
4

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

..■

; ■. i.

lit".

CROSS MODEL ACCESS IN THE MULTI-LINGUAL,
MULTI-MODEL DATABASE MANAGEMENT SYSTEM

by

Achilles Anastasopoulos

March 1997

Thesis Advisor:
Second Reader:

C. Thomas Wu
David K. Hsiao

Approved for public release; distribution is unlimited.

^
^dP^ 19971125 029

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave
blank)

2. REPORT DATE
March 1997

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE
CROSS MODEL ACCESS IN THE MULTI-LINGUAL,

DATABASE MANAGEMENT SYSTEM
MULTI-MODEL

6. AUTHOR(S) Achilles Anastasopoulos

FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

PERFORMING
ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10.SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not
reflect the official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
Relational, hierarchical, network, functional, and object-oriented databases support its corresponding query language,

SQL, DL/I, CODASYL-DML, DAPLEX, and OO-DML, respectively. However, each database type may be accessed only by

its own language. The goal of M2DBMS is to provide a heterogeneous environment in which any supported database is

accessible by any supported query language. This is known as cross model access capability.

In this thesis, relational to object-oriented database cross model access is successfully implemented for a test database.

Data from the object-oriented database EWIROODB is accessed and retrieved, using an SQL query from the relational

database EWIROODB. One problem is that the two interfaces (object-oriented and relational) create catalog files with different

formation, which makes the cross-model access impossible, initially. In this thesis the relational created catalog file is used, and

the cross model access capability is achieved.

The object-oriented catalog file must be identical with the relational one. Therefore, work yet to be done is to write a

program that automatically reformats the object-oriented catalog file into an equivalent relational catalog file.

14. SUBJECT TERMS Multi-Lingual, Multi-Model DBMS, SQL, DL/I,
CODASYL-DML, DAPLEX, OO-DML, M2DBMS, EWIROODB

15. NUMBER
PAGES 82

OF

16. PRICE CODE

17. SECURITY CLASSIFI-
CATION OF REPORT

Unclassified

18. SECURITY- CLASSIFI-
CATION OF THIS PAGE

Unclassified

19. SECURITY CLASSIFI-
CATION OF ABSTRACT

Unclassified

20. LIMITATION
ABSTRACT

UL

OF

NSN 7540-01-280-5500
(Rev. 2-89)

Standard Form 298
Prescribed by ANSI Std. 239-18 298-102

11

Approved for public release; distribution is unlimited.

CROSS MODEL ACCESS IN THE MULTI-LINGUAL, MULTI-MODEL DATABASE
MANAGEMENT SYSTEM

Achilles Anastasopoulos
Lt, Hellenic Navy

B.S., Hellenic Naval Academy, 1983

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE
IN

COMPUTER SCIENCE

from the

Author:

Approved by:

NAVAL POSTGRADUATE SCHOOL
March 1997

Achilles Anastasopoulos

C. Thomas Wty, Thesis Advisor

lh~£^^£?y >J lO. OJAf&j;
David K. Hsiao, Second Reader

Ted Lewis, Chairman
Department of Computer Science

"">

in

IV

ABSTRACT

Relational, hierarchical, network, functional, and object-oriented databases support

its corresponding query language, SQL, DL/I, CODASYL-DML, DAPLEX, and OO-DML,

respectively. However, each database type may be accessed only by its own language. The

goal of M DBMS is to provide a heterogeneous environment in which any supported

database is accessible by any supported query language. This is known as cross model

access capability.

In this thesis, relational to object-oriented database cross model access is

successfully implemented for a test database. Data from the object-oriented database

EWIROODB is accessed and retrieved, using an SQL query from the relational database

EWIROODB. One problem is that the two interfaces (object-oriented and relational) create

catalog files with different formation, which makes the cross-model access impossible,

initially. In this thesis the relational created catalog file is used, and the cross model access

capability is achieved.

The object-oriented catalog file must be identical with the relational one. Therefore,

work yet to be done is to write a program that automatically reformats the object-oriented

catalog file into an equivalent relational catalog file.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. INTEGRATION AND INTEROPERABILITY OF HDBMS 3

B. WHAT IS M2DBMS ? 6

C. THE OBJECTIVE OF THE THESIS 6

D. THE ORGANIZATION OF THE THESIS 6

II. AN OVERVIEW OF M2DBMS 9

A. WHY A MULTI-MODEL, MULTI-LINGUAL DBMS? 10

B. THE MULTI-LINGUAL DATABASE SYSTEM 11

C. THE MULTIBACKEND DATABASE SUPERCOMPUTER 13

III. THE RELATIONAL DATABASE INTERFACE 15

A. BASIC RELATIONAL DATABASE TERMINOLOGY 15

B. DESCRIPTION OF THE RELATIONAL DATABASE INTERFACE 21

C. LIMITATIONS 32

IV. THE OBJECT-ORIENTED DATABASE INTERFACE 35

A. BASIC OBJECT-ORIENTED DATABASE TERMINOLOGY 35

B. DESCRIPTION OF THE OBJECT-ORIENTED DATABASE INTERFACE. 40

C. LIMITATIONS 50

V. THE CROSS-MODEL ACCESS 53

Vll

A. PROBLEMS 53

B. DESCRIPTION 55

VI. CONCLUSION 59

APPENDIX 61

LIST OF REFERENCES 69

INITIAL DISTRIBUTION LIST 71

Vlll

LIST OF FIGURES

1. A Heterogeneous Environment with Interoperability 3

2. A General Integrated HDBMS System 5

3. Cross Model Access Capability in M2DBMS from Relational to Object-Oriented

Database 7

4. The M2DBMS System 12

5. The M2DBMS Hardware Organization 14

6. An Example of a Relational Database 16

7. A Relational Database Schema 18

8. The ER Diagram 18

9. Types of Relationship Between Two Relations A and B 19

10. An Example of a Query in SQL 20

11. The Relational Database Schema of the EWIROODB Database 21

12. A Relational Database Instance of the EWIROODB Schema 22

13. The EWIROODB Database Schema Specification 24

14. The EWIROODB Template File 25

15. The EWIROODB Descriptor File 26

16. The EWIROODB Record File 28

17. The EWIRsqlreq Query File 30

18. Examples of Objects 36

19. An Example of Class "Car" 37

20. An Example of a Relationship 1:1 between the Classes "Car" and "Reservation" 38

21. An example of inheritance: Superclass "Vehicle" with Subclasses "Car" and "Bike" 39

22. The Object-oriented Database Schema of the EWIROODB Database 41

23. The Instances of the Antenna Class in the EWIROODB Obj ect-oriented Database.... 41

24. The EWIROODB Database Schema Specification 43

25. The EWIROODB Template File 44

IX

26. The EWIROODB Descriptor File 44

27. The EWIROODB Record File 46

28. The Relational .EWIROODB.cat File 54

29. The Object-oriented .EWIROODB.cat File 54

x

I. INTRODUCTION

One of the most common applications in the computer domain, with a huge growth

during the last three decades is the area of databases. By data we mean known real-word

facts or information that can be recorded and that have understandable meaning. A

collection of data with an association among them is a database.

A database is designed, built, and populated with data for a specific purpose. It has

an intended group of users and some preconceived applications in which these users are

interested [Ref. 1].

A computer database management system (DBMS) is a software system that

allows us to create, manage, and maintain one or more databases that are stored in a

computer disk.

A distributed DBMS (DDBMS) consists of several databases and DBMS that are

connected with computer networks. Here are a few of the common uses of database

management systems:

• Managing mailing lists and telephone directories.

• Managing customer, sales, and membership information files

• Managing orders and controlling inventory

• Storing and updating employee information

• Handling bookkeeping and accounting tasks

There are many different types of databases. Each type of database is defined by a

specific data model and a corresponding data language. The data model provides the user

with a way to specify the structure and form of the data to be stored in the database , as well

as a collection of the types of general operations that are used to access the database. The

data language of the database provides the user with a way to specify database operations

that are used to access the stored data [Ref. 2]. Typical manipulations include retrieval,

insertion, deletion, and modification of the data.

The main factor we consider in a DBMS is the degree of homogeneity. If all

components (servers, DBMS s, clients) use identical software, the DDBMS is called

homogeneous; otherwise, it is called heterogeneous. Database systems that consist of

databases with different data models are heterogeneous.

Heterogeneous database systems are very common and wide spread today,

especially in large organizations, governmental environments, and computer networks.

There are several reasons for this [Ref. 3,4, 5]:

• The proliferation of different database management systems, and databases.

• The proliferation of a diversity of microcomputers and personal computers
(several small databases).

• The advances in data communications and computers networks.

• The wide use of distributed databases, and the geographically distribution of the
database applications of some organizations (banks and companies for
example).

• The entire information requirement is too large to be maintained by a single
DBMS. There is a lack of overall database planning and control.

• Several databases were developed separately for historical reasons in the same
organization. Vendors of different applications supplied different DBMS
packages that were incompatible with each other.

The necessity of managing heterogeneous databases such as linking
heterogeneous databases via the World Wide Web (WWW), organizing them
into database federations or multidatabase systems, and constructing data
warehouses. Federated databases consist of a collection of database systems
connected in order to share and exchange information. Data warehouse is an
application, that accumulates into one database huge amounts of information
about an organization's operations, and provides the users with easy-to-use and
powerful query tools with the capability of retrieving and updating individual
records extremely fast.

An example of a heterogeneous environment is shown in Figure 1: a company

which during the last twenty years has used a hierarchical database for product assemblies,

a network database for inventory control, and two relational databases for record keeping.

Relational
Databases : PC s
in Location X

Hierarchical
Database

Network
Database

A.

Figure 1. A Heterogeneous Environment with Interoperability

INTEGRATION AND INTEROPERABILITY OF HDBMS

The use of heterogeneous database systems implies the creation of problems due to

the existence of different data models, data languages, and possible data incompatibilities

among the existing databases. Some of the data incompatibilities are:

Attributes of entities are stored with different units (for example: attribute
"weight" is stored in kilograms in one system and in pounds in an other).

Entities are stored in different way: two or more entities in one system are
combined into one entity in an other.

Dissimilarity in naming objects: the same name in different database systems
may represent different objects, and different names may represent the same
object (this is called semantic heterogeneity).

• Different values of attributes that refer to the same object, but are stored in
different databases.

