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FOREWORD 

The Fifteenth Symposium on Naval Hydrodynamics 
was held in Hamburg, Federal Republic of Ger- 
many, on September 2-7, 0984, under the joint 
sponsorship of the Office of Naval Research, 
the National Research Council, and the Hambur- 
gische Schiffbau-Versuchsanstalt (HSVA) with 
the support of Institut fur Schiffbau, the 
Deutsche Forschungsgemeinschaft, and the Freie 
und Hansestadt Hamburg. The symposium was the 
culmination of several years of intense and 
careful preparation, and its success is a re- 
sult of the dedication of many people involved 
in that work. 

The traditional policy of featuring cur- 
rent research results in important problem 
areas in ship hydrodynamics was reflected in 
the selection of the major themes of the sym- 
posium.  The four major themes were Seakeeping 
Problems; Hull-Propeller Interactions; Non- 
linear Free-Surface Problems; and Frontier 
Problems in Hydrodynamics.  Two sessions were 
allocated for each theme, except for the last 
theme, which had only one session. Thirty- 
three papers of excellent technical quality 
were presented.  Participants came from as 
many as twenty-four countries. 

A highlight of the symposium was the 
Seventh Georg Weinblum Memorial Lecture, 
given as an opening technical session.  The 
lecture given by Professor Marshall P. Tulin 
of the University of California at Santa Bar- 
bara on "Surface Waves from the Ray Point of 
View" was an inspiring example of challeng- 
ing ship hydrodynamics research. 

There is no way to properly acknowledge 
all the contributions made by many people to 
the success of the Fifteenth Symposium on 
Naval Hydrodynamics.  Only a few contributions 
can be mentioned here. Among those contribu- 
tors, first and foremost is Professor Dr.-Ing. 
Odo Krappinger of the HSVA, who served as co- 
chairman of the Program Committee and was the 
central coordinator in Germany for all activ- 
ities involved in the organization and manage- 

ment of the symposium. He was ably assisted 
by Professor H. Keil of Technical University 
Hamburg-Harburg, Professor S.D. Sharma of In- 
stitut fur Schiffbau Hamburg, and Dipl.-Ing. 
J. Friesch of HSVA.  Professor Keil, of all 
the Organizing Committee members, deserves a 
special acknowledgment for his untiring ef- 
forts in ensuring a pleasant and constructive 
scientific and social atmosphere for the sym- 
posium. The acknowledgment would not serve 
its full purpose if the gracious and dedicated 
service of Frau Astrid wischhusen of HSVA were 
not mentioned. She has perhaps been the major 
worker behind the scene in carrying out all 
the many administrative tasks. The Deutsche 
Forschungsgemeinschaft is also gratefully ac- 
knowledged for providing encouragement and 
financial support for the symposium, as is 
the Freie und Hansestadt Hamburg for providing 
the elegant and functional Congress Center for 
the symposium site. A similar expression of 
appreciation is extended to the following three 
individuals for their inspiring addresses dur- 
ing the opening ceremonies: Herr Pawelczyk, 
Bürgermeister Hamburg; Professor Pfarr, Vice 
President of the University of Hamburg; and 
Dr. Frank Press, President of National Acad- 
emy of Sciences (whose address was read by Mr. 
Ralph Cooper of the National Research Council). 
A successful symposium would not have been pos- 
sible without the able assistance and coordina- 
tion of Mr. Lee M. Hunt, Executive Director of 
the Naval Studies Board of the National Re- 
search Council, and Ms. Elizabeth Lucks of his 
staff. They carried out the tremendous task 
of publishing this proceedings. 

Finally, a special and personal expres- 
sion of gratitude is extended to Dr. Robert E. 
whitehead. Dr. Albert D. Wood, and Dr. Arthur 
M. Diness, of the Office of Naval Research, 
and Mr. Ralph D. Cooper, of the National Re- 
search Council, for their invaluable counsel 
and encouragement throughout the entire period 
of the symposium. 

Choung M. Lee 
Fluid Mechanics Program 
Office of Naval Research 
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OPENING CEREMONY 



Prof.Dr.-Ing. 0D0 KRAPPINGER, 
Hamburgische Schiffbau-Versuchsanstalt GmbH, Hamburg, Germany: 

Herr Bürgermeister! 
Frau Vizepräsidentin! 
Ladies and Gentlemen! 
Dear Friends! 

It is a qreat pleasure for me to welcome you to the 15th Symposium on Naval Hydrodynamics. We feel 
privileged to host this meeting of distinguished scientists here in Hamburg. I think that I do not 
promise too much when I say that a bunch of very interesting and highbrow  papers will be presen- 
ted durinq this week. In this connection I would like to thank all the colleagues who initiated so 
many proposals for papers. Thanks go also to the members of the United States and German Papers Com- 
mittee and last but not least to the authors. _       . 
As you all know the world maritime industry is in a serious crisis. In the industry this leads to 
very hard competition and as a consequence to a strained atmosphere. Fortunately, this situation 
is not as harmful for this symposium and its participants. Of course, there are more difficulties 
now with regard to travel funds etc. and the one or other colleague who intended to be here could 
not come because of this reason. On the other hand there is general agreement that the future of 
the maritime industry depends - beside others - on today's research. Fundamental research - which 
is the main concern of this symposium - needs international cooperation. And cooperation means in 
the"first line communication. I can think of no better base for communication than personal rela- 
tionships or even friendships. . ,  . 
This philosophy has been very successfully practised by the late Georg Weinblum. Therefore the in- 
clusion of the Georg-Weinblum-Memorial-Lecture into the program of this symposium is not only a 
tribute to his contributions to ship hydrodynamics. It is also a tribute to his ability to make 
many people working in ship hydrodynamics feel as being members of a big family. This spirit 
is still existent in the Symposia on Naval Hydrodynamics. We have tried hard to make all provi- 
sions that this tradition will be maintained here in Hamburg, the place where Weinblum had spent 
most of his professional life. *-.•.,,J„ +„ +hQ 
In this we were lucky to have had a lot of support. I would like to express our gratitude to the 
Office of Naval Research, the National Academy of Sciences, the City of Hamburg and the German 
Research Association. I also have to thank Dr. Cooper, Dr. Lee and Mr. Hunt for the good coopera- 
tion during the time of preparation of the Symposium. 
I hope that your stay in Hamburg will be rewarding, professionally as well as socially. 

wfare veryTatefufthat"Bürgermeister Pawelczyk has come to the opening of our Symposium in spite 
of the fact that he has so many other commitments. We are sorry that he has to leave us shortly 
after having delivered his address because there is a meeting of the Senat (which is the govern- 
ment of Hamburg). 

ALFONS PAWELCZYK, 
Second Mayor of Hamburg: 

Distinguished Ladies and Gentlemen! 

May I cordially welcome you on behalf of the Free and Hanseatic City of Hamburg I hope you arrived 
here well in time to have seen also the gay festivities yesterday and the day before. This is the 
first ONR Symposium on Naval Hydrodynamics to be held in the Federal Republic of Germany. We are 
of course pleased that it is being conducted in Hamburg. We perceive your choice of this city as 
an - in our opinion - well deserved appreciation of our Hamburg Ship Model Basin. The HSVA is now 
70 years old and eminently successful in its work. It maintains a close cooperation with the 
Institute of Naval Architecture of the University of Hamburg, founded 32 years ago You can under- 
stand the importance attached by Hamburg to technological development from the fact that we are 
current!" the only state in the Federal Republic of Germany building up a new technical university. 
The first research projects are already in progress and the further development of this institution 
has top priority in the decisionmaking of our government, also right now during our budget delibera- 
tions We are convinced that a collaboration of these institutions in all areas, including the one 
of Jour interest, will enable Hamburg to maintain a high standard and to generate important impulses 
also in the future. I feel it is one of my major tasks as the Second Mayor of this city and as 
Hamburg's plenipotentiary in the federal capital Bonn to make sure that this close cooperation func- 
tions we11 also with respect to the federal agencies. And I know also from those contacts, that your 
llrk  enjoys a high reputation, which is also underlined by the fact that you are holding this con- 
ference here with so many participants. ... ,   ... 
wish to than you heartily for that. I wish for your sake and ours that you will keep Hamburg in 
ood memory, primarily because you will have interesting discussions.here and depart with new ideas, 
but also because you will hopefully gain and retain pleasant impressions of our city. I wish you 
every success. 



Prof.Dr. HEIDE M. PFARR, 
Vice-President of the University of Hamburg: 

Ladies and Gentlemen! 

On behalf of the University of Hamburg I would like to welcome you to the 15th Symposium on Naval 
Hydrodynamics. I am proud as Vice-President of the University of Hamburg, and the organizers from 
the shipbuilding institutions located in Hamburg are proud that this symposium, being held for the 
first time in the Federal Republic of Germany, is taking place here in Hamburg. This underscores 
Hamburg's significance as a city involved with the science of shipbuilding. 
After going over your program with its four main topics: 
- Seakeeping problems 
- Propeller-hull interactions 
- Nonlinear free-surface interactions 
- Frontier problems in hydrodynamics 
and reading through the papers, I must confess that I was overcome by an uncomfortable feeling: 
I had not really understood a thing! 
As representatives of a science which is generally considered to be typically male - I was just 
recently introduced to the male rites of shipbuilding, and women are sparsely represented among 
the lecturers - you might think that this lack of comprehension is owing to my sex, that women 
naturally find it difficult to understand complex physical-mathematical-engineering topics. 
This explanation does not seem to me to be quite right. It is rather a problem - also a didactic 
one - of expressing complex facts so that they may be generally understood by all. As Vice-Presi- 
dent of the University, I experience more and more frequently that - today, when budgets every- 
where are becoming tighter - science is being increasingly put under pressure by society to justify 
itself. Science has to account for what it is doing with the money that society invests in it. And 
these sums are not so very small: The annual expenditures for the University of Hamburg alone 
amount to 715 million DM (including the University hospital (UKE), excluding UKE: 307 million). 
I consider this obligation toward justification to be a legitimate demand made on science. And I 
believe that science must meet this obligation on the offensive, by actively seeking the way to 
the public. It must make clear to the public what research is being done and of what use this 
research can be to society. 
You, the participants in this symposium on naval hydrodynamics, are involved in a highly practice- 
oriented theory of shipbuilding and actually ought to be predestined to fulfill society's demand 
on this score. 
Please do not misunderstand me - I don't mean to criticize your professional program. I just want 
to express that I feel that a bit more publicity for your symposium would have been beneficial. For 
example a public lecture, perhaps on the topic - which I formulate as a layman - "Significance of 
Naval Hydrodynamics for the Reduction of the Energy - Consumption of Ships" or something similar, 
would certainly have raised public interest and appreciation of your science. 

Prof. Georg Weinblum, who died ten years ago and to whom the following first lecture of this sympo- 
sium will be dedicated, was a man who knew how to unite the theory and practice of shipbuilding in 
an outstanding manner and how to convince others of the significance of his field. He became the 
first director of the newly founded Institute for Shipbuilding of the University of Hamburg in 1952. 
He succeeded in establishing a technical subject - for quite some time the only technical subject! - 
at a university which, from the historic development of the structure of its subjects, actually 
seemed to be rather hostile toward technical subjects. Thanks to his initiative, shipbuilding soon 
became well-anchored (!) at the university. 
For a long time students were offered courses in conjunction with the Technical University of 
Hannover. Today, the training takes place exclusively in Hamburg, in cooperation with the Fach- 
hochschule Hamburg (Technical College) and the newly founded Technical University Hamburg-Harburg. 
Such cooperation at the university level is today an exception. Many subjects and institutions 
still have a "separatist attitude" and prefer to isolate themselves. 
Georg Weinblum was an exceptional person in still another way - namely in his active commitment 
toward international relations - for the Institute for Shipbuilding and for shipbuilding in general. 
In 1971, Weinblum wrote in a brochure: "Characteristic of shipbuilding is its openness to the world; 
international exchange and cooperation are in this respect the life elements of our science. To 
promote these things especially in Hamburg was initially the most important task of our institute" 
(uni forschung Nr. 3, S. 2). The internationally of science that Weinblum describes here is one 
of the University of Hamburg's special interests. One look around the room at the participants in 
this symposium proves the correctness of Prof. Weinblum's statement. 

Ladies and Gentlemen, I wish you a successful symposium. 



Address by Dr. FRANK PRESS, 
National Academy of Sciences, Washington D.C., USA: 
(Read by Dr. RALPH COOPER) 

Ladies and Gentlemen of the ship hydrodynamics community! 

It is with distinct pleasure that the National Academy of Sciences again joins with the Office of 
Nav 1 Research, and, on this occasion, the Hamburgische Schiffbau-Versuchsanstalt Gnib in supporting 
the latest in this prestigious series of symposia. I am sorry that I am unab e to welcome you in 
person to the Fifteenth Symposium on Naval Hydrodynamics. However, I have asked Ralph Cooper, who 
is now a member of my staff, to read my statement to you. nrnvide 
The formal objective of the First Symposium on Naval Hydrodynamics - held in 1956 - was to provide 
an international forum for the exchange of ideas and research results in the fieldof ship hydrody- 
namics "For 28 years now that simple! yet ever so fundamental objective, has remained unchanged. 
It is the stated objective of the symposium upon which you are about to embark. ,+,.„+Q 
n a recent issue of FOREIGN AFFAIRS, Lewis Thomas of the Sloan-Kettering Cancer Research Institute 

of New York referred to science as "one of the most communal of human endeavors. I agree and would 
add, by way of elaboration, that science - practiced in its natural and unrestrained state-is one 
of the most communicative of human endeavors. This week the leading experts from 12 countrles - 
through 34 formal papers and innumerable formal and informal discussions - w 11 share the knowledge 
accumulated over the past two years. And, those taking part in these discussions will do so from a 
base of understanding that has evolved, in large measure, from all previous exchanges of this type. 

Therefore, I would like to congratulate the principal sponsor, the members of this community, and 
the institutions you represent for steadfast adherence to your founding objective - the free ex- 
change, on an international basis, of research results and the ideas, thoughts, and questions which 
emerae from it. It is science, both basic and applied, practiced at its best. 
In looking over the four topics you have chosen to provide the theme for the Fifteenth Symposium 
was particularly pleased to see that you have included "Seakeeping Problems "Over the past 
everal Jears theAcademy has conducted three studies which strongly supported the selective intro- 

duction of the SWATH hull form because of its improved seakeeping characteristics. I was pleased 
to learn that a number of countries represented here today have plans to either keep abreast of 
developments in this area or are drawing plans foractual construction. In the area of SWATH de- 
velopment, our Japanese colleagues are to be especially congratulated. The r MESA-80 is already 
providing valuable operational experience, and will soon be joined by the hydrographic survey 

FinalS!°i would like to join with the Office of Naval Research in thanking our German colleagues 
for the excellent job they have done in preparing for the Fifteenth Symposium. The toughest chore 
always falls on the host in this series as we have learned. I am sure you all join me in expressing 
our gratitude. My very best wishes to you all for a very successful meeting. 
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THE SEVENTH GEORG - WEINBLUM-MEMORIAL-LECTURE 

SURFACE WAVES FROM THE RAY POINT OF VIEW 

MARSHALL P. TULIN 

INTRODUCTION 

In commenting on a paper of Bessho (1966), Georg Weinblum noted: 

"Science is subject to fashion as much as other human activities. Recently the 
thin ship and surrogates have completely dominated the field, but in the twenties 
(and earlier) the pressure system has been considered as being an equally impor- 
tant hydrodynamic model (at least in principle) as the Michel! ship especially 
suitable for picturing fast shallow-draft and planing vessels. By Dr. Bessho s 
paper a sound equilibrium has been established. The present speaker had empha- 
sized the similarity of the Hogner and the Michell integral (Zamm, 1930) and thus 
inspired Sir Thomas Havelock to derive the simple relation between source-sink 
distributions a  and pressure systems p 

4npga = c fjj " 

These days the fashion in ship waves has been very much with so-called low-speed theories 
whicraTbe implemented through digital computation The question has arisen Keller (1979), as 
to the nature of true asymptotic low speed theory. In that paper he proposed a ray theory In 
the present paper, which I have prepared especially for this lecture, I have chosen to explore the 
ray theory and to begin by combining it with a very old fashioned subject, and onewhicl;ear y 
attracted the attention of Weinblum himself, the waves made by a movingI pressure patch In th s 
case, assuming light loading, linearizing assumptions are valid and the theory takes a simple 
form. It is therefore very useful for sharpening our tools and insight. 

After that start we tackle the ship problem, as Keller already has. Wea"
a
n
de
f"° 

a"^i^s 
concerning the thickness of the ship. We repeat some of his findings. We also find some waves 
ssuinj from a limited portion aft and from the ends. We have f°™lae for ^ se wave s,   he 

ends the situation is, however, ambiguous because of insufficient knowledge of the displacement 
flow giving rise to the waves. 

A few words concerning ray theory. Its antecedents are found in geometrical optics. In 
dispersive systems it arises with group velocity as a product of asymptotic integration and is 
inherent in KelTn (W. Thomson) (1887) and Havelock (1908), and later works, and then much ater 
in Stoker (1957) who considered the wave pattern created by a ship moving in a curved trajectory. 
A 1 S these assumed no displacement flow in the water. But in problems of opt!,cs and acoushes 
the inhomogeneity of the medium had long been considered. For dispersive systems at least for 
ship waves, this was first discussed and the basic relations given by Ursell (960), and indepen 
dentlj byWhitham (1961). At about the same time, the fundamentals of the interaction between 
waves and currents were laid out in a series of important papers: Longuett-Higgins and Stewart 
(1960,1961) and Whitham (1960,1962); see also the discussion in P".1".1^ J^66) p The basic 
assumption of the ray theory is that the waves are short in comparison to the scale over which the 
flow changes (it is this assumption which is at question near the ends of the ship) so that the 
waves may be assumed to have locally the same dispersive relation as in undisturbed water (it is 
this assumption which Eggers (1981) questions at the bow of a ship). 

Presidential Professor, Department of Mechanical and Environmental Engineering, 
University of California, Santa Barbara, California 93106 



A detailed study of the implications of ray theory for ship waves was begun and later ex- 
tended by Keller (1974, 1979), while the actual application was begun by I run and Kajitani (1977) 
who assumed the waves generated as in linear theory and utilized ray theory to calculate the 
bending of the rays. Yim (1981) has later made extensive ray tracing studies in the same spirit. 

Herewe are motivated to understand how ships generate waves, in this case in the true low 
speed limit; as many questions are eventually raised as are answered. 

1.  WAVES GENERATED BY A STEADY MOVING PRESSURE PATCH IN THREE DIMENSIONS 

Introduction 

The problem of the waves generated by a moving real ship contains serious non-linear fea- 
tures. On the other hand, the waves generated by a pressure patch of finite size moving on top of 
the water surface can perhaps be treated using linearizing assumptions, provided that the magni- 
tude of the pressures are suitably small. And the solution to this problem can yield valuable 
understanding of wavemaking, just as Kelvin's treatment in 1887 of a concentrated pressure patch. 
This is certainly the reason why Georg Weinblum (1930) undertook to study this problem. Much 
later it became of some importance in connection with the performance of air cushion vehicles like 
the Hovercraft, and was studied by several workers, notably Nick Newman (1962). 

Here we study this problem using ray (asymptotic) techniques and obtain some important re- 
sults; then we go on to the case of a real ship, which is considerably more complicated; but 
non-linear effects can be treated with interesting results. These ray techniques which we use, 
first in the linear pressure patch case and then in the non-linear ship case, are generally appli- 
cable in the limit of small Froude number. 

The usual linearizing assumptions which we employ in the pressure patch problem are: i) the 
deep water waves propagate locally as progressive waves of small amplitude,„for which the disper- 
sion relation between the wave frequency, u>, and wave number, k, is: u> = gk; ii) waves are 
generated at each point on the free surface under the pressure patch, and the amplitude of the 
generated waves is proportional to the excess pressure, p associated with the patch; iii) the 
waves generated at each point add linearly; iv) the waves, once generated, propagate over the 
water surface as if it were at rest. The last assumption is decisive and is equivalent to 
assuming that the moving pressure patch does not induce any significant motion in the water, aside 
from the waves themselves. This is certainly not true in the case of displacement ships, where 
the water is forced to go around the ship as well as to issue waves; we shall correct for this 
vital difference later. 

We imagine a patch of constant pressure moving over the water at a speed U(t), from right to 
left along thex-axis, Figure 1.1. Our technique will be to observe the waves, n.(t), arriving at 
an observer point, P(x,z) = £, at a distance of many wavelengths from the moving pressure patch. 
We assume to begin with that these waves can arrive along any ray passing from the observer point 
to the pressure patch (later we show that only distinct rays contribute at any time, t). We 
designate the rays by their angle of inclination, ß, to the horizontal axis. In our present 
approximation, since no motion occurs in the water to bend the rays, they are straight lines. 

The Far Field Plane Wave Spectrum 

An elemental radial wave is generated as if by a concentrated imposition of pressure p (a 
delta function) at each point of the water over which the pressure patch passes. Those waves 
generated along a fixed ray bundle (origin at £) of mean ray angle ß and width, (t-£')dß, and 
observed at the fixed point, £(x,z), can be represented as an integration of the generator points, 
£', along the mean ray, and over time, t1 < t: 

h 
where £. are the intersections of the ray with the upper and lower boundaries of the patch, and 
Ca ~ du)*d^- Tne function [A] is found from the asymptotic (ray) theory solution for the wave due 
to a concentrated imposition of pressure. It is, see Havelock (1908) or Lamb (1932): 

[A] = g(t-t')3/27/2n(£-t')4 = g/27/2n(t-£' )C3
g [1.2] 
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The result of this collection of waves generated within the ray bundle is a plane wave of 
wave number t  and amplitude, Amp(ß): 

& = R • [{Amp(ß)}ei[k^u,t]] .; far field [1-3] 
op 

It was originally pointed out by Thomas Havelock (1934), that the far field wave may be repre- 
sented by a distribution (spectrum, 4j) of such waves: 

n 

n(£,t) = / |(t,t,ß)dß n.4] 

and the wave resistance (in the case of uniform motion) given simply as: 

n 
Res. = npU2 f   [R • (Amp2(ß)} + I • {Amp2(ß)}]cos3ßdß [1.5] 

nil 

a result we shall refer to later. .In consequence, the problem of determining wave resistance is 
equivalent to the determination of gjj, [1.1], in the far field (£ -> »). 

The Boundary Sources 

The integral, [1.1], has no stationary phase points so its asymptotic form can be determined 
through repeated integration by parts. The result can be represented as a sum of terms with 
coefficients k , k , etc. In the present case, where the observer is many wavelengths from the 
generator point, the first term in this series is dominant and: 

t 

% a,t,ß) «B./J {[A(C-£Jj; t-t')](^u)-e
lfu-[A(t-t;*; t-t')]«-^1 V'   [1-6] 

where-  f  = k(£-£* )-u)(t-t'), and £*  refer to the intersection of the ray with the patch 
boundary Jfe^ime t'.u,fi U'* 

We see, [1.6], that waves seem to originate only on the boundary of the pressure patch- 

Radiation from the Boundary: Ray Theory 

The integration of these wave generators (i.e. in t1) represented by [1.6] is facilitated by 
the application of Kelvin's method of stationary phase, see Stoker (1957); this method assumes 
asymptotic conditions; i.e. that the wave length is much shorter than the range of integration and 
that [A] varies slowly enough. We recall for reference, if: 

h 
b(t) = R •/ att.tV^'^dt' 

t, 

then, 

b(0 = R • 1  e     S a(e,ts)[T|rj-]^ + 
P ' ' 

i<K£.tp) r(i/3) ,6 ,1/3                n 71 
+ R-Xe    v -a«,t ) -^^ (-jqpj-)                        Ll./J 
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where ijj' = j-h- (t ) = 0, defines the points t'=t where the dominant contribution to the integral 
arises when $" t u; and where ip' = 4»* = 0 define! the points t = t where the dominant contribu- 
tion arises vtfien 1(1" = 0; i.e. ft i|i" fy 0 sum only over s, and whenpt|i" = 0, sum only over p. In 
this latter case, rays focus by bunsching and the resultant wave is more observable. This condi- 
tion is called a caustic. 

Upon applying Kelvin's method to the integration of the boundary waves, [1.6], we find the 
main contribution arising from points where (stationary phase point): 

u H       d 
~dV        dF" l"^ "=u,S, {k(£-t* ,)-u>(t-t')} 

or, 

dt* 
-$f = ui/k = C (k) [1.8] 

where C is the phase velocity of the wave; this condition defines the wave number of the wave 
arisingpat each point of the path boundary; i.e~ the phase velocity of the outgoing boundary wave 
is equal to the velocity of the boundary along the ray. 

We have so far considered an arbitrary velocity of the pressure patch. When the patch moves 
with constant horizontal speed, U , then all of the waves in the resulting pattern must be sta- 
tionary in body coordinates (the f^ame of reference moving with the patch) and it follows that the 
phase speed, C., of the wave traveling along a ray at angle ß (Figure 1), is: 

C (k) = -Uocosß [1.9] 

This follows from the factRthat the frequency of wave encounter to an observer traveling with 
velocity Vobs is: k| V^-e^-g . 

Notice that for waves moving outward toward the observer point above the patch, C > 0, so 
that 71/2 < ß < 71. These waves may be classified in the usual way: those traveling on rays closest 
to the vertical (divergent waves) are short, while those on rays closest to the horizontal 
(transverse waves) are longest. 

This condition of stationarity, [1.9], when combined with the stationary phase condition, 
[1.8], leads to a relationship between the local ray angle, ß(k), and the local patch angle 
measured from the horizontal, a*. First it may be shown taking into account the cutting angle, ß, 
of the ray as it traces out £    p(t') that: 

df* .     U tana*      U sina* 
u,l _    0  _  0 M lrn 

"dt1-  cosß(tanß-tana*)  sin(ß-a*) L   J 

and then combining [1.8-1.10] we finally find that the wave number vector is normal to the 
patch boundary!: 

(ß-a*) =7i/2 [1.11] 

This is a result we might have expected. It is well known that in the case of non-dispersive 
wave systems (optics or acoustics), that the signal is primarily due to excitation from the point 
on the body which lies closest to the observer and therefore arrives on the ray normal to the 
body. 

We note: each and every point of a smooth patch boundary produces (at a fixed observer point 
above the patch) a single wave (single k, corresponding to ß); however each wave (k) receives a 
contribution from all points sharing the same patch boundary angle, a*; the transverse waves arise 
particularly from the blunt ends and the divergent waves from the moderately sloped sides. The 
waves traveling to an observer above the patch will originate from the upper forward and rear aft 
sectors of the patch boundary, see Figure 1.2. For smooth shapes, then, each wave will be excited 
at two generator points, one in each of the contributing sectors, provided that a normal to the 
ray exists (for boundaries with non-blunt ends, the range of ß will be limited). Finally a simple 
relation exists for the phase velocity at any point: C = U sina. 
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The wave enerqy moves away from the boundary generation points, £* along the rays, ß(a*), 
x me qroup velocity, f (k). The waves from each generator point wM thus be seen by an ob- 
erver moving with the pressure patch along an angle, y, to the horizontal given by the argument 
f the vector C* (k)-f)   The ray ß is thus transformed to body coordinates with the result (we 

at the group 
s 
Of ....    - 
also use [1.11])? 

tanv = -sinßcosß = tana* . t^osV ] [1.12] 
1+sin^ß 1+cos a* 

We note that the body rays pass through the pressure patch over the forward part of the hull 
(Y < or*). Of course this is permitted here. 

Caustics 

Waves created from different points on the boundary may cross in the water- this is per- 
mitted. If they approach tangency while merging (bunching), then a caustic is created; this cor- 
responds 

d2f. 
to the zero of ( M) at a stationary phase point, then the waves correspond to the p-waves of 

dt1^ 

[1.7]. We differentiate [1.8] again and finally find (we suppress the asterisk on t,*^ for sim- 
plicity): 

A^-f or2 (f  ")2 

"^""   {^0  £u'Ä      2^t7   U,£ 

so that, a caustic (f" „ = 0) will form out in the water along every ray originating at a point 
where & /dtli < 0:u4at is everywhere the patch is concave from within. These caustics repre- 
sent the merging of the rays originating at different points along the P^h-boundary. They merge 
at a finite position along the ray and therefore disappear in the far field; their location is. 

«c-tu'^-«i,£>/^,Ä'where: 

t"  =+u2d^sinß = ^ [l.H] 
^u,S. o dx  H  R* 

where R* is the radius of curvature of the patch, positive when concave from within. 

In the far field (£-»»), then new caustics will appear upon the vanishing of Q^, cor- 
responding to points of flatness (R* -> 0). 

The Resultant Amplitude Spectrum for the Boundary Wave 

We allow the patch boundary to have both convex and concave regions with a local point of 
flatness separating them. Then the far field wave is obtained by combining various relations, 
[1 1-1 4] using only the waves in [1.7]. The result for Amp(ß), see the definition according to 
[1.3], is: 

concave p>0, 

■i    - II- U- "i[k(yu £cscß+xu ßcosp) *^/4] I" n ill 
Amp(ß) = V [F.][pJ R*he    M    ",£     ^   \ [1J5] 

Vi  L  ° ' convex 
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w 0, 

Amp(ß) ^P [F2
L
/3]tP0]{|(sinß)d2

öVdx'21 
-1/3    -i[k(y„ 0cscß+x'   0cosß)] yu,ü u,JT 

[1.16) 

(locally) 

where:  x' „ is measured aft from the bow; p = p /pU ; R* = R*/L; 
and L is M length of the patch. o   o  o 

F. (Froude number) u0/(gL)- 

In the neighborhood of a point of flatness, the correct result, [1.16], must be used and the 
other result, [1.15] (valid elsewhere), appropriately merged with it. 

We note: all of the waves are driven by the patch excess pressure, p • interference effects 
between forward and aft generator points occur and are described by the exponential term in each 
relation; the strongest wave at low Froude numbers arises from the caustic at the inflection point 
(local flatness) in the boundary shape, 0(F, / ); for a curved boundary most of the waves are 
proportional to the (local radius of curvature")'5 and 0(F,). 

The End Waves 

In addition to the foregoing boundary waves, which have arisen from the stationary phase 
contribution to the above integral, we must consider the possibility of end waves arising from 
integration by parts of the integral over the boundary represented by_J1.3]. In this case the 
result can be represented as a sum of terms with coefficients, k , k , etc. Again in the far 
field the first term is dominant. It is: 

dQ 
dß 

P0[A]t 

1 Pk2 p bu 
r -t< J Lp H 

i e 
i[k£-u)(t-tb s)]i 

[1.17] 

where C is given by [1.9], V   « by [1.10], and t is the time required for the pressure patch to 
cross tfte ray (we take t, = 0).  The far field amplitude function for the end waves is thus: 

Amp(ß) = 
i P. 
72" 

0 (F,)2 [Gc(ß) 
ikl_*cosß 

Gb(ß)] [1.18] 

where G b,s 
^u  Sz 

(Ki>(Ki> 
; i U,£ £u/Cp and L* is the horizontal distance between the initial 

forward (bow) and final aft (stern) intersection of a ray with the hull (L*=L for rays suffi- 
ciently near the vertical, but may be less than L for rays inclined near the horizontal, whose 
initial and/or final intersections may be tangent to the boundary at a point inboard from the bow 
and/or stern). 

2 
We note that the_ end waves are 0(F, ) and therefore weaker at low Froude number than the 

boundary waves.  For t,' „ = 1, the stationary phase point is realized and the correct value of 
Amp(ß) is that given by' [1.15] or [1.16].  For prolonged flatness at the ends (wedge shapes), 
special considerations must be made, which we will not undertake here. 

The results given here provide the solution of Weinblum1s problem for sufficiently small 
Froude number, allowing the prediction of both wave patterns around the pressure patch and of the 
wave resistance. Some of the important results are: i) waves are generated on the boundary of 
the patch and at the ends; ii) for the strongest waves, the boundary wave number vector is normal 
to the patch boundary, and transverse waves are generated at the blunt ends and divergent waves on 
the near horizontal sides; iii) boundary waves observable above the patch originate on the 
forward-upper and near-lower sides of the patch; iv) for smooth boundaries each boundary wave will 
be excited at two generator points, one in each of the contributing sectors; v) the boundary waves 
can form caustics in the near field, which can be predicted; vi) the waves from the upper and 
lower boundary sectors interfere with each other; viii the amplitude function of the boundary 
waves is weighted locally by the (radius of curvature)'5 of the patch boundary and is therefore 
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laraer where the surface is flat than where it is highly curved; viii) points of local flatness 
inflection) cause stronger waves (caustics) locally than other points; ix) the ba^dary wave 

amplitude grows like (F,) except for the inflection point wave which grows like (FL ), x) the 
"end" waves originate at points of initial or final intersection (or tangency) of a ray with the 
pressure patch boundary and grow as (FL ). 

The Michel! Ship as an Extended Pressure Patch 

Finally we should point out that the Michel 1 ship may readily be treated as a pressure patch 
extending to infinity with varying patch pressure corresponding to (p„/p) «here ft, "the zero 
Froude number (double model) pressure in the field about the Michell Jul 1. /^/^^l,^^' 
dn/dß will be found by integration of the pressure sources along a straight ray characteristic, 
ß When the ray intersect the hull line on the x-axis, then a discontinuity in the pressure 
gradient, V6(PM/p) occurs; otherwise the pressure pM is smooth. 

Upon integration by parts along the ray, waves will originate at the hull boundary driven by 
thP nnUsure aradient there- V„p = cosß 3p/3x+s nß 3p/3z. Except at the ends of the hull, 3p/3x 
%   nuous^s\he hun>Pso that" th'e jump arljes from the pressure grad ent norma to the 

hull, and it is this gradient which drives the hull waves, see Figure 1.3.  Immediatelyat the 
ends, the gradient in x becomes discontinuous at a stagnation point, and must be accounted for. 

We note that upon integrating these boundary generated waves in t1 (along| the hull) no 
stationary phase contributions arise, since the hull is taken on the x-axis (to permit the hull to 
be distinct from the x axis and otherwise ignore the displacement flow would be inconsistent) 
Therefore an of the waves made by a smooth Michel! hull will arise at the ends as a result of 
integration by parts. 

2.  THE WAVES GENERATED BY A SHIP 

Introduction 

The flow about a ship differs from that under a moving pressure patch in a number of impor- 

tant ways: 

a) there exists no externally imposed pressure to drive the waves, 

b) the waves which are created must be prevented from crossing the hull, which is of course 
impermeable, 

c) there exists a substantial flow about the ship, which bends the rays, and, 

d) the waves as they travel along the rays are effected by the displacement flow and alter 
their characteristics. 

Our Method, Fundamentals. 

These differences are formidable and render the problem non-linear. However, most of these 
differences can be conceptually dealt with, as we show below. (The small letters, a.) etc., reTer 
to the letters above.) 

a) We consider that the flow about the ship has been calculated by the method of the 
"naive" Froude number expansion (the potential is represented as a sen es of eras whose co 
efficients are inteqer powers of F).  The first term, in which the water surface is flat, 
r resents the zero froud'e number flow about the ship  It produces an*^atl™'J^/^ ^^ 
surface which is 0(F2)  This in turn produces a displacement flow of 0(F ). We shall assume that 
tisthis related elevation of the water surface which relaxes and in the process produces a wave 

Jattern. Note that the elevation is simply, r, =Pp/Pg, where pR is the pressure in the displace- 
ment flow. The latter is the double model flow5 ti1 zero order Vn F, but differs from it in 0(F ). 
We discuss at the end of the paper whether the displacement flow calculated in this way is ade 
quate at the points of the bow and stern. 

b) Waves of a given far-field wave number direction, ß, which arrive at a distant observer 
point t above the hull, originate at time f along some ray, S (ß,f), which intersects the hull 
Turra« in the time interval (t-t;), between contact first witR the bow and then with the stern, 

Figure 2.1. 

What conditions must be imposed on the wave vector, I, at the hull? The hull is ^permeable; 
i e there can be no energy flux through it. This condition is automatically satisf ed when waves 
originate on the hull whose vector t is parallel to the hull, or f their group velocity, cg, is 
zero. The latter corresponds, we later show, to wave vectors normal to the hull. 
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Does this mean that no other wave vectors are allowable at the hull? The answer is no. 
iß iß- 

The pair of an outgoing wave vector, £ = ke °, and an incoming vector, ke , whose sum is normal 
to the hull is also allowable. In other words, the outgoing vector is the reflection (optical) 
from the wall of the incoming vector. Therefore the locus, S , along which energy originates for 
the observer, must include an incoming portion, too, for which the preceding conditions are satis- 
fied; quite apparently this incoming energy is reflected at the wall toward the observer, see 
Figure 2.1 

As a result of the reflection of the locus at the wall, a discontinuity in the gradient of 
the pressure occurs on the locus at the wall, and we shall see that this discontinuity drives the 
waves and they appear as if originating at the hull. This is the same result as emerged in the 
conceptually simpler case of the Michel 1 ship, discussed earlier. 

The question of conditions leading to allowable rays is later discussed in the forthcoming 
section: The Rays at the Hull. 

-»     10,o c)  There is a free surface velocity  q = q e    associated with the displacement flow, 

where a is the angle of the flow on the free surface relative to the x-axis; we assume this 
angle is°not significantly different from the corresponding angle for the projection of the free 
surface velocity on the horizontal plane. This velocity is measured relative to ship (moving) 
coordinates and is therefore stationary. At a fixed point in water (fixed) coordinates, there 

-»     l6o    nao corresponds to it a velocity, v = v e  = q e  - U , which is not stationary, see Figure 2.2. 

The wave energy ^propagates in th| water -with the sum of^the group velocity, £Q(k), and the 
convective velocity, v . If, C (k) + VQ = u e 

M, and C (k) + qQ = u£e 
y then the rayyangles in 

fixed coordinates,  u,  and in ship coordinates, coordinates, \, everywhere in the flow are: 

2 
[sina (1+cos ß) - cosa sinßcosß] 

tanp =  -y  
[cosa (1+sin ß) - sina sinßcosß-2U /q ] 

? 
-{sinßcosß} + tana {1+cos ß} 

tan-y =  „-  
{1+sin ß} - tana {sinßcosß} 

[2.1] 

see Figure 2.3, a most important diagram. To derive [2.1] we have used a result, 
C = (-q /2)cos(ß-a ), derived from stationarity (see d) below). 

d)  The waves at any point in the flow must be stationary when observed in ship coordinates. 
That is: 

Cp + vocos(ß-S0) = -UQcosß [2.2] 

This can be shown to be equivalent to: 

Cp = (g/kV
5 = -qocos(ß-ao) [2.3] 

In addition, since t = grad(phase), the condition of irrotationality, Vxlc, must be satisfied 
in the wave field. In our notation this can be written: 

3(k cosß)  3(k sinß) _ n r? 41 
3y   "   3x     u L  J 

When this is expanded and the derivatives 3k/3x, 3k/3y are substituted with values determined by 
differentiating [2.3], then it is found that: 
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3y 
{-qocosßsin(ß-ao) - ^ sinß} + §£ {+ qosinßsin(ß-a0) - ^ cosß} = F 

F = {- cosßcos(ß-aQ) ^f- + sinßcos(ß-aQ) ^- - 

3a oa 
qocosßsin(ß-ao) ^  + qosinßsin(ß-«o) ^-} [2.5] 

Then it can be shown that the characteristic form of this equation is: 

{jf = F/[Cgcos(ß-ao) + qocos(r%)] • t2-6^ 

where £ is the distance along the ray, y. This latter equation together with [2.1] and [2.3] 
allow the tracing of a ray in the ship's flow field. Extensive calculations of this kind have 
been carried out by Yim (1981). 

The local wave frequency on a wave, ß, in water coordinates is (tuQ = (kg)
2): 

w = UJO + kvQcos(ß-6o) [2-73 

Finally, the wave along a ray in water coordinates can be described in general as: 

,        ^   Ws  t)     ,     +,   ^  kM  dS"Sm dt"} *>    - ds ro 81 n ~ a(s,t)ems,x;~a(s,t)e M ^        dT " dt [2-8] 

M 

where k , ui , q , and 6 , determined in water coordinates vary along s and with time too; k^ is 
the apparent? wav°e number°along s, k = k cos(ß-u). 

The Rays at the Hull 

Under what circumstances can an outgoing ray exist at the hull, which will be seen by an 
observer above the hull? We should require: i) that the ray in ship coordinates, y, does not lie 
inside the hull, and ii) that the energy flow outward along the ray, toward the observer; i.e. 
that C > 0 The first of these requirements is equivalent to: on the upper side of the hull, 
that yfl > or*, and that on the lower side that y* < a* The second of these requirements is equiv- 
alent to: nil <  (ß*-a*) < n, see [2.3]. The asterisks refer to conditions on the hull. 

We observe the ray diagrams and note that the second requirement above is met between the two 
hull lines (y* = a*), Figure 2.4, and then that the first of these is met only on the uppersur- 
face of the hull, figure 2.3. Therefore, only on the upper surface of the hull can rays originate 
which will be seen by an observer above the hull. We notice that this is a different result than 
in the pressure patch case, where we had only the second requirement; but in this case it was 
allowed for the rays to cross inside the patch boundary, and in the ship case this kind of be- 
havior is forbidden. 

Does this mean that any_ wave angle, ß, satisfying the above requirements can exist at each 
point on the upper hull? The answer is yes. Of course the range of y possible at a given point 
will be restricted to a minimum value, y* = a* and a maximum value corresponding to the peak of 
the curve y vs. ß, a* being held fixed (this peak corresponds to the caustic curve in Figure 2.4). 
This conclusion applies as well to the ends as elsewhere, except that at the corner made by a 
finite entrance or leaving angle, many flow angles may exist, as we discuss in the next section. 

Finally we notice that according to the ray diagram, Figure 2.3, there exists no dependence 
of the local flow speed on the relation between the local angles, y, a , and ß. Therefore, 
within the assumptions of ray theory, aspects of the flow geometry determined solely by these 
variables (not including local wave lengths, which are speed dependent) will not vary with speed 
except insofar as a is itself speed dependent. Of course the displacement flow is speed depen- 
dent; for example, ?n the high speed limit, the flow would seemto approach the hull with little 
lateral deviation, reducing aQ  in comparison to the low speed limit. 
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The Rays at the Ends 

We imagine a bow with a finite entrance angle, a . Directly at the bow then the flow direc- 
tion changes discontinuously; i.e. the flow direction, a, is zero on the streamline approaching 
the stem, while it has the angle, ±a , on the hull streamfine itself. In the corner between these 
streamlines the angle of the flow tikes on various angles, 0 < a < a , which depend on how the 
corner is approached; i.e. the flow angle, a , at the corner is a function of y, the ray angle at 
the corner, see Figure 2.5. What do we know about a (y)? On the hull itself, y = a . On the 
approaching streamline, a = 0 and y = n. In between we must solve for the flow. As Tar as the 
zero Froude number flow is0 concerned, it seems necessary for the flow at the wedge bow to approach 
the planar (2 dimensional) wedge flow in the limit of small (thickness/draft). In this case, 
which we give as an example, a linear relation exists between a  and y: 

Wedge bow, r e -,  , r? 91 
Small (thickness/draft).        Y  L aß  J% n L  J 

This relation can be superimposed on the ray diagram; we given an example in Figure 2.5. The 
solution extends between the hull boundary loci. On the upper, ß = a + n/2, and C = 0. On the 
lower, ß = a + n and C = -q /2. In between there are two distinct values of ß for9each value of 
y less than y , which9 is a°limiting value and corresponds to a caustic; so all the waves are 
contained withfn, a < y < 6 . In this respect the wave pattern is qualitatively similar to the 
Kelvin wave. Notici that onc the hull ray, y = a , the wave crests are either normal or parallel 
to the hull. In the latter case C E 0 and the wave does not therefore penetrate the hull. In 
the former case the wave vector is parallel to the hull and does not penetrate it either. 

This problem of determining the kinematical wave pattern at the bow of a ship emphasizes the 
importance of having a better quantitative understanding of the singular flow at ship bows; but at 
least the example here illustrates how knowledge of y(a ) can be used with the ray diagram to 
determine the initial wave pattern, ß(y). In addition, since reduction in draft would reduce the 
disturbance away from the hull, it seems likely that the planar case is more than an example, but 
represents an upper limit, i.e. a0(y)|3n < ö0(V)J2D 

and in consecluence ^"CPUD <  Y^ao^|2D" 

The limiting ray angle, y , is readily determined by combining y(a ), for example [2.9], with 
the locus of the caustics in the ray diagram, Figure 2.4. The latter (we are dealing with the 
locus which intercepts the Kelvin far field curve) is: 

y = yK + % [2-10] 

where yK is the Kelvin angle, 19.5°. The solution of [2.9] and [2.10] is: 

yc = «e(l - yK/7i) + yK [2.11] 

We note that y > yK. This relation, [2.11] is given as Figure 2.6. We would expect for ships of 
finite draft that the limiting ray, y , would lie between the two curves labeled hull and bow 
(theory). 

The same considerations apply at the stern if we ignore the viscous wake. If we assume the 
planar wedge solution there, too, we find: 

Wedge Stern = . r-V^-, [2 12] 
Small thickness/draft ' L «e 

Juo L   J 

and the intersection of this relation and the caustic locus gives for the caustics at the stern: 

e 

which is also plotted as Figure 2.6. We note that in this case, yc < yK- 

Finally we note that our bow wave results do not at all coincide with the observations of the 
"non-dispersive" bow waves of the Tokyo school, see Inui (1980) or Miyata (1980). In their ex- 
periments on wedge bows, carried out at speeds between 0.5-1.5 m/sec. and drafts between 1-15 cm., 
the observed "shock" angle increased with draft and with speed. At the lowest speed the observed 
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shock anqle was far in excess of the predictions here; furthermore as the entrance angle decreased 
to zero the shock angle did not appraoch the Kelvin angle but an angle of about 30 ; we observe 
that for these tests (speed = 50 cm/sec.) the local speeds near the bow may have been too close to 
23 cm/sec. the minimum phase speed for capillary gravity waves. At the highest speed (Froude 
number based on draft between 1.5-6) the observed shock angles were much reduced, reducing further 
with decrease in draft, and did not approach the Kelvin angle as a approached zero This be- 
havior suggests that the "shock" wave observed by Miyata does not correspond to the limiting 
gravity wave (caustic) described here. Additional data atje required at speeds safely above the 
capillary regime and at Froude numbers based :r. draft 0(10 ). 

We shall return later at the end of the paper to discuss the vexing problems associated with 
the ends of the ship. Meanwhile we explore the implications of the ray theory which we have just 
defined, and which have been largely based on the assumptions of Ursel 1 (1960) and Whitham (1961). 

The Far Field 

We may now proceed to examine in further detail the question of how a displacement ship makes 
waves. Our technique is identical to that observed already in the case of the moving pressure 
patch, although important differences arise in the results. 

From each point in the flow outside the ship an elemental radial wave is generated Of 
course this radial wave is distorted in time as the rays from the generation point travel out and 
are bent; this effect is taken into account by ray tracing according to [2.1], 11.51,  and U-SJ- 

Aqain, we take a bundle of rays (bent) corresponding to a far field wave number angle ß, 
originating at an observer point, s, and width, (s-s')dß, and we represent the resulting|Plane 
wave, dn/dß, at s, as an integration of the elemental waves along the generator points, s , and 
over time, t', see Figure 2.1. The ship is moving from right to left: 

43 (s.t.ß) = R •/ dt'/ ? [A](s-s')i e^-s'^'W; [2.15] 
dß p 

where t|i is defined in [2.8] and:      duj/dk   = d(s-s')/d(t-t'). 
H 

We recognize that the locus, S(ß), on which waves destined for the fixed observer appear 
will vary with time, t', approaching the fixed far field observer point, s, as a ray with a fixed 
angle, ß. This movement of the locus results from the effect of the displacement flow about the 
ship,'which is non-stationary in the observers frame. 

The function [A] in [2.15] refers, as before, to the spreading function for the wave due to a 
concentrated imposition of pressure, pn/p. In tjhe absence of a displacement flow this has the 
form, [1.2], which may also be written: u [A] = (E)2(s-s') ', where E is proportional to_ the energy 
density at the wave number being considered. The displacement flow allows a mechanism for ex- 
change of energy between the wave and the displacement flow, resulting in changes of E during the 
travel of the wave group from the hull to the far field. The wave resistance is in reality there- 
fore manifested both in radiation of wave energy to the far field and in changes in the displace- 
ment flow Here we take the point of view that the energy exchange in the near field does not 
siqnificantly influence the pressure field on the hull and that the wave resistance can be cal- 
culated from the far field (pseudo) waves, themselves predicted as if energy exchange does not 
occur. Of course the pseudo wave amplitude spectrum will not agree with measured spectra un1!" 
the energy exchange happens to,be insignificant. In keeping with this point of view, we take LAJ 
identical with [1.2] putting Cn

6 = C 3(hull); this form conserves the initial energy. Finally, we 
add, the possibility for predicting1 the energy exchange in the near field utilizing ray theory 
does exist and could be implemented, using the conservation equation of Whitham (1962). 

This integral [2.14], can be represented asymptotically (short waves relative to the scale 
of the flow field) as a wave arising from the hull and perhaps from waves arising in the water at 
stationary phase points of 4>(s,t). We neglect the latter in the present work; it is difficult to 
see how they might influence the wave resistance. 

In keeping with the earlier discussion, we take the locus, S (ß), to include its reflection 
at the hull. We then find, upon integrating by parts over s' along the entire locus, that the 
dominant term arises from the pressure gradient at the hull: 

40 (s.t.ß) =  R • J —1—2 J*[V pn][A](s-s*)ie
ih dt1 [2.16] 

dß p(k*) 
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where h = J k ds" - J" uu dt"; s* represents the intersection of the ray and hull at time t1; 
s* M     t1 

and J* represents the jump in the gradient of pD, i.e. (VM#PD)*-(VM_PD)*. The direction of 

the outgoing ray is u and the incoming, py, the latter is determined from the reflection condi- 
tion on K, see Figure 2.1. Finally, 

J*rVppD] = |£[cos(p*-a*)-cos(p*-a*)] + §£ tsin(p*-a*) + sin(p|-a*)] [2.17] 

where a is direction along the hull and n, normal to it. 

The values of p • can be determined using [2.1] and the following relation, which follows 
from the reflection pfbperty: 

(ß*-a£) = In -  (ß*-o*) [2.18] 

The "Dominant" Waves 

This integral, [2.14], may be integrated by apnlying-Kelvin's method of stationary phase, 
where the main contribution arises from points where d^h/dt1 =0, and also through integration by 
parts. The former produces waves which are stronger than the latter at low Froude numbers. 

Applying first Kelvin's method, we can show that 

dh/dt' = u) - (k ) • dsVdt' [2-19] 

so that the stationary phase condition becomes: 

dsVdt1 = [w/k ] = [tu/k cos(ß*-p)] [2-20] 

Stationarity requires that: uj/k = -UQ cosß*. so that the stationary phase condition is: 

dsVdt1 = -Uocosß*/cos(ß*-p) [2.21] 

We have already given a relationship for d£u ^/dt', [1.7], and it applies to the hull case too. 

ds*/dt' = U sina*/sin(p-a*) [2.22] 

These equations taken together, [2.21-2.22], require: 

Either,  ß = a* + n/2 [2.23] 

or,  p = 0,7t [2-24] 

In the former case, [2.23], the wave number is normal to the hull boundary exactly as in the 
case of the pressure patch, the group velocity is therefore zero, see [2.3], and these waves are 
allowable. Therefore in ship coordinates the ray is initially tangent at each point to the hull 
(y = a*).  This condition is represented in the ray diagram, Figure 2.3, by the upper boundary. 

Can these rays, initially tangent at their formation, leave the hull? The answer lies with 
the first order ray equation, [2.5] and [2.6]. It is easy to verify that the solution for ß along 
the ray, with the initial condition, ß* = a* + n/2, is everywhere just 3ß/3ß = daJdZ, and this 
means that the ray is not only tangent to the hull at its formation, but coincident with it; 
therefore none of these waves leave the hull boundary. Keller (1979) had earlier identified these 
waves (C =  0) and also concluded that they could not leave the hull. 
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In the other stationary phase case, [2.19], the r^, angle in water co0^1"*^» .^•-1
14i™" 

nuired to leave the hull parallel to the direction of motion, llns leads to two possibilities, 
t a? a stagnation point, then tan u* =0, see [2.1], while the ray angle £ can täte on a 

ranae of values a* < v* < v , as we have discussed in a previous section: The Rays at the Ends. 
II ond! i the absence*«* assignation point, the selected rays will emerge fr« thehul 1 in the 
horizontal direction; i.e. v = 0. This is not possible on the forepart of the hull as these rays 
will pierce the hull, but it is possible over a part of the stern. 

The wave number direction, ß*, for these di'L waves is given by, see [2.1]: 

tan a* = s1nP*c"P* [2.25] 
0  [1+cosV] 

which is represented in the ray diagram, Figure 2.3, by the intersection of the curves a = const 
and the horizontal axis ft = o). Notice that all values of ß from n/2 to n are represented, two 
?or each vaue of a smaller than zero and larger than -20°, which represents a limiting value 
and is a caustic (<fy/dß = 0). This is the spectrum created on the upper aft part of the ship. 

As these rays move aft in the water behind the ship, their angle changes according Jo the ray 
diaqram We would expect them to travel upward (a increasing toward zero) from the horizontal 
axis (v = 0) along a trajectory which must be determined from ray tracing, terminating in the far 
field on the Kelvin boundary (a =0). Of course the final value of ß on the ray, i.e. ß, will 
generally be different from the0 initial value, ß*, and must be determined by ray tracing. The 
same remark applies, too, in the case of the end waves. 

The Aft Waves: Their Strength 

Upon applying Kelvin's formula, [1.7], to the far field wave integral, [2.16], the strength 
of the aft waves may be obtained. The far field wave takes the form: 

a ,.,t.i).«■ i V"      ,. .'[!•■-/•-«> H.M 
dß pgV" cos ph" x 

where the entire term is to be evaluated at the hull at a particular location say x* where^x* Is 
the distance aft of the bow, and is reached by the ray in time t (x*) - x /U , where we put 
t'?0) = 0 Of course the value a*(x*) must be allowable, i.e. -20° < a* < 0. we can calculate 
g"(u = 0) as follows: 

s t 
J   k ds" " J 
s*(x*) M    x*/U 

u,dt" [2-27] 

o 

h' = o = -k[(s*)'cos(ß-p)+Uocosß] 

therefore,       ^"^O = "Uo' and 

h"(M=0) = -k[(s*)"cosß-U (u')sinß] [2-28] 

but (s*y,      = . u   ÜÜ2        , [2.29] but, (.s ;M=0 uQ sina^     H 

and,  finally,  using [2.24],  and du/dt1  = -UQ dp/dx: 

2 

h"(p=0) = - ^- dp/dx C2-30] 

In the far field, 
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g = [ks-uit] + $(x*) [2-31] 

where ty is a phase function which must be determined by ray tracing, after combining [2.31] and 
[2.26]. Using this result, [2.31], the amplitude function corresponding to [2.25] becomes (we 
have non-dimensionalized everything): 

m «£ ry...<p,)>W     „^4 sgn vn [2 32] 
4Zn cos^ß 3u/3x * 

where 3p/3x can be calculated by differentiating [2.1]. A lengthy calculation arises involving 
the necessity to determine 3c« /3x and 3ß/3x. The former is known from the displacement field and 
the latter is determined froi0 [2.6], the ray formula. We have to recognize that a caustic may 
exist (3p/3x = 0) in which case the p waves must be substituted for the s waves, see [1.7], and 
the wave becomes locally stronger. Obviously these att waves need further detailed (and numer- 
ical) study. Finally we note that these waves are 0(FL ). 

The Point of the Bow 

We mean by this phrase, the hull-water intersection in the mid-plane of the ship. Our ray 
theory predicts two possible sources of waves immediately at the bow or stern (x* = 0): i) in the 
case where q (0) = 0, then a fan of waves corresponding to u = 0 will arise (provided a stagnation 
point exists0there), whose strength is given by [2.27] appropriately evaluated at the bow; these 
waves ace 0(F. ); ii) waves arising from integration by parts over the hull, giving rise to waves 
of 0(F, ) whose strength also depends on J*(x*), i.e. on the pressure gradients in the displace- 
ment frow at the point of the bow; thus this wave does not depend on the existence of a stagnation 
point there. These waves can readily be calculated in a similar manner as in the case of the 
pressure patch, but we do not carry out the calculation here. 

The asymptotic theory of bow waves thus predicts that the energy release depends entirely on 
flow quantities (including their gradients) evaluated immediately at the point of the bow. This 
is the result of Keller (1979). Now we can even propose formulae for the wave amplitude. But in 
what situation does this place us? 

We have assumed so far that normal wave theory applies: that wave energy propagates with the 
group velocity advected with the displacement flow, that the group velocity is 1/2 the phase 
velocity and that waves are conserved. Under what conditions does such theory apply? In connec- 
tion with the singular region near the bow, the conclusions of K. Eggers (1981) are important. He 
claims a region jpear the bow of the double model flow where waves cannot exist. It corresponds to 
the region (q ) < 1/3. Other than his investigation, the question of the validity of normal 
assumptions in3 regions of small local flow scales does not seem to have been systematically 
studied. 

Here we take the point of view that for such theory to apply, the wave lengths in the_|ield 
must be smaller than the local scale of the velocity field. We scale the former with k  and 

latter with (-!- 3q /3r)_1. Remember that k «*  gC ~2^ g q~ , see [2.3], so that: 
% y 

Wave Length  „  (f }2 g- /8- „ d~  ,g- [2.14] 
Local Flow Length  v V.'      KD     'o 

where p = p/pU , r = r/L, rj = n. /L. Therefore, we would conclude that this asymptotic theory 
applies provided that the slopes °of the elevation, n,0> which drives the waves are sufficiently 
small. 

However, in ray theory the entire energy release at the bow depends on conditions immediately 
at the point of the bow. What is the speed and wave slope in the displacement flow at this point? 
In particular, is the wave slope small? Are we even able to predict it with existing theories? 

In the case of high Froude number based on draft, the situation near a blunt bow was 
authoritatively discussed by Fernandez (1981) incorporating an inner flow comprising a jet, first 
proposed by Dagan and Tulin (1972). In the case of low Froude number we have available only the 
suggestion of the naive Froude number expansion, and even in this case we do not have, as far as I 
know, actual numerical solutions for practical bow shapes such as wedges alone and wedges incor- 
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porating bulbs, which we know have a profound effect on the flow at the bow; see, for example, 
Sharma (1966). 

It has in fact been generally proposed to base "low speed" theories including ray theory on a 
displacement flow calculated according to the naive Froude number expansion. In this case we are 
forced to have a stagnation point at zero Froude number and q ~ r , where n - 1 if the bow is 
blunt (a = nil-) and n < 1 for other wedges (for planar flowk1 n = a /n-o ). We thus fac| the 
vexing situation that, based on the double model flow, either Vn.Q (secSnd o?der) ~ VpR ~ Vq + 0 
at the point of sufficiently blunt bows [no wave energy release to 0(F. )] or that Vfi is Singu- 
lar in which case the ray theory does not apply. We are therefore forfced to the conclusion that 
rav theory based on n to second order is not useful. Whether the stagnation point and the singu- 
lar behavior (q ~ r") is removed in |he second order displacement flow remains to be seen; this 
would only cause0 a change in n.0 at 0(FL). 

Is the naive Froude number expansion even applicable (uniformly convergent) in the neighbor- 
hood of the point of the bow? There exists a good chance that it is not. I say that because in 
nature it is normal on wedge models, see Standing (1974), to find the highest point on the free 
surface at some distance aft of the point of the bow (as Michell's theory predicts!); is it 
possible that this behavior is reflected at an Froude numbers on a scale near the bow which 
decreases with speed, perhaps as U d, creating an inner flow at the point of the bow for which the 
naive Froude number expansion is an outer flow? 

Finally we seem to face two possibilities. Either: a) the slopes are sufficiently small at 
the point of the bow that ray theory is applicable and can be used, provided that the displacement 
flow there is known, or b) the usual ray theory, for one reason or another, is not applicab e 
there. In either case we still have before us to understand, the question how a ship hull 
generates waves in the asymptotic limit of small Froude number. 

Concluding Remarks 

Using the same procedure for the calculation of the far field spectrum as in the case of the 
pressure patch, we have shown again that in asymptotic theory the boundary of the ship generates 
waves; for an observer above the hull only the upper side of the hull can generate waves. One set 
of these waves must have their wave vectors normal to the ship's hull, just as in the case of the 
pressure patch. However, because of the condition that the displacement flow follows the ship 
hull these waves have zero group velocity. They therefore propagate on a ray in ship coordinates 
tangent to the ship's hull and cannot leave the hull. These results are the same as those of 
Keller (1979) Another set of waves leave the aft portion of the hull on rays initially parallel 
to the ship's path, provided that the inclination of the hull is not steeper than -20 . We pro- 
vide formulae for calculating the strength of these waves which are in general both transverse and 
diverqent. In principal this set of waves includes a fan at the bow (or stern) provided that a 
stagnation point exists at the point of the bow; the strength of these waves depends entirely on 
the gradient of the pressure (elevation) in the displacement at that point, see Figure I.I. we 
conclude that our present knowledge is inadequate either to know whether the conventional ray 
theory is valid near the ends of the hull or if it is, to use it effectively. 

We have also examined the geometry of the wave flow which could be expected in the vicinity 
of a wedge bow or stern, utilzing ray theory. A limiting ray angle is found which correspond to 
the Kelvin angle (19.5°) for vanishing entrance angle, and increases linearly at the bow witn 
increasing entrance angles; it is not dependent on the flow speed, except through changes in the 
displacement flow. At the stern we find a limiting ray angle which increases very slowly from the 
Kelvin angle (and not linearly) with the stern angle. 

We hope these results will help in future efforts to provide an adequate understanding of the 
difficult question: how do ships generate waves? 
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SEAKEEPING PROBLEMS 



NONLINEAR FORCED MOTIONS OF FLOATING BODIES 

W.-M. Lin, J. N. Newman and D. K. Yue 

ABSTRACT 

Existing computational models for the 
numerical solution of nonlinear wave-body 
interactions have encountered two principal 
analytical difficulties, first from the singular flow 
at the intersection of the body and the free 
surface, and secondly from the difficulty in 
imposing a radiation condition at infinity. This 
paper describes complementary studies which 
address these two separate problems. 

A two-dimensional model is constructed for 
a nonlinear wavemaker in a rectangular domain 
of finite length and depth. Attention is focussed 
on the singularity at the intersection of the 
wavemaker and the free surface. A new algorithm 
is implemented with the complex potential 
prescribed    at    the    intersection    point. The 
effectiveness of this scheme is demonstrated by 
several computational examples including 
comparisons with experimental observations. 

The difficulty associated with a nonlinear 
radiation condition is avoided by proceding 
directly to three dimensions, and matching the 
finite computational domain to a linear outer 
solution. The success of this approach is 
illustrated for transient heaving motions of an 
axisymmetric cylinder. 

1. INTRODUCTION 

The linear analysis of ship motions in waves 
has emerged in the past thirty years as one of 
the most well-studied and useful branches of ship 
theory. Subject to the basic assumption that the 
incident waves and resultant body motions are 
sufficiently small, a rational basis can be 
established not only for linearizing the boundary 
conditions, but also for spectral decomposition of 
the waves and body response. Experiments 
suggest that the resulting predictions of ship 
motions, structural loads, and other phenomona 
of significance are sufficiently accurate for most 
engineering purposes. Developments in the parallel 
field of offshore engineering also have made 
extensive use of the linear theory to predict wave 
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Figure 1: Free-surface profile generated by an 
impulsively moving wavemaker. White vertical 
object on left side of picture is the wavemaker, 
rotating counterclockwise about its upper end. 
Note the small jet moving towards the right 
from the intersection of the wavemaker and the 
free surface, (one square=l cm, water depth=10 
cm, time=0.037 sec; from Greenhow and Lin, 
1983) 

effects on a wide variety of structures. 
Despite the success of linear theory, 

practical engineering problems remain where 
nonlinear effects are paramount, both in the 
seakeeping of ships and in the response of 
offshore structures. The most obvious examples 
involve precisely the same phenomena where the 
safety of operations and ultimate survivability are 
to be analysed. The special importance of these 
topics lends a note of urgency to efforts to 
overcome the linear restriction in the theory of 
ship motions. Indeed, the work reported in this 
paper was motivated in part by the disaster of 
the 1979 Fastnet Race, and by our lack of 
hydrodynamic knowledge to relate the danger for 
capsizing of small vessels in steep breaking waves 
to design features of the vessels. Further 
motivation for research in this area has come 
from the broaching of fishing vessels, the 
structural  failure of ships  due to slamming,  and 
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the loss in severe storms of major offshore 
structures. In all of these cases we require the 
ability to analyse the seakeeping characteristics of 
floating bodies when their motions, and the 
amplitudes of the incident waves, are comparable 
to the body dimensions. 

Accurate nonlinear theories also may be 
required in cases intermediate between the small- 
amplitude linear domain and the extremes of 
survival conditions. More precise predictions for 
the seakeeping characteristics of ships will 
ultimately require nonlinear effects to be 
estimated, if not included. In the field of offshore 
engineering, much effort has been devoted to the 
development, of nonlinear predictions for the wave 
loading on structures. Wave resistance is yet 
another closely-related problem, where progress 
toward a comprehensive treatment of the 
nonlinear free-surface condition is essential. 

There also is scientific interest in nonlinear 
free-surface phenomena such as the singular jet 
shown in Figure 1. When first observed by 
Greenhow and Lin (1983), this jet was thought to 
be due to physical processes, such as surface 
tension, beyond the scope of conventional 
potential-flow theory. One highlight of the 
numerical results described here is that this jet is 
reproduced in the computational simulation when 
an impulsive wavemaker begins to decelerate. 

In an analogous manner to the more 
familiar linear theory, numerical solutions of 
nonlinear wave-body problems can be based on 
the assumptions of irrotational incompressible 
flow with the velocity potential derived from a 
discretized boundary-integral method. The most 
apparent feature of the nonlinear theory is the 
free-surface boundary condition. Here there has 
been substantial progress in the development of 
computational models for the nonlinear dynamics 
of periodic water waves, in the absence of a 
floating or submerged body. A semi-Lagrangian 
time-stepping procedure introduced by Longuet- 
Higgins and Cokelet (1976) can be used to satisfy 
both the dynamic and kinematic, free-surface 
conditions, and to trace the trajectories of fluid 
particles in the free surface. This procedure has 
been applied to studies of wave-body interactions 
by Faltinsen (1977) and in a series of papers by 
Vinje and Brevig (1980, et seq.) 

The semi-Lagrangian approach was used by 
Vinje and Brevig (1980a) to study two- 
dimensional wave motions in a fluid of finite 
depth. The solution is obtained in the physical 
plane, assuming periodicity in space to reduce the 
computational domain to a finite rectangle. 
Cauchy's theorem is used to derive a boundary- 
integral-equation for the complex potential. At 
each time-step the stream function is prescribed 
on the boundaries where the normal velocity is 
known, and the velocity potential is prescribed on 
the free surface. 

In subsequent work Vinje and Brevig have 
inserted submerged or floating two-dimensional 
bodies into the computational domain to study 
the resulting interactions and body motions. To 
preserve  spatial  periodicity  it  is  assumed  that  a 

horizontal array of identical bodies are present. 
The interaction between adjacent bodies is 
assumed to be weak if their separation is large 
relative to the duration of the motion in time. 

In extending their approach to the case of a 
floating body, Vinje and Brevig (1980b) consider 
the points of intersection between the body and 
free surface as part of the kinematic boundary 
where the normal velocity is prescribed. At 
these points, the velocity potential is derived 
from the integral equation, without regard for the 
dynamic boundary condition on the free surface, 
and the intersection points are obtained by 
extrapolation. The solution obtained in this 
manner has not been entirely satisfactory. For 
example, in the study of capsizing of a two- 
dimensional body by Greenhow et al (1982), 
experimental data for the locations of the 
intersection points are required to produce 
acceptable computations. 

Some analytic guidance can be found to 
describe the singular point at the intersection of 
a moving body and adjacent free surface. From 
linear theory it is known that the velocity 
potential is logarithmically singular at the 
intersection point if a body in horizontal motion 
intersects the free surface vertically. It might be 
thought that this singularity is due to 
linearization, but the same result is present in 
nonlinear analytical solutions valid for short times 
following the impulsive motion of a vertical 
wavemaker. For example, Peregrine (1972) gives 
an Eulerian solution for a related steady flow 
where, at a horizontal distance x from a moving 
wall in a fluid of depth h, the free-surface 
elevation is proportional to log(tanh(x/h)). The 
same type of singularity appears in other 
Eulerian and Lagrangian descriptions reviewed by 
Greenhow and Lin (1983), and also by Lin (1984). 
Experimental confirmation for the logarithmic 
singularity is provided in the former reference, 
from which Figure 1 is reproduced. 

Since a singularity is anticipated at the 
intersection of the body and free surface, it is 
understandable that numerical difficulties may be 
encountered at this point. In order to study this 
problem in greater detail, we consider in Section 
2 a vertical wavemaker with prescribed horizontal 
motion, situated at one end of a rectangular 
domain     of    fluid. The    wavemaker    extends 
throughout the finite depth, and moves in 
uniform translation with transient normal 
velocity. The bottom of the domain is a 
horizontal fixed boundary and the end opposite 
to the wavemaker is a vertical fixed boundary. 
Attention is focussed on the solution near the 
intersection of the wavemaker and the free 
surface, and on the development of an algorithm 
which can accomodate the flow at this point. 

The numerical solution of this problem 
follows a procedure similar to that of Vinje and 
Brevig (1980b), with one important modification. 
Here the intersection point is common to both 
the wavemaker and the free-surface boundaries, 
and both the velocity potential and stream 
function   are  determined   at  this  point  from  their 
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respective    boundary    conditions. The    same 
scheme is applied at the intersection point on the 
fixed boundary downstream. This modified 
method is numerically robust, and can simulate 
realistic wave motions of large amplitude with 
obvious nonlinear features including the 
characteristic steepening of the wave crests, the 
development of jets near the crests of breaking 
waves, and also the development of a local jet 
near the intersection point when the wavemaker 
is decelerated. The numerical solution, while 
strictly finite at the intersection point due to 
discretization, is consistent globally with both 
experiments and analytic approximations. In 
most cases the solution can be continued in time 
without     apparent     limitations. Encouraging 
comparisons are shown with the short-time 
analytic results, and with experimental 
observations over longer periods of time. 

Next we consider the problem of an isolated 
floating body in an unbounded fluid domain, 
where the assumptions of spatial periodicity or of 
a finite domain with fixed boundaries are clearly 
unsuitable. Instead, an appropriate closure must 
be developed for the computational domain in the 
far-field. 

Faltinsen (1977) approaches this problem in 
the context of nonlinear heaving motions of a 
two-dimensional floating body, using a discretized 
boundary-integral-equation for the unknown 
strength of elementary Rankine sources on the 
body and free surface, and matching the solution 
to a Rankine dipole in the far-field. Since wave 
effects are restricted to the domain interior to 
the fixed matching boundary, the solution is 
limited to a time duration proportional to the 
number of unknown points on the free surface. 
Thus, the number N of free-surface grid points 
must increase linearly with time, resulting in 
0(N2) and 0(N3) increases in the storage 
requirements and number of arithmetic operations 
respectively, per time step. The calculations 
presented by Faltinsen are restricted for this 
reason to about one cycle of oscillation. In three 
dimensions the situation is even worse, since N 
must increase quadratically with time. Thus, in 
Isaacson's (1982) Eulerian solution for wave 
diffraction by a three-dimensional body, where 
the scattered waves are assumed to vanish at a 
finite truncation boundary, less than one cycle of 
motion is simulated in the computations. 

If the solution is to proceed for realistic 
periods of time without an excessively large 
computational domain, it is necessary to impose 
an appropriate far-field condition analogous to 
the radiation condition of outgoing waves in 
linear theory. Lacking reliable algorithms to 
express a nonlinear radiation condition, it is 
logical to follow a hybrid approach where the 
nonlinear solution in an inner domain near the 
body is matched to an outer solution consisting 
of outgoing radiated waves of appropriate 
amplitude and phase. 

The hybrid approach seems destined to fail 
in two dimensions, since the radiated waves 
remain   nonlinear   in   the   far   field.     A   heuristic 

approach might be followed using a linear outer 
solution, but this is not expected to work due to 
the imperfect match of the two solutions. 

In three dimensions, by comparison, the 
energy density of the radiated waves attenuates 
inversely with radial distance, and a. linear far- 
field solution can in principle be assumed outside 
a matching boundary sufficiently far from the 
body. Moreover, if the outer solution satisfies the 
complete transient linear free-surface condition, it 
can be expected that the solution may be carried 
out for an unlimited time, given a suitably 
chosen matching boundary. 

Since our practical interest lies ultimately in 
three dimensions, it seems most appropriate to 
formulate and solve the nonlinear wave-body 
problem in this context, rather than attempting 
to overcome the difficulties associated with the 
far-field description in two dimensions. 

The problem considered in Section 3 is that 
of an axisymmetric body forced to move 
vertically in a prescribed transient manner, 
starting from an initial state of rest. Green's 
theorem is used to represent the velocity 
potential in an inner domain bounded by the 
body surface, the free surface, and a vertical 
matching cylinder of large radius. Since the 
solution is axisymmetric, a one-dimensional 
integral equation can be derived on the trace of 
these boundaries. The kernel is obtained from a 
Rankine ring source, and can be expressed in the 
form of elliptic integrals. Once again the semi- 
Lagrangian time-stepping procedure is followed to 
satisfy the complete nonlinear boundary 
conditions on the free surface. Eulerian points 
are prescribed on the body surface, and on the 
matching boundary. 

The linearized outer solution can be 
interpreted as that due to a circular wavemaker 
coincident with the matching boundary. A 
special transient free-surface ring source is 
developed  to provide an efficient solution of this 
problem. 

Preliminary results obtained in this manner 
for the oscillatory heaving motion of a circular 
cylinder are presented for moderate values of the 
amplitude, and confirmed by comparison to the 
linear theory when the amplitude of the body 
motions is small. An encouraging feature is the 
absence of reflected waves on the free surface at 
the matching boundary. More work remains to 
ascertain the optimum radius for the matching 
boundary, and the scales of temporal and spatial 
discretization, to permit effective use of this 
method   for   very   large   amplitudes   of   heaving 
motion. 

To summarize the present status of tnis 
project, numerical approaches have been 
developed and tested for overcoming the two 
separate problems of the singularity at the 
intersection of the body and free surface, and of 
the far-field description in three dimensions. In 
both cases the solution appears stable and can 
proceed indefinitely in time, limited primarily by 
considerations of computational cost. 

Most of our results have been obtained with 
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a VAX 11/780 computer system. This work has 
utilized hundreds of hours of CPU time on that 
system. Encouraging results have been obtained 
from limited computations performed on a 
CRAY-1 supercomputer. Future work is planned 
with the CRAY, to generalize and integrate the 
two studies reported here, with the ultimate 
objective a robust and efficient computational 
model capable of simulating the seakeeping 
characteristics of realistic floating vessels in 
waves of large amplitude. 

2. THE NONLINEAR WAVEMAKER PROBLEM 

2.1 MATHEMATICAL FORMULATION 

Wavemaker 

Bot ton 

Figure 2: Wave tank and coordinate system. 

The fluid in the rectangular domain shown 
in Figure 2 is assumed to be incompressible, and 
the motion irrotational. The complex potential 
ß(z-,t) = 4>[z;t) + ii'(z,t), where z = x + iy, is 
applicable for describing the fluid motion. Both 
the velocity potential <j> and the stream function 
iß satisfy Laplace's equation so ß is analytic in 
the fluid domain. Cauchy's integral theorem gives 

ß 
dz (1) 

where C is a closed contour consisting of the free 
surface, the wavemaker, the bottom, and a 
vertical rigid wall downstream. The point zg is 
situated outside  C. 

Letting zQ approach the boundary, it follows 
that 

ia0/5(^0) + I dz (2) 

where aQ is the actual angle between the two 
elements adjacent to zQ on C. For a smooth 
boundary, aQ = v. 

The contour C is composed of C, and C^ , 
where 4> is given on C, and ip on C. . The free 
surface belongs to U. and both the velocity 
potential and the elevation are zero at / = 0 on 
this boundary. The other three boundaries are 
recognized as C,, since the stream function can 
be calculated from the normal velocity. The 
stream function is taken to be zero on the 
bottom   and   the   vertical   boundary   downstream. 

On the wavemaker, the stream function is ip = 
U(t) (y + 1), where U(t) is the assigned velocity 
on the wavemaker. In this section, the length 
scale is the depth of the tank h and the time 
scale is (h/g)1'2, where g is the gravitational 
acceleration. All     the    other    variables     are 
nondimensionalized by the proper combination of 
g and h. 

Vinje and Brevig (1980b) show that if the 
real part of (2) is taken for z„ on C^ and the 
imaginary part for zQ on C^, the resulting 
Fredholm integral equations of the second kind 
have good properties for numerical solution. 
Thus, 

VM + Re < { dz } = 0 (3) 

for z0 on  C, and 

VM + Re { i -/ 
Jc 

dz } = 0      (4) 

for z0 on  C,.    From (3) and (4), ß can be found 
on the entire boundary C. 

For the time stepping procedure, fluid 
particles on the free surface are followed. The 
position and the velocity potential of these points 
are obtained by integrating in time the kinematic 
free-surface boundary condition 

Dz 

Dt 
=   U +   IV =   w (5) 

and the dynamic free-surface boundary condition 

P. D^      1       „ 
— = - ww 
Dt       2 

y (6) 

where denotes the complex conjugate, p the 
water density, p (taken to be zero in this work) 
an arbitrary pressure distribution on the free 
surface, and D/Dt is the material derivative. 
The particle velocity (u,v) is given by 

dß 
\v = — 

dz 
(7) 

No integration is needed for points on the other 
boundaries, because both the position and the 
normal velocity are specified. 

2.2 NUMERICAL SOLUTION 

To solve the integral equation for ß, the 
collocation method is used. As shown in Figure 
3 nodal points are chosen along the contour C to 
divide it into elements. Assuming ß varies 
linearly in z between nodal points, 

N 

M = E AA (8) 

1=1 
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Figure 3: Nodal points on the boundary, 

where 

z - z 
A/*) = 

A/*) 

"J+; 
zr zi+i 
z - Z

J-I 
zr Z

J-I 

for z < z- < Zj+1 

for z < Zj < z^ 

elsewhere (9) 

Substituting    (8)    into    (1)    gives    the    following 
matrix equation: 

r       ß N 

(ß _^_ dz = j2 Tkjßjfor k=1'-N (10) 

where 

r   _ v_k to _5LI* 
k'3       >> - *j-l      zi-l ■ h 

+ 
z±L^m ln StLLL* (11) 

are the influence coefficients of the matrix 
equation. The detailed derivation to get (11) and 
some limiting forms of I\ ■ when k = j-l, j, or 
y+1 are given in Vinje and Brevig (1980b). 

According   to   (3)   and   (4),   the   numerical 
solution of (10) is found for k = 1, 2, ... NF-1 

NF-1 N-l 

- E Im W + E Re(r*,?9 
j=l j=NF+l 

NF-1 N-l 

= - E R*Vi) + E Mi^y 
j=l j=NF+l 

-ne{rKNF(<t>NF+^NF>+Tk,d(t'N+^NV      <12) 

and for Jfc == NF+1, ... N-l 
NF-1 N-l 

- E R4V9 - E Mr,/,) 
j=l j=NF+l 

NF-1 N-l 

= E Im<r*/;) + E Re<r^ 
j=i j=NF+l 

-im{rkNP{<l>NF+ii>NF)+rk^<i>N+^N)}      (I3) 

where X. , ; = i, 2, ... NF-1, NF+1, ... N-l is 
the    unKnown    part    of   the   complex   potential 
function,  i.e.,  the stream function  for j =  1,  2, 

NF-1, or the velocity potential for j = NF+1, 
... N-l. 

It should be noted in (12) and (13) that the 
intersection, point NF, is common to both the 
wavemaker and the free-surface boundaries, and 
both the velocity potential and the stream 
function are regarded as known at this point in 
terms of their respective boundary conditions. 
The same argument applies to point JV, and 
terms associated with these two points are moved 
to the right-hand side of the equations. 

For the solution of the simultaneous 
equation system, the Gauss-Seidel iterative 
method is used. Since the solution is guaranteed 
to converge for the elliptical type problem and 
the solution from the previous time step is an 
excellent initial iterative value for the next time 
step the Gauss-Seidel method can save more 
than 50% of CPU time compared to direct 
elimination for a typical 100X100 matrix. 

After solving for the potential function p, 
(4) and (5) are integrated to march forward in 
time. It is important to make sure that these 
two conditions are also satisfied at the points NF 
and N, because the location and the velocity 
potential at these two points for the next time 
step can then be calculated from integration 
instead of being approximated by extrapolation. 
The pressure at the intersection is zero, according 
to the dynamic free-surface boundary condition. 

The complex velocity rv(z0;t) has to be 
calculated along the boundary for time stepping. 
In general, it takes the form 

W(V) = 7~. dz 
2m Jc   (z - 20) 

(14) 

This expression turns out to be singular at the 
nodal points and a second order differential 
scheme used in Vinje and Brevig (1980b) is 
introduced for this calculation. ) 

To integrate (4) and (5) in time, Hammings 
fourth order predictor/corrector method with a 
second order Runge-Kutta starting procedure is 
used. This scheme is expected to be stable and 
the detailed description can be found in Vinje 
and Brevig (1980b). 

2.3 IMPULSIVE WAVEMAKER MOTION 

The first case studied is the impulsive 
motion of a wavemaker. A wavemaker starts to 
move with a constant horizontal velocity U from 
a state  of rest.     At  t =  0+,  the velocity  is  a 
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step function and the acceleration is infinite. 
Analytically, a logarithmic singularity is expected 
at the intersection point of the free surface and 
the     wavemaker. This     is     confirmed,     for 
sufficiently small time, by the experiments 
described in Greenhow and Lin (1983). 
Numerically, this case is very critical, because the 
high velocity gradient near the intersection point 
could ruin the numerical scheme. For the actual 
numerical runs, the length of the tank is taken 
to be 10 (water depth is 1), the velocity of the 
wavemaker is 1, and the time is from 0 to 0.2. 
During this period of time, there is no evidence 
of wave reflection from the boundary 
downstream. 

Care must be exercised about the element 
size Ax and the step size At. It is found from 
numerical experiments that the size of the 
element on each side of the corner points (NF, 
Nl, N2, N) should be comparable. The choice of 
At is very critical. As will be seen later, a very 
thin layer of fluid is formed along the wavemaker 
face for this impulsive motion problem. At must 
be sufficiently small in order to avoid the fluid 
particles on the free surface moving across the 
wavemaker during the time stepping. 

The analytical solution suggests that the 
vertical velocity at the intersection point is 
infinite at t = 0+. To confirm this, (12) and 
(13) are solved using a wide range of elements on 
the boundary (N = 66, 132, 198, 264, 330, 396, 
462, 528). Cosine spacing is used for all of these 
runs. Figure 4 shows the distribution of the 
velocity potential on the wavemaker at t = 0+. 
Except for the immediate vicinity of the 
intersection, the difference between these results 
is negligible. 

An enlarged view of the local region near 
the intersection point (cf. the small rectangle in 
Figure 4) is given in Figure 5. It can be seen 
that the local slope of the potential (i.e., vertical 
velocity) becomes larger if more elements are 
used. Note that for the case NF = 200, the 
smallest element on the wavemaker is of the 
order 10"4. The numerical solution becomes 
closer and closer to the analytical solution if 
more and more elements are used. On the other 
hand, the numerical scheme gives an accurate 
solution away from the intersection even with a 
small number of elements. 

For the subsequent time steps, a comparison 
between the numerical results and the analytical 
solution is given in Figure 6. The highest 
symbol in each curve represents the calculated 
intersection point. A denser grid near the 
intersection will result in a very high intersection 
position but the rest of the free-surface shape is 
not affected. The analytical solution used here is 
a leading-order solution in small time, first 
suggested by Peregrine (1972). This provides a 
good confirmation of the numerical solution 
during the first few time steps. 

2.4 FORCE CALCULATION 

To calculate the pressure, it is easier to 
follow Lagrangian points on the moving 
boundary. Introducing the material derivative 
D/Dt into the Bernoulli's equation, the total 
pressure takes the form 

p D0      1 
- = - — + - V0-V0 - V 
p Dt      2 

(15) 

For the pressure distribution on the 
wavemaker at time t = t , v^ and V are chosen 
to be the current value, and D<j>/Dt is obtained 
by the central difference formula 

Dt 2At 
(16) 

The force acting on the wavemaker is calculated 
by integrating the pressure. 

Once again the impulsive wavemaker motion 
case is studied with U = 1 for t > 0. The 
length of the tank is 5, Ax is chosen to be 0.1 
on the free surface and 0.05 on the wavemaker. 
The pressure distributions for several different 
time steps are given in Figure 7. The upper end 
of each curve is the actual intersection point 
calculated by the computer program. The 
shaded triangle is the hydrostatic pressure below 
the original free surface. The dynamic pressure 
under the original mean free surface is nearly 
constant and the total pressure in the thin jet 
region is practically zero. This result is not 
surprising because the jet is so thin that the 
pressure in this region on the wavemaker is not 
expected to be too different from the zero 
pressure on the free surface. But it is interesting 
to see that in the thin jet region the dynamic 
pressure cancels out the static pressure which can 
be very large if the intersection point is very 
high. The    pressure    force    acting    on    the 
wavemaker is insensitive to time. 

Since the pressure in the thin jet is 
negligible, the grid on the free surface can be 
relatively sparse and the calculated force will 
have only a small error. But it must be 
emphasized that both the free-surface and the 
wavemaker boundary conditions must be satisfied 
at the intersection point to ensure an accurate 
global solution. 

2.5 SIMPLE-HARMONIC WAVEMAKER MOTION 

As examples of simple-harmonic wavemaker 
motion, the wavemaker velocity U(t) can either 
be a sine function or a cosine function, that is 

uiA u;A 
U(t) = — sinwi   or   — cosut 

2 2 
(17) 

where w  is  the  frequency,  and  A is the double- 
amplitude    of    the    wavemaker    motion.        The 
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Figure 4: Distribution of the velocity potential <j> 
on the wavemaker with (7=1 at t=0+. Figure 
shown contains 8 curves with TV = 66, 132, 198, 
264, 330, 396, 462, 528; NF = 25, 50, 75, 100, 
125, 150, 175, 200, respectively. 

Ana. 

Figure 6: Comparison between analytical and 
numerical results for the free surface elevation^/. 
Wavemaker has impulsive motion with t/=l. 
Analytical solution is from Peregrine (1972) or 
Lin (1984). 

Figure 5: Distribution of the velocity potential <j> 
on the wavemaker with  17=1 at <=0  . 

Figure 7: Pressure distribution on the 
wavemaker for the impulsive wavemaker motion 
case, U=l, t = 0.05, 0.10, ..., 0.50. Shaded area 
is the hydrostatic pressure component. 

former, called "sine motion" in this Section, has 
zero initial velocity and the mean position of the 
wavemaker motion is A/2. The latter, "cosine 
motion", has an impulsive start and the mean 
position of the wavemaker motion is at x = 0. 
The difference of these two types of wavemaker 
motion is not important for steady-state linear 
waves, but is essential for the transient nonlinear 
waves. 

A typical transient wave-front at t = 19.1 
is shown in Figure 8. The length of the tank is 
20 to minimize reflection from the vertical wall 
downstream. According to the group velocity 
calculation, the location of the wavefront of the 
steady-state linear wave is around x = 6.4. 
Behind the front, the wave-amplitude, 
wavelength, and phase velocity compare well with 
the linear steady-state theory. The actual front 
occurs over a distance of several wavelengths due 
to dispersion. 

2.6 INSTABILITY AND SMOOTHING 

Figure 9 shows a sequence of time steps 
with a larger stroke, A = 0.1, and w = 1.5708. 
During the first two cycles (not shown), the wave 
amplitude decays smoothly. For the third cycle, 
the disturbance observed on the free surface leads 
the numerical scheme to break down. Several 
different combinations of Ax and At have been 
tried, but the numerical scheme always breaks 
down at approximately the same point. To 
verify that the precision of the numerical 
computation is not responsible for this, a 
computer run has been carried out on the 
CRAY-1 using double-precision arithmetic and the 
result is the same. 

An analogous instability is discussed by 
Longuet-Higgins and Cokelet (1976) in their study 
of   breaking   waves.        After    finding   that    the 
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0.20 

Figure     8:    Free-surface    elevation    of    a    sine 
wavemaker motion with W=TT/2, .4=0.05, <=19.1. 

Figure 9: Free-surface elevation of a sine 
wavemaker motion with W=TT/2, yt=0.10, t = 
8.4, 8.8, ..., 11.0. 

instability is not caused by the time-stepping 
procedure, and suggesting that it might be 
related to the amplification of short gravity-waves 
by horizontal compression at the crest of long 
waves, they concluded that this instability may 
be partly physical, and damped by viscosity in a 
real fluid. To overcome this problem Longuet- 
Higgins and Cokelet adopted a 5-point smoothing 
formula. It has been found that if the same 
scheme is applied here to ß and z every several 
time steps, the free-surface instability is 
suppressed and the numerical time stepping can 
go on without any problem. 

2.7 EXPERIMENT FOR SIMPLE-HARMONIC 
WAVEMAKER MOTION 

In order to confirm the numerical results, 
experiments have been conducted to measure the 
free-surface elevation in a wave tank at the 
Parson Laboratory, Department of Civil 
Engineering, M.I.T. The wave tank is 30 m 
long, 76 cm wide, and the water depth is 60 cm. 
A power-driven piston wavemaker can perform a 
specified  motion  from  an  outside  data source  to 

Figure 10: Comparison between numerical and 
experimental results for the free-surface elevation. 
Wavemaker has cosine motion with w=1.5539, 
J4=0.10. Wave probe is located 1.167 away from 
the mean wavemaker position. 

generate    two-dimensional    waves. In    these 
experiments, the wavemaker has a cosine motion, 
the frequency w is 1.5539 (nondimensional), and 
the only parameter changed is the stroke. For 
the present comparison, A is chosen to be 0.1 
(nondimensional). A wave probe is located 1.1667 
from the mean position of the wavemaker. The 
free-surface elevation at the wave probe and the 
wavemaker displacement are recorded as functions 
of time. The data sampling rate is 200 points 
per second and the duration of each experiment 
is about 20 seconds. 

It is found that the actual wavemaker 
stroke is about 3% higher than the stroke 
indicated, and during the first moving cycle of 
the wavemaker, it overshoots by about 6%. In 
the experiment, a small disturbance is observed 
on the wave crest but the wave goes on without 
any problem. This small disturbance seems to 
have some relation to the breakdown of the 
numerical scheme. 

A numerical run has also been made with u 
= 1.5539, A — 0.1. A smoothing function is 
applied every 4 steps for this run. A comparison 
between the numerical result and the 
experimental measurement is given in Figure 10. 
The differences are relatively small. It is not 
known if these are attributable to the numerical 
approximation    or    experimental    errors. The 
comparison in Figure 10 seems to justify the use 
of the smoothing function, despite its empirical 
basis. 

2.8 LARGE-STROKE WAVEMAKER MOTION 

Breaking is observed in the experiments if 
A exceeds 0.15 (nondimensional). A numerical 
simulation of this breaking phenomena has been 
attempted and the results are qualitatively 
consistent with the experimental observations. 
An example of cosine motion with A = 0.30 is 
shown in Figure 11.    The free-surface profiles are 
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Figure 11: Numerical simulation of a breaking 
wave. Wavemaker has cosine motion with 
w=1.5539, A=0.30. A smoothing function is 
applied every 4 time steps, (a) t = 0.1, 0.2, ..., 
1.1; (b) t = 1.2, 1.3, ...,2.2; (c) t = 2.3, 2.4, ..., 
3.3; (d) t = 3.4, 3.5, ..., 4.4. 

plotted with time steps indicated in each figure. 
The smoothing function is applied once for every 
4 time steps. The numerical run breaks down a 
few steps after the last curve plotted, because 
the free surface intersects itself. For this case, 
the wave breaks essentially due to the large 
steepness. 

A substantially different picture is shown in 
Figure 12 for the free surface profiles in the first 
half cycle of a sine wavemaker motion with A = 
0.5, w = it. A jet shooting out ahead of the 
intersection point can be seen clearly. This 
phenomena can not be described properly by 
using a sparser mesh of grid points. 

Figure 12: Numerical simulation of a jet 
shooting out near the intersection. Wavemaker 
has sine motion with w=7r, ,4=0.50. Smoothing 
function is applied every 4 time steps, t = 0.1, 
0.2, ...1.0. 

This type of jet is believed to be caused by 
deceleration of the wavemaker. In this sine 
wavemaker case, the jet starts to develop at 
about the same time that deceleration of the 
wavemaker commences at t = 1. Similar runs 
for the cosine wavemaker motion have shown no 
sign of the jet, indicating that the history of the 
body motion is very important to the free surface 
behavior near the intersection point. 

These striking numerical results are 
consistent with the experimental observations in 
Figure 1 in which a similar jet shooting out from 
the wavemaker near the intersection point is 
observed. In that experiment the wavemaker 
velocity is practically constant in time, but since 
it rotates about a hinge at the top of the wave 
tank the horizontal velocity decreases with 
height. Thus the fluid near the intersection 
point experiences a deceleration. Although the 
wavemaker motion in the numerical computation 
is different from that in the experiment, the 
deceleration effect is similar and it is believed 
that this accounts for the development of the jet 
in both cases. 

Most of the numerical runs have been done 
on a VAX 11/780 system with single precision. 
Some of the critical cases are checked using full 
precision on a CRAY-1. In all cases, the results 
agree       to       four    significant     figures. The 
approximate CPU time involved is about 50 
seconds on the VAX or 1.3 seconds on the 
CRAY, per time step, with 150 elements on the 
boundary. 

3. THE AXISYMMETR1C HEAVE PROBLEM 

3.1 FORMULATION 

We formulate potential flow in a fluid 
volume V enclosed by a boundary dV consisting 
of   the   body   surface   B,   free   surface   F,   and   a 
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vertical circular cylindrical matching surface S at 
radius A. V extends to infinite depth. For z 
positive vertically up and z = 0 the still water 
position, the velocity potential 0(x,<) satisfies: 

V 2J,  _ = 0 in  V(t) (18) 

d(j> 
V0n(O = — =  U    prescribed, on B(t) (19) 

dn 

\V4 

Dx 

Dt 
D(j> 

Dt 

i| -0 

= V<t> 

1 
= -gz + - \v<t>\ 

-oo 

on F\t) 

on F(t) 

(20) 

(21) 

(22) 

plus  a suitable closure boundary condition on  S, 
and zero initial conditions. 

Applying   Green's   identity   to   <j>   and   the 
fundamental   singularity   R~l   =   \P 
have 

PT1.   we 

2n<j>{P,t) 

c r    dd>        d      1 
= / /    (—-*—)- dF, 

J -kv(t)dn'       dn'   R 
PEdV (23) 

For axisymmetric bodies and motions, (j> is 
independent of the angular coordinate 6 and 
(23) can be integrated to give 

2ir<j>(r,z,t) 

r     deb      d 
=     f(—.+—)G(r,tf,i)&P,    (r,z)£dL   (24) 

JdL(t) drC     dn' 

where r2 = x2 + y2, dL(t) = dB + dF + dS is 
the trace of dV[t) on (r,z), and G is the Rankine 
ring source Green function 

G = 
■*d9'       4 p2 

-=-K(l--) 
R       P P2 

(25) 

where p2 = (z-zf + (r+rf, f = (z-zf + 
(r-r'f and K is the complete elliptic integral of 
the first kind (Abramowitz and Stegun, 1964). 
Note that K is logarithmically singular at 1, so 
that as (r,z) approaches (r,z)\ J -» 0, and G ~ 
log(p), as in two-dimensional flows. 

For a given dL at any time, (24) can be 
used to solve for <$> or <j>n on the boundary given 
the other. On the outer boundary dS, neither <j> 
nor <f> are in principle known, and a closure is 
obtained by matching to a linearized solution in 
the exterior. 

In general, for any linearized axisymmetric 
wavefield, the transient potential and its normal 
velocity on a given cylinder can be related by an 
equation of the form: 

4>(A ,z,t) =  jte DR(z,z) <j>r{A,z',t) 

+   /  dr   /  dz' Dj{z,z',t-T) tr{A,z',T), 2<0 (26) 

Here DR is the part due to the Rankine source 
and its negative image above the z — 0 plane, 
and DF the free-surface contribution, evaluated 
on r = A, of the "Green function" D(r,z,t;r'z',T) 
which satisfies the linearized exterior problem: 

V2£ = 0, (r,z,t)^(r',z',T), 
r>A, z<0 (27) 

dD 

dr 
S(z-z)6(t-r),     r=A, z,z'<0 

d2D dD 

df+9dl 
0,      2^=0 

(28) 

(29) 

This  result   is  simplified   for  values  on   r =  A, 
and it can be directly derived that 

2     f°°Kn(kA) sinkz sinkz' 
DJz,z) = —   /    —  dk 

R nA I k Kj(kA) 

-2        ,oo(e-*|2-z1-e-*l*+2:1)difc 
— /   :    2)2'<o     (30) 
TT

2
A l    *?[j2(*A)+Yj(Jb4)] 

and 

-4 f         — 
Dj{z,z',t-T) = —  /  y/g/k sin(\/gk(t-T)y 

e^2+zUk 

' k2[J2(kA)+Y2(kA)} 
,    z,z'<0     (31) 

Here J , K , and Yn are Bessel functions as 
defined "by abramowitz and Stegun (1964). The 
latter expression of (30) is better suited to 
computation.    As \z-z] —► 0, 

DR(z-z) \og\z-z] 

while at t = T, 

D^z',0) = 0 

(32) 

(33) 

as expected. 
Using (26) to eliminate «A on dS (in terms of 

<t> ) from the Green's theorem integral equation 
(24), we have 
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dG 
dP(2x6(P-F) + r'— )4>(F,t) 

iß dn' 

dPr'G — (P',t) 
,f dn' 

+   [ dz'{2n8(P-P) + A—)- 
■ks dn' 

■ /  dz"DR(z',z")<frr(A,z",t) 
J-oo 

=   / dPr'G — 
■kß 9n' 

, dG 
-   /  dP'(27r<5(F-F) + r'—)<j>(P,t) 

JdF dn 

dG 
dz'{2n8{P-P) + r'—)• 

■ f dz» / drDf(z',z",t-T)<t>r(A,z",r),    PEdL   (34) 
•ioo       ■fl 

Following a semi-Lagrangian approach, we 
select (moving) Eulerian points on dB(t) and 8S, 
and Lagrangian points on dF(t). At any time t, 
the current position dF(t) and the potential <j> on 
OF are obtained from previous times by 
integrating the free-surface conditions (21) and 
(22) respectively; the body location dP{t) and 
normal velocity <j> on dB are prescribed, and for 
known (f> on dS for all earlier times, (34) can be 
solved asra mixed first and second kind Fredholm 
integral equation system for <j> on dB, <pn on dF 
and the present <j>r on dS. The process is then 
repeated for the next time step. Note that the 
potential 4> on dS is never explicitly required but 
may be recovered directly by quadrature from 
(26). 

3.2 DISCRETIZATION 

In principle, d(t) and e(t) are related to each 
other (and to <J>(A,Z,T), <J>1A,Z,T), Z<0, 0<T<t) by 
(26)). For simplicity, these unknown strengths 
are eliminated by requiring continuity with the 
values on dL} at every time. Thus, only J 
collocation points are required for (34), which are 
selected at the mid-point of segments dLj, j = 
1,2,...,J. Uniform time steps tn — nAt, n = 
1,2, .; and <j>" = <j>(tn) etc., are used. Using the 
trapezoidal rule, ihe convolution integral in 
(34) can be written as 

n-1 

(37) 

where the contributions from t — tn and t = 0 
vanish on account of (33) and the initial 
condition on <f> respectively. Thus, we reduce 
(34) to a system of linear algebraic equations: 

E  B«*]-E   
Gv+n* 

dL&B" dLJ&Fn 

+  E       HSijE       RJk^k 
ZL&Sn di,€35" 

J K 

= E   G^"rE  »«*] 
dL&B" 

n-1 

dL&f" 

A<EE  %/E  #*!* 
1=1 dLpSn        ZLkedSn 

for :' = 1,2,..J 

where 

H„-, 2*«.. + 
I. dnj 

(38) 

We subdivide the line dL into linear 
segments dL-, j = 1,2,...,J+1, and assume <j> = 
(f>., <j> = </> • to be constants over each segment. 
The only exception is the last panel on dS which 
extends to deep water dLJ+i = {z.-B<z<-oo}. 
Over this deep infinite segment we assume <j> and 
<j> to vary according to that of a dipole at the 
origin: 

<t> ,+1(A,z,t) = d(t) 
[?+A2fl2 

and 

<t>rU1(A,z,t) = e(t) ^+A2)5/2 

z<-B       (35) 

z<-B (36) 

G... JJP. r. G(P,F.) 

H 
(A2+ß2)3/2 

Sij 

RiJ 

^ +   *» —B 

r-B j dG   _ 

7 d'7^*375 ^-^ ■i-OO (A2+zafl2      dn' 

(A2+B2fl2 

■£?' ühffi DR
^ ,n 
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JdS, 

+ <5 
(A2+B2f/2 

u -B 

,-B 

and P- denote the mid-point of dL- At t = /, 
(38) isJ solved for <A" on dB", 0", on OF", and <T. 
on dS", given the boundary dhh, <j>n- on 9ß", <£j 
on dFn and 0' / = l,2,...n-l on 951. The free- 
surface Lagrangian positions and potentials are 
then updated according to (21) and (22): 

Dr. 
—I = <cosa>4 ■ - <sina> <0 > •      (39) 
Dt 3   J J } 

£5 
Dt 

<sma>j4sj + <cosa> j<<t>n>j    (40) 

and 

D0, 1 
—l = -g <z>- + - [ 
D< ;      2 

*2. + 02- (41) 

where < > denotes averaged values over two 
adjacent panels and the tangential velocity 4>sj is 
calculated by centered-differences. 

This completes the formulation of the 
problem. An important note here concerns the 
position of the last Lagrangian point (r,z)* (say) 
at the matching boundary. A linear closure, in 
theory, matches (r,z)* geometrically to (A,0). In 
practice, for a realistically limited boundary 
distance A, (r,z)* '- (A,0) is never zero or even 
negligible. Furthermore, the linear formulas (26), 
(30), (31) are strictly valid for z < 0 only. 
Here, we simply extrapolate or interpolate for the 
elevation z at r=A for a new Lagrangian point. 
For all the integrals in (34) or (38) involving the 
Rankine source G or its derivative, z is used (all 
other points on 95 being fixed) so that dS = 
95" is a function of time; but for the integrals 
containing DR or Dp z = 0 is prescribed. Thus 
R-,  and F1-.,  I = 1,2,...N are independent of the 

JK JK 

specific flow, and can be calculated at the outset 
for a given matching surface discretization, and 
stored. This results in a substantial savings of 
computational effort for the convolution 
calculation, especially for very long simulations. 
For the present scheme to be valid, it is clear 
that the surface elevation or particle excursion 
near the matching boundary must be smaller 
than the order of the grid size there. Otherwise, 
the matching radius A must be increased. 

3.3 NUMERICAL EXAMPLE 

As an example, we consider the heaving of 
a floating truncated vertical circular cylinder of 
radius a and mean draft a/2. For simplicity, the 
length, time and mass units are chosen so that 
radius a, gravity g and density p equal unity. 
The radius of the matching boundary is fixed at 
A = 5. The last constant strength panel on dS 
is at z = -4 (B=4), and z E [0,-B] is subdivided 
into 24 panels satisfying a nonuniform spacing 
with segment lengths varying smoothly from A 
~ 0.1 at z = 0 to A ~ 0.4 at : = -B. The 
initial positions of the Lagrangian points on the 
free surface are spaced evenly at A = 0.1 so 
that there are 40 panels on dF. The body 
surface is divided into 20 segments (12 on the 
bottom and 8 on the side) using a cosine spacing 
concentrating at the submerged corner. This is 
motivated by expected large gradients near the 
corner; the increase in area with radius in 
integrating for the force; and the need to 
compute tangential velocities for the pressure 
calculation. Our     experience    indicates     that 
disparate grid sizes near an intersection of two 
boundaries results in poor accuracy and should be 
avoided. 

The vertical velocity of the body is 
prescribed to be 

V(f) = AQa;sinw( 

with the body draft 

h(t) = -1/2 - h0cosujt 

(42) 

(43) 

so that h« is the half stroke and the cylinder is 
initially submerged to a depth of 1/2 + AQ. 

The algebraic system (38) is solved by a 
direct Gauss elimination scheme with partial 
pivoting, and the time integration of 
(39) - (41) is performed using a second-order 
Runge-Kutta     formula. For     the     following 
calculations, we fix w = 7r/2 (period = 4) and 
At = 0.1. 

Figure 13 shows the vertical force on the 
cylinder (minus the hydrostatic restoring 
component and normalized by hQ) for stroke 
amplitude hQ = 0.05. The comparison is made 
with the linearized transient result of Newman 
(1984) which is computed by convolution of the 
impulse-response function derived from a 
distribution of ring free-surface singularities on 
the body surface. For this relatively small 
amplitude of motion, the nonlinear force follows 
closely that from the linear calculation. The 
discernible differences are at the peaks and 
troughs where the nonlinear values are slightly 
lower. As     with     two-dimensional     cylinders 
(Faltinsen, 1977), steady-state for the heave force 
is reached rapidly for both the linear and 
nonlinear results. Here, six complete oscillation 
periods      are      shown      to      demonstrate      the 
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Figure   13:   Heave   force   history, 
theory for amplitude hQ—0M. 
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Figure   14:  Nonlinear radial free-surface profiles for  l<r<5  and 0<<<22.6  at 
0.2 intervals.    Amplitude AQ=0.05. 
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Figure    15:   Heave   force   history.   —   linear   transient   theory;   +++   nonlinear 
theory for amplitude hQ=0.1. 

Figure   16:   Nonlinear radial free-surface profiles  for  l<r<5 and  0<<<15.5  at 
0.1 intervals.    Amplitude h„=0.1. 
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effectiveness  of  the  numerical  closure  treatment. 
A   more   direct   evaluation   can   be   obtained   by 
examining   the   free  surface.     This   is   shown   in 
Figure   14,   where   the  radial   free-surface  profiles 
between  the body and the matching boundary (1 
<  r < 5) are plotted at every other time step (t 
=   0.2,   0.4,   ...).   (For   clarity,   each   subsequent 
curve   is   shifted   slightly   up   and   to   the   right.) 
Notice  that  the outer boundary  exhibits no sign 
of    reflection    or    instability    over    the    entire 
duration   while   several   wavelets   seem   to   have 
exited.    An estimate based on Airy waves at the 
heave frequency  gives  a wavelength of about 2.6 
and a group propagation distance of over 7.6 (in 
6  periods),  indicating that  the present  matching 
boundary   at   a  distance  of 4   from  the  body  is 
quite efficacious.    Figures 15 and 16 show similar 
results for a somewhat larger heave amplitude, hQ 

=   0.1.      In   this   case,   the  numerical  scheme   is 
stopped after about 4-1/2 periods when instability 
sets  in  at the boundary intersection.     The force 
and   the   free-surface   profiles,   however,   remain 
valid up to that time.    The decrease in the force 
extrema from the linear theory is greater for the 
increased      heave      amplitude,      although      the 
differences   are  still  very  small.     This   relatively 
limited   effect   of   nonlinearity   is   due   largely   to 
three-dimensionality  and the wall-sided geometry. 
We   have   also   obtained   preliminary   results   for 
several   larger  heave   amplitudes   (up  to  half the 
draft  of the  cylinder):  the  mild  decrease  in  the 
force    continues,    and    a   small   but   noticeable 
forward shift of the peaks is observed.    For long 
simulations   involving  very   large   amplitudes,   the 
radius A of the matching surface must be further 
increased.      Other   refinements   (in   discretization, 
and perhaps use of smoothing and a more careful 
treatment    at    the    intersection    boundaries)    are 
being explored. . 

Although the results here are preliminary, it 
is evident that the present method is effective for 
the long time calculation of nonlinear body-wave 
interactions     in     three-dimensions. All     the 
computations are performed on a DEC-VAX 
11/780 computer and require approximately 1 
minute of CPU for every time step. Larger scale 
calculations, convergence studies and a more 
quantitive assessment of the matching boundary 
using a supercomputer are planned. 
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DISCUSSION 

Prof. RONALD W. YEUNG, 
Dept. of Naval Arch. & Offshore Engineering, 
University of California, Berkeley, CA, USA: 

In this rather interesting paper, the authors 
stated two objectives in the Introduction. The 
first, concerning free-surface and body inter- 
section irregularity, was tackled in a very 
"neat and clean" way. The second, which concerns 
matching a nonlinear interior solution with a 
linear one at a radiation boundary, however is 
not quite settled. In my opinion, the necessity 
of locating a matching boundary at sufficiently 
large distance from the origin so that the waves 
are small is really not meeting the matching 
problem "head on". The scheme proposed by the 
authors cannot work as soon as any "numerically 
detectable" nonlinear waves of elevation > 0 
arrive at the boundary as. At that instant, 
the integrals for the time-dependent source 
functions (31) and (26) are not defined for 
z > 0. Thus <\>  and (<j>r) cannot be defined for 
z > 0, making it not possible to match with a 
genuine non-linear solution as the authors hope 
they would. 
In the context of linear time-dependent type 
hybrid matching, I should cite here the results 
of my Ph.D. student Ming Y. Lee's thesis work. 
He solved the sway-motion problem of an arbi- 
trary axi-symmetric shape in finite depth wa- 
ter. To verify that his programs indeed work 
for waves of an arbitrary frequency at any in- 
stant of time, he computed the sway-motion step 
response memory functions. The method permits 
the matching surface to locate at any arbitrary 
distance from the cylinder axis. The excellent 
agreement with the inverse Fourier transform 
of my AOR (Yeung '81) results in the frequency 
domain convinces us that all the wave components 
propagate out properly in our method. Also, I 
believe the term /. c|> GdP' is missing in (34). 

MEMORY-EFFECT FUNCTIONS FOR SWAYING OF 
SEVERAL AXI-SYMMETRICAL BODIES 

Yllnd«r 

a/K"0.5>d/h=8.08l 
a 

a 

1 
h v- P- 
1 

N*w   Tran«!*nfc   Hybrid 
Intogra|—Eqn.    Method 

I.F.T.   of Young'*   00815 
Fr«qu«ncY~doma!n  r*cultc 

Prof. ERNEST 0. TUCK, 
University of Adelaide, Australia: 

Non-linear studies are often difficult to inter- 
pret because of numerical detail. I have two 
questions relating more to fundamental analyti- 
cal properties. 
1. Can the authors distinguish "body" and "free- 

surface" non-linearities, the former being 
what one would obtain by replacing the free- 
surface condition with the linearized one, 
and the latter by doing the same for the 
body condition? 

2. Do the results settle down to a periodic 
■wave of non-sinusoidal form? If so, is the 
final form dependent upon the time-history 
of the start-up? If there is a non-zero 
"D.C." (i.e. non-zero time average) in the 
asymptotic steady state as t ■+■ «, what is 
the physical interpretation? 

Prof. ALLEN T. CHWANG, 
The University of Iowa, Iowa City, USA: 

You have presented in your paper numerical 
solutions for the impulsive motion of a two- 
dimensional vertical plate and for transient 
heaving motions of an axisymmetric cylinder. 
Do you have any numerical results for the 
impulsive motion of a vertical cylinder? We 
would be very interested in knowing this be- 
cause we have obtained analytical solutions 
and conducted experiments on the impulsive 
motion of a vertical cylinder; and we would 
like to compare our solutions with your nu- 
merical results, if you have. 
Our analytic result indicates that the free- 
surface elevation and the vertical velocity 
are singular at the intersection of the free- 
surface and the surface of an impulsively start- 
ing vertical cylinder. However, our experimental 
result indicates otherwise and there is no jet 
at the cylindrical surface. 
Referring to your Fig. 15, we would like to 
know why the nonlinear heave force decreases 
as heave amplitude increases. 

AUTHORS' REPLY 

Taken from: "Umsteady Fluid-Structure Interac- 
tion in Water of Finite Depth" by M.-Y. Lee, 
Ph.D.Thesis, Univ.Calif., Berkeley, 1984. 

Professor Yeung has questioned the matching 
scheme by which we close our three-dimensional 
solution, from the standpoint that any finite 
disturbance, however small, will be impossible 
to match with a linear far-field description. 
Our view is that the scheme which we have em- 
ployed has a rational asymptotic basis, and 
that the numerical results which we have ob- 
tained conclusively demonstrate its validity. 
Any finite discretization of a continuous 
physical solution may be criticised as inexact, 
and subject to a variety of possible errors, 
but it is generally accepted when the numerical 
approximation has both a rational basis and a 
successful demonstration of its validity. 

The linear time-dependent solution describ- 
ed by Professor Yeung is analogous to our linear 
study described in the reference by Newman (1984). 
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The only term missing in our equations is in 
equation (34), where 

dz'AG<t>   (A.z'.t) 
ks r 

should be inserted on the left-hand side. 
Professor Tuck asks if a distinction can 

be made between "body" and "free-surface" non- 
linearities. This is possible in the formal 
sense, if and only if the body boundary con- 
dition is homogeneous at the free surface. 
Thus we could make such a decomposition for 
the heaving vertical cylinder, but not for the 
wavemaker. We have not performed computations 
along this line, and cannot speculate as to 
the relative importance of these two sources 
of nonlinearities. Regarding the second ques- 
tion, we have not varied the time-history of 
the start-up. However, the comparisons with 
linear theory in Figures 13 and 15 imply that 
the ultimate steady-state would not be sensi- 
tive to such a modification. There is an obvious 
"D.C." shift in the force shown in Figure 15 
(a less-obvious shift can be discerned also in 
Figure 13), relative to the sinusoidal linear 
result. In both cases the mean shift is nega- 
tive, and corresponds to the "suction" force 
associated with the quadratic term in Bernoulli's 
integral for the pressure. Since other nonlinear 
contributions are also present, this correspon- 
dence is comforting, but not strictly necessary. 

In response to Professor Chwang, the pre- 
sent results for the circular cylinder are lim- 
ited to the case of axisymmetric heave motions. 
For this mode of motion it is possible to study 
the impulsive-motion case, but the problem de- 
scribed by Professor Chwang appears to be that 
of horizontal surge motion. For the latter a 
more general three-dimensional solution is re- 
quired, without the assumption of an axisymmetric 
fluid motion. 
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SHIP MOTIONS IN SHALLOW WATER BY UNIFIED THEORY 

R. BrfRRESEN AND   O.M. FALTINSEN 

ABSTRACT 

A theoretical formulation of added mass and damping of a ship at forward speed in finite water 
depth is presented. The "Unified Theory" concept by Newman and Sclavounos has been generalized 
to finite water depth. Numerical difficulties in calculating the far-field kernel function_and 
the interaction term m, between steady forward and oscillatory motion are pointed out. It is 
difficult to conclude that "Unified Theory" gives better results than "Strip Theory" in finite 

water depth. 

1. INTRODUCTION 

We consider here as our task to study the 
motion of a ship in regular, i.e. periodic 
waves. Much attention has been devoted to this 
problem through the years. The most common way 
of analyzing the problem is to use some kind of 
strip theory. An example is the Salvesen.Tuck- 
Faltinsen method. The strip theory concept im- 
plies that possible wave interaction between 
sections is not taken care of. Strictly 
speaking we can only give strip theories some 
justification as long as the frequency of en- 
counter between waves and the ship is high and 
as long as we consider the forced motion 
problem. Strip theories have also limited 
applicability at high Froude number. 

Recently Newman (1978) and Sclavounos 
(1981) have come up with a "Unified Theory" 
where they take into account wave interactions 
between cross-sections along the ship. Newman 
and Sclavounos' Unified Theory represents an 
improved ship motion, slender body theory from 
a rational point of view. It is in principle 
valid for all frequencies. But there are still 
possibilities for improvements. One can ask 
whether they take proper account of the forward 
speed effect. For instance they use the rigid 
free surface condition for the steady wave 
potential near the ship. This has limited 
applicability for high Froude numbers. 

Newman and Sclavounos' Unified Theory was 
derived for deep water. In the present paper we 
have generalized their concept to finite water 
depth. We are only considering forced heave 
and pitch motions. Numerical results are pre- 
sented and compared with published numerical 
and experimental results. 

The present article is based on B0rresen 
(1984). The main results of that work is a 
theoretical formulation for the velocity poten- 
tial in both the radiation and diffraction pro- 
blems, that in the large depth limit is conform 
with the Unified Theory of Newman and 
Sclavounos. The hydrodynamic problem is solved 
in two steps. Firstly, section-wise solutions 
are found utilizing two-dimensional solutions. 
We suggest the method of Bai & Yeung (1974) to 
be applied for the heave and pitch motion case 
presented in this article. Ordinary strip- 

R. B^rresen, Norwegian Hydrodynamic Laboratories, 
O.M. Faltinsen, Norwegian Institute of Technology, 

theory solutions (e.g. Salvesen et. al. (1970)) 
can also be constructed with these two dimen- 
sional solutions as building bricks. 

Both the two-dimensional radiation and 
diffraction problems can be split up into sym- 
metric and odd problems with respect to the 
vessel transverse coordinates. By adding homo- 
geneous solutions to the two-dimensional velo- 
city potentials, an interaction between the 
two-dimensional solutions is obtained. The study 
of this interaction constitutes the second step 
in the solution. The formulation of this second 
step is obtained through a matching between far 
and near field problem formulations. It is 
shown in Btfrresen (1984) that to leading order, 
this sectionwise interaction exists only for 
the symmetric problems. This is conform with 
Newman's (1978) result in deep water. 

In previous deep water high frequency 
slender body theories, sectionwise interactions 
were present in the diffraction problems, see 
e.g. Faltinsen (1971). This interaction effect 
shows up as a diminuation of the incoming wave 
amplitude along the vessel length (not in ob- 
lique waves). In the Unified Theory, this inter- 
action is also present, see a thorough dis- 
cussion on this by Sclavounos (1981). In the 
diffraction problem investigated by Faltinsen 
(1971), the interaction accomodates for the 
fact that along the vessel path there are 
transverse wave systems which are left behind 
the vessel. This is also reflected  in the 
Unified Theory in both the diffraction and 
radiation problems. These vessel generated 
waves represent radiated energy which is not 
accounted for in two dimensional solutions. 
The essence of the Unified Theory is to in- 
clude this energy radiation through a section- 
wise interference based on two dimensional sol- 

utions. 
The novelty of Newman's (1978) Unified 

Theory formulation is that wave effects are 
included in this sectionwise interaction. In 
fact, Tuck (1964), developed a similar theory, 
but for calm water. It is shown in Btfrresen 
(1984) that for deep water, the zero frequency 
limit of the Unified Theory recovers Tuck's 
solution. We have not discussed the complemen- 
tary zero frequency solution when finite depth 
effects are included. 

Trondheim, Norway 
Trondheim, Norway 
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In the rest of this article we shall 
adress the radiation problems in heave and 
pitch. The theoretical derivations are founded 
on the fundamental assumptions of neglecting 
viscous forces, that the boundary conditions 
are linearized, that the problem is harmonic 
in time and that potential theory can be app- 
lied. 

2. THEORY 

We consider a ship which moves in the 
negative x-direction relative an earth fixed 
coordinate system XYZ (fig. 1). The ship tra- 
vels with a mean velocity U whilst performing 
harmonic oscillations in heave and pitch with 
frequency u. By assuming linearity we can 
study the heave and pitch motion problems 
separately. 

We shall operate with a coordinate system 
xyz travelling with the vessels mean speed. 
The xy-plane describes the undisturbed mean 
free surface of the water. Within the realm 
of linear potential theory we are seeking the 
velocity potentials Re [<}> • (x,y,z)exp(io)t) ]. 
Here j=3 denotes heave and j=5 denotes pitch. 
The potentials are governed by the three- 
dimensional Laplace equation 

=0 (1) 

Furthermore, the potentials have to satisfy 
the boundary condition on the free surface, 
expressed in its linearized form viz: 

(io)+u3/3x) <j>j+g3*j/3z=0 (2) 

The conditions of no intrusion of water 
through the vessel hull and the ocean bottom 
have to be satisfied, and finally, to complete 
the problem formulation, a condition of out- 
wardly radiating waves at infinity have to be 
specified. 

The analytical reduction of the full pro- 
blem to a strip theory formulation may involve 
the technique of "matched asymptotic expan- 
sions". The essence of this method is to sepa- 
rate the physical domain of the problem into 
two; the "far-" and "near"-fields. In each of 
the domains the Laplace equation is to be 
solved. It is known that boundary conditions 
have to be prescribed on all boundaries sur- 
rounding the fluid. In the overlap region 
separating the two physical domains, one will 
have common, but at the outset, unknown con- 
ditions. 

In the overlap region, one strives at 
studying the asymptotic expansions of the far 
and near field problem formulations. By a care- 
ful study in the overlap region the asymptotic 
expansions are matched such as to result in a 
complete problem formulation in either of the 
domains. 

Newman (1978) utilizes this technique in 
developing his Unified Theory. He arrives at 
his final formulation via a careful analysis 
of the error estimates in the overlap region. 
We shall deviate slightly from this procedure, 
but show in the end that we arrive at the same 
result as Newman did for infinite water depth. 

2.1 THE FAR FIELD FORMULATION 

In the far field the presence of the ves- 
sel is simplified by considering translating 
strings of sources, the length of the strings 
being equal to the vessel length. We assume 
that the source strength distribution is 
given by 

q(x,t)=Re{qj(x)exp(iwt)} (3) 

For a single source located in (0,0,zo), 
oscillating in strength with frequency ü), the 
velocity potential, or Green function G(x,y,z) 
is'governed by the Poisson equation 

V2G(x,y,z)=4'irq(x)6(y)6(z-z0) (4) 

where <5( ) is the Dirac delta function. The 
free surface and radiation conditions are 
jointly given by 

(iu>+U3/3x+u)2G+3G/3z=0 on z=0 (5) 

where p is the Rayleigh viscosity, a small 
positive quantity introduced to ensure a proper 
radiation condition. 

On the flat horizontal bottom at z=-h, the 
boundary condition is 

3G/3z=0 on z=-h (6) 

For details on this problem formulation we 
refer to Ogilvie and Tuck (1969) . At present 
we assume that the Green function is available. 
The velocity potential of the travelling 
string of sources is then expressed as 

j(x,y,z)= Jqj(5)G(x-5,y,z)dC (7) 

We shall need the Fourier transform which will 
be denoted with an asterix. The Fourier trans- 
form convention which we shall follow is given 

by 

q*(k)=J q(x)e  ^ (8) 

q(x)= ■=-/ q 
1_ 
2TT

J 
i* (k)elkXdk 

(9) 

By the convolution theorem we can now write 
(7) as 

lkx, 
>.= Jqf (k)G* (kjy.z^dk (10) 

Through the Fourier transform convention it 
will be seen that 

G* (0;y,z)= /G(x,y,z)dx (ID 

Due to the reciprocity property of the Green 
function, the integral in (11) is equivalent 
with the velocity potential in (o,y,z) due to 
a distribution of sources parallel with the x- 
axis and in the x-z plane. This is however 
equal to the two-dimensional Green function 
G2D(y,z). We separate out this two-dimensional 
property from the 3D Green function by writing 
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6* (k;y,z)=f* (k;y,z)+G2D(y,z) (12) 

Furthermore 

m3=-n2*yz-n3$yy (21) 

By representing the Dirac delta function as 

6(x)= — r P^^MX (13) 
1 r    lkx. 
-—  e  dx 
2TT ' 

(15) 

it is readily verified that (10) can be written 
as 

<J>j=q(x)G2D(y,z)+Q(x,y,z;q) (14> 

where the functional Q(x,y,z,qj) is given by 

oo 

Q(x,y,z;q)=J qj (?)f (x-?,y ,z)d? 

The Fourier transform f* of f in (15) is now 
defined by equation (12). For the case where 
the oscillating source string is located at 
the free surface, the Green functions G and 
G2D together with the kernel function f(x,y,z) 
is given in appendix. 

Equation (14) does now represent our far 
field velocity potential. We note here that we 
are ensured outwardly radiating waves through 
the boundary condition (5). In this far field 
formulation the source strength distribution 
qi(x) is as yet unspecified. It will be found 
through a near field study. 

2.2 THE NEAR FIELD FORMULATION 

For a more thorough elaboration on the 
near field formulation we merely refer to New- 
man (1978). His discussion was for infinite 
water depth. We will generalize this to finite 
water depth. Following a slenderness assumption, 
sectionwise solutions along the vessel can be 
constructed by 

Sj(s)=<i>j(y,z)-U$j(y,z) (16) 

This is not the complete near field solution 
as we shall see later on. The two-dimensional 
potentials <j)j and $j satisfy the two-dimensio- 
nal Laplace equation, the free surface con- 
dition 

-Ü) <h   3<1 '3z=0 

the hull boundary conditions 

3<j)./3N=kon; 

(17) 

(18) 

m^-20113-113 (22) 

where $ is the steady potential, orginating 
from steady_translation of the vessel, i.e. 
<j> satifies3<j>/3n = ni on the body hull and the 
bottom condition. The functions mj are due to 
a result by Ogilvie and Tuck (1969).    A 

For large I yt the potentials <S>j and 4j can 
be represented by 

sj~ajG2D(y>z) 

-6jG2D(y,z) 

(23) 

(24) 

where G20 is the two-dimensional Green function 
due to a harmonically oscillating source 
located in (0,0). The solutions (23) and (24) 
represent for large I yl , periodic waves, radi- 
ating towards infinity. 

Newman (1978) points out that the two- 
dimensional potentials of (16) are unique and 
do only depend on the local cross-sectional 
geometry of the vessel. However, we can con- 
struct other sectionwise solutions by adding to 
the potentials (16) solutions which satisfy the 
homogeneous boundary condition 3(|>j/3N=0 on the 
hull surface. As discussed by Newman, such homo- 
geneous solutions can in view of the boundary 
condition (4.14) simply be taken to be <j>j+(j>j, 
where the overbar denotes complex conjugation. 
Thus we can construct a new set of stripwise 
solutions by 

I>j(s)+Cj(x)($j+$j)" (25) 

In view of (23) and (24) , the large I yl approxi- 
mation of (25) can be written as 

{aj-uÖj+Cj(Cj+0j)}G2D 

-Cj5(G2D-G2D) 
(26) 

The real part of G2D is singular for (y,z)-> 
(0,0), whilst the imaginary part is regular for 
all y,z. It is shown in B0rresen (1984) that 

S2D-62D=2Acos Xoy (27^ 

where A is given in Appendix A. 

3<}>./3N =mj (19) 

and the bottom condition. Here N is the two 
dimensional unit normal to the hull, n: are 
found from 

(n1,n2,n3)=n 

(n4,n5,n6)=x'xn 
(20) 

where n is the unit normal to the three-dimen- 
sional-hull in the direction into 'the fluid. 
x1 is the vector describing the hull itself. 

2.3 UNIFICATION 

We have now formulated the potential theo- 
retical problem in two domains. The inner source 
strength distributions Oj can in principle be 
found, we shall later revert to that. However 
the interaction functions Cj(x) are as yet un- 
known. A unification procedure similar to New- 
man (1978) will be constructed, whereby the far 
and near field formulations are joined to result 
in a formulation for Cj. 

Since the general far field formulation 
(14) and the large I yl approximation (26) ot the 
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near field formulation both contain the two- 
dimensional Green function we equate the 
factors of G2n in these formulations and have 

qra.-uej+C.<aj+o.) (28) 

In order to complete the unification, the re- 
maining terms should also be equated. However, 
before doing this, we assume the legitimacy of 
expanding the regular functional Q(x,y,z;q.) 
in a Taylor series: J 

Q(x,y,z;qj)=Q(x,0,0;qj)+Qz(x,0,0;qj)z+.  (29) 

where the y-derivative of Q is zero due to 
symmetry. Now we equate the remaining terms of 
(14) and (26), using this series expansion. If 
this equating procedure is done for z=0 we have 

C.a2A|z=0=-Q(x,0,0;qj) (30) 

(29) and (30) does now give an integral equ- 
ation for the outer source strength is: 

qj+2Alz=0 (aj/aj+l)Q(x,0,0;qj)^ ■■a. -Ua • 
J  J 

(31) 

The interaction functions Cj can then be found 
from (30). 

It is shown in B^rresen (1984) that for 
large depths, the integral equation (31) redu- 
ces to that of Newman and Sclavounos (1980). 

pattern depicted in fig. 4, to the wave pattern 
shown in fig. 5, is associated with the change 
in the ratio between the speed of the source 
and the maximum velocity of the energy flux 
of radiated waves. The latter is associated 
with the frequency u through the dispersion 
relationship and the group velocity (see Newman 
(1977)). Thus, the effect of finite depth on 
the wave pattern will be involved via the dis- 
persion relationship. In B0rresen (1984) is 
shown several examples on the wave pattern 
depending on T and U/U0. The large R approxi- 
mation of G has been used to evaluate G  on the 
x-axis. This was done in order to compare with 
the numerical evaluation of the kernel function 
f(x,0,0) in equation (15). It can be seen 
through the relationship (12), that f(x,0,0) 
represents the velocity potential on the x-axis 
except at the singular point x-0. Thus, the 
regular part of f(x,0,0) should compare with 
the large R-approximation of G for large x. It 
is shown in B0rresen (1984) that the two 
methods of studying the potential on the x- 
axis compares favourably for moderate depths. 

In figures 6 and 7 are shown two examples 
of the regular part of the kernel function 
f(x,0,0), computed according to the mathemati- 
cal description given by equation (A.8). Figure 
6 shows f(x,0,0) for a combination of T and 
U/U0 revealing a wave pattern qualitatively 
comparable to fig. 4, whilst figure 7 repre- 
sents the potential on the x-axis in a situ- 
ation similar to fig. 5. 

4. TWO-DIMENSIONAL NEAR FIELD CALCULATIONS 

3. THE SINGLE SOURCE PROBLEM 

In the course of this work, we found it 
appealing to study the velocity potential due 
to the travelling source of oscillating 
strength. A far field formulation was developed 
to study this velocity potential. The method of 
analysis is similar to what Newman (1959) did 
for infinite water depth. We shall omit the 
mathematical details in this article, and mere- 
ly describe the main results verbally. 

In a mathematical environment, the results 
for the large R=(x2+y2)2 approximation for G 
are given in terms of curves of stationary 
phase. Such curves have been presented earlier 
in the case of deep water, see e.g. Eggers 
(1957). The zero frequency limit of these 
curves are often denoted the Kelvin wave 
pattern. It is known that in deep water, 
the dimensionless parameter T=uU/g 
ls a critical parameter for qualitative appear- 
ance of the curves of stationary phase, which 
in fact represent the picture of the wave 
pattern due to the source. For T>0.25, the 
curves of stationary phase of the velocity 
potential appear as shown in fig. 2> where we 
have indicated the direction of travel of the 
individual wave systems. For T<0.25, the curves 
of stationary phase appears as shown in fig. 3. 

When the effect of finite depth is in- 
cluded, a similar situation appears. However, 
here also the non dimensional parameter U/U0 
influences the result, where U =/gh  is the 
critical velocity. The transition from the wave 

A necessary part of the numerical solution 
is to solve the two-dimensional added mass and 
damping problem for finite water depth. There 
exists different numerical techniques for solv- 
ing this problem (see for instance Keil (1974), 
Bai & Yeung (1974)). We have chosen a procedure 
which is very similar to Yeung's approach. This 
means we start out with Green's second identity 
and represent the velocity potential in a point 
(y, ,z.j) in the fluid domain as 

2TT<}.(y1,z1) =  Jtf^dog r + log r^ 

S    a 
- <%j(l°g r + log r1)]ds(x,y) 

where S = SB+ Sp+ S^ + S_ M        (32) 

Here S„ is the body surface, Sra+and S_<xjare 
vertical control surfaces at y=-°°, respectively 
and S„ is the mean free surface inside S^ and 

F s_m Further 

2        2 1/2 
r = ((yx- y) + (zx- z) ) ' (33) 

rx= ((yx- y)
2 + (2h + zt  + z)2)1/2       (34) 

Here (x,y) are points on the integrating sur- 
face. 

We will study only forced harmonic steady- 
state heave oscillations and assume the sub- 
merged body to be symmetric about the z-axis. 
We can then write the velocity potential at 
Si*, as 

gg cosh k(z+h)  i(iot - k|y|+ a) 
to cosh kh 

(35) 
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where the wave amplitude C and the phase angle 
a are a priori unknowns. By substituting equ- 
ation (35) into equation (32) we can evaluate the 
integrals over So» and S^x>. In addition we can 
use the body boundary condition to rewrite 
3<|>/3n oft SB in equation (32). Further 3<t>/3n on 
SF can be rewritten in terms of (j) by means of 
the free surface condition. 

The problem is now to find $  on the free 
surface and the body surface as well as the 
wave amplitude C and the phase angle a of the 
generated waves at infinity. This is done by 
letting (yi,Z]) approach points on Sß and SF 
in equation (32). We then obtain an integral 
equation for determining (() on Sg and Sp. By 
using this integral equation in combination 
with equation(35) we have sufficient conditions 
to determine the unknowns. 

The numerical procedure we followed is as 
follows. We used that the flow is symmetric 
about the z-axis and divided the body surface 
for y>0 into Ng straight line elements. The 
mean free surface Sp for y>0 is divided into 
Np straight line elements. We assumed <j) are 
constants over each element and satisfied the 
integral equation at the midpoints of each ele- 
ment. In the numerical evaluation of the inte- 
grals over St» and S-a> we used N» elements. A 
satisfactory number of algebraic equations are 
achieved by satisfying the integral equation 
at the NB body elements, the % free surface 
elements and setting up equation (35) between 
(j), C cosa and X  sin$ on the element furthest 
away from the body. The resulting linear alge- 
braic equation system can be solved by standard 
methods. 

In addition to find the velocity potential 
<j> it is necessary to find the source density a 
of a two-dimensional source representing the 
body in the farfield. We can write 

% °  G2De 
iojt (36) 

where 

G™S -4 / ^^f»s:;^    (37) dl cosly eoshl(z+h) 
J2D" " J   cosh lh(l tant   T— 

o & 
By an asymptotic expansion of (36) and (37) we 
find a form of the velocity potential which 
ressembles (35). This enables us to determine Q. 
We can write 

PC  i(a-s-) ,  ...    kh 
°= fe e   2  (tanh kh + c^sh^kh )     (38) 

The numerical procedure has been tested 
out by Zhao (1984). He found satisfactory agree- 
ment with the results by Bai & Yeung (1974) and 
Keil (1974) for the added mass and damping co- 
efficient. Zhao also found that in the normal 
case one could use 4-8 elements on Sg, 20-30 
elements on Sp, 30 elements on Soo and that the 
y-coordinate of the vertical control surface 
Soo could be set equal to 3-5 times the breadth 
of the body. 

Another necessary part of the 3-D numerical 
solution is to find the two-dimensional steady 
potential (j) in the near-field. We have to know 
that to evaluate m3- This means that we have to 
find the solution to the boundary value problem 

32<j>      32<f 
By2" +  9z7 

0  as   z=0  and  -h 

3i = nl °l SB . . 
This is done by writing 

3W, 
2^(yis zx) -/  (Jl^^ds 

(39) 

(40) 

Here 
■n = -|_co 

Y= I      (log/(y1-y)
2+(z1-z-2nh)

2 

n=jo 

2 2 
+ log/(yx-y) +(z]+z-2nh) (41) 

The numerical solution technique is similar as 
for the two-dimensional added mass and damping 
problem. The quantity we want to calculate is 

= _ 3_ 3* 
m3   3n 3z " 

This is done by first evaluating j^  by using 
that 

(42) 

M = ±.- f     (n 
3z ~ 2TT '     Kn: 

3f 
3z| 

3 
3zx 

■5—) ds 
an 

(43) 

In order to calculate 1113 we evaluate 37. in two 
different points along the two-dimensional 
normal 

3_ 3$ ~ 
3n 3zn 

(ü-)2-(^-) v3z. Sz^l 
(44) 

In order to control our calculations of m^ 
we have compared with the analytical solution 
for a circular cylinder in infinite fluid.  The 
n -value was constant in this case.  Further we 
have compared with the local solution close to 
the keel of a rectangular cross-section at very 
shallow water depth.  In the case of constant 
n this local solution is like a corner flow. 
ll  is then possible to show that 

m_ - h-D 
(45) 

where D is the draft of the section.  In addi- 
tion we have compared with the fact that for 
any water depth and for any symmetric two- 
dimensional body shape with vertical sides at 
the water line it is possible to write 

(46) J m,ds = 2n^ 

B Here n is evaluated at z=0, y=B/2 
B is the beam of the cross-section 

Further 
The inte- 

gration is over the mean wetted body surface. 
Zhao(1984) has found that the numerical 

results for m, is very sensitive to how many 
elements is used, but not very sensitive to how 
many images are used (see equation (41 )) and 
how large n - n  (see equation (44 )) is. 
Zhao found Ehat choosing one of the points used 
in the calculation of m to coincide with the 
midpoints did not give satisfactory results. 
Instead he found it necessary to keep the 
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points a certain distance from the elements. As 
an example this distance could be chosen to be 
3% of the draft plus 25% of the element length. 
In practise it seems necessary to use at least 
50 elements on half of the cross-sectional sur- 
face.  This is approximately five times as many 
elements to calculate m_ as to calculate the 
two-dimensional added mass and damping coeffi- 
cients.  The reason why we need more elements 
to calculate m is that m, involves calculating 
a second derivative of a potential which require 
higher accuracy then calculating the potential 
itself.  The reason why it is dangerous to keep 
the control points to close to the elements 
must be associated with that (J) is assumed to be 
a constant along the element.  This means that 
the second derivative of $ along the element is 
zero. Strictly speaking Laplace equation then 
implies that the second derivative with respect 
to n is zero.  This leads us into inconsisten- 
cies and indicate difficulties in calculating 
second derivatives. We feel as our numerical 
results show, that the difficulties in calcu- 
lating the second derivative is more pronounced 
locally and that the numerical error dies out 
when we come a certain distance from the ele- 
ments.  This discussion indicates that we had 
been better off by assuming higher order ele- 
ments for instance represented by_a second 
order polynomial and by assuming <j> to vary like 
a second order polynominal over each element. 

The fact that at least 50 elements seem 
to be necessary on S  in the two-dimensional 
calculations of m, has certain consequences 
for complete three-dimensional calculations of 
m,.  It indicates that approximately 2000 ele- 
ments is necessary on the ship surface in a 
three-dimensional calculation of m,.  This is 
certainly far beyond what is necessary in a 
three-dimensional calculations of added mass 
and damping at zero forward speed. 

At the moment we feel that our calcula- 
tions of m, is not completely satisfactory. 
Our results show that even if we use 50 ele- 
ments we may in same special cases be 50% 
wrong in our estimates of m„. This indicates 
that the calculation procedure for m, require 
further studies. 

5. THREE-DIMENSIONAL ADDED MASS AND DAMPING 
COEFFICIENT  

In order to find the added mass and 
damping coefficients for the total ship we can 
use relationships derived by Ogilvie and Tuck 
(1969). This means 

A. .=Re[■£=■//   (iio <j)j   n.-U m.   <|>,)]ds 
XJ coz  Sg i i     J 

B. - = Im [-r-^r- J7(iü)<t>: n.-U m.<f>-)]ds       (47) 
J-J ^ —W)      - J    1       -L  J 

B 

If we want to evaluate added mass and damping 
coefficients on parts of the ships we cannot 
directly use equation (47). We have to add 
some terms. Let us say we want to evaluate 
force on a strip of the ship between a cross- 
section at x=x_ and x=x ., we will find that 

... .   - n       n+1 
the additional terms are 

"fc&'ijJ and ^^tij] 

n+1 

where 

tij = V  H-   n. dl] J 
u 

6. NUMERICAL RESULTS. 

We have analyzed numerically the added 
mass and damping coefficients in heave and 
pitch for a Series 60 ship with C = 0.7.  This 
is the same ship that Gerritsma and Beukelman 
( 1982 ) presented experimental results for. 
For infinite water depth we have compared our 
numerical results with Newman and Sclavounos 
(1980) results for zero forward speed and 
Fn=0.2.  The agreement between our results and 
Newman and Sclavounos results for zero forward 
speed is satisfactory.  This applies both for 
the Unified theory and the strip theory. The 
results of the comparison for Fn=0.2 are some- 
what mixed.  This is probably connected with 
the calculation of the m_-factor.  The nu-fac- 
tor (see equation ( 42 )) is associated with 
forward speed effects and does not influence 
the results for zero forward speed.  Newman and 
Sclavounos state that the strip theory approach 
represent a significant overprediction of m^ at 
the ship ends.  They avoid this problem by as- 
suming a linear variation of m, within 5% of 
the ship length away from each end and assuming 
m,=0 at the ends.  We should note when discus- 
sing this that it is at the ship ends that m„ 
is important.  The way we do our calculation 
is to use the m,-values according to our two- 
dimensional calculation procedure.  This is 
consistent with the theoretical formulation, but 
may not represent a more correct physical way 
to represent the flow than Newman and Sclavou- 
nos did.  Our m,-values are calculated at half 
stations, i.e. we calculate them at st 0.5, 
st 1.5   , st 19.5.  The offsetpoints at 
the half stations are obtained by a linear in- 
terpolation between offsetpoints at two conse- 
qutive  stations with integer number.  The lat- 
ter information is also used to calculate the 
n1 - component of the surface normal vector at 
the half station.  In the calculation of m we 
have used 56 body elements on one half cross- 
section. The corresponding number we used in the 
calculation of two-dimensional added mass and 
damping was 14. 

The results for the added mass and damping 
coeffisients in heave and pitch are presented 
in Fig. 8.  The agreement for the two different 
computations of the Salvesen Tuck-Faltinsen 
method is satisfactory.  Further if we use 
m =0 in an Unified theory calculation the 
agreement is generally satisfactory with New- 
man and Sclavounos' results from Newman and 
Sclavounos (1980) results.  If we examine the 
force distribution along the ship we find that 
the difference between our results for m =0 
and m» =t=0 are most pronounced at the ship ends. 
By cgmparine with experimental results it seems 
like our results for m,±0 give worse results 
than the Unified Theory for m =0 and the STF 
method. The- difference between the two latter 
approaches is generally not significant. 
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We have also compared with Gerritsma and 
Beukelman's numerical and experimental results 
for finite water depth. First we combined the 
Salvesen - Tuck - Faltinsen method with two- 
dimensional added mass and damping coefficients 
on finite water depth. The numerical procedure 
outlined earlier in the text was used. Our 
calculated results by STF method was found to 
be consistent with Gerritsma and Beukelman's 
results. It is somewhat surprising to see how 
good strip theory agrees with the experimental 
results. There occur disagreements, in par- 
ticular for the lowest tested frequency. We 
have tried to use unified theory in these 
cases in order to see if better agreement can 
be obtained between theory and experiments. 
Our experience from deep water at forward 
speed should not indicate this. 

In the calculation by the "Unified Theory" the 
evaluation of the far-field kernel function 
f(x) is an essential part. It is shown in 
Appendix A that f(x) can be divided into the 
sum of the infinite water depth kernel 
function and a correction factor g(x) for 
finite water depth (see equation (A.8)). The 
calculation of the double integral p(x) in 
the g(x)-function is quite troublesome. The 
p(x)-function is defined as 

2TT 

>(x) = ~f  du / (x tanh h-K 

ixXcosu ,, 
e      dX 

where 
2 

K = (co+UXcosu - iu) /g 

(48) 

(49) 

The first part of the integral associated with 
the A/( tanhXh-K)-term will be referred to as 
the finite depth part of the integral. The 
last part of the integral will be called the 
infinite depth part. Depending on the angle u 
there will exist singularities along the real 
X-axis. These singularities X. are defined by 

X. tanh X. h - K = 0,    i = 1, 2      (50) 
1      x 

X. - K = 0, 3, 4 (51) 

If T> 1/4, the X and X -values exist when 
21T-U > u > u = arc cos fc) . If T < 1/4, 
u =0? The X and X values exist for 2Tr-uQF 
>°u > u > u . The u -value has to be 
found numerically for°each water depth, fre- 
quency and ship speed. As long as there exist 
singularities along the real X-axis, we use 
residuecalculations to find the value of the 
X-integral. This means that for UQ < u < UQF 

and 2TT-u > u > 2TT-U  we use the residue 
theory only with the°part of the integral which 
is associated with the deep water solution. 
By means of the Rayleigh viscosity  we find 
out how to go around the singularities. If 

xcosu> 0 we introduce a ray C along the 
angle TT/4 in the complex plane. If xcosu <   0, 
the ray C is selected along the angle -TT/4 
in the complex X_plane. By means of the residue 
theorem we rewrite the X~integral as the sum 
of an integral along the ray C and possible 
residue contributions from the singularities 
along the real X_axis. By doing this we have 
outruled any other singularities between C 
and the positive real \-axis. In the deep 
water case it is easy to see that this is 
true by means of the analytic solution for 
\..  In the finite water depth case we have 
not proved this to be true. But numerical 
search processes indicate that there does not 
exist any singularities between C and the 
positive real A~axis as long as real-valued 
singularities exist. Generally speaking 
one of the solutions of (50), let us say 
X9 and one of the solutions of (51), let us 
say \,  will have a very high value. But it is 
easy to see from (48) that the residue con- 
tributions from \.  and A^ will approximately 
cancel if X2

h is larger than some specific 
value B. In our calculations we set B=7. 

The consequence of this cancellation is that 
we do not have any numerical problems associ- 
ated with highly oscillatory integrals. When 
there do not exist real singularities we per- 
form a direct numerical integration of the 
X-integral. 

We have to be careful in the u-integration 
when u is close to UQ, UQF, 2TT-UO, 2W-U  . It 
is the finite depth part of the integral 
which cause difficulties around U=UQF and 
U=2TT-U  . The infinite depth part cause diffi- 
culties around u=u and u=2Tr-UQ. To exemplify 
this let us discuss the finite depth part of 
the integral around U=UQF. For u=u +£ where 
£ is a small positive quantity, it is possible 
to show that the singularities X^, i=l,2 can 
be written as 

X. ~ X -ik  /e^ 

where A can be analytically determined and A
Q 

is the double pole at u=u  . It is further 
possible to show that the residue part of the 
X-integral of the finite depth part has a 
square root singularity in the angle u-u^ 
near u=u  . When u=u -£, the singularities 
of the finite depth of the integral will be 
close to the real axis at 

X. ~ X  + iA/e 

We can again show that there is a square root 
singularity of the finite depth part of the 
integral close to u=u  . The behaviour of 
the finite depth part around u=2'"'-u  is 
similar as around u=u _. A similar discussion 
can be done for the infinite depth part of the 
integral around u=u and 2lr-u . 
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The numerical problems with the square root 
singularity in the finite depth part of the 
integrals around u=u  is taken care of by 
introducing a new local integration variable 
v defined by 

V2 = u - u _ 
oF 

In the v-integration there are no singulari- 
ties. Similarly were done around the other 
critical u-values. 

The far-field kernel function f(x) is used in 
the integral equation given by (31) and (15). 
The functional C(x) in (31) can be written as 

Q(x)=Zcoq(?)(fd(x-?)+g(x-ü)dC (52) 

where f,(x) is the deep water kernel (see " 
equation (A8)). In view of the 1/x singular 
term in fd(x) we apply partial integration 
to (52) such that Q can be written as 

CO CO 

<Kx)=L,q,<S) Fd(x-C)d5+ /q(£)g(x-t;)dc; 

where 

fd<x> = dF 

so large as we saw for infinite water depth 
between the results with nu=0 and nu+O. Rela- 
tive to experimental results A„„, B^ and A,, 
from "Unified Theory" compares Better than the 
"Strip Theory" results. The "Strip Theory" 
gives best results for B_„ and B„_. For the 
other coefficients there is no clear answer 
on what theory is in best agreement with 
experimental results. 

