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ABSTRACT 

A multi-disciplinary research project is being undertaken at NPS to develop a semi- 

autonomous robotic system to detect and clear land mines and Unexploded Ordnance (UXO). 

The robotic system under development consists of a land vehicle, an aerial vehicle, and a 

ground-based control station. Reliable communication between these three stations is 

needed. A traditional wire-based network requires that the vehicles be tethered and severely 

limits the mobility of the vehicles. A wireless Local Area Network (LAN) is proposed to 

provide communications between the control station and the vehicles. 

The objective of this thesis is to develop the physical (hardware) and logical 

(software) architecture of a wireless LAN that accommodates the needs of the mine/UXO 

project. Through an analysis of wireless modulation techniques, a market survey of wireless 

devices, and a field testing of wireless devices, a wireless LAN is designed to meet the 

technological, performance, regulation, interference, and mobility requirements of the 

mine/UXO project. Finally, the wireless communication protocols and the development of 

an error-free application protocol (specified by a FSM model and implemented in ANSI C 

code using Windows socket network programming) completes the wireless LAN 

implementation. 
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I. INTRODUCTION 

A.       BACKGROUND AND MOTIVATION 

Wireless communications and mobile data applications are currently in an evolving 

stage. This research focuses on the design and development of a Wireless Data Network. 

This network will provide reliable, error free communications for the Unexploded Ordnance 

(UXO) /mine detection project [Ref. 9]. The UXO/mine detection and clearing project is a 

multi-disciplinary robotics project. The main objective of the project is to investigate and 

develop a semi-autonomous robot system for land mine/UXO searching and processing tasks 

in humanitarian operations. The proposed robot system consists of a land vehicle, an aerial 

vehicle, and a ground-based control station, coordinated to solve difficult tasks of mine 

searching and processing. The ground-based station controls and coordinates the overall 

operation. It also serves as a network manager for the communications among the three units. 

It has the ability to retrieve data, gathered by the two semi-autonomous vehicles, on demand, 

process the data and make decisions concerning the searching operation. The role of the land 

vehicle will be : detecting mines and UXOs in a small area, clearing/neutralizing mines or 

marking mine locations, and confirming the absence of them in an area if they do not exist. 

It takes remote commands concerning the search patterns (modes) and the operation in 

general from the ground control station and passes the search result data to the ground-based 

control station on demand. The aerial vehicle will perform: global surveying, assessment of 

terrain conditions, and guaranteeing a communication link between ground-based control 

station and the land vehicle for distances out of the Line Of Sight (LOS). 

The objective of this thesis research is to provide transparent, reliable 

communications for the coordinated units. Because of the terrain topology and the nature of 

the UXO/mine detection tasks a wireless data link approach has been chosen. The group of 

the three coordinated units can be thought as a stand-alone wireless Local Area Network 

(LAN) composed of three stations. 



B.       SCOPE OF THE THESIS 

To serve the thesis objectives this research is subdivided in two different, but closely 

related tasks. 

Firstly, this research investigates the hardware organization for the wireless network 

that will support the UXO project. It defines the requirements that should be met and it 

determines the technology alternatives, products, and configurations providing a solution to 

this network. As with any engineering activity, the goal of the research is to find a solution 

that meets the desired requirements at the least cost. To accomplish this task several 

experiments and laboratory tests will be conducted. These tests try to imitate the true 

network's performance under various experimental conditions. A wireless network 

consisting of two wireless nodes simulates the true UXO wireless network. The AirEZY1 

wireless devices will be used as the Network's Access Points (NAP) to implement this 

point-to-point wireless data link. These wireless radio links use Direct Sequence Spread 

Spectrum (DS-SS) technology and intend to provide the wireless communications solution 

for the first steps of the UXO detection project. The main purpose of the experiments was 

to indicate which parameters are affecting network performance the most, and to verify that 

the existed hardware (basically the AirEZY radio links) offers proper functionality to the 

wireless network. 

Secondly, this research develops the communication protocols that will be used by 

the wireless network. Especially, the application protocol will be designed, specified, and 

verified for error free operation. The protocol will be implemented in ANSI C code by the 

use of Windows sockets (Winsock) network programming interface. A socket is the basic 

building block for point-to-point communications in any network domain. Sockets are 

actually the endpoints for every communication path between a transmitter and a receiver. 

They can either be stream - connection oriented sockets, or datagram - connectionless 

sockets. Datagram sockets, which implement the User Datagram Protocol (UDP) as the 

transport entity, will provide bidirectional flow of data between the stations of the wireless 

1 Wireless data link transceivers manufactured by OTC Telecom Inc. 
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network that supports the UXO detection project. The UXO communications protocol 

consists of two Winsock applications, a client and a server, communicating via datagram 

(UDP) sockets. 

C.       THESIS ORGANIZATION 

The thesis has six chapters. Chapter II gives some basic background knowledge about 

wireless communication networks, their limitations in achieving optimal performance and 

the protocols that run under this type of networks. Chapter El describes the UXO detection 

project requirements and indicates the proposed solutions to fulfill these requirements. 

Chapter IV presents the proposed wireless network protocols. The application protocol is 

being designed using the Communicating Finite State Machine (CFSM) model and 

verified with the global reachability analysis method for operation without deadlocks and 

unspecified receptions. Chapter V presents the code implementation of the application 

protocol, using the Windows Sockets network programming interface. Chapter VI concludes 

the thesis with a research review and suggestions for future work. 





H. BACKGROUND ON WIRELESS NETWORKS 

This Chapter specifies the main differences between wired and wireless LANs and 

briefly indicates the important properties of wireless communications. This knowledge is 

necessary to understand the limitations in the UXO network implementation and to provide 

the significance for each of the network parameters that are measured and tested in the 

experiments described in Chapters II and M. 

A.       WIRELESS LOCAL AREA NETWORKS (LANs) 

In the last few years a new type of Local Area Network (LAN) has appeared, the 

wireless LAN. This new type of LAN provides an alternative to the traditional LANs based 

on twisted pair, coaxial cable, or optical fiber. Actually, the idea of wireless communications 

is not so new. The first attempt to merge network technologies and radio communications 

began in 1971 by Norm Abramson, at the University of Hawaii, as a research project called 

ALOHANET (funded by ARPA). The ALOHANET system enabled computer sites at seven 

campuses spread out over four islands to communicate with a central computer on Oahu 

island without using existing, unreliable, expensive phone lines. Later on the U.S. military 

embraced the technology and the Defense Advanced Research Projects Agency (DARPA) 

began testing wireless networking to support tactical communications in the battlefield. This 

research lead to the development of the initial Ethernet technology. However, the advent of 

the wired Ethernet technology steered many commercial companies away from radio-based 

networking components, towards the production of Ethernet related products. Recently, the 

need for wireless communications has reemerged and the wireless LAN market is currently 

in an evolving stage. Nowadays, most networking vendors develop wireless products and 

most computer companies scramble to develop products that support wireless connectivity 

methods. 

Generally, the wireless LAN serves the same purpose as that of a wired or optical 

LAN: to convey information among the devices attached to the LAN. However, several 

advantages that wireless communications provide to the users make wireless network 

implementations more attractive to modern applications and attracts the interest of many new 



network investments. In general, the lack of physical cabling, to tie down the location of a 

node on the network, makes wireless LANs much more flexible than traditional wired LANs. 

The main advantages that a wireless LAN implementation offers to the users can be 

summarized by the following: 

1. Wireless LANs offer increased mobility to the users. 

2. Wireless network's installation, is much easier than that of a traditional wired 

LAN, particularly in difficult-to-wire areas. 

3. Installation time is also reduced. The installation of cabling is one of the most 

time-consuming activities in wired networks. The installation of the experimental 

network that models the UXO wireless network took on average about five 

minutes. 

4. Wireless networks, under particular circumstances can also be more reliable. Cable 

faults, moisture metallic conductors and imperfect cable splices are some examples 

of problems usually occurring in wired networks. These and other problems, 

mainly associated with cabling, are major problems that interfere with the user's 

ability to utilize a wired LAN. In some cases these problems can bring a whole 

network down. The lack of cabling reduces these problems in wireless LANs. 

On the other hand, wireless LAN implementation also faces some problems, mainly 

associated with the nature of radio signal propagation through the air. Only the problems that 

can affect the UXO's wireless network implementation are mentioned in this research. The 

main problems associated with a wireless LAN implementation are summarized as follows: 

1. Wireless transmissions are usually very error prone. Wireless networks lose 

packets frequently. 

2. Wireless networks have to overcome the problem of radio signal interference. 

3. Wireless networks are limited by the operating distance between stations. In the 

wired world there is no such limitation. Usually, signals propagating through wired 

medium span large distances before attenuation occurs. Air waves are highly 

affected by phenomenon like power attenuation and fading. These phenomenon 

depend on the frequency content of the wireless transmission. Higher frequencies 



attenuate faster, resulting smaller operating distances. Unfortunately, these 

frequencies carry higher bandwidth, providing a good solution when high 

performance is needed. 

5.  Wireless networks face a problem associated with the lack of standards. There 

exist many standards governing protocols and specifications for wired LANs, but 

just a few for wireless LANs. The lack of standards for wireless networks also 

causes a system interoperability problem. Products from one vendor will not 

interoperate with those from a different company. The Institute of Electrical and 

Electronic Engineers (IEEE) 802 working group, responsible for the development 

of LAN standards began operations on late eighties to develop a wireless LANs 

standard, the 802.11. Eventually, IEEE 802.11 working group plans to issue the 

final form of the 802.11 standard for wireless LANs by 1997. After that wireless 

LAN vendors should embrace the directions of the 802.11 standard. This research 

follows the principles and the rules of the latest draft of the 802.11 in the areas of 

frequency usage, transmission and modulation technologies and the protocols that 

implement the wireless protocol stack. The analysis of the UXO project needs in 

Chapter in is based on the 802.11 standard guidelines and on the Federal 

Communications Commission provisions for the wireless microwave band usage. 

Wireless LANs can be implemented in two ways, depending on the user's needs and 

the topology of the area to be covered. They can either be connected to an existing wired 

LAN (i.e., connected to the backbone of an ETHERNET or FDDI LAN) as an extension, or 

can form the basis of a new network. Figure 1 presents the two possible configurations. 

The nature of the UXO/Mine searching operations as well as the topology of the mine 

scattered lands suggests the later implementation. No connection with an existing network 

should be assumed. The network should be easy to install in the difficult-to-wire areas of the 

UXO project and should provide true mobility to the three stations. This implies a stand 

alone wireless network configuration as seen in Figure 2. 
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Figure 2 : The UXO detection stand alone wireless network 



B.      WIRELESS LANs TRANSMISSION TECHNIQUES 

Wireless LANs can be implemented using one of three transmission techniques: 

infrared, narrowband microwave, and spread spectrum. Each technique has advantages and 

disadvantages depending on the particular needs of the wireless network that employs it. 

Infrared LANs use infrared light signals to transmit data. There are two types of 

infrared light LANS: diffused and point-to-point. Diffused infrared is the technology used 

in products like remote controls for televisions and VCRs. The difference when this 

technology is implemented in networks is the usage of higher power levels and the use of 

communications protocols to transport digital data. Communication signals are reflected off 

of some types of surfaces (usually the ceiling) and by which data can travel from transmitters 

to receivers allowing a small chance of mobility. Typical data rates of this type of networks 

are 1-3 Mbps. Due to geometry, diffused infrared stations are limited in separation distance, 

typically 30-50 ft. This range is also limited by the reduction of the reflecting surface height. 

Lower ceilings result in smaller operating ranges between stations. Obviously, because this 

technology depends on reflective surfaces diffused infrared will not operate outdoors. 

The other technique that infrared LANs can use is the point-to-point installation. Here, 

the devices maintain direct LOS links with one another. A simple implementation interface 

example is the so called "point and beam" link between a computer and a printer, or other 

peripherals, exchanging data using a direct infrared link. A more advantageous example of 

this technique is the implementation of a whole infrared LAN system of computers that uses 

point to point links. Advanced protocols like the token ring (IEEE 802.5) usually regulate 

a fair access on the medium in such kind of LANs. One company, the InfraLAN Technology, 

Inc. is currently producing devices that implement this interface. The focused infrared beams 

can result in throughput up to 4 or 16 Mbps with these devices. This is the only wireless 

LAN system on the market that can support that type of performance nowadays. The system 

is also extremely secure for indoor environments. But again, the main disadvantage is that 

as with every other infrared technology, it does not accommodate mobility. Another 

disadvantage, for all infrared technologies is that infrared transmissions can be very easily 



obstructed, since light waves cannot pass through solid objects. Their wavelength is in the 

range of micro meters leading to a quick attenuation problem. For all these reasons this 

technology is not considered as a solution to the wireless network that will support the UXO 

project. 

Narrowband microwave is another technology proposed by some vendors to 

implement wireless LANs. Long distance telephone carriers were first to use this technology. 

They used microwave towers as transmission repeaters to overcome cabling limitations. This 

technology is not really advantageous for LAN implementations, but it is rather useful for 

interconnection between LANs. Microwave dishes are used on both ends of the 

communication link. One disadvantage is that the dishes must be in LOS to transmit and 

collect the microwave signals. Another major drawback to the use of narrowband microwave 

is that the frequency band used requires licensing by the FCC. Once a license is granted for 

a particular location, that frequency band cannot be licensed to anyone else, for any purpose, 

within a 17.5 mile radius. These limitations prevent the use of this technology for 

implementing the wireless UXO project network. 

The next technology discussed, Spread Spectrum, appears to be the most advantageous 

technology for wireless LAN implementations. This is the most widely used transmission 

technique nowadays. It was initially developed by the military (during World War II) to 

avoid jamming and eavesdropping of the radio signals, and now is being exploited for 

commercial and industrial purposes. As the name implies the goal in such a system is to 

purposely spread the spectrum of the transmitted signal over a wider range of frequencies 

than is required by the bandwidth of the data alone. This operation decreases the transmitted 

Power Spectral Density (PSD) to an extent that it is below the thermal noise level of any 

unfriendly receiver. Actually, the signal might look just like noise. This is in contrast to 

technologies using a narrow bandwidth of frequencies. In narrowband technologies, the 

power of the signal is concentrated in a small portion of the spectrum, which makes it easier 

to detect and identify the signal and perform jamming or interference operations. In order to 

classify a system as a spread spectrum system, we require that the system's transmitted 

energy occupy a bandwidth much larger than and relatively independent of the information 

10 



bit rate. There exist three major methods to spread a signals spectrum : Direct Sequence 

Spread Spectrum (DS-SS), Frequency Hopping Spread Spectrum (FH-SS), and a hybrid 

Spread Spectrum consisting of some combination of DS and FH. 

Direct sequence systems spread the spectrum of a modulated signal by directly 

modulate that signal a second time using a wideband spreading waveform. The simplest form 

of DS-SS employs Binary Phase Shift Keying (BPSK) as the basic modulated signal. A 

general expression for the BPSK waveform is: 

<p(t) = A p(t) cos fct, 

where p(t) is a binary switching function with possible states ± 1. This signal is our message 

signal containing the data bits we like to transmit. The data bit rate/fc of the BPSK signal is 

\ITb. The PSD of this signal is given by the following equation: 

SBPSK (/) = ^T [sinc2 Uf+fc )Tb]+sinc2 [(/ - fc )Tb]] 

This signal is modulated again by multiplication with a spreading waveform c(t). The 

resulting DS-SS signal is: 

X(t) = A c(t)p(t) cos /ct, 

where c(t) is the spreading waveform. A common choice1 for c(t) is that of a pseudo random 

noise (PN) binary (two-phase) sequence having values ± 1 usually called "chips." The 

number of chips within a PN code between repeating-sections of the code is called the period 

Tch of this code. The resulting DS-SS signal has now a data or "chip" rate of fch= 1/Tch If 

we have K chips (K +1 and -1 distinct values) per bit, where K is an integer greater than one, 

1 Other two-phase sequences also exist like Gold-codes and Kasami-codes. 

11 



often called the "processing gain" of the DS system, then: 

Th = KTch 

What appears as a multiplication, of the BPSK and the c(t) waveform, in the time domain 

is actually a convolution operation of the PSDs of the two signals in the frequency domain. 

As a consequence of the convolution operation the bandwidth of the resulting DS-SS signal 

is equal to the sum of the bandwidth of the two convoluted waveforms. The PSD of the 

resulting DS-SS signal is: 

sDS (f>^A ^2 [ W — ]+ sincl i <f-fJ — n Ub 2K K K 

The DS-SS operation has basically two effects on the BPSK signal: 

1. It spreads the signal's null-to-null bandwidth: BnnDS = K BnnBPSK 

2. It reduces the maximum PSD level: SDS (fj = 1/ K SBPSK (£) 

These are the two basic properties of the DS-SS modulation. To visualize these 

properties Figure 3 presents the PSDs of a BPSK signal and the resulting DS-SS signal when 

a PN sequence with three chips is used (K = 3) for spreading. Observation of Figure 3 shows 

that the effect of the direct sequence modulation is to spread the bandwidth of the transmitted 

signal by a factor of 3, and that this spreading operation reduces the level of the PSD by a 

factor of 3. In actual systems the spreading factor is typically much larger than 3. The second 

plot presents the same quantities in a semi-log scale, as it would appear in a power spectrum 

analyzer. The plots where obtained using MATLAB2 ver. 4.2c. 

2 MATLAB™ "User's Guide for Personal Computers," The MATWORKS, Inc. 
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Figure 3 : The PSD spreading effect of a DS-SS system with a gain factor of 3 

Phase synchronization between transmitter and receiver is assumed, not only for the 

BPSK waveform but also for the spreading waveform. At the receiver end, proper 

synchronization and multiplication of the spreading waveform, with the received signal, is 

called despreading, and is a critical function in spread spectrum systems. Interference and 

noise rejection in the receivers antenna is accomplished by this desreading operation. The 

multiplication of the received signal with the spreading code (despreading of data signal) also 

performs a spreading operation to the noise present to our signal. The noise and interference 

level is thus reduced significantly. Since the noise and interference energy is spreaded over 

a bandwidth much larger than the data signal's bandwidth, most of this unwanted energy can 

be rejected by a selective filter. [Ref. 19, 21] 

In computer networks visualization of bitwise signal operation is more important. 