Each kind of database in an HDBMS has its own schema, expressed in its own data

model, and can be accessed only by its own retrieval language. The need for integration of

the several databases of a system is obvious. Integration is a means of combining or

interfacing data and functions of a system into a cohesive set. The goal of integration is to

provide access to data that is stored in different forms and managed by different systems

[Ref. 6].

The integration has the purpose of "hiding" the heterogeneity of the system from

the users and provides them with transparency. The user does not need to worry about the

several data models, data languages, and semantics of the components of the system. The

user only cares about a single interface when he communicates with the system. The user

"sees" a global schema, and uses a global manipulation language. In the integrated

system the different data schemata and data languages are transformed into the global

schema, and the global manipulation language. The Figure 2 illustrates a general integrated

system.

Due to the above mentioned problems of HDBMS the integration may be difficult

to do and sometimes may not be achieved at all.

Another approach to solving the problem of proliferation of HDBMS 's is that the

databases of a multidatabase system should become interoperable: This means that a user

can access any database of the system, by using only one database (the most familiar to

him / her). Applications can execute using the data language of one kind of database to

access a database of a different model. This capability is also known as cross model

access. There is no need for integration and global schema. The several databases retain

their autonomy and continue to operate independently. Some of the benefits of the

interoperability are data sharing, and reusability of code and transactions [Ref. 7].

An example of a heterogeneous environment with interoperability is shown in

Figure 1: A company which uses one hierarchical database for product assemblies, one

network database for inventory control, and two relational databases for record keeping in a

different locations. The system provides a user the ability to access any database as if were

managed under any one of the four DBMS at one central location. Thus, a user could have

access to any database through a relational view at one of the PC is using SQL.

Application /
User No 1

Application /
User No 2

Interface 1 Interface 2

Application /
User No n

Interface n

DBMS 1 /
Local schema

Local language

DBMS 2 /
Local schema

Local language

INTEGRATION

DBMS n /
Local schema

Local language

Transformation / Translation

Global schema
Global language

Global
Application /

User

Figure 2. A General Integrated HDBMS System

B. WHAT IS M2DBMS ?

In the NPGS Laboratory for Database Systems Research, researchers have been

experimenting with a multi-database system prototype called M2DBMS (Multi-Lingual,

Multi-Model DBMS). The system supports heterogeneous databases, each of which is

based on a different data model. The system executes transactions of the data language

corresponding to each data model supported. So far, relational, hierarchical, network,

functional, and object-oriented databases have been implemented. Correspondingly, this

system is capable of executing transactions written in SQL, DL/I, CODASYL-DML,

DAPLEX, and OO-DML.

The M2DBMS supports multiple databases not as a collection of separate systems,

but with a single kernel data model and language called attribute-based DBMS. All the

supported heterogeneous databases are organized internally on the basis of the kernel data

model. All the heterogeneous transactions are translated into their equivalent transactions

in the kernel data languagefRef. 8]. Description of the M2DBMS can be found in

[Ref. 2, 8, 9, 10].

C. THE OBJECTIVE OF THE THESIS

The M2DBS system supports databases with different data models and languages.

We want to develop a cross-model access to get the desired interoperability, where the users

can access the same database with either relational, or object-oriented interface. Our first

goal is to provide relational access to object - oriented database (Figure 3).

D. THE ORGANIZATION OF THE THESIS

In Chapter II of this thesis, an overview of the M2BMS is given, with a brief

description of the hardware and software organization. In Chapters III and IV the relational

and object-oriented interfaces and their limitations are described. In chapter V the effort for

the cross-model access and problems are covered. In Chapter VI, conclusions are given.

Relational Interface Object - Oriented Interface

M2DBMS

Object - Oriented Database

Figure 3. Cross Model Access Capability in M2DBMS from Relational to Object-
Oriented Database

II. AN OVERVIEW OF M2DBMS

Unlike traditional DBMS which are monomodel and monolingual (support only

one kind of database), the M2DBMS is multimodel and multilingual [Ref. 8]. This means

that it supports the meaning of the schemata of databases created under different data

models as well as the execution of transactions written in different data languages on these

databases.

The different kinds of databases and their corresponding data languages that are

supported by the system are as follows:

• Hierarchical database with transactions written in DL/I. The basic data
structures of the hierarchical database are the records and parent-child
relationships. A record is a collection of values that give information for an
entity or a relationship. Parent-child relationships describe a relationship
between two records. The hierarchical database was developed in the sixties
mainly for supporting product assemblies

• Network database with transactions written in CODASYL-DML. The basic
data structures of the network database are the records and sets. Records consist
of a group of related data values. Sets describe a relationship between two
records. The network database was developed in the seventies mainly for
supporting inventory control.

• Relational database with transactions written in SQL. The basic data structure
of the relational database is the table. Each row in the table represents a
collection of related data values. These values are data that describe a real-world
entity or relationship. The relational database was developed in the eighties
mainly for supporting record keeping.

• Functional database with transactions written in DAPLEX. The basic data
structure of the functional database are the entities (corresponding to real-world
objects) and functional relationships. The functional database was developed in
the eighties primarily for supporting a lot of facts and rules for making
inferences.

• Object-oriented database with transactions written in OO-DML. The basic
data structure of the object-oriented database is the object. An object model
represents a real-world entity with its behavior and interactions. The object-

oriented database was developed in the nineties mainly for supporting the object
technology.

A. WHY A MULTI-MODEL, MULTI-LINGUAL DBMS?

The existence of heterogeneous database systems is very common today. Two

crucial issues for the effective and efficient utilization of the HDBMS are data sharing and

resource consolidation [Ref. 8, 9]. The M2MDBS addresses both issues of data sharing and

resource consolidation while maintaining the autonomy of the individual databases [Ref. 8].

Data sharing has a direct association with the interoperability, which is the ability

that allows the users of the system to access the different databases of the system with

transactions written only in one data language of the system. Since there is not a need to

translate a transaction written in one data language to another data language, data sharing

implies reusability of code and transactions. The system provides reduction in data

duplication and storage requirements since we keep only one copy of the data in one data

model without keeping the same data in another database. Since we do not need to keep the

same record in different databases, a possible change of this record kept in one database

does not require updating of the same record in other databases.

Resource consolidation has a direct relationship with the integration of

heterogeneous databases in a HDBMS. Resource consolidation is the combining of multiple

entities executing the same functions in a database management system. Resources to be

consolidated are heterogeneous databases, software, hardware, and the support personnel.

Resource consolidation provides the organization a reduction of the whole cost. Since there

is only a single multilingual, multimodel database computer to maintain, instead of five or

six separate computers for example, the costs associated with buying software and hardware

(upgrading with new versions for example), and providing support (manuals,

administrators, technicians) are extensively reduced. Also, we do not need to train the users

to operate different databases with different interfaces, since the system provides the users

10

with a analogous interface for each of the different databases. There are no new system

features to learn.

B. THE MULTI-LINGUAL DATABASE SYSTEM

In the multi-model, multi-lingual database computer there are currently five data

models and data languages that must be transformed into a single data model and language.

The transformed databases and transactions can then be processed and executed by the

multi-lingual computer. These transformations are also referred to as mappings in the

M2DBMS. There are two different types of mappings in the M2DBMS, the data-model

transformation and the data-language translation. Data-model transformation is the process

which takes a database modeled in one form and transforms it to an equal database in

another form (kernel database). Data-language translation is the process which takes an

operation in one data language and translates it into an equivalent operation in another data

language (kernel language). The kernel data model and its kernel data language used by

M2DBMS is the attribute-based data model (ABDM) and the attribute-based language

(ABDL). The attribute-based data model and language offer a complete set of means for

defining and accessing databases. The ABDM supports he five basic database operations:

Retrieve, retrieve common, insert, update, and delete. The user is not aware of the kernel

data model and kernel data language transformations. The user needs to know only the

interface of the specific type of database he/she uses.

In Figure 4, the modules, which are used for the mapping of data models and

languages into kernel data models and languages, are shown. The four main modules, that

are known as the model language interface, are the language interface layer (LIL), the

kernel mapping system (KMS), the kernel controller (KC), and the kernel formatting

system (KFS), and they correspond to each data model . The user interacts with the

system using the LIL which corresponds to the chosen user data model (UDM) to issue

transactions that are written in the corresponding user data language (UDL). LIL routes

the user transactions to the KMS. The user interacts with the system using the LIL which

11

corresponds to the chosen user data model (UDM) to issue transactions that are written in

the corresponding user data language (UDL).LIL routes the user transactions to the KMS.

The other task of the KMS is data language translation. KMS translates the UDL

transactions into the corresponding kernel data language (KDL) transactions. KMS

routes the KDL transaction to KC which in turn send it to KDS for execution. After

completion of execution, KDS sends the results in KDM form back to the KC. KC routes

the results to the KFS which in turn formats the results from KDM form to UDM form.

KFS send the results to the user through LIL.

M / LI: Model / Language Interface

LIL : Language Interface Layer

KMS : Kernel Mapping System

KC : Kernel Controller

KFS : Kernel Formatting System

TI: Test Interface

KDM : Kernel Data Model

KDS : Kernel Database System

KDL : Kernel Data Language

UDM : User Data Model

UDL : User Data Language

Several
Interfaces

KDM
-

M/T T

/ UDM KMS

TI

K
D
s \ / /

LIL KC

^ / \ /
UDL KFS

'
KDL

Figure 4. The M2DBMS System

12

C. THE MULTIBACKEND DATABASE SUPERCOMPUTER

The M2DBMS uses multiple backends processors connected in parallel to a single

controller (see Figure 5). Each backend has its own hardware , software, and disk system.

All the backends computers are controlled by a backend controller (micro-processor based

computer). The controller is responsible for interfacing between the backends computers

and the users and hosts. The controller receives user requests in the form of database

transactions, and transmits them simultaneously to the backends computers. The backends

computers perform the requested database operations on the database which is distributed

across the disk systems. Results from the database operation are forwarded to the controller,

which in turn send them to the host. The controller and processors are connected by a

communication bus (Ethernet cable).

The multiple backend architecture provides performance gain to the system. For a

given size of database and a given query there is a reduction in the response time when the

number of backends is increased. The system also is expandable along with the addition of

more parallel backends computers without the development of any new hardware or

modification of the existing hardware or software.