CONCLUSIONS 

A theoretical formulation of added mass and 
damping of a ship at forward speed in finite 
water depth is presented. The "Unified Theory" 
concept by Newman and Sclavounos has been 
generalized to finite water depth. The far- 
fields solution has been tested with satisfac- 
tory results by comparing with asymptotic 
expressions for single sources. It is pointed 
out numerical difficulties in calculating  the 
interaction term m„ between steady forward 
speed and oscillatory motion. The calculation 
of the far-field kernel function in finite 
water depth is complicated. It is difficult 
to conclude that "Unified Theory" gives better 
results than "Strip Theory" in finite water 
depth. 
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APPENDIX A 

The Fourier transform of the three-dimen- 
sional Green function due to a travelling, 
harmonically oscillating source on the free 
surface is given by / 2 „2, , s 

■     r  At     i£y coshA +£ (z+h) 
G*(k;y,z)=lim -2 / dl e         y-j—j\ 

y-^-0      -co coshA +£    h 

1/ (^k2+£2"itanhA2+£2 h -   (u+UK-iu)2A 

(A.l) 

The two-dimensional Green function for the 
harmonically oscillating source G2D(y,z) = 
G* (0,y,z) is given by 

cosly coshl(z+h) 
G9n(y,z)=lim -4 / 

2D 
lim -t  i i 2 
y-K) o  cosh£h(£tanh h-(u)-iu)   ) (A.2) 

The  expression G2])-G2D  can be  found  in B0rresen 
(1984)   and  is  given by 

G2D '  G2D =  2A COS£°'y (A.3) 

where 

A=4iri 
I h cos£    (z+h) 

o o 

cosh£oh(u
2h/y+(£oh/cosh£oh)2) (A,4) 

u"  = £ y  tanh I h (A.5) 
o o 

The kernel function f(x,y,z) is defined as 

f(x,y,z)= 27 f  f*(k,y,z)eikX dk        (A.6) 

with 

f (k,y,z)=G (k,y,z) - G^y.z) (A.7) 

In B<jrresen  (1984)   it  is  shown that f(x,0,0) 
can be written as 

f(x,0,0)=fd(x,0,0)   + g(x) 

where 

fd(x)- 

where 

"fx(x)+f2(x) x > 0 

f2(x) x < 0 

(A.8) 

(A.9) 

1    o lkx 
fL(x)= -4iC /- /  }   dk(h1(k)-l)e 

-™    k2 

-4i — (sink.x+sink0x) 
x 1 t- 

-2iri  S(x)   - -(cosk.x +  cosk2x)        (A.10) 

f   (x) = 2i{   /  +  /  )dk(h1(k)-l)e 
ikx 

o       k. 

+ 2i/    dk(ih  (k)-l)eikx      forUJL<l/4 
k k3 

(A.11) 

i if -v TJw , 
f2(x)   =  2i  /  dk^^^-De1^     for — >   1/4 

(A.12) 

and 

h^k)  = B(k)/     ((T(k)-1); 

h2(k) = g(k)/(i-e (k)): 

(k)   = (co+ukr/g|k| (A.13) 

k  and k  are the roots (kx < k2) of the 
equation g(k) = -1. k3 and k4 are the roots 
of g(k) = 1, and 
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2ir °° 
g(x) = lira - -    f  du / (—-TTT-jr-T^-) »IT AtanhAh-K X-K p-K)     o o 

lxAcosu dA+ <5(x) P 

where 

P - lim 2 /dt/(|£| tanh |£| h - K ) 

p+0  "^ 

-lim 2 / d£/( £ - K ) 1 '    o 
U-K) 

K = (u+UXcosu - ip) /g 

(A.14) 

(A.15) 

(A.16) 

I 
O 

-iCOO -600 <600 
X 

K = (u - ip) /g (A. 17) 

Figure 1. Description of coordinate systems. 

Figure 2. Infinite depth. Sample plot of wave 
crests for T = 0.2548. The source is located 
in (0,0). Source speed U = 5 m/s, frequency 
to = 0.5 rad/s. The arrows indicate the indi- 
vidual wave formations' direction of travel 
relative the source. The numbers denotes 
"crest" number from source point. The x and 
y dimensions are given in meters. 
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Fig. 3. Infinite depth. Sample plot of wave 
crests for T = 0.1529. Source speed Ü = 3 m/s 
frequency to = 0.5 rad/s. 
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Figure 4. Finite depth. Sample plot of wave 
crests for T = 0.2548. Source speed U = 3 m/s, 
frequency ill ■ 0,5 m/s. U//gii = 0.6 where h is 
the water depth. 

Figure_6. The non singular part of the finite 
de"pth kernel function f(x) for T - 0.2, Fn - 
0.2 and L/h = 31.25. (L = vessel length, 
h = water depth, F = Froude number). 

Figure 5. Finite depth. Sample plot at wave 
crests" for T = 0.2548. Source speed U = 5 m/s, 
frequency oo = 0.5 m/s, U/v^gh = 1.0. 

Figure 7. The non singular part of the finite 
depth kernel function f(x) for T = 0.7, 
F = 0.2, L/h - 31.25. 
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Fig.   8.   (continued). 
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Fig.  9.   (continued). 
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UNSTEADY WAKE VELOCITIES DUE TO WAVES AND MOTIONS 

MEASURED ON A SHIP MODEL IN HEAD WAVES 

A.B. AALBERS AND W. VAN GENT 

ABSTRACT 

To specify design criteria for a cavi- 
tating propeller of a ship in waves, infor- 
mation about the unsteady velocities in the 
wake of a frigate type ship model proceeding 
in waves has been investigated. The NSMB wake 
field Laser-Doppler velocimeter was used to 
investigate successively two cases in head 
waves, viz.: 
- model towed, while restrained at static 

equilibrium draught and trim (captive 
model); 

- model towed, while completely free in its 
six-degrees of freedom (free model). 

The results are decomposed in effects of 
undisturbed wave orbital motion, ship model 
motion, i.e. heave, pitch and surge, and dis- 
turbances due to the presence of the hull. The 
latter part is also calculated by means of a 
three-dimensional diffraction theory. A com- 
parison is made with calm water wake field 
data. 

To investigate the effect on the propel- 
ler, loading and cavitation calculations have 
been performed for various conditions in the 
unsteady wake. 

1.   INTRODUCTION 

1.1    General 

Current design procedures for propellers 
make use of the wake data obtained from model 
tests in calm water. However, for ships oper- 
ating in areas such as the North Atlantic 
Ocean where in some seasons Beaufort 7 sea 
conditions are more the rule than the excep- 
tion, the propeller designer should consider 
the unsteady contributions to the wake field 
which are caused by the waves and the wave 
induced ship motions. The combined effect of 
these two contributions has been investigated 
in the past by means of measuring load fluctu- 
ations on the propeller of ship models travel- 
ling in waves. In this respect one can refer 
to information by Van Sluijs (1972) and by 
Jessup and Boswell (1982). 

For a non-moving 
(captive) 
hull in waves 

In ship motion theory it is common that 
for the calculation of the response in waves 
the effects of the wave forces on the non- 
moving hull and the motion induced calm water 
reaction forces are linearly superimposed. Ap- 
plication of the linear superposition princi- 
ple to the problem of the unsteady wake, the 
following contributions may_be discerned: 
- undisturbed wave      ~" 

orbital velocity; 
- velocity due to wave 

reflection on the hull; 
- radiated wave velocity 

due to ship motions      For a moving 
(motion diffraction);     hull in calm 

- relative motion water 
velocity.           _, 

If these contributions may be superimposed on 
the calm water wake field, computer calcula- 
tions to study the effect of waves and ship 
motions on the propeller design are possible. 

1.2 Propeller Load Fluctuations 

Measurements were carried out by Van 
Sluijs (1972) on the shaft thrust fluctuations 
of an O.B.O. carrier type vessel in regular 
and irregular waves. It was concluded that the 
surge motion was an important influence. It 
was not possible from these tests to determine 
the extent to which wave particle velocity or 
ship motion contributed to the thrust fluctu- 
ations. 

Jessup and Boswell (1982) tested a cap- 
tive model in waves and carried out forced 
pitching tests in calm water and waves. From 
propeller blade load and bearing load measure- 
ments and comparisons with calculations they 
concluded that the wake field contributions 
due to wave particle velocity and pitch mo- 
tions may be linearly superimposed. Yet, it 
should be noted that in their calculations 
only the pitch induced relative motion and the 
undisturbed wave orbital motion contributions 
were considered. Hence, the contributions from 
other modes of ship motion and the effects of 
radiation and wave reflection were not taken 
into account. 

A.B. Aalbers and W. van Gent, Maritime Research Institute Netherlands (MARIN) 
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Helle and Hageman (1979) used the data of 
Van Sluijs (1972) to calculate velocity fluc- 
tuations in the wake field of the O.B.O. car- 
rier. The propeller blade loads due to these 
velocity fluctuations were considered to have 
only a marginal effect on the fatigue life of 
the propeller, taking into account the ex- 
pected range of sea conditions to be met. In 
this investigation not only the radiation 
effects but also the important wave orbital 
motion contribution were disregarded. 

It may be concluded that none of the 
above mentioned authors give a complete pic- 
ture for the case of a ship moving in waves. 

1.3 Design Aspects 

The present investigations provide mea- 
sured and calculated data for the varying part 
of fluid velocities in the wake field of a 
frigate type ship in waves. The validity of 
the superposition assumption was judged by 
comparing the mean value of the advance speed 
in waves with the calm water results and by 
comparing results for a captive model with 
those for a free'moving model. The reliability 
of the Laser-Doppler velocimeter equipment was 
investigated by comparing the calm water wake 
field measured on a scale 1 to 26 model with 
pitot tube measurements on a geosim model at 
scale 1 to 17.15. 

The measurement accuracy was analyzed 
using linear error theory. The results are 
discussed in Section 2.4. 

In Section 4 of this paper it is con- 
cluded that the calculation method compares 
well with the measurements. This means that 
the calculated wake field variations can be 
used in a propeller design program. 

When in a propeller design attention has 
to be given to the non-uniformity of the 
ship's wake, the design procedure is based on 
theoretical approaches. Data on systematic 
series of propellers are insufficient as a 
base for wake adapted propeller design. In 
theoretical computations the local inflow of 
each propeller blade section is taken into 
account. In calm water, where the wake field 
is steady, such computations have become parts 
of standard procedures for propeller design. 
These parts can be formulated as direct design 
criteria or as intermediate analyses of the 
design of which the results are used as a re- 
fined criterium in a subsequent design stage. 

In the present case of a ship in waves, 
the propeller design problem is even more 
complicated. Besides non-uniformity also un- 
steadiness of the wake has to be considered. 
In this paper the treatment of the (low fre- 
quency) unsteadiness is considered as an 
extension of the forementioned standard proce- 
dures. This requires a careful assessment of 
the local values of the velocities and pres- 
sures at the propeller disc. This is under- 
taken in Section 3. Application of the NSMB 
propeller calculation program for design and 
analysis is then valid to investigate the 
consequences for cavitation and dynamic 
pressures. 

2. MEASUREMENTS 

2.1 Model Tests 

Regular wave tests were carried out for a 
frigate type ship model at a linear scale of 1 
to 26 in the Seakeeping Laboratory of the 
NSMB, which is described by Van Lammeren and 
Vossers (1957). The ship particulars and a 
small scale body plan are given in Table 1 and 
Figure 1. 

Table 1 - Particulars of Ship and Propellers 

Designation Symbol Unit  a1" 

Length between perpen- Lpp m 95.0 
diculars 
Breadth moulded B m 13.0 
Draught even keel T m 4.0 
Displacement weight A t 2234.0 
Block coefficient CB - 0.44 
Waterplane coefficient Cw - 0.77 
Midship section coef- CM - 0.70 
ficient 
Centre of gravity aft LCG m -2.195 
of Station 10 
Centre of gravity KG m 5.76 
above base 
Metacentric height W m 1.50 
Longitudinal  radius kyy m 23.28 
of gyration 
Transverse radius XX 

m 5.20 
of gyration 
Natural  roll  period 

> e 

s 9.3 
Natural  pitch period s 4.3 
Natural  heave period TZ 

s 4.5 

Propeller diameter D m 3.96 
Pitch ratio at 0.7 D P0.7/° - 1.35 
Expanded blade area 
ratio 

AE/A0 - 0.47 

Number of blades Z - 4 
Direction of rotation Right- 

handed 

Propeller disc 

Figure 1 - Profile and Body Plan of Frigate 
Type Model 
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Two series of tests were carried out,   Table 3 - Measurements 
viz.: 
- tests in calm water and regular waves with a 

captive model; 
- tests in calm water and regular waves with a 

free (towed) model. 
In both test series the Laser-Doppler veloci- 
meter (L.D.V.) technique was applied. The ship 
speed corresponded to 20 kn. (10.288 m/s) in 
the appropriate cases. A test review is given 
in Table 2. 

Table 2 - Test Review 

Wave conditions 

Speed Test 
(kn.)    Amplitude   Period   series 

(m)    (s) 

20 
20 
20 
20 

7.0 
9.0 
12.2 

Number of 
measurement 
locations 
in pro- 

peller disc 

17 
16 
17 
17 

SiJHVJ Relatl've 
Quantity       ™£ Unit   f»»    accuracy senes 

s       <Wl/Q 

Test 

Ship speed vs m/s >10 1% 1, 2 

Wave c m >10 2% 1, 2 

Heave z m >10 2% 2 

Surge X m >10 2% 2 

Pitch e deg. >10 2% 2 

Axial wake 
velocity 

vx m/s 10 - 5 4% 1, 2 

Transverse 
wake 
velocity 
components 

vz m/s 

m/s 

5 - 1 

1 

10% 

10% 

1 

2 

20 
0 
0 
0 
0 
0 

20 
20 
20 
20 
20 

7.0 
7.6 
8.8 
9.8 

12.0 
7.0 
7.6 
8.8 
9.8 

12.0 

DIAPHRAGM + LENSES 
SIGNAL PICK- UPS 
( Vx AND V,) 

The calm water runs were carried out for 
two purposes: 
- to investigate the reliability of the L.D.V. 

for wake measurement on the small model 
(1:26); 

- to have a data base for the investigation of 
the superimposeability of the unsteady (wave 
induced) contributions to the calm water 
nominal wake field. 

The reliability of the L.D.V. was judged by 
comparing the results for the small model with 
five-hole pi tot tube measurements on the large 
model (1:17.15). 

2.2 Measurement Signals 

The measurement signals which were re- 
corded during the two test series are pre- 
sented in Table 3. For the first test series 
the standard L.D.V. equipment as described by 
De Bruin and Versmissen (1979) was used. For 
the second test series - with the free model - 
a lightweight L.D.V. system was developed 
which could be mounted in the model. The prin- 
ciples are shown in Figure 2. The L.D.V.'s can 
measure water particle velocities in two or- 
thogonal directions in a plane perpendicular 
to the axis of the laser beam. The measurement 
method is a forward scatter system in the ref- 
erence beam mode and the location of measure- 
ment is well defined as the focus point (about 
1 mm2) of the triple laser beam. 

j-LASER B 

ADJUSTABLE MIRRORS 
ON MAGNETIC SUPPORTS 

Figure 2 - Lightweight L.D.V. System 

In Figure 3 the measurement locations in 
the propeller disc are indicated. These loca- 
tions could be adjusted by shifting the re- 
flection mirror arrangement of the L.D.V. 
system. 

Figure 3 - Locations in the Propeller Disc 
• and o Test Series 1 

o Test Series 2 
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In the second test series the ship mo- 
tions were measured by an optical tracking 
system (for heave and surge) and a gyroscope 
(for pitch). 

During the measurement runs at forward 
speed, the carriage four-quadrant thyristor 
electromotor control kept the speed constant 
at the required value. 

The wave height was measured by a resis- 
tance type wave probe. 

2.3    Data Analysis and Reduction 

The measurement signals of the tests in 
waves were subjected to harmonic analysis to 
determine the amplitude and phase lead of the 
signal components up to the fifth harmonic. 
Only the harmonic component with a frequency 
equal to the wave encounter frequency was con- 
sidered. The amplitude of the higher harmonics 
were negligible. Furthermore, the mean value 
of all  signals was determined. 

All data was scaled up to prototype val- 
ues according to Froude's law of similitude. 

The sign convention and system of co- 
ordinates are given in Figure 4. Note that the 
ship system of co-ordinates is earth-oriented 
with its origin in the centre of gravity of 
the ship, while the wake velocity system of 
co-ordinates is ship-fixed. 

Figure 4 - System of Axes for Ship Motions and 
for Wake Velocity Components in 
Measuring Location P  (xp, yp,  z ) 

2.4    Accuracy of the Measurements 

During the tests each signal is digitized 
and recorded on magnetic computer tape. Table 
3 presents for each recorded signal Q the mea- 
surement accuracy and signal to noise ratio 
denoted by q and s respectively. 

For   the   signals   on   tape  which  were   sub- 
jected   to   the   harmonic   analysis   (see   Figure 
5),    the   analysis   accuracy   in   amplitude   and 
phase   depends   on   the   signal   to   noise   ratio. 
The following values are adopted: 
? > 10      c      lampl  = 0.01 Q     q hase =    5 deg. 
10 V < 5      "ampl = 0-10 Q      We = i° de9- 
s - 1 lampl  = °-50 Q     qPhase = 20 deg- 

VY 

m/s 
°05lHL^yM^^^ 

Figure 5 - Example of Fit of First Harmonic 

The non-dimensional values for the un- 
steady advance speed contributions divided by 
the ship speed are given per unit wave ampli- 
tude. The phase lead is given with respect to 
the wave measurements. The individual accuracy 
limits from measurement and analysis have to 
be combined to an overall accuracy limit for 
the presented quantities. Linear error anal- 
ysis was applied to obtain the following val- 
ues: 
- Large amplitude wake variations 

(V/V-c. >  0.02): ''ampl 
''phase 

Small amplitude wake variations 

0.11 
12 

Q 
deg. 

(V/V-c. <0.02): 0.51 
31 

Q 
deg. 

^ampl 
''phase 

In both test series the transverse wake varia- 
tions were small in amplitude since the tests 
were carried out in head waves. Hence, the er- 
ror margins were relatively large for those 
signals. For these reasons the discussion of 
the results in this paper was restricted to 
mainly the axial wake variations. 

At several measurement locations the wave 
tests were repeated to investigate the repro- 
duceability. In general the reproduction was 
within the acuracy limits, except at the mea- 
surement locations which were in the wake of 
the struts. Those repeat measurements showed 
some scatter because the advance speed gradi- 
ent is relatively large. Hence, small differ- 
ences in model trim or laser beam focus may 
lead to 20 or 30 per cent difference in mea- 
surement value. In this paper the average val- 
ue is given in case more than one test result 
was available. 

3. THEORY 

3.1 Motion Response 

In order to calculate the motions of a 
ship in waves, a set of linearized equations 
of motion are solved in the frequency domain. 
These equations can be written as follows: 
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j=l 
z    [- u (Mk- + ak,) cos(cot + Ej) + 

u b.. sin(ut + e.) + 

+ Ckj  COsUt + ej)]^  = 

Fak cos(wt + 6k)       for k = 1 to 6 (1) 

in which: 
mk<  = inertia matrix 
ak^  = added mass matrix 
bkj  = damping matrix 
ckJ  = restoring matrix 
Fak  = excitation force amplitude 
£ai-  = motion amplitude 
to   = (circular) oscillation frequency 
6^,64 = phase angles. 

The coefficients in the equation of 
motion follow from the ship particulars and 
from the hydrodynamic (motion induced) reac- 
tion forces and the (wave induced) excitation 
forces. These forces were calculated by means 
of a computer program based on three-dimen- 
sional diffraction theory described by Van 
Oortmerssen (1976). 

Assuming the fluid irrotational and ideal 
the flow field around the ship at forward 
speed may be described by the superposition of 
a set of linear potential contributions (see 
Huijsmans and Dallinga (1983)): 

s(x,t) Vsx + *v^ + *'^e 
-iut (2) 

in which: 
x = space co-ordinate in an earth-oriented 

system of axes with its origin in the 
centre of gravity G 

t = time 
Vs       = ship speed 
* (x) = steady flow field potential  due to 

v forward speed 
4>(x)    = amplitude of unsteady flow field po- 

tential  due to waves and ship motions. 
For the calculation of the ship motions *  (x) 
will   not be  considered  since  it only  contrib- 
utes   to   the  average  values   (viz.   the  trim  and 
sinkage).   The   diffraction   theory   assumes   in- 
finitesimal   motions  so  that the earth-oriented 
system   of   axes   coincides   with   a   ship-fixed 
system   of   axes.   The   unsteady   flow   field  con- 
tributions,  i.e.  the potentials due to surface 
waves  and  diffraction may then be  superimposed 
directly    although    they    are    defined    in    an 
earth-oriented   and   in   a   ship-fixed   system   of 
axes respectively: 

4>(x) = - iu 5a{ + 0(x) + *7(x)} + 

id)    T.    <t>.(x) 5   . 
J=l    J aj 

in which: 
5a       = wave amplitude 

(3) 

<|>X(x) = incident wave potential 
$j(x.) = reflected wave potential 
((/(x) = ship motion diffracted wave potentials 

3 (5=1  .... 6). 

Salvesen, Tuck and Faltinsen (1970) showed 
that the motion related velocity potentials 
(j).(x) may be expressed explicitly in their 
zero speed counter parts ^(x): 

<b.(x) = 4>»(x) 
J J 

for j = 1 

♦ 5(x) = *|(x) +^-*3(x) 
e 

H{*]  =*6(x) "l|-*2{x) 

Note that the oscillation frequency u of the 
ship is equal to the encounter frequency we, 
which is related to the wave frequency <Dg ac- 
cording to: 

(4) d)e  = dig   -  K   Vs  COS  y 

in which: 
K = the wave number = 2ir/A 
X = the wave length 
u = the wave direction. 
In the evaluation the reflected wave contri- 
bution <|>7(x) is treated in a similar way as 
the motion diffraction potentials,  so: 

♦ 7(x)  = ♦ $(*) (5) 

In the three-dimensional diffraction the- 
ory program the zero speed potentials are cal- 
culated using a source-sine method in which 
the ship is represented by a large number of 
facet elements. The pressure p(x,t) on each 
element follows from the linearized Bernoulli 
equation: 

p(x,t) at V T v] *(x,t) 
S   X 

(6) 

in which: 
p_ = the density of water 
i = the unit vector in x-direction. 
Tfte wave induced excitation forces and the 
hydrodynamic reaction forces are obtained by 
integrating the linearized pressures over the 
mean wetted area of the hull. After expressing 
the reaction forces in terms of added mass and 
damping coefficients the equation of motion 
(1) can be solved. 

3.2 Local Fluid Velocity 

In order to obtain the amplitude of the 
oscillating local fluid velocity at a location 
x in the propeller disc the unsteady poten- 
t?als are evaluated: 

V'(xp) = v ♦(Xp) (7) 

in which V(x ) is the unsteady fluid velocity 
amplitude inp the earth-oriented system of 
axes. The measured unsteady fluid velocity is 
given with respect to a ship-fixed system of 
axes while the ship motions are finite. So the 
relative velocity due to the local ship motion 
with respect to the earth-oriented system of 
axes has to be included: 

T(xp) = v *(xp) - 5a(xp) (8) 
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in which the local  ship motion amplitude 
£  (x )  is   calculated   by   combining   the   rigid 
bodypmotions in a linear way. 

The calculation scheme for the velocity 
amplitudes of the wake field is shown in the 
review below: 
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WAVE 

POTENTIAL 
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3.3    Local  Pressures 

For the propeller design calculations the 
pressure at the propel 1 er di sc has to be de- 
termined in order to establish its cavitation 
behaviour. To this purpose the Bernoulli equa- 
tion was evaluated taking into account the un- 
steady flow as well as the steady flow around 
the ship. 

In an earth-oriented reference frame mov- 
ing with the ship mean speed the Bernoulli 
equation for a potential  flow is: 

p(x,t) + 0.5 P(v*(x,t))2 + Pg z(t) + 

+ P jr *(x,t) = constant 

in which: 
p(x,t) 
9 _ 
*(x,t) 

the local  pressure 
the acceleration due to gravity 
the total  fluid potential  given in 
equation (2) 

z(t) = the vertical co-ordinate. 
The constant at the right-hand side of the 
equation can be derived from the conditions 
far ahead of the ship. Assuming the effects of 
the undisturbed waves to be linear and sinu- 
soidal the velocity potential at infinity 
becomes: 

*(»,t) •0(-.t)  - Vsx 

and the quadratic terms are approximated by: 

(v«(-,t))2 u  vs
2 - 2 Vs v*0(»,t) 

The time average of the Bernoulli constant 
equals the constant for the flow without waves 
and therefore the constant follows from the 
condition at the undisturbed free surface 
level, z = 0, where: 

p = pa = atmospheric pressure 

Hence: 

p(x,t) + 0.5 p(v*(x,t))2 + pg z(t) + 

+ P ft «(x,t) = pa + 0.5 P(-VS)
2 (9) 

The velocity potential in the neighbour- 
hood of the ship consists of two parts, viz. 
the steady potential denoted as * (x) and the 
unsteady part denoted as * (x,tj. The time 
dependent part was determined^ in the diffrac- 
tion theory in a system of axes which - due to 
infinitesimal ship motions - coincides with a 
ship-fixed system. For application in the 
Bernoulli equation the relations between the 
derivatives of the potentials in body co- 
ordinates and earth co-ordinates respectively 
have to be considered. See also Section 3.1 
and 3.2. For time derivatives holds: 

+ f(x,t) v*u(x,t) (10) 

= derivatives in a body frame 

= derivatives in an earth frame 

in which 
D 
üt 
3_ 
at 

5(x,t) = oscillatory ship motion velocity. 
In the linear case the second term at the 
right-hand side of (10) may be neglected, so 
the time derivatives in the two systems of 
axes are.equal. For the spatial derivatives 
holds: 

V'*u(x,t) = v«u(x,t) + 5(x,t) (11) 

in which the left-hand side represents the 
earth-oriented spatial derivative. The steady 
potential in the neighbourhood of the ship is 
given by: 

•s(x) = Vsx + *v(x) (12) 

consisting of the contributions due to the 
speed of the hull and the free surface effect. 
The steady potential contribution to the fluid 
velocity at the propeller disc cannot be sepa- 
rated from the velocity defect created by the 
development of the viscous boundary layer 
along the ship. As this defect is still diffi- 
cult to calculate, the velocity due to 4S is 
preferably taken from experimental results 
(nominal wake measurements). 

Since in the present investigation no 
pressure measurements in the nominal wake are 
available an estimate of the effects of the 
steady free surface wave and of the lack of 
pressure recovery in the viscous wake has to 
be made as follows. The Bernoulli equation for 
steady flow at the free surface is: 

pg + 0.5 p(v$s(x))
2 + Pg c(x) = 

= pa + 0.5 P(-Vs)
2 

or, after linearization: 

V v*s(x) + 9^ (13) 
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in which: 
c(x) = the local free surface elevation. 
The Bernoulli equation for the flow through 
the propeller disc is: 

p(x) + 0.5 p(v» (x) + w) + pg z = 

p3 + 0.5 p(-Vc + wr 
a S 

(14) 

in which: 
w       = the viscous wake velocity defect 
v$ (x) + w = the measurable nominal velocity 

s       in the wake. 
Under the assumption that v* (x) is almost in- 
variant over the propeller disc, combination 
of (13) and (14) at the undisturbed free sur- 
face z = 0 leads to: 

p(x) Pa + pg dx) 

Pa+ pg c(x) 

v*s(x) + w 

(15) 

This indicates that the atmospheric pressure 
may be corrected for the local free surface 
elevation. 

To arrive at the pressure equation for 
the total flow through the propeller disc, a 
modification of (9) is used which reduces to 
(14) in the steady case: 

p(x) + 0.5 P(v*u(x,t) + 5(x,t) + 

v$ (x) + w)2 + pg z(t) + p ff %(x,t) 

= p + 0.5 p(-Vc + wr 
a j 

(16) 

Application   of   (13)   to   eliminate   Vs   in   the 
right-hand side yields: 

p(x,t) - Pa = 

= P[g(dx) - z(t))  -|t*u(x,t)]  + 

-0.5P[(Vn+Vu)2-Vn
2] 

in which: 

(17) 

Vn = (V*s(x) + wj  •  ix 

Vu = (v*u(x,t) + 5(x,t))  • Tx 

So, -(Vp + Vu) is the instantaneous nominal 
advance speed in axial direction and z(t) is 
the instantaneous submergence of the propeller 
relative to the undisturbed free surface lev- 
el. Since |Vn| » |VU| (17) may be simplified 
to: 

p(x,t) - pa = 

P[g(c(x)  - z(t))  -^(x.t)]   -P Vn Vu 

3.4 Propeller Calculation 

The above derived expressions for the 
local velocity and the local pressure were 
applied in a propeller analysis program. The 
hydrodynamic loading is based on lifting sur- 
face theory and has been described by Van Gent 

(1975, 1977); the cavitation and its pressure 
field is based on free streamline theory and 
has been described by Noordzij (1976, 1978). 
The nominal wake field at the propeller disc 
has been taken from the experiments available 
for the large model (scale 1 to 17.15). The 
unsteady contributions to this field were cal- 
culated for a range of regular wave condi- 
tions. The RPM of the propeller was determined 
from the trial prediction for this ship, tak- 
ing into account the wave induced resistance 
increase in the appropriate regular waves 
according to the method of Gerritsma and 
Beukelman (1972). For a stock propeller the 
performance and cavitation behaviour in waves 
were compared with those in calm water in 
order to illustrate the consequences of the 
unsteady wake. 

4. RESULTS OF THE MEASUREMENTS AND CORRELATION 

4.1 Feasibility 

Since the size of the model (scale 1 to 
26) was small, the calm water nominal wake 
fields obtained from the L.D.V. measurements 
at the captive model and the free model were 
compared with the results obtained from pi tot 
tube measurements on a 1 to 17.15 scale model. 

 Pitot tube measurements  (Scale 17.15) 
°   LDV measurements,test series   1 l/Sca|e 26) 
A   LDV measurements,test series  2< 

o 
u_ w 
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I 
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POSITION   ANGLE (degrees) 
360 

Figure 6 - Comparison of Nominal Wake Measure- 
ment Methods - Ship Speed 20 kn. 

From the results presented in Figure 6 it fol- 
lows that: 
- The L.D.V. measurements for the axial and 

the vertical advance speed components agree 
very well with the pitot tube results. 

- The reproduceability of the L.D.V. measure- 
ments of test series 1 and 2 is good; the 
small difference at the position angle of 
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220 deg. may be attributed to the effect of 
the struts (see also Section 2.4). 

- The axial advance speed component measured 
very close to the hull (position angle 180 
deg. at radius 1.89 m) with the L.D.V. 
equipment is consistently lower than with 
the pi tot tube. 

This may indicate scale effect, i.e. a 
relatively greater boundary layer thickness of 
the small model, see Jonk and Van de Beek 
(1977). Since the good agreement at the other 
measuring locations close to the hull (posi- 
tion angles 200 and 220 deg.) does not support 
this supposition, the pitot tube results may 
be in error for this specific measuring loca- 
tion. Yet, the conclusion may be drawn that 
the L.D.V. equipment is quite dependable for 
the intended measurements. 

4.2 Superposition 

In the theoretical approach it is assumed 
that the potentials for the calm water wake 
field and the potentials due to wave action 
and motions may be linearly superimposed. 

The validity of this assumption has been 
investigated for the two test series by com- 
paring the average advance speed in waves with 
the calm water results. The way of thinking is 
that if the average value for an advance speed 
component in waves differs considerably from 
the calm water value, the superposition as- 
sumption should be rejected. Figure 7 shows 
that for test series 1 (captive model) as well 
as for test series 2 (free model) the agree- 
ment between the average value in waves and 
calm water value is excellent. So, in case of 
the captive model test series the undisturbed 
and reflected wave potentials <J>Q and $7 may be 
superimposed on the calm water wake field po- 
tential $s. Using this in the interpretation 
of the results of the test series with the 
free model, the same applies for the motion 
induced potentials <(>i to <|>g. 
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Figure 7 - Average Wake Compared to Calm Water 
Values 

4.3 Unsteady Wake Field 

The variations of the axial component of 
the advance speed for the free model in waves 
are presented in Figures 8 through 12. The 
error margins as described in Section 2.4 are 
indicated as vertical lines on the measurement 
value. 

MEASURED 
CALCULATED 
T= 8.80 s 

(X/L = 1.25) 

| 
|    I I 

360     180 360    180 
POSITION   ANGLE (degrees) 

T= 9.80 s 
(X/L = 1.55) 

I I 
t 

I 
t { 

I 

! 

i   i   I   I   f t 

150 

0 

j 

j 

r^p 

360    180 360    180 
POSITION   ANGLE (degrees) 

W==T=P 

360 

Figures 8 through 12 Axial Component of Unsteady Advance Speed/Ship Speed per Unit Wave 
Amplitude - Ship Speed = 20 kn. 

76 



Also indicated in these figures are the 
results of the calculations with the three- 
dimensional diffraction theory. In the follow- 
ing the various aspects will be discussed. 

• Measurement Location 

The measured data show more details than 
the calculated values; at the measurement 
locations in the wake of the struts (position 
angles 200, 220 and 240 deg.) the amplitude of 
the axial components of the advance speed is 
very sensitive to the location. Considerable 
differences are found between the measurements 
and the diffraction theory calculations in 
which the appendages cannot be taken into ac- 
count. For other measurement locations the 
agreement between measurements and calcula- 
tions is satisfactory. 

• Wave Length 

The amplitude of the axial components of 
the advance speed are largest for wave length 
to ship length ratios of 1.25 to 1.55. The 
measurements and calculations agree in this 
respect, but not to the same extent. This is 
caused by the somewhat too low pitch response 
calculated for those wave lengths. In Figure 
13 the pitch response is shown for a range of 
X/L values between 0.8 and 2.35. 

longer waves the reduction of pitch and incre- 
ment of surge compensate each other to some 
extent. The reduction in the amplitude of the 
axial component of the advance speed will 
mainly be due to the reduced wave orbital 
velocity. 
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Figure 13 - Pitch Response in Head Waves 

As discussed in Section 3.2 the pitch motion 
together with the surge motion (see Figure 14) 
contributes in the local finite body motion in 
axial direction which yields one of the con- 
tributions to the axial component of the ad- 
vance speed. Another contribution originates 
from the ship motion diffraction. In head 
waves the contribution due to pitch will be 
the most important. Considering these two 
aspects, it may be assumed that if the calcu- 
lated pitch responses at g/L = 1.25 and 1.55 
were equal to the measured response the axial 
component of the advance speed should have 
been larger. 

For shorter waves pitch and local surge 
reduce, so a smaller amplitude for the axial 
component of the advance speed results. For 
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Figure 14 - Surge Response in Head Waves 

• Amplitude and Phase 

Taking into consideration that the pitch 
induced contributions at X/L = 1.25 and 1.55 
are underestimated, it may be concluded that 
the calculated results tend to be somewhat 
higher than the measured values. This may be 
caused by the fact that in the diffraction 
theory calculations the linearized boundary 
condition on the hull requires only that the 
normal fluid velocity is zero. Therefore, the 
boundary layer is not taken into account. 

For the phase lead which is given with 
respect to wave crest passage at the ordinate 
of the propeller disc the agreement between 
the measurements and calculations is good. 
Apparently the wake disturbance due to the 
struts has only a small effect on the phase. 

4.4 Breakdown of Axial Velocity Component 

Using the model test data for surge and 
pitch and the theoretical value of the undis- 
turbed wave orbital velocity corresponding to 
the measured wave height, the following con- 
tributions to the axial advance speed can be 
isolated: 
- the undisturbed wave contribution; 
- the local ship motion contribution; 
- the sum of the reflected wave and motion 

diffraction contributions. 
Furthermore, taking the test results of series 
1 and using the undisturbed wave orbital ve- 
locity in the same wave as above for series 2, 
the last mentioned contribution can be split 
up into: 
- the reflected wave contribution; 
- the motion diffraction contribution. 
In Figure 15 the measured and calculated con- 
tributions are compared with those for X/L = 
1.25. For the undisturbed wave orbital veloc- 
ity the measurement value results from a test 
run without ship model using the standard 
L.D.V. equipment. The agreement is good. 
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Figure 15 - The Various Contributions to the 
Axial Component of the Wake Speed 
Amplitude per Unit Wave Amplitude 
Ship Speed 20 kn. 
Wave Period T = 8.8 s (x/L = 1.25) 

For the local ship motion contribution 
some discrepancies exist between measurement 
and calculation for the lower measurement 
locations in the propeller disc. This can be 
explained by the fact that the calculation 
underestimates pitch for this wave length, so 
the pitch contribution in the local surge is 
less than measured. 

The reflected wave contribution as deter- 
mined from the captive model test series shows 
a good agreement with the calculations. 

Finally the motion diffraction contri- 
bution is determined. Due to the successive 
subtraction of the known contributions from 
the directly measured value, the error margin 
is relatively large. Except for the locations 
in the wake of the struts, the agreement is 
still good. 

In Figure 15 also the sum of the contri- 
butions of wave reflection and motion diffrac- 
tion is given, and measurement and calculation 

agree very well. 
Considering in general the results of the 

calculations, the various calculated contribu- 
tions lay within the error margins of the mea- 
surements, so it may be concluded that the 
calculation method incorporates the prime as- 
pects of the unsteady wake field correctly. 

4.5 Correlations for Axial Velocity at Zero 
Speed 

In order to further calibrate the compu- 
tation method a series of model tests were 
carried out to measure the wake velocity vari- 
ations for zero ship speed. The results are 
presented in Figure 16 and the same tendency 
as discussed for the cases with forward speed 
is present: the calculated amplitudes are gen- 
erally slightly higher than the measurements. 
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Figure 16 Fluid Velocity at Propeller Posi- 
tion for Zero Ship Speed and Unit 
Wave Amplitude 

For the condition with x/L = 1.25 some 
details are given in Table 4. It may be con- 
cluded that for the zero forward speed case 
the calculation method is reliable to deter- 
mine the ship motions as well as the unsteady 
wake field. 

Table 4 - Comparison between Measurement and 
Calculation for Unit Wave Amplitude 
and Zero Ship Speed 
Wave Period T = 8.8 s (X/L = 1.25) 

Measured Calculated 

Quantity 
Nota  
ti0"    Amplitude^ Amplitude™™5 

Surge 
of ship        * 
Pitch 
of ship 
Axial 
fluid Vx 

velocity 
Axial  fluid 
velocity     . 
contribu-    ? 
tions due     p 

to local  motion 

0.45 m 95° 0.46 m 88° 

1.74 deg. 26° 1.79 deg. 18° 

0.72 m/s 338° 0.79 m/s 333° 

0.39 m/s 292° 0.40 m/s 288° 
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5. APPLICATION IN PROPELLER CALCULATIONS 

5.1 Review of Calculated Conditions 

The conditions for which calculations 
have been carried out with the propeller pro- 
gram ANPRO are given in Table 5. 

Table 5 - Review of Wave and Propeller Condi- 
tions in Calculations 

The phase e indicates the position of the wave 
crest with respect to the propeller position 
in the quasi-static calculation. For these 
conditions the local velocities and local 
pressures have been calculated according to 
the relations derived in Section 3.3. The cav- 
itation number an is defined as: 

(p(x,t) Pv)/(0-5 P Ns
2 D2) 

in which: 
p(x,t) = the local pressure 

Pv 
N. 

the vapour pressure of sea water 
= number of propeller revolutions per 

second 
D    = propeller diameter. 

In Figures 17 and 18 the results of the 
calculations have been plotted in a diagram of 
the blade section cavitation number av versus 
effective angle of attack ae, where: 

% = (P(r,0) - Pv)/(0.5p VR
2) 

in which: 
p(r,e) = the pressure at the midchord position 

of the blade section 
VR = the local  resultant velocity. 
Furthermore: 
ae = the effective angle of attack based 

on the two-dimensional  interpretation 
of the calculated three-dimensional 
pressure distribution. 

The results given in Figures 17 and 18 apply 
to the blade section where r = 0.8 of the pro- 
peller outer radius. For this section also the 
characteristics in a uniform inflow have been 
calculated and the so-called cavitation free 
conditions are determined. In the figures, the 
shaded   area   indicates   the  operational   condi- 

tions where the minimum pressures at the pres- 
sure or suction side of the profile remain 
higher than the vapour pressure. 

It has to be noted that in the present 
case the actual conditions are rather away 
from the cavitation free conditions. This is 
connected to the fact that the propeller is a 
stock propeller, which is not optimized as a 
newly designed propeller would have been. 
Nevertheless the discussion in the next sec- 
tions is valid. 

Cavita- 
Wave Propeller tion 

Wave length ampli- Phase revolu- number 
Ship length tude e tions at 

Ca (deg.) Ns shaft 
X/L (m) (Hz) centre 

. _ _ 2.367 3.141 
' 0.8 1.0 0 2.487 2.810 

0.95 1.0 0 2.557 2.624 <V 
1.25 1.0 0 2.515 2.752 h- 

1.25 1.0 90 2.515 2.850 
1.25 1.0 180 2.515 2.812 0 

1.25 1.0 270 2.515 2.714 LÜ 
_l 

1.55 1.0 0 2.435 2.970 Z 

2.35 1.0 0 2.382 3.104 
1.25 2.0 0 2.898 2.049 > 

u 

CALM  WATER 
WAVES , Ea.LOm.X/L =1-25 
WAVES , ta° 2.0m,X/L =1.25 

»030 .0.35 »0.40 »0.45 
BLADE  SECTION  CAVITATION   NUMBER 

Figure 17 The Effect of Wave Amplitude and 
Wave Crest Position on the Cavita- 
tion Conditions of the Propeller 
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WAVES.U .1°m 

X/L .0.80 
X/L .0.95 
X/L .1.25 
X/L . 1.55 
X L   ■ 2.35 

TÖ30 »0.35 »0.40 »0.45 
BLADE  SECTION   CAVITATION   NUMBER 

Figure 18 - The Effect of Wave Length on the 
Cavitation Conditions of the Pro- 
peller 
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5.2 Results for X/L = 1.25 

These results are given in Figures 17 and 
19. The four loops in Figure 17 correspond to 
different phases during a wave period. Appar- 
ently there are situations in which the angle 
of attack variations during a propeller revo- 
lution become very much reduced. For compar- 
ison also the loop for still water is given 
(dotted line). 

The loops in waves show a slightly small- 
er variation in cavitation number but the an- 
gle of attack variations may cover a larger 
interval than without waves. The conditions 
for phase e = 0 seem representative for the 
most unfavourable situation. For this phase 
another wave amplitude has been considered, 
the results of which are also given in Figure 
17. So, three wave amplitudes (0, 1 and 2 m 
respectively) are compared. Due to the effect 
of RPM increase in waves, to maintain speed, 
the operational loops shift to lower cavita- 
tion numbers and higher angles of attack. Fur- 
thermore, angle of attack variations become 
stronger. 

Figure 19 shows cavitation patterns at 
the suction side of the propeller for a number 
of blade positions. The increase in cavitation 
length due to waves agrees with the above con- 
siderations as to Figure 17. 

CALM   WATER 

REGULAR WAVES , X/L = 1.25 , r,a = 1.0 m    e =■ 0    deg. 

5.3 Comparison of Results for Various Wave 
Periods 

In Figure 18 the results for various wave 
periods (phase e = 0 deg.) are compared.' For 
the longest wave the loop is quite close to 
the no-wave conditions. For shorter waves the 
influence of waves becomes gradually stronger, 
except for the shortest wave. For this condi- 
tion the behaviour is different. 

According to Figures 13 and 14 the pitch 
and surge responses are small for the shortest 
wave. On the other hand, as shown in Figures 8 
through 12, the local velocity variations of 
the wake are not reduced. Furthermore, the lo- 
cal pressures are in the same order of magni- 
tude as for condition III for instance. Appar- 
ently the effect of the smaller ship motions 
are to a large extent compensated by the ef- 
fects of wave orbital velocity and relative 
motion of the water surface with respect to 
the ship. Accordingly, it is concluded that a 
complete picture of the influence of waves and 
ship motions on wake velocity and local pres- 
sures is necessary before a statement about 
changes in cavitation condition for the pro- 
peller can be made. 

Furthermore, from the propeller calcula- 
tions it follows in general that: 
- The angle of attack of a typical propeller 

blade section becomes higher and shows larg- 
er variations in waves than for the calm 
water condition. 

- The cavitation number decreases but the 
variations become slightly smaller. 

- In view of the width of the cavitation free 
conditions area, it seems impossible to 
avoid cavitation completely, but by design- 
ing the propeller in such a way that the 
location of the cavitation free conditions 
is adapted to the conditions in waves, the 
cavitation performance can be strongly 
influenced. 

REGULAR WAVES , X/L = 1.25 . r,a = 1 0 m , E =   90 deg. 

REGULAR WAVES,  X/L = 1.25, ta = 1-0 

REGULAR WAVES , X/L = 1.25,   ta^Om    E = 270 deg. 

Figure 19 - Predicted Sheet Cavitation on the 
Propeller 

6. CONCLUSIONS 

In the present investigation the effect 
of waves on the wake velocity variations and 
the consequences for propeller design have 
been considered. The following conclusions 
were drawn: 
• Reliable measurement of varying wake ve- 

locity can be carried out using Laser- 
Doppler velocimeter techniques. 

• Linearized potential theory calculations for 
the fluid flow around the ship travelling in 
waves were carried out and the results were 
in good agreement with the measurements. 
Hence, the superposition principle appears 
to be valid for these calculations. 

•In order to obtain reliable information on 
the effect of waves on the cavitation behav- 
iour of the propeller it is imperative to 
consider the influence of both waves and 
ship motions on the local fluid velocities 
and local pressures to the fullest extent 
possible. 

• For the propeller design it seems impossible 
to avoid cavitation completely but if the 
designer takes into account the wave climate 
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in the area of operation of the ship, it is 
possible to adapt the propeller in such a 
way that the long-term cavitation perfor- 
mance is considerably improved. 
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SIMULATION OF COMBINED ENGINE AND RUDDER MANEUVERS 
USING AN IMPROVED MODEL OF HULL-PROPELLER-RUDDER INTERACTIONS 

PETER OLTMANN AND SOM D, SHARMA 

ABSTRACT 

Digital simulations of combined engine and 
rudder maneuvers are presented for two represen- 
tative ship types, namely a single-screw tanker 
and a twin-screw center-rudder container car- 
rier. The hydrodynamic coefficients occurring in 
the dynamical equations have been derived from 
special four-quadrant force measurements on 
ship models in the captive mode and partially 
validated by trajectory measurements in the 
free-running mode, both by means of the Com- 
puterized Planar Motion Carriage at the Hamburg 
Ship Model Basin (HSVA). Contrary to previous 
versions, the new mathematical model is not re- 
stricted to small changes of initial forward 
speed and can be applied even to maneuvers in- 
volving speed reversal. For this purpose, it 
was found to be necessary to adopt a compact 
physically motivated rather than a formal mathe- 
matical series approximation of the hydrodynamic 
forces as functions of motion variables and to 
explicitly account for the three-way hull-pro- 
peller-rudder interactions in the system. 

NOMENCLATURE 

Abbreviations 

CPMC 
CPRM 
CPRS 
CSRS 
HSVA 

ITTC 
MSPP 
SSPP 

Symbols 

4R      ■ 

AXP 
Af,Ah 

A o 
a,b 

Computerized planar motion carriage 
Constant propeller rate, model cond. 
Constant propeller rate, ship cond. 
Constant steam rate, ship condition 
Hambuvgisehe Sohiffbau-Versuchsanstalt 
(Hamburg Ship Model Basin) 
International Towing Tank Conference 
Model  self-propulsion point 
Ship self-propulsion point 

Total rudder area 
Rudder area swept by propeller race 

Turbine torque parameters, Sect. 2.3 

Propeller disk area 

Turbine torque parameters, Sect. 2.3 

Bf'Bb 

CFD 

c° 
°DR 

CF 

CLR 
clz 

ct T 

a,d,e,k, 
a',d',e' 

°V 

D 
d 

F 
G 

kw'km 
feLR'feDR 
L 
I 
m 
N 
n 
0 

Parameters associated with hull cross 

flow drag coefficient, Sect. 2.2.4 

Turbine torque parameters, Sect. 2.3 

Coefficient of local cross flow drag 

Rudder drag coefficient, Sect. 2.2.7 

Rudder drag coefficient at "p/"R
=0 

Frictional drag coefficient 

Rudder lift coefficient, Sect. 2.2.7 

Rudder lift coefficient at "p/"R
=0 

Propeller torque coeff., Sect. 2.2.6 

Propeller thrust coeff., Sect. 2.2.6 

Parameters associated with lifting 
forces on the hull, Sect. 2.2.3 
Circumferential velocity of propeller 
blade at 0.7 radius 
Diameter of propeller 
Distance between propeller disk and 
quarter mean chord of rudder 
Force in general 
Center of gravity 
Acceleration due to gravity 
Moment of inertia about 2-axis 

Effective moment of inertia about 
propeller axis 
Correction or amplification factor in 
general 
Interaction factors, Sect. 2.2.7 

Amplification factors, Sect. 2.2.7 

Length between perpendiculars 
Half-length 
Mass 
Hydrodynamic moment about 3-axis 
Rate of revolutions of propeller 
Coordinate origin fixed in the body 
Propeller torque 
Engine torque 

Engine fuel rate 

Turbine steam rate 

Turning radius 
Total hull resistance 

Peter Oltmann, Hamburgische Schiffbau-Versuchsanstalt Postfach 600929, 2000 Hamburg 60 FR Germany 
Som D. Sharma! Institut für Schiffbau der Universität Hamburg, Lammersieth 90, 2000 Hamburg 60, FRG 
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W- 
Ac 

u,v 
UP 
MR 
w 
X,Y 
x,y,z 

Notes 

Rate of turn about z-axis (yaw rate) 
Distance along track 
Draft 
Period of zigzag maneuver 
Propeller thrust 
Thrust deduction fraction 
Time 
Along-track velocity of 0 
Initial value of u 

Axial velocity induced by propeller 

Asymptotic value of u    at infinity 

Components of u along x,y-axes 
Speed of advance of propeller 

Mean flow velocity past rudder 

Taylor wake fraction 
Hydrodynamic forces along x,y-axes 
Coordinate axes fixed in the body 

,;3 Coordinates of center of gravity 
G 

,3 Coordinates of 0 in an earth-fixed 
° system, Fig. 1 

Overshoot angle in zigzag maneuver 

Drift angle 
Local drift angle at rudder 

Yaw rate angle, Sect. 2.2.3 
Rudder angle 
Effective rudder angle 

Max. value of &  in zigzag maneuver 

Propeller advance angle, Sect. 2.2.6 
Mass density of water 
Characteristic times of zigzag 
maneuver, Fig. 2 
Time to attain switching value ^ 

Time to check yaw rate r 

Time for counterturn 

Reach time 

Time lag of steering gear 

Heading angle 
Switching value of <i>  in zigzag man. 

As far as possible, ITTC standard symbols and 
the SI units have been used. Several special 
rules have been adopted or devised for achiev- 
ing greater clarity and for generating compound 
symbols in a systematic and meaningful way. 
Vertical and italic type has been consistently 
used (except for Greek letters) to distinguish 
between abbreviations and numerical variables. 

Subscript abbreviations H,P,R and I,L,C have 
been used singly and multiply to indicate that 
the subscripted quantity is associated with the 
hull, propeller and rudder or the ideal-fluid, 
lifting and cross-flow effects respectively. 
Subscript variables u,v,r  etc. have been used 
to identify corresponding coefficients in a 
polynomial expansion for the subscripted quan- 
tity. Other subscripts and superscripts have 
been used in the conventional manner. 

All time-independent system parameters have 
been ultimately reduced to nondimensional num- 
bers, see Table 3. In many cases this has been 
done according to the socalled bis-system, i.e. 
by multiplying the (") superscripted quantity 
by the necessary powers of certain fundamental 
units of mass, length and time, namely m, L  and 
*/L/g  respectively. 

1. INTRODUCTION 

Both the demand and the capability of simu- 
lating ship maneuvers on digital computers have 
grown dramatically during the last twenty years, 
fed by the increasing need of ship operators to 
define and document maneuverability on the one 
hand and the ready availability of ever more 
efficient computers on the other. A specially 
strong incentive has also come from the now 
widespread use of real-time ship simulators for 
the training of nautical personnel. 

Any algorithm for the simulation of ship 
maneuvers must incorporate as a key element an 
explicit or implicit mathematical model of the 
hydrodynamics of the maneuvering vessel. For 
lack of a matured hydrodynamic theory dictating 
an all-embracing standard format, the number of 
heuristic mathematical models in use has also 
proliferated. However, it is fair to say that 
the three dominant models on the market are due 
to Abkowitz (1964), Norrbin (1970), and the 
Mathematical Model Group of the Society of Naval 
Architects of Japan (JMMG for short) as reported 
by Ogawa and Kasai (1978). 

The highly formal and systematic Abkowitz 
model treats the hull-water interface essen- 
tially as a black box and is based on the notion 
of a maneuver being a small perturbation of an 
equilibrium state of steady forward motion at 
designed speed. Nevertheless, it has proven very 
successful for the simulation of arbitrary rud- 
der maneuvers at constant engine setting as do- 
cumented by the pioneering work of Strtfm-Tejsen 
and Chislett (1966) followed by many others in- 
cluding our own group, cf. Oltmann and Wolff 
(1979) and Wolff (1981). In a modified form it 
has even been applied to engine maneuvers, by 
Crane (1973) and Eda (1974) for example, despite 
the fact that such maneuvers can hardly be con- 
sidered "small" perturbations of an equilibrium 
state. 

The Norrbin model is less formal, more phy- 
sically motivated and very  broadly conceived, 
even including approximate corrections for shal- 
low and restricted water effects, cf. Berlekom 
and Goddard (1972) and Norrbin (1978). 

The JMMG model is quite heuristic and pays 
special attention to hull-propeller-rudder in- 
teractions, but is also restricted to maneuvers 
retaining considerable forward speed. It works 
alright for rudder maneuvers as exemplified by 
Matsumoto and Suemitsu (1981). Moreover, a great 
amount of additional effort has been undertaken 
in Japan recently to cover also stopping maneu- 
vers, as documented by Tanaka and Miyata (1977), 
Yoshimura and Nomoto (1978), Fujino et al. (1979) 
and summarized in the latest Report of the Maneu- 
verability Committee of the 17th ITTC (1984). 

The principal purpose of this paper is to 
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present an alternative mathematical model suit- 
able for the digital simulation of combined en- 
gine and rudder maneuvers for a wide range of 
surface ships. The core of this model is a 
rather new scheme for the mathematical approxi- 
mation of the complex hydrodynamic forces gene- 
rated in response to the motion of a maneuver- 
ing hull and to the operation of its primary 
control organs (rudder and screw propeller). 
This new approach, necessitated by the inade- 
quate performance of previous models in the vi- 
cinity of zero forward speed, has evolved gra- 
dually over the last five years. Portions of it 
have already appeared in print, cf. Sharma and 
Zimmermann (1981) and Sharma (1982a). However, a 
comprehensive description of the total model 
accompanied by examples of simulated maneuvers 
is being published here for the first time. The 
main advantages claimed for the new model are 
applicability to forward and backward motion, 
explicit accounting of the three-way hull-pro- 
peller-rudder interaction, corrections for 
major scale effects, and the modeling of engine 
characteristics up to and even beyond speed 
reversal. 

2. MATHEMATICAL MODEL 

2.1. Dynamical Equations 

The equations of motion of a surface ship 
maneuvering in the horizontal plane with three 
degrees of freedom (namely surge, sway and yaw) 
can be written down as usual in the following 
form (see also Fig. 1): 

x   = u cos \Ii - v sin \b (1) o 

y    = u sin \ji + v cos ty (2) 

i>    = r (3) 

[u - vr - rzx ) m     = X (4) 

(v + ur + rx  ) m        = I (5) 
G 

rl     +   (v + UP) xm = N (6) 
zz      l G 

The basic assumptions at this stage are 
that the ship may be treated as a rigid body 
and that the "vertical" motions of heave, pitch 
and roll are either negligible or at least de- 
coupled from the "horizontal" motions of surge, 
sway and yaw. The external force-couple X,Y,N 
acting on the ship will in general comprise 
applied forces as well as complex hydrodynamic 
and aerodynamic reactions to the time history 
of the ship's motion and appropriate control 
actions. The various competing models for the 
simulation of ship maneuvers currently in vogue 
differ mainly in which forces they take into 
account and how these are explicitly related to 
the numerous variables and parameters of the 
system. 

Consistent with the limited scope of this 
paper we shall consider here exclusively hydro- 
dynamic response forces of the quasisteady type. 
These will be discussed in due detail in the 
following section. However, there are two par- 
ticular aspects of these forces, pertaining to 

the general format and number of the dynamical 
equations, which are better anticipated here. 

Firstly, these forces are found to depend 
in a significant way on the rudder angle 6 and 
the propeller rate n.  The question therefore 
arises whether the variables &,n  can be simply 
treated as control input or whether additional 
dynamic equations must be introduced accounting 
for the inertia of the steering gear and the 
propulsion plant. The compromise attitude 
adopted here is that the rudder angle may be 
considered as a direct control variable subject 
to simple constraints whereas the following dy- 
namic equation is optionally added to achieve 
greater flexibility and realism in the simula- 
tion of engine maneuvers: 

2irn J, EP 
(7) 

Under this option the propeller torque Q  depends 
mainly on longitudinal velocity u  and propeller 
rate n, while the engine torque Q   depends essen- 
tially on propeller rate n  and some suitable 
engine input such as the fuel rate qF-  Hence 
we end up with seven state variables xo,yQ,ty,u, 
v,r,n  and two control variables &,q . 

Secondly, the hydrodynamic response forces 
contain the usual linear acceleration terms 
dictated by classical hydrodynamic theory. 
Hence a simple reshuffling of Equations (4-7) 
is required to get all the acceleration terms 
and only these on the left hand sides. When the 
linear acceleration coupling still persisting 
in Equations (5-6)tis also eliminated by solving 
algebraically for v,r  the canonical format of 
the dynamical equations emerges expressing the 
time rate of change of state as a vector func- 
tion of state variables, control variables and 
time-independent parameters. Trajectory simula- 
tion for any given initial state and control 
input is then easily accomplished on a digital 
computer using any standard algorithm for the 
numerical integration of a system of ordinary 
differential equations. 

2.2. Hydrodynamic Forces 

2.2.1. General Outline 

It will be helpful to outline the basic 
philosophy behind our present model of the hy- 
drodynamic response forces before going into 
its unavoidably complex details. As already 
stated, our main motivation for developing this 
new approach was the operational demand for sim- 
ulation of combined engine and rudder maneuvers 
often employed in shiphandling and in emergency 
situations like an impending collision. Hence 
the primary requirement on the mathematical 
description of the forces was that it must not 
break down in the proximity of hull or propeller 
speed reversal, as is unfortunately the case 
with most conventional models utilizing longi- 
tudinal velocity u  and propeller rate n  as re- 
ference quantities for scaling the forces. In_ 
view of the overriding importance of this objec- 
tive, certain other effects have been ignored or 
simplified for the time being. 

Thus the ship is taken to be maneuvering in 
an otherwise undisturbed, homogeneous, isotropic 
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environment on horizontally unbounded waters of 
uniform depth. So the forces need not depend 
explicitly on the position variables x  ,y  ,i>  or 
the water depth, effectively decoupling1 tRe ki- 
nematic Equations (1-3) from the remaining dy- 
namic Equations (4-7). Moreover, possible time 
history effects are neglected so that, except 
for certain linear acceleration terms dictated 
by potential theory, the response forces X,Y,N, 
Q  can be supposed to depend only on the instan- 
taneous values of just five dynamic variables 
u,v,r,n,&.  Within the domain of validity delim- 
ited by these putative premises the model has 
been kept perfectly general. This has been 
achieved by introducing the following four 
angles (see Nomenclature): 

ß = arctan (-v/u) 

arctan (vl/u) 

6=6 + arctan [~vR/uR) 

(8) 

(9) 

(10) 

(11) e = arctan (uJo  ) 

to express all possible relative magnitudes of 
the five variables u,v,r,S,n,  and by insisting 
that the force descriptions chosen remain valid 
in all four quadrants of each of these four 
angles. By way of comparison it may be noted 
that for simulating simple rudder maneuvers the 
range of validity required in terms of these 
angles is only about one tenth as large. 

In order to satisfy this fourfold four- 
quadrant requirement it was found to be necess- 
ary to depart in three major respects from the 
previously used direct input-output models which 
blindly but elegantly expressed x,i,N as formal 
polynomials of u,v,r,S.  Firstly, the forces had 
to be partly decomposed into contributions as- 
sociated with the system elements hull, pro- 
peller and rudder on the one hand and with the 
physical mechanisms labeled ideal fluid, hull 
lifting and cross-flow effects on .the other: 

X -  XI   + V - RT P    R 
(12) 

(13) 

(14) N = Ni+ V + V + N? + NR 

Secondly, a number of intermediate variables had 
to be introduced, mainly to account for inter- 
action effects such as wake, thrust deduction, 
slipstream, flow rectification etc. between the 
three system elements. Thirdly, a wider set of 
physically motivated functions than mere poly- 
nomials had to be invoked to achieve reasonable 
accuracy without sacrificing compactness. 

This four-quadrant model has so far been 
identified and partly validated by means of 
suitable model experiments in the captive and 
free-running modes for four representative ship 
types of which only two will be discussed in 
this paper, namely a single-screw tanker (see 
Table 1 and Fig. 3) and a twin-screw center- 
rudder container carrier (see Table 2 and Fig. 
4). It needs to be said that such four-quadrant 
experiments (specially in the yaw rate angle y) 
were rendered feasible only by the availability 

of our Computerized Planar Motion Carriage 
(CPMC) described previously at these Symposia, 
cf. Grim et al. (1976) and Oltmann et al. (1980). 
To our knowledge no comparable set of complete 
four-quadrant experiments has been elsewhere 
reported in the literature. 

Although our model experiments covered all 
four quadrants completely and uniformly, see 
Sharma and Zimmermann (1981), the present analy- 
sis has been significantly simplified by taking 
advantage of the nearly perfect port-and-star- 
board symmetry inherent in every ship. The only 
hydrodynamically relevant asymmetry stems from 
the rotation in the slipstream of a single- 
screw propeller. We have isolated its effect by 
comparing the measured forces for corresponding 
odd and even values of ß,y>6 and lumped it up in 
just two terms, namely -T »AL. The remaining 
terms in Eq. (12-14), practically all of which 
are directly or indirectly affected by the ac- 
tion of the propeller, thus refer to a symmet- 
rized system. Consequently, the forces are 
either exactly symmetric (x)  or anti-symmetric 
{Y,N)  functions of the angles ß,Y»6 , and need 
to be displayed in the first two quldrants only. 

2.2.2. Ideal Fluid Effects 

According to a famous theorem of potential 
theory the hydrodynamic forces generated by the 
irrotational flow of an otherwise undisturbed, 
unbounded ideal fluid in response to the gene- 
ral motion of an arbitrarily shaped rigid body 
can be explained in terms of an "added inertia" 
tensor consisting of a symmetric 6x6 matrix of 
coefficients determined by the body form alone. 
An often cited classical derivation of this re- 
sult can be found in Lamb (1932, p. 160 ff.) 
and a modern marine hydrodynamic version in 
Newman (1977, p. 135 ff.). A particularly per- 
spicuous rendering of the complete expressions 
for these forces on a body moving with six de- 
grees of freedom was given in the present no- 
menclature by Imlay (1961). 

If we ignore the wavemaking at the free 
surface - a reasonable simplification for low 
Froude numbers in the present context - the 
horizontally maneuvering surface ship becomes 
equivalent to (the lower half of) a mirror-sym- 
metric double-body moving in an unbounded fluid 
with three degrees of freedom only. The rele- 
vant portion of the added inertia tensor then 
reduces to the following 3x3 matrix: 

-X; 

-N- -N. 

-X' 

-I- 

-rj. 

The symbols are chosen to reflect the immediate 
interpretation of the individual elements of 
the inertia tensor as acceleration derivatives, 
i.e. as factors of proportionality for the for- 
ces and moments with which the fluid resists 
the accelerations of the body. The port and 
starboard symmetry inherent in almost every 
hull form entails the further simplifications: 

X\ = Y-  =  0, X'  = N-  = 0 
V U V u 

(15) 
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The near fore-and-aft symmetry, also usually 
prevailing, implies that the remaining coupling 
coefficients are small compared to the direct 
effects: 

y. = ff. « j., J. N- (16) 
r       v u      v     r 

and the slenderness of the hull [B,T«L)  ensures 
that the longitudinal effects are small compa- 
red to the transverse effects: 

x- « Y-, N- (17) 
U V        V 

A somewhat surprising result of this theory is 
that although every single element of the iner- 
tia tensor may be considered an acceleration 
derivative the complete final expressions for 
the forces also contain terms involving velo- 
cities. Accordingly, our model comprises the 
following expressions for the forces associated 
with "ideal fluid" effects: 

X-Ü + X   vr + X   r2 + Xv 
XIV VT xro 

j    = Y'V + X'ur + I'V 
I        v u r 

Nz = N^r + N^{v + UP)+{I^ - Xtfuv 

It is worth noting that these expressions de- 
viate in certain details from the strict poten- 
tial theory. The latter would require 

(18) 

(19) 

(20) 

-y. Y      =  -7. -N-,  X, = 0 (21) 

However, since our goal is not to estimate the 
true ideal fluid effects - amenable to compu- 
tation only - but to simulate a part of the 
real effects observed in model experiment after 
the pattern of potential theory, this slight 
generalization comprising eight distinct form- 
dependent parameters instead of only four al- 
lowed by the strict theory seems justified. 

The nondimensionalized numerical values of 
these eight parameters for our tanker form, as 
identified by suitable experiments, are docu- 
mented in Table 3. It will be seen that the 
only serious departure from the mandates of the 
theory is the significant nonequality of the 
derivatives X     and -Y-. Of particular interest 
in the contex^of maneuvering are the side 
force and yaw moment in response to the velo- 
cities u,v,r  in steady motion. The ideal fluid 
contributions to these forces according to the 
above equations are depicted in nondimensional 
coefficient form as functions of drift angle 
and yaw rate angle by the long dashed curves 
in Figs. 5 and 6 respectively, in relation to 
the other contributions explained in subsequent 
sections. It will be noted from Fig. 5 (bottom) 
that the term (Y- - X-)uv,  sometimes called the 
Munk moment, plays a dominant role in maneu- 
vering dynamics. 

2.2.3. Hull Lifting Effects 

Although a displacement hull - unlike a 
hydrofoil or rudder - is not primarily designed 
to generate circulation and lift, it neverthe- 
less acts like a slender lifting body in in- 
clined flow. The resulting side force and yaw 

moment in response to the combined longitudinal 
and transverse motion play a crucial role in 
maneuvering. Our model of these lifting effects 
is based on three simplified principles of air- 
foil theory, see for instance Prandtl and 
Tietjens (1934, p. 144 ff.). First, the lift F^ 
is proportional to the underwater lateral area, 
the stagnation pressure of the effective inflow, 
and the sine of twice the effective angle of 
attack; it acts normal to the inflow. Second, 
the lift is accompanied by a parasitic induced 
drag F   proportional to the square of the lift 
and acting parallel to the inflow. Third, the 
yaw moment is obtained by multiplying the re- 
sulting side force with an effective lever re- 
presenting the longitudinal distance x   of the 
center of action of the lifting forces from the 
coordinate origin. Under these assumptions the 
lifting effects can be correctly approximated 
over four quadrants of the angle of attack by 
a minimum of three empirical constants for a 
given hull shape and flow configuration. 

Thus the effect of drift (u and v) can be 
quantified in a straightforward manner by the 
three equations: 

F   = oLT £.(MW)cosßsin@ (22) 
L       2 l     ' 

i?   = dFT cosB sinß (23) 
D     L 

x   = --L sgnw (24) 
F   e  3 

incorporating the coefficients o,d,e as three 
nondimensional, positive hull-form parameters. 
The factor sgn« accounts for the fact that the 
hydrodynamic trailing edge responsible for the 
generation of lift through the Kutta condition 
lies at the stern for u > 0 and at the stem for 
u < 0. The equivalent force-couple resolved a- 
long body coordinates becomes: 

(25) 

(26) 

(27) 

The situation in yaw (u  and r)  is analogous 
but slightly more complicated. Here the steady 
motion of the hull along a circular arc gives 
rise to a centripetal lift, somewhat comparable 
to the action of a cambered body in steady 
translation. In any case, an additional con- 
stant k  is desirable to average the locally 
variable transverse velocity and define an ef- 
fective angle of attack at the active trailing 
edge: 

Y* = arctan (fa^an«) (28) 

which differs subtly from the purely kinematic 
yaw rate angle y  used to identify the relative 
magnitudes of u  and r.  The lifting effect of 
yaw is then expressed by equations analogous to 
(22-27) substituting krlsgnu  for -v,  y* f°r ß» 
and three new form parameters a' ,d',e'  for 
c,d,e. 

As an example, the numerical values of 
these seven parameters as determined from suit- 

X - FL sinß - FD cos 

Y = FL  COSß + FD sin 

N = --LYsgnu 
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able model experiments for our tanker hull are 
listed in Table 3. Their contributions to side 
force and yaw moment in response to drift and 
yaw are plotted in Figs. 5 and 6 as the short- 
dashed curves for the sake of comparison with 
the two other effects. Attention is called to 
the following features. First, in our model the 
ideal fluid and lifting effects together con- 
stitute what are ordinarily called "linear" 
terms in the expansions for side force and yaw 
moment about the equilibrium point v,r  = 0. 
Second, single analytical expressions could 
serve in four quadrants only because we made 
the lift proportional to the sine of twice the 
angle of attack instead of just the angle of 
attack as is common practice. Third, a constant 
position for the center of lift (somewhere in 
the active after body) makes sense only because 
we have segregated other effects, especially 
the Munk moment. 

The final step required for completing the 
description of hull lifting effects is the 
treatment of a combined drift and yaw motion. 
This synthesis has been effected in a heuristic 
way by a linear combination of weighted trans- 
verse velocities, making sure that the limiting 
cases come out alright. The final expressions, 
now directly in terms of the velocities u,v,r, 
are as follows: 

HL 
LT 

u(a'krlsgnu-av) 

/u2+(krlsgnu-v)2 

(krlsgnu-v)  - 
u2{d' krlsgnu-dv) 

u2+(krlsgnu-v)2 
(29) 

u2(o1krlsgnu-av) 
f LT    ■ ■■■ x 

/u2+(krlsgnu-v)2 

(d'krlsgnu-dv)(krlsgnu-v) 
1 + 

u2+(krlsgnu-v)2 
(30) 

' HL 
= .PL2T 

u\u\(e'krlsgnu-ev) 

2       /u2+(krlsgnu-v)2 

(d'krlsgnu-dv)(krlsgnu-v) 
1 + 

u2^-(krlsgnu-v) 
(31) 

We note parenthetically that the use of the 
above expressions beyond speed reversal (u=0) 
with parameters a,d,e  etc. identified for for- 
ward motion (u>0) is tantamount to ignoring the 
minor fore-and-aft asymmetry of the hull, which 
is generally permissible. However, if higher 
accuracy is required for reverse motion (u<0) 
only the numerical values of the parameters 
need be slightly changed, retaining the general 
format of these expressions. 

2.2.4. Hull Cross-Flow Effects 

The essentially nonlinear cross-flow for- 
ces on the hull in response to its transverse 
motion are relatively large, for the hull is 

purposely designed to have a low' longitudinal 
and.a high transverse resistance. They are mo- 
deled here according to a simple strip theory 
along the lines of Norrbin (1978). The elemen- 
tary side force dl  on a hull element of 
length da: is assumla to be proportional to the 
stagnation pressure of the local transverse 
flow velocity (v + rx),  the local draft T(x)  and 
the local coefficient of cross-flow drag 
C     (x).  So the total side force and yaw moment 
cSKDbe expressed as follows: 

HC 

HC 

I  T[x)Cm lx)(v+rx)\v+rx\tix (32) 
I CFD 

T(x)C„(x)(v+rx)\v+rx\xdx        (33) 
CFD 

These integrals can be solved in closed form 
using suitable analytical approximations (e.g. 
polynomials) for the functions T(x)  and CCF^(x). 

In special cases (e.g. asymmetric profile, 
inclined keel, trim or heel) it may be useful 
to allow for different lengths of afterbody and 
forebody la,lf  as well as for a variable draft 
T(x).   In most cases, however, the following 
simplifications prevail: 

lf = I, T(x) =  const = 1 (34) 

As regards the local  variation of cross-flow 
drag coefficient, it has been found convenient 
to use a high-order four-term polynomial  such 
as 

which is well suited to approximate a fairly 
constant value over the parallel midbody, ri- 
sing substantially toward the ends with a cer- 
tain amount of asymmetry (to account for the 
propeller or a bulb for instance), as illu- 
strated in Fig.  8 for our tanker form. The 
reason for using just four terms is that the 
four unknown coefficients a ,a ,a ,a   can be 
fitted exactly to the four measured values of 
side force and yaw moment coefficients at zero 
forward speed (ß = 90° and y = 90°) where pure 
cross-flow effects can be observed without in- 
terference from ideal-fluid or lifting effects. 

Note that the above analytical expressions 
are not used for determining the cross-flow 
forces a priori but in effect for interpolating 
them continuously over the four quadrants of 
drift angle and yaw rate angle (as well as 
their combinations)  on the basis of their ob- 
served values at zero longitudinal motion and 
their theoretical  values  (namely zero)  at zero 
transverse motion (ß = y = 0). As shown by the 
dash-dotted curves in Figs.  5 and 6 the rela- 
tive importance of cross-flow forces increases 
steadily with decreasing longitudinal motion 
and is maximum at ß = 90° and y = 90°. The do- 
minant effects are a resistive side force in 
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response to drift and a resistive yaw moment in 
response to yaw rate. The rather weak coupling 
manifested as side force in response to yaw_ 
rate and yaw moment in response to drift arises, 
of course, from the small fore-and-aft asymme- 
try of the hull. 

The strictly nonlinear mechanism by which 
simultaneous drift and yaw unite to generate a 
combined side force and yaw moment is automa- 
tically taken care of by the above formulas. 
This is illustrated in nondimensional coeffi- 
cient form in Fig. 7 for all possible combina- 
tions of transverse velocity v  and yaw rate v. 
In addition, the contribution of each term of 
the polynomial CCFD(x) is individually shown. 
It is seen that the even terms ag,as  (respons- 
ible for the direct effects) dominate, while 
the odd terms a ,a    (responsible for the 
coupling) largely annihilate each other. It has 
been found that the total effects are quite in- 
sensitive to the polynomial degree chosen for 
representing C      (x).  For instance, an alter- 
native calculation based on the same experi- 
mental data but a third degree polynomial (aQ, 
a  ,a ,a )  for interpolation yielded a somewhat 
uÄreilistic curve for the associated local drag 
coefficient but practically the same integrated 
cross forces for all transverse motions. 

2.2.5. Hull Resistance 

The ordinary hull resistance to pure lon- 
gitudinal motion is measured in a routine model 
test and extrapolated to full-scale in the con- 
ventional manner by decomposing the nondimen- 
sional coefficient of total resistance: 

CT = 2.flT/pSw
2 (36) 

into viscous and wave components: 

CT(Rn,Fn)  = (1+fc) CF(Rn)  + Cw(Fn) 

subject to Reynolds and Froude scaling respec- 
tively, and using the 1957 ITTC correlation 
line to calculate the Reynolds-number dependent 
frictional  coefficient C .   In the simulation 
algorithm, however, a suitable polynomial  fit 
is preferred to avoid numerical  problems with 
the term C (R )  near zero forward speed: 

Fv   n 

(37) 

VM> = V* + *T«!U|MH +*TMMM" (38) 

The nondimensionalized polynomial  coefficients 
for the tanker form are included in Table 3. 
Obviously, the numerical  values must be diffe- 
rent for the model  condition and the ship con- 
dition owing to the scale effect on viscous 
resistance. Strictly speaking, the values given 
were determined for forward motion.  However, 
the formula applies also to backward motion 
without serious error.  If higher precision is 
desired, a separate set of coefficients may be 
used for negative speeds or the expression mo- 
dified to include a small even term in u. 

2.2.6.  Propeller Forces 

Accurate modeling of the propeller forces 
is of utmost importance for the correct simula- 

tion of engine maneuvers, specially those in- 
volving thrust, torque and speed reversal, such 
as the crashback. The forces of primary interest 
are, of course, the thrust T, and the torque Q 
if the additional dynamical Equation (7) is 
also used. Obviously, the conventional represen- 
tation of propeller characteristics in terms of 
advance coefficient «7 and thrust and torque 
coefficients K ,K   is unsatisfactory because J 
is ambiguous for negative speeds and everything 
breaks down at n=0: 

J = uv/nD,   KT = T/pn2D\    KQ=Q/pn2D5      (39) 

The proper way to cover all possible combina- 
tions of axial and rotational motion is to in- 
troduce an advance angle e and new force coef- 
ficients C*,C* in terms of axial and circum- 
ferential Blade velocities up,cp at a signifi- 
cant radius: 

(40) 

(41) 

CQ*  = 2Q/PAoD{u^+ op
2) (42) 

For any given propeller the functions c*(e), 
C*(e) can be determined by experiment and 
sSoothly interpolated in four quadrants by 
finite Fourier series, as was first demonstra- 
ted for the Wageningen B-Screw Series by van 
Lammeren et al.  (1969). However, this mathe- 
matically elegant approximation is not very 
efficient, for as many as 2 x 40 Fourier coef- 
ficients are required to achieve adequate ac- 
curacy,  cf.  also Laudan (1974). We therefore 
advocate a more flexible approach pursuing the 
principle of parsimony. Our simulation algo- 
rithm currently employs a composite approxima- 
tion. Over the short range of advance angles 
between the bollard-pull  condition (e=0) and 
the zero-thrust condition (e=20u) where a high 
percentage accuracy is desired we recommend 
either tabular interpolation in the open-water 
diagram or a low-order algebraic or trigono- 
metric polynomial  fit.  Over the remaining in- 
terval  one can safely use the following com- 
pact functions: 

e = arctan (wp/ep).    ep = OJtmD 

C*   =  2T/pAo(u£+ ep
2) 

A    cose|cose| - 

A    coselcosel - 
Q 

B_  sine sine 

B    sinelsine 

(43) 

(44) 

custom-tailored to roughly reproduce the global 
characteristics with just two parameters each. 

By way of illustration, the relevant ex- 
pressions for our tanker propeller are listed 
in Table 3 and plotted in Fig. 9. It will be 
noted that no more than five parameters are 
used for each force. An additional set may be 
optionally inserted if higher accuracy in back- 
ward motion -180° < e < 0° is needed. 

Such economy is mandatory also in view of 
future extensions to account for the effect of 
transverse motions, which has been systemati- 
cally investigated by our group, cf. Laudan 
(1977), but not yet incorporated into the simu- 
lation model. 

Whereas in the previous Sections the com- 

89 



plex interactions between the elements hull, 
propeller and rudder were only implicitly in- 
cluded in so far as the model identification 
rested on forces measured on the total system, 
we must now account explicitly for wake and 
thrust deduction to adapt the open-water char- 
acteristics to the behind-hull condition. This 
is done by the conventional rules: 

Mp = {i-w)u,     Xp  = (l-t)r (45) 

Although our four-quadrant experiments in the 
behind-hull condition have revealed complicated 
variations of wake fraction w  and thrust-deduc- 
tion fraction t with the advance angle e, pend- 
ing further analysis we have chosen to employ 
just two distinct values each for forward and 
backward motion. However, we do apply an im- 
portant scale-effect correction in extrapolat- 
ing the wake from model to ship according to 
the ITTC 1978/84 standard procedures for single 
and twin screws. For example, the wake fraction 
of our tanker decreases by about 30% from model 
to full-scale, see Table 3. 

Finally, the side force and yaw moment 
generated directly and indirectly by the hydro- 
dynamic asymmetry inherent in a single-screw 
ship must be modeled, cf. Saunders (1957, p. 
496 ff.) and Mandel (1967, p. 332 ff.). As dis- 
cussed in detail elsewhere, this effect is 
rather weak and sensitive in steady forward 
motion, cf. Oltmann et al. (1980), but quite 
strong and consequential in stopping or revers- 
ing when the inverted propeller slipstream hits 
the hull, cf. Sharma (1982b). For the present 
purpose it has been found sufficient to postu- 
late a linear dependence on thrust: 

*P = v- N    = N     T 
P    T?T 

(46) 

with the factors of proportionality assuming 
different values for forward and backward 
thrust and motion.  Typical  numbers are given in 
Table 3 for the tanker.   It is almost needless 
to add that the terms JL./lL vanish for any sym- 
metric twin-screw arrangement as in our Fig.  4. 

2.2.7. Rudder Forces 

The rudder being the key element in ship 
maneuvering deserves the most careful consider- 
ation. Our model of the rudder forces is con- 
ceptually straightforward but by no means prac- 
tically so. Essentially, we treat the rudder as 
a symmetric control surface fully characterized 
by its empirical lift and drag coefficients in 
two quadrants, e.g. see Fig. 10. These coeffi- 
cients, derived from measurements in the behind- 
ship condition, represent the total system re- 
sponse to rudder application and not merely the 
forces acting on the (movable part of the) 
rudder itself. Since the movement of the model 
rudder is often constrained to about ±40° the 
gaps may have to be filled by reference to re- 
levant data on similar rudders investigated in 
the freestream, e.g. see Thieme (1962). Unlike 
the smooth lifting characteristics of the slen- 
der hull, the coefficients of the rudder by 
virtue of its higher aspect ratio exhibit typi- 
cal discontinuities reflecting stall. Hence 

they must be approximated by multiple piecewise 
analytical functions or simple tabular interpo- 
lation, cf. Table 3. 

The practical difficulties in the identifi- 
cation as well as subsequent simulation of rud- 
der forces lie in the determination of the high- 
ly variable, complex flow conditions at the 
rudder. Here the interaction effects of the hull 
and the propeller come into full play. Let us 
first consider the relatively simple case of a 
rudder operating outside the slipstream, as on 
our container carrier (Fig. 4). Then only the 
hull influence needs to be taken into account, 
say through an average wake fraction w    and a 
flow rectification factor k    ,  so thatRthe 
effective longitudinal and transverse velocities 
at the rudder become simply: 

"R   =   (^R)"'      \  =   <y+MR>feHR (47) 

This implies an effective angle of attack S 
equal to the sum of the geometric rudder anfle 
6 and the local drift angle B , see Eq. (10), 
leading to the following expressions for the 
effective rudder forces resolved along hull 
coordinates: 

*R = f V"R + WR H^LR S1'neR - CDR C0!*R> <48) 
7R = f V"R + *R >(CLRC0SV ^1%) («) 

*R  =  YR*R (5°) 

However, if the rudder is wholly or par- 
tially immersed in the slipstream, as in the 
case of our tanker (Fig. 3), the additional in- 
fluence of the propeller must be considered. 
This requires a tedious procedure involving 
several steps, of which only a simplified ver- 
sion is given here omitting a few ad hoc  rules 
for treating marginal cases. First of all, the 
asymptotic axial velocity increment in the 
slipstream at infinity can be estimated from 
elementary momentum theory: 

"a» = (sgnw)/Mp
2+ (sgnu) 2T/pAQ - up (51) 

Application of a factor kpR,  depending only on 
the relative distance d/D  of the rudder from the 
propeller disk after Gutsche (1955), then yields 
the axial flow velocity at the location of the 
rudder: 

M„„ = " + {(k     - i)sgnu + i}u       (52) RP    P    v PR   2' 3     2   A™        *  ' 

For estimating the area A      of the rudder sub- 
jected to this velocity, tfie slipstream dia- 
meter D     in way of the rudder can be calculated 
from thecondition of continuity: 

c2("P 
+ iv) (53) 

An average longitudinal flow velocity ü at the 
rudder can then be defined by: 

2 
*RP""RP RP' 

(54) 

Other investigators have, in effect, reported 
that the influence of the propeller on the rud- 
der is adequately accounted for by simply sub- 
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(55) 

(56) 

(57) 

stituting Ü   for u   in Eq. (48-49), cf. Thulin 
(1974) or L§ndgrafRand Müller (1975). However, 
our experience indicates a significant residual 
dependence on thrust loading, which can be ex- 
pressed as a linear variation with the velocity 
ratio u /ü   within the range (0,1): 

P  R 

cLR = (i +vyaR>cLR 
CDR=   <1   +   WaR>   CDR 

*R     =   ^   "   VP
/S

R>   VR 

This effect probably arises from the nonuniform 
velocity distribution over the rudder, the rota- 
tion in the slipstream and the flaplike action 
of the rudder behind the hull. In any case, 
three additional factors k    >k    >k     suffice to 
take care of this phenomenon, see Table 3 for_ 
the tanker. Moreover, the rudder characteristics 
must now refer to some particular value of the 
velocity ratio ulv. ,  for instance zero in Table 
3 or one-half inpFig. 10. 

Finally, it is worth emphasizing that 
corrections for scale effects enter into this 
algorithm directly through the wake fractions 
and indirectly through the thrust loading which 
varies to match the hull resistance. 

2.3. Machinery Characteristics 

Obviously the dynamics of the ship's steer- 
ing gear and propulsion plant have a direct in- 
fluence on the time history of its maneuvers. 
It is realized that for certain special tasks 
such as the finetuning of an autopilot an accu- 
rate and detailed knowledge of the transfer 
function between commanded helm and executed 
rudder angle is required. However, for a compu- 
tation of the ship's trajectory in substantial 
turning or checking maneuvers we think it rea- 
sonable to treat the helm angle as a direct in- 
put variable subject to some simple constraints, 
such as a prescribed time lag TL and given up- 
per bounds on executable rudder angle |6| and 
rudder rate |6|, the standard values being 
35 deg and 2.3 deg/s respectively. 

As regards the propulsion plant, our si- 
mulation model provides two independent options. 
Most marine engines nowadays have automatic con- 
trollers which maintain a constant rate of re- 
volutions in face of varying load (within 
limits) and trigger a predetermined temporal 
pattern of RPM change in response to an engine 
command from the bridge. On some ships the RPM 
can be explicitly controlled from the bridge. 
In all these cases we treat RPM as a direct in- 
put variable subject to suitable constraints. 

On the other hand, there are several si- 
tuations where the RPM should be treated as an 
output variable subject to the dynamic equili- 
brium of the rotating propeller shaft. This 
occurs when the engine is being operated at con- 
stant fuel rate or when the RPM controller is 
unable to maintain a steady rate against in- 
creasing load for lack of power reserve or when 
the RPM controller is intentionally overridden 
in an emergency maneuver such as the crashback. 
For handling these situations our simulation 
model has an additional (optional) dynamic 

equation (see Sect. 2.1.), which presupposes 
that the engine torque can be expressed as a 
quasisteady function of fuel rate and RPM. 
This socalled torque characteristic depends 
crucially on engine type and is very different 
for diesel engines and steam turbines. For the 
latter we adapted a fairly general bilinear 
formula given by Geisler and Siemer (1974): 

*-b 

<>°-  ^V-T^1-**^-^)** 
■+£ 

7*<0: 1S 

q*+a 

(58) 

(59) 

Here q*,Q* and n* denote nondimensional rela- 
tive sfeal rate, engine torque and RPM respec- 
tively, each expressed as a fraction of its 
full rated value. Typical values of the nondi- 
mensional parameters a,b  and Af,Bf  (for the 
main turbine) and Ah,Bh  (for the astern turbine, 
formally implied by a "negative" steam rate) 
are given in Table 3. It so happens that the 
two prototype ships treated in this paper both 
had steam turbines. 

It should be noted that in free-running 
tests with ship models in a towing tank the 
propulsion plant is almost invariably an elec- 
tric motor with sufficient power reserve and 
simple RPM control. Hence the model maneuvers 
are normally executed at constant propeller 
rate irrespective of the torque characteristics 
of the prototype. However, devices comprising 
torque feedback and a programmable micro-com- 
puter are now available for driving a model 
propeller in accordance with a specified engine 
characteristic. 

3. SAMPLE RESULTS 

3.1. Preamble 

The usefulness of the foregoing mathemati- 
cal model will now be examined by dint of sample 
results obtained for two quite different ships, 
namely a single-screw tanker and a twin-screw 
center-rudder container carrier. Their main di- 
mensions are listed in Tables 1 and 2, and the 
hull lines are displayed in Figs. 3 and 4 re- 
spectively. Not only do they represent the two 
most important classes of merchant ships afloat 
today, but they are also significantly different 
in their hull form parameters and propeller-rud- 
der configurations, so as to be ideally suited 
as test cases for the present purpose. 

For each ship three series of definitive 
maneuvers have been simulated, namely zigzags, 
turning circles, and crashbacks with and with- 
out rudder application. These are generally 
considered adequate for identifying the turning, 
checking and stopping capabilities in a compre- 
hensive manner. 

Almost every maneuver has been simulated 
under two distinct conditions, briefly desig- 
nated CPRM and CSRS. The first condition im- 
plies a constant propeller rate corresponding to 
the model self-propulsion point (MSPP) for the 
approach speed and no scale effect corrections 
for model resistance and wake. This computation 
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is thus equivalent to a direct Froude scaling 
of free-running maneuvers in a model tank, where 
the electric drive can hold a constant RPM by 
virtue of its power reserve. The second condi- 
tion implies the extrapolation of resistance 
and wake from model to full-scale according to 
the standard ITTC procedure and a constant fuel 
or steam rate corresponding to the ship self- 
propulsion point (SSPP) at the approach speed. 
The rate of revolutions then varies during the 
maneuver depending upon the torque characteris- 
tics of the engine and the propeller. For the 
crashback maneuvers, of course, the steam flux 
is not held constant but diverted to the astern 
turbine in the shortest admissible time up to 
the highest permissible value. 

For the convenience of readers and rivals 
who may wish to reproduce our results or scru- 
tinize our simulation scheme the requisite set 
of system parameters, besides the pertinent 
principal particulars, is listed for one of the 
ships (the tanker) in Table 3. For the same rea- 
son an adequate amount of simulation output is 
presented digitally in Tables 4 and 5 in addi- 
tion to the customary graphs. It is not claimed, 
however, that the numbers reported are signifi- 
cant to the last listed digit. A systematic 
sensitivity survey has not yet been attempted 
for the subject model. 

3.2. Tanker 

The maneuvering hydrodynamic interest of 
this tanker hinges on its relatively tiny pro- 
peller operating at a high thrust loading behind 
a full-bodied hull so that the hull-propeller- 
rudder interactions are pretty pronounced and 
the scale effects are rather large. All maneu- 
ver simulations reported here start with a 
steady approach speed of 15 kn at either 98.8 
RPM (MSPP) or 85.8 RPM (SSPP), the latter cor- 
responding to 76% rated power or 79% rated steam 
flux. 

Let us consider the zigzag maneuvers first. 
A partial time history of the standard 20°/20° 
zigzags is plotted in Fig. 11 and selected out- 
put of two systematic series of zigzags is shown 
in Fig. 12, consult also Fig. 2 for definitions. 
Since the results marked CPRM have been previ- 
ously validated by reference to trajectories 
of a freely maneuvering model in the CPMC track- 
ing mode, the interest here lies in the compari- 
son of CPRM and CSRS. Clearly, the differences 
are rather small, partly because of the self- 
correcting feedback strategy inherent in a zig- 
zag maneuver and partly because the hydrody- 
namic scale effect and the differing engine 
characteristics tend to countervail each other. 
In general, the response times, overshoots, 
turning rates and transfers are slightly lower 
under ship conditions. 

Turning now to the hard-starboard turning 
circle time-histories in Fig. 13 and trajec- 
tories in Fig. 14, we observe a marked differ- 
ence between CPRM and CSRS, see also Table 5 
for a complete overview of turning characteris- 
tics. As might have been expected the final 
speeds and turning rates are lower for the ship, 
but it is not self-evident why the drift angle 
should be larger and the turning circle tighter. 

The real value of a simulation algorithm lies 
in revealing counter-intuitive behavior. 

The most interesting results, however, were 
obtained for the crashbacks, simulated by divert- 
ing the full rated steam flux to the astern tur- 
bine within 27 seconds, without and with simul- 
taneous rudder application, see Figs. 15 and 
16. Three outstanding features are noticed. 
First, there is a striking tendency to turn to 
starboard in stopping even with rudder held 
amidships. Second, simultaneous hard starboard 
rudder hardly affects the time history but mar- 
kedly shortens the advance. Third, by far the 
shortest advance is achieved by rudder hard to 
starboard while steaming full ahead! 

3.3. Container Carrier 

Our container carrier is a bit beamy but 
slender and has an out-of-the-rut twin-screw 
center-rudder configuration (Table 2 and Fig. 4). 
The simulations reported here all start with a 
steady approach speed of 16 kn either at 85.8 
RPM (MSPP) or at 74.7 RPM (SSPP) corresponding 
to only 30% rated power or 28% rated steam flux. 
This modest speed with an enormous power reserve 
was originally chosen for the sake of correla- 
tion with some full-scale maneuver data that 
happened to be accessible. 

The zigzag and turning circle maneuvers 
are shown in Figs. 17 to 20 in a manner exactly 
analogous to Figs. 11 to 14 for the tanker. Sur- 
prisingly, despite the conspicuous differences 
in hull form and propeller-rudder arrangement, 
the zigzag characteristics are almost indistin- 
guishable. The turning circles, of course, show 
significant differences. The container carrier 
attains the final steady state much sooner, has 
no bias to starboard, a turning radius twice as 
large, and reverts almost exactly to original 
track after a complete circle. The relation of 
CPRM to CSRS is the same as for the tanker. 

The most dramatic difference from the 
tanker, however, is observed in the fantastic 
stopping capability of the overpowered container 
carrier, compare Figs. 21-22 vs. 15-16. Rudder 
application further reduces both the stopping 
time and the stopping distance. In marked con- 
trast to the tanker a hard turning circle pro- 
duces the same advance as a crashback straight 
on the track. The shortest advance is achieved 
by a radical combined engine and rudder maneuver. 

The authors trust this pilot probe into the 
vast space of combined engine and rudder maneu- 
vers now opened to study by simulation shall 
serve to demonstrate the power and utility of 
the proposed four-quadrant model. Yet it can 
only be a tentative prototype likely to undergo 
many modifications in the foreseeable future. 
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Table 1      Main dimensions 
of the tanker 
(HSVA Model 2507, Scale 1 : 35) 

Table 2 

Length between perpendiculars 
Length of waterline 
Beam 
Draft forward 
Draft aft 
Block coefficient 
LCB fwd of midship section 
Radius of gyration (s-axis) 

Number of propellers 
Diameter 
Pitch ratio 
Expanded area ratio 
Number of blades 
Sense of rotation 

Number of rudders 
Rudder area 
Chord length 
Aspect ratio 

Turbine plant: 
Rated power 
Rated speed 
Effective moment of inertia 
about propeller axis 

290.000 m 
296.446 m 
47.500 m 
16.196 m 
15.964 m 
0.805 
7.243 m 

66.360 m 

1 
7.910 m 
0.745 
0.600 
5 
right 

1 
73.500 m2 

7.150 m 
1.438 

20 608.0 
95.0 

kW 
RPM 

Main dimensions 
of the container carrier 
(HSVA Model 2657, Scale 1 34) 

766.2  tm2 

Length between perpendiculars 273.000 m 
Length of waterline 279.351 m 
Beam 32.200 m 
Draft forward 12.200 m 
Draft aft 12.200 m 
Block coefficient 0.611 
LCB aft of midship section 5.435 m 
Radius of gyration (s-axis) 61.880 m 

Number of propellers 2 
Diameter 6.150 m 
Pitch ratio 1.200 
Expanded area ratio 0.860 
Number of blades 5 
Sense of rotation outward 

Number of rudders 1 
Rudder area 59.350 m2 

Chord length 5.850 m 
Aspect ratio '1.734 . 

Turbine plant: 
Rated power            2 x 29 233.4  kw 
Rated speed 136.0  RPM 
Effective moment of inertia 
about propeller axis 2 x  948.1  tm2 

Table 3 System parameters of the tanker for maneuver simulation 

Hydrodynamic Characteristics 

Ideal Fluid Effects: 

-0.0737 

0.0423 

-0.7810 

N?   =  -0.0394 

Y'J 
v 

vr 
V» 

0.6482 

-0.0.261 

-0.0488 

-0.0357 

Hull Cross-Flow Effects: 

aQ =  0.207    a1 

a„ =  3.218    a„ 

Hull Lifting Effects: 

5.310 a =  0.240 a'  = 0.500 

6.732 d = 1.000 d'  = 1.000 

e =  0.064 e'  = 0.100 

k   =  0.400 

Hull Resistance: 

(Model) 

= 0.00162 

= 0.04034 

= 0.07659 

Propeller Coefficients: 

->» 
TU 

luuu 

(Ship) 

0.00109 

0.02364 

0.03594 

Interaction Factors: 

wR - w = 0.530  (Model) 

y" 

Y" 
PT- 

w = 0.370 

= 0.191 

=-0.030 

= 0.410 

= 1.000 

(Ship) 

PT+ 
N" 

PT- 
k 
"PR 

0.015 

-0.105 

0.870 

Machinery Characteristics 

Steering Gear: 

|6| < 40.0 deg 

\l\  <    2.32 deg/s 

xL = 0.00 s 

0  < E < 21u 

10,* 

10C* 
Q 

Rudder Coefficients: 

21° < e < 180°: 

-0.833+ 1.020 cos e -0.332 sin e 

-1.171+ 1.378 cos e -0.235 sin e 

0.099 cos e|cos e| -0.671 sin e|sin e| 

0.158 cos EICOS el -0.824 sin el sin EI 

Se= Odeg C°h] 

= 15 deg 

= 30 deg 

= 45 deg 

= 50 deg 

= 90 deg 

Turbine Torque: 

a =  0.075    A. 

0.250 B. 

= 0.0000 

= 0.2401 

= 0.4539 

= 0.5789 

= 0.2960 

= 0.0329 

2.500 

1.000 

DR 
= 0.0000 

= 0.0428 

= 5.30 

= 2.50 

= 0.1875 feNR = = 0.12 

= 0.4250 
< = =-0.50 

= 0.3057 

= 0.5096 

1.000 

0.600 

% 



Table 4 Computed zigzag maneuver characteristics 
of the tanker at an approach speed u   = 15 kn 

Top: Constant propeller rate, model condition 
Bottom: Constant steam rate, ship condition 
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deg deg S S S s S S deg deg m deg/s deg/s 

5.0 10.0 85.5 66.5 142.0 294.0 60.0 4.8 4.8 333.4 0.189 0.203 

10.0 10.0 61.3 40.2 95.3 196.8 42.4 351.9 4.9 5.5 211.8 0.267 0.294 

15.0 10.0 51.0 34.0 78.1 163.1 36.7 291.2 5.8 6.6 179.7 0.332 0.367 

20.0 10.0 45.3 32.7 69.6 147.5 34.8 261.6 7.2 7.9 170.1 0.389 0.429 

25.0 10.0 41.8 33.0 65.0 139.8 34.8 246.5 8.7 9.4 170.3 0.440 0.483 

30.0 10.0 39.6 34.3 62.3 136.2 35.6 239.2 10.3 11.0 176.3 0.485 0.532 

35.0 10.0 38.0 36.1 61.2 135.3 37.3 237.0 12.1 12.6 185.4 0.526 0.573 

40.0 10.0 37.1 38.7 60.9 136.7 40.1 240.6 13.9 14.2 199.4 0.562 0.607 

20.0 20.0 69.1 36.8 99.9 205.8 36.7 368.4 8.5 8.2 386.4 0.442 0.433 

5.0 10.0 88.5 48.0 131.0 267.5 50.5 3.4 3.9 267.1 0.176 0.192 

10.0 10.0 61.6 33.2 89.2 184.0 37.0 332.0 4.1 4.8 183.7 0.259 0.284 

15.0 10.0 50.7 29.8 73.8 154.3 33.1 277.8 5.2 5.9 160.2 0.327 0.358 

20.0 10.0 44.8 29.6 66.2 140.5 32.4 252.1 6.6 7.3 154.3 0.387 0.420 

25.0 10.0 41.3 30.6 61.9 133.8 33.0 239.7 8.2 8.9 156.9 0.439 0.476 

30.0 10.0 38.9 32.3 59.8 131.0 34.3 234.4 9.8 10.5 163.6 0.487 0.523 

35.0 10.0 36.6 35.2 58.8 130.5 36.3 233.9 11.6 12.0 173.5 0.529 0.564 

40.0 10.0 36.5 36.8 58.8 132.2 40.0 240.3 13.4 13.7 186.7 0.566 0.598 

20.0 20.0 69.0 32.8 96.5 198.3 34.5 365.0 7.6 7.5 355.9 0.432 0.419 

95 



Table 5 Computed turning circle characteristics 
of the tanker at an approach speed u   =  15 kn 

Top: Constant propeller rate, model condition 
Bottom: Constant steam rate, ship condition 

o o o o o 
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o 

Final val jes in steady turn 
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OJ OJ C 4-> (/) +-> E C •r- 0) E c/l •r- 13 +-> <D •r— _l^ "O ~o  o 
"O i— rO (O C rO •r- <0 +-> E Q) 4-> dj +J ■r- C C •!- 14- r— C   03 (_> OJ <U *|- 

"O CT> > (O X  > O 03 E <° E * X  (0 i- XI •■- Dl S~  +J tO 0) QJ +-> 

3 c "D  O S-  O rO "O fO -f- CO i- 3 <0 S- C 3 CO i-  o. Q. fO 

on  to =C H 1- 3) S <0 H- -o £■  +> £ +> S +J 1— s- a <o r— t- h— V) CO i- 

deg m m m m S S m m deg deg/s kn 1 

5.0 2603 -1835 2609 3864 478 898 -3870 1884 -4.48 -0.212 13.55 0.903 
-5.0 2301 1598 2307 3382 421 793 3389 1625 5.15 0.239 13.18 0.879 

10.0 1796 -1201 1804 -2595 330 632 -2603 1230 -6.75 -0.289 12.06 0.804 
-10.0 1684 1113 1693 2410 309 591 2419 1123 7.37 0.307 11.70 0.780 

15.0 1458 -928 1469 -2041 268 521 -2052 930 -8.81 -0.337 10.63 0.709 
-15.0 1395 878 1406 1934 256 497 1946 863 9.48 0.351 10.28 0.685 

20.0 1263 -766 1275 -1708 233 458 -1721 742 -10.93 -0.370 9.31 0.621 
-20.0 1220 733 1233 1636 225 441 1649 691 11.69 0.383 8.98 0.599 

25.0 1134 -655 1148 -1479 210 416 -1494 606 -13.17 -0.393 8.08 0.539 
-25.0 1102 631 1117 1425 203 403 1440 565 14.07 0.406 7.78 0.519 

30.0 1042 -574 1058 -1309 194 388 -1327 502 -15.62 -0.410 6.98 0.465 
-30.0 1017 556 1033 1266 188 376 1285 468 16.70 0.422 6.70 0.447 

35.0 973 -512 992 -1176 182 368 -1196 418 -18.38 -0.422 5.99 0.399 
-35.0 953 497 970 1141 177 357 1162 388 19.69 0.435 5.73 0.382 

40.0 921 -463 941 -1069 173 358 -1092 349 -21.63 -0.428 5.07 0.338 
-40.0 903 450 923 1039 169 344 1063 322 23.30 0.444 4.85 0.323 

5.0 2674 -1963 2679 -4126 500 957 -4132 2006 -4.20 -0.191 13.00 0.867 
-5.0 2486 1804 2491 3796 463 887 3802 1814 4.62 0.206 12.68 0.845 

10.0 1820 -1253 1828 -2700 340 664 -2708 1254 -6.64 -0.256 10.89 0.726 
-10.0 1754 1197 1763 2579 327 638 2588 1172 7.10 0.266 10.58 0.705 

15.0 1467 -956 1478 -2098 274 546 -2109 919 -8.98 -0.291 9.07 0.605 
-15.0 1430 926 1441 2030 267 530 2042 867 9.53 0.299 8.79 0.586 

20.0 1265 -783 1278 -1744 237 480 -1758 710 -11.42 -0.312 7.52 0.501 
-20.0 1241 763 1253 1698 232 468 1712 671 12.09 0.320 7.28 0.485 

25.0 1132 -667 1147 -1504 213 438 -1520 567 -14.08 -0.325 6.25 0.417 

-25.0 1114 652 1129 1469 209 428 1486 530 14.95 0.335 6.02 0.401 

30.0 1038 -582 1055 -1327 197 409 -1346 458 -17.00 -0.335 5.20 0.347 
-30.0 1024 571 1041 1299 193 401 1319 429 18.05 0.345 5.02 0.335 

35.0 968 -517 986 -1190 184 389 -1212 376 -20.30 -0.341 4.35 0.290 

-35.0 956 508 975 1167 182 382 1189 352 21.60 0.352 4.20 0.280 

40.0 915 -465 935 -1081 175 376 -1106 308 -24.12 -0.345 3.60 0.240 
-40.0 904 458 925 1061 173 369 1087 288 25.80 0.356 3.48 0.232 
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y          r,N      \ v^ 
u,X 

All arrows indicate 
positive directions 

Fig. 1 Coordinate system        Fig. 2 Characteristic parameters of zigzag maneuver 

A. P. 
8-10 

Fig. 3 Body plan and profile of tanker (HSVA Model 2507) 

A.RO 
9.10 20F.R 

Fig. 4 Body plan and profile of container carrier (HSVA Model 2657) 
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Fig. 5 Side force (top) and yaw moment (bottom)   Fig. 6 Side force (top) and yaw moment (bottom) 
on the tanker resulting from pure drift        on the tanker resulting from pure yaw 

Common legend   Ideal fluid effects 
  Lifting effects 
  Cross flow effects 
  Total 
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Fig. 8 Local drag coefficient associated with 
observed cross flow effects on tanker 

Fig. 9 Thrust and torque characteristics of 
the tanker propeller 

Fiq. 7 Side force (top) and yaw moment (bottom) .    ■ 
on the tanker resulting from pure cross   Fig. 10 Lift and drag characteristics of the 
flow as measured at zero forward speed tanker rudder 
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CPRM 
CSRS 

lO/onO Fig. 11 Simulated 20 /20 zigzag maneuver of the tanker (CPRM versus CSRS) 

&     [deg] 
0 40 
«     [deg] 

Fig. 12 Selected zigzag maneuver characteristics of the tanker (CPRM versus CSRS) 
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Fig. 13 Simulated turning circle (6 = -35°) maneuver of the tanker (CPRM versus CSRS) 

500 1000       X     [m] 

1 min 
<s e— CPRM 

*— CSRS 

Fig. 14   Simulated turning circle (8 = -35°) trajectory of the tanker (CPRM versus CSRS) 
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s 
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Fig. 15 Simulated crashback maneuvers of the tanker v/ith and without rudder application 

Crashback 
with 6=0° 

Crashback 
with <5 = -35° 

Position marked at 1 min intervals 

Fig. 16 Comparison of crashback and turning circle trajectories for the tanker 
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Fig. 17 Simulated 20°/20° zigzag maneuver of the container carrier (CPRM versus CSRS) 
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Fig. 18 Selected zigzag maneuver characteristics of the container carrier (CPRM versus CSRS) 
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Fig. 19 Simulated turning circle (6 = -35°) maneuver of the container carrier 
(CPRM versus CSRS) 
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1 min    „„_., « M— CPRM 

Fig. 20 Simulated turning circle (6 = -35°) trajectory of the container carrier 
(CPRM versus CSRS) 
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Fig. 21 Simulated crashback maneuvers of the container carrier 
with and without rudder application 
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1000 

Position marked at 30 sec intervals 

6 = -35" 

Fig. 22 Simulated crashback trajectories of the container carrier 
with and without rudder application 
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ADDENDUM 

The integral  occurring in Section 2.2.4. Hull  Cross-Flow Effects has the following general 
solution: 

xn  (v+rx)   |ü+ra|da:    =    2ln     \j£\  + n+3   \ sqnv 

,,n+l 
4Z- „.„•,     

n+2 
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41 
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n+1 

[v2 > r2l2, n even] 

[v2 » r2£2,  n odd] 

[v2 < r2l2, n even] 

sgnr [v2 < r2Z2,  n odd] 

Substitution of Eq.  (34-35) into Eq.  (32-33) then yields the following specific expressions for 
side force and yaw moment in response to cross flow: 
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4 [ 5 6 SSOr1^10 ' 9   lM 143rnZ" 

sgnU [i>2  > r2l2] 

+ a^-h [rl + — 1 v ■ sgnr [v2 < r2l2 

Our simulation algorithm actually uses these analytical  formulas, but numerical quadrature would 
be an equally admissible alternative. 

DISCUSSION 

JERZY MATUSIAK, 
Technical Research Centre of Finland, 
Espoo, Finland: 

I would like to congratulate the authors on 
their very interesting paper. I have just one 
question to ask: Did you have a possibility 
to compare the results of your digital simu- 
lation with the results of free-running model 
experiments or fullscale manoeuvring measure- 
ments? 

Dr. VLADIMIR ANKUDINOV, 
Tracor Hydronautics, Inc., 
Laurel, MD, USA: 

I believe the paper is a very  welcome ad- 
dition to data in this particular field. As far 
as Tracor Hydronautics is concerned we have been 
using four-quadrant hydrodynamical model and 
square absolute representation for higher order 
terms (in contrast to the "third order Taylor 
expansion" method) for a number of years. Based 
on the physical considerations and our experi- 
ence with extensive PMM test results, it is re- 
commended to express sway (or yaw) forces and 
moments in two different regions. In the first 
region of relatively small drift angles the 
lifting-surface effects proportional to the in- 
stantaneous sway and yaw velocities are domi- 
nant. At large drift angles hydrodynamic forces 
and moments are dominated by cross-flow drag 
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Fiq Al Variation of longitudinal force, lateral force, and yawing moment coeffi- 
cients with a large range of angle of drift, for a fine form ship hull 

which is essentially proportional to velocity 
squared. If sway force, Y, and sway moment, N, 
are continuous functions in the whole range of 
drift angles, as shown on Figure Al, by matching 
regions I and II for ahead motion (and III and 
IV in astern motion) the cross flow terms at 
small drift angles, ß, can be determined. 

In any region 

7 = 0.5pL2U2 [y^cosß sinß  + IV isinß |sinß| ] 

N = O.SpL3U2 [HPcosßsinß  + ffV    isinß |sinß|] 

and therefore, by matching two regions somewhat 
conventionally at 30 degrees: 

(7^ cos30° sin30° + I^v 

(N'v cos30° sin30° + ffS 

sin230°) = 

fy     11 L v\v\ Jlargeß 

sin230°)   = 

K\vO largeß 
sin 30 

where 

LYv\v\ Jlargeß 

LNvIVI Jlargeß 

CCFD T(x)dx/L2 

C"        T{x)xäx/L3 , 
CFD 

of the region I the values of 7',   ,  and /r,   , 
can be estimateHr1 '   ' 

Similarly for yaw motion, considering 

r'  = —     and 
r(0.5L) 

U 

the matching condition at r" = 1 (ßr = 30 ) 

yaw 

where 

0.5pL3V2   |> r' + ^|r|r'k'|] 

0.5PL3«2   [(^k|)largerr'|rM] 

' r|rI   larger 
C        T(.x)x2dx/Lh, 

CFD 

provides the value of N'.<  for small yaw 
rates, r'. 

My second point concerns the interaction 
between ship hull and rudder. In Tracor Hydro- 
nautics simulation models the forces generated 
by the rudders, Y ,, are based on inflow ve- 
locity u    , which is a function of forward speed 
u  and propeller rotational speed n,  so that 

U2     = [du2  + eu(nd  ) + finD  )2] , 
R     L P        P 

where D    is the propeller diameter, and non- 
dimensi8nal coefficients d, e  and / are defined 
in four quadrants of u, n  combinations. For typ- 
ical maneuvers (propeller is overloaded) the 
contribution of f term is dominant. 

The hull/rudder interaction forces then 
are expressed simply as 
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N, hull/rud hull/rud rud ' 

where xru(*  is a longitudinal distance between 
CG and rudder. As a first approximation, the 
interaction coefficient, cR~i.o. 

For ships operating at sea the effect of 
free-surface waves (including forward speed, 
frequency and final amplitude dependence) and 
its interaction with lifting effects and vis- 
cous separation should be considered. Figure A2 
shows results of our simulations for Mariner 
Ship in calm water and irregular seas, cf. 
Ankudinov (1983). At significant wave heights, 
H ,  ,  larger than 8-10 feet, the ship is practi- 
cally unsteerable. 

Reference: 
Ankudinov, V. (1983): Simulation Analysis of 

Ship Motions in Waves. Proceedings of In- 
ternational Workshop on Ship and Platform 
Motions, University of California, Berkeley, 
CA, USA, pp. 384-403. 

-2> WAVE DIRECTION 

NO  WAVES   ZJC-ZAC 

ZIC-ZAC   ]N  WAVES 5F7 

ZIC-ZAC   IN  WAVES 8 FT 

20-20 ZIC-ZAC MANEUVER 

-> WAVE DIRECTION 

WAVES 5 FT vAVES 8FT WAVES 11F 

NU WAVLÜ 

1 
b.   35 DECREE  RUDDER   TURN 

Fig. A2 Simulated maneuvers of Mariner ship in 
calm water and in irregular waves for 
15 knots approach speed 

AUTHORS' REPLY 

First of all we would like to thank both 
discussers for their congenial remarks. 

In reply to Mr. Matusiak's question, our 
simulations have been partially validated in 
each case by comparison with the results of sys- 
tematic series of zigzag maneuvers performed in 
the towing tank with the shipmodel operating in 
the free-running mode at constant propeller re- 

volutions (CPRM). For lack of suitable facili- 
ties we have so far been unable to conduct turn- 
ing circle or engine maneuvers in the tank. More- 
over, we have conducted a detailed comparison 
with full-scale trials of the MARINER model as 
reported in a previous paper, cf. Oltmann et al. 
(1980). Although that simulation was based on 
an earlier, significantly different algorithm, 
it did provide some validation for our scale 
effect corrections to hull-propeller-rudder in- 
teraction. Finally, a rough, order-of-magnitude 
comparison has been made with some full-scale 
trials of the container carrier HAMBURG EXPRESS 
to support our simulation of engine character- 
istics. Thus almost all modules of the simula- 
tion algorithm have been directly or indirectly 
validated by some maneuver trajectories. Yet we 
are still looking forward to a real test of our 
simulation model by comparison with a compre- 
hensive set of high precision maneuvering trials, 
all performed with the same ship. 

Dr. Ankudinov's contribution is an inter- 
esting enrichment of our paper for it reveals 
a rather different approach to four-quadrant 
modeling. We have tried to construct single ex- 
pressions which by virtue of their structure 
are essentially valid in all four quadrants and 
have succeeded in doing so at least for the 
major hull forces, thus eliminating the need 
for matching and patching piecewise approxima- 
tions advocated by Dr. Ankudinov. 

Parenthetically, we would like to point 
out, for the convenience of the reader, a couple 
of presumably typographical errors in Dr. 
Ankudinov's discussion. In our opinion, his 
first two Equations should begin with a minus 
sign on the R.H.S. since by definition 
v =  -l/sinß. Moreover, his Equation for the non- 
linear yawing moment in response to pure yaw 
should correctly read 

T|V |   larger 
CCFD Tix)x< \x\ äx/L5 

More importantly, we doubt whether the true 
nonlinear coupling of sway and yaw motion in 
the crossflow forces implicit in our Equations 
(32-33) - and made explicit in the Addendum - 
can be properly modeled by polynomials with only 
positive powers of i>,|y|,r,|r| as used by Dr. 
Ankudinov. In short, we have good reasons for 
preferring our own basic model of hull forces. 
But we hasten to recognize that we still have 
to incorporate features such as shallow water 
and seaway effects which Dr. Ankudinov already 
appears to have successfully done. 

In view of the latest worldwide develop- 
ments in maneuvering simulation we suggest that 
the time is now ripe for organizing a workshop 
to obtain an objective assessment of the per- 
formance of the new generation of four-quadrant 
models by comparing them for standardized ma- 
neuvers of certain benchmark ships. 
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ON THE SHIP MOTION REDUCTION BY 

ANTI-PITCHING FINS IN HEAD SEAS 

MASATOSHI BESSHO   AND   YUSAKU KYOZUKA 

ABSTRACT 

This is a study on a heave-free and/or 
pitch-free ship with pairs of fins, that is, a 
ship which is free from the heaving and/or 
pitching oscillation in head sea at a given 
wave-length. For this purpose, it is sufficient 
to cancel the wave-exciting force and/or moment 
by using pairs of fins to make a ship with fin 
wave-free for heave and/or pitch motion. Thus, 
there are two equations in complex variables 
for the heave and pitch-free. 

On the other hand, a pair of fins has 
three variables to be determined which are the 
area, the aspect-ratio and the location of fins 
to be attached. Two pairs of fins are suf- 
ficient to make a ship heave-free and pitch- 
free, but two parameters are left undetermined. 
In the same way, a pair of fins is sufficient 
to make a ship heave-free or pitch-free. 

The above discussion is purely mathe- 
matical and the particulars of fins thus 
obtained must be checked to be feasible for a 
practical application. For this purpose, 
taking a container-cargo ship for an example, 
the calculations are carried out for two cases. 
And it is confirmed by experiments that the 
theory agrees well with    experimental   results . 

NOMENCLATURE 

area of fin  (of one side) 
aspect-ratio of fin  (of one side) 
water plane area of ship 
amplitude of in-coming wave 
chord  length of j-th fin 
lift coefficient of fin 
total   resistance coefficient 
phase velocity of wave 
Froude number 
gravity constant 
amplitude of heaving oscillation at 
center of gravity of ship 
amplitude of heaving and pitching 
velocity 

K=2ir/X =oj0
2/g  :  wave number of in-coming wave 

L :   length of ship or lift of fin 
1. :   position of j-th fin 
I^IVo/Vi |:   lever of wave-exciting moment 

;sfSf 

«. 
a 

cfj 

ct 
c=o)0/K 
Fn=V/v§L 
9 
h 

I,. I2 

«2' vi 
added mass of fin 

N 
R 

I' 
Vi, 

ij 

zj 
(1)0 

(i)=o)o +KV 

a.j=arg[ V 

:  two dimensional  damping coefficient 
:   resistance increase in waves 
:  thrust by fin 
:   ship velocity 
:  wave-exciting force and moment 

vertical   velocity of water at j-th fin 
vertical  velocity of j-th fin relative 

to water 
:  dissipated power of radiating wave 

:   i-th  mode   hydro-   and   mechanical 
impedance of j-th mode motion 

:   impedance of j-th pair of fin 
:   circular frequency of in-coming wave 

encounter frequency 
pitching amp!itude 

:   phase of wave-exciting force or 
moment 

1.   INTRODUCTION 

The study of ship motion reduction with 
fins has a long history and many works have 
been carried out. But there are comparatively 
few works which deal  with  anti-pitching fins. 

At first, M.A.Abkowitz[3] reported that 
the pitching oscillation can be reduced to a 
half by a pair of fins with the area of 3 to 7 
% of the ship water plane area. M.Matsui[4] 
reported that the active control anti-pitching 
fin for a small passenger ship can reduce 
pitching completely at some wave-length. The 
added mass effect of fins is neglected in the 
above two studies. Ir.J.H.Vugts[5] studied the 
passive and active fins including the added 
mass effect and showed a good agreement with 
experiments and theoretical calculations by the 
stri p method. 

M.A.Abkowitz and M.Matsui et al. suggested 
that the motion reduction effect of fins result 
from large eddy damping. This is true and may 
be the largest role of fins. On the other hand, 
the reduction of ship motions by fins can be 
also explained by the reduction of wave- 
exciting moment. 

It is wel 1 known that the semi-submerged 
ship has a good sea-keeping quality. This is 
result of its wave-free property, that is, the 
wave-exciting force vanishes at a certain wave- 
length.   However,   the motions  of a ship are not 

t Dept. Mech. Eng., National  Defense Academy, Yokosuka, Japan 239. 
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always reduced when the wave-exciting force 
vanishes because the damping coefficient also 
vanishes   consequently.[l,2] 

If it is possible to make a ship wave-free 
only in one direction, for example, head seas, 
it must allow us to have heave-free and/or 
pitch-free ship. The preceding works tried to 
reduce only pitching motion. On the contrary, 
we have tried to obtain the fins which make a 
ship heave-free and/or pitch-free at a given 
wave-length. The solution have been obtained 
by the wave-free condition; that is, cancel- 
lation of the wave-exciting force and/or moment 
by the appropriate combinations of fins. 

The calculation is based on the reliable 
ordinary method which gives correct prediction 
of sea-keeping properties. Taking a container- 
cargo ship as an example, we have carried out 
the calculation and studied the practical fea- 
sibility and found that there exists actually 
such a fin in a fairly broad range of wave- 
length. 

Lastly, we have verified the prediction to 
be reliable by experiments. 

2.  SHIP MODEL AND FINS 

Let us calculate fin particulars to make a 
ship heave and/or pitch-free in head seas. For 
this purpose, we make use of the ordinary strip 
method with the coordinate systems as shown in 
Figure 1. [ 1,2]. 

We calculate the motions of a container 
ship. Figure 2 and Table 1 show the body plan 
and principal dimensions of the ship 
respectively. Her service speed is Fn=0.26, 
but the calculation was carried out for Fn=0.18 
because of the short length of the model 
testing basin. But the difference of the 
Froude number would not change the calculation 
results greatly. The calculation shows that 
the fin area decreases slightly as the ship 
speed increases. Also the type of ship has 
effects on the fin particulars and we have 
studied various types of ships changing their 
hull forms systematical 1y.[14] Of course, 
there are some differences in their results but 
they are quantitative and not qualitative so 
that we will  discuss here only the above model. 

Now, we must estimate the force acting on 
fins. Firstly, we assume that the force acts 
on one point of the ship and its moment about 
mid-chord of the fin is negligible. Then, the 
lift L and added mass m of the fin are esti- 
mated as fol lows, because the reduced frequency 
must be very small   in practical   case. 

L = | V v SfCf CL 

CL- 
2TT 

I+TJT 

A.R. Sf/C f/of Ml) 

A.R. 
17 „r 2 c 
4 pCf Sf J 

where v is a relative vertical velocity of fin 
to the water. The effect of aspect-ratio is 
assumed as the same of the one of elliptic wing 
taking into account mirror image effect to the 
ship hull   and the  lift coefficient is due to 

theory of flat plate wing so that it must be 
corrected at the stage of practical appli- 
cation. 

In the followings, dividing these quanti- 
ties by the velocity v and combining them we 
make use of an impedance form. For a pair of 
fins the impedance may be written as: 

_2^+2i(1)m„^ßVA*   + ™-pajCfAf (2) 
1+- 

A.R. 

3. TWO PAIRS OF FINS FOR HEAVE- AND PITCH-FREE 

In general, in treating mechanical 
oscillation problem, it is simple, convenient 
and even fertile to make use of analogy to the 
electric circuit theory.[12] Hence, we express 
the equation of motion as follows: 

Figure 1 Coordinate system 

Figure 2 Body plan of the ship 

Table 1 Principal dimensions of the ship 

Ship' Model 

Length between perpendiculars (m) 250 3 
Breadth moulded (m) 32 0.381* 

Draft loaded (m) 11.5 0.138 

Block coefficient 0.632 

Midship coefficient 0.9614 

Volume of displacement Or,3) 58126 0.100k 

Waterplane area (m2) 6870 0.9893 

Wetted surface area m2) 10073 1.1*505 

Radius of gyration / Lpp 0.25 

HG / Lpp » -O.OI82I4 

WF / Lpp .. -0.0578 

3B"G : distance of C.G. from 

JPF ; distance of center of flotation from 
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Zu Ii  + Z-ioI -n xi 12:2 
(3) 

Z21I-| + z22i2 

where 11 and I2 are the complex velocities of 
heaving and pitching oscillation respectively. 
Z-, denotes the hydrodynamical and mechanical 
impedance. V-| and V2 are the wave exciting 
force and moment, which are calculated from the 
strip method by ordinary process.[l,2] 

Here, we use an analogy in which the 
velocity and force or moment correspond to 
electric current and voltage, so that mass, 
spring constant and damping coefficient corre- 
spond to inductance, capacitance and resistance 
respectively. 

Now, let us consider to suppress com- 
pletely heaving and pitching oscillations. As 
easily seen, it is sufficient when the 
following conditions exist. 

V 0. (4) 

These conditions mean the ship form is wave- 
free, and the ship does not radiate waves to 
the forward direction when heaving and 
pitching.[1,2] Although such ship form is not 
yet known wel 1, but we may fit some appendage 
to cancel out the wave exciting force and 
moment. For such appendage, let us choose two 
pairs of fins. The fore and aft fins are 
attached to the bow and stern respectively and 
their distances from the CG. are li and 12. 
Let us denote the impedances of the fore- and 
aft-fins as z-| and z2 respectively. 

Then,   the  equations  (3)   become: 

Zll1! + Z12!2 = Vl 

Z21J1 + Z22:2 - V2 

(5) 

where 

Ml 

M2 

-11 +   ZT    +   Z5 

l'V iV 
zi2+ (V-^1+ Hr-V^ 

Z21  = Z21 + 1^ - l2z2 

.iV 

'l = Vl +z1vw1 +z2vw2 

^22 = Z22+MVl^)z1 + 120 2--ir)z2j 
(6) 

(7) 

V2 = V2 + llZlvwl  - l2z2vw2 .  ^ 

where  v   ,   is  the upward orbital   velocity of 
wave at tne fin position and 

\ 

vwj = Woa e KzJ±iK1J    -|-tf0rj=(2)      (8) 

As    in    eq.(4),     the    oscillation-free 
conditions are 

Vi = V2 = 0 . (9) 

In a purely mathematical sense, these equations 
give four relations between real variables and 
we have six variables with regard to two pairs 
of fins, that is, their positions, areas and 
aspect-ratios. Therefore, we have two redun- 
dancies which may be determined arbitrarily. 
Now,   putting 

Vl|e
iUl    , 

(10) 

h + ^-^n. 

li lc 21, 

(11) 

'1  -  '2 " -'c 

We have from eqs.(9) with eqs.(7), 

1w-1c+1wcos(a2^l)+11ws1n(a2-al)    ^le2i 

VVVosCag-^H^sinCag-a,)      z2 

Kl„ 

(12) 

At first,   for the convenience sake,   let us 
assume two same fins are fitted.    Then, we may 
verify the condition (12) becomes 

lc = lwcos(<W 

lw s1n(«2-
al> " ^ tan K1n 

(13) 

and then, putting these condition in the one of 
eqs.(7), we may calculate the impedance: 

/2       2~~ 
1   ]m+1w v    -KzriKlc, (14) 

2w0alm      1 

For an actual calculation, we must search 
at first one of the root lm of the second 
equation of eqs.(13) for a given wave number. 
Then, we may calculate lc and z-| from eqs.(13) 
and (14). Here, z-| must lie in the first 
quadrant of the complex plane by the eq.(2). 
Hence, if it does not lie in the first 
quadrant, we must search another root which 
gives  appropriate  impedance. 

From the impedance thus obtained, we may 
calculate its aspect-ratio and area as follows. 
Namely, cancelling the fin area from the real 
and imaginary part of the impedance of eq.(2), 
we have 

32TTPV3(A.R.)1' 

u)2 (1+A.R.)3 
(15) 

Solving this equation, we may determine the 
aspect-ratio and then calculate the fin area 
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from the real or imaginary part of the 
impedance. 

Carrying out this calculation for the 
present model, we have results shown in Table 2 
and show an example of the responses of the 
ship in waves in Figure 3. Thus, it seems that 
the appropriate combination of two pairs of 
fins to suppress completely heaving and 
pitching oscillations at any wave length 
exists. 

However, this is only one case, so that we 
may not generalize this result to any ship, and 
moreover we can see in this result two 
difficulties. The one is that the aft fin lies 
far aft of ship's stern so that the actual 
installation might be impossible. The other is 
that there are cases to need fins of the very 
small  aspect-ratio. 

Table 2 Calculated particulars of two-pairs of 
fixed fins to stabilize heaving and 
pitching motions (model  ship,   Fn=0.18) 

X/L 

Fin  Position Fin  Particu lar 
li(m) Mm) Af(m2) Cf(m) A.R. 

0.9 -3.097 4.653 .053 .417 .305 
0.95 -5.986 9.314 .016 .336 .142 
1.0 -1 .67Jj 5.751 .048 .288 .577 
1 .05 0.485 3.707 .052 .500 .208 
1.1 1 .249 3.024 .069 .149 3.110 
1 .2 1 .805 2.643 .078 .428 .425 
1 .4 2.236 2.643 .085 .645 .204 
1 .6 2.539 2.835 .098 .780 .161 
1.8 2.823 3.076 .113 .886 .144 
2.0 3.106 3.339 .127 .974 .134 

Af{n') cf(-) A.R. ),{>n) !,(■) cal. 

Without  Fin ^-^ 
2P.   Fixed 0.015 0.307 0.154 -5.99 9.31 — 

We assume at first the force acting on the 
fins at one point so that these fins could not 
effect like calculations. In fact, we can 
verify this by calculations of a long 
distributed fins and this confirms at the same 
time that bilge keels hardly change the ship 
responses in waves. 

On the contrary ,we may put fin positions 
preliminarily in the condition of eqs.(9). 
Then, that condition may determine the ratio of 
impedances of two fins. However, we did not try 
such calculation. But in this procedure, we 
may hope at least to avoid the above difficulty 
to determine  the fin positions. 

In any way, we must notice that these fins 
obtained in this study have very much larger 
area than the one studied before. This is, of 
course, the largest difficulty to the practical 
application. 

4.  ONE PAIR OF FINS FOR PITCH-FREE 

In a similar way as the preceding case, we 
may design one pair of fins for heave-free or 
pitch-free. 

Now, we put the equation of motion as 
follows: 

znJi + z2i:2 = vi 
I I I 

211   "*"    22 2 =    2 
(16) 

Ml = Ml Zn + z 

iV 
Z12 = z12 + (1+7T)z 

(17) 

Zpi    —    Zpi    +     12 

iV 

design  point   :   X/l   =  0.95 

Z22 = Z22 + KM-—)z ai   '    J 

JT\ /   ' 

V!     = V-!  + z vw 

V2    = V2 + 1   z vw 

(18) 

where z  is  the  impedance and   1   is  the distance 
between   the   attached   fins   and   the  CG.. 

Cancelling   each   coupling   term   from 
eqs.(16), we have 

A1- ZVlz22 " Z12Z21 

(19) 

Figure 3 Amplitude responses of heave and 
pitch ; Fn=0.18 
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V,*= V 12_ ,  z 

^22 

"22 

z{(l+JV.)(1VrV2)+vw(Z22-1Z12)}] 

v, = v; - V 1T l'l 

>(20) 

-u 
[v2z11-v1z21 + 

Z{(V2-1V1)+VW(1Z11-Z21)}] 

Therefore,    the   heave-free   condition 
clearly is 

V 0 

and the pitch-free one is 

0 

(21) 

(22) 

For the heave-free at lp forward the CG. 

^ + y2 = 0, for V*Z22 + VgZ-,'-, = 0. (23) 

Hereafter, we confine ourselves to the 
pitch-free case merely for a simplicity, and 
the heave-free case may be treated almost in 
the same way.[13] Then, for a given wave 
number and fin-position, we may obtain the fin 
impedance from eq.(22) with eq.(20). 

As before, if the impedance lie in the 
first quadrant in the complex plane, we may 
calculate its aspect-ratio by eq.(15) and then 
its area. Otherwise, there does not-exist the 
pitch-free fin  in this case. 

Table 3 is a result of such calculation 
and Figure 4 shows an example of responses in 
waves. As seen in the table, the fin area 
becomes smaller, the position approaches near 
mid-ship and at the same time its aspect-ratio 
becomes extraordinarily small, so that the fin 
could not have anti-pitching effect as remarked 
before. Thus, the only preferable position of 
the fins may be near the F.P. . 

The responses in waves are remarkably 
lower than the one without fin. This seems 
only because of a very much large area of fin. 
Namely, the necessity of large fin area is the 
greatest difficulty for a practical appli- 
cation. Naturally, we may suppose this area of 
fin depends on the type of ship form, so that 
we add the same calculation with respect to 
various types of ships and found that the 
necessary fin area for pitch-free becomes 
smaller, when the water plane area becomes 
smaller; in another words, the vertical pris- 
matic  coefficient becomes  greater.[14] 

Therefore, the limiting ship form becomes 
similar as the so-called semi-submerged ship. 
But, in that type of ship, the responses in 
waves are generally larger than the ones of 
ordinary type of ships because of its smal ler 

wave-damping of the main hull. 
Lastly, both the magnitude and phase of 

quantities appeared is important in these cal- 
culation, so that it is convenient and helpful 
to our understanding to plot them in the 
complex plane as shown in Figures 5 and 6. In 
the case of one pair of fins, it is preferable 
to plot V* instead of V,. These figures give 
us a clear geometrical image with respect to 
the effect of  fin. 

Table 3    Calculated particulars of a pair of 
fixed fins to stabilize pitcing 
motion    (model  ship,   Fn=0.18) 

Fins 

Posi.(m) 

Fin's 

Dim. 

1/1. 

1.05 1.1 1.2 l.lt 1.6 1.8 2.0 

1.1 

A.(m2) 
# * * • 

0.0>42 0.066 0.081 

C,(m) 1.366 1.000 0.937 

A.R. 0.022 0.066 0.092 

1.2 

Af » * * 
0.01*6 0.065 0.077 0.087 

cf 
1.000 0.820 0.791* 0.795 

A.R. 0.01*6 0.096 0.122 0.138 

1.3 

Af * * 
o.ot*o 0.062 0.072 0.081 0.090 

cf 
1.015 0.701 0.679 0.688 O.706 

A.R. 0.039 0.126 0.157 0.171 0.180 

l.lt 

Af * 
0.050 0.061 0.069 0.076 0.083 0.090 

cr 0.881) 0.655 0.593 0.598 0.618 0.61*1 

A.R. 0.061* 

0.075 

0.1l*3 0.197 0.213 0.218 0.219 

0.089 

1.5 

Af 
0.077 0.072 0.071* 0.078 0.081* 

cf 
0.7U6 0.627 0.550 0.526 (1.5U0 0.561* 0.590 

A.R. 0.138 0.189 0.238 1 0.267 0.268 0.263 0.256 

Note) means no solution 

Af(ni!) Cf(m) A.R. 1(a) Cal. 

Without  Fin J^ ̂ ^ 
IP.   Fixed 0.074 0.627 0.189 1 .5   

design   point   :   X/L   =1.1 

 t—^~-  /   / ' / 

 i7    , 111    .._i l I 1 1— 

Figure 4 Amplitude responses of heave and 
pitch ; Fn=0.18 
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Figure 5    Vector representations of wave- 
exciting force and moment 
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Figure 6    Vector representations of heave 
and pitch motions 

5.   EXPERIMENTS 

To confirm the reliability of the fore- 
going theory, we carried out experiments using 
three-meter models shown in Table 1 at Meguro 
Ship-Model Basin of Defense Agency. The first 
test was carried out for a naked hul1 without 
fin, the second with two pairs of fins and the 
third with one pair of fins arranged as shown 
i n Fi gure 7. 

Before the tests in waves, resistance 
tests were carried out in calm water. Figure 8 
shows the results. A large added resistance by 
fin is remarkable and the added resistance 
coefficient divided by the fin area is about 
0.012 for one pair of fins and 0.019 for two 
pairs respectively. These values are 
extraordinarily higher than the value of 0.006 
obtained by wind-tunnel test results at Re = 
10 .[8] These differences would be explained 
as that the relative angle of attack of fins to 

Two-poirs, fixed tin 

£ 
^ 

One-pair, fixed fin 

Figure 7    Arrangements of fins 

Figure 8    Resistance in calm sea 

the water might have a certain value. In any 
way, this is no doubt one of the greatest 
practical   difficulty. 

Then, we carried out test in waves. The 
responses are shown in Figures 9 and 10 with 
fin particulars. These fins are selected 
merely for simplicity sake and do not give 
strictly heave and/or pitch-free but it might 
give a sufficient sea-keeping quality as seen 
in the figures. The agreement with theory and 
experiments seems fairly well but there are a 
little differences between them. Then, multi- 
plying factor 0.8 to the fin's impedance, we 
have responses of chain lines in these figures. 
This correction seems not always right but do 
for pitching response for one pair of fins in 
Figure  10. 

The resistance increases in waves are also 
measured by a gravity dynamometer and shown in 
Figures 11 and 12. The solid and dotted lines 
are theoretical values calculated by 
Gerritsma's formula[2] for the only main hull. 
The test results show that the resistance 
increase reduces fairly the amount near the 
wave length equal to the ship length and this 
is observed also by G.P.Stefun. [7 ] The one of 
the reason may be a motion reduction by fin 
because the resistance increase is proportional 
to the relative vertical velocity of ship to 
water and this is seen from theoretical values 
in Figure 11. The other may be a thrust 
produced by oscillating fin[10] but we have 
little knowledge about this side of phenomena, 
so that we leave this in the future and show 
only a rough approximation   in Appendix. 
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Af(m!) Cf(m) A.B. 1>) !.,(») C«l . Exp. 

Without   Fin /f • 
2P.   Fixed 0.050 0.160 1.936 1.14 3.14   o 

2P.  Fixed 0.040 0.144 do. do. do.   ̂  

Af(m'> Cf(m) A.P.. Km) Cal . Exp. 

Without Fin • 
IP.   Fixed 0.080 0.40 0.5 1.50   o 
IP.   Fixed 0.065 0.36 do. do.   ̂ ^ 

' 
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Figure 9 Experimental results of amplitude 
responses of a ship in waves 
(two-pairs) 

Figure 10 Experimental results of amplitude 
responses of a ship in waves 
(one-pair) 
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Figure 11 Resistance increase in waves 
(two-pairs) 
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Figure 12 Resistance increase in waves 
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6.   CONCLUSION 

We have discussed the fins necessary to 
suppress completely the heaving and/or pitching 
oscillation at a given wave length in head seas 
and have the following conclusions. 

(1) Two pairs of fins may be sufficient almost 
always to make a ship heave- and pitch-free. 
Although there are left two arbitrarinesses, we 
can calculate the position, area and aspect- 
ratio of fin assuming the same fin fitted. 
However, the position of fin lies far from the 
A.P.   in   almost  all   cases. 

(2) A pair of fins would make a ship either 
heave-free or pitch-free. In this paper, we 
have dealt with the pitch-free case and calcu- 
lated the particulars of fins for a given 
position near F.P. . However, such fins do 
not exist in shorter wave range but do in the 
range longer than resonance. This range shifts 
slightly if the hull forms of ships are 
different. 

(3) In both cases, the fins thus obtained are 
much larger than the one studied in the past. 
The aspect-ratio sometimes becomes very much 
smaller but these solutions are false because 
such fins do not act effectively. 

(4) The experiments were carried out and the 
experimental results agree well with the 
theory. 

Now, the greatest difficulty may be, of 
course, such a large area of fin. Therefore, 
we have carried out the same calculation with 
respect to various types of ship and found that 
the fin area decrease when the vertical pris- 
matic coefficient increases. Thus, a semi- 
submerged ship needs only a smal 1 area of fin 
but the responses in waves are much larger than 
the ordinary ship except the designed wave 
length. These observations suggest a dominant 
role of the damping force for reduction of 
oscillations. 
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APPENDIX 

Resistance Increase in Waves and Thrust of Fin 

The resistance increase R in waves may be 
estimated by Gerritsuma's formula[1]: 

R = W/( c + V ) 

where 
W = ij N :dx 

(A.I) 

(A.2) 

and c is the phase velocity of wave. N and vr 

denote the wave damping of the ship section and 
the vertical relative velocity respectively. W 
is the radiated wave power by a ship which is 
absorbed from the in-coming wave, so that this 
resistance results from the momentum loss of 
the   in-coming wave. 

Therefore, in the case of fin we could 
make use of this formula in this sense, that 
is, 

TTpVAf| vr 

(C+V)(1+ÄX> 

(A.3) 

1) J.T.T.C.    (Jul.    1969):    Text   of   Symp.   on 
Sea-Keeping Performance. 

2) J.T.T.C.   (Dec.   1977):   Text of the  second 
Symp.   on  Sea-Keeping  Performance. 

3) Abkowitz,   M.A.   (1959):   The  Effect of Anti- 
Pitching   Fins   on   Ship   Motion,    S.N.A.M.E. 

4) Matsui,    M.   et   al.    (1966):      On   the   Con- 
trolled   Anti-Pitching   Fin,   J.S.N.A.   Japan, 
Vol.119. 

for a pair of fins, making use of eq.(2). 
On the other hand, the oscillating fin may 

have a thrust.[10] Assuming quasi-steady 
process because of small reduced frequency for 
practical case, we may estimate it as fol lows. 
Namely, since the thrust of a pair of fins is 
the time mean of the x-component of the lift by 
eq.(1),   we may have approximately 
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T = *(2L) 
TTpAfp 

^O^ 
(A.4) 

Of course, this must be multiplied some 
reduction factor, but represents its property 
qualitatively. Figures 13 and 14 are the 
calculated results corresponding to the experi- 
ments. The order of magnitude agrees well with 
the experiments  but differs  in phase. 

In any way, if we expect a thrust of fin 
it is clear from these consideration that the 
aspect-ratio and the relative velocity to water 
must be   large. 

»f; Tf 
«fga'B'/L 

/   \ /             \ /               \ 

Cal. 

Rf         

Tf      — 

A 

*                   \ 
i                     \ 
i                       \ 
i 
i 

i 
i 

\ \ \ \ \ \ 

7C 
\ 

Figure 13 Resistance increase and thrust of 
fins (two-pairs) 
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Figure 14 Resistance increase and thrust of 
fins (one-pair) 

DISCUSSION 

Dr.-Ing. HIR0SHI ISSHIKI, 
Technical Research Institute, Hitachi Zosen 
Corp., Osaka, Japan: 

I would like to express my sincere respect for 
this very interesting and also very unique 
research. 
I would like to ask two points. One point is 
related to the size of fins attached to a ship. 
Your fins seem to be rather big or, honestly 
speaking, too big as you may admit. Do you 
have any ideas to reduce the fin size, for 
example, by introducing springs or something 
like that? 
The other point is your estimation of thrust 
generated by fins. It shows very interesting 
results, but seems to be rather incorrect. 
If correct, resistance increase in waves may 
become negative in some cases. This is against 
your experimental results. I would like to ask 
if you have any ideas how to improve the accu- 
racy of your thrust estimation. 

Dr. ROBERT McGREGOR, 
University of Glasgow, United Kingdom: 

This is a most interesting paper which paral- 
lels some work we are involved with at the 
University of Glasgow on SWATH ships. That 
topic, however, is being discussed by a 
colleague. 
In addition to the analytic references (3,4) 
there was a full-scale trial of anti-pitching 
fins in Britain around 1960. The work was car- 
ried out by the Ship Division of NPL (now NMI) 
on two Royal Navy Minesweepers. The basis of 
the experiment was that one ship was fitted 
with a fixed reverse delta fin at the bow 
whereas the other was unmodified. The two 
vessels were then run together on parallel 
courses and the motions compared. The fin was 
generally successful in reducing the pitching 
motions by a substantial amount. However, the 
bow of the shallow draught vessels like mine- 
sweepers frequently emerges from the water. 
This exposed the bow fins to many slams and 
consequential damage. 
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It may be argued that minesweepers were a poor 
choice and that the containership hull in the 
present paper is more appropriate. Neverthe- 
less, such ships do slam and intolerably high 
loads may be experienced, particularly if the 
vessel is to operate in high currents such as 
the Kuroshio. This seems to be strong practical 
reason for interest in such fins on semi-sub- 
merged vessels such as SWATH where a fin broach 
is much less likely. 
In the experiments, were the waves large enough 
for any slamming to occur? 
On a more detailed level the expression for CL 
in Equation (1) has been questioned as to its 
accuracy when AR is very low and the formula 

1.8-irAR 

"L >/AR2 + 4 + 1.8 

is sometimes preferred in such circumstances. 
There are also changes to CM and CD. 

Finally, in the case of semi-submerged vessels, 
the added masses and damping are strongly fre- 
quency dependent. Could the authors say a little 
about whether similar complexities were found 
necessary? 

JUNE-YOUNG WU, 
University of Glasgow, United Kingdom: 

I enjoyed this paper very much. I agree that 
the bow fins are effective in pitch damping. 
Research on SWATH ship motion is being carried 
out in the Dept of Naval Architecture 'and Ocean 
Engineering Hydrodynamics Laboratory at the 
University of Glasgow. From these tests it can 
be easily seen that there is a large trim by 
the bow at higher speeds even in calm water and 
there can be instabilities in waves. In order 
to solve this problem, we did a fin size deter- 
mination (1) based on the heave and pitch coupled 
equations of motion. 
This paper reports a valuable contribution to 
the optimisation of fin position, fin area and 
the aspect ratio to minimise pitch motion based 
on a given speed and wave length. The results 
seem very satisfactory. However, for practical 
use, did the authors try to use the fin angle 
as a variable factor for a fixed fin position 
and aspect ratio? Since the lift coefficient 
is proportional to the angle of attack, the 
lift will increase and the pitching moment 
righting arm (fin position) need not be as 
large as figure 7 showed. 
If possible, I would suggest that there is an 
active fin control otherwise the anti-pitching 
fin at the bow may experience a larger angle of 
attack owing to the induced angular velocity 
when pitching at large amplitude. Additionally, 
active fins may be controlled to prevent the 
lift breakdown from separation and stall. 

AUTHORS' REPLY 

We would like to thank all discussers for their 
valuable comments. 
In response to Mr. Wu's discussion, our model 
is a container ship, so that the trim is not 
severe both in calm water and in waves. However, 
I agree with the discusser's opinion that the 
angles of fin should be included as a variable 
factor. The resistance in calm water is very 
large when the fin is attached in our experi- 
ments. Therefore, active-controlled fins would 
be preferable for practical use. 

To Dr. McGregor, the amplitudes of the incident 
waves were less than 10 cm, so that slamming did 
not occur in our experiments. The slamming and 
the wave-loads on the fins should.be necessarily 
considered at the practical design stages. How- 
ever, this paper is a feasibility study of the 
anti-pitching fins and we did not pay attention 
to such severe conditions. 
The formula for C. is assumed to be the same for 
any A.R. of fin merely for simplicity. I agree 
with the discusser's opinion that the formula 
for C, should be modified when A.R. is very 
small. 
To the third question, we have applied the pre- 
sent method to some models, one of which is 
nearly a semi-submersible, in Reference (14). 
Therefore, we believe that the present method 
could be applicable to a semi-submerged vessel 
without modifications. 

To Dr. Isshiki, we also think that the large 
area of fin is one of the greatest difficulties 
for its practical use. Therefore, we should 
select a type of ship on which the small fin 
could act efficiently. An active-controlled 
fin attached to a semi-submerged vessel would 
be the best way for that purpose. Further, the 
fins should be preferably retractable into the 
hull when the water is calm. 
To the second question, the formula for the 
thrust of fin (A.4), must include the effects 
of mutual interactions between main hull and 
fins, and reduced frequency. In any way, we 
need more experimental data. 

Reference 

(1) Wu, J.-Y. (1984): A Study on Fin Size for 
Anti-Pitching and Anti-Heaving in a SWATH. 
Report No NAOE-84-52, Dept of Naval Archi- 
tecture and Ocean Engineering, University 
of Glasgow, Glasgow, UK. 
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MULTIPLE SCATTERING OF SURFACE WATER 

WAVES AND THE NULL-FIELD METHOD 

PAUL A. MARTIN 

ABSTRACT 

Two rigid cylinders of infinite length are 
floating in the free surface of deep water with 
their generators parallel.    The cylinders are 
held fixed and a given time-harmonic wave of 
small amplitude is incident upon them.    The 
corresponding linear two-dimensional  boundary- 
value problem for a velocity potential is 
treated using the null-field method.    This 
method is exact.    In the resulting equations, 
the effects of scattering by each cylinder in 
isolation (via the so-called  'T-matrix'  for 
each cylinder), and ofÜiespacing between the 
cylinders,are clearly separated; computationally, 
this is a very desirable feature.    The method 
is used in two ways:  first, it is shown that 
the 'wide-spacing' approximation is recovered 
when the exact equations are solved in an 
appropriate asymptotic limit.    Second, the 
exact equations are truncated, and numerical 
solutions obtained for the model  problem of 
scattering of regular surface waves by a pair 
of identical  half-immersed circular cylinders 
(i.e. a catamaran).    Comparisons with the wide- 
spacing approximation are also given.    Exten- 
sions to three dimensions and to water of 
constant finite depth are mentioned. 

