
RL-TR-97-114
Final Technical Report
October 1997

A GENERIC KNOWLEDGE-
BASE BROWSER AND EDITOR

SRI International

John D. Lowrance, Suzanne M. Paley, Peter D. Karp,
and Ife Olowe

w\m on
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

Rome Laboratory
Air Force Materiel Command

Rome, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-97-114 has been reviewed and is approved for publication.

APPROVED: i
CRAIG S. ANKEN
Project Engineer

,: y^A$L>u<u*>
FOR THE DIRECTOR:

JOHN A. GRANIERO, Chief Scientist
Command, Control, & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please
notify RL/C3CA, 525 Brooks Road, Rome, NY 13441-4505. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE
Farm Approved

OMB No. 07040188

Pubic reporting burden for this coleclion of information is estsnalod to average I hciH per response, including the lime toi reviewing instructions, searching editing data sources, gathering and maintaining the cata needed, and completing and rev«wng
the collection ot Hiformattori Send comments tegardmg. this burden estimate ar any oner aspect ot this collection ot information, including suggestions tor reijjcing this burden, to Washington Headquarteis Services, Onectorate tor information
Operations end Reports. 121S Jefferson Davis Higftwav. Sude 1204. Arfinoton, vA 22202 4302. ano to the Ollce ol Maiagemeni and Budget. Paperwork Reduction Pro|ect IC7D4-U188I. Washington. DC 2OG03

1. AGENCY USE ONLY (Leaveblank) 2. REPORT DATE

October 1997

3. REPORT TYPE AND DATES COVERED

Final Sep 94 - Jan 97
4. TITLE AND SUBTITLE

A GENERIC KNOWLEDGE-BASE BROWSER AND EDITOR

6. AUTHOR(S)

John D. Lowrance, Suzanne M. Paley, Peter D. Karp, and Ife Olowe

5. FUNDING NUIW.fiS

C - F30602-94-C-0263
PE -62702F
PR -5581
TA -27
WU-81

7. PERFORMING ORGANIZATION NAMEIS) AND ADDRESS(ES)

SRI International
333 Ravenswood Avenue
Menlo Park CA 94025

. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

S. SPONSORINGIMONITORING AGENCY NAMEIS) AND ADDRESS(ES|

Rome Laboratory/C3CA
525 Brooks Road
Rome NY 13441-4505

10. SPONSORINGIMONITORING
AGENCY REPORT NUMBER

RL-TR-97-114

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Craig S. Anken/C3CA/(315) 330-4833

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The Generic Knowledge-Base Editor (EKG-Editor) is a generic editor and browser of KBs and ontologies - generic in
the sense that it is portable across several FRSs. This generally is possible because the GKB-Editor performs all KB
access and modification operations by using a generic application programming interface (APD. to FRSs called the
Generic Frame Protocol (GFP). To adapt the GKB-Editor to a new FRS, we need only to create a GFP
implementation for that FRS - a task that is usually considerably simpler than implementing a complete KB editor.
The GKB-Editor also contains several relatively advanced features, such as incremental browsing of large graphs, KB
analysis tools, operation over multiple selections, cut-and-paste operations, and both user- and KB-specific profiles.

14. SUBJECT TERMS

Knowledge-Base, Editor, Ontologies

IS. NUMBER OF PAGES

72
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSEFTED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
Standard Form 298 (Rev. 2-891 (EG)
'rtstribed by ANSIS* 239.18
designed using Perform Pro. WHSI0IOR. Oct 54

Contents

1 Introduction 1

2 Design Goals 3

3 Architecture 5

3.1 The Generic Frame Protocol 5

3.2 Grasper-CL 7

4 Viewing and Editing Knowledge Bases 10

4.1 Class-Instance Hierarchy Viewer 10

4.2 Inter-Frame Relationships Viewer 11

4.3 Spreadsheet Viewer 14

4.4 Frame-Editing Viewer 15

5 Customizability 17

6 Lessons in Portability 18

7 Related Work 19

8 Using the GKB-Editor 21

5.1 Obtaining and Installing the GKB-Editor 21

5.2 Invoking the GKB-Editor 21

8.3 Common Features of the GKB-Editor Viewers 22

5.3.1 Lisp Packages 23

8.3.2 Frame Selection 23

8.3.3 The Kill Ring 24 'o

1

5.3.4 Creating Classes and Slots 25

5.3.5 Invoking Viewers Programmatically 26

5.3.6 Miscellaneous 27

8.4 The Class Hierarchy Viewer 27

5.4.1 Opening a KB 28

8.4.2 Knowledge Base Commands 28

5.4.3 Incremental Browsing 30

8.4.4 View Commands 32

5.4.5 Editing Operations 32

5.4.6 Frame Commands 33

5.4.7 Customizing the Display 35

5.4.8 Preference Commands 35

5.4.9 Application Commands 37

5.5 The Frame Relationship Viewer 39

5.5.1 Application 40

5.5.2 Knowledge Base Commands 40

8.5.3 Frame Commands 41

5.5.4 View Commands 42

5.5.5 Preference Commands 43

5.6 The Frame-Editing Viewer 43

5.6.1 Application Commands 45

5.6.2 Knowledge Base Commands 45

5.6.3 Frame Commands 45

5.6.4 Value Commands 46

5.6.5 Slot Commands 47

5.6.6 Preferences 47

5.7 The Spreadsheet Viewer 4S

5.7.1 NExS Spreadsheet 49

5.7.2 GKB-Editor Menu 50

S.S Limitations 51

9 Summary 53

A Troubleshooting 54

B GFP for Loom 57

i.i

Preface

The Generic Knowledge-Base Editor (GKB-Editor) is a generic editor and browser of
knowledge bases (KBs) and ontologies — generic in the sense that it is portable across
several frame knowledge representation systems (FRSs). This generality is possible
because the GKB-Editor performs all KB access operations using a generic application
programming interface to FRSs. called the Generic Frame Protocol (GFP). To adapt
the GKB-Editor to a new FRS, we need only to create a GFP implementation for that
FRS — a task that is usually considerably simpler than implementing a complete KB
editor. The GKB-Editor also contains several relatively advanced features, including
four different viewers of KB relationships, incremental browsing of large graphs, KB
analysis tools, extensive customizability, complex selection operations, cut-and-paste
operations, and both user- and KB-specific profiles. The GKB-Editor is in active use
in the development of several ontologies and KBs.

This report discusses the design methodology behind the GKB-Editor and de-
scribes how to use the GKB-Editor. As such, this report constitutes both the final
technical report and the user's manual. The most recent version of the user's manual
and other information about the GKB-Editor can be found on the World Wide Web
at http: //www. ai.sri. com/~gkb/.

111

Chapter 1

Introduction

In 1991. Neches et al. articulated a vision of enabling technology for knowledge shar-
ing [16]. That vision involved a "Chinese menu'' (not to be confused with Searle's
Chinese room) of interoperable, reusable components that a system designer could
mix and match to construct knowledge-based systems, including knowledge repre-
sentation systems, ontologies, and reasoners. The paper argued that because the de
novo construction of knowledge-based systems is incredibly time consuming, future
knowledge-based systems should be constructed by reusing and modifying existing
components. Five years later, this vision has been realized to a limited extent; the
Ontolingua project has produced a library of ontologies [6], and the KIF project has
produced a language for knowledge interchange [5], but actual examples of knowledge
reuse are few. Here we report the achievement of a milestone in software reuse for
knowledge-based systems, the development of a knowledge-base browser and editor
that is reusable across several different knowledge representation systems.

The knowledge representation (KR) community has long recognized the need for
graphical knowledge-base browsing and editing tools to facilitate the development of
complex knowledge bases (KBs). Frame knowledge representation systems (FRSs)
from Kreme [1] to KEE [12] to CycL [13] have included graphical KB editors to
assist users in developing new KBs. and in comprehending and maintaining existing
KBs. More recently, the ontology movement in artificial intelligence has spurred the
development of graphical ontology editors.

However, the past approach of developing KB editors that were tightly wedded
to a single FRS is impractical. The substantial efforts required to create such tools
become lost if the associated FRS falls into disuse. Since most FRSs share a common
core functionality, a more cost-effective approach is to amortize the cost of developing
a single FRS interface tool across a number of FRSs. Another benefit of this approach
is that it allows a user to access KBs created using a variety of FRSs through a single
graphical user interface (GUI), thus reducing the barrier for a user to interact with
a new FRS. Finally, most past KB editors have implemented essentially the same

functionality, presumably because each new system must be built from scratch rather
than building on a previous implementation.

The Generic Knowledge-Base Editor (GKB-Editor) is a generic editor and browser
of KBs and ontologies — generic in the sense that it is portable across several FRSs.
This generality is possible because the GKB-Editor performs all KB access and mod-
ification operations by using a generic application programming interface (API) to
FRSs called the Generic Frame Protocol (GFP) [10]. To adapt the GKB-Editor to
a new FRS, we need only to create a GFP implementation for that FRS — a task
that is usually considerably simpler than implementing a complete KB editor. The
GKB-Editor also contains several relatively advanced features, such as incremental
browsing of large graphs. KB analysis tools, operation over multiple selections, cut-
and-paste operations, and both user- and KB-specific profiles.

The GKB-Editor is in active use in the development of military-application plan-
ning KBs and ontologies for Loom [14] at several sites, including a military-transportation
planning ontology. It is used daily in the development of EcoCyc. a biological KB
containing more than 11.000 frames that is accessed daily via the WWW by scientists
from around the world [S] (public access to EcoCyc is provided by a biology-specific
GUI). The editor also works with the FRSs Ocelot (developed at SRI), SIPE-2 [20],
and Theo [15], and in read-only mode for Ontolingua. GKB-Editor development has
benefited greatly from the feedback provided by the user community, incorporating
user suggestions into subsequent versions of the system.

Chapter 2

Design Goals

The GKB-Editor was designed to satisfy the following criteria.

• It must be portable across multiple FRSs.

• Users should be shielded from as many idiosyncrasies of the underlying FRS as
possible.

• Knowledge should be presented in the most natural form, which is often graph-
ical. There should be multiple ways to view data, depending on the users
perspectives and the types of modification they want to make.

• The GKB-Editor should support the entire life cycle of a KB or an ontology,
including design, development, maintenance, comprehension, and reuse. By
"comprehension" we mean the task of understanding a new and unfamiliar KB,
which is usually the first step in reuse.

• Where appropriate, editing should be accomplished through direct pictorial
manipulation. For example, if a KB is represented as a graph, then we should
be able to translate an editing operation that is natural to perform on a graph
to the corresponding editing operation on the KB.

The interface should be intuitive for the novice user to understand and ma-
nipulate, but not unduly burdensome for the expert user. Shortcuts should be
available for common operations.

The interface should be customizable: the user should have control over both
the kind and amount of information displayed, including incremental revealing,
and the appearance of the displayed information.

•

•

We assert that the design requirements for an ontology editor and browser are
subsumed by the design requirements for a KB editor and browser. That is. a system
that adequately supports the design, development, maintenance, comprehension, and
reuse of KBs will adequately support the same tasks for ontologies. The reason is
that although there may be semantic differences between ontologies and KBs [7],
there are no substantial symbol-level differences between the two (as Guarino points
out, ontologies can include both classes and instances). Given that FRSs can serve
as implementation substrates for building ontologies, the GKB-Editor can therefore
serve as an editor and browser of ontologies. The converse is not true: it is possible
to develop ontology editors that are not adequate KB editors. For example, since
KBs will generally have larger scale than ontologies, an editor that is adequate for an
ontology could easily prove inadequate for a large KB.

Chapter 3

Architecture

The GKB-Editor is built upon a graph-display tool called Grasper-CL [9]. Portability
among FRSs is achieved by using the Generic Frame Protocol (GFP) to form a wrap-
ping layer between the GKB-Editor and the underlying FRSs. Figure 3.1 illustrates
the overall architecture of the GKB-Editor system. Loom KBs can be persistently
stored in a relational DBMS [11].

Our architecture naturally lends itself to distributed operation, in three possible
modes. In the first mode, we insert a network connection at (A) in Figure 3.1 by
using remote X-windows. In this mode, the GKB-Editor and the FRS rim in a Lisp
process on one machine, and the X-window graphics flow over the network to the
user's workstation. In practice, this approach is slow but workable for cross-continent
Internet connections; it is quite acceptable over local-area networks. Approach (B)
uses a remote-procedure call implementation of GFP. With the network link at (C),
the Lisp process runs on the user's workstation and communicates with the DBMS
server over the network using SQL. This approach faults frames across the network;
they are cached in the Lisp process. Our group currently uses (A) and (C), both
alone and in combination.

3.1 The Generic Frame Protocol

The GFP defines a set of operations that constitute a generic API to underlying
FRSs [10]. This generic interface layer allows an application such as the GKB-Editor
some independence from the idiosyncrasies of specific FRS software and enables the
development of generic tools that operate on many FRSs.

Although FRS implementations have significant differences, there are enough com-
mon properties that one can describe a generic model of frame representation and
specify a set of access functions for interacting with FRSs. The GFP specification
defines such a generic model (with frames, classes, slots, and so forth) and consists

user

©
GKB-Editor

\

Generic Frame
Protocol

Ocelot
KB

Loom
KB ©

Relational
DBMS

Grasper-CL

^ Other FRSs

Figure 3.1: The architecture of the GKB-Editor system. All user interaction is
through the GKB-Editor, which uses GFP to access KBs from a variety of FRSs,
and Grasper-CL to generate and browse graphical displays.

of a library of operations (e.g.. get a frame by its name, change a slot's value in a
frame). An application or tool written to use these access functions can access knowl-
edge stored in any compatible FRS. GFP implementations exist for Loom. SIPE-2,
Theo, and Ontolingua [6].