13

Backend 1

Broadcast bus

ControIIier

Answer

Transaction

Disk Drives

]_ ... _[

Disk Drives

Disk Drives

Figure 5. The M2DBMS Hardware Organization

14

III. THE RELATIONAL DATABASE INTERFACE

Relational database systems are based on the relational model of data, first

proposed by Codd in 1970 [Ref. 14]. The relational model is the way of looking and

representing data that represent real world objects and their relationships.

A. BASIC RELATIONAL DATABASE TERMINOLOGY

In a relational management database system, the database is perceived by the user as

a collection of tables (or relations). A relation represents relevant data relating to one type

of real world object or entity (product, customer, order, for example). Figure 6 illustrates a

very simple relational database referring to a sales company. The relation PRODUCT

contains information (product code, description, price, etc.) about the current inventory of

products . The relation CUSTOMERS keeps information (customer no., last name, first

name, address, etc.) about the customers. The relation ORDER contains information

(customer, product, quantity, date, etc.) about orders.

Each columrf of the table stands for an attribute of the relation. An attribute

represents one type of data relating to a relation (product code, product description,

customer last name, for example). Each row of the table stands for a tuple of the relation. A

tuple is a collection of data describing one real world object or entity, an instance of a

relation (a specific product <564-987, Calculator, 19.99 > for example).

A domain is a conceptual set of values, from which one or more columns, in one or

more tables, draw their actual values. A given domain contains all permitted and possible

values of some particular type. The values in a domain are generally assumed to be atomic,

which means that they have no internal structure (they are indivisible), so far as the DBMS

is concerned. An example for a domain is the range 0 - 65 for the possible values of age of

the employees of a company.

15

PRODUCT Product Code

508-234

567-089

564-987

555-983

467-922

Description

Pocket Organizer

Spelling Corrector

Calculator

Printer

Fax

Unit price $

69.99

45.99

19.99

349.99

224.99

Relations
Attributes

CUSTOMER Cust_No Last Name First Name

201 Gomez Mary

202 Williams Ann

203 Kakis Lou

204 Smith Gus

205 Moutos Eddy

. Tuples

ORDER Invoice # Cust_No Product_# Date Quantity

1001 201 508-234 4-6-96 2

1002 201 567-089 3-7-96 4

1003 203 564-987 3-1-96 1

1004 204 555-983 1-12-97 1

1005 202 467-922 1-15-97 5

Figure 6. An Example of a Relational Database

Here is a definition (taken from [Ref. 11]), of the term "relation:"

A relation R on a collection of domains Dl, D2 ,..., Dn (not necessarily
all distinct) consists of two parts, a heading and a body.

• The heading consists of a fixed set of distinct attributes {Al, A2, ... ,
An}, or more precisely attribute-domain pairs, { (A1:D1), (A2:D2), ... ,
(An:Dn) } such that each attribute Aj corresponds to exactly one of the
underlying domains Dj (j = 1,2,..., n).

16

• The body consists of a time-varying set of tuples, where each tuple in
turn consists of a set of attribute-value pairs { (Al:vil), (A2:vi2), ...,
(An:vin) } (i = 1, 2, 3,..., m, where m is the number of tuples in the set). In
each such tuple, there is one such attribute-value pair (Aj:vij) for each
attribute Aj in the heading. For any given attribute-value pair (Aj:vij), vij is
a value from the unique domain Dj that is associated with the attribute Aj.

A relation schema R denoted by R(A1, A2, ..., An), is made up of a relation name

and a list of attributes Al, A2,..., An, and describes the structure of a relation. An example

of a relational schema for the relation PRODUCT is:

PRODUCT (Product_Code, Description, Unit price $)

The primary key of a relation is any set of attributes, which uniquely identifies any

one tuple. The primary keys in a relational schema are underlined. An example for a key is

the attribute <product_code> for the PRODUCT relation: Each product has its own unique

<product_code>.

The entity integrity constraint states that no attributes participating in the primary

key are allowed to accept null values. The referential integrity constraint states that a tuple

in one relation that refers to another relation must refer to an existing tuple in the other

relation.

Figure 7 illustrates the relational database schema of the sales, company database of

the example in Figure 6, with the referential integrity constraints:

• The values of the attribute < Cust_No > in every ORDER tuple must match the
< Cust_No > value of some tuple in the CUSTOMER table.

• The values of the attribute < Product_# > in every ORDER tuple must match the
< Product_Code > value of some tuple in the PRODUCT table.

The ER diagram is a graphical notation that displays the entities, attributes, and

relationships of a relational schema. Figure 8 illustrates the ER diagram of the sales

company database of the example in Figure 6.

Relationships are classified into types according to the number of instances of the

tuples of the related entities that can participate in. Common types for binary relationships

17

PRODUCT

Keys

Description Unit price $

:: CUSTOMER

Referential
...••■ Integrities

Constraints

: ORDER

Invoice # Cust_No* Product* Date | Quantity

Figure 7. A Relational Database Schema

,».. Attributes ,,lm

C~>

PRODUCT CUSTOMER

.. ■ ■ Relationships

M ORDER M

Attributes

Figure 8. The ER Diagram

18

are 1:1,1 :M, and M:N. In the sales company example (Figure 8), the relationship A, is type

1 :M, and that means that a product can relate with many orders, but an order is related with

only one product. Figure 9 illustrates the possible types of relationships between two

relations A and B, in reference with the number of instances of the tuples of the related

entities that can participate in.

A\. B Oorl (most 1) 1 M

Oor 1 (most 1) (Oorl)to (Oorl) (Oorl) to 1 (Oorl)toM

1 1 to (Oorl) 1 tol 1 to M

M M to (Oorl) M to 1 M to M

Figure 9. Types of Relationship Between Two Relations A and B

When we say that a relation is "time-varying" in the relational model, we mean that,

as time progress, we can insert new tuples, delete tuples, and modify the values of some

attributes of the relation.

A query is a statement that extracts information from a database. A model is useful

when there is a appropriate language for declaring queries about properties represented by

the model. From the conceptual point of view, these languages are based on a simple,

formal language called relational algebra. Relational algebra consists of a collection of

operations over the relations. First, the relational algebra contains the usual set operations:

19

Union, intersection, difference, and Cartesian product. Second, this algebra also contains

specifically developed operations for relational databases, with the most common of them:

• Select: Is used to select a subset of the tuples in a relation that fulfill a selection
condition.

• Project: Is used to select certain columns from a relation.

• Join: Is used to mix related tuples from two or more relations into tuples. Join
operation allows us to process relationships among relations.

The result of the queries is also a table.

A number of relational query languages have been designed and implemented to

serve as practical tools for the users. The most common and powerful language is the SQL.

A description of the SQL is given in [Ref. 1]. Many commercial applications for relational

databases are based on the SQL. An example of use of SQL and the result for the sales

company is given in Figure 10.

Retrieve the description and quantity of products that were sold in 3-1-96.

SELECT DESCRIPTION, QUANTITY

FROM ORDER, PRODUCT

WHERE DATE = "3-1-96" AND PRODUCT_CODE = PRODUCTJ

Result:

Description Quantity

Calculator 1

Figure 10. An Example of a Query in SQL

20

B. DESCRIPTION OF THE RELATIONAL DATABASE INTERFACE

The EWIR database was used in References [12] and [13] for reactivation of the

relational interface in the M2DBMS and for implementation of the object-oriented interface.

The EWIR database provides an accurate source of information for data on radars, jammers,

navigational aids, and numerous non-communication electronic emitters. In the current

thesis, and for purpose of clarity for the cross-model effort, a small subset of the EWIR

database is used for both relational and object-oriented interface. This subset is called

EWIROODB database. The Figure 11 illustrates the relational database schema of the

EWIROODB database and describes the structure of the relations. The Figure 12 illustrates

the relational database instance of the EWIROODB schema that is used in the current

thesis. Reference [10] provides a complete description of the interfaces of the different

databases of the M2DBMS.

A user, in order to log into the M2DBMS, must use the mdbs account in the Naval

Postgraduate School's Laboratory for Database Systems Research on the Multi-Backend

ANTENNA

I oid < anttype antfunction hordimension vertdimension acelpol antdirect

TRACK

>id planetrack

SIGNAL

oid ^ sconpwr snconpwr

Figure 11. The Relational Database Schema of the EWIROODB Database

21

ANTENNA oid anttype antfunction hordimension vertdimension acelpol antdirect

Aal Phasedarray Longrngaa 3ft 4ft Radl Ppl

Aa2 Squaresail Longrngaa 3ft 4ft Rad2 Pp2

Aa3 Parabolic Longrngaa 325ms 300kw Rad2 Pp3

TRACK oid planetrack

Seal 325ms

Sca2 300kw

Sca3 300ms

SIGNAL oid sconpwr snconpwr

Seal Unidirec 128ms

Sca2 Parabolic Level2

Sca3 Parabolic Lcvel2

Figure 12. A Relational Database Instance of the EWIROODB Schema

Database Supercomputer. Logging into terminal dbll with the mdbs account will take the

user into the default directory of dbll/u/mdbs. At this point, the user should enter the run

command (for example, tbg for selection of one of the existing versions of the relational

interfaces). After the appropriate initiation the system prompt asks the user to select the

desired interface:

Select an operation:
(a) - Execute the attribute-based/ABDL interface
(r) - Execute the relational/SQL interface
(h) - Execute the hierarchical/DL/l interface
(n) - Execute the network/CODASYL interface
(f) - Execute the functional/DAPLEX interface
(o) - Execute the Object-Oriented interface
(x) - Exit to the operating system

The user, in order to proceed into the relational interface, should enter (r):

Select-> r

??

At this point, the system will prompt the user for the operation desired: Select

option (I) to load e new database, or (p) to process a database that already is resident in the

system:

Enter type of operation desired
(I) - load new database

(p) - process existing database
(x) - return to the MLDS/MBDS system menu

The user in order to load a new database should enter (1):

Action — > I

At this point, the system will prompt the user for the name of the database to be

loaded and the name EWIROODB is entered:

Enter name of database —> EWIROODB

After the user has entered the database name, the system prompt will ask the user to

select the mode of input that is desired for loading the schema:

Enter mode of input desired
(f) - read in a group of creates from a file
(t) - read in creates from the terminal
(x) - return to the main menu

The option (t) requires loading the schema from the terminal. The option (f)

(reading from a file) is highly recommended because it is more convenient, since the

schema file has already created and exists in the UserFiles directory (see Figure 13

EWIROODBsqldb File):

Action — > f

After the user has entered the mode (f), the system prompt will ask the user to enter

the name of the schema file and the name EWIROODBsqldb is entered:

What is the name of the CREATE/QUERY file ~-> EWIROODBsqldb

For clarity, all schema files should be named in the following convention:

<database name><the acronym of the interface language (sql here)>db.