What actually happened by multiplying the BPSK modulated signal with the PN code is that 

each data bit of the original signal is mapped into a pattern of "chips" by the transmitter. At 

the receiver end the chips are mapped back into a bit, recreating the original data. This is 

achieved by multiplying again the incoming signal with the same spreading PN code ( c(t) 

waveform) and with the carrier coso)ct. Figure 4 presents a this bitwise operation when two 

bits are transmitted from a station that uses a PN code with K =7. 
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Figure 4 : Bitwise visualization of DS-SS modulation 

In the most simple case a complete PN sequence is multiplied with every single data 

bit of the signal to be transmitted. Using a bipolar notation a binary 0 is represented as -1 and 

a binary 1 as a +1. Thus the PN sequence of Figure 4, represented as a sequence of chips is: 

+1+1+1+1_1+1-1_1. After cross correlation (multiplication) with the first information bit, 

which is a 1 bit, the same sequence is transmitted, and after cross correlation with a 0 bit (-1 

in polar) the opposite sequence i.e: -1-1-1-1+1-1+1+1 is transmitted. In the receiver end cross 

correlation of the coded signal with the same PN code regenerates the bits of the original data 

signal. A resulting +1 means a 1 bit was transmitted, a -1 means a 0 bit was transmitted and 

all the irrelevant or interfering bits that give a 0 bit value as a result are just ignored by the 

receiver. 

The PN code signal referred to as m-sequence in communications literature, is a noise 

like signal, called pseudo random because it is not actually random. Theoretically, at each 

equally spaced interval, a decision is made as to whether this signal should be +1 or -1. If a 
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coin were tossed to make such a decision about 1/2 the chips will be +1 and 1/2 will be -1. 

However, in such a case, the receiver would not know the sequence a priori and could not 

properly receive the transmission. Practically, both transmitter and receiver must know the 

sequence. This sequence is generated electronically by a shift register sequence generator and 

it has certain properties to allow identification of transmissions in the receiver side. 

Basically, as mentioned previously, the cross correlation (normalized inner product) of any 

two chip sequences gives a bitwise zero and the auto correlation of a sequence with itself 

gives a bitwise 1. These properties suggesting a new multiplexing technique for a number 

of stations who want to share the same medium. With the use of different PN codes for each 

station, multiple channel access can be dealt with very easily. Spread spectrum systems 

allocate the wireless channel using the Code Division Multiple Access (CDMA) technique. 

CDMA is a multiplexing or medium access technique completely different from Frequency 

Division Multiple Access and Time Division Multiple Access. Frequency division 

multiplexing (FDMA) divides the channel into frequency bands and assigns it statically, or 

on demand, allowing indefinite use of this band to the owner. In the wireless domain, the 

traditional analog cellular systems, such as those based on the Advanced Mobile Phone 

Service (AMPS) and Total Access Communications System (TACS) standards, use the 

FDMA technique. In these systems only one subscriber at a time is assigned to a band of the 

wireless channel. Theoretically, it can hold this allocated band forever, but no other 

conversations can access this band until the subscriber's call is finished, or until that original 

call is handed off to a different channel by the system. Another common multiple access 

method, employed in new digital cellular systems, is TDMA. Digital standards employing 

this multiplexing technique are the North American Digital Cellular (IS-54), the Global 

System for Mobile Communications (GSM) and the Personal Digital Cellular (PDC). In 

these systems the channel is allocated in burst, so that each station has the entire channel 

dedicated for a fixed time slot. Time slots can be assigned statically or dynamically. Again, 

only one subscriber at a time is assigned to each time slot, or channel. No other conversations 

can access this channel. CDMA allows a large number of subscribers to share the entire 

frequency spectrum all the time. Multiple simultaneous transmissions are separated using 
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coding theory, based on the important principles of spread spectrum communication. In a 

CDMA system, each user is given a distinct code sequence. This sequence identifies the user. 

When a receiver desires to listen to a particular's user's transmission it actually receives at 

its antenna not just the users transmission, but also the energy sent by all the other users that 

operate under the same CDMA system at that moment. However, after despreading the users 

signal, it will see all the energy sent by that particular user, but only a small fraction of the 

energies sent by other users. CDMA multiplexing initially employed for military satellite 

communications. Nowadays, most new wireless and cellular system implementations strive 

to employ CDMA technology and benefit from the advantages it provides. For the cellular 

telephony, CDMA technique is specified by the Telecommunications Industry Association 

(TIA) as "IS-95." 

The other spread spectrum modulation technique is Frequency Hopping Spread 

Spectrum (FH-SS). The same principle, of spreading a signal's spectrum, applies for FH-SS, 

but it is accomplished differently. With FH-SS the spectrum of a data modulated carrier is 

widened by changing the frequency of the carrier periodically. As the name implies, the 

signal "hops" from frequency to frequency over a wide band. The duration of each hop is 

usually called "chip," for consistency with DS-SS. The specific order in which frequencies 

are occupied is a function of a code sequence (as in DS systems) of length K. The rate of 

change of the carrier frequency is called the "hopping rate" fh. Typically, each carrier 

frequency is chosen from a set of K frequencies which are spaced approximately the width 

of the data modulation spectrum apart. The length of the spreading code is again the 

"processing gain factor." However, in FH-SS the spreading code does not directly modulate 

the data-modulated carrier but is instead used to control the sequence of carrier frequencies. 

The resulting bandwidth of the FH-SS signal, is K times the bandwidth needed for the data 

modulation without spread spectrum. [Ref. 21] 

In FH-SS systems the hopping rate is chosen independently from the bandwidth 

consideration. This advantage of FH systems, is not found in DS systems, and it allows 

separate control of the hopping (chip) rate and the bandwidth. Generally, two types of data 

modulation may be used by FH spread spectrum systems: M-ary frequency-shift keying 
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(MFSK) and binary frequency shift keying (BFSK). When binary FSK is used, the FH signal 

is: 

X(t)=A sin [f\fc + (Af)p(t)] dt] 

where A/is the frequency shift from the carrier and p(t) is the binary switching function with 

possible states ± 1. The carrier frequency/, in the above formula, is constant for an interval 

Th (hopping period) and then changes to another preselected carrier frequency for the next 

time interval. 

The transmitted PSD of a frequency hopping signal is quite different from that of a 

direct sequence system. The instantaneous power of the data to be transmitted (original 

BFSK signal) and that of the FH modulated signal (FH/BFSK) are the same (not as in DS-SS 

systems). However, as the signal hops around the spectrum, if we assume that it is equally 

likely that any hop among K is occupied, the average PSD that an unfriendly receiver 

experiences in the antenna is 1/K times the PSD of the original signal3. The over whole 

transmitted PSD does not have a sine2 () shape, as in DS-SS, but is rather flat over the band 

of frequencies used. There are two possible FH techniques, depending on the selection of the 

frequency hopping rate: 

1. Slow frequency hopping (SFG) is one in which/ < / , where/, is the modulated- 

data symbol rate. In this technique one or more data bits are transmitted within one 

frequency hop. An advantage of this method is that coherent data detection is 

possible. A disadvantage is that if one frequency hop channel is jammed or 

distorted, one or more data bits will be lost. So, we are forced to use error 

correcting codes to limit the probability of error in our transmissions. 

2. Fast frequency hopping (FFH) is one in which / >/. In this technique one data 

bit is divided over more frequency hops. In FFH for every frequency hop a 

3 The probability that a hop is occupied is 1/K. 
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decision is made whether a -1 or a +1 is transmitted. At the end of each entire data 

bit a majority decision is made. In this case the need for error correcting codes is 

limited. If only a small portion of a data bit is destroyed, the entire bit can be 

recovered. The probability that one or more bits will be jammed is very small. 

Another advantage of this method is that diversity can be applied to overcome a 

possible system's performance degradation due to fading. A disadvantage is that 

coherent data detection is not possible because of phase discontinuities when fast 

frequency hopping is applied. 

Code Division Multiple Access (CDMA) is also the multiplexing technique used by 

stations that employ frequency hopping spread spectrum. The main principles and the 

benefits gained by CDMA multiplexing are the same as those described for the direct 

sequence modulation. 

A third method of spectrum spreading is to employ both direct sequence and 

frequency hopping techniques in a hybrid system. Usually fast frequency hopping is 

combined with direct sequence to produce extremely wide spectrum spreading results (Figure 

5). 
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Carrier 3 

Carrier 4 

Carrier 5 

Data bit period 
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PN-code 3 

PN-code 2 

PN-code 4 

PN-code 5 

Figure 5 : A hybrid FH and DS Spread Spectrum system 
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Each data bit is divided over KX frequency-hop channels (carrier frequencies). In each 

frequency-hop channel one complete PN code of length K2 is added to the data signal. An 

example of a 5-hop DS/FH system is shown in Figure 5. 

As the FH sequence and the PN codes are coupled, a station's address is a 

combination of an one FH sequence (one carrier) and Kj PN codes (Figure 5). This 

technique combines the advantages of both direct sequence and frequency hopping 

techniques. 

Spread spectrum, in either form, is the technology proposed by this research for the 

UXO detection network implementation. Summarizing the properties of the spread spectrum 

modulation technique, the following constitute the benefits gained by using this technique 

in a communications system implementation: 

1. As the signal is spread over a large frequency band, the power spectral density is 

getting very small, so other communications systems do not suffer from systems 

employing spread spectrum. 

2. Random access to the air-medium can be dealt with (CDMA). As a large number 

of spreading codes can be generated a large number of users can be permitted. 

However, the maximal number of users is interference limited. There is a limit to 

how many users one can overlay on top of one another. Each overlay decreases the 

Signal to Noise Ratio (SNR) slightly and thereby increases the probability of error. 

The phenomenon is known as "graceful degradation," and can be very critical to 

high data rate implementations, like ISDN. A solution to this problem is given by 

the FCC and other governmental agencies, that regulate the number of spread 

spectrum CDMA users and also provide certain restrictions in power usage. The 

upcoming 802.11 wireless standard includes similar provisions. Another limitation 

of spread spectrum technology is that the number of proper code sequences (that 

perform the spreading operation) is somehow limited. 

The Federal Communications Commission (FCC) and the upcoming wireless 

standard 802.11, have rules and provisions regulating the processing gain and other 

critical parameters affecting performance in spread spectrum systems. These 
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concepts are studied in Chapter HI. 

3. Spread spectrum systems provide enhanced security. Without knowing the 

spreading code, it is nearly impossible to recover the transmitted data. Employing 

other modulation techniques suggests the use of special hardware or software 

components to provide security for the wireless network. 

4. Spread spectrum systems provide fading rejection. Fading is a major problem for 

wireless transmissions. Spread spectrum systems are less susceptible to such 

distortions, as a large part of the spectrum is utilized. 

C.       PROPERTIES OF WIRELESS TRANSMISSIONS 

Traditional LANs, based on wired medium, deal with very low probabilities of error 

(below 10"8) in their signal transmission. New cable fabrication techniques, especially in 

fiber optic lines, as well as the very well tuned protocols, that run under wired LANs, provide 

their users with very high quality of services. These LANs can detect and recover from bit 

errors very fast. Unfortunately, the same thing does not apply for the wireless medium as 

well. Usually, wireless transmissions are very error prone, restricting wireless LANs from 

providing high quality of services to the users. The errors in wireless transmissions are 

mainly due to the characteristics and the properties of the electromagnetic wave propagation 

through the air. These properties are mostly dependent on the frequency content of the air- 

waves. 

Generally, communication literature refers to air-waves between 103 -1012 Hz as 

radio waves, without making a distinction in the microwave portion, which is approximately 

between 108 -1012 Hz. This distinction is necessary when implementing a wireless network. 

Certain properties of the medium used, can have a great effect on the performance of the 

wireless network. These properties are frequency dependent. Radio waves are usually easy 

to generate (simple circuitry), can travel long distances and generally propagate through 

walls, buildings and other obstructions with fairly little attenuation. Radio waves also have 

the property of omnidirectional transmission. Omnidirectional antennas (yagi-type) can 

enhance this property. A disadvantage resulting from the omnidirectional transmission of 

radio waves is that they have low transmission gain (omni- antennas have a unity gain). 
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Another disadvantage of radio, especially in the LF and MF band, is that because of their 

frequency content they can not carry enough bandwidth, for wireless LAN implementations. 

The technology proposed by this research to implement the wireless UXO detection 

network is spread spectrum. Spread spectrum modulation, in either form, uses microwaves 

as the transmission medium. 
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Figure 6 :The electromagnetic spectrum 

Generally, as seen in Figure 6, microwaves (terrestrial and satellite) include some 

portions of the VHF, UHF, and SHF frequency bands [Ref. 20]. Practically, radio waves 

above 100 MHZ belong to the microwave portion of the spectrum. At these frequencies 
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waves travel in straight lines and are usually narrowly focused. Unlike radio waves at lower 

frequencies, microwaves do not pass through obstacles so well. Microwaves in the GHz 

range bounce off obstacles. These waves are a few centimeters long and attenuate very fast. 

The signal power falls sharply with the distance from the source, and signal attenuation 

follows the following formula [Ref. 17]: 

4%d x2 L = 10 log ( -^p Y dB 

where L is the loss (attenuation) expressed in dB, d is the distance from the source, and X 

is the wavelength, in the same units as d. This formula implies that microwave loss varies 

as the square (1 / d2 analogy) of the distance. Microwave attenuation, is also dependent on 

the environmental and weather conditions, covering the transmission area. Moisture 

environments and rainfalls increase attenuation of microwave transmissions. A general 

practical rule under all conditions would be roughly a l/d3 dependence on the distance [Ref. 

17, 20]. 

Transmission impairments for microwave signals,  operating under constant 

environmental conditions, can be summarized in the following factors: 

1. The impairment of multipath fading. Fading is a major problem in microwave 

communication links. Although microwave transmission is narrowly focused there 

is still some divergence in space. Some waves follow the direct LOS path, from 

the transmitter to the receiver, without any scattering. Others are scattered by a 

random medium. This medium, when operating outdoors, is usually the lower 

tropospheric inversion layers. Mobile communications suffer from these kind of 

fading channels. For indoors operation, several obstructions (walls and other 

obstacles) in the direct path can cause multipath fading. 

The phenomenon occurs when some indirect waves take slightly longer to 

arrive to the receivers antenna, than the direct LOS waves. These delayed waves 
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usually arrive out of phase with the direct waves and thus cancel, or cause 

significant attenuation, of the signal. The effect is frequency and weather 

(formation of low tropospheric inversion layers) dependent. Multipath fading can 

be time-selective or frequency-selective. Time selective fading occurs when the 

scattering medium varies with time causing a variance in the fading phenomenon. 

Frequency selective fading assumes a fixed (nonmoving) scattering medium, but 

different frequencies affected differently by the scattering medium. 

2. The impairment of shadowing. The presence of obstacles in the direct path, from 

a transmitter to the receiver, causing signal attenuation at the receiver's antenna. 

For mobile communications, shadowing results in the form of time-varying 

received signals, depending each time on the mobile's station and base station 

relative positions. The phenomenon can also be viewed as a time selective fading. 

The nature of the terrain surrounding the base and the mobile antennas as well as 

the respective antenna heights with respect to the terrain determines the extent of 

shadowing. 

3. Another signal impairment is the variation of signal strength, depending on the 

distance between the transmitter and the receiver. For mobile communications, 

where relative movement is very frequent, this is a very important factor. The 

formula provided above, for microwave attenuation, measures the loss in dBs as 

the distance increases. 

4. Signal impairments caused by interference from other electronic devices. These 

devices either operate in the same frequency band (microwave), or produce 

harmonics in the frequency band of interest. The spread spectrum modulation 

technique deals perfectly with this problem. However, the FCC has issued some 

rules and provisions concerning the usage of the microwave spectrum. These 

issues are studied in Chapter m. 

To investigate the effect of these transmission impairments to an existing wireless 

system, the AirEZY wireless data link transceivers were tested. These devices provide an 

access point (wireless nodes) solution for wireless LAN implementations. They can either 
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be connected directly to an Ethernet bus, to provide connectivity with an Ethernet backbone, 

or to a computer's (PC, MAC, laptop or workstation) Network Interface Card (NIC) through 

BNC or RJ-45 connectors. The main advantage, that these wireless nodes provide, is that 

they are platform independent. Their drivers support all major Network Operating Systems 

(NOS), without special software installation needed (plug and play). The AirEZY nodes 

utilize direct sequence spread spectrum BPSK technology, advertised to provide 1.0 Mbps 

throughput for distances up to 500 ft indoors and 800 ft outdoors. They utilize the I band 

(902-928 MHZ) of the ISM (Instrumental Scientific and Medical) bands provided by the 

FCC for unlicensed usage of wireless LANs. The total PF power transmission is limited to 

100 mW. To investigate the impairments of microwave transmission, two AirEZY nodes 

were connected to the NIC of two PC's. To capture the microwave transmission a Hewlett 

Packard 3585 B spectrum analyzer, with an omnidirectional antenna installed, was used. 

Large file transfers between the two PC's allowed a continuous transmission, with fairly 

constant output power from the transmitting node's antenna. By increasing the distance 

between the spectrum analyzer's antenna and the transmitting node's antenna, the plots of 

the microwave transmission Power Spectral Density (in milli Watts per unit Hertz) were 

obtained. Figures 7, 8 and 9 are showing these plots. To capture these transmissions the PSD 

level of the spectrum analyzer was tuned (lowered) to a reference level of -37.2 dBm (top 

of plot). This means that the power spectral density at this level is 0.00019054 mw (10""2). 