1. INTRODUCTION 

In recent years, there has been much int- 
erest in multiple-scattering problems, in which 
surface water waves interact with two (or more) 
partially-immersed rigid bodies.    Such problems 
arise when studying, e.g., the interaction 
between neighbouring ships, wave-power devices, 
or elements of a single larger structure.    The 
corresponding linear boundary-value problem 
(for time-harmonic waves)  is easily formulated 
and can be solved by integral-equation methods, 
but this direct approach can be computationally 
expensive, especially for problems involving 
several  three-dimensional  bodies.    Thus, 
Ohkusu (1975) wrote:   'For the purpose of cal- 
culating hydrodynamic forces..., it is essential 
that only the hydrodynamic properties of each 
element be given.    A method having such a merit 
will  facilitate the calculation for a body 
having many elements and may be applied to the 

design arrangement of the elements'.    This 
philosophy has led to various approximate tech- 
niques for treating multiple-scattering problems, 
e.g. Budal's theory of 'point absorbers'   (1977), 
Simon's  'plane-wave'  approximation (1982), and 
Ohkusu's   'wide-spacing'  approximation (1970, 
1975).    In the present paper, we shall  describe 
another method that only uses solutions of 
single-body problems, but which is exact.    This 
work uses the null-field method, and is an ext- 
ension of the author's work on single-body 
problems  (Martin, 1981, 1984a) and of some 
corresponding work in acoustics by Peterson and 
Ström (1974). 

The plan of the paper is as follows.    After 
a literature survey in §2, we study (in §3)  the 
two-dimensional  problem of scattering by a 
single rigid cylinder which is floating in the 
free surface of deep water; this plane problem 
is labelled    Sx    below.    We give a precise form- 
ulation of   Sx, briefly review the use of int- 
gral-equation methods for its solution, and 
state the well-known Kreisel-Meyer relations 
(these relate the complex reflection and trans- 
mission coefficients for    S^.    Next, we describe 
the null-field method and introduce the T-matrix 
for    Sl; the construction of this matrix was 
first discussed by Waterman (1965)  in the context 
of electromagnetic scattering problems, and the 
null-field/T-matrix method is now used widely 
in several branches of mathematical  physics (see, 
e.g. Varadan and Varadan, 1980). 

In §4, we consider a pair of floating cyl- 
inders.    We formulate the corresponding boundary- 
value problem (labelled   S2   below), and note 
the absence of a uniqueness theorem for   S2. 
We derive the null-field equations for    S2; 
these can be solved for the boundary values of 
the potential.    Under certain geometrical  rest- 
rictions, the null-field equations can be re- 
duced to matrix equations, involving the matrices 
Q    and    0   which arise when    SL    is solved for 
each cylinder in isolation (see §§3.2, 3.3); 
they also involve a matrix   S   which occurs in 
an addition theorem for Ursell's multipole 
potentials  (S    depends only on the spacing be- 
tween the cylinders).    If attention is focussed 
on the potential  in the water, the matrix equa- 
tions can be recast in terms of the matrix   S 
and two T-matrices, one for each cylinder.    We 
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solve this system of equations in two ways: 
first, we solve them asymptotically, and show 
that Ohkusu's wide-spacing approximation is 
recovered in an appropriate limit.    (The wide- 
spacing approximation is a heuristic approach 
for solving    S1, in which only wave-like inter- 
actions between the cylinders are taken into 
account.)    Second, we solve them numerically 
for the model  problem of scattering of regular 
surface waves by a pair of identical  half- 
immersed circular cylinders, and compare our 
results with those obtained using the wide- 
spacing approximation.    We conclude with a dis- 
cussion of some possible extensions and general- 
isations of the null-field method. 

2. LITERATURE SURVEY 

The literature on scattering of water 
waves by two, or more, rigid bodies is quite 
extensive, but does not seem to have been sur- 
veyed previously.    Here, we shall restrict our- 
selves to two-dimensional interactions between 
a pair of cylinders.    (For an interesting acc- 
ount of the history of twin-hull ships, see 
Corlett,  1969.) 

2.1    The Method of Mul tipples 

Apart from some work on scattering by two 
thin vertical  barriers (see Evans and Morris 
(1972)  for references), the first problem to be 
studied extensively was  the radiation problem 
for two half-immersed circular cylinders.    Thus, 
Ohkusu (1969) and Wang and Wahab (1971) extended 
Ursell's multipole method (1949) for one cylin- 
der to analyse the heaving motion of a catamaran, 
consisting of two identical, rigidly-connected, 
half-immersed circular cylinders  (we call  this 
'semicircle-catamaran problem1).    For this 
symmetrical  problem, the velocity potential  at 
a point    P    in the fluid can be represented as 

CO 

n=l n    n 

where    $n    are the multipole potentials defined 
in Appendix A.    This representation satisfies 
all  the conditions of the problem, except the 
boundary condition on the wetted surfaces of 
the cylinders; applying this condition allows 
the coefficients    a      to be determined.    Ohkusu 
(1969) and Wang and Wahab (1971)  computed the 
wave amplitude at infinity and the virtual-mass 
coefficient, and found good agreement with the 
corresponding values obtained from their experi- 
ments.    Ohkusu (1970) has also made similar cal- 
culations for the swaying and rolling motions 
of the same catamaran, whilst Spencer and Sayer 
(1981) have analysed the motions of two freely- 
floating identical  circular cylinders. 

The multipole method has also been used to 
treat problems involving totally-submerged 
circular cylinders.    Thus, Wang  (1970,  1981)  has 
presented extensive numerical  results for two 
identical  cylinders, each submerged to the same 
depth.    More recently, O'Leary (1984) has shown 
how the method can be used for an arbitrary 
number of totally-submerged circular cylinders; 
each cylinder can have any radius and any depth 

of submergence.    Essentially, her method uses 
an addition theorem for the submerged multipole 
potentials, so that the boundary condition on 
each cylinder can be imposed; an addition 
theorem for    $     has previously been given by 
Bencheikh  (1982) and Martin (1984b); see §4.2. 
O'Leary also gave numerical  results for several 
configurations of two and three identical  cylin- 
ders. 

2.2    Integral-equation Methods 

Several  authors have used integral-equation 
methods to treat multiple-scattering problems. 
Most of these authors represented    ^   as a dist- 
ribution of simple wave sources over the wetted 
surfaces of the cylinders, and then solved the 
corresponding integral equation of the second 
kind for the unknown source density (see §4.1.). 
Thus, Nordenstrgim et al'.  (1971), Kim (1972), 
Lee et al.  (1973) ändTatory et al. (1980) have 
all solved the semicircle-catamaran problem for 
deep water, whilst Chung and Coleman (1975) 
have solved it for water of constant finite 
depth.    The agreement between these solutions, 
those obtained using the method of multipol es, 
and those determined by experiment is generally 
very good.    Other geometries have also been 
investigated, e.g.  two different rectangles 
(Kim,  1972; Katory et al., 1980), two triangles 
(Lee et al.,  1973), and "bulbous-form catamarans 
(Kim,~T977; Maeda,  1975). 

Integral-equation methods have also been 
used for totally-submerged cylinders.    Thus, 
Schnute (1971) has solved an equation for the 
total  potential   (see §4.1), for two circular 
cylinders; he reduces it to a system of alge- 
braic equations, but does not give numerical 
results.    Chakrabarti  (1979) has solved an 
equation for the diffraction potential, and has 
presented numerical  results for several  config- 
urations of two identical  circular cylinders. 

Integral equations can also be obtained 
by applying Green's theorem to    <(>    and the 
simple logarithmic source potential.    These 
equations have simple kernels but the range of 
integration includes the free surface, the 
bottom, and two vertical  control  surfaces at 
some distance from the floating cylinders.    The 
radiation condition (6), or an approximation to 
it, is imposed on these vertical  surfaces, and 
the bottom is included so as to obtain a finite 
range of integration.    For details of the method, 
see Mei  (1978) or Yeung (1982).    This method 
has been used by Ho and Harten (1975)  to anal- 
yse the motion of one or two rectangular cylin- 
ders oscillating near a vertical wall, and by 
Ijima et al.  (1976)  to compute the transmission 
coefficient for the semicircle-catamaran problem. 

2.3    Other Methods 

Leonard et al. (1983) have used a finite- 
element method to solve the semicircle-catamaran 
problem for water of constant finite depth, and 
the corresponding problem with freely-floating 
cylinders. It may be observed that their res- 
ults for the catamaran are in good qualitative 
agreement with those of Chung and Coleman (1975). 

Two approximate methods have been used to 
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treat two-dimensional multiple-scattering prob- 
lems.    Alker (I978) nas used tne metnod of mat~ 
ched asymptotic expansions to study the scatter- 
ing of short waves by two partially-immersed 
cylinders  that do not make plane vertical  inter- 
sections with the Tree surface.    He has shown, 
e.g.,  that for a symmetric pair of cylinders, 
there is an infinite number of frequencies at 
which there is no reflected wave. 

Secondly, Ohkusu (1970) has used a 'wide- 
spacing'  approximation, in which only wave-like 
interactions between the cylinders are taken 
into account.    This leads to an approximate 
solution to the multiple-scattering problem in 
terms of the solutions to various single- 
cylinder problems.    An alternative treatment 
has been given by Srokosz and Evans  (1979); see 
Appendix C.    For the semicircle-catamaran prob- 
lem, Ohkusu (1970) obtained good agreement with 
the exact solution (Ohkusu, 1969; Wang and 
Wahab, 1971), even when the assumption that the 
spacing between the cylinders is large compared 
to the wavelength is not valid.    (This assump- 
tion is made precise in §4.4.)    Other applica- 
tions have been made by Ohkusu (1970, 1975, 
1976), Ohkusu and Takaki   (1971), Srokosz and 
Evans  (1979) and Masubuchi and Shinomiya (1981). 

3.      SCATTERING BY ONE CYLINDER 

Consider a rigid horizontal  cylinder which 
is partially immersed in the free surface of a 
fluid.    We suppose that the cylinder is fixed, 
and that the fluid is incompressible, inviscid 
and of infinite depth.    We take Cartesian co- 
ordinates    (x,y,z), with the z-axis horizontal 
and the y-axis vertical  (y   increasing with 
depth) such that the free surface occupies a 
portion of the plane    y = 0.    For simplicity, 
we consider beam seas  (waves with crests para- 
llel  to the z-axis) whence the fluid motion can 
be considered to be two-dimensional, i.e. inde- 
pendent of   z.    We assume that the fluid motion 
is irrotational, whence a velocity potential 
exists.    If we further assume that the motion 
has a harmonic time-dependence (with radian 
frequency   <u), then we can write the velocity 
potential as the real part of    HP)e-1<ü?> hence- 
forth, we shall suppress the factor   e-1a)t.    For 
waves of small  amplitude, the total  potential   <f 
solves the following linear two-dimensional 
boundary-value problem: 
Scattering boundary-value problem   S^ 

Determine a function    <(i(P), such that    <f> 
satisfies Laplace's equation 

(D 

(2) 

(3) 

(JL2
2+ J^2)<KP) = 0    in    D, Kdxl    3y 

the free-surface condition 

K,+^=0 on    F, 

the boundary condition 

3(HP)- = 0 on    3D, 
an„ 

and the condition that the fluid motion vanishes 
as   y + », 

|grad <f> |   ■+ 0    as    y ■* » . 

In addition, if we define the diffraction 
potential    ^   by 

fl  ' 

(4) 

(5) 

then    <j>n   must satisfy the radiation condition 

sr. iK)(j>D -> 0    as    rp (6) 

Here, we denote the fluid domain (in the 
xy-plane) by D, the mean free surface by   F   and 
the wetted surface of the cylinder by    3D; 
capital  letters    P,Q   denote points of    D; lower- 
case letters    p,q    denote points of    3D; the 
origin    0    is assumed to lie in    F_, the portion 
of the line   y = 0   which is inside the body;    D. 
denotes the interior of the body, i.e. the 
region with boundary    3DUF_; rv    is the pos- 
ition vector of    P   with respect to    0; 
rp =   |rp|; and    3/3np    denotes normal  differ- 
entiation at the point    p,  in the direction 
from    3D    into    D.    Also,    K = m2/g, where    g 
is the acceleration due to gravity, and    ()>j    is 
the velocity potential  of the given incident 
wave.    <f>T    satisfies  (1) everywhere in    y > 0 
(except possibly at a finite number of isolated 
points in    D)  and (2) everywhere on    y = 0. 
For example,    <t>j    may correspond to a radiating 
(line) source in    D, or to a train of regular 
surface waves. 

Let 3D* denote the union of 3D and its 
mirror image in F. We say that 3D has prop- 
erties    J    if    3D*    is convex and twice-differ- 
entiable.    John (I950) nas snown tnat if    3D 

has properties    J, then    Sx    has precisely one 
solution.    Actually, John's uniqueness theorem 
holds if 

(i)      all  vertical   lines drawn down from 
F    do not meet    3D; his existence theorem holds 
if, in addition to (i), 

(ii)    3D   is twice-differentiable and meets 
F    at right angles. 
More recently, Simon and Ursel 1   (1984) have 
generalised John's uniqueness theorem to cover 
cases in which (i)  is not satisfied, e.g.  certain 
bulbous sections are now covered; if (ii) still 
holds, then integral-equation methods will yield 
a corresponding existence theorem. 

In many applications, the incident poten- 
tial    $1    corresponds to a train of regular 
surface waves; for such a wavetrain propagating 
from    x = + »    towards the cylinder, we have 

(7) 
*I 

(gA+/w)e   J 

where |A.| is the amplitude of the wave. This 
wave will be partially reflected and partially 
transmitted; we define (complex) reflection and 
transmission coefficients, r+ and t+ respect- 
ively, by 

HP)' 

-Ky(e-iKx + r+eiKX) as x^ + 

-Ky-iKx 
(8) 

V as x->- 
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Similarly, for a wave propagating from    x = -°°, 
we have 

and 

and 

gA. 

vi ' vi 

<f,(P) <*, < 

(gA_/M)e-Ky+iKx 

t e-Ky+iKx 

e-
Ky(e

iKx + r.e-iKx) 

(9) 

as x-»- + <*>, 

(10) 

It is well  known that    r+   and    t     satisfy the 
following relations: 

*+ = *- 

\r+\ = |r_|  = 

Irl2 +  Itl2 

say; 

\r\, say; 

1; 

and 

tr* + t*r_ = 0, 

(11) 

(12) 

(13) 

(14) 

where the asterisk denotes the complex conjugate. 
Using (12),  (14)  can be rewritten as 

2 arg(t) - arg(r ) - arg(r ) = w modulo 2TT. 
(15) 

Collectively, we shall  call  (11),  (12),  (13) 
and (14)  the Kreisel-Meyer relations; they are 
derived systematically by Newman  (1977) for 
water of constant finite depth.    Kreisel  (1949) 
obtained (12) and (13), and their general- 
isations to the situation where the asymptotic 
depths of water are different at    x = + ». 
R. Meyer, in an appendix to a paper by Biesel 
and Le Mehaute (1955), proved (11),  (12),  (13) 
and (14). 

3.1    Integral-equation Methods 

Typically, Sj    is solved by integral- 
equation methods; for a summary, see, e.g. 
Martin (1981), Mei  (1978) or Yeung (1982).    To 
derive an integral equation, we need a funda- 
mental  solution: 

G(P,Q)EG(x,y;5,,)=ilog|^ife[|ia)2 

(x-5p+(y+n)2 
CO 

2^e-k^cosk(x-5)1^. (16) 

G    satisfies  (1)  (except at    P = Q),  (2),  (4) 
and (6);  it is the potential  at    P    due to a 
wave source at    Q (in the absence of the body). 

If we apply Green's  theorem twice, once in 
D    to    (fin   and    G, and once in    D     to    <f>j    and 
G, and add the resulting equations, we obtain 
(cf. Martin, 1982) 

2ir+D(P) 

3D 

*(q)~- G(P,q)dsq,  P£D,   (17) 

»♦(P)+   J*(q>&-G(P.q)ds   =2^I(p),  pe3D (18) 

2ir*j(P)=j   *(q>g£-G(P,q)dsq,  P e D_  .      (1? 

3D 

(18) is a Fredholm integral  equation of the 
second kind for    if>(q);  it is uniquely solvable 
except at a certain discrete set of values of 
the wavenumber    K, called the irregular values. 
Irregular values are not physical   (S,    is uniqu- 
ely solvable for all  values of    K), but are a 
consequence of the method of solution.    They can 
be removed in several ways; see, e.g.  Ursel! 
(1981). 

(17)  is an integral  representation for 
<t>n(P)    as a distribution of wave dipoles over 
3D, whilst (19)  is an integral  relation satis- 
fied by    <(>j    at all  points in    D_.    We shall  use 
(19) as the basis of our derivation of the 
system of null-field equations.    We shall also 
require the following bilinear expansion of   G 
(Ursell, 1981): 

G(P,Q)=Ji  WVCg), rp<rQ. (20) 

where the functions    am   and    $m    are defined in 
Appendix   A; each is harmonic and satisfies the 
free-surface condition (2); am   are regular, 
whilst the multipole potentials    *_(rp)    are 
singular at    Ö    and satisfy the radiation cond- 
ition (6).    Henceforth, we shall  use a summation 
convention:  sum over repeated suffices from 1  to 
».    Thus (20) becomes 

G(P,Q)=am(rp)*m(rQ)! 

3.2    The Null-field Method 

'Q 

Let    C_    be the inscribed semicircle to 
3D, centered on    0.    If we restrict    P (in    D_) 
to lie inside    C_, we can substitute (20)  into 
(19) giving 

2TT4>T(P)  = d a (rn), 
Iv   '       m rrr~P" 

where 

*(q> 
3D 

— $    r    ds 3n   w   q 
q 

(21) 

(m = l,2,...).(22) 

3D 

The constants    d     are known; they are given in 
terms of    <t>j    by 

{¥q)3nH(V-VVlF*I^)}dV  (23) 

3D q q 

For example, if    <(>,  = <j>T, comparison of (7), 
(21) and (A.l) shows that 

d1 = -id2 = iir(gA+/u)), dm = 0    for   m>2.      (24) 

(22) are called the null-field equations; 
they form an infinite system of moment-like 
equations from which    ^(q)    is to be determined. 
It is known that the null-field equations are 
uniquely solvable for all  values of    K—irreg- 
ular values do not occur with the null-field 
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method (Martin,  1981). 
To solve the null-field equations, we 

begin by choosing a basis for representing 
functions defined on    3D; let    {<j>n(q)} 
(n = l,2,...)    be such a basis.    Thus, we may 
write 

*(q) = a
n*n(q) (25) 

where    an(n = 1,2,...) are unknown coefficients. 
Substituting (25) into (22) gives 

(26) n   a    = dm       ((11 = 1,2,...). vmn n       m 

where 

^mn 
I  * (q)—  $ (r )ds  . J  VH'3n     nr-q'    q 

(27) 

3D 
If we truncate the system (26), we obtain 

a numerical method for solving the null-field 
equations; this method has been used to solve 
the radiation problem associated with the 
heaving oscillations of a half-immersed elliptic 
cylinder (Martin,  1981).    A different method for 
solving (26) has been used by Martin (1984a); 
this numerical method is    only applicable when 

or rI ♦? 'I *I 

3.3   The T-matrix 

Once    <f>(q)    has been found by solving the 
null-field equations,  (fm(P)    is given by (17). 
Let    C+   be the escribed semicircle to    3D, 
centred on    0.    If we restrict    P (in D)  to lie 
outside    C+, we can substitute  (20) into (17) 
giving 

2^D(P) Vm^P (28) 

where 

v-j^>(Vdsq O"1-2--*- (29) 

3D 

Substituting (25)  into (29), we obtain 

c    = - Q    a (m = 1,2,.. 
m in n        v 

where 

^mn M)4r "Jrjds . 

(30) 

(3i: 

3D 

Does the series on the right-hand side of 
(28) represent    <t>n(P)    (where    <f>D + *T    solves 
S,) throughout   D   (and not just outside    CJ? 
The assumption that it does is called the 
Rayleigh hypothesis in acoustic scattering. 
The Raylei gh hypothesis does not seem to have 
been investigated in the context of water-wave 
problems; however, we can expect that whether 
it is correct or not will depend on the shape 
of    3D; cf. Millar (1973), van den Berg and 
Fokkema (1979). 

Now, the system (26)  is uniquely solvable, 
i.e.    Q"1, the inverse of the infinite matrix 
Q, exists.    Thus, eliminating    ap    between (26) 
and (30), we obtain 

c    = T   d        (111=1,2,...) 
m       mn n      *■ ' 

where 

mn vm<rs.n 

[32) 

(33) 

is known as the T-matrix.    Given    T, we can 
determine the diffraction potential, <t>n, outside 
C+    for any given incident potential,    <h, 
without computing the values of  4.  on    3D. 

[et us now forget about the derivation of 
the T-matrix, and merely assume that the coeffi- 
cients    cm   and    dm   occuring in the represent- 
ations (21) and (28), respectively, are related 
through a matrix    Tmn    by (32).    What properties 
does such a matrix have?    To begin with, the 
unique-solvability of   S,    implies  that    T 
exists and is unique.    This, in turn, implies 
that   T    is independent of the choice of basis 
{<),„}, although this choice may be important in 
numerical calculations when   T   must necessarily 
be truncated. 

Secondly, reciprocity considerations show 
that   T    is symmetric, 

T      = T     . (34a) 
mn       nm 

Thirdly, energy considerations show that 
T   satisfies 

-Im(T    ) +T    T*   +T    T*    = 0. 
IT     v mn;      im in     2m 2n 

(34b) 

(34) are derived by Martin  (1984c).    They are 
useful  because they provide independent checks 
on numerical calculations.    Also, by choosing 
particular values for   m   and    n, we can recover 
all  of the Kreisel-Meyer relations, e.g., 
T - = T„,    implies that    tj. = t_ ;   in fact, we ,      = T„,    implies that 
have (see Martin, 1984c 

and 

iri Tn = 1 -t + l(r_ + r+), 

iri T22 = 1 -t - l(r. + r+), 

\{r_ - r+). TTT 12 TTT 
21 

(35a) 

(35b) 

(35c) 

SCATTERING BY TWO CYLINDERS 

Suppose, now, that a second rigid cylinder 
is partially immersed in the free surface, with 
its generators parallel  to those of the first 
cylinder.    As before, we denote the fluid domain 
(in the xy-plane) by    D   and the mean free sur- 
face by    F.    We distinguish all  quantities pert- 
aining to the second cylinder by a prime, e.g. 
3D'    denotes its wetted surface.    Let 
3D" = 3DU3D'; lower-case letters    p,q    denote 
points of    3D".    The analogue of    Sx    for two 
fixed cylinders is the following problem: 
Scattering boundary-value problem   S,. 

Determine a function    <t>(P), such that <f> 
satisfies Laplace's equation (1)  in    D, the 
free-surface condition (2) on    F, the boundary 
condition 

3<KP) 
3n„ 

0   on    3D", (36) 
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and the condition (4) as y -> ». In addition, 
<t>p = ♦ - *i must satisfy the radiation condi- 
tion (6). 

In order to make some progress with the 
analysis of    S2, we make the following 
Uniqueness assumption.    S2    has at most one 
solution, i.e.  the only solution of the homo- 
geneous problem    (<f>i  = 0)    is the trivial  sol- 
ution,  $ E 0. 

To the author's knowledge, this result has 
not been proved.    John's proof (1950) for one 
cylinder does not seem to extend to two cylind- 
ers.    A proof may also impose some restrictions 
on the geometry:  here, we shall suppose that 
3D   and    3D'    each have properties    J. 

Although we do not have a uniqueness theor- 
em for    S2, uniqueness can be proved for some 
other configurations.    Thus, John's proof succ- 
eeds for two (or more) floating three-dimension- 
al bodies (each having a wetted surface which is 
bounded and has properties    J); the essential 
difference between this problem and    S2    is the 
connectivity of the free surface (note that 
John's proof also fails for a single floating 
torus).    We also have three results for totally- 
submerged bodies:  Schnute (1971) has proved 
uniqueness for a pair of widely-spaced circular 
cylinders,  and theorems due to Maz'ja (see Hulme, 
1984) and Simon and Ursell   (1984) guarantee 
uniqueness for any two (or more)  cylinders, sub- 
ject to certain geometrical  restrictions. 

Before describing some methods for solving 
S2, we introduce some more notation.    Let    Fl 
denote the portion of the line   y = 0    inside 
the second cylinder, and let    Dl    denote the 
interior region bounded by    F^    and    3D' . 
Choose a second origin    0'  e P    and let    r' 
denote the position vector of    P   with respect 
to    0'   (see Fig.1).    *m(r£)    denotes the m-th 
multiple potential  centered on  (i.e.  singular 
at) 0';    a (r')    is defined similarly. 

4.1    Integral-equation Methods 

Integral  equations can be, and have been, 
used to solve    S2 (see §2.2); one example is 
equation (18), with    3D    replaced by    3D"  (this 
is the equation solved by Schnute,  1971); 
another is 

r 

3D" 

MP)+   jy(q)g5rG(p,q)ds   = - -g^ ♦ j(p),     (37) 
y~.. n ^ n 

which is obtained by supposing that <|>n(P) can 
be represented as a distribution of sources over 
3D", 

(38) D(P) = j y(q)G(P,q)dSc 

3D" 

However, if the uniqueness assumption is correct, 
then these equations will suffer from diffi- 
culties at irregular values of   K, although no 
such difficulties have been reported in the 
literature.    Irregular values can be eliminated 
by using a different source function (Martin, 
1984b), but this does not seem to be the most 
efficient way of solving    S,.    In fact, we shall 
not give further consideration to integral- 
equation methods. 

4.2    The Null-field Method 

If we apply Green's theorem thrice, once in 
D    to    <j>D   and    G, once in    D_    to    cj>j    and    G, 
and once in    D'_    to    <f>j    and ~G, and add the 
resulting equations, we obtain 

2w*n(P)=- 

and 3D" 

*(q)^rG(P,q)dsq, PeD, (39) 

2**j(P) = 
3D" 

»(qjr—G(P,q)ds   ,  PeD   UD'.     (40) 
q H 

Consider (40) for    PeD .    Following the deri- 
vation.in §3.2, we restrict    P    to lie inside 
C_; we observe that for all  points    q e 3D", 
rq > rp    and so we can use (20); and we use the 
representation (21) for   <f>j    to obtain 

*(q)^T*m^q)
ds

a    (m = l,2,...)    (41a) m 
3D" 

Similarly,  let    C'_    be the inscribed semicircle 
to    3D'    centred on    0'.    If we now consider 
(40) for    P£ D;    and restrict    P    to lie inside 
C', we obtain 

3D" 
*(q)l)F*m^q)dSQ    (m = 1.2,...),  (41b) 

q      H    H 

where    d'   (m=l,2,...) are the coefficients in a 
second representation for    <j>T, 

Figure 1.    The two cylinders. 
2TT<I>I(P) dWrP>. (421 

dm (m=l,2,...) The coefficients d  and 
assumed to be known"? moreover, they are related, 
since (21) and (42) are two representations of 
the same incident potential (see, e.g. (68)). 
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(41)    are the null-field equations for    S2. 
It can be proved that if the uniqueness assump- 
tion is correct, then the null-field equations 
are uniquely solvable for all  real  values of   K. 

To solve the null-field equations, we 
represent    4>(q)    on    3D   by (25), and on    3D' 
by 

♦ (q)=a;+;(q), («) 

where    U'(q))    is a second set of basis fun- 
ctions ancl    a'(n = l,2,...) are unknown coeffici- 
ents.    Substituting (25) and (43)  into (41a), 
we obtain 

d   = Q   a +a' m    Mnn n    n 
3D' q (44) 

where Qmn is given by (27). The integral in 
(44) is over 3D'. We would like to express it 
in terms of known integrals over 3D' To do 
inii,   we  IIIUSL  icjjiaoc     1^1    j     »j    •»••■  
centred on   0'; since    y«)    is regular near 
0', it has an expansion in Hterms of   <yr ). 
In fact, we have the following 
Addition theorem. 

where    rj, = rp + b    and    rj> < b= |b|.    The mat- 
rix    S    is defineB in Appendix B; it satisfies 

(46) S    (-b) mnv  -' 
S    (b) nor-' 

This theorem can be proved either by intro- 
ducing complex variables (Bencheikh, 1982) or 
by using integral representations; both proofs 
are sketched by Martin (1984b). 

Let C\    be the escribed semicircle to 
3D', centred on 0'. If 0 lies outside C;, 
then we can substitute (45) into (44) giving 

d    = Q    a    + S J-b)Q'  a'     (m = l,2,...)    (47a) 
m       mn n       mk^ ~'^kn n 

where 
(48) C   -       *n^3h-^q>dV 

3D' 
Similarly, if   0'    lies outside    C+, we can 
reduce (41b)  to 

m 
where 

Q: •mn 
iD1 

»n^-57rq*m^)<V (49) 

The coupled system (47) is to be solved for 
an    and   a'   (n = 1,2,...).    Truncating this sys- 
tem leads to a numerical method for solving the 
null-field equations.    The corresponding acoust- 
ic problem (scattering by a pair of sound-hard 
cylinders) has been solved in this way by Bates 
and Wall  (1977).    Note that the matrices    Q 
and    Q (Q'    and    Q') occur in the solution of 
Sx    for the first (second) cylinder in isola- 
tion. 

4.3    The Potential  in D 

Once    i))(q)    has been found by solving the 
null-field equations,    <|>D(P)    is given by (39). 
If we restrict    P e D   to lie outside    C+   and 
C|, we can substitute (20)  into  (39) giving 

2w*D(P) -vjrpj+c;*^) 

where 
r a 

c    = -   I  Ala)—a (r )ds m J  nH>3n    nr-q'    q 
3D q 

= ' ^mnan = TmkQknV 

[ *(q)-La (r')ds 
q 3D' 

<Lan = TmkQknan' 

(50) 

(51) 

(52) 

(53) 

(54) 

and T1 is the T-matrix for the second cylin- 
der. Henceforth, we shall concentrate on find- 
ing cm and cm (rather than a and a'). 

Multiply (47a) by Tom and"'sum over" m 
to give 

Am 

Vk   =  tA     (^ = 1'2'---)» 
where 

X     = T ,S,   (-b)  = S . (b)T. mn       mk kr\K  -'        wK~' km 

and 

m T   d  . mn n 

Similarly, from (47b), we obtain 

c;-x;k
ck = t; <*-i.2.- 

where 

X' = T',S, (b) = S . (-b)T.1 

—  mk knv~;   nkv -' km mn 

and 

t' = T' d' m  mn n 

Eliminating    c^   between (55) and (58) gives 

cm " \mcn * ftr 
(m=l,2,...) 

where 

Kmn = XmkXkn    and   VWn 

(55) 

(56) 

(57) 

(58) 

(59) 

(60) 

(61a) 

(62) 

(61a) is an infinite system of linear algebraic 
equations from which    c      (m = l,2,...)    can be 
determined.    Similarly, c^   can be determined 
from 

c' -X'UX.   c' =t' +X'   t      (m = l,2,...),    (61b) m     mk kn n     m     un n 
or by substituting the solution of (61a) into 
(58). 
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We remark that (61)  are convenient for 
. numerical  computations.    The effects of scatter- 

ing by each cylinder in isolation (i.e.  the 
matrices    T    and    T'), and those of the spacing 
between the cylinders, are clearly separated: 
changing the spacing merely requires that   S 
has to be recomputed.    In 54.5, we solve    S2 

for a semicircle-catamaran by solving (61), 
numerically. 

In essence, the analysis of the present 
section follows that given by Peterson and 
Ström (1974) for the corresponding problem in 
acoustics.    Similar equations have been obtain- 
ed by Bencheikh  (1982). 

4.4    Asymptotic Solutions; Wide Spacings 

(61)  can also be solved asymptotically. 
Suppose that the second cylinder is absent: 
thus    Tmn = 0, whence    tm = 0, Xmn = 0, cm = 0 
and    cm = t,,, = Tmndn,  in agreement with  (32). 
This suggests that if the second cylinder is 
small  (compared with the first cylinder   and 
the wavelength), then approximations to    cm 

and    cm    could be found by substituting an 
appropriate approximation to    T'   ; however, this 
will  not be pursued here. 

Different approximations  to    cm   and    c' 
are obtained by assuming that the spacing bet- 
ween the cylinders is large, i.e. by substitut- 
ing an appropriate approximation to    SmQ    into 
(61).    Let    a    be a typical  dimension of both 
cylinders, and set    T = a/b (b= |b|  = distance 
between    0    and    0').    We assume that 

Kb >> 1      and      T «   1. 

We have (see Appendix A) 

*z(b)  = relKb + 0((Kb)"3) 

(63) 

and 

*2(b) = TTielKb + 0((Kb)"2) 

as    Kb -*- ».    Also, 

2m+i,        ,.,        2rn ...    , ,,m 2m+i , 
a       *2m+i^)=Ta    *m+ß)=l'V  T       • m*1- 

If we ignore all   'local'  effects,  i.e. we only 
include the wave terms in    $1    and    <j>2, the 
matrix   Smn(b)    becomes very simple (see Appen- 
dix B): 

sn =S22 = isi2 = "iS2i = "ix' Smn =0    m'n > 2' 
i Kb 

where    x = Jne      .    Using these approximations, 
we obtain the following: 

X     =-X(iT    +T    ),  X     = x(T     -iT    ), 
mi       v    mi   1112'      1112      v mi       mi" 

X', = -x(iT'  -T'   ),  X'   = -X(T'  +iT'   ), mi        v    mi    m2"    m2        * mi     m2" 
x

mn=0>    XL=0      for    n > 2, mn mn 

Kll = iK12 = X12(X12   +  X2l)> 

K22 = "iK21=X2l(Xi2+X2l)> 

and    K      = 0    for   n > 2. 
mn 

Substituting into (61a), we obtain 

(I-KJJCJ - K12c2 = fx (64a) 

- K2ICj + (1 -K22)c2 = f2 (64b) 

<™ = KmiS + Vz + fm'   m>2' (65) 
Thus, the infinite system (61a)  reduces to a 
2x2    system (64) for    cx    and    c2, and a 
formula for    cffl, m > 2.    Solving (64) gives 

ACj = (1  - K22)fj + K12f2 

and    AC2 = (1  - Kn)f2 + K21fis 

where 
A = (1-KU)(1-K22)-K12K21 

= i-(x12 + x21)(x;2 + x21) 

(66a) 

(66b) 

1 - r_r'  e 2iKb 
(67) 

r+, t^   are the reflection and transmission 
coefficients for the second cylinder in isola- 
tion, and we have used (35). 

Let us now consider a specific incident 
wave, namely, a regular wavetrain propagating 
from    x = 4<», with velocity potential    <f>j   given 
by (7); the coefficients    d      are given by (24), 
whilst m 

d'  = eiKbdm    (m=l,2,... 
m m (68) 

Substituting into the right-hand sides of (66), 
we obtain 

v(Cj +ic2) =r+-e2lKbr;{r+r_ +t(l-t)}      (69a) 

and 

y(Cl-ic2)=l-t-e
2iKbr;r_, 

where y = wA/(2gA ). Similarly, 

and 

y(c; + ic2) =e
iKbtr; 

y(c;-ic2) = eiKbt(l-t') 

(69b) 

(69c) 

(69d) 

We define reflection and transmission coeffi- 
cients, R+ and T+, respectively, by (8) with 
r+(t+) replaced by R+(T+); they are given by 

1Kb, R+=|{c1+ic2 + e"x (c^ + ic2 

iKb, 

(70a) 

and   T+ = 1 - J{cx- ic2+e       (cj- ic2)}.      (70b) 

Substituting our approximations  (69) into (70), 
we obtain 

AR+ = r+ - e2lKtV;{r+r_ - t2} (71a) 

and AT+ = tt'. (71b) 

Similarly, for a regular wavetrain propagating 
from x = -», we can define reflection and trans- 
mission coefficients by (10); using (69), we 
find the approximations 
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&R_=e-2iKbr:-r.{r;r:-(t')2} (71c) 

and   AT. =   tt' . (71d) 

(71) are precisely the formulae obtained 
using the 'wide-spacing' approximation (see 
Appendix C).    Here, we can see precisely the 
assumptions that have been made, namely (63), 
in order to arrive at (71).    The first assump- 
tion    (Kb » 1)    means that the wavelength is 
much shorter than the spacing between the cyli- 
nders.    The second assumption    (T «  1)    means 
that each cylinder is small compared to the 
spacing, i.e. it is purely geometrical in nat- 
ure. , ...   , 

Finally, we remark that it can be verified 
that the approximations (71) do indeed satisfy 
the Kreisel-Meyer relations (§3). 

4.5   A Numerical Example 

We consider the semicircle-catamaran prob- 
lem, i.e. scattering by a pair of fixed half- 
immersed circular cylinders.    Let each have 
radius    a, and locate the two origins, 0    and 
0', at their centres.    For the incident wave, 
we chose a regular wavetrain propagating from 
x = +o°, with velocity potential    $7   given by(7); 
hence we non-dimensionalised    <|>    using gA+/u. 
q £  3D   has coordinates    x = a sine, y = a cose 
with    -|ir s e < |TT.    The T-matrix.    The cylin- 
ders are identical, whence    \m = Tmn.    We non- 
dimensionalised    a     and    *„    using powers of 
a.    From symmetry considerations, we chose 

*      ,(e)=sin(2m-l)e and <t>    (e)=cos(2m-2)e 
*2m-iv  '        v        ' 2m 

(m = l,2,...), 

whence, e.g.    Q2m ,,„_! = Q2m-i,2n = °-    Tne . 
non-zero elements of   Q    and     q    can be eval- 
uated exactly (it is not necessary to use num- 
erical  quadrature in this simple example). 
Each infinite matrix was truncated to an    N x N 
matrix (typically, N = 24) and an approximation 
to the T-matrix was computed.    Two checks on 
this approximation were made:  first, the rel- 
ations (34) were verified; second, from (35), 
we have (by symmetry,    r+ = r_=r, say) 

t = 1  - i*i(Tu + T22) 

and r = Jiri(Tu - T22), 

(72) 

(73) 

and these can be compared with other calcula- 
tions, e.g.  Martin and Dixon (1983)  tabulate   r 
and    t   for various values of    Ka. 
The S-matrix.    The non-dimensionalisation of 

■5—is prescribed by that used for   Q   and   Q. 
The addition theorem was verified, using an 
N x N truncation for   S. 
R+and T+.    Approximations to    cm   and   c 
(m =TT2    N)    were computed by solving (bl), 
and then"R+   and   T+   were computed from (70). 
It was verified that    R+   and    T+   satisfy the 
Kreisel-Meyer relations, which take the form 

|R+|2 +  |T+|2 = 1 (74) 

and    arg(R+)-arq(T,)- Kb = ^TT modulo TT. (75) 

(Note that the geometry is symmetric about 
x = -lb, but the incident wave (7)  is specified 
relative to    0 (cf. Srokosz and Evans, 1979); 
this accounts for the term    Kb    in  (75).    Thus, 
increasing    b    means that the position of the 
first (i.e. front) cylinder remains fixed rel- 
ative to the incident wave, and the second (i.e. 
rear) cylinder recedes (towards    x = -■»).) 

In Fig.2, we plot    |R+|    as a function of 
Ka    for    T = 0.25 and x = 0.4; the correspond- 
ing gaps between the cylinders are    2a    and 
la, respectively.    For comparison, we also give 
|R+|    for a single cylinder    (T =0).    It is 
interesting to compare the curve for   x = 0.25 
with a corresponding curve for scattering by 
two thin vertical plates (each immersed to a 
depth    a) obtained by Srokosz and Evans  (1979; 
Fig.  3a).    This latter curve is also for a gap 
(between the plates) of    2a.    The two curves 
are broadly similar, and both have a zero near 
Ka = 0.5. 

In Fig. 3, we plot    |R+|    as a function of 
x    for    Ka = 0.2 and    Ka = 0.5.      In Table 1, 
we give values of    |R+|    and   arg(R+)    for 
0.1  s Ka < 1.0   and    0 s x s 0.5 (when    x = 0.5, 
the cylinders are touching); for each pair (Ka, 
x), the upper number is obtained using the pre- 
sent method (with    N = 24) and the lower number 
is obtained using the wide-spacing approximation, 
(71a)  (leading characters are replaced by aster- 
isks when they agree with the upper number). 
The agreement is seen to be good, with the larg- 
est error (= 10%) occuring when    Ka = 0.2, 
x = 0.5. 

From the wide-spacing approximation (71a), 
we deduce that    R+ = 0   whenever 

Kb + arg(r)  = 0    modulo IT (76) 

where    arg(r)    is a function of    Ka.    (We have 
AT+ = (1  -   |r|2)exp {2i arg(t)}; when (76) holds, 
A = 1 - |r|2, whence    |T+|  = 1    and    R+ = 0.) 
In fact, the approximation (71a) has aninfinite 
number of zeros, both as a function of    x    for 
fixed    Ka, and as a function of    Ka    for fixed 
x.    In particular, when    Ka = 0.2 (from the last 
column of Table 1, arg(r) = -1.768),  (71a) pre- 
dicts that    R+   first vanishes at    x = 0.113; 
this agrees well with the graph in Fig.  3.    Sim- 
ilarly, when    Ka = 0.5,  (71a) predicts that the 
first two zeros of    R+   are at    x = 0.270 and 
x = 0.101. 

If    x    is fixed,  (76) gives an estimate for 
the zeros of    R+   as a function of    Ka.    Thus, 
when    x = 0.4, we can use Table 1  to show that 
R+   has a zero between    Ka = 0.9    and    Ka = 1.0; 
similarly, when x = 0.25, the first zero occurs 
between    Ka = 0.4 and    Ka = 0.5.    Again, these 
observations accord with the calculations pres- 
ented in Fig. 2. 
The pressure on the front cylinder.    In Fig.  4, 
we plot dimension I ess forms of    pRq)|    for 
q(e) e 3D, with    e    varying between 90° (front 
face, i.e. facing the incident wave) and -90° 
(rear face,  i.e. facing the second cylinder). 
(The hydrodynamic pressure is proportional  to 
the potential.)    There are three curves, corres- 
poinding to (i) the present method,  (ii)  the 
wide-spacing approximation (given by (C.3)) 
and (iii) a single cylinder in isolation.    We 
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0.5   . 

0 0.5 Ka 1.0 
Figure 2.  The reflection coefficient as a fun- 

ction of Ka, for    T=0.4,  T=0.2 and T=0.0. 

■60° e 

Figure 4.  The normalised total  potential on the 
front cylinder, for Ka = 0.2, T = 0.45.  (i): the 
null-field method;  (ii): the wide-spacing approx- 
imation; and  (iii) a single cylinder in isolation. 

0.5 0.4 0.3 0.2 T   0.1 
Figure 3.  The reflection coefficient as a func- 
tion of T, for    Ka = 0.2 and Ka = 0.5. 
Table 1.    The complex reflection coefficient; 
obtained using the null-field method and the 
number,  leading characters are replaced by as 

x=0.5 
Ka 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

|R+I 
-0.3422 
***736 
0.6177 
***768 
0.7980 
**8560 
0.8960 
**9392 
0.9455 
***742 
0.9704 
***888 
0.9833 
***950 
0.9903 
****77 

0.9941 
****89 
0.9963 
****95 

arg R+ 

-1.639 
****50 
-1.610 
****20 
-1.591 
*****g 

-1.619 
****29 
-1.692 
***706 
-1.799 
***816 
-1.928 
****47 

-2.073 
****91 

-2.229 
****47 
-2.392 
***409 

iR+r 
0.3466 
***722 
0.6210 
***673 
0.7930 
**8384 
0.8840 
**9195 
0.9294 
***559 
0.9513 
***719 
0.9591 
***776 
0.9485 
***726 
0.6858 
**8649 
0.9820 
***754 

=0.4 
arg R+ 

-1.593 
***604 
-1.536 
****44 
-1.505 
****■]] 

-1.529 
****38 
-1.598 
•**611 
-1.693 
***712 
-1.797 
***824 
-1.869 
***918 
-1.506 
***762 
-2.656 
****61 

=0 

for each pair (Ka,-r), the upper and lower numbe 
wide-spacing approximation, respectively. In the 
terisks when they agree with the upper number. 

IR+I 
0.3483 
***681 
0.6076 
***419 
0.7494 
***851 
0.7941 
**8294 
0.6796 
**7309 
0.6269 
**5839 
0.9855 
****!3 
0.9987 
****74 
0.9999 
*****4 
1.0000 
0.9998 

3 
arg R+ 

-1.517 
****26 
-1.405 
****13 
-1.332 
****40 
-1.281 
****93 
-1.091 
***120 
-2.854 
****71 
-2.220 
****12 
-2.217 
*****2 
-2.316 
*****3 
-2.451 
*****0 

=0.2 

IR+I 
0.3393 
***530 
0.5230 
***461 
0.4262 
***550 
0.5330 
***166 
0.9648 
****02 
0.9952 
****35 
0.9990 
****82 
0.9997 
*****3 
0.9999 
*****6 
0.9999 
*****7 

arg R+ 

-1.363 
****70 

-1.115 
****21 
-0.763 
*****9 

-2.818 
*****! 
-2.086 
*****0 
-1.986 
*****2 
-2.036 
*****3 

-2.141 
****39 
-2.273 
*****! 

-2.419 
*****7 

x=0 

IR+I 
0.2469 
***539 
0.2178 
****n 
0.8613 
***577 
0.9379 
****47 
0.0035 
***196 
0.9918 
****22 
0.9979 
****gi 
0.9960 
*****4 
0.9987 
*****6 
0.9999 
****** 

1 
arg R+ 

-0.880 
*****3 
-3.028 
*****5 
-1.978 
*****3 
-1.608 
*****5 
+2.867 
****77 
-2.001 
*****2 
-2.011 
*****2 
-2.071 
*****3 
-2.337 
*****5 
-2.443 
****** 

=0 
IR+I 

0.1942 

0.3958 

0.5857 

0.7369 

0.8403 

0.9046 

0.9427 

0.9650 

0.9783 

0.9862 

rs are 
lower 

0 
arg R+ 

-1.708 

-1.768 

-1.791 

-1.812 

-1.855 

-1.928 

-2.028 

-2.150 

-2.288 

-2.439 

128 



chose    Ka = 0.2    and    T = 0.45, since, based on 
the results in Table 1, we expected significant 
discrepancies between (i) and (ii).    In fact, 
we see that the wide-spacing approximation (ii) 
overestimates, with the largest error (= 9%) 
occuring near   e = -90°, and the smallest 
(= 4%) occuring near    e = 90°.      The single- 
cylinder curve varies between an overestimate 
(= 20%) near    e = -90° to an underestimate 
(= 15%) near    e =90°. 

If we fix    Ka    and reduce    x (whence    Kb_ 
increases), the agreement between (i) and (ii) 
improves; e.g. with    Ka = 0.2 and T = 0.09 
(Kb = 20/9), the errors at    + 90° are both less 
than 1%.    However, if we fix    T    and increase 
Ka (whence    Kb    also increases), then the agree- 
ment may or may not improve; e.g. with    Ka = 1.0 
and    T =0.45 (again, Kb = 20/9), the errors at 
-90°    and + 90°    are 15% and 1%, respectively. 
These numerical  observations verify that both 
assumptions (63) are important. 

Finally, we mention Ohkusu's comparison 
(1970, 1975) between his exact solution (1969) 
and the wide-spacing approximation for the for- 
ced motions of a semicircle-catamaran.    In the 
present notation, he found that they agreed 
'almost completely ...   at least for    i,<^ 
unless    Ka    is very small'; this conclusion 
conforms with our analysis in §4.4. 

5. DISCUSSION AND CONCLUSIONS 

In this paper, we have used the null-field 
method to solve a multiple-scattering problem, 
namely, the interaction of water waves with 
two long horizontal  cylinders, floating in the 
free surface of deep water.    The method is 
exact; it yields a viable numerical approach 
for solving such problems; and it meets the 
requirements of the philosophy put forward in 
§1.    Of course,  it is not as simple as a method 
based on the wide-spacing approximation, alth- 
ough it could be useful when that approximation 
is not valid (see §4.4). 

We conclude by noting that the null-field 
method could be modified in several ways: 
(i)    It should be possible to extend the method 

to water of constant finite depth, and to 
three dimensions (see Martin, 1981), alth- 
ough the corresponding addition theorems 
are not yet available, 

(ii) The geometrical  restriction required to 
reduce (41) to (47) would be altered if the 
multipole potentials    *m   were replaced by 
a different set, pertinent to elliptic 
coordinates, say (cf.  Bates and Wall, 1977). 

(iii)  The number of cylinders could be increased; 
see, e.g.  Peterson and Ström (1974;  §3) and 
Bates and Wall   (1977;  §7). 
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APPENDIX A.    Multipole Potentials 

From Ursell  (1981), we have (20) with 

oo 

*2(CP) =f "kycos kxFI' *i(cP} =x in *2« 
0 

*2m+2^p) 
cos 2me        K    cos(2.m-l)e 

„2m o„_-,      „2m-1 2m-1 

I    \ = sin(2m+l)6     _K_ sin 2m8 
*2m+i^-P;        „2m+i 2m       2m 

-Ky^. a2(rp) = -2e"Kycos Kx, ai(rp) = -2e"^ysin Kx, 

U2m+2^P' 
= -2(2m-1)l      I (^q 

-P' ./2m „ £-*—-r*— q=2m    ql 
cosqe, 

a       (r ) =2£M'-    I      il^sinqe, a2m+il-P;     „2m+i „.L,     q: q=2m+i 

m = l,2,..., and the point    P = (x,y) has cir- 
cular polar coordinates given by    x =rsine, 
y =rcose (with    r = rp).    Note that    $2m   and 

°Sm (*2m-l    and    a2m-i) are even (°dd) ™n" 
crTons of   x (m = l,?,...)•    Note also that 
$ (rp) = *m(r,e)    is singular at   0, i.e. at 
r =0. 

For large    |x|, we have 

$ ^i Trexp(-Ky+iKx),<s2^Tn exp(-Ky+iKx) (A.2) 

as   x + ± ». 

For m > 2, $  is a wavefree potential, i.e. 
it decays algebraically as |x| ->- °°. The pre- 
cise error terms in (A.2) are given by Ursell 
(1961). 

APPENDIX B. The Addition Theorem 
oo 

lbI    and the matrix 

'22 -_i*2 

where rp = rp + b, |rp| 
S is defined as follows. 

S11=-H*2+K"2^}'S21=-S12=i*l'S 

S:,2n+1 = S
2n+i.i  = "«" + l)/K)$2n+, 

S
1>2n+2 = -S2n+2.i

=-(n/l()*2n+i 

2,2n+i 2n+i,2      2 2n+i 
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\m+u2^---^TJn^)^+,-C^^%^ 
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S 
2m+i,2n+2 

U2q_1)2n*      -(2q-3)li$   } u2m-i;      2q+2 4m-iJ2n-i 2q; 

,2n$ 
2m'      2q+i 

q+2 

2n+2,2m+i 

2q-2, K2 

H    )- ,}     ' 2m '2n-i    2q-i 

q = m+n, m 5 1, n > 1, and    (k) = k'fn-k)'   " 
All functions have argument  h,      'v 

i-e-    $m E *m(!2) = yb'5")'    !t may be vei"ified 

that (46) is satisfied. 

APPENDIX C.    The Wide-spacing Approximation 

The derivation below is modelled closely 
on that given by Srokosz and Evans  (1979;  §5.3). 

■a IN Write    S    = S (3D; $i)    to emphasise the depen- 
'   '   ' dence on the particular geometry and incident 

potential. 
Let    <J>+ (x,y) solve    S^aD; exp{-Ky+iKx}) 

and define "corresponding reflection and trans- 
mission coefficients,    r+    and    t+ , by (8) and 
(10), with    A± = u/g.    Similarly,"let *i(x,y) 
solve    S!(3D'; exp{-Ky * iKx}), with correspond- 
ing coefficients    r*   and    t'±.    Finally,  let 
<(>(x,y) solve    S2> with ^  = exp{-Ky-iKx}, and 
define    R+   and   T+   by 

e"iKx + R+eiKx,    as    x^+„ (cj) 

+ (x,0)^        -K 
T,e       , as    x ■* -°°.      (C.£) 

Now, we suppose that near the first (i.e. 
front) cylinder (see Fig.l) 

f>(x,y) = a<f>+(x>y) +ß*_(x»y) 

a(e-iKx+r+eiKx)+ßt_eiKx   as x^ + 

(C.3) 

(C.4) 

at+e-
1Kx+B(e1l(x+r_e"!KX) as x*"~'   (Cl5) 

on y = 0, where a and ß are unknown comp- 
lex constants. Comparing (C.4) with (C.l), we 
find that a = 1 and 

R, r+ + et (C.6) 

Also, we suppose that near the second (i.e. 
rear)  cylinder, 

(x,y) = Y*+(x+b, y) 

iK(x+b)._ iK(x+b) 

~ < 
Y(e '+r+e 

Yt;e-iK(x+b) 

(C7) 

)    as    x^+»     (C.8) 

as    x->--°°      (C.9) 

on y = 0, where Y 
is another complex cons- 

tant. Comparing (C.9) with (C.2), we find 
that 

I,. = 
.. -iKb 

Tt+e (CIO) 

To find    B    and    y, we assume that there is a 
region between the two cylinders where (C.5) 
and (C.8) match; equating the coefficients of 
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exp{+ iKx}, we obtain 

ß = Yr;e
iKb    and    t+ + ßr. = Ye"il<b 

1-eÄB=r;t+e2iKb    and    AY = t+eiKb, 

where A is given by (67). Substituting for 
ß and y in (C.6) and (CIO), we obtain the 
formulae (71a,b). Formulae for R_ and T_, 
(71c,d), can be obtained in a similar manner. 
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SESSION III 

SEAKEEPING PROBLEMS 



ADDED RESISTANCE IN WAVES OF HULL FORMS WITH BLUNT BOW 

MAKOTO OHKUSU 

the ship's dimensions.  Added resistance 
ABSTRACT in snort waves is one of the factors 

Added resistance of a ship running govering our evaluation of "'"ge ship' s 
Huueu icsia».uii^=       r ,,.4.1, nprfnrmance in a seaway.  Large added 

in incident waves short compared with ^stance of full hull forms at short 
its length is thought to be dominated «fvelenSth Is supposed to be due to the by diffraction of the jncident w.ves o„ w - supoos^ ^ ^ ^ 
the ship's hull.  Physics ot resistance evaluate cor 
increase, however, in short waves for ^Mv this diffraction ef- " ~J 
blunt bow hull forms has not been fully ^^VnUl rec^ly\ 
increase, however, in short waves for ow par*  .  .«        fect on added 
blunt bow hull forms has not been fully "^ance unlil recently. 
understood.                  ,.t,lu Fujii and Takahashi (1975) carried 

In this report we describe firstly a "er es test of full hull forms 
the measurements of diffraction wave out     ^        in head and oblique 
pattern, of blunt bow hull forms towed w°a ^Concentrating 0n it at short wave 
in regular head waves,  eading u to •  rf f  d th t it highly corre- 
conclude that added resistances computed engx      e bluntness coefficient 
from the energy transported with the defined as a mean square value of the 
measured diffraction wave pattern away inclination of the water line in ship's 
from the hulls are only half as much as witn respect to its center 
added resistances measured with force Interpreting this finding in the 
gages.  Except small viscosity effect, •   wave diffraction theory for a 
the other half of energy is possibly cylindrical form, which is restrained 
dissipated with waves not recognized * incident waves without advance speed, 
far from the hulls and generated with derived an empirical formula of 
other mechanism than linear theory pre- *tical use giving the resistance in- 
dicts.  This possibility was confirmed ^ease of a blunt bow ship in short 
on the observations of diffraction waves £™^e

a°Yd1f f racti on wave resistance, 
propagating some distance forward of a w   Faltinsen et al. (1980) gave an 
2-D body until vanishing by breaking asymptotic formula predicting added re- 
even if "eW? is larger than O.Z5(we . Stance when wave length approaches 
encounter frequency of incident waves, ^rQ       His formula is remarkable in tak- 
v   : ambient flow velocity far in front -^ account even approximately the 
or body's forward speed).  Those waves interaction of diffraction waves with 
may be given rise to by their interac- steady but non-uniform current around 
tion with steady flow field prominent the hull 
close to blunt bow caused by forward Technique of measuring and analyz- 
speed.                , inn the unsteady waves around ship 

Secondly a computation is proposed mogels running into waves was developed 
for getting the difference between the ohkusu (1977, 1980).  With this tech- 
added resistances derived from wave pat- n<„ue   it is now possible to experimen- 
tern and measured with force gages. tally examine the diffraction waves 

around a ship of full hull form when 
1.  INTRODUCTION running into the incident waves of short 

wave length.  Analysis of the measured 
It is well known that resistance diffraction waves leads to the direct 

increase due to waves of a ship with a derivation of added resistance as a wave 
full hull form is of larger magnitude makinq resistance, caused by the trans- 
than theoretically expected (Strjarn- »  nerqy by the diffraction waves. 
Tejsen et al . , 1973  if the length of f^/dded resistance thus measured might 
incident waves is short compared with '"e 

M. Ohkusu, Research Institute for Applied Mechanics, Kyushu University 87, 
Kasuga, 816 Japan 
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be ca 
in co 
force 

is to 
resi s 
1 arly 
diffr 
added 
the w 
and t 
of th 
1 engt 

lied wave pattern added resistance 
ntrast with that measured as a 
on a ship model. 

The purpose of the present study 
study experimentally the added 

tance of full hull form, particu- 
with blunt bow with the measured 

action waves, the wave pattern 
resistance and observations of 

ave field close to the bow part 
o try to understand hydrodynamics 
e added resistance at short wave 
h. 

2. ANALYSIS OF DIFFRACTION WAVE 
PATTERN AROUND SHIP 

2.1 Theoretical Formulation 

A ship, when running in waves, gen- 
erates time dependent waves as well as 
stationary ones.  The time dependent 
waves are regarded as a superposition 
of radiation waves and diffraction 
waves, if we can linearize the time de- 
pendent flow around the ship, the former 
is supposed to be caused by the ship 
forced to undergo the oscillatory 
motions and advancing with forward ve- 
locity on otherwise a calmwater.  The 
latter, which is our concern here, is 
produced when incident waves scatter on 
the surface of the ship running but its 
oscillatory motions suppressed. 

Energy flux of the superposition 
of radiation and diffraction waves away 
from the ship running and freely oscil- 
lating in waves is compensated by work 
done by added resistance of the ship. 
Energy flux of the diffraction waves 
alone will give the added resistance 
due to the diffraction waves.  This is 
not an imaginary quantity, but really 
the added resistance of the ship when 
it runs in short waves where its oscil- 
latory motions are of very small magni- 
tude and the radiation waves hardly 
contribute to the unsteady wave field. 

Hull forms with blunt bow are sup- 
posed to produce large diffraction 
waves, particularly in short waves, re- 
sulting large added resistance.  How- 
ever, at present, it seems we have few 
experimental data directly proving that 
the larger diffraction really occurs 
close to the bow.  If we measure the 
diffraction waves for a ship of blunt 
bow towed in incident waves of short 
wave length and describe them in a form 
by which we are able to understand their 
function in the added resistance, we 
might be able to get some correct knowl- 
edges on the diffraction waves of the 
blunt bow hull form and to clarify the 
relation of the wave pattern added resis- 
tance directly derived from the measured 
diffraction waves to the added resistance 
measured as a force on the hull.  The 
unsteady waves around a ship model, dif- 
fraction waves or a superposition of 

both diffraction and radiation waves, 
are expressed, at the location (x,   y) 
in the reference frame moving with the 
model as illustrated in Fig.l, by 

[?c   - 
■ r      1       ■L,u 

2to 
" \%-yz fe+T/z 

9 J-TT/2 J-n/i 
Fl (6) 

oxp[-ik lx   cos9   -   ik1y   sin8   +   iiot] 

(1) 

+ ^^ I F,(9)   expt-iA-x  cosE 
9   J 6-TT/2 

ik.y   sin6   +   iu>t] 

1 - 2Ü  cos8 +/1 - 4ß cos9 

2u2/g  cosB 
(2) 

where to is the frequency of encounter 
with the incident waves, v  is the forward 
speed of the model , Q  = uu/g  and 6 
= tan"1(y/x) , u 

A y 

Figure 1. Coordinate System 

Köchin function ffj(8)(j=l, 2), pro- 
portional to the amplitude function F,-(9) 
of waves propagating into the 6 direction 
as found in the equation (1), provides 
the energy flux of those waves to give 
the added resistance as integrated with 
respect to every direction (Maruo, 1963). 

AR  = 4irp 
V2 

y2 

\H1(9)|
2*,(k1   cosG + k) 

d6 
/T 4fi cose 
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+   4TT p 
TT   \H2 (6) | 2k2 (k2cosQ + k) 

/l   -   4ß   cosE 

(3) 

H,(6) 
4iroi 

exp[i.fc2y   sine] 

(1  +  kjkü  cos0) 

/_"UCU,   y)-  i?sU,   y)l 

H,(9)  =■ 
F•(8)/l  -   4ß  cose 

Jtj(l   +   Jtj //cfi   COs9) 
(4) 

where k  =  ul/g  and a0 = cos  (l/4fl). 
Ai? is the diffraction wave resistance 
or the total added resistance according 
as fl,-(e) are those of the diffraction 
waves or of the total unsteady waves 
including the radiation waves as well. 
The equation assumes that the wave field 
is port and starboard symmetrical, that 
is, the equation is for the ship running 
in head waves. 

Ohkusu (1977, 1980) proposed a 
method to derive tfj(e) from the measured 
wave elevation around a ship model, run- 
ning in regular waves with its motion 
suppressed or freely oscillating. 

H,-(e) obtained with this method is 
a quantity describing the character- 
istics of the diffraction waves to be 
compared with theoretical prediction. 
We can also square and integrate the 
measured H,-(e) by means of the equation 
(3) to get the added resistance of the 
model without relying upon the measure- 
ment of a force on it.  Hereafter we 
call this added resistance derived from 
the measured wave field as wave pattern 
added resistance. 

The method is described briefly as 
follows (for detail, refer to Ohkusu, 
1980). 

Provided Kc  and 5S in (1) on the 
line of y=const. i.e. the amplitude of 
the cosine and the sine component of 
the sinusoidal movement of wave surface 
along a line parallel to the course of 
the model are measured, the Fourier 
transform of them with respect to x 
gives the Köchin function Hj-(6) for 0 > 
0. 

Hi(e) = i™ sgn[cos el 

exp[i sgn (cos6) .kjy sin6] 
x sine  

(1 + kl/kü   COS0) 

* /-!j5c(x' y'  " i5s(^- y)l 

x exp[ik1x  cos6]dx + 0(l/y) 

exp[ik2x  cos6] d6 + O(Vy) 

(5) 

This expressions for Hj(6) are for the 
port and starboard symmetrical wave pat- 
tern. 

As a ship model moves forward in 
incident waves, a single wave probe 
placed in the model basin changes its 
position in the reference frame moving 
with that model.  Accordingly what is 
recorded by this probe is the wave ele- 
vation at different location relative to 
the model on different time.  Since we 
need to record it at least for a period 
to know the amplitude and the phase of 
the wave surface's up and down movement 
at every location, a single wave probe 
is not sufficient for our purpose.  Each 
of several wave probes placed along a 
line parallel to the model ship's track 
with an appropriate spacing comes to an 
identical location, which can be any 
point on the line, in the reference 
frame moving with the model, at different 
moments.  It means wave records with them 
provide equivalently wave elevations at 
the identical location on several moments 
at intervals.  Even wave elevations at 
a location not continuously recorded but 
at intervals are sufficient to know the 
amplitude and the phase of water surface 
movement at this location, since the 
movement is supposed to be sinusoidal, 
with a period of encounter with the inci- 
dent waves.  Procedure for excluding the 
incident wave elevations from the data 
thus obtained to get Cc and Cs, i.e. the 
pure diffraction waves is described by 
Ohkusu (1980). 

It is usually impossible to get the 
information on the wave elevation at 
further than a certain distance behind 
the model since the tank width is limited. 
Wave elevation after that distance is 
assumed to be expressed by an asymptotic 
form matched to the tail part of the 
measured wave record.  With this asymp- 
totic expression for the wave field far 
behind we are able to carry out the 
Fourier integral to the negative infinity 
of x-, 

2.2 Results of Analysis of Measured 
Diffraction Waves 

Models of S175(L=3m), the Series 60, 
cB=0.80(L=3m) and CC1(t=2m) were towed 
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in regular waves with their motions sup- 
pressed and the diffraction waves were 
measured to be analyzed with the proce- 
dure described in the previous section. 

S175 is a container ship's hull 
form which has been used for the 15th 
ITTC's comparative computation of its 
motions in waves and CC1 is the fullest 
hull of those three models whose water 
line form is semi-circular for its bow 
part.  This model is stream lined for 
its stern part after a long parallel 
part as illustrated in Fig.l.  CCl's 
length to breadth ratio L/B   is 6.67 and 
its draft is made so deep as d/B=2.0 in 
order to exaggerate the diffraction of 
incident waves especially at its bow 
part. 

An example of Sc(referred to as 
Cos. component), Cs(Sin component) and 
stationary wave elevation along the line 
(y/L=0.25) is illustrated in Fig.2. 
This is for a model of the Series 60, 
<=B = 0.80   at ^» = 0.20 and A/L=O.60.  CC and 
Cs are non-dimensionarized by amplitude 
of incident waves(2.53cm).  Two station- 
ary wave patterns are compared in this 
figure, one of which is that when the 
model is towed on a calm water without 
any incident waves.  The other is under 
the influence of the interaction, if 
any, with the incident and the diffrac- 
tion waves, i.e. the stationary wave 
elevation around the model towed in the 
incident waves. 

Except far behind the model, where 
wave height is so low that we can not 
separate the stationary ones from the 
prominent unsteady waves with enough 
accuracy, it seems that both agree with 
each other.  This means that the pres- 
ence of the unsteady wave motions does 
not change the stationary wave field at 
least in the far field of a ship. 

Wave length of the diffraction 
waves propagating into the direction of 
9=180° right behind the model is found 
to be identical with the theoretically 
expected even for the closer position 
y/z, = 0.1, and their amplitudes are almost 
identical regardless of y/i as later 
described.  Therefore we can conclude 
that the wake behind the hull has little 
effect on the diffraction waves. 

Several examples of n • (e )k i4Ttu/g& 
(j=l,2)(for S175 and the model of the 
Series 60, cB=0.80) obtained through the 
Fourier transform of the wave data, an 
example of which is shown in Fig.2, 
where 6 denotes the amplitude of inci- 
dent regular waves, are illustrated 
Figs.3 to 8.  All the results in those 
figures are for short wave length of 
the incident waves and derived from the 
wave elevation measured very close to 
the hull surface of the models, that is 
y/z, = 0.1 ^ 0.17 where y refers the dis- 
tance from the model's center to the 
locations of the line along which the 
diffraction waves were measured.  ff2(9) 
not only its absolute value but also its 

Non-Stationary Wave ■  Cos.   Componei 

Stationary Wave - in waves 
on calm water 

S60/3M  DIF.C   DUCxtO   )     Fn-0.2O  X/L-O.60   <,-2.S3cn   P-I.0?4sec.   Y-   75c 

Figure 2. Wave Pattern along y=constant 
(Series 60 cfl=0.8) 

phase angle, is confirmed to show sur- 
prisingly little deviation from those of 
the waves measured at y/t=0.5.  Particu- 
larly the deviation is the less for the 
more slender hull form.  tfi(9) at y/L= 
0.1 is, however, a little larger than 
that at y/L=0.5.  The wave pattern due 
to ffi(6) is theoretically supposed to be 
recongized only in the vicinity of the x 
axis just like the Kelvin wave pattern 
we find around a ship running on a calm 
water and accordingly accuracy of the 
measured H1(Q)   is the higher the closer 
y is located to the x  axis.  However 
Hl(6)   is generally of much smaller magni- 
tude as compared to H2(6)   and has so 
little contribution to the added resist- 
ance integral as to be disregarded.  So 
we do not go far into H1(6)   matter in 
this paper. 

Theoretical values of H,-(e) are computed 
using a slender body theory (Adachi , 
1978) which assumes the incident wave 
length as short as the transverse dimen- 
sion of hull forms.  ff2(9) is provided 
by integrating waves propagating into 
the 8 direction from the line of sources 
along the x  axis.  Waves emanating to the 
direction of 8 from each point on the 
line source will cancell or intensify 
each other according to the rapid vari- 
ation of their phase relationship with 
respect to the location of the point on 
the line provided the length of those 
waves is short.  Theoretically computed 
#i(6) for all the directions and tf2(8) 
for 6 £ 90 i.e. the amplitude of waves 
emanating forward from the ship fluctuate 
rapidly even with a small variation in 9. 
In such 9 region theoretical lines shown 
in Figs.3 to 8 are connecting only the 
maximum values. 

Generally speaking the theoretical 
amplitude function agree with the meas- 
ured one. The agreement is rather sur- 
prising, considering the assumptions of 
the slender body theory used to compute 
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the theoretical and the short wave length 
of Hi(e).  We do not show the results 
for the model CC1 since the predictions 
by the slender body theory are too poor 
and much less in its magnitude than the 

measured one because of the deep draft 
of the hull form. 

The measured H2(9) is not, of 
course, completely identical in their 
details with the theoretical one.  The 

139 



SERIES 60(CB=0.8) 
Koch i n   Function   [DIFFRACTION] 

Fn-0.20 X/L-0.40 Y/L-0.10 T-0.877S 1-1,a6c« 

© Wave Ana I ys i s CMax.-u.9 at e-129.3) 

100    120    HO    160    180 
0 f degree ) 

Figure 7. Amplitude Function of 
Diffraction Wave 

Köchin   Function   c DIFFRACTION] 

Fn-0.15   X/L-0.50   Y/L-0.10   T-0.9B1S   1-2.17c 

Wave    AnalySiSt Max.-3   ?  at   8-72.2) 

«   measured 

— theoretical 

120 140 160 180 
8   C degree ] 

SERIES 60(CB=0.8 ) 
Köchin   Function   (DIFFRACTION)     , 

Fn-0.15   X/L-0.50   Y/L-0.10   T-0.981S   *l-2.17cn 

©   Wave   Analysis cMax.-a.7 at B-131.7) 

9 measured 
— theoretical 

Figure   8. 

H0 160 
6  C degree ] 

Amplitude Function of 
Diffraction Wave 

difference that the measured is greater 
for the full hull form than the theoretical 
especially in 9 close to a0 the limit 
angle beyond which no waves propagate. 

This is because most energy of the waves 
in those directions comes from the bow 
part for short wave length and the slen- 
der body theory naturally can not pre- 
dict the diffraction waves from the blunt 
bow.  Big H2(

ao) suggests the presence 
of the diffraction waves propagating 
locally into the direction of 6 < a0 
even if asymptotically otherwise. 

In Figs.9 and 10, "wave pattern 
added resistance" and added resistance 
of the diffraction wave resistance are 
compared for the model of the Series 60, 
CB=0.80.  The former denoted as "diffrac- 
tion (wave pattern)" was obtained direct- 
ly from the diffraction wave pattern 
around the model by following the proce- 
dure described in the previous section. 
Measured HX{Q)'S  contribution to the 
added resistance, i.e. value of the 
second term on the right side of the 
equation (3) is so small compared with 
ff2(9)'s as to be ignored.  Added resis- 
tance without restriction denotes one 
on the model freely moving in waves 
without any restraint, which was meas- 
ured by a hanging weight dynamometer. 
The added resistance with no restraint 
is of almost identical magnitude with 
diffraction resistance measured as a 
force on the hull restrained.  The wave 
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pattern added resistance of the model 
of the Series 60, cB=0.80 is of half or 
less magnitude as its added resistance 
(added resistance, if simply stated so, 
denotes that measured as a force on a 
hull hereafter). 

Nakamura et al.(1983) did the simi- 
lar experiment on a model which is of 
semi-circular bow form in water line 
forward from the station No.9 just like 
the CC1 model but with less draft.  They 
found the similar or larger difference 
between the wave pattern added resist- 
ance and the added resistance. 

The wave pattern added resistance 
of the model S175 does not have such a 
big discrepancy between the added re- 
sistance as the full hull forms as il- 
1ustrated in Fi g.11. 

CC1 
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Figure 12. Comparison of Amplitude 
Function at Different Distances from 
Hull Surface 

Theoretical added resistance illus- 
trated in Figs.9 through 11 by dotted 
lines are calculated integrating the 
equation (3) with theoretical HJ-(e)(j = 
1 , 2) as shown in Figs.3 to 8. 

Comparison of H2(6) obtained ana- 
lyzing the wave elevation data at two 
different distances from the hull sur- 
face (y/L=0.1 and 0.25) are shown in 
Figs.12 and 13.  For the less full hull 
form (the Series 60, cB=o.80) we have 
almost no difference between them. 
Even if we added the H2(6) at y/r, = 0.5 to 
Fig.11, this conclusion would not be 
altered.  Agreement between the H2{B)   at 
different y/i, is still more complete for 
the more slender model SI 75, although we 
do not show the results here. 

On the other hand the fullest CC1 
model has much different HZ(Q)   for y/z, 
=0.1 and 0.25, except that of waves pro- 
pagating right behind the model.  This 
difference in H2(e) corresponds to the 
difference in the wave pattern added 
resistance that the bigger one is twice 
as large as the smaller one.  Consider- 
ing the incident wave's length is small 
enough and the model has so long paral- 
lel part and deep draft, that the paral- 
lel part generates little waves, most 
energy of the diffraction waves emanat- 
ing to the direction of a <   6 < 90° ^ 
100° may come from the bow part.  Part 
of energy of the diffraction waves pro- 
pagating to those directions might be 
dissipated in the other form than the 
wave energy with some mechanism we do 
not know and we are not able to take 
account of it in the wave pattern added 
resistance.  Energy corresponding to the 
difference between the wave pattern add- 
ed resistance and the added resistance 
is assumed to be due to this dissipation. 

Increase of frictional resistance 
due to the presence of the incident waves 
may be of the order of magnitude less 
than u2/u2   relative to that on calm water, 
where u is the maximum orbital velocity 
of the incident waves. u2/u2   is about 
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several hundredths for the conditions 
of our experiments but the difference 
between the wave pattern added resist- 
ance and the added resistance is not 
less than one tenth of the resistance 
on calm water. 

3. OBSERVATION OF DIFFRACTION WAVES IN 
FRONT OF A 2-D MODEL AND BOW OF A 
FULL HULL FORM 

In order to observe the diffraction 
waves propagating upstream against the 
ambient flow even for uu>e/g  >   0.25, if 
any, whose possibility to cause the dif- 
ference between wave pattern added re- 
sistance and added resistance was point- 
ed out earlier by Nakamura et al.(1983), 
a horizontal cylinder with an elliptical 
section (B = 24CITI, d = 20cm) was towed in 
regular incident waves, to the direction 
perpendicular to its axis, with its 
motion restrained.  Model basin's width, 
in this experiment coincides almost with 
length of the cylinder 1.5m and the flow 
field around it therefore can be regard- 
ed as completely 2-dimensional . 

We are concerned with the waves a- 
head of the cylinder.  Waves behind the 
cylinder is highly influenced by the ef- 
fect of separation and does not provide 
useful informations for our purpose. 

In the experiments it was observed 
that diffraction waves propagate obvi- 
ously forward upstream even for uue/g 
much greater than 0.25.  Those waves 
propagate some distance forward and be- 
come so steep to break.  Ahead beyond 
this distance no waves except the inci- 
dent waves are present because ume/g 
is greater than 0.25. 

Waves were measured by means of 
several wave probes advancing with the 
cylinder into the direction perpendicu- 
lar to its axis.  Far ahead of the cylin- 
der we have no waves except the incident 
waves as already stated.  An incident 
wave probe at the most forward position 
is located ahead enough to record the 
incident waves alone.  The incident 
waves are regular and the time series 
of the incident wave elevations at the 
locations of other wave probes, where 
the diffraction waves are supposed to 
exist, can be exterpolated with a suf- 
ficient accuracy from the records with 
the incident wave probe.  These exter- 
polated incident wave elevations are sub- 
tracted from the wave records including 
both the incident and the diffraction 
waves at other wave probes to provide 
the records of the diffraction waves 
alone there.  The time series of the 
diffraction waves thus derived normally 
include the components of the higher 
harmonics of toe> the encounter frequency 
with the incident waves, since the wave 
motions are of complicated variation 
close to the breaking point.  Harmonic 
analysis of those records gives the am- 

plitude and the phase of the wave motions 
of the frequency we as well as the sta- 
tionary wave elevation. 

The 2-D wave pattern ahead of the 
cylinders can be drawn in the course of 
time by means of those data.  Two ex- 
amples of them, non-dimensionarized with 
the amplitude of the incident waves, are 
illustrated every ojet = 30° in Figs.14 and 
15, where circles are the measured data 
at the locations of the wave probes and 
lines are drawn connecting them. 

Obviously diffraction waves propa- 
gate forward even at such a high veloci- 
ty of the cylinder wa)e/g = 0.47 and 0.61. 
They break to disappear after progress- 
ing 50 ^ 60cm, about one and half wave 
length observed.  Steepness of those 
diffraction waves is not less than 1/10 
at the location close to the cylinder, 
noting <; the amplitude of the incident 
waves is about 1cm and the.wave length 
is nearly 40 ^ 50cm. 

Linear theory of short waves riding 
on steady current, slowly varying with 
the distance along the stream (Peregrine, 
1976) might be used to describe those 
waves even though the scale of the cur- 
rent variation, supposed to be of the 
order of the cylinder's draft x 2, is 
not so large as compared with the ob- 
served wave length and the current a- 
round the cylinder is not necessarily 
depthwise uniform. 

The diffraction waves propagate 
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Figure 14. Diffraction Waves 
Ahead of a 2-D Body 
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V = 0.53m/s Tw = 0.93sec 
fi = 0.47 

Diffraction wave 

^    (J,f = 0° 

5 =60 

=120 

=180 

= 240° 

= 300* 

cm 
1.0- 

0 

-1.0 ■ 

Stationary watersurface elevation 

mined by the computed c(1.02 and 1.06 
m/s) and the measured current velocity 
close to the free surface are 22cm and 
25cm respectively ahead of the cylinder. 
The diffraction waves propagate against 
the current more than 30cm beyond the 
stopping velocity predicted by the line- 
ar theory. 

Amplitude of the diffraction waves 
particulary close to the cylinder looks 
more twice as great as that of the inci- 
dent waves. 

Faltinsen's method to give ampli- 
tude A   of the diffraction waves relative 
to that x,  of the incident waves (Faltinsen, 
1980) assuming that the incident waves 
are not influenced by non-uniform cur- 
rent around a body since its length is 
long as compared with the current scale, 
but the diffraction waves interact with 
the current (its velocity is zero on 
the body in our case).  For the 2-D case 
with which we are concerned, the ampli- 
tude ratio is given by the equation (6) 
with kx   and 6 substituted by k   and IT/2 

respectively.  That is 

10 20        30        40        50 
a in incident waves 
A no incident waves 

60 

Figure 15. Diffraction Waves 
Ahead of a 2-D Body 

upstream against the current whose mag- 
nitude approaches to u,   the advance 
speed of the cylinder.  Accordingly the 
waves propagate further ahead from the 
cylinder, they continually shorten and 
increase in steepness so that small am- 
plitude theory becomes invalid.   Practi- 
cally they break and little or no energy 
is propagated beyond a point where the 
current velocity coincides with their 
group velocity.  This current velocity 
is conveniently called the stopping ve- 
locity t/(=-l/4 c , c : the phase velocity 
of the waves when they are on still water 
very close to the cylinder, given by 
g/ue).  The wave number *i at the stop- 
ping velocity equals to 4*. where k{= 
oj|/g) is the wave number corresponding 
to c.  At the stopping velocity the am- 
plitude of the waves is singular and the 
waves break necessarily before reaching 
the stopping velocity. 

In Fig.14 the computed k   is 9.45, 
which corresponds to the wave length A 
=0.66m and the wave length A: at the 
distance close to the stopping velocity 
is 0.17m.  For the second case shown in 
Fig.15, A=0.73m and Ai=0.18m.  It does 
not clearly appear that wave length 
shortens as the waves approach to the 
breaking point.  The length of the pro- 
pagating waves clearly observed in both 
figures is between A and \i.     The loca- 
tions of the stopping velocity deter- 

2*, 
A/? =' 

k   + fc( 

where ki[=u\lg)   is the wave number of 
the incident waves for ahead of the cy- 
linder.  For the conditions of Fig.14, 
this equation gives a/?=0.9 much less 
than the observed.  On the other hand 
if we assume the total reflection on 
the body, then the conservation princi- 
ple of wave action (Longuet-Higgins and 
Stewart, 1961, Whitham, 1974) describes 
the reflected waves as follows. 

Z2(u  + w./2*0)  Azus/2k 
'J) 

This equation leads to A/C=1.9 for the 
cases of Figs.14 and 15, which seem to 
be close to their observed values. 

In the lower part of those figures 
the stationary wave elevation in front 
of the cylinder towed in the incident 
waves are compared with those when it 
is towed on a calm water with the iden- 
tical velocity.  The mean water level is 
depressed if the incident waves and ac- 
cordingly the diffraction waves exist. 
Interaction of waves and non-uniform 
current including that of long waves 
such as the incident waves in our case 
is well known to lead to the mean water 
level displacement and part of the dis- 
placement is caused by spatial variation 
of the wave momentum flux.  Our results 
of experiment show that the depression 
is larger at the highest diffraction 
waves and it returns to the original 
level after breaking.  This phenomenon_ 
is supposed to be described by the simi- 
lar mechanism as the set down and set up 

143 



of the 
to bre 

F 
si on , 
to the 
mean w 
of CC1 
From t 
f1ecte 
with t 
and th 
statio 
of the 
depres 
that o 
diffra 
tance 
2-D wa 

cm 
40- 

wav 
ak. 
ig.l 
just 
exi 

ater 
mod 

his 
d wa 
he n 
e in 
nary 
bow 

si on 
f th 
cti o 
ahea 
ves. 

es coming to the shallow water 

6 show 
s i mi 1 

stence 
surfa 

el alo 
figure 
ves fr 
on-uni 
c i d e n t 
flow 

.  And 
of th 

e 2-D 
n wave 
d of t 

s the 
ar to 
of th 

ce i n 
ng the 
we ca 

om the 
form c 
waves 

field 
the s 

e mean 
1 et us 
s prop 
he bow 

measu 
the 2 
e wav 
front 
cent 

n i nf 
bow 

urren 
to c 

in th 
i m i 1 a 
wate 
expe 
agate 
just 

red d 
-D ca 
es , o 
of t 

er 1 i 
er th 
inter 
t aro 
hange 
e vie 
rity 
r lev 
ct th 
some 
like 

epres- 
se due 
f the 
he bow 
ne. 
at re- 
act 
und it 
the 

ini ty 
of the 
el to 
at the 
dis- 
the 

- without incident waves 
A with incident waves     V = 0-5 

X =0-8 

20 

0 // 

•ay,0 
Fn=0-20 

*CL&t^t. 
^\          Fn=0-15 

25 

Figure 16. Stationary Waves Ahead 
of CC1's Bow 

In Fig.17 is illustrated the vari- 
ation of the measured form of the dif- 
fraction waves in the course of time, 
ahead of the bow and along the center 
line of CC1 model.  They are obtained 
with just the same procedure as in Fig. 
It seems that waves propagate forward 
to disappear beyond some distance but 
not so obviously as in the 2-D case. 

14. 

10 15  cm 

4. PREDICTION OF ADDED RESISTANCE 
DUE TO DIFFRACTION WAVES 

Faltinsen's idea (1980) predicting 
resistance increase caused by the reflec- 
tion of waves on the surface of ship's 
hull is based on ray theory assuming 
very small wave length as compared with 
other length scales such as draft, length 
of the hull and current scale.  Ray of 
incident waves reaches to the hull sur- 
face, without any deformation even in 
the non-uniform current around the hull, 
and is reflected there.  Direction of 
ray and wave number of the reflected 
waves are determined with free surface 
condition and reflection condition con- 
sidering the non-uniform current, whose 
scale is assumed to be many times larger 
than wave length of the reflected waves 
and therefore is to be considered uniform 
around the reflection point.  Practically 
Faltinsen assumed the current is directed 
along the water line of the hull and its 
magnitude is u  cos 6 as shown in Fig.18 
where 9 is the inclination of the tangent 
at the point of the reflection.  With 
the boundary condition that the reflected 
waves propagating outward should have an 
identical wave number along the s-axis 
with that of the incident waves and the 
free surface condition on the uniform 
flow u  cos 6, the wave number kt   and the 
angle of the reflected ray ß are given 
as follows 

k1   = (oje - uk0  cos
29)2/g 

ß = ir-{6 + tan_1(A2 - k2
0cos   6//c0cose)} 

(8) 

where a)e is the encounter frequency, k0 
the wave number of the incident waves. 
We have to notice that i, is not by any 
means less than k.cos since 

Figure 17. Diffraction Waves Ahead 
of the CC1's Body 

£j    =(to   +   Uk0sin
2d)2/g   >   to2/g   =   k0 

where to is the frequency of the incident 
waves relative to the water.  It means 
that reflected waves from any point on 
the hull surface propagate outward. 

In the linear theory, which assumes 
the uniform ambient flow u  everywhere 
even close to the hull surface, it is 
well known that no waves propagate into 
the direction satisfying 1 - 4tt   cos ß < 
0 provided Q   = uue/g  is larger than 0.25. 
a„ defined in the section 2 is the limit 
of ß beyond which no waves propagate. 

Nevertheless in Faltinsen's ray 
theory the reflected waves interact with 
the steady current field, u  cos 6 along 
the water line, close to the hull sur- 
face and can emanate against the ambient 
flow even to the direction ß=0° for the 
blunt.bow, since 6 = TT/2 at the apex and 
u  cos 6 equals to zero around there. 
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That is, very low velocity around the 
bow makes it possible for waves to pro- 
pagate forward even if ume/g,   based on 
the current field away from the hull, 
is larger than 0.25.  This phenomenon 
was observed in the 2-D experiments 
described in the previous section.  So 
Faltinsen's reflection condition given 
by the equation (8) is considered to be 
proved experimentally reasonable, al- 
though the 3-D flow might be a little 
different from the 2-D one. 

The characteristics of reflected 
waves for the 2-D case are rather simpler 
as already described.   It was observed 
that the waves, progressing forward if 
they are close to the body, are not able 
to reach far from it because the current 
velocity becomes higher than that satis- 
fying uiüelg  =  0.25 as they propagate 
forward and eventually they break at or 
before the stopping velocity. 

Reflected waves emanating from the 
bow of a ship and satisfying the condi- 
tion (8) on the hull surface are not 
described such a simple way.  Direction 
of the reflected waves will change, that 
is, the waves are refracted, interacting 
with the non-uniform current as they 
propagate outward away from the hull 
surface.  Naito et al.(1982) proposed 
to describe the propagation of the re- 
flected waves in the assumed slowly 
varying current around a ship with the 
use of an averaged Lagrangian developed 
by Whitham (1974).  The steady and non- 
uniform current field around the hull 
is assumed in their computation to be 
that with a double model approximation 
to the free surface condition.  They 
found that reflected waves from the apex 
part of the bow break. 

With the objective of understanding 
the deformation of reflected waves around 
the CC1 model's bow, we computed changes 
of their direction and their amplitude 
along Naito's idea in principle but with 
a simpler flow model. We assumed the flow 
field is ü  cos 9 along the water line 
if close to the hull surface but shift 
abruptly to the uniform ambient flow v 
of the -x direction.  Reflected waves 
start from every point on the bow sur- 
face with the direction and the wave 
number satisfying the conditions (8) 
will be refracted when entering the uni- 
form flow field u.     Refraction of waves 
in a current making an oblique angle 
with the wave direction is easily com- 
puted ( Longuet - Higgins and Stewart, 
1961).  Increase or decrease of their 
amplitude associated with the refraction 
was computed by the principle of the 
wave action being constant before and 
after the refraction, which is expressed 
by 

vUg + ti)(Kz/a)   = 0 

where u  the flow field vector, <c     the 

group velocity of the waves, c the ampli- 
tude and a  the frequency of the waves 
relative to the water. 

In Fig.19 are depicted directions 
of the reflected waves just after leaving 
the bow surface (denoted as ß in near- 
field) vs. directions of the same waves 
after arriving in the uniform flow field 
u   (ß in far-field).  Their steepness in 
the far-field is illustrated vs. ß in 
the near-field.  This figure clearly 
shows that all the waves with small ß 
in near-field, that is, waves emanating 
from the apex part of the bow, concen- 
trate to propagate into a direction a0 
(=72° for FW = 0.15, VL = 0.5).  Naturally 
their steepness becomes so great that 
some part of their energy will dissipate 
into other form of energy than waves. 
In this computation steepness of the 
incident waves is assumed to be 0.02. 

X o- 

X -Ö 

Figure 18. Reflection of Incident Waves 

Distribution of the measured ampli- 
tude of diffraction waves on several 
lines of y/z, = const. are shown together 
in Fig.20.  Very steep waves appear par- 
ticularly for the CC1 model in the front 
part of the waves if the line of y/L= 
const, is close to the hull surface. 
This steep waves disappear a little away 
from the hull surface. 

Reflected waves from the bow part 
will reach to the far field after modi- 
fications of their amplitude,direction 
of propagation and wave length under the 
influence of the non-uniform current 
close to the hull surface.  Added resist- 
ance derived from the wave field close 
to the hull surface is supposed to be of 
different magnitude from that in the far 
field which is the wave pattern added re- 
sistance.  However we have at present no 
theory to provide diffraction waves in 
the far-field with taking into account 
the effects due to the non-uniform cur- 
rent prominent close to the blunt bow. 

Assuming wave length to be very 
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short as compared with other length 
scales, the 2-D approach is possible to 
get the added resistance due to the wave 
field close to the blunt bow part of a 
ship just as Faltinsen (1980) did.  If 
we could know what part of reflected 
waves contributing the added resistance 
thus computed is able to reach far, we 
might roughly evaluate the difference 
between added resistance and wave pat- 
tern added resistance.  Along this line 
Nakamura et al.(1983) computed the dif- 
ference excluding some part of the bow 
apex from an integral of the stationary 
presure given by Faltinsen (1980).  The 
bow part excluded from the integral cor- 
responds to that from which reflected 
waves emanate but break before arriving 
to the far-field in their computation 
(Naito et al. ,1982). 

Faltinsen (1980) assumes naturally 
the incident waves are not influenced 
by the local flow close to the bow as 
illustrated in Fig.18 (a) and therefore 
two wave systems with different wave 
length are present there.  Since no 
other energy dissipation is assumed, the 
conservation of energy is not realized 
with only the incident waves and the 
reflected waves of different wave lengths. 
Added resistance derived on this assump- 
tion has accordingly ambiguity that 
added resistance is determined regard- 
less of amplitude of the reflected waves, 
that means different amplitude of the 
reflected waves give the same added re- 
si stance. 

To avoid this ambiguity, we assume 
that the incident waves are also deform- 

Y/L=0.1 

Y/L=0.25 

Y/L=0.5 

S175 

Y/L»0.08 

Y/L»0.167 

Figure 20. Amplitude Distribution of 
Diffraction Waves 

ed in their direction as shown Fig.18 
(b) with the current along the water 
line prominent close to the hull surface. 
With this assumption the incident waves 
satisfy the same free surface condition 
and are of the same wave number as the 
reflected waves.  The reflection is 
prescribed by Snell's Law.  Then velocity 
potential is given by 

<??« 
1+^ sine e*i

z 

X[C0SU1S   S   +   kln   n   -   wet) 

+   f  cosUls  S  -   kin  n   -   uet   +   e)] 

:9) 

where t,a ,   f-t.a  the amplitude of the in- 
cident and the reflected waves respec- 
tively, Ai the wave number satisfying 
the equation (8) and *iSj kln   the com- 
ponents of the *i into trie directions s 
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and n. The square-root term on the e- 
quation (9) is amplification factor of 
<; associated with the change of the 
incident waves in their direction. This 
is again provided with the wave action 
being constant before or after the re- 
fraction. 

Sum of momentum flux through the 
n = .oo plane and the body surface being 
zero, added resistance is given by 

AR 1    , 2 M 4. iM\ 

;<* 

(10) 

4-)Jc,1" sin26 <U 
ko 

where the integration is along the non- 
shadow part on the incident waves of 
the water line curve.  Conservation of 
energy generally prescribes f=l .  So 
added resistance is supposed to be given 
by the equation (10) with f=l being sub- 
stituted.  However if the amplitude of 
reflected waves is assumed to be reduced 
untill they propagate a little further 
from the body surface, we get less add- 
ed resistance with substituting some 
value corresponding to the reduced am- 
plitude into f.     For example f  will be 
given through the computation of steep- 
ness as done in Fig.19, if energy cor- 
responding to the steepness more than 
0.1 is assumed not to exist as wave 
energy and it is equivalent to the re- 
duction of f. 

Added resistance of a model of the 
Series 60, cB=0.80 computed by this e- 
quation with f=l being substituted is 
depicted by chain line in Figs.9 and 10. 

The equation tells that waves pro- 
pagating forward contribute at most only 
50% for the added resistance and the 
wave pattern added resistance is much 
more than a half of the added resistance. 
However it is not in experiments. 

Theoretical model for computing the 
difference between added resistance and 
wave pattern added resistance should be 
investigated further. 

5. CONCLUDING REMARKS 

We found a big discrepancy in magni- 
tude between added resistance measured 
as a force on a ship model and wave pat- 
tern added resistance derived from the 
measured wave pattern around the model 
if it is of full hull form with blunt 
bow.  Some part of this discrepancy is 
supposed, based on several observations 
of diffraction waves and analysis of wave 
pattern, to be caused by the interaction 
of diffraction waves with the non-uniform 
current around the bow. 

Simple theoretical model of this 
interaction did not provide quantita- 
tively satisfactory results.  Obvious 
approach to achieving further progress 
is to use numerical method to solve the 
complete problem of wave diffraction on 

the body surface in the non-uniform cur- 
rent. 
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DISCUSSION 

Prof. SERGE BINDEL, 
Ecole Nationale Superieure de Techniques 
Avancees, Paris, France: 

May I make a personal remark regarding the dif- 
ference between the measured added resistance 
on the model and the wave pattern added re- 
sistance for a full hull form with a blunt 
bow. It seems to me that a significant part 
of that difference may be due to the breaking 
of the waves. Such a breaking is well known 
for full ships moving steadily in calm water. 
The superposition of the three wave fields, 
i.e. steady waves, incident waves and diffrac- 
tion waves surely leads to an increased risk 
of breaking. This part of the wave energy is 
not radiated but dissipated inside the fluid 
itself, producing a head loss for this reason. 
I am not sure that the solution for achieving 
further progress is to improve numerical meth- 
ods at this stage. In my opinion it would be 
probably more useful to try to measure the 
head loss due to wave breaking, but that is 
of course difficult in the case of an unsteady 
flow. 

AUTHOR'S REPLY 

I pointed out in this paper that the difference 
between added resistance and wave pattern added 
resistance might be described partly by the 
breaking of waves propagating forward from the 
bow of ship. I presented several experimental 
evidences supporting this description. However 
I am still not satisfied with those evidences 
and I need evidence showing this description 
is obviously correct. Numerical computation of 
diffraction waves, by whatever means, with sta- 
tionary current field around the bow incorpo- 
rated even approximately will show if such 
steep waves as to break occur actually or not. 
Naturally, measurement of flow field, if it 
were done accurately enough, would provide us 
an answer. 
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NONLINEAR DEVELOPMENT OF HEAD SEAS 

ALONG A LARGE SLENDER BODY 

CHIANG C. MEI AND EDMOND LO 

ABSTRACT 

The nonlinear evolution of a  steady wave 
train passing a slender but large body cruis- 
ing on the sea surface is studied theoret- 
ically.    The body is assumed to be long enough 
for third-order nonlinearity to affect the 
leading-order wave amplitude significantly. 
The current induced by the forward speed of 
the body is also accounted for.    By means of 
multiple scales the diffraction of nonlinear 
waves is found to be governed by a cubic 
Schrodinger equation whose coefficients depend 
on the local  current distribution.    Numerical 
results are presented for a range of wave 
slopes while the ship can either move into or 
away from the  incident waves.     It is also 
shown that the drift force is at most third 
order in incident wave amplitude. 

INTRODUCTION 

Wave diffraction by a large body is of 
interest not only in the structural design of 
floating vessels but also in the mechanics of 
icebergs. Hult and Ostrander (1974) observe 
that icebergs in the open southern ocean tend 
to be much smaller than those seen within the 
shelter of Antarctic pack ice, and suggest 
that wave-induced flexural failure may be par- 
tially responsible. Both theoretical esti- 
mates (Squire (1981), Kristensen and Squire 
(1983)) and field observations (Goodman et al 
(1980), Orheim (1980), Orheim et al (1982), 
and Wadhams and Kristensen (1983)) have been 
reported. Interests in this problem stem from 
proposals to develop technology for towing 
icebergs (Weeks and Mellow, 1978). 

At present wave diffraction by floating 
bodies without forward speed can be effi- 
ciently predicted only if all nonlinear 
effects are ignored (see, e.g., Wehausen 
(1972), Mei (1983)). For bodies of arbitrary 
shape, a variety of numerical methods now 
exist (see surveys by Mei (1980), Yeung 
(1982)). For slender bodies such as ships, 
approximate schemes such as two-dimensional 
strip theory and matched asymptotic expansions 
are available (see surveys by Ogilvie (1977, 

Newman (1978)). 
An important problem for the slender body 

is the case of head-sea diffraction, for which 
the linearized theory is already not simple 
(Faltinsen (1972), Maruo and Sasaki (1974)). 
In Faltinesn's matched asymptotic treatment of 
a stationary ship, the outer solution is con- 
structed via a line distribution of oscil- 
lating sources; the inner approximation of the 
outer solution is quite involved. Haren and 
Mei (1980) show that this difficult step can 
be bypassed by employing the parabolic approx- 
imation. Perhaps a more important advantage 
of the parabolic approximation is that inclu- 
sion of third-order nonlinearity is quite 
straightforward. The simple example of a 
wedge with vertical walls extending the entire 
sea depth has been studied in this manner by 
Yue and Mei (1980). Further extension of par- 
abolic approximation to refraction and dif- 
fraction of nonlinear waves by slowly varying 
depth has been made by Kirby and Dalrymple 
(1983). In contrast, the usual Stokes expan- 
sion is already formidable at second order if 
a body is present. 

From the numerical point of view, all 
existing methods for the linearized diffrac- 
tion theory for a general large body without 
forward speed are costly; direct application 
or extension of them for second-order improve- 
ment in the usual manner of Stokes expansion 
is both tedious and expensive. For a long 
slender body, however, the parabolic approxi- 
mation can again be extended to include 
third-order effects; this is demonstrated in 
the present paper. Specifically the present 
theory is based on the assumptions of low 
speed and slender body such that 

F = J_ = 0(f) « 1 
/gL 

(1) 

where F = Froude number, U = current of ship 
speed, L = half length, B = half beam. In 
addition the incident wave is both small and 
short in the sense that 
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2 

(2) 

Strictly speaking these seve 
need not be of the same orde 
but our choice leads to the 
physical circumstance in whi 
and dispersion are comparabl 
is focused on the diffractio 
Ship waves which are station 
to the body due to no-zero U 
Applying the ray approximati 
(1), Keller (1979) estimates 
ship waves whose amplitude i 
order 

aQ - O(F'L) 

Equation (2) then implies 

a. 

ral parameters 
r of magnitude, 
most interesting 
ch nonlinearity 
e. Our attention 
n near the body, 
ary with respect 
are not treated, 

on under condition 
that there are 

s at most of the 

(3) 

0(as)e 

However, Keller also reasons that these waves 
are generated mainly at the bow and the stern, 
and are significant only far away 0(L) from 
the ship. Quantitative calculations of the 
bow and stern waves have not been carried out 
by this scheme so that the ray theory is yet 
incomplete. In any case rays of the bow and 
stern waves point away from the body at a 
finite angle (»19°); their encounter with the 
incident waves is brief, and the mutual 
influence should therefore be weak. Therefore 
we expect our theory, which does not account 
for the ship waves, to be correct to the 
leading order near the main part of the body 
but away from the bow and the stern. Linear 
corrections can be superimposed near the two 
ends once the ship waves there are computed. 

By means of multiple-scale expansions, 
the evolution equation governing the modula- 
tion of the wave envelope is derived. The 
solution is affected by the steady, nonuniform 
current field which is solved to the leading 
order as a double-body problem in an infinite 
fluid. Nmerical results are obtained for a 
paraboloid of revolution, advancing with or 
opposite to the waves. 

FORMULATION 

We choose a coordinate system moving with 
the slender body, as depicted  in  Fig.  1.    A 
current of speed U at infinity is directed 
along the x-axis, being positive if it is from 
left to  right.    The maximum beam and draft of 
the body is  2B, while the length is 2L.    A 
train of incident waves of length 2-rr/k and 
amplitude a0 propagates along the x-axis 
from x + -oo to ».    We shall  assume that the 
water depth is much greater than the wave- 
length.    Denoting  by 

=  ka„ 1 (5): 

the incident wave slope, Eqs. (1) and (2) 
imply that 

kB = OU*1)    kL = 0(e"
2) 

klT/g = 0(1) 

(6) 

or, in physical terms: wave amplitude « 
wavelength « body width or draft « body 
length, and current speed = 0 (phase speed). 
To see the practical relevance of these 
assumptions we take two sample cases. If a 
supertanker of length 2L = 320 m and beam 2B = 
64 m is in a wave of period T = 4 sec, as seen 
in the rest frame, then kL = 40. M = 1 
corresponds to F = 0.158 and U = 6.3m/sec = 23 
km/hr. This is in a speed range common to 
supertankers. On the other hand, for an 
elongated iceberg of 2L = 2000 m, 2B = 400 m 
in a long swell of T = 10 sec, we have kL = 
40. If it is towed at the speed U = 5 m/sec, 
we can have M = 0.03. 

In this coordinate system the governing 
condition for the perturbed velocity potential 
♦ '(x'.y'.z'.f) is 

0 »<z'<c' 

On the body, described by y'  = Y'(x',z'), the 
kinematic condition is 

4y = (U + *;.)Y;,+ WZ>    y'=Y'(x',z')   (8) 

On the free surface z' = ^'(x'.y'.t') the 
kinematic and dynamic conditions are 

♦;, = c;.+(u+*;.)?;.++;.s;. 

g?'+o>{.,+uyxl+-|(vy)2= o 

(9) 

(10) 

Before proceeding further, we note that 
the assumed slenderness B/L = 0(E)   implies 
that the current-induced velocity perturbation 
<j>y'   is of the order eU according to  (8). 
Because of the small   wave slope the velocity 
perturbation  induced by the  incident waves  is 
also of the order eU when use is made of the 
assumption M = 0(1). 

We now introduce the normalized variables 

(x'.y'.z1) = (x,y,z)/k     t'  = t//gT 

V  = «>/g7Wk     i,'  = ?/k 

The dimensionless governing equations are 

(11) 

A      +*      +cj> =0 -oo<Z<C ^xx *yy *zz * 
(12) 

*y= 7[("W*ZYZ]     *=iY(x>z)      <13> 

*z= ^("^«'VV yy 
(14) 

z = E?(x,y,t) 

c. +<t>t+M<t.x+ ^tVoi)2 = 0 (15) 

where 
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M = u/Wv = F/ir = 0(1) 

b = ekB = 0(1) 

THE PERTURBATION EXPANSIONS 

(16) 

(17) 

In terms of the dimensionless coordinates 
x, y.and z the body width and draft are of the 
order e"1. while the length is of the order 
e-

2.    Therefore we introduce the additional 
slow variables: 

£
2x, y1 = ex, ■I 

ez (18) 

For simplicity we do not allow slow modulation 
in time and in the x direction on the scale 
e-1, i.e., there is no t1,t2, and xx.    This 
assumption precludes the  interesting case of 
wave instability along an advancing body. 

Since the current-induced velocity poten- 
tial   is, in  physical  variables, 4 = 0(eUB), we 
must allow for a term ^(°) of'order unity 
in the expansion,  i.e., 

'+ e« W+ e2*(2)
+ sV3)

+ e   <j> (19) 

Furthermore, because of the large size of the 
body, *(°) only depends on the slow vari- 
ables  (x2.yi>Zih dependence on x.y.z and t 
can only be associated with $\n>, n > 1, 
i.e., 

»(0) - ♦(0)(x2^1.z1) 

«/")  = </n)(x,y,z,t; x2,y1,z]) 

(20) 

Dictated by Bernoulli's equation, the free 
surface displacement corresponding to $\°> 
is only 0(e).    Denoting by 

* = (fc- fe) 

(   3 3   1 
vl = layj* 3ZjJ 

we have, from the Laplace equation, 

2J2) = . ,2 (0) . ,.(1) 

(21) 

V 4 Vi* 2* zz. 

vV3> = -vV°> - 2f^ + J») -V cj> 
1 

(22a) 

(22b) 

(22c) 
xx„   zz. 

On the body boundary which is now 
expressed by yx =  bY(x2,z1) the kinematic 
condition gives 

0(e): 

"z   zr 
(23a) 

0(e2): 

Ü]--^J^^^        (»b) 

0(e3): 

42) ■ ^,<42)* 4°') * v«!"* 4f)) 
(23c) 

Without serious loss of practicality we shall 
assume from here on that the body surface is 
vertical along the water line, i.e., 

Y  =0  on  y, = bY(x?,0)       (24) 
zl 

After expanding the free surface height 
as 

5  =  e? 

where 

!)  + £M
2>  ♦ eV3)  + e  C 

c
(n)  = c(n)(x,y,t; x2,yi) 

(25) 

(26) 

and Taylor-expanding the  kinematic condition 
about z = 0, we get, 

0(e): 

,(1)  +   .(0)  =    (1) +M_(D 
*z *z,        ct ?x 

(27a] 

0(e2): 

1 (27b) 

0(e3): 

4M^IÖ4;^(1)(42^4^4°11) 

2 

■yx *>! 
(27c) 
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Similarly the dynamic boundary condition on 
the free surface leads to: 

S'lthl'ltcW.O (28a) 

0(f 

42,W^V^>W^(1,(fe*•'Jx)♦il, 

4 [(41))2+uy
0))X)+*'1))2] = ° 

(28b) 

0(£ 

(2),8 
«=■  -(ft + M

3x 

3XJ 

3   ^(1) 

.   1   , r(lh2,3_      M1_U(D + 1 U       J   lit + M Ix^ZZ 

+4(Dfdl(0)+.(2)1  + Jl).(l) 
+*X     L+X„     *x     J       c       *x b(1) 

♦S°M1) * (♦5N!1,K*iNi2)) ^ ^ 

*c
(i,(*ii,**io,)£) - o (28c) 

APPROXIMATE EQUATIONS FOR THE CURRENT 
POTENTIAL AND THE HAVE ENVELOPE 

As in the case without a body and topog- 
raphy, an evolution equation is expected for 
the amplitude of the first-order, first har- 
monic wave after examining the perturbation 
equations at orders 0(e

2) and 0(e
3).    In this 

case, the leading-order perturbation potential 
for the deflected current is also an outcome 
of the same procedure. 

At 0(e) we assume the solution to be in 
the form 

^1).^10) + (*(11)e1e + ^.) 

where 

at 

.(10), 

8 =  X 

.(10) '(z,x2,y1,z1) 

<j> ~ <J>       12 ,Xp>y-j jZ-j j 

(29) 

(30) 

(31a) 

(31b) 

and c.c. represents the complex conjugate of 
the preceding term. The zeroth harmonic 

"*>  satisfie 10 les 

.(10) 

and 

.(10) c 

-»    <     Z    <     0 

on z 

We require <j)(10) to be finite for z 
To assure this we must have 

.(0) - 0 on z 0 

(32) 

(33) 

(34) 

Thus, 

410>=0    or   ♦<10W10>(x2.y1.z1)    (35 

also.    Now from (23a)  we get for ^t11); 

.(11)      .(11 fzz = 0 z < 0 

*(D+ J°)+ fl_+ Mi-l2*(1)- 0 ♦z + *Zl 
+ lit + M W  * - ° 

36) 

37) 

Making use of (34), we find 

.(ID (M a)2/11) = 0 z = 0  (38) 

It is easy to find that 

#U). +(10)+ le
z(-iAei9 + c.c.) (39) 

C^ICAe^c.c.) (40) 

where A(x2,y1) is the amplitude of the first- 
order, first harmonic. The dispersion rela- 
tion is 

a - M = l 

or equivalently, 

w - Uk = /gT 

(41) 

(42) 

in dimensional form, as is well known from the 
linearized theory. Here /p" is the wave fre- 
quency in the absolute frame of reference, 
while bi is the frequency of the same wave seen 
by the moving body. In view of (35) and of 
the exponential decay with depth of (j>(u), 
the product Yz $z

l>  vanishes and the condition 
(23a) on the bÄdy reduces to 

*J0)= H"\  + Y2 4^) °" *i= bY(x2,Zl) 
(43) 
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Now the normal to the body contour at any 
fixed x2 is 

ft1= (1, -bY )[1 +(bY )<] 
2,-1/2 (44) 

which is taken to be positive if pointing  into 
the fluid.    Equation  (43)  can be written 

94 
(0) dz 

an. 

where 

MbY x2 dsx 

(45) 

(46) dsx = dZl[l + (bYZi)
2]1/2 

Integrating along the body contour we get 

f H(0) dSl = M / bYY dz. = MS'(x2)  (47) 
I     an,   1   '      *2 

where S denotes the cross-sectional   area at 
x,,    Well   known in aerodynamics, this result 
means that the change of cross-sectional  area 
induces a radial   flux. 

At the order 0(e2), Eq.   (22b)   is 
simplified to 

2  (2)  . __2  (0) 
V   A -      V,(j) 

(48) 

On the body boundary, we have from Eq. (13) 

*V
1L- K\ 41)+ Yz ♦z^) h '- bY (49) 

'x^x zlzl 

From the two conditions on the free surface we 
find 

The second-order solution must be of the form: 

^  . tt20)+ u(2Deie+ c.c>) 

+ ^V
1'9 + cc.)    (51) 

From (23b) we have 

(52) 
A<
20

> *zz v2/0) 

.(20) In order that A1 '  is bounded as z + -», we 
insist that 

V?V0) - 0 z,  < 0 (53) 

We now have three conditions defining *(°): 
(53),  (43), and  (34).    Clearly ^uJis the 
inner approximation of a slowly advancing 
slender ship; it may also be regarded as the 
inner approximation of a flow in an infinite 
fluid around a body which is symmetric about 
the plane z = 0 and  is moving along  its longi- 
tudinal   axis, i.e., the double-body problem 
for which the numerical   solution is straight- 
forward for any body shape. 

Substituting  (51)  into  (48)  we get 

,(21) (21) 

and 

(22)  . ,  (22) 

z < 0 

0 z <  0 

(54) 

(55) 

From the boundary condition on the body we get 

J10)- bY    A(10) 

s ■ Vzl 

= 0      on      yx = bYfXg.z^ (56) 

and 

A      =  ibAYx        on      y1 = bY(x2»0) (57) 
"*1 X2 

Note that only the value of Yx    at ix = 0 
enters  (57)  since AU1)  is exponentially small 
for Zj = 0(1).    On the free surface (50)  leads 

(20)      A(10) z = 0 

J21>- ;21> = 0 z = 0 

(22).  .  (22) 0 z = 0 

(58a) 

(58b) 

(58c) 

Again boundedness at z + -» requires that 

^20)  = +(10)  = 0      on      z = Zi = 0      (59) 

The boundary-value problems for *(**) and 
A22)  are homogeneous, so that A I    > 
can be absorbed  in A(U), i.e., it can be 
discarded; A22)  is identically zero. 
Thus 

+(2) . /2°)(x2,y1,z1) (60) 

The second-order displacement can be found 
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(2). 
2   l + v    J z=0 

(A2e2ie + c.c. (61) 

At order 0(e3)  we only need the  first 
harmonic of <j>(3).    From the  Laplace equa- 
tion we  have 

e]- *(3i) -ez(A    - \ A        1      z <  0 
1  x2    2    W (62) 

and from the free surface conditions we find 
after lengthy algebra that 

+ MA  + ^0)A   z = 0   (63) 
X2   yl yl 

By letting 

.(0) 
A = A e ■2iy (66) 

and using (53) the envelope equation can be 
transformed to 

(l+2M)Av i 7 Vi + 1 A'A 

(0)+ (^))2] (67) 

This form is numerically more preferable 
because  it avoids the second derivative ^\ = 
"*J?1I* wnose evaluation requires  high       l 
accuracy in the numerical   solution of $°.    The 
boundary condition on the body is 

ibA(Y x„+ 2*y 
(0), on y: = bY(x2,0)   (68) 

At the bottom, we have of course AplJ+O. 
Applying  Green's formula to <j,(n) and ij>(31), 
and using their governing conditions, we ob- 
tain finally the evolution equation for the 
wave envelope A: 

-i(l+2M)A 
x2    2    Vl 

2i4X+ IAI2A 

A(i 
zlzl 

^°>) (64) 

All the derivatives of ,j,(0) above are evalu- 
ated on z1 =  0. This is a cubic Schrodinger 
equation, which is parabolic. On the body 
Eq. (57) serves as the boundary condition. 
The initial condition is specified at some 
line x2 = constant sufficiently far upwave so 
that both the incident wave and the incident 
current are undisturbed. At y1  + ±», ^°'  and 
Ay must vanish. Thus, 

ix„ 
A *  Ao exp (" TTTM) or 

X„ + -oo 

y1 +  +00 

(65a) 

(65b) 

with IA0| 
Stokes wav 

1. Equation (65) is just the 
Jve on a constant current. 

In the special case without current M = 
ij)(
0) = 0, the governing equation agrees 

with Yue and Mei (1980, after letting kh + <«). 
When the current opposes the waves and is 

equal to the group velocity of the incident 
waves, M = -1/2, the first term in (64) 
disappears. This corresponds to the so-called 
stopping velocity against which waves of 
length 2ir/k cannot propagate (see Longuet- 
Higgins and Stewart, 1962, for the case of 
pure refraction). There are several ways to 
avert this singularity. For example we may 
allow modulation in x and t along scales 
0(e_1). These are left for future studies 
and the neighborhood of M 
excluded here. 

-1/2 will   be 

while the Stokes wave at infinity becomes 

A+ AoexP I"1 (TT|M + 2*(0))] (") 

THE CURRENT POTENTIAL FOR A PARABOLOID OF 
REVOLUTION 

We assume for simplicity that the depth 
is very large in the coordinate x2» y± , Zj, 
and the  slender body is  half of a body of 
revolution.    Then the solution to the three- 
dimensional   slender double-body problem is: 

.(0) M_ 
2* 

d52S'(?2) 

A/(VS2
)2 + eZ<*?+zi> 

(70) 

where 

s2kL and S =f bR'(x2) (71) 

is the area of the semicircular cross section 
of radius  R.    This solution is uniformly 
valid to the leading order in the slenderness 
ratio, except in the vicinities of the bow and 
the stern  (see, e.g.,  Cole,  1969).    Its  inner 
approximation near the body can be derived and 
this should  in principle suffice for the com- 
putation of the wave envelope A.    However, in 
applying the boundary condition  (65b)   in the 
numerical   scheme, y,  must be very large where 
the inner solution blows up logarithmically. 
Hence in actual   computations the more complete 
potential   (70)  is used. 

We further restrict the body to be a 
paraboloid of revolution,  i.e., 

R(x„) 
x,    2 

(72) 

The integral in (70) can be explicitly 
evaluated 
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*{0Vrf1= ir [* - £)2 +! hr-n 

,     l-x,/4        ,   / x,    2        er.   2 

x„ 2 r,   2 A Q       C An fc, 1    -I i- 

[-11  (/)    -5/+4+4(-i)   ]} 

lx2 * "V (73) 

where the second  {  } is obtained from the 
first by changing x2 to -x2.    Now the deriva- 
tives ijijt0)  and $W  are needed in  Eq.   (68). 

^V^Mti^)2*!^)2]* 

■1       1~XQ/ä AO x2 2 
sinh   Ciidr) - r t1 - (r: 

3  ,erl  2 x, 2        er,   2 

2 hr) ]//(i - r) + (-r) 
(1 - x2/i) x2 2 

/ xT~2       erTT 
6/(1 - /)    ♦ (-^) 

x„ er,   2 
-5 /+ 4 + 4(^1)] 

[-n (^ 

.   / xTl        er,   2 x? 

+  {x2 * -x2} (74) 

^(^r1-!-?!1-^2*^)2] 
[i - y*) 

r,   / xT~2        eTTT 

r/l'-r) MT
1

) 

1 

(-H(r-) - 5 ^ + 4 + 4( 
erx 2 

^IW1)^" Ä   ' *■   4 

-  {x2 + -x2 

-]} 

(75) 

It can be shown that, on the body, both deriv- 
atives contain 

, 1 - X„/A     , 1 + X?/A 
sinh"1  .. ,.  + sinh'1 trJl srJt 

-2 *n 

x2 2 

I-(T^) 
(76) 

which is singular at the pointed tips x2 = ±A. 
These singularities can be removed by a more 
refined local   analysis  involving the flow 
around an infinite cone.    The refinement can 
be expressed as a correction factor f (Van 
Dyke, (1956)), with the corrected velocities 
being 

.(0)i 
■•corrected 

[♦ 

Vf - u ♦ fi0) 
e 2 

,.(0) 
y. Jcorrected 

(77) 

(78) 

where 

J6 

-][: ]   (79) 
Ll + § 62ln(Q1)

JLl +f 62 ln(Q2) 

Here, 5 = tan  (2B/L)   is the half cone angle 
and 

n.2 '(i 

x, 2 

T)  +(-r. «V (80) 

is the distance from the tip at x2 = ±4. 
We remark that the known exact solution 

for an ellipsoid can in principle be used as 
an alternative model body. Although no sepa- 
rate correction is needed at the ends, the 
exact solution would involve numerical 
evaluation of an integral at all points on the 
free surface. Thus the approximate analytical 
solution is chosen here. 

COMPUTATION AND NUMERICAL RESULTS 

In computations it is convenient to 
renormalize as follows: 
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x2 = X2/ä =  x/L 

(81) 

(y^) |(y1.z1)--Ek(y.z-: 

so  that the body spans  from x2 =  -1 to x2 =  1. 
The dimensionless current potential   ^°> 
depends only on M,  B/L, and  kB.    The envelope 
equation  is  now 

-i[wK J0)  +2(40))2]A = 0 (82) 
b^    x2 yl 

with the auxiliary conditions: 

A      =  1A(Y-    + 2*i0))    on    y    = -J- Y(x   ,0) 
y-i *9 ji i      x t 

1 Z * (83) 

l   x x? /„% Xp + 

A * AoexPC- TT-m -2i*   )  on 

yx + ±» 

(84) 

There are 3 dimensionless parameters M, x» and 
b.    Note that the ratio x/b2 =  (L/kB2)  is 
independent of the wave amplitude while i = 
(ka)2kL and x/b = ka0L/B are not.    In a phys- 
ical   problem, these parameters are obtained 
from the independently prescribed values of U, 
k, a0,  B, and  L. 

We have solved the  initial-boundary-value 
problem numerically by a  Crank-Nicholsen 
finite difference scheme, with second-order 
differencing  in x2 and yx, as described  in  Yue 
and Mei   (1980).    Because of symmetry only one 
half of the domain y± > 0 is-needed.    The  ini- 
tial   line is set at x2„= -11  (five body 
lengths upwave)  where A is taken to be  1.    The 
side computational   boundaries are y±=    0 and 
yx = 66.     Further increase  in  the range of yx 
does  not alter the numerical   result appre- 
ciably.    At any x2 step we  use the  following 
conservation law (derivable from  (82)) 

Lax <{ l2«i) x2 > 1 

to check errors due to discretization, round- 
off, and finite boundaries. An error less 
than 3%  is always achieved. 

Computations have been performed for a 
body with the slenderness ratio B/L = 0.2, for 
various combinations of the following sets of 
inputs: 

Incident wavelength: kL = 40, 80 

Incident wave amplitude: 
e = ka0 = 0, 0.1, 0.2 

Head seas: H = 0, 1/4, 1/2, 3/4, 1 

Tail seas: M = -1/4, -3/4, -1 

We use the expression e = 0 to represent the 
linear parabolic approximation; it is computed 
from (82) by omitting the cubic term. The 
current potential $°  is kept whenever M # 0. 
Note also that the singular case of M = -1/2 
is excluded. 

We first examine the case of a stationary 
body M = 0. In Fig. 2 the variation of )A| 
along the waterline of the body is shown'for 
kL = 40 and e = 0, 0.1, 0.2. For all three 
wave slopes the common feature is the increase 
of |A| to its maximum around the quarter 
length behind the bow at x2 = -1. As the wave 
slope increases, the maximum decreases. Non- 
linearity has similar effects when the body 
advances into the waves (M > 0, head seas); 
plots are omitted. 

The effect of the incident wavelength 
relative to the ship length is shown in Fig. 3 
for a stationary ship. Again the linear limit 
is also plotted for comparison. Shorter waves 
tend to reach a greater maximum amplitude 
along the ship at a point closer to the bow. 

Figures 4a and b show the effects of ship 
speed on the evolution of the waves along the 
water line for e = 0.2 and 0.1. For compari- 
son the linear limit is shown in Fig. 4c. 
Thus for head seas (M > 0) increasing ship 
speed steepens the waves along the body; the 
maximum of JAJ therefore increases. This 
trend is maintained even for tail seas as long 
as the ship speed is numerically less than the 
wave-stopping speed, i.e., 0 > M > -1/2. Thus 
as -M increases in magnitude, the wave slope 
is reduced everywhere. However, for M < -1/2 
the maximum, occurs in the fore section 0 < x2 
< 1 and a minimum in the aft section -1 < x2 < 
0. Either for a greater ship speed or for 
steeper incident waves, the maximum of A 
increases. 

In order to see the overall diffraction 
pattern near the ship, we show in Figs. 5a, b, 
and c three-dimensional perspectives of the 
wave envelope for M = 0, 1, and -1, respec- 
tively. Relative to the stationary case, 
cruising into the waves has the effect of com- 
pressing laterally the diffraction field; 
i.e., the current sweeps the diffracted waves 
downstream. On the other hand, cruising away 
from the waves helps spread the diffraction 
field laterally. 

From the computed A the pressure field 
can be straightforwardly calculated to the 
third order in e, which can be used for com- 
puting the stresses in the slender body. 

DRIFT FORCE 

On a floating body, incident waves exert 
a steady drift force, which is second order in 
wave amplitude, in the direction of the 
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incident waves. It is known that the wave 
drag on a slender vessel is small at low 
Froude numbers, being of the order 

2.2, D = 0(eU a (86) 

Now the drift force is  in general   of the order 

F= CKpga^B) = 0(£§)(kao)2kß = 0(e 4) 

The ratio is 

r}=o[f (äJ)2)"°U> « i 

(87) 

(88) 

The drift force is the time average of 
the pressure force on the body 

F - <//  dS nxp> 
S x 

(89) 

where nx is the x-component of the unit 
normal pointing into the body. Let us divide 
the wetted surface into two parts 5 and S with 
the first part lying below z = 0 and the 
second part near the water line r between z = 
0 and z = x,,  i .e., 

C 
F = F. + F, = 17 dS n<p> + / ds </ dzp> 

1   2  JJS   x    r   0  (90) 

Since the side walls are assumed to be 
vertical near the waterline and the pressure 
is exponentially small at depth about a 
wavelength below the free surface, we only 
need to evaluate nx at the waterline: 

"x " BYx I]1 + (BYx>' ■ *\J]1 + <«bVZ 

(91) 

where Y = Y(x,0).    The first part of the drift 
force is then 

0 L 0 
Fj = / ds /    dznx<p> = 2 /    dx BYx /    dz<p> 

f -a> -L   

or,  in dimensionless form: 

a 0 
F    = 2b £i    /    Y    dx    /    dz 

1      e    t3      »    x      2    .        <p> 

For brevity we write (  )    instead of 

i .e., 

P =  kp/pg =  Pn + eP, ■+ e\ + e3p3 + 

(92) 

(93) 

(94) 

■po = 2 (95a) 

(95b) 
-Pl = *lt + M*lx 

-P2 = ht + M(^2x + ^ 

+ 7 Ulx + hz + *0yi 
+ 4^     (95C) 

"P3 = *3t + MC*3x + *lx2) 

+ *lxU0x2 
+ *2x) + ♦oy^lyj 

+ (*0Zl 
+ *lz)*2z 

(95d) 

Making use of (39) and (60) we get the time 
averages: 

-<P0> = z, 

-<PX> = 0 

(96a) 

(96b) 

■<P2> = M*0x2 
+ 1 (*0yi 

+ *02l) 

1.2,2 
+ 2 <*lx + *lz> 

-<P3> =  0 

(96c) 

(96d) 

The contribution to  Fx by 4>0 through <P2>  is 
zero.  Since 

1.2    .A.! e"|A 

we get, 

(97) 

h'-M / dVxJAr+ °(e }  (98) 
K        —% C 

where A is to be evaluated at the waterline r. 
In dimensionless form the second part of 

the drift force is 

F„ = 2b ££   /* dx,Yv    <f? dz  P> (99) 
2      e   p   >_%      2 x2    Ö 

We need only evaluate the inner integral   up to 
0(e)  by first expanding P about z = 0: 

Then 
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</ dzP> = Pc + P7?
2/2 + 0(e4) 

0 

= <(eP1 + E
2P2)(cC1 + £

2C2)> 

+ <(-l + ePlz)e
2q/2> + 0(e

4) 

= e2< PxCx - ?2/2> + e3<P1e2+ PgC^ 

Plz?
2/2> + 0(e

4) 

The leading-order coefficient is 

2,,x _ , 2,o.  I«|2, 

(100) 

< P2q - tf/2> = <n[n> =  |A|74 (101) 

Because 5, and  P2 do not have first harmonics, 
the coefficient of e3 vanishes;  hence 

'z-ir^ //Vx2l
A|2+0<*3>      <102> 

which cancels  F1#    Thus the total  drift force 

F = F1 + F2 = 0(e
3)pg/k3 (103) 

is  insignificant.    To compute the drift force 
at 0(e3)  would  require the  knowledge of P,,, 
corresponding to Ofe1*).    The reason for this 
small   force is the body slenderness and the 
weakness of wave scattering.    In contrast, the 
drift force on a small   but non-slender vessel 
can be 0(e2)  and  hence greater. 
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Figure 1.    Definition sketch. 
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Figure 2. Wave amplitude along the ship 
water!ine. Ship speed = 0, kL = 40, 
B/L = 0.2. 

Figure 3. Wave amplitude along the ship 
waterline. B/L = 0.2. 
Solid curve: nonlinear with kaQ = 0.2 
Dashed curve: linear. 
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Figure 4. Wave amplitude along the ship waterline. B/L = 0.2, kL = 40 for various ship speeds. 

(a): e = kaQ = 0.2 

(b): kaQ = 0.1 

(c): kaQ = 0 
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(a) 

15 

(b) 

Figure 5.    Perspectives of wave envelope near a slender body.    B/L = 0.2, kl_ = 40 

(a):    M = 0 
(b):    M = 1 
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(c) 

Figure 5.    Perspectives of wave envelope near a slender body.    B/L = 0.2,  kl_ = 40 

(c):    M = -1 
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THE EFFECT OF BOW SHAPE AND NONLINEARITIES ON THE PREDICTION 

OF LARGE AMPLITUDE MOTIONS AND DECK WETNESS 

JOHN F, O'DEA   AND   DAVID A. WALDEN 

ABSTRACT 

Ship motions in waves are usually calcu- 
lated in the frequency domain using linearized 
free surface hydrodynamics. However, the sea 
conditions in which limits to ship operations 
or survival are reached, can cause motions of 
sufficiently large magnitude that linear pre- 
dictions are inadequate.  In order to examine 
the importance of nonlinearities in large 
amplitude motions, a series of experiments has 
been conducted with a model of a frigate in 
steep head waves. Variations were made in 
above-water bow shape, and measurements were 
made of absolute and relative motion near the 
bow, and water on deck. The results are com- 
pared to approximate prediction methods, in 
which an attempt has been made to account for 
the most important nonlinearities. 

1.  INTRODUCTION 

In analyzing and predicting ship motions 
in waves, it is customary to use a lineariza- 
tion of the actual physical motions. The 
process of linearization involves some or all 
of the following assumptions:  that the wave 
and resulting motions are small in some sense 
(such as compared to a hull characteristic 
dimension), that the wavelengths are also 
small, that the hull has vertical sides, and 
that viscous effects are negligible. The 
result is a description of hull response In 
terms of its linear transfer functions. The 
knowledge of the transfer functions, in turn, 
permits the use of the powerful and general 
linear systems techniques and random process 
theory to predict the statistical behavior of 
ships in realistic random seas. This approach 
has proved adequate in many cases, for predic- 
tion of ship motions in waves. 

However, it may not always be acceptable 
to completely linearize the ship response 
characteristics, since such a procedure may 
lead to poor quantitative predictions or, in 
some cases, may ignore an essential qualita- 
tive aspect of importance. An example of the 
former problem is the case of ship rolling, 
in which it is recongized that nonlinear, 
viscous roll damping dominates the linear, 

free surface wave damping predicted by normal 
ship motion theory. An example of the latter 
type of problem is that of slow drift oscilla- 
tions, in which the response of interest occurs 
at frequencies other than those of the excita- 
tion, a result not predicted by the linear 
theory. Both of the problems just mentioned 
share the qualitative nature that a linear term 
was either very small (in roll damping) or even 
zero (sway restoring coefficient, in the 
absence of moorings). This caused a nonlinear 
effect, which might otherwise be considered 
unimportant, to have a dominant effect. 

Deck wetness has long been known to be a 
particularly difficult phenomenon to deal with. 
Even the terms used in its description are 
notable for their lack of clarity; mild wet- 
ness, severe wetness, heavy spray, green water. 
Deck wetness can be looked at from a number of 
angles, depending on the interests of a par- 
ticular investigator.  Spray can affect opera- 
tor visibility and deck operations. Impact 
forces on deck and superstructure have struc- 
tural implications. Amount and movement of 
water on deck can affect stability in smaller 
vessels. This is further related to the siting 
and location of freeing ports on such vessels. 
The complexity associated with many of the 
aspects of deck wetness gives rise to grave 
doubts about the possibility of developing any 
linear frequency domain description. It is 
known that spray occurrence cannot be ade- 
quately predicted from model experiments 
because of the effect of surface tension and 
wind.  In this paper, only the occurrence of 
heavy wetness, defined to be a continuous layer 
of water over the deck, will be measured and 
analyzed. 

In the case of vertical plane motions 
(pitch and heave) of a conventional, monohull 
ship, it is known that the linear forces and 
moments are in general very large.  So it is 
not surprising that satisfactory predictions of 
these modes are often obtained with linear 
techniques. However, there are cases where, 
again, a small nonlinearity may assume great 
importance. Examples are heave or pitch reso- 
nance, where the large inertia and hydrostatic 
restoring loads effectively cancel each other; 
and the springing motion of a long slender 
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ship, where higher harmonic loads introduced by 
nonlinear hydrodynamic interactions can cause 
significant hull stresses to which a stiffer 
ship would not respond. 

There is also the case of vertical plane 
motions in steep head waves. When motions in 
such waves are so large as to cause the keel to 
emerge, or the deck to immerse, it is to be 
expected that linear predictions would have 
noticeable inadequacies. The hydrostatic loads 
will certainly be a function of the entire hull 
shape, rather than just the characteristics of 
the static waterplane as assumed by linear 
theory. The hydrodynamic loads will also be a 
function of the actual immersed hull form (and 
possibly depend on the past history of motion, 
or memory effect, as well), and impact loads on 
both the bottom of the hull and its sloping 
sides above the static waterline can also be 
expected.  In fact, the flow near the bow may 
be subject to nonlinear flow even in waves of 
moderate steepness. This is because the rela- 
tive vertical motion between the bow and wave 
surface can often be four or five times the 
wave amplitude, as a result of the phasing bet- 
ween pitch, heave, and the local incident wave, 
and disturbances caused by diffracted and 
radiated waves (Lee et al.  (1982)). 

It is the purpose of this paper to explore 
the limits of validity of linear seakeeping 
predictions with a series of experimental 
measurements in waves of varying steepness and 
comparison to both linear and nonlinear predic- 
tions.  Since bow impact loading and deck wet- 
ness can strongly affect ship operability, and 
since these phenomena can be strongly influ- 
enced by nonlinearities in the rigid body 
motions, the experiments have included measure- 
ments of relative motion, deck wetness and 
forces on a portion of the bow. 

2.  CALCULATION OF MOTIONS, FORCES AND DECK 
WETNESS 

2.1 Linear Calculations 

The calculation of ship motions and loads 
with linear strip theory has been fairly well 
standardized for some time. The standard 
approach is thoroughly documented by Salvesen 
et al. (1970). Differences among various strip 
theory computer programs arise in the method of 
evaluating the various coefficients (Faltinsen 
(1974)) and in various empirical ways of 
including viscous effects. Three-dimensional 
programs, which do not require a vehicle to be 
slender, have recently become available, but 
are generally restricted to zero speed. 

One fact common to all linear prediction 
theories is that the shape of the hull above 
the waterline does not enter into the calcula- 
tion at all. Because of the recognized need to 
include nonlinear effects in vertical plane 
motions, there have been a number of attempts 
in recent years to develop methods for com- 
puting nonlinear responses, particularly with 
respect to the structural loads imposed on'the 
hull. 

2.2 Nonlinear Calculations 

Linear free surface problems are 
approached by the use of expansion of the 
various boundary conditions in powers of a 
small perturbation parameter, and retaining 
only the linear terms.  Similarly, the first 
successful calculations of nonlinear effects 
were obtained by retaining quadratic terms in 
the boundary condition expansions (Ogilvie 
(1963), Lee (1968)). More recently, with the 
availability of more powerful digital com- 
puters, numerical techniques have been devel- 
oped for computation of free surface problems 
with fully nonlinear boundary conditions 
(Faltinsen (1977), Vinje et al. (1982)). These 
latter methods make no requirement that the 
motions or wave steepness be small in any 
sense, while in the second-order perturbation 
approach there remains the assumption that the 
quantities remain sufficiently small to permit 
truncation of the expansion at the quadratic 
terms.  In either case, the nonlinear com- 
putations which have been done with a degree of 
rigor have been generally limited to two- 
dimensional cases. 

The calculation of nonlinear effects on 
three-dimensional ship hulls has been applied 
most extensively to the problem of mean hori- 
zontal loads, i.e., drift forces and added 
resistance. This problem, involving pertur- 
bation expansion to second order, can still be 
analyzed in the frequency domain, as is done 
with most linear seakeeping analysis. When 
large motions or very steep waves are to be 
included, one must resort to a time domain 
approach and various approximations to the very 
complicated fluid dynamic boundary value 
problem involved. A number of time domain 
methods have been reported in recent years, and 
while each might be criticized for lack of 
mathematical rigor in various parts of their 
formulation, it Is unlikely that an exact, 
rigorous, yet practical computational approach 
will be available in the near future. Mean- 
while, since it is still desirable to obtain an 
improved understanding of motions in very 
severe waves, the most reasonable approach 
now available seems to be to assess the 
accuracy of approximate computations against 
physical model experiments. 

One of the first nonlinear, time-domain 
techniques was developed by Paulling and Wood 
(1973), primarily for the purpose of investi- 
gating capsizing. Other methods have been 
developed by Meyerhoff and Schlachter (1980), 
Chuang et al. (1977), Jensen and Pedersen 
(1978), Yamamoto et al. (1980, 1982) and 
Salvesen (1982). All involve similar 
approaches, in which the hydrodynamic force on 
a ship section is represented as, for example: 

F(x,t) = l2-[M(x,t)H.] + N(x,t)DZ + pgA(x,t)z} 
Dt      Dt Dt 

(1) 

where JL_ 
Dt 
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VT-> 3x 

and V is ship forward speed, Z is vertical 
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motion of ship section relative to the water, 
and M, N and A are the added mass, damping and 
cross-sectional area respectively. The sec- 
tional loads are integrated along the hull 
length to produce heave force and pitch moment, 
and are combined with the hull inertial charac- 
teristics in a simulation of motion time 
histories.  In contrast to linear theory, the 
coefficients are assumed to be time-varying, 
depending on the local wave elevation at each 
station.  Since this is a relative elevation 
between the incident wave and the absolute ver- 
tical motion at each station (not known a 
priori), the need to do a time-domain simula- 
tion is apparent. 

The manner in which the coefficients are 
assumed to change differs somewhat among the 
various approaches. Jensen and Pedersen (1978) 
and Salvesen (1982) followed a perturbation 
approach, in which some of the second order 
terms were included to account for quadratic 
effects (particularly mean value changes and 
second harmonics). The other authors have 
instead recalculated the added mass, damping 
and buoyancy at each time increment.  In each 
case, the excitation is estimated primarily by 
a nonlinear calculation of the Froude-Kriloff 
force and moment, and diffraction effects are 
taken into account only approximately, by using 
the motion, velocity and acceleration relative 
to the incident wave flow field. 

The only portion of the hydrodynamics 
which these methods can calculate more or less 
exactly, is the Froude-Kriloff portion due to 
the incident wave, and even here there is a 
limitation imposed by the assumed form of the 
incident wave potential (i.e., linear potential, 
second order Stokes wave, etc.). All calcula- 
tions of inertial and damping effects are at 
best very approximate, since none yet seem to 
have incorporated exact nonlinear two- 
dimensional calculations such as those of 
Faltinsen (1977) or Vinje (1982) into the strip 
theory calculations.  Some methods calculate 
the sectional added mass and damping in the 
frequency domain, as in the usual linear strip 
theory, but use the instantaneous immersed sec- 
tion shape, while others use the infinite fre- 
quency limit in the calculations. Thus, it is 
difficult to determine whether the most impor- 
tant nonlinear effects are being included, or 
whether the neglect of parameters such as the 
nonlinear free surface condition (either exact 
or carried to a perturbation term beyond 
linear) might cause serious deficiencies. 

2.3 Calculation of Bow Flare Loads 

As mentioned previously, the relative ver- 
tical motion between a ship's bow and the water 
surface can be quite large even in waves of 
moderate steepness. Many ships have con- 
siderable flare in their forward sections, and 
consequently the local immersed section shape 
can change very rapidly. This can lead to bow 
flare impact loads above the static waterline 
which may contribute significantly to hull 
girder as well as local structural loads. This 
effect is implicitly included in the nonlinear 
motion calculation methods described above. 

Gran et al (1976) have examined this effect 
explicitly and proposed a simplified two- 
dimensional approach to calculating loads due 
to bow flare. It is assumed that the hydrody- 
namic inertial loading is the dominant part, 
and that the peak force occurs in a time 
interval when the vertical acceleration is 
negligible.  It is further assumed that the 
rate change of geometric sectional proportions 
is small, with the final result that the two- 
dimensional sectional impact force due to bow 
flare is estimated as 

*pCv(dZ)
2 b f. 

dt    dz 
(2) 

where b is the instantaneous section half-beam 
and Cv is the dimensionless added mass 
coefficient. 

2.4 Calculation of Deck Wetness 

The calculation of deck wetness involves 
relative motion at the bow and freeboard. As 
summarized in Bales (1979), the relative motion 
can be described as the sum of absolute ship 
motion and incident wave elevation, dynamic 
swell-up due to the oscillation at the free 
surface and incident wave distortion due to the 
presence of the hull. Deck wetness by its very 
nature requires large motions and one would 
expect nonlinearities in the absolute ship 
motions involved. The same hold true for the 
other components of relative motion. Recent 
work on components of relative motion is 
described in Lee et al. (1982). 

Freeboard has been considered by a number 
of investigators to be the geometric freeboard 
plus a number of additional factors to account 
for trim and sinkage, ship's wave profile and 
the effect of ship's above-water sectional 
characteristics. The latter was termed effec- 
tive freeboard by Newton (1960). 

Most investigations of deck wetness have 
been experimental. Among the most important 
studies are those of Tasaki (1960). His 
corrections for swell-up due to ships wave and 
dynamic swell up due to relative motion based 
on model tests of tankers have been included in 
the work of many others. Takezawa et al (1977) 
described experiments on an ore carrier model 
using deck mounted pressure gauges. They could 
not successfully relate deck wetness and 
impulsive pressure. 

Lloyd (1983) has reported on a number of 
experiments involving variant bow forms and 
measurements of impact pressures on the 
fo'c'sle. He concludes most bow modifications 
resulted in relatively little effect on the 
degree of wetness measured. 

There is, at present, no satisfactory ana- 
lytic method for the calculation of deck wet- 
ness. The difficulties in formulating a 
general method for predicting any of the com- 
ponents described above are apparent.  State- 
of-the-art methods, for example Blok and 
Huisman (1984), require generalizing from 
limited amounts of model test data to derive 
empirical corrections. Questions exist 
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concerning the generalization of such empirical 
corrections to differing ship types and sizes. 
Further questions can be raised concerning 
existing methods about the accuracy of using 
calm water sinkage and trim and bow wave pro- 
file results for predictions involving extreme 
motions and large waves. O'Dea (1983) descri- 
bes experimental and analytic results on the 
shifts of mean sinkage and trim in waves. 

3.  MODEL EXPERIMENTS 

In order to determine the validity of li- 
near motion calculations, and of approximate 
nonlinear calculations, an experimental program 
was conducted in the Harold E. Saunders 
Maneuvering and Seakeeping (MASK) Basin of the 
David W. Taylor Naval Ship Research and 
Development Center. A model of a modern fri- 
gate was used.  Its body plan and principal 
characteristics are shown in Figure 1. The 
model was attached to the towing carriage 
through a heave staff and pitch/roll gimbal. 
Surge, sway, and yaw were restrained. All 
experiments were conducted in regular head 
waves. The model was constructed so as to 
allow the bow above the waterline to be removed 
and replaced with another shape, following ini- 
tial experiment design investigations by Bales 
and Jones (1980). The forward portion of the 
bow above the static waterline and forward of 
station 2.5 was mounted on a force gauge system 
to measure flare loads, while the deck above 
this section was fitted with five resistance- 
type wave probes to measure depth of water at 
several locations on the deck.  Relative motion 
around the bow was measured by seven resistance 
wire probes mounted outboard of the hull. 
These probes were stretched between outriggers 
which were designed to prevent interference 
with measurement of deck or flare loading of 
the forward section. An accelerometer was 
mounted in the hull at a longitudinal location 
corresponding to the center of gravity of the 
removable bow section (approximately station 
1.5).  The acceleration measurement was used to 
correct the force measurements for inertial 
effects. 

In addition to the original above-water 
bow shape (designated the "parent" form), four 
additional bow forms were tested. These are 
shown in Figure 2.  Bows 1 and 2 correspond to 
decreased and increased flare relative to the 
parent, primarily between stations 0 and 3, 
and Bows 3 and 4 consist of a deep and a 
shallow knuckle in the side of the hull. The 
knuckle sections have the same freeboard and 
offset at the deck as the parent, but the 
knuckle is formed by dropping the side ver- 
tically a certain distance, at which there is a 
discontinuity in slope and the section below 
the knuckle is faired smoothly into the under- 
water hull shape at the static waterline. The 
length of the vertical drop at station 2 is 25 
percent of the local freeboard for the shallow 
knuckle, and 50 percent for the deep knuckle. 

Measurements were collected digitally by a 
carriage mounted computer. The data were ini- 
tially analyzed with the normal harmonic analy- 
sis programs used for standard seakeeping 

Model Length - 4.5m 
Beam - 0.496 m 

Draft - 0.163 m 
CB - 0.454 

Figure 1 

0.755 

Model Principal Characteristics 
and Body Plan 

Bow 3 
(Shallow Knuckle) 

Bow 4 
(Deep Knuckle) 

Figure 2 Body Plans of Alternate Bow Shapes 
(  Parent) 

experiments. All experiments were done in 
regular waves, and all measurements were 
remarkably repeatable in their periodicity. 
However, many signals were by no means pure 
sinusoids, so further analysis included calcu- 
lation of higher harmonics, and peak analysis 
of time histories to determine characteristics 
of events such as flare forces and deck wet- 
ness.  In the case of flare forces, the 
measured forces on the bow section (located 
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above the static waterline and ahead of station 
2.5) had to be corrected for both the inertial 
loading of the mass of this section and the 
weight of water on deck estimated from the deck 

wetness probes. 

4.  RESULTS 

Experiments were initially conducted for 
speeds corresponding to Fn = 0.15 and 0.30, 
over a range of wavelengths, 0.8 < X/L < 3.0, 
with two nominal wave steepness values (ratio 
of wave height H to wavelength A) of approxi- 
mately H/X = 0.01 and H/X = 0.03. The pitch 
and heave transfer function results of these 
experiments for the parent hull are shown in 
Figures 3 and 4. As expected, there were no 

LINEAR THEORY 
EXPERIMENT, HA - .01 
EXPERIMENT, HA - .03 

Figure 3 - Heave and Pitch Transfer 
Functions (Fn = 0.15) 

large nonlinearities as demonstrated by a dif- 
ference in transfer functions caused by 
changing steepness, nor were there significant 
differences noticed among bow shapes.  In the 
neighborhood of X/L =1.0, where both the abso- 
lute and relative vertical motions reach large 
peaks in a rather narrow range of wavelength, 
as shown in Figure 5, there was noticed a 
slight tendency for the pitch transfer function 
to decrease slightly at the greater wave steep- 
ness.  Consequently it was decided to carry out 
more experiments in steeper waves at one value 
of speed and wavelength for all the bow shapes. 
This was done at a Froude number of 0.30 and a 
wavelength equal to 1.2 times the model length. 
Wave steepness was varied from H/X = 0.02 up to 
H/X = 0.07 (a near-survival condition for the 
ship model itself). Calculation of ship 
motions were made using linear strip theory, 
Salvesen et al. (1970), and the nonlinear 

LINEAR THEORY 
EXPERIMENT, HA - .01 
EXPERIMENT, HA - .03 
 1 T-  

X/L 

Figure 4 - Heave and Pitch Transfer 
Functions (Fn = 0.30) 
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Figure 5 - Relative Motion Transfer Function 
at Station 2 (Parent), H/X = 0.03 

program described by Paulling and Wood (1973). 
The latter program was intended to investigate 
ship rolling. However, it is a general six- 
degree of freedom program for arbitrary 
heading, and the approximations used in it are 
similar to those of the other nonlinear, time 
domain approaches described in section 2.2. 

167 



Also, when wave amplitude Is minimized, the 
calculated pitch and heave motions from this 
program converge exactly to the transfer func- 
tions calculated with linear strip theory. 

4.1 Motions 

Photographs of a typical time sequence of 
bow motion are shown in Figure 6.  In the first 
photo the bow has risen almost clear of the 
water surface, and the outriggers both above 
the deck and below the keel (used for attaching 
relative motion probes) are visible. Also 
visible rising from the deck are the five deck 
wetness probes. The next photo shows water 

coming over the bow in a sheet as the bow 
plunges into the wave, and the final photo 
shows the bow in the process of re-emerging 
with the water breaking into spray. 

A typical time history record of incident 
wave, heave and pitch motions, bow accelera- 
tion, relative bow motion and deck wetness is 
shown in Figure 7, for the same condition as 
Figure 6 (Fn = 0.30, X/L = 1.2, H/X = 0.03). 
The time traces of incident waves, heave and 
pitch appear sinusoidal, although a harmonic 
analysis would reveal some distortion at this 
steepness.  The relative motion measurement is 
clipped in the bow up portion of each cycle, 
indicating that the keel is well clear of the 
vater at that point, while the deck wetness 
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Figure 6 - Photographs of Bow Motion 
(Fn = 0.30, X/L = 1.2, H/X = 0.03) 

Figure 7 - Sample Time Histories of Model 
Responses (Fn = 0.30, X/L = 1.2, H/X = 0.03) 

signal registers at the extreme bow down por- 
tion of each cycle. The vertical acceleration 
at the bow displays considerable distortion, 
much more than would be expected by a visual 
examination of the pitch and heave motions. 
The explanation for this is that any harmonic 
distortion in displacement is exaggerated in 
velocity in proportion to the harmonic multiple 
involved, and in acceleration the effect is 
increased by the square of the harmonic 
multiple. That is, for a motion signal that is 
distorted by 10 percent due to a second 
harmonic, the velocity will have a 20 percent 
distortion and the acceleration will have a 40 
percent distortion. Higher harmonics can thus 
significantly distort the time history of bow 
acceleration, even if they represent only a 
very few percent of the motion itself. 

