulated using the new connectives.

AG((@T(SwitchOn) -*~EX(Off)))

5 Model Checking Designs

Once we verify that system goals hold in a set of requirements, we are interested in showing that these and
other properties are preserved in a design (and further in an implementation) of the system. The rest of
this section presents a technique for discovering instances of inconsistency and incompleteness in detailed
designs of programs with respect to their requirements.

6 Consistency with SCR Requirements

Definition 6.1 Let a set of SCR requirements 1Z = (B,£) be given. A program artifact A constrained by
environmental assumptions £ (called As) is consistent with its requirements TL if

1. As and B have the same starting state;

2. At implements all state transitions specified in the B; and

3. Ae does not implement any state transitions which are not specified in B

This is a very restricted definition. Typically, artifacts are considered consistent with requirements when
they implement at least what is specified. SCR was developed to specify high-assurance systems, and
intended to capture all allowed system behaviors. Indeed, it is clearly a fault if an artifact implements an
unspecified transition to a state representing a failure.

SCR tables can be transformed into a list of properties which capture this notion of consistency. To
prove that an artifact is consistent with its requirements, we demonstrate that it is a model of all these
properties. We express these properties as first-order logic formulas.

We use states to denote points at which variables change values. Thus, three states need to be
considered in determining if an event caused a mode change: the state in which the monitored variable
had its original value, the state in which the monitored variable was assigned a new value, and the state in
which the mode change occurred. Generally, we do not know the value assigned to a monitored variable
until after the outcome of a test. Thus, monitored variables may have either the value true or the value
false in a state; the exact value not being known until an arc representing a successful test outcome is

10

traversed. As the result, we define formulas as being true on arcs as well as in states. A transition between
mi and rrij triggered by @T(a) WHEN [6] is formalized as

(a = false) A (ml = m,-) A (6/ = true) A (ai = true) A (mil mi

where a condition represents its value on the previous edge, a primed condition represents its value on the
current edge, and the double-primed condition represents its value in the adjacent state. Figure 2 gives a
pictorial representation of this semantics.

@T(a) WHEN [b]

p n S

f N ' N
in gen out

a -false

in gen out
a=true

in gen out
-

b=true m—m-

m=m-

Figure 2: Pictorial representation for a mode transition.

For a state n and a formula /, we use the notation n f= / to indicate that / is true in n. For a pair
of states (n,p), we use the notation (n,p) \= f to indicate that / is true on an edge between n and p. We
also assume that for each state n we have functions pred(n) and succ(n) returning a list of all predecessors
and successors of n, respectively. (This list can be empty.) Thus, we can express a property "there exists
a transition from m = m; to m = mj on @T(a) WHEN [b]" as

3n, 3s G succ(n), 3p G pred(n), (s |= (m = mj)) A
((n, s) (= ((a= true) A (b - true) A (m = m,-))) A ((p, n) \= (a = false))

A number of properties generated from SCR have the notion of an event in them. We say that an
event @T(a), where a is a boolean variable, has occurred on an edge (n,s), i.e. (n,s) \= @T(a), if

((n,s) \= (a= true)) A (3p 6 pred(n), (p,n) \= (a= false))

A set of properties capturing first two parts of our definition of consistency can be obtained by com-
posing rows and columns of SCR tables. In Section 2.1 we introduced a simple Water-Level Monitoring
System (SWLMS). We use the SWLMS requirements to illustrate the kinds of properties which are gen-
erated to capture our notion of consistency with SCR requirements. For example, we have a property
asserting that the only way for mode MC to be in mode Off in its next state is if MC is currently in Off,
or if a transition from mode Operating occurs in response to an event @F(SwitchOn) WHEN -iPumpFail.
This property was obtained by composing the rows of the MC mode transition table which have Off in
their right columns (in this case, only row three). We write this property as

Py = \/n, n\= (MC=Off) -» (Vp G pred(n), ((p, n) \= (MC=Off))
V ((p, n) (= (@F(SwitchOn) A (PumpFail=false) A (MC=Operating))))

Properties quantified on all members pred(n) or succ(n) are considered vacuously true when the
corresponding list is empty.

11

Pi = Vn, n \= (MC=Off) -► (Vp G pred(n), (p,n) \= (MC=Off)
V {p,n) (= (@F(SwitchOn) A (PumpFail=false) A (MC=Operating)))

P2 = Vn, (n |= (MC=Operating) -»■ (Vp G pred(n), (p,n) (= (MC=Operating)
V (p, n) |= (@T(SwitchOn) A (PumpFail=false) A (MC=OfF)))

P3 - Vn, (n (= (MC=Error) -► (Vp G pred(n), (p, n) |= (MC=Error) V
(p, n) |= (@T(PumpFail) A (MC=Operating)) V
(p, n) |= (@T(PumpFail) A (MC=Off)))

P4 = Vn, (n |= (PumpOn=false) —» (Vp G pred(n), (p, n) |= (PumpOn=false) V
(p, n) |= (@F(TooHigh) A (MC=Operating)) V
(p, n) |= (@F(TooLow) A (MC=Operating)) V
(p, n) ^= (@T(PumpFail) A (MC=Operating)) V
(p, n) |= (@T(PumpFail) A (MC=Off)))

P5 = Vn, (n |= (PumpOn=true) —► (Vp G pred(n), (p,n) \= (PumpOn=true) V
(p, n) \= (@T(TooHigh) A (MC=Operating)) V
(p, n) |= (@T(TooLow) A MC=Operating))

Figure 3: OLT properties for SWLMS.

We generate properties similar to Pi for each value of controlled variables and every mode in the right
columns of mode transition tables. These properties capture the third part of our notion of consistency
and are called "only legal transitions" (OLT) properties. OLT properties generated from requirements of
SWLMS are shown in Figure 3. Property Pi was generated from row three of Table 1; Pi from row one;
and P3 from a composition of rows two and four. Properties P4 and P5 were generated for the controlled
variable PumpOn from Table 2. There are two OLT properties generated for each controlled variable,
reflecting changes of value to false (P4) and to true (Ps)-

Another property asserts that there exists a transition from mode Off to mode Operating on an event
@T(SwitchOn) WHEN [PumpFail=false]. This property corresponds to the first row of Table 1. We express
this property as

P6 = 3n, 3p G pred(n), n |= (MC=Operating) A
(p, n) |= ((MC=Off) A @T(SwitchOn) A (PumpFail=false))

Such properties ensure that all transitions specified in the requirements (potentially) appear in the design,
capturing the second part of our notion of consistency. We call them "all legal transitions" (ALT) properties.
One ALT property is generated for every row of transition tables for mode classes and controlled variables.
Other ALT properties for SWLMS are shown in Figure 4. Properties PQ-PQ were generated from Table
1 (rows 1-4, respectively). Properties Pier-Pis were generated from Table 2 (rows 1-6, respectively). Of
course, these properties mean that there may be a path to a transition. Although we are able to find
unreachable states, we are not always able to find and eliminate infeasible paths.