The PSD scale is 5 dB/dev. and the frequency scale, which is centered at 914.76 MHZ 

(carrier frequency), is 2.646 MHZ/dev. The plots are analogous to Figure 2 of current 

Chapter. The processing gain factor for the AirEZY wireless nodes is K = 11, resulting in a 

more spreaded spectrum. 

Figure 7 presents the spectrum (power spectral density versus frequency) of the 

AirEZY transmitter lm away from the transmission antenna. The spectrum has a sine2 () 

shape. The area under the curve's envelope represents the total transmitted power (PSD) that 

a receiver senses at this distance. This power was found, using partial integration methods, 

to be 82 mW. 
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Figure 7 : The PSD of an AirEZY transmitter lm away from the antenna 

This implies an attenuation of 20 mw if we assume that the device transmitted at full power 

(lOOmW) at the antenna. Figure 7 also shows signal attenuation due to multipath fading. The 

phenomenon is stronger in the area around the carrier frequency (915 MHZ) implying a 

frequency-selective fading. This area of frequencies should give the highest power spectral 

density values (as in Figure 2), but instead power degradation occurs. The fade is 

approximately 10 dBm deep and 2 MHZ wide. A narrowband signal having bandwidth of 

less than 2 MHZ would be greatly attenuated due to such fading. However, spread spectrum 

technology makes this system relatively insensitive to fading since the power is not 

concentrated in this particular portion of the spectrum, but is instead spreaded over a 26 

MHZ band (902-928 MHZ). Some fading can also be observed in the side lobes, but it is 

relatively smaller. 

Figure 8 shows the signal's spectrum 2m away from the transmitter's antenna. The 

over whole power spectral density has now become 15 mW. This implies a power attenuation 

of 85 mW. 

Figure 9 shows the signal's spectrum 3m away from the transmitter's antenna. The 

power spectral density is approximately 8 mW, implying a signal's power attenuation of 

almost 90 mW. 
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For any particular frequency selected in the 26 MHZ spectrum, the signal strength 

should attenuate following the loss formula of the microwaves. Selecting the carrier (915 

MHZ) to be the frequency of interest, the loss formula provides: 

TABLE 1: Attenuation of the AirEZY microwave transmission with distance 

Distance Attenuation for the 915 MHZ frequency 

From dx =1 m to d2 =2 m 
And,             *      And. 

LI L2 - 101og(        1 ) - 101og(        2 ) - 7.69 dbm 
0.3278                  0.3278 

From d 2 =2 m to d3 =3 m 
And                     And 

L2-L3 - 101og(        2 ) - 101og(        3 ) - 4 dbm 
0.3278                  0.3278 

The numbers provided in Table 1 are calculated by application of the theoretical 

formula that calculates the microwave loss. These numbers match with the practical results 

seen in the spectrum plots of Figures 7,8 and 9. The same calculation for other frequencies, 

also gives comparable results. 
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III. REQUIREMENTS FOR THE UXO DETECTION WIRELESS 
NETWORK 

Requirements are crucial in all development projects. They provide the basis for 

design, implementation, and support of the developed system. Requirements are usually 

defined based on the needs of potential users of a system. The UXO/mine detection project 

needs to be supported by a simple and reliable communication link, that has some 

similarities, but also a lot of differences from other common wireless network 

implementation, based on the available information about the functionality and operation of 

the UXO detection semi-autonomous robotic system. The following requirements are 

studied: 

1. Hardware-technological requirements 

2. Performance requirements 

3. Regulation requirements 

4. System interference requirements 

5. Mobility requirements 

A.       HARDWARE-TECHNOLOGICAL REQUIREMENTS 

Hardware implementation of most wireless networks is fairly simple. The basic 

physical and logical architecture of wireless LANs is shown in Figure 10. 

The physical components of the wireless LAN implement the Physical, Data Link and 

Network Layer functions of the protocol stack (logical architecture). The Network Operating 

System (NOS) i supports the shared use of network applications, printers and disk space 

among the wireless LAN hosts. The NOS communicates with the wireless Network Interface 

Card (NIC) via driver software, enabling applications to utilize the wireless network for data 

transport. After that, the NIC prepares the data signals for transmission via the wireless node. 

It interfaces between the real network (wireless node and physical medium) and the user. The 

wireless node utilizes a specific wireless modulation technique (described in Chapter II) to 

1 Like TCP/IP, Novell NetWare, AppleTalk, Windows NT, etc. 
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transmit digital data through the air medium, via the antenna. The destination host is 

comprised of the same set of components (Figure 10). 
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Figure 10 : Wireless LAN logical and physical architecture 

For the UXO/mine detection project implementation, the ground control station uses 

a desktop workstation or a personal computer (PC) as the network user appliance. The 

protocol stack, implementing the functionality of a NOS, of choice is TCP/IP. The TCP/IP 

was chosen because it is the protocol stack most widely used as a NOS and it is supported 

by all major NICs providers. The choice of the NIC is not important, as long as it can support 

the desired NOS. The semi-autonomous mobile robot2 uses a Motorola 68040 CPU 

configured on a TAURUS board [Ref. 14] to control robot's motion and process data 

relevant to the vehicle's tasks. This robot is specifically designed for UXO/mine searching 

; Mobile robot "Shepherd." 
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tasks and it is four-wheel steerable and four-wheel drivable. It is able to traverse rough 

terrains, and has an independent rotational degree of freedom. Controlling robot's movement 

and processing the robot's sensor data are very time critical operations. Because of that, the 

TAURUS board's kernel is composed of ANSI C procedures written from the robot's system 

developers. It is not based on already existing operating systems like UNIX or MS-Windows. 

This minimal kernel is able to provide a 10 ms computation cycle needed to achieve smooth 

and satisfactory motion control and movement to the robot. Implementing the NOS in such 

a board would require the development of a new Network Operating System to interface with 

the minimal robot's kernel, since traditional NOSs are designed and specifically tuned to 

interface and operate on standard operating systems (OS) like MS-Windows and UNIX. 

Moreover, adding an NOS to the kernel's code would possibly cause more overhead in the 

robot's computation cycle. To overcome this problem this thesis proposes the 

implementation of the NOS on a laptop computer, siting on the robot's frame, interfacing 

with the TAURUS board via parallel (RS232) board-to-board connection (Figure 11). This 

laptop runs Windows'95 operating system, which implements TCP/IP, and communicates 

with the ground control station's terminal with out any interoperabillity problems. 

^■ir                       l Wireless node 
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Figure 11: Hardware configuration of the land vehicle (robot) station 
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The technology of choice is spread spectrum modulation (Chapter II). The challenge 

of choosing between direct sequence or frequency hopping spread spectrum is not critical for 

this project. Generally, both technologies deliver the same advantages to wireless network 

implementors. Only some technological specific and frequency or performance demanding 

applications can discriminate and make a choice of spread spectrum modulation, depending 

on the needs. Direct sequence systems are considered to be Low Probability of Detection 

(LPD) systems since the power spectral density (PSD) of such systems is very low in 

comparison with the original unmodullated signal to be transmitted. On the other hand, in 

frequency hopping systems the instantaneous PSD is the same as for conventional BFSK 

signals, thus these systems are not considered as LPD systems. Both, DS and FH systems are 

considered as Low Probability of Intercept (LPI) systems, since the spreading code is 

required, in each case, in order to recover their signals. The UXO project definitely needs the 

LPI property. 

Recently many network vendors have produced wireless nodes implementing both 

spread spectrum technologies. The choice of the wireless products (nodes) that can support 

the UXO detection project is made after analysis of all the project's requirements 

(performance, regulations, mobility etc.) and it is not based on the modulation technique that 

these products implement. 

B.        PERFORMANCE REQUIREMENTS 

Performance requirements indicate how well the wireless network provides the UXO 

detection project application programs3 and services. The basic information exchange 

between the two major UXO search project entities, the ground control station and the 

mobile robot, is shown in Figure 12. Video image transfer is not included in the digital data 

exchanged between the two entities. Video image will be transmitted through a video camera 

system. 

3 Robot's motion control, search-data processing programs, robot's status information etc. 
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Figure 12 : Information exchange between the UXO detection stations 

To measure the performance requirements for the UXO detection project, network 

delay, reliability and availability are identified [Ref. 3]. 

Network delay is the length of time the UXO detection system (mobile robot and 

ground control station) and its users have to wait for the delivery of the wireless network 

services. This is actually the network's throughput (effective data rate) measurement in Kilo 

bits per second (Kbps) combined with the length of the data segments transferred from one 

network entity to the other. Commands and requests from the ground control station are 

small segments just a few bytes long. Search results and robot's status information, called 

result and status vectors returned from the mobile robot, contained in data segments no more 

than 1500 bytes long (maximum Ethernet segment). TCP allows a lot larger data segments, 

but for the particular wireless implementation 1500 bytes segments are considered adequate. 

This size also results in smaller vector transfer delays enabling the application programs to 

process the robot's data more frequently. 

Reliability is the length of time the wireless network or component will operate 

without malfunctions or disruption. In the network market this is referred to as Mean Time 
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Before Failure (MTBF). This factor is important for mine and UXO searching operations 

because UXO/mine detection has random occurrence and the network must be available at 

this particular instance. 

Availability defines the period of time the wireless network must be operational. For 

the particular wireless network this depends on the duration and the needs of UXO detection 

operations. The mobile robot is powered by four 12V DC batteries giving it a 1.5 hours 

operational endurance (autonomy). The laptop that is connected with the vehicle's TAURUS 

board, sits on top of its frame and provides the NOS (TCP/IP). This laptop (Figure 11) 

works, if not plugged in an AC outlet, with 12 V DC batteries for 1 hour of operation. The 

wireless nodes used as the network access points usually need 5 V DC power. This power 

can be provided by the mobile robot's batteries via a DC-to-DC converter. 

Identification of the significance of these performance measurement factors (delay, 

reliability and availability) is performed by usage and testing of the AirEzy (OTC Inc.) 

wireless nodes under several network and environmental conditions. Firstly the wireless 

devices were tested in an indoors environment to verify performance versus distance between 

the wireless nodes. The File Transfer Protocol WS_FTP95 ( 32-bit version for Windows 95 

operating system) was used to transfer files from a SUN workstation to a PC laptop, and 

measurement of the effective data rate (throughput) in Kbps was obtained. The tests were 

held in Spanagel hall along the second floor's corridor. The two wireless nodes (AirEzy) 

were always in Line Of Sight (LOS), with their antennas pointing each other with out any 

intermediate obstruction. Files of different size were transferred in each distance 

measurement. For every distinct distance ten file transfer (WS_FTP95) operations, for each 

different sized file performed, for a total of 270 file transfers. The mean value of these 

measurements was used to construct Table 2. 
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TABLE 2 : Throughput versus distance for different sized files 

DistJFile 

size 

15K 50K 100K 250K 500K 1.5M 2M 4.3M Mean 

25m 921 700 660 658 650 646 636 634 688 

55m 733 705 420 505 491 574 561 558 569 

100m 435 446 405 410 400 391 358 383 404 

Mean Throughput in Kbps 553 

Figure 13 and 14 present graphically (from different view points) the relationship 

between effective data rate in Kbps and the distance between the wireless nodes, with the file 

size in bytes as a parameter. 

Throughput versus Distance 
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Figure 13 : Indoors throughput versus distance -1 

35 



Throughput versus Distance 
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Figure 14 : Indoors throughput versus distance - II 

Figures 15 and 16 present graphically (from different view points) the relationship 

between effective data rate in Kbps and the file size in bytes, with the distance between the 

nodes in meters as a parameter. 

Throughput versus File Size 
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Figure 15 : Indoors throughput versus file size -1 
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Throughput versus File Size 
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Figure 16 : Indoors throughput versus file size - II 

Theoretically, the AirEzy wireless nodes can achieve a data rate of 1 Mbps, if the 

channel is fully utilized [Ref. 15]. Practically, the measurements are showing a 50% 

utilization for distances between 25 and 100 m. For distances above 100 m the effective data 

rate dropped under 400 Kbps, performing indoors. Generally, because of the increased 

overhead appended by the TCP/IP protocol suite, larger files are transferred slower. 

However, beyond performance degradation, due to increased distance between the two 

nodes, file size doesn't seem to have a significant effect on the network's throughput. 

Indoors wireless transmissions usually suffer from microwave bouncing off metallic 

obstacles and heavy concrete walls. In this experiment these performance degrading factors 

were reduced to the minimum. The same experiments were held in an outdoors environment 

to indicate how these wireless nodes would work in their actual operating field. Usually, 

wireless devices achieve higher effective data rates and perform better in open space 

environments. Performance degradation factors here are : the natural vegetation (trees, buses 

etc.), the weather and the atmospheric conditions. The outdoors experiments were held inside 

the NPS campus in different day-time periods. A total of four experiments, two during early 
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afternoon hours and two during late afternoon hours, were held. Generally, during the late 

afternoon measurements temperatures were lower and atmospheric humidity was higher (as 

expected). Tables 3 and 4 are showing the mean throughput values obtained in these 

measurements. 

TABLE 3 :Throughput versus distance for different sized files - early afternnon 

Day-time: 13:40 —--— Temperature : 62,9 °F 

Dist/File 

size 

100 K 200 K 400 K 600 K 800 K 1.2 M 2.5 

M 

Mean 

25 m 925 900 ion 710 700 638 610 741 

55 m 600 545 543 606 570 459 508 547 

120 m 390 428 400 410 394 398 398 403 

250 m 265 360 245 352 311 320 303 308 

Mean Throughput in Kbps 500 

TABLE 4 :Throughput versus distance for different sized files - late afternoon 

Day-time: 20:00 —- Temperature: 48.2 °F 

Disk/File 

size 

100 K 200 K 400 K 600 K 800 K 1.2 M 2.5 M Mean 

25 m 904 828 654 690 705 608 610 714 

55 m 400 423 388 406 370 359 348 385 

120 m 205 328 364 308 364 349 332 321 

250 m 265 158 300 289 270 270 203 251 

Mean Throughput in Kbps 418 

Figures 17 to 20 represent graphically the throughput measurement tabulated results, 

operating the AiEzy wireless nodes outdoors. In Figures 16 and 17 the relationship between 
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throughput in Kbps and the distance between the wireless nodes, with the file size in bytes 

as a parameter, is shown. 

Throughput versus Distance at 13:40 
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Figure 17 : Outdoors throughput versus distance at 13:40 

Throughput versus Distance at 20:00 
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Figure 18 : Outdoors throughput versus distance at 20:00 
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In Figures 19 and 20 the relationship between throughput in Kbps and the file size 

in bytes, with the distance between the nodes as a parameter, is shown. 

Throughput versus file size at 13:40 

1000 
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File size (Kbytes) 
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Figure 19 : Outdoors throughput versus file size at 13:40 

Throughput versus file size at 20:00 
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Figure 20 : Outdoors throughput versus file size at 20:00 
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Observation of Tables 3 and 4 and Figures 17 through 20 shows a throughput 

degradation of 100 Kbps during the late afternoon hours. The same measurements performed 

during a rainy day, with temperatures between 46.4 °F and 51.8° F, resulted in a mean 

throughput for all ranges (up to 250 m) of 300 Kbps. These results indicate the significance 

of the wireless transmission properties, described in Chapter II, for this particular band of 

frequencies (902-928 MHZ). This band was the dominant wireless band a few years ago. 

Many wireless vendors still produce devices utilizing the same frequency band. The low 

transmission power, regulated by the FCC, combined with the properties of microwave 

transmissions results in an average of 400 Kbps and a maximum of almost 1Mbps for most 

wireless devices utilizing this band. Nowadays, most vendors in the wireless market use even 

higher frequencies in the GHz range (2.4 or 5.7 GHz). Higher frequencies can carry higher 

bandwidth, resulting in increased channel throughput, but this advantage is counterbalanced 

by the great performance degradation effect when distance increases (Chapter II). At 

distances over 200 m throughput decreases rapidly. The only solution, when distance is of 

great importance, is the use of directional antennas (dishes) combined with higher 

transmission power. 

The file size also does not seem to have a great effect in these throughput 

performance measurements either. However, reliability was highly dependent on the size of 

the transferred file. File sizes up to 600 K were transferred with constant data rate. For larger 

files data rate sometimes dropped up to 150 Kbps during the transfer session, and most of 

the times never got back to the initial transfer rates. Moreover, in some cases the file transfer 

stopped completely. Large files could not be transmitted/received continuously without any 

intermediate time interval between the FTP operations for distances beyond 120 m. The 

phenomenon occurred experimenting consecutive 1.2 Mbytes and 2.5 Mbytes FTP operations 

in the 120-250 m distance range. In some cases there was no communication between the two 

nodes, although the devices continuously transmitted, trying to reestablish communication 

and continue the file transfer protocol. Besides the fact that FTP stopped operating, reliability 

problem occurrence was easy to detect and confirmed because the "transmitting" indicator 

LEDs of the two wireless nodes were blinking (variable red flashes), without any indication 
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of signal reception (same LEDs constant green flash). The MTBF (Mean Time Before Failure 

Factor) rated for 1.2 Mbyte and 2.5 Mbyte files was approximately 5 minutes after 

continuous operation, and had an occurrence rate of 20 % ( one out of every five FTP 

experimental measurements). 

There are two possible factors contributing to the reliability problems occurrence. 

Firstly, the disturbance of the direct LOS radio path between the transmitter's and the 

receiver's antennas (like obstacle or human presence). In this category even a slight change 

of the two antennas orientation, during an FTP measurement (it happened very often), should 

be included. Secondly, and more important, the way the protocol stack, and TCP particularly, 

handles communication errors. In wireless links, as the distance between transmitter and 

receiver increases, and because of the properties of wireless transmissions, error occurrence 

in the data packets is a very common phenomenon. If the errors occur only in a small portion 

of the packet (a few bits in error), recovery mechanisms implemented in software, mainly in 

the data link and transport layers, allow error detection or even correction. However, 

completely damaged packets occur very often in wireless links. The only way to handle this 

packets is retransmission. The transport entity (TCP) is responsible for this decision. 