Relation name Attribute length

create table antenna: oid (char(3)),

anttype(char(13)),

antrunction (char(13)),

New relation hordimension (char(6)),

'• vertdimension (char(6)),

acelpol (char(3)),

\ ". antdirec (char(5))

*■ create table track: oid (char(5)),

planetrack(char(12)) :

'■@ i
create table signal: oid (char(5)), j

sconpwr(char(12)), \

snconpwr(char(12)) :

$.. ••... i
'■-■.. Attribute

End of file

Figure 13. The EWIROODB Database Schema Specification

It is from the loading of this file that the template file (see Figure 14,

EWIROODB.t file) and descriptor file (see Figure 15, EWIROODB.d file) are generated by

the Language Interface Layer. The template file provides the specification of the relational

database in the kernel database by creating the attribute-value pair used by the kernel

system. The descriptor file provides the kernel system with a list of all the relations in the

database.

24

EWIROODB Name of the database

3 Number of relations in the database

8 Number of attributes in the next relation

Antenna Name of a relation

TEMPs

OIDs

ANTTYPE s

ANTFUNCTION s

HORDIMENSION s

VERTDIMENSION s

ACELPOL s

ANTDIREC s

3

Track

TEMPs .

OID s .".'.*:.•;... Attributes and types

PLANETRACKs .•"*

4

Signal

TEMPs

OIDs

SCONPWR s

SNCONPWR s

Figure 14. The EWIROODB Template File

25

EWIROODB Name of the database

TEMP b s

! Antenna ..

! Track ;;;.■_., Relations in the database

! Signal •••"'''

(a),

Figure 15. The EWIROODB Descriptor File

The M2DBMS system will parse the schema file and transform the relational

schema into the kernel data model language, ABDL. The parse will determine what the

relational schema are and the relations are been displayed on the screen:

The following are the Relations in the EWIROODB Database:

ANTENNA
TRACK
SIGNAL

Beginning with the first Relation, we will present each
Attribute of the relation. You will be prompted as to whether
you wish to include that Attribute as an Indexing Attribute,
and, if so, whether it is to be indexed based on strict
EQUALITY, or based on a RANGE OF VALUES. If you do not want
to enter any indexes for your database, type an 'n' when
the Action -> prompt appears
Strike RETURN or 'n' when ready to continue.

The system gives the opportunity for indexing the attributes in the relations, but this

option is not usually used. The user enters (n):

Action — > n

At this point the system will prompt the user for the operation desired: Select option

(1) to load e new database, or (p) to process a database that already is resident in the system:

Enter type of operation desired

26

(I) - load new database
(p) - process existing database
(x) - return to the MLDS/MBDS system menu

Since the database is resident now in the system and the schema exists on the

M2DBMS, the user should select now the option (p):

Action — > p

At this point the system will prompt the user for the name of the existing database

and the name EWIROODB is entered:

Enter name of database —> EWIROODB

After the user has entered the database name, the system prompt will ask the user to

select the mode of input that is desired for loading the records:

Enter mode of input desired
(f) - read in a group of queries from a file
(t) - read in queries from the terminal
(m) - mass load a file
(d) - display the current database schema
(x) - return to the previous menu

The options (t) and (f) require the input of the records in SQL transactions, from the

terminal or a file. The option (m) (mass loading from a file) is highly recommended because

it is more convenient, since the record file has already created and exists in the UserFiles

directory (see Figure 16. EWIROODB.r File):

Action — > m

After the user has entered the mode (m), the system prompt will ask the user to enter

the name of the record file and the name EWIROODB.r is entered:

Enter name of record file —> EWIROODB.r

For clarity, all record files should be named in the following convention:

<database name><.r>

27

EWIROODB Name of the database

@

ANTENNA

Aal Phasedarray Longrngaa 3ft 4ft Radl Ppl ...

Aa2 Squaresail Longrngaa 3ft 4ft Rad2 Pp2 ..'.':::.-... Tuples

Aa3 Parabolic Longrngaa 325ms 300kw Rad2 Pp3 ■■'''

@

TRACK

Seal 325ms

Sca2 300kw

Sca3 300ms

@ New relation

SIGNAL

Seal Unidirec 128ms

Sca2 Parabolic Level2

Sca2 Parabolic Level2

$

' "■•-. End of file

Figure 16..The EWIROODB Record File

(EWIROODB.r File)

After entering the mass load file name, a sequence of ABDL insert statements will

appear:

[INSERT (<TEMP, Antenna>, «DID, Aa1>, <ANTTYPE, Phasedarray>,
<ANTFUNCTION, Longrngaa> <HORDIMENSION, 3ft>,
<VERTDIMENSION, 4ft>, <ACELPOL, Rad1>, <ANTDIREC, Pp1>)]
[INSERT (<TEMP, Antenna>, <OID, Aa2>, <ANTTYPE, SquaresaiO,
<ANTFUNCTION, Longmgaa>, <HORDIMENSION, 3ft>,
<VERTDIMENSION, 4ft>, <ACELPOL, Rad2>, <ANTDIREC, Pp2>)]

[INSERT (<TEMP, Antenna>, <OID, Aa3>, <ANTTYPE, Parabo!ic>
<ANTFUNCTION, Longmgaa>, <HORDIMENSION, 325ms>,
<VERTDIMENSION, 300kw>, <ACELPOL, Rad2>, <ANTDIREC, Pp3>)]
[INSERT (<TEMP, Track> <OID, Sca1>, <PLANETRACK, 325ms>)]
[INSERT (<TEMP, Track>, <OID, Sca2>, <PLANETRACK, 300kw>)]
[INSERT (<TEMP, Track>, <OID, Sca3>, <PLANETRACK, 300ms>)]
[INSERT (<TEMP, Signal>, <0ID, Sca1>, <SCONPWR, Unidireo,
<SNCONPWR, 128ms>)]
[INSERT (<TEMP, Signal>, «DID, Sca2>, <SCONPWR, Parabolio,
<SNCONPWR, Level2>)]
[INSERT (<TEMP, Signal>, <OID, Sca2>, <SCONPWR, Parabolic>,
<SNCONPWR, Level2>)]
Exit massjoad

At this point, the user is ready to process SQL transactions against the database that

is currently residing on the system. The system prompt will ask the user to select the mode

of input that is desired for reading the queries:

Enter mode of input desired
(f) - read in a group of queries from a file
(t) - read in queries from the terminal
(m) - mass load a file
(d) - display the current database schema
(x) - return to the previous menu

The options (t) and (f) require the input of the records in SQL transactions, from the

terminal or a file, correspondingly. The option (f) (reading from a file) is highly

recommended because it is more convenient, since the query file is already created and

exists in the UserFiles directory (see Figure 17, EWIRsqlreq File):

Action — > f

After the user has entered the mode (f), the system prompt will ask the user to enter

the name of the query file and the name EWIRsqlreq is entered:

What is the name of the CREATE/QUERY file —> EWIRsqlreq

For clarity, all query files should be named in the following convention:

<database name><sqlreq>

29

select *

from signal

@ "'"•■..

select *

from track "■•■•-.. " • - SQL

& ...•■•"'.•' transactions

select *■-'"

from antenna

@

select anttype

from antenna

where anttype = 'Phasedarray'

$ End of file

Figure 17. The EWIRsqlreq Query File

After entering the query file name, the system will scan the request file and, since

there are multiple transactions in the EWIRsqlreq file, will number each transaction. The

system prompt will ask the user to select the number of transaction that is desired to

proceed (option (num)), or to redisplay the file of queries (option (d)), or to return to the

previous menu (option (x)):

Pick the number or letter of the action desired
(num) - execute one of the preceding queries
(d) - redisplay the file of queries
(x) - return to the previous menu

At this point the user enters the number 1, in order to proceed the transaction:

select *
from signal

which has the meaning "retrieve all the elements of the relation signal:"

Action — > 1

After the number 1 has been entered, the results of the query are displayed

on the screen:

OID ISCONPWR iSNCONPWR |
Seal lUnidirec |128ms |
Sca2 |Parabolic |Level2 |
Sca2 |Parabolic |Level2 j

The system prompt will ask again for the user to select the number of transaction

that is desired to proceed (option (num)), or to redisplay the file of queries (option (d)), or to

return to the previous menu (option (x)):

Pick the number or letter of the action desired
(num) - execute one of the preceding queries
(d) - redisplay the file of queries
(x) - return to the previous menu

At this point the user enters the number 2, in order to proceed the transaction:

select *
from track

which has the meaning " retrieve all the elements of the relation track :"

Action ■— > 2

After the number 2 has been entered, the results of the query are displayed on the

screen:

OID IPLANETRACK |
Seal |325ms |
Sca2 |300kw |
Sca3 |300ms |

The system prompt will ask again for the user to select the number of transaction

that is desired to proceed (option (num)), or to redisplay the file of queries (option (d)), or to

return to the previous menu (option (x)):

Pick the number or letter of the action desired
(num) - execute one of the preceding queries
(d) - redisplay the file of queries

31

(x) - return to the previous menu

At this point the user enters the number 4, in order to proceed the transaction:

select anttype
from antenna
where anttype = 'Phasedarray'

which has the meaning '"retrieve all the tuples of the attribute anttype of the relation

antenna, which have value 'Phasedarray':"

Action — > 4

After the number 4 has been entered, the results of the query are displayed on the

screen:

ANTTYPE I

(x).

Phasedarray |

Having retrieved the desired data , the user exits of the system choosing the options

LIMITATIONS

As already mentioned in the previous section, the system provides the user the

option to load the schema, records, and queries via corresponding files that must have been

already created and reside in the directory dbll/u/mdbs/UserFiles. A subdirectory of

UserFiles can be used, but in that case it must be included in the input when the user enters

the name of the file (for example: What is the name of the CREATE/QUERY file —>

/relational/EWIROODBsqldb)

For clarity, all files should be named in the following convention:

<database name>sqldb for the schema files,

<database name>.r for the record files,

and <database name><sqlreq> for the query files.

32

The use of <database name> is recommended in order the files of a database can be

easily distinguishable among several developed databases.