7 Detailed Design

A Program Design Language (PDL)[12] is a language used to specify designs. Typically, PDLs[12] are
defined by an outer syntax of control structures and inner syntax of other statements. Our PDL's outer
syntax is a set of C-like control structures. Our inner syntax consists of annotations - special statements
describing values of requirements variables. Our use of annotations was inspired by Howden's work on

QDA[25, 32].
For sequential designs, we defined three types of annotations:

12

P6 = 3n, 3p G pred(n), n \= (MC=Operating) A
(p,n) (= ((MC=Off) A @T(SwitchOn) A (PumPFail=false))

P7 = 3n, 3p G pred(n), n |= (MC=Error) A (p,n) \= ((MC=Off)
A @T(PumpFail))

P8 = 3n, 3p G pred(n), n |= (MC=Off) A
(p, n) \= ((MC=Operating) A @F(SwitchOn) A (PumpFail=false))

P9 = 3n, 3p G pred(n), n \= (MC=Error) A
(p,n) (= ((MC=Operating) A @T(PumpFail))

Pio = 3n, 3p G pred(n), n \= (PumpOn=false) A
(p, n) |= ((PumpOn=true) A @F(TooHigh) A (MC=Operating))

Pn = 3n, 3p G pred(n), n \= (PumpOn=false) A
(p, n) (= ((PumpOn=true) A @F(TooLow) A (MC=Operating))

Pi2 = 3n, 3p G pred(n), n \= (PumpOn=false) A
(p, n) \= ((PumpOn=true) A @T(PumpFail) A (MC=Operating))

P13 = 3n, 3p G pred(n), n \= (PumpOn=false) A
(p, n) |= ((PumpOn=true) A @T(PumpFail) A (MC=Off))

P14 = 3n, 3p G pred(n), n |= (PumpOn=true) A
(p, n) \= ((PumpOn=false) A @T(TooHigh) A (MC=Operating))

P15 = 3n, 3p G pred(n), n t= (PumpOn=true) A
(p, n) (= ((PumpOn=false) A @T(TooLow) A (MC=Operating))

Figure 4: ALT properties for SWLMS.

• An Initial annotation indicates the starting state of each mode class. It unconditionally assigns
values to variables. This annotation corresponds to initialization information specified in the re-
quirements.

• An Update annotation assigns values to variables, identifying points at which the program changes
its state.

• An Assert annotation reflects a programmer's knowledge that variables have particular values in the
current state. Static analysis usually gives imprecise results because states are aggregated. Assert
annotations reduce the amount of information in the state to what the programmer believes to be
true.

The syntax of Update annotations is described below:

Annotation
Syntax

Meaning

Update A=true
Update A=false
Update A=Top

Update M=M1

A receives the value {true}.
A receives the value {false}.
A receives the value corresponding to the
union of all values of its type.
Mode Class M receives the value {Ml}.

Either syntax can be used when writing designs. Variables in Update annotations may be combined using
the & (AND) operator, indicating that all variables receive their values at the same time. The syntax of
Assert annotations is the same as that of Update annotations, except that variables may also be combined

13

using the | (OR) operator, indicating that the programmer knows (or assumes) that at least one of the

disjuncts is true.
We do not process statements other than annotations and control flow constructs since they do not

reflect changes of values of requirements variables. To differentiate between statements and annotations,
the latter start with @@.

The following design fragment shows sample uses of annotations:

ReadDeviceMonitorQ; /* read value */
QQ Update PumpFail=Top;
if (pump_failed()) { /* test value */

<SQ Assert PumpFail=true;
<8<a Update MC=Error;

}
else {

<8Q Assert PumpFail=false;

In this fragment, the function ReadDeviceMonitor() is called to determine the status of a pump. The
Update annotation records the outcome of this call by setting the value of the requirement's variable
PumpFail to Top. The function pump_failed() determines if the value read corresponds to failure of the
pump. We assert that the Then clause will be executed only if the pump did fail (i.e., the value of PumpFail
is true rather than Top). In this case, the system should transit to mode Error. In the Else branch, we
assert that the value of PumpFail is false rather than Top.

Figure 5 shows a design for the SWLMS. Here we notice that the pump can be turned on only when
the system is in mode Operating. So, the design has an inner WHILE loop, in which the system reads
the water level and determines the state of the pump. The system exits the loop when the pump fails or
when the switch is turned Off. Since the SWLMS has no error recovery, transitions to mode Error are
done outside the main WHILE loop.

We can also verify the consistency of existing programs with their requirements by annotating source
code with comments corresponding to changes and tests of values of requirements variables. We followed
this approach to verify an implementation of the Water-Level Monitoring System (see Section 10). This
approach raises the a problem of verifying the consistency of requirements with annotations rather than
with the actual code. However, if annotations are done carefully, their consistency can raise our confidence
about that between the source code and requirements. Annotations and source code may also "diverge"
as modifications to the program are being made.

8 Creating the Abstraction
We construct a Design-Flow Graph (DFG) from annotations and control-flow information of the design and
then propagate the state information throughout the DFG, in a manner similar to data-flow analysis]!].
The rest of this section describes the process we use to construct a set-based approximation of attainable
values of requirements variables for each node of a DFG. The process consists of the following steps:

• Compute information generated by each annotation.

• Detail this information using environmental assumptions and check for violations of the assumptions.

• Propagate this information throughout the DFG.

The DFG is abstracted into a Finite-State Machine (FSM) which is then used to check system properties.
Figure 6 gives a roadmap of the analysis process described in the remainder of this paper.

14

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

(SO Initial MC=0ff & SwitchOn=false & PumpFail=false &
TooHigh=false & TooLow=false & Pump0n=false;
while(l) {

READ_DEVICE();
a® Update PumpFail=Top;
if (PUMP_FAIL()) {

Q® Assert PumpFail=true;
break;

>
SO Assert PumpFail=false; /* assume no device failures */
READ_SWITCH(); /* read switch monitor */
(50 Update SwitchOn=Top;
if (SWITCH_0N() && IN_OFF(System)) {

®® Assert SwitchOn=true & MC=0ff;
®a Update MC=Operating;

>
else if (IN_OPERATING(System)) {

a® Assert MC=Operating;
while(l) {

READ_DEVICE();
QQ Update PumpFail=Top;
if (PUMP_FAIL()) {

®fi Assert PumpFail=true;
break;

}
a® Assert PumpFail=false;
READ_SWITCH();
Ö® Update SwitchOn=Top;
if (!SWITCH_0N()) {

a® Assert SwitchOn=false;
®Q Update MC=0ff;
break;

}
aa Assert SwitchOn=true;
GET_WATER_LEVEL (feWater); /* compute water level */
aa Update TooHigh=Top & TooLow=Top;
if (IS_HIGH(Water) II IS_LOW(Water)) {

Q® Assert TooHigh=true I TooLow=true;
a® Update PumpOn=true;

}
else {

<a<a Assert TooHigh=false & TooLow=false;
aa Update PumpOn=false;

}

Assert PumpFail=true;
Update MC=Error & PumpOn=false;

Figure 5: Design of SWLMS.

Definition 8.1 A Control-Flow Graph of a program design PD (DFG) is a directed graph G = (V, E,

Vo), where
V is a finite set of nodes corresponding to splits, joins and annotations of PD.
E C V x V is a set of directed edges, s.t. (v\, v-i) G E iff V2 can immediately
follow vi in some execution sequence; and
Vo G V is an entry node.

15

Finite-State Machine

(FSM)

~1^

Design Flow Graph

(DFG)

—r
Detailed Design

(DD)

Figure 6: Analysis roadmap.

We interpret annotations in the design to create a set-based approximation of attainable values for
each requirements' variable at each node of the DFG. This means that we are interested in only those
variables which are specified in the requirements, and that each variable is associated with a set of values
it may attain if the control reaches that node.

Definition 8.2 A system state at node n of a design implementing an SCR specification 1Z is a set of

variable-value pairs {(rj,vrj) \ rj G R}, where
vr ■ is a set of values associated with the variable rj at the node n, and

V rj G R, vr. G 2T(rj^ (vr is a set consisting of values in the domain ofrj).

We require that there is exactly one variable-value pair for each variable in the requirements, and thus for
a system state s we can define a function v(rj, s) which returns the value of rj in s:

v(rj ,s) = ß s.t. (rj, fi) G s

In addition, we define a function repl(rj, //, s) to replace the current value of rj by \i in s:

repl(rj,//,s) = (s - {(rj, v(rj, s))}) U {(rj, n)}

For controlled and monitored variables (rj £ MUC), these values are {}, {true}, {false} and {true, false},
which form a U-lattice on set-inclusion. These values have the following meaning:

16

{ } On any path leading to this node, the value of the variable is
unknown,

{true} On all paths leading to this node, the variable is true,
{false} On all paths leading to this node, the variable is false,

{true, false} On some path the variable is true, and on some other it is false.