Each GFP operation is defined as a GLOS generic function. The implementation
of GFP for a given FRS consists of a set of CLOS methods that implement the GFP
operations using calls to an FRS-specific functional interface. Since many of the GFP
generic functions have default methods written in terms of other GFP methods, only
a core subset of the generic functions in the specification must be implemented for
a given system. The default methods can be overridden to improve efficiency or for
better integration with development environments.

Although GFP necessarily imposes some common requirements on the organiza-
tion of knowledge (e.g.. frames, slots, and values) and semantics of some assertions
(e.g., instances and subclass relationship, and inherited slot values, slot constraints),
it allows for some variety in the behavior of underlying FRSs. The protocol achieves
this heterogeneity by parameterizing FRSs themselves, providing an explicit model of
the properties of FRSs that may vary. An application can ask for the behavior profile
of an FRS. and adapt itself accordingly. For example. Theo supports annotations on
slot values, whereas Loom does not.1 When annotations are present, it is desirable
for the GKB-Editor to display them. Before attempting this operation, however, the
GKB-Editor must first query an FRS's behavior profile to determine whether or not
annotations are supported.

'Annotations are an extension to the frame model that our group has implemented for Ocelot.
Annotations are analogous to facets, and are essentially a property list for slot values; they allow us
to attach comments or citations to the literature to a given slot value.

The GFP model cannot incorporate all functionalities of all FRSs. A clever trans-
lation can minimize the mismatch, however. For example, each Loom concept has
associated with it a definition, enumerating various restrictions on instances of the
concept. GFP currently provides no facility for definitions (we plan to incorporate
such a facility in GFP in the future, perhaps based on KRSS). However. GFP does
support the notion of facets on slots (which Loom lacks), which can be used to en-
code restrictions about values of that slot. In the translation between GFP and Loom,
many of the restrictions that appear in Loom concept definitions can be converted to
facet values in GFP, which can then be displayed and edited using the GKB-Editor.
We find that the majority of Loom concept definitions can be translated to a facet
encoding. Untranslatable definitions can be edited in an Emacs-like window in the
S-expression form, using the standard Loom concept-definition language.

There is no magic bullet whereby the GKB-Editor can access idiosyncratic or
newly developed FRS features that are not described by the GFP. Such features must
either be integrated into the GFP as extensions, or the GKB-Editor must be extended
with conditionally compiled FRS-specific code. For details on the implementation of

GFP for Loom, see Appendix B.

3.2 Grasper-CL

Grasper-CL is a system for viewing and manipulating graph-structured information,
and for building graph-based user interfaces for application programs. Grasper-CL
defines a graph abstract datatype plus a comprehensive and novel language of op-
erations on that datatype. This datatype includes labeled subgraphs consisting of
labeled nodes connected by directed labeled edges. Grasper-CL includes procedures
for graph construction, modification, and queries as well as a menu-driven, interac-
tive, layout and drawing package that allows graphs to be constructed, modified, and
viewed through direct pictorial manipulation. Nodes can appear in various shapes, in-
cluding simple geometric figures (e.g.. circles, rectangles, diamonds) and user-defined
icons: arcs can appear in various forms, including piecewise linear or arbitrarily curved
arrows between nodes. User-definable actions are associated with every graphical ob-
ject, providing complete control of mouse interactions with graphs. The Grasper-CL
system consists of several different components: a core procedure library for pro-
grammatically manipulating the graph abstract datatype, a graph-display module
for producing drawings of graphs, a graph editor that allows users to interactively
draw and edit arbitrary graphs, and a suite of automatic graph-layout algorithms.
Grasper-CL has proven to be an extremely flexible support system for work in expert
systems and related AI topics, where it has been customized and used as a specialized
knowledge browser and editor for selected systems.

The architecture of Grasper-CL is shown in Figure 3.2. The Grasper-CL core pro-
vides a library of functions for manipulating a graph abstract datatype. These func-

Graph-Editor Applications

Interactive Applications

I

Display Applications

Core Applications

Graph Editor

Interactive
Display
Module

Display Module

Graph
Layout

Shape Module

Core

Figure 3.2: The Architecture of Grasper-CL. Grasper-CL's architecture is open and
layered. Core applications use only Grasper-CL's core database function. Display
applications utilize the shape and display modules, in addition to the core, to draw
depictions of graph data structures. Interactive applications utilize the interactive dis-
play module and graph layout algorithms, in addition to the display, shape, and core
components, to support direct user interaction with the graphical depictions of graph
data structures. Graph-Editor applications utilize all of Grasper-CL's components
to develop interactive graph editing systems with the look and feel of Grasper-CL's
graph editor.

tions perform no drawing operations: they provide a memory-resident graph database
facility in which nodes and edges can be created, destroyed, and modified, and rela-
tionships among nodes and edges can be queried. A graph can also be written to and
read from a disk file.

The shape module manages information about the shapes and locations of nodes
and edges, and performs shape-related calculations, such as determining the bounding
box of a given node.

Given a set of nodes and edges defined using the Grasper-CL core, and shape and
location information defined by the shape module, the display module draws or erases
a graphical rendition of a graph, or of individual nodes and edges. Node positions
might have been determined interactively by the user, or programmatically by either
an application-specific layout algorithm, or by a member of the Grasper-CL suite
of graph layout algorithms. Grasper-CL provides several different layout algorithms
that produce completely different styles of graph layout, such as a tree or a rectangle,
that can be composed to create hierarchical layouts.

The graph editor is a menu-driven Grasper-CL application that allows users to
interactively draw and edit graphs. It includes operations for interactively creating,
renaming, deleting, copying, or altering the shape of nodes and edges. The interactive

display module includes the functions that implement the operations within the graph
editor. These functions provide a high-level substrate for building interfaces in which
users also perform interactive graph editing, but with added application semantics.

Grasper-CL has an open architecture because every level in Figure 3.2 is doc-
umented and available to applications. The left side of Figure 3.2 shows different
classes of applications that make use of different subsets of the Grasper-CL system.
Core applications have no graphics component; they simply use the Grasper-CL core
procedures to manipulate instances of the graph abstract datatype. For example,
imagine that we want to program a solution to the traveling salesman problem. We
could use the core procedures to create a graph whose nodes and edges represent cities
and highways, to store intercity distance information at each edge, and to query these

relationships during the optimization process.

Display applications use the Grasper-CL display module to draw a Grasper-CL
graph. For example, we might want to display the final solution computed by our
traveling salesman algorithm in a single window. Display applications support only
the most primitive user interaction with a graph, such as clicking on a node to perform
some action. For example, we might allow the user to left click on an edge to query the
distance between two cities, and to modify the computed solution by middle clicking
on an edge to delete it. The entire graph is displayed at once in a scrollable window.

Interactive applications use the Grasper-CL display module to display graphs, and
they use the interactive display module procedures to support direct user interaction
with the graph. Interactive applications include multiple display panes, one or more of
which contains the display of a graph. Other display panes typically contain a menu
of commands that can be selected for application to the graph. For the traveling
salesman graph, one menu command might prompt the user to click on a city, and
then display the population of the city. Another menu command might prompt the
user to create a new city by clicking on the background of the graph pane, and then
draw the new city at that location.

Graph-Editor applications are a restricted type of interactive applications: re-
stricted in the sense that the style of user interaction shares much in common with
the style of the Grasper-CL graph editor. Such applications are faster to program
than interactive applications because of the potential for reusing code within the
graph editor. For example, imagine that we want to provide the user of the travel-
ing salesman system with the ability to edit a solution graph in arbitrary ways that
incorporate the semantics of the application (for example, by moving cities, adding
cities, copying cities, changing the drawn shape of cities). It is easy to define such
commands by using the procedures from which the graph editor is implemented.

Chapter 4

Viewing and Editing Knowledge
Bases

The GKB-Editor offers four different ways to view KBs. The user can view the KB as
a class-instance hierarchy graph, as a set of inter-frame relationships (this is roughly
analogous to a conceptual graph representation, a semantic network, or an entity-
relationship diagram), as a spreadsheet, or by examining the slot values and facets of
an individual frame.1 A set of editing operations appropriate to each view has been
defined so that the displayed objects can be manipulated directly and pictorially. All
editing operations translate immediately to changes in the underlying KB.

Most commonly used commands are accessible via both command menus and
keystroke equivalents, and most of the time a node can be selected either by clicking
on it or by typing in its name (with completion). Thus, a user can choose whether
interaction is to be primarily by mouse, by keyboard, or by a combination of both. A
cut-and-paste facility is also available for copying slot values, facet values, and frame
names.

4.1 Class-Instance Hierarchy Viewer

This viewer displays the class-instance hierarchy of a KB as a graph. Each node in
the graph represents a single class or instance frame, and directed edges are drawn
from a class to its subclasses and from a class to its instances. Multiple parentage is
handled properly. Users can incrementally browse large hierarchies by starting at a
root node(s) that is either computed, or specified by the user. The tool automatically
expands the hierarchy to a preconfigured depth cutoff. If a particular node has more
than a designated number of children (the breadth cutoff), the remaining children

1 Snapshots from all viewers are available on the WWW at URL
http://www.ai.sri.com/~gkb/overview.html.

10

are condensed and represented by a single node. Unexpanded nodes are visually
distinguished from expanded nodes. Figure 4.1 illustrates a sample hierarchy graph
display. The user can browse the hierarchy by selecting, with the mouse, nodes
that are to be expanded or compacted. Alternatively, the user can type in (with
completion) the name of a frame that does not yet appear in the display, and. where
possible, the hierarchy will be expanded out along the appropriate path until that

frame is visible.

The hierarchy viewer can also be used to edit the class-instance hierarchy. Oper-
ations such as creating, deleting, and renaming frames, and altering super-subclass
and class-instance links can all be accomplished with a few mouse clicks. A frame
can be created either as an empty frame or as a duplicate of an existing frame. When
deleting a frame, the user can choose either to delete only that frame, or to delete the
entire subtree rooted at that frame. When creating or changing links, the GKB-Editor
checks for and disallows links that would create a cycle in the class hierarchy.

4.2 Inter-Frame Relationships Viewer

It is often useful to visualize relationships in a KB by following slot links rather than
parent-child links. For example, if frame B is a value of slot X in frame .4, then an
edge can be drawn from node .4 to node B, labeled A'. If we recognize that slot X
represents a relationship between frames ,4 and B. then this kind of graph is analogous
to the view of a KB as a conceptual graph (although our displays do not use all the
visual conventions of the conceptual graph community) or to a semantic network.
This view is useful for showing relationships in the KB other than the class-instance
hierarchy, for example, a Part-Of hierarchy.

The frame-relationships viewers can depict instance-level relationships and class-
level relationships. The example in the preceding paragraph describes an instance-
level relationship. In a class-level relationships view, an edge labeled X is drawn
from class C\ to class Cl if values of slot A' in instances of C\ are constrained to be
instances of C2. An example illustrating the difference between these two viewers is
shown in Figure 4.2.

Like the hierarchy view, a relationships view is browsed incrementally. The user
specifies a set of frames to serve as roots, and optionally a set of slots to follow (by
default, all slots are followed), and the graph is expanded to the designated depth and
breadth. A class-level or instance-level browse is selected automatically, depending
on whether the specified roots are classes or instances. An example instance-level
relationships browse is shown in Figure 4.3. The user selects, with the mouse, nodes
to be expanded or compacted. Unlike with the hierarchy view, the user cannot type
in an arbitrary frame and have the browse expanded to that frame. This limitation
is for efficiency reasons, because of the large number of possible paths to any frame.

11

Application > Knowledge Base > Frame > View > Preferences >
ECOBASE Class-Instance Hierarchy Viever GXB-Editor -- Unpublished (C)

. Amino-Acid- Biosynthesis j

CARBO-BIOSYNTHESIS

, Biosynthesis £•»•• Cell-Structure-Biosynthesis
»i 1 ■■:•. '' ''

Murein-Biosynthesis

\\t Cofactor- Biosynthesis
Surface-Structure-Biosynthesis

|S MORE|

Degradation

Amino-Acid-Degradation

Cartoon- Degradation

„-iALADEG-PWYj
X [GI~C LEÄV^PW 7]

Fatty-Acid-Degradation

tf Other-Degradation

Pathways

{Energy-Metabolism

^FERMENTATION-PWYj

4,[äYCöü7STS]

^•j^YCCC1^?^^

'\^!GlYCÖr^Ts7FE^T5sE^p]

7 MORE! Nucleotide-Metabolism

./,. J4ÄMINOBUTMETAB- PWYI / *
Central-Metabolismjf'-jENTNER-DOUDOROFF-PWYj

Intermediary-Metabolism :<!

3 MORE

V" rGTÜCONEl>PWYl

JNitrogen-Metabolism! |5 MORE|

Sulfur- Metabolism
cr mi
sn-n ror more options; K: tJop oack to menu
L: Expand a depth or breadth cutoff node M: Erase all children t
L: Expand a depth or breadth cutoff node M: Erase all children <
L: Expand a depth or breadth cutoff node M: Erase all children <

Figure 4.1: A sample class and instance hierarchy. Nodes whose labels are in boldface
can be further expanded. Class frames have a solid border; instance frames have a gray-
border. Class names shown in bold can be expanded to show additional subclasses or
instances. The "N More" nodes are "breadth cutoff nodes" that can also be expanded
to show additional classes or instances.