Linear motion theory predicts that 
response to a pure sinusoid will also be a pure 
sinusoid, and that the amplitude and phase 
relationships between input and output will be 
independent of the magnitude of the input. 
Therefore, the variation of the first harmonic 
of response with wave amplitude, and the pre- 
sence of higher harmonics, provide useful indi- 
cations of the degree of nonlinearity present. 
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One of the most remarkable experimental 
results of varying wave steepness was the large 
reduction of the pitch transfer function as 
shown in Figure 8, amounting to 40 percent at 
the steepest condition tested. That is, the 
first harmonic of pitch became a smaller per- 
centage of wave slope as slope was increased. 
This trend was well predicted by the nonlinear 
calculation.  It is interesting to note that 
this effect was the same for all the bow 
shapes. At the same time, the calculations 
predicted a less pronounced variation of heave 
transfer function with wave steepness. This 
trend was not discernible in the experimental 
data, which were somewhat more scattered for 
heave than for pitch. 

The phase angles of the first harmonics of 
heave and pitch also change with wave steep- 
ness. This is shown in Figure 9. The phase 
angles are defined as leads with respect to 
maximum wave elevation at the ship center of 
gravity, with positive pitch defined as bow up. 
The calculated phase shifts are seen to be in 
good agreement with the measured values for 
both heave and pitch. 

In addition to the changes in the first 
harmonics of motion responses, an increase in 
wave steepness is accompanied by a significant 
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Functions with Wave  Steepness 

(Fn = 0.30,   X/L = 1.2) 

growth of higher harmonics, and a shift in mean 
values. The variation of mean and second har- 
monic of heave and pitch is shown in Figure 10. 
As in the case of first harmonics, there is no 
apparent difference caused by variation of 
above-water bow shape. However, the distortion 
caused by higher order harmonics was most 
prominent for Bow 4 (deep knuckle). As shown 
in Figure 11, the pitch and bow acceleration 
are noticeably distorted in this case.  (The 
high frequency component in the acceleration, 
about 10 Hz, is caused by flexural vibration of 
the model hull which had relatively low longi- 
tudinal stiffness.) One cycle of the pitch 
time history is shown in Figure 12. Harmonic 
analysis of the signal indicated that five har- 
monics had to be included to closely represent 
the time history, as shown. Also shown in the 
figure is the amplitude of the pure first har- 
monic motion which is predicted by linear 
theory. The distortion of the pitch motion is 
apparently caused by the large impulsive 
loading on the above-water bow, as discussed 
below, and since the absolute vertical motion 
at the bow is primarily due to pitch, the 
acceleration is also distorted. 
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Figure 10 - Mean Value and Second Harmonic 
of Heave and Pitch Motions 

(Fn = 0.30, X/L = 1.2) 

4.2 Bow Flare Forces 

The force on the instrumented portion of 
the bow, forward of station 2.5 and above the 
static waterline, can be considered to consist 
of three components:  an inertial component 
associated with acceleration of the mass of the 
section; a downward force due to water on the 
deck; and an upward force on the bow flare. 
The latter component was the one of interest in 
these experiments; therefore, an analysis 
method was devised to separate and remove the 
other two components.  The inertial correction 
is straightforward. The mass of the section 
supported by the force gauges is easily 
measured, and the vertical acceleration at its 
centroid can be either measured directly or 
calculated from the pitch and heave motions. 
To account for the rotational inertia effect 
(pitch acceleration), the moment of inertia of 
the section had to be estimated; however, this 
component was quite small compared to the 
translational inertia component. The component 
of force due to water on deck was not negli- 
gible.  It was estimated by taking the average 
water depth measured by the wetness probes and 
multiplying by the deck area. This is, of 

TIME - SCOTCS 

Figure  11  - Time Histories  of  Responses  for 
Bow 4   (Fn =  0.30,   X/L  =  1.2,   H/X - 0.04) 
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Figure 12 - Time History of Pitch Motion for 
Bow 4 (Fn = 0.30, X/L = 1.2, H/X = 0.04) 

course, a very approximate correction, since 
there is no reason to expect that water on deck 
acts as a static mass. However, because the 
peak flare force and peak water on deck 
generally occur at different points in the wave 
encounter cycle, this method of compensating 
for deck loads was considered satisfactory. 

Examples of the time history of the upward 
bow force, calculated as described above, are 
shown in Figure 13. The model-scale encounter 

170 



period was approximately 1.1 seconds for this 
case, so the peak loads generally have a dura- 
tion of less than one tenth of a cycle. 
Neither the parent nor the reduced flare bow 
(Bow 1) exhibit an impulsive loading in this 
case, while Bows 2, 3, and 4 show a peak which 
is progressively larger and of shorter dura- 
tion. The variation of peak force with wave 
steepness is shown in Figure 14. Again, the 
parent and Bow 1 show similar magnitudes and 
the variation is approximately linear with 
steepness. The other bow shapes show con- 
siderably larger forces, which in the most 
severe case approach one-half of the hull 
displacement. While this peak may be of short 
duration, the impulse of the force can cause 
very noticeable distortion of motion, such as 
is shown in Figure 12. 

Figure 13 - Example of Peak Bow Force Time 
Histories (Fn = 0.30, X/L = 1.2, H/X = 0.04) 

The peak forces were also calculated using 

Equation (2).  It was found that using the 
values of the added mass coefficient Cv given 
by Gran (1976) for the section shapes of the 
bow of this hull, considerably overestimated 
the peak loads. The values of Cv given by Gran 
are for an infinite fluid, corresponding to 
Infinite frequency of oscillation. However, 
the added mass at the actual frequency Is much 
lower, and use of this quantity gives predic- 
tions which are closer to the measurements, as 
illustrated in Table 1 for the case of the 
Parent and Bow 4, which had the largest flare 
loading. Further improvement in prediction of 
flare loads may require a more detailed calcu- 
lation of pressures, Including three dimen- 
sional effects, as discussed by Hwang et al. 
(1983). 

TABLE 1 - COMPARISON OF CALCULATED AND 
MEASURED PEAK FLARE FORCES 

(Fn = 0.30, X/L = 1.2, H/X = 0.04) 

Parent Bow 4 

Measured* 
Calculated 
Calculated (u ») 

0.10 0.27 
0.13 0.37 
0.25 0.70 

*A11 values are divided by model displacement. 

4.3 Deck Wetness 

Figure 14 - Variation of Peak Bow Force with 
Wave Steepness (Fn = 0.30, X/L = 1.2) 

The experiments described in the previous 
section have also been analyzed to investigate 
the effect of above waterline bow shape on deck 
wetness. The data of particular interest is 
that obtained from the five wetness probes 
mounted on the deck. As described, the regular 
wave results were found to be quite repetitive 
from cycle to cycle. This was also found to be 
the case for the deck wetness measurements as 
can be seen in Figure 7. 

The results shown in Figure 15 are for 
head seas, Froude number of 0.3 and wavelength 
to ship length ratio of 1.2. Shown are data 
for the parent, increased flare and decreased 
flare variants. Note that flare here refers to 
beam at the deck edge. The flare angle at the 
waterline is the same for all variants. The 
average of the peak water elevation on deck 
measured by the five deck wetness probes is 
given as a function of wave height. The advan- 
tage of increased flare in reducing wetness can 
be seen. The increased flare variant has 
somewhat less wetness, while the decreased 
flare variant shows considerably greater wet- 
ness. 

Figure 16 shows average wetness for the 
parent, deep knuckle and shallow knuckle 
variants.  In this case, no significant dif- 
ferences can be seen. This confirms results 
obtained In previous investigations that for 
cases of extreme wetness, where the knuckle is 
submerged, it provides no reduction of deck 
wetness.  Since the probes used in this experi- 
ment do not respond to spray, no conclusions 
can be drawn on the effectiveness of knuckles 
on the reduction of less severe wetness inci- 
dences. 
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Knuckle and Parent 

It can also be seen from Figures 15 and 16 
that the onset of deck wetness appears to be 
independent of bow shape. Again, it should be 
noted that wetness refers to a measurable depth 
of water on deck and does not include spray. 

Figure 17 shows the height of water above 
deck level plotted at the location of the 
measurement. Also shown are the deck edge and 
the waterline. Figure 18 shows the same data 
in a contour plot. This data is for the parent 
in head seas, Froude number of 0.3, wave height 
to wavelength of 0.03 and wavelength to ship 
length of 1.2. The data is for the time at 

Figure 18 - Deck Wetness and Relative 
Wave Height Contours 

which average depth of water for the five deck 
probes is maximum. It can be seen that the 
relative height outboard considerably exceeds 
the level of the water on deck.  Some slight 
port-starboard differences can be seen even in 
what should be a symmetric case, a result of 
experimental variability. 

5.  CONCLUSIONS 

(1) The results have shown, that for cases 
where the wave frequency of encounter coincides 
with the peak absolute and relative motion 
responses in head waves, linear theory is able 
to predict the rigid body motions with accep- 
table accuracy up to a wave steepness of 
approximately H/X = 0.03. For longer and 
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shorter waves, linear theory may be acceptable 
in steeper waves. In the case of very steep 
waves in the frequency range of maximum ship 
response, the transfer functions of rigid body 
response may change appreciably, accompanied by 
the growth of higher harmonics and distortion 
of the motion time history. Vertical accelera- 
tion at the bow is particularly sensitive.to 
harmonic distortion in the motion. 
(2) A time-domain simulation of nonlinear 
motions was able to reproduce the basic proper- 
ties found in the experimental motion measure- 
ments, i.e., a change in the first harmonic, 
together with a mean shift and growth of second 
and higher harmonics. However, the calculations 
were quantitatively correct only in the first 
harmonic calculations.  It is important to note 
that the change in the transfer functions with 
wave steepness is not predicted by linear 
theory, nor would it be predicted by any per- 
turbation procedure carried out consistently to 
second order. An expansion carried to at least 
cubic terms would be necessary to predict this 
phenomenon. Thus, it is unlikely that nonli- 
near, frequency domain techniques such as are 
used in drift force calculations, will be use- 
ful in predicting nonlinear pitch and heave in 
steep head waves. 
(3) The variations in above-water bow shape 
used in the experiments did not produce large 
variations in rigid body motions. However, 
there were noticeable differences in the peak 
flare forces measured in the instrumented part 
of the bow. The peak upward force on this sec- 
tion, which represented only the forward one- 
eighth of the length above the static 
waterline, approached one-half of the hull 
displacement for the deep knuckle and increased 
flare bow shapes in very steep waves.  Since 
the peak flare load lasts only a small fraction 
of each encounter cycle, the resulting impulse 
does not significantly change the first 
harmonic of motion. However, this impulse can 
cause higher harmonics resulting in distortion 
of the time history of motion, particularly 
pitch, and the harmonic distortion is magnified 
in the vertical bow acceleration. Also, such 
large forces may Indicate severe structural 
loads both locally and in the main hull girder. 
(4) Figures 15 and 16 have shown that deck 
wetness, as measured by depth of water on deck, 
varies nonlinearly with wave steepness. 
Figures 17 and 18 show significant difference 
between relative motion and depth of water on 
deck.  It appears that, in addition to the 
known difficulties in the prediction of the 
effect of bow shape on spray, the calculation 
of depth of water on deck may be equally as 
complex. An adequate analytical prediction of 
deck wetness will require a time domain 
calculation. This will allow the incorporation 
and the interaction of the large number of phy- 
sical phenomena involved. 
(5) All the work described in this paper has 
dealt with regular wave results, primarily at 
one particular speed and wavelength.  It is 
important to consider the implications for pre- 
dicting responses in realistic, severe, irregu- 
lar seas. Because ships are usually 
considered, at worst, weakly nonlinear systems, 

much effort has been devoted In the past to 
perturbation methods in which only the linear 
or quadratic portions were retained. The 
experimental results presented show clearly 
that considerably higher order effects such as 
apparent cubic effect responsible for reducing 
the pitch transfer function, and fourth and 
fifth harmonics in the time history of pitch, 
can occur in steep waves with large motion 
responses. It is possible that approximate 
nonlinear methods used in the frequency domain, 
such as describing functions, could represent 
at least some of this behavior.  In this way, 
an improved estimate of the most basic sta- 
tistical quantities, such as RMS, might be 
made. However, the fact that the actual 
responses are nonlinear would make any attempts 
to predict extreme values from the usual rela- 
tionships very questionable. 

An alternate method is to carry out com- 
puter time-domain simulations, with random 
input, and of sufficient length to obtain 
reasonable statistical measures of performance. 
The nonlinear methods presently available 
appear able to simulate the most prominent 
aspects of nonlinear response, although not all 
the detailed distortions and harmonics which 
exist.  Since the present state of this 
approach handles the nonlinear Froude-Kriloff 
forces and moments with the most care, it is 
likely that further improvement will require 
more exact treatment of the hydrodynamic 
problems of incident wave diffraction and wave 
radiation by a hull undergoing large amplitude 
oscillation. Although present time-domain 
techniques already require considerable com- 
puting effort, the advent of ever-faster com- 
puters may make more exact simulations 
feasible, if not inexpensive, in the not-too- 
distant future. 
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DISCUSSION 

Dr. T0ICHI FUKASAWA, 
University of Tokyo, Japan: 

Since the law of similitude for Reynolds number 
in not satisfied in case of the Seakeeping Tests, 
the aspect of breaking of water on deck is much 
different between the model test and full scale. 
When we estimate the load due to green water on 
deck in actual ship is the estimation based on 
the model test valid or not? 

Prof. WILLIAM C. WEBSTER, 
University of California, Berkeley, CA, USA: 

At the University of California, Berkeley, we 
have conducted experiments very similar to those 
reported by the authors, but for Series 60 block 
0.60 hulls. Our hulls included a parent plus 
three other bows (one with no flare, one with 
large flare and one with a knuckle). Our results 

showed somewhat different trends from those 
reported by the authors; however, we tested in 
waves of much smaller steepness, H/A = 0.025 . 
We found that the mean heave increased with 
flare but mean pitch did not. The second har- 
monic amplitudes for pitch increased with flare 
but the second harmonic in heave did not. These 
results are different from those presented by 
the authors, but the reasons for this are not 
clear. Perhaps the difference between the bow 
rake of the frigate tested by the authors and 
that of the Series 60 is responsible. 

Prof. THEODORE L0UKAKIS, 
National Technical University, Athens, Greece: 

The authors have to be congratulated for the 
vast amount of interesting and important work 
contained in their paper. 
There is however a point to be made with regard 
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to experiments for "seakeeping events" (e.g. 
deck wetness) in regular waves. 
As is well known, the results of tests in low 
amplitude regular waves when combined with 
the usual statistical tools do not result in 
accurate predictions for seakeeping events in 
a seaway. Therefore it is difficult for me to 
see how experiments in very steep regular waves 
will improve the aforementioned predictions. 
Maybe the investigation of the effects of dif- 
ferent bow shapes on deck wetness could be more 
fruitful if performed by long experiments in 
seaways with the same non-dimensional spectrum 
but varying energy content. 

Prof. SERGE BINDEL, 
Ecole Nationale Superieure de Techniques 
Avancees, Paris, France: 

In seakeeping problems there are in my opinion 
two types of non-linearities: 
- non-linearities as a whole, that is non- 

linearities affecting the general behaviour 
of the ship, for example pitch or heave, 

- and local non-linearities affecting some 
particular phenomena like wetness. 

It is obvious that if the general behaviour of 
the ship is nonlinear, all the phenomena are 
nonlinear, But the converse is not true and it 
is possible to have to solve nonlinear local 
equations and at the same time to keep linear 
general equations. For example the value of the 
steepness H/X of the wave for which there is 
an influence of non-linearity on transfer and 
phase function is about 0.03, but the deck wet- 
ness appears for H/X = 0.02 . 
May I suggest that, keeping linear equations 
for the whole motion, research be concentrated 
in a first stage on the deformation of the 
local flow at the bow in order to solve the 
problem of wetness and afterwards, if necessary, 
the general non-linearities be taken into account. 

Dr. ROBERT McGREGOR 
University of Glasgow, United Kingdom: 

This is a fascinating paper tackling a noto- 
riously difficult problem. 
The particular point I would like to enquire about 
is the use of resistance probes  to measure 
deck wetness. While the presence of green water 
on deck may be expected to scale satisfactorily 
it is well known that spray does not scale. 
Surely, under such circumstances resistance 
probes are prone to give false readings at 
certain parts of the pitch-wave cycle. It would 
seem that pressure measurements have a greater 
potential for accuracy providing such rela- 
tively temperamental devices can be made to 
operate reliably. Is this basis of the choice - 
that, until Lloyd (1983) and more recently, 
pressure transducers have not worked well when 
subjected to violent motions? 
Is the motivation in measuring deck wetness 
primarily concerned with the loading of the 
liquid on deck and how this influences the 
overall seakeeping or is it purely concerned 
with the operability or survivability of for- 
ward positioned weapons? If the former, surely 

this emphasises the desirability of sensing 
pressures. If the latter, then have further 
experiments investigated impact loads (sur- 
vivability) and visibility (operability)? 

AUTHORS' REPLY 

We wish to thank all the discussers for their 
interest and valuable contributions, and will 
try to respond to all the questions raised. In 
response to Professor Fukasawa's question about 
scaling effect, we believe that in the case of 
heavy, green water on deck, the load is pri- 
marily inertial and may be predictable from 
model experiments. In the case of the incident 
wave breaking into a spray type of deck wetness, 
then certainly surface tension, and possibly 
viscosity, will prevent dynamic similarity 
between model and ship. 
Professor Webster has reported on some addi- 
tional interesting experimental evidence of 
mean and second harmonic effects. It is not 
too surprising that these results differ from 
ours, for two reasons. First, these are rela- 
tively small quantities and thus difficult to 
measure. Second, these trends are expected to 
be functions of the first order rigid body 
motions (both amplitude and phase) which are 
in turn a function of the hull shape. Thus the 
trends may be different for each hull. Another 
example of mean shifts in waves was reported 
by O'Dea at the International Workshop on Ship 
and Platform Motions in Berkeley last year. 
Those results, for a containership, show in- 
creases in both heave and pitch in head waves. 
Regarding Professor Loukakis' question con- 
cerning the applicability of results in steep 
regular waves to the random sea situation, we of 
course agree that it would be desirable to carry 
out very long experiments in random waves of 
varying steepness. Such experiments would be 
very taxing on experimental resources and data 
analysis, and our intention in these experiments 
was to give some insight into the physical 
mechanisms of nonlinear responses in an envi- 
ronment where the only element of randomness 
was that of experimental error or scatter. We 
hope this will lead to improving our mathema- 
tical models for predicting response in ran- 
dom waves. We might also add that Dr. Lloyd 
of ARE, while a visiting professor at the U.S. 
Naval Academy, has carried out experiments on 
the same basic hull form (but with a different 
series of bow shapes) in random waves. The re- 
sults of his experiments should clarify the 
effect of bow shape on deck wetness in random 
waves. 
Finally, the chairman, Professor Bindel, raises 
a very interesting point. It appears to be true 
that the linear transfer functions are valid up 
to the point where deck wetness and flare forces 
begin to be measurable. Therefore, linear theory 
may be adequate in predicting the threshold of 
such occurrences or the frequency of occurrence 
in random waves. However, if the intention is 
to predict the severity of such occurrences 
(i.e. flare force magnitude or depth of water on 
deck) these nonlinearities will be significant. 
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We agree with Dr. McGregor that the use of re- 
sistance probes gives a somewhat qualitative 
measurement of deck wetness, since these probes 
are not expected to record the presence of 
spray. However, as he points out, spray could 
not be scaled correctly from a model test even 
if it could be measured. We also agree that it 
would be desirable to measure pressure, but it 
should be noted that such measurements would be 
sensitive to the arrangement of the deck and 
structures on it. For instance, Lloyd has made 
measurements on a vertical surface similar to 
the forward side of a deck house and the pres- 
sure in that case may be expected to be most 
sensitive to the horizontal component of rela- 
tive velocity and acceleration, while a pres- 
sure transducer mounted flush in a flat deck 
may be more sensitive to the vertical component. 
In any case, our intention was to explore the 
possibility of using resistance probes for wet- 
ness measurements, rather than to determine 
specific loads on deck. If the latter were the 
purpose, it would seem necessary to model the 
detailed shape of major components on the deck 
and measure pressures or forces on such compo- 
nents. 
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THE UNIFIED SLENDER-BODY THEORY: 

SHIP MOTIONS IN WAVES 

PAUL D. SCLAVOUNOS 

ABSTRACT 

The heave and pitch motions of ships with 
forward speed in waves are evaluated using the 
unified slender-body theory. The radiation and 
diffraction problems are solved independently. 
Near the ship hull two-dimensional strip-like 
solutions are supplemented with homogeneous 
components which account for hydrodynamic 
interactions along the ship length. Their 
strength is determined from the asymptotic 
matching with a three-dimensional outer solu- 
tion which is represented by a line distribu- 
tion of sources on the ship axis. Computations 
are-presented for the heave added-mass and 
damping coefficients, exciting forces and 
motions of two realistic ship hulls. Compar- 
isons with strip theory and experiments confirm 
the unified theory predictions. 

1. INTRODUCTION 

The forces experienced by a ship 
advancing with forward speed in waves have been 
the subject of numerous studies since the early 
days of ship hydrodynamics. Essential has been 
the assumption that the ship hull is thin or 
slender. This formally justifies the use of 
linear wave theory for incident waves of small 
amplitude and permits the superposition of 
the forced-motion radiation problem and of the 
diffraction problem where the ship interacts 
with the incident waves while fixed at its mean 
advancing position. 

Strip theory is the method used in today s 
practice for the prediction of the seakeeping 
performance of ships. Filtered from the 
pioneering work of Korvin-Kroukovsky and 
subsequent refinements, the version most often 
cited in the literature is that of Salvesen, 
Tuck and Faltinsen (STF)(1970). The radiation 
problem near the ship hull is approximated by a 
sequence of non-interacting flows. Each satis- 
fies the two-dimensional Laplace equation, 
free-surface condition and a condition of 
outgoing waves. Rational justification of the 
strip-theory framework has been given by 
Ogilvie and Tuck (1969) for high frequencies of 
oscillation. Forward-speed effects are account- 
ed for in the frequency of encounter and in the 
body-boundary normal velocity for the pitch and 

Paul D. Sclavounos, Massachusetts Institute of 
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yaw motions. The latter is due to the vertical 
velocity relative to an inertial frame induced 
by the angle of rotation of a translating ship. 
The exciting forces are evaluated by employing 
a two-dimensional form of the Haskind recipro- 
city relations. Ship motions and derived 
responses predicted by strip theory are known 
to be often inadequate at low frequencies of 
oscillation and high forward speeds, and 
second-order forces in short waves. 

The present paper reports on the perfor- 
mance of the unified slender-body theory which 
is uniformly valid from low to high frequencies 
and for all angles of wave incidence. The 
theoretical framework is developed in Newman 
(1978). In the radiation problem the Laplace 
equation, the free-surface and body-boundary 
conditions in the near field are replaced by 
their two-dimensional form. This is justified 
by the ship geometry slenderness and the body- 
boundary normal velocity which dictate that the 
longitudinal flow gradients are small relative 
to the transverse gradients. No radiation 
condition is enforced in the near field. This 
permits the inner solution to be constructed by 
the superposition of the strip-theory velocity 
potential and a homogeneous component, a priori 
of unknown strength, which accounts for the 
longitudinal flow interactions. Far from the 
ship, the flow is three-dimensional and is 
approximated by a distribution of three- 
dimensional wave sources on the ship axis. The 
techniques of matched asymptotic expansions are 
used to enforce the compatibility of the two 
complementary solutions. This procedure leads 
to an integral equation for the outer source 
strength, the solution of which also determines 
the strength of the near-field homogeneous 
solution. 

Computations are presented of the heave 
and pitch added-mass and damping coefficients 
of two realistic ship hulls, complementing 
earlier results obtained by Newman and 
Sclavounos (1980). The relative importance of 
the forward-speed effects which arise from the 
free surface and the body-boundary conditions 
has been studied. The former are present in the 
homogeneous component which complements the 
strip theory velocity potential. Their effect 
on the hydrodynamic coefficients has been found 
qualitatively very similar to that in known 
fully three-dimensional solutions. At T=WU/g=l/4 
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where CO  is the frequency of oscillation and U 
the forward speed, a singularity is visible in 
all coefficients but the heave and pitch added 
masses a,, and a„ . A consistent linear- 
ization or the snip hull normal velocity leads 
to two identifiable forward-speed terms. The 
first is present only in the pitching motion 
and is associated with the hull angle of 
attack. The second, usually referred to as the 
m-tera, contains the interactions of the steady 
state and oscillatory flows and depends on 
gradients of the steady-state velocity poten- 
tial. This has been approximated by the double- 
body flow, consistently with the slenderness 
assumptions in unified theory. The full 
boundary condition is derived in Timman and 
Newman(1962) and Ogilvie and Tuck(1969). 
Computations of the m-term revealed that its 
magnitude grows towards the ship ends and may 
be unrealistically overpredicted if the double- 
body flow is approximated in a two-dimensional 
manner, as in the classical slender-body theory 
of aerodynamics. The detrimental effects of 
inaccurate m-terms near the ends on the heave 
and pitch damping coefficients b,, and b„ 
have been illustrated by a numerical experiment 
which motivated their omission in the evalu- 
ation of the hydrodynamic forces. Their proper 
account relies on the solution of the three- 
dimensional double-body flow which is expected 
to predict more accurately gradients near the 
ends. Numerical tests with artificially smeared 
m-terms near the ends (not reported here) 
suggest that the present unified theory predic- 
tions improve. Comparisons with experiments 
confirm the unified theory refinements and 
indicate substantial differences with strip 
theory at low frequencies of oscillation. 

The vertical wave exciting force and 
moment are evaluated from the direct solution 
of the diffraction problem obtained by 
Sclavounos (1984). Near the ship hull,slen- 
derness approximations are introduced in 
the flow equations after the factorization of 
their oscillatory behaviour along the ship 
length. Neglecting the longitudinal gradients 
of the slowly varying velocity potential, the 
two-dimensional modified Helmholtz equation is 
obtained in the fluid domain, subject to homo- 
geneous body-boundary and free-surface condi- 
tions. The resulting boundary-value problem is 
driven by the absolute wave frequency as 
opposed to the frequency of encounter in the 
corresponding radiation problem. By enforcing a 
zero normal velocity on the ship hull for the 
sum of the incident and diffraction velocity 
potentials, a normalized homogeneous solution 
is first constructed by employing the real part 
of the Green function studied by Ursell (1968) 
which, unlike its imaginary part, is regular in 
the limit of head waves. A more general near- 
field solution follows by multiplying the 
normalized solution by an arbitrary complex 
interaction function which depends paramet- 
rically on the longitudinal c oordinate and 
accounts for forward-speed and three-dimen- 
sional effects like its counterpart in the 
radiation problem. Its magnitude is determined 
by matching the near-field solution with its 
far-field three-dimensional comple ment 

represented again by a distribution of wave 
sources on the ship axis. A second inte gral 
equation is so obtained and solved for the 
outer source strength and the magnitude of the 
interaction coefficient, producing results 
which are uniformly valid for all frequencies 
of practical interest and all wave headings. 

Computations of the heave and pitch 
exciting forces have been carried out in head 
waves. The predicted values of the exciting- 
force amplitudes and phases are in better 
agreement with experiments relative to the 
Haskind relations used in the STF strip 
theory. 

The integral equations in the radiation and 
diffraction problems share a common kernel. The 
wave systems associated with it are illustrated 
for values of the parameter x > and < 1/4. 
Due to the different nature of the integral 
equation in each X -region, a numerical scheme 
has been carefully selected to ensure the 
stability of the solution over a wide range of 
frequencies and Froude numbers. Useful insight 
has been provided for the design of a stable 
numerical scheme in the three-dimensinal 
forward-speed problem where the sources are 
distributed over the ship hull rather than on 
its axis. 

The modulus and phase of the heave and 
pitch motions have been computed for a Series 
60 (Cb = 0.7) and a destroyer (Cb=0.55) hull. 
Comparisons with experiments and strip theory, 
suggest that the two theories are comparably 
accurate for the cases tested. An extension of 
unified theory to the ship motion problem in 
finite-depth water is reported by B^rresen and 
Faltinsen (1984) at the present conference. 

A study on similar lines has been conducted 
by Maruo and Matsunaga (1983) based on a 
small-X approximation in both the radiation 
and diffraction problems. Yeung and Kim (1981) 
presented an alternative formulation of the 
heave and pitch radiation problem. The oscil- 
latory flow is viewed from a cross-flow plane 
fixed in space as a transient two-dimensional 
disturbance caused by the oscillatory motion of 
the ship hull passing through. It corresponds 
to the use of the three-dimensional free- 
surface condition and the two-dimensinal 
Laplace equation. An extension has been 
obtained by Kim(1982) which approximates the 
three-dimensional wave source potential for a 
slender ship, and requires the solution of an 
integral equation over its hull similar to the 
one obtained in the exact three-dimensional 
formulation. 

At zero speed unified theory has been 
extensively tested and found to be in 
excellent agreement with three-dimensional 
numerical solutions. Computations have been 
presented by Mays(1978), Newman and 
Sclavounos(1980) and Sclavounos(1981). 

In spite of the recent developments in 
slender-ship theory, the numerical solution of 
the three-dimensional linear forward-speed 
problem remains essential for our understanding 
of the ship motion problem, as well as for the 
validation first of linear theory and thereof 
of slender-body approximations. This task has 
been undertaken by Chang (1977) and Inglis and 
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Price (1981). Evident in all three studies is 
the need for a more fine discretization of the 
body geometry, unlike zero-speed problems, the 
discretization of the ship surface is dictated 
not by the geometry gradients but by the 
shortest characteristic wavelength of the wave 
systems associated with the wave source poten- 
tial. Assuming that potential difficulties with 
the stability of the numerical scheme are 
resolved, and in spite of the size and complex- 
ity of the computational effort involved, it is 
the author's view that continued efforts in 
that direction are a very worthwhile under- 
taking.' 

2. SUMMARY OF THE THEORY 

A coordinate system (x.y.z) is selected as 
in Figure 1 fixed relative to the ship mean 
advancing position with its origin at 
midships. 

Figure 

The ship is assumed to undergo small 
oscillations around its mean position due to 
the action of a train of regular plane progres- 
sive waves. The flow, assumed ideal and 
irrotational, is described by the velocity 
potential  $ which satisfies the three- 
dimensional Laplace equation 

$ + $ + $ =o 
xx   yy   zz (2.1) 

in the fluid domain. Linearization justifies 
the decomposition 

-Ux + U* + Be  {[ A(lf>0+ap7) 

.     icot-, 
(2.2) 

where $ is the steady-state disturbance 
velocity potential, A the incident-wave 
amplitude, "g ., j= 3,5 the complex amplitudes 
of the heave and pitch motions, and (i) the 
frequency of encounter assumed positive. The 
incident-wave velocity potential is given by 

iq  vz 
— e 

ivy suiß 
(2.3) 

where W. is the absolute wave frequency, ^ = 
to. /g» $ the angle of wave incidence defined 
in Figure 1. and g the acceleration of gravity. 

To be determined, are the heave, pitch and 
diffraction velocity potentials q> ., j=3,5 
and 7 respectively which are governed by the 
three-dimensional linear free-surface 
condition 

<i*-u^> fj+gfjz on z=0  (2.4) 

and are subject to the condition of outgoing 
waves at infinity and vanishing velocity at 
z = - »  .On the ship hull 

kl[to+W =  0 

3n Yi ldjn. + Dm. 
3 3 

3,5 

and 
n = ( n1( n2, n3 ), 

x x n = ( n4, n5, ng ) 

( n^, m2, m3 ) = -(n-V) 

( m4, m5, mg ) -(n-V) (x x V<),), 

(2.5) 

(2.6) 

(2.6a) 

(2.6b) 

with the unit vector n pointing out of the 
fluid domain. The speed-dependent term in 
(2.6) is derived in Timman and Newman (1962) 
and Ogilvie and Tuck (1969). 

The following two sections summarize the 
unified theory approximations of the three- 
dimensional boundary-value problem (2.1)- (2.6) 
for slender ships. The details of the deriv- 
ations can be found in Newman (1978) and 
Sclavounos (1984) for the radiation and the 
diffraction problems respectively. 

2.1  The radiation problem 

Let  £ be the ship beam/length ratio. For 
small   6 » gradients of the flow in the 
x-direction are neglected near the ship hull. 
Thus the heave and pitch velocity potentials 
satisfy 

^jyy + Tjzz 
= o 

■^ DZ 
KÜ). = 0 :tPi 

(2.7) 

z=0  (2.8) 

where 

Ij)      = iion3 + Um3  ,      j = 3 (2.9a) 

ip      = iun5 + 03^,      j = 5 (2.9b) 

IU = -x n, , rru = -x m3 + n3 

(2.10) 

and K =tt) /g. 
Consistently with the slenderness 

approximations, the steady-state disturbance 
velocity potential $ is assumed to satisfy 
the two-dimensional Laplace equation in the 
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fluid domain, the rigid-wall free-surface 
condition, and is subject to 

rn   1 (2.11) 

i(x) ~m (^-+1) \ (V> =0j +U;
J o. 

3 
.  (2.19) 

on the ship hull. 
Unique solutions to (2.7)-(2.10) for j = 3 

and 5 exist if a radiation condition is imposed 
for large K|y|. They can be written in the 
form 

% 3 v3 

On the  ship hull  the strip theory velocity 
potentials   (D .,   0.  satisfy 

<j>.  =    loin. 

3n 3 

and at a large transverse distance 

„  , n     ■ Kz -idy! ^ 1/2 i o. e     u' 

£. ^ 1/2 i a.  e 
D J 

Kz -IK|y| 

(2.15) 

(2.16) 

The observation that     <t>.+ 4" : 
constitutes a nontrivial homogeneous solution 
of (2.7) -(2.10), allows the generalization 
of the inner solution in the form 

If j = 4K + U (j. + C (x) U. + <(,.)   (2.17) 

where C.(x) is a function, a priori unknown, 
which depends parametrically on the x-coor- 
dinate and is expected to account for longi- 
tudinal flow interactions in the near field. 
Its magnitude is determined from the asymptotic 
matching with a three-dimensional outer solu- 
tion represented by a distribution of wave 
sources on the ship axis 

where 

Lj^qjX) = [iri + 2Y + 2 ln(uL/U)] q(x) 

L/2 5-x 
2 I   q' (?) ln^dS +   <3(?) w(x~?) d5 

(2.12) (2.20) 
followed by two equivalent definit: Lons for 

y 
C.(x) 

J 
q      -   (  c    + U a.) 

C,(x)   = :             3           3 (2.21) 
(2.13) : a.  + a* 

3        3 

(2.14) (2.22) -       .   *    V qj' X K 

The kernel W(x) is finite but discontinuous 
across x=0 and is defined as follows 

W(x) = W^x) + W2(x) 

= W2 (x) 

where W.(x) is composed of 

x < 0, 

x > 0,   (2.23) 

I'^Cx) = W1
(1)(x) + W1

(2)(x) (2.24) 

with 

W   (x) = l   e   [(1 - k A )    - 1] dk 

-iknx  . e  1-1 
(2.24a) 

., (2) . .   . r  -Hoc M  .2. 2,-1/2 Jn W1  (x) = -l   e    (1 - k A )    dk . 

(2.24b) 

0.(5) G(x-C, y, z) d?. (2.18) 

The function G(x-£ , y, z) denotes the velocity 
potential at (x, y, z) due to a pulsating and 
translating source located at (J, 0, 0). Its 
derivation is given in Wehausen and Laitone 
(1960). The source strength q.(x) and the 
interaction function C.(x) are determined by 
a two-term matching of the outer expansion of 
the inner solution (2.17) to the inner expan- 
sion of the outer solution (2.18). The result 
of this procedure is an integral equation for 
q.(x) 

For X <  1/4, 

W2(x)   = W2
(3) (x)   + W2

(34) (x)   + W2
(4) (x)    (2.25) 

(3),  , i   I   3 --ikx  „  _ ,,2^2,-1/2 
W2       (x)   - - 2 e —    (1 - k/K )    '    * 

0 (2.25a) 

W2
(34)(x)=      if      e"^  (kV " D_1/2 * 

k, (2.25b) 

180 



w (4) (x) = _ i f " e-^Kl - kV)"1/2 " 1] <& 

1 e  4 -1   (2_25c) 
2 x 

and for X >1/4, 
00 

w (x) = - | f  e_ijQ{[(l - k2A2) _1/2-l] dk 

(2.26) 

2 
where 10 » ( CO+Uk) /g. 

The branch points 1^, i=l,..,4 are defined by 

kl 2 = "(9/2u2) [1+2T
 ^ (1+4T)1/2], (2.27a) 

k3 4 =  (g/20
2) [1-2T + (1-4T)1/2],  (2.27b) 

with X = U)U/g. The derivation of W(x) follows 
from the corresponding definitions derived in 
Newman and Sclavounos (1980) [eq. 30, 39-41] by 
subtracting the singular behaviour of the 
kernel and integrating by parts. 

The limits «-»•0 and V ■* 0 both correspond 
to T*0. It follows from their definition 
(2.27) that the roots ki tend to 

1,4 + g/ff 2.3 
2. 

ID /g (2.28) 

as X-»0. The c oresponding limits of the kernel 
W(x) can be obtained from its definition (2.23) 
-(2.26). Without quoting the final results, at 
U = 0 the kernel can be expressed in terms of 
the  IHQ, JQ, and Y. Struve and Bessel 
functions as derived by Ursell (1962). In the 
complementary limit U)= 0 the kernel derived by 
Tuck (1963) in the wave resistance problem of a 
slender ship is recovered. In the limit 01 ■+• 0 
the ln(6J ) term in (2.20) is cancelled by an 
equal and opposite contribution which arises 
in the two-dimensional inner solution (2.17). 

Plots of the kernel W(x) and an analysis of 
the associated wave systems, are presented in 
Section 4, together with a discussion of the 
numerical solution of the integral equation 
(2.19) and its analog [eq. (2.39)] in the 
diffraction problem. 

^yy + "^zz " * cos2ß h = ° (2-31) 

*7z ~ u h = ° ' on z = ° (2.32) 

*7n = ~ "''On '     on the ship hul1,  <2-33) 

By definition the sum "4<7+ TJ>Q is a homo- 
geneous solution of the near-rield problem. 
Thus a general solution can be written as the 
product of a normalized homogeneous solution 

H» by an arbitrary function CAx),  which 
accounts for the longitudinal flow interactions 
like its counterpart in the radiation problem. 
Its magnitude is to be determined from the 
asymptotic matching with the outer solution. 
Thus we set 

^ + ^0
S= c7(x) ^ (y-z;x).    (2.34) 

The homogeneous solution Ij*„ is constructed 
by enforcing the interaction of two unit- 
amplitude and equal-phase waves incident upon 
the body section from opposite directions, 
defined by 

S= 1 vz - ivy sinS  1 vz + ivy sing (2.35) v0  2 2 

Denoting the resulting disturbance velocity 
potential by Tjlp we obtain 

V= ^o + V (2.36) 

By a rearrangement of terms it is possible to 
bring the inner diffraction velocity potential 
into a form similar to the inner solution of 
the radiation problem given by (2.17) 

<J>p + [C?(x) - 1] (^+ y.   (2.37) 

2.2 The diffraction problem. 

In the diffraction problem slenderness 
approximations are justified after the 
factorization of the oscillatory component of 
the flow in the x-direction. Based on the 
definition (2.3) of the incident-wave velocity 
potential we set 

^0 
ige-ivxoose     (    , 
% ° 

...     iq  -1VX COSe 
*P7
= f e i|).;(y,z;x). 

(2.29) 

(2.30) 

Neglecting the x-derivatives of the symmetric 
component of the potential ^7 the following 
set of equations are obtained 

It is here essential to require that the 
velocity potential "\j>p be purely real. This 
permits to solve for <vj/_ by using the real 
part of the relevant Green function which, 
unlike its imaginary part, is regular for all 
headings. Its derivation and properties are 
discussed by Ursell (1968). The asymptotic 
behaviour of1^ for large "0 |y |is of the form 

a7(x) 5Jn(v|ylsing) 
sinß 

(2.38) 

where d?(x) is a real two-dimensional 
source strength determined from the numerical 
solution for AC_. 

It is noted that the near-field potential 
"ty..  is driven by the absolute wave frequency 
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CA> . Here forward-speed effects are present 
only in the complex interaction coefficient 
C7(x) which draws this information from the 
asymptotic matching with the three-dimensional 

outer velocity potential. 
The far-field diffraction velocity poten- 

tial is again represented by a distribution of 

three-dimensional wave sources on the ship 
axis, given by (2.18), with q.(x) replaced by 

the diffraction source strength q-(x). The 
asymptotic matching with the inner solution 
leads to an integral equation for q_(x), 
companion to that derived for q.(x) in the 

radiation problem 

q7(x) +17 *b (V x) = e -xvx cosß o?(x) (2.39) 

where 

L0(q,x) = [27 + 2 ln(a)0L/U) + cscß cosh jsecß 

- In2|secß|] q(x) 

L/2 
5-x 

- 2 |  q'(0 1BY*+   
q(?) W(x~?) dS 

(2.40) 

and two equivalent definitions for C-(x) 

C7(X) = -. 
ivx cos ß (2.41) 

ivx cos ß 

2TT 
It, (q7, x)     (2> 42) 

where the kernel W(x) is again defined by 
(2.23)-(2.26). The two terms in (2.40) which 
depend on the angle of wave incidence can be 
shown to be regular for all headings with 
values 0 and l-ln2 as p= 7T/2and 0 respec- 
tively. The properties and numerical solution 
of the integral equations (2.19) and (2.39) 
will be discussed in Section 4. 

3. ANALYSIS OF THE m-TERMS 

The determination of the velocity poten- 

tial (p. requires the prior evaluation of 
m. defined in (2.10). An alternative defini- 
tion better suited for computations has been 
derived by Nestegard (1984) in the form 

m = EL 
3  ds ♦s + n2 ni ) (3.1) 

where the subscript s denotes the derivative 
with respect to the section arc length. Consis- 
tently with the slenderness approximations 
introduced in the radiation and diffraction 
problems, the steady-state disturbance velocity 
potential  ^  is governed by the two-dimen- 
sional Laplace equation, the body-boundary 
condition (2.11) and a zero-flux free-surface 
condition. Its values on the body are obtained 

by applying Green's theorem followed by the 

numerical solution of the resulting integral 
equation. Numerical differentiation is used 
next, in connection with the definition (3.1), 
to determine the values of m,. Acceptable 
accuracy has been obtained by using 20-30 
segments per section. The velocity potentials 

<j)., $ . and the corresponding source 
^tren^ths <S ., ß" . are next detemined using 
the two-dimensional numerical scheme of 
Nestegard and Sclavounos(1984). 

Useful for the solution of the integral 
equations (2.19) and (2.39), outlined in 
Section 4, are the limiting values of the 
source strengths 6*. > o . and &-.  at the 
ship ends. For conventional ship forms with 
small waterline beam distribution B(x) near the 
ends they can be determined by considering the 

low-frequency limits of the associated two- 
dimensional problems. To leading order for 
small KB(x), the source strength e^ has been 

approximated by Newman and Tuck (1964) in the 

form 

a   (x) %  - 2 
*3n 

ds = - 2 im B(x), . (3.2) 

The corresponding result for &„  follows from 
(2.11), (2.14), and (3.1) by an integration by 
parts of the integral of m, over the body 
section, or 

a3(x) --2 (c ^ ds = -2 |c m3 ds 

= 4n± ~-  2B'(x). (3.3) 

The ship is assumed to be wall-sided and the 
value of n. on the waterline is replaced by 
half the beam slope with errors quadratic in 
the ship slenderness. For a Series 60 hull, the 
source strengths (-x+D/iW )e>-/(i tOBL) and 

xU §,/ to BL along the ship length, where 
B is the ship beam, are illustrated in Figures 

2a and 2b respectively for a non-dimensional 
frequency  W(L/g)   =1 and a Froude number 
0.2. Near the ends the value of the imaginary 
part of the latter is non-zero, as suggested 
by (3.3). Numerical tests for prolate spheroids 
indicate that the m-term source strengths are 
overpredicted by the slender-body approximation 
used here, and suggest that the use of the 
three-dimensional double body flow is 
essential. The effect of the m-term over- 
prediction near the ends on the damping 
coefficients b-, and b». is illustated in 
Section 5. 

The corresponding behaviour of the 
diffraction source strength  near the ends 
is given by 

a_(x) a, - 2 i|i7 ds = 2 vB(x) . (3.4) 

The numerical scheme used to solve for the 
diffraction velocity potential ip_ and the 
source strength Ö1 -, is outlined in 
Sclavounos(1981). 
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Figure 2 b 

4. THE SOLUTION OF THE INTEGRAL EQUATIONS 

The integral equations (2.19) and (2.39) 
may be both set in the form 

L/2 
q(x) + A(x) [ C q(x) - 2    q' (?) In ^ d? 

•"x 

+ [ q(c) W(x-5) d£ ] = S(x)   (4.1) 
-L 

where for the radiation problem 

A(x) 2iri  a1! 

C = TTi + 2y+2 1n( uL/U ) 

S (x) = a . (x) + U a . (x) 

and for the diffraction problem 

A<x> = 27 
-li C = 2y + 2 ln( ioQL/U ) + esc $ cosh  |sec [ 

- In21 sec d 

„, ,   -ivx cos p   , , 
S(x) = e        a7(x) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

The kernel W(x) is common to both problems and 
is defined by (2.23)-(2.26). AS(|unctions °f 

2x/L. the imaginary parts of «1  (x), 
W.  (x) and their sum W,(x) defined in . 
(2.24), are plotted in Figures 3a and 3b at a 
Froude number 0.2 and.two non-dimensional 
frequencies Cü(L/g) ' = 1 and 4, corre- 
sponding to values of X = 0.2 and 0.8 respec- 
tively. The disparate wavelengths of the 
associated wave systems are evident at both 
frequencies. It is noted that at a constant 
Froude number the root k, increases in 
modulus with increasing frequency, being always 
greater than the characteristic wavenumber 
g/U of the transverse wave system generated 
by a translating source of constant strength. 
Thus a finite frequency of oscillation in 
effect shortens the trailing transverse waves 
due to the root k,. The opposite is true for 
the waves due to k„ which are longer relative 
to their zero-speed limit, since | k2| <W /g 
at a non-zero frequency of oscillation. 

For X <l/4 the component W2(x) of W(x) 
is defined in (2.25) and consists of three 
components given by (2.5a,b,c). For X ■= 0.2, 
their imaginary parts are plotted in Figure 3a. 
Two characteristic wavelengths may be identi- 
fied driven b¥\the roots k„ and k,. The W k, and k^. 

is driven by k, comBgnent w.   is onven vy  *-3«A\ 
V K        by both k3 and k4 and W,

v 

by k. alone. It may be verified that the 
rapid oscillations associated with k^ in the 
last two components are of opposite phase 
upstream (x>0) and in phase downstream (x<0). 
Conversely, the slowly varying oscillations due 
to k, in the first two components are in 
phase upstream and of opposite phase down- 
stream. The result is that in their sum, 
W,(x), one wave system is present upsteam, 
associated with the root k3> and one down- 
stream associated with the root k^. This 
property is illustrated in Figure 3a. For 
T= 0.8, W.(x) is defined by (2.26) and 
plotted in Figure 3b. The kernel W(x), obtained 
by combining W,(x) and V?2(x) as suggested 
by (2.21), is presented at the bottom of 
Figures 3a and 3b for T<l/4 and X> 1/4 
respectively. 

An inspection of W(x) indicates that for 
X=0.8 its values upstream are essentially zero 
except for small 2x/L. ForTH).2 on the other 
hand its values for i^0 are of comparable 
magnitude. This suggests that the nature of the 
integral equation (4.1) changes from Fredholm 
type to a form that resembles a Volterra type 
as the value of T crosses 0.25. Thus the 
numerical scheme used for its numerical solu- 
tion needs to be stable for both equation 
types. In Newman and Sclavounos (1980) a piece- 
wise linear approximation of the source 
strength has been utilized and the equation has 
been satisfied at equally spaced collocation 
points. Further testing of this scheme with the 
integral equation (4.1) which involves the 
value of q(x) rather than its derivative 
multiplying the non-singular kernel W(x), 
indicated that instabilities may occur for 
large values of X . Stable solutions of (2.19) 
and (2.39) have been obtained by instead 
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adopting an expansion for q(x) - S(x) in terms 
of Chebyshev polynomials over the ship axis. 
This takes the form 

y(z) = q(x) - S(x) 
K 
1 yk

T
k
(2x/L)- (A.8) 

k=0 
The selection of the difference q(x) - S(x) 

as the unknown function is motivated by its 
vanishing value at the ends of ships with 
vanishing beam distribution on the waterline, 
and leads to a faster convergence of the 
expansion (4.8). The coefficientsyfc may be 
determined by substituting (4.8) in (4.1) and 
enforcing the resulting equation at a set of 
collocation points usually selected to be the 
K+l zeroes of the Chebyshev polynomial 
T„ ,(2x/L). Here a Galerkin technique has 
been implemented which instead requires that 
the discretized equation is multiplied by 
(1-t )  '  T (t) for 1 = 0,1 K where 
t = 2x/L, anA integrated over its range. In its 
final discrete form, equation (4.1) with y(x) 
as the unknown becomes 

6 V   + 
K 
I 

k=0 
*k( 

2,8 

1,8 

Ak8 + 

K 
-    Z 

ok=0 

0       * 

Lk8 + 
■\l 

)    = 

V Ak8 + Lk8.+ 

0,1,..., K 

™k8   ' 

(4.9) 

where S. are the coefficients of the 
Chebyshev series of S(x) and 

\i 

\l=- 

T,(t) 

C   dt  -2TJ2    Tk(t) A(t) (4.10a) 
(1-f 

dt V
tJ 

(1-t' 
2.1/2 

dt1 

A(t) 

T^(t') In 

(4.10b) 
t'-t 

\l-- 

T (t) 
dt ----- „ -, n    A(t) 

(1-t 
2,1/2 

dt' Tk(f) W(~-). (4.10c) 

-1 

The Gauss-Chebyshev quadrature has been 
used     for the evaluation of all integrals 
with respect to the t variable. For the 
integrals with respect to the t1 variable in 
(4.10b) reccurence relations have been derived 
for k » 2.....K, where the first two terms are 
available in closed form. Finally, the corres- 
ponding integrals in (4.10c) are evaluated by 
first approximating the kernel W(t) in a 
piecewise linear manner over a sufficiently 
dense grid on the ship axis. The resulting 
products of linear functions with the Chebyshev 
polynomials T.(t') are evaluated analytical- 
ly. A sufficiently accurate solution has been 
obtained by selecting 20-30 polynomials. 

5. HYDRODYNAMIC FORCES AND MOTIONS 

The solution of the integral equations 
(2.19) and (2.39) lead to the evaluation of the 
interaction coefficients C.(x) defined by 
(2.21)-(2.22) and (2.41)-(2.42) for the 
radiation and diffraction problems respec- 
tively. The relations, (2.22) and (2.42) have 
been found to be more stable numerically near 
the ship ends. In the radiation problem the 
hydrodynamic impedance forces due to the ship 
forced oscillations are expressed in terms of 
the added mass and damping coefficients a.. 
and b.. i,j = 3,5. Substituting the near- 
field definition of the radiation velocity 
potential (2.17) in the linearized Bernoulli 
equation, and integrating over the ship hull 
using Tuck's theorem [Ogilvie and Tuck (1969)], 
a., and b.. are obtained in the form 

2 
in a. ioib. . = -iup        n. <j>. dS 

S 

p U  f[(iusn±L - m^.JdS + pU2 jj m^dS 

s   X s 

Qj(x) liiüri. ü rru) (<)>. + ")dS. 

(5.1) 

The first integral in (5.1) contains 
contributions which, other than the frequency 
of encounter, are speed-independent. The next 
two arise from the speed-dependent terms in the 
body-boundary condition and contain the 
contribution from the angle-of-attack and the 
m-term8. The last integral contains the 
unified-theory corrections. 

An assesment of the importance of the 
m-terms, along with the potential inaccuracies 
introduced by their overprediction near the 
ends, has been carried out. The heave and pitch 
damping coefficients b-, and b^5 have been 
selected for this numerical experiment and 
their values have been determined by 
integrating the energy flux radiated at 
infinity by the strip theory source strength 
distributions d. and 6". over the axis of 
the Series 60 hull at Fr^O.2. It is shown in 
Sclavounos(1983) that the damping coefficient 
associated with a distribution q(x) of 
three-dimensional wave sources over a segment 
on the free surface is given by 

(5.2) b=~ 
4TTD 

Im dx q 

L 

(x) [ dCq(5)W(x-C) 

L fL/2 
-2JxdC q'(5)lni^] 

where the kernel W(x) is defined in (2.23)- 
(2.26). Figures 4a and 4b present the heave 
damping coefficient obtained by (5.2) with q(x) 
replaced with the strip theory source strengths 
6.  and «i.+Ue-- respectively. The 
predictions of strip theory and experimental 
measurements by Gerritsma and Beukelman(1967) 
are also shown. The corresponding results for 
the pitch damping coefficient are presented in 
Figures 5a and 5b. The inclusion of the m-terms 
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appears to lead to a substantial overprediction 
of the damping coefficients which is attributed 
to the unrealistically large values of the 
source strengths 6.  near the ship ends, 
illustrated in Figure 2b. It was thus decided 
to omit the m-terms in the evaluation of the 
added-mass and damping coefficients. Research 
currently under way investigates the proper 
account of the m-terms. It is expected that 
their inclusion will improve the present 
unified theory predictions. The results will be 
reported by Nestegard(1984). 

tn 

Figure 4a 

01 

Heave damping coefficient, Series 60. 
Strip theory. 
Equation (5.2), q(x)= a (x) 
Experiments, Gerritsma and Beukelman. 

Figure 4b :  Heave damping coefficient, Series 60. 
Equation (5.2), q(x) = a (x)+Ucr 3(x) . 

The preceding numerical experiment also 
illustrates the difference between the 
predictions of the damping coefficients 
obtained by evaluating the energy-flux at 
infinity due to the distribution of the strip- 
theory source strengths on the ship axis, and 

Figure 5a :  Pitch damping coefficient. 
—£j—  :  Equation (5.2), q(x) = (-x+.U/iu) a    (x) 

2.5  3.0  3 5 

Figure 5b :  Pitch damping coefficient. 
 &   :  Equation  (5.2) , 

q(x)= -x( er +U a3) + (U/iai) a' 

by the pressure integration over the ship hull. 
The former contain three-dimensional effects 
missing in the conventional strip theory 
predictions, indicated by the singularity at 
T = 1/ 4 and the low-frequency behaviour. In 
unified theory the two predictions have been 
shown by Sclavounos(1984) to be identical. This 
result has been confirmed numerically by 
comparing the predictions of b_, and b,, 
obtained from (5.1) and (5.2). 

Figure 6 presents the unified-theory 
predictions of the added-mass and damping 
coefficients obtained from (5.1), with the 
m-terms omitted, for a Series 60 hull (Cb=0.7) 
advancing at a Froude nubmer 0.2. Comparisons 
are made with the STF strip theory and expe- 
riments by Gerritsma and Beukelman(1967). 
The same coefficients have been computed for a 
destroyer (Cb=0.55) at Fr=0.35, for which 
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experimental measurements have been carried out 
by Smith(1966). These are illustrated in Figure 
7. Substantial differences between the unified 
and strip theory predictions exist for. low 
frequencies and near the t =1/4 singularity. 
Unified theory is in general in better agree- 
ment with experiments than strip theory with 
the exception of the cross-coupling coeffi- 
cients a-c and a-.. The existence of a 
singular behaviour of certain coefficients at 

1=1/4 should not be viewed as a defect of 
unified theory or more generally of three- 
dimensional theories. Experiments carried out 
by Maruo and Matsunaga(1983) suggest that the 
pitch damping coefficients b-^ and b„ 
display a clearly identifiable peak at t=l/4. 

The exciting forces are obtained by the 
substitution of the sum of the incident and 
diffraction velocity potentials given by (2.34) 
in Bernoulli's equation, followed by an inte- 
gration over the ship hull and the use of 
Tuck's theorem. This procedure leads to an 
expression for exciting force which depends on 
the m-terms. An alternative definition may be 
obtained by using 

at 3x 
(5.3) 

and neglecting gradients of the slowly varying 
components of the flow in the x-direction 
relative to the x-derivative of the rapidly 
oscillatory component of the diffraction 
velocity potential. It can be confirmed that 
the application of (5.3) in the radiation 
problem, in the absence of the velocity poten- 
tial <b,, leads to (5.1) without the m-terms. 
The resulting exciting force takes the form 

-ivx cos ß X. = pgR    n. cyxM^+ii^) 

S 

ds 

(5.4) 

where the quantities involved are defined in 
section 2.2. The corresponding expressions in 
the STF strip theory are obtained by applying a 
two-dimensional form of the Haskind relations. 
They are given by 

x.(s) =-P; 
(s) H i^ovO*^* 

(5.5) 

(s) 

(s) 
5 

U 
id) 

where the velocity potential  f , is defined 
in Section 2. 

Computations of the modulus and phase of 
the heave and pitch exciting forces of the 
Series 60 hull and the destroyer in head waves 
at the same Froude numbers are shown in Figures 
8 and 9. The unified theory predictions of the 
exciting force modulus are in very good agree- 

ment with experiments and comparably accurate 
to strip theory. Unified theory, however, per- 
forms substantially better than strip theory 
in the phase prediction. 

Following the evaluation of the hydro- 
dynamic forces, the heave and pitch ship 
motions are easily obtained as the solution of 
the complex linear system 

Z        { -a2   (a. . + M. .) + icob. . + C. . } £. = X. . 
i=3,5       ^        ^ V        V        X        3 

(5.6) 

The ship particulars have been selected as in 
the model experiments with the center of 
gravity coinciding with the center of buoyancy. 
The heave and pitch motion amplitudes and 
phases for the two hulls are presented in 
Figures 10 and 11 for the Series 60 hull and 
the destroyer respectively. Unified theory 
tends to overpredict the heave amplitude but 
performs better than strip theory in the 
prediction of the motion phases. 

6. CONCLUSIONS 

A summary of the analysis and computations of 
the hydrodynamic forces and motions as pre- 
dicted by the unified slender body theory 
have been presented. Based on the experimental 
measurements it may be concluded that in the 
radiation problem the unified theory provided 
an improvement over the Salvesen, Tuck and 
Faltinsen strip theory, with the exception of 
the cross-coupling added-mass coefficients 
a-s and a„. Substantial differences 
between the two theories have been observed 
near the X=l/4 singularity and at low frequen- 
cies where unified theory is expected to be 
superior. In the exciting force predictions 
unified theory is in better agreement with 
experiments. This is especially notable in the 
phase prediction. The heave amplitude predicted 
by unified theory is larger than the strip 
theory prediction and experiments. For the 
phases the unified theory predictions appear to 
be more accurate, especially for heave. Head 
wave results have been presented in the present 
paper. As is evident from the outline of the 
diffraction problem the theory applies for all 
headings. The performance of unified theory in 
the form presented here (i.e. without the 
m-terms) is expected to be more reliable and in 
general more accurate than strip theory for the 
prediction of the wave forces, motions, derived 
responses and second- order forces. If, for 
example, the relative motion at the ship bow is 
needed, a less accurate heave motion-amplitude 
prediction by unified theory combined with more 
accurate phase and local wave elevation 
predictions relative to strip theory, may lead 
to a more accurate final estimate of the 
relative motion amplitude. Further testing and 
applications for the stated problems are 
planned. 

The computational effort involved in unified 
theory is estimated to be less than three 
times that of strip theory, including the 
solution of the diffraction problem, thus its 
use in practice appears quite attractive. 

187 



2.5 

1.5 

10     1.0 
■%-§-*£-ft8ä-*r-J! 

Cl 

2.5 

1.5 

> .3   - 

m -0.4 

-0.6 

T 1 1 r 

-0.7 
0.0     0.5      1.0      1.5     2.0     2.5     3.0     3.5     4 

0.4 

Q.      0.2 

•     . A   A~^-~. 

_J I I I L_ 

.5      2.0      2.5      3.0      3.5      4. 
-\ 1 1 r 

.07 

.06 

.05 

.04 

.03 

ü)(L/g) 

_J I I L 

1/2 

5.5      1.0      1.5     2.0     2.5     3.0     3.5     4. 

Ü>     0.3 

a 
in 
<*>   0.2 

XI 

1.5     2.0     2.5     3.0     3.5     4.0 

.«  A  A A  A  A 

J I I L_ 

1.5     2.0     2.5     3.0     3.5     4. 

-0.05 

-0.10 

-0.15 

-0.20 

-0.25 

-0.30 

-0.35 

-0.40 
0 

0.25 

0.20 

0.15 

A A i; 

in   0. 10  - 

0.05 

0.00 
).0     0.5      1.0      1.5     2.0     2.5     3.0     3.5     4 

Figare 6 : Hydrodynamic coefficients for a Series 60 hull (Cb=0.7) at Fr = 0.2. 
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Figure 7 : Hydrodynamic coefficients for a destroyer (Cb=0.55) at Fr - 0.35. 
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2.5 

Figure 10: Motions of the Series 60 hull in head waves at Fr = 0.2. 
1.2 

Figure 11: Motions of the destroyer in head waves at FR = 0.35. 
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DISCUSSION 

Dr. JACEK STANISLAW PAWLOWSKI, 
National Research Council Canada, Ottawa, 
Canada: 

I would like to congratulate Professor 
Sclavounos on the presentation of a most in- 
teresting paper. For those who for many years 
now have been using strip theory as a working 
tool it is interesting and encouraging to ob- 
serve further developments of the slender body 
approach to the prediction of ship's behaviour 
in waves, developments which lead to the formu- 
lation of a fully mature hydrodynamic theory. 
However, it would perhaps be even more inter- 
esting and encouraging to see the consequences 
of the theoretical improvement in terms of a 
wide range of better predictions of ship's 
behaviour. 

It is well known that although strip 
theory provides quite good estimates of ship 
motions, with the exception of those at low 
frequencies, it is not equally accurate in 
predicting local properties of the flow around 
ship's hull, which is exemplified by estimates 
of cross-sectional radiation and diffraction 
forces showing much poorer agreement with ex- 
perimental values, see e.g. References (1, 2, 
3, 4). The theoretical refinements of the uni- 
fied slender body theory aim at taking into 
account effects of the flow between cross- 
sectional planes and therefore they should be 
expected to improve cross-sectional estimates 
of strip theory. Besides, accurate estimates 
of cross-sectional forces are of significant 
practical importance for structural consider- 
ations. 

In view of the comparisons of motions and 
global force characteristics presented in the 
paper, as calculated by unified slender body 
theory, strip theory and found experimentally, 
not showing a decisive superiority of the uni- 
fied theory predictions, I wonder if the author 
attempted comparisons of cross-sectional esti- 
mates and if so, with what results. 

References: 
(1) Gerritsma, J.; Beukelman, W. (1964): 

The distribution of the hydrodynamic 
forces on a heaving and pitching ship 
model in still water. 5th ONR Symposium 
on Naval Hydrodynamics, Bergen, Norway, 
pp. 219-251. 

(2) Gerritsma, J.; Beukelman, W. (1967): 
Analysis of the modified strip theory 
for the calculation of ship motions and 
wave bending moments. International Ship- 
building Progress, Vol. 14, No. 156, 
pp. 319-336. 

(3) Wereldsma, R.; Moeyes, G. (1976): Wave 
and structural experiments for elastic 
ships. 11th ONR Symposium on Naval Hydro- 
dynamics, London, UK, pp. 567-586. 

(4) Beukelman, W.; Gerritsma, J. (1982): 
The distribution of hydrodynamic mass and 
damping of an oscillating ship form in 
shallow water. International Shipbuilding 
Progress, Vol. 29, No. 339, pp. 297-315. 

AUTHORS' REPLY 

Dr. Pawlowski raises a valid and inter- 
esting point. It appears that a rational way 
to evaluate the performance of a slender-body 
theory for the prediction of the seakeeping 
behavior of a ship in waves is to compute the 
sectional force distribution along the ship 
length and compare with experiments. Infor- 
mation can be so obtained not only for the 
hydrodynamic coefficients and exciting forces 
but for the structural loads as well. The 
author appreciates Dr. Pawlowski's remark and 
reserves the presentation of further results 
for the future. 
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A NEW DEVELOPMENT IN THE THEORY OF 

OSCILLATING AND TRANSLATING SLENDER SHIPS 

RONALD W, YEUNG AND SEA H. KIM 

ABSTRACT A brief review of some of the existing nearfield approximations used in 
developing ship-motion theories is first given. The Inability of a strip-type 
solution to generate the proper speed-modified wave characteristics is pointed out. 
In the context of linear theory, a new and comprehensive slender-ship theory with 
no restrictions on forward speed and frequency of oscillation is developed. A 
novel approach of asymptotically matching a partly unknown "generalized inner Green 
function" with an outer three-dimensional Green function is used. The new inner 
solution satisfies a speed-dependent free-surface condition, and has wave characte- 
ristics compatible with three-dimensional flow. The zero-speed version of Newman's 
(1978) unified theory is recovered as a special case of this general theory. In 
the limit of vanishing oscillation frequency, a new slender-ship formulation of the 
Neumann-Kelvin wave-resistance problem is obtained. In the high-frequency limit 
with forward speed, the "pseudo-time" formulation of Yeung & Kim (1981) can be 
deduced.  Useful  properties of this new theory are also summarized 

1.  INTRODUCTION 

The use of the strip theory in ship-motion 
calculations is well known. Conceived initial- 
ly by Korvin-Kroukovsky (1955) as an extension 
of the slender-body theory in aerodynamics, the 
idea consisted of obtaining the hydrodynamic 
properties of each ship section by using a 
zero-speed time-harmonic flow solution. The 
theory has undergone a number of important 
changes since its original conception. Among 
them, are two forward-speed versions offered by 
Salvesen, Tuck,and Faltinsen (1970, "STF") and 
Ogilvie and Tuck (1969, "O&T"); both works 
contained more systematic derivations of the 
original theory and had uncovered a number of 
missing terms that were not apriori obvious 
from the physical standpoint. More recently, 
Newman (1978) has proposed a "unified theory" 
which brings in a certain amount of three- 
dimensional correction to the basic strip solu- 
tion. This theory is emerging as one that can 
be adapted well into a number of conventional 
strip-theory computer programs. 

Notwithstanding the moderate success in 
motion calculations provided by some of the 
more popular strip theories, a number of unset- 
tling questions of a hydrodynamic nature re- 
main. Firstly, the role played by the neglected 
forward-speed terms in the free-surface condi- 
tion is not well understood. In three-dimen- 
sional flow, these terms would have combined 

generate rather intricate wave effects. In 
strip theories, these terms are ignored (except 
for the O&T version) on the free surface but 
those of the body boundary condition are re- 
tained. Secondly, since strip theories can 
produce only two-dimensional waves that are 
unaffected by the ship's forward motion, some 
restrictions must apply to the speed. At low 
speeds, steady disturbances of relatively short 
wave lengths would be generated and their lon- 
gitudinal gradients may not be negligible. At 
high speeds, the convective nature of the flow 
is conceivably important again. What then are 
these limits? Thirdly, if the effects of for- 
ward speed were important, the convective na- 
ture of the flow must be accounted for; how can 
this be carried out in a two-dimensional fash- 
ion without having to solve the actual three- 
dimensional problem? It appears that these and 
other questions are somewhat tied up with the 
possibility of developing a general slender- 
body theory that can properly account for the 
presence of waves generated by the combined 
effects of oscillation and forward speed. Pre- 
sumably, one such slender-body theory would 
tell us what the correct form of "strip-theo- 
ry" should be in the presence of forward speed. 

It is not the intent of this paper to 
provide the answers to all of the above ques- 
tions. However, we feel that the new slender- 
body theory presented here may resolve 
analytically some of the questions raised. 
Unlike all  of the cited work above, we were not with the oscillatorily time-dependent terms to 
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bounded by the necessity of obtaining a "strip- 
form" similar to Korvin-Kroukovsky's work. A 
drastically different approach that can accomo- 
date the convective effects in the free-surface 
condition is used here at the outset. The idea 
was initiated by the slender-body theory of 
Yeung and Kim (1981), which utilized the com- 
plete linearized free-surface condition. The 
treatment of the convective terms was accom- 
plished by interpreting the downstream coor- 
dinate as a time variable and by solving a 
locally two-dimensional initial-value problem. 
Since the flow solution was "swept" downstream, 
there existed no upstream influence and the 
solution was only quasi-three-dimensional. 
However, the solution contained divergent waves 
that were similar to those of Chapman's (1976) 
work for the steady forward-motion problem. 

Encouraged by the numerical results pre- 
sented in our earlier work, we had since set 
forth to obtain a more comprehensive 
formulation that accounts for some genuine 
three-dimensional effects. The new slender- 
body theory described in this paper shows that 
it is indeed possible to incorporate the appro- 
priate three-dimensional effects by introducing 
a "generalized" inner Green function in the 
nearfield. This Green function has an unknown 
part that needs to be determined by asymptoti- 
cally matching with the nearfield approximation 
of farfield (three-dimensional) behavior. In 
so doing, we obtain a nearfield solution that 
contains precisely the same type of wave char- 
acteristics, i.e. both divergent and transverse 
wave fields, that are compatible with those 
generated by an oscillating and translating 
three-dimensional source. Our new formulation 
is necessarily computationally more involved 
than existing strip theories, but it stands out 
as a comprehensive theory of the first-order 
problem, in which no restrictions need to be 
placed on the frequency of osci 11 ation to and 
the forward speed U of the ship. In fact, we 

•show analytically that in the limit of U->-0, 
to^O, our new theory recovers the results of 
Newman's (1978) unified theory, which is known 
to be consistent for the case of zero forward 
speed. In another 1 imit, üJ-*0, U?*0, we obtain a 
new formulation of the steady-state wave-resis- 
tance problem. By making further and more 
restrictive approximations, this new wave- 
resistance formulation can be shown to be re- 
lated to two existing but different slender- 
ship theories: Tuck (1964) and Maruo (1982). 
Further, if we assume the frequency of oscilla- 
tion is high at the outset, the new theory 
confirms that the downstream-type solution 
treatment in the original work of Yeung & Kim 
(1981) is appropriate. In other words, the up- 
stream influence is weak. 

In order to provide a better perspective 
of the approach taken here, it is worthwhile to 
give in more concrete terms, a short comparison 

of the approximations used by the various strip 
theories mentioned above. We will carry this 
out in §2 after the governing equations are 
recalled. More extensive reviews of the subject 
may be found in Ogilvie (1977) and Newman 
(1978). §3 to §5 provide an outline of the 
highlights of the developments of our new theo- 
ry. A more exhaustive exposition can be found 
in Kim and Yeung (1984) as well as Kim (1982). 
The behavior of the two special-1imit case 
studies alluded to above are explained in §6. 
For simplicity, only heave and pitch motions 
are considered here. There exist no fundamen- 
tal obstacles to generalizing the present 
treatment to other modes of motion. The dif- 
fraction problems may be approached in a simi- 
lar manner and are left for future work. 

2.    GOVERNING EQUATIONS AND EXISTING 
APPROXIMATIONS 

Consider a ship advancing with constant 
speed u and undergoing small-amplitude motions 
of angular frequency oi in deep water. We 
choose a steady frame of reference with the x- 
axis pointing in the direction of the forward 
motion, and the z-axis pointing upwards. The 
Oxy plane thus coincides with the undisturbed 
free surface. Let "S denote the hull surface in 
the time-averaged sense in this coordinate 
system and n be a unit normal inwards to S (see 
Figure 1). The oscillatory motions will be 
represented by cij (t) = Re. 5jeiut, i = /^l, where 
j is the mode index, j = l,..6,1n particular, j=3, 
for heave, j=5 for pitch, ?; the motion ampli- 
tude and Re.± represents that the real part of 
the expression is to be taken. 

XL 
/ 

Figure 1.    Coordinate system. 

Assuming irrotational flow in an inviscid 
fluid, we introduce a total velocity potential 
<l>(x,t) which satisfies Laplace's equation 
V2<j>=0 and includes disturbances generated by 
the oscillatory motion, the steady forward 
motion as well  as the relative incident stream: 

4>(x,t) = u(4>-x) + Re   s* (x)S e1(ot (2.1) 
s i j    j        j 

where <f>„ is the steady-state potential 

196 



associated with the forward motion and 4>j the 
spatial potential associated with oscillatory 
motion of the j-th mode. It is convjenjent to 
introduce a relative fluid velocity W(x) asso- 
ciated with the steady motion: 

w = UV((j> - x) (2.2) 
s 

The kinematic boundary condition on the 
instantaneous position of the hull can be 
linearized about S (cf. Timman & Newman, 1962) 
and when applied with (2.1) yields the 
following condition for <*>j, 

4      =    n on    S" (2.3a) 
sn 1 

4       = id) n    + Um on    S (2.3b) 
jn j j 

where 

(n   ,n   ,n  )   = n   ,   (n  ,n  ,n  )   5 x  x  n     ;       (2.4a> 
12     3 4     5     6 

->■ -*■-»■ 

(m  ,m  ,m  )   = m    =  -(n«V)W     , 
1     2     3 

+ -*■->■ 
(m   ,m   ,m  )   = -(n-V)(x  x w)   . 

4     5     6 

(2.4b) 

In terms of <f>, the following combined 
free-surface condition on the exact free 
surface  elevation   z=S(x,y,t)  can  be derived: 

+ 2V4.V4    +  ( V<{>-V) I V<(>| 2    + gA = o   , 
t t        2 z 

on  z  =   ?. (2-5) 

where g is the gravitational acceleration. If 
the decomposition (2.1) is substituted into 
(2.5) and assuming linearization about z=u is 
possible, the steady state potential <t>s , to 
leading order,  satisfies 

+ K„ = 0   ,     K0= g/U2   ,  on  z  = 0     (2.6) 

If the appropriate radiation condition is in- 
troduced, (2.3) and (2.6) define the so-called 
Neumann-Kelvin problem for steady ship waves. 

The corresponding free-surface condition for 
the oscillatory-motion potential ^ is more 
complex, particularly if one allows for possi- 
ble interaction with the steady potential 
whose magnitude is not necessarily the same 
order as the oscillatory ones. The condition 
is given by 

(iu-U— )24. + gA. = U(io)-U^-)<|>. (K 4      + * 
ox      J Jz öx    J      °  sxx      s 

) 
sz z 

-2U(iu-u|-)(V4   -VAJ 
ÖX s 

on z=0 (2.7) 

where all terms with constant coefficients are 
transposed to the left-hand side and all terms 
of 0(*jS) and 0 (4> s

2) are neglected. If 
interactions of the steady-state and the oscil- 
latory potentials are further neglected, (2.7) 
is homogeneous, otherwise the right-hand side 
behaves like a pressure distribution applied on 
*he free surface. In as much as the 
steady-state potential *s is not immediately 
amenable to reliable numerical description even 
with present state-of-the art computational 
techniques, and that there is already consider- 
able amount of complexity in tackling just the 
homogeneous equation of (2.7) alone, it is a 
little premature to consider the inclusion of 
these interaction terms at this time. Never- 
theless, it is displayed here to illustrate one 
of the higher-order approximations used in the 
U&T theory. 

With the right-hand side of (2.7) taken as 
zero, one might consider the boundary-value 
problems of <$>s and <f>j in the following common 
form: 

V24.  = o for  z  <  0 (2.8a) 

8 g2 
[(in))2 -2iu)U-5-  +  02r2 +   w]A + gA    =0 

ox ox j jz 

on z  = 0   ,   V + 0+ (2.8b) 

A       =   £(s) 
jn 

V4     +    0 
j 

on  S (2.8c) 

(2.8d) 

where j=s corresponds to the steady-state 
problem with u set equal to zero, and f(s) is 
defined by (2.3). Here the appropriate 
radiation condition has been imposed by 
introducing  an artificial   Rayleigh viscosity V. 

Slender-Ship Approximations 

In the context of slender-body theories, 
the transverse dimensions of the ship are 
assumed to be of 0(e) relative to the length of 
the ship; or equi val ently, L=0(1), B,T=0(e), 
where L is the length, B the beam, and T the 
draft of the ship. For the time scale, g can 
be used for nondimensional ization. With that 
as the understanding, it is easy to show that a 
statement ofU=0(l) would imply U//gL=0(l) 
andu=0(e) would imply u2B/g=0(e3) etc. Of 
course, in asymptotic theories of the 
kind that we are pursuing here, it is difficult 
to specify a transitional value where a 
parameter may switch from 0(e) to 0(1). 
Nevertheless, it is helpful to use that'as a 
guide to identify the more important terms in 
the  governing  equations. 

In an inner region, which is defined by 
R=v/y2+z2=0(e), i.e. close to the hull, it is 
assumed that the longitudinal   flow gradient  is 
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small  compared with the transverse ones.    Thus 

= 0(1)   , 
3_ 
3y 3z = OU"1) (2.9) 

Ifffi(x) represents the inner or nearfield 
approximation of the potentials <f>j > j=3,5, or 
s, the boundary-value problems of (2.8) reduce 
to: 

V2    $ =Ä~2 +T-2]$(y»z;x) = 0 2D oy oz   '   " »   '   ' 
for  z  < 0 

[(lu))2   -2iiou|- + U2|-2   1$    + g$ = 0 
ox öx z 

on z = 0 

*      = V  (y,z;x)       on  3B(x) 
N N 

V* + 0(1) for  z  »  0(1) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

where 33(y.)   is  the   sectional   contour at  station 
x,    and N the two-dimensional  unit normal  on 

38{x),   (see Figure 2).    The boundary condition 
VN in (2.12) is still  given by (2.3),  viz. 

on  äff(x)   ,   for    j=s       (2.14a) 

note that the artificial viscosity u in (2.8b) 
has been discarded since the inner observer 
does not have a full perception of the overall 
radiation field. 

In the outer region, where the transverse 
coordinates (y,z) are such that R=0(1), the 
flow field is governed by (2.8a,b,d). The body 
condition (2.8c), however, is not applicable 
since geometric details of the hull cannot be 
distinguished by the  far-field  observer. 

2.2    Existing Theories 

We shall now give a brief discussion of a 
number of existing theories by examining the 
approximation used in further simplifying 
the  nearfield free-surface  condition. 

Ordinary Slender-Body Theory 

This was one of the first attempts to 
utilize the slender-body theory in ship-motion 
problems (Newman & Tuck, 1964; Joosen, 1964). 
The theory was successful only for the zero 
forward-speed case. The assumption ofoo = 0(l) 
is made. By (2.9), the free-surface condition 
becomes a rigid-wall  condition: 

ä>   =0    on z = 0 
z 

(2.16a) 

jN 

■iwN+Um      on 3g(x)   ,   for    j=3,5  (2.14b) 
j j 

However,    the   quantities   m^   and   m^   can   be 
approximated by discarding the longitudinal 
derivatives of 4>s.    Hence, 

n3  SN3 -xN3       (2.15a) 

L S -N  (*s)       -  N  (*s) (2.15b) 
3 2 yz 3 zz 

ii =    N     +  xm (2.15c) 
5 3 3 

It is noteworthy that we have kept all 
terms in the linearized free-surface condition 
in (2.11) since it is the intent of this work 
to treat U and to as arbitrary parameters.    Also 

-(iu-u|,)* + 8*i = 0 

<!>-   * 

Figure 2.    Two-dimensional  boundary-value problem for 

As a consequence, the inner region contains no 
wave-like motion. The body boundary condition 
(2.14b) yields a source-like solution that is 
similar to those in slender-body aerodynamics. 
Namely, 

$  (y,z;x)  = " -v   | 1}B(x)logR    + f .(x)     , 

for  j = {* (2.16b) 

where B(X) is the local beam at waterline and 
f (x) is a longitudinal interaction function 
that is obtained by matching the inner solution 
with the nearfield behavior of the outer repre- 
sentation. This long-wave theory yields radia- 
tion forces that are negligible compared with 
the hydrostatic restoring forces, and wave- 
exciting forces that are dominated by Froude- 
Krylov forces. 

Strip Theory 

This is the short wave-length theory 
initially proposed by Korvin-Kroukovsky (1955), 
and refined later by Korvin-Kroukovsky 8 Jacobs 
(1957), Gerristma & Beukelman (1967), (STF, 
1970), among others. This is -normally "justi- 
fied" by assuming that u=0(e"j2'), U=0(l),_and 
since 3/3z in (2.11) is by assumption 0(e :), 
the free-surface condition reduces to one iden- 
tical   to the case of no forward motion: 
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-io2t6 + g$, = 0        on z = 0 (2.17) 

A strictly two-dimensional ("strip") solution 
$2D (y,z;x) can now be constructed using (2.17) 
and the boundary condition (2.14b) on ^(x). 
This, of course, assumes implicitly that all 
waves radiate outwards. Once $ is assumed to 
be approximated by §2D, added mass and damping 
can be calculated, and they are dependent on U 
only through the body boundary condition 
(2.14b). In most strip theories, say STF 
(1970), the effects due to the steady-state 
forward-motion potential <3>s in (2.15b,c) are 
neglected. STF (1970) obtained the wave excit- 
ing forces by applying Khaskind's (1957) rela- 
tion in a two-dimensional fashion for each 
section. The strip theory as described does 
not have any three-dimensional effects repre- 
senting interactions between sections nor any 
forward-speed effects on the free-surface con- 
dition. It is known to be incorrect in the 
low-frequency limit. However, since the hydro- 
static components of the body and wave forces 
dominate in this limit, the errors due to the 
hydrodynamic effects are fortunately not disas- 
trous. 

Rational  Strip Theory of O&T (1969) 

Ogilvie & Tuck devised a rather rational 
procedure of examining the approximation 
involved in the strip theories of 60's. The 
result of some of their analysis was somewhat 
incorporated (in part) in the STF theory. How- 
ever, it is a very distinct theory by itself. 
Starting with the assumption that w =0(e"*), 
U =0(1), Ogilvie & Tuck noted that the two 
terms in the body condition (2.14b) are of 
ordere"^ and 1 respectively. Or equivalent- 
ly, $ was expected to be a power series of 
increasing order e^ , with the leading term 
being e^ (since 3/3N=0(l/e)). Accordingly, 
$   might be decomposed as: 

$(y,z;x)  = $°(y,z;x) +   $   + 5 (2.18) 

with the body boundary condition being 

$°    = iuN      ,    *    = Um      ,5=0        (2.19) 
N j N j N 

Here the term * was introduced to account for 
possible higher order Aeffects on the free 
surface, and $2D =$°+§ is the usual strip 
solution. Ogilvie & Tuck proceeded to examine 
the non-linear free surface condition (2.5) 
systematically. The first two orders of their 
analysis may be recovered from (2.7) by keeping 
the i<i)U3/3xterms and discarding the U232/3x2 

ones.    The result  is: 
1 

-ü>
2

<£   + g*     = 2iuU[$   -$$-  — $$      ]   , 
j jz jx      jy sy      2      j syy 

on z = 0     ,    j  + s       (2.20) 

which is obtained with the additional assump- 
tion that $- satisfies a rigid free-surface 
condition, ($s)z=0. 

Thus (2.20) is basically the same form as 
(2.17) except that it is non-homogeneous. In 
a systematic perturbation procedure, the right- 
hand side of (2.20) would be treated as higher 
order with <S>j replaced by 0°. Hence, the hom- 
ogeneous solution of (2.20) yields a strip 
sol ution $2D no different from that of the STF 
theory discussed earlier. The added-mass and 
damping expressions, however, differ since the 
O&T theory ignores U2 terms relative to those 
of iwU. Ogilvie also very skillfully solved 
the pressure distribution problem associated 
with $, which represents the leading-order 
forward-speed correction of the free-surface 
condition that was ignored in almost all pre- 
vious strip theories. The final results were 
simplified rather remarkably. The heave/pitch 
coupling added-mass and damping are modified 
from those of the strip theory by the addition 
of two line-integrals on the free surface that 
are quadratic quantities in $° . These were 
calculated by Faltinsen (1974) for a number of 
practical hulls and were found to provide siz- 
able improvement over the predictions of con- 
ventional strip theory when compared with 
experimental   values. 

Ogilvie & Tuck's analyses shed much light 
on the effect of forward-speed on the free- 
surface condition. However, since it was deci- 
ded at the outset that the inner problem should 
take a form similar to that of the strip theory, 
the effects of forward speed can only occur as 
higher order. Since these effects were found 
to be significant, it seems questionable to 
transpose the convective terms of the free- 
surface condition to the right-hand side of 
(2.17). 

The Unified Theory of Ship Motions 

In his review paper of 1978, Newman pro- 
posed a unified theory that improves the popu- 
lar strip theory, say of STF, in the high- 
frequency regime and reduces to the ordinary 
slender-body theory in the low-frequency limit. 
It was not recognized until that point that the 
free-surface condition (2.17) and the boundary 
condition (2.14b) could have homogeneous solu- 
tions. The following form of the inner solu- 
tion was proposed: 

2D — 
$(y,z;x)=<S     (y,z;x) +    C(x)(*° + *•)       (2.21) 

where the over-bar indicates the complex conju- 
gate with respect to the imaginary number asso- 
ciated with time, i, and the function c(x) 
contains longitudinal interaction effects. By 
analyzing the nearfield behavior of the three- 
dimensional Green function satisfying the con- 
ditions   (2.8,a,b,&d),   and  matching  with  the 
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outer behavior of the inner potential $, Newman 
obtained an integral equation for C(x). Once 
C(x)  is  solved,   (2.21)  is  known  completely. 

In this theory, the inner and outer wave 
fields are compatible for the case of zero 
forward speed. Very impressive results were 
obtained by Mays (1978) who compared his calcu- 
lations with actual three-dimensional solutions 
for bodies of beam to length ratio as large as 
1/4, and for a wide range of frequencies. For 
the case of forward speed, since the inner 
solution of the form (2.21) is still basically 
one corresponding to a single wave length, it 
is not compatible with waves generated in a 
three-dimensional flow with forward speed. 
This difficulty showed up in Newman's (1978) 
matching procedure when some of the wave compo- 
nents from the outer approximation were forced 
to be the same wave length as those from the 
inner problem. It would seem that the three- 
dimensional flow should dictate the inner 
behavior rather than be dictated by the inner 
flow. This difficulty cannot be easily recti- 
fied in Newman's formulation since the inner 
region is assumed to be non speed-dependent to 
start with. The diffraction problem was pur- 
sued  by  Sclavounos   (1981). 

The Forward-Speed Theory of Yeung & Kim 

Yeung & Kim (1981) presented a slender- 
ship theory which included all of the forward- 
speed terms in (2.11). The interpretation of a 
term like U8/8x in a two-dimensional problem 
was not intuitively obvious. They introduced a 
"pseudo-time"  variable ' 

-(x-L/2)/U (2.22) 

which represents the time for a fluid particle 
to be convected downstream from the bow.     By 
rewriting 

-itot* 
$(y,z;x) = e <|>  (y,z;t*) 

o 
(2.23) 

they showed that the "pseudo-time" potential <l>o 
satisfies 

V2 *0(y,z;t*) = 0 
2D 

* + g*      = 0 
ot*t* oz 

„itot* 

for    z < 0       (2.24a) 

on z  = 0 (2.24b) 

4      = eio)t" v  (y,z;x(t*))    on    &{t*)       (2.24c) 
oN N 

(2.24) now defines a two-dimensional time- 
dependent problem on a boundary contour that 
changes in time. The numerical solution of 
these equations are considerably harder than 
those of conventional strip theory, but is 
still fairly manageable by today's computation- 
al   standards,  provided the initial  conditions 

are specified. Yeung & Kim assumed that both 
potential and the free-surface elevation vanish 
ahead of the bow. The resulting one dimension- 
al integral equation was solved time-wise in 
the downstream direction. 

This theory has only quasi-three-dimen- 
sional effects. The downstream sections exper- 
ience a wave field generated by all the up- 
stream ones, but not vice versa. At its worst, 
one would expect it to do better than conven- 
tional strip theory, since both contain no 
genuine three-dimensional interactions. How- 
ever, the pseudo-time formulation contains 
convective effects on the free-surface and 
diffraction effects on the hull that are glar- 
ingly absent in strip theory. Further, in the 
limit of U-H), it is not difficult to show that 
each section achieves its steady-state time- 
harmonic solution as those of strip theory at 
zero speed. Regular strip theory at zero speed 
is thus recovered as a special case. One may 
therefore consider this to be a general "for- 
ward-speed strip theory". Numerical results 
presented in Yeung & Kim (1981) seemed to con- 
firm this. The improvements over strip-theory 
results in the hydrodynamic coupling coeffi- 
cients of heave and pitch were particularly 
striking for a number of realistic hull forms. 
Loeser et al.(1982) followed the Yeung & Kim 
formulation but used a different numerical 
method to solve the inner problem. Their cal- 
culations for a spheroid submerged under a free 
surface agreed well with an approximate three- 
dimensional theory of Newman (1961). Their 
numerical results for a surface piercing body 
were however invalid since some important con- 
tributions arising from the intersection of the 
hull   and the free surface were ignored. 

In spite of the rather encouraging results 
of this new "pseudo-time theory", questions re- 
main on the validity of imposing a zero-distur- 
bance condition ahead of the bow. In fact, it. 
is known forT=uU/g<l/4, that transverse waves 
exist ahead of a pulsating and oscillating 
source. This suggests, therefore, a certain 
degree of upstream influence would exist. A 
careful examination of the numerical results of 
Yeung & Kim (1981) indicates that for a given 
U, the quality of the prediction appears to 
worsen as the frequency decreases below T=1/4. 

To acquire some additional insight of the 
difficulty involved, let's consider the wave 
patterns generated by a three-dimensional pul- 
sating and translating source satisfying 
(2.8a,b,&d). The overall results are charted 
in Figure 3, where the critical frequency x=i/4 
marks the boundary between two fundamentally 
different sets of wave patterns. This is re- 
produced from Becker (1958) for clarity. The 
wave numbers associated with these wave systems 
near the x-axis can be obtained by stationary 
phase analyses.     It is not difficult    to arrive 
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Figure 3. Wave patterns due to a pulsating 
and translating source. 

at the following results: 

1,2 
>[1 + 2T ± (1 + 4T) 

1/Z
] 

for    T > 0 

K„ 
(2.25a) 

k        =        -^[1  - 2T + (1  + 4x)1/z] 
3,4 2 

for    0  <  T < 1/4 

'l,3= +4y2    + U|y| 
for    T > 0    (2.25b) 

where the kl5 1=1,..4, represent transverse 
waves, and k1>3 divergent waves. Thus, in 
general there are 4 to 6 wave patterns, depen- 
ding on T, radiating mostly downstream, and 
athwartship, but occasionally also upstream 
(for T<1/4). The pseudo-time solution can 
represent the presence of divergent 
waves, k, 3 but not any of the disturbances 
associated with transverse waves. The flow 
model cannot be considered complete unless 
these waves and their diffraction effects along 
the hull are properly accounted for. In the 
same context, all of the foregoing inner 
approximations that utilize a strip-theory type 
solution cannot be made compatible to this maze 
of wave patterns in the presence of forward 
speed. 

3. INNER AND OUTER GREEN FUNCTIONS 

In order to construct the solution of the 
inner problem (2.10-2.13) that satisfies the 
complete linearized free-surface condition, it 
is instructive to examine the behavior of the 
outer Green function and certain inner Green 
functions. The following definition of Four- 
ier-transform pair in the x-direction will be 
used: 

A*(k) = I dx A(x)elkx 

A(x) "Sri dk A*(k)e 
-Ikx 

(3.1a) 

(3.1b) 

3.1 Inner Green Functions 

Consider a pair of Green functions asso- 

ciated with the inner problem (2.10-2.13) that 

satisfy the following conditions: 

V2 G±(y,z,Ti,C;x,C)= 6(x-5)6(y-Tl)6(z-Q , 
y.z 

for z < 0 (3.2) 

(±lu + U— + n)2 
ox 

on z = 0 

G + gGz 

(3.3) 

where 6 is the Dirac delta function. The 
superscript "+" case corresponds directly to 
the problem defined by (2.10-13). The "-" case 
corresponds physically to a reverse-time, 
reverse-flow problem which, though may seem 
artificial at the moment, is intimately related 
to the absence of a strict definition of u in 
the entire inner problem (see 2.11). Our 
introduction of y in (3.3) requires the con- 
sideration of the "-" case. The exact role 
played by G" will  be explained momentarily. 

To define G1 completely, we need to in- 
troduce the following "initial" conditions 
corresponding to vanishing motion upstream of 
the source (x>?) and downstream of the source 
(x<£)  for the   ±   cases, respectively: 

x > 5 
G-(y,o,n,c;x-S) = °»   for   x < ^ (3.4) 

We write G    as: 

G± _   6££)ln(R/R j + H±(y>Z(y>C;x.05      (3.5) 

2u 1 

where 

R =[(y-rD2 +(z-e)2]1/2 

R1=[(y-n)2 +(z+C)2]1/2 

(3.6) 

The first term of (3.5) satisfies (3.2) and the 
harmonic function H1 can be determined by 
using Fourier transform to satisfy (3.3). The 
final  expressions are given by: 

G± =Mx^.)ln(R/Ri) +£,uF(x_s)]ei"<x-C)/U x 

f-_di_   «z+^C0Si(y_T,)sln/K?(x-5)j   (3.7) 

where u[x] is the Heaviside function. It is 
easy to recognize that G+ is simply the two- 
dimensional time-dependent Green function that 
satisfies homogeneous initial conditions and 
has the usual "time" variable T replaced by 
(£-x)/U (see Yeung & Kim, 1981). In fact, the 
pseudo-time inner solution & associated with 
the pseudo-time problem in (2.23) can be con- 
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Figure 4.    Path integrals for G* 

structed directly from G+. We will refer to 
(3.7) as the pseudo-time forward-flow and re- 
verse-flow  Green  functions. 

Returning now to the original   inner  prob- 
lem  (2.10-13),   we will   introduce a generalized 
inner Green function G^1) defined by: 

G       (y,z,T),C;x-C)  = G    + ECy.z.Tl.Cjx-S)     (3.8a) 

,    6<x-^lnR/Ri  + H+ + E       (3.8b) 
2it L 

where E is an unknown harmonic function in 
(y,z). The determination of E is non-trivial 
since it must satisfy the speed-dependent 
free-surface condition (2.11). A moment of 
reflection on the integral representation (3.7) 
of G+ will show that its point of stationary 
phase  (cf.   Copson,   1965) occurs at: 

/T= - v% x/2y    . 

This yields waves of the form 

.(ÜL)l/2exp|ioX(z+0]e 
KQy 4y2 

iü)(x-g)/Uoln(K0x- 
4y ■? 
(3.9) 

which corresponds to the divergent waves of 
(2.25b). Thus, the function E is introduced 
here to account for other disturbances that may 
be present, including those that would event- 
ually become transverse waves at sufficiently 
large longitudinal  distance from the  source. 

Asymptotic Behaviour of Inner Green Functions 

In developing expressions for the far- 
field behavior of G", we assume in this section 
that the source is located on the x-axis; i.e. 
n=t=0. For simplicity, we therefore introduce 
the  notation: 

Furthermore, we define: 

2 = z + i y| 
-ie 

-Re 

K =((o +Uk)2/g 

(3.11) 

(3.12) 

It is convenient to work with the Fourier 
space rather than x directly. The Fourier 
transforms of G* are given by contour integrals 
in  the  complex £-plane as  follows: 

+* 
G    (y,z;k) - *r it i-(urt-Uk+iti)^/g      ' 

0+. (3.13) 

Note that G" = G . Thus, it is only neces- 
sary to consider, say, G+ . Introducing the 
complex representation for cos (£y), we can de- 
form the contour integral "<? in the £-plane into 
two contours,«', and «Pg» in the s-plane, where 

S=(K-X.)2 or (ie-£)"?.The actual paths depend 
on the sign of w+Uk (see Figure 4). Applying 
the Residue theorem, it is relatively easy to 
show that 

G+*     = .   l^{eK^+iy\[K(z+iy)]} 

+ isgn(uri-Uk)exp{K[z-i|y|sgn(ürt-Uk)]}   (3.14) 

where E^Q) is the exponential   integral  defined 
in Abramowitz and Stegun  (1964): 

Ei(n) -Cl ds 
a  B 

arg n < it (3.15) 

The asymptotic properties of G" can be 
readily obtained by using known expansions of 
the exponential integral. For small values of 
KB , 

G*  (y,z;k)  =  (l+iez)[ln KR + y ± ni sgn(urt-Uk) 
it 

G  (y,z;x)  = G  (y,z,0,0;x) H (3.10) - <z + Ky9] + O(K^R^) (3.16) 
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where Y is Euler's constant.    For large values 
of KR, we obtain: 

G**(y,z;k)  = ±isgn(wHJk)exp{i<[z+i|y|sgn(ürt-Uk)]} 

+ £2|2    +    0((KR)"
2
) (3.17) 

3.2 The Outer Green Function 

In view of the boundary condition (2.8c), 
we expect the velocity potential, <(>.:, j=s, 3, 
or b to be defined by line distribution of 
"sources" on the x-axis: 

■ fdü  q,(5) 
-'-co J 

(o) 
G    (x-5,y,z) (3.18) 

where q.(?) is the unknown source strength, and 
G(°) the outer Green function. Effects of 
forward motion make it unclear that q^g) 
should vanish immediately outside of the ship 
length x=[-L/2, L/2]. Thus, we make no apriori 
assumption on the limits of the integration. 
The outer Green function G^°) satisfying 
(2.8a,b,d) and located on the free surface can 
be  found  in   Wehausen   &   Laitone (1960): 

(o)                 -1    f   f 
3    (x,y,z)=     dk    di 

47t2 L L 

e(k2+ i2)1/2z-i(kx+^y) 

oo   --co     (k2+*2)1/2  -(wHJk-iuf/g 

u ■* 0+ (3.19) 

Its Fourier transform   G^0)* is given by: 

I   /■»        exp[(k2+f2)1/2z]  cosfy 

1 (o)* 
G    (y,z;k) = -—     dl 

it  ->0       (k
2+i2)1/2 - (ürf-Uk-iu)2/g 

(3.20) 

We need an inner expansion of (3.20) for 
small values of R = (y2+z2)^. Similar expan- 
sions have been studied by Ursell (1962) for 
U=0, and Newman (1978) for ItfO. It is neces- 
sary to make a distinction of the order of 
magnitude of in and U, thus *, in constructing 
these expansions. If both <o and U are 0(1), 
KR can be considered small. If U =0 (1) but 
ui>>l, for R« 1, a separate expansion is neces- 
sary. This can be carried out by using a 
procedure similar to Ogilvie & Tuck (1969). A 
more detailed discussion of this can be found 
in Kim (1982). The asymptotic analysis yields 
the following results for R«l: 

(°)*_ (1+Kz)       r|Ttisgn(üH-Uk)+at H.^/^)1'2 

+ Y + In — ] -KZ + Ky9 + 0(k2R2,  <2R2) 
2 

G(°)*= isgn(uH-Uk)exp[K(z-i|y|sgn(üH-ük)] 

+ £os9    ,.    0(k
2/K2   , k2y/K   ,   (<y)-2) 

TCKR 

for    <R » 1 (3.21b) 

Here the quantities a  and a  are defined by: 

a = cosh~(K/|k|)    ,    ot'= cos"(K/|k|),      (3.21c) 

forK/|k| >1 and </|k|  < 1,  respectively. 
These expressions can now be used to match 

the inner and outer Green functions in Fourier 
space. First, comparing (3.21b) & (3.17) we 
obtain: 

<o>* 
G+* + 0(k2/*2, k2y/K,   (Ky)'2) (3.22) 

which states that the pseudo-time forward-flow 
potential is compatible with the three-dimen- 
sional flow at high frequencies. If the ex- 
pansion (3.16) of G+ is now introduced into 
(3.21a) the resulting expression can be re- 
arranged to deduce the following: 

(oV 
G+* _ f (k,K^[G+- G-]* + 0(k2R2,ic2R2) 

2iti 

= o+* G+* + F*(y,z;k) + 0(k2R2,  K2R2)     (3.23) 

where   the   'modulation'   function   f     in   the 
Fourier space is given by: 

^iti+sgn((.H-Uk)cosh~1 (</|k| ) 

f*(k,K)=- ■|l-k2/K .21^ 

for    KR « 1 (3.21a) 

([-Tt+cos-1(K/|k|)]sgn(io + Uk)) 

+ sgn(aH-Uk)xln(2K/|k|) + Tti (3.24) 

with the top and bottom expression in j j cor- 
responding to K/|k|>l and <1 respectively. For 
large values of k/k, it is straightforward to 
show that the expression for f*~0(k2/K2) and 
[G+-G"]*~ti(l). Thus, to the order of accuracy 
indicated in (3.22), we may consider (3.23) as 
the general expression for arbitrary K. It is 
interesting that disturbances other than those 
associated with the divergent wave system G 
can be constructed by superposing the forward- 
flow and reverse-flow pseudo-time Green func- 
tions and convolving their difference by a 
wave function that depends only on the longitu- 
dinal   coordinate. 

Equation (3.23) is one of the principal 
results of our theory. If we recall the defi- 
nition of the generalized inner Green function 
(3.8), we see that the missing waves described 
by E are now defined by F.    More specifically, 
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E (y,z,Ti,C;x-5) where, according to (3.24), D(k,T) is given by: 

~^- [G+ - G-]*      (3.25) 2ni 

3d) G +F   ,   F- 
0(1) for    vR « 1     (3.26) 

0((vR)-';)  for     vR »  1     (3.27) 

where F is the inverse Fourier transform of 
(3.25). A more detailed description of the 
error in physical space can be found in Kim & 
Yeung (1984). As defined by (3.26), G^1' con- 
tains all of the essential features in a three- 
dimensional flow near the hull. The vanishing 
of F for w»l indicates that the pseudo-time 
theory of Yeung & Kim (1981) discussed in § 2 
is the appropriate approximation in the pres- 
ence of forward speed, but not one based on the 
time-harmonic  strip  solution. 

D(k,T)  = sgn(üH-Uk)f*(k,K) (4.5) 

with 

T = u>U/g,    K = (üH-ük)2/g = K0(T+k/K0)
2  (4.6a,b) 

The complicated expression of (4.5) makes 
the evaluation of F a non-trivial task. In 
considering a related integral in the unified 
theory with forward speed, Sclavounos (1981) 
devised a clever way of evaluating (4.4) for 
the case of y=z=0. His procedure was general- 
ized by Kim (1982) to include the factor of 
exp(Kz)cos(Ky). The analysis was quite leng- 
thy, and only the final results, which are 
considerably simpler than (4.4) and (4.5), are 
reported below. First, we define the following 
wave function: 

4.   THE GENERALIZED INNER GREEN FUNCTION AND 
THE NEW INNER SOLUTION 

Y» (kx,Pcy,Kz) e-ikxeKzC0SKy (4.7) 

With the function F now explicitly given 
by (3.23) and (3.24), we can proceed to con- 
struct the inner solution. However it is 
worthwhile to examine and simplify F further. 
The pseudo-time forward-flow potential G+ has 
already been studied and used extensively in 
Yeung (1981), and Yeung & Kim (1981). We focus 
most of our attention here on F. 

Then F(y,z;x) can be written as: 

F(y 
Fj(y,z;x)   + F2(y,z;x)   ,   x < 0 fFj(y,z;x)   + 

.z;x) = < 
< F2(y,z;x)   , 

where 

(4.8) 
x > 0 

4.1    Properties and Expressions of F 

Because of the various approximations used 
in arriving at F, it is not immediately obvious 
that F satisfies the two-dimensional Laplace 
equation and the complete speed-dependant lin- 
earized free-surface condition (2.11) It is 
only necessary to show this in Fourier space. 
(2.10) and (2.11) require that 

i    r
ki   -° 

i(y,z;x)  =   — [f    - f  ]dkw{l-[l--^-r1/^}     , 

+  — [J     -      ]dk w ;   x> 0        (4.9) 
% V   4>/u 

V2     F*(y,z;k)  = 0 y,z      J '       ' 

(wfUk)2F*  - gF*  = 0 

However, by definition, 

F*  =  ~^^>   [G+*-G-*] 

(4.1) 

(4.2) 

(4.3) 

F2(y,z;x)  - ^.[f 3+   f   ]dkw{l-[l-^!]-l/2} 
v.ft     »L Ji  i .-.2 8     H 

1   /-k' k2 

"J   *dkw{l-i[—  -l]-"2}      , 
K3 

where the bracketed term itself satisfies (4.1) 
and (4.2) by design. Hence, F* clearly satis- 
fies (4.1), and also (4.2) upon noting that 
fz=0. This is a rather remarkable property of 
our new  kernel   function. 

The   exact   expression   of   F(y,z;x),   or 
E(y,z;x)  in  (3.8),   is 

0 < T < 1/4 (4.10a) 

F2(y,z;x)  = —-  f   dkw{l-[l-—  ]"V2} 
2it  rfo KZ 

F(y,z;x)  = — fdk e"lkxD(k,T)eKzcos<y     ,   (4.4) 
2it2 -- x >l/4 (4.10b) 
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Here, the limits of integration are given by 
the equation 

(uri-Uk'^/g2  = kw i = 1....4    (4.11) 

by (3.26), (3.7), and (4.4). Let P=(x,y), 
Q=(S,n). The boundary contour consists of the 
body contour5ff(£), the linearized free surface 
&[£,) and a large contour at infinity «"R(C). 
The result is given by 

Ur equivalently, 6(x-5)«(P;5) 

k>      = - -o  (n-2-u ±  (l+4t)1/2}   ,  T > 0      (4.12) 
1,2 2 

A-2x +  (l-4t) 1/2 0 < T< 1/4 

3,4 2 \ (4.13a,b) 

^1-2-c +1(4T- 1)1/2   >     T  >  1/4 

The expressions given by (4.8-4.10) are eas- 
ily one order of magnitude simpler than the 
original three-dimensional Green function 
(3.19), thus making it worthwhile to pursue a 
slender-body theory. 

Finally, it is noteworthy that the wave 
numbers given by (4.12) and (4.13a) are preci- 
sely the same as those associated with the 
transverse waves noted in §2, Eq. (2.25a). To 
see this, one simply has to observe that the 
function F(0,z;x«-1) is , to leading order, 
sinusoids with k evaluated at the limits of 
integration k'^. However, F contains more in- 
formation than these transverse waves since it 
describes completely how the disturbances would 
vary for x=0(l) and for y not directly on the 
track of the source function, all with the 
effects of forward speed included! 

4.2.    The Inner Solution 

The new inner solution differs, in princi- 
ple, from that of Yeung & Kim (1981) only by 
the additional term F in the inner Green func- 
tion. The procedure for constructing $ is the 
same. Let's apply Green's second identity in a 
sectional plane (see Figure 5) to the inner 
potential $ (Q;£). and tne generalized inner 
Green function G^1 )(P,Q,x-?), tne latter given 

mi) 

\ 
\ 

Q v*(£) 

\       «p = (*.y) 

.A 
No N. 

I 
A— VA%) 
/ 

Figure 5.    Domain of application of 

Green's Theorem at section i. 

= fdsQ t*(Q;5)g^ -*K]G(1)(P,Q;x-S)    (4.14) 

^(5)+^5)-rt?R(5) 

The contribution from <?R(?) can be shown to 
vanish. Integration with respect to £ from 
[-L/2,  L/2] then yields 

*(P;x) - •£■  r<i8Q[«(q;x)^-ä.N]ln(R/R1) 

L/2 

+ f älj dsQ(<t(Q;5)ä|-*N)[H+(P;Q,x-5)+ F] 

-L/2 mo 

2iu , 
[*(Q;5)57 ^*5+-5-«] [iT+FMn 

P t Q (4.15) 

where 'g is a clockwi se contour representi ng 
the intersection of the hull and the plane z=0. 
In arriving at (4.15), we have made use of the 
fact that both § and G1 i' satisfy the complete 
linearized free-surface condition (2.11) on^. 
Thus, 

v  ac     s       k=o 

=   -g-ä5-[^-*5+ü"*)G    1   (4-16) 

which reduces to the line integral over«' after 
taking advantage of Stoke's Theorem and assum- 
ing vanishing motion at sufficiently large 
values of |x|. (4.15) was derived based on the 
assumption that Pi3B. If we let P approach«, 
the unity factor on the left hand side of 
(4.15) should be replaced by 1/2 for a smooth 
contour. This then yields an integral equation 
for $ on«(x), since <5>N is given. Details on 
its numerical treatment have been discussed in 
Yeung & Kim (1981). We note that if F+0, the 
limit of integration for? reduces to 
f;=[x,L/2], because of the step function proper- 
ty of H+ in (3.7). . This reduces to the pseudo- 
time slender-ship theory. In its most general 
form, our new theory states that full interac- 
tion among the various sections of the ship is 
to be expected unless F vanishes (which is the 
case when u»l). The type of interaction ac- 
counted for here is of an approximately three- 
dimensional   kind that includes forward-speed 

205 



effects  in the free-surface condition. 

4.3.    Effective Line-Source Distribution 

One question remains to be settled in our 
new theory. The most general form of the solu- 
tion obtained by solving (4.15) in the inner 
field involves a sectional contour distribution 
of our "generalized inner sources and dipoles" 
under the plane z = 0. In matching the asymp- 
totic behaviours of the inner and the outer 
Green functions in §3, we have made the assump- 
tion that the inner solution, as seen from the 
outer field, can be represented by a line dis- 
tribution of sources on the free-surface. It 
is not obvious, for this new type of Green 
function, that a submerged distribution is 
always equivalent to a point singularity on the 
free surface. The equivalence relation is 
known only in time-harmonic zero-speed prob- 
lems,   but not for our case here. 

To resolve this uncertainty, let's consider 
the following question. Suppose (4.15) is 
solved. We ask if it would be possible to find 
an equivalent distribution cr(x), so that the 
wave field will be equivalent to those of 
(4.15) for. large transverse distance R. The 
analysis of this problem is detailed in Kim & 
Yeung (1984). The answer to the question is 
yes" and the equivalent source strength a(x) 
turns  out to be: 

(3.18). However, if we let U->0, it is possible 
to reduce (4.17) and (4.18) to a simpler form 
by using generalized functions.    The result is: 

JdsQ[$(Q;x)gs-$N]evCcos  vn    |x|   <  L/2 
U»(x) 

limcr(x)=^ 
U+0 

(4.19) 

|x|   > L/2 

where v=w /g. These last two expressions are 
well known, but they are invalid in the presen- 
ce of forward speed. 

5. HYDRODYNAMIC PRESSURE AND FORCES 

To obtain the hydrodynamic force acting on 
the hull, we use Euler's integral. Let p be the 
fluid density. After introducing the descrip- 
tion (2.1) and neglecting terms of 0(<l>j), we 
may write the linearized hydrodynamic pressure 
as: 

P(x) -p{iü)5 <(>  + I W«V$. 4- U2JS   H   i a-VW2} 
j  j       j " 5x 2 

on S (5.1) 

where W was defined earlier by (2.2) and 5, the 
vector displacement of the ship's wetted sur- 
face,  is given by: 

L/2 

(x)  =J       düj   dsQ  [$(Q;5)|jj- *N]M(Q;x-5) 

-L/2  gg{l) 

~<J>dn [«(TKO^-^+^JM^.OJX-C) 

- » < x < « (4.17) 

where the weighting function M is given by: 

if 
2%-La 

^_]i/2exp[!±^;eiU(x-5)/u 
3 4u(s+jn) 4(c+jn) 

(4.18) 

1 r« 
M(T|,C;x-E) =  /dk elk(x-5)eicCcos 

7ir J„ 
KT) 

The existence of the function a(x) justifies 
our earlier assumptions.     In  fact,   by  (3.18), 

<r(x) =qj(x) 

since the Green functions were matched by con- 
struction. Note that the distribution does 
not, in general, vanish outside of the part of 
x -axis occupied by the ship, |x|sL/2. This 
explains our choice of limits of integration in 

a = (z?5> 0, VXV (5.2) 

assuming only heave and pitch motions exist. 
The last .term in (5.1) gives a force propor- 
tional to the unsteady displacement of the 
ship, and hence an additional buoyancy force to 
the hydrostatic restoring force. Since we are 
now interested in the linearized pressure for- 
ces associated with the wave-resistance, the 
added-mass, and the damping, we will use (5.1) 
without the last term. 

Following the conventional definition of 
added-mass and damping coefficients, the un- 
steady hydrodynamic pressure p^, can be writ- 
ten in the form: 

Fi =jfTdSp^U)ni  = "pE5   jfJ"dS(iuit> + W-V*  )n 
S S J       '     J 

= u22 5  (a      + b     /iio)     ,       i = 3,5 (5.3) 
j    j    ij ij J  -  3,5 

where the quantities a^ • and b.^ are the added- 
mass and damping coefficients associated with 
the force (moment) in the i-th direction due to 
the j-th mode of motion. 

The wave-resistance of the ship is ob- 
tained by integrating the linearized steady 
part   of the hydrodynamic  pressure in  (5.1): 
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8*8 %--JT«*w»i-p*Sf«*iTg 
s 

(pU2L2)Yw 
(5.4) 

where Yw, defined as Yw=Rw/pU L , is the nondi- 
mensional  wave-resistance. 

An alternative expression for Fi, which is 
convenient for simplifying the integrals (5.3) 
involving«, can be obtained using Tuck's theo- 
rem  (Ogilvie and Tuck,   1969): 

jfjfdS(W'V(t>)n = JJdS <Kn-V)W - <f(dt x <f>W)      (5.5) 

s s « 

(2) 
f      = 
ij 

(3) 

p(U/iu) ff dS  (n $ - m ¥  ) 
•L-' i  j       i  j 

f      = p(U7iio)2 ffdS m $ 
ij -T i  j 

i=3,5 
J-3,5 

(5.11b) 

(5.11c) 

Now the expressions in (5.10)-(5.11) will 
be discussed in more detail. From Green's 
theorem applied to ^ and f<j, with the boundary 
conditions (5.8),  we can show that 

■b. 0 = / ds(N.,y. 

i(x)   J   X N.<F.) ■X 
2(X) (5.12) 

jfdS  (W«V*)(xxn)  = jQdS <t>(n-V)(xxW) 

S "S 

(d£ X <J>W)xx (5.6) 

where d£ denotes the infinitesimal arc-length 
vector tangent to * on the undisturbed free 
surface. We note that the line integrals in 
(5.5) and (5.6) may be ignored for a slender 
ship, for it is of higher order than the 
remaining surface integral by a relative order 
e.    Thus,  we obtain 

a      + b     /id) = -(p/ü)2) ffdS(iwn - Um )<|>       (5.7) 
Ij ij J± 1        1     j 

Let 1'i and H». be inner potentials deter- 
mined by tne numerical solution of (4.15), with 
the following hull   boundary conditions onäS(x): 

Wi 

8N 

8N 
"j 

(5.8a) 

(5.8b) 

Then, in view of the boundary conditions 
(2.Hb), the unsteady velocity potential can be 
expressed in the form, 

<j>.(x) = iwM'. + OT. (5.9) 

Substituting   (5.9)  into  (5.7),   we  obtain 

where the closed contour E(x) is the boundary 
of the simply connected domain shown in Figure 
5, 3ff(x)+^(x)+■<?„(x). The integral over «^(x) 
vanishes if we let ^ tend to infinity. Since 
both ¥i and ^ satisfy the free-surface con- 
dition (2.11)  it follows  that 

(1) f<1} - f 
xj jx 

p/7ds(N.<r. - N.f. 

L/2 

(p/gM   dx  fdy(U2 

-L/2   3T(x) 

- 2iu>U) OF. V    _'F.¥.   ) 
J   lx    1 j.x 

(5.13) 

The integral over the free surface, in general, 
does not vanish. Since the velocity potential 
in the present theory retains a similar line 
integral (see equation (4.15)), a consequence 
of the complete linearized free-surface condi- 
tion used in the formulation of the inner prob- 
lem, we cannot justify the omission of this 
integral. By using a similar analysis to what 
we did above, we can also show that 

L/2 

-L/2   #W 

3_ 
3x 

2iuU)> 

[Y Y    -V.V. -Y.Y. +1F.,F.   ]     (5.14) 1    j    IX       1   JX      J    XX       1]X 

f<3) f<3) 

JX 

L/2 

L/2   *-(x) 

dy(u2|j -  2iü)U) x 

J    XX       1]X 
(5.15) 

I,,  + b^/iu = ffP+ fi^+ f <3)       (5.10) 
xj 

with 

xj xj 

If we had assumed the same approximations 
used in the derivation of the reverse-flow 
theorem of Timman and Newman (1962), we could 
have shown that 

f      = p 
ij 

fßS »* (5.11a) (D+    ,(D- 
lj ji 

(5.16a) 
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f(2)+=    (2)- 

(3)+      (3)- 

ij 

Yeung (1984),  we will  not develop the equations 
(5.16b) -jn detail,  and only the major  results are sum- 

marized. 

(5.16c) 6.1    Stationary Ship In Forced Oscillations 
ttlfl), u=o 

where the superscript "±" denotes the direction 
of the forward velocity with time still taken 
in the forward sense. Since these approxima- 
tions are not assumed in the present formula- 
tion, the applicability of the reverse-flow 
theorem to the present result is questionable. 

In an intuitive approach, if the gradients 
of the steady-state disturbance velocity field 
are considered negligible, then the only non- 
zero element of nij(j = 3,5) is m5,which isAiden- 
tified to n3. Thus it leads to $3=0 and Vs =V3. 
With these simplifications in (5.10)-(5.11), we 
obtain 

We first recall that one of the key re- 
sults developed here consists of a generalized 
inner Green function of the form given by 
(3.26).     Alternatively,   in  Fourier  space, 

G(i)*(y,z;T),C;k) = G+*(y,z;T],C;k) 

2itl 
G-*] (6.1) 

where G~ are the pseudo-time forward- and re- 
verse-flow potentials given by (3.7). If U is 
taken as zero, (3.5) and (3.13) yields 

a   + b    /iu 
33      33 

a    + b     /iw 
53       53 

(1) 
f 
33 

(5.17a) 

(1) (1) 
f        -  (U/loj)f (5.17b) 

53 33 

335+ b35/I[° = f35    +  <ü/lw)f33)     C5.17c) 

(1) (1)     (1) 
a    + b     /lu = f -  (U/iio)[f      -f       ] 

55       55 55 35       53 

-(U/io))2f 
(1) 

33 
(5.17d) 

Tnese equations are 'structurally' very 
similar to the strip theory results for heave 
and pitch derived by Salvesen et al. (1970). 
But the coefficients f[V in (5.17) are now 
three-dimensional ones which include the three- 
dimensional interactions, while those of the 
conventional theories are their corresponding 
two-dimensional  values. 

6.    TWO ANALYTICAL LIMITS OF THE NEW THEORY 

G+*(y,z;ti,C;0) = InR/R + H+*(y-Tt,z+C;0)    (6.2a) 
2u 1 

= G+  (y,z;n,C)= G+ (P;Q)       (6.2b) 
2D 2D 

where G^Q is the "standard" two-dimensional 
time-harmonic Green function satisfying an 
outgoing-wave radiation condition. In simple 
terms, the Fourier transform of the pseudo-time 
forward-flow Green function at zero longitud- 
inal wave number is the two-dimensional time- 
harmonic source! Whence, we may write in the 
place of (6.1) 

(i)* . f*(k,v)     + 
G     (y,«;n,c;k) - G+D(P,Q) - —^~ [G2D" G2D] , 

V = 0, (6.3) 

where the combination G2D"G2D is 9^ven simply 
by 

G+ - G- = 2ieVzCos(vy)   .     (6.4) 
2D  2D ! 

Two analytical limits of our theory will 
be discussed for the purposes of comparison 
with other existing ones. The first study 
corresponds to u^O, U=D, the problem associated 
with a stationary slender body undergoing for- 
ced harmonic oscillation. The present theory 
reduces to the zero-speed case of Newman's 
(1978) unified theory, which is known to be 
consistent. The second study corresponds to 
to =0, üj*o. This is the well-known Neumann- 
Kelvin problem associated with the wave-resis- 
tance prediction of ships. Our theory yields a 
completely new slender-ship formulation for 
this problem. Since more details on the treat- 
ment of these limits are available in  Kim  & 

Thus, the zero-speed generalized inner 
Green function in the context of our theory 
reduces to 

G(i)=  6(x-?)4lnR/R1+ H+D]  - ^1[G+D- G^] 

(6.5) 

+ + 
with Kpn being the harmonic part of G2p.    Here, 
inversion   of   f*(k,v)  yields   f(x-?)   and   the 
expression   was  given  by  Newman  and  Sclavounos 
(1981) as: 

f(x) = i{— - ^[H0(vx)+Y0+2iJ0]}      (6.6) 
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where H0,Y0,andj0 are the Struve function, 
Bessel function of the second and first kind, 
all  order zero,   respectively. 

The integral equation satisfied by the 
inner potential $, according to (3.8b) and 
(4.15),is now given by: 

AKP;x)  =/dsQ  ($(Q;X4-*N)G+D(P,Q) 

L/2 

" £1 f^ f^fdsQ{m>vh- V[G2D"G2D] 

-L/2 33(E.) 

P e«(x) (6.7) 

Note that the Green function G" does not depend 
on x and the three-dimensional interaction 
effects are represented by f in the last term. 
Imbedded in this integral equation is the form- 
ulation of the unified theory. To see this, we 
can introduce the decomposition of Newman's 
(for U=0) as given by (2.21): 

also be deduced if one simply substitutes 
G2D(y.z;n,?) for the term G4*(y ,z;n ,? ;k ) in 
(6.1). This approximation eliminates all of 
the forward-speed effects in G~, and is un- 
necessarily restrictive. The present theory 
has more compatible wave effects. 

6.2    Steady Motion of a Slender Ship; M=0,   UJ^O 

In this limit, the function G(i' in (3.8) 
can be written as 

(i) 6(x-£) , 
G       (P,Q;x-£) In  E/R + H+(P,Q;x-?) 

2TC 1      O 

+ F(P,Q;x-5) , (6.11) 

where H. is given by (3.7) with <o set equal to 
0. To obtain F , one simply notes that the 
equations for the wave numbers (4.12-4.13a) are 
now given by: 

1,4 2,3 
g/u2 (6.12) 

$(P,x)  = $° + C(x)($° + O (6.8) 

Hence the interaction kernel function F of 
(4.8) reduces to the following representation. 
Let 

where   $°(x) is the strip solution at section x 
satisfying the integral  equation: 

5$°(P,x) =ydsQ[*°(Q,x)^- «^„(P.Q) 
.   33(x) 

P ed5(x) (6.9) 

After substituting (6.8) into (6.7), some man- 
ipulations yield: 

-2itiC(x)a°(x) 
rL/2 

-L/2 

(6.10) 

where a" is the strip-theory source strength, 
and a the effective (three-dimensional) source 
strength given by (4.19). Equation (6.10) is 
identical to Newman's (1978) equation (6.34). 
Thus the unified theory for U=0 is recovered as 
a special case of our more comprehensive treat- 
ment that includes forward-speed effects. It 
is worthwhile to add that (6.5) can also be 
directly obtained from the physical x-space by 
using the definition of F:(4.8-4.10). 

For i#0, a proper inclusion of forward- 
speed effects on the free-surface in the near 
field renders (6.8) invalid. The function 
F(y,z;x) cannot be simply taken as a product of 
f(x) and another function dependent only on 
y,z. To obtain the solution of *, (4.15) must 
be taken in its original form. From the view- 
point of our formulation, the forward-speed 
version of Newman's (1978) unified theory can 

w0(k;K0x,K0y,KoZ) = e"
lkK°Xek K°Zcos(k2K0y) 

(6.13) 

then 

F (y,Z;x)=-[5dk lm(w0)+fdk -ImCw.)] 
^     (k2-l)1/2 

(6.14a) 

F (y,z;x) = — [\dk Im(wc)-J dk 
1 TT      *i* O o       (1-k2)l/2 

■ Re(w0)] 

(6.14b) 

These results, valid in the context of slender- 
ship approximation, are considerably simpler 
than the three-dimensional (Havelock) Green 
function, which corresponds to (3.19) here. 
G'°> normally needs to be expressed in terms of 
a real double integral, or a single integral of 
more complex special   functions. 

The  integral   equation   corresponding  to 
(4.15) is now given by 

\ **(P;X)   = 7nfdSQl*s(q;X)™ ' *SN]   ln R/Rl 
Ä(x) 

L/2 

+ fil  fäs (VQ.^-^^CF.Q-.x-O+F] 

-L/2   38(0 

- KO£T,[*S(I.0,5% - *   ][HS<P;TI.O;XHHF] 

(6.15) 
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where y denotes the fact that the limits of 
integration for the term H are given by 
[x,L/2]. The function F in (6.15) provides the 
only upstream influence. However, it also 
generates important downstream effects. If 
(6.15) is solved in its entirety, all "wave- 
diffraction" effects along the ship hull will 
be properly accounted for. A number of simpli- 
fying treatments of (6.15) are possible but we 
will  not be concerned with them here. 

It is of interest to compare our new the- 
ory with a number of other existing approxima- 
tions. First, if we simply set the transverse 
coordinates y and z in (6.13) to zero, 

F(0,U,x)  = -1/TTX    + |sgn(x)/27rx 

48x' 

(6.16) 

H0(-Kox)  +[2 -  sgn(x)]Y0(K0lx|)}} 

The ^term here is the longitudinal interaction 
function first derived by Tuck (1964) in his 
slender-body theory for wave resistance. The 
first term of (6.16) is annihilated by a 
similar one from H+. F(0,0;x), however, does 
not satisfy the speed-dependent linearized 
free-surface condition (2.11, with w=0) in the 
nearfield. Tuck was not concerned with that 
because he assumed a rigid-wall condition for 
$s. His slender-body theory resuits in an 
effective source strength that depends only on 
the longitudinal derivative of the cross- 
section area. Or equivalently, the wave-making 
characteristics associated with the sectional 
shape cannot be properly modeled. 

Chapman (1976), Uaoud (1975), and Hirata 
(1975) used the first two terms of (6.11) in a 
pseudo-time fashion described earlier to study 
the flow about a plate and a wedge. These 
works were all known to produce only divergent 
waves. The function which accounts for 
transverse-wave effects downstream was absent 
and unknown. A re-examination of the matching 
error in (3.22) will indicate that F is negli- 
gible only under the assumption of U»0(1), 
corresponding to a high-Froude number approxi- 
mation. 

In a recent work, Maruo (1982) proposed a 
slender-body approximation that can be consid- 
ered basically as equivalent to (6.11), but 
with F given by Tuck's expression, i.e. equa- 
tion (6.16). This is inconsistent since 
F(0,0,x) does not satisfy the same free-sur- 
face  conditions as H^ . 

None of the works cited include the free- 
surface line integral ^ in (6.15). It was 
pointed out by Yeung & Kim (1981) in their 
pseudo-time formulation that its contribution 
was important in the forced-motion problems. 
We expect it to be even more so in the wave- 
resistance problem since the boundary condition 
(2.14a) is non-homogeneous at the waterline. 
Various authors, see e.g. Koch and Noblesse 
(1979) have documented the importance of its 

inclusion in attempts to solve the three-dimen- 
sional  Neumann-Kelvin problem. 

The above comparisons indicate that our 
new slender-ship formulation for wave-resistan- 
ce is the most comprehensive, at least to-this- 
date. It has the capability to represent wave 
motions of the kind that are compatible with 
three-dimensional flow, capability to account 
for longitudinal interaction between ship sec- 
tions, but does not involve the complicated 
three-dimensional Green function in its entire 
form. The outlook for good quantitative pre- 
dictions  appears  promising. 

7. SUMMARY AND CONCLUSIONS 

In a re-examination of the hydrodynamic 
problem of a slender ship undergoing oscilla- 
tory and steady forward motions, we have poin- 
ted out a number of deficiencies in using a 
strip-theory type solution near the hull. This 
paper presents a new theory that will account 
for the forward-speed effects in a rational 
way. The formulation is markedly different 
from all   existing ones. 

At the outset, we employ the complete 
linearized free-surface condition in the near- 
field. This removes most, if not all, of the 
undesirable restrictions on the ship speed and 
the frequency of oscillation. Guided by the 
"pseudo-time" interpretation of the speed- 
dependent terms described in Yeung & Kim 
(1981), we seek a two-dimensional inner solu- 
tion that can accomodate three-dimensional wave 
effects. This is accomplished by introducing a 
new concept: A generalized inner Green func- 
tion G^1) that is to be determined from mat- 
ching. G'1' has two terms, a "pseudo-time" 
forward-flow potential that is associated with 
divergent waves and the usual logarithmic sing- 
ularity, and an unknown harmonic term F that 
is related to transverse waves. Asymptotic 
matching of G'1) and the three-dimensional 
outer Green function in the Fourier space pro- 
vides the necessary information for F. The 
complete expression of G^1' is given by (3.8b, 
3.26, 4.8) which constitutes one of the main 
results of this theory. This new Green func- 
tion has rather remarkable properties. It 
satisfies two-dimensional Laplace's equation, 
the speed-dependent free-surface condition, and 
contains wave characteristics that are compati- 
ble with three-dimensional   flow. 

An integral equation has been derived 
using G*1' for the inner potential on the ship 
hull. Numerical solution of this equation is 
necessarily more complicated than that of the 
usual strip theory. Nevertheless, it is still 
quite manageable since the kernel function is 
defined by only a single integral. An expres- 
sion for the farfield line-source strength of 
the inner solution is given in this paper, eq. 
(4.17).    This effective source  strength  becomes 
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essentially the three-dimensional source 
strength in the outer field since the Green 
functions are matched by construction. Also 
given in the paper are the appropriate expres- 
sions for calculating added mass, damping, and 
wave resistance, the last for the case of stea- 
dy forward motion. 

The analytical procedure given in this 
paper has provided us a comprehensive slender- 
ship theory that is valid over a wide range of 
speed and frequency parameters. The power of 
the present approach seems well demonstrated by 
its ability to include the Neumann-Kelvin wave- 
resistance problem as a special case of a "ship- 
motion" formulation. This is rather unortho- 
dox. The practical usefulness of the new theo- 
ry awaits experimental confirmation of forth- 
coming numerical calculations. However, a 
number of exciting results have already been 
deduced analytically. It is worthwhile to 
summarize these below: 

1) For a body moving in or near a free surface 
with a mean forward speed, the line distribu- 
tion of singularities representing its farfield 
behaviour generally extends beyond the actual 
length of the body itself. The distribution 
reduces to the length of the body if the for- 
ward speed vanishes. 

2) In the limit of vanishing forward speed, 
the zero-speed version of Newman's (1978) uni- 
fied theory is recovered from the present theo- 
ry. The forward-speed version of the unified 
theory, however, was constructed from strip- 
type solutions. As such, its inner solution 
does not contain wave characteristics that are 
entirely compatible with those of the three- 
dimensional field. The new theory has this 
compatibility. 

3) The "pseudo-time" formulation of Yeung & 
Kim (1981) may be considered as a "forward- 
speed" strip solution, which has no effects due 
to up-stream influence. This is justifiable in 
the context of the new formulation if the freq- 
uency of oscillation is assumed to be high. 

4) A new slender-ship wave-resistance theory 
has been obtained by taking the frequency of 
oscillation of the general theory as zero. The 
kernel function F provides the necessary three- 
dimensional interaction that has been omitted 
in a number of existing approximations. This 
theory appears to contain all of the important 
features relevant to wave-resistance calcula- 
tions, but without the necessity of using the 
actual  three-dimensional   Green  function. 
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DISCUSSION 

P.D. KAKLIS, 
National Technical University of Athens, 
Athens, Greece: 

The authors have to be congratulated on a 
very  substantial paper, in which, among others, 
use has been made of the complete linearized 
free surface condition for the formulation of 
the inner problem. 

At the National Technical University of 
Athens, the problem of a steadily translating 
slender body is presently being treated using a 
new asymptotic formalism (Kaklis, 1984 b), and 
modern mathematical tools, mainly the calculus 
of generalized functions. 

Since the authors' formulation for the case 
of u = 0 reduces to the aforementioned problem, 
we read their paper with great interest. As a 
consequence, we are afraid that we would have to 
question the method by which the matching of the 
"generalized" inner Green function GO) with the 
corresponding outer G(°), is performed. 

More specifically, the mathematical argu- 
mentation given in the sequel shows that, at 
least for the special case u = 0, U + 0, the 
integrations with respect to 1 and k in rela- 
tions (A2.28) of Kim (1983, appendix 2) cannot 
be interchanged, as is implicitly being done in 
order to obtain relation (A3.1.a), (ibid, appen- 
dix 3). This, analytically non-permissible, ma- 
nipulation leads to equation (3.13) of the pa- 
per under discussion whose validity is ques- 
tioned. 

In this respect, it should be noted that 
the inconsistency of (3.13) has non-trivial con- 
sequences, e.g. 
a) The right-hand side of relation (3.14) of the 

paper under discussion possesses a singula- 
rity of logarithmic strength as r=/y2+z2'->0, 
(see theorem 1 below). Nevertheless, on the 
basis of theorem 2 given in the sequel, it 
can be inferred that the left-hand side of 
the relation (3.14) is a function free from 
singularities as r-*0, at least when z=0. 

b) The kernel of integral equation (6.15) has to 
be modified by adding to F an appropriate ho- 
mogeneous solution A of the problem satisfied 
by G(i). Let us note that, as r+O, the func- 
tion A, thought of in some generalized sense 
with respect to x, has support contained in 
the plane x=0. (See Kaklis (1984 a), theorem 
4.3.2, corollary 4.3.1). The previous remark 
bears out the assertion that a proper con- 
struction of G(n) has to be performed in the 
context of generalized functions. 

Finally, it is expected that the aforemen- 
tioned analytical shortcoming will influence the 
asymptotic scheme in general, i.e. when u+0. 

In paragraph 3.1 a Green function, suitable 
for the flow representation in the inner region, 
is defined as below (see relations (3.7, 3.8a, 
3.8b)): 

G(i)(x,y,z;5,n,c)=(2n)"16(x-5)ln(R/Rl)+H++E (1) 

where. 

H+{x.y.z;e.n.O-^u(e-x)e
1u{x-5)/U. 

^|L*z+ccos(l(y-n))sin(/RoT(s-x)) ,  (3) 

IR+ 

K0=gU"
2, u(x) is the Heaviside function, <5(x-5) 

is the well known delta function of Dirac, and, 
finally, E(x,y,z;£,n,c) is a function which will 
be determined by matching Gl1) with the inner 
expansion of the outer Green function G(°). For 
simplicity we consider the case ogO, ?=n=c=0 
and introduce the notation 

G+(x,y,z)=G+(x,y,z;S=n=i;=0,u)=0) 

=H+(x,y,z;?=n=C=0,u=0) .       (4) 

Then, the accomplishment of the matching proce- 
dure relies essentially on the use of the equa- 
tion (see relation (3.13)) 

FxG+(k,y,z)=4 dl 

V 

e1zcos(ly) 
HUk-ipJ-Vg v*0 (5) 

where the prefix F denotes the operation of the 
Fourier transform with respect to x. 

We shall now comment on the validity of re- 
lation (5). For this purpose we shall cite a 
number of results obtained by Kaklis (1984 a) 
in the investigation of the problem 

(x,y)elR2 GDyy+GDzz=° 

(P~.) TTGDxx+Gn-=6(x'y) ' x'dR2 rGD' uDz" 

vGQ-»0, Z-> -« 

zs(-»,0) ,   (6.a) 

z=0 ,   (6.b) 

(6.c) 

In order to construct a set of solutions 
of (Prn) free from restrictive conditions at in- 
finity |x' |2=x2+y2-x», it will be proved conve- 
nient to imbed GD(x,y,z) into an appropriate 
space of vector-valued £eneralized functions 
(abbreviated by v.v.g.f.). More specifically we 
assume that 

GD(x;z)eS
0'(R2;C2((--,O))nC1((-«.O))) ,    (7) 

where S°'(IR2) is the set of all continuous line- 
ar functional on S°(IR2), which is the space of 
all C  functions <t>(x') satisfying the inequali- 
ties 

xPiyP2 
t(x') 

3xqi3yq2 
< C 

P1P2 
=vv (8) 

Here p=(px ,p2), q=(qi ,q2) are arbitrary multi- 
indices and the constants B, C depend on the 
function «Hx'). VlVz 

In connection with the space of v.v.g.f. defined 
above, we introduce the following 

Definition 1: An element GQ(x 

S°'(R2;C0  
will  be called an abstract degenerate Green 
function if 

z)  of 

--,0))flC1((-,0)] 

(GDyy+GDzz' *<x'> 

<PGD>  ^Dxx+GDz' 

)=0   ,  Ze(- 

♦(X'))=(S(X 

0), 

».♦(x')) 
z=0 

R=/(y-n)2+(z-c)2, R!=/(y-n)2+(z+c) (2) vGD,<Kx'))^), z-*-° 

(9.a) 

(9.b) 

(9.c) 
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where (g,<t>), geS°'(IR2), <j>eS°(IR2), denotes the 
duality pairing in S01xS°. 
Existence theorem: (See Kaklis (1984 a), theo- 
rem 3.1). Two families of abstract degenerate 
Green functions Gn , a=l,2, are defined by the 
formulae Da' 

(G 
1 

Da' 

where 

(,)= _^_<F GJ? ,F ,<f> 
4ir2 xy Da' xy* 

+ ^-<F Gt),F $> , xy D' xy* 
4TT

2 

<F G£ ,F 4»= xy Dx' xy* dk P.V. dl- 
|l|z 

(10) 

Fv 4(k,l) , (11.a) 

III- 
,2 xy 

<F 
xyGD2'V 

IR 

f 
dl P.V.idk- 

lllz 
—F * ;k,l) , (ll.b) 

kfz 

<FxyGD-Fxy*>=<eK°C+(k)'V(k'^)5 

k2z 

•K„ 

+<e^° C.(k),Fxy*(k,- ]r)>, 

(11.c) 

and C±(k) are arbitrary elements in K'(IR) of 
order zero. Let us note that K'(IRn) is the set 
of all continuous linear functionals on K(Rn), 
which is the space of all Co(Rn) functions, 
<g,<(>>, geS0', <(IES

0
, indicating the duality pair- 

ing in S°'(IRn)xS°(lRn), ndN. Finally the prefix 
F  indicates the operation of generalized Fou- 
r^-eY transform with respect to x,y. 
Regularity theorem: (See Kaklis (1984 a), theo- 
rem 4.1.1). The abstract degenerate Green func- 
tionS GPa(x';z)£S

0(IR2;C°,((-<»,0)))) a=l,2 , 

are regular and the following relations are 
valid: 

Ggi(x';z)= dkcos(kx)Re(ek(z+ly)E!( 

IR+ 

k(z+iy))) 

(12.1) 

dke 

+ 

kz 

and 

GD
P(x';z) 

sin(k|y|)cos(kx) 

Jz dlcos(ly)/K^e sin(/kVi~|x|), (12.2) 

'IR+ 
where the integrals in (12.1), (12.2) exist in 
the Riemann sense and Ex denotes the Exponential 
integral function. 

We shall now state two theorems which are 
concerned with the investigation of the singu- 
lar behaviour of F Gf? , a=l,2 , as r-K). 

Theorem 1: (See Kaklis (1984 a), theorem 4.3.1). 
An asymptotic, with respect to r, approximation 
of F GP, is given by the formula 

:P -   1 ■lnr+0(l) , e=arctan(z/y) 

for each k such that |k|e(0,°°). 

F^fk.r.e)»- 

Theorem 2: (See proof of lemma 4.2.5 in Kaklis 
(1984 a)). An asymptotic, with respect to r, 
approximation of G? (x,y,0) is given by the 
formula        2 

GP2(x,y,z=0)4-f^/Tyq-(sinu
2-cosu2)+o(l), x*0, 

where u=/K^|x|/(2/I7T). 

Taking into consideration the previous estimate 
it can be deduced that 

FxGP2(k,y,z=0)=0(l) as |y|*0 , 

uniformly with respect to k. 
Performing a smoothness analysis of Gß , 

a=l,2 , (See Kaklis (1984 a), theorem 4.2.1, 
4.2.2 and remark 4.2.1), we obtain the follow- 
ing 
Theorem 3: Comparing the smoothness properties 

of GP , GP, , we notice the physically interest- 

ing superiority of the first one, due to the 
discontinuity of the first kind presented by 
Gß  on the plane 
U2X 

ß0={(x,y,z)ER
3:x=0,yelR,ze(-°°,0)}. 

Furthermore we have 
Theorem 4: (See Kaklis (1984 a), remark 3.8, 
corollary 4.2.1). 
There exist elements ij)(x' )eS0' (R2) such that 

(A(X',Z),+(X'))=(GPI(X',Z)-GP2 =0, 

where (FxyA, Fxy is, for each ze(-»,0), a 

generalized function in K'(IR2) with support 
contained in the manifold 

L={(k,l)eR
2 II- J^-2=0,kdR}. 

Theorem 4 states simply that the integrations 
with respect to k, 1 in (11.a), (ll.b) cannot 
be interchanged. On the contrary, in order to 
obtain equation (5) the authors use Fubini's 
theorem without assuring the necessary condi- 
tions for its application. (See also Kim, 1983, 
Appendices 2, 3). Hence relation (5), that is 
(3.13) in the paper, is invalid. 

The inconsistency just stated can be over- 
come by adding to the inner Green function G^> 
the homogeneous solution Ai2 of (Prn)- Let us 
note that, in view of the Regularity theorem, 
A12(x,y,z) is a regular generalized function 
with respect to x, y, for each ze(-°°,0). How- 
ever, it cannot be claimed that Ai2 may be re- 
presented according to relation (11.c) since the 
set generated by the latter is strictly interior 
to the set of homogeneous solutions of (PGn)- 

Alternatively, using the degenerate Green 
function GR we cannot construct an inner Green 
function, 1which is asymptotically close to 
the Kelvin source G,, in the following sense: 

Theorem on the existence of an abstract Degene- 
rate Kelvin source: 
(See Kaklis (1984 a), theorem 5.1.1). There 
exists in K' (IR) a pair of zeroth order genera- 
lized functions Cj^fx) such that the v.v.g.f. 
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GD.K=GD!+GD (c+(fi)=cl(f2))^°'(R2;Ceo((-»,0)))5 

henceforth referred to as an abstract Degenerate 
Kalvin source, satisfies the estimates 

(GD K-GK, <f>) = o(l) as r-*0 , 

(VGD_K-VGK, <f>) = o(l) as -0 

Finally, a regularity and smoothness study of 
Gn K leads to results analogous to those obtain- 

ed for G£ (See Kalis (1984 a), theorems 5.2.1, 
5.2.2). Ul 
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Dr. JACEK S. PAWLOWSKI, 
National Research Council, 
Ottawa, Canada: 

I would like to congratulate the authors 
on their bold attempt to present a theory which 
combines radiation and forward motion problems 
in one formulation. However, recognizing the 
value of the effort, I must observe that there 
seem to be reasons to believe that slender body 
approach is not well suited for such a purpose. 

The forward motion problem can be consid- 
ered on its own in a general formulation and 
interaction terms with the induced flow can be 
included in a general formulation of the radia- 
tion problem. It is possible to introduce con- 
siderable simplifications in both problems as 
long as every simplification remains compati- 
ble with the basic properties of the problem 
to which it is applied. 

Slender body approach involves two kinds 
of simplifying assumptions: 

a) Those concerned with the geometry of the 
ship hull which take the form: 

B/L = e, (3 = B/D = 0(1), D/B = 0(1) 

n1  = 0(E), n2 = 0(1), n3 = 0(1), 

where L,B,D have the meaning of main dimen- 
sions and n],n2,n, represent the components 
of the normal to The shipsurface, e repre- 
sents the small parameter. 

b) Those establishing order of smallness rela- 
tions between spatial derivatives of the 
velocity potential; introducing normalized 
spatial coordinates: 

x E xL, y =  yB, z =  zD 

These relations are expressible as: 

-1$ = o($), A$= 0($), -5-$= 0(5) 
3x       3y       3z 

with <}> representing the normalized velocity 
potential. 

Let us consider the application of this last 
assumption to the forward motion problem. The 
following normalized form of the linear free 
surface condition (corresponding to the equa- 
tion (2.6) in the paper) is obtained: 

(F 2eli+ßA)ä  =0      on       i = 0 (1) 
n     3x2      3z     s 

with 

., U F /£T n   6 

and g representing the acceleration of gravity. 
The consistency of the equation (1) with respect 
to the order of smallness requires that: 

Fn
2 = 0(£-

1) (2) 

which constitutes a high speed assumption. 

Taking   e = 1/8   it is found that 

F = - = 2.82 . 
n  /F 

This Froude numer is approximately ten times 
greater than Froude numbers at which displace- 
ment ships operate and thus it indicates that 
the assumptions b) may be not applicable. 

Taking into account that in the inner re- 
gion of the flow around a ship moving with con- 
stant forward speed the crests of the generated 
wave system are almost perpendicular to the 
centre-plane, it is realized that in spite of 
geometrical relations the significance of 
longitudinal components of fluid velocity in- 
duced by perturbation potential 4> should be 
preserved. This e.g. can be accomplished by 
introducing the assumptions: 

e-5-$_ =0(*s),-%$_= 0(5),-2-* = 0(5 )     (3) 
3x S      3y        3x s 

The consistency of the equation (1) then leads 
to the low speed assumption: 

F = 0(e n   ^ 
1/2, (4) 

and the "naive" estimation gives for e = g-: 

F    = n  = 0.353  . 

However the relations (3) do not justify the 
reduction of the Laplace equation: 

~2    3z2 
= 0 

3x2  3y 

to the two dimensions of y and z plane. 
The slender body assumptions can be adopted 

for ship oscillations with the exception of the 
surge mode. Introducing normalized potentials: 

;, J 2,3 32<f>j, j = 4,5,6 
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and normalized frequency to E ui /g/L, equations 
corresponding to the equations (2.10)  - 
(2.12)  in the paper are expressible in the 
normalized form: 

■2l -+ß2 11 -)$.: = 0 in the flu- id 
3y: 2 8z: 2         J 

F 
:N2 

ay 
F,. 

N3ß 4)*j 
3z      J 

F 

= 
N
j' we 

Sj 
on S 

[l + 2i^E. 
ue    3x 

(_n)2e2_3l_ J_e_a_]j;   = 0 
mz 3x2     S2e    3z     J 

on z 

(6) 

The consistency of the equations  (6)  requires 
the introduction of the high frequency assump- 
tion: 

ä2 = 0(£~')   , (7) 

which gives     — = 0(1) and, together with (4), 

AUTHORS'  REPLY: 

We thank Professor Loukakis for bringing 
to our attention the recently completed work of 
his student on a closely related subject: 
approximation of the 3-D Kelvin source. The 
claim made by the discussers, in plain terms, 
was that Eq. (3.13) of our paper was not the 
Fourier Transform of Eq. (3.7) with respect to 
x. We shall repudiate their claim by showing 
that (3.13) is indeed the Fourier Transform and 
that  its  inverse exists and  is  given  by (3.7). 