For mode classes (ry 6 MD), the values also form a U-lattice on set-inclusion.
Operations on system states are: "U" (union), "IT (intersection), "=" (equality), "3" (superset), "-"

(difference) and "3" (superset or equal to). We also define a special system state EMPTY:

s = EMPTY = Vrj € R, v(rjt s) = {}

8.1 Constant Propagation

Our computation of system states at each node of the DFG is similar to that of constant propagation -
a compiler technique whose goal is to discover values that are constant for all possible executions of a
program and to propagate these constant values as far forward through the program as possible[34, 1].
For every node n in the graph, we keep the following sets of variable-value pairs:

gen(n) Pairs with values generated in the annotation at node n.
known(n) Pairs with values assumed by the designer at node n.
in(n) Pairs that may exist when control reaches n.
out(n) Pairs that may exist when control leaves n.

8.2 Computing gen and known Sets

gen and known sets for each node are computed using the following rules:

• For nodes corresponding to Update and Initial annotations, gen sets contain variable-value pairs
with the specified value, and with empty set values for all other variables.

• For nodes corresponding to Assert annotations, known sets contain variable-value pairs with the
specified value, and with empty set values for all other variables.

• For all other nodes, gen and known sets are EMPTY.

An Assert annotation may contain a disjunction of several clauses. For these nodes, known sets are
lists of several system states, one for each clause. Operations on system states are trivially extended to
handle sets of system states. In the examples below, we omit variable-value pairs in which the value is {}.
For an annotation @@Update MC=Operating & PumpFail=true,

gen = {(MC, {Operating}), (PumpFail, {true})}

For an annotation @@Assert SwitchOn=false | PumpFail=true,

known = {{(SwitchOn, {false})}, {(PumpFail, {true})}}

Once the initial gen and known sets are constructed, we use environmental assumption information
(i.e., the £ part of the SCR requirements) to make these sets more precise. For example, environmental
assumption TooLow — >> -iTooHigh is used to add information to the known set for an annotation
@@Assert TooLow=true, resulting in

known = {(TooLow, {true}), (TooHigh, {false})}

Environmental assumptions can also be used to make sure that contradictory variable settings (like @@As-
sert TooLow=true and TooHigh=true) are not made. Errors are considered violations of the ENV property
- "environmental assumptions are preserved". Details of this processing are presented in [13].

17

8.3 Propagating Information

We initialize in and out sets of every node to EMPTY. Then we propagate information throughout the
DFG until a least fixed point is reached. A meet operator for combining information coming into the node
is U, so

in(n) = Uvfcst .(lbin) eBout(fc)

A set F of transfer functions describing the transformation between in and out sets at each node, is
denned as follows:

Annotation at node n Transfer function
Initial
Update

Assert (single disjunct)
none

out(n) = gen(n)
out(n) = repl(in(n), gen(n))
out(n) = in(n) n known(n)
out(n) = in(n)

If the known set for a node n containing an Assert annotation consists of several disjuncts, i.e., known(n)
= {di, d2, ..., dk], then

out(n) = U1<j<jfe(in(n) n d,-)

Our framework is strictly monotonic, i.e., in and out sets on an iteration of our algorithm have more
values (or at least as many) for each variable as in and out sets on the previous iteration. Since all
variables in R have a finite number of abstract values, our system states do not have an infinite increasing
chain of values, and the fixed point can be achieved in a finite number of steps. We assume that all
variables are initialized by the Initial annotation. A node n is considered unreachable if

3rj £ R s.t. v(rj,out(n)) = {}.

8.4 Example - DFG of SWLMS

Consider computing DFG for the design of SWLMS (Figure 5). Figure 7 shows a fragment of this DFG
corresponding to lines 38-45 of the SWLMS design, gen and known sets computed at each node are shown
in bold font in this figure; variables with values {} omitted. The Assert on the left branch (node 2)
generates information that either TooLow or TooHigh is true. If TooLow is true, then, via environmental
restrictions, TooHigh is false, and vice versa. The resulting known set consists of two disjuncts, one for each
possibility. The Update on that branch (node 3) generates the value {true} for PumpOn. The Assert on
the right branch (node 4) generates the value {false} for TooLow and TooHigh, and the following Update
(node 5) generates the value {false} for PumpOn. We did not include in sets in Figure 7 since the in
sets for nodes 2-5 are equal to the out sets of their predecessor nodes; and the in sets for nodes 1 and
6 are equal to their out sets. To compute out sets, CORD uses the multiple disjunct transfer function
for Assert nodes. Each of disjuncts of known(2) is intersected with in(l), and the union of the results is
computed. So, the values for TooHigh and TooLow in out(2) become {true, false}. The Update annotation
PumpOn=true (node 3) changes the value of PumpOn in out(3) to {true}. The right branch is processed
similarly. At the join, we compute the union the possible values for each variable in the out sets of the
predecessor nodes (nodes 3 and 5).

8.5 Constructing a Finite-State Machine

Our DFG contains nodes which do not reflect state changes (e.g., decision nodes, joins and nodes containing
Assert annotations) and possibly some unreachable nodes. We construct a Finite-State Machine (FSM)
which contains just reachable nodes representing state changes. The resulting FSM is used as a model for
verifying system properties. In a DFG (G = (V, E, Vo)), let U C V and I C V be disjoint sets of nodes
containing Update and Initial annotations, respectively.

18

out(1) = {(MC, {Operating}), (SwitchOn, {true.false)),
(PumpFail, {false}), (TooHigh, {true.false}),
(TooLow, {true.false}), (PumpOn, {true.false)))

known(2) = {{(TooHigh, {true}), TooLow.
{false})}, {(TooHigh, {false}),
(TooLow, {true})}}

out(2) = {(MC, {Operating}), (SwitchOn,
{true.false}), (PumpFail, {raise}),
(TooHigh, {true.false}), (TooLow,
{true.false}), (PumpOn, {true.false})}

gen(3) = {(PumpOn, {true})}

out(3) = {(MC, {Operating}), (SwitchOn,
{true.false}), (PumpFail, {false}),
(TooHigh, {true.false}), (TooLow,
{true.false}), (PumpOn, {true})}

<>
Assert TooHigh=true

I TooLow=true
Assert TooHigh=false

& TooLow=Talse

Update PumpOn=true Update PumpOn=false

-©

known(4) = {(TooHigh, {false}),
(TooLow, {false})}

out(4) = {(MC, {Operating}), (SwitchOn,
{true.false}), (PumpFail, {false}),
(TooHigh, {false)),(TooLow, {false)),
(PumpOn, {true.false})}

gen(5) = {(PumpOn, (false))}

out(5) = {(MC, {Operating}), (SwitchOn,
{true.false}), (PumpFail, {false}),
(TooHigh, {false}),(TooLow, {false}),
(PumpOn, {false})}

out(6) = {(MC, {Operating}), (SwitchOn, {true.false}),
(PumpFail, {false}), (TooHigh, {true.false}),
(TooLow, {true.false}), (PumpOn, {true.false})}

Figure 7: A fragment of DFG of SWLMS.

Definition 8.3 A Finite-State Machine (FSM) over a program design PD is a structure M = {A, S, L,

N, so), where
A is a set of labels;
S = U L) I is a finite set of nodes;
L: S —*■ A is a function associating each node with a label;
N C S x S is a transition relation.

N is obtained by connecting nodes of S s.t. there is an Update-clear path
between them in DFG; and

So £ S is an entry node.

To build a FSM from a DFG we remove all nodes except those corresponding to Initial and Update
annotations and connect all predecessors of a removed node to the node's successors. For every node, we
check an implicit property (REACH):

Vn G S(Wj £ R, v(rhout(n)) ^ {})

If this property is violated in a node, an error is reported and the node is removed from the FSM.
Figure 8 shows the FSM created for the SWLMS design in Figure 5, depicting out and gen sets

for every node. The number of each node of the FSM indicates the line of the design at which the
corresponding Update or Initial annotation can be found. For example, nodes 40 and 44 correspond
@@Update PumpOn=true and @@Update PumpOn=false, respectively. The algorithm for computing
out sets described in Section 8.3 ensures that the effects of Assert annotations are preserved in system
states, even though Assert nodes themselves are removed.