12

(a) John
WIFE

Sally

(b) Man
WIFE

Woman

Figure 4.2: Examples of instance-level and class-level relationship graphs, (a)
Instance-level relationship: the instance Sally is a value of the slot Wife in the in-
stance John, (b) Class-level relationship: values of the slot Wife in instances of the
class Man must be instances of the class Woman.

Application Knowledge-Base Frame View Preferences

|phe+tyr+trp bioaynthe», compel sfepATHWAJS

__-^ Iphe-rtyr bioayntheai»!
, : —■———: T-ISU&SMTHVÄYS '

■■*- jchoriamate bJoaynCwatel

■AT. !

!Command: | ±!
L: Deselect; R: Menu of completions.

Figure 4.3: A sample instance-level relationships browse. Nodes with boldface labels
can be further expanded. Double-headed arrows show bidirectional links, which are
encoded bv two slots that are mutual inverses.

13

File Edit* Search View Format Tools ~Options Graph Connections GKBEditor l*'

fe;-©10 -; -"Delattft^.l^-f , 0 li | B ;u MMMM'M

Figure 4.4: A sample spreadsheet view. Each row within the spreadsheet corresponds
to a class. The left-most column lists the name of the instance, while the remaining
columns list slot values.

4.3 Spreadsheet Viewer

The spreadsheet viewer (Figure 4.4) allows frame data to be exported to NeXS, a
commercial spreadsheet product for X-windows. Spreadsheets allow large volumes of
data to be visualized in a very compact form, and support a variety of data analysis
tools, such as X-Y plotting. User-specified instances form the rows of the spreadsheet,
and user-specified classes form the columns of the spreadsheet. Users can launch the
spreadsheet viewer from within the class-hierarchy viewer by clicking on one or more
classes: all instances of those classes are exported to the spreadsheet. Within the
spreadsheet, users can both view and modify cell values, as well as adding new rows
to the spreadsheet — the new rows are translated to new instances when the user
terminates XeXS. A limitation of the spreadsheet viewer is its current inability to
display more than one value per slot. We are investigating several approaches to
overcome this limitation.

14

Application > Knowledge Base > Frame > Slot > Value >
Editing Frame 2-KETOGLUTARATE

slot
ACID-BASE-VARIANTS . fate!

,|2-OXOGLUTARIC_ACip|

SLOT-VALUE-TVPE Wülgd from ACID-BASE-VAR

CAS-REGISTRY-NUMBERS" I328"50'7!

|2-oxoglutarate|

CHEMICAL-FORMULA \ üü^i

slot N|(Öl)|
CITATIONS ' '
slot
COMMENT
Slot
COMMON-NAME

Slot laTTl
KINGDOMS Cül

MOLECULAR-WEIGHT ~"l146093l

Jz^k-glutaratej

j;[2^ketoglutarate|

|',-|A-K-glutarate|

slot
SYNONYMS f-FM

nz

irr [alpha- ketoglutaratel

|x|alpha-oxoglutarate]

v|ke1oglularate|

' Invftnh itarotol

Command:
Command: Pref Cmd
Command:

Figure 4.5: A sample frame-editing view for a chemical-compound frame. The slot-
value-type facet on the acid-base-variants slot indicates that all values of this slot
must be instances of the class Chemicals.

4.4 Frame-Editing Viewer

The frame-editing viewer allows the user to view and edit the contents of an individual
frame. From the hierarchy viewer or the relationships viewer, the user may select a
frame and display it in a frame-editing viewer. It presents the contents of a frame as
a graph. Each slot name forms the root of a small tree; its children are individual
slot values, and slot facets and their values. Inherited slot values are distinguished
visually from local items, and cannot be edited (but they can be overridden where
appropriate). The user can choose whether to display all slots and facets, filled slots
and facets only, or selected slots and facets only. An example of a frame-editing view
is shown in Figure 4.5.

In addition to duplicating, renaming, or deleting the viewed frame, the kinds

15

of editing operations available in this view permit adding, deleting, replacing, and
editing of slot values, facet values, and annotations. Slots themselves may be added,
removed, or renamed, when classes are edited.

16

Chapter 5

Customizability

The GKB-Editor is highly customizable, allowing users to specify via a set of pref-
erence dialogs what should be displayed in the various viewers and how various ob-
jects should be drawn. Customizability is important if the GKB-Editor is to find
widespread use — the more control the user has over the appearance and behavior of
the displays, the more likely that the GKB-Editor will suit the user's needs.

A style dialog for the hierarchy and relationships viewers lets the user control how
individual nodes are displayed. The user can specify icon and label colors, icon shape,
and label font, face, and size. The user can specify a style for all frames satisfying some
predicate. Any number of these styles and predicates can be specified, and frames
that satisfy more than one predicate will show characteristics of each corresponding
style (except where such characteristics conflict with each other). Currently, only
a few predefined predicates are available, such as for identifying classes, instances,
and primitive classes, for testing frames for a particular user-specified slot value, or

identifying all children of a particular class.

In these same two viewers, the user can specify slots whose values are to appear
as part of the display for a frame node. This facility permits the user to see parts
of each frame's interior while browsing the KB. without actually opening a frame-
editing window for each frame. If the FRS provides each frame with a "pretty name".
intended to be user-readable rather than machine-readable (perhaps encoded as a
slot value), then the user can specify that frames should be labeled with their pretty

names.

A user can define a personal preferences profile that will take effect across all KBs.
In addition, because many preferences make sense only when applied to a particular
KB (such as the list of browse roots or slots to be displayed), the user can save an
individual profile for each KB (KB-specific preferences take precedence).

17

Chapter 6

Lessons in Portability

The proof of the successful multi-FRS portability of the GKB-Editor is the ongoing
use of the GKB-Editor to edit real-world KBs for Ocelot and Loom. These two FRSs
lie at fairly opposite ends of the FRS spectrum: Loom is a KL-ONE descendant that
supports classification: Ocelot is conceptually a descendant of the Unit Package that
supports facets and annotations, which Loom does not.

Here we summarize the limitations that exist and the difficulties that were en-
countered in making the GKB-Editor truly generic.

• GFP supports neither contexts nor complex inheritance relationships among
KBs. and therefore the GKB-Editor does not recognize these constructs. ■'O'1-

•

•

Section 3.1 discusses the partial mapping we have defined between facets and the
Loom concept definition language. Although this approach works in practice,
use of a common concept definition language would make multiple description-
logic systems look more uniform to the user.

Any FRS has idiosyncrasies that fall outside the GFP model. For example,
Loom provides three alternative implementations of instance frames, which are
not supported by GFP. We extended the GKB-Editor in a Loom-specific fashion
to recognize this construct.

FRSs vary in the degree of dynamic schema alteration (changes in class definitions)
they allow: Loom and Ocelot are quite flexible in this regard, whereas Classic, for
example, is not. Generally speaking, the GKB-Editor cannot provide an FRS with
functionality that the FRS lacks.

IS

Chapter 7

Related Work

Many graphical browsers and editors have been built for individual FRSs. We have
built on ideas from several of these systems. KnEd [2] is a graphical editor and browser
for the KM [17] FRS from the University of Texas at Austin. It offers two types of
viewer, a graphical hierarchy viewer analogous to both our hierarchy and relationships
viewers (although KnEd does not support editing operations) and a textual viewer for
browsing and editing individual frames and slots. The user interface for the University
of Ottawa's C0DE4 knowledge management system [IS] offers a spreadsheet view as
well as textual outline and semantic net views of a knowledge base, and allows both
browsing and editing. "Masks" let the user control what KB elements are visible and,
to a limited extent, how they should be displayed. A feedback panel describes changes
in response to editing commands, and lists options in the case of constraint violations.
The HITS Knowledge Editor [19] supports browsing and editing of the CYC [13] KB.
It defines user perspectives on a per-class basis to determine what information should
be displayed, and builds checklists for data entry tasks.

Protege-II is a powerful suite of knowledge-acquisition tools [3]. One tool sup-
ports ontology editing; a second tool accepts an ontology as input, and produces as
output a specification of a forms-based editor for instance frames within that on-
tology. Protege-II includes a relationships viewer. Protege-II and the GKB-Editor
embody different approaches for visualizing frames; we use a graph visualization of
frames rather than a forms-based visualization because the forms approach is prob-
lematic for encoding slots with multiple values (it is often not clear how many blank
form elements to allocate for new values of a multivalued slot), and for representing
complexities such as facets and annotations. The graph visualization makes the rela-
tionships among a slot, its facets, its values, and their annotations very evident. In
addition, although Protege-II gets significant mileage from decoupling the editing of
ontologies (classes) and instances, there are two problems with this approach: first,
during the KB development process these two operations are often tightly coupled
— a user may frequently alternate between editing of classes and instances, and may

19

prefer to avoid the process of generating a new user interface for instance editing after
every class change; second, some modifications to classes actually demand immediate
modifications to instances of those classes; for example, when deleting a slot from
a class, the GKB-Editor will automatically delete all occurrences of that slot from
instances of the class (with user confirmation). It is not clear how Protege-II can
modify instances in response to class changes.

All the preceding tools operate with only a single FRS.

Stanford's Ontology Editor [4] is a browser and editor for shared ontologies, en-
coded using the Ontolingua language [6]. Users access the interface by using the
WWW. Currently, the Ontology Server operates only on Ontolingua ontologies. Be-
cause it is implemented using GFP. and because some translators between Ontolingua
and other representations either exist or are under development, the Ontology Server
could in principle be used to browse and edit KBs for a variety of KR systems. The
WWW implementation of the Ontology Editor is both its biggest advantage and its
biggest drawback. The advantage is the easy accessibility of the server: its drawbacks
result from the many limitations of the HTTP protocol: most information is presented
in textual form, rather than graphically: displays cannot be updated incrementally,
as they can in the GKB-Editor — the only operation within HTTP is to send an
entire new page, which can be slow: the lack of state in HTTP limits the style of user
interaction that can occur, as does the few mouse events supported by HTTP. Use of
Java would overcome manv of these limitations of HTTP.

20

Chapter 8

Using the GKB-Editor

8.1 Obtaining and Installing the GKB-Editor

The GKB-Editor can be obtained from SRI International via the World Wide Web.
For instructions see the GKB-Editor home page at http: //www. ai. sri. com/~gkb/.
The associated pages describe how to obtain, install, and run the GKB-Editor. Since
these pages are updated with each new release of the GKB-Editor. they are the best
source for up-to-date information.

8.2 Invoking the GKB-Editor

After you have loaded a Lisp image containing the GKB-Editor and one of the sup-
ported frame systems, type (user:run-gkb-editor) in the Lisp Listener to start
the GKB-Editor. A large window appears containing a copyright notice and divided
vertically into five parts:

• menu bar
This is a list of pull-down (or in CLIM 1.1. pop-up) command menus. The
individual commands are each described in the appropriate sections of this
manual.

• status line
This line contains several important pieces of information. From left to right,
it lists the name and package of the current KB, and the type of viewer in
operation (if you have just started up, this will be the Class-Instance Hierarchy
Viewer). In addition, if the KB has been modified since it was last saved, this
is indicated bv three asterisks at the far left.

21

• graphing pane
This large pane containing the copyright notice contains graphical output pro-
duced by the GKB-Editor. Items displayed here are sensitive to pointer clicks.

• text pane
This small pane is for textual input and output. Warning messages from the
underlying FRS appears here, as well as feedback and instructions from GKB-
Editor commands. When asked to select a frame, you can type in its name here
instead of clicking in the graphing pane.

• pointer documentation line
When the pointer passes over a sensitive item, the operations that correspond
to left, middle, and right clicks are listed here. Holding down, for example, the
shift key shows operations that correspond to the various mouse clicks with the
shift key held down.

If. when you start, a KB has already been selected (either because you used the
GKB-Editor to select it last time, or because you opened it using the GFP), you
can begin browsing the KB immediately. Otherwise, you must open and select a KB
before you can begin browsing or editing. If no KB is currently open, you will see the
message Create or Open a KB in the status line where you would normally see the
name and package of the KB.

The first time you open a KB. you must use the Open or New command, which
pops up a dialog, prompting you for a filename and other information about the KB.
This information is saved persistently, so the next time you want to open the same
KB. you need only select its name from the list of KBs provided when you invoke the
Open command.

8.3 Common Features of the GKB-Editor Viewers

The GKB-Editor features four types of viewer, the class hierarchy viewer, the frame
relationships viewer, the frame-editing viewer, and the spreadsheet viewer. The orig-
inal application window that appears when you first start up the GKB-Editor is the
class hierarchy viewer. From this window, you can pop up any of the other view-
ers. However, many of the application and knowledge base operations are accessible
only from this original application window, so you must eventually return to it. De-
scriptions and examples of each of the available viewers are given in the appropriate
sections. The remainder of this section describes things that are common to all three
viewers.

22

8.3.1 Lisp Packages

When opening a KB for the first time, you are asked to enter (or verify) its package.
The package name also appears with the KB name on the status line for the hierarchy
and relationships viewers. This section is provided for users who are unfamiliar with
the Lisp package system. Experienced Lisp users will recognize this section as greatly
oversimplifying the Lisp package system.

A Lisp package defines a namespace. Within a single package, no two symbols can
have the same name. Since frame names are Lisp symbols, no two frames can have
the same name (in some frame systems, the same name can be used for both a frame
and a slot, but because confusion may arise, this practice is not recommended). Lisp
has a notion of the current package, such that by default, any symbol you reference
is assumed to be in that package. You can still reference symbols in other packages,
but you must preface the symbol name with the package name and ::.