It is only necessary to consider the case 
of w = 0 in connection with this discussion. 
In the context of (3.10), the wave function H£ 

in (3.7) is given by: 

Ho(y,z;x)  = 5B U(_X) / _p_ e£zcos£y sinv€Tx   , 

-ü= 0(1) 
ue 

Since m. = 0($s)  = 0(e), the terms dependent 
upon forWrd speed in (6) are of higher order 
of smallness. These terms are different from 
the ones proposed in the discussed paper as 
they must include some of the derivatives 
e3<f> /3x, e.g. in nL. 

s Summing up, the application of slender 
body assumptions b) appears to be unjustified 
for the forward motion problems. Therefore the 
possibility of reducing the Laplace equation 
in that problem to two dimensions is question- 
able. For the same reason certain terms in- 
volving longitudinal velocity components should 
not be neglected in the impermeability condi- 
tion of the radiation problem. The consistency 
of the free surface conditions in both problems 
is achieved for slow motion (4) and high fre- 
quency (7) assumptions. 

z<0  ,  y^O      <i> 

which satisfies all of the stated conditions in 
§3.1 . In the development of our theory, we 
needed a transformed expression of <1> for some 
transverse distance |yl(>0) in the inner field 
for matching purposes. As in many water-wave 
problems, the absolute integrability constraint 
imposed by the standard Fourier theorem can be 
relaxed by the use of compl ex Fourier 
Transform. Thus, we recall the following 
transform pair: 

f  (k*)  =1    dx f(x)  elk x ,       lm(k')<0    <2a> 

f(x) 
2TT J dk'  f*(k')  e_ik'x        Y>y>0 

<2b> 

where evix f(x) provides absolute integrability 
for f(x) in [-°°,U]. Upon using <2a> on <1>, we 
obtain 

H^y,z;k')   =^f  dxeik'xf  d*e^cosJiysinv4gr: x 
<3a> 

■*i 
Hz 

di cos£y 

k'K 
z < 0 

Im(k')< 0 
<3b> 

where interchangeability of the x-ä integration 
is guaranteed by Fubini's Theorem since the 
double integral is absolutely convergent, and 
the subsequent x integration is elementary. 
Note that Equation <3b> here is equivalent to 
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(3.13) of our paper since the inversion path 
according to<2b>is given by k1=k-iM- We have 
therefore established (3.13): 

4-Ä 
H0 (y,z;k) 

J,co 
e cos(SLy) 

il-(k-iy)2/Ko 
<4> 

with M- serving the role of identifying the path 
of integration  for the  inverse operation. 

Consider now the inversion of <4>: 

Ho(y,z;x) 

CO o 

^[ dk e^-^r df. 
e    cos(£y) 

£.-(k-ip)2/Ko 
p—0 

<5a> 

%j\ e^'«o sin[ ii|y) + 
o 

- i      dk cos(kx) 

kx] 

dk cos(kx)       dl e   m   x <5b> 

x      lxos£y+(k2/K0)sin4t.z 

i2   +   k*/K2 

where the i-plane in <5a> has a pole as shown 
in Figure 4. Eqn. <5b> results from <5a> 
after deforming the integration paths along the 
real axes to the imaginary ones, with the 
residue contribution properly included. For 
the order of integration indicated, we denote 
the double integral in <5b> as Ikl , which is 
equivalent to 

u = -<rt£ 
2TI2 

CO       « 

f dp£2S^£ du e 

<6> 
{.cosily+psln^z 

I2 + P2 

The absolute integrand of tkil i s of the order 
R~3/2exp(-R|y| cose) for large R, where 
Reie=M-ip. For small R, the contribution from 
the neighborhood of (Z,p) = (0,0) to Ik!L is of 
OtR1/.2), which vanishes as R+0. The constraint 
of |y|>0 is unimportant since we are only con- 
cerned with using the Fourier representation 
for matching in an intermediate region with the 
outer representation. Thus, the double integral 
Ikz exists and is absolutely convergent. 
Moreover, by Fubini's Theorem, lkl is 
representable by either form of the iterated 
integrals. Hence Ik* = llk . The subsequent 
integration of the k-integral by contour 
integration is fairly straightforward . Care 
must, however, be exercised in the choice of 
the contours which depend on the sign of x. 
The final   result is given by: 

d,-=_ 8ina|y|±4grx), x?0 
0      /K0£ 

<7> 

The double integral now combines with the 
residue (first) term in <5b> to yield zero 
upstream disturbances.    Hence 

00 

_i_                      K                  I      dil o 2 
H  (y,z:x)  = —2- u(-x) I        e    cosHy sin A i x 0 * J    ^i 

0 <8> 

which completes the proof. 
We note that the same results could have 

been obtained if the k-J, i ntegral s were 
interchanged at <5a> although the absolute 
integrability requirement was "apparently" not 
met. It should be noted that interchangeability 
of the order of integration in a double 
integral is not always contingent upon the 
satisfaction of Fubini's theorem. There exist 
many double integrals that are not absolutely 
integrable yet permit interchangeability. A 
case in point is the following principal-valued 
integral which is clearly not absolutely 
convergent  in the Fubini  sense: 

r1    r1 

0 0 
A 

<9> 

J, as a double integral, exists in the 
principal-value sense. It is elementary, 
however, to show that 

TU _-l _  J* 
J     - 2 " J 

<10> 

There is a considerable amount of aerodynamic 
literature in lifting-surface theory that takes 
advantage of such an interchangeability 

property. t 

In summary, we have demonstrated here that 
the "analytical non-permissibility" leading 
to (3.13) as described in the discussers' 
introduction simply does not exist. The 
development used by us is mathematically 
correct. In particular, we have shown that the 
requirement in Fubini's theorem for inter- 
changeability is satisfied. This leads us to 
question the validity of Theorem 4 cited by the 
Discussers (Kaklis, 1984a). It is not clear to 
what extent the invalidity of Theorem 4 was 
affected by a missing factor of 1/2 in the 
discussers' Eqn. (12.2). 

In writing this paper, we tried to strike 
a balance between the physical importance of 
the structure of the newly proposed inner 
solution and a modest degree of mathematical 
rigor based on asymptotic analysis. The inner 
solution  developed   has   a   strong   sense   of 
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directionality associated with forward motion. 
The pseudo-time dependent Green function (3.7) 
reflects this property; the directionality of 
the 3-D interaction term F, which is associated 
with the residue term in <5b> (see also (3.17) 
and (3.25)), relies on matching with the outer 
representation. We have not examined, however, 
the question of completeness of the inner 
solution. This is a very worthwhile question 
to look into. At the time of writing of this 
reply, the recent reports of Dr. Kaklis are 
not available. We look forward to reading any 
new contributions he can offer in this matter. 
We note in passing, however, that the 
particular solution G^proposed in the last 
theorem cited by the discussers corresponds 
only to the pri ncipal-val ue integral portion 
of our Eqn. (3.14). As such, it contains no 
directionality of motion and would therefore 
generate divergent waves propagating upstream 
as well as downstream. This is physically 
unacceptable since it implies that the port bow 
would experience Kelvin-wave effects coming 
from the starboard stern! 

We now turn to Dr. Pawlowski's comments. 
The scaling advocated by him is a standard one. 
It is a little cumbersome to carry all of the 
nondimensional quantities along in our papers 
(particularly as authors, we have to type and 
squeeze in all equations reasonably neatly 
within the 47 columns of spaces!). In any 
event, we have already stated right under the 
heading of "Slender-ship Approximations" in 
§2.1 that such nondimensional izations are 
implicitly used. Eqn. (2), for example, of the 
discusser can be obtained by inspection of 
(2.11), withw= 0. One must be cautious not 
to interpret a statement like (2) too literally 
as Dr. Pawlowski had done when he claimed that 
(2) implied Fn~2.82 . In the presence of 
waves, the choice of the longitudinal scale is 
perhaps not so obvious. If the transverse 
wavelength \ has been chosen instead of L, the 
non-dimensional x-derivative in Eqn (1) of Dr. 
Pawlowski would have a coefficient of 0(1) 
since B/X. for most displacement ship are 
typically bigger than 1/4 or so for their 
designed speeds. 

To push our point even further, it is 
entirely possible that a train of Kelvin waves 
of the form exp(üz)cos(£y)sin /K^Tx, £=0(1), 
(cf. Eqn. (3.7) of our paper, u=0) can propa- 
gate along and diffract near the ship axis. 
Now this behavior satisfies both the full 
linearized free-surface condition as well as 
the two-dimensional Laplace equation, and is a 
situation that the discusser is apparently 
unaware  of. 

In doing slender-body ship-hydrodynamics 
problems, it is a little too easy to fall into 
a pattern and perhaps pitfalls set up for us by 
classical aerodynamics, which has only one 
length scale associated with body geometry. As 
pointed out in the Introduction section of our 
paper, the presence of additional length scales 
associated with the wave fields and their 
complicated interaction with forward speed 
suggests a need for another approach. We 
achieve this by requiring the wave characteris- 
tics of the inner and outer Green functions be 
asymptotically compatible. In many ways, we 
feel this rather original and unconventional 
methodology has a lot  to offer. 

We shall conclude our replies here by 
presenting a flow diagram (Figure 6). It shows 
how a number of existing and cited slender-ship 
theories may be considered as deducible from 
our proposed solution structure by either doing 
limiting operations and/or by additional 
approximations. We hope that this would con- 
tribute to the understanding of the nature, and 
perhaps at times the incompletness, of the 
approximations used by some of the theories, 
all viewed under a common framework. 

lio Among ^ 
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LOCAL PROPELLER BLADE FLOWS IN UNIFORM AND 

SHEARED ONSET FLOWS USING LDV TECHNIQUES 

STUART D. JESSUP, CARL SCHOTT, 

MICHAEL JEFFERS AND SUKEYUKI KOBAYASHI 

ABSTRACT 

Laser Doppler Velocimetry techniques 
were used to measure local  propeller blade 
flows in the DTNSRDC 24-inch water tunnel. 
Velocity measurements were made upstream, 
downstream, and between blades.    Measurements 
were made near the blade surface to identify 
potential  flow surface pressure coefficients 
and streamwise boundary layer profiles.    Blade 
surface flow visualization was correlated with 
the measured boundary layer characteristics. 
Blade pressure distributions and streamwise 
boundary layer growth were compared with 
theory.    Exploratory velocity measurements were 
made ahead of a propeller operating in an axi- 
symmetric sheared inflow, and velocity and 
thrust correlations were made with theory. 
Measured velocities about the propeller showed 
good agreement with potential  theory ahead of 
the propeller with discrepancies occuring 
downstream of the propeller due to viscous 
effects.    Measured boundary layer growth at 
mid-span of the propeller blade was approxi- 
mated well  by two-dimensional  boundary layer 
theory.    Boundary layer profile measurements 
verified the location of transition determined 
from flow visualization techniques. 

NOMENCLATURE 

Kg-- 
n = 

P = 

P = 

P« = 

propeller diameter 

chord length of propeller blade section 

blade surface pressure coefficient, 

vb 
(P-Po)/1^ pvr

2, or l-(— )2 
Vr 

camber of propeller blade section 

boundary layer shape factor, 6 /e 

advance coefficient, VA/nD 

thrust coefficient, T/pn£D 

torque coefficient, Q/pn2D5 

propeller rotation speed, revol./second 

propeller blade section pitch 

pressure 

reference pressure 

Q = 

R = 

r = 

T = 

VA = 
VK = 

Vc = 

V(j> 

torque 

radius of propeller 

radial distance from axis of propeller 

thrust 

speed of advance 

velocity in the angle $ direction relative 

to the moving blade coordinate system, 

V(|> + 2-irnr cos cj> 

resultant inflow velocity to blade section 

(VA
2 + (Zirnr)2)1^ 

representative ship speed in sheared wake 

DJ/n where J is determined from design Kj 

and open water performance data. 

tangential velocity, positive in direction 

of rotation, average value at each blade 

angular position 
= velocity in the direction of angle <f», 

average value at each angular position, 

Vx cos * + Vt sin <(>, 

= 1_ 
n 

n 
E 

i=l 
V* (i) 

Vb(i 

VJ1 

y 
ß 

= velocity in the direction of angle $, 

individual value at each angular 

position 

= axial position relative to propeller 

center plane, positive downstream 

= fraction of chord length 

= fraction of propeller radius 

= distance normal from surface 

= surface streamline angle with respect to 
potential flow streamline direction 

= streamwise boundary layer displacement 
thickness 

= fluid density 
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V 

(-) 

1. 

= LDV velocity measurement direction, 

angle from vertical, positive upstream 

= propeller blade section pitch angle 

= streamwise boundary layer momentum 

thickness 

= kinematic viscosity 

= bar signifies mean value 

INTRODUCTION 

Recent advances in Laser Doppler 
Velocimetry have provided the ability to 
measure time-varying velocities near operating 
propellers.    Pioneering work by Min (1978) 
established techniques and provided field point 
velocity measurements ahead of and behind 
operating propellers.    Correlations made with 
Kerwin and Lee's (1978) numerical  lifting sur- 
face theory, PUF-2,  showed good predictions of 
field point velocity distributions ahead of the 
propeller and outside the slipstream.    Inside 
the slipstream, downstream of the propeller, 
predictions showed significant discrepancies 
with measurements that were attributed to 
displacement effects due to the viscous wakes 
of the blades and inaccuracies in the numerical 
modeling of the downstream vortex system. 
Using the same LDV system, Kobayashi   (1981) 
calculated the section drag of the blades 
from detailed measurements of the viscous 
wakes.    Kerwin (1982) presented further corre- 
lations of field point velocities about 
operating propellers using a refined measuring 
technique resulting in improved spatial  resolu- 
tion.    Comparisons were made with Greeley's 
(1982)  improved lifting surface model, PSF-2, 
showing agreement similar to Min's results. 
Program FPV-10, reported by Kerwin (1979) was 
used to generate field point velocities from 
PSF-2. 

All the LDV measurements described were 
conducted using a one component, dual beam, 
forward-scatter on-axis system.    Transmitting 
and receiving optics were positioned on oppo- 
site sides of the water tunnel with a direct 
line of sight across the tunnel  necessary to 
perform the measurements.    This arrangement 
restricted the measurements to regions outside 
the swept area of the rotating propeller. 

This paper describes measurements made 
about rotating propellers using a one com- 
ponent, dual beam, on-axis, backscatter LDV 
system.   Measurements were made within the 
swept area of the propeller disk,  in the poten- 
tial  flow regions between the blades, and 
within the blade boundary layer.    High spatial 
resolution was obtained with small measuring 
volume optics in conjunction with precise angu- 
lar positioning of the propeller.    Flow 
visualization using oil dot techniques was con- 
ducted to correlate with measured blade boun- 
dary layer characteristics.    Exploratory 
measurements were al so made ahead of a prope- 
11 er operating in an axisymmetric sheared wake 
to investigate effective wake and resulting 
propeller performance.    The results of these 
experiments contribute to the understanding of 

the potential  flow and boundary layer charac- 
teristics of typical propeller blade sections, 
and provide insight into the boundary layer 
displacement effects on the blade, and pro- 
peller operation in sheared wakes. 

2.     EXPERIMENTAL TECHNIQUES 

2.1 Test Facility 

Tests were conducted in the DTNSRDC 
24-inch diameter (0.61m) water tunnel  incor- 
porating an open jet test section and a 
downstream drive system.    A window insert was 
installed in the open test section as shown in 
Figure 1 to permit a close proximity of the LDV 

Figure 1 - DTNSRDC 24 Inch Water Tunnel Open Jet Test 
Section With Tunnel Window Insert for LDV Measurements 

optics to the blades of the propeller. This 
was necessary to minimize the focal length of 
the LDV optics system for maintaining a minimum 
measuring volume size. The extended window was 
positioned approximately 13 inches (33 cm) from 
the tunnel centerline and was estimated to 
induce an asymmetry to the uniform flow test 
section of less than 2%. 

The primary propeller tested was DTNSRDC 
Model 4119. This is a 12 inch (30.5 cm) 
diameter three-bladed propeller described by 
Denny (1968), designed for uniform flow as a 
double thickness version of DTNSRDC propeller 
Model 4118. The propeller was tested at 7 and 
14 rps at a nominal design J of 0.833 
corresponding to a propeller Reynolds number of 
0.7 and 1.4 million. Propeller geometry is 
shown in Table 1. 

A relatively large, 150 Hp, dynomometer 
system was chosen for the tests to maximize 
shafting rigidity. This was necessary because 
of the large distance between the propeller and 
the location of the encoder measuring shaft 
angular position. It was thought that a rigid 
shaft arrangement would maximize the con- 
sistancy of the angular position measurement. 
Consequently, a compromise was made in the 
accuracy of thrust and torque measurements, 
since only 10 percent of the load capacity of 
the dynamometer was utilized. 
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TABLE 1 - GEOMETRY OF DTNSRDC MODEL 
PROPELLER 4119 

Diameter, D : 1.000 ft (0.305m) 

Rotation, Right Hand 

Number of Blades,   : 3 

Hub-Diameter Ratio, Dh/D : 0.20 

Skew, Rake : None 

Design Advance Coefficient, J : 0.833 

Section thickness form: NACA66 (DTNSRDC Modified) 

Section Mean Line : NACA, a = 0.8 

r/R 

0.2 

0.3 

0.4 

c/D P/D        (Degrees) t/c f/c 

0.320 1.105 60.38 0.20550       0.01429 

0.3625        1.102 49.47 0.15530       0.02318 

0.4048        1. 41.15 

0.5 0.4392 1.093 34.84 

0.6 0.4610 1.088 29.99 

0.7 0.4622 1.084 26.24 

0.8 0.4347 1.081 23.28 

0.9 0.3613 1.079 20.88 

0.95 0.2775 1.077 19.84 

1.0 0.0 1.075 

0.11800 0.02303 

0.09016 0.02182 

0.06960 0.02072 

0.05418 0.02003 

0.04206 0.01967 

0.03321 0.01817 

0.03228 0.01631 

0.03160 0.01175 

Propeller test conditions were set using 
thrust identity, where the propeller rpm was 
set and tunnel water speed was varied to pro- 
duce measured open water thrust.    Preliminary 
measurements of field point velocities ahead of 
Propeller 4119 showed a 3% difference in cir- 
cumferential  average axial  velocity when com- 
pared with predicted values using PSF-2.    This 
discrepancy was believed to be due to the com- 
bined effects of measured thrust error, a 1% 
difference in measured tunnel  test section 
velocity compared to open water advance speed, 
and the approximate 2% reduction in tunnel  test 
section velocity in the vicinity of the tunnel 
window insert.    Therefore, all  correlations 
were made assuming a 3% reduction in advance 
speed from the design condition, resulting in 
an assumed advance coefficient of 0.806. 
The comparison of the predicted and measured 
field point velocity distributions at the 
nominal  and assumed advance coefficients are 
shown later in the paper. 

2.2 Laser Popp!er Velocimetry System 

The LDV system used was a relatively con- 
ventional TSI, Inc. one component dual  beam 
system operating in the on-axis back scatter 

mode.    A Spectra-Physics 2 watt ion-argon laser 
was used, utilizing the green 514.5 nm wave- 
length line.    The single beam was split into 
two coherent beams through a beam splitter.    One 
beam was frequency shifted to distinguish velo- 
city direction.    A 2.27x beam expander was used 
with a 250 mm focal  length lens with 50mm beam 
separation.    This arrangement resulted in a 
measuring volume .0028 inches (.072mm) in 
diameter and .030 inches (.75mm) long with 28 
fringes across the measuring volume.    With the 
on axis arrangement, the received scattered 
light past back through the same optical  system 
through a fieTd stop for filtering extraneous 
scattered light, and then to a photomultiplier. 
The optical  system was afixed to rotating 
mounts so the beam orientation and thus the 
direction of velocity measurement could be 
rotated about the beam axis.    Figure 2 depicts 
the LDV system. 

SCHEMATIC OF LDV OPTICAL SYSTEM 

BEAM 
SPLITTER 

FREQUENCY 
SHIFTER 

RECEIVING 
OPTICS 

FIELD 
STOP 

X 2.27 
BEAM 

EXPANDER 

250 MM 
LENS 

Figure 2 - Laser Doppler Velocimetry System, Single 
Component, Dual Beam, On-Axis Back Scatter 

The doppler signal from the photo- 
multiplier output was processed with both a 
frequency tracker and a burst counter. Signals 
were initially band pass filtered to reduce 
noise. The tracker was used for alignment pur- 
poses, processing qualitative results, and 
identifying blade passage speed. The counter 
was used for quantitative data processing in 
conjunction with the computer. 

For this test in the water tunnel the 
data processing rate of individual velocity 
measurements was relatively good, from 200 to 
2000 processed measurements per second. The 
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data rate was dependent on optical alignment, 
velocity measurement direction, and tunnel 
seeding. Routinely, the tunnel water was 
filtered to 5 micron particle size and then 
seeded with 1.5 micron size silicon Carbide 
seeding material. The rate of the processed 
velocity measurements were considered random in 
nature so that data collection procedures 
responded to individual measurements and not to 
a prescribed time or blade angular position 
based on propeller rotation. 

2.3 LDV System Positioning, Calibration and 
Accuracy 

Positioning of the LDV system was per- 
formed with a manually controlled , three- 
directional traverse system as shown in Figure 
2. Translations along the propeller shaft axis 
were performed by moving the entire LDV system, 
while vertical and horizontal translations from 
the propeller shaft axis were performed by 
moving the optical system relative to the 
single beam laser source. Vertical traverse 
was performed with an optical scissors jack. 
Position was measured manually with dial and 
vernier calipers to a resolution of 0.001 
inches (.025mm). 

The position of the LDV measuring volume 
was referenced to the geometry of the propeller 
inside the tunnel. The vertical position of 
the LDV measuring volume was referenced to the 
upper and lower edges of the propeller hub. 
The axial position was referenced to a mid- 
chord line drawn on a propeller blade while the 
propeller was stationary and was checked by 
positioning the measuring volume at the leading 
or trailing edges while the propeller was 
rotating. This was easily performed due to the 
large doppler signal produced when the 
measuring volume intersected the blade surface 
and provided a correction due to shaft system 
extension under load. The horizontal position 
from the propeller shaft centerline was 
referenced to lines of constant radius drawn on 
the propeller while stationary in the tunnel. 

Calibrations were performed by measuring 
the surface speed of a disk rotating in place 
of the propeller in the water tunnel. 
Calculated and measured calibration factors 
differed by 3% with the difference thought to 
be due to deviations in the two beam separation 
distance at the lens. 

Calibrations were checked through out the 
experiment by measuring the blade surface speed 
while rotating at test conditions. The magni- 
tude of blade speed was most accurately deter- 
mined using the tracker processor because of 
its narrow band width and the large offset bet- 
ween blade surface speed and the measured water 
velocity in the vacinity of the blades. On an 
average basis the check calibrations were 
within IX of the original calibrations but 
varied up to 3.4% amongst all the measurements. 
This variation was due primarily to errors in 
the positioning horizontal to the propeller 
axis and the angle setting of the two laser 
beams from the vertical. 

2.4 Procedure for Measuring Local Blade 
Velocities' 

A procedure was derived for measuring the 
streamwise velocity component near the blade 
surface using the one component LDV system. 
The streamwise direction is that tangent to a 
line of constant radius drawn on the blade. 
The dual beam LDV system measured the velocity 
in the plane of the two intersecting beams, 
perpendicular to the line bisecting the two 
beams. Figure 3 depicts the measurement of the 
blade streamwise velocity component. 

Figure 3 - Measurement of Blade Streamwise Velocity 

TUNNEL 
WINDOW 
INSERT 

MEASUREMENT 
1 PLANE 

(TANGENT TO BLADE) 

The measuring volume located at the 
intersection of the two beams was positioned at 
the horizontal centerline plane of the pro- 
peller.    As the propeller rotated, the blade 
cut through the measuring volume at some point 
on the blade.    The two beams were rotated about 
the optical  center to orient the direction of 
velocity measurement   to be tangent to one side 
of the blade as it passsed through the 
measuring volume.    This arrangement resulted in 
a traverse diagonally through the blade surface 
boundary layer, measuring the velocity parallel 
to the blade surface at the point where the 
measuring volume intersected the blade.    The 
mechanism for the boundary layer traverse was 
simply the rotation of the blade,  since the LDV 
measuring volume remained stationary. 

The angle that the two beams were rotated 
from the vertical,  <j>, was obtained analyti- 
cally from the design propeller geometry.    This 
angle was similar to the pitch angle of the 
blade section with a deviation with distance 
from the mid-chord line. 
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2.5 Measurement of Blade Angular Position 

Each velocity measurement processed by 
the LDV system had to be associated with a 
given propeller blade angular position.    When 
the tracker was used for qualitative 
measurements, the time sweep of a storage 
oscilloscope was used in conjunction with a 
single pulse per revolution from a magnetic 
pick-up to reference individual measurements 
a known blade angular position.    Figure 4 
depicts a typical  velocity distribution through 
the rotating propeller disk. 

to 

TRIGGER 
STARTS 
SCOPE 
SWEEP 

ZERO VELOCITY • 

ZERO VELOCITY  

BLADE 1, WITH FASTER SCOPE SWEEP 

r BOUNDARY LAYER ON 
 SUCTION SIDE OF BLADE 

BLADE 1 BLADE 3 

L   POTENTIAL FLOW 
REGIONS BETWEEN 

BLADES 

Figure 4 - Sample of Oscilloscope Traces of 
Streamwise Velocity Measurements 

A digital output absolute positioning 
optical rotary encoder (BEI, #5V680HB) was used 
to measure blade angular position when quan- 
titative data was collected by computer. 
A natural binary 12 bit resolution was output 
from the encoder corresponding to 4096 angular 
positions per revolution. An angular speed 
limit of 10 rps was prescribed with this reso- 
lution due to a 40 KHZ frequency response of 
the optical components in the encoder, but a 
working limit of at least 15 rps was attained. 

2.6 Computer Data Collection and Analysis 

Processed LDV velocity measurement data 
from the burst counter were collected with a 
Perkin Elmer (Interdata) 7-16, 16 bit minicom- 
puter. With each velocity measurement collect- 
ed, an associated shaft angular position was 

read from the shaft encoder. Velocity and 
position data sets were transfered to 9 track- 
digital tape. A typical run, requiring ten 
minutes of test time consisted of 168,000 data 
sets with approximately 40 velocity measure- 
ments at each of 4096 angular positions. 

Oata on digital tape was transfered to a 
CDC 176 mainframe computer and stored on a 
cartridge type mass storage system. The velo- 
city data were sorted by angular position and 
the mean velocity, standard deviation and 
number of data points at each angular position 
were retained for each analyzed run. A computer 
program was developed to analyze the velocity 
data in the regions close to the blade in a 
reference frame moving with the blades. The 
program calculated the blade pressure coef- 
ficient from the potential flow regions above 
the blade surface and calculated boundary layer 
characteristics of displacement thickness, 
shape factor, turbulence intensity and velocity 
profile. 

When the measuring volume intersected the 
blade surface a relatively large signal was 
returned to the LDV processor. This resulted 
in a substantially larger number of data 
samples collected at the angular position 
corresponding to the blade surface. This phe- 
nomenon was used to locate the angular position 
of the blade surface to within one angular 
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location. 
The accuracy of the angular position 

corresponding to the blade surface had a signi- 
ficant effect on the accuracy of the measured 
boundary layer parameters. Near the leading 
edge, where only about six angular positions 
were contained within the boundary layer, a 
variation of one angular position produced a 
dramatic change in <5* and H. To improve sur- 
face angle resolution, in cases where a large 
number of data samples were shared by two adja- 
cent positions, boundary layer parameters were 
calculated for each of the adjacent surface 
angles and then averaged. From this procedure, 
surface angular resolution was improved to one 
half an angular location with a resulting esti- 
mated error in 6* of ±0.00021Y/C. 

3. DISCUSSION OF EXPERIMENTAL RESULTS 

3.1 Local Blade Flow Measurements About 
Propeller 4119 

Initial measurements were made upstream 
of the propeller near the leading edge of the 
blades. As previously reported by Min (1978) 
and Kerwin (1982) LDV measurements of field 
point velocities in the potential flow regions 
ahead of the propeller correlated well with 
numerical predictions using lifting surface 
theory. Figure 5 shows the measured field 
point velocity distribution of propeller 4119 
slightly ahead of the leading edge at the 0.7 
radius. The measurements correspond to a vec- 
tor decomposition of the traditionally measured 
axial and tangential velocity components into 
directions parallel and perpendicular to the 
blade section pitch line. Comparisons 
made with the propeller numerical lifting sur- 
face performance prediction program (PSF-2) 
showed good agreement with measurements. A 
reference phase for the field point velocity 
predictions was determined by shifting the 
phase of the predicted velocity distribution in 
Figure 5 to match the measured result. Figure 
6 shows a composite of the blade to blade 
velocity distributions traversed axially 
through the propeller disk across the blade 
chord. The measurement direction is oriented 
parallel to the suction side blade surface at 
the intersection of the LDV measuring volume 
and the suction side surface. The velocity 
profiles shown are nondimensionized on Vr, the 
resultant inflow velocity at the given radial 
section. Velocity Vb represents the measured 
velocity V* transformed to the moving blade 
reference frame, where vt, = V^ + 2irnr cos <f>. 

The blanked-out regions in the plots 
correspond to the measuring point intersecting 
the interior of the blade. Measurements near 
the suction side of the blade are to the right 
of the blanked region and the pressure side is 
to the left. Over most of the chord length the 
velocity jump across the blade can be seen. 
Near the leading edge on the pressure side of 
the blade the flow is generally retarded near 
the stagnation point, but is accelerated near 
the blade surface downstream of the stagnation 
point. On the suction side near the trailing 
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Figure 6 - Measured Streamwise Potential Flow Velocity 
Profiles Through 0.7R of Propeller 4119 

edge the surface velocity decelerates without 
any apparent flow separation. 

The viscous boundary layers developed 
along each side of the blade are confined to the 
thin regions very close to the blade surfaces. 
Even near the trailing edge, the relatively 
thick boundary layers appear to have little 
effect on the overall potential flow velocity 
fields. 
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Figure 7 - Comparison of Measured and Predicted Field Point 
Velocity Distribution Slightly Behind Trailing Edge at 

0.7R of Propeller 4119 

Figure 7 shows correlations of measure- 
ments with predictions downstream of the 
trailing edge.    The influence of the viscous 
wake on the measured downstream field point 
velocity distribution can be seen.    The viscous 
blade wake appears to increase the streamwise 
velocity parallel  to the chordline, relative to 
the moving blade, while the velocity perpen- 
dicular to the chordline is reduced from the 
potential  flow prediction.    In the region bet- 
ween the bfades, toward the pressure side of 
the blade, correlation with potential   flow pre- 
dictions is good. 

3.2 Measured Blade Surface Pressure 
TTTsTributions Derived from LDV Measurements 

Blade surface pressure distributions were 
derived from the LDV measurements and compared 
to numerical  lifting surface predictions.    From 
the data shown in Figure 6, the potential 
flow velocity measured parallel  to the blade 
surface, V*   was extracted at the edge of the 
boundary layer, and referenced to the moving 
blade coordinate systems,  (VD).    The pressure 
coefficient was then calculated using 

Bernoulli's equation for irrotational, uniform 
onset flow, nondimensionalized on the resultant 
inflow    velocity, Vr. 

Cp = 1  " (Vb/Vr)2 

Pressure distributions were derived from 
the measured results at the 0.7 radii of Prope- 
ller 4119. The streamwise blade surface 
angles, $, were set to measure velocities 
tangent to the suction side of the blade. 
Pressure side pressure distributions were 
approximated from the suction side measure- 
ments. The technique has the capability to 
extract the potential flow surface velocities 
of each blade of the propeller. In this case, 
the measured pressure coefficients represent 
the average value for all blades. 
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Figure 8b - Comparison of Measured and Calculated Results 

Figure 8 - Pressure Distribution Derived From Measured 
Streamwise Potential Flow Velocity at 0.7R, 

Propeller 4119. J = 0.806 With Correlation to PSP Predictions 

Figure 8 shows the measured pressure 
coefficients at the 0.7 radius along with 
comparisons with numerical  lifting surface 
theory (Kim and Kobayashi, 1984).    Kim and 
Kobayashi's procedure signified by program PSP, 
uses the prediction procedure of Greely and 
Kerwin (1982) represented by program PSF-2 
which also provided the field point velocity 
predictions.    For these comparisons, PSP was 
modified to calculate pressure distributions 
based on the streamwise velocity components 
only, to be compatible with the LDV measure- 
ments.    Figure 8a shows the variation in 
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pressure distribution predictions for 
variations in relevant PSP computer code input 
parameters. Little change resulted from com- 
putations based on the streamwise only and the 
total velocity along the blade surface at the 
0.7 radius. The pitch correction adopted in 
PSF-2 is an empirical correction reducing pitch 
to account for viscous effects, and it was not 
considered in the correlation with measured 
results. 

Figure 8b shows the experimental results 
compared to calculations. More extensive ex- 
perimental results were recorded at the low 
Reynolds number of 7.3xl05- Data show a 
reasonably faired distribution over the chord 
with some anomalies at midchord that could be 
due to experimental error or local unfaired 
geometry. The experimental distribution 
matches prediction reasonably well. The most 
obvious and accountable discrepancy occurs on 
the suction side of the blade over the latter 
part of the chord. There the calculated result 
underpredicts the measured value. This 
discrepancy is believed to be a boundary layer 
displacement thickness effect. The pressure 
distribution on the pressure side of the blade 
appears to be further from prediction than that 
on the suction side. This may be because the 
blade surface angle <|> was set to measure velo- 
cities tangent to the suction surface. Hence, 
significant errors may have resulted near the 
leading and trailing edges where the suction 
and pressure side surface angles were dif- 
ferent. 
Measurements taken at the higher Reynolds 
number (1.46xl06) show a closer agreement with 
the potential flow predictions as expected, due 
to the smaller influence of displacement 
thickness, especially in the region aft of 
midchord. 

TABLE 2 - PERFORMANCE PREDICTIONS FOR 
PROPELLER 4119 

10 Kr 

Measured Open 0.833 0.150 0.285 
Water Test 0.806 0.157 0.293 

PSF-2 With 0.833 0.151 0.282 
Pitch Correction 0.806 0.162 0.298 

PSF-2 Without 0.833 0.153 0.287 
Pitch Correction 0.806 0.164 0.303 

3.3 Comparison of Measured and Predi cted Thrust 
and Torque 

Table 2 shows comparisons of measured and 
predicted thrust and torque for propeller 4119 
at design J. Predictions using PSF-2 with a 
pitch correction for viscous effects were very 
close to measured open water test results, 
within 1% difference on thrust. The water tun- 
nel test conditions were set by thrust identity 
based on the open water test results at a 
design J of 0.833. An effective J of 0.806 was 
established based on asymmetry in the inflow 
and possible errors in thrust measurement. 

Predictions at this advance coefficient showed 
a signficant discrepancy with the open water 
data. Further tests will include measurements 
of the inflow asymmetry and more careful load 
measurements to establish quantitative effects 
of viscosity on performance. 

3.4 Boundary Layer Measurements 

Boundary layer profiles were extracted 
from the streamwise velocity measurements at 
angular positions close to the blade surfaces. 
With the resolution of 4096 positions per revo- 
lution, data points through the boundary layer 
varied from four near the leading edge to sixty 
at the trailing edge. A diagonal traverse was 
obtained through the boundary layer at an angle 
of (90 - <(>) degrees from the normal vector from 
the surface, this effectively increased the 
resolution of the data normal to the blade sur- 
face, but introduced error due to streamwise 
gradients in the boundary layer profile. 
Because the boundary layer was relatively thin, 
streamwise variations were ignored. 

Figure 9 shows boundary layer profiles 
along the suction side blade chord at the 0.7 
radius of Propeller 4119 at the effective 
advance coefficient of 0.806 for the low 
Reynolds number case (7.3xl05). The vertical 
scale for each profile represents distance nor- 
mal to the surface. The boundary layer deve- 
loped in a fashion typical of a planar wing 
section, with laminar flow occurring up to 
around midchord. the point of transition is 
somewhat ill-defined because of insufficient 
chordwise resolution and possible chordwise 
fluctuation in the transition point which would 
be time-averaged over the duration of run. 
Typical turbulent boundary layer development 
occurs at the trailing edge region. 

Measured boundary layer parameters were 
compared to calculations using a two- 
dimensional procedure of Cebeci (1978). A 
faired pressure distribution from the measured 
results in Figure 8 was supplied as input to 
the calculation procedure. Figure 10 shows com- 
parisons of the measured and calculated values 
of displacment thickness, 6*> and shape factor, 
H. The calculations were performed using 
prescribed transition locations of xc equal to 
0.5 and 0.6. 

The correlation of displacement thickness 
shown in Figure 10a was reasonably good in the 
laminar flow region, with an underpredicted 
growth in boundary layer thickness in the tur- 
bulent region aft of midchord. Near the 
leading edge the measured displacement 
thickness of blade one was greater than calcu- 
lated, possibly due to localized leading edge 
separation. Blade three was noticeably closer 
to the calculated values aft of midchord, which 
indicates blade-to-blade differences in 
geometry that will result in noticeable dif- 
ferences in boundary layer development. 

The measured shape factor distribution 
over the chord resembles the calculated distri- 
bution in a general sense as shown in Figure 
10b. Through the transition region the 
measured shape factors decreased less abruptly 
than predicted. Also there is significant 
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Figure 9 - Measured Streamwise Boundary Layer Growth on Propeller 4119 0.7R, Suction Side 

scatter, blade to blade, in the transition 
region.    The discrepancies observed between 
measured and calculated values of £*and H could 
be due to three dimensional  boundary layer 
effects that are not accounted for in the two 
dimensional  calculations.    Unfortunately, the 
error associated with the location of the boun- 
dary surface prohibits detailed analysis of the 
blade boundary layer.    Improved blade angle 
resolution will  result in more precise measured 
boundary layer profiles. 

3.5 Measurement of Turbulence Intensity 

A measurement of the turbulence intensity 
in the streamwise component of the blade boun- 
dary layer was obtained from the standard 
deviation of the measured velocity samples 
recorded at each blade angular position.    The 
turbulence intensity,  

/<Vi) -   v* 
was referenced to the moving blade and non- 
dimensional ized by Vr, the resultant inflow to 
the blade section. A typical distribution of 
turbulence intensity across a turbulent boundary 
layer measured on Propeller 4119 is shown in 
Figure 11. The maximum turbulent intensity of 
about 10 percent is comparable to typical air- 
foil data. The turbulence intensity in the 
potential flow region away from the blade sur- 
face is approximately 1.5 percent relative to 
the moving blade. 

When the turbulence intensity is 
nondimensionalized on advance speed, V/\, 
substantially larger turbulence levels occur. 
In this case values in Figure 11 would be 
uniformly increased by a factor of 2.8 
resulting in maximum turbulence intensities of 
about 25 percent. The relatively high turbulence 
levels (relative to freestream speeds) that 
would be measured downstream of the propeller 
are produced by typical turbulent boundary 
layer growth on blade surfaces moving at speeds 
substantially higher than the freestream 
velocity. Therefore, with the absence of blade 
flow separation, propellers operating at higher 
advance coefficients would generally produce 
less downstream turbulence in the blade viscous 
wakes. 

3.6 Flow Visualization of the Blade Surface 
Streamlines 

After completion of the LDV measurements about 
Propeller 4119 blade surface flow visualiza- 
tion studies were conducted at the two Reynolds 
numbers tested. An oil dot technique was used 
in which a mixture of 90 weight gear oil and 
orange fluorescent pigment was applied with a 
drafting pen in a matrix of dots on the blade 
surface. The propeller was then run up to 
speed in the tunnel allowing the oil to spread 
from the dots at the desired test condition for 
approximately 30 seconds to a minute. When the 
propeller rotation and tunnel speed were ini- 
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Figure 10 - Comparison of Measured Boundary Layer 
Parameters With 2-D Calculations 

tially started, the tunnel speed generally 
lagged behind shaft rotation, so that the pro- 
peller operated at low advance speed in a tran- 
sient fashion. Therefore, the initial 20 
percent of the extended oil line was generally 
ignored. After the oil had extended completely 
from the dot, it was sufficiently fixed on the 
blade so that the running down of the shaft and 
water speed did not influence the oil pattern 
on the blade. 

Figure 12 shows the results of the blade 
surface flow visualization conducted on 
Propeller 4119. Significant outward radial 
flow was observed over most of the blade, with 
a change in the surface streamline direction 
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Figure 11 - Streamwise Turbulence Intensity 
Through the Blade Boundary Layer 

occurring towards the trailing edge. 
Surface flow patterns of this sort have 

been Investigated by Meyne (1972) and Kulper 
(1978) and have been related to laminar and 
turbulent boundary layer development on a 
rotating disk. In laminar flow the surface 
streamline direction, ß, on a rotating disk is 
40 degrees from the circumferential direction, 
while in turbulent flow the angle is reduced to 
11 degrees. The large difference in surface 
flow direction between laminar and turbulent 
boundary layer flow has been used qualitatively 
to determine regions on the propeller blades 
where laminar and turbulent flow occur. Large 
outward radial surface flow is associated with 
laminar boundary layer occurrence. When the 
surface flow direction changes to be oriented 
closer to the circumferential direction, the 
transition to a turbulent boundary layer is 
thought to occur. 

The interpretation of surface flow direc- 
tion should be considered relative to the local 
direction of the potential flow streamlines. 
In the midspan region of the blade the poten- 
tial flow direction is approximately in the 
circumferential direction, so that qualitative 
boundary layer characteristics can be deter- 
mined. Near the tip of the blade, strong 
radial flow velocities occur making qualitative 
interpretation difficult. If the potential 
flow streamlines were known, one could deter- 
mine the angle e between the potential flow 
streamline and the surface streamlines from 
Figure 12. 

Figures 12a and 12b show the surface 
streamline directions on the suction side of 
Propeller 4119 at the low Reynolds number 
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Figure 12a - Suction Side, RN = 7.3 x 10 

Figure 12b - Suction Side, RN = 7.3 x 105 
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With Leading Edge Trip Wire 

,<*#*%■:* 

Figure 12e - Suction Side, RN = 1.46 x 10 

■■■■iiP'' 
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Figure 12 - Blade Surface Flow Visualization on Propeller 4119 Using Oil Dot Technique 

tested, 7.3 x 105. Significant laminar flow 
appears with transition occurring around 
midchord at the 0.7 radius. This result corre- 
lates well with the measured boundary layer 
profiles shown in Figure 9. Figure 12e shows 
the surface flow on the suction side at the 
higher Reynolds number tested, 1.46 x 10°. At 
0.7 radius transition is estimated to occur 
around 30 percent chord. Transition has 
migrated forward as expected but significant 
laminar flow still occurs at the inner radii. 

Figure 12c and 12f show the surface flow 
on the pressure side of the blade at the two 
Reynolds numbers tested. Again, significant 
laminar flow occurs over much of the blade at 
low Reynolds number, with transition shifting 

towards the leading edge at the higher Reynolds 
number run. 

Figure 12d shows the blade surface flow on 
the suction side of the blade at the low 
Reynolds number condition with a 0.010 inch 
(.25mm) diameter trip wire attached near the 
leading edge from the 0.3 radius to the 0.7 
radius. Downstream of the trip wire turbulent 
flow appeared to occur, but laminar flow per- 
sisted outboard of the trip wire from the 0.7 
to 0.8 radii. No boundary layer measurements 
were made when trip wires were applied to the 
blades. In the future the LOV techniques 
described could be used to quantify the effects 
of boundary layer trips to simulate full scale 
Reynolds number flow similar to work done by 
McCarthy, et al. (1976) on axisymmetric bodies. 
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3.7 Qualitative Boundary Layer Measurements at 
Off Design Conditions 

During the initial exploratory tests with 
the propeller boundary layer LDV system, quali- 
tative measurements using a storage 
oscilloscope were conducted on propellers 
operating at off design conditions. An 
unskewed four bladed propeller, with wide, thin 
blades was used for these initial tests. 
Design J for this propeller was approximately 
0.9 and qualitative measurements were obtained 
at J values of 0.38, 0.6 and 1.03. 

Figure 13 - Qualitative Velocity Measurements in the 
Pitch Line Direction on a Four Bladed Propeller at 

Off Design Conditions at 0.7 Radius 
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Figure 13c - 87% Chord on Suction Side of Blade 
Boundary Layer Flow, Top, J = 1.03, Bottom J = 0.38 

Velocity measurements near the leading 
edge of the blade at the low advance coef- 
ficients of 0.38 and 0.6 showed localized 
leading edge separation. During these tests, 
velocity was measured in the forward direction 
parallel to the pitch line of the propeller. 
Figure 13a shows the local blade velocity at a 
position corresponding to 2 percent chord on 
the suction side of the blade at the 0.7 
radius. At the high J=1.03, low loading con- 
dition, the angle of attack of the section is 
small and the flow is attached on both sides of 
the blade. At the low J condition, the section 
is at a relatively high angle of attack 
inducing a large velocity difference between 
the suction and pressure sides of the blade. 
The potential flow velocity approaching the 
suction side of the blade appears to disin- 
tegrate producing large flucuations in velocity 
near the surface, associated with a region of 
separated flow. Figure 13b shows velocity 
profiles corresponding to the 10 percent chord 
position on the suction side. The top trace 
shows the local boundary layer flow indicating, 
again, large velocity fluctuations on the suc- 
tion side of the blade. It is not obvious 
whether the boundary layer is attached or 
separated on the suction side at this chord 
position. The blade to blade potential flow in 
the lower trace shows the disintegration of the 
potential flow velocity near the suction side 
surface. Figure 13c shows the boundary layer 
flow at the 87 percent chord position at the 
high and low J conditions. At low J, in the 
lower trace, the suction side boundary layer 
appears turbulent and attached with a lower 
level of velocity fluctuations than observed 
close to the leading edge. The upper trace, 
corresponding to the J=1.03 condition, shows a 
much thinner turbulent boundary layer resulting 
from a more favorable chordwise pressure 
distribution and a smaller or no region of 
leading edge separation. 
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The effects of leading edge separation 
were discussed extensively by Greeley and 
Kerwin (1982) in relation to propellers. 
Generally, a long separation bubble extending 
over an appreciable fraction of the chord will 
reduce the suction peak predicted at the 
leading edge from potential flow theory. From 
Figure 13b, this appeared to be occurring. To 
check this, qualitative comparisons were made 
between measured and predicted velocity profi- 
les through the 4 percent chord position of.the 
four bladed propeller tested. Figure 14 shows 
the qualitative comparisons of measured results 
with PSF-2 (Greeley, 1982). The potential flow 
calculation shows significant peak velocities 
on both the suction and pressure sides of 
the blade. The measured result shows no suc- 
tion side peak, implying a separation bubble 
occurring and reducing the magnitude of the po- 
tential flow velocity near the leading edge. 
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Figure 14 - Qualitative Comparison of Measured Velocity 
Parallel to Pitch Line With Calculated Values Using PSF-2 and 

FPV-10 at 4% Chord 

From the measured result, an approximate suc- 
tion side surface velocity could be generated 
by straight line extrapolation of the potential 
flow velocity approaching the suction side of 
the blade. 

3.8   Field Point Velocity Measurements With 
Sheared Onset Flow. 

using program PSF-2 of Greeley (1982) applied 
to a radially varying inflow. 

The axisymmetric sheared wake was generated 
in the DTNSRDC 24-inch water tunnel  using a 3 
foot (0.9m) long, 6 inch (15.2 cm) diameter 
cylinder with an attached tail  cone faired into 
the hub of the propeller.    Also, an additional 
wake generator was used comprised of nine con- 
cetric rings 0.125 inches (3.2 mm) thick and 5 
inches (12.7 cm) long mounted around the 
cylinder approximately 1.5 diameters ahead of 
the propeller.    DTNSRDC Model  Propeller 4645, a 
skewed, seven bladed, wake adapted propeller 
similar to that described by Wilson  (1982)  and 
Valentine and Chase (1976) was used for these 
tests. 

Test conditions in the tunnel were set 
using thrust identity with an approximate 
design thrust coefficient, Kj = 0.28.    Field 
point velocity measurements of axial  and 
tangential velocity, Vx and Vt, were performed 
ahead of the operating propeller at an axial 
plane as close to the propeller as possible. 
Because of the aft rake of the blade sections, 
this resulted in measurements at the leading 
edge at the 0.3 radius and progressively 
further from the leading edge with increasing 
radius.    A nominal  inflow wake was determined 
by removing the propeller and measuring the 
axial  inflow velocity, Vx, at the same measure- 
ment plane and at the same tunnel  impeller 
rotation speed. 

Programs PSF-2 and FPV-10 were used to 
predict the propeller's performance and field 
point velocities across the propeller disk. 
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Velocity measurements were made ahead of a 
propeller operating in a sheard axisymmetric 
onset flow. This investigation was intended to 
compare measured performance with predictions 

Figure 15 - Calculation of Effective Wake From Predicted and 
Measured Circumferential Average Velocities Ahead of 

Propeller 4645 in a Sheared Wake 
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The effective wake into the propeller was 
determined using PSF-2 and FPV-10 together with 
the experimental  data obtained ahead of the pro- 
peller.    Initially, the measured nominal wake 
was used as input to PSF-2 and FPV-10.    The 
resultant calculated circumferential  average 
propeller induced velocity at each radius was 
then subtracted from the measured total velo- 
city leaving the estimated effective wake. 
This procedure was repeated for three itera- 
tions until the computed total  velocity matched 
the measured values.    Figure 15 shows the nomi- 
nal, total  and final  effective wake distribu- 
tions.    It has been shown by Huang (1976)    that 
the nominal  and effective wake converge   at a 
point beyond the propeller tip.    The present 
results do not show this trend, possibly 
because of the confined flow in the water 
tunnel. 
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Figure I6a - Measurements at 0.3R 

Predictions of the field point velocity 
distributions were compared with measured total 
velocity across the propeller disk. Figure 16a 
shows comparisons of Vx and Vt at 0.3 radius. 
The calculation underpredicts the circumferen- 
tial variation of both velocity components. A 
possible explanation is the inaccuracies of 
thin wing theory in accounting for the 
influence of blade thickness close to the 
leading edge. At the 0.3 radius, the blade 
section was relatively thick and the measure- 
ments were obtained at the leading edge. 
Figure 16b shows comparisons at 0.5 radius. 
There, the blade section was thinner, and the 
measurement was sufficiently distant from the 
leading edge to avoid inaccuracies in the 
modeling of thickness effects, but the calcu- 
lated result also underpredicted the measured 
peak to trough circumferential variation. 

Comparison was also made of measured and 
predicted thrust. Initially, predictions were 
made of the measured open water performance of 
Propeller 4645 showing agreement to within 2 
percent near its design condition. With the 
same empirical wake input parameters as in uni- 
form flow, the effective wake in shear flow was 
input resulting in a 12 percent overprediction 
of the measured thrust set in the tunnel. This 
was inconsistant with the underprediction of 
the circumferential variation of the field 
point velocity ahead of the propeller. The 
field point velocity correlation suggested that 
the predicted loading should be higher, while 
the predicted thrust was already too high. 
There may have been experimental errors in the 
thrust measurement, and possible asymmetry in 
the sheared inflow wake, but it's unlikely 
these would explain the large discrepancy 
observed. Possible reasons for the discrepan- 
cies are hypothesized as follows: 

1. Lack of consideration of the three dimen- 
sional nature of the induced velocity com- 
ponents associated with the effective wake in 
shear flow. 
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Figure 16 - Comparison of Measured and Calculated Field 
Point Velocity Distributions Ahead of Propeller 4645 Operating 

in a Sheared Wake 

2. Improper modeling of the flow through the 
propeller in sheared wakes using program PSF-2, 
especially the downstream wake structure. 

3. At inner radii, use of thin wing theory to 
model thickness effects in PSF-2. 

4. CONCLUDING REMARKS 

The primary contribution of this paper is 
the introduction of a local flow measuring 
technique with a great potential to investigate 
a variety of propeller problems. A high reso- 
lution one component back scatter LDV system 
has been developed to measure flows about 
operating propellers. A small LDV measuring 
volume, high resolution optical shaft encoding, 
and computer data acquisition and analysis have 
permitted detailed velocity measurements for- 
ward, aft, and within the blade boundary layers 
of operating propellers. The following conclu- 
sions can be made concerning the experimental 
results described in this paper: 
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1. Good correlation of measured and pre- 
dicted (Greeley 1982)  field point velocities 
have been further validated ahead of operating 
propellers in uniform flow.    Correlation of 
field point velocities in the slip stream show 
discrepancies believed to be due to boundary 
layer displacement effects not modeled by the 
prediction method. 

2. Blade surface pressure distributions 
can be derived from LDV measurement of poten- 
tial  flow velocity at the blade surface. 
Correlations with calculations  (Kim, 1984)  have 
shown reasonable agreement with noticeable 
Reynolds number effects on pressure distribu- 
tion that are attributed to displacement 
thickness effects. 

3. Streamwise boundary layer measurements 
on the suction side of Propeller 4119 have 
shown substantial  laminar flow at model  scale 
Reynolds numbers.    Location of transition 
determined from measured boundary layer profi- 
les correlated well with oil  dot surface flow 
visualization techniques.    Measured boundary 
layer growth at mid-span of the blade was 
approximated well  with two-dimensional  boundary 
layer theory using the measured pressure 
distribution. 

4. Measured streamwise turbulence inten- 
sity through the turbulent boundary layer shows 
a typical  magnitude relative to the moving 
blade reference frame. 

5. Local blade flow measurements at off- 
design, low J conditions show leading edge 
separation with a resulting reduction in poten- 
tial  flow suction peaks. 

6. Field point velocity and thrust 
measurements for a propeller operating in a 
sheared wake show an inconsistancy between 
measured and calculated results possible due to 
improper wake modeling in sheared flow and/or 
the three dimensionality of the effective wake. 

REFERENCES 

Cebeci, T.  (1978):    A Computer Program For 
Calculating Incompressible Laminar and 
Turbulent Boundary Layers on Plane and 
Axisymmetric Bodies with Surface 
Roughness. Report No. TR-78-1, California 
State University at Long Beach, Long Beach, 
California. 

Denny, S.  (1968):    Cavitation and Open Water 
Performance Tests of a Series of Propellers 
Designed By Lifing-Surface Methods.    David 
W. Taylor Naval  Ship Research and 
Development Center, Report No. 2878. 

Greeley, S. and Kerwin, J.E.  (1982): Numerical 
Methods for Propeller Design and Analysis in 
Steady Flow.    SNAME TRANSACTIONS, Vol.  90. 

Huang, T.T.  and Groves, N.C.   (1980):  Effective 
Wake:    Theory and Experiement, 13th ONR 
Symposium on Naval Hydrodynamics, Tokyo, 
Japan. 

Kerwin, J.E.  and Lee, C.S.  (1978):    Prediction 
of Steady and Unsteady Marine Propeller Per- 
formance by Numerical  Lifting Surface 
Theory.    SNAME TRANSATIONS, Vol. 86. 

Kerwin, J.E. (1979):    Propeller Field Point 
Velocity Program FPV-10.    MIT Dept.  of Ocean 
Engineering, Cambridge, Mass. 

Kerwin, J.E.   (1982):  Flow Field Computation for 
Non-Cavitation and Cavitating Propellers. 
14th ONR Symposium on Naval  Hydrodynamics, 
Ann Arbor, Michigan. 

Kerwin, J.E. (1979):    Propeller Field Point 
Velocity Program FPV-10.    MIT Dept. of Ocean 
Engineering, Cambridge, Mass. 

Kerwin, J.E.  (1982): Flow Field Computation for 
Non-Cavitation and Cavitating Propellers. 
14th ONR Symposium on Naval  Hydrodynamics, 
Ann Arbor, Michigan. 

Kim, K.H. and Kobayashi, S.  (1984):    Pressure 
Distribution on Propeller Blade Surface Using 
Numberical Lifing-Surface Thoery.    SNAME 
Propellers '84 Symposium, Virginia Beach, 
Virginia. 

Kobayashi, S.  (1981): Experimental Methods for 
Production of the Effect of Viscosity on 
Propeller Performance. Report No. 81-7.    MIT 
Dept. of Ocean Engineering, Cambridge, Mass. 

Kuiper, G. 91978):    Scale Effects on Propeller 
Cavitation Inception.    12th ONR Symposium 
on Naval Hydrodynamics, Washington, D.C. 

McCarthy, J.H., et al. (1976):    The Roles of 
Transition, Laminar Separation, and 
Turbulence Stimulation in the Analysis of 
Axisymmetric Body Drag.    11th ONR Symposium 
on Naval  Hydrodynamics, London. 

Meyne, K.   (1972):    Untersuchung der 
Propellergrenzschichstreomung und der 
Eingluss der Reiburg auf die 
Propellerkenngroessen (Investigation of 
Propeller Boundary-Layer Flow and Friction 
Effects on Propeller Characteristics). 
Jahrbuch der Schiffbautechnischen 
Gesellschaft, Band 66, Also DTNSRDC transla- 
tion 352. 

Min, K.S.  (1978):    Numerical  and Experimental 
Methods for the Prediction of Field Point 
Velocities Around Propeller Blades.    Report 
No. 78-12, MIT Dept. of Ocean Engineering, 
Cambridge, Mass. 

Valentine, D.T. and Chase, A.  (1976):    Highly 
Skewed Propeller Design For A Naval Auxilary 
Oiler (A0177).    David W. Taylor Naval  Ship 
Research and Development Center, Report No. 
DTNSRDC/SPD-544-12. 

Wilson, M.B., et al.  (1982):    Causes and 
Corrections for Propeller-Excited Airborne 
Noise on a Naval  Auxiliary Oiler.    SNAME 
TRANSACTIONS, Vol   90. 

235 



DISCUSSION 

JÜRG BLAUROCK, 
Hamburg Ship Model Basin, Hamburg, Germany: 

First I wish to congratulate the Authors on 
their excellent paper. 

My impression is that you have solved some 
serious technical problems to enable the deter- 
mination of the pressure distribution on the 
blades of a rotating propeller by means of LDA. 

But now I will pass on to a detail of your 
paper. On Fig. 12d we see mainly turbulent flow, 
caused by the trip wire attached near the lead- 
ing edge, whilst on the blade without trip wire 
(Fig. 12a) at the same Reynolds number the fore 
part of the suction side is covered mainly by 
laminar flow. 

Likely the turbulent flow will represent 
the full scale condition well. But as we all 
know it is important and necessary to manu- 
facture just the leading edge of the blade as 
accurate as possible. Now you put a wire of 
0.25 mm diameter at the leading edge. This 
seriously changes the geometry and hence in- 
fluences the pressure distribution in the for- 
ward part of the blade significantly. This 
consequently will cause further problems when 
this tool will be used for cavitation tests too. 

My question therefore is, did you use this 
trip wire only for the purpose of this research 
work or will this become a standard procedure 
at your institute? 

WENDY EVE BALL, 
Admiralty Research Establishment, Haslar, 
United Kingdom: 

I would like to thank the authors for a 
very interesting paper. I note that in one of 
your experiments you used a leading edge trip 
wire to create a turbulent boundary layer on 
the model blade. I would be interested for 
comments by the authors on boundary layer 
tripping techniques and whether they intend 
to do further work in this field. 

MING S. CHANG and NANCY C. GROVES, 
David W. Taylor Naval Ship R&D Center, 
Bethesda, MD, USA: 

The authors are to be congratulated on their 
paper. Their pioneering efforts in the meas- 
urements of propeller flow characteristics 
have provided both interesting and useful da- 
ta. Their discussions on Laser Doppler Veloci- 
metry techniques will be helpful to other ex- 
perimentalists venturing into this difficult 
area. Their boundary-layer results are a wel- 
come addition to the scarce data base which 
results for flow measurements on propeller 
blades and their shear flow measurements 
should stimulate interest in an area so often 
neglected. We have two comments for the 
authors: 

1. We found your flow visualization re- 
sults in Figure 12 quite interesting since we 

have computed the flow on Propeller 4119 using 
our boundary-layer code. Our crude measurements 
from Figures 12a and 12b of the limiting stream- 
line angle at the 0.7 radius give angles of 
25-30 degrees just ahead of transition. Our 
calculations predict this angle to be 35 de- 
grees at this location. Would it be possible 
for you to give a more accurate estimate of 
this angle? Also, Figure 12d shows a surprising 
phenomenon occurring at the tip when a trip 
wire is place between 0.3 < r/R < 0.7. The 
flow appears to be turbulent downstream of the 
trip wire and yet laminar outboard of the trip 
wire. This would be a challenging test case 
for our boundary-!ayer calculation program; we 
plan to modify the code so that transition is 
a function of radius. It will be interesting 
to determine if we can predict this behavior. 

2. Our second comment refers to your meas- 
urements with a sheared onset flow. We agree 
that the lack of convergence of the nominal 
and effective wakes beyond the propeller tip, 
as shown in Figure 15, could be the result of 
the confined flow in the tunnel. Had the tunnel 
effects been subtracted in the calculation of 
the effective wake, the effective wake at the 
tip would have been reduced. Also, do you have 
any physical explanation for the nonzero aver- 
age measured tangential velocity and for the 
negative value in the measured axial velocity 
in Figure 16? 

AUTHORS' REPLY 

Initially, we would like to thank all the 
discussers who commented onourpaper. First, 
we would like to respond to the questions of 
Ms. Ball and Mr. Blaurock. The reason the tip 
wire was used to trip the blade boundary layer 
in Figure 12d was purely for convenience. The 
wire has a uniform diameter and is very easy to 
apply at the leading edge. For studies of de- 
tailed leading edge flow or leading edge cavi- 
tation the wire trips may distort the flow sig- 
nificantly but tripping may not be necessary 
when cavitation occurs due to occurrence of 
leading edge separation. A possible advantage 
of wire trips may be in the ability to predict 
their parasitic drag for use in high Reynolds 
number design J, thrust and torque predictions. 
It is believed that at design condition, where 
the sections are operating at shock free entry, 
potential flow modifications due to the trip 
would be unimportant. Studies of blade boundary 
layer trips and cavitation are planned at DTNSRDC 
by Dr. Young Shen, possibly incorporating the 
LDV techniques discussed in this paper. 

Dr. Breslin addressed the existence of a 
three-dimensional stagnation point at the lead- 
ing edge of the blade. Only blade streamwise 
measurements were presented in this paper so 
that only a streamwise two-dimensional type 
stagnation point could be observed. In Figure 6 
the second plot from the top shows the stream- 
wise velocity relative to the blade on the pres- 
sure side at xc = 0.009. Near the pressure 
side surface an extreme velocity gradient is ob- 
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served that is associated with the streamwise 
stagnation point. This gradient in velocity 
decreases along the chord. It is believed that 
more detailed measurements in this region could 
more precisely map the streamwise stagnation 
flow. 

To investigate the radial flow stagnation 
point, a different LDV optical arrangement is 
required. To maintain a small measuring volume 
in the direction where extreme radial velocity 
gradients occur, it is required to transmit the 
laser beams into the water tunnel at angles up 
to 40 degrees from a plane perpendicular to the 
tunnel axis. An optical arrangement of this 
sort has been developed and tested this past 
year, and in later years will be used to map 
the radial stagnation flow. It's our belief 
that the radial stagnation point will occur 
at the furthest forward leading edge point. On 
propeller 4119 this would correspond to some- 
where around 0.7 R . For propellers with skew, 
the furthest forward leading edge point will 
generally be more pronounced. It is also 
thought that a stagnation line emanating from 
the three dimension stagnation point would 
dominate the stagnation geometry and would lead 
to typical two dimensional stagnation flow over 
most of the blade similar to Figure 6 in the 
paper. 

Dr. Maruo asked if we had observed cases 
of laminar separation associated with radial 
surface flow converging to a radial separation 
line. In flow visualization tests, primarily 
on skewed propellers, we have observed this 
type of surface flow that we have attributed 
to laminar separation. In one case it was very 
localized at the 0.4 to 0.5 radius at around 
0.8 chord. When the boundary layer was tripped 
at the leading edge, the surface flow lines 
maintained a pattern similar to that in Figure 
12d implying the elimination of laminar separa- 
tion. In other cases, the observed separation 
line continued over most of the radius at about 
0.8 c . Tripping the boundary layer only caused 
the separation line to occur slightly further 
toward the trailing edge. For this case it was 
assumed that turbulent separation was occurring. 

We would guess that these types of separa- 
tion patterns are a result of very  strong ad- 
verse pressure gradients in the streamwise and 
or radial drection. Predictions of streamwise 
pressure distributions using program PSP of 
Kim (1984) for the propellers described above 
show pressure minimums at around 0.7 to 0.8 
chord followed by extreme adverse pressure 
gradients continuing to the trailing edge. It 
is believed that these unfavorable pressure 
distributions are associated with skewed pro- 
pellers (that is not observed on propeller 
4119). Radial boundary layer growth appears 
to be very extreme in these regions and is 
likely to be strongly coupled to the stream- 
wise boundary layer behavior. We would recom- 
mend calculating the blade pressure distribu- 
tions on propellers that appear to produce 
laminar or turbulent boundary layer separation 
and compare these to propellers that have good 
boundary layer characteristics. This may pro- 
vide some understanding of the propeller para- 

meters, such as skew, thickness, and camber, 
that will result in poor viscous performance. 
In the future we hope to exercise Nancy Groves' 
program (15th 0NR) to investigate separation. 

Dr. Ming Chang and Ms. Nancy Groves asked 
about estimates of the limiting streamline 
angle, ß, from visualization shown in Figure 12. 
In our paper, we described the angle ß with 
respect to the potential flow streamline direc- 
tion. Therefore it was felt that estimation of 
these angles would be inappropriate without 
the radial potential flow being known. Fortu- 
nately, ß in Groves' paper is referenced to 
the coordinate, 5, in the chordwise direction. 
Therefore it is planned to carefully measure 
the 3 angle from enlargements of Figures 12 a 
and b. 

Dr. Chang and Ms. Groves also questioned 
the results measured in sheared onset flows. 
The lack of convergence of the nominal and 
effective wakes at the propeller tip was at- 
tributed to effects of the confined tunnel. 
The results shown in Figure 15 had not been 
corrected for these assumed tunnel effects. 
A measure of the volumetric flow through the 
tunnel with and without the propeller oper- 
ating should permit this correction to be made 
and it will be pursued at a later time. 

The concern about the non-zero average of 
the tangential velocity shown in Figure 16 is 
also a concern to us. It is possible that in 
a sheared viscous flow this component ahead 
of the propeller may not be zero, but we tend 
to believe that this discrepancy is due to ex- 
perimental error due to flow asymmetry, impro- 
per measuring volume location or direction 
orientation, or an offset error in LDV signal 
processing. 

We would like to emphasize that the meas- 
urements made in sheared onset flow were in- 
tended to be exploratory in nature. We think 
that only qualitative conclusions are appro- 
priate, one being that more work in this area 
is needed and welcomed. 
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CORRELATION OF WAKE MEASUREMENTS 

AT MODEL AND FULL SCALE SHIP 

JüRGEN KUX AND JOCHEN LAUDAN 

ABSTRACT 

Results from measurements of the velocity 
in the wake of two ships of different block 
coefficient at full scale and at model scale in 
the towing tank at comparable conditions are 
presented. In both scales Laser Doppler Veloci- 
metry (LDV) was applied using two specially 
designed LDV systems which are briefly descri- 
bed. At the model all three velocity components 
were determined in three transversal planes 
while in the full scale experiments only the 
axial component in one single plane was measured. 
A coarse picture of the distribution of the axial 
turbulence intensity at full scale can be de- 
rived. Based on the data set obtained the va- 
lidity of different scaling procedures was 
tested. For the slender ship the velocity fields 
of ship and model match quite well after extra- 
polation while the correlation for the full 
ship form is not satisfactory. Different ap- 
proaches of velocity field analysis are pro- 
posed. Space derivatives of the experimental 
values are computed and allow to depict the 
distribution of vorticity and similar charac- 
teristics of the wake. Boundary layer calcula- 
tion results are shown for comparison. 

NOMENCLATURE 

a, ai 

Ao 
B/T 
CB 
CBA 
CF 
CTh 

d 

k 

Lpp 
n 
R 
R„ 

acceleration 
propeller disc area 
breadth to drought ratio 
block coefficient 
block coefficient of afterbody 
frictional resistance coefficient 
thrust loading coefficient 
= T/0.5pV£Ao 
deformation rate 
components of S 
diameter of propeller 
Froude number 
three dimensional form factor 
torque coefficient Q/pn2D5 

thrust coefficient T/p^D14 

length between perpendiculars 
rate of propeller revolution 
radius of propeller 
Reynolds number 

S 
t 
T 
v, 
V, 

ww 
X, 

Vi. 1>J 

AC 

8.. 

X 

E. .. 
Ijk 

n.w.. 

01,0). 

II 

symmetric part of V 
thrust deduction fraction 
thrust 
velocity vector 
tensor (second rank) of velocity 
gradient 
speed of ship or model 
displacement wake fraction 
frictional wake fraction 
wake fraction determined from thrust 
identity 
wave wake fraction 
rectangular cartesian coordinates fix- 
ed to the ship. The x-axis is for- 
ward and parallel to the baseline, 
the y-axis is to starboard and the 
z-axis vertically downwards. The ori- 
gin, defining the propeller plane, 
lies in the intersection of shaft 
axis and generator line, 
roughness allowance 
Laplacian 

thickness of boundary layer 

Kronecker symbol 

scale ratio 

eigenvalue of V 

kinematic viscosity 

totally antisymmetric tensor 

mass density of water 

antisymmetric part of V 

vorticity vector 

magnitude of u> 

second principal invariant of tensor V 

1. INTRODUCTION 

A satisfactory calculation method for the 
prediction of the wake field on a theoretical 
basis is nowadays not yet available. A better 
understanding of the wake flow therefore is of 
theoretical interest. Besides this the prac- 
tical interest is raised by the fact that in 
order to design optimized propellers the know- 
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ledge on the ship wake is a most important pre- 
requisite. The mean velocity values of the 
effective wake averaged in circumferential 
direction determine the pitch distribution of 
the blades and the power prediction as the 
propeller is designed while cavitation and 
vibration effects depend on the local, i.e. 
radial and tangential variation of the wake. 

As prediction methods for the wake field 
are not available, not even by some continua- 
tion of a boundary layer calculation, more suc- 
cess is expected from scaling procedures which 
transform a measured model wake to full scale. 
Tne procedures so far proposed are not based on 
a theoretical derivation but consider thickness 
of the hull boundary layer (taken to be a flat 
plate boundary layer) as expected at different 
scales. These procedures were developed with 
the main purpose (except Hoekstras method) to 
support at design the choice of the appropriate 
rate of propeller revolution for the full scale 
case. Therefore their predicting power for the 
wake velocity field has to be tested by measu- 
rements behind ship hulls at model and full 
scale under comparable conditions. We report on 
such measurements and some results in this pa- 
per, measurements which were performed on two 
ships and their models in the frame of a re- 

. search project funded by the german federal 
ministry of research and technology BMFT. 

This contribution presents results of acti- 
vities in the field of wake investigation as 
obtained by the Hamburgische Schiffbau-Versuchs- 
anstalt (HSVA) and by the Insitut fuer Schiff- 
bau (IfS), including the measurements referred 
to above, an evaluation of scaling procedures 
and some approaches of wake velocity field ana- 
lysis. The latter rely on the knowledge of the 
spatial derivatives of the velocity vector 
which may be computed if velocity data is 
available from the experiment in a net of 
points in space of adequate density. 

2. CHARACTERISTICS OF SHIPS AND MODELS 
INVESTIGATED 

Measurements were carried out at two ships 
of different block coefficient: "Sydney 
Express" from HAPAG-Llyod and "St. Michaelis" 
from Hamburg-Suedamerikanische Dampfschiff- 
fahrtsgesellschaft. 

The "Sydney Express" is a container ship 
with a length/breadth ratio of L/B = 6.9 and a 
block coefficient of CB = 0.61. Fig. 1 shows 
the body plan, the main dimensions are given in 
Table 1. The ship is equipped with a semi- 
balanced rudder. At a scale of 1:28, a plastic 
model was manufactured. For turbulence stimula- 
tion a sand strip was attached to the forebody 
at a distance of 0.025 Lpp after the forward 
perpendicular. Propeller data are also given in 
Table 1. The distance from the propeller plane 
to frame 0 is 3.7 m for full sacle. 

The "St.Michaelis" is a product tanker 
with a length/breadth ratio of L/B = 5.4 and a 
block coefficient of 0.80. Fig. 2 shows the 
body plan, the main dimensions are given in 
Table 2. 

A model was manufactured of wood at a 
scale of 1:25.5. Ship and model are fitted out 

Fig. 1 "Sydney Express", Body Plan 

Fig. 2 "St. Michaelis", Body Plan 

with a semi-balanced rudder. Turbulence 
stimulation is done by a sand strip on the 
forebody at a distance of 0.025 Lpp after the 
forward perpendicular. Again propeller data are 
also given in Table 2. The propeller plane lies 
3.5 m in front of frame 0 for full scale. 

3. MEASUREMENT OF THE VELOCITY FIELD 
IN THE WAKE FLOW 

3.1 Model Wake 

3.1.1 Description of Measuring Device 

A Laser-Doppler Velocimeter (LDV) was used 
for the measurements of velocity in the large 
towing tank of HSVA. The device allows to 
measure three velocity components simultane- 
ously. The layout of this LDV-device is shown 
in Fig. 3. At first the beam from an argon ion 
laser (Spectra Physics Model 165-08) is split 
into two beams (one blue and one green) in an 
optical unit by using a colour separator. The 
blue beam then is split into two beams and one 
of these beams is frequency shifted with 38 MHz 
by means of a Braggcell. Then these beams are 
transmitted down in the interior of the fin to 
the lower end. The green beam is first split 
into three beams. Then one beam is frequency 
shifted with 42 MHz and the second one with 
38 MHz, both with respect to the unshifted 
third beam. Then these three beams are also 
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Blue Beams 

Fig. 3 Optics of Towing Tank LDV-System 

transmitted down through the fin. At the bottom 
of the pod the five beams are deflected by a 
system of mirrors and leave the pod through two 
wedge-shaped lenses, which focuse the beams. 
The measuring volume is thus formed by the 
intersection of five laser beams. All the beams 
have passed through the same optical path 
length, so that they have equal diameters at 
the intersection. This diameter is adjusted to 
a minimum by means of a beam waist adjuster on 
the laser head. 

The vertical component of velocity is 
measured by two of the green beams. The trans- 
verse and logitudinal components are not measu- 
red directly, but are found by calculation from 
the two horizontal components of velocity, 
measured by the blue pair and a second pair of 
green beams. These intersect under an angle of 
40 degrees. The relative large angle does not 
allow to chose the measuring plane very close 
to the propeller. On the other hand the large 
angle is necessary in order to get sufficient 
accuracy for the calculation of thwartship 
velocity. 

The light scattered by particles in the 
flow is collected by a lens which is focussed 
onto a pinhole. The distance between the lens 
and the probe volume is 773 mm. 

The lower end of the fin is submerged 
sidewards of the model into the water. The 
mechanical displacement of the transducer in 
the vertical and transverse direction is 
carried out by means of computer controlled 
motors. The displacement in the longitudinal 
direction is carried out manually. The range of 
translation in each direction is 5oo mm. The 

whole device is mounted on the ship model. 
The separation of the information on the 

velocity components detected by the receiving 
optics is based on the colour difference 
(green/blue) and on the frequency shift applied 
to the pairs of green beams. The signal 
processing is done by counters (DISA Counter 
Processor 55190a). 

The final evalution of data (about 55000 
per measurement plane) is done by a computer - 
which is not on the carriage - after the 
measurement. 

For the determination of the model wake 
field a software package was produced. Thus the 
measurement can be done fully automatically. A 
detailed description of the device and 
principle of method can be found in Laudan 
(1981). 

The relative systematic error is according 
to the view of errors in Kirschnek, Laudan 
(1980) about one to two per cent and the mean 
random error is about three per cent. 

3.1.2 Results, "Sydney Express", Model 

Wake measurements in the HSVA towing tank 
were carried out at a model speed of 1.97 m/s, 
which corresponds to a full scale velocity of 
20.3 kn (Fn = 0.23). Model displacement and 
trim were adjusted according to the draught 
values during full scale tests. 

The rate of propeller revolution was 
adjusted to yield a torque coefficient of 
K0 = 0.031. This exceeds the full scale value 
by 6.4 per cent, compensating for the 
relatively high friction of the model propeller 
due to the lower Reynolds number as compared to 
full scale conditions. 

During a first run without LDV-device at 
the desired model speed, the model trim and 
immersion was measured. During LDV-measurements 
the model was fixed to the carriage at the 
detected trim angle. 

Wake measurements by LDV were done in two 
different planes ahead of the propeller, lying 
parallel to the propeller plane. One of the 
planes had a distance of 0.12 propeller 
diameters from the propeller plane, 
corresponding to the full scale measurement, 
Fig. 4. Another wake measurement was done at a 
distance of 0.2 propeller diameters from the 
propeller plane, Fig. 5. These values were 
needed as a supplement for the inner region to 
the measurement 0.12 D in front of the 
propeller. 

The figures show the isotaches of the 
axial velocity component and the vectordiagram 
of the transversal components. The values are 
normalized to the model speed. The wake is 
quite uniform. The isotaches contures show a 
significant analogy to the frame outlines. In 
the region of 120 degree a weak vortex can be 
imagined. 

3.1.3 Results, "ST.Michaelis", Model 

Wake measurements were carried out at a 
model speed of 1.46 m/s corresponding to a full 
scale velocity of 14.3 kn (Fn = 0.19). The 
measurenemts at full scale through the 
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180° 

270° 

Fig. 4 Velocity Distribution, Wake of "Sydney Express" Model, 
0.12 D = 30 mm in Front of Propeller Plane, 

KT = 0.19, Kg = 0.031, V0 = 1.97 m/s, F„ = 0.23, 
Isotaches for Axial Component, Vector Diagram for Transversal Components 

180° 

270° 

Fig. 5 Velocity Distribution, Wake of "Sydney Express" Model, 
0.2 D = 50 mm in Front of Propeller Plane, 

KT = 0.19, KQ = 0.031, V0 = 1.97 m/s, Fn = 0.23, 
Isotaches for Axial Component, Vector Diagram for Transversal Components 

starboard window cover a larger area than those 
measurements at the port side. There is a 
slight difference between the torque 
coefficients between these two measurements. 
However, supplementary measurements have shown 
that the values normalized to the ship velocity 
are independent of velocity fluctuations within 
a certain range. The results were thus based on 

the operating conditions valid for the measure- 
ments on the starboard side. 

Model displacement and trim were adjusted 
according to the draught values picked up 
during full scale tests. At a first run without 
LDV-device at the desired model speed, the 
model trim and immersion was measured. For 
LDV-measurements the model was fixed to the 
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carriage at the detected trim angle. 
Wake measurements were supposed to be 

carried out at a propeller load corresponding 
to the full scale torque values, with a small 
correction due to friction effects caused by 
the difference in Reynolds number. This load 
was significantly lower at full scale than 
expected with respect to the conventional model 
propulsion test. This result was confirmed by 
the measurements during full scale trials. The 
desired velocity was reached at a much lower 
power than expected according to the model 
test. The inflow to the ship propeller must 
therefore be quite different from the model 
propeller inflow. The isotaches from full scale 
and model tests at corresponding load are 
significantly different. 

Differences regarding the character of 
flow separation can be responsible for the 
large deviations between the wake fields of 
model and full scale tests. Being a stability 
problem, flow separation is strongly influenced 
by the propeller load. Therefore, additional 
wake measurements were carried out at the model 
under load conditions similar to the propulsion 
test results (Kg = 0.025). The results of the 
measurement 0.23 propeller diameters (51 mm) in 
front of the propeller plane are given in 
Fig. 6. The distance of 0.23 D corresponds to 

formed using the LDV system developd at the 
IfS since 1976. This system has been used in 5 
journeys on 5 different ships and meanwhile 
funds have been provided for further measu- 
rements on two ships, one of these with an 
asymmetrical stern. 

The LDV optics is of the crossed beam 
(differential Doppler) type and is used in 
backscattering mode. The incident beams are 
focused by the front lens onto the measuring 
point. They are deflected by mirrors out into 
the flowfield through windows below the water 
line. The front lenses of the optics compose a 
zoom lens which allows to displace the measu- 
ring point, the intersection point of the 
incident beams, several meters along the 
optical axis of the arrangement. This optical 
axis can be positioned into different 
directions by appropriate adjustment of the 
deflecting mirror. Thus 'a lobe like area in one 
plane can be scanned out of one window. The 
plane is chosen parallel to the planes of the 
ship frames. In principle     designed to mea- 
sure two components of the velocity (at right 
angles) simultaneously, the system was used as 
a one component velocimeter for these wake 
surveys. The backscattered radiation is col- 
lected through the same window along the same 
path over the mirrors by the same front lens. 

180° 

270° 

Fig. 6 Velocity Distribution, Wake of "St. Michaelis" Model, 
0.23 D = 51 mm in Front of Propeller Plane, 

KT = 0.21, KQ = 0.025, V0 = 1.46 m/s, Fn = 0.19, 
Isotaches for Axial Component, Vector Diagram for Transversal Components 

the distance at full scale measurements. The 
vector diagram (Fig. 6) obviously shows vortex 
centres in the regions of 120 and 240 degrees 
at a radius of r = 0.63 R. 

3.2 Full Scale Wake 

3.2.1 Descpription of Measuring Device 

The full scale wake measurements were per- 

This is the principle of 
best suited to warrant a 
high level of vibration, 
of the incident beams is 
and given by focal length 
diameter (30 cm). The des 
is such, that the beam in 
kept constant independent 
chosen. The principles of 
will not be reviewed here 

integrated optics, 
good focusing under a 
The intersection angle 
restricted, of course, 
and front lens 

ign of the zoom lens 
tersection angle is 
of the focal length 
the LDV technique 
again and may be 

243 



found elsewhere. A special feature of the 
optics is its modular design allowing for a 
different geometrical arrangement of the main 
modules (laser, central optical unit (two clour 
optics) with detector and beam splitter, zoom) 
conforming to the restrictions imposed by the 
space available in the ship. In the case of 
these two ships, the "Sydney Express" and the 
"St. Michaelis", an elongated base plate served 
as support for the optical modules. This plate 
was lowered in vertical position along rails 
into the space between two frames (60 cm). 
Mirrors, as shown on Fig. 7, direct the light 

WINDOW 1 MIRROR^ 

SHIP SHELL 

Fig. 7 Typical Arrangement of LDV-Optics in the 
Ship 

to and from the windows which are covered by 
water-filled boxes as shown, in order to avoid 
unwanted skew beam deflections. 

Signal processing devices used were coun- 
ter processors and the data is further proces- 
sed in a computer by a software package with 
appropriate routines allowing even to draw an 
isoline plot of the results on board. (More 
details in (Kux et al., 1982), (Stoehrmann, 
1983) and (Laudan, 1983)). 

Time resolved measurements are possible: 
In the computer the momentaneous position of 
the propeller delivered by a shaft encoder is 
attached to the value given by the signal pro- 
cessor for each measurement. Averaging over a 
selected angular interval the variation of the 
velocity component about its mean at the measu- 
ring point during a propeller revolution 
emerges. Of course, the values averaged stem 
from many propeller revolutions. Averaging over 
a complete propeller revolution gives the mean 

values as presented in the following two 
sections. 

3.2.2 Measurements on the "Sydney Express" 

Measurements were taken between the 29th 
of November of 1980 and the 13th of January of 
1981 in the Red Sea and the Indian Ocean. Three 
windows had been installed for this purpose as 
indicated in Fig. 8, 0.12 propeller diameters 

Fig. 8 Relative Location of Windows and Pro- 
peller Disc, "Sydney Express" 

(0.84 m) in front of the propeller plane. The 
mesurements were taken at several different 
ship speeds and those measurements were grouped 
together where speed and torque did not differ 
too much. From the several groups of values 
thus obtained only one has been selected for 
presentation here. It is composed of three 
subgroups comprising measurements out of each 
of the three windows and the isotaches of the 
mean axial velocity component for these are 
shown in Fig. 9. The degree of matching of the 
curves in this figure derived from values 
obtained on different days gives an impression 
of the reliability of these measurements. 
Results have been presented on earlier 
occasions (Kux, Stoehrmann, 1982), and details 
may be found in an IfS report (Kux et al., 
1982). In the frame of this paper no results 
are presented on the time resolved velocity mea- 
surements which      were obtained along 
three directions out of window 2 nor on the 
turbulence detected. Reference is made to the 
same report for details (Kux et al., 1982). 

3.2.3 Measurements on the "St. Michaelis" 

These measurements were performed between 
the 18th and 22nd of November of 1981 in the 
Mediterranean during the first journey of this 
ship. Two windows had been installed their cen- 
ters 0.23 propeller diameters (1.31 m) in front 
of the propeller plane, Fig. 10. The wake was 
scanned through both, though at slightly 
different conditions: The ship speed was 
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Fig. 9 Isotaches of Axial Velocity Component 
in the Wake of the "Sydney Express", 

0.12 D = 0.84 m in Front of Propeller Plane 
Kn = 0.029, V0 = 20.3 kn = 10.4 m/s, Fn = 0.23, 
Labelling of Curves in per Cent of Ship Speed 

Fig. 10 Relative Location of Windows and Pro- 
peller Disc, "St. Michaelis" 

14.3 kn = 7.37 m/s and the torque coefficient 
KQ = 0.0185 for the measurments through the 
starboard window and the corresponding values 
were 15.0 kn = 7.74 m/s and KQ = 0.0180 for the 
port window while the rate of revolution of the 
propeller was the same in both cases, i.e. 
2.12 1/s. Notwithstanding these differences 
Fig. 11 gives the combined pattern of isotaches 
(axial component) obtained. Again results have 
been presented on earlier occasions (Kux, 
Stoehrmann, 1982), and details may be found in 
an IfS report (Stoehrmann, 1983) as well as 
results on some time resolved velocity measu- 
rements in the periodically instationary wake 
field for this ship which are not presented 

Fig. 11 Isotaches of Axial Velocity Component 
in the Wake of the "St. Michaelis" , 

0.23 D = 1.31 m in Front of Propeller Plane 
Kn = 0.018, V0 = 14.8 kn = 7.4 m/s, Fn = 0.19, 
Labelling of Curves in per Cent of Ship Speed 

here. 
In Fig. 12 the isoline patternsof axial 

Fig. 12 Isolines of Axial Turbulence Intensity 
in the Wake of the "St. Michaelis", 

0.23 D = 1.31 m in Front of Propeller Plane, 
KQ = 0.018, V0 = 14.8 kn = 7.4 m/s. Fn = 0.19, 
Labelling of Curves in per Cent of Ship Speed 

turbulence intensity as reffered to the ship 
speed V0 from both windows have been combined. 
Though the isolines refer to the total 
variation of velocity about the mean including the 
induction by the blades, this latter variation 
is rather small (a fact confirmed by the time 
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resolved measurements not shown) since the 
plane is 1.31 m upstream of the propeller 
plane. Thus the region of the wake is depicted 
where the highly turbulent material from the 
boundary layer has been swept. 

4. COMPARISON OF PREDICTED AND FULL SCALE WAKE 

4.1 Scale Transformation Methods for the Wake 

As the knowledge of the velocity field is 
fundamental to the treatment of interaction 
between propeller and hull, a large number of 
procedures for adapting the model wake field to 
full scale has been developed. An excellent 
review of different procedures is given by Dyne 
(1972). Usually scaling procedures are based on 
model test results from wake-measurements, 
resistance- and propulsion tests. Therefore, 
propulsion and resistance tests were carried 
out for the described models, and open water 
tests for the model propellers. The results are 
given in tables 1 and 2. 

According to Helmbold (1931), the wake of 
a ship can be divided into three components: 
displacement wake, friction wake and wave wake. 

At the Froude numbers of the described mea- 
surements (up to 0.23), there is only a small 
influence of waves on the wake distribution. As 
model and full scale tests were carried out at 
the same Froude number, the scale effect is 
assumed to be negligible. 

In an ideal liquid, geometrically similar 
bodies have the same displacement wake. 

As the velocity for model tests is se- 
lected to yield the same Froude number as under 
full scale conditions, the Reynolds numbers of 
model and full scale tests must be different. 
The Reynolds number has a strong influence on 
the thickness of boundary layer and, as a con- 
sequence, on the friction part of the wake. The 
boundary layer thickness under full scale 
conditions is relatively smaller than at model 
conditions. The growth of boundary layer also 
affects the potential flow field. Nevertheless, 
generally all scaling procedures only consider 
for the friction wake. 

In the following, some of the scaling pro- 
cedures will be applied to the investigated 
model wakes. 

To scale measured values from a geosim 
series of Victory ships, van Manen and Lap 
(1958) assume that the friction wake of a ship 
behaves like the wake field of a flat plate 
with the same length. This results in 

ws = wM - (wfM - Wfs)fiat plate 

for the ship's wake field. 
In order to calculate the volume mean 

value of the wake, thepropeller disc diameter 
is selected to yield the same length/propeller 
diameter ratio as on the ship. This mean value 
amounts to 

wr 4> 
o 

^/l-(y/6)(6/R)'- 

•(«/r)d(y/«) 

and is calculated numerically. Following a 
proposal by Wieghardt (1973), the expression of 
the boundary layer velocity profile is somewhat 
different from the formula as in the original 
reference. 

Based on the values derived from tables 1 
and 2, wake-ratio full scale model amounts to 
ws/wM = 0.79 for the "Sydney Express" and 
ws/wM = 0.67 for the "St. Michaelis". 

The mathematical effort for this solution 
should not conceal the fact that this procedure 
is based on assuming the ship boundary layer to 
behave like the flat plate one, which means 
over simplifying physical relations. 

Following from the momentum equation, the 
momentum loss in the wake must be proportional 
to the sum of forces acting on the model. As a 
first order approach, differences between model 
and full scale are supposed to depend on 
friction alone, yielding the following equation 
for the wake fraction: 

WS = wdM + (wM"wdM> C 
FS_ 

FM 

Dickmann (1939) concludes from the momentum 
equation that the potential thrust deduction 
fraction must be proportional to the 
displacement wake fraction. Sasajima (1966) 
postulates the friction part of thrust 
deduction to be negligible. From this, for the 
ship wake follows 

tM + 
WM " *v) "M W  C 

TS_ 

FM 

From the values of tables 1 and 2 ws/wM can be 
calculated for the "Sydney Express" as 
ws/wM = 0.77, and for the "St. Michaelis" as 
ws/wM = 0.73. 

For full scale wake fraction, Brard and 
Aucher (1960) give a formulation similar to 
Sasajima's, additionally considering the fact 
that the displacement wake depends on the 
propeller load. For displacement wake, Dick- 
mann's formulation is applied: 

"dM ^T^-V +V(l-wMfT^ Th. 
where the thrust load coefficient is based on 
the ship's velocity. 

"Th  0.5sVoA 

Using the values from tables 1 and 2, the 
result is ws/wM = 0.79 for the "Sydney Express" 
and ws/wM = 0.70 for the "St. Michaelis". 

For the scaling procedures of different 
model basin, a summary was published by ITTC 78 
(1978). The result was a modification of 
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Sasajima's formula: 

(l+k)CFS+ÄCF 

ws = (t+0.04) + (wM-t-0.04)        (1+k)cFM
F 

This yields ws/wM = 0.89 for the "Sydney 
Express" and ws/wM = 0.80 for the "St. 
Michaelis". 

All the above mentioned formulae, that 
were developed for prediction of the rate of 
propeller revolution, result in a constant 
factor for the complete wake pattern, can be 
regarded as a homogeneous concentric 
contraction of the wake field. 

Another procedure published by Hoekstra 
(1975) gives different scaling factors for 
different regions of the wake field. This 
procedure does not separate displacement 
induced from friction induced contributions to 
the wake field and takes into account both 
effects. 

For a wake field without bilge vortex, 
Hoekstra distinguishes between three different 
types of wake patterns, leading to three 
different types of contraction: 

1. For an axisymmetric body the isotaches are 
circles, and the Fourier component has a 
value only for the zero order. This wake 
character gives rise to a contraction in 
radial direction. 

2. Fourier analysis wake field of a vertical 
plate gives nonvanishing values only for 
the even-numbered coefficients. The 
contraction will be directed towards the 
plate, i.e. towards the centreplane. 

3. Differences between velocities at the 
upper and the lower half of the measuring 
plane are due to the hull shape above the 
propellers. These differences cause the 
odd-numbered orders of harmonic analysis 
to have non-zero values, and the 
contraction is directed normal to the 
hull. 

The overall contraction is assumed to 
behave like the boundary layer contraction of 
a plate. The resulting contraction factor 
amounts to 

CFS + ACF 

°FM 

Friction coefficients are calculated 
according to ITTC-57-line. This contraction 
factor is divided into the three above men- 
tioned components with respect to the Fourier 
analysis. 

The peaks of wake at the centre plane 
are comparatively smaller behind the full 
scale ship than behind the model. The scale 
effect covers a range of 

Ad (1 X°-2S) 

the centre plane to be equal to the velocity 
at 0.5Ad, where xs is the distance between 
propeller plane and stern at a radius of 
r/R = 0.7. 

The calculation of volume mean value 
yields for the wake ratio ws/wM = 0.87 for 
the "Sydney Express" and ws/wM = 0.88 for the 
"St. Michaelis". 

The special treatment of bilge vortex by 
Hoekstra was not considered here. 

Other scaling procedures are based on 
statistical analysis of results from series 
of model tests and full scale trials. 
Naturally, application of formulas obtained 
in this way is restricted to a special type 
of ships. 

So Sudo (1969) has investigated a series 
of single screw tankers. He made an factor 
analysis for full scale and model wake 
separately and took account of seven 
parameters. The ratio of the full scale to 
model scale wake can be described by two 
parameters with a sufficient accuracy. 

1 - wc "BA T; 

The character of contraction leaves the flow 
velocity unchanged at a distance of Ad from 
the centre plane and causes the velocity in 

For the "St. Michaelis" by this formula vig/vfo 
amounts to 0.67. 

Table 3 gives a review of all results. 
Isotaches were drawn for the wake 

patterns obtained by Hoekstra's procedure and 
the ITTC-proposal (Fig. 13 and 14). 

4.2 Wake Predicted by the Hoekstra and 
ITTC Method 

In the following the scaling procedures 
of Hoekstra and the ITTC on the wakes of the 
"Sydney Express" and the "St. Michaelis" are 
treated detailed. These two methods are 
chosen, because the velocities - calculated 
according to the other methods - give too 
large values. 

4.2.1 "Sydney Express" 

Comparison of the isotaches of the 
velocity field for full scale (Fig. 9) with 
model res ults (Fig. 4 and 5) show a rather 
good congruence. The outline of the isotaches 
is quite similar. As expected, the isolines 
get closer to the centre plane at the full 
scale ship than at the model due to the com- 
paratively smaller extent of boundary layer 
thickness at full scale. 

The flow field converted to full scale 
according to ITTC-proposal (Fig. 13 right) is 
quite congruent to the full scale measu- 
rements. The same is valid for the flow field 
converted according to Hoekstra (Fig. 13 
left). The somewhat unsymmetric character of 
the full scale measurement only slightly 
appears at the model test. 

4.2.2 "St. Michaelis" 

Comparing the isotaches of the velocity 
field from model (Fig. 6) and full scale mea- 
surements (Fig. 11) shows the significantly 
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180° 
180° 

270° 

Fig. 13 Isotach Pattern Transformed from Model to Full Scale, "Sydney Express" 
0.12 D in Front of Propeller Plane, KQ = 0.029, Fn = 0.23, 

Hoekstras Method left, ITTC Method rihgt 

larger velocity values of the full scale 
test. Even the higher load coefficient for 
the model test caused no essential improve- 
ment. Only on the port side of the full scale 
measurement a faint analogy to the model test 
results can be imagined. 

Scaling of the model velocities at a 
higher propeller load according to ITTC-pro- 
posals gives a better congruence regarding 
corresponding isotaches (Fig. 14 fight). It 
must be considered that at regions of small 
velocity gradients even a small change of the 
velocity value will shift the isoline by a 
considerable amount. In the upper region, the 
scaling produces velocity values larger than 
the values from full scale measurements. The 
vortex centers indicated by relative minima 
of the axial velocity are placed closer to 
the centre plane at full scale than at model 
scale. 

Scaling according to Hoekstra (Fig. 14 
left) yields a rather good congruence 
compared with the full scale results in the 
upper region (between 140 and 190 degrees). 
However, the isolines in the lower region as 
well as the vortex centres are lifted too 
much, obviously because of a too large amount 
of contraction normal to the hull surface. 
The different velocity values in the upper 
and lower half of the measuring plane are not 
only due to the hull above the propeller but 
also caused by the stern bulge of the "St. Mi- 
chaelis". 

5. ANALYSIS OF VELOCITY FIELDS 

5.1. General Considerations 

The velocity field in the wake of a ship 
hull is an example of an extremely complicated 
threedimensional vector field. In order to be 
able to decribe and understand it any concept 
clarifying the complex topology and reducing it 
to simpler terms should be examined and might 
proportionate guidance in the search for tools 
for this purpose. Well known are aids as vector 
lines and sheets, here streamlines and stream 
surfaces, but for a complex flow even drawing 
these, be it in a perspective view or as pro- 
jection to an appropriate plane, in a way that 
really elucidates the characteristic features 
of the field is generally a problem. A few 
possibilities to gain some insight into the 
structure of the field are reviewed at 
continuation. 

Popular are also "sectional" streamlines, 
the vector lines of the (two-dimensional) field 
of velocities measured on points of one plane 
and projected to that plane. These streamlines 
of projected velocities are in general dif- 
ferent from the projections of the streamlines 
of the (three-dimensional) velocity field to 
that plane. 

Calculation procedures for flows of this 
complexity are not available. Since it is 
possible to calculate the field of potential- 
theoretic velocity it is of interest to compare 
such calculations with the real field as 
measured (see section 5.2). 

Important features of the field are found 
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180° 

270° 

Fig 14 Isotach Pattern Transformed from Model to Full Scale, "St. Michaelis", Plane x = 0.23 D 
in Front of Propeller Plane, KQ = 0.025, Fn = 0.19, Hoekstras Method left, ITTC Method right 

in free space as well as on the bounding wall 
surfaces. Typical for the latter are separation 
lines and foci as foot points of vortices. In 
the free field vortices and bifurcation lines 
(intersection lines of stream surfaces) are the 
corresponding features with determined 
character of singularity. Expanding the 
velocity field in a Taylor series around a 
critical point gives locally insight into the 
structure of the field (Hornung and Perry, 
1984). 

Vector fields are classified according to 
the properties of the second rank tensor 
V = grad v, the tensor whose components are the 
spatial derivatives Vi)j=3v.^aXj of the 
components vi (i = 1,2,3) of v (Ericksen, 1960) 
with respect to the three coordinates x^ 
(xi = x, x2 = y, x3 = z). 

Now the acceleration a = (v grad) v in 
stationary flow (and we restrict our discussion 
to this class of flows), the left hand side of 
the basic equations of motion (once they have 
been divided by the density p), may be inter- 
preted as V v\ the action of the transformation 
V onto the velocity vector v\ It follows at 
once that v will keep its direction (i.e. that 
^ will remain parallel to itself) if it is an 
eigendirection of V,being merely lengthened or 
shortened as prescribed by the pertinent eigen- 
value 

Vv Xv 

It is seen, that the solution of the eigenvalue 
problem for V in a suitable mesh of space 

points proportionates a means to locate such 
specific features within the field. 

We realize, that since the axis of a vor- 
tex needs not to be a straight line, this 
approach does not give us generally at once the 
location of the axis of a vortex in 
three-dimensional fields. 

A method has been proposed (Vollmers et 
al., 1983) to introduce a transformation to a_^ 
frame of reference where the velocity vector v 
aligns with one of the coordinate directions of 
this new frame, and features of the flow field 
are found from the differential-geometric cha- 
racteristics (derived from V) of a hypothetical 
surface everywhere perpendicular to the local 
velocity direction. 

Since insight may be found from an ana- 
lysis of V, both the decomposition of V and the 
reduction to lower rank magnitudes, to 
vectorial if not to scalar descriptors are 
paths offering some success. Scalar quantities 
related to a second rank tensor are e.g. its 
principal invariants (three in three 
dimensions, the first one being its trace, the 
third its determinant) or its eigenvalues. 
Decompositions may be thought of as additive 
decompositions and as factorial decompositions. 

A factorial decomposition of V may be 
achieved in several ways. We recall that an 
arbitrary matrix may be represented in infin- 
itely many ways as the product of two symmetric 
matrices, one of which is nonsingular 
(Ericksen, 1960). Much more interesting is the 
following theorem: Any nonsingular matrix may 
be written as the product of an orthogonal and 
a symmetric positive definite matrix (Ericksen, 
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I960), (Zurmuehl, 1950). This special kind of 
decomposition is known as polar decomposition. 
The orthogonal factor may be interpreted as a 
rotation (^curl v) of the vector "v" (as long as 
its determinant is > 0) and the other factor 
describes the stretching of v in three mutually 
perpendicular directions. The rotation factor 
determines a rotation axis in space (the eigen- 
direction to its only real eigenvalue) which is 
not identical with the direction of curl v" at 
that location, curl v" being the mean of 
rotation obtained as average over all possible 
positions of the rotated vector (Truesdell, 
1954). 

Fig. 15 Velocity Field in the Wake of a Double 
Model in the Wind Tunnel (HSVA Tanker), 
Measured Transversal Components in the 
Plane x = 47 mm in Front of Propeller 
Plane, Vn = 27 m/s 

The polar decomposition is popular in 
elasticity theory where it is applied to the 
displacement gradient tensor (Zander, 1970), 
(Becker, Buerger, 1975). 

In this paper only the additive decom- 
position of V will be pursued (section 5.3). We 
will use a combined symbolic and tensor 
notation. If the quantity is referred to in 
general terms a single letter is chosen. 
Vectors are characterized as those by an arrow 
while upper case symbols are used for second 
rank tensors without further characterization. 
Formulae giving the law of construction of the 
components or relations between them are 
written in the manner of tensor calculus with 
indices according to the rank of the quantity. 
We adhere to the Einstein summation convention: 
If in a term an index appears twice this term 
is understood as a sum of terms over the range 
of these indices (here 1 to 3) in the sense of 
a scalar product. We do not differentiate be- 

tween covariant and contravariant (nor mixed) 
components in this contribution. The partial 
derivative with respect to the coordinate Xj is 
denoted using "," as e.g. V£j. So V = (v^ j ). 

5.2 Decomposition of the Velocity Field into 
Potential and Non-potential Flow 

Since the velocity field for potential 
flow may nowadays be computed using singularity 
(panel) methods on the computer without too 
much effort, it is easy to do so for those flow 
fields, where experimental results are avail- 
able. It is then interesting to subtract from 
the real field the computed potential field. 

Fig. 15 to 17 show the procedure as 
applied to wind tunnel data (Wieghardt, Kux 
1980), (Wieghardt, 1982) from pressure probe 
measurements in a transverse plane in the stern 
region of a double mode'l of a hull (the HSVA 
Tanker) thoroughly investigated at the IfS. 
(Notice the different scales for the arrow 
lengths!) The procedure is demonstrated using 
this data set since more values in the plane 
lead to a more detailed picture of the vortical 
flow. Fig. 15 shows the measured values, 
Fig. 16 the computed potential velocity field 

i  iiiiiiiiuuinnni- 

Fig. 16 Velocity Field in the Wake of a Double 
Model in the Wind Tunnel (HSVA Tanker), 

Potential Theory, Computed Transversal Components 
(Same Points as in Fig. 15) 

at the same locations and Fig. 17 finally the 
remaining velocity field after subtraction. It 
is seen that in the outer region the arrows 
have been practically reduced to zero, the 
arrow heads showing random orientations. The 
potential flow there describes well reality 
while in the neighbourhood of the frame the 
longitudinal vortex with the superimposed 
displacement flow induced by the boundary layer 
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Fig. 17 Remaining Velocity Field in the Wake of 
Double Model (HSVA Tanker) when Poten- 

tial Theoretical Field (Fig. 16) is Subtracted 
from Measured Field (Fig. 15) 

becomes evident. The vortex does not appear at 
the location suggested by Fig. 15. Since the 
displacement velocity of boundary layer has not 
been subtracted, even Fig. 17 does not show the 
real location. Pinpointing vortices may be help- 
full for the application of scaling procedures 
as that forewarded by Hoekstra (1975). 

5.3 Additive Decomposition of the Tensor grad v, 
Vorticity and Deformation 

vector co = curl v, since they transform as 
vector components (but for a change in sign 
under reflections). The connection betweenfi 
and 3 is given by 

CO.    =   E. .,   CO., 
i ijk   jk 

1 
CO., =-■=■£.. , U1 jk      2   jkl    1 

°-i 
(0   _U3W2 

COo    0 -co. 

°7 
whereeijk is the totally antisymmetric (third 
rank) tensor 

( 1 for ijk = 123, 312, 231 
e..  = -1 for ijk = 321, 213, 132 
ljlc  ( 0 else 

With co= ItoI  it follows = 2co., co., 
Jk Jk 

The vector co is suited to be represented graphi- 
cally as any vector field: As arrow diagram by 
projecting onto a suitable plane (Wieghardt, 
1983), as isolines of the componet normal to 
such a plane drawn on that same plane or as 
isolines of modulus (or other components) drawn 
similarly. Projection onto a bounding wall 
surface also is popular. 

The symmetrical part S is much less suited 
to a graphical repesentation. To free ourselves 
from the arbitrariness introduced by the coordi- 
nate system (generally chosen a priori without 
relation to the velocity field) we may look for 
the eigenvalues and the eigendirections (better 
known as eigenvectors) of S and choose a graph- 
ical representation for these. The eigenvalues 
of S give the deformation rate in three direc- 
tions, precisely the eigendirections of S. We 
may also derive scalars from the components dij 
of S by appropriate algebraic manipulation. 
Specifically the scalar d defined by 

d2 = 2d. .d.. 
ij ij 

interpreted as deformation rate has found broad 
acceptance. We find 

5.3.1 Theory 

In the usual additive decomposition the 
tensor (V in our case) is split into its sym- 
metric part (S = (dij), dij={(vi(j + vjfi)) 
and its antisymmetric part (fi = (coij), 
toij =i(vi j-Vj i)). Following Ericksen (1960) 
S may again be split into a spherical tensor 
(given by tr(S)6ij= tr(V)äij) and a remaining 
traceless symmetric tensor. Since V is the 
gradient tensor of the velocity field, we see 
that for the incompressible case (and we 
resrict our discussion to this case) this 
spherical tensor vanishes in theory: 
tr(V) = div v = 0. Dealing with experimental 
data this is never exactly fulfilled due to 
errors in measurement and numerical processing. 

It is not too easy, to obtain a vivid im- 
pression of the components thus obtained. 

For Q as an antisymmetric second rank 
tensor we have no more than three components of 
different absolute value in three dimensional 
space. We know that it has become usual to take 
them as the components of a vector (the vector 
of that second rank tensor), the vorticity 

d2 =2(V12,1+V22,2+V32,3) + (V3,2 + V2,3)2 

+ (v. - + v_ ,)2 + (v, , + v. „)2 

and 
■1,3  3,1' 

d2 =co2 + 2 div a 

"2,1' VI,2' 

(Appendix) 

with to = |co|   and a as accelaeration 
ft =  (vgrad) v,  ai = VjVij.in the case of 
stationary flow). Again isolines of d may be 
plotted showing the distribution of deformation 
rate. 

With co and d the kinematical vorticity num- 
ber Wk introduced by Truesdell (1953), (1954) 
now follows quite naturally as 

to 
d 

0). . CO. . 
1J 1J = 

dkldkl" 

(1   +2divarl/2 

and is seen to be the ratio between scalars 
characterizing vorticity (or the antisymmetric 
part) and deformation (or the symmetric part). 
Emerging solely out of V, d is a rate most 
appropriate to nondimensionalize the vorticity. 
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5.3.2 Application to Experimental Data 

Out of a much larger amount of available 
data obtained as described in section 3. some 
graphical representations regarding model and 
full scale measurements are shown. Since the 
experiments do not yield div v = 0 exactly, it 
is evident that the results are somewhat in 
error. No attempt has been made to manipulate 
the data to achieve a better fulfillment of 
continuity equation. 

Fig. 18 to 22 show the vorticity distri- 

Fig. 19 Vorticity in the Wake of the "Sydney 
Express", Transversal Components, 

0.12 D = 0.84 m in Front of Propeller Plane 
KQ= 0.029, V0= 20.3 kn = 10.4 m/s, Fn= 0.23 

Radii 

D= 91.25   m 

t = 93.75   m 

,. = 106.25 

< = 1 IS.75   i 

> = 131.25   i 

. = 143.75   r 

Fig. 18 Vorticity of the Model Wake, "Sydney 
Express", Transversal Components, 

0.16 D = 40 mm in Front of Propeller Plane 
KT= 0.19, KQ= 0.031, V0= 1.97 m/s, Fn = 0.23 

bution in the wake of the "Sydney Express" and 
"St. Michaelis". 

Fig. 18 and Fig. 20 show transversal 
components of the vorticity distribution in the 
model wakes in planes intermediate between the 
two measuring planes closest to the propeller 
plane. The axial derivatives of the velocity 
components were computed taking the differences 
of corresponding velocity components in the men- 
tioned two planes. These derivatives were 
assigned to the intermediate plane and all 
circumferential and radial derivatives obtained 
in the measuring planes were interpolated onto 
the intermediate plane. Though the measuring 
planes closest to the propeller in the model 
wake correspond to the measuring plane at full 
scale, vorticity, deformation, etc. is computed 
for a plane that has a location somewhat up- 
stream as is seen from the x coordinates given 
in the figure captions. Fig. 18 and Fig. 21 
give the transversal components of the vor- 
ticity for the full scale case derived from the 
axial velocity component (solely) measured. The 
assumption was made that the derivatives in 

Radii 

D» 79.35   m 

k = 99.80  m 

y   s 1   19.80 

, = 139.80 

Fig. 20 Vorticity of the Model Wake, "St. Mi- 
chaelis", Transversal Components, 

0.28 D = 63 mm in Front of Propeller Plane 
KT= 0.21, KQ= 0.025, V0= 1.46 m/s, Fn= 0.19 

direction of the x axis are negligible anyhow 
(i. U2 = Vl,3 ' U3 Vl>2) 
Fig. 22 gives an example of the distribution of 
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Fig. 21 Vorticity in the Wake of the 
"St.Michaelis", Transversal Components, 

0.23 D = 1.31 m in Front of Propeller Plane 
KQ= 0.018, V0= 14.3 kn = 7.4 m/s, Fn= 0.19 

'*>„ 

Fig. 22 Isolines of Axial Component of Vortici- 
Field in the Model Wake, "St.Michael is" 

0.28 D = 63 mm in Front of Propeller Plane, 
KT= 0.21, KQ= 0.025, V0= 1.26 m/s, Fn= 0.19 
Labelling of Curves is in 10/m 

the axial vorticity component in a model wake 
as isoline plot. Fig. 18 and 19 correspond to 
the "Sydney Express", Fig. 20 to 22 to the 
"St. Michaelis". The deformation rate d for the 
model wake of this latter ship on the described 
intermediate plane is shown in Fig. 23 and the 
kinematic vorticity number Wk (same plane, same 
model) in Fig. 24, both as isoline plots. 

5.4 The Acceleration Field as Derived from the 
Velocity Measured in the Model Wake 

Since for stationary flow t ^ 
= (vgrad)v = Vv, it is easy to compute a once V 
has been determined by differentiation of mea- 
sured components of v". The characteristics of 
the acceleration field a may also be studied by 

'*.„ 

Fig. 23 Isolines of Deformation Rate 
Model Wake, "St. Michaelis" 

0.28 D = 63 mm in Front of Propeller 
KT = 0.21, KQ = 0.025, V0 = 1.26 m/s, 
Labelling of Curves is in 10/m 

Bfi'L-J 
0=   79.85   m: 
A =   99-BO   m 

+ =   11980   i 
=   139.80 

in the 

Plane, 
n 0.19 

^o. 

0 
■6 % 

Radii    : 

0=   79.85 
A=   99.BO 
+ =    119-80 
„=   139.80 

Fig. 24 Isolines of Kinematic Vorticity Number 
in the Model Wake "St. Michaelis", 

0.28 D = 63 mm in Front of Propeller Plane, 
KT= 0.21, KQ= 0.025, V0= 1.26 m/s, Fn= 0.19 

the computation of div a. From the basic 
equation of motion for incompressible flow it 
follows that 

div a : -LAP 
P 

a-    ■ =~  TPi 1,1    p 
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Now it is easily derived (Appendix, (Truesdell, 
1954)) that for incompressible flow 

1 div a =-2 II = 
v 

(dz-o/) 

(where II is the second principal invariant of 
V) and may therefore be deduced directly from 
the components of V, that is from first 
derivatives of the velocity, eliminating risks 
implied in the computation of second deriva- 
tives starting from experimental data. 

By calculating the aceleration for a 
certain value of K, and for IC,. = 0 and sub- 
tracting,the net acceleration action of the 
propeller may be visualized. 

Fig. 25 and Fig. 26 give examples of the 

Radii 

, =. 79.85 mm 

^ = 99.BO mm 

.   =   1 19.80   mm 

Fig. 25 Vector Diagram of the Transversal Com- 
ponents of Acceleration, 

Model Wake, "St. Michaelis", 
0.28 D = 63 mm in Front of Propeller Plane 
K T= 0.21, KQ= 0.025, V0= 1.46 m/s, Fn= 0.19 

acceleration field in one plane of the model 
wake of the "St. Michaelis" and Fig. 27 shows 
the corresponding isoline pattern for div a. 

5.5 Boundary Layer Characteristics of 
the Detaching Flow 

Though the LDV is a versatile tool, 
extensive measurements in a ship model boundary 
layer have not been presented. The data set 
selected as test cases for the 1980 workshop on 
ship boundary layers in Gothenburg (Larsson, 
1980) was obtained by hot wire anemometry 
(Larsson, 1974) or by pressure probes (Hoffmann, 
1976). 

In the IfS a thorough investigation of the 
wake of the mentioned double model (Wieghardt, 
Kux, 1980) has been undertaken in the wind 

Fig. 26 Isolines of Axial Component of Accele- 
ration, Model Wake, "St. Michaelis", 

0.28 D = 63 mm in Front of Propeller Plane, 
KT= 0.21, KQ= 0.025, V0= 1.26 m/s, Fn= 0.19 

'*>.„ 

Radii 

> = 79.85 m 

k = 99.80 m 

_ = 119.80 

, = 139.80 

Fig. 27 Isolines of the Divergence of Accelera- 
tion, Model Wake, "St. Michaelis", 

0.28 D = 63 mm in Front of Propeller Plane, 
KT = 0.21, KQ = 0.025, V0 = 1.26 m/s, Fn = 0.19 
Labelling of Curves is in 0.1/m 

tunnel and the completion of this data set is 
still under way. Though the measuring points do 
not approach the wall very closely and are 
arranged in planes transverse to the model axis 
(as seems adequate for description of the 
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wake), it is possible to transform the results 
locally to a wall oriented coordinate system as 

C.W.u, 
[mm] 

50- 

\<° !, lvl,Vo kl 4"u. 0) 
1/m 

46 .320 47.5 75.6 
a.i .4b 2 49.4 66.5 

11.7 .601 4:17 75.0 
15.2 .718 14 3 84.7 
18.8 .80? 778 89.9 
22.J .861) 10.8 92.7 
25.8 .895 10.(1 91.0 
29.4 .919 7.5 92.8 
37.0 .91? fit 96.3 
48.8 ■ 9S0 4.6 87.7 

the cross flow profile which shows one 
crossover. The high value of the normal 
velocity component may be an argument in favour 
of those boundary layer calculation methods 
which include this component (Nagamatsu, 1980), 
(Soejima, 1978). The vorticity vector has also 
been drawn in Fig. 28 and it is seen that 
vorticity reaches rather high values. The 
behaviour of the normal velocity component (W) 
is plotted as function of wall distance (?) in 
Fig. 29 at different positions along the girth 
as shown in the inset. 

It is nowadays not yet possible to 
determine the details of wake from computed 
boundary layer separation. With an integral 
threedimensional boundary layer calculation 
method using the energy equation, power law 
profiles in outer flow direction and Mager 
profiles for the cross flow some boundary layer 
calculations have been performed for the hull 
of the "Sydney Express" at both model scale and 
full scale. The method developed at the IfS 
(Achner, Kux, IfS report, to appear) does not 
consider a normal velocity component nor does 
it take into account curvature effects. The 
results of such a calculation are shown as 
isolines for the logitudinal velocity component 
in Fig. 30. Typical is the extremly thin 
boundary layer at the keel which correlates 

Fig. 28 Boundary Layer in the Region of Detach- 
ment, Double Model (HSVA Tanker) in the 

Wind Tunnel, showing Normal Component and Cross 
Flow and Vorticity Vector, Vo = 27 m/s, 
Rn = 5-10', 101 mm in Front of Propeller 
Plane at the Wall 

used in boundary layer description. If one does 
so (Wieghardt, Kux, 1984,unpublished) a 
velocity profile emerges as shown in Fig. 28. 

Fig. 30 Isolines (labelled 0.9, 0.8,... 
beginning with outer line, frac- 

tion of speed) of Longitudinal Velocity 
Component in Boundary Layer from Calcu- 
lation (Integral Method for Three-Dimen- 
sional Boundary Layers with Energy Equa- 
tion) for "Sydney Express" 1.03D in 
Front of Propeller Plane, 
Model Left, Rn = 1.3-10

7, 
Full Scale Rijjht, Rn = 1.8-10

9 

Notice the large component normal to the wall, 
considerably larger than the maximum value in 

--0.3 

Fig. 29 Normal Component of Separating Boundary 
Layer Versus Wall Distance, Double 

Model (HSVA Tanker) in the Wind Tunnel, for Dif- 
ferent Locations Along Frame (as Shown in Inset) 
101 mm in Front of Propeller Plane 

well with the concentrated transverse vorticity 
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found in the model wakes (Figs. 18 and 20) As 
stated, such a method does not in principle 
provide information on the normal component. It 
is probably also inadequate to describe the 
cross flow realistically,the Mager profiles 
being unable to reproduce cross flow profiles 
as the one shown in Fig. 28 (for a different 
hull!). 
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APPENDIX 

With divv = 0 , v. .=0 we write for 
-s- ->■ V 

div a = div (v grad ) v 

(vi,jvj>,i=Vi.JVJ,1 

= <dij+V(dJi+V 

= dijdji-uijwji 
= l/2(d2-oj2) 

We derive 

V = l/2eijkelmn61lvj,mvk,n 
= 1/2 (Vkn-Vkm>vj,mvk,n 

= 1/2<vj,jvk,k-vj,kvk,j> 

=-1/2vJ,kvk,j 

=-l/2aM 

Hence 

div a = 

TABLES 

2 11 = l/2(d2-ü)2 
v 

Table 1 Principal Characteristics 
"Sydney Express" 

Length between perpendiculars 210.0 m 
Length, overall submerged 218.4 m 
Draught 10.2 m 
Breadth 30.5 m 
Block coefficient 0.61 
Surface, wetted 7681 m 
Propeller diameter 7.00 m 
Pitch ratio 0.94 
Expanded area ratio. 0.78 
Number of blades 5 
Model sacle ratio 28 
Froude number 0.23 
Torque coefficient, ship 10KQ 0.29 
Torque coefficient, model 10KQ 0.31 
Thrust coefficient, model KT 0.20 
Thrust loading coefficient CTh 1.76 
Thrust deduction fraction t 0.18 
Wake fraction wj 0.33 
Formfactor k 0.138 
Direction of propeller rotation right 

Table 2 Principal Characteristics 
"St. Michaelis" 

Length between perpendiculars 
Length, overall submerged 
Draught 
Breadth 
Block coefficient 
Block coefficient of afterbody 
Surface, wetted 
Propeller diameter 
Pitch ratio 
Expanded area ratio 
Number of blades 
Model sacle ratio 
Froude number 
Torque coefficient, ship 
Torque coefficient, model 
Thrust coefficient, model 
Thrust loading coefficient 
Tlwst deduction fraction 
Wake fraction 
Formfactor 
Direction of propeller rotation 

0 m 
m 
m 
m 

174 
182.6 
11.6 
32.2 
0.80 
0.75 
8293 m 
5.70 m 
0.68 
0.62 

4 
25.5 
0.19 

10KQ 0.18 
10KQ 0.25 

KT 0.21 
CTh 1.17 

t 0.21 
WT 0.45 
k 0.141 

right 

Table 3 Comparison of Wake Ratio Computed 
by Different Scaling Procedures 

Procedure "Sydney Express" "St. Michaelis" 

Sasajima 0.77 0.73 
Brard, Aucher 0.79 0.70 
ITTC 0.89 0.80 
v.Manen 0.79 0.67 
Sudo - 0.74 
Hoekstra 0.87 0.88 

257 



DISCUSSION 

E. BABA and T. NAGAMATSU, 
Mitsubishi Heavy Industries, Ltd. 
Nagasaki, Japan: 

The authors should be commended for their long 
term efforts in developing measuring system of 
ship wake distributions by means of Laser Dopp- 
ler Velocimetry. In the present paper, by use 
of the conventional scale transformation methods 
the wake distributions measured at the plane in 
the vicinity (0.23D) of a working propeller for 
ship models were transformed into the full-scale 
condition, and they were compared with those 
measured for full-scale ships. Though the au- 
thors state the conventional scaling procedures 
only consider the frictional wake, these proce- 
dures were'applied to the prediction of ship 
wake distribution from model's velocity field 
which includes propeller effects. The discusser 
is afraid of overestimation of the scale effect, 
i.e. the potential velocity field induced by a 
working propeller for a ship model is scaled 
together with viscous wake field based on the 
friction law. The discusser's view is that the 
conventional scaling procedures should be ap- 
plied to the viscous wake distribution which 
is determined from measured total velocity 
field by subtracting potential velocity field 
induced by a propeller and a hull. The authors' 
comment on this matter will be appreciated. 

Prof. KAZU-HIRO MORI, 
Hiroshima University, 
Higashi-Hiroshima, Japan: 

The paper is quite interesting and covers 
a wide range. But my comment is quite brief on 
the vorticity distributions which the authors 
showed us. I would like to draw our attention 
to the importance of vorticity. 

When the vorticity distribution is dis- 
cussed, only the axial component is so often 
exaggerated. This is mainly because the meas- 
urement is easy. The transverse component is 
no less important. The boundary layer flow pro- 
duces the tangential component dominantly, The 
authors showed us both. 

Though, like velocity potential, the 
vorticity does not provide velocity fields 
or pressure fields, it has important phys- 
ical aspects as pointed out in the paper. 

I have been involved for several years in 
the computations of near-wake flow by making 
use of the vorticity transport equation. First, 
it does not contain the pressure term. And, as 
shown in Figs. Al and A2, which are the calcu- 
lated vorticity distribution and the corre- 
sponding velocity, the non-zero vorticity region 
is much less than the non-zero perturbed ve- 
locity region. This means the computing domain 
is less. 

The viscous resistance can be expressed in 
terms of the vorticity. For the scale-up prob- 
lem of the nominal wake, the vorticity distribu- 

tion can be used. This is because the induced 
velocity by vorticity gives the viscous compo- 
nent. 
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Dr. DAVID FRY, 
David Taylor Naval Ship R&D Center, 
Bethesda, MD, USA: 

I want to thank the authors for a very in- 
teresting and comprehensive paper. With some 
experimental experience, I can imagine a part 
of the people and dedicated efforts behind 
each of the model and especially full-scale 
data figures. And even with all the obstacles 
to overcome that I can imagine, there must 
have actually been many times more. 

I feel a certain frustration in flipping 
between pages and figures. For all the infor- 
mation presented on model and full scale meas- 
urements, there is no way to illustrate, with 
a comprehensive graphic, the differences be- 
tween the measured flow fields. This frustra- 
tion is familiar to me from my own work of 
measuring 3-D velocity fields and comparing 
them to other measurements or numerical model 
results. Even putting one result beside or on 
top of the other is not totally satisfactory. 
And paragraphs of words qualitatively describing 
the authors' impressions of the differences 
seem anti-climactic when compared to the volume 
and quality of the measurements. The detail and 
space devoted in section 5 to various alterna- 
tive methods of analysis and/or display of ve- 
locity field data may indicate similar feelings 
by the authors. 

The flow field decomposition of the tanker 
wake (section 5.2) into potential and non-po- 
tential flow suggests a good route to generally 
follow when comparing velocity fields (either 
measured-to-measured or measured-to-calculated 
results). Plots containing either isotachs 
of velocity component differences or displays 
of velocity vector differences would seem to 
be effective. In addition, the displayed ve- 
locity difference magnitudes could be non-di- 
mensionalized by expected error magnitudes. 
This could have beneficial effects including: 1) 
forcing an experimenter to give adequate thought 
to the limitations of his measurements; 2) yield 
a display from which the observer/reader could 
readily see where important differences were; 3) 
whether the differences were consistent in the 
velocity field; 4) whether the differences were 
significant (with respect to error estimates). 
This could help clarify where/whether efforts 
should be made to improve scaling laws or nu- 
merical models to get better velocity field 
matches. 

Dr. THOMAS T. HUANG, 
David Taylor Naval Ship R&D Center, 
Bethesda, MD, USA: 

The experimental data of the velocity in 
the wake of two ships of two different block 
coefficients at full scale and at model scale 
are extremely valuable in our profession. 

Could the authors indicate to us the ac- 
curacy of determining full-scale ship speed and 
propeller thrust, and the effects of ship mo- 
tion and current on the velocities measured at 
full scale? Could the authors provide the best 
estimates of the ratio of the Taylor wake frac- 

tion measured from the propulsion experiments 
and the ratio of the measured volume-mean wake 
at full scale and at model scale? These meas- 
ured ratios together with the predicted wake 
ratios listed in Table 3 will provide us with 
a clue for selecting a more reliable empirical 
wake scaling procedure from the six procedures 
listed in Table 3. 

Dr. ERNST-AUGUST WEITENDORF, 
Hamburg Ship Model Basin, 
Hamburg, Germany: 

The authors have to be congratulated on 
their interesting work from which I learned a 
lot regarding effects involved in model cavita- 
tion tests (1). I would like to discuss two 
points: 

The first one is related to the "St. Mi- 
chaelis." In connection with this ship it may 
be interesting to mention that the full scale 
trial speed was about 1 knot higher than pre- 
dicted from tank tests. Moreover, the full-scale 
cavitation observation showed a rather different 
behaviour compared with that from model tests 
performed with grids for the nominal hull wake. 
The reason for the differences in cavitation and 
trial speed behaviour may be found in the occur- 
rence of separations in model scale, which, in 
full scale, may take place less frequently or 
not at all. The question here is whether the re- 
search work on vorticity mentioned by Dr. Kux 
can help tackle the problem of model separation. 

The second point is related to the meas- 
uring distance from the full scale windows 
(Fig. 7+8 of the paper). In order to deter- 
mine the effective wake field we need measure- 
ments over the whole propeller disc. Is there 
any intention to extend the measuring range of 
the full-scale test set-up shown in Fig. 7 of 
the paper? 

Reference: 
(1) Weitendorf, E.-A. (1983): Influence of 

Unsteady Cavitation on Hull Pressure 
Fluctuations. Report No. 1531, Hamburg 
Ship Model Basin (HSVA), Hamburg, FRG. 

AUTHORS' REPLY 

We would like to thank all discussers for 
their kind remarks and comments. 

We agree with the point of view of Dr. Baba 
and Dr. Nagämatsu regarding the use of conven- 
tional scale transformation. The potential ve- 
locity field induced by the propeller may be 
calculated to a certain degree and in fact this 
has been done for the model cases. In the full 
scale case we had the problem that since it 
had not been possible to scan the total area 
of the propeller disc, we did not have a complete 
data set for the wake. To determine the pro- 
peller-induced velocity field would have had 
required an intuitive completion of the veloci- 
ty distribution over the region not scanned, 
certainly a dubious extrapolation in view of 
the size of its area. So the total wake has 
been scaled. 
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As to the remarks by Dr. Fry we would like 
to say that it is precisely this feeling of 
dismay he points out, why we are searching for 
means and suitable descriptors to characterize 
3-D velocity fields. It seems that there are 
several ways which could lead to a comprehen- 
sive method and we stressed some. As potential 
flow may easily be computed, it is in fact 
worth remarking that plots of the non-poten- 
tial velocity field have not yet become 
common practice. Measured to calculated, this 
subtraction is of course easy to perform while, 
measured against measured, some problems will 
arise with the location of the measuring points 
(which could possibly not coincide) requiring 
interpolation, with all those consequences im- 
plied by the method applied and the error mar- 
gins in the values of velocity components and 
coordinates. With this in mind, we also see 
such "beneficial effects" in the suggested 
difference plots as listed. 

In reply to Prof. Mori we want to stress 
that no directly measured vorticity has been 
shown in the paper. We are not convinced that 
the direct determination of vorticity by appro- 
priate probes might prove more reliable than 
the method of obtaining the vorticity from the 
spatial derivatives of velocity data as long 
as figures are available on a net of points in 
space of adequate density. We agree that the 
transverse components of the vorticity vector 
are no less important than the axial component. 
The beautiful vorticity data presented by Prof. 
Mori are acknowledged. 

As to the contribution by Dr. Huang we 
have to admit that the precise determination 
of full-scale ship speed is one of our prob- 
lems. The same is valid for the thrust which 
in fact should be measured and generally is 
not, most of the ships not even allowing for 
an appropriate measuring device to be installed. 
We have to accept that torque is all we may 
measure. The effects of ship motions (and of 
currents as well) have not been considered and 
ship motions were not registered at all in our 
experiments. Fig. 9 is all we can offer to de- 

monstrate the influence this neglect may cause. 
There the results of measurements out of the 
same window taken under different conditions 
on different days have been plotted together 
and show the degree to which the values may be 
reproduced. As to the wake fraction ratios it 
is again the lack of reliable wake figures for 
the full-scale case due to the fact, as already 
exposed, that it would be necessary to extra- 
polate the measured velocity values to those 
regions of the measuring plane not scanned in 
our experiments, a procedure considered to be 
dubious in view of the large fraction of the 
propeller disc area not scanned. We have not 
attempted to determine wake fraction figures 
for the full scale case and consequently no 
ratios of measured and predicted values are 
included. Measured wake fraction figures 
(based on thrust identity) for the model 
cases are included in Table 1 and Table 2. 

Replying to Dr. Weitendorf we would like 
to state that projects are underway to elucidate 
separation (specifically line separation of 
three dimensional boundary layers,on ship 
hulls). Whether the vorticity concepts will 
play an important role in this respect can not 
be answered at our present status of under- 
standing of the relevant phenomena. As to the 
range of the measuring device, we are fully 
aware of the limitations of the actual system. 
There are several ideas to improve the optics 
of the device including the possibility to 
discard the appealing method of the integrated 
optics in favor of distributed optical compo- 
nents at different windows (with all the short- 
comings this would imply in view of the high 
vibration level) which would eventually lead 
to a more complete scanning of the interesting 
area. We can not expect to cover the whole area 
of interest, a fraction around 6 o'clock posi- 
tion always remaining covered as long as we 
keep our devices inside the hull. In addition 
there are - at the moment - no funds we might 
obtain to design, manufacture and test a new 
device. 
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THEORETICAL PREDICTION OF UNSTEADY PROPELLER 

CHARACTERISTICS IN THE NON-UNIFORM WAKE FIELD 

HAJIME MARUO, MITSUHISA IKEHATA AND MASAHIRO ANDO 

ABSTRACT 

Making use of the vortex lattice method, 
characteristics of a propeller working in the 
circumferential ly non-uniform wake field are 
computed, in order to analyse the fluctuating 
thrust and torque, transverse forces on the 
propeller shaft and the effect of non-uniform 
intake velocities on the propeller efficiency. 

We have employed wake models which have 
sinusoidal  variations  in the circumferential 
direction such as V  (e)  = V Q+ Vx-cos je  (j  = 
1~8).  The non-linear vortex modet with roll  up 
trailing vortices  is employed for the slip str- 
eam behind the propeller.  Propeller blades are 
replaced by the vortex-source system,  and the 
boundary value problem is solved by means of 
the discrete function method.  The thrust and 
torque computed by exact unsteady calculations 
are computed with results by quasi-steady cal- 
culations.  Differences are observed in the flu- 
ctuation amplitude and phase between both com- 
putation methods.Load distributions of blades 
are also computed by these methods. 

Experiments are conducted on a  propeller 
model  working behind screen meshes which gene- 
rate the wake distribution corresponding to the 
condition of the computation.  The comparison 
shows a  plausible agreement in the phase rela- 
tionship of the unsteady propeller forces. 

As to the effect of the non-uniformity of 
wake upon the propeller efficiency,  the time 
average of the propeller characteristics  is 
computed.   It has been proved that the relative 
rotative efficiency different from unity is due 
to the circumferential  non-uniformity of the 
inflow velocity in the propeller disc. 

1. INTRODUCTION 

A remarkable progress in the application 
of lifting surface theory to marine propellers 
has been achieved in recent years. It has en- 
abled the theoretical assessment of the open 
characteristics of propellers in uniform flow 
with high accuracy, and the theoretical compu- 
tation has now become a practical method in the 
propeller design practice, thanks to the recent 
progress of high speed computers. However mari- 
ne propellers are fitted at the ship stern in 

Dept.of Nav.Arch.&Ocean Eng., Yokohama National 
Masahiro Ando, Hitachi Shipbuilding Co. Ltd., 1- 

general  and operate in the non-uniform wake 
field.  Therefore the steady calculation of open 
characteristics  is not enough to assess various 
important factors,  such as the cavitation in- 
ception,  vibratory forces and the relative 
rotative efficiency. 

The unsteady theory for propellers opera- 
ting in non-uniform flow has  been discussed by 
several   researchers such as Yamazaki(1966)  and 
Tsakonas(1968),  but a complete lifting surface 
theory for unsteady propellers, which is  feas- 
ible to practical   computation,  has been estab- 
lished by Hanaoka(1969).  Extending Hanaoka's 
formulation,  Koyama(1975)  has developed a prac- 
tical  computation method for unsteady characte- 
ristics of marine propellers operating in non- 
uniform flow field.  This method is  based on the 
potential   theory,  by which the velocity field 
is obtained by integration of the acceleration 
potential  along the trajectory of blade element 
and the slip stream of the propeller is repre- 
sented by doublets distributed on helicoidal 
surfaces which correspond the trailing vortex 
sheets.  Therefore it is originally formulated 
as  the linearized theory for lightly loaded 
propellers.   For moderately loaded propellers, 
the non-linear effect is  taken into account by 
means of the correction of pitch of the trail- 
ing vortex helix according to the induced vel- 
ocity there.  However there exist other types of 
non-linear effects  for heavily loaded propel- 
lers,  such as  the contraction of the slip stre- 
am and roll   up of trailing vortex sheets.  The 
potential  theory is not able to take account of 
these phenomena.  The vortex lattice method is 
on the other hand, suitable to deal  with the 
above effects,  because the configuration of the 
trailing vortices can be chosen arbitrarily. 
Kerwin(1978)  has  proposed a roll   up model   for 
trailing vortices,  taking account of various 
non-linear effects.  In his approach,  the confi- 
guration of trailing vortices are assumed apri- 
ori  from the experimental  point of view.   It 
takes account of the contraction of slip stream, 
roll  up of vortex sheets and the separation at 
the edge of the blade.  As  to the computation 
technique,  Koyama's method employs the mode 
function expansion for the circulation distri- 
bution over the blade,  but the singular behavi- 
or of the kernel   function in the integral  equa- 
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tion necessitates some mathematical technique. 
The discrete function approach, which is conve- 
niently applied to the vortex lattice method, 
is free from the difficulty of singular behavi- 
or of the solution and seems to be suitable to 
computational work by high speed computers. 

The aim of the present work is to provide 
numerical data for unsteady characteristics of 
wide bladed marine propellers operating in the 
non-uniform wake field with circumferential 
variation of inflow velocities, including 
thrust and torque fluctuations, vibrating 
forces and moments on the propeller shaft and 
vibratory moments on each blade. The computat- 
ion employs Kerwin's deformed vortex model, 
which takes account of the roll up of trailing 
vortices and the separation at the blade tip, 
but the numerical method is slightly different 
from that of Kerwin's computation. The circum- 
ferential distribution of inflow velocities is 
decomposed into harmonic elements and the 
response of propeller blades to each element is 
examined, like van Oossanen's analysis(1977), 
which employed lifting line theory. Computations 
by means of Koyama's method, as well as the 
quasi-steady approximation, are also carried 
out for comparison. Then experiments are cond- 
ucted in the towing tank with respect to prop- 
eller models operating behind mesh screens, 
which simulate the harmonic wake field. Non- 
linear response, such as the time independent 
term, which determines the relative rotative 
efficiency, is also examined. Sample calcula- 
tions for wake distributions, which simulate 
the measured wake of ship models, are presented 
too. 

2. VORTEX MODEL 

We employ Kerwin's deformed wake model in 
the present calculation, because some of non- 
linear effects such as contraction and roll up 
of trailing vortex sheets can be taken into ac- 
count. The configuration of the vortex wake is 
illustrated in Fig.1. It is assumed that each 

rw/R =:0.a3 

trailing vortex sheet converges in the transi- 
tion wake up to the roll up point, and hereafter 
it is reduced to a helical vortex line consti- 
tuting the ultimate wake. The blade surface is 
replaced by the distribution of bound vortices 
and sources. The latter represents the thickness 
of the blade. The vortices on the blade surface 
and in the transition wake are discretized by 
vortex lattice for the sake of computation. In 
case of steady condition, the trailing vortices 
are chordwise only, but in the unsteady case, 
spanwise vortices are shed behind according to 
the change of circulation of bound vortices. 
Because of these shed vortices, the vortex lat- 
tice in the transition wake is composed of 
square vortex rings. The bound vortices and 
sources on the blade surface discretized by 
square elements as shown in Fig.2. The spanwise 

SPANWISE    VORTEX 

CONTROL    POINT 

CHORDWISE     VORTEX 

Fig.  2 - Discrete singularity elements 

vortex and source 
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length in the mid-span of 

ve investigated the necessary 
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e and N is chordwise, to keep 
the computation.  It is desi- 
as small as possible for the 

uter time. As the consequence 
x N = 7><8. The configuration 
es is defined by following 

the trailing vortex helix 
wake r . 
ngle between blade tip and 

of the helical vortex in 
at the tip ßT 
of the ultimate wake vortex 

KerwVn studied the influence of above 
ers, and according to his result, we c 
r /R = 0.83 and 9 = 90, where R is the 
diameter. Kerwin proposed the pitch an 
tip vortex e_ to be taken as the mean 
disturbed inflow angle ß(tip) and the 
namic pitch angle p. determined by the 
line theory, but the latter may not be 
ly different from the geometrical pitc 
at the tip <j> (tip). After some trial c 
tions, we assume 

Fig. 1 - Deformed wake model 
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The exact configuration of tue ultimate 
wake is hardly determined, because the velocity 
distribution there is different from that at 
the propeller disc and the trailing vortex is 
not a helix of constant pitch. After some study 
on the effect of pitch in the ultimate wake and 
inspection of experimental data, we employ an 
assumption that the pitch angle of tip vortices 
is approximated by the geometrical pitch angle 
at the blade tip 4. It can be said that a 
slight variation of pitch in far wake does not 
have much influence to the induced velocity at 
the propeller blade. This approximation simpli- 
fies the computation program to a great extent. 
The transition wake is composed of N,. segments 
connecting the points which have cylindrical 
coordinates 

(n 

(n 

(n 

3/4)6x 

3/4)6r 

3/4)69 n = 1,  2,- 

n 

en = ' 

where x  ,  r  ,   6    are coordinates of points on 
the trailing edge and  6x,  6r,  66 are increments 
of each coordinate. Writing coordinates of the 
trailing edge at the tip by x  (tip),  rt(tip), 
9  (tip),  the coordinates of tPie roll   up point 
is given by x (tip)  + (e /2)(R + rjtans-p rw> 

e.(tip) + e r 
z      In case of steady propeller,  the transi- 

tion wake is constituted by trailing vortices 
which are extention of chordwise vortices, 
while shed vortices which are parallel  to span- 
wise direction exist in case of unsteady prop- 
eller.  Therefore the slip stream is also expre- 
ssed by lattice of discrete lines. 

The computation is carried out in each 
step of time interval   6t or angular interval 
66 = 66(tip)  = u6t, where u  is  the angular vel- 
ocity of propeller rotation.  The number of step 
NT is an important factor with respect to the 
accuracy of computation. We have chosen the 
time step in such a way that the angular inter- 
val   66 = 6°,  so that we have N_= 15. 

As one of the non-linear effects, we take 
account of the separation at the tip of blade 
approximately.  The configuration of model   for 
separated vortices  is illustrated in  Fig.3. 

and its maximum deviation is 

A = c(tip)  tan[<f> (tip)  - I] (4) 

where c(tip) is the chord length at the tip. 

3. DETERMINATION OF CIRCULATION IN THE STEADY 
CONDITION OF UNIFORM FLOW 

In the first place, let us consider a pro- 
peller operating in a uniform flow, for the 
purpose of comparison between the computation 
by the present method and that by other methods. 
The steady state calculation by the vortex lat- 
tice method was carried out by Yuasa(l980) for 
the case of ducted propellers. The method of 
computation in the present work follows along 
the same 1ine as his. 

The vortex lattice configuration in the 
steady state is shown in Fig.4. We designate 

Fig. 4 - Steady vortex lattice scheme 

the circulation of the (n,m)th element of span- 
wise vortex by Vs   ,  where n = 1,2,3 N, and 
m = 1,2,3 M, and let the number of blades be 
K. Let U.nm(k) be the component of induced vel- 
ocity normal to the mean camber surface at the 
i-th control point due to the spanwise vortex 
of unit circulation on the k-th blade at the 
(n,m)th element, which accompanies chordwise 
and trailing vortices starting therefrom. The 
induced velocities are determined by the Biot- 
Savart law, and the normal component of the 
induced velocity due to the total vortex system 
can be written as 

d =IZZ Unm(k)r^ 

Fig. 3 - Tip vortex separation 

The pitch angle of the separated tip vortex is 
approximated by 

ß = ^lß(tip) + ßT] (3) 

The flow model on the blade surface is 
constituted by the lattice of vortices and 
sources as stated before. The strength of 
sources is determined by the slope of the blade 
thickness, and we write the velocity vector 
induced by the source distribution at the i-th 
control point as V°. The boundary value problem 
is solved on the key blade for which we put k = 
1. The boundary condition at the i-th control 
point is expressed by 

d. 
l 

-n-(V, + V?) 
where n. is the unit normal vector at the i-th 
control''point and V. is the vector of relative 
velocity in the uniform inflow. The latter is 
given by 
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(V , -2-nnr .sine ., Zwir.cose.) 
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17) 

re V is the inflow velocity, n is the number 
revolution and r., 6. are the coordinates of 
i-th control point.''The right hand side of 
is determined from the blade configuration 
the equation implies M x N simultaneous 

ear equations which determine the circulation 
at each point. Because of the model of roll 

vortex, the trailing vortices in the transi- 
n wake are reduced to a single vortex line 
ind the roll up point, and only the circula- 
n of the mid-span element (m=m') contributes 
vortex strength to the ultimate wake. 

4. DETERMINATION OF CIRCULATION IN THE UNSTEADY 
CONDITION IN THE NON-UNIFORM WAKE 

Here we assume the wake field with velocity 
parallel to the screw shaft and non-uniformity 
over the disc plane. The circumferential varia- 
tion of the inflow velocity is decomposed by the 
harmonic elements such as 

U = 1, 2, 3- •) (8) v = v n + v .cos je a   xO   xj   J 

The angle between the k-th blade and the key 
blade is 

6k = 2u(k - 1)/K (K = 1, 2, 3- •K (9) 

Now let us introduce the index of time step 
denoted by t (= 2,-1, 0, 1, 2 ) with 
the intervals6t. In case of the unsteady motion 
we have to take account of shed vortices, whose 
strength is determined by the time variation of 
bound vortices. The induced velocity of the 
total vortex system at the i-th control point 
on the key blade is expressed by the form like 

d, =1 LT (£ U?nm Vs    +Z uVm r" ) 
I U*\     nc|    nt| f Mill        „   «. I M^IIl 

+H& U?nm rc    +T'u*n»m r*    )] (10) 
m-i n.i   i        nm    n„»i   i nwm 

The superscripts s and c relate to spanwise and 
chordwise vortices respectively,  and subscripts 
w and t relate to shed and  trailing vortices 
respectively.  N    is the number of shed vortices 
considered in tfte computation.  According to 
Lord  Kelvin's  theorem, we have the relation 

llm (Zrs    +Zrw 
x..,   nm    „tii  n,m (11) 

Therefore we can write the induced velocity at 
time t = t 6t in the form like 

Z(Z[E{u'nm + Y (U^,m+1- Uc.m) - U>}r;jfk) 
k=,    m=.       n = i 1 (7rt 1 1 1 Mill 

+ £(uVnw-1,m + U.nw-l,m+1  -  U.nrt-1,m -  U%wm) 

xT(ts-n. + l)tk)]) 112) 

where T   (k) is the strength of vortex ring 
in the wake, such as 

Tits)(k) =t  r;L(k) 13) 

The configuration of the vortex system is shown 
in Fig.t. 

yds-H     TRAILING   VORTEX 
Im      -r(ts-2t / -p!ts-Nwt-l) 

Im 

ROLL-UP 
POINTS 

Fig. 5 - Unsteady vortex lattice scheme 

One can express the spanwise vortex, r , by 
the sum of steady and unsteady parts 1Vxe 

steady part: r  =q„ J  K    nm s0nm (14) 

unsteady part: r  = g1 cos{j(e + 6. - t 68} J  v nm  3lnm   JV nm  k   s 

g„ sin{j(e + 6. - t 66} a2nm    v nm  k  - 

and write the vortex ring T 
lar way, 

_   rJ 

steady part: T = Y g. J  y m £, s0nm 

nm 
(t. 

(15) 

(k) in the simi- 

(16) 

unsteady part: T =7 [g. cos{j(e + 6, ^   tJI   „,„    „,   t 66} m „f, "-Mnm  w" nm  k   s 

t 69}] (17) + g„ sin{j(e + 6 a2nm   JV nm k 

Next we define the normal component of induced 
velocity of a unit vortex ring on the k-th blade 
in the transition wake as follows. 

U°nm(k) = {Usnm(k) - uVlm(k)} 

+ Z  {U?£,m+l(k) - U^£m(k)}:on blade 

Uwnm(k) = Uwn-l,m(k) + U^n-1,m+l(k) - U^n-l,m(k) 

U.nm: in transition wake (19) 

where Usnm(k), u'rnm(k), uVnm(k) and U*nm(k) are 
defined as the normal component of induced vel- 
ocity of spanwise (index s), chordwise (index c) 
shed (index w) and trailing (index t) vortex 
segment on the (n,m)th element respectively, 
with unit circulation at the i-th control point 
on the key blade. Further we define U.m(k) for 
the normal component of the induced velocity of 
the last vortex ring, which is of triangular 
shape and given by putting n = N and U.N m = 0 
in eq.(19), and U.^for that of hoVse-shoe trai- 
ling vortex given by 

Uwm' = Uwlm'(k) + X {U?n„-1,m'+l(k) 
1       1 ryi  1 

- U*nw-l,m'(k)} (20) 

Then one can write 

I[IIu°nm(k)rs  (k) 

+ E        iIo>(k)f-n«+,)(k) 
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+ u wm-(k)TUs-Nw )(k)} +u^.(k)|rs
nm,(k)J = d. 

       (21) 

IF)   -1 

Equating d.  to the right hand side of (6), we 
obtain the^ystem of simultaneous linear equa- 
tions, which determines  the circulation of span- 
wise vortices.  In case of the harmonic wake 
expressed by eq.(8),  the above equation provid- 
es the system of algebraic equations which det- 
ermines the coefficients gQ    , g,      and g        in 
eqs.(14)(15)(16)  and  (17).      KerwYn employ^ 
the Kutta condition at the trailing edge in his 
calculation, whereas we have not used it because 
the condition of smooth out flow at the trailing 
edge is satisfied by the relation  (21) at the 
control   point on the last element close to the 
trailing edge. 

The quasi-steady calculation is often used 
to predict the unsteady characteristics of pro- 
pellers.  In the present paper,  the unsteady 
calculation programs will  be simplified by the 
quasi-steady condition.  In this case,  the cir- 
culation of all  vortex rings  in the transition 
wake with respect to the m-th spanwise blade 
element is constant, so that 

T(trn«+1)( k) T^k), n = 2,3- +1   (22) 

This results the vortex arrangement which is 
identical with that in the steady case. Since 
the non-uniformity of the wake field is taken 
in full in the boundary condition, the present 
computation program provides the quasi-steady 
calculation of high accuracy. 