All states in the resulting FSM correspond to state changes. This FSM is then used to verify properties
generated from requirements.

19

genu(2) = {(Off, {True}), (Error, {False}), (Operating, {False})
(SwitchOn, {False}), (PumpFail, {False}), (TooHigh,
{False}), TooLow, {False}), (PumpOn, {False})}}

lnfo(2) = {(Off, {True}), (Error, {False}), (Operating,
{False}), (SwitchOn, {False}), (PumpFail, {False}),
(TooHigh, {False}), (TooLow, {False}), (PumpOn, {False})}

genu(9) = {(Off, {False}), (Error, {False}),
(Operating, {True})}

lnfo(9) = {(Off, {False}), (Error, {False}). (Operating,
{True}), (SwitchOn, {True.False}), (PumpFail,
{False}), (TooHigh, {True.False}), (TooLow, {True,
False}), (PumpOn, {TrueFalse})}

genu(22) = {(TooHigh, {True.False}),
(TooLow, {True.False})}

lnfo(22) = {(Off, {False}), ({Error, {False}), (Operating,
{True}), (SwitchOn, {True.False}), (PumpFail, {True,
False}), (TooHigh, {True.False}), (TooLow, {True,
False}), (PumpOn, {True.False})}

genu(25) = {(PumpOn, {True})}
lnfo(25) = {(Off, {False}), (Error, {False}), (Operating,

{True}), (SwitchOn, {True.False}), (PumpFail,
{False}), (TooHigh, {True.False}), (TooLow, {True,
False}), (PumpOn, {True})}

genu(34) = {(PumpFail, {True.False})}

lnfo(34) = {(Off, {True.False}), (Error, {False}),
{Operating, {True.False}), (SwitchOn, {True.False}),
(PumpFail, {True.False}), (TooHigh, {True.False}),
(TooLow, {True.False}), (PumpOn, {True.False})}

{(SwitchOn, {True.False})}

lnfo(6) = {(Off, {True.False}), (Error, {False}), (Operating,
{True.False}), (SwitchOn, {True.False}), (PumpFail,
{False}), (TooHigh, {True.False}), (TooLow, {True,
False}), (PumpOn, {True.False})}

genu(15) = {(SwitchOn, {True.False})}

lnfo(15) = {(Off, {False}), ({Error, {False}), (Operating,
{True}), (SwitchOn, {True.False}), (PumpFail, {True,
False}), (TooHigh, {True.False}), (TooLow, (True,
False}), (PumpOn, {True.False})}

genu(29) = {(PumpOn, {False})}

lnfo(29) = {(Off, {False}), (Error, {False}). (Operating,
{True}), (SwitchOn, {True.False}), (PumpFail,
{False}), (TooHigh, {True.False}), (TooLow, {True,
False}), (PumpOn, {False})}

genu(18) = {(Off, {True}), (Error, {False}), (Operating, {False})}

lnfo(18) = {(Off, {True}), (Error, {False}), (Operating, {False}),
(SwitchOn, {False}), (PumpFail, {False}), (TooHigh, {True,
False}), (TooLow, {True.False}), (PumpOn, {True.False})}

genu(37) = {(Off, {False}), (Error, {True}), (Operating, {False}),
(PumpOn, {False})}

lnfo(37) = {(Off, {False}), (Error, {True}), (Operating, {False}),
I 37) (SwitchOn, {True.False}), (PumpFail, {True}), (TooHigh,

{True.False}), (TooLow, {True.False}), (PumpOn, {False})}

Figure 8: Finite-state abstraction.

9 Verifying Properties

Our method for constructing finite-state abstractions produces sets of values for each program variable.
Model checkers process states whose variables have scalar values. Transforming our FSM to correspond
to an acceptable input for an existing model-checker would have resulted in an exponential increase in the
number of nodes in the FSM. So, we developed our own technique to verify properties. We cannot verify
properties exactly, i.e., claim that a property is violated if and only if we find a violation. So, we have
carefully designed our verification algorithms so that the results can be correctly interpreted.

9.1 Optimism and Pessimism

We divide properties into two categories: those checked optimistically and pessimistically. A property
is checked pessimistically if all of its violations in the design are detected, but the analysis incorrectly
identifies violations at points in the design at which the property actually holds. A property is checked
optimistically if all detected violations are present in the design, but the analysis is unable to find all
violations of the property.

Most of properties that we are interested in verifying involve state transitions which occur only in
response to events. Thus, we need to develop techniques to compute events and transitions for both
optimistic and pessimistic analysis. Our techniques overestimate the number of transitions in the design,
i.e., if a transition is present in the design, we compute it, but some of the computed transitions might not

20

be present in the design. Overestimation of the number of transitions does not invalidate the verification
of automatically-generated properties. For OLT properties, we want to check if all transitions in the design
are present in the requirements, and overestimating the transitions might cause the tool to report some
false negatives, which is a correct treatment of pessimistic analysis. For ALT properties, we want to check
if all transitions in the requirements are present in the design, and overestimating the transitions might
cause the tool to report some false positives, which is a correct treatment of optimistic analysis. Table 3

Row Transition exists Analysis reports
Requirements Computation Design ALT properties OLT properties

1 T T T no violation no violation
2 T T F false positive no violation
3 T F T - -
4 T F F violation no violation
5 F T T no violation violation
6 F T F no violation false negative
7 F F T - -
8 F F F no violation no violation

Table 3: Results of analysis.

summarizes our analysis. For example, when a transition in the requirements is not implemented in the
design and is not computed by our tool (row 4), then the tool reports a violation of the corresponding
ALT property and does not report a violation of an OLT property. Our computation finds all transitions
present in the design. Thus the cases described by rows 3 and 7 in Table 3 cannot occur, so the analysis
results are not defined for them.

9.2 Mapping Between Events and Transitions in Requirements and Our Model

The semantics of an SCR event, given in Section 2.1, indicates that some conditions need to hold on edges.
However, our FSM consists of states, with in, gen and out sets. Formally, we say that a formula / holds
in a state s if / holds in out(s), i.e., out(s)(= /. We say that / is generated in a state s if gen(s)(= /.
Finally, we say that / holds on an edge between nodes n and s if (out(n) n in(s)) (= /. By construction of
the FSM, if a formula holds on exit of the node but does not hold on entrance, then it has been generated
at this node, i.e. for a node n,

(out(n) |= /) A (in(n) £ /) - (gen(n) \= f)

We also note that an event occurs at a node if a value of some variable on an edge entering the node is
different from its value on an edge leaving the node. Thus, the variable is changed in the node's gen set.

9.3 Algorithm to Compute Transitions

To determine if an event occurred at a node s, we use information generated at each predecessor node n
and check it against in(s) and the out sets of the predecessors of n. The algorithm to compute transitions
leading to a node s is shown in Figure 9. The output of this algorithm is a set of transitions {(n, to, from,
trigger, when)}, where

• n is a predecessor of s;

• to and from are in the form ry = vlrj and r,- = vrj, respectively, indicating the change of value of
rj from vr to vir- for a transition between n and s;

21

Inputs: Finite state machine (FSM) and
node s for which to compute the transitions.

Outputs: A set of transitions to node s. Each transition is in the form (n, to, from,
trigger, when), where n G pred(s) and to ^ from.