For example, suppose there are two packages PKG-X and PKG-Y. and assume there
is a symbol A present in both packages. If my current package is PKG-X and I refer to
A, then I am referring to the symbol A in PKG-X. To refer to the symbol A in PKG-Y, I
must write PKG-Y: :A.

When a KB is created or opened, it is important to know which package all its
symbols should be in by default. When you first start up Lisp, you are in some
default package, usually CL-USER. When you open or select a KB, that KB's package
becomes the current package. This way, when you are asked to enter a frame name,
that frame name by default becomes a symbol in the KB's package. (You can still
reference symbols in other packages, but you must use the : : notation). Youmight
want to put each KB in its own package so that you can have multiple KBs open at
once without their frame names conflicting. When you type in a package name while
opening or creating a KB, and the package does not yet exist, it is created.

8.3.2 Frame Selection

Many of the menu commands are designed to operate on a particular frame or set of
frames. The GKB-Editor allows you either to select the frame(s) first and then select
the operation, or to select an operation, which then prompts you for the frame(s).
However, if you prefer the latter mode of operation, you must make sure that there
is no current selection when you enter a command, or else the command may be
performed on the wrong frame.

When no command is currently active, left clicking on a node causes that frame
to be selected. To indicate this, the node is shown in reverse video. Shift-left clicking
on a node adds it to. or removes it from, the selection, allowing you to select multiple
frames for a single operation. Left clicking on the background cancels all current
selections. In addition, there are three commands accessible from the top-level IVame

23

Menu in the hierarchy and relationships viewers, Select All, Select Descendants,
and Select Ancestors, that will select a whole group of frames. After a selection
is made, an operation can be selected from the command menus. If the operation
is one that can operate on multiple frames, the operation is performed on the entire
selection. If the operation requires a single frame, and more than one frame has been
selected, you are offered a menu of selected frames from which to choose. If, for
example, the operation is applicable to class frames only, but the selection consists of
a mixture of class and instance frames, only the class frames are used. If a selected
frame cannot be used, a warning message is printed in the text pane.

If no frame is selected when an operation that requires one is invoked, you are
prompted to enter a frame. If just one frame is required, you are prompted directly. A
frame can be entered either by clicking on the corresponding node in the graph pane,
or by typing in its name in the text pane. If you change your mind, and no longer
want to perform the operation, typing Control-Z or right clicking in the background
aborts the command. If the operation can accept more than one frame, you may be
asked to input a sequence of frames. You can do this either by left clicking on several
frames in sequence, or entering a comma-separated list of frame names via keyboard.
In some cases, additional selection options are available (such as All or None or
Compute Automatically), in which case, a menu of options pops up. You may
choose to enter only a single frame, in which case the frame is entered as before. If
you choose to enter multiple frames, you are put into a mode in which every node
you left click on is added to or removed from the selection. You cannot type in frame
names in this mode. Left clicking on the background ends the selection process. If the
command can accept no frames (as in the case of creating a class with no parents),
this is also provided as an option in the menu. The No Select option in the menu
aborts the command.

When selecting an edge, if two nodes are preselected and there exists an edge
between them, that edge is used. If one node is preselected, it is assumed to be the
child node (unless it is a root, in which case it is assumed to be the parent). If there
is only one incoming edge, that edge is selected automatically. If there is more than
one incoming edge, you are asked to click on the desired parent. If no nodes are
preselected, you are asked to select the child first, and then the parent if necessary.

Completion is available in most cases when you type in frame and slot names: if
you enter a partial name and then type Return, a menu of completions pops up.

8.3.3 The Kill Ring

A cut-and-paste/kill-ring facility is available for use in most input contexts, to reduce
the need to type in frame names and so forth. Any time the Copy to Kill Ring
command is invoked, the currently selected nodes are copied to a kill ring. A node is
also copied to the kill ring when it is individually deleted. When prompted to enter

24

a frame or a value, Control-Meta-Y yanks the last object from the kill ring. Meta-Y
invoked immediately after a Control-Meta-Y or another Meta-Y rotates the kill ring.
This facility attempts to yank values in the form expected by the input context. For
example, if you are being prompted to enter a frame, the yanked value is coerced
to a frame name where possible. If you are prompted to enter a string, the value is
converted to a string and so forth.

Because of limitations beyond our control, the kill ring cannot handle multiline
strings, and also is not usable from within a Motif text-editing window. Motif text-
editing windows are used from within the frame-editing viewer to edit multiline values,
which the kill ring cannot handle, anyway, becuase of the first limitation. You can
add a variety of emacs-like editing commands within Motif text-editing windows by
adding the appropriate entries to your .Xdef aults file.

8.3.4 Creating Classes and Slots

If you are creating a new KB from scratch, the basic pattern to follow is to first
create the classes, then create the slots, and finally, create the instances and store
slot values in the instances. In fact, you can interleave these different tasks. The
more precise constraints are that an instance cannot be created until at least one of
its parent classes exists, and a slot cannot be created until the most general class that
will contain the slot has been created.

Once you have created classes and slots, the degree to which you can modify them
within the GKB Editor may be constrained by your FRS.

Creating slots is a bit tricky, so we discuss the issue in more detail. Most FRSs
store not only the values of slots within a given frame, but they store meta information
about each slot that describes general properties of how the slot will be used in the
KB. These slot properties are often called facets; facets are in a sense "slots on slots"
because facets store a set of named values that are associated with a slot. For example,
a facet called :value-type defines the types of values that a given slot can take, and
a facet called : domain defines those KB classes within which a slot can appear. The
facet names listed here may not actually be used within your FRS. but because each
FRS uses different facet names, the GKB Editor internally translates from the names
shown here to the names used by your FRS.

All editing of slots is performed by invoking the Frame Editor on the class frame
that will contain, or that already contains, the slot in question. For example, to add
a slot called Age to the class Person, first invoke the Frame Editor on Person. Then
click on Create from the Slot Menu to add the Age slot to this class. Similarly, the
Destroy operation removes Age from Person, and the Rename operation renames
the slot.

More subtle modifications to a slot definition can be achieved by changing its
facets. Imagine that we want to state that the Age slot can take only one value,

25

which must be an integer. To do so, we would give the : cardinality-max facet the
value 1, and we would give the : value-type facet the value : integer.

These facet values can be assigned in two ways. To establish default, KB-wide
values of the facets, use the Edit Slotunit operation from the Slot Menu. A
slotunit is a special frame whose slots encode KB-wide default values for slot facets.
For example, if we edit the slotunit for Age, and give its rvalue-type slot the value
: integer, we are effectively setting the : value-type facet for the Age slot.

The other approach is to edit the facets of Age directly within a class frame. Use
this approach when either your FRS does not support slotunits, or when you want
to specialize facet values. For example, imagine that our FRS also supported a facet
called :numeric-max, which defined the maximum value that a slot value is allowed to
have. In the Age slotunit, we could set the value of numeric-max to 150 - a reasonable
value for the class Person. Imagine that we now define a new class. Infant, for which
the : numeric-max facet of Age should be further constrained to have the value 1. To
do so, first invoke the Frame Editor on class Infant. Then use the Preferences
Menu to enable the display of facets. If your FRS supports the :numeric-max
facet, you can then click on it and use the Replace Value command to change its
value in that class, without affecting the :numeric-max of Age in Person.

8.3.5 Invoking Viewers Programmatically

You may want to incorporate part or all of the GKB-Editor into another Lisp appli-
cation by invoking one or more of the viewers programmatically from your other Lisp
application. The Lisp commands to accomplish this are described here.

gkb-editor:view-hierarchy (&key start-browse? roots width height)
Invoke the hierarchy viewer. Since this is the main GKB-Editor startup window, it
also provides access to the other viewers from its command menus. If start-browse?
is non-nil, and there exists a current open KB, then the GKB-Editor immediately
begins browsing the class hierarchy. If roots (a list of frame names) are supplied,
then they are used as the roots of the hierarchy browse (assuming start-browse?
is non-nil): otherwise the roots are computed using your current preferences, as
usual. If start-browse? is nil and a previous hierarchy browse exists, it is resumed;
otherwise the viewer appears showing the GKB-Editor copyright graph. If both width
and height are supplied, then they are used for the dimensions of the viewer window;
otherwise, the dimensions are automatically calculated based on your screen size.

gkb-editor:view-relationships (&key roots width height) Invoke the frame
relationships viewer. If roots (a list of frames) is specified, the specified frames
are used as roots of the relationships browse. Otherwise, if a previous relationships
browse exists, then that browse is resumed. If no roots are specified and there is no
browse to resume, you are prompted to enter the roots. If both width and height

26

are supplied, then they are used for the dimensions of the viewer window: otherwise
the dimensions are automatically calculated based on your screen size.

gkb-editor:view-frame (&key frame slot (width 800) (height 500))
Invoke the frame-editing viewer. If frame (a frame name) and slot (a slot name)
are both specified, then only the specified slot and its values, facets, and so forth
are displayed. If frame is specified, but not slot, then the entire frame is displayed.
This is what is normally seen when you invoke the frame-editor from one of the other
viewers. If slot is specified, but not frame, and a slotunit for the specified slot exists,
the slotunit information appears in the display. If neither is specified, this function
returns immediately with no effect, width and height are used for the dimensions
of the viewer window.

8.3.6 Miscellaneous

Most commonly used commands have keyboard accelerators defined for them.
These commands are therefore accessible either by using the mouse to select the
appropriate command from a menu or by typing some key combination (usually some
letter while you hold down either the Control key, the Met a key, or the Control
and Shift keys) on the keyboard. Commands with keyboard accelerators have the
corresponding key sequence listed next to the command name in the menu, and also
in this documentation. As keyboards differ, you can experiment with your keyboard
to determine which actual key corresponds to the Met a key.

In any viewer, you can use Control-v to scroll the viewport downward and Meta-v
to scroll it upward.

8.4 The Class Hierarchy Viewer

The class hierarchy viewer is the viewer that you are in by default when you first
start up the GKB-Editor. It allows you to incrementally browse the class-instance
taxonomy. The class hierarchy is drawn as a tree-structured graph in which each frame
is a node in the graph, and directed edges are drawn from classes to subclasses and
instances. If a frame has multiple superclasses, an edge is drawn from each superclass
to the frame. Classes are distinguished visually from instances. By default, browsing
starts at the root of the class hierarchy. This can be changed, however. A sample
hierarchy browse is shown in Figure 8.1. Classes are in red, and instances are in blue.
Notice that some class labels are in bold type, and there are some additional nodes
in black labeled N more. These are described in Section 8.4.3.

From the class hierarchy viewer, you can create, delete, and rename classes and
instances, as well as change the position of any frame within the class-instance hier-

27

archy. You can also perform operations on the KB, change various preferences, and
start up one of the other two viewers.

8.4.1 Opening a KB

Initially, when you start up the GKB-Editor, a KB is probably not open yet (even
if you have loaded a KB by other means before starting the GKB-Editor, the KB is
usually not visible to the GKB-Editor unless you officially open it using the GKB-
Editor or with GFP commands). If no KB is open, most of the menu commands are
disabled, and the status line contains the message Create or Open a KB. To create
or open a KB, select New or Open from the Knowledge Base Menu. If creating a
new KB, you are prompted for a name, package, and filename. If opening an existing
KB for the first time, you are prompted for a filename. After determining that the
file exists, and trying to determine the KB name and package from the file contents,
the GKB-Editor asks you to verify the KB name and package before it opens the KB.

The GKB-Editor stores a record of KBs that you have opened in the past, so
in subsequent sessions when you invoke the Open command, as a shortcut, you are
offered a menu of KBs that you have previously worked with (if they still exist). The
menu also has an option (Other. . .) to select a KB not on the list, in which case
you must go through the set of dialogs described above.

If your FRS permits you to have multiple KBs open at once, the Select command
enables you to switch between open KBs. Other operations that are accessible from
the Knowledge Base Menu enable you to save, revert, close, or destroy a KB. A
few KB analvsis tools are available.

8.4.2 Knowledge Base Commands

• New (Meta-o)
Create, open, and select a new KB. You are prompted in a dialog for a name,
package, and file in which to save the new KB. If multiple supported FRSs are
present in memory, you must also select which FRS to use. The new KB has
no frames in it. Consequently, the only frame operation permitted at this point
is class frame creation.

• Open (Ctrl-o)
Open and select a preexisting KB. A menu of known KBs pops up. You can
choose one of these KBs or be prompted for a filename for the KB to open. The
KB is then loaded into memory. It is an error for the KB not to exist in the
specified file.

2S

Application Knowledge-Base Frame View Preferences

KB: ECOBfSE Package: ECOCYC Class-Instance Hierarchy Viever

Amino acid biosynthesis

L [Carbohydrates

|Bi<»ynthe3i3| f Cell-structures

J iMurein saccutusl <T »

A ISurface structures]

IdTDP-rhamnose biosynthesis)

[peptidoglycan precursor biosynthesis!

\ |Cofactore, prosthetic groups, electron carriers!