5. HYDRODYNAMIC FORCES 

The hydrodynamic force acting on a blade 
is composed of four component forces as follows. 
a) The Lagally force on sources representing 
the blade thickness effect": 

Putting 
p = the density of fluid, 
Ad = the length of spanwise segment of the 

nm (nm)th element, 
Q  = the density of source distribution along 

the line AH , 
V  = the resultant velocity vector at the mid 
nm • point of A£ , 

we have the Lagally force acting on the line 
source along M      given by 

F(D = -pAj, .Q -V (23) 
nm   M nm ^nm nm 

b) The Kutta-Joukovski  force on the bound vor- 
tex: 

The Kutta-Joukovski  force appears on span- 
wise bound vortices only and its amount for the 
segment A£      is given by 3 nm 

F^  = PAX,    -V      x r nm       M    nm    nm       nm 
(24) 

where r      is  the vector representation of the 
circulation of the bound vortex on ^m- 

c)  The frictional  drag: 
The frictional  drag on the surface element 

AÄ      is given by 
nm       3 

nm 
_ pC^AA 
2      f    nm1 nm1  nm 

(25) 

In the present calculation, we employ the Pran- 
dtl-Schlichting formula with blade thickness 
correction,  such as 

Cf =  (1   + th/c){0.455/(logi0Re)2-58} (26) 

as the frictional drag coefficient, where t, is 
the maximum thickness, c is the chord length 
and Re is the Reynolds number of the blade ele- 
ment. We assume that the effect of the unstead- 
iness is small and substitute the resultant 
velocity V  by its mean value V . 
d) The forEe which comes from the time deriva- 
tive term: 

There is a term of partial derivative 
with respect to time in the momentum equation, 
which yields a component of force on the blade 
element. Let us take the length s along the 
chord from the leading edge of a blade element. 
The acceleration of the fluid along s is expre- 
ssed by 3u/3t + u3u/3s, where u is the tangen- 
tial velocity along s, and the pressure gradi- 
ent is 3p/3s. Since u is different on upper 
and lower sides of s, the time derivative term 
in the acceleration yj'elds the pressure diffe- 
rence. If we write u and u~ for the tangential 
velocities on upper and lower sides respective- 
ly, the force acting on the element 6A of the 
blade is given by 

s 
6F = pn^r/ (u+ -  u~)ds-6A (27) 3t J 0 

Since we have the relation 

rs    +       - rs v 
) 0(u    - u  )ds =J o Yds =2, rm 

the equation (27) can be rewritten in the dis- 
crete form like 

(28) 

PT» _Tr[ X nmst i'i 
r„  ]Ar    /cos6-6s 

Jimj    nm' 
(29) 

where Ar  is the radial length of the m-th 
spanwisenSegment, 6 is the rake angle of the 
segment and äs is the chord length of 6A (= 
5s-6r /cosS). Because of the expression (15) 
for tRe unsteady portion of circulation, one 
can write the time derivative of circulation in 
the form 1 ike 

1([ r
s ) 

3tva-,    Jtm' ^£,[gUmsin{j( 

92£mcos{j( Ml 

Jim 

.68)}] 

t   66)} 

[30) 

for computation purposes. 

6. THRUST, TORQUE, SIDE FORCE AND BENDING M0ME- 
NT 

Fig.6 gives the coordinate system for var- 
ious components of forces and moments, namely 
thrust T, torque Q, side force F , F , and 

ce F - M . The force F_ (F„ bending moment ,-, , ,, . ,„t ,„.^ . ,. , 
F , F ) is the sum of various componehts 
gVve'n ifTihe preceding section and is regarded 
as acting at the middle point of each segment. 
The coordinate axes are fixed at the propeller 
position, with Y axis in vertical direction and 
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Direction 
of Turning 

-      {dD,cosßsin(e    ,- t 6e)}      (36) 
"'Rh       t mc i      s 

d) The horizontal   force per one blade: 

F-,,  ="f {F      cos(t  56)  -  F      sin(t 66)} 
Zl    A     nmz      K  s    '        nmy      v  s    ' 

+ /   {dD,xosßcos(9    ,-  t 59)} (37) 
\       f mcl      s 

e) The horizontal  bending moment per one blade: 

V^ 
Fig.  6 - Coordinate system of forces and moments 

Z axis  in horizontal  direction.  The angular 
position of propeller blades  is defined by the 
angle of generator line of the key blade 91, 
and it is expressed at each  time step by 

K-i   =Z   [F      r    sin(9    -  t 66) Yl    Ä   L nmx nm      '  nil      s    ' 

-  {F      cos(t 69)  -  F      sin(t 59)}x    ] 
nmz s nmy      x  s nmJ 

+/ [dD^sinßr    ,sin(e    ,- t 66) 
\      f mcl       v mcl      s    ' 

-{dDfcosscostemcl- ts6e)}xmcl]      (38) 

f)  The vertical   bending moment per one blade: 
N.M 

M71=Z  [-F      r    cos(6    -  t 66) Zl   ijK       nmx nm      v  nm      s 

+ {F     sin(t 66)  + F     cos(t 69)}x    ] 
nmz s nmy s    '    nmJ 

ff [-dDxsinßr    ,cos(e    .- t 
"W        f mcl       v mcl      « 

66) 

91 (t ) = -e(t ) = ts( v s     s   s 
(31) 

Expressions for various forces and moments are 
as follows. 
a) Thrust per one blade: 

Since angle ß(r) of the steady component 
of undisturbed inflow is given by 

ß(r)  = tan-MV^Trnr) (32) 

-  {dD.xosßsin(e    ,- t 6e)}x      '] (39) 
f v  mcl      s    '    mclJ K     ' 

The bearing force at the propeller shaft is 
obtained  from the sum of forces and moments of 
all   blades,  taking account of the phase differ- 
ence 6.   between each blade,  in such a manner as 

F = F^e')  + Et   F^e'4- 6k) 

6k = 2ir(k -  1)/K (40) 

g) The distribution of bending moment along the 
span: 

The radial  distribution of lift of each 
the viscous drag of the blade element becomes element is expressed by 

dDf = pCfc(V    sinß + 2wircosß)2/dr (33) dL/dr = (I ns. Fsnm)/Arm (41) 

Then the thrust per one blade is given by 

T, = -"f F  - AdD^sinß) (34) 
1   ^ nmx J„„x    f 

where R and R, are radii of propeller and hub 
respectively, and F means the x component. 
b)  The torque per one blade: 

0,  = L r    (-F     sine    + F     cose    ) yl    *£    nrir    nmy        nm      nmz        nm' 

+ / (rdD.co SB) (35) 

where r  and 6  are radius and angle of (nm) 
element?mand F nm and F   are y component and 
z component ofntKe force. 
c) The upward force per one blade: 

The coordinate of a point on the mid-chord 
line is expressed by 

(x ,, r i,6 ,- t 66), 1 mcl' mcl  mcl  s ' 

so that the upward force per one blade is given 
by 

FYrS{Fnmzs1nCVe + FnmyC0S(ye)} 

Then the hydrodynamic moment of a blade element 
at radius rRis given by 

MB =j£ (^)cos{*g(rB) - ß(r)}(r - rß)dr  (42) 

7. NUMERICAL RESULTS AND SOME CONSIDERATIONS 

We have chosen a marine screw propeller 
model, AU5-50, with five blades, whose expanded 
area ratio is 0.50 and pitch ratio is 1.0, for 
the comparative computation by means of present 
method, Koyama's method and quasi-steady method. 
Principal particulars of the above model are : 

given in the first column of Table 1, which is 
shown in the next page. We use the abbreviation 
such as P.M. for the present vortex lattice 
method and K.M. for Koyama's method. 

7-1 Steady Characteristics in a Uniform Flow 

The steady characteristics of the model 
propeller AU5-50 has been calculated in the 
condition of advance in open water. The advance 
constant J = Va/nD, where Va is the advance 
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Table 1 - Principal Particulars of Model 
Propellers 

Type of Propeller AU5-50 TB3-50 AU4-55 MAU5-66 

Diameler (m) 0.250 0.1732 0.1667 0.175 

Doss rallo 0.180 0.167. 0.160 0.180 

Pitch rallo {const) 1.00 0.800 0.710 0.7143 

Exp area ratio 0.500 0.500 0.550 0.6649 

Mcix.blade wldlh ratio 0.226 0.3698 0.311 0.3008 

Blade thickness ratio 0.050 0.050 0.050 0.050 

Angle ol rake 10" 0' 14*50' .   10" 0' I0"0' 

Number ol blades 5 3 4 5 

Blade section AU-type Troosl-Type AU-type MAU-type 

Direction ol turning right-handec right -handed right-handed right-handed 

Notes Calculation ol 
the characler- 
Isllcs 
by P.M. & K.M. 

Comparison belween calculation results 
and .experimental dala 

speed, n is the number of revolutions and D is 
the diameter, is taken 0.3, 0.5, 0.7, 0.9. The 
diagrams of thrust and torque constants and 
propeller efficiency, are shown in Fig. 7. The 
experimental result is taken from Yazaki's 
paper(1961). The results of P.M. and K.M. 
coincide very well with each other and are very 
close to experimental curves. 

% 
Kr 
Kn 

AU 5-50 
CONSTANT PITCH    t 
EXP.   A.    R. »0.500 
BOSS RATIO =0.180 
B.    T.    R.      =0.050 

U.9 "     RAKE ANGLE = 10*0' 

: tOKa 

CAL. 
PRESENT NETHCO    O 

KOVAMA'S METHOD    a 

Fig. 7 Open Water Characteristics of AU5-50 
Propeller 

So the number of elements on a blade, 
N*M=8x7, is proved enough to assure the 
accuracy of calculation by these numerical 
results. 

However, there are some differences in the 
circulation distribution along the chord near 
the tip between P.M. and K.M. as seen in the 
upper of Fig. 8. At the 0.918R section, the 
density of circulation by P.M. is smaller in 
the vicinity of the leading edge and higher in 
most mid-chord part compared to K.M. But, at a 
section, r<  0.809R, P.M. gives the almost same 
distribution of the circulation density as that 
of K.M., as seen in the lower of Fig. 8. Such 
difference at the tip may be brought by the 
consideration of separation of the trailing 
vortex at the blade tip in P.M. This is the 
same tendency as the tip correction for 
Koyama's results(1979). 

Spanwise distributions of the total 

PRESENT METHOD 
KOYAMAS METHOD 

L E 10   20    30    40    50    60    70    80    90 T.E. 

r/R =0.309 

L£. 10    20    30   40    50    60    70    90    90 TE 

Fig. 8 - Circulation Density Distribution along 
Chord 

circulation of a blade section integrated along 
the chord are shown in Fig. 9. There are seen 
not much differences between P.M. and K.M. near 
the tip as in the chordwise distributions. 
This is the reason why almost the same open 
characteristics are obtained by P.M. and K.M. 

PRESENT METHOD 
KOYAMA'S METHOD 

0.02       0.04       0.06      0.08 0-10       0J2        0J4 
r T_ G-*5v 

Fig, 9 - Spanwise Distribution of Total 
Circulation 

7.2 Thrust and Torque of One Blade (Key Blade) 
in Harmonic Wake 

Let us set the conditions for calculation 
as follows: 
The advance speed of propeller: 

VA = 2.5 m/s. 
The number of revolutions of propeller: 

n = 10 r.p.s. 
The harmonic wake: wx =  0.3 + 0.3cosj9. 
So the mean advance constant J = 0.7. 

The thrust and the torque of one blade 
(key blade) are calculable using aforementioned 
equations. Examples of calculated results of 
the thrust are shown in Figs. 10, 11 & 12 and 
of the torque in Figs. 13, H & 15. They are 
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variations of thrust and torque constants, 
K-r, =Ti /pn2D4, Ko, =Qi/pn2Dr, in the harmonic 
wake of cos26, cos49 and cos50. 

It is found that phase advance appears 
in unsteady calculations, while there is phase 
lag in the result of quasi-steady calculations, 
and further more in the calculations excluding 
time-derivative terms. These facts are seen in 
common in all calculated results of thrust and 
torque for the harmonic wake of cosS- cos8S. 
The phase lag of the quasi-steady calculation 
seems to be attributed to the effect of 
interactions between blades and that of the 
trailing vortices. Though the existence of shed 
vortices brings more phase lag to the 
calculation without time-derivative term 
ultimately. One can conclude that the effect of 
time-derivative term is the main source of the 
the phase advance of the thrust and torque 
fluctuations. Such a phase shift has been 
observed in calculations by Yamazaki(1966), 
Koyama(1975) and Hatao et. al.(1975), but the 
reason has never been elucidated. One can 
explain the decrease of forward shift of phase 
in higher harmonic modes due to the increased 
reduced frequency. 

Let us compare the amplitudes of 
oscillations of K-r,, and K«, in Figs. 10 -15. 
The highest amplitude is obtained normally by 
the quasi-steady calculation, the next is the 
unsteady one and the least is by the 
calculations without time-derivative terms in 
most cases. However, we find the unsteady 
calculation in case of cos46 in Figs. 11 and 14 
exceeds the quasi-steady one. Such 
amplification of the unsteady calculation of 
P.M. seems to be the effect of time-derivative 

AU5-50 1110=111 O-02SOm 

AU5-50 H/D=IO   0.025dm W.-O3.03COS29 

_   [OOA302 
Kri = J     (UNSTEADY)      PM 

<?M> I 0.04262 
1    (DUASI-SlEAOVl 

-WITH IIME-OERIVAIIVE  1EI1M 
(UNSIEADY CM.) 

— '--WIIIIOUI  !R.£-0ERIVA1IVE tl 

 —-OUASI-SIEADY CAT. 

IW,*0 3)   .O043S2 

^itff    -ISO"   -120"    -W    r6ff    -30* —3tf      Elf       00*I2ff     ist?      itff 

ANGULAR POSITION OF 8LADE 

Fig. 10 - Thrust of One Blade in cos29 Wake 

Ki, 
AU5-50 H/0=I.O  0*0 250m W.= 0.3.03COS49 

[0.04332 
R7;={   (UNSIEAOY) 
iPM» l00t2B8 PM 

(OOASI-SIEAOY) 

Ki7<KMI=00&392 

—WITH 10*'DERIVATIVE IERM 
{UNSIEAOY CAL.) 

—WITHOUT TIME-OEOIVATIVE IERM 

—QUASI-STEADY CAL. 

-*-HOYAMA*S ME Till 

(W. = 0 3).DO',35 

ELT       W       I20-       1ST      WAV 

ANGULAR POSITION OF BLADE 

Fig. 11 - Thrust of One Blade in cos4ö Wake 

if 

W. = 0 3.0 3CO556 

,O.0t3U 
KT, = |    (UNSTEADY) pM 

00432/. 
«X,ASl-STEADY) 

sU = 00O92 

-WITH TIME-DERIVATIVE TERM 
(UNSTEADY  CAL.) 

-WITHOUT IIME-RERIVATHH TERM 

._ —.QUASI STEADY CA1. 

-90'     -60"     -iff M1     et?     iff     ia?    is?     ia? 

ANGULAR FO51II0N OF BLADE 

Fig. 12 - Thrust of One Blade in cos50 Wake 

AU5-50 H/D = I.O  O = 0.250m W.=03-03COS2e 

TEfW 

EIIOUT TIME-DERIVATIVE TEiTM 

STEADY CAL. 

30"       60"       90"       IZff       ISO*      160" 

^ lop ANGULAR POSITION OF BLADE 

Fig. 13 - Torque of One Blade in cos20 Wake 

AU5-50  H/D = TO   u=0.250m 

/ 
f 0007041 

R5;= (UNSTEADY) 

1.0.006699 
(QUASI- ST EADY, 

W.= 03'03CO5i' 

-WITH TIME-DERIVATIVE TEAM 

._ —QUASI-S IE ADY CAL. 

-W    -617     -xr 3LT       SO-       9ff       IW       I5Ö 

ANGUüFTPOSITION C 

Fig. 14 - Torque of One Blade in cos46 Wake 

AU5-50  H;D = 10  D=0.250r W.-.0.3*0.3CO559 

■ -. — OUASI-SIEAl 

-tBO'     -ISlT     -IW —^—Ifj—5^—^jy     ^     ietr        ———KOYAMA'S METHOD 

ANGULAR   POSITION OF BLADE 

Fig. 15 - Torque of One Blade in cos56 Wake 

terms, because the amplitude of thrust or 
torque fluctuations is reduced below that of 
the quasi-steady condition even for cos40 as 
seen in Figs. 11 and 14, if the time-derivative 
term is omitted. 
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Thus, it can be understood that the time- 
derivative term of the blade forces has the 
remarkable influence of amplitude increase and 
phase shift forward. This effect attains to 
maximam nearly in case of cos48. We see that 
the unsteady calculation gets close to the 
calculation without time-derivative terms in 
case of cos5S as shown in Figs. 12 and 13. This 
is convinced by the fact that the increment of 
the reduced frequency weakens the effect of the 
time-derivative term. 

Figs. 16 and 17 show the amplitude and 
phase of harmonic components of the same modes 
as those of the wake and components of doubled 
mode which mean'the non-linear contribution to 
the unsteady thrust and torque calculated by 
the present method. The maximum magnification 

KTI 
amp. 

Thrust of One Blade 
W, = 0.3'OJCOSj6 

<UNSTEAOY CAL> 

cose    cosze    cosaa   cos«   cosss-    cosee    cos7e    coses 

of the same harmonic mode as that of the wake 
is observed more clearly in case of cos36 for 
the thrust and in case of cos40 for the torque 
by the unsteady calculation of P.M. in the 
comparison of the amplitudes for various 
harmonic wakes shown in Figs. 16 and 17. The 
double harmonic mode will be mentioned in the 
next section. 

Let us introduce the complex transfer 
function of lift like the Sears function of two 
dimensional problems of oscillating blades. 

If the transfer function Sp(Wr) is 
defined by 

dL/dr 
S
P^> = nsr      (43) 

-nrpcWvne J 

at the blade section of radius r, where W is 
the steady undisturbed inflow velocity, v,, is 
the amplitude of the harmonic wake velocity 
normal to W. Fig.18 shows the vector diagram of 
the lift transfer function obtained by the 
unsteady calculation of P.M. The diagrams are 
given with respect to four sections of a blade. 
The Sears function for the seme case is also 
shown in the same figure. One can find that 
Sp(wr) of the unsteady calculation exsists 
almost in the space of the first quadrant in 
Fig. 18. The amplification is dominant near the 
45 degrees diagonal at 1.0 - 2.0 of i*>r in Fig. 
18. There are no 3-dimensional lift transfer 
functions at any section similar to the 2- 
dimensional Sears function in the calculations 
of P.M. 

lag 

10 

2.0 

1.0 

-1.0 

-2.0 

-3.0 

1    |   11   ^   ^   J   ^ 
C0S8        COS29      COS38      COS«     COSSS      C05S9     COS78     COS86 

Fig. 16 - j-th & 2j-th Modes in Thrust 

Ko 
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0.007- 

Torque of One Blade 
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cöse    cösTe    cola     osTa   cosseÖsiüe    COSTS    CO 
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» 0.699 
D 0481 
+■ 0.26! 
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Fig. 18 - Lift Transfer Function by P.M. 
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0.300 

(KOYAMA'S METHOD) 

3-0: 

2.0- 

.0- 1 1 J 1 J 
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3.0-                                ■ 
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LT 

COS« 

IT 
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Fig. 17 - j-th & 2j-th Modes in Torque 

Fig. 19 - Lift Transfer Function by K.M. 

Here the authors wish to mention the 
results of Koyama's method (K.M.). Their time 
histories are shown in Figs. 10 - 15. They show 
the coincidence in the phase of oscillation 
with the results of the unsteady calculation of 
P.M. but amplitudes are smaller than those of 
unsteady P.M. for lower harmonic modes of wake, 
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cos26 - cos'40. The amplitude calculated by K.M. 
attains as much as half of the prediction by 
the unsteady P.M. for cos46. This is an 
important problem in the practical prediction 
for the propeller design by K.M. 
Characteristics of the response of the blade 
force in K.M. can be demonstrated more 
explicitly in the vector diagram of the lift 
transfer function Sp(Wr). Fig. 19, shows those 
of K.M. with respect to four blade sections. 
Comparing Fig. 19 with Fig. 18, one can see 
that most parts of Sp(Wr) of K.M. are located 
in the space of the first quadrant that is 
common to the unsteady P.M. but some parts 
extend within the second quadrant when Wr is 
high. So a more advanced phase may be predicted 
by K.M. than by P.M. when Wr is high, that 
corresponds to a high harmonic mode wake such 
as cos66, cos70 and so on. The feature of 
diagrams of K.M. looks a pretty like that of 
the Sears function except for the zone of 
smaller c*Jr. 

7.3 Constant Term and Double Harmonic Mode 
of Blade Forces due to Non-Linear 
Effect of Non-Uniformity of Wake 

The Kutta-Joukovski force is given by eq. 
(24), i.e. the product of the resultant 
velocity and the circulation of the spanwise 
voltex. They are both given by the summation of 
the steady contant term and the j-th mode in 
the harmonic wake of wx= 0.3 + 0.3cosje. 
Therefore, the product of (j-th harmonic mode 
of the resultant velocity) and (j-th harmonic 
mode of the circulation) generates the constant 
term and the double harmonic mode, namely the 
term of the 2j-th harmonic mode. This is the 
characteristic non-linear effect of Kutta- 
Joukovski force. The constant term results a 
deviation of the mean value of the blade 
forces. 

The mean values of the unsteady and the 
quasi-steady calculations of P.M., Kji or KQi 
are described in Figs. 10 - 15, and the steady 
result of KTi or KQI in the uniform mean wake 
is exhibited by the constant straight line with 
its value. The difference of unsteady one or 
quasi-steady one from steady one is little in 
the thrust coefficient as seen in Figs. 10 - 12 
but not little in the torque constant as seen 
in Figs. 13 - 15. One finds the deviation on 
the negative side, so that one can guess it 
brings about a higher efficiency of the 
propeller in a non-uniform wake than in open 
water, that means the high relative rotative 
efficiency above unity. 

Ikehata(1977) verified that the difference 
of relative rotative efficiency from unity was 
caused by such constant term due to non-linear 
effect of non-uniformity of wake using a simple 
quasi-steady theory. 

The relative rotative efficiency analyzed 
from these calculated results is shown in Fig. 
20 for the unsteady and the quasi-steady 
calculations in various harmonic wakes of cosö 
- cos8S. Both of them based on the concept of 
the thrust identity in reference to the open 
water characteristics. Some interesting aspects 
are found in Fig. 20. All plotted points fall 

W.-0.3-03COSJ8   <j=l- 
J*07 

• UNSTEADY CAL. 

A QUASI-STEADY CAL. 

cose       COS29      COS36      coste      cosse      cos6e      cos7e      cosao 
mode 

Fig. 20 - Relative Rotative Efficiency 

above unity. The unsteady calculations show the 
tendency that the deviation from unity is 
maximum in case of cosö and decreases gradually 
toward unity as the order of harmonic mode 
increases, while the quasi-steady calculations 
show values of %  higher than 1.1 in cases of 
cos20, cos30 and cos40 and suddenly drops to 
the value of unsteady calculation in case of 
cos56 or higher modes. Therefore the quasi- 
steady calculation may predict too high >fa on 
account of such excessive non-linear effect of 
the non-uniformity of the wake distribution. 
Since Koyama's method is a linear theory, 
the mean value of the thrust or the torque 
becomes same as the steady value in the mean 
wake which is independent of the mode of the 
harmonic wake. Moreover, since the frictional 
drag is left out of consideration in Koyama's 
method, mean values of K.M. given in Figs. 10 - 
15, are all different from those of P.M. The 
difference is noticeable especially in the 
torque. 

Another non-linear effect of the non- 
uniformity of the wake distribution is the 
existence of the double harmonic mode, shown in 
Figs. 16 and 17. As seen in Fig. 16, the double 
harmonic mode of the thrust can be regarded as 
negligible in comparison with the single 
harmonic mode, and that of the torque attains 
to several percents of the primary mode at 
maximum 10 percents in cose as shown in Fig. 17. 

This effect appears prominent in a lower 
harmonic mode of wake but reduces in higher 
modes. The phase of component of the double 
harmonic mode is different by more than one 
radian in most harmonic wakes from that of the 
primary mode. 

This double harmonic mode affects to make 
the curve of the variation of the torque or the 
thrust deviate from simple harmonic. However 
the deviation is not remarkable as seen in Figs. 

5 - 10, even for torque variations. One can 
know such magnitude of the double harmonic mode 
gives no significant effect to the 
configuration of fluctuation. 

The existence of the double mode component 
in the blade force should be emphasized because 
it generates other excitations in the vibration 
of a propeller. 

7.4 Circulation and Load Distributions of 
Blade Section 

In Fig. 21 are shown the non-dimensional 
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Fig. 21 - Unsteady Spanwise Vortex Distribution 
along Chord 

amplitudes and phase lag of the circulation of 
the spanwise vortices at the 0.699R blade 
section in the harmonic wake, cos29 and cos50 
and cos60. The circulation at the trailing edge 
obtained by the unsteady calculation does not 
become zero but continues to the value of the 
shed vortex in any mode of the harmonic wake. 
So there are a great deal of difference near 
the trailing edge both in the amplitude and the 
phase between unsteady and quasi-steady 
calculations. 

Fig. 22 - Load Distribution along Chord in 
cos26 Wake 

f.= 03'03CO559 

ANGULAR  POSITION- 
12'tuNSiF*riYi 

12"(0UASI 5TE40Y1 

It will be found from these surveys that 
the time-derivative term has a great influence 
on the load distribution near the leading edge 
and the shed vortex does in the after part near 
the trailing edge. 

Figs. 22 and 23 show examples of load 
distributions along the chord of the blade 
section calculated by P.M., that is the 
difference of pressure on back and face. They 
have been computed at the angular position of 
the maximum total load, which is different 
between the unsteady and the quasi-steady 
conditions because of their phase differences, 
in the wake of cos20 and cos50 respectively. 
The uniformly decreasing tendency from the 
leading edge toward the trailing edge is seen 
in the unsteady calculation commonly for cos20 
and cos50. This feature seems to be quite 
natural. The same tendency is kept in the quasi 
-steady calculation for cos20, but not for 
cos56. The peculiar load distribution of the 
quasi-steady calculation for cos50, decreasing 
near the leading edge and maximum in the 
midpart, may be attributed to the inadequacy 
of the quasi-steady method. The load 
distribution by Koyama's method is found quite 
similar to that of P.M. in cos50 but lower in 
cos2S excluding the steep rise at the leading 
edge. 

7.5 Bearing Forces and Moments of One Blade 

The bearing forces and moments, vertical 
and horizontal vibratory forces and vertical 
and horizontal bending moments, have been 
calculated for the propeller AU5-50 in the 
harmonic wake of the type wx= 0.3 + 0.3cosj& 

The vertical force, FYI, and the vertical 
bending moment of one blade about the shaft 
centre, Mzi, in the harmonic wake cos48 are 
shown non-dimensionally in Fig. 24. 

-UNSTEADY CAL. 

STEAD* CAL. 

Fig. 23 - Load Distribution along Chord in 
cos58 Wake 

Fig. 24 - Bearing Force and Moment of One Blade 
in cos49 Wake 

Those by P.M. consist of the harmonic 
components of the order, (j±l) and (2jtl) , 
i.e. 3 , 5 and 7 , 9 , when j = 4. The 
components of (2j±l) derive from the non- 
linear effect of the non-uniformity of the wake 
similarly as the double mode component of the 
thrust or torque fluctration. They have not 
much effect as to deform the variation curve 
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thoroughly. 
The unsteady calculation by P.M. gives the 

highest peak amongst three methods in Fig. 24. 
It is 1.3 times as high as the pea!< of K.M. for 
both FYI and Mzi. Attention should be paid to 
this fact in connection with the practical 
design of a propeller by the linear method like 
Koyama's. The angular position of the peak is 
nearly same in the results of P.M. and K.M. 

The quasi-steady calculation gives the 
peak lower than the unsteady result by P.M. and 
higher than K.M. in case of the harmonic wake 
of cos46. The most significant defect of the 
quasi-steady method is the considerable phase 
lag at the peak, by about 20 degrees in FYI and 
10 degrees in Mzi. 

The difference between P.M. and K.M. is 
the most in case of cos46 shown in Fig. 24 
because of the maximum amplification effect at 
cos49 mentioned in the section 7.2, and the 
least in case of cos50. 

The radial distribution of blade bending 
moment acting on a blade section is the most 
important data for the choice of the blade 
thickness in design problems. The bending 
moment at the position of maximum total load 
of a blade and of its minimum total load is 
calculated by P.M. and by K.M. The results are 
shown in Fig. 25. The peak-to-peak value at the 

AU5-50 H/O = I.O 

W, = 0.3-0.3COSJ8 
— — Max. Load 

--  Mm. Load 

02 O.J    (U    0 5    06 

Fig. 25 - Blade Bending Moment Distribution 

root of the blade calculated by P.M. attains 
to 1.75 times as much as that of K.M. in case 
of cos40 and the ratio of the maximum value by 
P.M. and that of K.M. is 1.3 similar to that of 
FYI or Mzi in Fig. 24. 

This is one of the most important results, 
because the level of the cyclic load or the 
cyclic stress will be likely to be 
underestimated if linear theories such as K.M. 
are employed. There are more or less same 
problems in a harmonic wake except for cos5S in 
the case of the propeller AU5-50. 

Therefore it is recommended that the non- 
linear theory like P.M. has to be employed for 
the prediction of unsteady characteristics of 

propellers. 

7.6 Unsteady Characteristics of a Propeller in 
Harmonic Wake 

On summing up all blade forces for 
calculating unsteady thrust, torque and 
bearing forces and moments of a propeller, we 
find that the non-zero sum is resulted only 
if the mode of the harmonic wake has the well- 
known relation of Lewis{1963) with respect to 
the number of blades of a propeller. According 
to that relation, only the harmonic mode of the 
wake which satisfies the following relations 
has a contribution to the vitratory forces and 
moments. 
j = nK, for thrust and torque, 
j = nK±l, for bearing force and moment, 
where n is an integer and K is the number of 
blades. Since the vibratory forces acting on a 
propeller consists of harmonic modes of not 
only those of the wake distribution which 
satisfy the above relations, but also the 
harmonic mode resulted by the non-linear effect. 

The latter is specified by the following 
relations. 
2j = nK, for thrust and torque, 
2j = nK±l, for bearing force and moment. 

In case of five bladed propellers such as 
AU-5-50, the above-mentioned components become 
0=5, for thrust and torque, 
j = 2, 3, 4, 6, 7, 8 , for bearing force and 
moment, 
for j less than 8. 
Then, the total thrust or torqure acting on all 
blades is that of one blade multiplied by the 
blade number. It includes the component of 
double mode, i .e. 106. 

As for bearing forces and moments, the 
above-mentioned modes of j = 2, 3, 4, 6 yield 
a component of phase 56, and those of j = 7 and 
8 yield a component of 156. There exists no 
component other than these two for 5 bladed 
prorellers in the harmonic wake of the type 
cose- cos8e. Three examples of the bearing 
force amd moment calculated for the case of 
j = 6, 4 and 2 are shown in Figs. 26, 27 and 28 
respectively. Comparing Fig. 27 with Fig. 24 
for one blade, we see the value at the peak is 
in the same level in both cases but the 38- 
component completely disappears. Bearing 
forces and moments which are derived from the 
double harmonic mode are shown in Fig. 28. This 
result is not derived by K.M. The height of the 

W.=Q3-0.3COS6e 

 —PRESENT METHOD 

 KOYAMA'S METHOD 

Fig. 26 - Bearing Force and Moment of Propeller 
in cos6 Wake 
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Fig. 27 - Bearing Force and Moment of Propeller 
in cos40 Wake 
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Fig. 28 - Double Harmonic Bearing Force and 
Moment in cos20 Wake 

peak is much less significant than the total 
vibratory force. However, this is important 
because linearized theories are not able to 
predict it. 

7.7 Unsteady Characteristics of a Propeller in 
Ship's Wake 

The ship's wake distribution can be 
decomposed into several harmonic components. As 
aforementioned, the circulation of each vortex 
of the lifting surface may be also decomposed 
into same harmonic components. The strength of 
circulation in each harmonic component can be 
detemined from respective boundary conditions. 

For instance, the torque of one blade 
calculated by P.M. in the ship's wake is shown 
in Fig. 29. 5-bladed MAU5-66 propeller model is 
employed. Principal particulars are shown in 
the last column of Table 1. The wake 
distribution which is determined by model tests 
and given in Fig. 29, has dominant components 
of 2nd and 4th harmonics, and other harmonics 
are smaller. The amplitude of torque 
fluctuation calculated by P.M. is greater than 
twice as much as that by K.M. This must be 
amplification effect of P.M. for the 2nd and 
4th harmonics and in addition their double 
harmonic modes. The non-trivial difference 
between the time avarages of torque predicted 
by P.M. and that by K.M. indicates the 
existence of a considerable non-linear effect. 
Thus, the linear theory like K.M. is likely to 
underestimate the fluctuation of the torque and 

other propeller vibratory forces in the ship's 
wake than in the simple harmonic wake. The 
phase caracteristies are quite similar in two 
calculation methods of P.M. and K.M. 

Woke-Pollet, 

kited   by 

TEST   CONDITION' 

carriage  speed    ■   1.0  m/s 
NO. of   Rev. •   10 rp.s. 
Diameter of Prop.« 0.175 m 

PRESENT    METHOD 

        KOYAMA'S    METHOD 

«QitKOYAMA'S   METHOD) 

(^(PRESENT   METHOD) 

180      15Ö     12Ö     90      60      30        Ö       30      SO      90       l!0     ISO     ISO 
bottom  - top • bottom 

ANGULAR POSITION  OF BLADE 

Fig. 29 - Torque of One Blade of MAU 5-66 
Propeller in Ship's Wake 

8. COMPARISON WITH EXPERIMENT 

The experiments of propeller 
characteristics have been carried out in the 
harmonic wake simulated by the mesh screen. 
Thrust and torque of a model propeller have 
been measured by the propeller dynamometer of 
the strain gauge type. As mentioned before, we 
know that thrust and torque have the harmonic 
components of the blade frequency and thier 
multiples. Three model propellers of 3, 4, and 
5 blades have been tested in respective types 
of harmonic wake such as cos39, cos40 and cos56 
. The principal particulars of propeller models 
are shown in Table 1. 

Test conditions are so chosen as 1.0 m/sec 
for the advance speed and as 8 r.p.s. for the 
number of revolution. 

The iso-wake contors measured in the 
section 190mm behind the mesh screen are shown 
in Fig. 30. The wake distributions are fitted 
by following equations. 

C0S36 : wx = 0.36 + 0.35cos3e (44) 
cos40 : w, = 0.35 + 0.30cos4S (45) 
cos50 : w* = 0.34 + O.25cos50     (46) 

Fig. 30 - Harmonic Wake Simulated by Mesh 
Screen , 1 - w* 
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Measured thrust and torque are Fourier 
analysed and principal modes for respective 
types of wakes superimposed to the time average 
are shown in Figs. 31, 32 and 33. The results 
of computations by P.M. are given in the same 
figures for comparison. 

KT 
10KQ 

TB3-50H/O=OJ> 
D=0.l732m 
W.=036-0.35COS39 

-iM-   -IK)'    -iW    -90"     ^-30" 60"       90T       IXT       1ST       180" 

ANGULAR POSITION OF KEY M.AOE 

Fig. 31 - Thrust and Torque of 3 blades 
Propeller in cos39 Wake 

10Ko 
AUA-55 HID*0.7I0 

0= O.I667m 
W.*0.35-O3OCOSi9 

-120-    -90-     -60* ~30=      SO1     9?     Q&     fö1    lao* 

ANGULAR POSITION Of KEY BLADE 

Fig. 32 - Thrust and Torque of 4 blades 
Propeller in cos46 Wake 
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0= 0.175m 
W.=O34.0.25C0S50 

6ff      90*      HO"     150*     >W 

ANGULAR POSITION OF KEY BLADE 

Fig. 33 - Thrust and Torque of 5 blades 
Propeller in cos58 Wake 

It is found in the case of 3 bladed 
propeller in the wake of the type cos30 shown 
in Fig. 31 that computed torque curves are 
similar to measured results, but there is some 
difference in the amplitude between computed 
and measured thrust. In cases of 4 and 5 blades 
, greater differences are observed both in 
thrust and torque. The poor agreement in higher 
frequency may be attributed to the defect in 

the response of the dynamometer. The 
fluctuation amplitudes of thrust and torque of 
the 5 bladed propeller are greater than those 
of 4 bladed propeller, in spite of greater 
variation of the wake of type 4 . This tendency 
is common in the computation and the 
measurement. 

The phases of computed thrust and torque 
are nearly equal to measured ones in all cases. 
Therefore the phase relationship is rightly 
predicted by the present computation method. 

9.  CONCLUSIONS 

Following are conclusions of the present 
work. 
(1) The unsteady thrust, torque, bearing 

forces and moments, of a propeller and 
the bending moment of blades calculated 
by the present method are generally 
greater than those predicted by the 
linear theory like Koyama's method. 

(2) The phase relationship by the present 
method is verified to agree with the 
experimental result, and also is nearly 
similar to that by Koyama's method. 

(3) Non-linear effects of Kutta-Joukovski 
force due to the non-uniformity of the 
wake, which have been clearly 
demonsttated by the numerical results by 
the unsteady lifting surface theory, 
appear in two aspects. One is the 
deviation of the relative rotative 
efficiency from unity and the other is 
the existence of double harmonic modes in 
the fluctuation of the thrust, torque and 
all bearing forces and moments of a 
propeller. 

(4) The time-derivative term in the pressure 
equation is the origin of the forward 
shift of phase in the force and moment 
fluctuation. 

(5) The comparison between unsteady and quasi 
-steady calculations has revealed the 
lift reduction and phase lag due to shed 
vortices. 

(6) The quasi-steady calculation by the 
present method provides a good 
approximation for the unsteady propeller 
characteristics in case of the wake 
distribution of type cose, but 
unrealistic phase lag appears in case of 
higher modes. In case of the wake of 
cos28 to cos46,quasi-steady calculation 
shows excessive amplitude. 
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DISCUSSION 

Prof. JOHN C. BRESLIN, 
Stevens Institute of Technology, 
Hoboken, NJ, USA: 

This contribution by Prof. Maruo and his 
strong team to extend the literature on steady 
and unsteady propeller forces is most inter- 
esting in that it includes several non-linear 
effects. As many know we at Davidson Laborato- 
ry have labored in this area for many years. 

It is not clear to me, without additional 
study of the paper, how this treatment differs 
from Kerwin et al. 

A significant set of comparisons with 
Kerwin's model with vortex wake contraction 
and wrap-up was made by Jacobs and Tsakonas 
some four years ago, at the SNAME annual meet- 
ing. This showed that the DL program gave re- 
sults which were as good or better than Kerwin's 
results as judged against measured mean thrust 
and torque. The effects of contraction and 
wrap-up were seen to be compensating. 

Kerwin has not shown any significant ef- 
fects of these non-linear aspects on blade- 
frequency forces. 

I do not understand how the unsteady force 
module can be greater than the quasi-steady. It 
would be very effective if Prof. Maruo and col- 
leagues would excercise their procedure against 
the S-propeller series data produced by DTNSRDC 
which has been used by Kerwin and Tsakonas and 
others to compare their results. In that way a 
common norm could be had for examining these 
disparate procedures. 

STUART JESSUP, 
David Taylor Naval Ship R&D Center, 
Bethesda, MD, USA: 

I would like to congratulate the authors 
on their investigation of unsteady propeller 
forces. As you have stated'your procedure is 
very  similar to that of Kerwin and Lee (1978). 
Could you explain exactly what the differences 
in the two procedures are? Also it would be 
interesting to compare calculations of the 
same propeller and wake, perhaps as performed 
by Kerwin and Lee in their paper. This might 
point to possible numerical errors in either 
procedure. 

Your discovery of the offset in mean 
torque and the double harmonic mode produced 
by wake non-uniformity is very interesting. 
We would be interested in checking these ef- 
fects with Kerwin and Lee procedure. If they 
are attributed to nonlinear effects then pos- 
sibly more refinements of the spatially vary- 
ing downstream wake structure should be incor- 
porated. Unfortunately, the double harmonic 
mode is difficult to verify because of the 
difficulty in generating pure single harmonic 
wakes. 

Finally, I am concerned with the possible 
influence of the unsteady propeller loading on 
the nonuniformity of the wake - a so called 
spatially varying effective wake. In the case 

of pure harmonic wakes the propeller action may 
reduce the wake harmonic amplitude. Could you 
please comment on this? 

Prof. HELMUT SCHWANECKE, 
Berlin Ship Model Basin (VWS), 
Berlin, Germany: 

This is an excellent paper. The newly de- 
veloped method for predicting unsteady propel- 
ler characteristics is very promising. For prac- 
tical design purposes it is very  important to 
know how, and if so, to what extent the opera- 
tional point of the propeller differs from that 
considered in conventional design procedures. A 
couple of years ago I made some investigations 
regarding an "unsteady wake adaption" resulting 
in a correction for the pitch due to the higher 
efficiency of the propeller in an inhomogeneous 
flow. I should like to learn whether the authors 
have made investigations considering this phe- 
nomenon and if they got any results. Referring 
to Fig. 20 of the paper (relative rotative ef- 
ficiency) I can confirm the tendency obtained 
by Koyama's method, because this is mainly 
caused by the ratio of the wavelength of the 
harmonic modes and the chord lengths of the 
blades, and is therefore dependent on the 
blade area ratio of the propeller. 

AUTHORS' REPLY 

Thank you for your kind comments and dis- 
cussion, Prof. Breslin. The first question of 
yours is the same as that of Dr. S. Jessup. We 
would like to give the same answer to it and 
hope you will refer to that answer. The ampli- 
fication effect of the non-linearity on blade 
forces has been revealed in the present paper. 
This is a significant result of the paper. This 
is brought about by the remarkable effect of 
the time derivative term in the blade force. 
I hope you will see Fig. 14 again. I appreciate 
your suggestion of further exercises of the 
present procedure. 

Thank you also for your interesting dis- 
cussion, Prof. Schwanecke. In our present work, 
we have investigated the influence of the 
circumferential non-uniform flow on the un- 
steady characteristics of a propeller. But we 
have never researched the application of the 
present method to the wake adaption. We think 
that it is a future problem. It may be mentioned 
that the circumferential non-uniformity of flow 
has a favorable effect to make a higher effi- 
ciency of a propeller like in the presented 
example. Koyama's method is based on the line- 
arized theory which has no consideration of the 
variational distribution of inflow velocity 
along the chord. So, it always predicts the 
constant relative rotative efficiency of unity 
in any non-uniform flow. Of course it is not 
dependent on the blade area ratio of the pro- 
peller. 

We thank also Dr. Jessup for his interesting 
discussion. There are three points of the pre- 
sent procedure different from that of Kerwin 
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and Lee. The first one is the modification of 
the discretization of blade elements so as to 
avoid the Kutta condition at the trailing edge. 
The second one is the choice of parameters of 
tip vortex and numbers of elements on a blade 
to optimize the accuracy of computation and 
time consumption. The third one is the intro- 
duction of expressions of equations (14) to 
(17) which are given in the form of Fourier 
series of the particular harmonic of the wake. 
By these expressions, we can obtain the solu- 
tion of circulations of spanwise vortices in 
terms of three coefficients g0nm, glnm, g2nm> 

while the circulations have been determined at 
each instantaneous position of a blade step 
by step in time in the procedure of Kerwin 
and Lee. 

The propeller for application has been 
chosen from a practical point of view. We have 
had available data in hand. We are also inter- 
ested in your suggestion of calculations of 
the same propeller and wake as Kerwin and Lee. 
If there were a chance, we would try the cal- 
culations. The offset in mean torque and the 
double harmonic mode fluctuation of forces 
are mainly owing to the non-linear effect of 
Kutta-Joukowski force in non-uniform wake. 
We appreciate your interesting remarks on the 
refinement of the downstream wake and the dif- 
ficulty of verification of the double harmonic 
mode. 

We have investigated the influence 
of the non-uniform flow field on the propeller 
action in the present paper. We think the re- 
verse problem suggested by Dr. Jessup, namely 
the influence of the propeller action on the 
velocity field, is an important future problem. 
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CALCULATION OF THE TURBULENT FLOW AROUND THE STERN AND IN THE 

WAKE OF A BODY OF REVOLUTION WITH THE PROPELLER IN OPERATION 

LIAN-DI ZHOU AND JIA-LE YUAN 

ABSTRACT 

This paper is the continuation of "P 
Streamline-Iteration Method for Calculating Tur- 
bulent Flow around the Stern of a Body of Revo- 
lution and Its Wake" (Zhou, 1982), which was 
presented at the 14th ONR symposium. The pres- 
ent paper further generalizes the streamline- 
iteration method to the calculation of turbulent 
flow around the stern and in the wake of a body 
of revolution with the propeller in operation. 
Two-equation (K- £ ) model is still employed as 
turbulence model. The propeller is modelled as 
lifting line-sink disk with radial distribution 
of the strengh. The pressure field, the velocity 
field and the distributions of the turbulent 
properties around the stern and in the wake of 
a body of revolution with the propeller in 
operation may be calculated by using the present 
method. The pressure defect component of the 
thrust deduction can be obtained from the com- 
puted surface pressure distributions over the 
stern of a body of revolution with and without 
propeller in operation. By subtracting the pro- 
peller induced velocity distributions from com- 
puted velocity distributions at the propeller 
plane wtih the propeller in operation, the 
effective velocity distributions at the pro- 
peller plane may be obtained. Agreements be- 
tween measured and computed values of axial 
velocity profile immediately upstream of the 
propeller and of the surface pressure distribu- 
tions over the stern of the body with and 
without the propeller in operation which proved 
the effectiveness of the present method. 

Outstanding features of the present method 
are: (1) the thrust deduction and the effective 
wake distribution may be computed in the same 
iteration cycle of the interaction analysis; 
(2) the flow downstream of the propeller plane 
may be predicted. It can be generalized and 
extended to the interaction calculation between 
a body of revolution and a ducted propeller, 
the contrarotating propeller or the tandem 
propeller 

1. I INTRODUCTION 

In order for a propulsor to produce a 

reouired thrust to propel a ship with minimum 
power, minimum cavitation, minimum vibration 
excitation and noise at a prescribed propulsor 
rotational speed, the effective inflow velocity 
distribution and the thrust deduction are both 
necessary in the design of a wake-adapted pro- 
peller. Until auite recently, however, in the 
design of wake-adapted propeller, the radial 
distribution of effective inflow velocity is 
replaced by the nominal velocity profile (ihe 
velocity profile at the location of the grcmil- 
sion device in the absence of a propeller) due 
to lack of knowledge of effective inflow veloci- 
ty or is estimated by ratioing the nominal-velo- 
city profile can be significantly different 
from the nominal velocity profile. The constant- 
factor empirical approach for ohtainino effec- 
tive inflow velocity distribution in not based 
on a rational hydrodynamic theory either. Put 
then it is ^ery  difficulty to measure the velo- 
city profile at the location of the propeller 
with the propeller in operation, though the 
most advenced Laser Doppler velocimeter (LDV) 
is used..It is therefore essential to develope 
a reliable and sound theoretical method to ore- 
dicte the effective veloctive profile. As for 
the determination of thrust deduction, the con- 
ventional approach is to conduct model-scale 
propulsion tests usino a stock propeller with 
similar principal dimensions. However, the ex- 
periments are generally time consuming and cost- 
ly. Particularly, in order to investigate the 
effects of different afterbody forms, propeller 
locations, blade geometry and loading charac- 
teristics, it is impracticable to determine 
these effects by making a larae number of ex- 
periments. But on the other hand, the data of 
both effective inflow velocity distribution 
and thrust deduction used in the desion of a 
wake-adanted propeller must be accurate enough 
to meet the ever increasina demand for eneray 
saving and reduction in vibration excitation 
excitation and noise. However, these knowledges 
depend on the mutual interaction between the 
propeller and ship's afterbody. Thus, recently 
naval architects pay areat attention to the 
investigation on the theoretical calcuation of 
interaction. 

Up to now it is very  difficult to predict 
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the nominal velocity profile even for the con- 
ventional ship, not to say the effective velo- 
city profile based on the complex interaction 
between a propeller and the ship's afterbody. 
In order to focus on the physical nature of the 
complex interaction, axisymmetric bodies were 
chosen in all the existing investigations of 
the interaction. The representative works on 
the interaction between an axisymmetric body 
and the propeller at the moment are the inves- 
tigations in DTNSPUC (see Huang et al. 1976, 
Huang and Cox, 1977, Cox and Hansen, 1977, 
Huang and Groves, 1980). On the part of experi- 
ment, the Laser Doppier Velociemeter (LDV.) was 
successfully used by Huang et al, (1976) to 
measure velocity profiles very close to the 
propeller and the theoretical method of calcula- 
ting interaction between an axisymmetric body 
and the propeller was verified by using the 
measured differences between the velocity pro- 
files, stern pressure distributions and stern 
shear stress distributions with and without the 
propeller in operation. On the part of theory, 
the effective velocity profile and thrust 
deduction can be predicted by using the inviscid 
approximation computer programs developed in 
DTNSRDC. The agreements between the predicted 
and measured toatl axial velocities in front 
of the operating propeller and stern pressure 
defect distribution are very good. Though the 
the analytical predictionq method of thrust 
deduction of DTNSRDC (Huang and Cox, 1977, Cox 
and Hansen, 1977) will be potentially viable to 
be generelized and extended to the calculations 
of interaction between an axisymmetric body and 
a ducted propeller, the contrarotuting propeller 
or the tandem propeller, their numerical predic- 
ting method of effective velocity profle (Huang 
et al. 1976, Huang and Groves, 1980) is only 
applicable to the upstream of propeller as a 
result of making approximale assumptions. The 
development of theoretical research between 
the thrust deduction and the effective velocity 
profile is uneven. Thus, the complete interac- 
tion analysis between an axisymmetric body and 
above propeller configurations-ducted, con-; 
trarotating and tandem propeller can not be 
carried out. Subsequent detailed measurements 
of the velocity profiles with and without a 
propeller operating in two axisymmetric wake 
were mode by Nagamatsu and Tokunagu (1978), 
who used a five-hole pi tot probe of NPL. type to 
measure it. The theoretical prediction of effec- 
tive velocity profile was made by means of 
streamline tracing under the same assumptions 
as Huang et al. employed. The method of Naga- 
matsu and Tokunaga is only applicable to the 
upstream of propeller too. 

In this paper, the assumptions used by 
Huang et al. (1976 and 1980) are exempted. 
Based on the basic eguations of the turbulent 
flow, the propeller influence is added to the 
basic euqations of the turbulent flow suited 
the streamline iteration calculation, which 
were derived in our previous paper (Zhou, 1982). 
The turbulence model still uses a two-equation 
(K- ) model and the coordinate transformations 
technigue presented in Zhou's paper is also 
used. In the streamline iteration method of 
turbomachine, the influence of rotator row was 

neglected in general. In the present case, 
however, the upstream influence of propeller 
will be the research object. Addition of pro- 
peller induced velocity field (upstream and 
downstream) to the computed velocity field of 
the turbulent flow around the stern and in the 
wake of a body of revolution without the pro- 
peller (Zhou, 1982) and corresponding contracted 
streamlines are the assumptions of the initial 
locations of streamlines and of the intial velo- 
city distribution. Thus, not only the influence 
of propeller to the un-stream is added to the 
streamline iteration calculation, but also 
the streamline iteration calculation is acce- 
lerated as a result of the reasonable assump- 
tions of the initial locations of streamlines 
and of initial velocity distribution. 

2. BASIC EQUATIONS 

In calculatino the three-dimensional   in- 
compressible,  steady turbulent flow by two 
equation  (K- fc .1 model,  the general  forms of 
basic eouation are as follows. 

Continuity Equation 

v-V=0 

Momentum Fquation 

(7-v) "v =- l^vp+I/pv-ra 

(1) 

(2) 

where the stress tensor X    is represented by 
the effective viscosity as 

[x] =/«eff (vV+vvT) (3) 

eff is the effective viscosity and defined by 

Aeff =/y%/VcD -fV/t (ä) 

where A]  and^-j- are the laminar and turbulent 
viscosity respectively, and K andtand the 
turbulent kinetic and its dissipation rate, 
respectively.  The governing equations for K 
and    are: 

K-Eouation 

- •'"eff 
V-IPK V)=V-( VK.H-GE-Pfc 

^eff.k 
^-Equation 

V'-(PiVhv- ( veff    vO + CiGE -i   -Cvp£ 

(5) 

2 

where 
(6: 

(/) GE=At  ivV + V1)   -W 

In these eguations, A>ff,K and/«eff .jPrandtl/ 
Schmidt Numbers; Uj,  C2 and Up are proport- 
ionality constants.  The values of C\, C2, Cp 
^eff'K and 0";^f t are given in Table 1. 

Table 1 
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For the general axisymmetric flow, the 
above basic equations can be transformed into 
convenient forms suited the streamline itera- 
tion calculation forms suited the streamline 
iteration calculation, which were derived in 
Zhou's paper (19P2). Put it can not be applied 
machanical ly in the streamline iteration calcu- 
lation with the propeller in operation. The pro- 
peller influence must be added to the oeneral 
axisymmetric eauations suited the streamline 
iteration calculation. The propeller ray be 
treated with same method as in the streamline 
iteration method ot turbomachine. That is, the 
propeller is neglected in form, but two effects 
due to the propeller are retained. (!) The 
fluid in the wake of propeller possesses the 
rotational flow (the assumption that the in- 
fluence ot propeller on the upstream fluid of 
propeller is inviscid is used, otherwise the 
upstream fluid of propeller will also possess 
the ratational component); (2) The fluid is 
acted on by the blade force as the fluid nasses 
through the propeller, thereby the eneray trans- 
ference between the propeller and the fluid is 
carried out. Thus, the flow field can be con- 
sidered as that the propeller is "not present", 
and the calculation can he carried out in a 
static absolute coordinate system. Now the spa- 
tial static cylindrical polar coordinate sys- 
tem (r,9.,zj is used, and u, v, w are axial, 
radial and circumferential velocity components 
of velocity V respectively. Ps the above men- 
tioned two propeller effects which must be re- 
tained do not relate with the number of a pro- 
peller, the flow may be considered as an axisy- 
mmetric flow, i.e., the partial derivatives of 
all flow variables with respect to must be eoual 
to zero. Put this axisymmetric flow differes from 
the axisymmetric flow without the propeller in 
our previous paper (Zhou, 1982). K  present case, 
w is not equal to zero. With the above treatment 
and assumption, the governing eguations suited 
the streamline iteration calculation for the 
turbulent flow around the stern and in the wake 
of a body ot revolution with the propeller in 
operation can be derived in the way similar to 
that in Zhou's paper (1982). 

Continuity Fquation We employ the same 
intearal form as in above mentioned reference 

^(z) 
2ICP      rudr=Q0= const 18) 

where r0(z) and ri(z) are the locations of the 
lower and the upper boundary of the channel in 
the meridian plane. 

Fnergy Equation 

dz along streamline 

= ÄffKT^ + lzT+T>fJ + it-äp+az»+ rar TV 

+ TTlTf5      n*      r  ar      7*7J 

r 3%, iu>   Wtft/ da     3v )1, v [ZMtfi M.iVs 

^^Mi Wf/„ayo | wr »toff 3w dJUff, aw _ _w_o 
r l   8W "RL  dz   dz     ar^9r     r)] 

(9) 

This eguatinn denotes the change in total pre- 
ssure p0 alonn the streamline due to the turbu- 
lent flow of the fluid (when the fluid is in- 
viscid, the total pressure remains constant 
along the streamline). Pwino to the presence of 
the operatina propeller, while the fluid nasses 
throuoh the proneller, the work done by the 
proneller also results in the chanae of total 
pressure. The maanitude of this chanae is p/lA 
(r w), whereAis the propeller annular velocity, 
A(rw) is the difference of rw at aft and fore 
plane of the nropeller disc. Thus, when eouation 
(9) is used, the total pressure p0 is replaced 
by new total pressure p0 + p/ilrw) while the 
fluid passes throuoh the propeller disc. 

Radial Pressure Gradient Eouation 

dr dzlolong streomlir r I 

£Y+A 

9Z 

r   ar       r*l 

) 
(101 

d£ 
dz along streamline 

= -!—[± -1-./,.  »*«  *Lu*-(. 
P" It  »i-*-     <rtjfK   T>trdzv 

<5«ff,K 32' 

•W-Pt] 
Ol) 

£-Equation 

dfc 
ay 

along streamline 

_j_r_L ±( r^£fLii)4 

+ C,<rE i. 

■; 

fi?) 

The forms of above K and  eouations are en- 
tirely same as in the case without the propeller 
(7hou,1982), but RE in these eguations are di- 
fferent. At present case, GE is given as 

GE=AH^-A(-^+(^] 

-K-ir+i^+C 8r tfnW) 
(13) 

Finally, the ratational flow in the wake 
of the propeller which is induced by the opera- 
tina propeller must be considered. Tf the flow 
is an axisymmetric without the operating pro- 
peller, w in eauations (9), (10) and (13) must 
be egual to zero. Owing to the presence of the 
operating propeller, the fluid in the wake of 
the propeller possesses the flow in 0 direction 
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(circumferential) as it passes through the pro- 
peller,  i.e. w/0.  Because the radial  distribu- 
tion ot w at the aft plane of propeller disc is 
known  (since circulation distribution r= rw is 
known,  it can be obtained by an iterative proce- 
dure which is made up of combining the present 
method with the existing performace    prediction 
or design procedure. There is no harm in assum- 
ing that the radial  distribution of circulation 
Ms known,) w which must be retained in the 
wake ot the propeller is obtained by using cir- 
cumferential momentum eguation.  The w-eauation 
can be derived form circumferential  momentum 
eauation    by using ap/a0=(). 

w-Fquation 

alona streamline 

-püL^{fl^P+ BZ' 

n 

r ar -*-) 

+ <dvj aw    aAiff 11 
32       3r   v 3»" f) 

(14) 

Thus, six unknown variables u 
t can be solved with six egua 
(8) through (12) and eauation 
equations are clousre and can 
luate these six unknown varia 
The radial velocity component 
ted from the obtained u, w, p 

Owing to the fact that t 
region of the turbulent flow 
and in the wake of a body of 
propeller in operation extend 
in the radial and the axial d 
dinate transformations 

, w,  p0,  P,  k and 
tions, eouations 
(14).  So these 
be used to eva- 

bles numerically. 
v can be calcula- 
and p. 

e physical flow 
around the stern 
revolution with 
s to infinty both 
irection, the coor- 

1=/- e 

$=4 arctic-) J (15) 

used in our previous paper (Zhou, 1982) is still 
employed in this paper. Thus, the physical in- 
finite flow region can be transformed into a- 
finite region. Then the streamline-iteration 
method can be used in this finite region. The 
partial derivatives of flow variables with res- 
pect to r and z and the direction derivatives 
appeared in equations (9) through (14) can be 
evaluated by using the method as in above men- 
tioned paper. 

The  boundary conditions are defined as is 
Zhou's paper (1982). But in the present case, 
the propeller conditions must be added, i e. 
the number of propeller blades, rate of revolu- 
tion of propeller and the radial distributions 
of circulation fand hydrodynamic pitch angle 
tgßi are requaired (the radial distributions of 

and tgß; can be obtained by an iterative 
procedure which is made up of combining the 
present mehtod with the existing propeller per- 
formance prediction or design procedure. So there 
is no harm in assuming that these distributions 
are known). Thus the problem is solvable. 

3. CALCULATION PPOCFDUPF 

The calculation is performed in the trans- 
formed flow region which is in the(j-f)plane 
after the calculation results of turbulent flow 
around the stern and in the wake of a body of 
revolution without the propeller (7hou, 1982) 
have been obtained . The seguence of calcula- 
tion is as follows: 

(l) Assumptions of the initial locations 
of the streamlines and of the initial 
distributions for u, v, w, p, p0, 
k andE. 

After the calculation in Zhou's naner has 
been carried out, the locations of the stream- 
lines around the stern and in the wake of a body 
of revolution without propeller and the values 
of u, v, p, p0, K and fat these streamline loca- 
tions can be obtained. Pased on the these calcu- 
lation results, the initial locations of the 
streamlines and the initial distributions for 
u, v, w, p, n0, K and £ in the streamline i*p- 
ration  calculation of the turbulent flow 
around the stern and in the wake of a body of 
revolution with the propeller in operation can 
be assumed. 

(a) Assumptions of the initial locations 
of the streamlines and of the initial 
distributions for u and v 

Owina to the fact that the number of pro- 
peller blades, the annular velocity and the 
radial distributions of f and of tg^ are assum- 
ed to be known in this paner, the circumferen- 
tial-average proneller-induced axial and radial 
velocity (denoted by ua and ur respectively) at 
the streamline locations around the stern and 
in the wake of a body of revolution without the 
propeller can be calculated by using the lift- 
ina line-sink disk model (Dong, 1977). Let u„= 
u+Ug, Vp=v+ur. Substituting the distribution of 
Up into eauation (8) the radial distribution of 
the masstlow at each station-line can he calcu- 
lated. Within a oiven stream annulus with or 
without an ooerating propeller the massflow is 
constant. Thus, accordina to the calculated 
distributions of the massflow with and with- 
out the operating propeller, the new locations 
of the streamlines on station-line, rp, can be 
obtained by inverse interpolation of the mass- 
flow (see Fig.l). The initial locations of the 
streamlines in the streamline iteration calcula- 
tion with the propeller in operation are taken 
as this distribution of rp. Then these initial 
locations of the streamlines are transformed 
into the (J,1) plane by usina coordinate trans- 
formations 05). By usina the values of up and 
vp at the original locations of the stramlines 
without the propeller as the values of u and v 
at this initial locations of the streamlines 
with the propeller in operation, the initial 
distributions of u and v can be obtained. 

(b) Determinations of the initial distri- 
butions for p0, K and £ 

Py using the values of oQ, K and£.at the 
original locations of the streamlines without 
the propeller as the values of p0, K anc£at 
the new initial locations of the streamlines 
with the propeller in operation, the intitial 
distributions for p0, K and £ can be obtained. 
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(c) Determination of the initial distrihu- 
tion for w 

Accordinq to the assumption that the influ- 
ence of the propeller on the fluid is inviscid, 
then VihO at upstream of propeller; for each 
streamline, according to the d(rw)/dz along 

stream I ine = 0> i-e- according to the rw const 
alonn the streamline in inviscid flow, the 
values of w downstream of propeller at the new 
initial locations of the streamline can be ob- 
tained. Then the initial distribution of w is 
determined. 

(e) Determination of the initial distribu- 
tion for p. 

According to the determined values of u, v, 
w and p0 at the new initial locations of the 
streamlines, the values of p at these locations 
can be calculated from following formula 

(16) P=P0- -7 (u2-»V2+w2) 

Then the initial  distribution of n is obtained. 
(2) Calculations of the meridian flow angle 

and of the new distribution for v 
By using the same formula and method as 

in the Zhou's paper (1982),  tg    and the distri- 
bution for v can be calculated form the coordi- 
nates  (},\) of arid points of the stremlines 
and the distribution for u. 

(3) Calculation of new distribution for w. 
Solve equation  (14) for each streamline 

(except on the wall  and the centreline of wake, 
at these places w = 0).  Because w=0 upstream of 
propeller (assuming that the influence of the 
propeller on the fluid upstream of propeller is 
inviscid),  so the equation (14) is solved only 
for the downstream of propeller.  The w appeared 
in the right-hand of equation (14)  is given the 
values of the previous iteration. Taking the 
known values of w at the aft plane of propeller 
disc as the inteqral  contants  (w can be calcu- 
lated with formula w=T/r form the know radial 
distribution of circulation r ), this equation 
can be solved by ordinary numerical   integration. 
Then the new distribution of w can be obtained. 

(4) Catenations of the new distributions 
for K and £ 

Solve equations  (11)  and  (12)  simultaneous- 
ly by using the same method as in Zhou's paper 
(1982) to obtain the new distributions for K 
and £ 

(5) Calculation of the new distribution for 
static pressure p 

Solve equation  (10)  by using the same 
method as in Zhou's paper to obtain the new dis- 
tribution for p. 

(6) Calculation of the new distribution for 
total  pressure p0 

In the present case, each streamline must 
be divided into tow sections. Then, for each 
section the energy equation  (9) may be solved 
in the same way as in Zhou's paper  (1982). That 
is, for the first section taking the value of 
p0 at the inlet station on the relevant stream- 
line  (p0 being calculated by expression p0=p + 
l/2Pv2 using the given boundary conditions for 
u,  v and p at the"inlet station) as the integral 
constant, equation(9) can be solved by ordinary 
numerical  integration along this streamline form 
the inlet station to the fore plane of propeller 

disc.  Fauation  (9) can be solved along the se- 
cond section of this streamline by ordinary 
numerical   integration too.  But the interval  of 
integration is from   the aft plane of propeller 
disc to the exit station and the inteoral  cons- 
tant is taken as the tatal  pressure P0 at the 
aft plane of propeller disc.  This total  pressure 
p0 is eoual  to the total  pressure value at the 
fore plane of propeller disc on the correspond- 
ing streamline plus  pJlA(rw), where-^ is known 
propeller anaular velocity,   A'rw)  is eoual  to 
the value of rw at the aft plane of propeller 
disc on the correspondino streamline at present 
case. 

(7) Calculation of the new distribution 
for u 

p0, P, tg&and w being solved, Vm and u 
can be calculated as follows 

v» = J2<Po-PVp-w* 

u = V«i 

i f+Y< 
(17) 

(8) Calculation of the new locations of 
the streamlines 

Py substituting the obtained new distribu- 
tion for u into the formula (8), the radial 
distribution of the massflow along each station- 
line can be calculated. According to the pres- 
cribed distribution principle of the massflow 
along the station-line, the new locations of 
the streamlines on station-line,^cal . can be 
obtained by inverse interpolation of the mass- 
flow (the same principle as shown in Fig.l). 
Usino a relaxation factor s which is less then 
1, the assumed new locations of the streamline, 
new, can be obtained as follows, 

ws(wv 
(18) 

Repeat step (2) throuah (8) unti I the maximum 
deviation between the locations of the stream- 
lines in two successive iteration calculations 
is within prescribed accuracy. Then, these dis- 
tributions for u, v, w, p, p0, K andfcand the 
locations of the streamlines are the final re- 
sults for problem. 

4. NUMERICAL RFSULTS 

In order to proved the effectiveness of 
the present mehtod, numerical calculations are _ 
carried out for the flow field of a model of axi- 
symmetric body (Model 1) fitted with a propeller 
(Propeller T) and the calculated results are 
compared with the experiments by Huang et al. 
(1980). All the cases of the mumerical calcu- 
lations are shown in Table 2, they are differ- 
ent in loadings. 
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Table 2. cases of the numerical calculations 

Model  of a body of 
revolution Jv CTS Propeller 

Model   1 
1.25 0.370 

T 
1.07 0.654 

where J = ^/nD  is ship-speed advance coe- 
fficient, CTS = T/(P/2 v£,HR£) is thrust load- 
ing coefficient based on ship speed, Vcais ship 
n is rate of revolution, D and R„ are propeller 
diameter and radius respectively and T is pro- 
peller thrust. The radial distributions of non- 
dimensional circulation, G= r/2ltRp

<V00 , and 
hydrodynamics pitch angle, tgß}=(ue+ua)/(ftr-ue) 
used in the calculations are the values given 
in the paper of Huang et al. (1980), where ue 
is the effective velocity at liftinp-line, ua 
and ue are the axial and tangential propeller 
induced velocities (circumferential averiae) 
at lifting-line, respectively. The results of 
calculations are shown in Fing. 2 to Fig 7. 

Fig 2 shows the calculated streamline of 
the flow fields around the stern and in the 
wake of body of revolution with and without the 
propeller in operation. From this figure stream- 
line contraction due to the operation of the 
propellercan be seen. The comparasion between 
the computed and measured axial velocity profi- 
les immediately upstream of propeller (x/Rp=- 
0.277, i.e. Z/L=0.9771) with and without the 
propeller in operation is shown in Fig.3. The 
comparasion between the computed and measured 
distributions of sthe surface pressure detect 
over the stern of body of revolution with and 
without the propeller in operation is shown 
in Fig 4. The agreement between the calculated 
and measured result and within the accuracy 
required in engineering, As for the calculated 
streamlines shown in Fig 2. so far we have no 
experimental results at hand, so no comparasion 
was made. Put they seem to be auite reasonable. 

fitter  the effectiveness of the present 
method has been confirmed throuah the compara- 
sions between the. calculated and measured re- 
sults shown in Fig 3 and Fig 4, the predicted 
nominal (ux/Vao), total (IU/VOO ) and effective 
axial velocity profiles (ue/V«» , ue/v^. =up/\'o» 
- ua/Voo ) at the propeller plane (7/L=U.9831) 
by using present method are shown in Fia 5. 
From this figure, it is obvious that the diffe- 
rence between the effective and nominal velocity 
profile is greater at the region near the hub 
and gradully vanishes forward the propeller tip. 
This conclusion is same as that obtained by 
Huang et al. (1980). 

As mentioned in section 1, the flow field 
in propeller wake can be calculated by using 
present method. Thus, results obtained will be 
useful for the design of the rudder situated in 
the propeller wake and the interaction analysis 
between a body of revolution and the contrarota- 
ing propeller or the tandem propeller can be 
carried out by means of present method. Fig 6 
and Fig 7 show the calculated nominal, total 
and effective axial velocity profiles at two. 
statians (Z/L=1.057 and 7/L=l.182) in the pro- 

peller wake, respectively. Put, so far no ex- 
perimental data in the propeller wake for a 
body of revolution and propeller combination 
are available, no comoarasions vere  made with 
experimental data for these figures. 

Finally, from Fig 3 to Fig 7, one can 
perceive the effect of propeller loadinn upon 
the magnitade of interaction. The trend seems 
to be seasonable and self-evident. 

5. CONCLUDING REMARKS 

From the calculated exemples in the previ- 
ous section, it may be concluded that: 

(1) The flow field (includino the stream- 
lines, the distributions of velocity and press- 
ure) around the stern and in the wake of a body 
of revolution can be predicted by using the 
present, method, rhe aoreements betweep the num- 
ericial prediction and measured results are 
satisfactory within the accuracy required for 
enoineeina purpose. If the present, method is 
incorporated into the existino propeller design 
or performance prediction computer Pronram, the 
complete interaction analysis between a body 
of revolution and the propeller can be carried 
out. by an iterative procedure. That is, the 
wake-adapted propeller desinn or the performance 
calculation in the wake behind the ship can be 
really carried out. The thrust deduction and 
the effective wake distribution may be computed 
in the same iteration cycle ot the interaction 
analysis. 

(2) Owing to the fact that the flow state 
downstream of the propeller plane may be predic- 
ted, it is potentially viable to be nenerelized 
and extended to the calculations of the thrust 
deduction, the effective wake distribution and 
the interaction analysis between a body of re- 
volution and a ducted propeller, contrarotating 
propeller or the tandem propeller. 

(3) At the presept paper, the lifting line- 
sink disk modle of the propeller and the assump- 
tion that the influence of the propeller on the 
upstream fluid is inviscid were used. Tn order 
to improve the accuracy of the calculation, the 
lifting-surface model of the propeller instead 
of the lifting line-sink disk model can be emp- 
loyed, or even the viscosity ot the fluid is 
taken into account in calculating the induced 
velocity field of the propeller. Put the lifting 
surface model reouires a great deal of calcula- 
ting work. It. is unwise to adont the lifting 
surface model form the beginn no to the end in 
the calculation of the interaction analysis. So 
we propose that the lifting line model is used 
in the preliminary design calculations and the 
lifting surface correction or calculation is 
introduced at final staoe of desion or calcula- 
tion. As to the induced velocity field of the 
propeller in turbulent flow, till now it is 
very difficult to treat in purely theoretical 
way. 
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Fig. 1: 
Sketch for Obtaining Streamline Location 
by Inverse Interpolation of the Massflow 
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Fig. 2: Computed Streamlines for Afterbody 1 
with and without Propeller in Operation 
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Fig. 3: Measured and Computed Axial Velocity Profiles 
Immediately Upstream of Propeller (Z/L = 0.9771) 
with and without Propeller in Operation 
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Fig. 4: Measured and Computed Distribution of 
Surface Pressure Defect over the Stern 
of Afterbody 1 with and without 
Propeller in Operation 
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Fig. 5: Computed Nominal,Total and Effective 
Axial Velocity Profiles at the 
Propeller Plane(Z/L = 0.9831) 

yv„, ue/v„,, Up/V. 

Fig. 6: Computed Nominal, Total and Effective 
Axial Velocity Profiles at the Station 
(Z/L = 1.057) in the Propeller Wake 
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Fig. 7: Computed Nominal, Total and Effective 
Axial Velocity Profiles at the Station 
(Z/L = 1.182) in the Propeller Wake 

DISCUSSION 

Dr. MING S. CHANG and Dr. THOMAS T. HUANG, 
David Taylor Naval Ship R&D Center, 
Bethesda, MD, USA: 

The authors have developed a streamline- 
iteration numerical procedure for computing 
propeller/hull interaction. The thrust deduc- 
tion, the effective wake distribution, the flow 
downstream of the propeller plane, together 
with turbulence quantities, are computed by 
this method. The good agreement between their 
computed results and our experimental data de- 
monstrates the general validity of the authors' 
numerical approach. The authors are to be con- 
gratulated on their achievement. 

The effective wake distribution computed 
by this method is in good agreement with the 
inviscid interaction theory of Huang. Further- 
more, our method has been extended to treat 
the inviscid interaction of ducted propulsors. 
The extension is straightforward and accurately 
predicts the mass flow through the ducted pro- 
pulsor. Since the authors mentioned the ducted 
propulsor in this paper, we would like the au- 
thors to state their approach in computing the 
streamline on the duct and hence the mass flow 
through the duct. 

In the design of tandem and contrarotating 
propellers, the actual location of the trailing 
propeller wake is extremely important. The lift- 
ing line-sink disk model used by the authors may 
not be very appropriate. The wake and the in- 
duced velocities generated by the forward pro- 
peller at the location of the downstream pro- 
peller are known to be poorly predicted by the 
lifting line-sink disk model. This limitation 
is more serious for the tandem propeller design, 
since the effective wake must be accurately de- 
fined at the lifting surface of the downstream 
propeller. 

Figures 6 and 7 show that the location of 
the maximum velocity downstream of the propel- 
ler moves away from the propeller/body axis in 
comparison with that at propeller plane (Fig. 5). 
The contraction of the slipstream and high in- 
duced velocities downstream of the propeller 
usually cause the location of the maximum ve- 
locity downstream of the propeller to move 
toward the propeller/body axis. This discrepancy 
may be caused by the approximation of the induced 
velocities downstream of the propeller computed 
by the lifting line-sink disk model, since the 
propeller trailing vortices are assumed at con- 
stant radii for this model. 

Again, we congratulate the important 
achievement of the authors. 
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Prof. MICHAEL SCHMIECHEN, 
Berlin Ship Model Basin (VWS), 
Berlin, Germany: 

The authors are to be congratulated on 
their success in extending the procedure of 
Zhou to include the propeller in operation. 
Quite apparently they have already reached many 
goals of the program outlined in my paper on 
optimal ducted propellers for bodies of revo- 
lution presented at the International Symposium 
on Ship Hydrodynamics and Energy Saving at El 
Pardo 1983. 

I hope that in the near future we can co- 
operate in doing what I consider the necessary 
final steps. These include in particular the 
determination of the initial conditions in an 
optimal fashion which is possible without ex- 
plicit reference to hull-duct-propeller inter- 
action. As far as I have seen, the authors have 
not addressed this problem in their paper. I 
wonder whether they might care to comment on 
this subject at this stage, where verification 
of the computational procedure is of course the 
primary concern. 

Neither in the 1982 paper nor in the pre- 
sent paper do the authors refer to the work of 
Dyne, whose streamline iteration procedure 
appears to be very similar to their own. The 
same holds for the work of Chen and Patel, 
which will be presented in the last Session 
of this Symposium. The latter procedure even 
includes the transformation to a finite domain. 
Maybe the authors could elaborate on the dif- 
ferences between the procedures quoted. 

Prof. LARS LARSSON, 
SSPA Maritime Consulting AB, 
Gothenburg, Sweden: 

My students and I have for some years been 
developing a three dimensional version of the 
streamline curvature method. The first paper 
on this development was presented at the pre- 
vious ONR Symposium and further work was re- 
ported at the Symposium on Numerical and Experi- 
mental Methods in Aerodynamic Flows in 1983. 
Presently we are improving the pressure calcu- 
lation by a more exact procedure for the pres- 
sure variation across the viscous region and a 
better scheme for the interaction with the po- 
tential flow. We are also considering the in- 
clusion of the propeller effect. 

I have found Dr. Zhou's papers extremely 
interesting and there are several ideas we would 
like to borrow for our own method. I think one 
of the key problems is the integration of the 
pressure inwards from some outer surface (in- 
finity in the present method). Very minute 
errors in the radial velocity component will 
create pressure fluctuations which can be se- 
vere on the body. In the discussion on his first 
paper Dr. Zhou mentioned that such problems had 
indeed been encountered. My question to Dr. Zhou 
is now: Haven't these problems become much more 
severe after the introduction of the propeller? 
At the propeller plane the total pressure and 
the tangential velocity are given a stepwise 
change, which must yield stepwise changes in 

the other variables, for instance the static 
pressure. This in turn would imply uneven 
streamlines and I would expect large stability 
problems. However, in Fig. 2 the streamlines 
seem very smooth also close to the propeller 
disk. Has the problem been overcome by taking 
large steps at this position or has some other 
smoothing technique been applied? As far as I 
can see, the grid spacing is not given in the 
paper. 

I also have a question related to Fig. 5 . 
The body radius at the propeller plane is 0.2 R^ 
and the nominal wake velocity seems to go to 
zero there, but this is not the case for the 
effective wake velocity. Has the no-slip con- 
dition been violated when introducing the pro- 
peller? If not, the gradient close to the sur- 
face has increased very much due to the propel- 
ler action, which must imply that there is a 
large frictional component of the thrust de- 
duction. 

Dr. GILBERT DYNE, 
SSPA Maritime Consulting AB, 
Gothenburg, Sweden: 

Some years ago when I was working on my 
streamline curvature method (1) I tested the 
turbulence model used by the authors. I found, 
however, that this model was unable in my case 
to treat the boundary layer when it left the 
body and was transformed into a wake flow. To 
get reliable results I had to use a simpler 
model. It would be interesting to hear if the 
authors have had the same experience and if 
so - how they solved the problem. I can mention 
that in the calculations I used many more stream- 
lines than the authors - about 35 between the 
body and the edge of the boundary layer and wake. 
The distance between the inner streamlines 
was extremely small to permit detailed calcula- 
tions also of the inner parts of the boundary 
layer and wake. 

I have also tried to use my streamline 
curvature method for the propeller-hull inter- 
action problem, although I gave it up in favour 
of a less complicated method (2). One of my ex- 
periences from this work was, however, that it 
was not possible to use a circulation distribu- 
tion with zero circulation at the hub. If I did 
that the energy addition to the low energy flow 
in the inner streamlines when it passed the pro- 
peller disk was too small to avoid flow separa- 
tion in the high static pressure region imme- 
diately behind the propeller. The calculations 
broke down. The solution was to have a finite 
circulation of a certain magnitude at the hub. 
Since I can see from the figures that the au- 
thors have used zero hub circulation my second 
question is: How did you avoid the separation? 
Is not the speed at your innermost streamline 
just ahead of the propeller low? 

My third question refers to the total ve- 
locity profiles in Figs. 6 and 7. Can you ex- 
plain why these velocity profiles are so peaky 
at r/RD = 0.7? I would be interested in getting 
the calculated values of tangential velocity 
and static pressure in these figures. The sta- 
tic pressure distribution along the body and 
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in the wake would also be of interest. 
Finally I would like to congratulate the 

authors on a very fine paper. Their streamline- 
iteration method has shown itself to be very 
useful. 

References: 
(1) Dyne, G. (1978): A Streamline Curvature 

Method for Calculating the Viscous Flow 
around Bodies of Revolution. Int. Sympo- 
sium on Ship Viscous Resistance, SSPA, 
Göteborg, Sweden, Paper No. 6 . 

(2) Dyne, G. (1983): On Optimal Wake Vorticity 
Adapted Propellers. 2nd Int. Symposium on 
Practical Design in Shipbuilding, Tokyo, 
Japan, pp. 77-84 . 

AUTHORS' REPLY 

Thank you, Dr. Huang, for your kind discus- 
sion on our work. We agree with your point of 
view that the lifting line-sink disk model poor- 
ly predicts the induced velocities downstream 
of the propeller. So if we want to generalize 
our method to the design of tandem and contra- 
rotating propellers, we must employ a more re- 
fined propeller model instead of the lifting 
line-sink disk model, but the method is still 
applicable. 

Thank you, Prof. Schmiechen, for your kind 
discussion on our work. This method is a basic 
procedure for calculating the interaction be- 
tween a body of revolution and a propeller. If 
the present method is incorporated into the 
existing propeller design or performance pre- 
diction computer programs, it is not difficult 
to complete the final propeller design by an 
iterative procedure. 

The works of Dr. Dyne in 1978 and of mine 
(Zhou) in 1982 were developed independently. 
Though these two papers appear to be similar 
in some points, there were some essentially dif- 
ferent points. For example, we employed K-e two- 
equation turbulence model and the flow field 
within and outside boundary layer can be solved 
by using a uniform equation system in my paper. 
Of course, the coordinate transformation used 
in my paper is also a feature. As for Dyne's 
paper presented in 1983, I am sorry to say 
that I have not studied it yet. So I cannot an- 
swer on it. Finally, I also hope that in the 
near future we can cooperate on the interesting 
problems before us. 

Thank you, Prof. Larsson, for your kind 
remarks. With regard to your first question, 
I (Zhou) had made a written reply in the dis- 
cussion of my last paper (1982) read at the 
14th ONR Symposium. To accurately integrate 
radially the pressure gradient is indeed diffi- 
cult. However, adopting our coordinate trans- 
formation can partly improve the calculation 
accuracy. Another way is to apply a method of 
relaxation, in which both stability and accuracy 
of calculation may be improved, but at the ex- 
pense of increasing the number of iterations. 
As to the present case, i.e., body-with-propel- 
ler, the initial value used was the final result 
of calculation of body without propeller, then 

the induced velocity field by the propeller is 
superimposed. Thus the initial values of the 
streamline iteration method are rather reason- 
able, hence increased speed of convergence, 
and iterations are few. 

The second point: The programming for com- 
puting stream tube convergence depends on pro- 
peller loading. We did not employ extra smooth- 
ing techniques. The grids near the propeller 
are Z/L = 0.9771, 0.9881, 0.996, 1.057, 1.181,.... 

The third question: For the velocity profi- 
le with propeller added (Fig. 5), we forced a 
nonslip condition at the wall, i.e. the velocity 
at wall = 0 . Frictional force was not careful- 
ly computed in our method, because our emphasis 
is on flow field calculation. The thrust deduc- 
tion computed is also the pressure component 
only. We agree that the lack of detailed con- 
sideration of frictional force is an area need- 
ing further improvement. 

We thank Dr. Dyne also for his written dis- 
cussion. The first question of Dr. Dyne had 
been replied to previously in discussions of 
Zhou (1982). We shall repeat it here. Owing 
to the thin laminar sublayer, it is difficult 
to apply the K-E two-equation model in this 
region. Therefore we applied a technique some- 
thing like using a wall function in the laminar 
sublayer, and avoided the computation in this 
region. The second point: We did not meet the 
problem in our computation. Maybe because our 
radial grids are rather coarse; the nearest 
gridline to the axis is at about 0.35 R . The 
third question: The peak value depends on the 
induced velocity. If this seems not rational, 
maybe that is because of what Dr. Huang has 
pointed out, i.e. the lifting line-sink disk 
model is not good for accurate prediction of 
induced velocities behind the propeller. We 
did not bring along the computed tangential 
velocities and static pressures, so we shall 
communicate with Dr. Dyne later. 
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SPLASHLESS BOW FLOWS IN TWO DIMENSIONS? 

E.O, TUCK   AND   J.M. VANDEN-BROECK 

ABSTRACT 

In two-dimensional bow-like flows past a 
semi-infinite body, one must in general expect 
a free-surface discontinuity, in the form of a 
splash or spray jet.  Similarly, if one 
reverses the flow direction, so generating a 
stern-like flow, one must expect a train of 
waves at infinity.  For example, we have shown 
in previous work that there is no stern-like 
flow without waves for a flat-bottomed body 
with a single corner.  However, this is not 
necessarily the case for polygonal bodies with 
two or more corners, or for smooth bodies. 
The question of the existence of smooth, 
continuous solutions, having neither splashes 
nor waves is considered in this paper. 
Conclusive numerical evidence is given of the 
existence of such solutions. 

1.  INTRODUCTION 

The experimental work of Baba (1976) and 
Miyata (1980) indicate that a bulbous bow can 
eliminate or at least reduce the splash at the 
extreme bow of a ship. 

In the present paper we examine the flow 
at the bow of a ship within the framework of 
the steady two-dimensional potential flow 
theory.  This problem was considered before by 
Vanden-Broeck and Tuck (1977), and Vanden- 
Broeck, Schwartz and Tuck (1978).  These 
authors attempted to construct models for near 
stern flows and near bow flows.  Although 
their scheme worked very well for stern flows, 
they did not succeed in finding continuous 
solutions without waves.  On the other hand 
their work suggested the existence of waveless 
solutions with splashes. 

It should be emphasized that elimination 
of waves from a stern flow is equivalent to 
elimination of splashes from a bow flow.  That 
is if we have been able in one way or another 
to construct a waveless stern flow, there is 
no radiation condition for that flow, which 
can be reversed in direction to yield a 
splashless bow flow. 

Vanden-Broeck et. al.'s analysis was 
restricted to bow shapes consisting of a plane 
lower surface and an oblique plane front. 

E.O. Tuck, Applied Mathematics Dept., The Univ 
J.-M. Vanden-Broeck, Dept. of Mathematics, The 

Although their work rules out splashless and 
waveless solutions, the possibility still 
exists that by considering different families 
of bow shapes one could identify a special 
shape for which splashless and waveless flow 
exists.  This possibility is strongly 
suggested by the recent work of Schmidt (1981) 
and Vanden-Broeck and Tuck (1984). 

One of the main results of this paper is 
the numerical demonstration of the existence 
of such shapes.  The corresponding solutions 
model bow flows in which the splash drag 
component has been completely eliminated. 
The bow shapes for which this elimination is 
possible are bulbous. 

In Section 2 we discuss some properties 
of bow flows with splashes.  In Section 3 we 
derive a numerical scheme which enables us to 
compute splashless bow flows. 

2.  FLOWS WITH SPLASHES 

What is a splash? In the present two- 
dimensional context, a flow meeting a body 
contains a splash if a portion of the incident 
stream is deflected upward and backward in the 
form of a jet, which then falls freely for 
ever in an approximately parabolic 
trajectory.  Figure 1 shows a sketch of one 
possible flow. 

Such a flow is obviously an idealization 
of what might occur in practice near the bow 
of a ship.  The most glaring non-physical 
feature is that Figure 1 has the jet and the 
incident stream apparently passing across each 
other without interference.  The mathematical 
artifice that allows this to happen is that 
these two pieces of the flow do not occupy the 
same space, but lie on quite distinct "Riemann 
sheets". 

In practice, unless some action is taken 
to avoid it, the falling jet must actually 
fall upon and hence interfere with the 
incident stream.  The avoiding action could 
involve diverting the jet, catching it in a 
bucket, etc.  Whether or not such action is 
taken there are interesting "St. Venant's 
principle" type of questions to be answered; 
that is, does action taken or interference 
caused at a point relatively far removed from 
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the main domain of interest affect the flow 
significantly in that domain? The answer is 
clearly "No", providing the jet is suffi- 
ciently thin, but that observation merely 
shifts the nature of the question to one 
concerning whether or not the jet is indeed 
thin. 

One form of "diverting action" for the 
jet is to re-introduce the third dimension. 
That is, the flow near a bluff but not quite 
plane bow could be expected to be close to 
two-dimensional.  However, the ballistic 
trajectory of the jet will not in general 
quite lie in planes parallel to the incident 
stream, and hence the interference will be 
interference to another (further downstream) 
plane of nearly two-dimensional flow.  Thus, 
paradoxically, one might expect to be able to 
see flows like those sketched in Figure 1 more 
easily in actual three-dimensional bow flows 
than in artificially-constructed two- 
dimensional experiments. 

infinity beneath the free surface.  All 
streamlines originating from above  F will be 
diverted into the jet, while all below F 
will pass under the body.  In the most general 
case, we must expect that  F lies at a 
distance below the free surface that is 
comparable with the draft of the body, and 
hence the jet's thickness is likewise of the 
order of the draft. 

Such a very thick jet is unlikely to be 
observed.  So either circumstances must be 
such as to produce a thin jet (perhaps no jet 
at all!) or else the flow model of Figure 1 is 
not even qualitatively accurate.  Indeed Hanji 
(1976) has demonstrated experimentally some 
two dimensional bow flows with a "forward 
wake", consisting of a closed region of high 
vorticity, lying above an essentially- 
irrotational flow field, as sketched in Figure 
2.  It is not implausible that such a rotating 
bubble is a final manifestation of a thick 
jet that has so thoroughly (and non- 

B I | I C 

Figure 1:  Sketch of a bow flow with splash. 

Indeed, this does appear to be the 
case.  Even for not-so-bluff bows, with 
V-shaped bows of small angle, a pronounced 
splash sheet often seems to be present, and 
furthermore appears to be thin.  At first 
sight, one would not expect that a two 
dimensional flow model would have any validity 
for a fine three-dimensional bow flow, but 
there may exist a suitable set of planes such 
that the flow varies slowly with respect to a 
co-ordinate normal to these planes.  This 
concept is being explored by one of us 
(E.O.T.) in on-going research. 

If we return now to truly two-dimensional 
flow, there is no reason to believe that the 
jet is thin in general.  There will be a 
submerged stagnation point E on the body, 
with an attached stagnation streamline EF 
extending to E from a point  F at upstream 

conservatively) interfered with the incident 
stream as to destroy irrotationality, and has 
converted itself into a distributed vortex. 

Nevertheless, we are entitled to try to 
compute irrotational flows like those of 
Figure 1, and efforts are being made by both 
of the present authors to do so.  In view of 
the above discussion, such efforts are 
worthwhile only if the jet that is produced is 
in some sense thin.  One approach is to 
exploit existing thin-jet theories, e.g. as in 
Keller and Geer (1973) or Tuck (1976). 

To indicate the type of mathematical 
considerations involved, whether or not the 
jet is thin, let us note that all falling jets 
will become thin eventually, and their 
asymptotic form will be a parabolic arc with a 
ballistic velocity distribution, i.e. with a 
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speed of fall proportional to the square root 
of distance fallen, and a constant horizontal 
velocity.  This is consistent with an 
asymptotic form 

Providing we choose the constant a as 

a = f2-l1/3 a
   [8g> 

(8) 

,<////*// 

Figure 2:  Sketch of a bow flow with a "forward wake" 

z(f) -iaf 2/3 + bf 1/3 + 0(1),  ♦ + +■», (1) 

for the relationship between complex potential 
f = §  + ±\p and co-ordinate z = x + iy, 
where a and b are real positive constants. 
For example, on the streamline i|) = 0 to 
leading order as §  + +°°, 

b<)> 
1/3 

and 

.2/3    , „ ,2 
V =  -a(x/b) 

The corresponding velocity components are 

3b 

and 

4a 

3_*1/3 
2a 

constant 

h   (-/a)V2 

(2) 

(3) 

(4) 

(5) 

as for a free ballistic projectile. 
The pressure is given by Bernoulli's 

equation as 

P   2 
\  (u2 + v2) gy 

= (ga -?-jh2/3   +0(1) . 
8a^ 

(6) 

(7) 

the pressure remains bounded throughout the 
jet as <|> ->■ °°.  In fact, we require p = 0 on 
both of its free boundaries, but we can only 
distinguish between different finite values of 

i|; as  4> + +00 by including more terms in the 
asymptotic representation (1).  The usefulness 
of (1) is that any attempt to solve for a 
general flow of the type sketched in Fiyure 1 
must build in an analytic character like (1) 
near the jet asymptote BC,  with a given by 
(8) and b to be determined. 

Although numerical solution of such 
problems seems somewhat distant, the following 
simple explicit example is of illustrative 
value.  Suppose we concentrate attention on 
the portion of Figure 1 lying above the 
dividing streamline EF.  Then the curve 
DEF can be replaced by a given boundary. 
That is, this part of the flow will look like 
that for a stream in water of finite non- 
uniform depth, in a channel that terminates 
with a barrier. 

Suppose we normalise the stream velocity 
at ÄF to unity, i.e. 

z + -f + constant, as  $ ->■ -"» •     (9) 

We also normalise the length scale so that 
g = 9/8; hence a = 1. Then one funct ion 
satisfying both (1) and (9) is 

z{f)__zi£^l±I^fi. + =L±±^+i (10, 
1 - 1.3ie"2f      1 + ie^1 
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noting that the first term vanishes as 
<t> *  -°°,  and the second as  <)>->■+'».  The 

various constants in (10) were chosen by trial 
and error, so that the pressure would be as 
small as possible on the part CD of the 
streamline ty  = 0,  and also on all of the 
streamline AB with i|) = -0.15,  and these 
two streamlines are shown in Figure 3.  The 
numbers written outside the curves are values 
of  p,  with  p = U = 1  and  g = 9/8. 

SPLASHLESS BOWS 

3.1  Formulation 

We consider the steady two-dimensional 
potential flow of an inviscid incompressible 
fluid past a semi-infinite body whose lower 
surface y* = -H,  x* < 0  is plane (see 
Figure 4).  As x* + - °°,  the velocity is 
assumed to approach a constant U.  The 

-.5 0 .5 1.0      E C 1.5 

Figure 3:  Computed bow flow with splash. 

2.0 

Although the pressure on AB and CD is 
not yet low enough for us to claim that these 
streamlines are "free", Figure 3 at least 
demonstrates that the type of jet-like flow 
sketched in Figure 1 can be auhieveu 
mathematically, and represents a possible 
starting point for an accurate numerical 
solution.  An important output from any such 
solution would be information concerning 
dependence of jet thickness upon the geometric 
shape of the body surface.  We should be 
particularly interested to establish 
conditions in which the jet can be thin. 
Lacking such a numerical solution for the 
general problem, let us now turn to an 
indirect search for the very special set of 
circumstances when the jet is not just thin, 
but absent. 

level  y* = 0  corresponds to the level of the 
free surface at which the velocity is equal 
to U.  We assume that the flow rises up the 
rear face of the body up to a stagnation point 
S at which separation occurs.  Other flow 
configurations in which the flow separates 
tangentially from the body are also possible 
(Vanden-Broeck (1980)).  However they will not 
be considered in this paper. 

In previous work Vanden-Broeck and Tuck 
(1977) and Vanden-Broeck, Schwartz and Tuck 
(1978) solved numerically the problem sketched 
in Figure 4 with a plane oblique rear face. 
All their solutions contain a train of waves 
on the free surface.  Therefore they can not 
serve as models for bow flows. 

In this paper we generalize Vanden-Broeck 
et al's approach for bodies of arbitrary 
shape.  For most shapes, waves are present on 
the free surface.  However we shall see that 
there exists particular shapes for which the 
waves are absent. 
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Figure 4.  Sketch of a flow past of a semi-infinite body. 

We denote the potential function by  <j>* 
and the stream function by <|J*.  We choose 

(|>* = 0  at the stagnation point and i|i* = 0 
on the free surface and on the surface of the 
body (see Figure 4).  We denote by -K the 
value of  (j>* at  x* = 0,  y* = -H.  We shall 
seek the complex velocity u* - iv*  as an 
analytic function of the complex potential 
f* = ,),* + i\|i*.  We make the variables 
dimensionless by referring them to the 
velocity scale U and the length scale —. 
Thus we introduce the new dimensionless 

variables 

x + iy 
U 

(x* + iy*) 

u - iv = — (u* - iv*) 

(11) 

(12) 

f = 4 + i* = £ f* =j  (+* + i**)   (13) 

Bernoulli's equation and the condition of 
constant pressure on the free surface yield 

Relation (14) can now be rewritten as 

J  e"Tsin 8d(|> + ee2T = 0, i|i = 0, $ > 0   (17) 

The  function    T  -  16     is  an analytic 
function  of     f = $  +  ii|>     in the half  plane 

i|j  <   0.     On    i|> =  0,     its  real part  is  the 
Hilbert  transform of   its  imaginary  part,   thus 
we have 

<♦>   =^J 
eci>) 

$ - 4 d$ (18) 

Here T(<(>)  and  8(c)>)  denote respectively 
x(<f>,0 )  and 9 (<(>,0_).  The integral in (18) 

is to be interpreted~in the Cauchy principal 
value sense.  The kinematic condition on the 
body yields 

9  =  0, T|I =  0,       4>   <  -1 (19) 

8  =  g<<|>),     * =  0,     -1   <  <(>   <  -b (20) 

y + e(u2  + v2)   = e,  i|>  =  0,   4>   >   0   .       (14) 
IT 

2' 
I|J =  0,       -b  <  $   <  0 (21) 

Here e is defined by 

2gK 

We find it convenient to define the new 
function T - 18  by the relation 

T-i8 
u - iv = e 

(15) 

(16) 

Here the constant b and the function  g(<)>) 
define the shape of the body.  Relation 
(21) implies that the body is vertical for 
-b < 4> < 0.  Our aim is to identify particular 
values of b and £  and a particular 
function g(c)i)  for which no waves are present 
of the free surface.  We shall restrict our 
attention to bodies with continuous slope. 
Therefore we impose the conditions 
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g(-1) = 0 (22) X + j),  I = 1,...,N 

g(-b) - j 

Substituting (19)-(21) into (18) we get 

T(*> = i*n IFT- 

-b 
g(») 

-1 
$ - 

oo 

d* + - I 
IT  J 

6(») 
* - ♦ 

(23)     We find it convenient to define E as 

E = 1/M 

where M is an integer.  With this particular 
choice 

*  _ = 0 
*M+1 

d*   (24)     We shall also use the N - 1  intermediate 
mesh points 

For given £, b  and  g(4>)  the problem 
reduces to finding a function T(<|>) - i8(<(>) 
satisfying the nonlinear integro-differential 
equation defined by (17) and (24).  A 
numerical scheme to solve this eguaiton is 
described in the next subsection. 

3.2 Numerical Results 

We choose 

g(*> "I"—ZT 
a (25) 

(X - b)' - (X 1) 

This function satisfies the condition (22) and 
(23).  The parameter X  in (25) will be 
adjusted to remove the waves on the free 
surface. 

We introduce the N mesh points <)>_ 
given by 

-1 + (I - 1)E,  I = 1,. . ,N 

Here E  is the interval of discretization. 
We also introduce the  N  corresponding 
unknowns 

»1+1/2 =I(*I +*I+1>' 
X  =   1" 

. ,N 

From (19)-(21) we see that  9 has a jump 

discontinuity at  <j> with  6(0 ) and 

8(0 ) = 0. Therefore the values of 8 at 

0 are known.  In addition rM+1 
0,  so only N 2 of the 

unknown.  From (20)-(21) we obtain M - 1 
equations for 

etcjij.),  I = 2,...,M (26) 

We now compute 

TI+1/2 = T(*I+1/2) 

in terms of  8   and b by applying the 

trapezoidal rule to the integral in (24) with 
the mesh points  ij> .  The symmetry of the 

discretization enables us to compute the 
Cauchy principal value as if it were on 

10 

Figure 5:  Computed body profile and free surface profile for X = 0.3 and e = 0.5. 
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Figure 6:     Computed body profile  and  free-surface profile  for 0.53  and e 0.5. 

ordinary integral.  The error inherent in 
approximating the integral by an integral over 
a finite interval was found to be negligible 
for NE large enough.  We now use the values 
of TI+1/2 

mesh points 

and 9. 

*I+1/2' 

to satisfy (17) at the 

I = M + 2,... ,N - 1. 

The integral in (17) was computed by the 
trapezoidal rule, 
equations for the 

Thus we obtain N 
N - 2 unknowns 

M - 2 

I' 
M 

N - 
I = 2,...,N.  Relation (26) provides 
extra equations.  Therefore we have 
equations for the N - 2 unknowns. Q%. 

The last equation is obtained by 
6.,,.  in terms of  9„i1 = 0, M+4 
6M+3 

expressing 

and 

°M+1 
by an extrapolation 

M+2 
formula.  This equation is motivated by the 
work of Vanden-Broeck and Tuck (1977) and 
Vanden-Broeck, Schwartz and Tuck (1978). 
These authors showed that special care had to 
be taken near the stagnation point to insure 
convergence of the numerical scheme. 

For given values of e, b and X, the 
N - 2 equations are solved by Newton method 
with the initial guess 

8  = g(<|>1),  I = 2,...,M 

ex = 0, I > M + 2 

Once a solution was obtained the profiles of 
the bow and of the free surface were obtained 
by numerically integrating the identities 

3x = 

3<|> 

(27) 

(28) 

For most values of e, b and X,  waves 
are present on the free surface.  Moreover 
many values of e, b and  X lead to 
unacceptable body profiles which cross 
themselves.  This is due to the fact that the 
profile of the body is obtained in the 
parametric form x(i)i),  y(<l>)  -1 < $ < -b. 
Therefore the mathematical formulation does 
not prevent unacceptable crossing of the 

profile. 
By running the scheme for many different 

values of  c, X and b we were able to 
identify particular values of these parameters 
for which waveless solutions with no crossing 
in the profile of the bow exist. 

Typical profiles for e = 0.5 and 
b = 0.2 are shown in Figures 5 and 6.  These 
solutions were computed with E = 0.1  and 
N = 100.  To check the accuracy of our results 
we ran the scheme with E = 0.05 and 
N = 200.  The results were found to be 
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indistinguishable within graphical accuracy 
from those presented in Figure 5 and 6. 

The profile in Figure 5 corresponds to 
A = 0.3.  A train of waves is present on the 

free surface.  This profile is qualitatively 
similar to the solutions obtained by Vanden- 
Broeck and Tuck (1977) and Vanden-Broeck, 
Schwartz and Tuck (1978).  The main difference 
is that the corner has now been rounded. 

The profile in Figure 6 corresponds to 
X = 0.53.  The free surface is completely 

waveless.  Therefore this solution (when 
reversed in direction) demonstrates 
numerically the existence of splashless bow 
flows in two dimensions.  It is interesting to 
note that the profile of the bow has a 
definite bulbous character. 

Other splashless bow flows could be 
obtained by using different functions  g(<t>) 
in (20).  By analogy with the work of Vanden- 
Broeck and Tuck (1984) we expect that all the 
corresponding bow shapes are bulbous. 
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DISCUSSION 

Prof. CHIA-SHUN'YIH, 
University of Michigan, 
Ann Arbor, MI, USA: 

In every hydraulic laboratory one can find 
a flume with a sluice gate. In a typical experi- 
ment the gate is partially open, with a free 
streamline downstream as well as upstream of 
the sluice gate. For the purpose of this dis- 
cussion the downstream free streamline can be 
replaced by a solid boundary, and the sluice 
gate can be identified with the bow. 

If the Froude number based on the upstream 
conditions is well below 1, one does not notice 
any splash at the sluice gate, nor any waves 
upstream from it. There is, however, a corner 
eddy at the region where the top surface (free 
streamline) meets the gate. I am glad that Dr. 
Vanden-Broeck did find solutions which give a 
free streamline tangent to the bow, so that the 
conclusions of the authors do not really con- 
tradict the common phenomenon observed in hy- 
draulic laboratories. Nevertheless, I do not 
believe their search for solutions of their 
problem giving a stagnation point at the in- 
tersection of the free streamline with the bow 

can be exhaustive, especially since the loca- 
tions of their points <j>=-l and <j>=-b and the 
curves connecting these two points cannot be 
assigned a priori in the physical plane. One 
is not yet convinced that solutions to their 
problem giving a stagnation at the bow surface 
exist only for the case(of a bulbous bow) they 
presented. 

Prof. ROBERT F. HALLIDAY, 
University of Sydney, 
Sydney, Astralia: 

This remark relates to a question raised 
after the presentation of the paper and not to 
the paper itself. The question referred to lack 
of "splash" on the upstream face of a sluice 
gate. In a flume it is very  difficult to obtain 
truly uniform flow. Also there will be a bound- 
ary layer on the face of the sluice gate. Our 
experience with these two effects is that it is 
often not possible to demonstrate inviscid flow 
predictions. 

A full-widthtwo-dimensional model is a pos- 
sibility in a small ship model tank. The forces 
would be very  large and a massive structure 
would be needed. However, the attempt may be 
worth the effort since, unlike the stern flow 
case, interference from boundary layers will 
be much less. 

300 



Prof. SOM D. SHARMA, 
Institut für Schiffbau, 
Hamburg, FR Germany: 

My congratulations to the authors on an 
absolutely fascinating paper. Unfortunately, 
in my opinion, an unseparated two-dimensional 
flow around a bow of the shape sketched in 
Fig. 6 is altogether impossible. On the basis 
of experimental evidence I can assure them that 
a real flow would separate twice, once in front 
of the bow just below the free surface to form 
a bow vortex and then again at the toe to form a 
deadwater regime. So their potential flow mo- 
del is rather academic as far as 2D flow is 
concerned. In 3D flow, of course, an essential- 
ly unseparated flow is possible around a bulb- 
ous bow of reasonable shape. 

AUTHORS' REPLY 

We thank Professor Yih for his kind com- 
ments on our work and its possible application 
to the flow under a sluice gate. 

The numerical work of section 3 demon- 
strates the existence of splashless bow flows 
in two dimensions. A typical solution is shown 
in Fig. 6 . Other splashless bow flows could 
be obtained by using different functions g(<t) 
and other values of the parameters b, X  and e . 

We thank Professor Halliday for his in- 
terest in our calculations. In future work we 
intend to compute accurate solutions for the 
flow under a sluice gate. 

For most bow shapes (but not that of our 
Fig. 6) we agree with Prof. Sharma's statement 
that unseparated 2D bow flows are impossible. 
In the paper we speculate about how this separa- 
tion would occur via the unphysical splash con- 
verting itself into a vortex. 

However, Professor Sharma's comment refers 
more particularly to our Fig. 6, which is the 
special splashless case. Here there is poten- 
tial for disagreement between us, although the 
particular example computed in Fig. 6 may not 
be typical of splashless shapes that could be 
computed. 

In essence, we are asserting that, among 
families of idealized bow shapes, there is a 
subfamily that is splashless. The flows in this 
sub-familiy are expected to be closer to reality, 
and may have a reduced tendency to forward-wake 
generation. More daringly, we suggest that they 
may contain members that are in some sense 
"good" choices for bows. 
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NECKLACE VORTEX AND BOW WAVE AROUND BLUNT BODIES 

KAZU-HIRO MORI 

ABSTRACT 

The bow wave phenomena are studied exper- 
imentally and theoretically to make clear the 
mechanism of the wave-breaking. A stress is 
made on the flow before the so-called break- 
down takes place. It can be devided into 
several phenomena; the development'of the 
free-surface shear layer, the formation of 
the necklace vortex, and the production of 
unsteady turbulent surface-flow. 

Flow observations and measurements of 
wave profiles, mean velocity and turbulent 
characteristics are carried out for two 2-D 
virtical cylinders. The free-surface boundary 
layer theory, the vorticity-stretching theory 
and the instability analysis are invoked to 
explain experimental results. 

The free-surface curvature is concluded 
as one of the sources for the shear flow 
beneath the free-surface. It is also con- 
cluded that the deceleration of the approach- 
ing velocity in the proximity of the bow is 
responsible for the formation of the upstream 
necklace vortex. 

Prior to the occurrence of the breakdown, 
the free-surface becomes unsteady; the turbu- 
lent quantities become intense on the free- 
surface. The stability analysis draws a 
conclusion that the approaching velocity, its 
defect, if any, and its decelerating rate are 
important factors for the inception of the 
free-surface instability. 

Controling undesirable velocity defects 
and surface curvatures by a special bow-bulb, 
the sub-breaking waves, which appear prior to 
the breakdown, can be successfully oppressed. 

1. INTRODUCTION 

The scene where a ship advances making 
white waves around its bow is dynamic and 
picturesque; it sometimes enchants us. From 
the view point of ship resistance, however, 
they are absolutely not desirable. 

Baba (1969) and Taneda et al.(1969) inde- 
pendently pointed out their importance. The 
former called them "bow breaking-waves", while 
the latter a "necklace vortex" because they 

Fig.l Breaking-Waves around Ship; Taneda 
et al .(1969) 

look like a necklace of pearls surrounding 
ship (Fig. 1). 

Since then many have studied on the bow 
wave-breaking both experimentally and theoret- 
ically; Dagan et al. (1972), Suzuki (1975), 
Inui et al. (1979), Doi et al. (1981), Kayo et 
al. (1981) and recently Matsui et al. (1983). 
Two-dimensional waves by submerged bodies or 
varying bottoms are also studied which are 
essentially the same phenomena as the bow 
wave-breaking; Peregrine et al.(1978), Battjes 
et al .(1981), Duncan (1983) and so on. 

The so-called breaking waves are not so 
simple as expressed in a word. The term of 
the bow wave-breaking was literally used for 
the white waves as shown in Fig. 1 (Baba). 
It implied a plunging type breaking defined in 
Peregrine which breaks down vortically at the 
bow. It was related either to a hydraulic 
jump(Taneda et al.) or to a bow-returning jet 
(Dagan et al.). The breakdown is the last 
state of breakings. Prior to it, there are 
several important aspects which can be hardly 
covered by a simple word of breaking. 

Dagan et al. suggested an existence of a 
Taylor instability on the free-surface over 
a certain Froude number. Suzuki supported 
this experimentally. Kayo et al.'s demon- 
stration, where the region of breaking 
expanded by an artificial free-surface shear 
flow, is related to this kind of unstable 
surface. 

t Hiroshima University, Saijo Higashi-Hiroshima 724 Japan. 
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On the other hand, several flow visual- 
izations show that an upstream vortex, 
surrounding the bow and adhering to it, exists 
even at a low Froude number where no signifi- 
cant breakings apparently occur (Kishimoto et 
al. 1976, Kayo et al.). 

Both the free-surface instability and the 
upstream vortex have different dynamical 
mechanisms from the so-called breakdown waves. 
The author is reluctant to call them breakings 
simply. We use here the term of the"breaking" 
narrowly for such waves as white waves (Fig. 1) 
or plunging-type breaking waves where a 
breakdown or a collapse occurs. And the 
instability of the free-surface is called 
"sub-breaking" in distinction from the break- 
down. This is because the unstable surface 
develops into the breakdown finally. The up- 
stream vortex is referred to as a "necklace 
vortex" to which a different explanation is 
given from the original difinition by Taneda. 

Once the breakdown takes place, the phe- 
nomena change catastrophic!y (Battjes et al., 
Duncan). We confine here ourselves mainly to 
the phenomena prior to the breakdown, for our 
purpose is to make clear how the bow wave- 
breakings take place. 

Two vertical cylinders with a circular 
section (diameter: 0.42 m) and an elliptic 
section (length: 1 m, beam: 0.3 m) were used; 
they are designated as CM-42 and EM-300 
respectively. Observations of wave patterns 
and profiles around bows, and measurements of 
wave height and velocity including turbulent 
characteristics have been carried out. Their 
drafts are both 0.5 m for the free-surface 
flow to be free from the end effects; §2. 

Theoretical explanations of experimental 
results have been proposed in §3. The free- 
surface shear flow, the formation of the neck- 
lace vortex and the instability of the bow- 
wave flow are discussed. 

Finally in §4 an attempt has been made to 
prevent the breaking of bow-waves by an SP- 
bulb. The free-surface flow, the incident 
flow velocity, the turbulence intencity are 
compared with those without the bulb, and its 
effectiveness is discussed. 

2. EXPERIMENTAL FINDINGS 

We shall use the cartesian coordinate 
shown in Fig. 2; the origine is at the bow of 
fixed bodies and on the still water. The 

—- z 

C/-": ^ 

X] 

^  

k. 

Fig.3 Flow Model of Bow-Wave 

incident flow is in the positive x-direction 
with velocity Uo. u, v, and w are velocity 
components in the x-, y- and z-directions 
respectively. Here absolute values are used 
for the velocity of the incident flow. This 
is because it has not been made clear whether 
the draft or the bow radius can be a reference 
length scale (Matsui et al.). 

Summarizing all the experiments, which 
will be shown in the following sections, a 
flow model is introduced as shown in Fig. 3; 
the bow-wave is assumed to consist of the 
three regions with significantly different 
f1ow-characteri sties. 

The "MR-zone" is the part ahead of the 
obstacle where the free-surface is stable and 
rising monotonically with a concave curvature. 
Through a sharp change of curvature, the flow 
enters the horseshoe-like "Z-zone" where it 
may not be stable. In the immediate vicinity 
of the bow, there develops a necklace vortex 
and the flow is reverse at the free-surface. 
The "toe" is the border between the MR-zone 
and the Z-zone; it can be called alternatively 
the "wave-front". 

2.1 Wave Patterns and Profiles 

Fig.2 Coordinate Systems 

Wave patterns were photographed at the 
two speeds for both models. Fig. 4 shows 
those of CM-42 at U0 = 1.0 m/sec and 1.2m/sec. 
The wave-front is clearly observed surrounding 
the bow with capillary waves ahead of it. 
Inside the wave-front the Z-zone develops 
where the surface becomes rather unsteady or 
turbulent at U0 =1.2 m/sec compared with that 
at Uo = 1.0 m/sec. Very close to the body, 
the necklace vortex is observed. 

Fig. 5 shows photographs of EM-300 at U0 
= 0.85 m/sec and 1.0 m/sec. A significant 
difference in surface disturbances of the Z- 
zone is observed between the two speeds; at 
Uo = 1.0 m/sec many wrinkles are observed, 
while the surface appears smooth at Uo = 0.85 
m/sec. 

The wrinkles of CM-42 are less intense 
than those of EM-300 at the same speed of 
Uo = 1.0 m/sec. On the other hand, the neck- 
lace vortex of CM-42 seems larger and more 
intense than that of EM-300. 

Fig. 6 shows the wave profiles ahead of 
the bow of EM-300. Photographs, taken hori- 
zontally, show the wave profiles on a symmetry 
plane (y = 0). The plateau-like elevation, 
which corresponds to the Z-zone with wrinkles, 
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m/sec 

Fig.4 Bow-Wave Patterns of CM-42 

m/sec 

Fig.5    Bow-Wave Patterns of EM-300 

U0=0.86 m/sec   Fl 

Uo=1.20m/seCf 
Fig.6    Bow-Wave Profiles of EM-300 

becomes larger as the velocity of the incident 
flow increases and the necklace vortex becomes 
more prominent. 

The free-surface in the Z-zone seems to 
become turbulent or unsteady beyond a certain 
speed.    The turbulence of the free-surface is 
other than the breaking;  there is neither 
reverse nor plunging flow.    The turbulent 
flow,  however, develops into breakings at 
higher speeds merging with the reverse flow 
of the necklace vortex. 

CM-42 1 

0     U0 =1.00 m/8ec 

EH-300 /tf^s? 
A     Uo -  0.85 m/'eC +*o •••**" 

•     Uo «  1.00 m'fleC 

+     Uo -  1.05 m/BeC * •          ** 
° ♦V   s+ 

o 

0 * / 
o • ' 

4* 

0 
0 • *lx a* 

o 

'                1 1 1 I  

-x ( ahead of bow : cm ) 

Fig.7 Bow-Wave Heights of CM-42 and 
EM-300 

Upstream, the free-surface is observed to 
rise monotonically without any instabilities. 
It can be clearly distinguished from the Z- 
zone flow. The gradients and the curvatures 
of the surface seem to increase as the 
incident flow velocity increases. There is 
a sharp change in the curvature at the toe. 

The above situation can be quantatively 
understood by Fig. 7 showing measured wave 
profiles. It is noteworthy that the free- 
surface of CM-42 has less curvature than that 
of EM-300. 

The plateaus of CM-42, and EM-300 at 
Uo = 0.85 m/sec are less horizontal than those 
of EM-300 at U0 = 1.0 m/sec and 1.05 m/sec. 
We should remind that the wrinkles of the 
formers are much less than those of the 
latters; the flatness of the plateau, i.e., 
w/u is suspected to be related to the 
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Fig.10 Turbulence Intensity of EM-300 
(for symbols see Fig.9) 

occurrence of the wrinkles, the instability of 
the free-surface flow. 

2.2 Mean Velocity and Turbulence 

Mean velocity and turbulent quantities 
were measured in the plane of symmetry 
(y = 0), assuming the flow is symmetric; i.e. 
v = 0. Measurements for CM-42 were carried 
out by a total-pressure tube with 1.0 mm 
diameter at the towing tank of Hiroshima 
University, while for EM-300 by a X-type hot- 
film anemometer at a circulating water 
channel. The supports of probes were set 
carefully as to avoid possible disturbances. 
The speed of measurement was 1.0 m/sec for 
both models. The measuring position is 
designated as X3 etc. when it is 3 cm ahead 
of the bow. 

Fig. 8 shows the mean velocity profiles 
of CM-42. Only the x-component was measured. 
Although it is quite modest, some velocity 
defects can be seen beneath the free-surface. 
A free-surface shear layer is suspected to 
develop there. 

This is shown more clearly by the results 
for EM-300 given in Fig. 9. Measurements were 

Fig.11 Reynolds Stress of EM-300 
symbols see Fig.9) 

'for 

carried out at four positions; Xio and Xi7 are 
in the MR-zone, while X6 approximately at the 
toe and X3 in the Z-zone. Significant veloc- 
ity defects are observed at X3, X6 and Xi0, 
but none at X17. The velocity profile at Xio 
suggests that the velocity defect exists even 
in the MR-zone where nothing particular seems 
to happen such as unsteady flows in the Z-zone. 
No reverse flows are observed in the Z-zone. 

We should remember here that the curva- 
ture of the free-surface profile of CM-42 is 
quite small while that of EM-300 has relative- 
ly appreciable concave curvatures. Some 
analytical relations between the velocity 
defect and the curvature of the free-surface 
will be derived in the following section. The 
thin layer where the velocity defect exists 
can be referred to as the free-surface shear 
layer. 

The vertical component w is almost zero 
at X3 and Xe which are both in the Z-zone. 
This should be borne in mind in the forth- 
coming discussion in §3-3. 

Figs. 10, 11 and 12 show the results of 
the turbulence measurements for EM-300. These 
were carried out in the circulating water 
channel where the mainstream turbulence 
intensity is less than 1% but locally about 
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Fig.12 Turbulence Production of EM-300 
(for symbols see Fig.9) 

2 ~ 3%  in the vicinity of the free-surface, 
while the Reynolds stress is zero except near 
the free-surface. 

The turbulence intensities, shown in Fig. 
10, are considerable in the free-surface shear 
layer at X3 and X6, while those at Xio and Xi7 
are effectively zero. Since X3 and X6 are in 
the Z-zone, the wrinkles of the free-surface 
observed in Fig. 5 appear to be due to 
turbulent fluctuations of the free-surface. 
Thus it can be concluded that the Z-zone is 
that where the free-surface flow can be 
turbulent while, in the MR-zone, that is 
impossible. The turbulent surface-flow may be 
called a sub-breaking wave to distinct from 
the breaking-wave. This is because the turbu- 
lent surface-flow has neither reverse nor 
plunging flow but develops into breaking 
waves. 

Figs. 11 and 12 show the Reynolds stress 
and the turbulence production respectively. 
It is interesting to note that both the 
Reynolds stress and the production are much 
greater at X6 than at X3. Because X6 is just 
inside the toe, the turbulent flow may be sup- 
posed to be generated at the toe; in other 
words, the toe plays the role of a trigger for 
the turbulence transition when some required 
conditions for turbulence are present. 

Summarizing the experimental results, the 
following tentative conclusions may be drawn. 
1) The bow wave consists of three regions. 
One is where the free-surface rises monoton- 
ically(MR-zone); the second is a plateau-like 
elevated region where the surface-flow becomes 
turbulent beyond a certain velocity(Z-zone); 
and the last is the necklace vortex. 
2) The free-surface curvature, the surface 
wrinkles (turbulence) and the velocity defect 
of CM-42 are all less than those of EM-300, 
while the necklace vortex is much more intense 
than that of EM-300. 
3) Turbulence transition takes place around 
the wave-front where a sharp change of the 
free-surface curvature exists. 
4) In the plateau-like region, the vertical 

velocity component is almost zero when the 
sub-breaking wave exists. 
5) A thin shear layer exists below the free- 
surface where the velocity component in the 
main stream direction has a defect. 

3. THEORETICAL DISCUSSION ON BOW-WAVE 
PHENOMENA 

In this section, possible theoretical 
explanations of the experimental results are 
proposed. 

3.1 Free-Surface Shear Layer 

The theoretical background for the free- 
surface shear layer is given in the textbook 
of Batchelor (1970). The governing equation 
for it is derived in the integral form in 
Mori (1983). 

In a curvilinear coordinate system (0-Xi 
x2 x3), shown in Fig. 2, the zero-shearing 
stress condition on the free-surface is given 
as follows; 

( 

( 

9ui Uj_ 3hi 
h33x3   h ih3 3x3 

) = 0 , (I! 

3u2 
h33x3 

u2  3h2 
h2h3 3x3 

) = 0 , on x3 = 0, 

where u-j is the velocity component in the x-j- 
direction and u is the viscosity coefficient; 

. _ A_9x_}2 + (_^L_)2 + ( 9z \ 
i " ^ { ZYI   *      + (  3x,- ;   (  3xi ; 3xn- 3xi 

(1) is automatically satisfied if y = 0, 
otherwise, 

3ut _  Ui 3hi = 0 
h33x3   hih3 3x3 

• (2) 

(3) 

3u2  
h33x3   h2h3 3x3 

U2_ |hi. = o on x3 = 0. 

On the other hand, the Xi- and x2-components 
of vorticity on the free-surface are 

Wi = - 

co2 

3uo u2 3h2 
h33x3   h2h3 3x3 , 

3u_i_   Ui 3hi 

(4) 

h33x3 "•" hih3 3x3 ,  on x3 = 0. 

Then, from (3) and (4), we have 

"23h2    = _ ,„,„„ (5) 
wi   = - 2 

OJ2   = 2 

h2h33x3 

Ui3hi    _ 

2KIU2 

hih33x3 
2K2UI 

where /<i and K2 are curvatures of the free- 
surface given by 

«i 32?/3y2 

{
K2

}=
 ~ { 32?/3x2 

(6) 
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f(x, y) is the wave elevation. 
cü! and OJ2 are obviously not zero if non- 

zero free-surface curvatures exist; and 
eventually nonzero velocity gradients exist on 
the free-surface. If the curvature is nega- 
tive as in the MR-zone, a shear layer may be 
present underneath the free-surface. 

Now we can offer an explanation for the 
fact that the velocity defect of CM-42 is 
more modest than that of EM-300. We need only 
to recall that the free-surface curvature of 
the former is less than that of the latter. 
The toe, at which the sign of the free- 
surface curvature changes, is likely to play 
the role as a trigger for the inception of 
the turbulence; a sharp change of the curva- 
ture must be followed by a rapid change of 
vorticity which is hardly attained. 

As stated in §3.3, the velocity defect 
in the Z-zone becomes more intense by the 
headloss due to the turbulence production. 

3.2 Formation of Necklace Vortex 

We assume that the vorticity generated in 
the free-surface shear layer is one of the 
sources of vortex motion of the necklace 
vortex. As the drift theory, Lighthill (1956), 
suggests, even a slight vorticity can form an 
intense vortex because of the stretching of 
vortex tubes. 

In an inviscid fluid, the circulation 
remains constant while a vortex tube moves 
with fluid particles (Helmholtz's theorem); 

AS const. (7) 

As  •  I = cons t., 

we have 

l« (t+At) 
1     W(t) 1  = i£(t+At) 

1   lit) 

where co is the vorticity vector and As is the 
sectional area of the vortex tube. Invoking 
the continuity condition 

(8) 

(9) 

where I  represents the length of a material 
line element which was initially chosen to be 
parallel to the local vorticity; t is the time 
and At is a small time increment. 

Solving (9) is equivalent to solving the 
vorticity transport equation with the viscous 
diffusion term neglected. Here it is solved 
numerically by the Lagrangian approach. 

Fig. 13 shows the stretching of the 
vortex tube of CM-42 and EM-300, obtained by 
the double-model flow calculation. The par- 
ticles, consisting a material element of 
vortex tubes, change their relative positions 
(initially on the straight line at 2x/L = -2.0 
and -1.46 for CM-42 and EM-300 respectively; 
L: length of model) as they move downstream. 
In the case of CM-42, the vortex tube is 
stretched more than ten-times around the 
stagnation point, but somewhat less in the 
case of EM-300. Since this ratio is equal to 
the vorticity intensification, the vorticity 
of CM-42 is much more amplified than that of 
EM-300. This supports the experimental find- 
ings that the necklace vortex of CM-42 is more 
intense than that of EM-300. 

Fig. 14 shows the equi-vorticity contours 
of CM-42. The results show how the intensity 
of the vorticity, initially assumed to be 
unity, increases in strength as the particles 
flow downstream. Both the x- and y-components, 
wx and coy say respectively, are seen to grow 
as much as five- or seven-times. The 
accumulated vorticity around the bow can be 

Vortex Tube 

(Material 
Line Element;%) 

Fig.13 Stretching of Vortex Tube of CM-42 
and EM-300 

Fig.14 Equi-Vorticity Contour of CM-42 
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Fig.15 Equi-Vorticity Contour of CM-42 
with a Point Doublet at Bow 

observed as a necklace vortex. 
It can be concluded that the basic flow 

is one of the important factors for forming 
the necklace vortex. This suggests that it 
may be possible to prevent the formation of 
the necklace vortex by modifying the basic 
flow on the free-surface. 

Fig. 15 shows the equi-vorticity contours 
of CM-42 with a point doublet, whose moment is 
0.015U0L

3, in front of the bow. In this 
accelerated flow by it, the vorticity intensi- 
fication is seen to be greatly reduced. Since 
a point doublet approximately simulates a 
large bow-bulb, the present results may ex- 
plain in the effectiveness of bulbs attached 
to full low-speed ships. 

3.3 Discussion of Momentum Balance 

We discuss the stability of the bow-wave 
flow by means of the small disturbance anal- 
ysis. Though any turbulent flow cannot be 2- 
dimensional, we confine ourselves to a 2-D 
flow, which is expected to be applicable to 
the bow-wave flow on the symmetric plane, y=0, 
discussed in the previous section. 

The momentum equations are 

3t + u 3x + w 3z 
-1|£+ vV2u 

p ox 
(10) 

_9w_,      3w_,      3w_ 
3t +U 3x  +W 3z 

-If§--g + VV2W ,    (li: 

where p:  pressure, g:  gravity acceleration, 
p:  density, v:  kinematic viscosity coefficient 
and V2 = 32/9x + 32/3z2. 

Invoking the boundary layer assumptions, 
(11) becomes 

-ljf-g-o. 02) 

Substitution of (12) into (10) yields 

3u_ 
3t 

3u 
3x 

3u 
3z 

g-g-+ vV2u ,    (13) 

where f is the free-surface elevation. 
The kinematic condition on the free- 

surface is given by 

it"+ u~!r-w = °  '   on z = f- (14) 

Eliminating 3?/3x from (13) and (14), we 
obtain 

3u , 2 3u , 8u + wg = g-§^-+ vuv2u , 

on z = f. (15) 

Now we write the velocity and the wave 
height in the forms of 

u = U + u' ,w = W + w' ,?=?+?' , (16) 

where U, W and ? are the time-averaged compo- 
nents, while u', w' and f' are the 
disturbances. 

Substituting (16) into (15) and taking a 
time-average, we get 

■'^+ U2-|^+ (2Uu' + u'2)!^+ u'2 3t 3x 3x 3x 

3U 3u' 77 3U 
+ UW-|^-+ (Uw1 + Wu' + u'w')-^- + u'w' -y 

gW + v(UV2U + u'vV (17) 

where — denotes the time-average. 
(17) is a time-averaged equation through 

which we can discuss momentum or energy bal- 
ances of the fluid motion. The last term on 
the lhs can be assumed the most important term 
among those related to the disturbance quan- 
tities, and the viscous term is assumed small 
compared with the convection terms. Then (17) 
can be simplified into 

31) 3U 3U UM +  UW"o7 + gW+ u'w'~o7 = ° ' Z =?-(18) 

On the other hand if there exists a flow 
with velocity components Uo, Wo with neither 
velocity defects nor disturbances, the free- 
surface flow, assumed to be irrotational, 
satisfies 

3u 
3x 

3w,, 
+ UoW„^ + gwo = 0 , z = fo . (19) 

Let ?o be the associated free-surface eleva- 
tion. Such a flow which satisfies (19) on the 
free-surface may be supposed to be related to 
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an outer flow to the shear layer. 
Under the approximation of 

W = wo and f = f0 , (20) 

the subtraction of (19) from (18) yields 

1 ,,, 3U2 

2 [U  9x ~ Uo 3x 

-i—r 9U 

^)=W(u0|J »& Uo^") 

= fc (21) 

In order to interpret (21) qualitatively, we 
write approximately, 

U (x, ?0) = Uo(x, f0)(l -e) , (22) 

where e is the velocity-defect fraction. If e 
is assumed small, we have 

-ö-eiio 3x — Uo Wco 'y u w 3U 3z (23) 

(23) suggests that the changes in the 
energy transport caused by the velocity defect 
(lhs, E say) is balanced by the vorticity 
transport (the first term on the rhs, V say) 
and the turbulence production (the second on 
the rhs, T say). In the decelerating region, 
E is positive and both V and T are also 
positive. 

According to the experimental results, W 
is appreciable in the MR-zone and hence V is 
also but T is not. Therefore we have E v V. 
On the other hand, in the Z-zone, where the 
free-surface is like a plateau and W is almost 
zero, V is negligible there, T becomes large, 
as shown in Fig. 12, and we have E = T. In 
other words, the production on the turbulence 
compensates for the surplus momentum due to 
the velocity defect. (23) also implies a 
possibility that the turbulence production may 
amplify the velocity defect still more; it can 
be resumed as the head loss. 

The above discussion implies that the 
velocity defect is the most important factor 
for generation of unsteady free-surface flow, 
because, if there is no velocity defects, i.e., 
if E = 0, nothing can happen. Of course the 
present discussion does not explain the occur- 
rence of the turbulence and nature of the flow 
in the Z-zone. 

3.4 Discussion of Instability of Disturbance 

For the discussion of the instability of 
disturbance, we substitute (16) into (13), 
(14) and the continuity equation. Then the 
disturbance components satisfy 

3t   U 3x   u 9x  w 3z  W 3z 

3f '   ■>   , 
3x 

-T + U-T +u. dL -„■ =0 , ox 3x     dx 

(24) 

(25) 

and 

3u'  3w'  n 
. 3x   3z " U • (26) 

Because all the disturbant variables 
appear in linear forms in (24), (25) and (26), 
they can be written in the form 

(27) 

where u, w and ? are real while a and c are 
complex variables; i -  /- 1 . 

By making use of (27); (24), (25) and 
(26) may be written as follows: 

- iacu + iaUu + u -P- +W-P-+W 4^- ox    3z    dz 

u' u (z) 

w' . = w (z) eia(x - - ct) 

r f 

A 2 
= - iagf + v (- a2u + -^p- 

^    ~  ~ dt      ~ - iacf + iaU? + u-^-- w = 

and 

iau +■§■=  0 . 

(28) 

(29) 

(30) 

Eliminating u andf from (28), (29) and (30), 
we obtain 

ia ( ii+g^ _ (,-„II* + 3u._ g _di\dw_ 
3z U* 3x W  dx ' dz 

2 _dw j_  d 3w 

where U* = U — c. 
If v can be assumed small enough, we 

obtain 

«(f+-f>)w + i(iaU*+f-^|)^ 

d2w + iW dz2 0 . (32) 

(32) may be referred to the inviscid Orr- 
Sommerfeld equation for the 2-D free-surface 
flow where w is the unknown. 

We assume that (32) has a solution in the 
form 

_KZ (33) 

In order for the disturbance to vanish as z + 
- °°, the real  part of K must be positive. 

The substitution of (33)  into (32) yields 
a characteristic equation for K; 

a  (Uz +4F)+  (-all* + iUx - A* f x  )« Jz  'IT 

+ i«2W = 0  , (34) 
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where the subscripts denote the differentia- 
tions with the referred variables. (34) is 
written in a nondimensional form by U0 and a, 

Wie2 + (U„ 

= 0 

J_fx.+ 
' F2 U* 

i\i*)K   -i(U2 + JTJji 

(35) 

where all the variables are used with the same 
notations and F2 = U0

2a/g. 
Here we discuss the temporal growth, and 

a is supposed to be real. Putting C = Cr+tCi, 
the exponential part of (27) is nondimension- 
ally written as 

i{x — Crt) + C-jt (36) 

Fig.16 Stability Zone for Free-Surface 
Disturbance 

where Cr and Ci are real. If C-j is negative, 
the disturbance may vanish temporally; the 
flow can be steady and no sub-breaking waves 
ensue. 

As suggested by (35), the analysis 
depends on whether W = 0 or not. We therefore 
discuss each case separately. Recall that 
W = 0 in the Z-zone while W * 0 in the MR-zone. 

i) W = 0 
For this case, fx 

can be assumed zero; 
(35) becomes 

1 1 
(ux + m*)K -i(uz +72-^)= 0 (37) 

and the real part of K, nr  say, is given by 

1 r  Uy + Cj  Ci 
Kr ~  (Ux + Ci)

2 + Ur*2i~ Ur*2+Ci2-T^ 

llr*       1  , + Ur* (Uz + Ur^
r
+ c.2 .-^) }  .(38) 

The solution of (38) with Kr > 0 and Ci < 0 
provides a stability criterion for every wave 
number. We discuss here only an extreme case 
where x.r ■+  0; this may give the sufficient 
conditions for the convergence. 

Then (38) is 

1) -UxCi + Ur*
2(l + Ur*UzF

2) Ci2(Ur*U2F
2 

0 (39) 

In order for Ci to be real and negative, the 
following two inequalities are required: 

Ux
2 - 4Ur*2(Ur*

2Uz2F" - 1) > 0 ,      (40) 

(Ur*UzF
2 -lHUx 

± /Üx^TÜ^IÜr^lJTF11-^!} < 0 . (41) 

It is suffices that (41) be satisfied by 
either sign.    For the decelerating flow, where 
Ux<0, the inequality (41) can be satisfied by 
choosing the plus sign for Ur*UzF2 <1  and the 
minus for Ur*UzF2 > 1. 

Then the inequalities of (40) is the only 
condition for the stability. It yields 

g 
"Ur* / 1 + 1, Ux 4W* < Uz<i '1 + 

J_ Ux_ 
4 ''aur* 

(42) 

The variables in (42) are all dimensional. 
As the experimental data suggest that the 
wave number of the disturbance, if any, is 
quite large, we may assume 1/a « 1. Then 
(42) may be simply written as 

< Uz (43) 

In the similar way, (43) is obtained for 
Ux > 0 also. 

(43) implies that, if the velocity defect 
is not greater than g/Ur*, as seen in Fig. 16, 
the free-surface can be stable; namely, no 
sub-breaking waves can exist. In the vicinity 
of a body, where Ur* becomes smaller, the sub- 
breaking waves may be less possible, because 
the stability band for Uz becomes wider. This 
finding is supported by the experimental 
results that the turbulent intensity at X3 is 
less than that at X6. 

ii) W ^ 0 
Since a is supposed large enough, i.e., 

1/F2 « 1, we drop the terms carrying 1/F2; 
then (35) is simplified as 

WK
2
 + (Ux + £U*)K - iUz = 0 .        (44) 

Then the real part of the solution is given by 

KT  =Jj-[- (Ux + Ci) ± Re { /"IT)] ,   (45) 

where 

D =  (Ux+Ci)2-Ur*
2+2il(Ux+Ci)Ur*+2WUz}   , 

(46) 

and Re { } means to have the real part of 
{  }.   • 

We search for a criterion in the same 
manner as the previous case by setting Kr + 0; 
(45) becomes 
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(Ux + Ci)2 = [Re {/~D~}]2  , (47) 

where 

[Re {AT}]2 =^-[(Ux + Ci)2  -Ur*
2 

+ /{(Ux+Ci)2+Ur*
2}2+ 16WUz{(Ux+Ci)Ur*+WUz}]. 

(48) 

(47)  is reduced  to 

Uz {(Ux + Cn-)Ur* + WUZ} = 0 (49) 

If Uz H 0, the stability condition, C^ < 0, 
yields an inequality of 

Ur*( + Ur*Ux) > 0 (50) 

(50) is illustrated in Fig. 16 for the 
positive Ur*. It is made clear by (50) that 
Ux, Uz and Ur* are the key variables for the 
stability as suspected experimentally. The 
negative values of Ux and Uz possibly lead to 
the instability. For the negative Ux> only the 
positive Uz can conditionally provide a stable 
flow. On the other hand, for the negative Uz, 
only the positive Ux can attain it; a smaller 
value of W/Ur* widens the stability band. 

It can be safely concluded that there is 
a certain criterion for a stable bow-flow and 
that Ux, Uz and U on the free-surface are its 
key variables. 

4. CONTROL OF WAVE-BREAKING BY SP-BULB 

According to the previous discussion, the 
control of wave-breakings is possible by pre- 
venting the inception of a turbulent flow; the 
sub-breaking wave. Because the velocity 
defect, Uz, and the deceleration rate, Ux, are 
concluded as important factors for the insta- 
bility, as well as U, it may be effective to 
minimize the surface curvature and to acceler- 
ate the surface flow. To moderate the change 
of curvatures at the toe and to maximize the 
vertical velocity-component in the Z-zone are 
also favorable. 

Waterline 

For this sake, an SP-bulb is attached to 
EM-300 which has rather a wide upper area and 
is cylindrical as shown in Fig. 17. Fig. 18 
shows the measured wave profiles; the attach- 
ment of the bulb makes the free-surface 
curvature less. The smaller curvature is 
expected to decrease the velocity defect and 
eventually the turbulence. 

Fig. 19 shows the comparison of the 
velocity at X6 between with and without the 
SP-bulb. Though the W component stays un- 
changed, the velocity defect, Uz, is remark- 
ably diminished. Differences in the turbu- 
lence quantities are still more significant; 
Fig. 20 shows the comparison of the turbulence 
intensity. Both the Reynolds stress and the 
turbulence production, shown in Figs. 21 and 
22, are strikingly oppressed by the bulb. 

The above changes bring forth improve- 
ments in wave making phenomena. Fig. 23 is 
the wave profile at U0 = 1.01 m/sec with the 
SP-bulb. Compared with that shown in Fig. 6, 
the free-surface curvature is less and the Z- 
zone is not distinguished any more. Fig. 24 
is the top-view picture of the bow-wave; 
compared with Fig. 5, the winkles in the Z- 
zone have all faded away. It is surprising 
that a slight change in the wave profile, 
which is attained by the attachment of a bulb 
here, yields such big changes in the velocity 
field and in the free-surface flow. 

The practical application of the SP-bulb 
to a high speed fishing boat is attempted 
(Tamashima et al. 1984) where it is reported 
that the SP-bulb prevents the occurrence of 
the sub-breaking waves and that the breaking- 
waves are eventually reduced strikingly. 

Through the present study, the effective- 
ness of the SP-bulb is made clear. Although 
the configuration of the bulb is determined 
intuitively here, it can be done theoretically 
for the key factors such as U, Ux and Uz to be 
favorable. Thus the control of the wave 
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Fig.17    EM-300 with SP-Bulb Fig.18    Comparison of Bow-Wave Heights of 
EM-300 with and without SP-Bulb 

312 



50 A EM- 

• EM- 

300 

300 with SP -Bulb 

• (at 6cm ahead 
•                                of bow) 
iß 

i 
S a 

% 
u/u0 

a 
w/u 

0 ,         , . *   1 i , A» 1 
(Still 

W.LJ 
0 

ft 
5 -0 2 

A* 

0.2 

Zlmm) 

50   I— 

■ "i i L __J I    l_ft I I I 

Fig.19   Comparison of Mean Velocity of 
EM-300 with and without SP-Bulb 

Fig.20 Comparison of Turbulence Intensities 
of EM-300 with and without SP-Bulb 
(for symbols see Fig.19) 

Z (mm) 

50 r 

~ 
• A 

A 

• A 

- A» 

- * 
6 

u'w'/Uo* 

0.001 0.002 

- « 

- t» 

- « 

- A 

L 

•     A 

„■„■SH/D.-L 

Fig.21    Comparison of Reynolds Stress of 
EM-300 with and without SP-Bulb 
(for symbols see Fig.19) 

Fig.22 Comparison of Turbulence Productions 
of EM-300 with and without SP-Bulb 
(for symbols see Fig.19) 

Flow 

Bow 

■füo=1.01m/sec- 

Fig.23    Bow-Wave Profile of EM-300 with 
SP-Bulb 

Fig.24 Bow-Wave Pattern of EM-300 with 
SP-Bulb 

313 



breaking is expected to be done by an off- 
design procedure, 

5. CONCLUSIONS 

Bow waves around a circular cylinder and 
an elliptic cylinder are studied being 
stressed on breakings. 

Prior to the breakdown, turbulent flow 
becomes visible on the free-surface. There is 
a monotonically-rising-surface ahead of the 
turbulent zone, and a necklace vortex is at 
the bow. The formation of the necklace vortex 
is explained by the stretching theory of 
vorticity. A shear layer exists beneath the 
free-surface for which the surface curvature 
is responsible. 

The turbulent surface is referred to as 
a sub-breaking wave which provides neither a 
reverse flow nor a plunging flow, but it de- 
velops into breaking-waves beyond a certain 
speed. The turbulent intensity of the sub- 
breaking wave is much related to the free- 
surface curvature, the velocity defect in the 
free-surface shear layer and the decelerating 
rate. Their relation is derived in a time- 
averaged momentum rate equation. 

An instability analysis is made to con- 
clude that there are certain criteria for the 
appearance of the sub-breaking wave. 

Through the present study on the sub- 
breaking wave, an SP-bulb is suggested to 
suppress the wave-breaking. It is confirmed 
experimentally that a slight change in the 
bow flow to increase the surface flow velocity 
and to decrease the surface curvature makes 
the sub-breaking waves significantly less. 
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DISCUSSION 

MITSUHIRO ABE, 
Mitsui Eng. & Shipbuilding Co., Akishima Lab., 
Tokyo, Japan: 

I congratulate Prof. Mori who analysed the 
bow wave mechanism. The SP-bulb will be effec- 
tive, while there is a difficulty to apply at full 
scale. At the stage of designing ships, we have 
already taken into account the principle which 
the author presented. In my experience, when a 
SP-like bulb was applied, the free wave pattern 
resistance once tended to be worse than on the 
original hull, and the effect of it depended 
on the draft condition of the ship. Thus my 
point is that the design complex will be neces- 
sary to forward the development of SP-bulb. 

Prof. SERGE BINDEL, 
Ecole Nationale Superieure de Techniques Avancees, 
Paris, France: 

I was very interested in the paper by Prof. 
Mori which gives a very good analysis of the 
phenomenon involved in bow wave-breaking. 
Nevertheless, the main question for the naval 
architect seems to me not so much to know how 
wave breaking can occur, and how it can be sup- 
pressed - we have known that for some years - 
but what is its true effect on the resistance 
of the ship. When wave breaking occurs energy 
is of course dissipated inside the fluid, but 
when it is suppressed there may exist some 
compensation, the part of the wave energy which 
is radiated being increased. 

Therefore, I would like to ask Prof. Mori 
whether he believes that bow wave-breaking is 
so "catastrophic", and whether he can give us 
some information on the energy balance and on 
the experiments attempted on a high speed fish- 
ing boat. 

Dr.-Ing. ALFRED KRACHT, 
Berlin Ship Model Basin (VWS), 
Berlin, Germany: 

I would like to congratulate Mr. Mori on 
his interesting paper. The detailed results 
presented are a valuable contribution to the 
theory of bulbous bows. It is a pleasure to 
read this paper. 

The bulb body influences the total velocity 
field ahead of a blunt body and acts like a 
straightener due to its additional displacement. 
The SP-bulb acts in the same way. Its slight 
change of the wave profile is a small part of 
its action only. 

But some questions remain, which the au- 
thor may care to comment on. What is the mean- 
ing of "SP-bulb"? What is the influence of a 
hydrofoil or foil grid on the flow field ahead 
of a blunt body? What is the geometrical con- 
figuration of the SP-bulb, which is attached 
to a high speed fishing boat? The sea-going 
qualities of a sharp edged bulb body are very 
unfavourable. 

Prof. VIRENDRA C. PATEL, 
Iowa Institute of Hydraulic Research, 
Iowa City, IA, USA: 

(This discussion addresses also the paper of 
K. Takekuma and K. Eggers.) 

The authors are to be congratulated for 
presenting additional experimental evidence on 
the complexity of the flow over the bow. In 
both papers it is also shown that bow vortices 
can be explained on the basis of the amplifica- 
tion of vorticity in the free-surface shear 
layer through vortex stretching, as the flow 
wraps around the bow. However, such a theory 
is purely kinematical and hides the viscous 
origin of the vortex since a vortex is also 
present in two-dimensional flow (as sketched 
in Fig. 2 of Tuck and van den Broeck). In an 
ongoing experimental and theoretical study of 
this phenomenon, we have been able to show 
that the vortex arises as a result of a stagna- 
tion (separation) point on the free surface 
ahead of the body and that its location depends 
upon the slope of the free surface, viscosity 
and surface tension, i.e. on the Froude, Reynolds 
and Weber numbers. A consistent set of equations 
for the free-surface boundary layer, alluded to 
in the two papers presented here, has beeniderived 
and'an attempt is being made to solve them to predict 
the vorticity distribution. Some experiments are 
also being carried out ahead of a horizontal cyl- 
inder in our towing tank to support the theory. We 
hope to report this work in a forthcoming paper (Ref .1) 

Reference: 
(1) V.C. Patel, L. Landweber and C.J. Tang, 

"Free-Surface Boundary Layer and the 
Origin of Bow Vortices", to be presented 
at the Second International Symposium on 
Ship Viscous Resistance, SSPA, G'dteborg, 
Sweden, March 1985. 

Dr. EIICHI BABA, 
MHI Nagasaki Technical Institute, 
Nagasaki, Japan: 

From experimental and theoretical studies 
Prof. Mori showed clearly that the bow wave 
breaking phenomenon is very  sensitive to the 
flow conditions around the bow. Most of the 
experimental work was conducted in the circu- 
lating water channel. The discusser would like 
to ask a few questions on the experiment: 
(1) How was the uniformity of vertical velo- 

city distribution in the circulating water 
channel, especially near the free surface? 

(2) Are pictures shown in Fig. 4 for a circular 
cylinder taken in the circulating water 
channel? 

(3) If so, is there any difference of free- 
surface phenomena around a circular cylin- 
der between the towing tank (Fig. 8 is the 
result in the towing tank) and the circu- 
lating water channel? 

Prof. HIDEAKI MIYATA, 
The University of Tokyo, Tokyo, Japan: 

(See Discussion following the paper of 
K. Takekuma and K. Eggers.) 
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AUTHOR'S REPLY 

To Mr. Abe: 
The discussion on the applicability of the 

SP-type bulb is out of the scope of the present 
paper. However, the practical application has 
been made in Tamashima et al. (1984). We got 
the same conclusion as mentioned by the discus- 
ser; the depth of the bulb immersion is very 
important. The wave pattern pictures may be 
found in my discussion to the paper by Mr. 
Takekuma and Prof. Eggers. 

To. Prof. Bindel: 
In the present paper, the flow field phe- 

nomena are exclusively studied, the effects of 
the breaking or the sub-breaking on the resist- 
ance are not discussed here. Guessing from the 
results of the elliptic cylinder with a bow 
bulb, the total resistance may by reduced, for 
the sub-breaking waves are remarkably suppres- 
sed by fitting a bow bulb while the wave height 
itself remains almost the same. I am not sure 
whether it can be said "catastrophic" or not, 
but my point is that the sub-breaking waves 
can take place when a certain criterion, which 
is carrying Uz, U and U, is satisfied. Some 
experimental results as to the high-speed fish- 
ing boat will be found in Tamashima et al. 
(1984), though it is only a progress report. 