Algorithm:
alLtransitions = {}
For each n £ pred(s) {

/* triggs is a logical expression Ar-efl-c Vjt exPj,k */
triggs = true
when = out(n) (1 in(s)
For each rj G R — C, where v(rj, gen(n)) / {}

/* Controlled variables cannot be part of the triggering condition */
triggs = triggs A events(rj, UvPepred(n)0Ut(p). gen(") n when)

/* Rewrite triggs to be in form \/k Ar efi exPk,j * I
For each of the k disjuncts dk of triggs {

Evaluate dk interpreting none(rj) as true.
If dk = true, then replace dk with special value NONE
triggerffc] = dk

when[fc] = when
/* remove trigger values from WHEN condition */
For each ry G R — C

If partof {rj, dk)
when[Ar] = repl(rj, when[fc], {})

/* compute to and from values for mode class and controlled variables */
For each rj G R— M s.t. v(rj, gen(s)) / {} {

/* remove values changed between source and destination nodes */
whenffc] = repl(rj, when[&], {})
For each value; G v(rj, gen(s)) {

to = (rj = valuej) /* final value of rj */
For each valuem G v(rj, out(n) l~l in(s)) {

from = (rj = valuem) /* starting value of rj */
If value; ^ valuem /* otherwise there is no transition */

alLtransitions = alLtransitions U
(n, to, from, triggerffc], when[fc])

}
}

Figure 9: Algorithm for computing transitions.

• trigger is logical expression - a disjunction of simultaneously occurring triggering conditions, or
NONE, if no events can occur; and

• when is a set of variable-value pairs indicating the When condition for this transition. We assume
that controlled variables cannot be part of Triggering conditions, and that variables which are part
of a Triggering condition cannot be part of a corresponding When condition.

The function events(rj, s\, s^) checks values of a variable rj in system states s\ and S2 to determine if an

22

event involving rj has occurred, returning a disjunction of @T(ry), @F(rj) or none(ry). The last value
indicates that no event involving rj has occurred between the two nodes. We use "none" as a symbolic
constant to indicate that some variable did not change its value. When the second system state refers to
the initial node of the FSM, i.e., the node containing the Initial annotation, we assume that all values
assigned to variables in this annotation signify events. For the initial node and a boolean variable rj,

events(r,-, si = {}, s2) is defined as

v(rj, s) events(rj, {}, s)
{true}
{false}

{true, false}

@T(rj)
@F(r,-)

@T(ri) V@F(r;)

If the second system state refers to a non-initial node, then, for a boolean rj, events(r,, s\, s2) is defined

as follows:

v(rj,si) \ v(rj,S2) {true} {false} {true,false}

{true}
{false}

{true,false}

none(r,-) @F(rj) @T(rJ) V none(r;)
@T(rj) none(rj) @F(rj) V none(Vj)

@T(rj) V none(rj) @F(rj) V none(rj) @T(rj) V @F(r,) V none(rj)

For a mode class mc, events(mc, s\, «2) returns a disjunction of all possible event combinations which
could occur between the two nodes. A combination of events is a conjunction of events which occur
simultaneously. For example, if v{mc,s\) = {ml, m2} and v(mc,S2) = {m2, m3}, then

events(mc, s\, S2) ((@T(mc=m2) A @F(mc=ml)) V none(mc) V
(@T(mc=m3) A @F(mc=ml)) V
(@T(mc=m3) A @F(mc=m2)))

Finally, a function partof(rj, trigger) returns true if trigger contains a conjunct corresponding to rj

and false otherwise.
In our SWLMS example, consider calculating the event which causes MC to be set to Error at node

50 of the FSM in Figure 8. Figure 10 shows a fragment of this FSM. when is out(5) n in(50), namely,

{(SwitchOn, {true,false}), (TooHigh, {true,false}), (TooLow, {true,false}),
(MC, {Operating.Off}), (PumpOn, {true.false}), (PumpFail, {true})}.

gen(5) (node 5 is a predecessor of 50) is (PumpFail, {true,false}).

triggs = events(PumpFail, Uvpe{2,i5,22,32}out(P)> Sen(5) n when)

Since PumpFail is {false} in nodes 2, 15 and 32, and {true,false} in node 22,

UvP€{2,i5,22,32}0Ut(p) = {(PumpFail, {true,false})}.

gen(5) n when = {(PumpFail, {true})}, which indicates that the designer assumed that PumpFail is true
in node 50. The events function is called for PumpFail and yields @T(PumpFail) V none(PumpFail). The
second disjunct corresponds to paths on which PumpFail becomes true on line 22 and is again set to true
on line 5. The Triggering condition has two disjuncts, @T(PumpFail) and NONE. For the event triggered
by @T(PumpFail), we replace PumpFail's and MC's values with {} in when[fc] (since MC is in gen(50)).
On the first iteration of the loop, to is (MC=Error) and from is (MC=Off); on the next iteration, from
becomes (MC=Operating). The result is four transitions, h-h, for each combination of triggers and
starting values of MC. These transitions are shown in Figure 11.

23

• ••

C32) i
out(32) = {(MC, {Off}), (SwitchOn, {false}), (PumpFail,

{false}), (TooHigh, {true, false}), (TooLow, {true.false}),
(PumpOn, {true.false})}

M5J
1 C22) out(22)= {(MC, {Operating}), (SwitchOn, {true.false}),

(PumpFail, {true,false}), (TooHigh, {true, false}),
(TooLow, {true.false}), (PumpOn, {true.false})}

1 1 Ci

out(15) = {(MC, {Operating}), (SwitchOn, {true}), (PumpFail,
{false}), (TooHigh, {true, false}), (TooLow, {true.false}),

\ (PumpOn, {true.false})}

out(2) = {(MC, {Off}), (SwitchOn, {false}), (PumpFail,
{false}), (TooHigh, {false}), (TooLow, {false}),
(PumpOn, {false})}

gen(5)= {(PumpFail, {true.false})}
i < out(5) = {(MC, {Operating, Off}), (SwitchOn, {true,

false}), (PumpFail, {true,false}), (TooHigh, {true.false}),
(TooLow, {true.false}), (PumpOn, {true.false})}

1 r
in(50) = {(MC, {Operating,Off}), (SwitchOn, {true.false}),

(PumpFail, {true}), (TooHigh, {true.false}), (TooLow,
{true.false}), (PumpOn, {true,false}))

^ gen(50) = {(MC, {Error}), (PumpOn, {false})}

out(50) = {(MC, {Error}), (SwitchOn, {true.false}),
(PumpFail, {true}), (TooHigh, {true.false}), (TooLow,
{true.false}), (PumpOn, {false})}

Figure 10: Calculating transitions for SWLMS.

9.4 Checking Automatically-Generated Properties
Once the FSM has been created, ALT and OLT properties are checked in a single traversal of the FSM.
Proofs of correctness of algorithms shown below appear in [13].

Verification of OLT Properties

OLT properties have the general form P, = Vn, (n j= (r = vnew)) —+ (Vp £ pred(n),
(p,n) \= (r = vnew)\/\/Ap,n) \= ((r = Vji0id) A trcondj A whcondy)), where vnew and v0u are the new and
the old values, respectively, for the mode class or controlled variable r. trcondj and whcondj are conjuncts
representing the Triggering and the When conditions of the jth row of the table entry corresponding to a
change of r,'s value from Wj]0;d to vnew. Since OLT properties are to be verified pessimistically, we want to
ensure that if an OLT property is violated in the design, our analysis catches the violation. OLT violations
are reported as soon as they are discovered. Since we compute a number of transitions for a single Update
annotation, we can report a number of OLT violations for a given line in the design, as outlined by the
algorithm in Figure 12.

We take advantage of the fact that all properties have been generated from SCR tables, and thus

24

Transition from MC=Off to MC=Error:
@T(PumpFail) WHEN [{(SwitchOn, {true.false}), (TooHigh, {true,false}),

(TooLow, {true,false}), (PumpOn, {true,false}),
(PumpFail, {}), (MC, {})}]

NONE
Transition from MC=Off to MC=Error:
WHEN [{(SwitchOn, {true,false}), (TooHigh, {true.false}),

(TooLow, {true,false}), (PumpOn, {true.false}),
(PumpFail, {true}), (MC, {})}]

Transition from MC=Operating to MC=Error:
@T(PumpFail) WHEN [{(SwitchOn, {true,false}), (TooHigh, {true,false}),

(TooLow, {true,false}), (PumpOn, {true.false})
(PumpFail, {}), (MC, {})}]

U:
NONE

Transition from MC=Off to MC=Error:
WHEN [{(SwitchOn, {true,false}), (TooHigh, {true,false}),

(TooLow, {true,false}), (PumpOn, {true,false}),
(PumpFail, {true}), (MC, {})}]

Figure 11: Transitions discovered for node 50.

trcondj consists of a conjunction of one or more simple Triggering conditions (e.g., @T(a)). Our algorithm
to compute transitions also results in a conjunction of simple Triggering conditions. To check that trigger
—► trcondj, we check that each conjunct in trcondj is present in trigger.