' |3 MORE|

Amino acids, amines |

Carbon compounds

PATHWAY

Degradation 4-*- Fatty acids

Other

Phosphorus compounds

^ lEntner-Doudoroff pathway]

r'
I'J |fermentation|

Energy metabolism -»- jglycolysisl

•^ IgVcdysfe+Entner-Doudoroff]

118 MORE}

Network of nadeotide intercom!

lj]4-aminobutyrate degradation]

Central intermediary metabolism! £»- |<deoxy)ribose phosphate metabolfc

intermediary metabolism) —■»»■ |Nitrogen metabolism \"^ Ighicosamine catabolism

kiswMai (Sulfur metabolism I ^|11 MORE|

äs
in
\ Command:
I Command:

L: Deselect; R: Menu of completions,

Figure S.l: A sample class/instance hierarchy view.

29

• Select (Ctrl-O)
A menu of currently open KBs pops up. The selected KB becomes the current
KB to browse and edit.

• Save (Ctrl-s)
Save the current KB to the file specified when the KB was created, opened, or
last saved.

• Save As (Ctrl-S)
Save the current KB to a new file. You are prompted for a filename to save to.

• Revert to Saved
Reload the KB from secondary storage. Any changes made since the last save
are lost.

• Close
Close the current KB and flush it from memory. If the KB has been modified,
you are prompted about whether or not to save it first.

• Destroy
Close the current KB and delete the associated file on secondary storage.

• Analyze
This command collects statistics on the current KB and displays them in a
popup window. The types of statistics generated include number of classes and
instances, depth of the class hierarchy, percentage of primitive classes, average
number of slots per frame, and average number of values per slot.

• Analyze Subtree
This command collects statistics on a subtree of the KB class hierarchy and
displays them in a popup window. If you have selected a class frame, it is the
root of the analyzed subtree. If no frame has been selected, you are prompted
for the root.

8.4.3 Incremental Browsing

To begin browsing initially, select the Browse Class Hierarchy command from the
View Menu. You can also begin browsing by selecting the Browse from New
Root(s) command: this command requires that you enter the name of a frame to
serve as the root. Subsequent browses invoked using the Browse Class Hierarchy
command then use this same root. The GKB-Editor has a sophisticated incremental
browse facility that allows you to reduce screen clutter and screen redisplay time by
drawing only the parts of the KB that you want to see. Thus, initially, you see only
the top few levels of the class hierarchy, and classes with many children show only

30

a truncated list of children. The degree to which the graph is initially expanded is
determined by a depth limit and a breadth limit, which you can change using the
Incremental Expansion dialog (you can also change the way the root nodes are
chosen with this command). If a node has children that are not displayed because of
the depth limit, that node, called a depth cutoff node, is displayed in boldface. If a
node has more children than the breadth limit, then only the number of children up
to the breadth limit is displayed. An additional node, a breadth cutoff node, is drawn
with the boldface label N more, where N is the number of remaining children. Some
depth and breadth cutoff nodes are shown in Figure 8.1.

It is possible to also specify whether or not the depth limit is hard. If a hard
limit is used, then expanding one branch of the tree causes expanded branches in
other sections of the graph to be compacted. This allows you to focus in on only the
current region of interest.

To expand a depth or breadth cutoff node, middle click on the node. Expanding a
depth cutoff node causes its children to be drawn. Expanding a breadth cutoff node,
or a node that has a breadth cutoff node for a child, causes the breadth limit for
that node to double, and the additional children are drawn up to the new breadth
limit. Attempting to expand a node that is neither a depth nor breadth cutoff has
no effect. Middle clicking on a node while holding the Shift key down compacts the
node, erasing all its children and turning that node into a depth cutoff node. Right
clicking on a node brings up a menu of operations. The possible operations (not all
operations may be applicable to every node) include

• Select children to expand

• Expand all children

• Expand all descendants

• Expand parents

• Erase node and its descendants

• Change browsing parameters

You can expand the browse all the way to some frame, without knowing exactly
which sequence of classes needs to be expanded in order to find the frame. To do
this, invoke the Find command from the Frame Menu. You are prompted (with
completion) for the name of a frame to find. If the frame is present in the KB,
the current browse is expanded to make it visible, and the frame is highlighted.
Sometimes, no ancestor of the specified frame is currently visible in the display, in
which case the found frame is shown as a root frame with no parent classes. In

31

this situation, you must use the Expand parents option in the right click menu to
determine the frame's place in the class hierarchy.

You can also save a browse to a file, so that in subsequent sessions you can begin
browsing exactly where vou left off. 'o

8.4.4 View Commands

• Browse Class Hierarchy (Ctrl-b)
Begin a new browse of the class-instance hierarchy. Any previous expansions
are lost. Changes to browse parameters (i.e., through the preference menus)
that do not take effect immediately will take effect after this command.

• Browse from New Root(s) (Meta-b)
Begin a new browse of the class-instance hierarchy. You are prompted for one or
more frames to serve as roots of the new hierarchy. This command also changes
your preferences such that subsequent browses invoked using the Browse Class
Hierarchy command begin with the selected nodes.

• Redraw
Refresh the window.

• Save Browse
You are prompted for a filename. The current browse state (i.e. which nodes
are visible) is saved to the designated file.

• Load Browse
You are prompted for a filename containing a previously saved browse. The
browse is reloaded and displayed. If the state of the KB has changed since the
browse was originally saved, the loaded browse may have changed in appearance
accordingly.

8.4.5 Editing Operations

The Class Hierarchy Viewer enables you to create new frames and to rename, delete,
and change class-subclass and class-instance links for existing frames. If an editing
operation acts on a particular frame, you are required to select the frame either
before or after selecting the command. See Section 8.3.2 for details. All the editing
commands can be found under the Frame Menu. To perform additional editing
operations on an individual frame, such as altering its slot values, you must invoke
the Frame Editing Viewer, which you can also do from this menu.

32

8.4.6 Frame Commands

The following commands all operate on one or more frames. The first few commands
are not actually editing operations, but they may facilitate selecting frames on which
to perform editing operations.

• Select All
Make all currently displayed frames part of the current selection.

• Select Descendants
Add all currently displayed descendants of currently selected nodes to the cur-
rent selection.

• Select Ancestors
Add all currently displayed ancestors of currently selected nodes to the current
selection. This operation is also useful for highlighting the path of a particular
frame back to the root.

• Find (Ctrl-f)
\ou are asked to type in a frame name. If the frame is already visible in the
graph, it is highlighted. If the frame is not yet visible, then the browse is
expanded until the designated frame becomes visible.

• List Frame Contents (Ctrl-1)
A list of direct superclasses, subclasses, and instances, and all slot values is
displayed in a new window. Click on Dismiss to close the window. This may
be faster, or may result in a more compact display, than invoking the Frame-
Editing Viewer in cases in which you want to only examine rather than modify
the contents of a frame.

• Edit (Ctrl-e)
Invoke a Frame-Editing Viewer to edit the selected frame. ■"•o

• Edit Instance of Class (Ctri-E)
For situations in which you are displaying classes only, or do not want to expand
a class node, this command presents a menu of instances of the currently selected
class frame. The chosen instance may be edited using the Frame-Editing Viewer.

• Edit Loom Definition
This command is provided for users of Loom because the GFP does not provide
support for all the possible types of constraints and restrictions available in
Loom. A text editing window pops up, containing the Loom definition of the
selected frame. It can be edited using basic Emacs commands. Middle clicking
in the editing window closes the window, and causes the selected frame to be
redefined with the new definition. In general, changes made in this fashion do
not immediately update the graphical display.

33

• Create Class (Ctrl-n)
Create a new class frame. The selected class frame(s) are used as the super-
classes) of the new class. You are prompted for a name for the new frame in a
small pop-up window.

• Create Instance (Ctrl-N)
Create a new instance frame. The parent(s) of the new instance is the selected
class frame(s). You are prompted for a new name in a small pop-up window.

• Create Duplicate (Ctrl-d)
Create a new frame as a copy of the selected frame. If the selected frame is
a class, the new frame is a class; if the selected frame is an instance, the new
frame is an instance. The new frame has the same parents and slot values as
the original frame. You are prompted for a name for the new frame in a small
pop-up window.

• Rename (Ctrl-m)
Rename the selected frame. You are prompted for a new name in a small pop-up
window.

• Destroy (Ctrl-k)
Destroy the selected frame(s). If a class frame is destroyed, any subclasses or
instances of that class become children of the original frame's parent(s).

• Destroy Subtree (Ctrl-K)
Destroy the selected frame(s). If a class frame is destroyed, any subclasses
or instances of that class are also destroyed. When this occurs, you are first
prompted to make sure that is what was intended.

• Add Parent Link
You are asked to select a new class frame to serve as a parent of the selected
frame, and the new link is added.

• Change Parent Link
You areasked to select a link to change by first selecting the child frame and
then the old parent (if necessary), and then to select a class frame to serve as
the new parent. The old link is deleted, and a new link is created from the new
parent to the old child.

• Delete Link
You are asked to select a link to delete by first selecting the child frame, and
then the parent (if necessary). In the hierarchy viewer, the parent - child link
is deleted. If the old child frame has no remaining parents, it becomes a root.

34

8.4.7 Customizing the Display

The GKB-Editor is highly customizable, allowing users to specify via a set of prefer-
ence menus what should be displayed in the various viewers and how various objects
should be drawn.

In the Hierarchy and Relationships Viewers, you have a great deal of control over
how individual nodes are displayed. We provide a style menu that allows you to
specify icon and label colors, icon shape, and label font, face, and size. You can de-
fine a style for all frames satisfying some predicate. Any number of these styles and
predicates can be defined, and frames that satisfy more than one such predicate show
characteristics of each corresponding style (except where such characteristics conflict
with each other). Currently, only a few predefined predicates are available, such as
for identifying classes, instances, andprimitive classes, for testing frames for a partic-
ular user-specified slot value, or identifying all children of a particular class. Future
versions of the GKB-Editor may support a greater variety of predefined predicates,
or may permit arbitrary, user-defined predicates. Only two styles are defined when
the GKB-Editor is first installed, for class and instance frames, respectively.

Preferences are made persistent by saving them in a profile. Your profile is saved
in the file . gkb-pref s in your home directory. There are two types of profiles: the
User Profile, which contains preferences that should be used for all KBs that you
open, and the KB Profile, which contains preferences that apply only to a particular
KB that you open. One can also imagine a Global KB Profile that applies to a
particular KB for all users, but this has not been implemented. You can have only
one User Profile, but many KB Profiles, one for each KB. Preferences specified in the
KB Profile override those in the User Profile when that KB is open.

When saving preferences, in general you are given a choice of whether a particular
changed preference should be a part of the User Profile, the KB Profile, both, or
neither. However, some preferences, such as those that refer to a particular frame in a
KB. can be saved only as part of a KB Profile. Upon invoking the Save Preferences
command, you are presented with a dialog that lists the various options.

8.4.8 Preference Commands

• Incremental Expansion
Presents a dialog through which you can alter browsing parameters (see Sec-
tion S.4.3). You can designate new depth and breadth limits, and whether or
not a hard depth limit should be used. When the hard depth limit is enforced
and exceeded along a given branch of the class hierarchy, all other branches
of the hierarchy are collasped so the particular branch can be browsed more
intensely. You can choose whether the browsing root on a new browse should
be computed automatically, should be set to some default, or should be taken

35

from your input. If you want Co set a default, then upon exiting the dialog, you
are asked to input a frame or series of frames to serve as the default root(s).
You can also decide whether the browse should show class frames only, or both
classes and instances. Some of these changes do not take effect until a new

browse is initiated.

Node Styles

- Select Node Label Slots
For easier viewing, you may want to include certain slot values as part of
the node labels. This command presents a menu of all slots in the KB and
allows you to choose which slots should be included in the node labels.

- Redefining a Node Style
The list of currently defined node styles is presented. You can change the
style definition for a particular style by clicking on the "Redefine Style"
command button after selecting a style from the provided list. A dialog
appears with the current definition, which you can change. The style dialog
lists various options for icon shape and color, and label size, color, and font.
If a particular option is left unspecified, or Default, then the default value
for that node is used. This allows nodes to be displayed using multiple
shapes. For example, if grouping A specifies only the icon shape, and
grouping B specifies only the label color, then a node that is a member of
both groupings is drawn with icon shape A and label color B. However, if
grouping B instead specified the icon shape, the node could be drawn only
as belonging to either grouping A or B. and not both. For this reason, we
encourage you specify different options when defining styles for orthogonal
groupings, and to use the Default value for all other options. You can use
the "Apply Style" button to try out different style combinations before

exiting the dialog.

- Removing a Node Style
Style information and grouping definition for the selected style can be
removed by using the "Delete Style" command button. This button is
enabled when a selected item can be deleted from the list of existing styles.
Upon deletion of the style, its definition name is removed from the list and
may be added to the list of possible styles you can create in the future.

- Defining a New Node Style
The list of possible but yet undefined node styles is presented. You can
assign a node style to a new grouping of frames by applying the "Define
Style" command button to a selected item on this list. You are offered
a dialog of options (described above) with which to define the new style.
You can define styles (if not already defined) for class and instance frames,
primitive and nonprimitive class frames, all children of a particular class,

36

and frames with a particular value for a particular slot. If defining a style
for all children of a particular class, youare asked to type in the name of
the class. If defining a style for frames with a particular slot value, you
are asked to type in first the slot name, and then the desired slot value.

• Miscellaneous
The miscellaneous dialog asks you whether or not the frame names should be
case sensitive. Additional options may be added to this dialog in a later release
of the GKB-Editor.

• Save Preferences
You are presented with a dialog that allows you to save any changed preferences
to either your User or KB Profile. The next time you use the GKB-Editor to
access the same KB, these preferences automatically take effect. If you change
your preferences and forget to save them, you are asked before you exit the
session whether or not they should be saved.