Theoretically, transport protocols should be independent of the technology of the underlying 

network layer. The TCP should not care whether IP runs over fiber or over wireless medium. 

Practically, it does matter because TCP and most implementations based on this transport 

protocol have been carefully optimized, several years ago (TCP invented in 1977), for wired 

networks. In particular, if a TCP entity is waiting for a packet which doesn't arrive during 

a predefined period, TCP assumes this was due to network congestion. The transport 

protocol (TCP) is then notified by a timeout triggered by the so called "congestion control 

algorithm" (implemented in the same protocol). For wired networks this assumption holds, 

and time out occurrence notifies the sending TCP entity to slow down4 and send packets less 

vigorously [Ref. 18]. Nowadays, in this type of networks packet loss is a very rare 

phenomenon (probability of bit error is less than 10"12). But, for wireless networks packet 

Jacobson's slow start algorithm. 
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loss is the main reason triggering time outs, not network congestion. The proper approach 

to dealing with lost packets is to send them again, and as quickly as possible. The TCP 

protocol is doing exactly the opposite. It slows down (assuming congestion occurrence), 

making matters even worse. During the AirEzy performance measurements, when throughput 

degradation occurred (probably due to packet losses), instead of recovering and increasing 

the data rate, most of the times TCP dropped throughput leading to network reliability 

problems. A solution to this problem is being dealt with in Chapter IV. 

Finally, availability has not been tested in these experiments. The AirEzy wireless 

nodes and the laptop PC took their power from AC outlets. Availability testing will be 

performed in later stages of the UXO detection project, with the mobile robot shepherd 

providing DC power, for the wireless communications nodes and the laptop PC, from his 

built in batteries. 

C.       REGULATION REQUIREMENTS 

The usage of radio transmissions is regulated by the FCC (Federal Communications 

Commission) and by the upcoming IEEE 802.11 standard for wireless LANs. The UXO 

wireless network should be consistent with the provisions of both regulatory committees. 

These committees regulate the usage of frequency bands worldwide. Since the UXO 

detection project will not operate in a limited geographic spot, but will rather have a world 

wide application spectrum, adaption of the FCC and IEEE regulations and provisions is 

needed. 

The lack of standards and regulations was the main reason for the limited widespread 

use of wireless LAN products up to last decade. In 1985, the FCC made the commercial 

development of radio-based LAN components possible by authorizing the public use of the 

Industrial, Scientific, and Medical (ISM) bands. This band of frequencies resides between 

902 MHZ and 5.85 GHz, just above the cellular phone operating frequencies. The ISM band 

is very attractive to wireless network vendors because it provides a part of the spectrum upon 

which they can base their products, allowing the users to operate these products without 

obtaining an FCC license. Moreover, the deregulation of the frequency spectrum eliminates 

the need to perform costly and time-consuming frequency planning to coordinate wireless 
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installations that will avoid interference with existing radio systems. This appears even more 

advantageous for installations requiring frequent movement of the communications 

equipment, like the UXO detection project, because paperwork involving relicensing of the 

equipment at a new location is also avoided. The allocation of the ISM band has had a 

dramatic effect on the wireless industry, prompting the development of wireless LAN 

components. Unfortunately, the ISM band frequencies are not available in all parts of the 

world, limiting the capability to operate wireless products (like the OTC's AirEzy wireless 

links) sold in the United States. The ISM frequency bands appear in Figure 21. The same 

Figure identifies which of the ISM bands are available for unlicensed usage around the 

world. The S band (2.4 GHz) is the only unlicensed band available worldwide. This band 

was approved in North and South America in the mid-1980s and was accepted in Europe and 

Asia in 1995 [Ref. 6]. Companies first began developing products in the I band because 

manufacturing cost in this band was cheaper. However, the lack of availability of this band 

in some countries and the need for greater bandwidth drove most companies to migrate their 

products to the S band. Nowadays, many vendors striving for higher data rates produce 
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wireless products in the M band. The only drawback for the M band is that many medical 

electronic equipment found in hospitals and clinics operate in this band (cause of 

interference). To some extend, the same applies for the I band because some industrial 

components utilize the same radio frequencies as wireless LANs, which could cause 

interference. That's the reason that made FCC regulate these frequency bands. Products that 

operate according to Part 15.247 of the FCC Rules and Regulations (wireless LANs) must 

utilize spread spectrum modulation to avoid interference. 

With consideration for the wireless LANs and the radio spectrum usage, the IEEE 

802 group responsible to harmonize regulations and standards throughout the world, has 

drafted the 802.11 standard for wireless LANs. The IEEE 802.11 standard regulates the 

technology (spread spectrum and infrared) used in wireless network implementations, and 

specifically develops a Medium Access Control (MAC) and Physical Layer (PHY) 

specification for wireless connectivity for fixed, portable and moving stations within a local 

area. The countries that can be accommodated, so far, by this standard and the frequency 

bands identified by the IEEE 802.11 group for world wide coverage appear in Table 5 [Ref. 

7]. 

TABLE 5 : IEEE frequency bands for worldwide coverage 

COUNTRY Frequency Band 

USA, Canada and most European countries 2.4 - 2.4835 GHz 

Japan 2.471-2.497 GHz 

France 2.446 - 2.4835 GHz 

Spain 2.445 - 2.475 GHz 

The FCC and JEEE 802.11 committees, have also made rules for the efficient spread 

spectrum modulation usage of wireless products. The FCC dictates that transmitters, utilizing 

frequency hopping spread spectrum, must not spend more than 0.4 seconds on any one 

channel every 20 seconds in the I band and every 30 seconds in the S band. Also, the 

45 



transmitters must hop through at least 50 channels in the I band and 75 channels in the S 

band ( a channel consists of a frequency width determined by the FCC). The IEEE 802.11 

committee limits frequency hopping spread spectrum transmitters to the S (2.4 GHz) band 

(Table 5). For the direct sequence spread spectrum products the FCC dictates that ten or 

more chips per bit (spreading code) should be used. This rule limits the raw data throughput 

of direct sequence transmitters to 2 Mbps in the I band and 8 Mbps in the S band. 

Unfortunately, the number of chips is directly related to a signal's immunity to interference 

(Chapter D). The IEEE 802.11 standard dictates the use of eleven chips per bit for direct 

sequence products. Finally, the transmission output power for both technologies is limited 

by the FCC to under 1 watt. [Ref. 6] 

The wireless products supporting the UXO detection project should meet all the 

regulation requirements mentioned. 

D.       SYSTEM INTERFERENCE REQUIREMENTS 

Interference requirements are basically met by choosing the microwave spread 

spectrum technology. Spread spectrum systems experience very little interference, as 

described in Chapter H When systems incorporating spread spectrum co-exist in the same 

area theoretically their is no interference problem. The FCC and IEEE 802.11 power 

management and frequency usage provisions set the basis for wireless systems cooperating 

under interference immune conditions. Generally, interference is uncommon with ISM band 

products because they operate on such little power. Testing two pairs of AirEzy wireless 

nodes operating in the same room did not show any indication of signal interference. 

Narrowband interference from electronic devices that don't utilize spread spectrum 

is not expected to cause any significant problem to the UXO detection wireless network. The 

spread spectrum frequencies are far beyond the ones used from the remaining systems 

(mobile robot etc.) of the project. Even if a narrowband interference is present (frequency 

harmonics of lower basic frequencies) this type of interference only affects a small part of 

the information signal, resulting in few or no errors, since spread spectrum type products 

cover a wide amount of the bandwidth. Testing the AirEzy wireless devices on board of 

YAMABICO robot's platform did not show any interference problems. Narrowband 
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interference with signal-to-interference ratios less than 10 dB does not usually affect spread 

spectrum transmissions. 

Wideband interference, however, can have damaging effects on any type of radio 

transmission. Some typical sources of wideband interference are : domestic microwave 

ovens, elevator motors, duplicating machines, cordless phones, theft protection equipment 

etc. the primary source is microwave ovens operating in the 2.4 GHz band. Typical 

microwave ovens operate at 50 pulses per second and sweep through frequencies between 

2.4 and 2.45 GHz, corrupting the wireless data signal if within 50 feet of the interfering 

source. The only way to handle wideband interference is to avoid it. 

E.       MOBILITY REQUIREMENTS 

The maximum operating distance between the cooperating units of the UXO 

detection project has not been specified yet. However, mobility requirements have to be met 

for a flexible wireless network implementation. Most vendors producing spread spectrum 

communication systems ensure mobility capabilities. The maximum distance covered is 

product and technology dependent. Usually, wireless spread spectrum products can cover 

distances up to 800 or 1000 ft outdoors, operating at a maximum data rate of 1-2 Mbps. 

Taking in to account all the requirements of the UXO detection project, Table 6 lists 

the wireless products that currently fit the UXO project needs in the wireless network market. 

This market is currently growing very fast, as wireless LANs becomes a communication 

necessity of our times. This Table may become obsolete after a few months, but the 

requirements for the wireless network that serves the UXO detection project do not change. 

Table 6 lists products covering distances more than 200 m, having a claimed data rate (the 

effective will be much lower) of at least 1 Mbps. 
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TABLE 6 : Wireless products that can accommodate the UXO project needs 

Product Company Interface Wireless Data Open space Comments 

Name Protocol Technology Rate Range 

AIRLAN Soletek ISA, PCMCIA 

II or parallel 

DS-Spread 

spectrum 

(I band) 

2 Mbps ;>330 m Requires clear 

radio LOS. 

Power: 4W 

ERP 

AiEZY 900 OTC standalone DS-Spread 1 Mbps 240 m Plug and Play 

Telecom Ethernet:BNC 

orRj-45 

spectrum 

I band 

Power: 

100 rnW 

AirPort II Windata standalone 

(Ethernet) 

DS-Spread 

spectrum 

S,M bands 

5.7 Mbps 2.9 Km Power: IW 

ERP 

ARLAN Aironet ISA, DS- Spread Power: IW 

630-631 PCMCIA II spectrum ERP 

APs I band or   —► 

S band      -* 

0.4 Mbps 

2 Mbps 

up to 600m 

300 m 

BreezeNET BreezeCOM ISA, 

PCMCIA II 

FH-Spread 

spectrum 

Sband 

1-3 Mbps 500 m Provides 

multiple cell 

configuration. 

Power: 

lOOmW 

CruiseLAN Zenith Data ISA, FH-Spread 1.6 Mbps 300 m Features 

Systems PCMCIA II spectrum 

Sband 

software 

encryption. 

Provides 

multiple cell 

configuration 

CreditCard Netwave PCMCIA II FH-Spread 

spectrum 

Sband 

1 Mbps 200 m Power: 

25mW 
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Product Company Interface Wireless Data Open space Comments 

Name Protocol Technology Rate Range 

FreePort Windata,Inc. Standalone 

(Ethernet) 

DS-Spread 

spectrum 

S,M bands 

5.7 Mbps 240 m Uses a 

centralized 

wireless hub. 

Power: 1W 

GoPrint AeroComm Parallel port FH-Spread 

spectrum 

1 Mbps 240 m 

Netwave Xircom PCMCIA II FH-Spread 

spectrum 

Sband 

1Mbps 220 m Plug-and 

Play 

PortLAN RDC PCMCIA II FH-Spread 

spectrum 

Sband 

1 Mbps 830 m Plug and 

Play 

Power: 

100m 

RangeLAN Proxim ISA, 

PCMCIA II 

FH-Spread 

spectrum 

Sband 

1.6 Mbps 300 m Plug-and 

Play 

Provides 

multiple cell 

configuration 

(via 

Ethernet) 

Roamabout DEC ISA, FH-Spread 1.6 Mbps 300 m Plug-and 

2400 PCMCIA II spectrum 

Sband 

Play 
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Product Company Interface Wireless Data Open space Comments 

Name Protocol Technology Rate Range 

WaveLAN Lucent ISA, DS-Spread 2 Mbps 240 m Plug-and 

(AT&T) PCMCIA II spectrum Play Provides 

and I,S bands multiple cell 

C-SPEC configuration 

(via 

Ethernet) 

Power: 

88mW 

WaveLAN KarlNet ISA, DS-Spread 2 Mbps 240 m Plug-and 

PC PCMCIA n spectrum Play 

wireless Sband Power: 

adapter 88mW 

Wireless IBM ISA, Micro FH-Spread 0.5-1.2 250 m Plug-and 

LAN Channel 

card, 

PCMCIA II 

spectrum Mbps Play Provides 

multiple cell 

configuration 

(via Ethernet 

and token 

ring). It 

provides 

continuous 

data 

encryption 
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IV. PROTOCOLS FOR THE UXO DETECTION WIRELESS 

NETWORK 

A.      NETWORK SYSTEM PROTOCOLS 

Like wired LAN implementations, wireless networks also follow the layered protocol 

model. The same protocol hierarchy used for wired LANs, is also applicable for wireless 

LAN implementations. However, wireless networks have fundamental characteristics which 

make them significantly different from traditional wired LANs. The differences, accounting 

for the different medium (wireless medium (WM) versus cable), impact the wireless LAN 

design. These differences are found in the following layers of the protocol stack : 

1. The physical layer (PHY) and, 

2. The Medium Access sub-layer (MAC) of the Data Link layer. 

One critical difference, addressed by the 802.11 standard, is that destination addresses 

do not equal destination locations for wireless LANs. In wired LANs an address (like an 

Ethernet address) is equivalent to a physical location. This is implicitly assumed in the design 

of wired LANs. In 802.11 standard, the addressable unit is a wireless station. This station is 

a message destination, but not (in general) a fixed physical location. The wireless PHY and 

MAC protocols have to take this into account. Generally, the IEEE 802.11 standard defines 

the major fundamental characteristics that wireless LAN implementors must take into 

account in their design. These characteristics, indicating special PHY and MAC protocol 

design, are described in the standard as follows [Ref. 6]: 

1. Wireless LANs use a medium that has neither absolute nor readily observable 

boundaries outside of which stations with comfortant PHY transceivers are known 

to be unable to receive network frames. 

2. They are unprotected from outside signals. 

3. They communicate over a significantly less reliable media than wired LANs. 

4. They have dynamic topologies. For wireless PHYs, well defined coverage areas 

simply do not exist. Propagation characteristics (as described in Chapter II) are 

dynamic and unpredictable. Small changes in position and direction (measurements 
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of Chapter II and HI) may result in drastic differences in signal strength. Similar 

effects occur whether a station is stationary or mobile. 

5. They lack full connectivity and therefore the assumption normally made that every 

station can hear every other station is invalid (the "hidden" and "exposed" station 

problems). 

Based on the above characteristics, the IEEE 802.11 standard defines several physical 

layer signaling techniques and interface functions that shall be controlled by the 802.11 MAC 

sub-layer. The physical layer is the actual interface with the real network, and is implemented 

by the Network Interface Card (NIC), the wireless network access point (AP) and the 

transmitting antenna (instead of cable) of the wireless AP. Directional (yagi type) or omni- 

directional antennas can be used depending on the particular implementation. 

The MAC sub-layer in wireless LANs is not one of the standard multiple access 

protocols like CSMA/CD, token bus or token ring, that IEEE 802 produced for wired LANs. 

Wireless LAN implementations use the Medium Access Control with Collision Avoidance 

(MACA) protocol or its improved successor MACAW. Currently most wireless network 

vendors (Table 6) implement the MACA protocol in their devices. The MACA protocol was 

used as the basis for the IEEE 802.11 wireless LAN standard. The protocol was proposed by 

P. Karn in 1990. The basic advantage of this protocol over the standard multiple access 

protocols, like CSMA/CD, is that it solves the so called "hidden and exposed stations" 

problems. These problems occur in wireless networks based only on carrier sensing to 

resolve multiple access problems. The nature of these problems is shown in Figure 22. 

As shown in Figure 22, when A is transmitting to B (left hand side) it becomes a 

"hidden" station for station C, which is out of the radio range of A. Thus, C could sense an 

idle medium and falsely conclude that it can transmit to B, without any interference problem. 

This conclusion is obviously wrong. If C starts transmitting it will interfere with station's A 

frame at B. The problem is that station C is not able to detect a potential competitor (station 

A) because is too far away from it. The "exposed" station problem appears on the right hand 

side of Figure 22. Here C senses the medium and detects an ongoing transmission, from 
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Figure 22 : The "hidden" and "exposed" station problems 

station B to station A. Station C falsely concludes that it may not transmit to station D and 

backs off to avoid interference. In both situations ("hidden" or "exposed") the problem is the 

detection of radio signal presence at the receiver, not at the sender side. Carrier sensing, used 

in CSMA, does not provide the stations with the proper transmission status information for 

the area around the receiver. The MACA protocol solves this problem by giving the ability 

to each sender to stimulate the receiver before actual data frame transmission takes place. 

The sender sends a Request To Send (RTS) packet to the receiver indicating his intentions 

to transmit data frames. The RTS frame (30 bytes long) contains the length of the upcoming 

data frame. A cooperating receiver replies with a Clear To Send (CTS) packet containing the 

copied frame length from the RTS packet. After these transmissions the stations in the radio 

coverage area of the sender heard the RTS packet, those closer to the receiver the CTS 

packet, and the remaining stations heard both transmissions or neither of them. Each station 

behaves according to his position relative to the receiving station. Clearly, a station that hears 

the CTS packet must defer from sending anything [Ref. 10]. Despite these precautions, 

collisions can still occur. Collisions are resolved by usage of the binary exponential back off 

algorithm [Ref. 18]. 

Simulation studies and network measurements showed that MACA could be improved 

to perform better [Ref. 1]. First of all the basic utility of the CSMA, carrier sensing, had to 
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be added to avoid synchronous RTS transmissions. Another basic improvement was the 

addition of acknowledgments (ACK packets) for successful data frame transmissions. 