Before checking that when C whcondj, we first need to represent whcondj as a set of variable-value
pairs. For example, PumpOn = true is treated as (PumpOn, {true}) and -i(MC = Operating) means that
MC can be either Off or Error and is treated as (MC, {Off, Error}). If a variable r* G R is not part
of whcondj, then it was specified as a "don't care" condition in the tables. The value for this variable
is considered to be a set of all of its attainable values, i.e., it is treated as (rk,T(rk)). For example, if
a boolean variable TooHigh is a "don't care" for some transition, then the corresponding whcondj set
contains (TooHigh, {true,false}). One of the OLT properties for SWLMS is

P3 = Vra, (n |= (MC=Error) -► (Vp G pred(n), (p,n) \= (MC=Error) V
(p, n) |= @T(PumpFail) A (MC=Operating) V
(p, n) |= @T(PumpFail) A (MC=Off))

In this property,
MC
Error
Operating
Off
@T(PumpFail)
{(SwitchOn, {true,false}), (TooHigh, {true,false}),
(TooLow, {true,false}), (PumpOn, {true,false})}

MC^Error, so P3 holds vacuously. The transitions generated for node
11. For I\, the from part is (r = V2,0id), trigger —► trcond2 and when

C whcond2, so, no errors are reported. The case for ^3 is similar: the from part is (r = v\i0id), trigger —*■
trcondi and when C. whcondi. triggers for transitions 72 and 74 are NONE, indicating that no Triggering
condition was found, so CORD reports an error message:

r =

Vnew —

Vl,old —

V2,old =

trcondi and trcond2 =
whcondi and whcond2 =

For all nodes other than 50,
50 are I\-h, as shown in Figure

25

Inputs: A set {P;} of OLT properties, where
Pi = Vn, (n |= (r = vnew)) — (Vp € pred(n), (p, n) (= (r = vnew)V
Vj(P> n) N ((r = vj,oid) A trcond; A whcondj)),
Node n in finite state machine FSM

Outputs: Error messages indicating violations of Pi's at n.
Algorithm:

Compute a set of transitions for node n.
For each transition (p, to, from, trigger, when) s.t. to ^ from

If trigger is equal to NONE
Report error "no triggering conditions"

Else {
For each property P, s.t. to = (r = vnew){

found = false
For each disjunct Pij

If from = (r = Vjt0ld) AND
trigger —* trcondj AND
when C whcondj

Then found = true
If not found

report a violation of P,- at node n.

}
}

Figure 12: Algorithm for verifying OLT properties.

Error on line 50 of function main in mode class MC:
no triggering condition for transition
from mode(s) {Operating,Off} to mode(s) {Error}

Verification of ALT Properties

All ALT properties have the general form P,- = 3n, 3p € pred(n), n (= (r = vnew) A (p, n) \= ((r =
Void) A trcond A whcond), where v0u and vnew are the new and the old values, respectively, for the mode
class or controlled variable r. trcond and whcond are conjuncts representing the Triggering and the When
conditions for this transition. ALT properties are to be verified optimistically, so we want to ensure that if
the analysis finds a violation of an ALT property, this property does not hold in the design. We might not
report all unimplemented transitions. Once transitions are computed for a given node, we look through
the list of ALT properties and mark those which are satisfied by this transition. Any properties remaining
unmarked at the end of analysis are reported as errors. An algorithm to check ALT properties is outlined
in Figure 13. For ALT properties, we translate "don't care" conditions in whcond to empty sets, so that
whcond C when returns true if the computed When condition contains at least the variable-value pairs
specified in Pi's whcond. Our model of SCR guarantees that there are no transitions in which the source
and the destination are the same, i.e. for each P;, vnew ^ Void.

Pr is an ALT property for SWLMS:
P7 = 3n, 3p G pred(n), n t=(MC=Error) A (P- n) (= ((MC=Off) A laT(PumpFail))

In this property,

26

Inputs: A set {Pi} of ALT properties, where
Pi = 3n, 3p 6 pred(n), n (= (r = vnew) A
(p, n) [= ((r = n0(<i) A trcond A whcond)
Finite state machine

Outputs: Error messages indicating violations of P;s at n.
Algorithm:

Unmark all ALT properties
For each node n reachable from SQ in depth-first order

Compute a set of transitions for n.
For each transition (p, to, from, trigger, when)

If there is an unmarked property Pi s.t.
(r = vnew) = to AND
(r = v0id) = from AND
trcond —* trigger AND
whcond C when

Then mark F,
Report all unmarked ALT properties

Figure 13: Algorithm for verifying ALT properties.

r = MC
Void = Off
Vnew = Error
trconc = @T(PumpFail)
whcond = {(SwitchOn, {}), (TooHigh, {}), (TooLow, {}), (PumpOn, {})}

Transitions generated for node 50, which is reachable from the start state, enable the algorithm to
mark P-; as satisfied: the from part of I\ is MC=Off, the to part is MC=Error, trcond — trigger and
whcond C when.

10 Case Study

To demonstrate our analysis techniques on more realistic applications, we conducted a case study on a
Water-Level Monitoring System (WLMS) which had been specified using SCR requirements and subse-
quently implemented[33]. Our usual analysis process starts by merging information from environmental
assumptions into mode transition tables, and continues by trying to prove that the logic model derived
from this combined information is a model of the system goals using model checking. This analysis often
results in changes to the mode transition tables and/or to the system goals. After this we proceed to
create a design corresponding to the new mode transition tables and any controlled variables' event tables.
We make changes to our design to ensure that it is consistent with the properties automatically generated
from the requirements and the stated system goals. We deviated from this process in our case study by
reverse engineering a design from an existing implementation in order to determine what, if any, errors
might be detected with our analysis technique.

10.1 The Application

A Water-Level Monitoring System (WLMS) monitors and displays the water level in a container. It also
raises visual and audio alarms, and shuts off its pump when the level is out of range or when the monitoring
system fails. Two push buttons, SelfTest and Reset, permit the operator to test the system and return

27

it to normal operation. WLMS has two mode classes, Normal and Failure, whose modes are described in
Table 4.

Mode Class
Normal

Failure

Mode
Operating
Shutdown

Standby

Test

AllOK
BadLevDev
HardFail

Meaning
The system is running properly.
The water level is out of range and the system will be shutdown
unless conditions change.
The system is waiting for the operator to push a button to select
test or operating mode.
The system is not operating, but controlled variables are being
checked.
No device failures.
The water level cannot be measured.
Unrecoverable failure.

Table 4: WLMS Modes.

Conditions indicate whether the water level in the container is within its limits (WithinLimits) and its
more stringent hysteresis limits (InsideHysR). Other conditions indicate the lengths of time that buttons
have been pressed (SelfTestPressed500 - SelfTest button pressed for 500ms) or that the system has been in
a mode (InTestl4000 - in mode Test for 14 seconds). Table 5 summarizes the environmental assumptions
that we deduced from descriptions of conditions in the requirements.

Environmental Assumptions
InsideHysR — >> WithinLimits

SelfTestPressed < SelfTestPressed500
ResetPressed < ResetPressed3000

InTestO < InTest2000 < InTest4000 < InTest 14000

Table 5: Environmental assumptions about WLMS conditions.

The system starts in mode Standby of mode class Normal and mode AllOK of mode class Failure. A
mode transition table for mode class Normal is shown in Table 6.