• Revert to Saved
Revert to the preferences as of the last time they were saved. Any preference
changes made since then are undone.

• Revert to Default
Revert to the GKB-Editor default preferences. Any saved preferences are un-
done in the current session, but. unless you save preferences again, are available
for subsequent sessions.

8.4.9 Application Commands

Miscellaneous commands found in the Application Menu relate either to the ap-
plication as a whole (i.e., Quit, Print or Help), or to invoking the other types of
viewer. Keep in mind that when opening additional viewer windows, only the most
recently created window is active and accepting commands. For example, if you open
a relationships viewer in the middle of browsing the class hierarchy, you must close
the relationships viewer before you can continue browsing the class hierarchy. We
hope to overcome this limitation in a future release.

• Invoke Frame Relationships Viewer (Ctrl-r)
Open up a relationships viewer window and begin a new relationships browse.
The selected frame(s) is the root of the relationship tree. If you have not
previously selected which slots to expand, all slots are expanded.

• Resume Frame Relationships Browse (Ctrl-R)
Open up a relationships viewer window, and continue the relationships browse

where it left off the last time a relationships viewer window was open. This
command enables you to switch back to a browse of frame relationships after
browsing the class hierarchy. If no current relationships browse exists, this
command has no effect.

• Invoke Frame Editor (Ctrl-e)
Invoke a Frame-Editing Viewer to edit the selected frame. This command is
identical to the Edit command in the Frame Menu.

•

•

Print Display (Ctrl-p)
Print the graph window to a postscript file.

Print Report
The Print Report command is available only in the taxonomy viewer. The
command provides a textual reference of parts or all of any knowledge base
available to you. When this command is invoked, you are presented with a
dialog allowing you to specify the name of the file the report should be written
to (the default is "kbName.txt"). You can then choose from a list how much
of the knowledge base should be printed to the file. You can choose to have a
textual reference of the entire KB or just selected frames. Other options are
presented in the list. You can also specify which order the information should
be written in. either alphabetical, depth first, or breadth first. This order may
or may not apply to all the options given in the list of parts of the KB to print.
For example, if you choose to have only the instances printed, it does not make
sense for them to come in depth-first order. They are automatically printed in
alphabetical order. You are also asked which slots and facets to include in the
frames being printed to the file.

Copy to Kill Ring (Ctrl-c)
Copv the current selection to the kill ring.

• Help
Display this user manual in your Netscape browser.

• Quit (Ctrl-Q)
Exit the GKB-Editor. returning control to the Lisp Listener.

• Kill
Exit the GKB-Editor, and kill the Lisp process (i.e.. the Unix process) in which
it was running.

38

Application Knowledge-Base Frame View Preferences

_—•••• Iphe+tyr biosynthesis I
| . . ' ,. r—r-. —-. -|SUB.J>ATHWAYS ' '

 -~ phe+tyr+trp biosynthesis from chonsmate -=' _ „„„,„„
rr— : : 1 SUB=PATHWAYS C - : 'SUECPATHWAYS , 1
|phe+tyr+trp biosynthesis, complete| ^^--., - ""*- |tryplophan biosynthesis|

»SUB-PATHWAYS ,
" *- chorismate biosynthesis!

i-L
: Command: | Al

L: Deselect; R: Menu of completions.

Figure S.2: A sample frame relationship view.

8.5 The Frame Relationship Viewer

Whereas the Class Hierarchy Viewer enables you to browse a KB following class-
subclass and class-insrance relationships, the Frame Relationships Viewer provides a
means of browsing the KB by following slot-value relationships. For example, in a KB
of automobiles, you may have defined a Part slot, such that values of the Part slot
for a particular car frame include a Wheel frame and an Engine frame. The Part slot
values for the Wheel frame may include a Tire frame and a Bearing frame, and so
on. One can imagine constructing a graph showing the entire Part hierarchy starting
at some car. This is exactly what the Frame Relationships Viewer does. You can
specify which slot-value relationship or relationships to follow (or just follow all of
them), and one or more instances to start from, and a tree is drawn with the specified
instances as roots. A frame B is drawn as a child of frame ,4 if B is a slot value of one
of the designated slots in .4. Each edge is labeled with the appropriate slot name.

Figure S.2 is an example of a relationships slot-value browse in a biochemistry
KB. showing how a super-pathway is composed of its sub-pathways. The edges are
labeled with the slot name, to distinguish slots so that you can follow more than one
slot at a time.

An alternative way of browsing frame relationships is to look purely at classes,
that is, to determine which classes a value of a particular slot must be a member of.
For example, if a slot in class A must be filled by an instance of class B. then class
B is drawn as a child of class .4. This type of browsing is used if all the selected root

39

frames are classes. We call this type of browse a slot-type browse, to distinguish it
from the slot-value browse described earlier.

Various editing operations are available from this viewer. In addition to creating,
deleting and renaming frames, slot-value relationships can be inserted and deleted
by adding or removing the appropriate edges. This facility provides an intuitive
mechanism for building up complex interrelationships between frames.

To invoke the frame relationships viewer, select one or more frames and the com-
mand Invoke Frame Relationships Viewer from the Application Menu. Note
that because you must initially select one or more frames to serve as roots of the
relationships browse, it may help to browse the class hierarchy first, to bring the
desired frames into the display where they can be clicked on. If you do not browse
the class hierarchy first, then after selecting the command, you are prompted for a
frame: just type in the name of the desired frame or frames in the text pane. A new
application window containing the relationships view pops up and becomes active.
You must close this window before you can resume browsing the class hierarchy or
performing any other commands in the class hierarchy viewer.

By default, all slots that contain frames as values are selected for browsing, but
you can change this if you are interested in only one or a few slots.

If any of the selected roots are instance frames, then the browse will be a slot-value
browse. If all selections are class frames, the browse will be a slot-type browse.

The same incremental browse facility is available for the relationships viewer as
for the Class Hierarchy viewer. See Section 8.4.3 for details. The command menus
also contain many of the same commands as in the Class Hierarchy Viewer command

menus.

8.5.1 Application

The commands Print Display, Copy to Kill Ring, and Help are as in the class
hierarchy viewer. The one additional command, Close (Ctrl-q), closes the frame
relationships viewer window and returns control to the hierarchy viewer window.

8.5.2 Knowledge Base Commands

When this viewer is invoked, a KB should already be open and selected. Thus,
only a subset of the commands from the class hierarchy Knowledge Base Menu is
available in this viewer: Save. Save As. and Revert to Saved allow you to save
the KB. to save the KB to a specified file, and to revert to the last saved version of
the KB. respectively.

40

8.5.3 Frame Commands

The following commands all operate on one or more frames. There is some duplication
here: some of the editing commands can also be performed from the hierarchy viewer,
whereas others can be performed from the frame-editing viewer.

• Find (Ctrl-f)
You are asked to type in a frame name. If the frame is already visible in the
graph, it is highlighted. If the frame is not yet visible, then it is made visible
in the graph in the following way: if the frame is a direct slot-value child of
some frame currently visible in the graph, then the frame is shown as a child of
the currently visible frame: otherwise, the frame is added as a new root in the
graph. In other words, no attempt is made to expand the graph more than one
level deeper than its current depth in order to locate the frame.

The following eight commands are identical (except possibly in their effects on the
display) to the analogous commands from the hierarchy viewer.

• List Frame Contents (Ctrl-1)

• Edit (Ctrl-e)

• Edit Loom Definition

• Create Class (Ctrl-n)
In this and the next two commands, the new frame becomes a root in the current
browse.

• Create Instance (Ctrl-N)

• Create Duplicate (Ctrl-d)

• Rename (Ctrl-m)

• Destroy (Ctrl-k)

• Add Relationship (Ctrl-a)
You are asked first to select the slot to add to (if there is more than one), and
then to select the frame to link to. If the frame to link to is already present in
the display, the link is added. If the frame to link to is not yet present, it is
added as a child of the first frame. If the frame to link to does not yet exist,
you are given the option of creating it. The parent class of the new frame is
derived from the range of the selected slot.

41

• Delete Relationship
You are asked to select a link to delete by first selecting the child frame, and
then the parent (if necessary). The slot-value link is then removed. If the old
child frame has no remaining parents and no visible children, it is removed from
the display. If it has no remaining parents, but has visible children, it becomes
a new root in the display.

8.5.4 View Commands

These commands pertain to setting up a relationships browse, and which frames are
pictured on the display. They are generally analogous or equivalent to the View
commands in the hierarchy viewer.

• Restart Browse (Ctrl-b)
Begin a new browse of the frame relationships hierarchy, using the same root
frames as before. Any previous expansions are lost. Changes to browse param-
eters (i.e.. through the preference menus) that do not take effect immediately
do take effect after this command.

• Browse from New Root(s) (Meta-b)
Begin a new browse of the frame relationships hierarchy. You are prompted for
one or more frames to serve as roots of the new hierarchy. This command also
changes your (nonpersistent) preferences such that subsequent browses invoked
using the Restart Browse command begin with the selected nodes.

• Change Slots
This command pops up a menu of all slots available in the current KB. \ou
should select the slots that you want the relationships browse to follow. A new
browse is begun from the original root frames, following the selected slots. Any
previous expansions of the graph are lost. Future relationships browses will also
use this set of slots, until the set of slots is changed again. However, the choice
of slots is not saved persistently and is not in effect in subsequent GKB-Editor
sessions. To persistently change slots, use the Incremental Expansion dialog in
the Preferences Menu.

The following three commands are identical to the analogous commands from the
hierarchy viewer.

• Redraw

• Save Browse

• Load Browse

42

8.5.5 Preference Commands

• Incremental Expansion
This command presents a dialog through which you can alter browsing param-
eters (see Section S.4.3). You can designate new depth and breadth limits, and
whether or not a hard depth limit should be used. These parameters are the
same as for the taxonomy viewer. Selecting slots to expand applies only in the
relationships viewer. You are presented with a menu of all slots in the current
KB that can take other frames as slot-fillers. All selected slots are expanded in
a relationships browse. This information is displayed in place of the browsing
parameters you are presented with in the taxonomy viewer.

The following commands, which are found in the preferences dialog, are identical to
those found in the taxonomy viewer.

• Node Styles

• Miscellaneous

• Save Preferences

• Revert to

• Revert to Default

8.6 The Frame-Editing Viewer

From either the hierarchy viewer or the relationships viewer (or another frame-editing
viewer), it is possible to select a frame for editing. Invoking the Edit command from
the Frame Menu of either of the other two viewers causes a Frame-Editing window to
pop up. In this viewer, each slot name forms the root of a small tree, with its children
being the individual slot values and any slot facets (defaults or constraints) that you
want to display. If the FRS is one that supports annotations on values, annotations
are drawn as children of the appropriate values. Inherited items are distinguished
visually from local items, and cannot be edited (but they can be overridden where
appropriate).

The kinds of editing commands available in this viewer include adding, deleting,
and editing slots and their values, facets, and annotations. From the frame-editing
viewer, you can also recursively bring up new frame-editing viewers for frames and
slots in the current display.

Figure S.3. is an example of a frame editing window. The name of the frame
being edited is shown in bold just below the command menus. Slots are listed at the

43

Application > Knowledge Base > Frame > Slot > Value >
Editing Frame 2-KETOGLUTARATE

slot
ACID-BASE-VARIANTS

Slot
CAS- REGISTRY- NUMBERS

..[(Cljj
slot
CHEMICAL-FORMULA
slot
CITATIONS
slot
COMMENT
Slot
COMMON-NAME
Slot
KINGDOMS
slot
MOLECULAR-WEIGHT

,|2-OXOGLUTARIC_ACID|

facet
SLOT-VALUE-TVPE

-1323-50^7]

^-—~ ChenncalJ
"TntaaJlcd from ACID-BASE-VARJAtOTS'

l(H S)|

2-oxoglutarate|

■—1146.099|

:|2-k-giutarate|

:U2-kstoqlutarate|

W-H
f • A-K-glutaratel
V slot i lA-knl

SYNONYMS V I "I

% lalpha-netoglutaralel

*!■'.. |alpha-oxoglutarale|

y|ketoglutarate|

" Invnfftiitar^tal
a_
Command:
Command: Pref Cmd
Command:

Figure S.3: A sample frame view.

left of the window, with links to their values and facets. Slot and facet names are
tagged by the word slot or facet. Slot values appear in a rectangular box. Facet values
appear inside an ellipse. Local values are shown inside a bold icon, whereas inherited
values are not. In this example, showing the frame 2-KETOGLUTARATE (a biochemi-
cal compound), the slot ACID-BASE-VARIANTS has one value, 2-OXOGLUTARIC.ACID,
which is a local value. One facet is shown, SLOT-VALUE-TYPE, which constrains values
of the slot to be of a certain type. In this case, the facet value is Chemicals, meaning
that all values for this slot must be chemicals. The facet value is an inherited con-
straint. Since in this example we have chosen to show the source of inherited values,
we can see that the constraint derives from the slot's definition (the slotunit). If a
frame system supports annotations on values, these are shown as children of their
associated values. No annotations are shown in this example.

Like the relationships viewer, the frame-editing viewer pops up in a modal fashion:
while it is active, no previous viewers accept commands. To resume the previous

44

browsing or editing activity, you must first close the current frame-editing viewer.

A keyboard shortcut has been provided for selecting a slot. Pressing the Space
key selects the first slot. Pressing the Space key again changes the selection to the
next slot, and so on. The Backspace key changes the selection to the previous slot.
This facility is useful when you want to iterate over the available slots, adding a value
or values for each one. without using the mouse.