Finally, a congestion control mechanism and a more sophisticated back off (after collision) 

mechanism was added to the protocol, which was renamed to MACAW by its designers. 

The MACA and MACAW protocols are implemented in software drivers, and directly 

communicate with the NIC in the top down layered view, and the protocol suite (TCP/IP) in 

the bottom up view. 

The various wired and wireless standards differ at the physical and MAC sub-layer but 

are compatible in the data link layer. The Logical Link Control (LLC) sub-layer is also 

present in wireless LAN implementations. Moreover, the 802.11 standard (PHY layer, MAC 

sub- layer) is required to appear to the LLC sub-layer as a current style 802 LAN [Ref. 6]. 

Figure 23 shows the wireless LAN protocol hierarchy in comparison with IEEE 802 standard 

for wired LANs. 

Wired LAN Wireless LAN 

Data 
Link 

Upper Layer Protocols 
(TCPAP, IPX/SPX , 
NetBeui, SNA etc.) 

Upper Layer Protocols 
(TCP/IP, IPX/SPX etc.) 

Network Layer Network Layer 

LLC LLC 

MAC 
(802.3, 802.4, 802.5 or 
802.6) 

MACA or MACAW 
802.11 

PHY 
(twisted pair, coax or 
optical fiber) 

PHY 
802.11 

Wireless Medium 

f Network 
system 

Figure 23 : Wireless LAN protocol hierarchy 
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B.     APPLICATION PROTOCOL FOR THE UXO DETECTION PROJECT 

1.        Protocol Specification 

The protocols shown in Figure 23 constitute the actual "network system", 

representing the first four layers of the Open Systems Interconnect (OSI) network model 

(physical, data link, network, transport). The network system modular architecture is 

generally provided, in hardware or software form, for any network implementation. Lower 

layers implemented in hardware and software (network interface and drivers), and the upper 

layers (TCP/IP protocol stack) constitute the NOS, implemented in software. 

The UXO detection project needs a communication protocol to govern synchronized 

message exchange between the ground control station and the mobile robot. This protocol 

has to provide error free transparent communications between the two stations. The 

communications protocol that serves the UXO detection project belongs to the upper layer 

protocols of the OSI model. Specifically, this protocol implements the functionality of the 

session and application layers of the OSI model or just the application layer for other network 

models (like the DoD model). The design, specification and verification of this protocol 

follows the Communicating Finite State Machines (CFSM) model. The CFSM model is a 

Formal Description Technique (FDT) used to specify a procedure or protocol used for 

communication between two or more processes connected by a communication network 

[Ref. 13]. Most official network standards use FDT models as a descriptive tool of their 

protocols. Formal modeling of network protocols, with models like the CFSM, has two basic 

advantages : 

1. Network protocol description is unambiguous. Protocol implementors and users 

can understand the exact protocols's operation. 

2. It provides a formal framework for a rigorous analysis of the protocol. 

The communication protocol for the UXO detection network is specified by a CFSM 

model using two communicating machines (application processes). One simulates the 

communication behavior of the ground control station and the other the mobile robot's 

vehicle's behavior. Transitions in the CFSM specification of the two machines (ground 

control station and mobile robot) characterize external message events like sending (+ sign) 
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or receiving (- sign) or internal events (a timer goes off) happening locally in each machine 

(no sign). As in every CFSM specification, the states of the two machines are chosen to be 

those instants that each protocol machine is waiting for the next event (internal or external) 

to happen. The ground control station is defined as "machine A" and the mobile robot as 

"machine B" for protocol description simplification. 

Figures 24 and 25 show the CFSM specification for these machines. 

Machine A 

T_0 (3) 

Figure 24 : CFSM specification for machine A (ground control station) 
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Figure 25 : CFSM specification for machine B (mobile robot) 

Table 7 contains transition symbol explanation, for the CFSM specification of the two 

machines. 

TABLE 7 : Transition symbol explanation 

Transition Event Explanation 

DR,SR Data Request, Status information Request (polling messages) 

SS Stop Sending command 

NR Not Ready to send data 

D0,D1 Data block 0, Data block 1 

A0,A1 Acknowledgments of Dl and DO respectively 

Cmmnd Command from machine A to machine B (select message) 

A,NAK Positive (A) or negative (NAK) acknowledgment on A's Cmmnd 
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SI 

AI 

T_0(I) 

1=1,2,3,4,5 

Data_Q 

Status Information message from machine B to machine A 

Acknowledgment of status Information message 

Time out events. Timer expiration is an internal event triggered 

from the application software that implements each machine's 

specification 

Data block Queued in machine's B (software) buffers. This is an 

internal event implemented in machine's B specification  

2.        Protocol Verification 

The communication protocol specification for the two machines follows the 

Poll/Select discipline control scheme. Machine A can poll machine B for data delivery, or 

select machine B, to send a command. 

Whenever machine A needs search results it polls machine B with a -DR message. 

This polling action initiates sequential data block transmissions by machine B to machine 

A. Data blocks are specially formatted data packets, stored in machine's A software buffers. 

These packets contain search results, obtained by machine's A searching actions, formatted 

in a predetermined information vector1 fashion. The maximum size of each data block is 

1500 bytes. To prevent synchronization problems, data block exchange implements the 

alternating bit (AB) protocol. Data blocks are numbered with sequential 0 and 1 values, and 

their subsequent acknowledgments with 1 and 0 values respectively. Data block 0 (DO) is 

acknowledged by machine A with an Al and Dl with an A0, thus preventing duplicate or 

asynchronized packet and acknowledgment exchange. If an acknowledgment does not arrive 

within a specified amount of time a time-out is triggered causing a retransmission of the 

unacknowledged data block. The time out value (T_0 (4)) is calculated based on the time 

needed for the acknowledgment of the corresponding data packet to arrive back to machine 

B. Data block processing time (for both machines) and acknowledgment transmission time, 

1 The vector's fields contain the search results obtained in a particular searching area. 

58 



are mostly hardware and network system dependent and can not yet been predicted 

accurately. However, for the small distances of operation (up to 800 ft) between the two 

machines (low propagation delay) these delay-time contributing factors seem to dominate the 

T-O (4) calculation over the propagation delay time. This time (TPR0P) is calculated based on 

the maximum open space distance of the average wireless device on table 7. A correction 

factor of 0.05 ms is added (by estimation) to account for the absence of data processing and 

acknowledgment transmission times. 

rr            Open space distance        243.84 m        0 mo     m-7 Tppnp = —  =   = 8.128 x 10    sec 
PR0P Speed of light 3 x 108 m/s 

T_0 (4) = TPR0P + 5 x 10"5 = 5 x 10s sec 

The time-out T_0 (1) is triggered to prevent a deadlock caused by a communications 

error or a complete loss of the -DR message. If machine B does not respond, initiating data 

blocks sequential transmission, within T_0 (1) seconds, a time-out is triggered causing the 

-DR message retransmission. This time out is calculated based on the time needed for 

machine B to transmit a complete data block (1500 bytes long) and the propagation delay 

until this block reaches machine A. Again, a correction factor of 0.05 msec is added. 

r Data Block size    _   1500 x 8 bits _ nrnA 1 Data Block ~A T~ ~~ cnn   v1_ ~  U.UZ4 Sec 
Average data rate 500 Kbps 

T_0 (1) = TDataBlock + TPR0P + 5 x 10-5 = 0.02405 - 0.024 sec 

The protocol allows machine B responding with a NR (not ready) message, while in 

state 1 or state 4. This provides for situations where machine's B data buffers are empty. 

These situations can occur quite often in UXO searching operations. Some typical examples 
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are : machine's B (robot vehicle) searching sensors delayed data delivery for some reason 

(instrument malfunction), or the application, processing the sensor's data, delayed data 

delivery to the communications application etc. In situations like that, both machines go to 

a waiting state (state 2 or state 5). In this state machine B waits for the internal event Data_Q 

to happen, for protocol continuation. When a data block is queued in machine's B data 

buffers (Data_Q internal event), this block is transmitted and both machines continue 

message exchange from where they had left, according to the AB protocol. To prevent a 

possible deadlock situation that might occur, if the internal event Data_Q never happens or 

delays for a significant time period, a T_0 (3) time out is triggered. When this time-out is 

triggered both machines return to the initial state (state 0), by that way resolving any 

synchronization problems that might occur otherwise. From this state the protocol starts all 

over again. 

The T_0 (3) timer value is calculated based on the time needed for machine A to 

collect a complete data block (containing search data results) and transmit it to machine A. 

Since data collection time is not yet defined by the UXO detection project group, a large T_0 

(3) value will compensate for almost all problematic situations associated with robot's 

incapability to obtain and transmit searching data. It is estimated, that a T_0 (3) = 5 sec 

value should give enough time for this operation to complete. 

Another polling action, from machine A to machine B, is the status information 

request. This request is made by the SR message transmission to machine B. Status 

information returns within SI message from machine B. If status information does not arrive 

within a specified amount of time, a time-out event is triggered again. The time-out value for 

the T_0 (5) timer is calculated based on the time needed for machine B to transmit a status 

information packet (SI) to machine A. Status information packets have the same size (1500 

bytes) with the data block packets. Taking in to account the same propagation delay, as in 

the previous timer values calculation, this value is : 

T_0 (5) = Tslatuslnf0 + TPR0P = T^BU* + TPR0P = TO (1) = 0.024 sec 
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Finally, machine A may select to send a command to machine B. Basically, this 

command satisfies the need of controlling the robot's motion, and changing the robot's 

searching pattern and operation mode. An emergency shut down or other urgent commands, 

like "stop searching immediately" (dangerous situations), can be implemented in the format 

of this message. Machine B (mobile robot) acknowledges the command and follows, if it is 

able, what is ordered. An -A message indicates that machine B has received the command 

and it is willing to follow it, and -NAK indicates that the received command cannot be 

followed. The T_0 (2) timer prevents from deadlocks if the -Cmmnd message is lost. The 

timer has the same time-out value as the T_0 (4) timer. 

Figures 26, 27, 28 and 29 show the reachability analysis (verification) for the 

communication protocol between machines A and B. Figure 26 shows the reachability 

analysis for the DR message branch, Figure 27 for the Data Block exchange message branch, 

Figure 28 for the Status Information (SI) exchange and Figure 29 for the Cmmnd message 

branch. 

T_Q (1) 

f 2. E E. O J —- 

I O. SS. E. 3 J 

{ O. E, E. 3 J 

Figure 26 : Reachability analysis for the DR message branch 
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Figure 27 : Reachability analysis for the Data Block exchange branch 
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Figure 28 : Reachability analysis for the Status Information exchange branch 
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Figure 29 : Reachability analysis for the Cmmnd message branch 
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V. PROTOCOL IMPLEMENTATION WITH WINDOWS SOCKETS 

A.       WINSOCKAPI 

Network protocols are usually implemented by a programming (software) interface 

tool that directly interacts, in the top-down view, with one (or more) of the underlying 

functional layers of the OSI network model. The usual approach, widely acknowledged as 

the standard programming interface with TCP/IP protocol suite, was Berkeley Sockets 

Application Programming Interface (API), as implemented in version 4.3 of Berkeley 

Software Distribution (BSD 4.3). The last five years another standard API, Windows 

Sockets (Winsock), is the tool of preference for many users that create network programs and 

especially network applications that run over the Internet. 

Winsock Application Programming Interface (API) is an open interface for network 

programming under Microsoft Windows. The Winsock specification is "open" in the same 

sense as other open systems. It was created and continuously improved and tuned, in the 

spirit of cooperation. Different network vendors and network programmers participated and 

continue to participate in the development of this programming standard. The standard is 

freely available (the easiest access is over the Internet) allowing anyone to create, or modify 

already existing, Winsock applications. Winsock API (WSA) consists of a collection of 

function calls, data structures, and conventions. The basic header files that provide the 

Winsock API specification are: winsock.h (Appendix B) and winsockx.h. 

Figure 30 shows the Winsock network model in comparison with the standard OSI 

hierarchical network structure. Winsock directly interacts with the Transport protocol of the 

OSI model, or the TCP/IP protocol suite of DoD network model. As mentioned in Chapter 

V, the network interface and the drivers constitute the Network system, which in turn 

interacts with the TCP/IP suite (a different proprietary API exists there) to provide reliable 

services to the Winsock applications. 
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Figure 30 : The Winsock network model in comparison with the OSI model 

The benefits that Winsock API (WS A) provides to network application implementors 

can be summarized as follows: 

1. It provides source code portability with Berkeley sockets API. Almost all the 

functions and procedures used by the two standards are exactly the same (Winsock 

derives from BSD sockets). Figure 31 shows the source code portability aspect. 

The only differences account for the new mode of operation (asynchronous mode) 
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Figure 31: Network source code portability from Berkeley sockets to Winsock 
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that Winsock defines. This mode was critically advantageous for the non- 

preemptive Operating Systems (OS) like DOS and Windows 3.1 (BSD sockets 

support only blocking and non-blocking modes of operation), but the new 

multitasking Windows 95 and Windows NT OS support network applications 

designed in the other modes very efficiently. 

2. It is protocol independent and also network media independent. WS A can provide 

access to different protocol suites, like: DECNet, AppleTalk, SPX/IPX, OSI, 

SNA, TCP/IP and many others. WS A provides this independency by supporting 

dynamic linking. Dynamic link libraries (DLL) are a key feature of MS Windows. 

They are libraries of executable procedures, with well-defined interfaces. 

Applications link with them dynamically at run time (rather than statically at 

compile time). Multiple applications can use a DLL simultaneously (they share 

code), which means there is only one copy of the DLL code in memory. Another 

important aspect is that the DLL is separate from the application, so one can be 

changed with out affecting the other. However, the most important advantage is 

that DLLs that provide compatible APIs, also provide compatible application 

binary interface. This means that Winsock implementations have portable 

executable programs, not just source files. Once the Winsock source code has been 

compiled and linked, the executable program created will run over any vendor's 

Winsock-compliant interface. 

Winsock implementations run over any type of network medium : Ethernet, 

wireless, Token Ring, FDDI etc. Winsock only interacts with the DLLs, and does 

not need to know any other API mechanism. Proprietary hardware APIs provide 

interaction between the network interface card (Ethernet, 802.11 etc.) and the 

multiple protocol stack drivers (ODI, Packet Driver, NDIS etc.) which in turn 

communicate with the upper protocols (TCP/IP, DECNet, etc.) with standard 

driver APIs. 

3. As mentioned earlier Winsock is an open standard. Open standards make 

technology accessible. They allow network users and programmers to mix and 
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match components from different vendors. The TCP/IP suite is the ideal example 

of an open standard. The TCP/IP protocol suite is responsible for the phenomenal 

growth of the Internet. Its success is due to its interoperability, which resulted from 

real-world testing and refinement by protocol stack and application developers 

involved in its development. Winsock as an open standard, provides a well defined 

interface, so that one vendor's product can interoperate with other's. The 

portability of the Winsock code between platforms is really essential. 

Network code portability is sometimes misinterpreted. Network programmers, and 

Winsock application users must understand that Winsock applications (as well as other 

network API applications) running over different protocol suites will not communicate with 

each other (Figure 32). This is not a problem imposed by the API specification itself, but 
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rather the way computer networks and computers communicate with each other. 

Communication between two people speaking different languages will fail even though the 

interface (voice) is common. Figure 32 shows how protocols and APIs interoperate [Ref. 16]. 

B.        WINSOCK PROGRAMMING MODEL 

Winsock API is a kind of "programmatic plug" to any network. The socket concept 

is the basis of Winsock (and of Berkeley sockets) programming. A socket is an endpoint of 

communication, created in software, and equivalent to a computer's network (hardware) 

interface. It allows a network application to "plug into" the network (metaphorically). 

Typically, there is only one physical network interface on a computer, but the number of 

sockets can be far more. There is a one-for-many correspondence. Many sockets (software 

communication endpoints) can use a single network interface simultaneously. 

There are two types of endpoints (sockets): clients and servers. By definition, a client 

sends the first packet, and the server receives it. This assumption helps network code 

sketching and writing and does not represent the actual functionality of the client-server 

relationship. Winsock client and server applications are generally characterized by their role 

during initial communication phase. After initial contact, either the client or the server is 

capable of sending and receiving data (they are both piers). The services these applications 

provide can reverse this relationship any time after their first communication between each 

other. For the UXO detection communication protocol, specified in chapter IV, machine A 

represents the client (sends the first message always) and machine B (rotary vehicle) the 

server. 

All network applications (clients and servers) usually follow five programming steps 

(in both Winsock and Berkeley sockets implementations): 

1. Open a socket 

2. Name the socket 

3. Associate the socket with another socket (clients with servers) 

4. Send and receive data between sockets, and 

5. Close the socket 

The communication protocol specified for the UXO detection project is implemented 
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(Winsock application) on top of the User Datagram Protocol (UDP). The choice has been 

made in the basis of simplicity and efficiency. The UDP transport has low overhead, so it 

provides efficiency that can result in performance benefits, and it is easy to use and 

implement. However, UDP connectionless transport, also called datagram service, is 

unreliable because it neither guarantees packet delivery nor preserves the packet sequence. 

Although datagram service is unreliable, datagram applications need not be unreliable. 

Datagram applications can implement the services that provide the missing reliability. This 

is exactly the service that the two FSM specifications, drawn in Figures 24 and 25, provide 

for the UXO detection project. They provide positive acknowledgment with retransmission 

(with time-outs) service, and data sequencing service, so that a receiver can resequence data 

when needed and detect and discard duplicate data packets. A generic programming model 

for UDP clients and servers, following the Winsock (or Berkeley sockets) convention 

appears in Figure 33. [Ref. 4, 16] 

Figure 33 shows the generic model followed by the UDP implementation of the 

communication protocols drawn in Chapter rv. The ground control station is the client 

application, initializing the communication exchange by asking some data (search results by 
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the DR message or status information by the SR message), and the rotary vehicle becomes 

the server application that provides this information. 