All files must have a dollar sign "$" on the last line of the file to signal the end of

the file, so the parser can find a EOF and process the file. The schema and record files must

have a "@" sign between each relation, as well as the requests files between each

transaction.

When developing a mass load file, the space between attribute values along a tuple

must be separated by a TAB and not the spacebar, in order to the system to recognize the

values.

Preceding the executing of the run command the user must verify that there are no

processes still running the M2DBMS. The command ps ax (UNIX) will display all the

active processes, and the command kill (UNIX) will stop the undesired running processes.

The References [10,11] mention that the system has the following limitations:

• The database name must be in capitals.

• The relation name must be in capitals.

• Although attribute names may not contain underscores, the data may.

• The maximum number of relations of the database is four.

• Names of relations are limited to ten characters.

• Lower case only through the schema file.

• Attribute names are limited to fifteen characters.

• Within each create table attribute names are separated by commas (schema
files).

• The end of file marker, "$," must be followed by a carriage return or the system
will crash.

33

• The system does not allows "join" operations: the from statement may only
specify a single table.

34

IV. THE OBJECT-ORIENTED DATABASE INTERFACE

In the last years, since the complexity of software applications has increased, the

need for more powerful models was established. These applications include areas such as

Computer-Aided Design (CAD), Computer-Aided Manufacturing (CAM), Computer-Aided

Software Engineering (CASE), and multimedia. The object-oriented model has the power to

form the information needed within such applications.

A. BASIC OBJECT-ORIENTED DATABASE TERMINOLOGY

Object-oriented modeling is a way of looking and representing data that represent

real world objects. The approach of abstract data types is the first step to object-orientation.

Abstraction consists of focusing on the essential, inherent aspects of an entity and ignoring

its accidental properties [Ref. 15]. The aim of abstraction is to handle complexity.

Abstraction gives an answer to the question of what an object is and does, before we decide

how it should be implemented.

The object is the fundamental concept of object-orientation. An object gives a

representation of a real world entity, which is uniquely identifiable (has an object identity).

An object combines data structure (attributes), and behavior and interactions (operations)

in a single entity. Figure 18 illustrates some examples of objects.

In an object-oriented system, each object is unique. The uniqueness of an object is

reached by presenting an object identity (OID). This identity is independent of the values of

an objects attributes. This means the objects can be distinguished from each other without

comparing their values or their behavior. The object identity is generated by the system and

can not be affected by the user.

A basic characteristic of an object is the interaction with other objects called object

interaction. This means that one object sends another object a message to communicate

with. If an object receives a message it has to react, and corresponding method is executed.

35

My Car Ted's Car A Book

Mary's Bike A Cat

Figure 18. Examples of Objects

A method is the implementation of an operation for a specific object. The behavior of an

object is resolved by it's operations.

A class is a notion that describes a group of objects with the same data structures

and methods. A class is a template from which new objects may be created, since their

attributes and operations are determined by the class definition. The objects of a class are

instances ofthat class. Figure 19 illustrates a class, "cars," that have as object instances

some cars.

If one object is logically associated to one or more other objects there exists an

relationship between objects. Relationships are classified into types, according to the

number of instances of the related objects that can participate in. Common types for binary

relationships are 1:1, 1:M, and M:N. Figure 20 illustrates a relationship 1:1 between the

instances of the class, "cars," and the instances of the class " reservation:" one car is related

(is assigned) with one reservation, and one reservation is related (is made for) with one car.

36

Car Objects

My Car

Tad's Car

Abstract

into

Company's Car

Figure 19. An Example of Class "Car"

Car Class

Attributes

name

model

year

engine size

color

Operations

move

repair

refuel

Attributes Attributes
car ID reservation No.

name date

size customer name

Is Assigned Is Made For

number of days

Relationships

is assigned

Relationships

is made for

1 1 ...

Operations Operations

move

...

• • •

Figure 20. An Example of a Relationship 1:1 between the Classes "Car" and
"Reservation"

The sharing of code and behavior is a significant idea of object-orientation.

Inheritance is the approach to receive such sharing in object oriented systems. Inheritance

means that new classes can be derived from existing classes. A relationship of superclass -

subclass is set up. The subclass inherits the attributes and the operations of the superclass,

but the subclass can also define additional operations and attributes. This method is known

also as specialization or generalization mechanism. Instances of a subclass are

specialization of the instances of the superclass, and instances of the superclass generalize

the instances of the subclasses. Figure 21 illustrates an example of inheritance: the

subclasses, "car" and "bike," inherit some attributes and operations from the superclass

"vehicle."

Encapsulation (also information hiding) consists of separating the external aspects

of an object, which are accessible to other objects, from the internal implementation details

of the object, which are hidden from other objects.

38

Operations

move

repair

refuel

Vehicle

Attributes

name

model

year

color

Operations

move

repair

Attributes

name

model

year

frame size

color

Operations

move

repair

Figure 21. An example of inheritance: Superclass "Vehicle" with Subclasses "Car"
and "Bike"

Polymorphism means that the same operation may behave differently on different

classes. The operation, "move," for example, may have different meaning for the class "car"

than another class.

The Object Definition Language (ODL) is a specification language used to define

the classes (schema semantics), relationships, inheritance, and interactions in general among

classes. The ODL provides the syntax necessary to specify the object-oriented database.

39

A query is a statement that extracts information from a database. A model is useful

when there is a suitable language for declaring queries about properties represented by the

model. The Object Query Language (OQL) is used for access and retrieval information

from an object-oriented database.

B. DESCRIPTION OF THE OBJECT-ORIENTED DATABASE INTERFACE

As mentioned in Chapter III, in the current thesis, and for purpose of clarity for the

cross-model effort a small subset of the EWIR database is used for both relational and

object-oriented interface. This subset is called EWIROODB database. Figure 22 illustrates

the object-oriented database schema of the EWIROODB database and describes the

structure (attributes) of the classes. The Figure 23 illustrates the instances of the Antenna

class in the EWIROODB object-oriented database. Reference [13] provides a complete

description of the object-oriented interface of the EWIR database of the M2DBMS.

A user, in order to log into the M2DBMS, must use the mdbs account in the Naval

Postgraduate School's Laboratory for Database Systems Research on the Multi-Backend

Database Supercomputer. Logging into terminal dbll with the mdbs account will take the

user into the default directory of dbll/u/mdbs. At this point, the user should enter the run

command (for example, tbg for selection of one of the existing versions of the object-

oriented interfaces). After the appropriate initiation the system prompt asks the user to

select the desired interface:

Select an operation:
(a) - Execute the attribute-based/ABDL interface
(r) - Execute the relational/SQL interface
(h) - Execute the hierarchical/DL/l interface
(n) - Execute the network/CODASYL interface
(f) - Execute the functional/DAPLEX interface
(o) - Execute the Object-Oriented interface
(x) - Exit to the operating system

40

Classes

Antenna Track Signal

anntype planetrack sconpwr

anfunction snconpwr

hordimension

vertdimension

acelpol

antdirec

Figure 22. The Object-oriented Database Schema of the EWIROODB Database

Antenna (oid Aal) Antenna (oid Aal) Antenna (oid Aar

anntype: anntype: anntype:
Phasedarray Squaresail Parabolic

anfunction: anfunction: anfunction:
Logmgaa Logmgaa Logmgaa

hordimension: hordimension: hordimension:
3ft 3ft 325ms

vertdimension: vertdimension: vertdimension:
4ft 4ft 300kw

acelpol: acelpol: acelpol:
Radl Rad2 Rad2

antdirec: antdirec: antdirec:
Ppl Pp2 Pp3

Figure 23. The Instances of the Antenna Class in the EWIROODB Object-oriented
Database

41

The user, in order to proceed into the object-oriented interface, should enter (o):

Select-> o

At this point the system will prompt the user for the operation desired: Select option

(1) to load e new database, or (p) to process a database that already is resident in the system:

Enter type of operation desired
(I) - load new database
(p) - process existing database
(x) - return to the MLDS/MBDS system menu

The user in order to load a new database should enter (1) :

Action — > I

At this point the system will prompt the user for the name of the database to be

loaded and the name EWIROODB is entered:

Enter name of database —> EWIROODB

After the user has entered the database name, the system prompt will ask the user to

select the mode of input that is desired for loading the schema:

Enter mode of input desired
(f) - read in a group of creates from a file
(t) - read in creates from the terminal
(x) - return to the main menu

The option (t) requires loading the schema from the terminal. The option (f)

(reading from a file) is highly recommended because it is more convenient, since the

schema file has already created (in Object-Oriented Data Definition Language, O-ODDL)

and exists in the UserFiles directory (see Figure 24 EWIROODL File):

Action — > f

After the user has entered the mode (f), the system prompt will ask the user to enter

the name of the schema file and the name EWIROODL is entered:

What is the name of the CREATE/QUERY file -—> EWIROODL

It is from the loading of this file that the template file (see Figure 25,

EWIROODB.t file) and descriptor file (see Figure 26, EWIROODB.d file) are generated

42

class Antenna} Class Name

charstring

char_string

char_string

charstring

char_string

char_string

class Track{

char string

anttype;

antfunction;

hordimension;

vertdimension;
acelpol;

antdirec;

Attribute Type

'planetrack;

class Signal{

charstring sconpwr; ■
charstring snconpwr;

Attribute Name

Figure 24. The EWIROODB Database Schema Specification

(EWIROODL File)

by the Language Interface Layer. The template file provides the specification of the object-

oriented database in the kernel database by creating the attribute-value pair used by the

kernel system. The descriptor file provides the kernel system with a list of all the objects in

the database.

The M2DBMS system will parse the schema file and transform the object-oriented

schema into the kernel data model language, ABDL.