8.6.1 Application Commands

The commands Print Display, Copy to Kill Ring, and Help are as in the class
hierarchy and frame relationships viewers. The command Close (Ctrl-q) closes the
frame-editing viewer window and returns control to the viewer window from which it
was invoked.

8.6.2 Knowledge Base Commands

When this viewer is invoked, a KB should already be open and selected. Thus,
only a subset of the commands from the class hierarchy Knowledge Base Menu is
available in this viewer: Save, Save As, and Revert to Saved allow you to save
the KB. to save the KB to a specified file, and to revert to the last saved version of
the KB. respectively.

8.6.3 Frame Commands

W hile most of the editing commands accessible in the frame-editing viewer apply to
parts of frames (e.g.. slots, values), these commands act on whole frames. The first
three commands in this menu manipulate the frame currently being edited. The last
two commands allow a different frame to be edited by invoking a new frame-editing
viewer.

• Rename

Rename the selected frame. You are prompted for a new name in a small pop-up
window.

• Destroy

The current frame is deleted from the KB. This closes the current frame editing
window.

• Edit Loom Definition (for Loom only)
Edit the Loom definition of the frame in a new window.

45

• Copy (Ctrl-d)
A new frame is created as a copy of the current frame. You are prompted for
the name of the new frame. A new frame editing window is immediately opened
for the new frame.

• Invoke New Frame Editor (Ctrl-E)
You are prompted to click on or type in the name of a frame. Objects that can
be clicked on include slot, facet, and annotation labels for which slotunits exist,
and values that are names of frames. A new frame editing window is opened to
allow editing of the selected frame.

8.6.4 Value Commands

Most of the frame-editing commands you use on a regular basis can be found in
this menu. These commands permit you to add. change and delete slot values, facet
values, and annotation values. Unless stated otherwise, value can refer to a slot value,
facet value, or annotation value, even when only slots are explicitly mentioned. Most
of these commands require you to select a value node, although some have reasonable
defaults implemented if nodes of other types are selected. Two of the commands
require you to select a label (slot, facet, or annotation): if a value is selected instead,
the command is applied to the parent of the selected node. Some of these commands
do not apply to inherited values: if an inherited value is selected, a warning or a
menu of alternatives may be given. If a value input by the user is expected to name
a frame, and no frame exists by that name, you may be given the option of creating
the frame.

• Add (Ctrl-a)
This command takes a slot, facet, or annotation label node. You are prompted
for a value to add in a small pop-up window. If the slot takes more than one
value, then the new value becomes a new slot-filler for the frame. If the slot
takes only one value, then the new value overrides any existing value (including
an inherited value) as a slot-filler for the frame.

• Edit (Ctrl-e)
A pop-up window appears, containing the old value for editing. If. instead of
selecting a value for editing, you select a slot name, then a large pop-up window
appears, containing all the slot values for editing. This is helpful if you want to
edit all values of a slot at one time.

• Replace (Ctrl-r)
An empty small pop-up window appears to accept the new value.

46

• Remove (Ctrl-k)
This value is deleted as a slot value for the frame.

• Remove All (Ctrl-K)
This command takes a slot, facet, or annotation label node. All values of this
slot are deleted for this frame.

• Add Facet/Annot (Ctrl-A)
You prompted for a facet (if a slot is selected) or an annotation (if a value is
selected) label, either from a list of possibilities if it exists or in a pop-up text
window, and then for a value. If no slotunit for the facet or annotation label
exists, you are asked if you want to create one. This operation does not work if
facets and annotations are not supported by the frame representation system.

8.6.5 Slot Commands

These commands enable you to create, change and delete slots and slotunits. In
addition to slots, they may apply to facet and annotation labels. Be aware that for
many frame systems these operations are schema changes, and can affect frames other
than just the one currently being edited. They should therefore be used with care.
For background information to help you further understand slots and slotunits. see
Section S.3.4.

• Create(Ctrl-n)
Prompts for a slot name and creates the new slot. The initial domain of the new
slot is the current frame (if a class frame), or the direct parent of the current
frame (if an instance frame).

• Rename
Prompts for a new slot name, and renames the slotunit.

• Destroy
Deletes the selected slotunit from the KB. Use this command with caution.

t Edit (Ctrl-E)
Recursively edits the selected slotunit in a new frame editing window. This
works only for frame representation systems in which slots are represented as
frames.

8.6.6 Preferences

A dialog is opened in which you can specify which slots and facets should be displayed,
and whether or not inherited values should include where they were inherited from
in the node label. The options for which slots and facets to display are

47

• All: show all applicable slots and facets

• None (for facets only): do not show facets

• Filled: show all slots and facets for which there are values

• Selected: show only the designated slots and facets

• Selected-Filled: show only those of the designated slots and facets for which

there are values

If the options Selected or Selected-Filled are chosen for either slot or facet
display, then upon exiting the dialog, you are prompted to select from a menu of
available slots and/or facets. Selected preferences apply to this frame editing window
and all subsequent ones (until the preferences are changed again).

8.7 The Spreadsheet Viewer

The spreadsheet viewer allows you to edit slot values in the current KB within the
context of a spreadsheet. As shown in Figure S.4, the columns correspond to slots
and the rows to frames. The cells in the sheet are filled with the corresponding frame
slot-values from the KB.

There are three steps to launching the Spreadsheet Viewer. First, select frames
you want to examine from the Class Hierarchy Viewer. Then choose the Spreadsheet
Viewer command from the Applications Menu. Finally, use the dialog you are
presented with to select which slots to display in the spreadsheet and the order.
Frames can be listed in the spreadsheet in class order or alphabetically. They can
also be displayed using their pretty names or frame names. The frames, selected slots,
and corresponding slot values are imported into the spreadsheet.

The Spreadsheet Viewer does not yet have a full range of editing capabilities.
Current limitations include

• No classes
Only instances are displayed in the Spreadsheet Viewer. When you select a
class frame from the Class Hierarchy Viewer, its instances are displayed in the
spreadsheet. Selected instance frames are themselves displayed.

• No multiple-valued slots
The Spreadsheet Viewer does not address multiple values. In the case of multi-
valued slots, one arbitrary value is chosen from the list of values that exist for
a given multi-valued frame/slot cell in the spreadsheet.

4S

File? Edit SearchC^Vlew Format fools "Options" Gr^^Go^ctions^KBEdJtb^ iHeli

fir ca Default B Hum auitiSi
[B92] JJ! NIL

edit cell canceled

"7*MM KB ■'■■!■ c |. B rj E'^: i m P. ■; F«:;.* tj ^mt&sm'^ 'sm, msm
■B DOCUMENTATIOJPROPOLSION m

ÄBS|ENTERPRISE-C NIL u ■;?-a0| EXCELLENT not a frane not a frane

"*3t|FAIR not a frane not a frane

rttMFEKIKS NIL

■ ■S33f FIN-CURVE NIL

3S3#F0XTR0T-CLAS NIL i
"' -35|FUQUING-CLAS NIL B
:"96{ GAS-TURBINE NIL I ■ÄSflf GASOLINE NIL

■#98f GENERIC NIL

■ = ;.'3S| 000D not a frans inot a frame 1
IOOfGRISHÄ-1-CLA NIL ! i 1

T.10tfGRISHA-II-CL NIL | I n
'"*;• :~*",-y V'" *:'"~^if^ '■"••' -'•- '■'■■"'' "'•' -^«--M" ■ ■ .--,■-- ■ -■ r. • ■■■-»-:.-;'iL; - ~,w .,■■>* t ■' '-"■ '■ -'"-lai

Figure S.4: A sample spreadsheet view.

• No facets or annotations
The Spreadsheet Viewer does not display facets or annontations.

• Frame creation but no slot creation
The Spreadsheet Viewer allows you to add frames, but not slots to the KB.
When the data in the spreadsheet is exported back to GKB-Editor, any extra
slots in the spreadsheet are ignored. Any frames that have not been added
to the spreadsheet explicitly with the menu command are also ignored. Upon
exiting the Spreadsheet Viewer, you are notified about the frames that have
been created, the frames that have been modified, and the slots that have been
ignored.

8.7.1 NExS Spreadsheet

The NExS spreadsheet, a commercial product, is the basis of the Spreadsheet Viewer.
You must obtain this software to use the spreadsheet viewer (see the GKB-Editor web
pages http://www.ai.sri.com/~gkb/ for details). For now, all the original NExS
Spreadsheet commands are available, but we are working to remove those NExS
commands that are not relevant in the context of the GKB-Editor.

49

8.7.2 GKB-Editor Menu

The GKB-Editor Menu, within the NExS spreadsheet, implements the GKB-
Editor Spreadsheet Viewer. Commands under this menu support the interaction
of the NExS spreadsheet with the GKB-Editor.

• Add Frame(s)
Adds new frames to the current KB. You are presented with a dialog that asks
for the name of the frame that you want to add to the spreadsheet. When you
type in the name of the frame, the system responds by telling you whether or
not that frame can be added to the KB. If it can. the name appears in the
list of frames to be added to the KB: if not, a message appears letting you
know what the problem is. There are two buttons to the right of the list of
frames. Delete and Edit. When you select a frame from the list, the buttons
are activated. Choosing Delete removes the frame from the list of frames that
will be added to the KB. Choosing Edit removes the name from the list and
makes it reappear in the box above for editing. When you are done, the edited
frame name appears in the list.

The frames that constitute the list when the dialog is exited are sent to the
spreadsheet. The displays in GKB-Editor are updated to reflect the changes
when the Spreadsheet View is exited.

• Save to KB
Saves changes in the spreadsheet to the current KB without exiting NExS. The
open windows in the GKB-Editor are updated to reflect these changes.

• Revert Sheet
Executing this command reloads the information from the KB into the spread-
sheet. This does not mean that the KB reverts to the way it was when the
viewer was invoked. Whatever changes were saved to the KB. since invoking
the Spreadsheet Viewer, remain in effect. This command simply flushes those
changes made in the spreadsheet that were not saved to the KB.

• Reorder Slots
Reorders the columns in the Spreadsheet Viewer by slot. You are presented with
the list of slots presently displayed in the spreadsheet viewer. Reorder the list
by dragging the slot names up and down. The first slot name corresponds to the
left-most slot name in the spreadsheet. When you are finished reordering the
list, choose "OK"': in response, the columns in the spreadsheet are rearranged
to reflect the new order.

• Close View
Exits the Spreadsheet Viewer without saving changes to the KB. An additional
dialog appears to confirm exiting the viewer.

50

Close & Save

Lpon exiting the spreadsheet viewer, the data from the spreadsheet is saved to
the KB. You are informed of the frames that were added to the KB. frames that
were ignored, slots that were ignored, and frames that were modified.

8.8 Limitations

New users should read the troubleshooting tips in Appendix A. These tips deal with,
frequently asked questions.

Some known problems are described here. Some of these are fundamental limi-
tations of the Generic Frame Protocol or the various underlying frame systems, and
cannot be fixed until those problems are addressed. Others may be fixed in future
versions of the GKB-Editor.

• There is minimal constraint checking. If the underlying FRS does constraint
checking, then the GKB-Editor may allow an operation that the FRS forbids,
which can cause various problems, depending on how the violation is handled by
the FRS. For example, the FRS may break to the Lisp debugger, frames may be
marked incoherent, or the GKB-Editor may change its display to reflect changes
that never occurred. Even if the violation is handled correctly, there may be
little or no feedback to you as to why the operation failed. If the FRS does not do
constraint checking, then operations may be allowed that nevertheless violate
KB constraints. To address this limitation, we would need either (a) better
communication between the FRS and the GKB-Editor (through GFP) about
which operations are allowed, and whether or not an operation has succeeded,
or (b) a mechanism by which constraints could be expressed using GFP and
taken advantage of by the GKB-Editor in a uniform fashion.

• There is no way to enter such things as methods for computed slots, complicated
constraints that cannot be expressed using simple facet values, or enumerated
sets (other than with the :one-of value-type). There also should be a more
intuitive graphical way to enter ;and. :or. and :one-of value types.

• Most of the editing commands in the relationships editor do not work (and may
cause problems) if they are attempted while browsing slot types rather than
slot values.

•

•

Facet and Annotation commands may break if these operations are not sup-
ported by the FRS.

There is no existing way to edit the list of KBs in the Knowledge Base Open
menu, for example, removing a KB that is no longer in use, or changing the KB
package.

51

• The Kill Ring does not work in all situations. For example, it cannot be used
m Motif text gadgets. It also cannot handle strings with embedded newlines
(currently, we replace such newlines with spaces).

• Many of the gadget-based dialogs break or look awkward under Lucid CLIM
1.1 (which does not implement gadgets).

• Under CLIM 1.1, we sometimes get residual display ghosts that we think are
CLIM bugs. Most of these go away if you bury the window and then bring it
to the top again.

• Renaming an instance frame in Loom can cause problems (since that operation
is not supported by Loom) for frames that were linked to the frame under its
original name.

• Completion does not work properly in all cases. This is a bug.

• When working with Loom, the relationships viewer does not expand slots (re-
lations) with a domain of Thing (or no specified domain).

• Various operations in the Frame Editor and the Relationships Viewer mav break
or produce incorrect results with FRSs that do not implement slotunits (such
as Sipe).

52

Chapter 9

Summary

The GKB-Editor is a generic editor and browser of knowledge bases and ontologies.
It is portable across several FRSs. This is possible because the GKB-Editor performs
all KB access operations using the GFP. To adapt the GKB-Editor to a new FRS,
one need only create a GFP implementation for that FRS — a task that is usually
considerably simpler than implementing a complete KB editor.