The main data exchange branch of this protocol appears in Appendix A in Winsock 

ANSI C code implementation. Appendix B presents the winsock.h header file, that includes 

most of the definitions, functions and procedures used in the code implementation. Some 

conventions and definitions come from the windows.h header file, which is a part of 

Windows OS itself. This header file is not presented in the thesis research, as it is of no 

particular interest for network programming. 
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VI. CONCLUSION 

Many modern applications and projects cannot be served by traditional wired-based 

networking technologies. Wireless communications provide an effective solution for projects 

that require mobility and especially for those for which implementation spans multiple 

heterogeneous geographic locations. The mine/UXO detection and clearing project belongs 

to this category. In this thesis, the physical (hardware) and logical (software) architecture of 

a wireless LAN that will accommodate the mine/UXO detection project needs is analyzed. 

A.       CONTRIBUTIONS 

Based on the characteristics and the topologies of traditional wireless LAN 

configurations, a stand alone wireless network is proposed. The major contributions of the 

thesis on the wireless network configuration are the following: 

1. The thesis investigated the proper wireless modulation technique. The wireless 

LAN should utilize microwave Spread Spectrum modulation. This technology 

enhances mobility and assures immunity to interference for every wireless LAN 

implementation that adopts the regulations and provisions of the two regulatory 

agencies: the FCC and the IEEE (802.11 standard). 

2. The thesis proposed a series of wireless devices that have the characteristics 

needed to accommodate the UXO project requirements. Counterbalancing between 

the limitations posted by the FCC and IEEE 802.11 regulations and the desired 

performance and communications distance coverage, the thesis proposed a series 

(Table 7) of wireless products, through survey in the current network market, that 

best accommodate the project needs. 

3. The thesis specified the wireless protocols that implement the proposed technology 

(Spread Spectrum) providing multiple access capability to the wireless 

communication medium for a number of stations simultaneously (MACA and 

MACAW). 

4. The communication protocol between the two main operating stations of the UXO 

project (Ground Control Station and rotary vehicle robot) was developed and 
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specified by a FSM model, analyzed for error free operation by the use of timers 

and positive acknowledgments with retransmissions (Alternating Bit protocol), and 

finally verified using reachability analysis diagrams. 

5. The communication protocol was implemented (in ANSI C code) as an OSI layer 

application protocol, by the use of Windows sockets network API. 

B.        SUGGESTIONS FOR FUTURE WORK 

In this thesis the communication protocol between the two main stations performing 

UXO detection and clearing was designed and implemented. The nature of the UXO project 

suggests the use of additional semi-autonomous vehicles (like the air vehicle) in the future. 

Additional communication protocols as well as broadcasting or multicasting capabilities, at 

least for the ground control station (communications coordinator), should be considered as 

a communications improvement. The use of the User Datagram Protocol (UDP) transport by 

this thesis, in the proposed communication protocol supports broadcasting and multicasting. 

The code implementation of the proposed communication protocol (Winsock 

application) can be further improved by the addition of a rigorous network error analysis and 

handling. The current implementation does not handle all failures and errors it encounters 

gracefully. When errors occur notifying the user and aborting the connection is the common 

strategy. A rigorous error analysis is a potential field for a future research. 

Finally, the new capabilities (ease of implementation, complete network packages, 

real time code testing etc.) and the flexibility that Java network programming language 

developed during the last years indicates a new tool for simple and elegant network 

application implementations. Many Internet industry watchers predict that the software of 

the future will use networks (specially wireless) and local resources in ways that may seem 

radical by today's standards (like the Winsock and Berkeley sockets network standards). The 

Java language is a modern application development language designed specifically for the 

distributed, network applications of the future. 
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APPENDIX A. MAIN DATA EXCHANGE CLIENT AND SERVER 

/* The Data_Block_Excng ( ) is the client application that implements 
the main data exchange branch (ground station's functionality) of the 
communication protocol showed as a FSM in Figure 24. The code follows the 
Winsock programming conventions. The client initiates association with 
the server by sending a DR message. This message is implemented as a two 
byte character string, stored in a control output buffer. The server can 
then initiate the data block exchange branch (Alternating Bit sequence) 
or respond with a NR message. The data blocks are organized in strings 
of characters 1500 bytes long. The first byte of each message (for data 
blocks or control messages) does not contain information, but is rather 
for message identification. Examination of the first byte of the incoming 
data (stored in the clients input buffers) determines protocol 
continuation. Acknowledgments of data blocks are implemented by 1-byte 
characters '0' and ' 1'. After the first iteration of the data block 
exchange loop, the STOP SENDING condition (internal event) is examined. 
This event is implemented by a function call that opens a file (the 
,Cmmnd_file') and examines if the user or another application has issued 
a STOP SENDING command. Time-outs are implemented by the use of Winsock 
setsockopt ( ) function (nOptVal parameter). Because Winsock accepts for 
all applications time-out values larger than 500 ms, some hypothetical 
values (not the ones calculated in Chapter IV) relatively corresponding 
to the actual delay of each time-out are used in this implementation. The 
code follows the basic Winsock client/server conventions. */ 

/* Header files 
# inelüde <windows.h> 
#include <winsock.h> 
♦include <winsockx.h> 
♦include <stdio.h> 

♦define BUFSIZE 1500 ; 
♦define PORT 600 ;     /* port number for the server's address 

structure */ 

/* Global variables */ 
extern SOCKET s; 
SOCKADDR_IN stRmtName ; 
SOCKADDR_IN stRmtName ; 
static char InBuffer[BUFSIZE] ; /* input and */ 
static char CntrlBuf[ ] = "DR" ; /* control buffers */ 
static char CntrlBuffer = 'S' 
extern HFILE hFile /* file handle */ 
int nRet ; 
int Buflength = 1500 ; /* data buffer */ 
BOOL STOP_SENDING = FALSE ; 

*/sequence number for data blocks and acknowledgments */ 
extern char frame_expected ='0' ; 
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char ackBuffer ; /* acknowledgments buffer */ 

int timeOutOne = 500 ;        /* timeout values */ 
int timeOutThree = 5000 ; 

/*  Function Prototypes  */ 
/* increment the sequence number of the data blocks and 

their corresponding acknowledgments */ 
char inc (char) ; 

int StopSending (void) ; 
/* */ 

/* main program loop */ 

void Data_Block_Excng ( ) { 

s = socket(PF_INET, SOCKJDGRAM, 0) ;      /* get a UDP socket */ 
if (s == INVALID_SOCKET) { 

/* if error occurs close connection and socket  */ 
(WSAperror (WSAGetLastError ( ), "socket") ; 
nRet = closesocket (s) ; 
if (nRet == SOCKET_ERROR) { 
/* report the error to the user and abord program*/ 

WSAperror (WSAGetLastError ( ), "closesocket") ; 
return ; 

} 
} 

/* initialize destination (server's) socket address structure */ 

stRmtName.sin_family = PF_INET ;        /* TCP/IP suite */ 
stRmtName.sin_port = htons(PORT) ;   /* port number in network 

order */ 
stRmtName.sin_addr = INADDR_ANY ;  /* request the stack to assign 

the local IP address automatically */ 

/* connect to server (just to inform the network system that this UDP 
connection will send datagrams to the same destination socket);  */ 

nRet = connect (s, (LPSOCKADDR)&stRmtName, sizeof (SOCKADDR) ) ; 

/* on a UDP socket connect ( ) does not fail, because the socket does 
not access the network */ 

/* set the T_0 (1) time-out value */ 
int nOptVal =timeOutOne ; 
setsockopt (INVALID_SOCKET, SOL_SOCKET, SO_RCVTIMEO, (char 
FAR*)&nOptVal, sizeof (int)); 

/* main data exchange loop */ 
for (;;) { 

send (s, (LPSTR)&CntrlBuf, _fstrlen (CntrlBuf), 0) ; 
nRet = recv (s, (LPSTR)&InBuffer, Buflength, 0) ; 
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if (nRet == SOCKET_ERROR) { 
nWSAerror = WSAGetLastError ( ) ; 
if (nWSAerror == WSATIMEDOUT) { 
/* we had a time-out on a blocking operation and we want 

the application to cancel it */ 
if (WSAIsBlocking ( ) ) {    /* determine if a blocking 

call is in progress */ 
/* cancel the blocking call */ 
WSACancelBlockingCall ( ) ; 

} 
continue ; 

}else { 
closesocket (s) ;      /* close socket and abord */ 
return ; 

} 
/* if no time-out occured */ 
while (!STOP_SENDING) { 

/* a 'NR' message was received ? */ 
if (InBuffer[0] == 110 || InBuffer[0] ==78) { 

nOptVal = timeOutThree ; 
setsockopt (INVALID_SOCKET, SOL_SOCKET, SO_RCVTIMEO, (char 
FAR*)&nOptVal, sizeof (int)) ; 
nRet = recv (s, (LPSTR)&InBuffer, Buflength, 0) ; 
if (nRet == SOCKET_ERROR) { 

nWSAerror = WSAGetLastError ( ) ; 
if  (nWSAerror == WSATIMEDOUT) { 

WSACancelBlockingCall ( ) ; /* cancel blocking 
call and return to state 0 */ 

wsprintf ("Time-out(3). Returning to state 0") ; 
break ;     /* get out of the while ( ) loop */ 

} else { 
/*report the error to the user */ 
WSAperror (WSAErr, " recv ( ) " ) ; 
closesocket (s) ; 

return ; /* fatal error, end program */ 
} 

goto data ; 
} 

} 

data : 
/* data block exchange branch-check for correct sequence first */ 

if (InBuffer[0] == frame_expected) { 
ackBuffer = frame_expected ; 
send (s, (LPSTR)fcackBuffer, 1, 0) ; /* send proper ACK */ 
inc (frame_expected) ; 

} else { 
ackBuffer = frame_expected ; 

STOP_SENDING = StopSending ( ) ; 
} 
recv (s, (LPSTR)&InBuffer, Buflength, 0) ; 

} /* while loop ends */ 
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send (send (s, (LPSTR)&CntrlBuffer, 1, 0) ; /* send a STOP_SENDING 
message */ 

break ; 
} /* for loop ends */ 

closesocket (s) ; 
return ; 
}       /* Data_Block_Excng ends */ 

/*  Function definitions  */ 

/A*********************/ 

char inc (char) 

{ 
if (frame_expected == * 0') { 

frame_expected = ' 1' ; 
}else{ 

frame_expected = ' 0'   } 
return frame_expected ; 
} 

int stopSending ( ) 
/**********************/ 

{ 
HFILE hFile ;     /* file descriptor */ 
char a ; 
SOCKET s ; 
hFile =_lopen(Cmnmd_file, 0) ;   /* open Cmmnd_file for read */ 
a =_lread (hFile, StopSendBuffer, 1) ; /* read a 1-byte character 

command */ 
if (a == HFILE_ERROR) { 

MessageBox (hWinMain, "Error reading Cmmnd_file") ; 
closesocket (s) ; 
return ; 

} else { 
if ( StopSendBuffer == 's' || StopSendBuffer == 'S'   ) { 

return TRUE; 
else 

return FALSE; 
} 

} 
/* */ 
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/* The Data_Excng ( ) is the server application that implements 
the main data exchange branch (rotary vehicle's) of the 
communication protocol showed as a FSM in Figure 25. The server's 
code also follows the Winsock programming conventions. The server 
is implemented as an endless loop that ends upon reception of a 
STOP_SENDING (1-byte character) message. During this loop the server 
application continuously opens the 'DataFile' to determine data 
block availability (passed in this file by another application 
program) and load the output buffers. Data blocks are again 
character strings of 1500 bytes. The first character (byte) always 
determines the sequence number of the data block and contains no 
actual information. The NR (not ready) message is implemented by a 
control character buffer that holds the 'N' character. Time-outs are 
again implemented by the use of the setsockopt ( ) function. To 
compensate for the delays of the code implementation of Figure's 23 
protocol, the T_0(3) timer has a 1 sec greater value than the same 
timer in the client application program. 

The server's service port has been assigned just for the 
purpose of code completion and belongs in the typical range of user- 
defined services as indicated by the Internet Assigned Numbers 
Authority (IANA) (revision RFC 17 00)  */ 

# inelüde <windows.h> 
#include <winsock.h> 
#include <winsockx.h> 
#include <stdio.h> 
tdefine BUFSIZE 1500 ; 
#define PORT 3600 ;     /* the port that the server listens for 

connections */ 

/*  Global variables  */ 
SOCKET s; 
SOCKADDR_IN stLclName ; 
SOCKADDR_IN stRmtName ; 
static char OutBuffer [BUFSIZE] ,-    /* output data (blocks) buffer */ 
static char CntrlBuf = 'N' ;  /* the NR message */ 
static char InBuffer [2] ;    /* ACKs and control messages */ 
char ackTempBuffer [2 0] ; 
extern HFILE hFile /* file handle for open data file  */ 

int nRet ; 
int nOptVal ; 
int Buflength = 1500 ; 
BOOL STOP_SENDING = FALSE ; 
BOOL time_out_with_out_data = FALSE ; 
extern char next_frame_to_send = '0' ; /* frame sequence No-*/ 
char ackBuffer ; 
int timeOutFour = 500 ;  /* time-out values for T_0(4), T_0(3)*/ 
int timeOutThree = 5000 ; 
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/*  Function Prototypes  */ 
char inc (char) ; 
/* */ 

/* main program begins */ 

void Data_Excng ( ) { 

s = socket(PF_INET, SOCK_DGRAM, 0) ; /* get a UDP socket */ 
if (s == INVALID_SOCKET) { 
/* if it is invalid socket report error to user */ 

(WSAperror (WSAGetLastError ( ), "socket") ; 
nRet = closesocket (s) ; /* close connection and socket */ 
return ,- 

} 

/* initialize local (server's) socket address structure, to provide for 
the client assosiation */ 

stLclName.sin_family = PF_INET ; /* TCP/IP suite */ 
stLclName.sin_port = htons (PORT) ;    /* server's port number in 

network order */ 
stLclName.sin_addr = INADDR_ANY ;    /* request the stack to assign the 

local IP address automatically */ 

/* name the local socket with the values in the sockaddr_in structure */ 
nRet = bind (s,(LPSOCKADDR)&stLclName, sizeof (struct sockaddr)); 

/* since the server's socket name is unique (port number and IP 
address), this function will not fail */ 
/* other applications will not try to bound to the same socket name */ 

/* an endless loop implementing the server */ 
for ( ;; ) { 

nRet = recv (s, (LPSTR)fclnBuffer, 2, 0 ) ;  /* infinite blooking hook */ 

/* waiting for the DR message */ 
if  ((nRet == 2) && (InBuffer [0] == XD' && InBuffer[1] == 'R')) { 

while ( !STOP_SENDING) { 
hFile = _lopen(Datafile, 0); /* open file containing the 

data blocks for read */ 

if ( hFile == HFILE_ERROR) { 
wsprintf (achTempBuf, "Unable to open the Datafile "); 
MessageBox (hWinMain, (LPSTR)achTempBuf ,"Error 
reading Datafile") ; 
_lclose (hFile) ; 
closesocket (s) ,-      /* close socket and abord */ 
return ; } 

/* if file is readable */ 
fRet =_lread (hFile, OutBuffer, 1500) ;   /* read 1500 

bytes in the output buffers */ 
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if  (!fRet ) {       /* check if we have data to send */ 

/* if the file is empty */ 
for ( ;; ) { 

/* send a NR message ('N' character) to the client */ 
send  (s,(LPSTR)&CntrlBuf , _fstrlen(CntrlBuf),0); 
InBuffer [0] = 0; 
InBuffer [1] = 0;      /* clear input buffers */ 

/* set time-out T_0(3) */ 
nOptVal = timeOutThree +1000 ; 
setsockopt (INVALID_SOCKET, SOL_SOCKET, SO_RCVTIMEO, 
(char FAR*)SnOptVal, sizeof (int)) ; 
nret = recv (s, (LPSTR)&InBuffer, 2, 0 ) ; 
if  ((nRet == 2) && (InBuffer [0] == 'D' && InBuffer[l] 
'R')) 

continue ; 
else if (nRet == S0CKET_ERR0R) { 
nWSAerror = WSAGetLastError ( ) ; 
if (nWSAerror == WSATIMEDOUT) { 
WSACancelBlockingCall ( ) ; 
fRet =_lread (hFile, OutBuffer, 1500) ,- 

/* check for data availability */ 
if (IfRet) 

break ; 
else {time_out_with_out_data = TRUE ; 

break ;  } 
else {WSAperror (WSAErr, " recv ( ) " ) ; 

closesocket (s) ,- 
return ;   } 

} 
} 

data : /* we have data to send */ 

if (time_out_with_out_data) break ; 
OutBuffer [0] = next_frame_to_send ; 

while ( !STOP_SENDING ) { /* sending data loop */ 

send (s, (LPSTR) &OutBuf fer, 1500, 1) ,- 
nOptVal = timeOutFour ;    /* set time-out T_0(4) */ 
setsockopt (INVALID_SOCKET, SOL_SOCKET, SO_RCVTIMEO, (char 
FAR*)fcnOptVal, sizeof (int)) ; 
nRet = recv (s, (LPSTR)&InBuffer, 1, 0 ) ; 
if   (nRet == SOCKET_ERROR) { 

nWSAerror = WSAGetLastError ( ) ; 
if  (nWSAerror == WSATIMEDOUT) { 

WSACancelBlockingCall ( ) ; 
continue ; } 

else {WSAperror (WSAErr, " recv ( ) " ) ; 
closesocket (s) ; 
return ;   } 

if  ( InBuffer [0] == 'S' || InBuffer [0] == 's' ) { 
STOP_SENDING = TRUE; } 
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if  ( InBuffer [0] != next_frame_to_send ) {    /* we are OK */ 
break ;} 