At this point the system will prompt the user for the operation desired: Select option

(1) to load a new database, or (p) to process a database that already is resident in the system:

Enter type of operation desired
(I) - load new database
(p) - process existing database
(x) - return to the MLDS/MBDS system menu

EWIROODB Name 0f the Database

3 Number of Classes in the Database

8 Number of Attributes in the Next Class
Antenna Nameofaclass
TEMPs
OIDs
ANTTYPE s

ANTFUNCTION s
HORDIMENSION s

VERTDIMENSION s
ACELPOL s

ANTDIREC s
3
Track

TEMPs

OID s ;.::.:::::;;. Attributes and Types
PLANETRACK s
4
Signal

TEMPs
OIDs
SCONPWR s

SNCONPWR s

Figure 25. The EWIROODB Template FUe

EWIROODB
TEMP b s
! Antenna •
! Track
! Signal

@
$

Name of the Database

Classes in the Database

Figure 26. The EWIROODB Descriptor File

44

Since the database is resident now in the system and the schema exists on the

M2DBMS, the user should select now the option (p):

Action -~ > p

At this point the system will prompt the user for the name of the existing database

and the name EWIROODB is entered:

Enter name of database —> EWIROODB

After the user has entered the database name, the system prompt will ask the user to

select the mode of input that is desired for loading the records:

Enter mode of input desired
(f) - read in a group of queries from a file
(t) - read in queries from the terminal
(m) - mass load a file
(d) - display the current database schema
(x) - return to the previous menu

The options (t) and (f) require the input of the records from the terminal or a file,

correspondingly. The option (m) (mass loading from a file) is highly recommended because

it is more convenient, since the record file has already created and exists in the UserFiles

directory (see Figure 27, EWIROODB.r File):

Action — > m

After the user has entered the mode (m), the system prompt will ask the user to enter

the name of the record file and the name EWIROODB.r is entered:

Enter name of record file —> EWIROODB.r

For clarity, all record files should be named in the following convention:

<database name><.r>

Before the creation of the EWIROODB.r records file for the object-oriented

interface, the existing EWIROODB.r records file for the relational interface was renamed to

rEWIROODB.r, since these files have different format for each interface.

45

EWIROODB Name of the Database

@

Antenna

Aal Phasedarray Longrngaa 3ft 4ft Radl Ppl -.

Aa2 Squaresail Longrngaa 3ft 4ft Rad2 Pp2 •'■'* Records of Class

Aa3 Parabolic Longrngaa 325ms 300kw Rad2 Pp3 '

@ ••••.......
Track '""■■•-...

Seal 325ms '"'■■■....

Sca2 300kw••■•'"" New Class

Sca3 300ms ...■•■•""

@ ..•••■'""

Signal

Seal Unidirec 128ms

Sca2 Parabolic Level2

Sca2 Parabolic Level2

$ End of File

Figure 27. The EWIROODB Record File

(EWIROODB.rFile)
After entering the mass load file name, the EWIROODB.r file, and a sequence of

ABDL insert statements will appear:

@
Antenna
Aa1 Phasedarray Longrngaa 3ft 4ft Rad1 Pp1
Aa2 Squaresail Longrngaa 3ft 4ft Rad2 Pp2
Aa3 Parabolic Longrngaa 325ms 300kw Rad2 Pp3
@
Track
Seal 325ms
Sca2 300kw
Sca3 300ms
@
Signal
Seal Unidirec 128ms
Sca2 Parabolic Level2
Sca2 Parabolic Level2
$
Enter o_mass_load

<Loading Records, Please Stand By>
We are in the COMMON/utilities.c add_path

46

We have /u/mdbs/UserFiles/EWIROODB.t
c = >@<
tmpl_name = >Antenna<
c = >A<
TEMP,OID,Aa1
ANTTYPE, Phasedarray
ANTFUNCTION.Longrngaa
HORDIMENSION,3ft
VERTDIMENSION,4ft
ACELPOL,Rad1
ANTDIREC.PpI
1 ->
[INSERT(<TEMP)Antenna>)<OID,Aa1><AN7TYPE,Phasedarray>,<ANTF
UNCTION,Longrngaa>,<HORDlMENSION,3ft>,<VERTDIMENSION,4ft><
ACELPOL.Rad 1 > <ANTDIREC,Pp1 >)]
length of record is 149

c = >A<
TEMP,OID,Aa2
ANTTYPE,Squaresail
ANTFUNCTION.Longrngaa
HORDIMENSlON,3ft
VERTDIMENSION,4ft
ACELPOL,Rad2
ANTDIREC,Pp2
2 ->
[INSERT(<TEMPAntenna><OID,Aa2>,<ANTTYPE)Squaresail>1<ANTFUN
CTION,Longrngaa>,<HORDIMENSION,3ft>,<VERTDIMENSIONt4ft><AC
ELPOL,Rad2><ANTDIREC,Pp2>)]
length of record is 148

c = >A<
TEMP,OID,Aa3
ANTTYPE.Parabolic
ANTFUNCTION.Longrngaa
HORDIMENSION,325ms
VERTDIMENSION,300kw
ACELPOL,Rad2
ANTDIREC,Pp3
3 ->
[INSERT(<TEMP,Antenna>,<OIDAa3><ANTTYPE>Parabolic><ANTFUN

47

CTION,Longrngaa>)<HORDIMENSION,325ms>,<VERTDIMENSION,300k
w><ACELPOL,Rad2>,<ANTDIREC,Pp3>)]
length of record is 151

c = >@<
tmpl_name = >Track<
c = >S<
TEMP,OlD,Sca1
PLANETRACK,325ms
4 -> [INSERT(<TEMP,Track> <OID,Sca1>,<PLANETRACK,325ms>)]
length of record is 52

c = >S<
TEMP,OID,Sca2
PLANETRACK,300kw
5 -> [INSERT(<TEMP,Track> <OlD,Sca2> <PLANETRACK,300kw>)]
length of record is 52

c = >S<
TEMP,OID,Sca3
PLANETRACK,300ms
6 -> [INSERT(<TEMP,Track> <OID,Sca3>)<PLANETRACK,300ms>)]
length of record is 52

c = >@<
tmpl_name = >Signal<
c = >S<
TEMP.OID.Sca1
SCONPWR.Unidirec
SNCONPWR, 128ms
7 ->
[INSERT^TEMP.Signa^^OlD.Sca^^SCONPWR.Unidireo^SNCONP
WR,128ms>)]
length of record is 70

c = >S<
TEMP,OID,Sca2
SCONPWR,Parabolic
SNCONPWR,Level2
8 ->
[INSERT(<TEMP,Signal>,<OID)Sca2>,<SCONPWR,Parabolic><SNCONP
WR,Level2>)]

48

length of record is 72

c = >S<
TEMP,OID,Sca2
SCONPWR,Parabolic
SNCONPWR,Levei2
9
[!NSERT(<TEMP,Signal><OID,Sca2><SCONPWR,Parabolic>I<SNCONP

WR,Level2>)]
length of record is 72

c = >$<

Exit ojnassjoad

At this point the user is ready to process O-ODML transactions against the database

that is currently residing on the system. The system prompt will ask the user to select the

mode of input that is desired for reading the queries:

Enter mode of input desired
(f) - read in a group of queries from a file
(t) - read in queries from the terminal
(m) - mass load a file
(d) - display the current database schema
(x) - return to the previous menu

The options (t) and (f) require the input of the records in O-ODML transactions,

from the terminal or a file, correspondingly. The option (f) (reading from a file) is highly

recommended because it is more convenient, since query files may have already created (in

Object-Oriented Data Manipulation Language, O-ODML) and exist in the UserFiles

Action — > f

After the user has entered the mode (f). the system prompt will ask the user to enter

the name of the query file. After entering the query file name, the system prompt will ask

the user to execute the query that is desired to proceed (option (e)), or to redisplay the file of

query (option (d)). or to return to the previous menu (option (x)).

49

After the letter "e" has been entered, the results of the query are displayed on the

screen. Having retrieved the desired data, the user exits of the system choosing the options

(x).

C. LIMITATIONS

As already mentioned in the previous section, the system provides the user the

option to load the schema, records, and queries via corresponding files that must have been

already created and resident in the directory dbl 1/u/mdbs/UserFiles. A subdirectory of

UserFiles can be used, but in that case it must be included in the input when the user enter

the name of the file (for example: What is the name of the CREATE/QUERY file —>

/object-oriented/EWIROODL)

For clarity, the record files should be named in the following convention: <database

name>.r. The use of <database name> is recommended in order that the files of a database

can be easily distinguishable among several developed databases.

Preceding the executing of the run command, the user must verify that there are no

processes still running the M2DBMS. The command ps ax (UNIX) will display all the

active processes, and the command kill (UNIX) will stop the undesired running processes.

The system's O-ODDL (Object-Oriented Data Definition Language) provides the

constructs for creating a new database schema. The system currently supports the O-ODDL

specifications: Class, inheritance, covering (a mapping relationship between an object in a

class to a set of objects in a second class), and set relationships.

Current limitations of the system are described in the Reference [12]:

• No methods within a class can implement.

• No floating-point arithmetic supported.

• Only four logical operators in a single statement.

• The O-ODML (Object-Oriented Data Manipulation Language) currently
supports only the operations: Findone, findjnany, display, add, and contains.

50

• Data retrieval in an inheritance relationship is allowed only from a specialization
to a generalization class.

• For the database schema file (O-ODDL) there are the following restrictions:

• Class names are limited to seven characters.

• Attribute names are limited to fifteen characters.

• No class names or attribute names can be identical.

• All inherited classes must be specified before the class that inherits.

• The second character of attribute name is not an underscore.

• For the records file there are the following restrictions:

• Classes occur in the same order as the schema file.

• Attributes are in the same order as listed in the schema file.

• The user generates the OID's.

• A dollar sign "$" must exist on the last line of the file to signalize the
end of the file, so the parser can find a EOF and process the file. A "@"
sign must exist between each class.

51

52

V. THE CROSS-MODEL ACCESS

The cross-model access capability of the M2DBMS, provides the user with the

ability to access a database with transactions written in a language of another type of

database. This thesis describes the process for accessing a object-oriented database, with

transactions written in SQL language. The databases EWIROODB (relational) and

EWIROODB (object-oriented) that were described in Chapters III and IV, are used for the

cross-model access capability. The aim of this thesis is to access and retrieve data from the

object-oriented EWIROODB database, with the SQL query (see Figure 17) that was used in

the relational EWIROODB database.

A. PROBLEMS

Ideally, the system will implement a cross-model access capability, by performing

the following sequence of operations:

• Load the object-oriented database schema.

• Load the object-oriented records.

• Execute the SQL queries.

The ideal system would also run only the object-oriented interface, since we have

loaded the object-oriented database. For the cross model access, we need to shift from the

object oriented interface to the relational interface, in order to execute the queries.

One problem is that the two interfaces (object-oriented and relational) create catalog

files with different formation, which makes the cross-model access impossible. A catalog

file corresponds to each database that has been loaded, and is created at run time (probably

when the specified language interface is requested) [Ref. 16]. These files have the name

.<database>.cat and in this case .EWIROODB.cat for both interfaces. They reside in the

53

subdirectory dbll/u/mdbs/<version_name>/run. The Figure 28 and 29 illustrate the

.EWIROODB.cat for both interfaces.