To Dr. Kracht: 
The "SP" is the abbreviation of the "snow- 

plow" which works as if plowing snow (wave! in 
reality). Recently Mr. Ogiwara has succeeded 
in reducing the breaking wave by fitting a 
small wing at the bow. The geometrical configu- 
ration of the SP-bulb and its sea-going qualities 
are discussed in Tamashima et al. (1984) refer- 
red to in the present paper. 

To Prof. Patel: 
The present study was started by the pre- 

sent author together with the third author of 
Patel et al. (1985) during his stay at the dis- 
cusser's affiliation, the University of Iowa. 
The boundary layer equation for the free sur- 
face flow is derived in the integral form in 
Mori (1983). However, it has not been success- 
fully solved there. In this connection, the 
present author is delighted to know that the 
sowed seed has been successfully developed by 
the discusser. And he is quite anxious about 
knowing the mentioned results. It is true that 
the vorticity stretching theory hides the vis- 
cous origin, but the present analysis is at- 
tempted to elucidate one of the aspects of the 
necklace vortex in the framework of the invis- 
cid double-model flow. So if the boundary layer 
equation is solved exactly, as reported in the 
discussion, the vorticity stretching effects, 
no need to say, are included. The author has 
never concluded that the stretching theory can 
explain all the aspects of the necklace vortex, 
but concluded that the basic flow is the impor- 
tant factor for the necklace vortex formation. 

To Dr. Baba: 
Our circulating water channel has a sur- 

face accelerator by which we can expect a ver- 
tically uniform flow. We adjusted it to get a 
uniform flow at least near the free-surface. 

Fig. A-l shows the comparison of the meas- 
ured velocity with the calculated double-model 
velocity. Due to the free-surface effects they 
cannot be the same but the results at 17 cm 
upstream agree rather well with those calcu- 
lated. 

Fig. A-2 shows the velocity profiles at 
17 cm and 10 cm ahead of the assumed bow; those 
measured at the same positions but without the 
cylinder. Though slight velocity defects are 
still observed, they are much less than those 
shown in Fig. 9 in the text. 

When we started the present research, we 
could not manage the hot-film anemometer in 
the towing tank. But now we get used to manag- 
ing it in the towing tank. It is scheduled to 
carry out the same measurements in the towing 
tank in the near future. 

The pictures shown in Fig. 4 were taken 
in the towing tank (all the experiments of 
CM-42 were carried out in the towing tank). 
The free-surface flow around the bow is deli- 
cately affected by the surface flow, the bow 
wave phenomena differ significantly depending 
on the free-surface acceleration. 
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can develop into the breaking waves at higher 
speeds, but are different from the breaking 
wave as is pointed out by Prof. Miyata, they 
are called sub-breakings here in distinction 
from the breaking. 

With no overturning flows, the velocity 
defect is attributed to the turbulence produc- 
tion which is more or less related to the vis- 
cosity. This statement does not mean that the 
wave breaking cannot occur without viscosity. 
Again let me say that the present paper is 
dealing with the sub-breaking waves defined 
above which take place prior to the so-called 
breaking. 

Prof. Miyata's numerical results must be 
highly appreciated. It is hoped, however, that 
they are compared with the corresponding exper- 
imental results quantitatively. The wave ridge 
(where an overturning is in his computation) 
never moved so far upstream as shown in Fig. 2 
by our experiments by making use of a 50 cm 
square box with 10 cm draft at 1.2 m/sec; it 
remains almost at the same position. I wonder 
if his numerically simulated sub-breaking waves 
at lower speed have been actually observed in 
model experiments. 

■*- 17 cm ahead of Assumed Bow 
o 10 cm 

Fig. A-2: Mean Velocity and 
Turbulent Intensity of 
Circulating Water Channel 

Prof. Miyata's comments that the over- 
turning motion generates vortical flows and 
that breaking phenomena are the consequence 
of the steep unstable waves may be true for 
well developed breakings. 

The waves, however, dealt with in the 
present paper are related to the phenomena 
prior to them. The phenomena, for example 
shown in Fig. 5, are completely different from 
those Prof. Miyata imagines. Neither reverse 
flows, nor steepness enough for breakings, nor 
spillings, much less air-entrainments, nor 
plungings are observed at all. There are ob- 
served only wrinkles, which are confirmed 
turbulent flows, shear flows and vortical 
flows in contact with the bow. Because they 
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Bow FLOW FIELD OF SURFACE SHIPS 

DAVID J. FRY   AND   YOON HO KIM 

ABSTRACT 

The details of the bow flow field of two 
surface ship forms were experimentally measured 
and numerically modeled. The shipforms included 
a Series 60, Block 60 ship model and a high 
speed surface ship with a bulbous bow 
configuration. 

A three component laser doppler velocimeter 
was used to establish the velocity field in the 
"bow region. A dense grid of pressure taps in 
the ship bow supplemented the direct velocity 
measurements.  Surface elevation measurements 
were made with non-intrusive probes. 

Detailed comparisons are made between the 
numerical model and the experimental results. 
Predictions of the computation method of Dawson 
for solving the ship wave problem are compared 
to the measured bow flow velocities and wave 
profiles. 

The results are presented in a series of 
flow field and pressure field maps. These maps 
are discussed in terms of indicated stagnation 
points and attachment lines. 

1. INTRODUCTION 

The prediction of total resistance and flow 
around a ship depends on an ability to com- 
pute accurately the potential flow and boundary 
layer flow around the entire ship.  The calcula- 
tion of the potential flow not only provides the 
wave resistance and wave profiles, but also 
provides the "outer" flow for the boundary layer 
computation.  In order to properly initialize 
the boundary layer computation detail flow 
characteristics near the bow region must be 
determined. 

The flow and the wave profiles near the bow 
undergo rapid change without being significantly 
affected by the displacement of the boundary 
layer and wake. Therefore, accurate measure- 
ments of the flow and the waves near the bow 
will provide the numerical ship hydrodynamicists 
with the necessary data to verify their com- 
putation methods. 

Both Michell's thin-ship theory1 and 
slender-ship theory (Tuck2 or modified by 
Ogilvie3 for the bow region) provide analytical 
expressions for the wave resistance and wave 

profiles of a ship moving in a calm, inviscid 
fluid. Because the theories fail to satisfy 
exactly the ship body boundary condition, 
neither theory is expected to model accurately 
the flow in the bow region.  In fact, thin-ship 
theory and slender ship theory are known to 
overpredict the amplitude and phase shift of the 
oscillation (humps and hollows) of measured ship 
wave resistance curves2.  Recent developments in 
numerical ship hydrodynamics have produced many 
quasi-analytic methods capable of computing the 
wave resistance, wave profiles, and flow field 
around a ship (e.g. Survey by Chapman''). Most 
of the methods use analytical linearized free- 
surface conditions and satisfy the ship body 
boundary conditions exactly.  The Havelock 
or Rankine-Source Green functions are used to 
solve the numerical boundary integral equations. 
The computed wave resistances have been compared 
with measured residual resistance and wave 
resistance derived from wave pattern measure- 
ments.  Promising comparisons of quasi-analytic 
methods and wave resistance data appear in the 
Proceedings of the First through the Third 
International Conference on Numerical Ship 
Hydrodynamics (20-22 October 1975 at the 
National Bureau of Standards, Gaithersburg, MD; 
19-21 September 1977 at the University of 
California, Berkeley, CA; and 16-19 June 1981 at 
Palais des Congres, Paris) and the Proceedings 
of the First, the continued, and the Second 
Workshop on Ship Wave-Resistance Computations 
(13-14 November 1979 at DTNSRDC, 10-12 October 
1980 at Izu Shuzenji, Japan, and 16-17 November 
1983 at DTNSRDC).  Dawson's5 practical computer 
method for solving the ship wave problem, which 
is representive of the quasi-analytic methods, 
is compared in detail to the measured bow flow 
velocities and wave profiles of this paper. 

This paper presents details of the bow flow 
field of two surface ship forms which were 
experimentally measured and numerically modeled. 
This paper first discusses experimental tech- 
niques used for velocity, surface elevation, and 
bow pressure field measurements.  The paper next 
discusses the underlying equations of the poten- 
tial flow numerical model and some details of 
their application to the experimental con- 
ditions.  Finally, experimental and numerical 
results are displayed and compared. 

David W. Taylor Naval Ship Research and Development Center, Bethesda, Maryland 20084, USA 
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MEDIUM-SPEED SHIP MODEL 

SERIES 60, BLOCK 60 

A HIGH-SPEED SHIP MODEL 

Figure 1 Photographs of Model Bows 

2.  SCOPE OF EXPERIMENTS 

Experiments were conducted to determine the 
three dimensional velocity field and the free 
surface perturbation in the bow region of two 
model surface ships.  The pressure fields on the 
ship hulls were also measured. 

The models chosen for investigation were a 
Series 60, Block 60 surface ship (with a fine 
bow entrance angle and no bulb) and a "high 
speed" surface ship (with a bulb below the keel 
line).  Photographs of the two model bows appear 
in Figure 1 and line drawings in Figure 2.  A 
limited number of bow region velocity measure- 

ments were made also on a "medium speed" ship 
model with a bulbous bow of a different shape 
above the keel line (Figures 1 and 2). 

Table 1 displays relevent data on the ship 
model dimensions and towing conditions.  Both 
the Series 60, Block 60 (S60-B60) model and the 
"high speed" (H.S.) model employed roughness 
elements to trip a turbulent boundary layer. 
The S60-B60 model used a 0.8 mm diameter wire 
stapled to the model bow (located at station 
1.00 on the water line and at station 1.13 on 
the keel).  The HS model employed studs 
(cylinders of 3 mm diameter and 3 mm height) 
located along a line from the water line (at 
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BODY PLAN FOR HIGH-SPEED SHIP BODY PLAN FOR SERIES 60, BLOCK 60 

BODY  PLAN  FOR  MEDIUM-SPEED  SHIP 

Figure 2 Body Plans of Ship Models 

station 0.17) around the under the bulbous bow 
(station 0.3). These studs were spaced on 25 mm 
centers.  The "medium speed" (M.S.) model had no 
added roughness for tripping a turbulent boun- 
dary layer.  The roughness elements are margi- 
nally visible in the photographs of Figure 1. 

A non-dimensional, rectangular coordinate 
system (fixed to the model) was chosen to define 
measurement locations and ship hull boundaries. 
All coordinate locations are in ship station 
units (i.e., non-dimensionalized by 1/20 of the 
ship model length). The origin of the coor- 
dinate system is at the intersection of the 
undisturbed free surface, the ship forward per- 

Table 1 - Model Parameters and Measurements 

pendicular, and the vertical plane running down 
the ship centerline.  The "X" or streamwise axis 
is directed aft (positive direction) from the 
origin in the model centerline plane.  The "Y" 
or transverse axis is directed to starboard from 
origin.  The "Z" or vertical axis is directed 
upward to complete the orthogonal, right-handed, 
coordinate system (Figure 3). 

^ ̂
2 

V 
■—T- 5f 

Model 
NSRDC No. 

High Speed 
5415-1 

S60-B60 
4287 

Med. Speed 
5326-1 

Length* 5.72 m 6.10 m 6.53 m 

Beam .76 m .81 m 1.04 m 

Draft .25 m .33 m .39 m 

Block Coef .506 .600 .597 

Tow Speed 3.09 m/s 2 06 m/s 2.50 m/s 2.06 m/s 

Froude No. .41 28 .32 .26 

Measurements: 
Velocity X X X X 

Surface El. X -- X — 

Pressure X X ~ ~ 

AP,X= 20 

♦Length between forward and aft perpendiculars 

I 
FP,X=0 

Figure 3 Model Coordinate System 

3.  EXPERIMENTAL MEASUREMENTS 

3.1 Velocity Measurements 

Three component mean velocity measurements 
were taken using a Laser Doppler Velocimetry 
(LDV) system developed jointly by DTNSRDC and 
TSI Inc. of St. Paul, Minnesota (Figure 4). 
Basically, the system collects velocity infor- 
mation from the light scattered by small par- 
ticles carried by the water through the 
intersection point of five laser beams. 

Within the intersection or measurement 
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Figure 4 Towing Tank LDV System 

"point" are fringes (alternating light and dark 
planes) created by the focused, polarized, 
coherent laser beams.  The scattered light 

.signal can be understood as an "on - off - 
on..." flashing as a particle passes from light 
to dark to light fringes... This flashing is 
observed through an optics train ending in a 
photomultiplier whose output is timed electroni- 
cally.  In a properly aligned LDV system the 
fringe spacing is uniform across the measurement 

—paint and a function of only the beam crossing 
angle^and the light wavelength.  Fringe spacing 
and "flashing" frequency information allows 
calculation of the particle and fluid speed. 

The optics and signal processing of the 
towing tank LDV are similar to the standard 
system described in Reference 6.  Table 2 lists 
the five laser beams and their characteristics. 
Table 3 lists the dimensions and fringe spacings 
of the three velocity component measurement 
volumes. 

The accuracy of the LDV velocity measure- 
ments depends on many factors.  It is worthwhile 

Table 2 - Laser Beam Descriptions 

Strut Lens 
(150mm Dlam) 

Color 

Blue 

Green 

Blue 

Green 

Green 

Water 
Wavelength 

(Mm) 

.366 

.386 

.366 

.386 

.386 

Freq. 
Shift 
(MHs) 

0 

+40 

+40 

-60 

Angle to 
Lens Axis 
(Degrees) 

+2.39 

+6.65 

-2.39 

-6.65 

0.0 

Velocity 
Component 

Streamwlse 
Transverse 

Vertical 

Streamwlse 
Transverse 

Transverse 

TOP VIEW 

Strut Fairing 
(NACA 0024) 

ox Fairing 
(-NACA 3324) 

Strut 
Fairing 

Box 
Fairing 

SIDE VIEW 

Figure 5 Strut Dimensions Drawing 

to discuss the important factors to give the 
reader a better feeling for the reliability of 
the displayed velocity data. 

The DTNSRDC towing basins did not have suf- 
ficient particles naturally in the water to use 
in the measurements.  The water was therefore 
"seeded" between towing runs.  The seed chosen 
had to be large enough to scatter sufficient 
light plus small and "light" enough to follow 
the flow.  Silver coated glass spheres were cho- 
sen after an extensive search (Reference 7). 
Ninety percent of the spheres had diameters bet- 
ween 2)jm and 8\im.    Their specific gravity was 
2.6. 

LDV system design required a hollow strut to 
conduct the laser beams (and scattered light 
signal) through the water surface before sending 
them out to the measurement point(displaced 600 
mm from the front lens).  This strut can disturb 
the flow and affect velocity measurements. Strut 
dimensions and fairings were chosen carefully to 
allow measurements with negligible disturbance. 
The strut is pictured in Figure 4.  Its outside 
dimensions appear in Figure 5.  Tests were con- 
ducted with pitot tubes (both 2-hole and 5-hole 
types) taking measurements with the LDV strut 
present and with it removed.  In the free stream 

Table 3 - LDV Measurement Volume Characteristics 

Streamwlse 
Mess. Volume 

Component 

Streamwlse 

Vertical 

Transverse 

(«) 

2.4 

1,3 

2,4,5 

Meas. Volume 
Dimensions 
X x Y x Z (mm) 

.08 x .71 x .08 

.08 x 1.87 x .08 

.08 x .71 x .08 

Fringe 
Spacing 

<»"■> 

1.67 

4.41 

28.7 
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(with no ship model) measured disturbances at 
the LDV measurement point were uniformly less 
than 1% of the tow speed.  The same test done 
for measurements in the propeller plane of the 
AO model was in agreement except for an isolated 
region where the disturbance approached 3% of 
the tow speed. 

Mean velocities were calculated from 256 
samples of each velocity component. The samples 
were collected over a period of usually 8-15 
seconds (no less than 5 seconds).  Ideally, far 
fewer velocity samples would be needed in the 
steady flow around the bow.  This was the case 
for the vertical and streamwise components. 
However, the inherent difficulty in obtaining 
the transverse velocity component is reflected 
in a non-biasing noise that broadens the range 

Figure 6: 
LDV VELOCITY COMPONENT HISTOGRAMS 
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of component magnitudes measured in even a 
steady flow field (Figure 6). The 256 samples 
were needed to average out this noise (and real 
flow fluctuations when present). Repeatability 
of measurements (on different carriage runs) is 
shown for each component in Figure 7. 

An accurate determination of the fringe 
spacing is needed to convert the "flashing" fre- 
quencies measured to fluid velocities.  The cri- 
tical inputs were beam crossing angles. 
Calculated fringe spacings and hence fluid velo- 
city measurements were in error <1.5% for the 
vertical ("Z") or transverse ("Y") components 

Figure 7: 

DIFFERENCES IN REPEATED LDV DATA POINTS 
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and <0.5% for the streamwise ("X") component. 
These are percentages of the component magnitude 
not the towing speed. 

Ideally the three velocity components 
measured fall exactly on the orthogonal direc- 
tions of the coordinate system described 
earlier. While it was possible to align the 
streamwise and vertical measurements to within a 
1/2 degree, the transverse component was 
inherently very sensitive to alignment. 
Although in the future tools will be available 
to do much better, in this test the "transverse" 
component could actually be turned by as much as 
± 10 degrees toward the streamwise direction. 
This angle was determined by making LDV measure- 
ments with no model and assuming any measured 
transverse velocity was due to the non- 
orthogonality of the "transverse" and streamwise 
components. 

LDV support structure bending changed as a 
function of traverse position.  This movement 
of the whole system relative to the model did 
not appear on the traverse axis encoders and 
was the main source of positioning error. 
By using carefully measured correction factors a 
positioning accuracy of <0.8 mm was attained 
over the entire traverse range (0.5m. x 1.0m. x 
0.5m.).  Relative translations over short 
distances ( <100 mm) had a better positioning 
accuracy (<0.2mm.).  The 0.8 mm accuracy was 
comparable to the amount the model was observed 
to move when brought up to speed by the towing 
carriage. 

Most biases, attributed to LDV mean velo- 
city measurements, occur only when velocity 
fluctuations at a measurement location are 
significant relative to the mean magnitude. 
These bias effects are not important to this 
data set because almost all measurements were in 
the steady flow around the bow. 

this instrumentation had two limitations.  It 
could not measure extreme water surface slopes 
which did not reflect enough of the sound pulse 
back to the probe (~5% of locations).  It also 
needed to look directly down on the point being 
measured and therefore could not be used very 
close to the model hull. 

A second technique was used to get a 
limited number of elevation measurements near 
the model hulls.  This was simply a pointed rod 
extending down from the LDV traverse.  The tra- 
verse was positioned up and down manually until 
an observer felt that the point was just at the 
water surface for a particular X-Y location. 
LDV traverse encoder readings were then 
recorded.  The unsteadiness of the surface 
caused errors in some locations on the order of 
several millimeters.  By angling the rod, 
measurements could be made right up to the ship 
hull. 

3.3 Hull Pressure Measurements 

Pressure taps were located on the bulbous 
bow of the H.S. model and the S60-B60 hull. 
Only pressure measurements on the H.S. model (at 
Froude numbers of 0.41 and 0.28) were made. 
Measurements on the S60-B60 model had pre- 
viously been taken by Huang and von Kerczek 
(Reference 8). 

Sixty pressure taps were flush mounted on 
mostly the starboard side of the H.S. model 
bulbous bow.  A Datametrics pressure transducer 
was used in the measurements.  Figure 8 shows 
the distribution of the pressure taps on this 
model. 

3.2 Surface Elevation Measurement 

To complement the velocity data, elevation 
measurements of the water surface around the 
H.S. model (Froude No. = .41) and the S60-B60 
model were taken. Measurements were not only 
made in the bow region of the H.S. model, but 
the entire wave field in a 6m. x 15m. area was 
defined. All measurements were done without the 
interference of the LDV strut which was removed. 
Two non-disturbing techniques were used to 
collect the data. 

The bulk of the elevation measurements used 
an array of five ultrasonic probes.  Each probe 
was located 250-450 mm above the water surface. 
Electronics timed the delay between the emission 
of a sound pulse and the reception of its echo. 
Knowing the speed of sound allowed conversion of 
the time delay into a distance from the probe to 
the surface.  These probes were zeroed before 
each towing pass in calm water and carefully 
calibrated by use of the LDV traverse system to 
which they were attached. Mean elevations 
represent averages of 5 to 10 seconds worth of 
measurements. 

The diameter of the sound pulse striking 
the water surface was about 20 mm.  In the 
distance range used, the instrument manufacturer 
specifies an accuracy of ± 2 mm.  However, 

• Starboard 
Pressure Tap 

x Port 
Pressure Tap 

0.0 0.5 1.0 

Streamwise Station 

Figure 8 Bulbous Bow Pressure Taps (H.S. Model) 
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4.  STATEMENT OF COMPUTATION APPROACH 

We assume that the fluid is inviscid and 
incompressible and the flow is irrotational. 
Furthermore we neglect surface tension.  Then a 
steady state flow can be described by a velocity 
potential function * and the velocity vector 
field can be represented by the gradient of *. 
The velocity potential * must satisfy the 
Laplace equation 

V2 * = 0. (1) 

On the free surface, z= 5(x,y), we have dynamic 
and kinematic boundary conditions. 

2gC + | '* | 2 = U0
2 

*xCx + Vy ~ *z = 0 

(2) 

(3) 

where g is the gravitational acceleration 
constant.  Combining both dynamic and kinematic 
conditions (2) and (3) yields 

g$z + V* • 7(1/2 |v«|2 ) = 0 (4) 

The boundary condition on the ship hull surface 

Sn is 

4n = 0, on S0, z < ?(x,y) (5) 

where n is the unit normal vector directed out- 
ward from the fluid. The bottom condition for 
infinite depth water is 

*z = 0, as z+ -°° 

The radiation condition is 

* = U0x + o(l/r), x<0 
* = U0x + 0(1/r), X>0 

(6) 

(7) 

=7? ;TH 

It is exceedingly difficult to solve this exact 
formulation because the free surface condition 
is nonlinear and the location of the free sur- 
face is not known a priori.  It is convenient to 
express the total velocity potential * as the 
sum of two potential functions 

$ = tj + <|> 

Here *<} is the double-body potential which 
satisfies the following equations: 

V2*d =0      in the fluid 

|— *d = 0    on z = 0 
on 

(8) 

Taylor series in terms of the free surface ele- 
vation C(x,y) which is assumed to be small. 
Then the linearized free surface condition for a 
perturbation potential $ can be expressed in 
terms of double-body potential *<}• when tne 

linearized free-surface condition is used, the 
exact ship hull boundary condition is only 
satisfied at the hull surface below the 
undisturbed free surface, z = 0.  This is the 
well known Neumann-Kelvin problem. 

There are at least two approaches to the 
solution of this boundary-value problem.  One 
approach is to distribute Havelock sources at 
the body surface.  A second approach5 is to 
distribute simple Rankine sources at both the 
body surface and the free surface.  A successful 
computation method of Dawson5, representing the 
second approach, was used to produce the numeri- 
cal results reported herein.  In Dawson's 
method, the hull surface as well as free surface 
was replaced by a faceted form.  Each facet or 
element is a quadrilateral and is treated as a 
source patch; that is, a surface distribution of 
source of constant strength was distributed over 
each element.  This results in a set of simulta- 
neous linear equations to be solved for the 
source strength on each panel.  The hull boun- 
dary condition is satisfied exactly below the 
undisturbed free surface and the linearized free 
surface condition is satisfied along the 
streamline of double-body potential. 

5.  NUMERICAL TEST 

Accurate prediction is the ultimate goal of 
all hydrodynamicists. As a first step toward 
this ultimate goal, it is desirable to use a set 
of reliable experimental measurements to compare 
against the results of an existing computational 
tool. The outcome of such comparisons may guide 
us either to develop a new mathematical model or 
to improve the existing tool. 

The numerical model was applied to all 
three hulls used in the experiment.  Table 4 
shows the number of panels used to represent the 
ship hull and the truncated free surface.  Some 
features of the panel arrangement were the same 
for all three models:  eight rows of panels were 

Table 4 Computation Details 

High 
Ship 

Speed 
Model 

Series 60 
Block 60 

Med. 
Ship 

Speed 
Model 

Number of Panela and 
Computing Time 

Main Hull 
Bulbous Bow 
Free Surface 

192 
96 

320 

192 
0 

320 

192 
32 

320 

After Transom 
Total 

48 
656 

0 
512 544 

CPU (aec) 38 24 28 

3n 

«; 

*d = o 

U„x 

on S0, z < 0 

as^/x2 + y2 + z2' 

(9) 

Once 4,j is defined, then a systematic lineariza- 
tion procedure may be applied to the exact 
nonlinear free surface condition.  It is usual 
to expand the perturbation potential $ in a 

Extent of Free 
Surface/Ship Length 

Ahead 
Athwartahlps 
Astern 

Off-Body  Points 

Number 
CPU  (sec) 

0.50 
0.41 
0.56 

2000 
66 

0.50 
0.42 
0.55 

936 
27 

0.50 
0.44 
0.50 

27 
5 
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used to represent the hull from the keel line to 
the free surface, the free surface extended to 
about 3/8 of a ship length in the athwartship 
direction and was represented by eight rows of 
panels.  The panels were smaller near the bow 
and stern and near the hull and free surface 
intersection. More details of panel arrangement 
are discussed in Reference 5.  After obtaining 
the source strength of each panel, velocity 
computations at arbitrary points in the flow 
field are straight-forward.  A CRAY Computer was 
used for computations.  The computation time 
required for each ship is tabulated in Table 4. 

6.  PRESENTATION OF RESULTS 

Velocities and surface elevations were 
plotted for H. S. model experimental data (Fr = 
.41) and numerical results.  Appendix 1 contains 
two types of plots for various transverse - ver- 
tical planes.  One type shows the magnitude and 
direction of the crossflow velocity (vertical 
and transverse components) in the plane.  The 
other type uses contour lines to show the 
distribution of the streamwise velocity magni- 
tude (divided by the tow speed).  Note that 
these contours are constructed from discrete 
values at the arrow locations in the other plot. 
The surface elevations appear as solid dots. 
The line drawn between the dots is simply a 
spline fit to the data (or numerical results). 
Both plots show the ship hull (if present) as a 
cross-hatched area. 

Figure 9 presents the general features of 
the bow wave for the H. S. model (Fr = .41).  It 
may be of help in understanding the surface ele- 
vation measurements presented in Appendix 1. 

Velocity and surface elevation data for 
each of the models appear on plots (Appendix 2) 
of the streamwise - vertical plane where Y = 0. 
The velocity components in that plane 
(streamwise and vertical) are displayed as 
arrows showing velocity magnitude and direction. 

The experimental pressure tap measurements 
are partially presented in two plots (Figure 10) 
showing the pressure variation on the hull keel 
line (Y = 0) below the bulbous bow tip and on 
the bulbous bow center axis (Z = -1.03). 

7.  DISCUSSION OF RESULTS 

however, cannot be predicted by the numerical 
model. 

Surface elevation values very close to the 
hull, relating to the breaking wave (see planes 
X = .50, .93, 1.41) are not computed by the 
numerical model. However not too far from the 
hull the surface elevation calculations agree 
well with the experimental data.  The near-sur- 
face velocity measurements and calculations are 
also comparable. 

Secondly the LDV velocity measurements 
started picking up a boundary layer underneath 
the bulbous bow at station X = .50.  Measurement 
locations 2 mm from the hull boundary were 
made.  Because of scattered light noise and the 
probe volume shape, velocity measurements on the 
model's side could not be made closer than 5-8 
mm.  Boundary layers on these surfaces were not 
found until the plane X = 1.41.  The potential 
flow numerical model by itself cannot predict 
the boundary layer or its growth. 

Finally at stations aft of the bulbous bow 
it is apparent that a pair of vortices is formed 
under the model centerline (see plane X = 2.8). 
At the stations near the bow, the pair seem to 
only have a very local effect in this instance. 

Comparing the streamwise and vertical velo- 
city data for the three models, a simple stagna- 
tion point for each of the bulbous bow models 
(H.S. and M.S. in Appendix 2) is apparent. 
Velocity measurements were taken as close as 2 
mm forward of the stem line in all three cases. 

Along the stem lines of the S60-B60, the 
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H.S., and the M.S. models (above the stagnation 
points), velocity components normal to the stem 
profile are zero. However, the tangential 
velocity component is not zero.  These flow pat- 
terns are similar to the attachment line of a 
three dimensional flow 10&11. 

8.  CONCLUSIONS 

The detailed comparisons of experimental 
data and numerical results given in this paper 
show good correlation of both the general flow 
field and specific velocity directions and 
magnitudes. 

The formulation of the numerical model 
precludes it from predicting the boundary 
layers, the breaking bow wave, and the vortex 
formation observed in the experiment.  To the 
extent that these features are important, the 
potential flow model should be extended or com- 
bined with other three dimensional flow models 
to include boundary layer and non linear 
free-surface effects. 
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APPENDIX  1:    Velocity Field for Transverse Plane X = -0.890 
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APPENDIX  1:   Velocity Field for Transverse Plane X=-0.376 
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APPENDIX  1:   Velocity Field for Transverse Plane X=-0.127 
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APPENDIX  1:   Velocity Field for Transverse Plane X=-0.043 
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APPENDIX  1:   Velocity Field for Transverse Plane X=-0.009 
Measured Calculated 

CROSSFL0W 
VECTORS 

SCALE: 
H H- 

—•—•• • ••! 

v 

/ 

—i—i—,—,—,—,— 

'TRANSVERSE STATION 

til, 

CROSSFLOW 
VECTORS 

O 
I- 

>.. too 

t \\\% 
t \\ t «t 

V \ \ \ * 
\ \ u i 
\ 
\ 

\ \\\1 
V. \\\1 

-^N-ftt 

/ 
///I ///I 

TRANSVERSE STATION 

'H. 

STREAMWISE 
CONTOURS 

STREAMWISE 
CONTOURS 

too 

'TRANSVERSE STATION 'TRANSVERSE STATION 

332 



APPENDIX 1:   Velocity Field for Transverse Plane X= 0.040 
Measured Calculated 
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APPENDIX  1:    Velocity Field for Transverse Plane X= 0.082 
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APPENDIX 1:   Velocity Field for Transverse Plane X= 0.165 
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APPENDIX  1:    Velocity Field for Transverse Plane X= 0.333 
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APPENDIX  1:   Velocity Field for Transverse Plane X = 0.504 
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APPENDIX  1:    Velocity Field for Transverse Plane X=0.727 
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APPENDIX  1:    Velocity Field for Transverse Plane X = 0.930 
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APPENDIX  1:   Velocity Field for Transverse Plane X= 1.414 

Measured Calculated 
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APPENDIX 1:   Velocity Field for Transverse Plane X = 2.80 
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APPENDIX  1:    Velocity Field for Transverse Plane X=4.20 
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APPENDIX  1:   Velocity Field for Transverse Plane X-5.60 
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APPENDIX  1:    Velocity Field for Transverse Plane X = 6.99 
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APPENDIX 2:   Velocity Field for Longitudinal Plane Y=0.00 
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DISCUSSION 

Dr. ANTONY J. MUSKER, 
Admiralty Research Establishment, 
Haslar, England: 

I appreciate that this paper represents 
an initial study but I would be glad to receive 
any comments from the authors on the comparison 
between Daws'on's method and experimental data 
near the stern region and when we might expect a 
further report. 

Concerning the ultrasonic probes, I note 
that the manufacturer's specified accuracy is 
+ 2 mm but that the authors claimed + l%during 
the presentation. Also the calibration was per- 
formed in calm water without the effect of wave 
slope and its consequent effect on the reflect- 
ed beam. I should have thought that even a 
small wave slope would give rise to errors in 
wave elevation greater than that quoted. 

Prof. Dr.-Ing. SOM D. SHARMA, 
Institut für Schiffbau, 
Hamburg, FR Germany: 

The authors are to be congratulated on a 
very fine piece of work. We at Hamburg have 
also been trying to measure the bow flow-field 
by various techniques including LDV and can 
therefore well appreciate the great difficul- 
ties the authors have obviously mastered. Now 
I have one important question to the authors. 
One of the most interesting features we have 
observed in the flow field of bulbous forms 
is the existence of a pair of necklace vor- 
tices, one just below the free surface and 
another just above the stagnation point on 
the bulb. As these vortices are of opposite 
sense of rotation, by proper design and di- 
mensioning of the bulb they can be made to 
cancel each other. This mechanism provides 
yet another explanation of the beneficial ef- 
fect of a bow bulb in decreasing resistance 
and smoothing the flow. Apparently there 
are no bulb vortices in the flow fields re- 
ported by the authors. Have they observed 
this phenomenon in other experiments not shown 
in their paper? 
Of course, we realize that their hull form was 
much finer than ours and so the missing vortex 
would not necessarily be a contradiction of 
our observation. 

The inconsistency noted by Dr. Musker was 
a result of the authors reporting an accuracy 
in "millimeters" in the paper and in "ship sta- 
tions" during the presentation. The authors 
apologize for any confusion created by this 
change. 

The authors will investigate the degree 
to which "wave slope" affects ultrasonic probe 
accuracy. In the future, we will revise our 
accuracy estimate and/or data values according- 
ly. We wish to emphasize that all the steepest 
wave slopes (close to the model boundary) were 
obtained with the pointed rod technique (~40% 
of reported elevations). 

The authors agree with Prof. Sharma that 
the reason we did not observe necklace vortices 
was because our bulbous bow hull forms were so 
fine. Experiments to date have been only on 
the three hull forms shown in Figure 1 and 
Figure 2. The necklace vortices, if present, 
should have appeared in the velocity data dis- 
plays of Appendix II. 

The authors wish to thank Prof. Sharma 
for his kind remarks and for his indirect 
suggestion of an interesting area for future 
experiments. 

AUTHORS' REPLY 

The authors wish to thank Dr. Musker for 
his discussion. We do have plans to put out 
an internal DTNSRDC report within 6 months 
covering more completely the data set devel- 
oped during our 3/84 - 5/84 experiments. In 
that report will be a limited amount of velo- 
city and surface elevation data taken in the 
stern region of the "High Speed" model (Fr = 
0.41). 
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SHIP-GENERATED SOLITONS 

R,C, ERTEKIN, W.C. WEBSTER AND J.V. WEHAUSEN 

ABSTRACT 

When a ship moves at a constant velocity 
in a rectangular channel of breadth b and depth 
hQ, it has been observed to generate a sequence 
of solitons, one after another, provided that 
the depth Froude number, Fh, is less than about 
1.2. A series of experiments to investigate 
this phenomenon systematically has been con- 
ducted at U. C. Berkeley. It has been found 
that the dominant parameter governing soliton 
generation is the blockage coefficient, A /bh , 
where Ax is the midships section area. Numeri- 
cal calculations of the flow created by moving 
two-dimensional disturbances are also carried 
out using both the fluid sheet equations of 
Green and Naghdi, as well as the Boussinesq 
equations, in the form derived by T. Y. Wu. 

1. INTRODUCTION 

This paper may be considered as a sequel 
to several earlier ones [T. Y. Wu (1982,1983), 
D.-M. Wu and T. Y. Wu (1982), Huang et al. 
(1982a,b)], and perhaps also as a kind of stat- 
us report on investigations of the generation 
of solitons in shallow water by ships, pressure 
distributions and bottom bumps. As far as we 
are aware, the papers above provide almost a 
complete list of the systematic studies of the 
phenomenon. However, reports by Thews and Land- 
weber (1935,1936) describe it quite clearly and 
appear to be the first published mention of it. 
In addition, there have long been reports of 
the difficulty of achieving steady-state re- 
sults in towing-tank tests of models of river 
boats in shallow water, and indeed there have 
appeared observations and analyses of hydraulic 
jumps and of single solitary waves associated 
with such tests. We make no attempt here to 
summarize or reference these [see, however, Wu 
(1983)1. On a larger scale, single solitary 
waves have been observed preceding ships on the 
Suez Canal and one must suppose that the phe- 
nomenon we shall describe has often been ob- 
served in other canals. (The solitary wave 
described by J. S. Russell does not seem to.fit 
into the same category). More recently, the 
staff members of the Bulgarian Ship Hydro- 
dynamics Centre in Varna  have reported it oral- 

ly, and Mr. M.-G. Sun of the Zhongshan Univer- 
sity in Guangzhon, People's Republic of China 
has sent photographs of what is clearly the 
same phenomenon. 

Finally, we call attention to the mono- 
graph by Favre (1935, especially Chap. VIII). 
Favre generated waves in a rectangular channel 
by discharging water at a constant rate into 
one end of the channel. The waves that devel- 
oped at the beginning of the discharge quite 
evidently have much in common with those gener- 
ated by the motion of a ship or pressure dis- 
tribution. Still another paper relevant to the 
observed phenomenon is that of Benjamin (1970). 
Although Benjamin does not specifically discuss 
soliton generation by moving disturbances, he 
does describe certain important aspects of the 
behavior ahead of the disturbance, aspects con- 
firmed experimentally by Salvesen and von Ker- 
czek (1978). 

In order to clarify what is being discuss- 
ed, consider Figure 1. This shows a model of a 
Series 60, CD = 0.80 hull being towed in the 
Ship Towing Tank of the University of Califor- 
nia, Berkeley. The depth Froude number Fn = U/ 
4K~0 is 0.90, where U is the velocity of the 
model, g the acceleration of gravity and hQ is 
the undisturbed water depth. Preceding the ship 
model and moving at speed, c, which is super- 
critical (c/^gli^ > l), are waves of substantial 
amplitude. Figure 2 shows the same phenomenon 
for F^ = 1.1. As the Froude number increases 
the solitons become more steep, and at a Froude 
number of about 1.2 the solitons begin to 
break. For Fn = 1.3 and above, a hydraulic jump 
is formed ahead of the model. If one decreases 
Fn below 0.9, the waves preceding the model are 
no longer so visible, but have been observed 
for model Froude numbers F^ as low as 0.2; 
they are always supercritical and appear per- 
fectly two-dimensional, spanning the tank from 
wall to wall. These waves are not the Cauchy- 
Poisson waves associated with the starting of 
the model that were treated in Sibul et al. 
(1979). Nonlinear shallow-water equations are 
needed to calculate them and they are essent- 
ially the solitons that appear in solutions of 
the Korteweg-de Vries equation for the motion 
following an initial hump of water. We shall 
call   them solitons  here  also. 

Dept. of Naval  Architecture & Offshore Engineering,  University of Calif., Berkeley, CA    94720. 
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Figure 1.   Fh   = 0.90, hQ = 12.5 cm, d = 7.5 cm, Figure    2. 
b   = 122   cm.   Back view (above) and side view f°r    the 
(below). 

The     same    as    Figure   1,     except 
Froude    number.    Here    F.     =    1.1. 

2.   EXPERIMENTS 

Let us now turn to the experiments design- 
ed to investigate systematically this phenome- 
non. For all the experiments to be described, a 
model of a Series 60, CB = 0.80 hull was used. 
Its length was 152.4 cm, its beam 23.4 cm. Four 
drafts were tested: d = 2.5 cm, 5.0 cm, 7.5 cm 
and 10.0 cm. Three water depths were used: h. = 
10.0 cm, 12.5 cm and 15.0 cm. The bottom of the 
towing tank has an unevenness of - 0.7 cm and, 
as a result, we did not test in water depths 
less than 10 cm. We also desired to have an 
average of at least 2.5 cm clearance under the 
keel of the model and, thus, not all drafts 
could be used with all water depths. The width 
of the tank was also varied. The normal tank 
width is b = 244 cm. A false wall gave a reduc- 
ed width of b = 122 cm. By towing a half-model 
along one wall we effectively doubled the nor- 
mal   width  to b =  488 cm.   Figure 3 shows the 

combinations for which experiments were made 
and the blockage which is associated with each 
combination. Finally, the model was always 
fixed to the carriage. Although this may not 
seem to conform to standard practice or to 
model "reality", it avoided an added compli- 
cation  in an already complex situation. 

The most important measurements were wave 
measurements. Two sorts of measurements were 
made. In one, the wave gauges were fixed at 
various locations in the tank as shown in Fig- 
ure 4a. In the other, the gauges were fixed to 
the towing carriage ahead of, and to the side 
of, the model. Their location is shown in Fig- 
ure 4b. | The wave records were recorded on a 
strip chart for visual inspection and simulta- 
neously recorded digitally every 0.04 - 0.05 
sec. The wave resistance was also recorded in 
the experiments where the wave gauges were 
fixed to the carriage (except for the half- 
model   experiments).   Tests  were carried out  for 
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hn\ 

122.0 244.0 488.0 

10.0 4.6339 2.3170 1.1585 

12.5 3.7071 1.8536 0.9268 

15.0 _ — — 

4 = 7.5 

\ hn \ 

122.0 244.0 488.0 

10.0 14.1831 7.0916 3.5458 

12.5 11.3464 5.6732 2.8366 

15.0 9.4554 4.7277 2.3639 

\b 
122.0 244.0 488.0 

10.0 9.4085 4.7043 2.3521 

12.5 7.5268 3.7634 1.8817 

15.0 6.2723 3.1362 1.5681 

d = 10.0 

\b 
122.0 244.0 488.0 

10.0 — — — 

12.5 — _ — 

15.0 12.6384 6.3192 3.1596 

Figure 3. Combinations of the experimental 
parameters and the blockage coefficient, S 
= A /bh0 (in percent), h , d and b are in 
centimeters. 

depth Froude numbers from about 0.6 to 1.2 in 
increments of 0.1 (except in the neighborhood 
of Fh = 1.0, where the increments were 0.05). 
However, runs at both higher and lower values 
were occasionally made, and sometimes we did 
not go as far as 1.2. 

It is evident that we have a plethora of 
data, much more than we can reproduce here. 
However, it is instructive to look at some 
samples of the wave records. Figure 5 shows the 
wave records taken at the four gauges fixed in ' 
the tank for Fh = 0.8, hQ = 12.5 cm, d = 7.5 cm 
and  b =  122 cm,   244 cm and 488 cm.  Figures fi 

.and 7 show wave records taken under the same 
circumstances, except that now Fh = 1.0 and 
1.1,  respectively.  There are typical   differ- 

: ences between the three records. For Fh = 0.8 
one sees an oscillation of gradually decreasing 
amplitude about a mean line situated above the 
still-water level. This is typical of what we 
observed for subcritical speeds. One might 
conjecture that the amplitudes of oscillation 
approach zero, and indeed, calculations to be 
introduced later on seem to confirm this. By 
contrast, for Fn = 1.0 and 1.1 the oscillations 
appear to be of nearly constant amplitude but 
also about a mean line well above the still- 
water  level. 

Figure 8 shows wave records taken at three 
Froude numbers with gauges fixed to the towing 
carriage as shown in Figure 4b. The generated 
waves are now stretched out since the record is 
taken in a moving coordinate system. However, 
one still sees for Fn = 0.95 a noticeable 
decrease in amplitude of successive solitons, 
although the decrease is not as marked as for 
Fn = 0.8 in Figure 5. For Fn = 1.0 and greater, 
no general pattern appears. We shall not show 
any more wave records but instead the results 
of analysis of the  records. 
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Figure 4. Locations of the wave gauges used in: 
(a) the   fixed-gauge   experiments,    and 
(b) the moving-gauge experiments.    Distances 
are in centimers. 
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Figure 5. Wave records from fixed gauges for Fh = 0.8, h = 12.5 cm, d = 7.5 cm. 

10.0        20.0 30.0 Time (sec) 

Figure 6. Wave records from fixed gauges for Fh = 1.0, hQ = 12.5 cm, d = 7.5 cm. 

b=244 cm J 

30.0 Time (sec) 

Figure 7. Wave records from fixed gauges for Fh = 1.1, hQ = 12.5 cm, d = 7.5 cm. 
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Figure 8.    Wave records from gauges fixed to the towing carriage.    Here hQ - 15 cm, 
d = 7.5 cm and b = 122 cm. 

An observer of the generation of solit.ons 
by a moving model is immediately struck by the 
two-dimensionality of the solitons, in spite of 
the three-dimensionality of the generator, i.e. 
the model. This happens very quickly. By the 
time the wave leaves the bow of the model it is 
already essentially two-dimensional, stretching 
across the tank from wall to wall with almost 
constant amplitude. Having observed this, one 
then asks, "What happens if the tank is very 
wide, or unbounded?". If solitons of the same 
amplitude were shed with the same frequency, 
the model would be transferring increasing 
amounts of energy to the water as the width 
increases,   which is contrary to experience. 

The effect of tank width upon the ampli- 
tude of the first soliton is shown in Figure 9 
for two water depths, h = 10 cm and 15 cm and d 
= 5 cm and 7.5 cm, respectively. It is evident 
that the amplitude decreases as the tank width 
increases except, at the highest Froude numbers. 
The turning down of A/hQ between Fu = 1.1 and 
1.2 is typical of almost all combinations of hQ 

and d, although it does not happen here for the 
greatest width. This is usually associated 
with the onset of breaking and the formation of 
a bore. The two examples in Figure 9 were 
chosen to have approximately the same blockage 
coefficient, S = Ax/bh0. It is evident that the 
behavior of the corresponding curves is very 
similar. In fact, when superposed they agree 
quite well. Figure 10 shows A/hQ as a function 
of S with Fu as a parameter. The data collapse 
fairly well into single curves for each Froude 
number. 

There remains the effect of tank width 
upon the period T of generation of solitons. 
If this increases with increasing tank width, 
then the average rate at which the model trans- 
fers energy to the water will decrease as long 
as the soliton amplitude does not increase, and 
we have just seen that it usually does not. It 
is possible to determine T either from the 
gauges fixed to the carriage or from those 
fixed   in  the  tank.     If  Tm   is  the  period   of 

generation observed in coordinates moving with 
velocity U, Tf the period between solitons 
observed in fixed coordinates, and c, the aver- 
age wave celerity (since the celerity is not 
quite constant), then to a good degree of ap- 
proximation 

Jm  -  [c/(c-U)] Tf • (1) 

Here we shall use Tm to present our data. 
Figure 11 is a counterpart to Figure 9. It 
shows UTm/hQ plotted against Fn for the three 
widths used in the experiments, with all other 
parameters being the same. As anticipated, Tm 

increases as the width does. As was the case 
for the amplitudes, plotting the dimensionless 
period of generation against the blockage coef- 
ficient tends to collapse the data. This is 
shown  in  Figure  12. 

Let z = S(x,t) be the free surface meas- 
ured from the still-water level, and for a 
solitary wave, a single soliton, let 

00       2 

E = / C    dx . >2> 

pgE is then the energy per unit width carried 
by the soliton. If A is the amplitudp of the 
soliton, it is well known [see Miles (1980), p. 
15] that 

3/2 

(3) E =  {4Aho/3} 

It is pointed out in Huang et al. (1982b) that 
if this same relation may be applied to the 
individual solitons successively generated by 
the ship model, then the average rate at which 
the model is transferring energy to the water 
through soliton  generation  is 

3/2 

pgEb/Tm = pgb{4Ah /3}    /Tm 

= {8v^pgh3
0Ub(A/h0)

3/2 
(4) 

(uVho' }/9ho 
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Figure 9.    A/h    as a function of F,   for b = 122 h 
, 244 cm °and   488 cm.   (a)   hQ    = 10 cm and 

d = 5 cm,  (b)  h    = 15 cm    and    d   =   7.5   cm. 
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Figure 10. A/h0 for all data (obtained from 
the gauges fixed to the tank) plotted 
against the blockage coefficient, S, for 
Froude numbers 0.7,    0.8,    0.9,    1.0 and 1.1. 

Figure 11.    Dimensionless period of generation, 
UT /h  , of solitons as a function of F.     for 

m'   n n 
b = 122 cm, 244 cm and 488 cm.     (a)   hn 

cm and d 
10 

5 cm, (b) hQ= 15 cm   and d = 7.5 cm. 
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Figure 14.    Dimensionless rate of   work done in 

soli ton generation by the model, 
and d = 7.5 cm. 

Figures 13 and 14 show g = p g Eb/Pgh^UT,,, plot- 
ted against b/hQ for the same values of hQ and 
d as  in Figures 9 and 11,   respectively. 

One of the important properties of soli- 
tons is that their sp_eed is supercritical. 
Figure 15 shows c//gh^ plotted against the 
Froude number U/>^h^ for hQ = 12.5 cm and d = 
5.0 cm. With the exception of the two lowest 
values of Fh, all values of c/^gh^ are > 1 and 
are necessarily greater than the associated Fh. 
The apparently slightly subcritical values are 
not a result of measurement error of c but can 
possibly be explained by bottom unevenness of 
the towing tank. This was as much as - 0.7 cm 
in some places and is sufficient to explain 
values of c/^jhT apparently less than 1. The 
effect of unevenness of the bottom shows up in 
other variables also. Every dimensionless var- 
iable  containing   water  depth   uses  the  nominal 
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Figure 16.    A/hQ    plotted    against    c/^ghT   for 
for h    = 12.5 cm, d= 5.0cm and b as indicated. 

value h_, which represents the average value of 
the water depth throughout the tank. 

The curves of c//ghl against Fu show a 
sudden downturn near Fh = 1.2, especially for b 
= 244 cm. This downturn was also observed in 
the curves for other parameter values. 

Another important property of solitons is 
that there is a relationship between amplitude 
and speed, unlike linearized dispersive waves. 
Two estimates are available, one resulting from 
the Korteweg-DeVries pquation and the other 
resulting from Green-Naghdi theory [Green and 
Naghdi (1977)] which, incidentally, is identi- 
cal with that of Bousinesq [Lamb (1932, § 252)]. 
Figure 16 shows A/h plotted against c/ZghT for 
hQ = 12.5 cm, d = 5.0 cm and b = 122 cm, 244 cm 
and 488 cm. The data points match the Green- 
Naghdi prediction very well throughout the 
range of amplitudes tested, but differ signifi- 
cantly from the Korteweg-deVries prediction at 
the higher wave amplitudes and celerities. The 
values of c/^gTT < l have been discussed earl- 
ier. Figure 17 shows a similar plot, but now 
for h = 15 cm and the draft and three widths, 
as before. 

Many more experimental data are available 
than have been shown in this paper. We believe, 
however, that what has been shown is represent- 
ative of our observations. These appear to show 
that the waves preceding the model are indeed 
solitons and furthermore that no steady state 
is approached in the entire domain if Fh is 
less than about 1.2, no matter how long the 
motion continues. For subcritical model veloci- 
ties the amplitude of the successive solitons 
appears to decrease, resulting eventually in 
just a shelf of water moving ahead of the 
model. On the other hand, for supercritical 
velocities successive solitons appear to main- 
tain their amplitudes. Such conclusions would 
be more certain if they could be confirmed by 
calculation with appropriate fluid-dynamical 
equations.   We turn to this problem  next. 

3.   CALCULATIONS 
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Figure 17.    A/h    plotted against    c//gh^"       for 
h    = 15.0 cm, d= 5.0 cm and b as indicated. 

In making our calculations we shall choose 
two out of several alternative sets of equa- 
tions for wave motion' in shallow water, those 
derived by T. Y. Wu (1981) and those derived by 
A. E. Green and P. M. Naghdi (1976a). For both 
sets of equations it is assumed that the water 
is inviscid, incompressible and homogeneous. 
Both have been presented at earlier Symposia, 
those of Wu in a paper by D.-M. Wu and T. Y. Wu 
(1982) at the 14th Symposium and the Green- 
Naghdi equations in a paper by Naghdi (1978) at 
the 12th. Before stating the equations, in 
their 2-dimensional forms, for we are not pre- 
pared to tackle the 3-dimensional problems, it 
is appropriate to discuss the nature of the 
approximation in each, even though we do not 
carry through the derivations. 

Wu's derivation is in the spirit of Bous- 
sinesq. He begins with the complete 3-dimen- 
sional equations for an inviscid, incompress- 
ible fluid of constant density, bounded below 
by a possibly deformable bottom, z = -h(x,y,t), 
and above by a free surface, z = S(x,y,t), upon 
which a possibly moving pressure distribution 
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is acting. His first step is to find equations 
for the variables averaged over the depth. For 
example, if u(x,y,z,t) is the x-component of 
the fluid velocity,   he defines 

D(x,y,t) 
1 / u(x,y,z,t) dz 

-h 

and similarly for v, w andvp. Equations cor- 
responding to conservation of mass, horizontal 
and vertical momentum and energy are found. So 
far there is no approximation, but, of course, 
the description of the flow is somewhat crude. 
Wu now assumes that the unaveraged motion is 
irrotational, and introduces the usual stretch- 
ed variables, using a representative wave 
length X in the horizontal direction and a 
representative depth hQ in the vertical. In 
addition, with a representative wave amplitude 
A, he introduces the parameters e = hQ/X and 
a= A/h . After expanding the velocity poten- 
tial $ (that now exists) in powers of eand 
making use of both the averaged and the origi- 
nal equations, he finally arrives at a set of 
three equations for ? , 0 and v. The conserva- 
tion-of-mass equation is exact, the conserva- 
tion-of-momentum equations have an error term 
0(ae" A2E?). The solution ü,v will no longer be 
irrotational in the (x,y) plane if Vh 4 0, but 
Wu shows how to find equations valid to the 
same order whose solution is jrrotational. The 
solution is, of course, for V$ rather than V$ , 
but it is shown that | v5-u| = 0(ae2). These 
equations reduce to the Boussinesq equations if 
h = const, and the motion is 2-dimensional. We 
omit further details but note that the equa- 
tions are to be used in circumstances where the 
Ursell number a/e2 = 0(1), so that not only a<< 
1 but also e<< 1. We summarize by saying that 
Wu's derivation starts with the exact 3-dimen- 
sional equations for irrotational flow of an 
inviscid fluid and arrives at approximate equa- 
tions that should be valid for "small" eand 
a/e2= 0(1). We emphasize this, for the Green- 
Naghdi equations present a different sort of 
approximation. 

The derivation of the Green-Naghdi equa- 
tions should properly start with a discussion 
of Cosserat surfaces and the special set of 
conservation laws associated with them. This 
would, however, be too great a digression and 
may be avoided here, for Green and Naghdi 
(1976b) have shown how the equations necessary 
for our particular case may also be derived 
starting with the usual 3-dimensional equations 
(really the conservation laws and invariance 
requirements that lead to them). Although the 
final equations are written in Eulerian vari- 
ables, the nature of the approximation is eas- 
ier to understand in Lagrangian variables. Let 
(x0,y0,zQ) be reference variables for a parti- 
cle in a fluid flow; they may be, but need not 
be the coordinate values at some special in- 
stant of time. The flow may then be represented 
by functions 

x = x(xn,yn,zn,t)   , o'-'o' 0' 
y = P(x0,y0,z0,t) , 
z = ^Wzo!t) • 

We assume that the Jacobian 3(x,y,z)/8(x0, 
y ,z0) 4 0 anywhere in the fluid or on its 
boundaries, so that we can also solve for x0 = 
x (x,y,z,t), etc. Let the bottom beneath the 
fluid be represented by zQ = r(x0,y0) and the 
free surface by zQ = s(xq,yp), where it will be 
convenient to suppose tnat r < 0 < s. Evident- 
ly, these surfaces have counterparts in (x,y,z) 
space. For instance, solving z0(x,y,z,t) = 
r(x0(x,y,z,t),y0(x)y,z,t)) for z yields a ^func- 
tion z = a (x,y,t). Similarly, zQ = s(x0,yQ) 
yields z =ß (x,y,t) and zQ = 0 yields z = 
¥(x,y,t). This last surface will be called the 
middle surface and will be used as a reference 
surface for describing the flow in the follow- 
ing sense. We shall expand the functions 
xJx0,y0,z0,t) in Taylor series about zQ = 0, 
discard terms higher than the first power of 
zQ, and furthermore discard even the linear 
terms for x and y. The Lagrangian representa- 
tion of the flow then takes the following ap- 
proximate form: 

x = x(xQ,yo,0,t)   , 
y = y(x0,y0>o,t) , (7) 

z = z(x0,y0,o,t)+z0<Kx0.y0,t) . 

(6) 

where <|>is an unknown function, as well as x,y 
and z and alsoß(ais prescribed since h = hQ 

-a). Beyond this no approximations are made. 
The usual conservation laws and invariance 
requirements are now imposed in a familiar way 
to find the equations of motion. There quite 
evidently is an approximation, perhaps even a 
bold one, but not one that fits easily into the 
usual perturbation methods for finding approxi- 
mate equations. It also obviously requires a 
fairly thin horizontal sheet of water for it to 
give a good approximation to the 3-dimensional 
equations. Presumably the approximation could 
be improved by retaining more terms in the 
Taylor series, although it is by no means clear 
that all such choices will allow satisfying the 
conservation laws and invariance requirements. 
On the other hand, there is no parameter ap- 
pearing that can be used to indicate the ex- 
pected region of usefulness of the approxima- 
tion, as there is in Wu's approximation. The 
equations stand on their own and may be said to 
present a complete physical theory in the sense 
that all conservation laws and invariance re- 
quirements are satisfied. As we shall see later 
on, this property has interesting consequences 
when calculations are made. 

We now give the equations, but only for 2- 
dimensional motion. The undisturbed free sur- 
face is taken at z = 0 with Oz directed oppo- 
sitely to the force of gravity and Ox to the 
right. The free surface is described by z = 
S(x,t), the bottom by z =-h(x,t). The x-compo- 
nent of the velocity is denoted by u(x,t). Bars 
over u are dropped in the Wu equations. The 
imposed pressure on the free surface is 
p0(x,t). Surface tension is neglected. 

Wu's equations are as  follows: 

Ct+[(h+s)u]x= -V ^{[-r(V(nu)x) 
(8) 

" Th" ux]hx} ' 
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+ Th bt^^ 
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We note parenthetically that Wu's equations 
before he altered them to make them irrotation- 
al in the horizontal plane are somewhat simpler 
than those above,  namely, 

Ct+[(l»C)u]x- -ht 

iu a2 

ut+lW 7Pox= Th aWV^^    0) 

6      xxt 

However, to facilitate numerical  comparisons we 
have used the first  set of equations. 

The Green-Naghdi  equations  are the follow- 
ing: 

ct+[(h+5)u]x= -\ , 

VuVKx+ 7Pox= - T«4^* (10) 

+(?+h)(2c-K)x-(2?-h)xK}, 

where the dot over a  variable  indicates  the 
material   derivative. 

It is evident that any one of the sets of 
equations simplifies considerably on the right- 
hand side if h = const. Setting p_ = const, has 
much less effect (on the equations, not the 
solutions). If, in addition to setting h and p0 

constant, terms of the 0(a2) are discarded, 
then the Green-Naghdi equations reduce to the 
Wu equations. To find the appropriate steady- 
state equations in a coordinate frame moving 
with velocity U, say to the left, we need only 
replace 3/3t by U3/3x. We refrain from writing 
down the equations. We shall also not write 
down the equations in dimensionless form, al- 
though all our computations were done with 
dimensionless   equations. 

We can avoid describing the details of the 
numerical methods used to solve the equations, 
for we followed the lead of Wu and Wu (1982) in 
using a modified Euler method to derive a set 
of finite-difference equations. The method is 
described in their paper. We differ, however, 
in our method for solving these. Whereas Wu and 
Wu used an iterative method, we have put our 
equations into tridiagonal form and solved the 
resulting set of simultaneous, linear equations 
by the Thomas algorithm. Our open-boundary 
condition (a modified Sommerfeld condition) is 
the same one used by Wu and Wu, and is describ- 
ed in their paper. However, its implementation 
for the current studies is quite different 
[see, Ertekin (1984)]. It appears to be very 
effective in  preventing  reflection at the down- 

stream boundary. All computations for initial- 
value problems were done in a fixed coordinate 
frame, even though the results are presented in 
a moving frame. Here too we follow Wu and Wu. 

Various computations have been made, gen- 
erally with the aim of trying to throw light 
upon the measurements described earlier. One 
must keep in mind, of course, that the computa- 
tions are all for 2-dimensional situations, 
whereas the experiments were 3-dimensional. 
Hence comparisons must be chiefly qualitative. 
Two kinds of disturbances were used: one a 
pressure distribution on the free surface, 
p.(x+llt), and the other a bump on the channel 
bottom, both impulsively started at t = 0+ with 
a constant velocity U. The pressure distribu- 
tion in the moving frame (x1 = x + Ut) is des- 
cribed by 

P (x')= -l-P.n-cos(2irx7L)]  , 0<x'<L  , 
O £    a 

-   0 , elsewhere , 

and the bump by 

z=-h(x')=-h + \ [4x'(x'-L)L 0<x'<L , 

[ID 

(12) 
=-h     , elsewhere , 

where L is the extent of the disturbances. The 
initial conditions for u are u(x,0) = 0 for all 
problems. For pressure disturbances we require 
that S(x,0) = -po(x,0) and for bottom bump 
disturbances we require ?(x,0) = 0. The magni- 
tude of the disturbance is specified by the 
amplitudes pa and B. In the experiments the 
parameter analogous to pa is the draft d. The 
ratio d/b represents roughly the ship model 
disturbance smeared out over a band of length L 
stretching from wall  to wall. 

First we shall show computations that are 
analogous to the wave records themselves. We 
have more flexibility as computers than as 
experimenters, for we can equally easily show 
snapshots of the surface at successive instants 
of time or time records at different positions. 
Figure 18 shows snapshots of S/h for Fh = 0.8, 
L/hQ = 2 and pa = 0.1, calculated both by the 
Green-Naghdi and the Wu equations. (pa is non- 
dimensional ized with respect top, g, and hQ.) 
There is quite good agreement between the two 
methods. Furthermore, they reproduce, qualita- 
tively at least, the same phenomenon observed 
in the experiments (cf. Figure 5). Figure 19 
shows ?/h0 for Fn = 1.0, L/h = 2 and p = 
0.25. It is no longer possible to say that the 
two results are in agreement. Is it possible to 
say which one is the more reliable, for both 
are approximations? Wu's approximation is so 
formulated that one anticipates its deteri- 
oration as pa increases whereas the Green- 
Naghdi approximation has no especially favored 
(or disfavored) region of pa built into it. 
How then do we assess its accuracy? From the 
standpoint of the theory of Cosserat surfaces 
it is an independent theory and must be judged 
by its predictions. We are not in a position to 
make comparisons between calculation and meas- 
urement. However, in all our computations the 
two approximations  agree  well   for  small   pa  or 
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Figure 18. Free-surface profiles at various 
instants of time calculated according to: 
(a) the G-N, and (b) the Wu equations. Here 
F. = 0.8, L/h = 2.0, Pa = 0.1, Ax= 0.2 and 

At = 0.125. 

Figure 19. Free-surface profiles at various 
instants of time calculated according to: 
(a) the G-N, and (b) the Wu equations.    Here 
Fh=1.0, L/hQ 

0.2. 

2.0, pa = 0.25 and Ax = At: 

Figure 20.    Free-surface profi 1 es   at    various 
"instants of time   calculated    according   to- 
la) the G-N, and (b)  the Wu equations.    Here 
F.   = 1.1, L/h0 = 2.0,  pa   = 0.25,    Ax   = 0.2 
and At = 0.182. 

B, and the Green-Naghdi equations continue to 
give reasonable-appearing results when Wu's 
equations  have clearly begun to lose validity. 

Figure 20 shows C/hQ for essentially the 
same situation as Figure 19 except that now Fn 

= 1.1. We call attention to the fact that in 
Figure 18 where Fn = 0.8, the ampl itude of the 
solitons is slowly diminishing as it also did 
in the experiments (cf. Figure 5) whereas in 
Figures 19a and 20a they remain essentially 
constant, as also happened experimentally 
(cf. Figures 6 and 7). Figure 21 is the compu- 
ted analog of Figure 8 for Fn = 1.0. It shows 
the time record of C/hQ for two positions of a 
numerical wave gauge mounted ahead of the 
pressure distribution and moving with it. Cal- 
culations are made with the G-N equations. 

All the calculations above can be repeated 
for a moving bump on the bottom of the channel, 
although they become somewhat more complicated, 
as can be appreciated by a glance at the right- 
hand sides of the equations. However, computer 
programs have been written for both the Green- 
Naghdi and the Wu equations (both the nonlinear 
equations shown above and the linearized ver- 
sion). Figure 22 shows snapshots at different 
times for F. = 1.0, L/hQ = 2.0 and B/h = 0.3. 
Here again tnere is a substantial difference 
between the two predictions, whereas they are 
indistinguishable for small B/hQ. We note that 
in all the computations presented in Figures 
18-22, the left and right numerical boundaries 
were at x'/h    =  -50 and  50,  respectively. 
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Figure 21. Calculated time record of S/h at 
two fixed distances ahead of the pressure 
distribution. Here F, = 1.0, L/h = 2.0,p = 
0.25 and Ax = At = 0?2. ° 

Since calculation has been able to repro- 
duce the essential features of the experimental 
wave records, it is clear that all the derived 
experimental quantities shown in Figures 9-17 
can also be obtained by calculation as long as 
parameters strictly associated with the tank 
width are not involved. We show only a few of 
these. 

Figure 23 shows A/hQ against Fh for three 
values of pa. The next Figure 24 shows experi- 
mental values of A/hQ against Fh for hQ = 15 
cm and three values of d. One sees that the 
behavior near Fh = 1.1 is similar. Figure 25 
shows UT /h plotted against Fu for the same 
values of pa and Figure 26 shows the corres- 
ponding experimental results for the same val- 
ues of d as in Figure 24. 

Figures 27 and 28 show analogous plots for 
c/i^gho against Fn, computed for three values of 
p in Figure 27, measured for three values of d 
in Figure 28. Again one sees the qualitative 
similarity in the two plots. 

Figure 29 shows A/hQ plotted against 
c//qh~0 for, again, pa = 0.10, 0.15 and 0.20. 
The solid lines are the curves relating A/hQ 
and c/vgT7 for a single solitary wave accord- 
ing to the Korteweg-deVries equation and the 
Green-Naghdi equations. The individual points 
are, of course, computed for the unsteady in- 
itial-value  problem  as before. 

4. CONCLUDING REMARKS 

As has been mentioned earlier, we have 
many more experimental results than could be 
shown here. We also have more computed results 
than we have shown, and with little effort and 
expense could produce still more, but these are 
limited to 2-dimensional motion for the pres- 
ent. However, as is mentioned in Huang et al., 
(1982b), the fact that solitons can be generat- 
ed by 2-dimensional disturbances tells us that 
their generation by ship models is not a 3- 
dimensional effect only. Also, this phenomenon 
is not associated with viscosity nor with 
equipment malfunction such as poor speed con- 
trol.   Although  we  have  not  discussed   resis- 

h. 

—f^ 

1 ~*. L_,I -*■   I    70 

x'/hr 

x7h„ 

Figure 22. Free-surface profiles at different 
times for a moving bump on the bottom 
calculated according to: (a) the G-N, and 
(b)  the Wu equations. Here F,   = 1.0, L/h      = 
2.0, B/hn 0.3, Ax = 0.2 and At = 0.1. 

tance, it was both measured and computed, and 
oscillates about a mean value with a period 
equal to that of soliton generation. Hence the 
model experimenter need not look to anything 
but the laws of fluid dynamics when he finds 
that his resistance measurements seem to oscil- 
late. However, both the experimental and compu- 
tational evidence seems to indicate that for 
subcritical speeds the soliton amplitudes grad- 
ually diminish to zero. For supercritical 
speeds below a depth Froude number of about 1.2 
a steady state does not seem to be approached. 

As was shown by Wu and Wu (1982), it is 
essential that the full nonlinear equations, 
either Wu's or Green-Naghdi's, be used. The 
linearized equations, which are the same for 
both, cannot predict the generation of soli- 
tons. 

We have not discussed solutions of the 
steady-state equations in a coordinate system 
moving with velocity U. Since both the experi- 
ments and the computations seem to show that a 
steady state is never reached if Fn < 1.2, it 
is not clear that solutions of the steady-state 
equations correspond to the desired physical 
problem. For subcritical speeds, at least, the 
solutions apply more properly to a flow with a 
rigid top ahead of the disturbance. For such 
flows small values of p, or B produce a cnoid- 
al-wave pattern behind trie  pressure distribu- 
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Figure 25. UT /h plotted against Fh for 
L/h = 2.0, % = 0.10, 0.15 and 0.20. 
Computations made with the Green-Naghdi 
equations. 

120 

Figure 24.    Experimental  values of A/h    plotted 
against F^ for h 
d = 5.0,      " "  -" 

15 cm, b 
7.5 and 10.0 cm. 

244   cm    and 

tions or bottom bumps, large values lead to a 
hydraulic jump in the downstream  region. 

It was mentioned in the Introduction that 
the generated solitons begin to break for Fn = 
1.2 and that for Fn = 1.3 they are replaced by 
a hydraulic jump moving ahead of but together 
with the model. In the computations of Huang et 
al. (1982b), it was found that for F^ > 1.175, 
solitons were no longer generated. This phenom- 
enon was also investigated with the Green- 
Naghdi equations. We found that the amplitude 
of the disturbance had a strong effect on this 
phenomenon. The value of Fh above which no 
solitons are generated decreases as the distur- 
bance amplitudes  pa or B decrease. 

As part of the study, the effect of nega- 
tive disturbances (negative pressures or inden- 
tations on the bottom) were also investigated. 
Although we do not present these results here, 
we found that the solutions for these flows are 
quite similar to those for positive disturb- 
ances. However, the time required for the soli- 
tons to develop was considerably longer than 
for the positive  disturbances. 

 m 
h 

0 5.0 cm 

B 7.5 cm 

V 10.0 cm 

0$ 
H       El 

B a     A 

_) !- 
0.6 1.0 1.2 

values    of   UTm/hn Figure 26.      Experimental 
plotted against F.     for    hn = 15 cm, b ="'24' 
cm   and    d = 5.0,      7.5    aRd      10.0    cm. 
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Figure 27. Dimensionless speed of the first 
soliton plotted against F. for L/h = 2.0, 
pa = 0.10, 0.15 and 0.20. Computations 
made with    the    Green-Naghdi    equations. 
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Figure 28. Experimental values of c//gh"^ 
plotted against F. for h = 15 cm, 
b    =    244 cm and d = 5.0, 7.5    and 10.0    cm. 
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Figure 29. The amplitude A/h plotted against 
c//gh^ for L/hQ = 2.0, pg = 0.10, 0.15 
and    0.20.      Computations      made    with      the 
Green-Naghdi    equations. 

Although we have given what we hope is a 
representative sample of our experimental and 
computational results, those who are interested 
in more details concerning the theory, numeri- 
cal techniques or experimental procedures 
should consult the doctoral thesis of Ertekin 
(1984). 
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DISCUSSION 

Dr.-Ing.  HIROSHI  ISSHIKI, 
Technical Research Institute, Hitachi Zosen Corp., 
Osaka, Japan: 

I would like to express my sincere respect 
and gratitude to the authors for this very nice 
paper of fundamental importance. I would like 
to raise two points: 
1. On page 31, you write: "The ratio d/b repre- 

sents roughly the ship model disturbance 
smeared out over a band of length L stretch- 
ing from wall to wall". I think it is not 
correct. Since pgdBL may be a measure of 
the buoyant force where B is the breadth of 
a ship, the external pressure applied on the 
free surface which corresponds to ship dis- 
turbance may be p g d B L/(p L) = p g d B/b. If 
we normalize this with hydrostatic pressure 
Pgh, we then have pgdB/(bpgh) = dB/(bh). 
This is nothing but the blockage coefficient. 
This may be the reason why the blockage co- 
efficient is so significant in this phenom- 
enon. 

2. Wu's equation, I think, is really a very 
nice equation, since its physical background 
is very clear and easily understandable. How- 
ever, your results seem to suggest that some 
problem is hidden in Wu's equation. According 
to his equation, the amplitude of soliton 
increases as it proceeds. I feel some uneasi- 
ness about this tendency. I have a feeling 
that the nonlinearity may be a little bit 
too strong or the dispersion is a little bit 
too weak. 

The discusser would be very grateful if he could 
have your reply and/or comment on these problems. 

Dr. ANTONY J. MUSKER, 
Admiralty Research Establishment, 
Haslar, England: 

Users of towing tanks will no doubt appre- 
ciate this extensive study performed by the au- 
thors even though it may cast some doubt on 
their experimental techniques in certain cir- 
cumstances. To the best of my knowledge the 
phenomenon reported in the present paper has 
not been investigated at Haslar - certainly 
not in recent years. Any difficulties in 
achieving steady state conditions have in- 
variably been associated (perhaps incorrectly) 
with structural resonances in the carriage or 
imperfect speed control. However, the support- 
ing computational work by the authors would 
seem to rule out these factors for the present 
investigation. 

I think it is important not to lose sight 
of the fact that at the end of the day what we 
are invariably interested in, for a simple 
towing test, is the resistance and I note that 
this was measured during the experiments and 
can no doubt be recovered from the computational 
work. Can the authors therefore provide any quan- 
titative information regarding how the presence 
of these soli tons affects the resistance and, 
specifically, what is the amplitude of the 
oscillatory component of resistance as a frac- 
tion of the mean value for a typical run? 

S.J. LEE, G.T. YATES and T.Y. WU, 
California Institute of Technology, 
Pasadena, CA, USA: 

Having shared common interest and collabo- 
rated for mutual benefit with the present au- 
thors, we appreciate how much effort they must 
have devoted to this work. They should be com- 
mended for this valuable paper which presents 
extensively some essential features of the 
newly identified phenomenon of continuous soli- 
ton generation. We would like to take this 
opportunity to offer some of our numerical and 
preliminary experimental results very recently 
obtained in order to provide more information 
for comparison between experiment and theories. 

We have investigated experimentally the 
wave generation by a two-dimensional bottom 
bump (having a circular arc top of height 
b0 = 0.8 cm and flat base of chord L = 5 cm) 
towed with velocity U along the floor of a 
water tank of dimensions 2.5'wX 2'h X 25' 1 
containing a layer of shallow water of depth h. 
Figure 1 shows the results for BO = b0/h = 0.185, 
the depth Froude number Fh = U//gTT = !.,£? = £! = 
h/L = 0.88. The top two curves in Figure 1 show 
the spatial distributions of the wave profile 
at the dimensionless time (being defined the 
same as in the paper) T = 56.8 and = 113.6, 
respectively, fixed with respect to the bump 
which is spanning one spatial unit between the 
two vertical bars. The third and fourth set of 
curves in Figure 1 present the experimental 
water surface elevation (shown in dashed curves) 
measured by a wave gage (No. 1) fixed at 1L 
ahead, and by another gage (No. 2) held at 5L 
behind the bump leading edge, respectively, 
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also shown for comparison are the corresponding 
theoretical predictions (in solid curves) based 
on the Wu equation as cited in the paper. The 
last curve of Figure 1 gives the theoretical 
variation of the wave resistance with time. 

Figure 2 exhibits the water surface eleva- 
tion measured (shown with dashed curves) by five 
wave gages held fixed inside the tank at dis- 
tances of 27.2L, 44.2L, 61.2L, 78L and 95L, 
respectively, from the starting position; the 
solid curves show the corresponding theoretical 
predictions by the Wu equation. 

Figure 3 presents results similar to that 
of Figure 1 except that the disturbance is now 
stronger, with bQ/h = 0.283, and the water depth 
is relatively shallower, with h/L = 0.6, but the 
speed is again critical, at F^ = 1.0. In addi- 
tion, the wave gage No. 1 is now fixed at 2L 
and gage No. 2 at 7.4L, both ahead of the bump. 
We note that the measured surface elevation 
(shown with.dashed curves) becomes smaller in 
maximum height and greater in its minimum ele- 
vation than those of the corresponding numerical 
results (shown with solid curves) and this trend 
appears to be gradually magnified as the solitons 
move farther ahead. This variance between ex- 
periment and theory may in part be due to wave 
breaking (arising from such a high forcing ex- 
citation) which was observed in the experiment 
in this case; it is however unlikely that this 
can fully explain all the differences and our 
complete understanding is not yet in hand. With 
respect to the period of soliton generation, 
we see that the experimental value is in gen- 
eral slightly shorter than our theoretical pre- 
diction; e.g., by the time of T = 100, wave 
gage No. 1 (held fixed at 2L ahead of the 

BUMP) measured just four solitons having 
it, as versus three and one-half accordi 
the theory. 

passed 
ng to 
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Somewhat related to this point, we note 
that the authors have made a separate compari- 
son between the theory of G-N and that of Wu, 
for a bottom bump of different shape, with the 
most striking difference being that the G-N 
equations predict fewer and smaller runaway 
solitons than Wu's equations. 

While the foregoing two cases should not 
be directly compared for lack of a precise 
common base, comparisons between our own calcu- 
lations and experiment have nevertheless indi- 
cated quite satisfactory agreement for B0 = bo/h 
as great as 0.185 at the critical speed of 
Fn = 1 before the nonlinear effects become more 
significant such as shown in Figure 3. Such 
good agreements can be regarded as providing 
verifications that the assumption of both 
E = h0A and a = a/hp being small (on which Wu's 
equations are based) is not necessary for Wu's 
theory to yield satisfactory results for the 
forced generation of solitons of somewhat 
greater amplitudes than originally assumed. 
If estimated by the results (of comparison) 
shown in Figures 1 and 2, it would be reason- 
able to accept for a = a/h0 the value up to 
0.5, and hence the value of up to 0.7 for 
e = h0/X as the range of validity for the mo- 
del in question, which happens to coincide 
with that established for the Korteweg-de Vries 
equation (Hammack & Segur, 1974, J. Fluid Mech. 
65, 289) and for the Boussinesq model (see, 
e7g., Miles 1980, Ann. Rev. Fluid Mech. 12, 11) 
in predicting the motion of free solitons. 
However, we must stress that the range of va- 
lidity of the new models at hand cannot be 
fully established without more extensive ex- 
perimental studies and verifications. In fact, 
the phenomenon of continuous generation of 
solitons is so new and so little understood 
that, we believe, further research will be 
urgently needed before any reliable conclusions 
can be safely drawn. 

AUTHORS' REPLY 

To Prof. Isshiki: 
1) Our statement several lines below equa- 

tion (12) concerning an interpretation of the 
ratio d/b was intended to be only suggestive. 
The discusser notes that the blockage coeffi- 
cient is even more closely associated with this 
"smearing out". It is indeed equally sugges- 
tive, more precise, and is borne out by the 
experimental data. 

2) We think both sets of equations, Wu's 
and G-N's, are "nice" and think that we under- 
stand the physical and mathematical assumptions 
underlying each. For small values of a and e 
they give nearly identical predictions. One 
anticipates that Wu's equations must fail for 
sufficiently large values of a and e . However, 
the fact that the G-N equations continue to 
provide reasonable-looking results for large 
disturbances is no proof that the results are 
correct. This must be determined by comparison 
with experimental data or with more precise 
calculations based on the exact fluid-dynamical 
equations. 

To Dr. Musker: 
We did not discuss our measurements of 

resistance in order not to make the paper too 
long. Figure D.l shows the total resistance 
together with the wave records shown in Figure 8, 
Ft, = 1.05. We take the opportunity to note that 
the experimental records of Figure 8 and Fig- 
ure D.l start before the towing carriage was 
put into motion. This was done in order to 
observe the transient behavior of the resist- 
ance. Therefore in these Figures the actual 
start of the test corresponds to a point on 
the time axis where the resistance record 
starts to deviate from zero. The amplitude of 
the fluctuation of resistance in Figure D.l 
is approximately 10 %  of the mean total re- 
sistance and the fluctuations have approxi- 
mately the same period as that of the solitons. 
It has also been observed that measured ampli- 
tude of the resistance fluctuation increases 
with increasing Froude number and blockage 
coefficient. However, the amplitude seems neg- 
ligible for values of Fh < 0.9 . 

Fig. D.l 

Fig. D.2 
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In Figure D.2 we snow the calculated wave 
resistance and the wave records (at two moving 
"numerical" wave gauges ahead of the disturb- 
ance) that correspond to Figure 20a (Cwr = 
F
w/P9

ho)- In general, calculated wave-resist- 
ance fluctuates with larger amplitudes, as can 
also be seen in Figures 1 and 3 in the discus- 
sion of Lee, Yates and Wu. We should remember, 
however, that these are two-dimensional calcu- 
lations and viscosity is ignored. 

To Drs. Lee, Yates and Wu: 
We are naturally delighted to have these 

comments from Lee, Yates and Wu, for they com- 
plement our paper with additional experimental 
and computational data as well as with informa- 
tion about the range of validity of Wu's equa- 
tions, information that seems to be excluded 
in principle for the G-N equations. The dis- 
cussers warn, however, against placing too much 
credence in the suggested range, and we concur 
in this warning. 

I^IJj^JJ.lAU.U    56.1 

'j/^li/^i "3-6 

At x'/ti «-1.2 

98      188    118    128 

UT/h0 

A A A A A A4> $6 

Fig.   D.3 

Figure D.3 shows wave profiles computed 
with the G-N equations for a circular-arc bump - 
with L/h0 = 1.2, B/h = 0.185 and F, = 1.0; 
this corresponds to the discussers' Figure 1. 
Computations for this bump present some diffi- 
culties, since the ends of the circular arc 
have discontinuities in the derivatives re- 
quired by either the Wu or the G-N equations. 
The agreement with the discussers' experimental 
data (shown by symbols) seems very  good, but 
with seemingly innocent modifications of the 
treatment of the discontinuities one can pro- 
duce quite different results. Figure D.4 shows 
our calculated results with Wu's equations of 
the curves in the discussers' Figure 1. The 
differences are notable, probably because of 
slightly different treatments of the discon- 
tinuities at the ends of the arc. In principle, 
when such discontinuities appear one should 
employ suitable jump conditions. We plan to do 
this in the future. 

At x'/h *-].'< 

188   118   128 

UT/h„ 

Fig.   D.4 

In Figure D.5 we show calculations using 
the G-N equations for a situation corresponding 
to the discussers' Figure 3: L/h0 = 1.7, 
B/hQ = 0.284, Fn = 1.0 . We note that the con- 
tinuous increase of soli ton amplitude shown in 
their Figure 3 does not occur with the G-N 
equations. (The caveat concerning computations 
applies here also; however, the G-N equations 
have not given solitons of increasing amplitude 
in other situations.) 
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EDGE WAVES CREATED BY A LONGSHORE CURRENT 

AND A RIDGE IN THE SEA-BED 

CHIA-SHUN YIH 

ABSTRACT 

A mechanism for creation of edge waves is 
proposed.  It is shown that a longshore current 
flowing over a ridge in a sloping sea-bed with 
an angle of inclination y not greater than ir/4 
produces edge waves in the lee of the ridge. 
These edge waves have a wave number equal to 
gU_2siny, where g is the gravitational acceler- 
ation,  U the velocity of the longshore current, 
and y the angle of inclination of the sea-bed. 
The amplitude of the edge waves produced de- 
pends on the amplitude and geometry of the 
ridge as well as on the three variables men- 
tioned above. 

1.  INTRODUCTION 

Edge waves, discovered theoretically by 
Stokes (1846), are waves with amplitude de- 
creasing exponentially toward sea, and exist 
if the sea-bed is an inclined plane.  The 
question of creation of edge waves in nature, 
however, has never been studied.  Creation by 
wind is, of course, a possibility, but any 
creation of edge waves by wind would seem to 
require that the wind be along the shore, and 
that its velocity decrease toward sea -. a con- 
dition not often satisfied. 

In this paper a mechanism of creation of 
edge waves is proposed: by a longshore current 
flowing over a ridge in a sloping sea-bed. The 
ridge assumed is either two- or three- dimen- 
sional, depending on y. 

It will be shown that the wave number of 
the edge waves produced is gU siny, where g is 
the gravitational acceleration, U the general 
velocity of the longshore current, apart from 
perturbations due to the ridge, and y is the 
angle of inclination of the sea-bed to the un- 
disturbed sea surface.  The amplitude of the 
edge waves created depends on the amplitude of 
ridge as well as on g, U, and y.  The attenua- 
tion of the amplitude of the ridge toward sea 
depends, however, on y, if edge waves are to 
be produced. 

2.  FORMULATION 

Let x, y, and z be Cartesian coordinates, 

with the shoreline as the x-axis when the sea 
is at rest, with y measured horizontally away 
from the sea, and with z measured vertically 
upward (Figure 1).  We neglect the effects of 
viscosity, and consequently can, as usual, 

Figure 1. Definition of Coordinates. 

assume the motion to be irrotational, so that 
a velocity potential <f> exists, in terms of 
which the velocity components u, v, and w, in 
the direction of increasing x, y, and z, can 
be expressed: 

where the subscripts indicate partial differen- 
tiation.  The equation of continuity then gives 

yy 
= o (i) 

which is the equation governing the motion. 
At the free surface, where z = ?. the 

kinematic condition is 

(*x£+*yi)? = V (2) 

and, since the flow is supposed to be steady, 

*University of Michigan, Ann Arbor, Michigan 48109-2125, U.S.A. 
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the Bernoulli equation is 

q + 2gC =  constant, 

in which 

2     2 ,  2 ,  2 
q  = u + v + w 

2   2   2 
i  + A  + <j> . 
x   y   z 

(3) 

(4) 

Combining (3) and (4), we have the free-surface 
condition 

y y   z z 
(10) 

It can be readily verified that, to the 
first order in a, the velocity potential that 
will produce the bottom corrugation specified 
by (9) is 

d> = Ux H . -  sin kx[b exp ky' + Y sm2y 

a exp   (ky'cos2y  - kz'sin2y)]. (11) 

(*x ik    +*yi]   q2  + 2S*z     -     °- (5) 

At  the  sea-bed  the boundary  condition  is 

3n 0, (6) 

where n is measured along the normal to the 
sea-bed.  Very far from the shore the condition 
is 

= Ux at (7) 

Equations (1), (5), (6), and (7) constitute the 
differential system to be solved.  The exact 
shape of the ridge will be specified later. 

3. ANALYSIS 

It is evident that (10) is satisfied, and that 
the term with amplitude b does not contribute 
a velocity in the z'-direction.  At z' = 0, 

u 1r s ax 

is satisfied by (9) and (11), as a brief calcu- 
lation will show. Thus the satisfaction of (6) 
is guaranteed. 

On the free surface, the condition (5) re- 
duces to the form 

2 2 
(g siny - U k)b - (g siny + U k)a 

k + k 
e 

2k 
-(1 + -)a, 

0, (12) 

(13) 

To solve the problem posed, we introduce 
another set of Cartesian coordinates (x', y', 
z').  The axes of y' and z' are shown in Figure 
1.  The y' -axis, inclined at angle y with the 
y-axis, is along the line of steepest ascent of 
the sea bed in the absence of the ridge.  Thus 

= y cosy + z siny, -y siny + z cosy. 
(8) 

in which 

k  = g sin y 

u2  ' 
(14) 

Equations (11) and (13) give the solution 
sought. 

As to the free-surface displacement £,,   it 
is to be found from 

Both sets of Cartesian c 
handed. In the absence 
bed would be given by z' 
plitude of the ridge is 
(compared with its width 
length of the edge waves 
tic condition for the ve 
can be imposed at z' = 0 

Before considering 
sider a corrugated sea-b 
with 

oordinates are right- 
of the ridge, the sea- 

= 0.  Since the am- 
supposed to be small 
or with the wave 
produced), the kinema- 
locity at the sea-bed 

a ridge, we shall con- 
ed given by z' = C', 

V a cos kx exp(ky'cos2y). (9) 

where k is the wave number in the x-direction. 
If y = IT/4, the ridge is cylindrical.  If Y<TT/4, 
the amplitude of the ridge decreases exponen- 
tially toward sea.  We shall therefore restrict 
ourselves to values of y in the range 

Y it/4 . 

The explanation for the form of the ridge as- 
sumed by (9) will become clear later.  In terms 
of the new coordinates (x, y', z'), the equa- 
tions for <j> is still the Laplace equation 

U — ? 
dX 

(15) 

Noting that (8) gives 

y' cos2y - z'sin2y = y cosy - z siny,  (16) 

we obtain from (11), (13), and (15) that 

k 

cosy (1 + k - k 
-) cos kx exp(kycosy).   (17) 

Thus edge waves are obtained.  These are bound 
waves, however, with the wavelength exactly 
equal to the wavelength of the sea-bed corru- 
gation.  For k = k , the solution fails, how- 
ever small a is, and there is resonance.  It 
will be seen that, when the bottom protrusion 
is a single ridge, the edge waves produced have 
exactly the wave number k . 

It is appropriate here to note that Stokes' 
edge waves attenuate seaward as exp (kycosy). 
This attenuation is provided by the term with 
amplitude b in (11), and further demands the 
factor 
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exp k(y'cos2y - z'sin2y) 

in (11), which, as can be seen from (16), gives 
the required attenuation at z = 0.  Thus the 
assumption (9) is not arbitrary, but is forced 
upon us if we want the bottom corrugation to 
produce pure edge waves.  As a consequence, the 
form of any sea-bed geometry cannot be arbitra- 
ry either, if pure edge waves are to be pro- 
duced. 

The results just obtained for a sea-bed 
corrugation periodic in x can be generalized by 
Fourier integration.  Consider, for instance, a 
bottom protrusion given by 

i  -   i  _ A(B - y'cos2Y) 
z   =  C 2   2 

(B - y'cos2y)  + x 

which can be expressed as 

(18) 

J = /" -,—=-:— cos kx exp k(ycosy - B)dk 
0 k - k 

Re/* -—5-r— exp k(ycosy - B + ix)dk (25) 
o k - k 

e 

We shall, in calculating I and J, which are the 
two most significant integrals in (22) and (23), 
first replace k by k + iu, with u positive, 
and then let y approach zero.  This is the well- 
known and often used device of Rayleigh, to 
make the gravity waves appear only in the lee 
of the obstacle.  Furthermore, we shall replace 
the variable k by the complex variable x = k+im, 
and use the Cauchy integral theorem in the 
plane of the complex variable x- 

For x > 0, we shall use the contour shown 
in Figure 2.  Upon letting R tend to infinity, 

c,<     = A /" eBkcos kx exp(ky'cos2Y)dk,   (19) 
0 

where A has the dimension of length squared. 
We shall now, for economy, write (11) as 

<(> = Ux + Uac^, (20) 

where 

k + k 
smkx  r e        , i , 

j,  =   . .   r r- exp ky + 
1    sin2y  k - k 

exp (ky'cos2y - kz'sin2y)].     (21) 

Then on inspection of (9) and (19), the solu- 
tion for <f> for the protrusion (18) or (19) is 

Bk 
<j>    +    Ux + Vkf    e <f1 (k)dk, (22) 

Figure 2.   Contour in  the -plane  for x > 0. 

we have, 

I =  2TTCOS k x exp k (y' - B) + 

and the free-surface displacement is given by, 
on inspection of (9), (19), and (17), 

5  = -JL. r     (1 + _A_)e-Bkcoskx 
^    cosy 0      k - k 

•exp(kycosy)dk. 
(23) 

Equations (22) and (23) give the solution to 
the problem.  But the integrals therein need to 
be evaluated to exhibit the edge waves created 
in the lee of the protrusion on the one hand, 
and the local disturbances, on the other. 

4.  EVALUATION OF THE INTEGRALS 

Let us define the integrals I and J by 

1 
I =  /, 0 k - k 

sin kx exp k(y'-B)dk = 

Im/»  i-—  exp[-mx + im(y' - B)]dm = 0, 
im - k 

where 

(26) 

I = 2TICOS k x exp k(y' - B) + 1^,   (27) 

0°        1 —mX  r       .       {       I      T3\ 

I  = fQ  ~2 J e    [m Sln ™(y  ~ 
m + k 

k cos m(y' - B)]dm. 
e 

For x < 0, we use the contour shown in 
Figure 3, and obtain 

Im/ 0 k - k 
i—- exp k(y'-B + ix)dk,    (24) 
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easy to evaluate.  The final results are 

Ux + sin2y    e 2   2 
(y' - B)  + x 

2   2 
(ycosy - zsiny) + x 

], (32) 

where I is given by (26)  if x > 0 and by (28) 
if x < 0, and 

? = [k J+  B_^cos_y 

(B 
2   2 

ycosy)  + x 
],  (33) 

Figure 3. Contour in the -plane for x < 0. 

I = -; 0  2 , .2 
m + k 

e 

e   |m sm m(y - B) - 

k  cos m(y' - B)]dm . (28) 

It can be shown that (27) and (28) give the 
same value for I at x = 0.  All we need to do 
is to evaluate the integral 

1 
/  r- expx(y' - B + ix)dx 

along a contour consisting of a section of 
length 2R of the m-axis and a large semi-circle 
to the right of it, with that section as its 
diameter, use the Cauchy residue theorem, and 
let R approach infinity.  The center of the 
semi-circle is the origin. 

As to J, a similar approach gives, for 
x > 0, 

J = -27Tsink x exp k (ycosy - B) + J, ,   (29) 

where 

J  =  ; —2 j e    tm cos m(ycosY - B) + 
m + k 

k sin m(ycosy - B)]dm. (30) 

For x < 0, the contour in Figure 3 is used, and 
we obtain 

1    mx r      ,        , e   [m cos mCycosy - B) + 
0  2 a. v2 
m + k 

e 

k sin m(ycosy - B)dm. (31) 

The other integrals in (22) and (23) are 

where J is given by (29)if x > 0, and by (31) 
if x < 0.  It is evident from (32) and (26), 
and from (33) and (29), that there is a wave 
component for <j> and one for £ for x > 0, but no 
wave component at all for <j> and x,,   if x < 0. 
The other terms in <fi and t,  represent local dis- 
turbances. Fig. 4 shows a perspective of ?. 

5.  DISCUSSION 

- We note first of all that the J. given by 
(30) for x > 0 is exactly equal to trie J given 
by (31) for x < 0, for the same absolute value 
of x.  Thus the J, given by (30) and the J 
given by (31) represent local disturbances of 
the free surface due to the bottom protrusion. 
Furthermore, the last term in (33), which is 
symmetric with respect to x, also represents 
such a disturbance. 

The edge waves created are given by the 
first term on the right-hand side of (29), 
after it has been multiplied by the factor 
Ak secy, as shown in (33).  It is interesting 
that the amplitude of these waves decreases 
exponentially as exp(-k B), as B increases. 
That is, the wider (in the x-direction) the 
protrusion is, the smaller the amplitude.  It 
should be noted that, for a fixed x, (18) gives 
a c' which decreases asymptotically with y' as 
A(B-y'cos2y)_1. 

Inspection of (9) and (19) shows that the 
solution fails if y > TT/4, for then £,'   would be 
so large that the linear theory fails.  This 
seems to indicate that pure edge waves cannot 
be created by a long-shore current if y > TT/4. 

To reasure oneself that this is so one may con- 
sider the case y = ir/2.     The sea-bed is then 
a vertical sea wall.  If there is any seaward 
protrusion of it, the waves created by it are 
certainly more like ship waves than edge waves. 

The question naturally arises:  For y <_ 
TT/4, if the bottom protrusion does not have 
exactly the y'-dependence required, what waves 
will be created? In that case, it seems that, 
in addition to the edge waves there will be 
other waves created, which account for the 
deviation of the y'-dependence of 5' from the 
required one.  What we have  presented in this 
paper is the solution of pure edge waves creat- 
ed by a longshore current flowing over a slop- 
ing sea-bed inclined generally at an angle 
Y £. TT/4 , with a protrusion that decreases in 
some way as y'  decreases toward negative infi- 
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nity. 

Figure 4.  A perspective of the free surface for a bottom protrusion given by (18). With 
y  = TT/4, k =5, and with B as the length scale. 
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A STUDY OF NONLINEAR WAVE RESISTANCE 

BY A ZAKHAROV-TYPE INTEGRAL EQUATION 

G, DAGAN   AND   T. MILOH 

ABSTRACT 

The nonlinear problem of wave resistance 
is tackled in this paper by formulating it in 
the Fourier space and by deriving a nonlinear 
integral equation of the Zakharov-type for the 
velocity potential. This procedure is illus- 
trated by computing the wave drag of a sub- 
merged cylinder (2D) and a sphere (3D). 
Special attention is paid to the small Froude 
number non-uniformity exhibited by the regular 
perturbation scheme. A uniform generalized 
expansion which satisfies the new nonlinear 
integral equation is constructed in this paper 
and the resulting generalized wave drag is 
shown to be considerably larger than that 
predicted by the regular perturbation. 
Several existing methods, which are based on a 
quasilinearization of the free-surface bounda- 
ry conditions, are also discussed and compared 
against the present nonlinear solution. The 
promising results thus obtained are believed 
to open new avenues in exploring the fascinat- 
ing problem of nonlinear wave resistance. 

1.  INTRODUCTION 

The computation of the nonlinear wave re- 
sistance of submerged or floating bodies is a 
subject of intensive research of the last 
twenty years. Various approximate schemes 
have been derived in order to tackle this dif- 
ficult problem (a recent survey has been pro- 
vided by Tulin, 1978). These approximations 
are generally based on intuitive arguments and 
even the elucidation of the main mechanisms of 
nonlinear wave generation is still a matter of 
debate. 

A rational and consistent approach to 
free-surface flows and wave resistance is by 
the regular perturbation expansion of the vel- 
ocity potential in a deep submergence, thin or 
slender body approximation (e.g. Wehausen and 
Laitone, 1960). The first-term of such an ex- 
pansion satisfies the classical linearized 
equations which have been investigated for al- 
most a century in the pioneering works of Kel- 
vin,  Michell,  Havelock, Kochin, Weinblum and 

Brard, to mention only a few of the illustri- 
ous predecessors of this field. The computa- 
tion of second-order, nonlinear corrections, 
to the velocity field and wave resistance, has 
been made possible only recently by the advent 
of the electronic computers. This avenue has 
not been found to be promising so far for at 
least two reasons: (i) the calculations are 
quite involved and (ii) and more importantly, 
the perturbation expansion has been found to 
be nonuniform. The nonuniformity which occurs 
at moderate and small Froude numbers is of 
major concern for the range of speeds experi- 
enced by most ships. This state of affairs 
may explain the flurry of inconsistent, ap- 
proximate methods, which have been developed 
as an alternative to the regular perturbation 
expansion. 

In the last few years the problem of 
weakly nonlinear interaction and stability of 
trains of gravity waves has been investigated 
with considerable success by using the Zakha- 
rov integral equation (Zakharov, 1968 and for 
a comprehensive survey see Yuen and Lake, 
1982). This success has motivated our inter- 
est in applying a similar approach to the 
problem of wave generation by moving bodies. 
As we shall show, although the starting point 
of the studies is similar, the wave resistance 
problem does not lend itself to the decomposi- 
tion of the wave field in a slow and rapid 
components, adopted by Zakharov. For this re- 
ason, we prefer to call the basic integral 
equation which is introduced in this paper, as 
of "Zakharov type", to distinguish it from the 
commonly referred to as Zakharov's equation. 

The advantage of formulating the nonline- 
ar wave problem as an integral equation in the 
Fourier transform space is that it permits one 
to single out in a rational manner and to re- 
tain in the first-order approximation of the 
wave field the most singular terms which are 
responsible for the strong nonlinear effects. 
Furthermore, unlike methods which rely heavily 
on complex variables, and for this reason are 
restricted only to two-dimensional flows, the 
present approach is applicable to 
three-dimensional flows as well. 

* G. Dagan and T. Miloh, Faculty of Engineering, Tel-Aviv University, Ramat-Aviv 69978, Israel 
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The present study is a first step towards 
the application of the Zakharov-type equation 
to free-surface flow past bodies and the gen- 
eral approach is illustrated here for two par- 
ticular cases only, namely the submerged cyl- 
inder and sphere. We hope that the encourag- 
ing results presented here will stimulate 
further investigations of more complex, real- 
istic, problems in the future. 

2^ MATHEMATICAL STATEMENT OF THE PROBLEM 

We consider here the steady, irrotational 
flow of an inviscid and heavy fluid past a 
submerged body. The variables are made dimen- 
sionless with respect to U' and U' /g as velo- 
city and length scales, respectively, U' being 
the unperturbed, constant, velocity at infini- 
ty. Let x,z be cartesian coordinates in the 
plane of the unperturbed free-surface, y a 
vertical coordinate pointing upwards and 
*(x,y,z) the perturbation velocity potential, 
such that the total potential is equal to 
-x + $. In the case of two-dimensional flow 
the z coordinate has to be deleted. 

The exact free-surface conditions 

3x 

3£ 
ay 

n - ±  V4>-V4>= 0 

3n _ 3n Ü _ Ü 11 

(y=n) (2.1) 

3X jx 3x   3z 3z 
0 (y=n) , (2.2) 

where y=Tl(x,z) is the free-surface equation, 
are now expanded in a Taylor series about y=0, 
implying weak nonlinearity. Ey retaining only 
quadratic terms and by elimination of n the 
following equation for the potential is obta- 
ined 

3^$ 3$ 
3y — I1 (~)2 + 3x l2 ^3x; 

Lt £? + 
3x3x3 

(s) 
where <f> is the singular potential, supple- 
mented by appropriate images across y=0, such 
that 

» (x,0,z) = 0 , (2.6) 

Jr) ,, whereas $        is regular for y _< 0.  By substiy 
tuting  $ (2.5) into (2.3) we obtain for <j> 
the free-surface condition on y=0 

£Vr)
+ ii

(r) ^_ r 1 fM
(r),2 . M(r) iVr\ 

, 2  + 3y    3x l2 ^3x  ;    3x   .3 
3x      J 3x 

2 \ 2  }     +  (dz       '  '      3x 
3x 

(r) 3^(r)   ii_(s) 

3z2   "   d? ' 

(2.7) 

,(r) A solution for <|>v~' is sought by operat- 
ing with the Fourier transform on (2.7) and 
defining 

-m/2 f ,(r).  .  ,  ik'x, (ji  (x,0,z) e dx. 
> (2.8) 

i|)(k) = (2 IT)" 

In Eq. (2.8) m=l, m=2 represent two- and 
three-dimensional flows, respectively. For 
three-dimensional flows x. nas the components 
x,z and the wave number vector k has the com- 
ponents k , k or preferably the polar repre- 
sentationX k 2pcos6, k =psinB. In the case of 
two-dimensional flows, x is replaced by x and 
k by k. The regular potential, satisfying the 
Laplace equation, is given by 

(r),    ..   ,„ <-m/2 f ,.,. Ik|y-ik*x,. 
<f,v '(x,y,z) = (2TT)      i(i(k)e dk . 

(2.9) 

In analogy with the problem of wave gen- 
eration by a moving pressure distribution (in- 
vestigated in a separate paper) we represent 
the forcing term in the r.h.s. of Eq. (2.7) 
with the aid of the function n(k) defined as 
follows 

(^f)2 + 
3x 

3z     3x . 2 
3z 

(2.3) ^.ii^rl^^^e^^  (V=0).  (2.10) 

whereas n. is given to same order by 

^2A 3$ ,,   3 
n = —  (1 -* 3x 3x3y 

v$-v$ (2.4) 

These equations have to be supplemented 
by a radiation condition requiring wave 
propagation downstream, to x -*■  - °° . 

To account for the presence of the body 
we represent the disturbance caused by it in 
an infinite medium by a singular potential and 
split $ as follows 

$ =*(s) +4(r) (2.5) 

Taking now the FT (Fourier transform) of 
(2.7) yields the following integral equation 
for ijj „ 

A(k)<Kk)  +  ikx   I   BOc.kjMkjWk-k^dkj 

ik  n(k) x    — 
(2.11) 

In (2.11) A(k) represents the dispersion rela- 
tionship 

A(k) = |k| - k' + iu|k| (2.12) 

where u is a vanishing and positive fictitious 
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dissipation coefficient which ensures that in 
the inversion of ^ (2.9) the resulting far 
free-waves propagate downstream. A(k) = 0 has 
the zeros k = +l+iy in 2D and p = sec 6 + ip 
in 3D. 

The kernel E, resulting from the applica- 
tion of the Faltung theorem to (2.7) has the 
following expression: 

E(k,k1) = (2, )-
m/2

{Iklx(kx-klx)[-3 + 

+ klx(kx-klx) + klx+(kx-k!x>2]-    (2-13) 

-klz<Vklz)-klz(1-klx/V}- 

„ fk n(k)a(k)  ., 

^(x.O.z) = -i(2,rm/2 f-Hfkf ""** 

(2.17) 

and the fax free-waves are obtained  for 
x -*■ - » in (2.17). 

In the two-dimensional case the far 
free-waves are Stokes wave which have the gen- 
eral expression 

. ,  (1) ix(l)* -ix (2) 2ix (2)* -2ix 
ri(x)-s- n  e +n   e  +n  e  +n   e    , 

(2.18) 

The nonlinear integral equation for ijj 
(2.11), which we shall call of Zakharov-type, 
is the starting point of the present study. 
The commonly known Zakharov equation is obta- 
ined by applying first the Fourier transform 
to $(x,n,z) and n In the unsteady free-surface 
conditions, by .expanding the derivatives 
3<t> V3y and 3 <J> / 3y in a Taylor series ar- 
ound y=0 and by retaining terms up the third 
order (See Eqs. 103-104 in "luen and Lake, 
1982). Furthermore, the ensuing equation is 
simplified considerably by separating the wave 
amplitude function into a slowly and a rapidly 
varying component. The essential difference 
between (2.11) and the corresponding 
Zakharov-equation is in the presence of the 
forcing term of a non-wavy character, II, which 
is associated with the presence of the body. 
As for the third-order terms, we have examined 
their influence in a particular case of a 
travelling pressure distribution and it has 
been found to be relatively small. The vali- 
dity of this conclusion in other cases as 
well, is a matter of future investigations. 

Returning to the Zakharov type equation 
(2.11) it is convenient to recast it in a 
slightly different form by defining the ampli- 
tude function a(k) as follows 

and the wave resistance, made dimensionless 
with respect to p'U' /g, is given by 

D = n
(1)nU)* =2ira(l)a(-l)n(l)n(-l) .  (2.19) 

In the case of three-dimensional flow the 
wave profile is associated with the residues 
contribution in (2.17) and is given in terms 
of the amplitude function a(p,e) by 

x^ i   I      ,       2n  o\  -isec e(xcos9   +  zsinB) 
n(x,z)-*- j |   a(sec 6,6)e 

(2.20) 

2 4 
•n(sec e,e) sec e 

and the wave drag is given by 

IT/2 
1  [   .,__.2_   _N_*,„_2Q 

2 
-IT/2 

D = ^      a(sec 8,e)a (sec 6 ,9) 

(2.21) 

■n(sec2e ,6)n*(sec2e ,6)   sec 8   d0 

a(k) 
iA(k)   ^(k) 

kx nUO 
(2.14) 

Substitution in (2.11) yields the equiva- 
lent Zakharov-type equation 

a(k) + j CU.k^aCkjMk-k^dk^l ,    (2.15) 
—CO 

where  the  kernel  C is  given  by 

CCk.kj) 
BCk.k.jk^C^-k^jiKk^nu-^) <(2>i 

6) 
A(k  Mk-kpiKk) 

Once a(k) is determined by solving 
(2.15), the potential <|> is obtained from 
(2.9) in terms of a(k) as follows 

A regular perturbation solution of the 
Zakharov type Equation (2.15) can be obtained 
if it is assumed that H = o(l), i.e. 
C = o(l). An asymptotic expansion of a(kO 

a(k) = a (k) + a2(k) + (2.22) 

yields, after substitution in (2.15) 

a^k) = 1  ;  a2(k) = - I CCk.k^dkj . (2.23) 

—CO 

Substitution of a , a.,..., in (2.17) 

leads to the various approximations ♦ j  , 

,(r) ...  of the poteriLioj.. y . tial. A^r) is easily 
cognized as.the classical linearized solution, 
whereas $ ,  represents the second-order cor- 
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rection. 
At this point we abandon the general dis- 

cussion and proceed by illustrating the proce- 

dure for the particular case of a submerged 
cylinder or sphere. 

3j_    REGULAR PERTURBATION SOLUTION 

3.1  Submerged cylinder 

We consider here the two-dimensional flow 

past a „ submerged cylinder „ of radius 
a = a'g/U1 at a depth h = h'g/U' beneath the 
unperturbed free-surface. The first-approxi- 
mation of the singular potential <f> corres- 
ponds to a doublet supplemented by its "soft 

image" across y = 0, i.e., 

*<s)(*,y) - (Eh)2 Re [-X-J-J- -ji^] 

(3.1) 

n2=i(2TT)
1/2a2(l)H (l)(e

lx-e lx) 

a2(l) = j   co, 
(3.5) 

kl)dkl 

The kernel C(l,k ) (3.5) has the follow- 
ing simple explicit expressions for the par- 
ticular form for n (3.2): 

(-2+3k -kj)e2kl1' 

CO.kj) =-f<eh)2 i     (2+kj-k2) 

,,   2. -2k.h2h 
-(k +k1)e  1 e J 

f  k <0 

0<k <1 

V kl>!. 

(3.6) 

Substitution in (3.5) yields after a sim- 
ple integration the following closed form so- 
lution 

where e = a/h is the small  parameter of  the 

problem. 
By taking  the  FT of  (3.1)  and  using 

(2.10) it is found that 

a,(l) = 
2       J 

f C(l,k,)dkT 
I      1   1 

(3.7) 

IT,, •«   i   uv2,„ N1/2  - k h n(k) = (eh) (2ir)   e ' ' (3.2) 
1, ,,2 ,   13  2   3    1 
2      6   h   2h2  2h3 

and subsequent substitution in (2.17) yields 
for the far free waves in the linearized ap- 
proximation 

3<j> 
(r) 

tlj(x) = 
3x 

. ., ,,2 -h. ix -ix. 
►2Tri(eh) e (e -e  ) 

(3.3) 

and  the  final  form of   the  second-order 
free-surface correction to the drag is 

Jb^  -J&<fs) +^
S) - 

D2fS)  4,ra2(1)n (1)I1 (-1) 

ir (eh)" 

Thus, the first  order approximation of 
the wave drag has the well-known expression 

/ 2, ,.4 -2h  »   Dl   . , . .2 -2h 
D = 4-rr (eh) e   ; eüj = -jj- = 4-ir (eh) e  , 

(3.4) 

2Tt[a2(l)] n (1)F (-1) 

Tr(eh) 

4 ..   13 
z    [4-rr (.— ■ 

(3.8) 

2h 
JL.) hV

2h] + 
2hJ 

2       2 
where W = »a = ir(eh)  is the buoyancy and 
denotes the drag-buoyancy ratio.     , » 

The second order approximation 4>.   in- 
volves two terms:  the free-surface correction 

<t>^fs^ and the body connection ^     .  The first 

is found in terms of a„ (2.23) by substituting 
n (3.2) in the kernel C (2.16). It can be 
shown that the only contribution to the ampli- 

tude of the far free-wave nj1' (2.18) stemms 
from the principal value integration of C in 
(2.23). Thus, the second order wave profile 

is given by 

+ e [ *(— - h 

Jb (fs) 21 

2h 

1 ,2 ,6 -2h, 
—?-) h e  ] 
2h 

represents the contribution of 

order e where CÜ09   Is of order e  and both 

result from 8 +a in (2.19). Thus, a consis- 
tent expansion of the amplitude function 
yields higher order terms of the. wave drag. 
The advantage of keeping o9 ~9 in the 

second-order approximation is that it renders 
the drag positive definite. 
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The second-order correction, stemming 
from the body boundary condition, has been 
described by Havelock (1936) and its contribu- 
tion to the drag is given by 

where 

C(s)(k,k1)=-^(eh)
2 

kjCk-k^O-kVkkj-k^) 

(1-kjXl-k+kj) 

Jb (b)_ 2 
-£

4{8w[ J_+ h
3- 

4 - 
2h e 

2h 
Ei(2h)]e 

■2h, 
} • 

(3.9) 

The ratios ^/e2 (3.4), ed^/^, 

eg^SV (3.8) and 
functions,  of   the 
Fr = h    solely, are represented in 

^bV (3.9) 
depth  Froude 

luck  (1965) ,£ 
connection gQ 

which are 
number 
Fig. 1. 

has determined the second-order 
numerically for a limited 

range of Froude numbers and the results of his 
Fig. 3 and the present analytical solution 
(3.8) are in good agreement. 

We are now in a position to check the un- 
iformity of the regular perturbation expan- 
sion. In more precise terms we wish to find 
out whether for e = o(l) the ratio 
0&9/<Ä, = °(D for anv h- Starting with the 
body correction, it is seen from (3.9) and 
(3.4) that 

^2b)/<#l"*2~ ^  (Fr^°' ±-e-  h  *"°) 

(3.10) 

1  2 
*&2 /«&!"• " 2  E <Fr"'" i-e- h ^0) 

c^a.y 

(0 < k < k) 

(k < 0; k > k) 
1      1 (3.13) 

(s). 
leading to the two components a„  (k) and 

4" 
T2V 

(k) in (2.23).  a^s)(l) is equal to 

2        (r) 
Uh) whereas a^  (1) is equal,to the 

ining terms of  (3.7)  and a.  leads 
most singular term of the drag Jft „ 
for Fr -*- 0.  The origin of this term and the 
derivation of a uniformly valid solution are 
investigated in the sequel. 

rema- 
to the 
(3.8) 

3.2 Submerged sphere 

We consider 
case of 

next the more inte 
a three-dimensional flow.past 

merged sphere of radius a = a'g/U' at 
of h = h'g/U' beneath the undi 
free-surface. According to (2.5), we 
the singular part of the velocity poten 
adding a "soft-image", to the disturban 
tential of a submerged doublet of s 
•i-(£h)  and directed along the negative 

resting 
a sub- 

a depth 
sturbed 
define 
tial by 
ce po- 
trength 

axis 

i.e. the body correction is uniform for any 
Froude number. The situation is however dif- 
ferent for the free-surface nonlinear effect, 
which by (3.8) and (3.4) gives 

M^/ofr, + HN**)2 + °(e2h> <Fr_>0 i-e' h* ™) 
Zl 1 D 

(3.11) 

•(fs),^   * - tf    + O(E^)   (Fr+ »i.e.   h + 0). 
<#21S)^1 

As), ->      L,  u\3/    3 ,  2^,   .. .2.   2,-1/2 y   '(x,y,z)  = j(eh)   { —[x +(y+h)  +z  ] 

(3.14) 
3    r   2^,     , ,2^  2,-1/2, — [x +(y-h)  +z  ] i 

Taking the FT of (3.14) and using (2.10) we 
obtain, 

n(k) - (eh)3 e-h|i'. (3.15) 

Thus, the regular perturbation expansion 
is nonuniform for both low and high Froude 
numbers and its range of validity is limited 
by the requirement eh = e/Fr = o(l) for small 

2     2 2 
Froude numbers and by e /h = e Fr = o(l)  for 
high Froude numbers.  The small Froude number 
range is represented schematically in Fig. 2. 

As stated before, our main concern in 
this study is in the small Froude number non- 
uniformity. Tracing back of the term of the 
kernel C(l,k ) (3.6) which yields the most 
singular term in (3.7) shows that it is con- 
venient to separate the kernel C(k,k ) into 
two components 

C(k,k1) = c^Ck.kj) + C^tk.kj)    (3.12) 

The first-order (linearized) wave drag is re- 
adily obtained by substituting a = a = 1 
(2.23) and (3.15) in (2.21) which gives 

D, = TT(£h)
6e V (h)+(l+ 5T-)K.(h)] ,  (3.16) 

1 o      ^n 1 

where K and K are the modified Bessel func- 
tions of zero and first order respectively. 
In the small Froude number limit (h ■*■ °°) the 
wave drag is given asymptotically by 
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ft.   n /IT  
3lT  e h   =~2h 

The second-order wave drag is then obtained by 
(3.17)     substituting  (3.21)  in  (2.21) and retaining 

terms up to (eh)".  For small Froude number we 
obtain from (3.17) 

4     3 
where W = -r Tr(eh)  denotes the buoyancy. 

The second-order approximation for the 
free-surface correction involves, the computa- 
tion of the second-order amplitude function a„ 
(2.23) obtained by using (2.16) and (3.15), 

a2(k) =-(eh)- 

B(k,k.)k1 (k -k, ) 
—'—1  lx x lx 

AQcj) A(k-kj) 

-h[|k  |-|k|+|k-k |] 
(3.18) 

The above integral may be also written in 
terms of polar coordinates, as, 

a2(p,6) = -(eh)
3 I  f B*(p,6 ; p , ,6 , ) 'l'"\' 

o -IT 

-h[P1-p+6(61)] 

where 
PjdSjdPj (3.19) 

2 
«2(el) = P

2
-2PP1 cos(e-e1) + Pj 

Since our main interest resides in the 
low-Froude number limit (h -*■ ») we may employ 
the Laplace method to obtain the asymptotic 
behaviour of (3.19). Indeed the argument of 
the exponential in (2.19) has a minimum for 

where the first derivative of the expo- 
nential function w.r.t. vanishes  and  the 
second derivative is positive, hence 

a2(P,e)+ -(eh) 
/2TT I p -p I  * 
/  B (p,e ; pj.e) 
i    hpPj 

u 

Mpj-p+Jp-pjl ] 
pi dpi 

(3.20) 

(3.22) 

3u5/2 „.     „       3^5/2  Q 35ir    eh r35_£^2   ,e h       -2 
128 

/2TT 
'256' Ä" 

The second order correction to the wave drag, 
which results from the Neuman boundary condi- 
tions applied on the surface of the sphere, 
has been reported by Havelock (1919), Eessho 
(1957) and Kim (1969) and is given for any 
Froude number by, 

IT/2 

^b)/^i  = -(eh)3{ —3 - JTJ   [Ei(2hsec26) 
8h" 

e-2hsec 6 8ec4ff.l sec2e_ _Jide}   (3>23) 
2h      4h2 

where Ei denotes  the  exponential  integral. 
For small Froude number (3.23) and (3.22) 
reduce to 

.(b) JtrY'fy 4-ir    3 (fs), ; jtir/% 35,  eV/2 

128   JÜ 

(3.24) 

3 5 
implying a nonuniformity of the type e /F for 

the ratio c()? 
S /c$i as Fr ->■ 0 and E = o(l). 

The small Froude number nonuniformity, which 
is exhibited by the regular perturbation 
scheme for a sphere, can be removed by con- 
structing a uniformly valid expansion as de- 
monstrated in the sequel. 

3.3 Discussion of results 

It is thus found that in the low Froude number 
approximation, the range of the integration in 
(3.20) can be further reduced to p > p, > 0. 
In addition, in applying the Laplace method to 
compute the wave resistance at low Froude 
numbers from the general expression (2.21), 
only contributions from the ray 6= 0 have to 
be considered. Hence we obtain from (3.18) 
(3.20) and (2.13), 

,(1,0) 
1 e3h5/2 

V2TT 

1/2., 
Pi  U Pi' 

vl/2 (3.21) 

[-3+P1(l-P1)+p
2+(l-p1)

2]dp1 
35, e3h5/2 

256  /27 

Ey recasting the nonlinear problem of 
wave generation by a submerged cylinder or a 
sphere in the Fourier space, we have been able 
to show that no matter how small is the sub- 
mergence parameter e, the perturbation expan- 
sion of both the wave amplitude and drag be- 
comes nonuniform for Fr ->- 0 when g /Fr ■= 0(1) 
and e/Fr ' = 0(1) in 2D and 3D flows, respec- 
tively. Furthermore, we have been able to 
single out the free-surface nonlinear terms 
which cause this nonuniformity. 

The small Froude number nonuniformity has 
been recognized in the past (the topic is re- 
viewed by Tulin, 1978), but it seems that here 
for the first time its extent and origin have 
been found in a rigorous manner. 

Examination of a„ (3.7) and C (3.6) in 
the two-dimensional case shows that the nonli- 
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near free-surface effect stemms from the in- 
teraction of the local terms of the forcing 
factor represented by II (3.2) and not from 
the nonlinear interaction of the far 
free-waves. The same conclusion is apparently 
valid for three-dimensional flow as well. In 
this respect the problem of nonlinear wave 
generation by a body is fundamentally differ- 
ent from that of nonlinear interaction of pro- 
gressive waves dealt with by Zakharov's equa- 
tion. Furthermore, for small Fr the dominant 
nonlinear contribution stemms from the integ- 
ration of the product II (k) n^k-kj) for 
0 < k < k in 2D and for the transverse" term 
9 = 0, p= 0, 0 < P < P in 3D. Thus, the 
interaction between the low wave number compo- 
nents of the FT of the forcing term is respon- 
sible for the relatively large nonlinear 
free-surface effect. Although H (3.2), 

-h 
(3.15) tends to zero like e  for h ■*■ °°  and 

|_k| = 1, the product n. (k) H (k-k ) is seen 

to be of the same order, i.e. e » for wave 
numbers in the above range. 

There is a great deal of analogy between 
the behaviour of the two- and 
three-dimensional flows for small Fr, the 
transverse components for 8 = 0 in the latter 
case having a two-dimensional character. 
Still, the nonlinear effect upon the wave drag 
is somewhat weaker in 3D because of the spread 
of the far free wave manifold over various 8 
and this should serve as a warning against 
generalizations of 2D solutions. 

The validity of the present results in 
the case of submerged bodies of more complex 
shapes or for floating bodies is a matter of 
further investigations. It is believed that 
the present approach opens promising avenues 
for the elucidation of the nonlinear mechanism 
of wave generation. 

4.  THE DERIVATION OF A 
SOLUTION 

GENERALIZED,  UNIFORM 

4.1  Derivation of uniform solution 

We shall rewrite the basic integral equa- 
tion (2.15) for the wave amplitude a(k) as 
follows 

a(k) + | C^tk.k^atk^aCk-k^dkj 

1 - | C^^k.kjMkjMk-k^dkj  . 

(4.1) 

2,_2 
We have  sh §r§/2 that  for h -* m and  for 

e'h' = 0(1) or £
Jh""= 0(1) in 2D or 3D flows, 

respectively, the contribution from the second 
term on the l.h.s. of (4.1) is 0(1), whereas 
the last integral contributes terms of o(l). 
Hence, the singular kernel has to be kept in 
the equation satisfied by the leading order 
term to avoid the nonuniformity of the naive, 
regular expansion.  We suggest, therefore, the 

following generalized expansion: 

a(k) = a(x
g)(k) + a^g)(k) +...        (4.2) 

such that ajg , a^   ,...  satisfy the integral 
equations „ 

a<g)(k) + | C^a.k^a^a^a^k-k^dkj = 1 

(4.3) 

S&h „(s). Ssh a(gV-k a!;g;(k) +2  C^a.k^a^tk^a^'Ck-k^dk^ 

00 ~™ (4.4) 
C(r)(k,k1)a

(
1
g)(k1)a

(
1
g)(k-k1)dk1  . 

The sequence a^ , a 8 depends on £ and 
h in a nonlinear fashion„and it is asymptotic 
in the sense that for e h = 0(1) (2D) or 

E
3h5/2 = 0(1) (3D) and Fr -y  0 , the ratio 

a^g /a^ is 0(Fr ). This ordering is en- 
sured By the diminishing effect of the kernel 

C ' which lowers by h~ the order of the in- 
tegrand of the r.h.s.  of (4.4). 

One of the purposes of the present study 
is to derive the first-order generalized solu- 
tion a, for the two examples of flow consi- 
dered here. In this way we extend the range 
of validity of the perturbation expansion to 
the c^nge Fr = o(l), e/Fr = 0(1) in 2D and 
e/Fr = 0(1) in 3D. The extended range of 
uniformity is represented schematically in 
Fig. 2. Further extension for e = o(l) and 
arbitrary Froude number (see Fig. 2) is beyond 
the scope of the present study and therefore 
is not considered here.        , •. 

The generalized wave drag D 8 is given 
by, Eqs. (2.19) and (2.21) and the ratio 
o#;8Vo&j is seen to be, by (3.4), 

&i/«9r[8ig)(1)l2 (2D) Äf/*9r[aS8)(1'0)]2 (3D) 

(4.5). 

M\ have to solve the fol- 
ions 

To compute a^  00 we have to s 
lowing nonlinear integral equat 

,   rkk,(k-k  )(3-k2+kk -k2 

(k)-i(sh)2 I J—I Li 
2 J

o        (1-kjXl-k+kj) 
.(8) 

n/ai a^OOa^U-lOdk,   =   1   , 

B!g)(p,o)- ^ 
1 2V2TT 

1'   1 

t?3/2, 

(4.6) 

5/2  (VZ(P-Pl 
.3/2,,     2^ 2, 
)       (3-p  +pp1-p1) 

(1-PjXl-p+Pj) 

.<S> ,<g> a^1
8''(P1,0)av

1
s;(p-p1,0)dp1  =  1 (4.7) 
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for the cylinder and sphere, respectively. 

(g) 
It is quite easy to determine a    by 

numerical integration since (4.6) and (4.7) 
are  nonlinear Volterra integral  equations. 
Thus, if (4.6), (4.7) are discretized for 

k = n/N (n = 0,1,2,...,N), a,s'(k ) can be 
n in 

determined in terms of a,  (k . ) by a simple 
1   n-1 

g 
algebraic operation.  For k = p = 1, a. 

2 2     3 5/2 
depends on e h and eh   in 2D and 3D  flow, 
respectively. 

In Figs. 3 and 4 we have represented the 

ratio $",  /<$, (4.5) as a function of £ h 

3 5/2 
and eh.  In the same figures we have also 
represented the leading order term of the sec- 
ond-order regular perturbation expansion. It 
is seen that the perturbation solution grossly 
underestimates the nonlinear drag. 

In view of existing approximate appro- 
aches in the literature, we have also examined 

quasilinear approximations a^    of  a 
This,   is  carried  out  by  substituting 
a,    = l+6a. in (4.1) and neglecting the qua- 
dratic  terms  in  6a..  Thus, a^  satisfies 
the following Volterra integral equation 

3<
ql)(k) + (c^k.kJra^OO +       (4.8) 

+ a<ql)(k-k,)]dk, = 1 + ( C(s)(k,k,)dk, 
1 1 ~l j ~i   i 

to the weakening of the nonlinear effect in 
three-dimensions, the generalized solution for 
the sphere is valid for small \j and for 
v/h = 0(1), i.e. for a wider range of 

\1  values. 
Examining the behaviour of the general- 

ized drag (Figs. 3,4) shows that.it grows ap- 
proximately exponentially with e h (2D) or 
Eh (3D). Thus, in the case of 2D flow for 
example we may write 

*\ 
(g) [a[g)(l)]2^. .(eh)2exp(ae2h2-2h)(4.9) 

where a, identified from Fig. 3, is approxi- 
mately equal to 1.1. It is emphasized that 
for h » 1 the drag/buoyancy ratio JÖ .g (4.9) 
still tends to zero since the generalized so- 
lution is underlain by the ordering 

e2h2 = 0(1), e2h = o(l) and a e2h2-2h = h. 
(ae h-2) is negative. 

It is worthwhile to point out that in a 
recent work on two-dimensional wave resistance 
Tulin (1982) has arrived, by a different meth- 
od, at a similar conclusion. In Tulin's ter- 
minology, the wave whose amplitude grows expo- 
nentially, as the nonlinear term overtakes the 
damping effect of the linearized solution, is 
a "strong wave". 

The great accuracy of the quasilinearized 
solution implies, at least in the cases dis- 
cussed here, that we could replace Eq. (2.3) 
by its quasilinearized version 

3 $ 

3x
2 

31 
3y 

i_ [3 
ax 3x 

it + üii!» 
3x   3x  „ 2 

3x 

It has been found by the same numerical 
procedure that in the,range of Figs. 3 and 4, 
a^q ' differs from a g by less than 0.3% and 
that the quasi-linearized approximation is ex- 
tremely accurate in the examples discussed 
here. 

4.2 Discussion 

By maintaining the most singular terms in 
the first approximation of the basic nonlinear 
integral equation for amplitude function a(k) , 
we have been able to derive a generalized so- 
lution which is uniform beyond the domain of 
validity of the regular perturbation expansion 
for small Froude numbers. 

The regular perturbation expansion was 
seen to be-uniform for small e and for small 
E h or eh in the case of cylinder or 
sphere, respectively. We can replace the ra- 
dius by the displaced area or volume V ' of 
the cylinder or sphere respectively. Then, 
the  perturbations  expansion is  uniform if 
V (made dimensionless with the aid of L" /g as 
length scale) is small for the cylinder and if 
V /h   is small for the sphere. 

The generalized solution derived here is 
assumed  to  be uniform for small e, and for 
V = 0(1) in the case of  the  cylinder,  i.e. 
for finite Froude number based on radius.  Due 

^ 11 + ^ A + 2 !!l ill 
3x3  3X  3x2  3x2    3Z  3Z 

3x  3z2 

3x „_2   3x L2 ^3x ;    3x ,..3 
3z 

2  3x      dz 

3x 

3<t>^  3 <t>1 

37" . 2 
3z 

(4.10) 

to achieve essentially the same results. This 
finding strengthens the belief that at least 
under the circumstances of the present study, 
the wave resistance problem is indeed weakly 
nonlinear. 

5. COMPARISON OF GENERALIZED SOLUTION WITH 
THE "RIGID WALL"APPROXIMATION 

The lack of uniformity of the regular 
perturbation, i.e. of the linearized solu- 
tion, for small Froude numbers, has been a 
matter of concern in wave resistance research. 
A few approximate schemes have been suggested 
in the past to remedy the situation (see 
Tulin, 1978, for a complete survey). The 
first such scheme has been apparently suggest- 
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ed by Ogilvie (1968) for two-dimensional flows 
and it has been generalized by Newman (1976) 
for three-dimensional flows. The basic idea 
is to split the perturbation velocity poten- 
tial into a singular potential C which sa- 
tisfies the "rigid wall" condition 

,(s) 

3y 
(y=o) (5.1) 

.(r) which has and a regular potential V 
"wavy" character. By making the assumptions 
that differentiation of*? increases its 
order by Fr whereas C is 0(1) and by sub- 
sequent quasilinearization, Newman (1976) ar- 
rives at the following free-surface condition, 
rewritten in our dimensionless variables, 

a (s)   32 (r)   a (r) 
+ 2(-l+ 1^  ) 3x 

3;(s) aVÜ + ,1^2 ^VÜ 
3z    3x3z     (3z      „2 

3z 

*•    3x  ' ,2 

» 

3.(s) aVl _(3i 
3z   3x3z 

_(r) 

3x 

(s) „ ,2 (s) 

2C-i+ IT-)- 
(5.2) 

2 3 S (s) 3VS) 

3z 3y 

.(s) and where £v~' are to be evaluated on y=n 
V,   *.     on  y = 0.   The free surface elevation 
n   is given by 

2 fr) 
3 S 3? 

(r) 

3x 

- 2 

3y 
- 3 

3e 
(s)  ,2 (r) 
    O,  S 

3C
(S)  32C(r) 

3x 2 
3x 

(s)  „3 (r) 

3z    3x3z 

(s) ,2 (r) 

3x 3y 

.2(s)      (s)  2 (s) 
Li— +  3|5__ 3_i__ + 

3x 

(5.4) 

This is the version of the "rigid wall" 
approximation to be compared with the solution 
of (2.7). It is emphasized that, there is a 
simple  relationship between t, (5.1) and simple  reiationsnip  Detween t,    u-i; <a"u 
4   (2.6) and we could as well write from the 
outset^th^f. ree-surface condition in terms of tb 
C~' and t;yLJ rather than <j)

v°'' and ^"'- The 
latter decomposition yields, however, a more 
compact form of the , boundary condition. 
Nevertheless, if $ = C +C is substituted 
in (2.3) the complete free-surface condition, 
up to quadratic terms, has the following form, 
written here for simplicity for 2D flow 

32C(r) + 1^1 3C(S)   3Vr) 

3x 
3x     . 2 

3x 

3,(S)       33,(r)        ,    lV!}     35Ü1 
+     3* 3x23y    ' 3x2 3x 

3?(r) ^(r) 

3x 

» 
(s) 

2   ^3x       ; 
iv iL(s\2 
2*   3z       ; 

(5.3) 

If the dependence on z is deleted, Ogil- 
vie's (1968) original 2D version of (5.2) is 
recovered. 

This quasilinearized "rigid wall" approx- 
imation has been the basis of other related 
schemes like those forwarded, for example, by 
Keller (1974) and Inui-Kajitani (1977). 

We wish to compare here the wave drag 
calculated by using the Zakharov-type equation 
and that based on (5.2) for a submerged cyl- 
inder or sphere. Towards this goal we shall 
carry out an additional Taylor expansion of 
(5.2) about y = 0 and retain only quadratic 
terms in it, to obtain 

■H 
(r) 

3x 

3Vr) 

3x23y 

3x2 

- 2 

+ 3 

and it differs from (5.4) 
terms. 

.(r) 

3y 

15. 
(s) 

3Vr) 

3x3y 

3VS) 

(5.5) 

by  the  underlined 

If quasilinearization of (5.5) is carried 
by neglecting quadratic terms in 5   it out by neglecting qu 

is seen that the only term neglected 
boundary  condition   (5.5)   based 
Ogilvie-Newman approximation (5.4) is 

-3(3?(r)/3x)(32?(s)/3x2)). 

in 
on 

the 
the 

term The latter 
has been neglected by them as being of,higher 
order than the remaining ones because C is 
differentiated only once in this term. 

with ? 
The solution of 

corresponding 
satisfying  (5.4), 

to a cylinder or a 
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sphere, can be obtained easily by the Fourier 
transform method. Omitting here the details, 
it can be shown that for the cylinder the most 
singular term of the amplitude a(_k) satisfies 
for Fr * 0 the following integral equation 
replacing (4.6) 

a(rw)(k) +  I C^'^Ck.yadc^dkj = 

1 a. 1       2vA2 
= 1 + -T e h k 

(5.6) 

c(rw's)(k,kl) 
2,2 (-3+k,)(k-k )k^ 
eh      1    11 

1-k, 

(k>0) 

the integral equation (5.6) has been 
solved -numerically and the associated wave 
drag «$ /«9, is represented in Fig. 3 as 
function of (eh) . It is seen that the solu- 
tion of (5.6)-underestimates the generalized 
solution o&T /Jd, , and does not always re- 
present an improvement of the regular pertur- 
bation solution , at least in the case of the 
sphere considered here (see Fig. 4). 

If the left-hand side of Eq. (5.6) is 
supplemented .by the „missing quasilinearized 
term sy3(3? /3x) (3 S /3x ), the kernel 
C ' has to be supplemented by the corres- 
ponding term -3kT(k-k ) /[k (1-k )]. The re- 
sulting wave drag which is also represented in 
Fig. 3 is much closer to the generalized solu- 
tion, although it is not as accurate as the 
quasilinearized approximation (4.8). 

A similar calculation can be carried out 
for the sphere, the corresponding integral 
equation replacing (5.6) is 

(rw) 
(p,0)+ 

(rw,s), 
C     (p Pj)a 

(rw) 

1 + 
9TT 

256 
EV

/2 

/2T 

3/2 

(p1>0)dp1= 

(5.7) 

,   , 3,5/2 p.7/2(p-P|)
3/2(-3+p.) 

„(rw,s),    . e h 1 1 1 . 
C    "(P.P.) = — 572  

1 «57     c?U   (1-Pj) 

The wave drag based on (5.7) and on the 
quasilinerized version of (5.5), supplemented 
by the term -3( SC^V 3x) ( 3 V / 3x ) , are re- 
presented in Fig. 4. In this case the "rigid 
wall" approximation (5.7) grossly underesti- 
mates the generalized wave drag, whereas the 
same equation supplemented by, the forementi- 
oned term is very close too©'   /cS, • 

Concluding, it was shown that the 
second-order complete free-surface condition 
(5.5) can be simplified in various ways. Ihe 
"rigid wall" approximation which is derived 
from the equations by Ogilvie (1968) and New- 
man  (1976)  is  a  quasilinearized version of 

(5.2) in which all underlined terms of (5.5) 
are neglected. This approximation is shown to 
underestimate the nonlinear wave drag derived 
from the generalized solution of (5.5) in the 
particular cases of a cylinder or a sphere. 
In contrast, quasilinearization. of (5.5) in 
which only terms quadratic in t, are ne- 
glected, yields results close to the general- 
ized solution. It is seen,, therefore., that 
the neglected term-3(3c '13x) (3 C V 3x ) 
plays an important role in generation of non- 
linear wave drag. Ihe argument employed in 
order to discard this term, namely that the 
regular potential has a "wavy" character and 
differentiation increases its order, cannot be 
defended in a rigorous manner. As a matter of 
fact we have shown that the nonlinear interac- 
tion of the local terms is responsible for 
wave generation at small Froude number and 
those terms do not change their order by dif- 
ferentiation. It is pointed out that the 
above neglected term is kept in the quasiline- 
arized free surface condition if the rigid 
wall velocity -1 + ( 3?   ' / 3x)  in  the first 
term of the rigbtyhand side of (5.2) is sup- 
plemented bv.3£ /3x and similarly by supple- 
menting n (5.3) in the last term by 
35 /3x. Hence, our suggested version of the 
"rigid wall", approximation replacing (5.2) 
and (5.3) is 

[u(rw)]2  i-£ 
2 Ar) 

3? 
(r) 

3x" 3y 
+ 2 „(rwy ")iVli 

3x3z 

2 (r)   2 (s) 

+ [W
(rw)]2 H—+--— 

+ n 

3z 

(s)  3Vr) 

3x 

(r) 

3y 

/ s   ,    N -2 (s) 
2 u(rw)W(rw) -1-5  

3y 

[w(rw)]2  3^ 

3zZ 

(rw) iVl 

3x3z 

;u(rw)]24^ 
3x 

- U 

n(3) 

where U 

(rw) 

3y 

3? 
(s) 

3? 
(r) 

3x 

(rw) 

3x 

-1 + (3C(s)/3x), 

(5.8) 

(5.9) 

W = 3?(s)/3z. 
Finally, the closest result to the gener- 

alized drag, is obtained by a complete quasil- 
inearization of (2.5). 

6.  CONCLUSIONS  AND  OUTLINE  OF 
INVESTIGATIONS 

FUTURE 

In the present study we have demonstrated 
in two particular cases (cylinder, sphere), 
that the origin of the nonuniformity of the 
regular perturbation expansion of the velocity 
potential at small Froude number can be eluci- 
dated by employing the Zakharov-type version 
of the free-surface condition. On the same 
basis we have derived a generalized solution 
of the nonlinear wave problem by retaining the 
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most singular nonlinear term of the 
Zakharov-type integral equation in its 
first-order approximation. The generalized 
solution is valid in an extended range of 
Froude numbers as compared with the regular 
perturbation solution, and the latter grossly 
underestimates the wave drag. 

It was encouraging to find out that a 
systematic quasilinearization of the 
free-surface condition yields results very 
close to the generalized solution. The qua- 
silinearized "rigid wall" version suggested in 
the literature is shown to underestimate the 
wave drag as compared to the generalized solu- 
tion and the additional terms which have to be 
retained in the "rigid wall" approximation are 
singled out. 

Encouraged by these first results achi- 
eved by the use of the Zakharov-type represen- 
tation of the nonlinear wave problem we plan 
to investigate in the future the case of 
three-dimensional ship-like bodies, the influ- 
ence of nonlinear third-order terms and the 
problem of nonlinear free-surface effects in 
ship motion in waves. 
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Figure l:(a) The wave drag components based on 
the second order regular perturbation for 
the two-dimensional cylinder: 
 „ ^/e2 Eq. (3.4); 

 «ags)/£
4Eq. (3.8); 

    c8^s)/e6Eq. (3.8); 
22 

,S<b)/e
4Eq. (3.9). 

0.6 

V 

0.4 

0.2 

•■'■^"V — -^ 

-/ /  /> 

V 
-1 // ^X 1 / v^ 
- // 

'ill 1     1     1 

0.6 0.8 1.0 
Fr 

1.2 

(b) 

Figure l:(b) A comparison betwen the linearized 
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Figure 2 - Schematic representation of domains of uniformity of various 
nonlinear approximations for small Froude numbers;_ (1)  regular 
perturbation e = o(l);  E2/Fr4 = o(l)  (2D) and eJ/Fr5 = o(l) (3D), 
(2) generalized solution e = o(l), Fr = od), e/Fr = o(l) and (3) 
e = o(l) arbitrary Froude number. 

0/D 

Figure 3 - The ratio between various wave drag 
nonlinear expressions and the first order 
wave drag for a two-dimensional flow past 
submerged cylinder at small Froude number; 
  .     second order regular 
perturbation expansion Eq. (3.7); 
  Nonlinear generalized 
solution Eq. (4.6) ; ••   
Rigid wall solution Eq. (5.6); —— 
— —    Modified rigid wall 
solution. 

Figure 4 - The ratio between various wave drag 
nonlinear expressions and the first order 
wave drag for a three-dimensional flow past 
submerged sphere at small Froude number; 
. .  ■   .   second order regular 
perturbation Eq. (3.21);  —  
Nonlinear generalized solution Eq. (4.7); 

Rigid wall 
approximation Eq. (5.7); - - - - - 
Modified rigid wall approximation. 
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DISCUSSION 

Dipl.-Ing. GERHARD JENSEN, 
Institut für Schiffbau, 
Hamburg, FR Germany: 

Trying to follow your interesting method 
for solving the second order wave resistance 
problem, I had trouble to understand your basic 
equation (2.3) for the second order potential. 
This equation looks quite different from the 
formula given by Maruo (1) and others for the 
consistent second order potential. It only re- 
minds me of the equation given in your ONR-pa- 
per in Paris (2). 
A comparison gives: 
Present paper: 

+ <f> = _L(2(t)
2 + (t) *     +- 

3xv2Tx    TXTXXX 
L*2  +<^2) = 
2 ^XX     V ' 

6D 

From Maruo or Wehausen and Lai tone (3) eq. 
(10. 12) one gets: 

<t>   + Yxx <f>   = #-(<j>2+<t>2+<f>2) 3x ^x    Ty   Yz; V
X v-(<t>     +* ) 3y VYxx    Ty' = 6 M 

The difference between the two right hand sides 
should vanish, if they are equivalent; or at 
least be small of third order. 
But: 

>D- UM 3x(lV i> (k   +i<t>2 )+< Vxxx 2^xx' x Sy^xx' Yy 

i>   lit      + i>     ) + Txvvxx Tyy' 2 3x ^xx *y'   lTvx T xx Txxx TyTyx' 

(*x*xxy + *x*xxxx) 

With the first order free surface condition 
<t>xx=-<t> (which holds up to second order), and 
its derivatives with respect to x, one may show 
that the last three brackets are in fact small 
of third and higher order. But the remaining 
first term 4> (<t> + <|> y) is only small of second 
order since the 2-D Laplace equation no longer 
holds in the 3-D case. 
Therefore I need some explanation for this sec- 
ond order difference between your formula and 
the conventional one. 

References: 
(1) Maruo H. : A Note on Higher-Order Theory of 

Thin Ships, Bulletin of the Faculty of En- 
gineering, Yokohama National University, 
Vol. 15, March 1966. 

(2) Dagan G.: Nonlinear Ship Wave Theory, Ninth 
Symposium on Naval Hydrodynamics, Paris, 
1972. 

(3) Wehausen J.V. and Laitone E.V.: Surface 
Waves, in Flügge S.: Handbuch der Physik, 
Springer Verlag 1960. 

Prof. KLAUS EGGERS, 
Institut für Schiffbau, 
Hamburg, FR Germany: 

I would like to amplify on Mr. Jensen's 
discussion. I sympathize with the authors' keen 
new approach to higher order wave resistance 
via a multiple convolution series in the Fourier 
domain, though I think that a consistently trun- 

cated regular expansion as evaluated in section 
3 should not differ from the conventional second 
order approach, provided that <j>(s) is a consist- 
ent first order term. Hence your method is real- 
ly pioneering only in section 2 where you advo- 
cate solving an integral equation (rather than 
iterative increase of order), as here you take 
account of some terms of more than second order 
in spite of truncating the convolution series 
before the twofold convolution term. 

It is here that Mr. Jensen's discussion 
certainly goes deeper than just pointing at the 
omission of a leading second order term. Due to 
the above inconsistency, the alternate expres- 
sions he compares lead to different results 
even after correction. He deserves respect for 
clarifying this from the formidable analysis 
at hand! Let me say that I feel by no means 
orthodox with regard to rules of consistency. 
Prof. Tuck may recall an exclamation of mine 
"I hate that word consistency!" when he rightly 
tried to convince me about some invariance of 
second order wave resistance as questioned in 
my 6th ONR paper some 20 years ago. But mean- 
while I have learned my lesson! 

Still, I am aware of situations where even 
serious mathematicans may legally take profit_ 
from inconsistent procedures in order to elimi- 
nate local infinities occurring in a regular 
approach. But always if you sacrifice consist- 

)  ency, i.e. if you do not discard all contribu- 
tions of more than second order in our case, 
you will trade in ambiguity i.e. non-uniqueness. 
You thus have to invent selective principles 
for retaining certain, discarding other terms. 
Even though formally "of higher order", such 
terms represent numbers with no upper bound 
prediction at hand in a practical case. 

Save omission of all more than simple con- 
volution terms, your selective principle seems 
to be the elimination of any derivative 
in the vertical direction at the expense of 
obtaining ratner high derivatives in the length- 
wise horizontal direction. I fear that this may 
seriously affect the convergence of the Fourier 
integrals considered (though their free-wave 
part is not changed) in the case of floating 
ships, where not all integrand terms will dis- 
play exponential decay. 
Still worse, you will be confronted with an 
ambiguity of defining $(-s'>  inside the volume 
displaced by the ship, and I wonder if you can 
find an inner potential with so weakly singular 
vertical flow induced in the water plane area 
that a corresponding Fourier integral represen- 
tation i.e. the r.h.s. of your integral equa- 
tion exists? 

Thus I fear that the promising avenues you 
envisage may turn out as rather bumpy roads- if not 
dead ends- and I admire your courage of really 
intending to embark upon such adventure! Bon 
voyage! 

AUTHORS' REPLY 

We are very grateful to Mr. Jensen for his 
readiness to check carefully our paper and to 
point out to us the omission of the term 
<t> (d>    +<$•    )=-♦„ 4>„in Eq-   (2-3)-  lt is rather vx^vxx   yyy'        x    zz 
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fortunate that this omission did not affect at 
all the solution of the two-dimensional problem 
since this term is identically zero in this 
case. Furthermore, the same expression does not 
appear in the leading term of the small Froude 
number approximation of the three-dimensional 
solution either. 

We have taken advantage of the kindness of 
the organizers and we have corrected the final 
version of the paper, which is published herein. 
Once again we would like to thank Mr. Jensen 
for his discussion. 

Most of the discussion of Prof. Eggers re- 
volves around the missing term analyzed above. 
Since we have corrected this omission, we shall 
not dwell in a detailed reply to this part of 
the discussion. After the correction, our regu- 
lar perturbation expansion is consistent and 
complete to second-order. 

As for the last part of the comments by 
Prof. Eggers, we thank him for pointing out to 
us a few difficulties which may be expected in 
the extension of our approach to the ship pro- 
blem. We shall keep in mind his observations, 
which are based on his rich experience in this 
field. Nevertheless, as a citizen of his great 
Hanseatic City, Prof. Eggers is aware of the 
fact that some audacity is needed by those who 
chart unknown seas by new approaches. His final 
wish is, therefore, quite appropriate and most 
welcome! 
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EFFECT OF BOW SHAPE ON FREE-SURFACE SHEAR FLOW 

KATSUYOSHI TAKEKUMA   AND   KLAUS EGGERS 

ABSTRACT 

Assuming a priori the existence of free- 
surface shear flow in front of blunt ship bows, 
investigations are made on the relationship be- 
tween the major bow form parameters such as 
draught, entrance angle and protruding bulb, 
and the production of the secondary vortices 
(necklace vortex) around the bow. The analysis 
showed that the bow forms with fine entrance 
angle and the protruding bulb are effective in 
reducing the secondary vortices around the bow. 
In parallel with these analytical studies, expe- 
rimental observations were made by means of flow 
visualization. As a result of image processing 
of observed data, a qualitative agreement with 
the analytical studies is obtained. 