} 

if ( time_out_with_out_data) { 
break ; } 

inc (next_frame_to_send) ; 
} 

} 
return ; 
} 
/* end of Data_Excng ( ) */ 

/*  Function definitions 

/a-*********************/ 

char inc (char) 
/•A********************/ 

{ 
if (next_frame_to_send == '0') { 

next_frame_to_send = '1' ; 
} else { 

next_frame_to_send = '0'   } 
return next_frame_to_send ; 
} 
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APPENDIX B. WINSOCK HEADER FILE AND DEFINITIONS 

/* WINSOCK.H—definitions to be used with the WINSOCK.DLL 
* This header file corresponds to version 1.1 of the Windows Sockets 
* specification. 
* This file includes parts which are Copyright (c) 1982-1986 Regents 
* of the University of California.  All rights reserved.  The 
* Berkeley Software License Agreement specifies the terms and 
* conditions for redistribution. 
*/ 

#ifndef _WINSOCKAPI_ 
#define _WINSOCKAPI_ 

/* 
* Pull in WINDOWS.H if necessary 
*/ 

#ifndef _INC_WINDOWS 
# inelüde <windows.h> 
#endif /* _INC_WINDOWS */ 

/* 
* Basic system type definitions, taken from the BSD file sys/types.h. 
*/ 

typedef unsigned char u_char; 
typedef unsigned short u_short; 
typedef unsigned int u_int; 
typedef unsigned long u_long; 

/* 
* The new type to be used in all 
* instances which refer to sockets. 
*/ 

typedef u_int SOCKET; 

/* 
* Select uses arrays of SOCKETS.  These macros manipulate such 
* arrays.  FD_SETSIZE may be defined by the user before including 
* this file, but the default here should be >= 64. 
* 
* CAVEAT IMPLEMENTOR and USER: THESE MACROS AND TYPES MUST BE 
* INCLUDED IN WINSOCK.H EXACTLY AS SHOWN HERE. 
*/ 

#ifndef FD_SETSIZE 
tdefine FD_SETSIZE     64 
#endif /* FD_SETSIZE */ 

typedef struct fd_set { 
u_short fd_count; /* how many are SET? */ 
SOCKET  fd_array[FD_SETSIZE];   /* an array of SOCKETS */ 

}fd_set; 

#ifdef  cplusplus 
extern "C" { 
#endif 
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extern int PASCAL FAR  WSAFDIsSet(SOCKET, fd_set FAR *); 

#ifdef  cplusplus 
} 
#endif 

#define FD_CLR(fd, set) do {\ 
u_int  i; \ 
for ( i = 0;  i < ((fd_set FAR *)(set))->fd_count ;  i++) {\ 

if (((fd_set FAR *)(set))->fd_array[ i] == fd) {\ 
while ( i < ((fd_set FAR *)(set))->fd_count-l) {\ 

((fd_set FAR *)(set))->fd_array[ i] = \ 
((fd_set FAR *)(set))->fd_array[ i+1]; \ 

 i++; \ 
}\ 
((fd_set FAR *) (set) )->fd_count~; \ 
break; \ 

}\ 
}\ 

}while(0) 

#define FD_SET(fd, set) do {\ 
if (((fd_set FAR *)(set))->fd_count < FD_SETSIZE) \ 

((fd_set FAR *) (set))->fd_array[((fd_set FAR *) (set))->fd_count++]=fd; \ 
}while(0) 

#define FD_ZERO(set) (((fd_set FAR *)(set))->fd_count=0) 

#define FD_ISSET(fd, set)  WSAFDIsSet((SOCKET)fd, (fd_set FAR *)set) 

/* 
* Structure used in select() call, taken from the BSD file sys/time.h. 
*/ 

struct timeval { 
long   tv_sec;        /* seconds */ 
long   tv_usec;       /* and microseconds */ 

}; 

/* 
* Operations on timevals. 
* 
* NB: timercmp does not work for >= or <=. 
*/ 

#define timerisset(tvp)        ((tvp)->tv_sec || (tvp)->tv_usec) 
#define timercmp(tvp, uvp, cmp) \ 

((tvp)->tv_sec cmp (uvp)->tv_sec || \ 
(tvp)->tv_sec == (uvp)->tv_sec && (tvp)->tv_usec cmp (uvp)->tv_usec) 

#define timerclear(tvp)        (tvp)->tv_sec = (tvp)->tv_usec = 0 

/* 
* Commands for ioctlsocket(),  taken from the BSD file fcntl.h. 
* 
* 
* Ioctl's have the command encoded in the lower word, 
* and the size of any in or out parameters in the upper 
* word.  The high 2 bits of the upper word are used 
* to encode the in/out status of the parameter; for now 
* we restrict parameters to at most 128 bytes. 
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*/ 
#define IOCPARM_MASK 
#define IOC_VOID 
#define IOC_OUT 
tdefine IOC_IN 
#define IOC INOUT 

#define _IO(x,y) 

#define _IOR(x,y,t) 

#define _IOW(x,y,t) 

#define FIONREAD 
#define FIONBIO 
tdefine FIOASYNC 

0x7 f /* 
0x20000000 /* 
0x40000000 /* 
0x80000000 /* 
(IOC_IN|lOC_OUT) 

parameters must be < 128 bytes */ 
no parameters */ 
copy out parameters 
copy in parameters 

*/ 
*/ 

/' 0x20000000 distinguishes new & 
old ioctl's */ 

(IOC_VOID| (x«8) |y) 

(IOC_OUT| (((long)sizeof(t)&IOCPARM_MASK)<<16) | (x«8) |y) 

(IOC_IN| ( ( (long)sizeof (t) &IOCPARM.MASK) «16) | (x«8) |y) 

_I0R('f, 127, u_long) /* get # bytes to read */ 
_I0W('f', 126, u_long) /* set/clear non-blocking i/o */ 
_I0W('f, 125, u_long) /* set/clear async i/o */ 

/* Socket I/O Controls */ 
#define SIOCSHIWAT _IOW( S', 0, u_long) /* 
#define SIOCGHIWAT _IOR( S', 1, u_long) /* 
#define SIOCSLOWAT _IOW( s* , 2, u_long) /* 
#define SIOCGLOWAT _IOR( s-, 3, u_long) /* 
#define SIOCATMARK _IOR( s', 7, u_long) /* 

set high watermark */ 
get high watermark */ 
set low watermark */ 
get low watermark */ 
at oob mark? */ 

Structures returned by network data base library, taken from the 
BSD file netdb.h. All addresses are supplied in host order, and 
returned in network order (suitable for use in system calls). 

'/ 

struct hostent { 
char 
char 
short 
short 
char 

#define h_addr 
}; 

FAR * h_name; 
FAR * FAR * h_aliases; 
h_addrtype; 
h_length; 
FAR * FAR * h_addr_list; 
h_addr_list[0] 

/* official name of host */ 
/* alias list */ 
/* host address type */ 
/* length of address */ 
/* list of addresses */ 

/* address, for backward compat */ 

/* 
* It i 
* fits 
*/ 

struct 

s assumed here that a network number 
in 32 bits. 

}; 

netent { 
char FAR * n_name; 
char FAR * FAR * n_aliases; 
short n_addrtype; 
u_long n_net; 

/* official name of net */ 
/* alias list */ 
/* net address type */ 
/* network # */ 

struct 

}; 

servent { 
char   FAR * s_name; /* 
char   FAR * FAR * s_aliases; /* 
short  s_port; /* 
char    FAR * s_proto; /* 

official service name */ 
alias list */ 
port # */ 
protocol to use */ 
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struct 

}; 

protoent { 
char   FAR * p_name; 
char   FAR * FAR * p_aliases; 
short  p_proto; 

/* 
/* 

official protocol name */ 
alias list */ 

/* protocol # */ 

/* 
* Constants and structures defined by the internet system, 
* Per RFC 790, September 1981, taken from the BSD file netinet/in.h. 
*/ 

/* 
* Protocols 
*/ 

#define IPPROTO_IP 
#define IPPROTO_ICMP 
tdefine IPPROTO_GGP 
#define IPPROTOJTCP 
tdefine IPPROTO_PUP 
#define IPPROTO_UDP 
#define IPPROTO_IDP 
tdefine IPPROTO_ND 

#define IPPROTO_RAW 
#define IPPROTO_MAX 

0 
1 
2 
6 
12 
17 
22 
77 

255 
256 

dummy for IP */ 
control message protocol */ 
gateway"2 (deprecated) */ 
tcp */ 
pup */ 
user datagram protocol */ 

k  xns idp */ 
/* UNOFFICIAL net disk proto */ 

/* raw IP packet */ 

/* 
/* 
/* 
/* 
/* 
/* 
/* 

/* 
* Port/socket numbers: network standard functions 
*/ 

#define IPPORT_ECHO 7 
#define IPPORT_DISCARD 9 
tdefine IPPORT_SYSTAT 11 
tdefine IPPORT_DAYTIME 13 
#define IPPORT_NETSTAT 15 
#define IPPORT_FTP 21 
ttdefine IPPORTJTELNET 23 
tdefine IPPORT_SMTP 25 
#define IPPORT_TIMESERVER 37 
#define IPPORT_NAMESERVER 42 
#define IPPORT_WHOIS 43 
#define IPPORT_MTP 57 

/* 
* Port/socket numbers: host specific functions 
*/ 

#define IPPORTJTFTP 69 
#define IPPORT_RJE 77 
ttdefine IPPORT_FINGER 79 
#define IPPORT_TTYLINK 87 
tdefine IPPORT_SUPDUP 95 

/' 
* UNIX TCP sockets 

*/ 
#define IPPORT_EXECSERVER 512 
#define IPPORT_LOGINSERVER 513 
tdefine IPPORT_CMDSERVER 514 
tdefine IPPORT_EFSSERVER 52 0 
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/* 
* UNIX UDP sockets 
*/ 

#define IPPORT_BIFFUDP 512 
ttdefine IPPORT_WHOSERVER       513 
#define IPPORT_ROUTESERVER     520 

/* 520+1 also used */ 

/* 
* Ports < IPPORT_RESERVED are reserved for 
* privileged processes (e.g. root). 
*/ 

tdefine IPPORT_RESERVED        1024 

/* 
* Link numbers 
*/ 

#define IMPLINK_IP 155 
ttdefine IMPLINK_LOWEXPER       156 
#define IMPLINK_HIGHEXPER       158 

/* 
* Internet address (old style... should be updated) 
*/ 

struct in_addr { 
union { 

struct {u_char s_bl,s_b2,s_b3,s_b4; }S_un_b; 
struct {u_short s_wl,s_w2; }S_un_w; 
u_long S_addr; 

}S_un,- 
#define s_addr S_un.S_addr 

/* can be used for most tcp & ip code */ 
#define s_host  S_un.S_un_b.s_b2 

/* host on imp */ 
#define s_net  S_un.S_un_b.s_bl 

/* network */ 
#define s_imp  S_un.S_un_w.s_w2 

/* imp */ 
# de f ine s_impno S_un.S_un_b.s_b4 

/* imp # */ 
#define s_lh   S_un.S_un_b.s_b3 

/* logical host */ 
}; 

/* 
* Definitions of bits in internet address integers. 
* On subnets, the decomposition of addresses to host and net parts 
* is done according to subnet mask, not the masks here. 
*/ 

tdefine IN_CLASSA(i) (((long)(i) & 0x80000000) == 0) 
ttdefine IN_CLASSA_NET 0xff000000 
#define IN_CLASSA_NSHIFT 24 
#define IN_CLASSA_HOST OxOOffffff 
#define IN_CLASSA_MAX 128 

#define IN_CLASSB(i) (((long)(i) & OxcOOOOOOO) == 0x80000000) 
#define IN_CLASSB_NET 0xffff0000 
#define IN_CLASSB_NSHIFT       16 
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tdefine IN_CLASSB_HOST 
tdefine IN_CLASSB_MAX 

#define IN_CLASSC(i) 
#define IN_CLASSC_NET 
#define IN_CLASSC_NSHIFT 
#define IN_CLASSC_HOST 

#define INADDR_ANY 
#define INADDR_LOOPBACK 
#define INADDR_BROADCAST 
#define INADDR NONE 

OxOOOOffff 
65536 

(((long)(i) & OxeOOOOOOO) == OxcOOOOOOO) 
OxffffffOO 
8 
OxOOOOOOff 

(u_long)0x00000000 
0x7f000001 
(u_long)0xffffffff 
Oxffffffff 

/* 
* Socket address, internet style. 
*/ 

struct sockaddr_in { 
short  sin_family; 
u_short sinjoort; 
struct  in_addr sin_addr; 
char   sin_zero[8]; 

}; 

#define WSADESCRIPTION_LEN     256 
#define WSASYS_STATUS_LEN      128 

typedef struct WSAData { 
WORD 
WORD 
char 
char 
unsigned short 
unsigned short 
char FAR * 

} WSADATA; 

typedef WSADATA FAR *LPWSADATA; 

wVersion; 
wHighVers ion ; 
szDescription[WSADESCRIPTION_LEN+l]; 
szSystemStatus[WSASYS_STATUS_LEN+1]; 
iMaxSockets; 
iMaxUdpDg; 
lpVendorlnfo; 

/' 
* Options for use with [gs]etsockopt at the IP level. 
*/ 

ttdefine IP OPTIONS /* set/get IP per-packet options */ 

/' 
* Definitions related to sockets: types, address families, options, 
* taken from the BSD file sys/socket.h. 
*/ 

/* 
* This is used instead of -1, since the 
* SOCKET type is unsigned. 
*/ 

tdefine INVALID_SOCKET  (SOCKET)(-0) 
tdefine SOCKETJERROR (-1) 

/* 
* Types 
*/ 
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tdefine SOCK_STREAM 1 
#define SOCK_DGRAM 2 
#define SOCK_RAW 3 
tdefine SOCK_RDM 4 
#define SOCK_SEQPACKET 5 

/* 
/* 
/* 
/* 
/* 

stream socket */ 
datagram socket */ 
raw-protocol interface */ 
reliably-delivered message */ 
sequenced packet stream */ 

/* 
* Option 
*/ 

tdefine SO. 
#define SO. 
#define SO. 
tdefine SO. 
#define SO. 
#define SO. 
#define SO. 
#define SO. 
#define SO 

flags per-socket. 

.DEBUG 

.ACCEPTCONN 

.REUSEADDR 

.KEEPALIVE 

.DONTROUTE 

.BROADCAST 
USELOOPBACK 
.LINGER 
OOBINLINE 

0x0001 
0x0002 
0x0004 
0x0008 
0x0010 
0x0020 
0x0040 
0x0080 
0x0100 

/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

turn on debugging info recording */ 
socket has had listen() */ 
allow local address reuse */ 
keep connections alive */ 
just use interface addresses */ 
permit sending of broadcast msgs */ 
bypass hardware when possible */ 
linger on close if data present */ 
leave received OOB data in line */ 

#define SO_DONTLINGER   (u_int)(~SO_LINGER) 

Additional options. 
*/ 

#define SO_SNDBUF 0x1001 /* 
#define SO_RCVBUF 0x1002 /* 
tdefine SO_SNDLOWAT 0x1003 /* 
tdefine SO_RCVLOWAT 0x1004 /* 
tdefine SO_SNDTIMEO 0x1005 /* 
tdefine SO_RCVTIMEO 0x1006 /* 
tdefine SO_ERROR 0x1007 /* 
tdefine SO_TYPE 0x1008 /* 

/* 
* TCP options. 
*/ 

tdefine TCP NODELAY 0x0001 

send buffer size */ 
receive buffer size */ 
send low-water mark */ 
receive low-water mark */ 
send timeout */ 
receive timeout */ 
get error status and clear 
get socket type */ 

/* 
* Address 
*/ 

tdefine AF_ 
tdefine AF_ 
tdefine AF_ 
tdefine AF_ 
tdefine AF_ 
tdefine AF. 
tdefine AF_ 
tdefine AF. 
tdefine AF_ 
tdefine AF_ 
tdefine AF. 
tdefine AF. 
tdefine AF. 
tdefine AF. 
tdefine AF. 
tdefine AF. 
tdefine AF. 

families. 

.UNS PEC 

.UNIX 
INET 
IMPLINK 
PUP 
CHAOS 
NS 
IPX 
ISO 
OS I 
ECMA 
JDATAKIT 
.CCITT 
SNA 
DECnet 
PL I 
LAT 

0 
1 
2 
3 
4 
5 
6 
6 
7 
AF_ISO 
8 
9 
10 
11 
12 
13 
14 

/* unspecified */ 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 
/* 

local to host (pipes, portals) */ 
internetwork: UDP, TCP, etc. */ 
arpanet imp addresses */ 
pup protocols: e.g. BSP */ 
mit CHAOS protocols */ 
XEROX NS protocols */ 
IPX and SPX */ 
ISO protocols */ 
OSI is ISO */ 

/* european computer manufacturers */ 
/* datakit protocols */ 
/* CCITT protocols, X.25 etc */ 
/* IBM SNA */ 
/* DECnet */ 
/* Direct data link interface */ 
/* LAT */ 
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tdefine AF_HYLINK 15 
#define AF_APPLETALK 16 
#define AF_NETBIOS 17 

#define AF_MAX 18 

/* NSC Hyperchannel */ 
/* AppleTalk */ 
/* NetBios-style addresses */ 

Structure used by kernel to store most 
addresses. 

*/ 
struct sockaddr { 

u_short sa_family; 
char   sa_data[14]; 

>; 

/* address family */ 
/* up to 14 bytes of direct address */ 

* Structure used by kernel to pass protocol 
* information in raw sockets. 
*/ 

struct sockproto { 
u_short sp_family; 
u_short sp_protocol; 

}; 

/* address family */ 
/* protocol */ 

/* 
* Prot 
*/ 

tdefine 
#define 
tdefine 
#define 
tdefine 
#define 
#define 
#define 
#define 
tdefine 
tdefine 
tdefine 
tdefine 
tdefine 
tdefine 
tdefine 
tdefine 
tdefine 
tdefine 

ocol families, same as address families for now. 