EWIROODB 3 0 1 ANTENNA T 7 0 OID s 3 0 ANTENNA OID
ANTTYPE s 13 0 ANTENNA ANTTYPE ANTFUNCTION s 13 0 ANTENNA
ANTFUNCTION HORDIMENSION s 6 0 ANTENNA HORDIMENSION
VERTDIMENSION s 6 0 ANTENNA VERTDIMENSION ACELPOL s 3 0
ANTENNA ACELPOL ANTDIREC s 5 0 ANTENNA ANTDIREC TRACK
T 2 0 OID s 5 0 TRACK OID PLANETRACK s 12 0 TRACK PLANETRACK
SIGNAL T 3 0 OID s 5 0 SIGNAL OID SCONPWR s 12 0 SIGNAL SCONPWR
SNCONPWR s 12 0 SIGNAL SNCONPWR

Figure 28. The Relational .EWIROODB.cat File

EWIROODB 3

Antenna 8 658824 11
TEMP s 0 0
OID s 0 0
ANTTYPE s 0 0
ANTFUNCTION s 0 0
HORDIMENSION s 0 0

VERTDIMENSION s 0 0

ACELPOL s 0 0
ANTDIREC s 0 0
Track 3 823808 1

TEMP s 0 0
OID s 0 0
PLANETRACK s 0 0
Signal 4 829328 1

TEMP s 0 0
OIDsOO
SCONPWR s 0 0

SNCONPWR s 0 0

Figure 29. The Object-oriented .EWIROODB.cat File

The SQL queries are executed in the relational interface and the system "accepts"

only the .<database>.cat file that should have been created by the relational interface. This

54

did not happen since the existing .<database>.cat file is the file that was created by the

object-oriented interface. Therefore, the SQL queries can not be executed.

A temporary solution (described in detail in the next section) is:

• First run the relational interface to create the relational .<database>.cat file. Data
does not need to be loaded.

• Rename the relational .<database>.cat file and keep it in the same directory.

• Run the object-oriented interface for loading schema and records files.

• Remove the object-oriented .<database>.cat file and rename again the renamed
relational .<database>.cat file to its original name.

• Run the relational interface and execute the SQL queries.

The two databases must be named the same in both interfaces, in order for the

system to correlate the loaded schema and data in the object oriented interface with the SQL

queries in the relational interface.

Another problem is that the two record files (EWIROODB.r, see Figure 16 and 27),

have different forms concerning the names of relations (relational file), and objects (object-

oriented file): The names of the relations are in capitalized letters, while the names of the

objects have only the first letter capitalized. In order to take advantage of the benefits of

data sharing, these two files should be identical.

B. DESCRIPTION

As mentioned in Chapter IV, in order for a user to log into the M2DBMS, he must

use the mdbs account in the Naval Postgraduate School's Laboratory for Database Systems

Research on the Multi-Backend Database Supercomputer. Logging into terminal dbll with

the mdbs account will take the user into the default directory of dbll/u/mdbs.

First Step: Run the relational interface to create the relational .EWIROODB.cat file:

55

At this point, the user should enter the run command (for example, tbg for selection

of one of the existing versions of the relational interfaces). After the appropriate initiation

the system prompt asks the user to select the desired interface:

Select an operation:
(a) - Execute the attribute-based/ABDL interface
(r) - Execute the relational/SQL interface
(h) - Execute the hierarchical/DL/1 interface
(n) - Execute the network/CODASYL interface
(f) - Execute the functional/DAPLEX interface
(o) - Execute the Object-Oriented interface

(x) - Exit to the operating system

The user, in order to proceed into the relational interface, should enter (r):

Select-> r

At this point the system will prompt the user for the operation desired: Select option (1) to

load e new database, or (p) to process a database that already is resident in the system:

Enter type of operation desired
(I) - load new database
(p) - process existing database
(x) - return to the MLDS/MBDS system menu

The user, in order to load a new database, should enter (1):

Action — > I

At this point the system will prompt the user for the name of the database to be

loaded and the name EWIROODB is entered:

Enter name of database —> EWIROODB

After the user has entered the database name, the system prompt will ask the user to

select the mode of input that is desired for loading the schema:

Enter mode of input desired
(f) - read in a group of creates from a file
(t) - read in creates from the terminal

(x) - return to the main menu

The user, in order to load the database schema file, should enter (f):

56

Action — > f

After the user has entered the mode (f), the system prompt will ask the user to enter

the name of the schema file and the name EWIROODBsqldb is entered:

What is the name of the CREATE/QUERY file —> EWIROODBsqldb

At this point the user must select the (x) options to return to the MLDS/MBDS

system menu and to exit to the operating system. The first step completed, and the

relational .EWIROODB.cat file has been created.

Second Step: Rename the relational <database>.cat file and keep it in the same directory:

mdb11/u/mdbs/werre/run-5> mv .EWIROODB.cat .rEWIROODB.cat

Third Step: Run the object-oriented interface for loading schema and records files:

At this point the user runs the object-oriented interface for loading the database

schema (EWIROODL file, see Figure 24) and records (EWIROODB.r file, see Figure 27)

files as described in Chapter IV, Section B, and after that the user must select the (x) option

to return to the MLDS/MBDS system menu.

Fourth Step: Remove the object-oriented .<database>.cat file and rename again the

renamed relational .<database>.cat file to its original name:

mdb11/u/mdbs/werre/run-5> mv .rEWIROODB.cat .EWIROODB.cat

This renaming must be done in another UNIX window, since we have not exited the

MDBS system.

Fifth Step: Run the relational interface and execute the SQL queries:

Select an operation:
(a) - Execute the attribute-based/ABDL interface
(r) - Execute the relational/SQL interface
(h) - Execute the hierarchical/DL/l interface
(n) - Execute the network/CODASYL interface
(f) - Execute the functional/DAP LEX interface
(o) - Execute the Object-Oriented interface

57

(x) - Exit to the operating system

The user, in order to proceed into the relational interface, should enter (r):

Select-> r

At this point the system will prompt the user for the operation desired: Select option

(1) to load e new database, or (p) to process a database that already is resident in the system:

Enter type of operation desired
(I) - load new database
(p) - process existing database
(x) - return to the MLDS/MBDS system menu

At this point the user in order to process the old database should enter (p):

Action ~->p

At this point the system will prompt the user for the name of the existing database,

and the name EW1ROODB is entered:

Enter name of database —-> EWIROODB

At this point the user runs the queries (see Figure 13 EWIROODBsqldb File), in

order to retrieve the desired results, as described in Chapter III, Section B.

58

VI. CONCLUSION

The purpose of this thesis is to define and describe a cross model access in the

M2DBMS. Cross model access has two major benefits, data sharing and resource

consolidation. This thesis has described the effort for accessing a object-oriented database

with transactions written in the SQL language of the relational database. In order to test the

relational and object-oriented interfaces and to implement the cross model access, two small

databases, each called EWIROODB, were used. A temporary solution was found with the

use of the relational .<database>.cat file, that was created in the relational interface, and the

object-oriented EWIROODB database was accessed with transactions written in SQL in

the relational interface.

A suggestion for future research is to fix the problem of the .<database>.cat file. In

this case the .<database>.cat file that is created in the object-oriented interface would be

identical with the .<database>.cat file that is created in the relational interface, and the cross

model access would be possible without the need for "hiding" and renaming the latter file.

Modifications must be done in the o_catalog.c file that creates the object-oriented

.<database>.cat file. The o_catalog.c file (Appendix) is resident in the subdirectory

dbll/u/mdbs/master/CNTRL/TI/LangIF/src/Obj/Lil.

Another suggestion for future research is that the system should be able to complete

the cross model access by running only one interface; the object-oriented, since we start

with that interface loading the object-oriented database. This is not possible now, and we

need to shift to the relational interface to execute the queries.

Another problem is that the two record files (EWIROODB.r, see Figure 16 and 27),

have different formations concerning the names of relations (relational file), and objects

(object-oriented file): The names of the relations are in capitalized letters, while the names

of the objects have only the first letter capitalized. In order to take advantage of the benefits

of data sharing, these two files should be identical.

59

Another limitation of the system for the cross model access, is that we are not able

to use inheritance in the object oriented database, since in the object oriented schema the

inherit class is added to the object using OID_Class. The relational interface does not allow

underscores to be used in defining attributes in a table. The attributes of the oblect and the

relational schema table must match exactly.

60

APPENDIX

/*head 1.1;
access ;
symbols ;
locks ; strict;
comment @ * @;

1.1
date 93.07.16.11.18.45; author cs4322; state Exp;
branches;
next ;

desc
@@

1.1
log
@Initial revision

@
text
@l
* SHeader: o_catalog.c,v 0.0 92/10/29 22:28 mdbs Exp $
* $Source: /u/mdbs/rich/CNTRL/TI/LangIF/src/Obj/Lil/o_catalog.c,v $
* $Log: o_catalog.c,v $
* Revision 0.0 92/10/29 22:28 mdbs
* creation
*

*/

#include <stdio.h>
#include <licommdata.h>
#include <ool.h>
#include "flags.def'

o_save_catalogs()
{

struct obj_dbid_node *db_ptr, *next_db;
struct ocls_node *cls_ptr;
struct o_supcls_node *supcls_ptr;
struct o_subcls_node *subcls_ptr;

61

struct oattrnode *attr_ptr;
FILE »fid;

#ifdefEnExFlag
printf("Enter o_save_catalogs\n");

#endif

/* now save each existing 00 database Schemas into a separate file
named '.DBname.cat' and free up their associated memory */

db_ptr = dbs_obj_head_ptr.dn_obj;

while (db_ptr)
{
strcpy(ODBCat, ".*');
strcat(ODBCat, db_ptr->odn_name);
strcat(ODBCat, ".cat");
fid = fopen(ODBCat, "w");

/* print database name and number of classes */
fprintf(fid,"%s %d\n", db_ptr->odn_name, dbjptr->odn_num_cls);

cls_ptr = db_jptr->odn_first_cls;
while (cls_ptr)