Controlled variables are set to trigger alarms and to display the water level to the operator. Table 7
shows the settings for the controlled variable LowWindowOn which represents the annunciation window
labeled "Water Level Low." When LowWindowOn is true, the annunciator displays a value. This happens
when the water level falls below its limits (i.e., LevelLow) or when the water level cannot be measured
(BadLevDev) and a certain amount of time has passed (FlashOff500).

The WLMS requirements document did not contain a list of system goals. We inferred that the
following four properties should be invariant and corroborated this with the requirements designer.

1. If the SelfTest button has been pressed for 500ms or more, the system is either in mode Test or will
be in mode Test after its next transition.

2. When the system is in mode Standby, the SelfTest button has not been pressed for 500ms.

3. If the system is in mode Operating, then the SelfTest button has not been pressed for 500ms, and
either the water level is within limits or the SelfTest button is being pressed.

4. If the system is in mode Shutdown, then the SelfTest button has not been pressed for 500 time
units (or the system would have transitioned into the Test mode); and either the system has been in

28

Current
Mode

Inside
HysR

Within
Limits

SelfTest
Pressed

SelfTest
Pressed

500

In
Test
14000

Reset
Pressed

3000

Shutdown
LockTime

200

New-
Mode

Standby t — —
@T

— @T - Operating
Test

Operating
_

@F f
@T

Shutdown
Test

Shutdown @T
-

f
f

@T
- -

f
@T

Operating
Standby
Test

Test - - - - (§>T - - Standby

Initial: Standby (~SelfTestPressed500 k ~ResetPressed3000 k ~InTestl4000 k
~ShutdownLockTime200)

Table 6: Original mode transition table for mode class Normal.

Mode Triggering Event
Operating A AllOK @T(LevelLow) @T(Inmode) WHEN [~LevelLow]
Shutdown A AllOK @T(LevelLow)

Test A AllOK @T(InTest2000) @T(InTest4000)
BadLevDev @F(FlashOff500) @T(FlashOff500)

LowWindowOn = True False

Initial: True

Table 7: Event table for controlled variable LowWindowOn.

the Shutdown mode for less that 200 time units, during which the water-level has remained outside
the hysteresis water-level range, or the SelfTest button is being pressed (indicating an imminent
transition to mode Test).

10.2 Requirements Analysis

The first step in our requirements analysis is to add information from the environmental assumptions to
mode transition tables. The relationships InsideHysR — >> WithlnLimits and SelfTestPressed < Self-
TestPressed500 add information to seven transitions. For example, consider the transition from Operating
to Shutdown. InsideHysR must already be false if WithinLimits is becoming false, and SelfTestPressed500
must be false since SelfTestPressed is false. Table 8 is a mode transition table with the environmental
assumption information added.

From the detailed mode transition table, we create a logic model and translate our invariants in CTL
formulas.

1. AG((SeifTestPressed500 A ~Test) — A.Y(Test))

2. AG(Standby —~SelfTestPressed500)

3. AG'(Operating — (~SelfTestPressed500 A (WithinLimits V SelfTestPressed)))

4. /^(Shutdown — (~SelfTestPressed500 A ((~InsideHysR A ~ShutdownLockTime200) V ~SelfTestPressed)))

29

Current
Mode

Inside
HysR

Within
Limits

SelfTest
Pressed

SelfTest
Pressed

500

In
Test
14000

Reset
Pressed

3000

Shutdown
LockTime

200

New
Mode

Standby t t
t @T

— (Q>T - Operating
Test

Operating f @F f
t

f
@T _

— — Shutdown
Test

Shutdown @T t f
f
t

f
f

@T
- -

f Operating
Standby
Test

Test - - - - @T - - Standby

Initial: Standby (~SelfTestPressed500 k ~ResetPressed3000 k ~InTestl4000 k
~ShutdownLockTime200)

Table 8: Detailed mode transition table for mode class Normal.

The SMV model checker found counter-examples to each of these invariants. The first formula failed be-
cause the two transitions leaving mode Standby can be simultaneously enabled if both SelfTestPressed500
and Resetlnterval become true at the same time while their respective WHEN conditions are also true.
To make the first formula hold, we gave priority to the transition to Test by adding the WHEN condition
~SelfTestPressed500 to the transition from Standby to Operating.

The second formula is not invariant because SelfTestPressed500 is not always false on entry to Standby.
If the operator presses the SelfTest button when the system is in mode Test, the button may have been
pressed long enough to make SelfTestPressed500 true before the system transitions from mode Test to
mode Standby. Adding the WHEN condition ~SelfTestPressed500 to the transition between modes Test
and Standby ensures that SelfTestPressed500 is always false, but may cause the system to remain in mode
Test indefinitely. If the operator is pressing the SelfTest button when InTest 14000 becomes true, not only
will the transition leaving mode Test not be activated, but it will never be activated since InTest 14000 will
never be satisfied again. To avoid this, we add a second transition from Test to Standby that is activated
if the operator releases the SelfTest button after the system has already spent 14 seconds in mode Test.

The failure of the third formula is critical because it is meant to ensure that the system does not remain
in mode Operating with the water level outside its limits. If the system is in mode Operating and the
SelfTest button is being pushed, the system will remain in this mode even if the water level goes outside
its limits because of the expectation that the next mode transition should be to mode Test. However,
if the button is released before 500 milliseconds pass, the system remains in Operating regardless of the
water level. In addition, the transition from Operating to Shutdown is disabled because WithinLimits has
already become false and can no longer be detected as a triggering condition for an event. The transition
from Operating to Shutdown should depend on the button not being pressed long enough to enable a
different transition from Operating (to Test), rather than just on the button being pressed. Thus we
replace ~SelfTestPressed with ~SelfTestPressed500 in this transition's WHEN condition. We also change
the invariant to

,4G(Operating — WithinLimits)

since we do not care if the button is being pressed.
The fourth formulafails for the same reason as the third one did. InsideflysRor ShutdownLockTime'200

becoming true will fail to trigger events if the SelfTest button is depressed. We make the same replacements
in the WHEN conditions for the events these conditions trigger as we did for the transition from Operating
to Shutdown, and change the invariant to

30

.4G(Shutdown —► (~InsideHysR A ~ShutdownLockTime200)).

Current
Mode

Inside
HysR

Within
Limits

SelfTest
Pressed

SelfTest
Pressed

500

In
Test
14000

Reset
Pressed

3000

Shutdown
LockTime

200

New
Mode

Standby t t
t

f
@T _

@T - Operating
Test

Operating f @F
t

f
@T _ _

_ Shutdown
Test

Shutdown @T t

t

f
f

@T
- -

f
@T

Operating
Standby
Test

Test
- -

f
@F

f
f

@T
t : -

Standby
Standby

Initial: Standby (~SelfTestPressed500 & ~ResetPressed3000 & ~InTest 14000 &
~ShutdownLockTime200) '

Table 9: Corrected mode transition table for mode class Normal.

10.3 Design Analysis

From the corrected requirements in Table 9 and invariants, we would usually proceed to create a design.
However, in this case study we were interested in finding errors in the existing system. Since the existing
implementation used the original transition tables and invariants, we did not modify them for our study
either. To build a design, we reverse engineered an existing implementation of WLMS, originally consisting
of roughly 1300 lines of FORTRAN and Assembler code. The resulting design was about 300 lines long,
with 32 Update annotations corresponding to monitored variables, 31 Update annotations corresponding
to mode class and controlled variables, and 56 Assert annotations. Of the 54 functions in the original
program, only eight had state changes and thus were included into the design.

Property Type Messages Violations
REACH property 10
OLT properties for mode classes 15 8
OLT properties for controlled variables 37 12
No events found 15
ALT properties for mode classes 13
ALT properties for controlled variables 21

Table 10: Results of analyzing the WLMS.