PF_UNSPEC 
PF_UNIX 
PF_INET 
PF_IMPLINK 
PF_PUP 
PF_CHAOS 
PF_NS 
PF_IPX 
PF_ISO 
PF_OSI 
PF_ECMA 
PF_DATAKIT 
PF_CCITT 
PF_SNA 
PF_DECnet 
PF_DLI 
PF_LAT 
PF_HYLINK 
PF APPLETALK 

AF_UNSPEC 
AF_UNIX 
AF_INET 
AF_IMPLINK 
AF_PUP 
AF_CHAOS 
AF_NS 
AF_IPX 
AF_ISO 
AF_OSI 
AF_ECMA 
AF_DATAKIT 
AF_CCITT 
AF_SNA 
AF_DECnet 
AF_DLI 
AF_LAT 
AF_HYLINK 
AF APPLETALK 

tdefine PF_MAX AF MAX 

* Structure used for manipulating linger option. 
*/ 

struct  linger { 
u_short l_ono f f; 
u_short l_linger; 

}; 

/* 

/* option on/off */ 
/* linger time */ 
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* Level number for (get/set)sockopt() to apply to socket itself. 
*/ 

#define SOLSOCKET Oxffff /* options for socket level */ 

/* 
* Maximum queue length specifiable by listen. 
*/ 

#define SOMAXCONN 5 

#define MSG_OOB Oxl 
#define MSG_PEEK 0x2 
#define MSG_DONTROUTE 0x4 

#define MSG MAXIOVLEN 16 

/* process out-of-band data */ 
/* peek at incoming message */ 
/* send without using routing tables */ 

/* 
* Define constant based on rfc883, used by gethostbyxxxx() calls. 
*/ 

#define MAXGETHOSTSTRUCT       1024 

/' 
Define flags to be used with the WSAAsyncSelect() call. 

'/ 
#define FD_READ 0x01 
ttdefine FD_WRITE 0x02 
#define FD_OOB 0x04 
#define FD_ACCEPT 0x08 
ttdefine FD_CONNECT 0x10 
#define FD CLOSE 0x20 

/* 
* All Windows Sockets error constants are biased by WSABASEERR from 
* the "normal" 
*/ 

#define WSABASEERR 10000 
/* 
* Windows Sockets definitions of regular Microsoft C error constants 
*/ 

#define WSAEINTR 
#define WSAEBADF 
»define WSAEACCES 
#define WSAEFAULT 
ttdefine WSAEINVAL 
#define WSAEMFILE 

(WSABASEERR+4) 
(WSABASEERR+9) 
(WSABASEERR+13) 
(WSABASEERR+14) 
(WSABASEERR+22) 
(WSABASEERR+24) 

/' 
Windows Sockets definitions of regular Berkeley error constants 

7 
#define WSAEWOULDBLOCK 
#define WSAEINPROGRESS 
#define WSAEALREADY 
tdefine WSAENOTSOCK 
#define WSAEDESTADDRREQ 
ttdefine WSAEMSGSIZE 
tdefine WSAEPROTOTYPE 
ttdefine WSAENOPROTOOPT 
ttdefine WSAEPROTONOSUPPORT 
#define WSAESOCKTNOSUPPORT 

(WSABASEERR+35) 
(WSABASEERR+36) 
(WSABASEERR+37) 
(WSABASEERR+38) 
(WSABASEERR+39) 
(WSABASEERR+40) 
(WSABASEERR+41) 
(WSABASEERR+42) 
(WSABASEERR+43) 
(WSABASEERR+44) 
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tdefine WSAEOPNOTSUPP 
#define WSAEPFNOSUPPORT 
tdefine WSAEAFNOSUPPORT 
#define WSAEADDRINUSE 
tdefine WSAEADDRNOTAVAIL 
tdefine WSAENETDOWN 
tdefine WSAENETUNREACH 
tdefine WSAENETRESET 
tdefine WSAECONNABORTED 
tdefine WSAECONNRESET 
tdefine WSAENOBUFS 
tdefine WSAEISCONN 
tdefine WSAENOTCONN 
tdefine WSAESHUTDOWN 
tdefine WSAETOOMANYREFS 
tdefine WSAETIMEDOUT 
tdefine WSAECONNREFUSED 
tdefine WSAELOOP 
tdefine WSAENAMETOOLONG 
tdefine WSAEHOSTDOWN 
tdefine WSAEHOSTUNREACH 
tdefine WSAENOTEMPTY 
tdefine WSAEPROCLIM 
tdefine WSAEUSERS 
tdefine WSAEDQUOT 
tdefine WSAESTALE 
tdefine WSAEREMOTE 

(WSABASEERR+45) 
(WSABASEERR+46) 
(WSABASEERR+47) 
(WSABASEERR+48) 
(WSABASEERR+49) 
(WSABASEERR+50) 
(WSABASEERR+51) 
(WSABASEERR+52) 
(WSABASEERR+53) 
(WSABASEERR+54) 
(WSABASEERR+55) 
(WSABASEERR+56) 
(WSABASEERR+57) 
(WSABASEERR+58) 
(WSABASEERR+59) 
(WSABASEERR+60) 
(WSABASEERR+61) 
(WSABASEERR+62) 
(WSABASEERR+63) 
(WSABASEERR+64) 
(WSABASEERR+65) 
(WSABASEERR+66) 
(WSABASEERR+67) 
(WSABASEERR+68) 
(WSABASEERR+69) 
(WSABASEERR+70) 
(WSABASEERR+71) 

/* 
* Extended Windows Sockets 
*/ 

tdefine WSASYSNOTREADY 
tdefine WSAVERNOTSUPPORTED 
tdefine WSANOTINITIALISED 

error constant definitions 

(WSABASEERR+91) 
(WSABASEERR+92) 
(WSABASEERR+93) 

/' 
Error return codes from gethostbyname() and gethostbyaddr() 
(when using the resolver). Note that these errors are 
retrieved via WSAGetLastError() and must therefore follow 
the rules for avoiding clashes with error numbers from 
specific implementations or language run-time systems. 
For this reason the codes are based at WSABASEERR+1001. 
Note also that [WSA]NO_ADDRESS is defined only for 
compatibility purposes. 

'/ 

tdefine h_errno WSAGetLastError() 

/* Authoritative Answer: Host not found */ 
tdefine WSAHOST_NOT_FOUND       (WSABASEERR+1001) 
tdefine HOST_NOT_FOUND WSAHOST_NOT_FOUND 

/* Non-Authoritative: 
tdefine WSATRY_AGAIN 
tdefine TRY_AGAIN 

Host not found, or SERVERFAIL */ 
(WSABASEERR+1002) 
WSATRY_AGAIN 

/* Non recoverable errors, FORMERR, REFUSED, . NOTIMP */ 
tdefine WSANO_RECOVERY (WSABASEERR+1003) 
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tdefine NO_RECOVERY WSANO_RECOVERY 

/* Valid name, no data record of requested type */ 
tdefine WSANO_DATA (WSABASEERR+1004) 
#define NO_DATA WSANO_DATA 

/* no address, look for MX record */ 
tdefine WSANO_ADDRESS WSANO_DATA 
tdefine NO ADDRESS WSANO_ADDRESS 

/' 
* Windows Sockets errors redefined as regular Berkeley error constants 
*/ 

#define EWOULDBLOCK 
#define EINPROGRESS 
#define EALREADY 
#define ENOTSOCK 
#define EDESTADDRREQ 
#define EMSGSIZE 
#define EPROTOTYPE 
#define ENOPROTOOPT 
#define EPROTONOSUPPORT 
#define ESOCKTNOSUPPORT 
tdefine EOPNOTSUPP 
#define EPFNOSUPPORT 
tdefine EAFNOSUPPORT 
#define EADDRINUSE 
#define EADDRNOTAVAIL 
#define ENETDOWN 
#define ENETUNREACH 
tdefine ENETRESET 
tdefine ECONNABORTED 
tdefine ECONNRESET 
tdefine ENOBUFS 
tdefine EISCONN 
tdefine ENOTCONN 
tdefine ESHUTDOWN 
tdefine ETOOMANYREFS 
tdefine ETIMEDOUT 
tdefine ECONNREFUSED 
tdefine ELOOP 
tdefine ENAMETOOLONG 
tdefine EHOSTDOWN 
tdefine EHOSTUNREACH 
tdefine ENOTEMPTY 
tdefine EPROCLIM 
tdefine EUSERS 
tdefine EDQUOT 
tdefine ESTALE 
tdefine EREMOTE 

WSAEWOULDBLOCK 
WSAEINPROGRESS 
WSAEALREADY 
WSAENOTSOCK 
WSAEDESTADDRREQ 
WSAEMSGSIZE 
WSAEPROTOTYPE 
WSAENOPROTOOPT 
WSAEPROTONOSUPPORT 
WSAESOCKTNOSUPPORT 
WSAEOPNOTSUPP 
WSAEPFNOSUPPORT 
WSAEAFNOSUPPORT 
WSAEADDRINUSE 
WSAEADDRNOTAVAIL 
WSAENETDOWN 
WSAENETUNREACH 
WSAENETRESET 
WSAECONNABORTED 
WSAECONNRESET 
WSAENOBUFS 
WSAEISCONN 
WSAENOTCONN 
WSAESHUTDOWN 
WSAETOOMANYREFS 
WSAETIMEDOÜT 
WSAECONNREFUSED 
WSAELOOP 
WSAENAMETOOLONG 
WSAEHOSTDOWN 
WSAEHOSTUNREACH 
WSAENOTEMPTY 
WSAEPROCLIM 
WSAEUSERS 
WSAEDQUOT 
WSAESTALE 
WSAEREMOTE 

/* Socket function prototypes */ 

tifdef  cplusplus 
extern "C" { 
ttendif 

SOCKET PASCAL FAR accept (SOCKET s, struct sockaddr FAR *addr, 
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int FAR *addrlen); 

int PASCAL FAR bind (SOCKET s, const struct sockaddr FAR *addr, int namelen); 

int PASCAL FAR closesocket (SOCKET s); 

int PASCAL FAR connect (SOCKET s, const struct sockaddr FAR *name, int namelen); 

int PASCAL FAR ioctlsocket (SOCKET s, long cmd, u_long FAR *argp); 

int PASCAL FAR getpeername (SOCKET s, struct sockaddr FAR *name, 
int FAR * namelen); 

int PASCAL FAR getsockname (SOCKET s, struct sockaddr FAR *name, 
int FAR * namelen); 

int PASCAL FAR getsockopt (SOCKET s, int level, int optname, 
char FAR * optval, int FAR *optlen); 

u_long PASCAL FAR htonl (u_long hostlong); 

u_short PASCAL FAR htons (u_short hostshort); 

unsigned long PASCAL FAR inet_addr (const char FAR * cp) ; 

char FAR * PASCAL FAR inet_ntoa (struct in_addr in); 

int PASCAL FAR listen (SOCKET s, int backlog); 

u_long PASCAL FAR ntohl (u_long netlong); 

u_short PASCAL FAR ntohs (u_short netshort); 

int PASCAL FAR recv (SOCKET s, char FAR * buf, int len, int flags); 

int PASCAL FAR recvfrom (SOCKET s, char FAR * buf, int len, int flags, 
struct sockaddr FAR *from, int FAR * fromlen); 

int PASCAL FAR select (int nfds, fd_set FAR *readfds, fd_set FAR *writefds, 
fd_set FAR *exceptfds, const struct timeval FAR *timeout); 

int PASCAL FAR send (SOCKET s, const char FAR * buf, int len, int flags); 

int PASCAL FAR sendto (SOCKET s, const char FAR * buf, int len, int flags, 
const struct sockaddr FAR *to, int tolen); 

int PASCAL FAR setsockopt (SOCKET s, int level, int optname, 
const char FAR * optval, int optlen); 

int PASCAL FAR shutdown (SOCKET s, int how) ; 

SOCKET PASCAL FAR socket (int af, int type, int protocol); 

/* Database function prototypes */ 

struct hostent FAR * PASCAL FAR gethostbyaddr(const char FAR * addr, 
int len, int type); 
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struct hostent FAR * PASCAL FAR gethostbyname(const char FAR * name); 

int PASCAL FAR gethostname (char FAR * name, int name1en); 

struct servent FAR * PASCAL FAR getservbyport(int port, const char FAR * proto); 

struct servent FAR * PASCAL FAR getservbyname(const char FAR * name, 
const char FAR * proto); 

struct protoent FAR * PASCAL FAR getprotobynumber(int proto); 

struct protoent FAR * PASCAL FAR getprotobyname(const char FAR * name); 

/* Microsoft Windows Extension function prototypes */ 

int PASCAL FAR WSAStartup(WORD wVersionRequired, LPWSADATA lpWSAData); 

int PASCAL FAR WSACleanup(void); 

void PASCAL FAR WSASetLastError(int iError); 

int PASCAL FAR WSAGetLastError(void); 

BOOL PASCAL FAR WSAIsBlocking(void); 

int PASCAL FAR WSAUnhookBlockingHook(void); 

FARPROC PASCAL FAR WSASetBlockingHook(FARPROC lpBlockFunc); 

int PASCAL FAR WSACancelBlockingCall (void) ,- 

HANDLE PASCAL FAR WSAAsyncGetServByName(HWND hWnd, u_int wMsg, 
const char FAR * name, 
const char FAR * proto, 
char FAR * buf, int buflen); 

HANDLE PASCAL FAR WSAAsyncGetServByPort(HWND hWnd, u_int wMsg, int port, 
const char FAR * proto, char FAR * buf, 
int buflen); 

HANDLE PASCAL FAR WSAAsyncGetProtoByName(HWND hWnd, u_int wMsg, 
const char FAR * name, char FAR * buf, 
int buflen); 

HANDLE PASCAL FAR WSAAsyncGetProtoByNumber(HWND hWnd, u_int wMsg, 
int number, char FAR * buf, 
int buflen); 

HANDLE PASCAL FAR WSAAsyncGetHostByName(HWND hWnd, u_int wMsg, 
const char FAR * name, char FAR * buf, 
int buflen); 

HANDLE PASCAL FAR WSAAsyncGetHostByAddr(HWND hWnd, u_int wMsg, 
const char FAR * addr, int len, int type, 

char FAR * buf, int buflen); 

int PASCAL FAR WSACancelAsyncRequest(HANDLE hAsyncTaskHandle); 
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int PASCAL FAR WSAAsyncSelect(SOCKET s, HWND hWnd, u_int wMsg, 
long IEvent); 

#ifdef  cplusplus 
} 
#endif 

/* Microsoft Windows Extended data types */ 
typedef struct sockaddr SOCKADDR; 
typedef struct sockaddr *PSOCKADDR; 
typedef struct sockaddr FAR *LPSOCKADDR; 

typedef struct sockaddr_in SOCKADDR_IN; 
typedef struct sockaddr_in *PSOCKADDR_IN; 
typedef struct sockaddr_in FAR *LPSOCKADDR_IN; 

typedef struct linger LINGER; 
typedef struct linger *PLINGER; 
typedef struct linger FAR *LPLINGER; 

typedef struct in_addr IN_ADDR; 
typedef struct in_addr *PIN_ADDR; 
typedef struct in_addr FAR *LPIN_ADDR; 

typedef struct fd_set FD_SET; 
typedef struct fd_set *PFD_SET; 
typedef struct fd_set FAR *LPFD_SET; 

typedef struct hostent HOSTENT; 
typedef struct hostent *PHOSTENT; 
typedef struct hostent FAR *LPHOSTENT; 

typedef struct servent SERVENT; 
typedef struct servent *PSERVENT; 
typedef struct servent FAR *LPSERVENT; 

typedef struct protoent PROTOENT; 
typedef struct protoent *PPROTOENT; 
typedef struct protoent FAR *LPPROTOENT; 

typedef struct timeval TIMEVAL; 
typedef struct timeval *PTIMEVAL; 
typedef struct timeval FAR *LPTIMEVAL; 

/* 
* Windows message parameter composition and decomposition 
* macros. 
* 
* WSAMAKEASYNCREPLY is intended for use by the Windows Sockets implementation 
* when constructing the response to a WSAAsyncGetXByY() routine. 
*/ 

#define WSAMAKEASYNCREPLY(buflen,error)     MAKELONG(buflen,error) 

/* 
* WSAMAKESELECTREPLY is intended for use by the Windows Sockets implementation 
* when constructing the response to WSAAsyncSelect(). 
*/ 

#define WSAMAKESELECTREPLY(event,error)     MAKELONG(event,error) 
/* 
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* WSAGETASYNCBUFLEN is intended for use by the Windows Sockets application 
* to extract the buffer length from the lParam in the response 
* to a WSAGetXByY(). 
*/ 

#define WSAGETASYNCBUFLEN(lParam) LOWORD(lParam) 
/* 
* WSAGETASYNCERROR is intended for use by the Windows Sockets application 
* to extract the error code from the lParam in the response 
* to a WSAGetXByY(). 
*/ 

#define WSAGETASYNCERROR(lParam) HIWORD(lParam) 
/* 
* WSAGETSELECTEVENT is intended for use by the Windows Sockets application 
* to extract the event code from the lParam in the response 
* to a WSAAsyncSelect(). 
*/ 

#define WSAGETSELECTEVENT(lParam) LOWORD(lParam) 
/* 
* WSAGETSELECTERROR is intended for use by the Windows Sockets application 
* to extract the error code from the lParam in the response 
* to a WSAAsyncSelect(). 
*/ 

ttdefine WSAGETSELECTERROR(lParam) HIWORD(lParam) 

#endif  /* _WINSOCKAPI_ */ 
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