{
/* now print class name, # supclasses, # subclasses, # attributes */
fprintf(fid,"%s %d %d %d\n",

cls_ptr->ocn_name, cls_ptr->ocn_supcls, cls_ptr->ocn_subcls,
cls_ptr->ocn_num_attr);

supcls_ptr = cls_ptr->ocn_first_supcls;
while (supclsjptr)
{
/* print super class name(s) and free up supclass node */
fprintf(fid, "%s\n", supcls_ptr->osn_name);
supclsjptr = supcls_ptr->osn_next_supcls;
free(cls_ptr->ocn_first_supcls);
cls_ptr->ocn_first_supcls = supcls_ptr;

}

subcls_ptr = cls_ptr->ocn_first_subcls;
while (subcls_ptr)
{

62

/* print subclass name(s) and free up subclass node */
fprintf(fid, "%s\n", subclsjptr->osn_name);
subcls_ptr = subcls_ptr->osn_next_subcls;
free(cls_ptr->ocn_first_subcls);
cls_ptr->ocn_first_subcls = subcls_ptr;

}

attrjptr = cls_ptr->ocn_first_attr;
while (attr_ptr)

{
/* print attribute name, type, length, key-flag and free up attr node*/
fprintf(fid,"%s %s %d %d\n", attr_ptr->oan_name,

attr_ptr->oan_type, attrjptr->oan_length, attr_ptr->oan_key_flag);
attr_ptr = attr_ptr->oan_next_attr;
free(cls_ptr->ocn_first_attr);
cls_ptr->ocn_first_attr = attr_ptr;

}

cls_ptr =cls_ptr->ocn_next_cls;
free(db_ptr->odn_first_cls);
db_ptr->odn_first_cls = cls_ptr;

} /* end while cls_ptr */

/* free up db node */
next_db = db_ptr->odn_next_db;
free(dbjptr);
db_ptr = next_db;
fclose(fid);

} /* end while db_ptr */

dbs_obj_head_ptr.dn_obj = NULL;

#ifdefEnExFlag
printf("Exit o_save_catalogs\n");

#endif

} /* end o_save_catalogs */

o_load_catalog(dbname)

63

char *dbname;

{
/* creates an 00 database schema by reading from the stored file

'.dbname.cat' and links it to the existing list of Schemas. */
struct obj_dbid_node *d_ptr,

*obj_dbid_node_alloc();
struct ocls_node *cls_ptr,

*ocls_node_alloc();
struct o_supcls_node *supcls_ptr,

* o_supcls_node_allocO;
struct o_subcls_node *subcls_ptr,

*o_subcls_node_alloc();
struct oattrjiode *attr_ptr,

* oattr_node_alloc();
int cl, i; /* counters */
FILE *fid;

#ifdefEnExFlag
printf("Enter o_load_catalog\n");

#endif

strcpy(ODBCat,".");
strcat(ODBCat, dbname);
strcat(ODBCat, ".cat");
fid = fopen(ODBCat,V);

/* printf("ODBCat = %s\n", ODBCat); */

d_ptr = obj_dbid_node_alloc();

d__ptr->odn_num_cls = 0;
d_ptr->odn_first_cls = NULL;
d_ptr->odn_curr_cls = NULL;
d_ptr->odn_next_db = dbs_obj_head_ptr.dn_obj; /* insert in front */
dbs_obj_head_ptr.dn_obj = d_ptr;

/* read in database name and number of classes */
fscanf(fid, "%s %d", d_ptr->odn_name, &d_ptr->odn_num_cls);

if (cuser_obj jptr)
cuser_obj_ptr->ui_li_type.li_ool.oi_curr_db.cdi_db.dn_obj = d_ptr;

for (cl = 1; cl <= d_ptr->odn_num_cls; cl++)

64

{
if (d_ptr->odn_first_cls = NULL)

{
d_ptr->odn_first_cls = ocls_node_alloc();
d__ptr->odn_curr_cls = djptr->odn_first_cls;
cls_ptr = d__ptr->odn_first_cls;

}
else

{
d_ptr->odn_cnrr_cls->ocn_next_cls = ocls_node_alloc();
d_ptr->odn_curr_cls = d_ptr->odn_curr_cls->ocn_next_cls;
cls_ptr = d_ptr->odn_curr_cls;

}

/* read in class name, # super classes, # subclasses, # attributes */
fscanf(fid, "%s %d %d %d ", cls_ptr->ocn_name, &cls_ptr->ocn_supcls,

&clsjptr->ocn_subcls, &cls_ptr->ocn_num_attr);

cls_ptr->ocn_first_supcls = NULL
clsjptr->ocn_curr_supcls = NULL
cls_ptr->ocn_first_subcls = NULL
clsjptr->ocn_curr_subcls = NULL
cls_ptr->ocn_first_attr = NULL;
cls_ptr->ocn_curr_attr = NULL;
cls_ptr->ocn_next_cls = NULL;

for (i = 1; i <= cls_ptr->ocn_supcls; i++)

{
if (cls_ptr->ocn_first_supcls = NULL)

{
cls_ptr->ocn_first_supcls = o_supcls_node_alloc();
clsjptr->ocn_curr_supcls = cls_ptr->ocn_first_supcls;
supclsjptr = cls_ptr->ocn_first_supcls;

}
else

{
cls_ptr->ocn_curr_supcls->osn_next_supcls = o_supcls_node_alloc();
cls_ptr->ocn_curr_supcls =

cls_ptr->ocn_curr_supcls->osn_next_supcls;
supcls_ptr = clsjptr->ocn_curr_supcls;

}
fscanf(fid, "%s ", supcls_ptr->osn_name); /* super class name */

65

supcls_ptr->osn_supcls = NULL;
supcls_ptr->osn_next_supcls = NULL;

} /* end for i <= cls_ptr->ocn_supcls */

for (i = 1; i <= cls_ptr->ocn_subcls; i++)

{
if (cls_ptr->ocn_first_subcls = NULL)

{
cls_ptr->ocn_first_subcls = o_subcls_node_alloc();
cls_ptr->ocn_curr_subcls = cls_ptr->ocn_first_subcls;
subclsjptr = clsjptr->ocn_first_subcls;

}
else

clsjptr->ocn_curr_subcls->osn_next_subcls = o_subcls_node_alloc();
cls_ptr->ocn_curr_subcls =

cls_ptr->ocn_curr_subcls->osn_next_subcls;
subcls_ptr = cls_ptr->ocn_curr_subcls;

fscanf(fid, "%s ", subcls_prr->osn_name); /* subclass name */
subcls_ptr->osn_subcls = NULL;
subcls_ptr->osn_next_subcls = NULL;

} /* end for i <= cls_ptr->ocn_subcls */

for (i = 1; i <= cls_ptr->ocn_num_attr; i++)

{
if (clsjptr->ocn_frrst_attr = NULL)

{
cls_ptr->ocn_first_attr = oattr_node_allocO;
cls_ptr->ocn_curr_attr = clsjptr->ocn_first_attr;
attr_ptr = cls_ptr->ocn_first_attr;

}
else

cls__ptr->ocn_curr_attr->oan_next_attr = oattr_node_allocO;
cls_ptr->ocn_curr_attr =

cls_ptr->ocn_curr_attr->oan_next_attr;
attr_ptr = cls_ptr->ocn_curr_attr;

}
attr_ptr->oan_next_attr = NULL;

/* read in attr name, attr type, attr length, key flag */

66

fscanf(fid, "%s %s %d %d", attr_ptr->oan_name, attrjptr->oan_type,
&attr_ptr->oan_length, &attr_ptr->oan_key_flag);

} /* end for i <= cls_ptr->ocn_num_attr */

} /* end for cl <= d_ptr->odn_n\rm_cls */

fclose(fid);
link_sup_sub_classes(d_ptr->odn_first_cls);

#ifdefEnExFlag
printf("Exit o_load_catalog\n");

#endif

} /* end o_load_catalog */

67

68

LIST OF REFERENCES

1. Elmasri, R. and Navathe, S.B., Fundamentals of Database Systems, The
Benjamin/Commings Publishing Company, Inc., 1994.

2. Demurjian, S.E., The Multi-lingual Database System- A Paradigm and Test-bed for
the Investigation of Data-model Transformations, Data-language Translations and
Data-model Semantics, 1987.

3. Cardenas A., Heterogeneous Distributed Database Management: The HD-DBMS,
1987.

4. Dwyer P., Larson J, Some Experiences with a Distributed Database Testbed System,
1987.

5. Markowitz V., and Ritter O., Characterizing Heterogeneous Molecular
BiologyDatabase Systems, 1995

6. Heiler S., Siegel M, Zdonic S., Heterogeneous Information Systems: Understanding
Integration,

7. Abdellahif A., and Litwin W., Multidatabase Interoperability, 1986

8. Hsiao D., Kamel M., The Multimodel, Multilingual Approach to Interoperability of
Multidatabase Systems

9. Hsiao D., Interoperating and Integrating the Multidatabase and Systems, 1995

10. Bourgeois, P.A., The Instrumentation of the Multimodel and Multilingual User
Interface, Master's Thesis, Naval Postgraduate School, Monterey ,CA,1993.

11. Darwen D., Relations Database Writings 1989-1991.

12. Edwards R, Scrivener D., Reactivation of the Relational Interface in M^DBMS and
Implementation of the EWIR Database, Master's Thesis, Naval Postgraduate
School, Monterey, California, 1996.

13. Lee, J.J. and McKenna, T.D., The Object-Oriented Database and Processing of
Electronic Warfare Data, Master's Thesis, Naval Postgraduate School, Monterey,
California, 1996.

14. Codd E., A Relational Model for Large Shared Data Banks, casm, 1970

69

15. Blaha J., Eddy F., Lorensen W., Premerlani W., Rumbaugh J., Object-Oriented
Modeling and Design, 1991

16. Meeks A. P., The Instrumentation of the Multibacend Database System, Master's
Thesis, Naval Postgraduate School, Monterey, California, 1993.

70

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library 2
Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

3. Chairman, Computer Science Department 1
Naval Postgraduate School
Monterey, California 93943-5000

4. Dr. C. Thomas Wu 2
Code CS/Wu
Computer Science Department
Naval Postgraduate School
Monterey, California 93943-5000

5. Dr. David K. Hsiao 1
Code CS/Hs
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

6. Embassy of Greece 2
Naval Attache
2228 Massachusetts Avenue, N. W.
Washington, D.C. 20008

7. Lt Achilles Anastasopoulos 2
Agias Zonis 77
Athens 11256
Greece

71