After we eliminated annotation errors in the design, we used the original mode transition table (Table 6.
which had also been used by the original programmer) to perform our analysis. Our tool reported a number
of inconsistencies between the requirements and the design (see Table 10). The columns labeled "Messages"
and "Violations" indicate the number of reported and actual invalid state transitions. These numbers
overestimate the actual errors in the design. All of the mode transition problems can be attributed to four
principal causes: the wrong monitored variable was checked to enable mode transitions (WithinLimits
rather than InsideHysR), the times that the operator pressed the SelfTest and Reset buttons were not

31

calculated or checked, state changes did not always immediately follow their triggering events, and no
transitions to a mode corresponding to the complete system failure were implemented. Most of the illegal
assignments to the controlled variables occurred because the order of triggering events in the design differed
from that in the requirements.

11 Conclusion

This report presented our work on using model checking to verify requirements and designs which is part
of an on-going effort to develop automated techniques that use formal methods to verify program artifacts.

We have presented a logic-model semantics for SCR behavioral requirements specifications and have
proposed modal logic operators for expressing formulas over modes, conditions and events. This enables us
to verify CTL-expressed system goals with respect to an SCR logic model using the SMV model checker.
We have also defined a notion of consistency between SCR-style requirements and a detailed design and
presented an automated technique that uses transition tables to generate logic formulas capturing this
notion. We have shown how to create a finite-state abstraction of a detailed design and model check it
against these formulas. We .have applied these techniques to analyze the requirements and design of a
Water-Level Monitoring System, uncovering several errors. '

References

[9

[10

[11

A. Aho, R. Sethi, and J. Ulman. Compilers: Principles, Techniques, and Tools. Chapter 10. Addison
Wesley, 1988.

R. Allen and D. Garlan. "Formalizing Architectural Connection". In Proceedings of the Sixteenth
International Conference on Software Engineering, May 1994.

T. Alspaugh, S. Faulk, K. Britton, R. Parker, D. Parnas, and J. Shore. "Software Requirements for
the A-7E Aircraft". Technical report, Naval Research Laboratory, March 1988.

J. Atlee. "Automated Analysts of Software Requirements". PhD thesis. University of Maryland.
College Park, Maryland, December 1992.

J.M. Atlee and J. Gannon. "State-Based Model Checking of Event-Driven System Requirements".
IEEE Transactions on Software Engineering, pages 22-40, January 1993.

Joanne M. Atlee and Michael A. Buckley. "A Logic-Model Semantics for SCR Software Requirements".
In Proceedings of the 1996 International Symposium on Software Testing and Analysis (ISSTA),
January 1996. To appear.

Joanne M. Atlee and John Gannon. "Analyzing Timing Requirements". In Proceedings of the 1993
International Symposium on Software Testing and Analysis (ISSTA), pages 117-127, Cambridge, MA,
June 1993.

G. Barrett. "Model Checking in Practice: The t9000 Virtual Channel Processor". IEEE Transactions
on Software Engineering, 21(2):69-78, February 1995.

Frederick P. Brooks. "No Silver Bullet: Essence and Accidents of Software Engineering". IEEE
Computer, pages 10-19, April 1987.

M. Browne. "Automatic Verification of Finite State Machines Using Temporal Logic". PhD thesis,
Carnegie Mellon University, 1989.

Tevfik Bultan, Jeffrey Fischer, and Richard Gerber. "Compositional Verification by Model Checking
for Counter-Examples". In Proceedings of the 1996 International Symposium on Softiuare. Testing and
Analysis (ISSTA), January 1996. To appear.

32

[12] S.H. Caine and E.K. Gordon. "PDL: A Tool for Software Design". In Proceedings of the National
Computer Conference, volume 44, pages 271-276, 1975.

[13] M. Chechik. "Automated Analysis of Consistency between Requirements and Designs''. PhD thesis,
University of Maryland, College Park, Maryland, December 1996.

[14] M. Chechik and J. Gannon. "Automatic Verification of Requirements Implementations". In Proceed-
ings of the 1994 International Symposium on Software Testing and Analysis (ISSTA), pages 1-14,
Seattle, Washington, August 1994.

[15] M. Chechik and J. Gannon. "Automatic Analysis of Consistency Between Implementations and
Requirements: A Case Study". In Proceedings of 10th Annual Conference on Computer Assurance,
pages 123-131, June 1995.

[16] Edmind M. Clarke, Orna Grumberg, and David E. Long. "Model Checking and Abstraction". In
Proceedings of the Ninth Annual Symposium on Principles of Programming Languages, pages 343-354,
August 1992.

[17] E.M. Clarke and E.A. Emerson. "Synthesis of synchronization skeletons for branching time temporal
logic". In Logic of Programs: Workshop, Yorktown Heights, NY, May 1981, volume 131 of Lecture
Nodes in Computer Science. Springer-Verlag, 1981.

[18] E.M. Clarke, E.A. Emerson, and A.P. Sistla. "Automatic Verification of Finite-State Concurrent
Systems Using Temporal Logic Specifications". A CM Transactions on Programming Languages and
Systems, 8(2):244-263, April 1986.

[19] David Harel. "StateCharts: A Visual Formalism for Complex Systems". Science of Computer Pro-
gramming, 8:231-274, 1987.

[20] C. Heitmeyer. "Tools for Analyzing Requirements: A Formal Foundation". December 1994. Presented
at the Fouth International SCR Workshop.

[21] C. Heitmeyer and B. Labaw. "Consistency Checks for SCR-Style Requirements Specifications". Tech-
nical Report NRL Report 93-9586, Naval Research Laboratory, November 1993.

[22] C. Heitmeyer, B. Labaw, and D. Kiskis. "Consistency Checking of SCR-Style Requirements Spec-
ifications". In Proceedings of RE'95 International Symposium of Requirements Engineering, March
1995.

[23] K. Heninger. "Specifying Software Requirements for Complex Systems: New Techniques and Their
Applications". IEEE Transactions on Software Engineering, SE-6(1):2-12, January 1980.

[24] W.E. Howden. "Comments Analysis and Programming Errors". IEEE Transactions on Software
Engineering, 16(1):72—81, January 1990.

[25] W.E. Howden and B. Wieand. "QDA - A Method for Systematic Informal Program Analysis". IEEE
Transactions on Software Engineering, 20(6):445-462, June 1994.

[26] Daniel Jackson and Craig A. Damon. "Elements of Style: Analyzing a Software Design Feature with a
Counterexample Detector". In Proceedings of the 1996 International Symposium on Software Testing
and Analysis (ISSTA), January 1996. To appear.

[27] N.G. Levenson, M.P.E. Heimdahl, H. Hildreth, and .I.D. Reese. "Requirements Specification for
Process-Control Systems". IEEE Transactions on Software Engineering, 20(9):684-707, September
1994.

[28] K.L. McMillan. Symbolic Model Checking. Kluwer Academic, 1993.

33

[29] D. Parnas and J. Madey. "Functional Documentation for Computer Systems Engineering(Version 2)".
Technical Report CRL Report 237, McMaster University, Department of Electrical and Computer
Engineering, 1991.

[30] David Lorge Parnas and Jan Madey. "Functional Documents for Computer Systems". Science of
Computer Programming, 25:41-61, 1995.

[31] D.L. Parnas. "Some Theorems We Should Prove". In Proceedings of 1993 International Conference
on HOL Theorem Proving and Its Applications, Vancouver, BC, August 1993.

[32] C. Vail. "Program Verification via Abstraction using Incremental Operational Specifications". PhD
thesis, University of California, San Diego, 1991.

[33] A. J. van Schouwen. "The A-7 Requirements Model: Re-examination for Real-Time Systems and
an Application to Monitoring Systems". Technical Report TR-90-276, Queen's University, Kingston,
Ontario, May 1990.

[34] Mark N. Wegman and Kenneth Zadeck. "Constant Propagation". In Fran Allen, Barry Rosen, and
Kenneth Zadeck, editors, Optimization in Compilers. ACM Press, 1991. (forthcoming).

[35] Jeannette Wing and Mandana Vaziri-Farahani. "Model Checking Software Systems: A Case Study".
In Proceedings of the 3rd Symposium on the Foundations of Soßware Engineering, pages 128-139,
October 1995.

34