The GKB-Editor contains several relatively advanced features, including four dif-
ferent viewers of KB relationships, incremental browsing of large graphs. KB analysis
tools, extensive customizability, complex selection operations, cut-and-paste opera-
tions, and both user- and KB-specific profiles. It is in active use at several sites.
While there is more to be done, the current implementation goes a long way toward
living up to its original design goals. It also represents the achievement of a milestone
in software reuse for knowledge-based systems, the development of a knowledge-base
browser and editor that is reusable across several different knowledge representation
svstems.

53

Appendix A

Troubleshooting

Remember that the GKB-Editor is still under development! Although most opera-
tions should work correctly when you do the right thing, it is not hard to get into a
broken or wedged state. For example, if you are using Loom as your underlying FRS,
and you perform an operation that violates a Loom constraint or causes a Loom or
GFP error, there may not yet be a graceful way to get out of the resultant inconsistent
state, especially if the GKB-Editor thinks a command has succeeded when it in fact
failed, and it tries to update the display accordingly. If you find yourself thrown into
the debugger in such a situation, first try to return to the GKB-Editor command or
top level, and fix the problem by using GKB-Editor commands. If you have some
in-depth knowledge of the underlying FRS. you can also try to fix the problem while
in the debugger. (Sometimes after returning from the debugger, the interface does
not respond to pointer clicks. Press Control-z and try again.) If the problem is not
that the KB itself is inconsistent, but that the current graph's view of the KB doesn't
match the state of the KB. try beginning a new browse: this will eliminate the current
graph's view of the KB. and construct a new one. If these attempts fail, probably
the best thing you can do is to revert to the saved version of the knowledge. For this
reason, it is important to save your work frequently! Finally, if this fails to correct the
problem, you may need to quit and restart the application and/or the Lisp process.

Q. Why are all the commands in the command menus disabled?
A. If there is no current KB (i.e.. if you just started running and have not opened
a KB yet. or you have recently closed or destroyed the current KB), the frame-
editing and viewing commands will all be disabled. Commands that should still be
available to you are Xew. and Open in the bf Knowledge Base Menu, and Quit and
Kill in the Application Menu. Once you open a KB. the other commands should
become active. If you have just created a new KB. there will be no frames to view or
manipulate. In this case, the only additional command to be enabled is Create Class
from the Frame Menu. Once you have created a single frame, the other commands
should become active also.

54

Q. / changed a slot value while in the Frame Editing Viewer, but the new value isn't
showing up in the relationships graph. Why is that?
A. "You may be having package problems. If your current package is different from the
package your frames are in, then the new value you typed may not be interpreted as
corresponding to an actual frame, and therefore will not show up in the relationships
viewer (only values that are frames show up in the relationships viewer). To ensure
that you get the correct frame in this case, when you enter the new value, preface it
with the appropriate package name (e.g., sipe-cl: :army rather than just army).

Q. I'm using Loom. I created a new slot while in the Frame Editing Viewer, added
a value, and exited the Frame Editing Viewer. I have just started editing the same
frame again, and notice that the value I added is missing. What happened?
A. When you create a new slot, Loom doesn:t know what the slot range is supposed
to be, so Loom assumes that the value you added is supposed to be a frame, unless
the value is obviously something else. You can tell that Loom is expecting a frame
because when you enter a value that is not a frame, you are asked whether or not
you want to create the corresponding frame. If no frame corresponding to the value
you specified exists (or gets created), then the value is rejected. The frame editor
doesn't know the value was rejected (our bug), so it goes ahead and displays the
value. However, the next time you try to edit the frame, the value will be missing.
Possible ways to prevent this situation from occurring are

• If you mean the value to be the name of the frame, make sure the frame already
exists or gets created.

• If you mean the value to be a symbol or string, you must quote it (for a symbol)
or surround it with double quotes (for a string).

• Edit the slot specification, giving a value for the facet : SLOT-VALUE-TYPE of
either SYMBOL or STRING. If you do this, you don't need to use quotes when
entering new values: the values are automatically interpreted correctly.

You can tell whether or not you need to quote your values by looking at the prompt
in the pop-up window. If.it says to enter a string or symbol, then you know that your
value will be interpreted as the appropriate type, even without the quotes. If it says
to enter a form, then Loom doesn't know what type to expect, so you need to use
the quotes.

Q. I'm using Loom, and when I try browsing (or editing) the relationships graph, I
am told that there are no slots to follow. I know my KB has relations in it!
A. The relationships browser works by looking at the roles of a concept or instance.
Normally, when you create a Loom relation using GFP, GFP alters the domain con-
cept to take that relation as a role. If the domain is Thing, however, then the domain
concept cannot be altered, so no role is created, and the relationship cannot be de-
tected. If your KB was created other than through GFP, you may run into a similar

55

problem, even if your relations have domains defined other than Thing. This is a
GFP problem for which we currently have no solution (the workaround would be to
examine every relation in the KB, which would be too time-consuming). The only
thing you can do is to use the frame editor to change the domain of vour relations.

56

Appendix B

GFP for Loom

The GFP was designed to present a uniform interface that masks the details of the
underlying FRS. While there are many advantages to this approach, the terminology
can be confusing for users who are accustomed to interacting with one particular
FRS. The problem can be particularly acute for Loom users, as the Loom style of
definitions, with necessary and sufficient conditions, does not map easily into the
frame, slot, value, and facet structures that make up the GFP. For this reason, we
describe here how the various GFP structures are interpreted as they are applied to
Loom knowledge bases, and which parts of Loom are not supported by GFP. The
GFP and the GKB-Editor have been implemented and tested with Loom 2.1 using
lite-instances.

Glasses and slots in GFP map to concepts and relations/roles in Loom, respec-
tively. When we create a GFP slot with a particular domain, we do two things: we
create a relation corresponding to the slot, and then we redefine the domain concept
to take that relation as a role (this behavior produces results analogous to setting the
:domain-implies-role feature for clos-instances).

Facets are annotations on slots. The GFP uses facets as a means of defining
constraints, restrictions and defaults on frames, slots and slot values. To this effect,
a set of standard facets has been defined. The GFP also supports a more general use
of facets to annotate slots with arbitrary values, but this use has no corresponding
expression in Loom. The standard facets currently cover only a small number of the
possible restriction types available to Loom users, and unfortunately there are some
quite common restrictions that cannot be expressed using the GFP (for example, it is
impossible to state using GFP that some value should be less than a given number).
For this reason, the GKB-Editor also offers a means by which the user can directly
edit the Loom definition of a frame, without going through the GFP. We hope this
measure will be temporary.

The standard facets available in GFP. and their corresponding interpretations in
Loom, are described below. In keeping with Loom behavior, facets can be defined

57

on classes and slots only - instances can inherit facet values, but cannot have any of
their own values.

• :value-type

This facet is a means of specifying a type restriction on the values of a slot.
When applied to a slot in a class frame, this facet produces a restriction on the
corresponding concept of the form (:all slot type). When applied to a slot
independently of any class, the type becomes the range of the relation.

• rcardinality

This facet specifies the exact number of possible values that a slot may take on.
When applied to a slot in a class frame, this facet produces a restriction on the
corresponding concept of the form (: exactly N slot). If this facet is present
in a slot independently of any class, the only value it is permitted to take on is
1. The corresponding relation will then be denned with the :single-valued
characteristic.

• rmaximum-cardinality
When this facet is applied to a slot in a class frame, it produces a restriction of
the form (: at-most N slot). This facet does not apply to slots independently
of any class (we could have allowed it to have a value of 1, with the same
meaning as the :slot-cardinality facet, but we chose not to have two different
facets with the same meaning).

• rminimum-cardinality
When this facet is applied to a slot in a class frame, it produces a restriction of
the form (:at-least N slot). This facet does not apply to slots independently
of any class.

• rtemplate-values

This facet is meant to be used to specify values that are inherited but cannot be
overridden. When this facet is applied to a slot in a class frame, it produces a
restriction of ehe form (:f illed-by slot value(s)). This facet does not apply
to slots independently of any class.

• :default-template-values
This facet allows you to specify default values for a slot in a class.

• rdomain

This facet is applicable only to slots independently of any frame, and allows the
domain of the relation to be specified.

• : inverse

This facet can have a single value, the relation that is the inverse of the slot.

5S

• tnumenc-mmimum
When this facet is applied to a slot in a class frame, it produces a restriction of
the form (>= slot N).

• :numeric-maximumt
When this facet is applied to a slot in a class frame, it produces a restriction of
the form (<= slot N).

• : documentation
This facet is applicable only to slots independently of any frame, and contains
the documentation for the Loom relation.

Loom does not permit easy incremental modification of defaults, restrictions, and
superconcepts for its concepts. The GKB-Editor and the GFP, however, specifically
encourage building up frames incrementally. As an implementation detail, when a
class is incrementally modified by a GFP operation, the Loom concept definition is
retrieved and altered, and the concept is completely redefined.

The GFP currently has no support for Loom productions, actions, or methods.

59

Bibliography

[1] G. Abrett, M. Burstein, J. Gunsbenan, and L. Polanyi. KREME: A user's in-
troduction. Technical Report 6508, BBN Laboratories Inc.. Cambridge, MA,
1987.

[2] E.F. Eilerts. KnEd. an interface for a frame-based knowledge representation
system. Master's thesis, University of Texas at Austin, 1994.

[3] H. Eriksson, A. R. Puerta, J. H. Gennari, T. E. Rothenfluh, S. W. Tu, and
M. A. Musen. Custom-Tailored Development Tools for Knowledge-Based Sys-
tems. Technical Report KSL-94-67, Stanford University Knowledge Systems
Laboratory, 1994.

[4] A. Farquhar. R. Fikes, W. Pratt, and J. Rice. Collaborative ontology construc-
tion for information integration. Technical Report KSL-95-63. Stanford Univer-
sity. Knowledge Systems Laboratory, 1995.

[5] Michael R. Genesereth and Richard E. Fikes. Knowledge Interchange Format,
Version 3.0 Reference Manual. Technical Report Logic-92-1. Computer Science
Department. Stanford University, 1992.

[6] T.R. Gruber. A translation approach to portable ontology specifications. Knowl-
edge Acquisition, 5(2): 199-220, 1993. URL for Ontolingua is http://www-
ksl.stanford.edu/knowledge-sharing/ontolingua/README.html.

[7] N. Guarino and P. Giaretta. Ontologies and knowledge bases towards a termi-
nological clarification. In Towards very large knowledge bases, pages 25-32. IOS
Press. Amsterdam. 1995.

[S] P. Karp, M. Riley S. Paley, and A. Pellegrini-Toole. EcoCyc: Electronic ency-
clopedia of E. coli genes and metabolism. Nuc. Acids Res., 24(l):32-40, 1996.

[9] P.D. Karp, J.D. Lowrance, T.M. Strat, and D.E. Wilkins. The Grasper-CL graph
management system. LISP and Symbolic Computation. 7:245-282, 1994. See also
SRI Artificial Intelligence Center Technical Report 521.

60

[10] P.D. Karp, K. Myers, and T. Gruber. The generic frame proto-
col. In Proceedings of the 1995 International Joint Conference on
Artificial Intelligence, pages 768-774. 1995. See also WWW URL
ftp://ftp.ai.sri.com/pub/papers/karp-gfp95.ps.Z.

[11] P.D. Karp and S.M. Paley. Knowledge representation in the large.
In Proceedings of the 1995 International Joint Conference on Ar-
tificial Intelligence, pages 751-758, 1995. See also WWW URL
ftp://ftp.ai.sri.com/pub/papers/karp-perkobj 95.ps.Z.

[12] T.P. Kehler and G.D. Clemenson. KEE the knowledge engineering environment
for industry. Systems And Software, 3(l):212-224, January 1984.

[13] D.B. Lenat and R.V. Guha. Building Large Knowledge-Based Systems: Repre-
sentation and Inference in the CYC Project. Addison-Wesley, 1990.

[14] R. MacGregor. The evolving technology of classification-based knowledge rep-
resentation systems. In J. Sowa, editor. Principles of semantic networks, pages
385-400. Morgan Kaufmann Publishers, 1991.

[15] T.M. Mitchell. J. Allen, P. Chalasani, J. Cheng, E. Etzioni, M. Ringuette, and
J.C. Schlimmer. Theo: A framework for self-improving systems. In Architectures
for Intelligence. Erlbaum. 1989.

[16] R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil. T. Senator, and W.R.
Swartout. Enabling technology for knowledge sharing. AI Magazine. 12(3):36-56.
1991.

[17] B. Porter, J. Lester, K. Murray, K. Pittman, A. Souther, L. Acker, and T. Jones.
AI research in the context of a multifunctional knowledge base project. Technical
report, University of Texas at Austin, 198S.

[IS] D. Skuce and T.C. Lethbridge. CODE4: A unified system for managing concep-
tual knowledge. International Journal of Hv,m.an-Computer Studies. 1995.

[19] L.G. Terveen and D.A. Wroblewski. A collaborative interface for editing large
knowledge bases. In Proceedings of the Eighth National Conference on Artificial
Intelligence, 1990.

[20] D.E. Wilkins. Can AI planners solve practical problems? Computational Intel-
ligence, 6(4):232-246, November 1990.

61

MISSION
OF

ROME LABORA TOR Y

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Material
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence,
reliability science, electro-magnetic technology, photonics, signal
processing, and computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