1. INTRODUCTION 

Ship wave resistance may roughly be defined 
as a resistance component connected with the 
free surface disturbance around the ship's hull 
apparent through the wave profile along the 
water line, a domain of wave breaking both 
around bow and stern, and a wave pattern trail- 
ing in the rear. It was realized hardly more 
than two decades ago that wave breaking in par- 
ticular may contribute a major part to the to- 
tal resistance in case of full ship forms. Ac- 
cordingly, efforts have been made for a deeper 
understanding of this phenomenon with the aim 
of improving design methods both for better 
prediction and reduction of this resistance 
component. In this paper, we have compiled ex- 
perimental findings related to this complex 
physical phenomenon which according to our own 
observations seems to be intrinsically interrela- 
ted with the occurrence of some kind of shear 
flow and the generation of transverse vortices 
ahead of the ship's bow, finally deforming to 
necklace vortices around the bow. It has been 
suggested by Baba (1981) that there might be a 
partial analogy of this process with the gene- 
ration of a horseshoe vortex (i.e. of "secondary 
vorticity") around a vertical strut piercing a 
flat plate through distortion of the boundary 
(-shear-) layer along this plate. We have eva- 
luated an approach by Hawthorne (1954) for the 

generation of such secondary vorticity and its 
distribution around the strut in order to obtain 
a qualitative model for the relative strength 
of this disturbance as a possible measure of 
wave breaking intensity of such struts in the 
presence of a free surface under uniform flow. 
In particular, the influence of certain ship 
form parameters such as draft, bow entrance 
angle, location of a protruding bulb and water- 
line shape was considered. Such numerical re- 
sults were qualitatively compared with corre- 
sponding experimental observations. In the last 
part of this paper, we report on an attempt to 
measure the velocity components on and beneath 
the free surface around the bow by some image 
processing technique, i.e. by particle tracing. 
It should be mentioned that within our limited 
work we could not treat the questions connected 
with modeling. The effect of Froude and Reynolds 
number on our experiments (quite apart from sur- 
face tension, contamination and of instationari- 
ty) can not be dealt with. 

2. REVIEW OF INVESTIGATIONS ON FREE SURFACE 
SHEAR FLOW 

During model tests as well as full scale 
trials, marked surface disturbance can be ob- 
served around bows as shown in Fig.l. On the 
way of the study on separation of ship resis- 
tance components, Baba (1969) could provide 
quantitative evidence of a resistance component 
due to wave breaking around the bow through 
measuring loss of head by wake survey methods; 
he could even trace this loss on the way from 
the bow where it is generated to the wake area 
(Fig.2). For full hull forms, this contributes 
a significant portion of the total resistance, 
and attempts have been made to decrease it by 
ship form improvement. Investigations into hy- 
drodynamic mechanism of the wave breaking around 
bow have been made by many researchers. Those 
investigations can be classified into the fol- 
lowing three areas. 

(1)  Pioneering early experimental studies by 
means of wake survey and resistance tests 
on the effect of ship form parameters, by 
protruding bulb in particular, by Taneda 

K. Takekuma, Nagasaki Experimental Tank, Mitsubishi Heavy Industries, Post Box 14 Nagasaki, Japan. 
K. Eggers, Institut für Schiffbau, Lämmersieth 90, D-2000 Hamburg 60, FR Germany 
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(1) Container ship Cb=0.56 Fn=0.27 

(2) Cargo ship Cb=0.65 Pn=0.24 

(1) Cargo ship Cb=0.77 Pn=0.21 

(5) Tanker in ballast cond. Cb=0.84 Fn=0.17 

(3) Cargo ship Cb=0.69 Fn=0.2 3 (6) Tanker in full load cond. Cb=0.81 Fn=0.15 

Fig.l Wave patterns around bow of typical conventional ships 
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Fig.2 Separation of ship's resistance components (Wake survey) 
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(1969), Eckert and Sharma (1970), and 
Taniguchi et al. (1972). 

(2) Analytical studies on mathematical flow 
models for the flow around a bow and the 
associated free surface deformation by 
Dagan and Tulin (1969), Baba and Takekuma 
(1975), Inui (1981), Eggers (1981), Maruo 
and Fukazawa (1981), and Mori (1983). 

(3) Numerical studies in solving the full in- 
viscid flow boundary value problem (i.e. 
without smallness assumptions for flow com- 
ponents) either for potential flow (Gadd 
(1976) Rankine source method), (Chan & Chan 
(1980)), or with models including rotatio- 
nal flow (Miyata (1983)). 

After the above primary experimental investiga- 
tion, mainly performed in his institution, the 
first author (1972), aiming to provide material 
for constructing a rational mathematical model 
to describe this phenomenon as a useful tool for 
ship design, conducted a series of flow measure- 
ments around the bow of a full ship model by 
use of five-hole pitot tubes. Comparing the re- 
sults with those calculated by potential theory, 
it was found that: 

(1)  except a  thin layer beneath the free 
surface, velocity components obtained by 

(2) 

the measurement coincide well with those 
obtained by numerical calculation based 
on the assumption of double model flow, 
and 
in this thin layer, velocity components 
change abruptly in the vertical direction 
(Fig.3). 

These observations suggested the importance of 
detailed studies on this phenomenon inside the 
thin layer near the free surface. 

More recently, the flow beneath the free 
surface around some ship models and semi sub- 
merged circular cylinders was visualized by use 
of metal flakes and water color dye (Kayo et al. 
1981, 1982, 1983). A shear layer beneath the 
free surface corresponding to the abrupt change 
of velocity profile was visualized as illus- 
trated in Fig.4 and Fig.5. It was observed that 
the intensity of the shear layer and vortices 
increased with advance speed. In particular, an 
artificial increase of the shear layer caused 
wave breaking already at a much lower speed 
than without such manipulation as illustrated 
in Fig.6. Neither the analytical investigations 
nor the purely numerical ones mentioned under 
(2) and (3) resulted into models for the shear 
flow and vortex generation observed. 
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Fig.3 Velocity profile around bow obtained by flow 
measurement and numerical calculation 
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U « 0.05 m/s 

Fig.4 Shear flow and vortices observed by flow visualization 

Color dye 

■Ship'bow. 

U = 1.00 m/s U - 0.05 m/s 

Fig.5 Shear flow and vortices observed by flow visualization 

U - 0.700 m/s 
Pn = 0.091 
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U - 1.089 m/s 
Pn = 0.142 
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Pn - 0.142 
with vinyl sheet 

U = 1.284 m/s 
Pn ■ 0.168 
without vinyl sheet 

U - 1.284 m/s 
Pn = 0.168 
with vinyl sheet 

Fig.6 Effect of an artificial increase of shear layer 
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Retarded stagnation flow with separation 

Horseshoe vortex 

Fig.7 Examples of similar flow patterns 

3. EFFECT OF BOW SHAPE ON THE FREE SURFACE 
SHEAR FLOW 

In the course of ship form design, it is 
imperative to make efforts to decrease wave 
breaking resistance for improvement of propul- 
sive performance.  Thus, an attempt was made 
for explanation of the effect of some typical 
ship form parameters on the free surface phe- 
nomena around bow by the secondary flow theory. 
It has been recognized that some ship form 
parameters have remarkable effect on the wave 
breaking phenomena around bow and accordingly 
wave breaking resistance.  They are fore draft, 
entrance angle, underwater protruding bulb and 
waterline curvature around the shoulder part. 
To start with, the effect of these parameters 
on the behaviour of a free surface shear layer 
and on the vorticity distribution was examined. 
Both   flow visualization techniques and cal- 
culations -of the secondary flow theory as 
explained in more detail in Appendix A were 
applied to help to understand the mechanism. 
In this section, results of the examinations 
are described together with the knowledge 
obtained in the previous investigations. 

3.1. Effect of Draft 

It is well known that the wave breaking 
phenomena forward of the bow of a full ship 
are stronger in ballast condition (shallow 
draft) than in full load condition (deep 
draft), while those around shoulder parts are 
more significant in full load condition (deep 
draft) than in ballast condition (shallow 
draft).  In this section, an attempt was made 
to examine the effect of draft on breaking bow 
waves by using a vertical circular cylinder 
as a simple model of full ships.  Calculations 
of the relative secondary vorticity X =   t/jj 
and'ri = V— were performed along certain 
streamlines2 around a vertical circular cylinder 
taking the double body potential flow as the 
basic one.  U is the far upstream velocity in 
horizontal direction; ^, meant to be its 
variation in downward direction due to shear, 

1/8-D U = 1.0 m/s 

1/4-D U = 1.0 m/s 

Fig. 8 

d = 1/2-D U = 1.0 m/s 
Effect of draft on wave breaking around 
bow of a circular cylinder { moving from 
left to right) 

D  

Starting Point 
X--0.70 \ 
y-o.oosoj 

u 

0    10  20 30 40 50 60 70 80 deg. 

Integrand of 5 = £/-=— 
dz 

Fig.9  Effect of fore draft on ? and n 
around a full ship bow and a vertical 
cylinder 
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d = 1/2-D U = 0.60 m/s 

that of magnitude of £ and "n calculated by the 
secondary flow theory.  However, on the pheno- 
mena around the shoulder parts, the secondary 
flow theory provides little information, in 
spite of the significant feature of the pheno- 
mena observed there. 

3.2.  Effect of Underwater Protruding Bulb 

Around 1969, it was realized how resis- 
tance of full ship in ballast condition can be 
decreased by fitting bulbous bow.  The decrease 
of resistance was shown to be caused by 
decrease of wave breaking phenomena around bow 
by fitting bulb      as illustrated in 
Pig.11.  In the present study, investigation 
was extended to effect of underwater protruding 
bulb on the shear flow and vortical motion 
beneath the free surface by flow visualization 
and calculation of amplification factor of 
perturbation vorticity on the basis of the 
secondary flow theory as follows.  Flow beneath 
the free surface around a vertical circular 
cylinder with and without underwater protrud- 
ing bulb was visualized as illustrated in 
Fig.12 and Fig.13.  It is found that the 
vortical motion beneath the free surface has 
been eliminated and flow pattern has been 
remarkably improved by fitting an underwater 
protruding bulb.  The amplification factor of 
perturbation vorticity 5 and n around the 
vertical cylinder with and without bulb was 
calculated by the secondary flow theory as 
illustrated in Fig.14.  As a result, magnitude 
of %  and rf was found to decrease largely by 
the protrusion to the cylinder. 

d = 1/8-D U = 0.60 m/s 

Fig. 10 Effect of draft on behaviour of free 
surface shear layer and vortical motion 
in it 

need not be specified within our quantitative 
approach.  Here 5 stands for the secondary 
vorticity component along the streamline of the 
basic flow whereas the vorticity component of 
intensity rf is oriented horizontally in normal 
direction to such line.  The results shows 
that: ^ 
(1) around the vertical circular cylinder, £ 

and IT are higher in shallow draft than in 
deep draft, 

(2) almost the same tendency as above is found 
in the relative secondary vorticity around 
the bow of full ships, but 

(3) no substantial difference in relative 
secondary vorticity can be observed around 
shoulder parts as resulting from the 
effect of change in draft. 

A visualization of the flow beneath the free 
surface forward of bow of a circular cylinder 
shows that intensity of the vortical motion is 
higher in shallow draft than in deep draft 
(Fig.10).  Thus, it can be said that tendency 
of wave breaking and shear flow, experimentally 
observed forward of the bow, coincides with 

Cl: Total resistance 
measured by dynomometer CviViscous resistance by woke survey 

Wave-breaking I 

£^=------rs-hsag 
Pure viscous resistance due to—■"""""    Wove-breaking resistance ""^ Wave-breoking resistance 
friction on ship surfoce of M.I7I5-A of M.I7I5-D 
--LCv minus wove-breoking resistance) (without protruding bulb}        (with protruding bulb) 

iTTC__l_957line' 

. Cw:Wave-moking resistance 
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Fig.ll Effect of protruding bulb on decrease 
of wave breaking resistance. 
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without bulb U = 0.80 m/s without bulb U = 1.00 m/s 

with bulb  U = 0.80 m/s 

Pig.12 Flow beneath the free surface around 
a circular cylinder with and without 
underwater protruding bulb  (1) 

with bulb U = 1.00 m/s 

Fig.13 Flow beneath the free surface around 
a circular cylinder with and without 
underwater protruding bulb  (2) 

Deep Draft 

A 
d"2 

DD 

Shallow Draft 

*-! I> ) 
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Fig.11  Effect of underwater protruding bulb 
on perturbation vorticity around a 
vertical cylinder calculated by the 
secondary flow theory 
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Fig.15  Effect of protruding bulb on pertur- 
bation vorticity around bow of a full 
ship 

393 



Further, almost the same tendency as above 
is also shown in magnitude of 5 and n calcu- 
lated around bow of the full ship as shown in 
Fig.15.  Accordingly, it is said that flow 
beneath the free surface around bow of full 
ships is much improved by fitting an underwater 
protruding bulb and the secondary flow theory 
provides helpful information in the design of 
bulbous bow. 

3.3. Effect of Entrance Angle of the Bow 

The bow entrance angle also has a signifi- 
cant effect on the flow characteristics.  Ob- 
servation and measurement of wave pattern made 
on a series of mathematical models with sys- 
tematically varied entrance angle of bow show 
that the entrance angle strongly influences the 
flow geometry as illustrated in Fig.16.  For a 
closer study, the flow around a vertical circu- 
lar cylinder and a cylinder with wedge front 

part examined by flow visualization and the 
relative secondary vorticity components were 
calculated along certain streamlines.  The 
results are shown in Fig.17 and Fig.18.  The 
intensity of the observed shear flow and 
vortical motion beneath the free surface in- 
creases with entrance angle of the bow; this 
tendency is confirmed by the calculations of 
the secondary vorticity intensity. 

Further, the calculation of the pertur- 
bation vorticity around bows with systemati- 
cally varied entrance angle was made as illus- 
trated in Fig.19.  Result shows a tendency 
corresponding to the behaviour of wave pattern 
observed around the bows (Fig.16).  Wave break- 
ing phenomena around bow with relatively small 
entrance angle such as that of cargo ships are 
found to be characterized by the wave breaking 
lines diverging afterward of bow with increase 
advance speed (Fig.20).  But such change in 

Entrance angle 25 

Fig.16 

Entrance angle 30° 

Wave pattern around a series of mathematical models 
with systematically varied entrance angle of bow 

— Circular 
Cylinder 

-- Biconvex 
Section 

Fig.17 Free surface shear flow and vortical 
motion forward of a vertical cylinder 
with and without wedge front part 
(d = D/4) 

Fig.18 Perturbation vorticity around a ver- 
tical cylinder and a biconvex section 
calculated by the secondary flow theory 
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Fig.20 Wave breaking lines around a ship bow 
with small entrance angle 

Fig.19 Calculated perturbation vorticity for 
a series of struts with different 
entrance angles 

Model A 

Model B 

flow geometry with advance speed cannot be taken 
care of by our numerical approach.  Further 
studies are needed to make clear the marked 
effect of the advance speed on the wave break- 
ing around bow. 

3.4. Effect of Waterline Shape 

It is known that waterline shape has also 
influence on the wave breaking around bow. 
This effect is characterized by wave breaking 
around the shoulder parts.  Amplification fac- 
tor of perturbation vorticity £ and "r\  calcu- 
lated by the secondary flow theory seems 
to indicate some information on this phenomenon 
(Fig.21).  However, it should be noted that 
difference of T and ^  calculated on both water 
line shapes is not so significant as that of 
intensity of the free surface phenomena ob- 
served around the shoulder parts.  It may be 
assumed that the influence of shoulder curva- 

Fig.21  Perturbation vorticity around bow 
with different water line shape 
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Port side is roughened 
for ballast condition 

Port side is roughened 
for full load 

Full load 
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Pig.22 Effect of roughening surface on wave breaking around bow 

4. QUANTITATIVE MEASUREMENT OF FLOW AROUND A 
SEMI-SUBMERGED CIRCULAR CYLINDER 

ture on wave breaking is rather associated with 
the difference in viscous boundary layer con- 
figuration, since Baba (1981) could show that 
an artificial roughening of the ship surface 
may drastically change the free surface pheno- 
mena around the shoulder part as shown in 
Fig.22. 

As the results of investigations above, 
it is concluded that; 

(1) the free surface shear flow and vortices 
in it are closely related to the wave 
breaking around the bow, 

(2) major parameters of ship form, namely, 
fore draft, underwater protruding bulb, 
entrance angle of bow and waterline shape 
influence largely   the free surface 
shear flow and vortices in it, and 

(3) the secondary flow theory is considered 
to provide some guidance in the course of 
ship form design on the basis of under- 
standing of the hydrodynamic mechanism of 
of the free surface shear flow and vor- 
tices in it. 

As described in the previous sections, the 
character of the free surface phenomena around 
bow of full ships was made clear to some ex- 
tent.  The next step to be taken will be quan- 
titative measurement of flow beneath the free 
surface.  Thus, an attempt was made to measure 
the flow around a semi-submerged vertical cir- 
cular cylinder with and without an underwater 
protruding bulb.  On the basis of the results 
obtained, property of flow beneath the free 
surface, namely, velocity components, pertur- 
bation vorticity etc. was quantitatively ex- 
amined. 

4.1. Flow Measurement by Image Processing of 
the Visualized Flow 

Since the free surface phenomena are sen- 
sitive to instationary effect beneath the free 
surface, flow measurement should be made with- 
out causing any disturbance in flow such as 
by Laser Doppler Velocimeter.  In our prelimi- 
nary study, an alternative approach was made 
by application of an image processing technique 
to video recorded or photographed flow pattern 
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obtained by flow visualization.  They were 
quantified by tracing particles and plotting at 
a certain interval as ilustrated in Fig.23 
(left).  The velocity components along stream 
line close to the center line of the flow field 
were obtained by measuring the distances the 
particles      moved in that interval as shown 
in Fig.24 (left). 

4.2. Effect of Underwater Protruding Bulb 

The chief interest was concentrated on the 
determination of the free surface configura- 
tion, the flow components and the vorticity 
to be calculated therefrom by differentiation. 

The flow field forward of the vertical 
cylinder with protruding bulb was analyzed by 
the same procedure as above and illustrated in 
Fig.23 and Fig.24 (right).  It is found that 
the longitudinal velocity component increases 
largely beneath the free surface and vortical 
motion is mostly eliminated, while there may be 
recognized a small sized vortical motion near 
the junction of protruding bulb and the 
circular cylinder as shown in Fig.25. 

Thus, it can be concluded that the under- 
water protruding bulb influences largely the 
increase of velocity components beneath the 
free surface and this effect provides improve- 
ment of flow and decrease of wave breaking 
around the bow of full ships. 

4.3. Vortex Intensity 

Quantitative measurement of flow beneath 
the free surface around the vertical circular 
cylinder is expected to provide helpful mate- 
rials for better understanding of the hydro- 
dynamic mechanism of the free surface phenomena 
around bow of ships.  For this, information 
should be obtained on velocity components, and 
horizontal thickness and extent of shear flow 
and its intensity. 

For example, velocity profile at some 
locations forward of the vertical cylinder and 
magnitude of circulation which indicates 
intensity of vortical motion beneath the free 
surface were analyzed on the basis of the re- 
sults of flow measurement around the vertical 
cylinder with and without an underwater pro- 
truding bulb (Fig.25).  Results show some de- 
crease of the change of the velocity profile 
and hence of the magnitude of circulation due 
to vortical motion beneath the free surface 
by fitting an underwater protruding bulb. 

However, the results obtained so far both 
at IfS in Hamburg and at MHI in Nagasaki cannot 
be considered conclusive yet, some discre- 
pancies between results from different methods 
have to be resolved.  A research project with 
the aim of measuring velocity components under 
use of Laser Doppler Velocimeter was initiated 
at IfS.   Further investigations are necessary 
for the quantitative evaluation of the free 
surface disturbance around bows with the aim of 
providing material for a more rational mathe- 
matical model. 

5. CONCLUSION 

For better understanding of the hydrody- 
namic mechanism of the free surface phenomena 
around bow of ships, investigations were made 
into behaviour of the shear flow and vortices 
induced in the upstream of the bow.  In the 
study, calculation of vorticity on the basis 
of the secondary flow theory, flow visualiza- 
tion and flow measurement by means of image 
processing technique on the video records were 
conducted for evaluation of the effect of the 
major ship form parameters, such as draft, 
entrance angle of bow, underwater protruding 
bulb and waterline shape on the shear flow and 
vortices in it.  The results are summarized as 
follows. 

(1) The free surface shear flow and vortices 
in it are closely related to wave breaking 
around bow. 

(2) Of the major parameters of ship form, 
fore draft, underwater protruding bulb, 
entrance angle of bow and waterline shape 
influence largely the free surface shear 
flow and vortices in it. 

(3) Underwater protruding bulb gives accele- 
ration of velocity components beneath the 
free surface and this effect provides im- 
provement of flow, such as remarkable 
decrease of vortical motion, and decrease 
of wave breaking around bow of full ships. 

(4) The secondary flow theory is considered 
to be a useful guidance for explanation of 
the hydrodynamic mechanism of the free 
surface shear flow and vortices in it and 
seems to provide some helpful suggestions 
on bow shape in the course of design of 
full ship form. 

(5) Measurement of flow beneath the free 
surface around a vertical cylinder by 
image processing of video records gave 
materials for quantitative evaluation of 
the free surface shear flow and vortical 
motion in it.  However, the results ob- 
tained are still inconclusive. 

Free surface phenomena around bow of full 
ships are characterized by the free surface 
shear flow, vortices in it and wave breaking 
phenomena.  The hydrodynamic mechanism of these 
phenomena has been clarified to some extent by 
investigations made up to the present, but 
there still remain various aspects to be 
studied further.  Of primary importance is 
considered to be better understanding of the 
hydrodynamic mechanism. 
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APPENDIX A SUMMARY OP HAWTHORNE'S THEORY 

Hawthorne studied the flow around a strut 
placed in the approach velocity varying in the 
depthwise direction (Pig.26). As described in 
the previous sections, the flow around a blunt 
bow with forward free surface shear is con- 
sidered to belong to this type of flow. 

vorticity of whatever magnitude.  Thus the 
absolute value of the secondary vorticity is 
not representative for the magnitude of the 
global disturbance created.  Hence for 
evaluating the merits of different bow geome- 
tries, the comparison was based_on relative 
secondary vorticity components £ = C/TJ ancl 

rf = n/— along two stream lines with the same 
origin far ahead of the different bows. 

Pig.26 Coordinate system and shear layer 
encountering surface-piercing body 

The disturbance induced by the strut or 
bow of ship may be understood as due to the 
variation in stagnation pressure  at the 
leading edge, which causes an upward velocity 
and thus horseshoe vortex.  For analytical 
expression of such a flow field, Hawthorne 
supposed that the flow can be expressed as a 
sum of the two-dimensional flow with varying 
approaching velocity and the three-dimensional 
disturbance, namely, according to the notation 
shown in Pig.26, the velocity field is appro- 
ximated by 

APPENDIX B     RELATION BETWEEN SURFACE 
CURVATURE AND SHEAR FLOW AT 
A FREE SURFACE 

Hawthorne's theory was derived for the 
case of a uniform linear vertical shear pro- 
file, with the shear layer along a horizontal 
plane wall of unlimited extent ahead of the 
bow.  In such case, there is no need to impose 
a dynamical boundary condition along this wall. 

A shear layer generated by a ship bow can 
have only finite extent; moreover, the dynamic 
boundary condition on the free surface can not 
be disregarded.  Hence there is the need for 
an improved analysis. 

Consider a point P0 at a stationary free 
surface Sf and local cartesian x-y-z coordinate 
system adjusted to this point such that the 
z-axis is directed normal to Sf in the coordi- 
nate origin P0 and the x-axis coincides with 
the direction of the flow in P0 which then must 
be tangential to Sf.  Let Sf be described by 
z = Z(x, y) in the vicinity of P0 (such that 
Z(0, 0) then is zero) and let u, v, w stand for 
the velocity components in x-, y-, and z-direc- 
tion (thus we have v = w = 0 in P0).  Then the 
requirement that there should be no viscous 
force component acting across Sf in P0 can only 
be satisfied under the three conditions. 

+ wx = 0, vz = 0, wz (B.l) 

U(z) . V(x, y) + v(x, y, z) 

?(x, y, z) 2q. 
durd 
dzjq ? 

,       s   1 - qz dU 
n(x, y, z) =  —--r" q   dz 

C(x, y, z) = 0 

(A.l) 

(A.2) 

(A.3) 

(A.l) 

where £, n, ? are the perturbation vorticity 
components in the direction of the streamline 
V(x, y), normal to it in the horizontal plane 
and upwards; q is |V| as mentioned above and 8 
is the angle of this streamline against the 
x-axis.  One should observe that 9 will 
increase along the streamline along which it 
has to be integrated from zero far ahead to a 
maximum aside of the bow and then decrease to 
zero again.  Hence the integrands for the £ 
integrals as displayed in Fig.9 are multivalued 
and 5 is related to the area enclosed by these 
curves.  Whereas far ahead of the bow we have q 
= 1, 6 = 0 (i.e. parallel flow), q must vanish 
at the stagnation point, leading to infinite 
values of n there and a divergent integral for 
5 along the bow waterline.  Hawthorne excluded 
this domain when formulating his theory.  By 
choosing stream lines passing the stagnation 
point closely enough, we may obtain secondary 

in P0.  If we even had vy = 0 at P0 (i.e. if 
the flow were essentially two-dimensional 
there), the continuity equation would require 
ux = 0, that means that the flow variation 
with x, y and z would be purely rotational like 
that of a fluid mass under angular velocity 
co = (uz - wx)/2 = uz = -wx = TI/2, where n is 
the vorticity component along the y-axis which 
is the axis of rotation.  Hence under dynamic 
equilibrium at Sf there can not be shear in 
the z-direction only. 

The kinematic boundary condition on 
Sf may be expressed as 

G(x, y, z) 
with 

G(x,y,z)   =   (u6/6x+v<5/6y+w6/6z) (z-Z(x,y)) 

(B.2) 

(B.3) 

Observing that through our conventions we have 
Z = zx = Zy = 0 and v = w = 0 in P0, through 
differentiation along a line y = const on Sf 
we obtain 

— = Gx + Gz • Zx wx 
dx 

i.e. n/2 = -wx = -u-Zxx = • 
curvature of Sf at P0 in a 

■ u-Zxx  at P0  (B.4) 

■uk, where k is the 
cut with the x-z 
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plane (As Zx  is zero at P0, Zxx equals  k!) 
Batchelor (1970) proved this relation using 
tools of differential geometry, i.e. with a 
general curvilinear coordinate system adjusted 
to Sf and the flow direction within this sur- 
face.  Note that the only assumption needed is 
stationarity of the flow and the free surface 
in an appropriate system of reference.  Note 
that there is no influence of any viscosity 
coefficient on this relation, though positive 
viscosity (however small) is assumed.  One may 
observe that the sense of vorticity corresponds 
to that of orbital motion in case of an infini- 
tesimal irrotational wave progressing with speed 
u in the crest, opposite sense in the trough. 

According to above analysis, no stationary 
free surface shear flow can exist where the 
free surface does not display curvature.  Ex- 
pressed otherwise:  On a plane free surface 
the vertical derivatives of all flow components 
must be zero.  Thus Hawthorne's secondary flow 
model is not appropriate for quantitative 
predictions, apart from being unable to take 
account of the influence of advance speed on 
flow geometry.  The above more refined condi- 
tions are taken care of in a recent study by 
Prosperetti (1982) together with a genuine 
influence of gravity, though for time dependent 
flow only so far. 
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DISCUSSION 

Prof. HIDEAKI MIYATA, 
The University of Tokyo, 
Tokyo, Japan: 

This discussion is also partly addressed 
to the paper by Prof. K. Mori (Session V). 

These experimental works seem to by very 
useful for a sound understanding of the non- 
linear flow mechanism around a ship. However, 
despite the fact that these works have been 
continued by increasing number of researchers, 
the most important aspects of the mechanism 
seem to me still left vague. It may be because 
they have not investigated into the nonlinear 
wave making and breaking mechanism. The char- 
acteristics of nonlinear waves are most sub- 
stantial for the understanding of wave break- 
ing, which is a dissipative process of non- 
linear waves. The systematic variation of wave 
geometry that Mr. Takekuma and Prof. Eggers 
showed is one of the important characteristics 
of nonlinear waves in the nearfield of a ship, 
which I called free-surface shock wave. Break- 
ing phenomena are natural consequences of the 
generation of steep unstable waves in the wa- 
ter wave problems. 

It must be noted that there are many types 
of wave breaking, spilling and plunging breakers 
and others depending on the circumstances. Prof. 
Mori seems to concentrate his attention on rath- 
er gentle spilling breakers. However, other 
types of breaker also have potential to occur, 
such as plunging breaker with air entrainment 
at a higher Froude number. 

It is clear that wave breaking is a natu- 
ral result of steep wave generation. However, 
it is not clear how wave breaking and vortex 
generation are related. The variety of vortex 
generation seems to confuse the discussion. 
Prof. Mori points out the role of viscosity on • 
the free-surface that produces a shear layer. 

Can this shear layer develop to a scale signifi- 
cant to bow wave motion without the presence of 
wave breaking phenomenon? Can it be still im- 
portant at the Reynolds number of a full-scale 
ship? Takekuma and Eggers do not show how the 
shear layer is generated. 

To the discusser's knowledge at least two 
types of significant vortex generation can take 
place in the vicinity of a bow. One type is 
generated by wave breaking at the wave front. 
It is not difficult to understand that overturn- 
ing or spilling motions generate vortical motion. 
The other is generated by the interaction of a 
stagnant flow with a shear flow in the vicinity 
of a stagnant point. The former was called neck- 
lace vortex by Taneda and the latter horseshoe 
vortex. The generation is quite different be- 
tween the two. 

A result of numerical simulation by the 
TUMMAC-Vot method based on Navier-Stokes equa- 
tions is cited here to show some aspects of 
vortex generation in front of an advancing 2D 
floating body in deep water. The rectangular 
body is advancing to the left at the Froude 
number based on draft 1.25. The bow wave moves 
forward with the breaking wave front. The over- 
turning motion generates vortical flows and the 
successive occurrence of breaking produces a 
vortical layer with steep velocity gradient near 
the free-surface. And then, a vortical motion 
near the floating body develops. The role of 
the vortical layer or shear layer, which is a 
consequence of wave breaking, in this horseshoe 
vortex generation may be acceptable. In the ex- 
periment of flow visualization the gentler vor- 
tex, namely the horseshoe vortex, can be easily 
observed, whereas the necklace vortex is very 
hard to be visualized, because the fluid motion 
is very violent with intense turbulence on the 
free-surface and sometimes with air entrainment. 
This kind of numerical simulation that shows 
averaged motions is sometimes more useful than 
experiment for clear understanding of complicated 
fluid motions. 
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Fig.  1      Velocity vector field in front of an advancing floating body at   T = 2.004 sec. 
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Fig. 2  same as Fig. 1, at T = 2.586 sec. 

Prof. KAZU-HIRO MORI, 
Hiroshima University, 
Higashi-Hiroshima, Japan: 

In the present paper waves shown in Fig. 
1(3) and in Fig. 6 are called "wave breaking" 
altogether. I think they are different not only 
in their phenomena but in their mechanism; the 
former is a plunging type breaking coupled 
with an overturning of the bow necklace vortex, 
while the latter is a turbulent free-surface 
flow. I am afraid it may cause an unnecessary 
confusion to call both by the same term. In my 
paper the latter is called "sub-breaking waves" 
in distinction from the former. The breaking 
lines shown in Fig. 2 are also misleading in 
this sense. The phenomena are suspected to be 
different between those at Fn=0.200 and at 
other speeds. 

Does "vortices in the free-surface shear 
layer" mean the "necklace vortex" mentioned in 
the abstract? If so, it had better be called 
necklace vortex simply. 

The effectiveness of a protruding bulb on 
the bow sub-breaking and breaking waves is 
confirmed through our experiments also.* Fig. 
Al shows bow wave profiles of a highspeed fish- 
ing boat. It is seen the bow wave breakings are 
strikingly reduced by a large protruding bulb. 
It is measured that the velocity is accelerated 
by the bulb as pointed out by the authors. 

* Tamashima, M., Nishimoto, H., Ogura, M. and 
Mori, K.: Experimental Studies on Bow-Flow 
of Full High-Speed Ships under Calm Condi- 
tion, Trans, of The West-Japan Soc. of Naval 
Arch., No. 68, 1984. 

Fn = 0.26 

Fn = 0.28 

Fn = 0.26 

Fn = 0.28 

Fig. Al 
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Dr.-Ing. ALFRED M. KRACHT, 
Berlin Model Basin (VHS), 
Berlin, Germany: 

The interference effect of the bulbous bow 
is well known but it is not sufficient to ex- 
plain the resistance reduction on slow full 
ships where the wave making resistance is neg- 
ligibly small but the wave breaking resistance 
is a substantial part of total resistance. In 
the paper presented here the authors give an 
additional plausible physical interpretation 
of the wave breaking phenomenon, which depends 
not only on the steepness of the waves but also 
on the free surface shear flow. 

The detailed statements of the authors 
provide an interpretation for the fact that a 
bulb is not always advantageous. In the case 
of good hull forms on which the hull's per- 
turbation vorticity is lower than that of the 
bulb the latter is unfavourable. Therefore, in 
optimizing ship and bulb the interactions of 
both, the waves and the perturbation vortici- 
ties have to be taken into account. Both con- 
tributions to the total resistance depend on 
the ship's speed and block coefficient in a 
different way. 

The influence of most of the main hull 
parameters on resistance is known to naval 
architects but in this paper the physical rea- 
sons of the influences are given, e.g. the in- 
fluence of the waterline entrance angle. 

From the paper it is not quite clear what 
the purpose of the surface roughening was and 
in what way wave breaking is changed. In model 
tests the surfaces have to be smooth except 
for the small turbulence stimulating area. 

Another question concerns the relationship 
of the present work to that of Mr. Kazu-Hiro 
Mori presented in Session V. 

Prof. Dr.-Ing. CLAUS PETER THOMSEN, 
Fachhochschule Hamburg, 
Hamburg, FR Germany: 

On the vortex flow component at the bow 
and hull I should like to support our views by 
some photos. They were taken last year in way 
of flow experimentation of some new type. 

Applied was an erodable material of poly- 
wax. Under the action of water flow the materi- 
al is washed off the body leaving the body in 
continuously changing new relative forms. The 
starting form had been box shaped 60x15x15 cm 
at 3 cm freeboard. Froude number was 0.21. The 
body was towed over a total distance of 3000 
metres through the tank of Hamburg Ship Model 
Basin HSVA. I show you three forms as photo- 
graphed intermittently. 
Fig. 1: The flow feature of interest is the 

strong vortex engirdling the body in 
the free surface. Its trace is carved 
into the material at constant depth 
and cross-section along hull's constant 
middle part. The bow shape has the 
strong action of the vortex in it-and 
so has the transom. 

Fig. 2: All forms take on more distinct pro- 
files. The longer one has the flow oper- 

ating, on the deformable body. Look at 
the bulb that developed here. Look at 
the stern. The vortex has sawed into 
it deeply and in characteristic form. 

Fig. 3: There are more features of vortex flow 
to look at. However, the photos I could 
reproduce here are too poor in quality. 
So I better restrict myself now. 

Thank you. 

Fig. la: Model after 900 m through water at 
Fn = .206 (form to cast the wax, in 
upper part of display) 

Fig. lb: Model after 900 m through water, 
another close-up 

Fig. 2: Model after 3000 m through water 
at Fn = .206 
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Fig. 3: Afterbody form after 3000 m through 
water 

Prof. VIRENDRA C. PATEL, 
The University of Iowa, 
Iowa City, IA, USA: 

Mori 
(See discussion following the paper of K. 
Session V.) 

Drs. S. OGIWARA and A. MASUKO, 
Ishikawajima-Harima Heavy Industries Co. 
Yokohama, Japan: 

Ltd., 

The authors related the wave breaking in- 
ception with the secondary vorticity proposed 
by Hawthorne, and explained that the relative 
strength of the vorticity in shear flow corre- 
sponded to the measure of wave breaking inten- 
sity. 

In order to investigate the mechanism of 
wave breaking phenomenon around the bow of full 
ships, the present discussers recently carried 
out the measurement of wave profiles around a 
blunt bow form having elliptic waterline shape 
(1).. Length, breadth and draft of the model are 
6.0 m, 1.0 m and 0.4 m respectively. 

Fig. 1 shows the wave profiles in front of 
the bow along the center line. The development 
of free surface elevation can be characterized 
as follows: 
(1) At the lower speed of U = 1.0 m/s, a streak 

can be observed in front of the bow (point 
B in Fig. 1). The free surface disturbance 
in the region bounded by this streak is 
comparatively gentle. 

(2) At the speed of U = 1.1 m/s, the free sur- 
face flow in the region between the bow 
and the point B is disturbed and there 
exists the reverse flow region close to 
the bow that corresponds to the phenome- 
non shown in Figs. 12, 13 of the authors' 
paper. The point A indicates the front 
line of the reverse flow region. At the 
higher speed of U = 1.2 m/s, a new swell 
arises in front of the point B; this swell 
seems to be caused by gravitational effect. 

(3) At the speed of U = 1.3 m/s, wave breaking 
takes place at the front of this swell and 
the front line of breaking (point C) moves 
forward as the speed increases. 

The wave breaking that is related to the 
vorticity in free surface shear layer corre- 
sponds to the phenomenon in the reverse flow 
region between the bow and the point A. However, 
the wave breaking which is usually observed 
around full ships advancing on the sea corre- 
sponds to the breaking of the gravity wave at 
the point C. The idea of free surface shear 
flow seems to have difficulty in explaining the 
wave breaking mechanism at the point C. 

The authors discussed the influence of ship 
form parameters, such as draft, bow entrance 
angle, protruding bulb and waterline shape, on 
free surface shear flow. 

Besides the change of the bow shape, there 
are some additional devices to control wave 
breaking intensity. Recently, reduction of bow 
wave breaking was attempted by attachment of a 
bow wing or a bow fin (1), (2). The present 
discussers would like to show an example of re- 
duction of breaking wave by using a horizontal 
bow wing. 

f(rn) 

Fig. 2 shows a comparison of wave pattern 
around bow without wing (above) and with wing 
(below). A ship form with a sharp bow (L = 6.0m, 
B = 1.0 m, d = 0.4 m) was used and the waterline 
shape of the bow is represented by a parabola. 
The horizontal wing (chord length on center 
line = 0.12 m, span = 0.48 m) was attached to 
the bow. The position of leading edge is 0.075m 
before F.P. and the position of wing in vertical 
direction is 0.06 m above still water level. In 
this case, leading edge coincides with the break- 
ing front and the wing is submerged beneath the 
free surface when ship is running at U = 2.0 m/s. 
By attachment of the bow wing, the turbulence 
of free surface is remarkably suppressed and 
the angle between wave front and center line of 
ship is decreased. 
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Fig. 2 

Fig. 3 shows the results of flow field mea- 
surement near the bow. When the bow wing is at- 
tached, flow above the wing is accelerated and 
wave height is reduced. Velocity defect near the 
free surface has also disappeared. According to 
Mori's instability criterion (3), the bow wing 
may have an effect to stabilize the free sur- 
face disturbance. 

Breaking wave front 

y - 0.24 r 

~— Zr3 V-0.12 m 

y ■ 0.0 m 

0.1 x{m) 0.2 

Scale (U - 2.0 m/s) 

y - 0.0 m 

0.1  x Im) 0.2 

(1) Ogiwara, S., Masuko, A., Sato, R. and 
Tsutsumi, T.: Experimental Investigation on 
Free Surface Flow Related to Bow Wave Break- 
ing, J.Kansai Soc.Nav.Arch.Japan (1984). 

(2) Miyata, H. et al.: Resistance Reduction by 
a Horizontal-Bow-Fin and a Movable Bulb, 
J.Kansai Soc.Nav.Arch.Japan, No. 191 (1983). 

(3) Mori, K.: Necklace Vortex and Bow Wave 
around Blunt Bodies, 15th Symposium on 
Naval Hydrodynamics, Hamburg (1984). 

AUTHORS' REPLY 

The authors feel gratified with the vivid 
response to their paper. We could hardly expect 
such resonance, since we have mainly displayed 
some experimental material together with calcu- 
lations based on a crude theoretical model. As 
explicitly stated, we do not make any claims 
about the generating mechanism for shear layers, 
vortices and wave-breaking. Accordingly, we 
feel unable to comment on problems of scaling 
as well as on effects of surface tension, in- 
stationarity or contamination. 
In this situation, the substantial additional 
information from the discussers' related ex- 
periments is certainly appreciated. We hope 
that the material compiled may provide a base 
for future studies, if not for a coordinated 
joint international research program. The pio- 
neering experimental series at the Hamburg IfS 
tank in collaboration with Dr. Y. Kayo of the 
MHI Nagasaki Technical Institute may have set 
some standards for such ventures. 

It is a demanding task to evaluate the 
relevance of Prof. Miyata's broad discussion 
to our work presented. In any case, it appears 
notable that his approach, maybe less effi- 
cient for modeling a free surface shear layer, 
does display some amount of backflow i.e. cir- 
culatory motion. This is then complementary to 
the spiraling flow derived from a true poten- 
tial flow approach in the earlier lecture of 
Tuck and Vandenbroek, referred to in the dis- 
cussion of Prof. Patel, who undoubtedly is 
right in calling our attention to the viscous 
component of vortex generation. (Note that a 
free surface shear layer needs only an infi- 
nitesimal amount of viscosity for its incipi- 
ence.) 

We feel grateful for the experimental re- 
sults contributed by Drs. Ogiwara and Masuko 
and their careful observations of bow wave pro- 
files. They are surely right when discriminat- 
ing between wave breakers at their points A 
and C respectively. In fact, it is evident 
already from the first discussion that prior 
to any constructive dialogue we have to agree 
on an unambiguous terminology. In this respect, 
the endeavor of Prof. Mori in his preceding 
paper and in his present comment deserves 
attention; his recommendation regarding a neck- 
lace vortex in the region close to the bow is 
accepted. 

Dr. Kracht asked for the motivation to 
roughen one ship side for the experiments shown 
in Fig. 22. According to Dr. Baba, such rough- 
ness may create a local region of low speed 
which may affect the inception of wave-breaking. 

Prof. Thomsen's interesting experiments 
concerning flow erosion effects on a block of 
wax under continual towing deserve attention. 
They provide additional evidence for the exist- 
ence of a persistent necklace vortex around a 
blunt bow. 
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WAVE-TRAPPING DUE TO A POROUS PLATE 

ALLEN T, CHWANG AND ZENGNAN DONG 

ABSTRACT 

The reflection and transmission of 
small-amplitude surface waves by a vertical 
porous plate fixed in an infinitely long 
channel of constant depth and the wave- 
trapping by a thin porous plate fixed near 
the end of a semi-infinitely long open 
channel of constant depth are investigated. 
Analytical solutions in closed forms are 
obtained for the surface wave profile and the 
net hydrodynamic force acting on the porous 
plate. A dimensionless porous-effect 
parameter and a Reynolds number associated 
with the flow passing through the porous 
plate are introduced. It is found that, when 
the distance between the porous plate and the 
channel end-wall is equal to a quarter- 
wavelength plus a multiple of half-wavelength 
of the incident wave, the reflected wave 
amplitude reduces to a minimum. Thus, the 
porous plate together with the fluid region 
between it and the channel end-wall acts as a 
wave absorber or eliminator. The effect of 
nonlinear porous flow, governed by the square 
law of resistance, on the resulting surface 
waves is also studied. It is found that 
higher harmonic waves are generated due to 
this nonlinear porous flow. 

1.  INTRODUCTION 

The reflection and transmission of 
small-amplitude surface waves by a thin 
vertical barrier were first studied by Dean 
(1945). In Dean's analysis, the semi- 
infinitely long vertical barrier was 
submerged in infinitely deep water with its 
top edge being at a distance below the free 
surface. In a similar manner, Ursell (1947) 
analyzed the reflection of surface waves by a 
surface-piercing barrier of finite length in 
infinitely deep water. Mei and Black (1969) 
extended the analyses of Dean (1945) and 
Ursell (1947) to consider the scattering of 
infinitesimal surface waves normally incident 

on a rectangular surface obstacle or a bottom 
obstacle in a channel of finite depth. 

The linearized problem of transmission 
of surface waves through a gap or a small 
aperture in a vertical barrier in water of 
infinite depth was analyzed by Tuck (1971) 
and Porter (1972). The corresponding problem 
for a finite water depth was studied by 
Guiney et al. (1972) and Packham and Williams 
(1972). 

Lewin (1963) investigated the effect of 
many gaps in a vertical barrier on the 
propagation of surface waves. He analyzed 
the motion of small-amplitude surface waves 
in the presence of N vertical barriers 
separated by prescribed distances in water of 
infinite depth. These barriers may vibrate 
in a prescribed manner. Mei (1966) also 
solved the problem of radiation and 
scattering of surface waves by an arbitrary 
number of vertical plates in an infinitely 
deep ocean. Instead of monochromatic waves, 
Mei (1966) considered a set of general 
initial data on the free surface and a set of 
general boundary values on the plates. Using 
the method of singular integral equations, 
Porter (1974) analyzed the radiation and 
scattering of surface waves by thin barriers 
lying in a vertical plane in infinitely deep 
water. Each barrier was allowed to make 
small rolling or swaying oscillations of the 
same frequency as that of the incident 
wave. Reference was also made by Porter 
(1974) to the calculation of forces and 
moments on the barriers. 

Adopting the method of matched 
asymptotic expansions, Tuck (1975) considered 
many problems involving flows through small 
holes, including the problem of transmission 
of water waves through holes in a thin 
barrier placed vertically in water of 
infinite depth. Macaskill (1979), following 
Tuck's (1975) formulation, studied the 
reflection of water waves by a thin barrier 
of arbitrary permeability in water of finite 
depth. The general problem was reduced to a 
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set of integral equations using standard 
techniques. These equations were then solved 
numerically using a special decomposition of 
the finite-depth source potential. Numerical 
results were presented by Macaskill (1979) 
for a single surface-piercing barrier and a 
single submerged barrier reaching partway to 
the surface in water of finite depth, and for 
a two-gap barrier in water of infinite depth. 

Recently, Chwang (1983) investigated 
free-surface gravity waves produced by the 
horizontal oscillation of a uniformly porous 
plate. In his linearized analysis, the thin 
vertical porous plate (wavemaker) was placed 
in the middle of an infinitely long channel 
of finite depth. In comparison with the 
classical impermeable-wavemaker theory 
developed by Havelock (1929), Biesel and 
Suquet (1951), and Ursell et al. (1960), 
Chwang (1983) found that the porous effect 
reduces not only the wave amplitude but also 
the hydrodynamic pressure force acting on the 
wavemaker. The velocity of the flow passing 
through the porous plate was assumed by 
Chwang (1983) to be linearly proportional to 
the pressure jump across it. In other words, 
the porous flow is governed by Darcy's law. 
Chwang and Li (1983) applied the linearized 
porous-wavemaker theory developed by Chwang 
(1983) to analyze the smal1-amplitude surface 
waves produced by a piston-type porous 
wavemaker near the end of a semi-infinitely 
long channel of constant depth. They 
discovered that, when the distance between 
the wavemaker and the channel end-plate is a 
multiple of the half-wavelength of 
propagating surface waves, no propagating 
wave would radiate out at infinity. They 
called this new phenomenon "wave-trapping". 

In the present paper, we shall further 
explore the wave-trapping phenomenon by a 
thin vertical porous plate. The problem of 
reflection and transmission of small- 
amplitude surface waves by a vertical porous 
plate fixed in the middle of an infinitely 
long channel of constant depth is analyzed in 
section 2. A dimensionless porous-effect 
parameter and a Reynolds number associated 
with the flow passing through the porous 
plate are also introduced. The complete or 
partial trapping of an incident surface wave 
by a porous plate fixed near the end of a 
semi-infinitely long channel of constant 
depth is discussed in section 3. Finally, 
the effect of nonlinear porous flow on 
reflection and transmission of surface waves 
is introduced in section 4. 

2.  INFINITELY LONG CHANNEL 

We shall first consider the problem of 
reflection and transmission of an incident 
sinusoidal wave by a vertical porous plate in 
water of finite depth. The vertical porous 
plate is fixed at the x = 0 plane (see Fig. 
la). The y axis points vertically upwards 
with the plane y = 0 being the horizontal 
bottom of the channel. An incident wave 
represented by 

'0 a sin (cot + kßx) (1) 

propagates in the negative x direction toward 
the porous plate, where nQ is measured from 
the undisturbed mean free surface at y = h. 
In equation (1), k0 is the wave number, to is 
the circular frequency, and a is the maximum 
wave amplitude which is assumed to be very 
small in comparison with the undisturbed 
fluid depth h. 

We shall assume the fluid in the channel 
to be inviscid and incompressible, and its 
motion irrotational. Therefore, the velocity 
potentials satisfy the two-dimensional 
Laplace equation 

v *. 
l 

0  (i = 1,2) 

where the subscript 1 refers to the fluid 
region x > 0 and 2 refers to the fluid region 
x < 0. The linearized free-surface condi- 
tions for the velocity potentials *,        are 

3   $ . 
 1_ 

n2 

3* . 
 1 

3y 
0   at y = h  (1  = 1,2) (3) 

where g is the gravitational constant. The 
normal velocity of the fluid must vanish at 
the bottom of the channel. Hence 

34 ■ 

W 0 at y = 0 1,2). (4) 

Let the normal velocity of the fluid 
passing through the porous plate from region 
1 to region 2 be W(y,t). Therefore, the 
boundary conditions on both sides of the thin 
porous plate are 

3* . 

3x 
1=-W    atx=0    (i  = 1,2). (5) 

We assume the flow inside the porous plate 
obeys Darcy's law. Hence, the porous flow 
velocity W is linearly proportional to the 
pressure difference between the two sides of 
the porous plate (Taylor, 1956; Chwang, 1983) 

W(y,t) = j (Pr P2) at x 0, (6) 

where v is the constant coefficient of 
dynamic viscosity and b is a material 
constant having the dimension of a length. 
The hydrodynamic pressures P-j(x,y,t)(i = 1,2) 
are related to the velocity potentials 
through the linearized Bernoulli equation 

3$ . 
P. = . p _1 (1 = 1,2) (7) 

where p is the constant density of the 
fluid. 

Since the incident wave is a sinusoidal 
wave, we assume, based on the linearity of 
the equation and of the boundary conditions, 
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that the velocity potentials, the 
hydrodynamic pressures, and the porous flow W 
all have a time factor exp(iwt), 

*. Mj(x,y) eiut, W = w(y)eiut, 

P.  = Pj(x,y) eiMt  (j =1,2).      (8) 

Only the real parts should be taken to 
represent physical quantities. 

The solutions of equation (2), 
satisfying boundary conditions (3) and (4), 
are given by 

-ikn* 
*1= *0+ A0 cosh k0y e    '        '9a^ 

ikQX 

4» 2
= Bocosn koy e   ' 

where 

ik 0* 

(9b) 

(9c) 4> Q = A cosh kgy e 

corresponds to the incident wave, and kg 
satisfies the dispersion relation 

u2 = gkQ tanh kgh. (10a) 

Equation  (10a)  can also be written as 

1 - C kQh tanh knh =  0, (10b) 

where C is a dimensionless wave-effect 
parameter given by (Chwang, 1981) 

in h 

(10c) 

Through   the   linearized   dynamic   boundary 
conditions at the free surface, 

3* . 
—1+ g, - 0   at y=h  (1 = 0,1,2), (11) 

and equation (1), the constant A in equation 
(9c) is related to the maximum amplitude of 
the incident wave, a, by 

ag 
cosh kQh 

(9d) 

In    equation    (11), *0 = <t>0 exp (iut) 
represents the velocity potential of the 
incident sinusoidal wave. 

By  equation  (7)  to  (9),  and  the 
relations (5) and (6), we have 

2G A o 
"0 " 1+2G  '  0  1+2G  ' 

o o 
2ik0G A 

w(y) = - 1+2G   cosh k^ , 
o 

(12a) 

(12b) 

where A is given by (9d) and GQ is a 
dimensionless porous-effect parameter (Chwang 
and Li, 1983), 

pub 
w~0 

(12c) 

Substituting equations (8), (9), (10) 
and (12) into (11) and taking the real parts 
only, we obtain the surface wave profile in 
both regions 

n,= n0 + J^Q- sin (ut " ko*) »    (13a) 
o 

2aGn 
n2 = T+W'   sin (ült + k0x) '      (13b) 

o 
where the incident wave nQ is given by 
equation (1). The second term on the right- 
hand side of equation (13a) represents the 
reflected wave which propagates in the 
positive x direction, whereas equation (13b) 
represents the transmitted wave which 
propagates in the negative x direction. 

If we define the coefficient of 
reflection CR as the square of the amplitude 
ratio of reflected wave to incident wave, 
then by (13), we have 

'R (1+2G )2 
o 

(14a) 

Similarly,    we    define    the    coefficient    of 
transmission CT by 

,2 4G' 

'       (l+2Gor 
(14b) 

Since the wave energy is proportional to the 
amplitude square, the coefficient of 
reflection may be interpreted as an energy 
ratio of the reflected wave to the incident 
wave. Similarly, the coefficient of 
transmission represents an energy ratio of 
the transmitted wave to the incident wave. 

The coefficient of reflection CR and the 
coefficient of transmission Cj are plotted in 
Fig. 2 versus the porous-effect parameter 
G . We note from Fig. 2 that, if GQ 
vanishes, the thin vertical plate becomes 
impermeable, all incident wave energy will be 
reflected. Therefore CR = 1 and Cj = 0 at GQ 
= 0. On the other hand, as GQ approaches 
infinity, the thin porous plate becomes 
completely permeable or transparent to fluid, 
all incident wave energy will be trans- 
mitted. Hence Cj tends to one and CR tends 
to zero as GQ approaches infinity. For 
finite values of GQ, both CR and Cj lie 
between zero and one. The sum CR + CT is 
less than one for finite values of GQ, which 
indicates some of the incident wave energy is 
dissipated in passing through the porous 
plate. At G0 = 0.5, the energy dissipation 
reaches a maximum, only 50% of the incident 
wave energy remains in the reflected and 
transmitted waves, each of which carries 25% 
of the incident wave energy. 

The porous-effect parameter GQ defined 
by (12c) depends on the fluid properties 
(p and ii), the property of the porous plate 
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(b), and the given incident wave (u and kg). 
By equations (10a) and (12c), we can rewrite 
G0 as 

where 

R(tanh k0h/k0h 1/2 

R p b / gh 
v 

(15a) 

(15b) 

is a dimensionless Reynolds number for flow 
inside the porous plate, which is independent 
of the incident wave. 

By  means  of  (14)  and  (15),  the 
coefficient  of  reflection '-R and  the 
coefficient of transmission Cj are plotted in 
Fig. 3 and Fig. 4 versus kgh for R = 1 and R 
= 5 respectively. Since the wave number kg 
is related to the wavelength X of incident 
wave by 

k 0 2TT/X (16) 

we note from Fig. 3 and Fig. 4 that, as the 
wavelength   increases,   the   reflection 
coefficient "R decreases  whereas the 

For transmission coefficint CT increases, 
fixed values of kgh, the energy dissipation 
by the porous plate increases, that is CR + 
Cj decreases, as the Reynolds number R 
decreases. 

3.    SEMI-INFINITELY LONG CHANNEL 

For a porous plate fixed near the end of 
a semi-infinitely long channel (see Fig lb), 
we have an additional boundary condition on 
the end plate for region 2, 

34, 

IT" 0   at x = - L. (17) 

The solutions of equation (2), satisfying 
boundary conditions (3), (4) and (17), are 

♦ j = ♦0+ Ao cosh k0y e 
-ik 0* 

if*« = Bg cosh kpV cos kQ(x + L), 

(18a) 

(18b) 

where ♦ Q is given by (9c), and k0 satisfies 
the dispersion relation (10). 

Substituting equations (7), (8) and (18) 
into boundary conditions (5) and (6), we 
obtain, without much difficulty, 

G2 + T2 (1-G2 
A = o   o  o_  
0     G2 + T2 (1+G )2 

2 
2iT G 

o o 

B0cosk0L 
2G - 2iG T (1+GJ 

o   o o  o' 

<f + r(i+G ) 
o  ov  o' 

A , 

where 

T0 = tan k0 L, 

(19a) 

(19b) 

(19c) 

GQ and A are given by eqations (12c) and (9d) 
respectively. 

Substituting the known solutions *j and 
*2 into equation (11), we have the surface 
wave profile in both regions 

— = — + E sin(ut - knx) a   a   o       0 

- F cos (ut - kgx), 

— = (H cos ut + I sin ut) 
a    o       o 

cos k„ (x + L) , 

where 

G2+ T2(l - G2) 
P  _  O   0*     0 

^°  G2 + T2(l + G )2 
0    Ov     0 

2T G^ 
-  _  0_0  
0  G2+ T2(l + G )2 

0 oK o' 

2T G (1+G ) 
o ov  o' 

H cos k fl. -  - ö  ö      9 » 
0    r    G2+ T2(l + G r 

IoCOS  kgL 

■ (1 + GJ 0  ov    o' 

26o 

G2+ T2(l+ G )' 
o  o*   o' 

(20a) 

(20b) 

(20c) 

(20d) 

(20e) 

(20f) 

and the incident wave tig is given by equation 
(1). The last two terms on the right-hand 
side of equation (20a) represent the 
reflected wave propagating away from the 
porous plate along the positive x direction, 
n, given by (20b) represents the trans- 
mitted waves passing through the porous 
plate. These transmitted waves propagate in 
both positive and negative x directions 
inside the finite region bounded by the 
porous plate and the channel end-plate. 

The reflected wave amplitude normalized 
with cespedt.tQ the incident wave amplitude 

(Ef + F„)1/z, is plotted versus LA  in 
The 

a, 
Fig. 5? for several fixed values of GQ. 
wavelength X is related to the wave number 
kg by X = 2w/kg. We note from Fig. 5 that, 
when L is equal to a quarter-wavelength plus 
a multiple of half-wavelength of the incident 
wave, the reflected wave amplitude reduces to 
a minimum. This minimum value is plotted 
versus the porous-effect parameter GQ in Fig. 
6 at L/X = 0.25. At GQ = 0, the porous plate 
becomes impermeable, the reflected wave has 
the same amplitude as that of the incident 
wave. As GQ increases from zero, the 
reflected wave amplitude decreases until GQ = 
1, where it reduces to zero. Then the 
reflected wave amplitude increases with a 
further increase in G. As G- approaches 
infinity, the porous plate becomes completely 
transparent to fluid. The incident wave then 
reflects from the end-plate of the semi- 
infinitely long channel, the reflected wave 
amplitude again tends to that of the incident 
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wave. Thus, the porous plate together with 
the fluid region between it and the channel 
end-plate acts as an efficient wave absorber 
or eliminator for incident surface waves 
whose wavelength is 

4L 
l+2m (m = 0, 1, 2, (21) 

When the condition (21) is met, the magnitude 
of TQ defined by (19c) tends to infinity. 

In order to separate the material 
properties from the given incident wave, we 
plot in, Ei.a. 7 the reflected wave amplitude 
(E + F ) ' versus kQh for several fixed 

val8es °of the Reynolds number R (defined in 
(15b)) at LA = 0.25. It can be seen from 
Fig. 7 that, at k0h = 0, it is desirable to 
make R equal to one in order to eliminate the 
reflected wave completely. 

As a passing interest, we may obtain the 
net hydrodynamic pressure distribution on the 
porous plate by equations (7), (8), (9d), 
(10), (18), and (19) (taking the real part 
only) as 

P2(0,y,t) - PjtO.y.t) 

pahi) 

C cos (<ot - e ),(22a) 

where the dimensionless pressure coefficient 

(22b) 

Cp is 

2T cosh kgV 

(22c) 

P  kQh[G
2+ T^(l+Go)

2]1/2 sinh kQh 

and the phase angle 8 is 

ep = tan'1 [TQ(1<)] , 

G    and  TQ being  given  by  equations   (12c)   and 
(I9c)   respectively.     The  dimensionless   force 
coefficient    Cf    is    obtained    by    integrating 
equation  (22b) with respect to y, 

h 2T„ 
. (23) Cf=TT I    Vy 2-J/2 

0 P    k^[Gj* T;(1+GO)<] 

4. EFFECT OF NONLINEAR POROUS FLOW 

Equation (6) governing the flow inside 
the porous plate is valid only for low flow 
velocities at which the Reynolds number based 
on the flow velocity and the "average grain 
diameter" of the porous medium is less than 
unity (Muskat, 1946). This condition is 
equivalent to the assumption that the fluid 
inertia is very small in comparison with the 
viscous force such that the fluid resistance 
is governed by the Stokes law (De Wiest, 
1969). At high flow velocities, as in the 
case when the porous plate is made of wire 
gauze or perforated sheets, Darcy's law is no 
longer valid and equation (6) has to be 
replaced. 

As described and discussed by Muskat 
(1946)  and  Scheidegger  (I960),  many 

investigators have attempted to modify 
Darcy's law for high velocities. A majority 
of these investigators proposed a relation in 
which the pressure gradient is proportional 
to the rr" power of the porous flow velocity, 
where n is intermediate between 1 and 2. As 
reported by Muskat (1946), experimental 
results indicate that n has a value in the 
neighborhood of 2. From studies of the flow 
of water through columns of shot of uniform 
size, Lindquist (1933) found n to be exactly 
2. Taylor (1956) also used the square law of 
resistance (n=2) to analyze the fluid flow in 
regions bounded by porous surfaces made of 
wire gauze and perforated sheets. His 
theoretical results agree with the 
experimental results within one percent. We 
shall adopt the square law of resistance in 
the form of 

2 
PC (Pi P2) at x=0 (24) 

which Cs is a dimensionless constant 
depending only on the material properties of 
the porous plate. 

To illustrate the effect of nonlinear 
porous flow, governed by the square law of 
resistance (24), on the resulting surface 
waves, we shall analyze the reflection and 
transmission of small-amplitude surface waves 
by a thin porous plate fixed in the middle of 
an infinitely long channel of constant depth 
(see Fig. la). 

The velocity potential corresponding to 
the incident wave given by (1) is 

'0 A cosh k oy 
i(u)t+k.o0 

(25a) 

where A is determined by equation (9d). 
We shall assume the velocity potential 

for region l(x>0), the velocity potential for 
region 2 (x<0), and the porous flow velocity 
be of the form 

•l =*0+ E . *lm (x'y)e m=l 

im ut 

*2= Z  ,  *2m(x'y)e m=l 

im äst 

im (ut 
W = E  w

m(
y)e 

m=l 

From equation (25d), we have 

W2= i   vB(y,e'" "' 
m=2 

where 

m-1 
vm(y) = s . w.(y) wm.,(y) 

s=l 
m-sv 

(25b) 

(25c) 

(25d) 

(26a) 

(26b) 
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Substituting equation (25) into the 
governing equation (2) and applying the 
boundary conditions (3) and (4), we have 

'Im mO cosh km0y e 
mu 

A  cos k y e mn    mn-7 
"kmnX mn 

n=l 

>o = B ncosh k „y e 2m   mO    mO7 

ik  „x mO 

+   l 
n=l 

B      cos  k    y e mn mnJ 

k    x 
mn 

(27a) 

(27b) 

where A^'s, B 0's A 's and L's H.2,3, 
...; n = 1,2,3, ....) are constant coeffi- 
cients yet to be determined, kg and k (m = 
1,2,3, ...; n = 1,2,3, ...) satisfy the 
relations 

(27c) Ckm0h tanh km0h = 0 

and 

m2 + Ckmnh tan kmnh = 0, (27d) 

and the wave-effect parameter C is defined in 
equation (10c). Equation (27c) reduces to 
(10b) when m = 1. Therefore 

<10 (0 (27e) 

which    is   the   wave   number   of   the   incident 
wave. 

We note that, for any fixed integer 
values of m, cosh km0y and cos k y (n = 1, 
2, 3, ...) form a complete set of orthogonal 
eigenfunctions over the interval from y = 0 
to y = h. Substituting equations (7), (25), 
(26) and (27) into boundary conditions (5) 
and the square resistance law (24), and 
equating the coefficients of terms having the 
same time-factor exp  (im wt), we obtain 

A10 =  0,  B 10 

Aln 3ln 

3     =   -   A     = 320        H20 

32n= " A2n= 

A, 

0    (n=l,2,3,   .. 

; 
iCskOA E20 

o)(4+CP2
0) 

1Csk2/E2n 

oj(4-CP 

(28a) 

(28b) 

(28c) 

(28d) 

2n' 

and so on. In equation (28), C, A and Cs are 
given by (10c), (9d) and (24) respectively, 
and 

2 
■-    -    P20    + 

4kOP10Q10Q20'k20P20(1+2P10;
(293) 

"20    2k2Qh 2h(4k2- k\0) 

Eo = 2n    2k2nh 

2n + 4k0P10Q10Q2nH-k2nP2n(U2P10)^nb) 

Zh<4k5+ k2n> 

Pm0 = sinh km0h (m = 1'  2' 3' 

pmn = sin kmnn  <n = 1'  2' 3' 

Qm0 = cosh km0 h, 

Qmn = cos kmnh- 

...), 

(29c) 

(29d) 

(29e) 

(29f) 

We note that the coefficients A30, B30, A3 
and 83 (n = 1, 2, 3, ...) are proportional 
to A^ etc. A is linearly related to the 
maximum amplitude of the incident wave, a, 
through equation (9d). Since a is assumed to 
be very small in comparison with the undis- 
turbed fluid depth h, we do not have to 
evaluate any more coefficients except those 
given explicitly in equation (28) if we 
neglect the terms of the order of (a/h)   . 

Substituting equations (25), (27), (28) 
and (29) into equation (11) and neglecting 
terms of 0(a/h) , we have the free-surface 
elevations in both  regions 

= D2Qcos(2tot - l<2Qx) 

" "!<?nX 

- I      D2 e cos(2o)t)   , 
n=l      n 

= — + D20cos  (2ü)t + k2Qx) 

k? x 
+ r      D2ne    n    cos(2iot)   , 

n=l 
where 

2CC/0ahQ20E2Q 

J2°~  Q?0(
4 + CP2o» 

3   
2CCsk0ahQ2nE2n 

2n " QlO (4"CP2n) 

(30a) 

(30b) 

(30c) 

(30d) 

The second term on the right-hand side of 
equation (30a) represents the reflected wave 
with amplitude DOQ, which propagates in the 
positive x direction. The last term in (30a) 
denotes the non-propagating waves due to 
reflection with exponential-decay amplitudes 
away from the porous plate. Both the 
propagating and non-propagating reflected 
waves are periodic functions in t with a 
frequency twice that of the incident wave. 
The transmitted wave given by (30b) has three 
components: the original incident wave 
without any change, a second-harmonic wave 
with amplitude D20 propagating in the 
negative x direction, and non-propagating 
waves with frequency 2u and exponential- 
decay amplitudes away from the porous 
plate. Similarly, the third-order terms 
would contain reflected and transmitted waves 
with frequency 3aj,  and so on. 

The second-order wave amplitude D™ is 
plotted in Fig. 8 versus k()h at a/h = 0.1 and 
Cs = 1. We note from Fig. 8 that D2Q 
increases as kgh increases. Dog is equal to 
0.025 at kgh = 0, and it reaches a value of 
0.333 at kgh = 10. 
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Figure 1.    Schematic diagram of a thin porous plate fixed in a channel  of constant depth: 
(a)  an infinitely long channel,  (b)  a semi-infinitely long channel. 
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Figure 2.      The coefficient of reflection CR and the coefficient of transmission CT 

versus the porous-effect parameter GQ. 
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Figure 3. The coefficient of reflection CR and the coefficient of transmission Cj 
versus kgh at R = 1. 
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Figure 4. 
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The coefficient of reflection CR and the coefficient of transmission CT 

versus kgh at R = 5. 
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Figure 5.  Amplitude of the reflected wave versus the ratio L/X at fixed values of GQ. 
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Figure 6.      Amplitude of the reflected wave versus the porous-effect parameter GQ 
at  LA  =  0.25. 
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Figure 7.      Amplitude of the reflected wave versus kQh for several  fixed values of R 
at LA  =  0.25. 
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Figure 8.      Second-order wave amplitude versus kQh at a/h = 0.1 and Cs = 1. 

DISCUSSION 

Dr.-Ing. HIROSHI ISSHIKI, 
Technical Research Institute, Hitachi Zosen Corp. 
Osaka, Japan: 

I am very impressed by your interesting 
and unique ideas, and would like to make one 
comment and ask one question from an engi- 
neering point of view. 

My comment is that your theory may find 
an important application when we try to calcu- 
late the effect of a breakwater made of porous 
materials such as rocks or tetrapods. In this 
case, the introduction of viscous effects may 
be essential. 

My question is that the viscous effect 
should be reduced as much as possible if your 
idea is applied to a wave maker and/or wave 
absorber. In this case, you should use, for 
example, a method used in audio speaker systems 
as shown below. 

AUTHORS' REPLY 

Thank you very much for your kind comments. 
Your suggestions of applying our theory to cal- 
culate the effect of porous breakwater on wave 
reflection and extending our ideas to further 
develop a high-performance wave absorber are 
very encouraging and stimulating. We shall 
continue our research on this subject following 
your suggestions. 

J i 

1 T 
The discusser believes that the authors' 

idea should be extended further to develop a 
wave absorber of high performance so as to 
eliminate the troublesome effect of reflected 
waves present in an ordinary wave absorber. 
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ON THE INFLUENCE OF NONLINEARITY OF BOUNDARY CONDITIONS AT THE HULL 

AND WATER SURFACE IN THE PROBLEM OF A SHIP'S WAVE RESISTANCE 

E.L. AMROMIN, A.N. IVANOV, 1.0. MIZIN, AND Y.S. TIMOSHIN 

ABSTRACT 

Linear theory of ship waves does 
not make it possible to predict the 
value of the wave resistance of the 
displacement ships with satisfactory- 
accuracy. In connection with the ab- 
sence of accurate non-linear soluti- 
ons of the three-dementional problems 
concerning ship waves attempts were 
made to improve the methods of calcu- 
lation of the wave resistance mainly 
in two ways - either by specifying the 
boundary conditions on the surface of 
a ship, or taking into account the 
non-linearity of the condition on free 
surface. Analysis of boundary condi- 
tions of free surface is presented 
here and the method of calculation of 
the wave resistance of a ship with due 
regard for the non-linearity of these 
considerations of the effect of non- 
linearity of boundary conditions on 
the ship hull on the wave resistance 
are presented in this paper. 

NOTATION 

L,T,S,UO. - length, draft, coeffici- 
ent of fullness of displacement 
and ship speed; 

*TW - wave resistance to the product 
of the wetted surface area and dy- 
namic head of the incident flow; 

t?x  - residual resistance to the same 
value; 

{a:,y,2}  and {£,*?,*;} - systems of 

Cartesian coordinates connected 
with intersections of midsection, 
centerplane and construction water- 
line of a ship; 

q. - gravity acceleration; 
X. - wave length; 
V -  speeds on free surface; 

■v-(gi-)" U = Ml U 

.- intensity of the sources distri- 
buted over the ship surface; 
q,A,uA,zn - values of the q,,u,z 
that correspond to linear theory. 

INTRODUCTION 

-induced velocity; 

Krylov Shipbuilding Research Institute, 

Potentials of the linear theory 
while calculating the wave resistance 
of a ship were essentially comprehen- 
sively studied by Girs and Sretensky 
in 1946. They compared the results of 
the resistance measurement of a series 
of vertical sided models of great 
length-beam ratio with waterlines of 
big angle of declination with calcula- 
tions according to Mitehell formula. 
Differences between the theory (curve 
1 in Fig.1) and the experiment (dots) 
proved to be great. A similar compari- 
son for a model of Todd's 60-th series 
09i>3) with coefficient of fullness of 
displacement &  = 0,6 is given in 
Pig.2, and a comparison for a model 
with a bow bulge carried out by Amro- 
min, Mizin, Pashin and Timoshin (1983)- 
in Pig.3. 

The linearization of boundary con- 
ditions on the ship surface and free 
surface of the fluid is one of the main 
causes of differences between the cal- 
culated and experimental data. Conside- 
rations concerning the influence of 
the boundary conditions on the calcu- 
lated values of the wave resistance of 
a ship and a procedure of considering 
of non-linear conditions on the free 
surface of the fluid first used by 
Amromin and Mizin are presented below. 

2, OH LINEARIZATION OP BOUNDARY CONDI- 
T 
TIONS, ON FREE SURFACE 

A steady flow around the ship hull 
in the associated system of coordinates 
where the wave system is stable is dis- 
cussed. The fluid is believed to be 
incompressible, perfect and the flow 
beyond the ship hull - potential. 

Leningrad 196158 USSR 
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One of the significant points of 
the linearized theory of the wave re- 
sistance is the linearization of the 
Bernoulli integral. 

Figure 1- Relation 
model with vertical sides. 

Figure 2 - Relation 
model of Series 60. 

for the 

0,22 

Figure 3 - Relation       for the 
model of large fullness with nose bulb 

In this case the original assum- 
ption is the smallness of the induced 
velocities on the ship hull and free 
surface as compared with the value of 
undisturbed speed. 

Bernoulli integral for the points 
of the surface of the fluid can be 
written down as 

TJ2+ 2( Vi (1) 
For the further analysis it is 

convenient to write Eq..(1) as follows 

where 

u=a-2gzu^ r0,5 

v~vve 

(2) 

assuming that 

z«uiUc)H (3) 

the right part (2) can be expanded in 
a Taylor series with the terms not 

higher than the first order of small- 
ness in it. The linearized Bernoulli 
integral can be written as 

iJ = * —"0 z , >) = g •u; (4) 

Condition (3) is equal to the condi- 
tion of smallness of the induced velo- 
cities in all the points of the free 
surface of the fluid, strictly speak- 
ing, that can take place only for the 
ships of a great length-beam ratio the 
waterlines of which in addition have 
zero angles of declination in the fore 
and after ends in way of the free sur- 
face. The waterline configurations of 
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real ships considerably differ from 
the influence of the mentioned fact 
on the errors in the wave-resistance 
estimating can be performed using (2) 
and (4). In doing so it should be 
borne in mind that a ship wave system 
and consequently its wave resistance 
depends on the deformation extent of 
the free surface in close proximity to 
the fore and after ends of a ship where 
waves are generated. Deceleration of 
the inflow occurs in these zones. The 
mentioned fact is of special signifi- 
cance for full ships. 

Dz -i 

0.5 

2/ 

/\ X[ \ 
\y 

/\/       \ \ 
\   \ 

//          ^ 
. \! 

\ \" 
X           \ 

\         \.         ^v \ 

-0.5 /o\ \    N3.5 ;v 1 
-u 

-Q.5 

Figure 4 - Relation of wave elava- 
tion to the speed. 

Dependences (2) and (4) express 
the relation between the speeds in the 
points of the free surface mentioned 
above. The plots illustrating the de- 
pendences mentioned earlier are pre- 
sented in Fig.4. Curve 1 corresponds 
to the non-linearized Bernoulli inte- 
gral, curve 2 - to the linearized one. 
The given data indicate considerable 
distortion of the disturbance extent 
of the fluid free surface due to Ber- 
noulli integral linearization. 

It follows from (2) and (4) that 

there is a possibility to define also 
qualitative differences in linear and 
non-linear wave interference. The li- 
nearized Bernoulli integral does not 
place restrictions on the rising of 
the free surface which results from 
the condition that the radicand in (2) 
cannot take negative values. 

^ZSO,5 (5) 

The limiting values of rising are 
shown by dotted line in Fig.4. Since 
the speed of wave propagation TJoo re- 
mains inviriable equal to ship speed 
after the interference of the bow and 
stern wave systems limitation (5) is 
true for the sum of the non-linear 
waves. Thus, if the bow and stern wave 
systems are of the height that is equal 
to more than half of the limiting one 
and are close in phase the law of sim-* 
pie geometrical summation of waves is 
not valid any more and the height of 
the sum of waves should be less than 
their arithmetic sum, or resulting 
height proves to be of limiting value 
and the process of the resulting wave 
profile breakage occur due to the ne- 
cessity of fulfilling condition (5). 
The above mentioned fact should result 
in oscillation-subdueing of the wave 
resistance coefficient curves repre- 
sentative of the linear theory calcu- 
lation. 

If Vl, is substituted for the de- 
pendence of propagation speed of plane 
waves of finite amplitude on length 

«£-&[< ♦fsn,i 
there will beobtained a limiting value 
of the wave amplitude to wave length 
ratio 

2 71 a4 = X. (6) 

which is close to the value obtained 
by Stokes and the value given in Sre- 
tensky monograph (1975). Here a,   is 
the value of the first harmonic wave 
amplitude in a representation of the 
wave form as a trigonometric series. 

It can be seen from the diagrams 
of Fig.4. that the main errors due to 
linearization of Bernoulli integral 
are observed for the values of the to- 
tal velocities on the free surface 
less than 0,!j V... A significant im- 
provement can be achieved if the ma- 
ximim values of free surface deforma- 
tion, including wave height values, 
are restricted by the limiting values 
indicated in Fig.4 by a dotted line. 
Thus, the simplified relation between 
the velocities and deformations will be 
represented by the lines confining the 
shaded region. A further improvement, 
apparently a minor one, is obtained 
when the broken line in Fig.4 is re- 
placed by curve 1. It is also of im- 
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portance that the limiting of free sur- 
face deformation values partly compen- 
sate the negative effect of lineariza- 
tion perfomed for the boundary condi- 
tion on the ship's hull. 

It is difficult to use the rela- 
tions of Fig.4 for practical design 
purposes directly because there is a 
need to determine velocities in the 
points of the disturbed free surface. 
So, the effect of Bernoulli integral 
linearization should be considered not 
only in terms of ship's wave resistance 
values but also in terms of transfer» 
ring kinematic boundary condition from 
the disturbed free surface on to the 
plane which coincides with the level 
of undisturbed flow. This effect is 
difficult to assess in the general case 
So, let us consider plane waveB of a 
finite amplitude for this purpose. 
Such treatment is acceptable because 
the lines of crests of lateral ship 
waves are nearly normal to the center 
line plane. 

The estimate is suitably made 
using the integro-differential equa- 
tion suggested by Ivanov (1975, 1980) 
to determine the shape of the finite 
amplitude waves on the surface of the 
liquid of the infinite depth. uaing 
symbols assumed here this equation can 
be written in the following form: 

jTflfx.giy.tg) (7) 
71 J x - t= 

dz 
doc 

where 

% «^"^[j+sl^-^"*-*'] 
WZ-SD2/    (X- J;): 

cf.-H-zSJS;)0 fc> fc; CS) 
equation of the wave profile. 

Substitution into Eq,.(7)  of the 
series 

2 = a,Cos(kxl+ a2Cos(2kaO + (8) 

clearly shows that the well-known ex- 
pressions of finite amplitude wave 
theory are obtained for the coeffici- 
ents contained in the series. The first 
term of series (8) corresponds to the 
solution of the problem with the linea- 
rized Bernoulli integral and boundary 
conditions tranferred on to the sur- 
face of the undisturbed flow, and the 
other terms are added because of non- 
linearities. 

Eq..(7) makes it possible to study 
separately the effect of Bernoulli in- 
tegral linearization and the effect of 
boundary conditions transfer on the 
magnitude of the added terms. 

In the first case the function tf, 
remains the same as in Eq..(7) while 
the function (f2 is expressed in the 
form similar to (4) 

<f.= \ -SO 

because the second suamand in the ra- 
dicand is small compared to a unit. 
In this case using Eq..(7) the eleva- 
tion z„ can be calculated which is 
related by dependance (4) to the ve- 
locity UA  estimated with the help of 
the linearized kinematic condition. In 
the second case it ahould be assumed 
that (?4 = •(   and  if 2  should be left 
without changes. Finally, in the third 
case  if, , if 2    are treated with- 
out, simplification. Calculations of the 
coefficients contained in series (7) 
(up to the third order of smallness in 
terms of a< /.A  ) reveal that the li- 
nearization of kinematic condition on 
the free surface affects the values of 
2d)  to the same extent as the li- 

nearization of Bernoulli integral, i.e. 

-"A / z ■u„ (9) in the second case - -izt- 
in the third - 2-H,=O.S (2A-zJ 

This conclusion agrees with the 
results of dadd's (1976) calculations 
for the ship. In these calculations 
Rankine sources were located on the 
undisturbed flow surface, and calcu- 
lated values of *rw  obtained were 
significantly less than measured va- 
lues. Using (9) relation z/zA   can be 
expressed in terms of UA 

By means of transforming (9) to 
the form 

N *■       2     2 2 * 
MA 
2 

Ml 
4 ) —u --* 

and using (4) the following expression 
is obtained 

?./zA = i +UA/<< • 

By means of relating uA  , using li- 
near theory formulae, to the amplitude 
induced by the plane feature of the 
wave intensity <\ 

the value 
cv=2q,exp{-Fi2z} 

Jf« 
a± 
2 Jl 

0U>) / .   ClA\) \ 
2 %   \ * ~     K     ' (10) 

can be expressed in terms of a ■ 
Pig.5 compares relation (10) with 

the solution of the plane nonlinear 
problem obtained by Salvesen and von 
Kercz.sk (1976). The results of the cal- 
culations performed by them agree 

well with formula (10), and apparently 
formula (10) can be used praotically 
for the whole range of permissible a /A 
values. 

In conclusion it should be noted 
that as waves move away from ship's 
stern their length in transverse di- 
rection increases while wave amplitude 
to length ratio decreases. At a cer- 
tain distance from the stern the as- 
sumptions of the linear theory become 
valid, and, consequently, the use of 
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the linear theory methods to determine 
wave resistance on the basis of wave 
parameters at a long distance from the 
ship is justified. 

OM 

0.05 

Figure 5 - The main grafic for the 
determining of corrections. Curve 
is plotted according to Salvesen and 
von Kercaek, curve I - according Eq.. 
(10). 

3. CALCULATION OF WAVE RESISTANCE 

One way to account for the non- 
linear effects on the free surface is 
to introduce corrections in the linear 
theory formulae, in particular in Mit- 
chel integral 

5w-f T«=|H(n| ■dW 

where 
F-(i+irf*)0-', k-VF2, 

L/2 ° 
H(F) = j  |cj,(X,2lß 

k? + ck3c/p dxdz (11) 
-Wl-T 

Köchin's function, H, is propor- 
tional to wave amplitudes, so expres- 
sion (11) implicitely reflects the re- 

lation between induced velocities and 
the amplitude of ship's waves because 
these velocities are proportional to 
the intensity  q,(x, z)   of the sour- 
ces representing the hull. As the wave 
resistance is determined by the wave 
amplitude it is natural to oorrect the 
amplitude first of all. Amplitude cor- 
rections correspond in (11) to source 
intensity corrections, and q,(x,z) 
assumes the following form 

C^X.ZJ-O^fX.HJJCfO^.Fz.,) (12) 

Here q  is a   as taken in the linear 
theory, for example, relation 

q,A(X,z)= 2ö>ycx,t)/ax u^ 

used in Mitchel's formula. Comparison 
of (2) and (4) show that 

affects  >  j(  is used here in the 
following form 

while relation *2<q,2} 

is taken from Fig.5. 
It is assumed in the calculations 

that ( 

where  öz   -  width of surface element, 
H - immersion of surface element 

centre. (The centre line plane is di- 
vided into surface elements bounded by 
the neighbouring waterlines x = const 
and frame lines 2 - const, q, is as- 
sumed within each surface element and 
placed outside the integral sign for 
these elements in (11). After this the 
integral is calculated in terms of ele- 
mentary functions as in Timoshin's cal- 
culations (1975) ). Values of sw ob- 
tained this way are shown in Pig.1,2, 
3,6 by curves 2. The latter one shows 
the results for the model with the 
ordinates 

where 
H 

■O.IH -X2) (1  - 64 Z2), 

-0.425 «  2   SO 

It can be seen tha.t  major discrepan- 
cies between the theory and experiment 
are removed by means of these correc- 
tions. The presence of yet considera- 
ble oscillations of the calculated 
curve can be attributed to the appro- 
ximate relation for jc used here. How- 
ever, the presence of similar oscil- 
lations in the experiment cannot be 
excluded either. The absence of the 
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oscillations in the measured results 
at low Proude numbers can be explained 
by the fact that it is difficult to 
determine i;w    precisely basing on the 
towing test results. The corrections 
used here have the advantage of clear 
physical interpretation and allow gra- 
dual refinement. 

Cw-'o3 

1 / /TT- ¥^* * 
/// / / */ 

I J* Is 

1    /T~ y   \ 

i FR 
0.22 0.29 

Figure 6 - Relation 
model of Gadd. 

0.36 

for the 

As to the effect of the lineari- 
zation of ship's hull boundary condi- 
tions on Ky,    tkö authors give the re- 
sults of calculations by formula (11), 
values q, being obtained from the in- 
tegral equation for the double surface 
in the unbounded flow (curve 3 in Pig. 
2 - Smorodin's results (1975), curve 5 
in Pig.6 - Gad&'s results (1970) ) and 
the results of Young Hong's calcula- 
tions in the second approximation 
(curve 4 in Pig.2) where the value in- 
verse to ship's length-beam ratio was 
used as small parameter. Boundary con- 
ditions were used in the simplified 
form in these three cases of calcula- 
tions. These results need no comments. 
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DISCUSSION 

Dr. EIICHI BABA, 
Mitsubishi Heavy Industries Ltd., 
Nagasaki, Japan: 

In the present paper and the authors' pre- 
vious paper presented at the International Sym- 
posium on Ship Hydrodynamics and Energy Saving 
in El Pardo (Reference 1), the non-linear free- 
surface effect is ingeniously incorporated into 
the linearized Michel 1 theory to obtain better 
predictions of wave-making resistance of ships. 
Based on the discusser's study, the non-linear 
effects of free-surface condition appear in 
such a way that the transverse wave system is 
reduced very much. As a result, humps and hol- 
lows in wave resistance coefficient curve are 
reduced as shown in Figs. 12 and 13 of the 
discusser's paper "Numerical Evaluation of a 
Wave Resistance Theory for Slow Ships" pre- 
sented at the 2nd International Conference on 
Numerical Ship Hydrodynamics, Berkeley, 1977. 
It would be very much appreciated, if the au- 
thors could show us a comparison of the inte- 
grand F|H(F)|2 of the expression (11) for two 
cases: One is the conventional Michel 1 theory 
corresponding to their notation 1 in Figs. 1, 
2, 3 and 6 and the other is the corrected value 
based on the authors' method corresponding to 
the notation 2 in the same figures. If there 
is a large reduction of the integrand near 
w = 0 in the authors' notation (near 9 = 0 in 
discusser's paper), it would be very interest- 
ing to see the consistency of the non-linear 
effect between different approaches. 

Mr. ROBERT F. HALLIDAY, 
University of Sydney, 
Sydney, Australia: 

I feel a good deal of sympathy for the au- 
thors when they propose a fairly simple proce- 
dure for overcoming the failure of Michell's 
linear theory to match experiment. Many elabo- 
rate procedures fail to achieve a better result 
and I am far from satisfied that the possibili- 
ties of simple modifications of Michell's inte- 
gral have been exhausted. However the model 
shown in Figure 6 is similar to a Wigley form. 
We use such a model for a class exercise. It 
has length 42 inches, beam 3-5 inches and 
draught 9 inches and should be a fair approxima- 
tion to Michell's thin ship. However, the agree- 
ment between Michell's integral and experiment 
is no better. Very good agreement can be ob- 
tained by introducing an attenuation factor 
based on the parameter (boundary layer displace- 
ment thickness)/(wavelength). In support of a 
viscous correction, it has been observed that 
roughening the model reduces the wave resistance 
and markedly reduces the oscillation of wave 
resistance as a function of Froude number. I 
would therefore suggest that procedures for 
improving the usefulness of Michell's integral 
should take account of both the free surface 
and hull boundary conditions and also viscous 
effects. 

Michell's integral is given in most text 
books in terms of infinitesimal panels on the 
median plane. This leads to computational dif- 
ficulties. It is a simple matter to transform 
Michell's integral to apply to small but finite 
elements. For a Froude Number of, say, F, then 
1/F2 elements in the X direction and perhaps 
half as many in the Y direction will be suffi- 
cient for a Wigley or similar arbitrary form. 
I wonder how widely this simple point has been 
appreciated. 

Dr. ANTONY J. MUSKER, 
Admiralty Research Establishment, 
Haslar, England: 

The authors appear to have brought about 
a dramatic improvement to the predictions ac- 
cording to Michell's theory by an apparently 
simple correction. This is indeed impressive 
but I should like to express my dismay at the 
relatively poor performance of Gadd's method. 
Referring to Fig. 6, there is considerable dis- 
crepancy between the observed and predicted 
wave elevations notwithstanding the fact that 
an exact body kinematic boundary condition and 
non-linear forms of the free-surface conditions 
are satisfied using Gadd's procedure. I suspect 
that Gadd's method has not yet been fully ex- 
ploited in the sense of using a finely dis- 
cretised hull and free surface and that much 
better agreement might therefore be expected 
if it were implemented on a large computer. 
The present technique (albeit aesthetically 
appealing) might then have some competition. 

AUTHORS' REPLY 
To Dr. E. Baba 

Thank you for your interest in 
our paper. In our turn it is with 
great interest that we are studying 
your work in the field of wave and 
wave-breaking resistance. 

Enclosed are the figures 
comparing FIH(«)|2 for Wigley form 
according to Michell theory and that 
of ours. The computations for our 
method are shown with an interrupted 
line. 

We hope to learn about your 
further advances in developing 
research in this direction. 

To Dr. A.J. Musker 

We, same as you, hope that the 
remarkable Gadd's procedure will find 
further development. 

To Mr. R.F. Halliday 

We agree that the viscosity has a 
certain effect in the relation of the 
wave-making resistance to the Froude 
number and we consider that in future 
it would be desirable to take 
viscosity into account. 
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F =0.3 

Relationship of the function F I H (ai) I  for the Wigley 
model in linear (continuous line) and suggested 
(interrupted line) approach. 
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A DIFFERENTIAL PREDICTION METHOD FOR THREE-DIMENSIONAL LAMINAR 
AND TURBULENT BOUNDARY LAYERS OF ROTATING PROPELLER BLADES 

NANCY C. GROVES AND MING S, CHANG 

ABSTRACT 

A general  formulation is given for 
the three-dimensional  boundary-layer flow on a 
rotating propeller blade.    The basic equations 
are presented in a nonorthogonal  coordinate 
system which rotates with the blade.    Finite 
difference methods are used to develop a com- 
puter code for solving the laminar and tur- 
bulent boundary-layer equations.    The Reynolds 
stress tensor is modeled by an algebraic eddy- 
viscosity formulation.    In general, the 
equations are solved numerically using the 
standard Keller box method.    However,  regions 
of flow reversal  across the boundary-layer are 
computed by the characteristic box method.    A 
companion geometry computer code, developed to 
model  propeller geometry characteristics,  and 
an existing inviscid flow code for computing 
propeller blade pressures are combined with the 
boundary-layer computer code to form an effi- 
cient computation scheme.    For a given 
potential-flow solution,  a typical 
boundary-layer solution of 690 grid points 
requires 64 seconds CPU time on a CYBER 176 
computer. 

Computed results are presented for several 
blade geometries.    The rotating segment solu- 
tion compares well  with analytical  and experi- 
mental  data.    Predictions for a model  propeller 
also compare favorably with experimental 
data and illustrate that two-dimensional  theory 
may provide adequate predictions for applica- 
tions where crossflow effects are not impor- 
tant.    Geometry effects of warp and skew are 
shown to be small   for the boundary-layer pre- 
dictions on three model  propellers. 

1.  INTRODUCTION 

The ability to predict local  flow proper- 
ties on propeller blades will  aid in the basic 
understanding of propulsor performance and 
cavitation.    Knowledge of propeller viscous 
phenomena at model  scale, such as laminar and 
turbulent separation, prior to testing, will 
lead to selection of test conditions 
appropriate to simulate prototype performance. 
Determination of the flow-field velocity 
distributions near the tip will  improve the 

basic understanding of propeller tip vortex 
cavitation and provide information for defining 
the position of the shed vortex sheet in the 
inviscid propeller model. 

This paper describes a general method for 
calculating the three-dimensional boundary 
layer around propeller blades.    The solution is 
divided   into three calculations (1) potential 
flow,  (2) geometric parameters, and (3) boun- 
dary layer flow.    The potential  flow computer 
code adopted is the Brockett (1981) code for 
use at design conditions. The geometry and 
boundary layer codes are modifications of the 
codes developed by Cebeci, et al.  (1978) for 
calculating three-dimensional  laminar and tur- 
bulent boundary layers on ship hulls.    The 
significant modifications to the Cebeci, et al. 
(1978) formulation, for propeller blade 
boundary-layer applications, include the addi- 
tion of the Coriolis and centrifugal  forces due 
to rotation, the use of a coordinate system 
appropriately describing propeller surfaces, 
and the specification of appropriate initial 
conditions. 

The present boundary-layer formulation 
predicts both laminar and turbulent flow using 
the differential  solution method.    The earlier 
calculation methods of both Groves (1981), for 
propeller blades, and Arakawa, et al.  (1983), 
for axial  flow pump blades, compute only tur- 
bulent flow using a momentum integral  solution 
method.    There is much discussion regarding the 
merits of each of the solution methods.    The 
momentum integral  method requires considerably 
less computation time.      The differential 
method is generally considered to give a more 
accurate and complete prediction of the flow 
characteristics.    However, the major advantage 
of the present solution procedure is its capa- 
bility of predicting laminar flow.    This region 
is particularly important for model  propeller 
applications where a large region of the flow 
over the blades is laminar.    Additionally, 
laminar flow predictions are necessary for 
instability. 

A similar differential calculation scheme 
has been developed by Itoh, et al.  (1984) for 
predicting the three-dimensional  laminar and 
turbulent boundary-layer flow on the rotating 
blades of axial  flow pumps.    The present calcu- 
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lation procedure varies from their method in 
two major respects.    First, Itoh, et al.  (1984) 
use an orthogonal  coordinate system to repre- 
sent an axial  flow pump blade.    While this 
system simplifies the governing flow equations, 
it encounters difficulties in grid generation 
for blades which deviate from a fan shape.    A 
more general  surface coordinate system defined 
in terms of xc,  fraction of chord measured from 
the leading edge, and XR,  fraction of tip 
radius,  is chosen for the present study.    The 
use of this coordinate system alleviates any 
problems associated with    the calculation grid. 
The second variation from the work of Itoh, et 
al.  (1984)  is the specification of the initial 
conditions at the leading edge and the hub. 
Itoh, et al.  (1984)  applied the usual  leading 
edge and hub conditions for three-dimensional 
boundaries to compute the growth for a rotating 
blade.    Their computation diverged.    In order 
to obtain meaningful  results, they applied an 
averaging process to both the leading edge and 
the hub and developed an iterative procedure to 
obtain these average values within a certain 
accuracy.    In the present study, the leading 
edge and hub conditions are handled dif- 
ferently.    The methods proposed in this paper 
do not require an iterative procedure and the 
solution converges quickly for all  grid points. 
The details of the procedures are discussed in 
Section 5. 

The boundary-layer equations are solved 
numerically using the Keller (1970)  two-point 
finite-difference method and the characteristic 
box procedure  (see Bradshaw,  et al.  (1981))  for 
computing regions of reverse crossflow.    A tur- 
bulence model   is required for closure of the 
turbulent boundary-layer equations.    The zero- 
order eddy-viscosity model  with gradual   tran- 
sition,  given by Cebeci  and Smith  (1974),  is 
adopted here. 

Even though the present analysis allows 
computation of the three-dimensional  laminar 
and turbulent boundary-layer on the complex pro- 
peller blade geometry,  two desirable flow pre- 
dictions are beyond the scope of this study. 
These are the complex hub interaction and the 
flow transition calculation.    No hub interac- 
tion is considered and the location of tran- 
sition is an input parameter to the computer 
code determined by the user.    It should be 
noted that the restriction of computing at 
design conditions only is a limitation of the 
Brockett (1981)  formulation and not of the 
boundary-layer formulation.    The boundary layer 
may be computed with any potential   flow and 
associated blade offsets.    Finally, there is no 
distinction in the boundary-layer solution pro- 
cedure between the pressure and suction blade 
surfaces.    The differences between the surfaces 
are accounted for in the potential  flow and 
geometry calculations. 

Results of the propeller blade boundary- 
layer calculation are presented for several 
geometries.    The first blade studied is the 
large chordlength segment investigated experi- 
mentally and analytically by Lakshminarayana, 
et al.   (1972).    The laminar predictions for the 
blade are in agreement with the computed 
results of both Banks and Gadd (1962)  for a 

rotating sector and Morris (1981) for a 
rotating helical  blade.    Overall, the turbulent 
predictions agree well with both the experimen- 
tal  data of Lakshminarayana, et al.  (1972) and 
the analytical  values of Cham and Head (1969) 
for the limiting case of a rotating disk. 
Discrepancies occur in the limiting streamline 
angle ß which is consistently over-predicted by 
the present method.    The second blade evaluated 
is a model  propeller designed at DTNSRDC by 
Denny  (1968)  and tested in the DTNSRDC 12-in. 
water tunnel  by Jessup,  et al.  (1984).    Both 
two- and three-dimensional  calculations were 
made for this blade.    The results show that 
two-dimensional  theory can adequately predict 
the measured data as well  as three-dimensional 
theory with the exception of the crossflow. 
The final  geometries investigated are an 
unwarped, a warped, and a skewed model propeller, 
examined earlier by Groves (1981), with no 
experimental boundary-layer data available. 
The current predictions show little variation 
in the predicted local  skin friction coef- 
ficient for the three blades. 

2.  COORDINATE SYSTEMS 

Figure 1 depicts a typical propeller blade 
and hub configuration.    In practice, there are 
N  symmetrically-spaced identical  blades 
attached to the hub,  but,  for clarity,  only one 
is shown in Figure 1.    The propeller rotates 
with the constant angular velocity a about the 
x-axis.    The Cartesian x, y,  z,  coordinate 
system is fixed in space and does not rotate 
with the blade.    In this system,  x is the axis 
of rotation, with positive displacement 
measured aft;  z is taken as upward positive; 
and y forms a right-handed orthogonal   system as 
shown in Figure 1.    In the present calculation 
scheme,  the blade geometry and potential  velo- 
cities are initially specified in the Cartesian 
system by the Brockett (1981)  lifting surface 
computer code. 

Fig. 1 - Schematic of Blade Coordinate Systems 
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Although the Cartesian coordinate system 
could be used for the boundary-layer solution 
procedure, a system fixed to the blade surface 
and rotating with the blade is chosen for its 
convenient representation of the complex 
geometry. The surface coordinates 5, n, and x, 
are defined with 5 equal to the nondimensional 
fraction of chord measured from the leading 
edge; n equal to the nondimensional radius as a 
fraction of the tip radius; and c equal to the 
outward normal to the blade surface. These 
coordinates are also illustrated in Figure 1, 
where a is shown as the angle between the 5 and 
n surface coordinates. The velocity components 
u, v, and w are defined in the 5, c,,  and n 
directions, respectively. 

The 5 and n coordinates, the Cartesian 
offsets on the blade reference surface (i.e., 
no blade thickness), and the velocity com- 
ponents in a helical reference frame are stan- 
dard quantities produced by the Brockett 
lifting surface (1981) computer code. In pre- 
paration for its use in the present computation 
system, the Brockett code (1981) has been 
modified to calculate the Cartesian offsets on 
the actual blade surfaces and the velocities in 
the Cartesian reference frame. The surface 
offsets are needed to define certain derivative 
quantities i.e., the metric coefficients, 
geodesic curvatures, etc., used in the 
boundary-layer solution. Metric coefficients, 
denoted by hi, h2, and tvj for the 5, n, and 5 
coordinates, respectively, correlate surface 
distances between the Cartesian and surface 
coordinate systems. As is typical practice in 
boundary-layer formulations, the boundary layer 
thickness is assumed to be small and the x, 
coordinate is assumed to measure distance along 
the surface normal. Therefore, the metric h3 
is set to unity with no loss of generality. 
The remaining metric coefficients are defined 
as 

hi = 

h2 

2    2* 

\35, 

1/2 

m ♦ ©' 

(■S9,'(£),*(S)T 
3. BOUNDARY LAYER EQUATIONS 

The steady, incompressible boundary 
layer equations for rotational flow in a non- 
orthogonal coordinate system are given by 
Yamazaki (1981). The equations are identical 
to those presented by Cebeci, et al. (1978), 
with the addition of two terms in the momentum 
equations representing the centrifugal and 
Coriolis forces. The governing equations, 
using the surface coordinates 5, n, and ?, are: 

Continuity: 

2_(uh2sina) + 3 (whjsina) 
35 3n 

3 (vhjl^sina) (1) 

5-Momentum: 

+Kl2UW + 2a(w+UCOSa)TilCSCa +  «2(n2TlCOtaCSCa)   (2) 

-CSC £ 8   /P\      COtaCSCa _3_ /JA      _3_I1 
IJiW + h2 3TIW +  3? hi 

n-Momentum: 

u_j)w       w    3w j  V3W 
h    3?       h    3n     3c 

K2W2COta + K1U2CSCa 

2 2 
+ K   uw - 2n(u+wcosa)n csca - a nmcsc a 

21 1 2 

CSC 

(3) 

h2 
■a 3  /p\      COtaCSCa 8  /p\     3x2 

7nW+       hi       ii\p/""3T" 

In these equations, u, v, and w represent 
the velocity components in the 5, ?, and n 
directions, respectively, a is the angle between 
the surface coordinates 5 and n, and a is the 
constant angular velocity.    The metric coef- 
ficients hi and I12 were defined in the previous 
section.    The quantities Ki and K2 are the 
geodesic curvatures of the curves inconstant 
and 5=constant, respectively, and are defined 
by 

M5 sina L 

3(h2C0Sa)       3hi 

I '   3ri ] 
1 [~3(hiC0Sa)       3h2~] 

sina |_     3n 35 J 

(4a) 

(4b) 

h h 
1 2 

The parameters K12 and K21 are defined in terms 
of the geometry as 

42 sina 
-(K 1+TT   35J 

+   COSafKg  + Tp ^) 
s           2 

_1 V(           1_ i£\ 
hi = sina[]l,K2 + h2 3ny 

(5a) 

+  COSo 
(5b) 

The remaining parameters in the boundary layer 
equations are: 

p   = static pressure in the fluid 
p   = fluid density 
T   = shear stress in the 5-direction, 

1 3u 
3? 

uv 
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T = shear stress in the n-direction,   (6) 
3w    

T2 = v .  - v'w' 
°5 

v   = kinematic viscosity of the fluid 

u'V, v'w' = Reynolds stresses 
a   = constant angular velocity of propeller 
n , n , n   = directional cosines between the 
123     systems (x, y, z) and (e, n, 5) 

The boundary layer thickness is denoted by s 
and the boundary layer is defined in the region 
0<c<6.    The boundary conditions are: 

5=0,  u=v=w=0 
5=5, u=ueU,n), w=we(?,Ti) (7) 

The pressure gradients are determined from the 
momentum equations at the edge of the boundary 
layer. The edge equations are 

^-momentum: 

Up  3Ue We   3Ue „ „ 
— —-  +——-- K^cota + K2we2csca 
h    35 h    3n 

1 2 

+  Kl2UeWe 
+  2n(we+UeC0Sa)ri CSCa 

+  S22n?ncoSaCSc2a =       -CSC^a  3   /Pe\ 
h        35\p / 

1 

3TI\P   / 
COtctCSCo 

(8) 

where y  and $ are defined as 

i|i = (vs Uß)1^ h sina fU.n.a) (12) 

<t> = (vs^e)1^-^-   hisina g(5,n,a) 

and uref is a reference velocity. 
The potential  velocities u, v, and w are 

rewritten    using the vector potentials ip and $, 
the Reynolds stresses are rewritten in terms of 
the eddy viscosity factor em, and the boundary- 
layer edge conditions are applied to eliminate 
the pressure terms.    The transformed e- and n- 
equations are 

e-momentum:    (bf")'+ miff"- m^f)2 - msf'g' 

+ m6f"g - ms(g')2 + mn - m^f - mi4g'+ mi5 

■^('-f - <"%> 4'f - <"f)    '»> 
n-momentum: 

(bg")' + mifg"- nvjf'g' - m3(g')2 + m6gg" 

-mg(f')2 + mi2 + i"i6f'+ mi39'- mi7 

Mrg-r* &*,(*%-*'%)       (14) 
In these equations, primes denote differen- 
tiation with respect to a and 

f- JL., g> =  *      b =  1 + ^ (15) 
ue    uref       v 

n-momentum: 

ue 3we  we 3we 
"hT^~+ "h777 ' K2we2cota + K1ue2csca 

+  K     UeWe  -  2ß(ue+WeCOSa)n CSCa (9) 

-   CSC2a     3   /Pe\     COtaCSCa  3   /Pe\ 
«2n2nCSC2a = h2 ^p > hl J^) 

The coefficient terms m\  through mi2, identical 
to those given by Cebeci, et al. (1978), are 

I  / si    3ue\ si        a 
ml    = TV1 +TTu~-5T7+ h h    sm8 "ST 'n2sin«' x 1 e       '      12 

SI        3ue 
m2 = IT? I? ' S1K1 cota 

1 e 

mo = -siK 1N2 
"ref 

ue 
COta 

Transformed variables are defined as 

5 = 5, ;,    n = n,    der = (^|j d?, sx = J hid? 
1 o     (10) 

A two component vector potential  is introduced 
with 

uh2sina = || (11) 

m
4 = siK2i 

si    Uref    3ue 
m5= fig" upr TT + S1K12 

uref 

ue 

ilh2s1na/Uel^   3TII ue    J "*    -    h; 

si     Uref 

"V = hT ~u7" 
(16) 

.       . 34 
whisma = -~& 

vhlh2sina=    -(|| + |i) 

n8 =  SiK2 

"ref 

ue 
CSCa 
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tilg   = hh «c« uref 

m10 = 
si 
hi 

mn = 
we          / we \

2 

"<2 + m5 Uref 
+ ^uref) 

m12 = 
we          / we \

2             m10   3we 
m uref + "^ref)   + m9 + uref H 

+ 
mjvie     3we 

u2         3TI 
ref 

The new terms 1*113 through mi7 account for the 
blade rotation and are defined as 

m13  = 2flSl   n^COSaCSCa 
ue 

uref 
m14 = 2J2S1 n^sca-j^— 

we m15 = m13 + m14 — 

m16 = Wif  m™ 

(17) 

"17 = m16 + m13 Uref 

The boundary conditions for the transformed 
equations are 

f = f'= g = g' = 0 at a = 0 

f'= 1, g'= we/uref 
at ° = a~ 

4. INITIAL CONDITIONS 

The propeller boundary-layer solution is 
obtained by marching in the radial  direction 
for chordwise locations increasing from the 
leading edge to the trailing edge.    In this 
manner, the computation covers the entire blade 
surface.   The solution procedure requires ini- 
tial velocity profiles along two intersecting 
planes.   These planes are chosen to be the pro- 
peller leading edge and hub.   Although the 
marching begins at the radial location termed 
the hub, the actual  flow at hub/blade intersec- 
tion is too complex to be represented by the 
boundary-layer analysis.    For this paper, the 
term hub defines a small  radial distance out- 
board of the actual hub/blade intersection 
where the boundary-layer equations apply. 
Since the initial conditions are not, in 
general, known quantities for a given blade 
geometry, assumptions become necessary to begin 
the computation.   The remainder of this section 
describes the initial conditions adopted in the 
present propeller boundary-layer calculation. 

For the rotating helical blade, Banks and 
Gadd (1962) theoretically show that the 
leading-edge similarity function for the 
streamwise velocity u satisfies the Blasius 
equation.   This analysis can be extended for 
application to the propeller blade leading-edge 
using the equations for the similarity solution 
of wedge flow.   The leading-edge solution of 
this paper is similar to that adopted by Itoh, 
et al.    (1984) in which the Karman-Pohlhausen 
profile is used.    However, the current method 
computes the crossflow velocity component w at 
the leading edge from the n-momentum equation. 
Itoh, et al. (1984) set these profiles to zero. 
With the present analysis, the governing 
equations at the leading edge are 

S-momentum:    {bf")'+ miff"- n^tf)2 + mn = 0 

n-momentum:    (bg"K+ mifg"+ 11112 = 0 

with the same coefficient terms b, mi, m^, mn 
and mi2 defined in equations 15 through 17. 
These equations compute two-dimensional  stagna- 
tion flow, wedge flow, or flat plate flow at 
zero incidence depending upon the specified 
external potential  flow velocities at the 
leading edge.   This solution has proven to be 
both stable and smooth in the boundary-layer 
calculation at the leading edge and does not 
require averaging or iterating. 

For nonrotating three-dimensional calcula- 
tions, the second initial condition is spe- 
cified at locations where the crossflow 
velocity w equals zero everywhere inside the 
boundary layer.   For the ship hull  (Cebeci, et 
al. (1978)) and the arbitrary wing (Cebeci et 
al. (1977)), the locations of zero crossflow 
are the ship keel  and the wing root, respec- 
tively.   For these regions, the n-momentum 
equation is identically equal  to zero and the 

dW unknown variables become u, v, and   -^ .   That 

is, for w=0, Equation 14 becomes 0=0. 
To obtain a solution, a new equation is derived 
by differentiating the singular n-momentum 
equation with respect to n.    This equation is 
called the attachment line equation. 

For a propeller blade, the solution w=0 
everywhere inside the boundary layer is valid 
only for the blade radius equal  to zero and, 
therefore, should not be used to begin the com- 
putation for arbitrary nonzero radii.    Itoh, et 
al. (1984) apply the attachment line solution 
to the hub of the axial  flow pump blade but 
find it necessary to use an iterative method to 
obtain a reasonable solution at the hub.    In 
this paper, the method of a similarity solution 
is adopted at the hub as well  as at the leading 
edge.   The similarity relations used at the 
present time are: 

He" F(?'a)  -1^  1£- ° 

"e       w       "e u)  , —  ^ 
uref " uref   ue ~ uref uref   ue 

w 
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w 

an 3n 
G(?,a) + 

u 3we      (19) 

uref   ue3n 

For the special case of we = 0, as in the 
rotating disk solution reduces the simi- 
larity relations reduce to 

u 
ue " FU.c) 

w 
uref 

"e 
uref G(5,o) 

w 
uref _    3ue 1 

3n 3tl uref 

(20) 

G(?,a) 

This hub similarity condition is exact for the 
cases of laminar flow on a rotating segment and 
a two-dimensional  swept wing. 

By substituting the general  similarity 
formulations in Equation 19 into the momentum 
Equations 13 and 14, the derivative quantities 
3w/3n are eliminated and marching can proceed 
in the c-direction.    Details of the numerical 
procedure used in the computer code at the hub 
are given  in Section 6 in the numerical  analy- 
sis.    The procedure is self-starting and 
stable. 

5.   TURBULENCE  MODEL 

The governing flow equations presented in 
Section 4 contain more unknown quantities than 
equations.    A standard procedure in boundary- 
layer solutions  is the introduction of a tur- 
bulence model  to approximate the Reynolds 
stress terms -u v    and -v'w'.    Various tech- 
niques have been developed to handle turbulence 
modeling, all   involving some degree of correla- 
tion with experimental  data.    The zero-equation 
model   is the simplest approach and does  not 
require the solution of any additional   dif- 
ferential   equations.    This method assumes the 
algebraic specification of both length scale 
and turbulence energy as explained and used 
by Cebeci   and Smith  (1974).    The one-equation 
model   solves an equation  for the turbulence 
energy but uses an algebraic specification for 
the length scale.    Although this formulation 
has been used by Bradshaw, et al.  (1976) for 
thin shear-layers with considerable success, 
its usage is not wide-spread.    Two equation 
turbulence models, particularly the K-e model, 
are experiencing increased popularity.    These 
models are general, but require the solution of 
two differential  equations. 

For the present work, the simple zero- 
equation model  of Cebeci and Smith (1974) has 
been adopted.    An eddy-viscosity factor em is 
defined to relate the Reynolds stresses to the 
mean velocity profiles by 

-u v 
3? 

and -v w em 
aw 
3? 

The theoretical  boundary layer is divided 
into an inner region and an outer region with a 
separate equation defining em in each region. 
The inner-region formulation is applied from 
the wall  surface to the location in the boun- 
dary layer where both inner and outer equations 
predict the same eddy viscosity.    From this 
location to the edge of the boundary layer, the 
outer wall  formulation is applied. 

Eddy viscosity in the inner region is 
defined as 

(em)i = L2 
?3U\2     /3w\2       „ /3U  3w\ vz. 

"(22) 

where L is a mixing length approximation equal 
to 0.4cQ-exp(l-?/A)J, A is a damping factor 

equal  to   26v/TtwY1^  , and Ttw is the turbulent 

wall  shear stress equal  to u 
r.„ .>2 

+2C0Sa/jHi 
\3C /wU/wj 

/3U\     +/dVI\ 

V^/w    V3C/W 

In the outer region, the 

eddy viscosity becomes 
GO 

(Sm)    = 0.0168 I  f (ute - ut)dd Ytr 
(23) 

(21) 

where ute equals (ue
2 + we

2 + gUeWeCosa)1^, 
ut equals (u2 + w2 + 2uwcosar* and y^r  is an 
intermittency factor to account for the tran- 
sition region between viscous and turbulent 
flow. 

6. NUMERICAL ANALYSIS 

The governing three-dimensional boundary- 
layer equations for propeller blades are 
solved numerically using the Keller (1970)  box 
method.    This solution technique may be divided 
into four steps.    Initially,  the governing 
equations are written as a system of first 
order equations by the introduction of trans- 
formed variables.    The first order equations 
are then written in finite difference form 
using central   differences.    Newton's method is 
applied to linearize the difference equations 
and,  finally, the linear system is solved by 
the block triangular elimination method. 
New variables u, v, w, t,  and 6, defined as 

e'= miu + m6w + mio H + m7 |^ (24) 

are introduced to reduce the 5- and n-momentum 
equations to first order.    The new system is 

u'= v 

w'= t 

(bv)'- m2U2 - 1115UW - mgw2 + m^ 
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roi3u " m14w + m15 + 9v 

3u   L 3u 
minu — + m7W — 
iu    85 3n 

(bt)'- m4uw - nvjw2 - mgu2 + mi2 

+ mj6u + mi3w - mjj + et 

3w  . 3w 
= minu -^ + m7w ^ 

e'= miu + mow + mio -^ + m-j -^ 

with boundary conditions 

u=w=9=0    at    a = 0 

we 

(25) 

(26) 

u = l,    w = at a = a« 
"ref 

The solution of the first-order equations 
is obtained using centered finite differences 
on a net cube and Newton's method.    Details of 
this procedure may be found in Cebeci  and 
Bradshaw  (1977). 

The calculation of the blade boundary- 
layer proceeds as follows.    Solution marching 
begins at the hub/leading-edge intersection and 
moves outward along increasing radii  to the 
tip.    Calculations continue in this manner for 
successively increasing chordwise stations 
until,  finally, the blade trailing edge is 
reached.    Calculations are made over the entire 
blade surface. 

Figure 2 illustrates the calculation pro- 
cedure in more detail.    Calculations at the 

leading edge begin as laminar at the node 
denoted  (A)  in Figure 2 and march radially out- 
ward.    After completing the leading edge, the 
solution is obtained at the location of the 
next chord and first outward radius from the 
hub,  node  (B)  in Figure 2, using a modified 
characteristic box method (Bradshaw, et al. 
(1981)).    The characteristic box, which estima- 
tes a solution based on the results at the pre- 
vious chordwise position lying along the same 
streamline,  is traditionally applied only in 
regions of reverse crossflow.    However, this 
method has been found to be extremely benefi- 
cial  for propeller blade application near the 
hub in that it eliminates a complex solution of 
hub initial  conditions. 

Once a solution is obtained at location 
(B), the solution is set at the current chord- 
wise hub position using the initial  conditions 

(f)    = (f) 
H 

<OH 

B 
Up 

g^-I^V<f>B(9')H 
uref/    \      ue "e 

Computations continue at i 
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porated in the present bou 
and the location of transi 
flow is an input parameter 
user. The location of tra 
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Fig. 2 - Computational Procedure 

435 



visualization techniques, or by assuming tran- 
sition empirically. One empirical formulation 
which may be used is the flat-plate critical 
Reynolds number, Rx = J2r2e/v = 3 x 105. The 
input transition location is overridden if 
laminar separation, identified as a negative 
streamwise skin friction coefficient, occurs. 
Once transition occurs, each succeeding node is 
computed as turbulent. Presently, the calcula- 
tions stop once turbulent separation is encoun- 
tered. 

7. COMPUTATIONAL RESULTS AND DISCUSSION 

A variety of geometries were considered 
during the verification stage of the three- 
dimensional boundary-layer computation scheme. 
These geometries include a flat plate, a 
rotating disk, rotation above the ground, a 
skewed and an unskewed rotating segment, an 
upwarped model propeller, and three model pro- 
pellers, one with warp, one with skew, and one 
with neither warp nor skew. Overall agreement 
with exact solutions and test results is quite 
good. The largest discrepancy with experimental 
data occurs for the limiting streamline angle 0 
in turbulent flows. 

Computational results are presented for 
the following geometries. A single, nonlifting 
blade of large chordlength is examined ini- 
tially. Predictions in the initial laminar 
flow region are compared with the results of 
Banks and Gadd (1962) on a rotating sector and 
with Morris's (1981) predictions on a helical 
blade. The boundary layer on this blade is 
computed a second time with a small laminar 
flow region to simulate the test conditions of 
Lakshminarayana, et al. (1972). At large chord 
length, this blade approximates a rotating disk 
and comparisons are shown with turbulent flow 
solutions for a disk. To investigate the lami- 
nar flow region more extensively, the flow 
about a three-bladed model propeller is exa- 
mined. Transition for this blade is set at 43 
percent of the chord length to simulate the 
test data of Jessup, et al. (1984). 
Comparisons are made with the suction surface 
measurements of Jessup, et al. at the fraction 
of radius XR = 0.7. Finally, the effects on 
the boundary layer of the geometry parameters 
warp and skew are examined using three model 
propellers. No experimental results exist for 
these blades. 

7.1 Rotating Segment 

The large chor 
examined is the bla 
investigation of tu 
Lakshminarayana, et 
shown in Figure 3, 
rotating sector of 
with a 300 degree i 
radius is 22.86 cm 
pitch/diameter rati 
small enough to app 
circular disk with 
300 degrees apart, 
performed using the 
Xr, fraction of cho 

d length rotating segment 
de generated for 
rbulent flow by 
al. (1972). The blade, 

is a single nonlifting 
92.6 cm (36.6 in.) diameter 
ncluded angle. The hub 
(0.75 ft.). The 
o of 0.273 for this blade is 
roximate the blade by a flat 
a leading and trailing edge 
Present calculations are 
surface coordinates 5 (or 

rd), n (or XR, fraction .of 

TRAILING EDGE 

LEADING EDGE 

Fig. 3 - Geometry and Coordinates of Rotating Helical 
Segment 

radius), and t; (surface normal).    For com- 
parisons with measured data, the cylindrical 
coordinates  (r,  6, and z)  are used where r is 
the dimensional  radius varying in the radial 
direction, e = 300ir£/180 radians varying in the 
chordwise direction,  and z varies along the 
surface normal  as z = ?. 

Lakshminarayana,  et al.   (1972)  tested the 
blade in a housing with a 0.20 cm (0.08in.) 
clearance between the blade tip and the wall. 
The free-stream onset flow was zero and the 
rotational  speed of the blade, denoted a, 
remained constant at 47  rad/sec  (450 rev/min). 
The kinematic viscosity v equaled   1.49 x 10~5 

m2/s (160 x 10-6ft2/sec) which corresponds to 
air at 20°C (68°F).    These conditions, which 
yield a Reynolds number based on tip radius and 
tip rotational   speed of 7 x 105, are used in 
the evaluation of the present method.    In addi- 
tion, present calculations begin at the blade 
surface location 8 = 0.016 radians and 
xR = r/R = 0.492. 

Initially, a boundary-layer calculation 
of the rotating blade was made with transition 
set to 1.0 radian to allow a comparison with 
the laminar flow predictions of Banks and Gadd 
(1962) on a flat sector and of Morris (1981) on 
a helical  blade.    The comparisons with the pre- 
dictions of Morris (1981) are valid at large 
radii; the twisted blade used by Morris has not 
yet been evaluated with the present method. 
Nonetheless, the large radii comparison is 
important for validating the radial  skin fric- 
tion coefficient.    Figures 4 a through c show 
comparisons with Morris's (1981) calculations at 
r/R = 0.95.    Figures 4a and 4b compare the 
streamwise and radial  skin friction coef- 
ficients 

Cfe 
1/2pu2ref 

Cfr = 
^pu2ref 

In these definitions,  xc and xr are the shear 
stresses in the chordwise and radial  direc- 
tions, respectively, p is the fluid density, 
and uref is the reference velocity.    The solid 
lines in Figures 4a and 4b denote the Morris 
computation and the circles denote the present 
calculations.    The agreement between the 
two prediction methods is excellent. 
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(c) VELOCITY PROFILES 

Fig. 4 - Laminar Flow Comparisons for Rotating Helical 
Segment at r/R = 0.95 

Crosswise and radial  velocity profiles are 
compared in Figure 4c.    Morris's profiles are 
shown at chordwise locations of 0, 0.26, and 
0.52 radians.    The present predictions are 
shown at e = 0.32 radians as the circle.    The 
square symbols denote the radial  and crosswise 
velocity of Banks and Gadd (1962) at 9 = 0.32 
radians.    This figure shows that the laminar 
crosswise velocity profile is predicted quite 
well  and the radial  velocity profile is just 
slightly underpredicted by the present method. 

(a) r/R = 0.72 

e   4 - 

TRAILING 
EDGE 

COMPUTED 

MEASURED 

(LAKSHMINARAYANA ET AL.) 

/ FLAT PLATE 
LAKSHMINARAYANA ET AL. 

I INTEGRAL 

I DIFFERENTIAL 

Fig. 5 - Variation of Momentum Thickness 6n on Rotating 
Helical Blade 

A second calculation was made with tran- 
sition set to 9 = 0.32 radians. This location 
is forward of the experimentally determined 
transition location of e = 0.73 radians. 
However, with the gradual transition model used 
in the current computer code, this forward 
transition location gives good agreement with 
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the flow parameters calculated by 
Lakshminarayana, et al. (1972). 

Figures 5a and 5b show the momentum 
thickness as a function of chordwise position 
for fraction of radius, XR, values of 0.72 and 
0.93, respectively. The streamwise momentum 
thickness is defined as 

■ii-K1-!*;)^ 
The dotted lines denoting the present calcula- 
tion and the dashed lines denoting the calcula- 
tion of Lakshminarayana, et al. are in close 
agreement.    The experimental  data are denoted 
by the circular symbols.    At the radial  loca- 
tion r/R = 0.72 shown in Figure 5a, all calcu- 
lation methods overpredict the measured values 
of en for 2 radians < 8 < 5 radians.    However, 
agreement between experiment and theory is 
quite good for the early stages of turbulence, 
e < 2 radians, and for the blade trailing edge, 
e > 5 radians.    The experimental  data shown in 
Figure 5b at the radius r/R = 0.93 are more 
scattered.    Agreement between experiment and 
theory at this radius is reasonable only for 
e < 2 radians. 

The tangent of the limiting streamline 

angle s, 8 = tan-11 — ),is shown in Fi9ure 6- 
Ufa/ 

MEASURED 

(LAKSHMINARAYANA ET AL.) 

COMPUTED 

LAKSHMINARAYANA ET AL. 

INTEGRAL 
DIFFERENTIAL 

Fig. 6 - Variation of Limiting Streamling Angle ß on Rotating 
Helical Segment 
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Fig. 7 - Angles of Surface Streamlines on a Rotating Disk; 
X , experiment; A, Cham and Head calculation using the 

entrainment method; B, calculation with isotropic eddy 
viscosity; C, Banks & Gadd (1962); D, Goldstein (1935); E, von 
Karman (1921). 
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Fig.  8 -  Development of the  Streamwise Skin-Friction 
Component. A, Cham and Head calculation using the 
entrainment method; B, von Karman (1921); , 
Goldstein (1935); , calculation, with isotropic eddy 
viscosity;. .<t>.., Theodorsen & Regier (1944). Results taken 
from Clauser plots of the present measurements: X ,515 
rev/min;   O   , 1000 rev/min;    A  , 1550 rev/min. 

The momentum integral methods of both 
Lakshminarayana, et al. (1972) and Groves 
(1981) show closer agreement to the measured 
values of tang than does the present method. 
Figure 7, from the Cham and Head (1969) study 
of the turbulent boundary-layer flow on a disk, 
shows the discrepancy in various calculation 
methods of the parameter tang. As shown by the 
dotted line labeled B and the circular symbols 
denoting the present calculation method, the 
eddy viscosity model predicts a larger value of 
the limiting streamline than do the other tur- 
bulence models. Referring to Figure 6 again, 
the solid line labeled tang = 1.88 shows the 
exact analysis result of Banks and Gadd (1962) 
for laminar flow on a rotating segment. The 
present calculation agrees well with this line. 
One further factor to note is that the momentum 
integral method of Groves (1981) included a 
modification to reduce the entrainment function 
from the flat plate value to include the rota- 
tional effect. The viscosity coefficient in 
the differential method has not been modified. 
The current tang prediction may be reduced if a 
more precise eddy viscosity model were used. 

The final comparison shows the skin fric- 
tion coefficient for a rotating disk. Figure 
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8, taken from Cham and Head (1969), shows com- 
parisons of experimental  data with several 
calculation methods.    The circled asterisks 
denoting the present predictions are in good 
agreement with both previous theories and 
measured data. 

In summary, the present differential 
method solution procedure has been shown to 
accurately predict both laminar and turbulent 
boundary-layer characteristics on a simple 
three-dimensional  blade.    The previous momentum 
integral methods of Groves (1981) and Arakawa, 
et al.  (1983) could not predict laminar flow, a 
region important in model  propeller and insta- 
bility applications.    The limiting streamline 
angle for turbulent flow is overpredicted, 
perhaps indicating that a change in the eddy 
viscosity model  is needed to account for the 
rotation. 

7.2 Propeller 4119 

DTNSRDC Model  Propeller 4119 (see Denny 
(1968) for the complete model  geometry) was 
evaluated experimentally on the suction surface 
by Jessup, et al.  (1984)  in the DTNSRDC 24-in 
water tunnel.    The three-bladed unskewed, pro- 
peller model  has a 0.30 m (1 ft) diameter with 
a hub radius of 0.03 m (0.1 ft).    The design 
advance coefficient Jv of the model  is 0.833 
where Jv = V/(nD) and V equals the onset 
speed, n is the constant rotational  speed in 
revolutions per unit time, and D is the rotor 
diameter.    The flow conditions set for Jessup's 
(1984) experiments are the kinematic viscosity 
of 68° fresh water v = 1.00 x 10-6mz/s (1.08 x 
10-5 ft2/sec), the onset velocity V = 1.83 m/s 
(6.0 ft/sec)  and the rotational   speed a = 44 
rad/s (7 rev/sec).    These conditions yield a 
0.7-radius Reynolds number of Rn = 7.3 x 10b 

where 

Rn 

I     /0.7TT\ c)oWLTiZi (27) 

and (c)o.7 = 0.14 m (0.46 ft)  is the blade 
chord at'0.7 radius. 

The 0.7 radius was chosen for comparison 
with Jessup's (1984) experiments since the 
measured data are most complete at this radius. 
Flow visualization techniques predict fully 
turbulent flow begins in the region between 
fraction of chord values xc of 0.5 to 0.6.    The 
present theoretical eddy viscosity model  incor- 
porates an interim'ttancy region of gradual 
transition from laminar to turbulent flow.    The 
use of an intermittancy region requires an 
early specification of the transition location 
to the computational  scheme.    It has been 
determined by trial  and error that an input 
transition location to the computational  proce- 
dure of xc = 0.43 yields fully turbulent flow 
at the chord values xc of 0.5 to 0.6. 

The boundary-layer characteristics com- 
pared with experimental  data are the streamwise 
displacement thickness 

6* = °i 11 . JL-W, the shape factor H = 6*/e, 
Jo \       ue/ 
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and the chordwise velocity u.    In addition,  the 
momentum thickness &u  and skin friction coef- 
ficient Cf are compared with two-dimensional 
predictions from a computer code developed by 
Cebeci   (1978).    The radial  velocity w and the 
limiting streamline angle 3 are the two parame- 
ters shown which are unique to three- 
dimensional  flow.    No measurement has been made 
of these quantities as yet.    A second calcula- 
tion was made using the present method.    This 
calculation is performed with the rotational 
effects included in the potential-flow veloci- 
ties but not in the boundary-layer computation. 
These results, which approximate the rotating 
flow above a solid ground, are also presented. 

Figures 9 through 14 show the boundary-layer 
comparisons for Model 4119.    The series of 
dashed and dotted lines in Figures 9a through 
9c represent Jessup's (1984) measured chordwise 
velocity profiles for the three blades at three 
chordwise locations, xc = 0.1, 0.4, 0.8, 
respectively.    The boundary layer is shown to 
thicken considerably as the blade trailing edge 
is approached.    The open circles and squares, 
denoting the fully-rotational  three-dimensional 
calculation and the two-dimensional  calcula- 
tion, respectively, are both shown to approxi- 
mate the measured chordwise profiles equally as 
well.    However, the calculation without the 
rotation in the boundary layer overpredicts the 
velocity.    It is further seen from Figure 9 
that disregarding the rotational  effects in the 
boundary-layer computation leads to the predic- 
tion of an inward rather than an outward radial 
flow.    An inward flow contradicts the flow 
visualization results of Jessup (1984). 
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Considerable scatter is noted in Figure 10 
for the measured shape factor parameter H. 
Nevertheless,  the overall  character of the 
variable is reasonably well-predicted by the 
various theoretical  methods,  including the 
three-dimensional boundary layer without rota- 
tion.    The displacement thickness,  shown in 
Figure 11 is again well-predicted by two- 
dimensional  flow theory and three-dimensional 
flow theory with rotation.    Without the rota- 
tional  effects, three-dimensional  flow is shown 
to underpredict the displacement thickness. 

Jessup (1984) does not present measure- 
ments for either the streamwise skin friction 
coefficient Cf or the momentum thickness en- 
Comparisons of the calculated values of Cf and 
en are given in Figures 12 and 13.    Again, 
two-dimensional  theory agrees well with three- 
dimensional  predictions with rotation and both 
disagree somewhat with three-dimensional  pre- 
dictions with no rotation. 

Finally, the tangent of the limiting 
streamline angle ß is compared in Figure 14 for 
the three-dimensional calculations with and 
without rotation.    Unsurprisingly,  this para- 
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meter is positive for flow with rotation and 
negative for flow with no rotation, as pre- 
dicted for the radial  velocity distribution. 

To summarize, the boundary layer charac- 
teristics of a propeller blade can be computed 
with reasonable accuracy.    Two dimensional 
theory gives excellent predictions of the flow 
for applications where crossflow is not impor- 
tant. Applications where the crossflow is 
important, including model  propeller studies 
where large regions of laminar flow exist and 
in the study of instability, require use of the 
full  three-dimensional  equations.    The use of 
three-dimensional  theory without including 
rotation in the boundary-layer solution should 
be avoided. 

7.3 Skewed and Warped Propellers 

In this section, results are presented for 
the computed boundary-layer characteristics of 
three analytically-defined propeller blades. 
These three 0.30 m (1 ft) diameter model  pro- 
pellers were chosen to investigate the effects 
of varying geometry on boundary-layer flow. 
The propellers, denoted as Model 4381, an 
unwarped blade; Model 4498, a 72-degree warped 
blade; and Model 4383, a 72-degree skewed 
blade, are depicted in Figure 15.    The complete 
geometry of these model  propellers is given in 
Groves (1981) and is not repeated here. 

Since no experimental  data exist for 
these particular models, the transition loca- 
tion must be estimated.    Unpublished experimen- 
tal  results at DTNSRDC on a similar geometry 
indicate that the flow over the blades is fully 
turbulent at a 0.7-radius Reynolds number of 
4 x 106.    This Reynolds number corresponds to 
tripping the boundary layer at the fraction of 

(a) Model 4381 with no warp 

(b) Model 4498 with 72-degree warp 

(c) Model 4383 with 72-degree skew 

Fig. 15 - Geometry of Three Model Propellers 
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chord value XQ = 0.18.    The design advance 
coefficient Jv of all  three models is 0.889 and 
the flow conditions are v = 1.191 x 10"6 m2/s 
(1.28 x 10-5 ft2/sec), V=16.9 m/s  (55.3 
ft/sec), and a = 391.5 rad/sec. 

Figure 16 shows the predicted skin fric- 
tion coefficient on the suction surface for the 
three model  propellers at the fraction of 
radius value XR = 0.91.    This location 
corresponds to streamline 14 used for com- 
parisons in the earlier work of Groves (1981) 
where the turbulent boundary layer is computed 
using momentum integral  methods.    The present 
results predict only a slight increase in the 
skin friction coefficient for the warped and 
skewed blades.    This contradicts the results 
obtained by the integral  method of Groves 
(1981) where the skin friction coefficient was 
predicted to increase by nearly 30 percent for 
the zero warp blade.    An investigation into the 
momentum integral  coding has identified an 
error in the specification of certain geometry 
parameters for these blades and    thus leads to 
the different and erroneous earlier conclusion 
of Groves. 

8.  CONCLUSIONS 

This paper presents analysis and results 
for computing three-dimensional  laminar and 
turbulent boundary layers on the surface of a 
propeller blade using the differential method. 
The solution procedure is a modification of the 
Cebeci, et al.  (1978)  scheme for boundary-layer 
calculations on three-dimensional  ship hulls. 
The major changes to the scheme result from the 
propeller blade rotation, the complex propeller 

geometry, and the specification of initial con- 
ditions in order to begin the calculation pro- 
cedure.    Typical  boundary layer computations 
use a grid of 30 chordwise and 23 radial  points 
thereby covering the entire blade surface.    For 
this grid size, 64 seconds CPU time on a CYBER 
176 computer are required for a complete 
calculation. 

Overall, the predicted boundary-layer 
parameters are shown to give reasonable 
agreement with experimental  data for both 
simple (rotating disk and rotating helical 
segment) bodies and a model  propeller.    The 
largest discrepancies between the current pre- 
dictions and experimental   data and previous 
theories occur for the limiting streamline 
angle e which is overpredicted in the turbulent 
region.    For the rotating segment, this para- 
meter is shown to be correctly computed by the 
differential method in the laminar region.    For 
turbulent flows, momentum integral methods, 
which include a modified entrainment function 
to account for rotational  effects, have been 
shown (see Banks and Gadd (1962) and Groves 
(1981)) to improve the prediction of tang.    The 
viscosity coefficient in the present differen- 
tial method has not been modified.    The value 
of tanß may be reduced if the eddy viscosity 
were modeled more precisely. 

The analysis of model Propeller 4119 has 
provided insight into the boundary-layer calcu- 
lation on propeller blades.    First, the large 
extent of laminar flow on the model  blade 
necessitates the capability of a laminar calcu- 
lation procedure and an instability prediction 
method to determine the transition location. 
Figures 9 through 13  show that two-dimensional 
theory can be used for the prediction of 
boundary-layer parameters such as chordwise 
velocity profiles, shape factor, and chordwise 
skin friction.    However, applications involving 
crossflow, such as the instability calculation 
or tip vortex investigations,  require the full 
three-dimensional computation.    Figures 9 and 
14 show the dangers of using a partially 
rotating three-dimensional  calculation. 
Incorrect values of the crossflow velocities 
and tang are predicted when rotation is 
included in the potential-flow solution and not 
included in the boundary-layer solution. 

Calculations of the three-dimensional 
boundary-layer characteristics of three model 
propellers of varying geometry indicate only 
slight differences in the skin friction 
parameters; see Figure 16.    This result, 
contrary to the earlier momentum integral 
result of Groves  (1981),  led to the discovery 
of a geometry error in the earlier computer 
code. 

The results in this paper are encouraging. 
Although computed with the present preliminary 
version of the code, comparisons with measured 
data are quite good.    Further code modifica- 
tions are anticipated to allow the calculation 
to proceed past the location of turbulent 
separation and to improve the eddy viscosity 
model.    Additional  comparisons will   be made 
with the experimental  data of Itoh, et al. 
(1984) for a rotating axial  flow pump blade. 
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DISCUSSION 

Prof. JOHN P. BRESLIN, 
Stevens Institute of Technology, 
Hoboken, NJ, USA: 

Ms. Groves has given us a very clear ex- 
position of a very complicated problem. 

My conception of the viscous flow over 
propeller blades is largely intuitive. I think 
that it should be necessary to start the cal- 
culation at the single stagnation point which 
must be on the pressure side of the blade. The 
boundary layer flow must migrate away from this 
point. It would be instructive if the authors 
could explain why the calculation is initiated 
at the root of the blade rather then at the 
stagnation point. 

AUTHORS' REPLY 

The authors wish to thank Professor Breslin 
for his compliments and question. 

Professor Breslin asks for an explanation 
of our beginning the propeller boundary-layer 
calculation at the blade root instead of at 
the stagnation point. The nature of the gov- 
erning differential equations used for the flow 
calculations dictates that the computation 
initiates at both the blade root and the lead- 
ing edge. At the leading edge, the present 
initial condition is the wedge flow solution. 
This condition implies that the leading edge 
is locally a two-dimensional stagnation line. 
We believe that this approximation to the 
leading edge initial condition is in agreement 
with Professor Breslin's intuition. 
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A PERFORMANCE PREDICTION THEORY FOR 
PARTIALLY SUBMERGED VENTILATED PROPELLERS 

OKITSUGU FURUYA 

ABSTRACT 

A partially submerged propeller theory was 
developed by employing a singularity distribu- 
tion method. Unsteady pressure doublets and 
pressure sources represented the blade camber 
and blade-and-cavity thickness, respectively. 
The induced velocities were derived by reducing 
the formula to a lifting line configuration. 
The free surface effect was considered by the 
image method. The induced velocities contained 
the singular integrals of fifth-order, which 
are usually numerically unstable. Effort was 
made to derive numerically stable formulae from 
these singular equations by applying a method 
similar to the induction factor method of 
Morgan and Wrench (1965) and Lerbs (1952) used 
for steady-state fully wetted propeller 
problems. These new formulae are not only 
applicable to the present partially submerged 
ventilated propeller problem but also to 
general unsteady subcavitating and cavitating 
propeller problems such as propeller starting- 
up and non-periodic loading problems. By com- 
bining the two-dimensional water entry-and-exit 
theory of Wang (1979), the thrust and torque 
coefficients were calculated for representative 
partially submerged propellers and favorably 
compared with the experimental data. 

NOMENCLATURE 

A,B = the coefficients for Tulin-Bukart 
two-term camber 

Cpf = friction drag coefficient 
(Df/J-aPU^-c) 

C|> CD = lift and dra9 coefficients 
(L/%Ue

2-c , DAiJe2-c) 

C(_D = design lift coefficient used for 
the two-term camber 

Cp, Cp = instantaneous and time-averaged 
power coefficients (= P/^PU^TTR2) 

Cj,  Cy = instantaneous and time-averaged 
thrust coefficients (= TAPU

2R2) 

D = pressure drag 

Df = friction drag 

d = distance between the propeller 
shaft center and free surface 

h = the width of water layer used for 
two-dimensional water entry and 
exit analysis 

J = advance speed (=U/2nR) 

K = number of propeller blades 

KT, KT = instantaneous and time-averaged 
thrust coefficients 
(Kr = T/16Pn

2R4) 

KQ, KQ = instantaneous and time-averaged 
torque coefficients 
(KQ = P/32pn2R5) 

n0  = outward normal unit vector for 
the propeller blade surface and 
wake plane 

P = propeller power and also used as 
loading function 

p = static pressure 

R = propeller radius 

r = radial coordinate 

rf(e) = distance between the propeller 
shaft center and the point of 
free surface 

S = propeller blade surface area 

Sb> Sc = areas corresponding to the pro- 
peller blade and cavity, respec- 
tively 

T = propeller thrust 

t = time 

c = propeller blade chord U = ship speed 
Dr. 0. Furuya, Tetra Tech, Inc., 630 North Rosemead Boulevard, Pasadena, California 91107, USA 
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Ue = local effective flow velocity 
(=[(cür-wt)

2+(U+wa)2]V) 

uxt u*, ue* = perturbed velocity components in 
x, r, e directions 

u= vector representation for 
(ux* ur* u9*) 

vx» vr» ven 
= velocity components in the x, r, 

e directions 

Va = incoming flow velocity to the 
propeller (Va = U(l-w) where w is 
a ship wake factor) 

wa, w-t = induced flow velocities in the 
axial and tangential directions 
(i.e., x- and 9-directions), 
respectively 

XB> ^B = orthogonal coordinates fixed on 
the blade 

x = the coordinate in the axial 
direction, also used as nor- 
malized blade radial location 
(= r/R) 

a, ae  geometric and effective flow 
incidence angles 

ßg = geometric blade setting angles 
measured with respect to the line 
connecting the trailing edge of 
blades 

ß-j = blade angle ßg corrected with the 
induced flow velocities 

<S = Dirac delta function 

n = time averagedpropeller effi- 
ciency (= Cj/Cp) 

e = tangential coordinates 

eL> eT = tangential coordinates corre- 
sponding to the blade leading 
and trailing points 

e = -tot - (v-x*)/x - e0* 

X = advance coefficient (= U(r)AoR) 

p = fluid density 

$ = velocity potential 

a = angular velocity of propeller 

Symbols attached to variables 

a^ = one bar under the variables 
refers to the quantities related 
to the image singularities 

Subscripts 

bar above the variables indicates 
that they are normalized quan- 
tities 

refers to the coordinates based 
on the inertial system 

Superscripts 
* = refers to the coordinates for 

which the induced velocities are 
to be calculated 

1.0 INTRODUCTION 

In recent years partially submerged air- 
ventilated propellers have attracted growing 
attention as efficient thrusting devices used 
for high speed sea crafts. This type of pro- 
peller potentially provides a better perfor- 
mance than fully submerged supercavitating 
propellers. This seems attributable to the 
following two major factors: 

i) reduction of the hydrodynamic 
resistance for the appendages such 
as shafts, struts, etc., which would 
support the propeller in water, and 

ii) reduction of the adverse cascade 
effect by providing the free surface 
for air-ventilation. 

The origin of the partially submerged pro- 
peller goes back to the late 19th Century, and 
many such propellers have been tested with dif- 
ferent types of actual boats since then. 
(Had!er and Hecker (1968) summarized its 
history in their report.) Most of the develop- 
ment conducted for the propeller was, however, 
on a trial-and-error basis and until recently 
no theoretical foundation existed for improve- 
ment of the partially submerged propeller per- 
formance. The pioneer work in this subject was 
provided by Yim (1969, 1971, 1974) who devel- 
oped the theory for the hydrodynamic entry- 
and-exit characteristics of the thin foil and 
symmetric wedge with ventilation. The method 
applied there assumed the two-dimensional flow 
field by unfolding the cylindrical plane which 
is the rotational path of a blade at a certain 
radius. The problem to be solved was therefore 
that of an unsteady blade motion going in 
(entry) and out (exit) of this water layer. 
Using a similar two-dimensional assumption, 
Wang (1977, 1979) recently solved a rather 
complete water entry-and-exit problem including 
such features as general nonsymmetric blade 
profile, ventilation and oblique entry-and- 
exit. This facilitated a convenient and power- 
ful tool for determining the two-dimensional 
sectional loading for practical blade profiles 
at various entry and exit angles. 

All the theoretical works conducted so far 
were based on the two-dimensional assumptions 
and, to the best of our knowledge, we are not 
aware of any three-dimensional theory for par- 
tially submerged propellers with ventilation. 
The preliminary work of this title problem was 
conductd by the author who incorporated various 
three-dimensional effects such as propeller 
configurations and presence of a free surface. 
The unsteady propeller theory developed there 

446 



used a linearized approximation for velocities 
and thus could solve a linearized equation of 
motion for a potential function *. This 
function $ was then determined by distributing 
the pressure doublets and pressure sources 
which represented the blade camber and blade- 
and-cavity thickness, respectively. The 
induced velocities were then derived by taking 
the derivatives of s. Up to this point the 
theory was developed as a lifting surface 
theory. However, for simplicity, this lifting 
surface expression was reduced to that of 
lifting line by shrinking the propeller chord 
to a single line with the total amount of 
loading left remaining the same. In order to 
represent the free surface effect for propeller 
performance, the image method was applied. For 
the image of pressure doublet, that of the same 
strength and sign was distributed whereas for 
the image of pressure source, that of the same 
strength but with negative sign is distributed, 
both on the location of the mirror image with 
respect to a free surface. 

The induced velocities obtained there 
included the integrals of the fifth-order 
singularities. A singular integral method of 
Hadamard (see the report by Mangier (1951) for 
its detailed treatment) was employed to avoid 
the numerical instabilities, but resulted in 
only partial success. As the numerical control 
points along the span direction increased, 
first the results showed a trend of convergence 
but then started diverging as the number of 
points further increased. Although the solu- 
tions of intermediate convergence were pre- 
sented and compared with the experimental data 
of Hadler and Hecker, the accuracy of the solu- 
tions was uncertain. 

The objective of the present work was, 
therefore, to improve the accuracy of the 
theory by resolving the numerical instabilities 
encountered in the previous work. In order to 
avoid the numerical instabilities, instead of 
finding other numerical integral methods, 
better mathematical formulae for calculating 
the induced velocities were sought. It means 
that effort has been made on converting the 
integrals having the fifth-order singularities 
into those of the third-order singularities. 
This type of conversion is typical in the 
steady-state lifting-line theory but had not 
been done for the unsteady problem. The con- 
version has been successfully done here and the 
numerical stability and accuracy are then 
guaranteed by using the concept of induction 
factors similar to that of Lerbs (1952) and 
Morgan and Wrench (1965). 

In the following the mathematical formula- 
tion, solution method and numerical analysis 
will be described in detail, followed by some 
representative results of computations obtained 
with the present theory. Although many experi- 
ments were conducted to date regarding the par- 
tially submerged propeller, they are limited 
for distribution. We have thus chosen the 
experimental data of Hadler and Hecker (1968) 
for comparison which existed in the open 
literature. 

2.0 MATHEMATICAL FORMULATION 

2.1 Basic Equations 

Fig. 1 shows a schematic diagram of a par- 
tially submerged propeller blade rotating 
around the x-axis in the uniform flow of veloc- 
ity U approaching from the negative infinity of 
x. This type of flow model is similar to that 
used by Cox (1968) who developed the theory for 
supercavitating propellers. The propeller 
shaft line represented by the x-axis is placed 
in the air domain, being apart from the free 
surface boundary, distance of d. The cylindri- 
cal coordinate system (x, r, e) will be used 
throughout the present analysis with no 
subscripts for the coordinate e fixed on the 
blade and with subscripts o for the inertial 
coordinate e. The time is measured when the 
center line component of the blade helical 
plane is located at e0 = 0 so that the time 
corresponding to that of Fig. 1 is interpreted 
as of negative value. It means that the event 
of propeller rotation started at some negative 
time. In order to identify the quantities 
related to the blade singularities from those 
of interest we will use superscripts * for the 
latter. 

In the present analysis an unsteady 
linearized theory with inviscid and no-gravity 
assumptions is employed. The velocity com- 
ponents in the x, r, e0 directions are written 
as (U + ux*, ur*, u6*). Defining the perturbed 
velocity quantities °(ux*, ur*, u9*) by u, one 
can write linearized equation of motion 

1M- 
st 

v P 

which can be expressed in terms of velocity 
potential $ 

(1) 

(2) 

3_* 

3t 

= - E 
P 

where 

and p is the static pressure of the fluid. 
Solution of Equation (1) for * is given 

(x e ;€) o / 

-^/|(V 
(v+x)l (3) 

where the boundary condition p = 0 at x = -» 
has been used. Applying the continuity 
equation Divu = 0 to Equations (1) and (2), we 
obtain the Laplace equation for p, 

*2 A 

V   P 

Green's theorem will be used for p which 
satisfies the above Laplace equation so that 
the solution for p can be expressed 

P   (x   'r » p+p (4) 
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where 

p (x ,r , 8o;t) = pressure due to the real 
blade (pressure doublet term) 
and cavity (pressure source 
term) 

Sb 

- //RTAK[p(x'r'e;t)]|ds|, (5) 

e (x*,r*,o*;t) = Pressure due to the image 
blade and cavity 

-b 

//4;Al4[p(x'r'8:t)]|d (6) 

Ap = p  - p 

A fcP teT-fö- 
n = normal to linearized surface, 

positive from pressure side 
to suction side 

*   - [(**-x)2 
O       L 

r* cos toj
! 

6 - ut 

2ir (k - 1) 

K = number of blades 

S = moving surface consisting of 
propeller blade surface Sb 
and cavity surface Sc 

SD,SC = propeller blade and cavity 
surfaces, respectively, where 
the zero pressure condition 
on the free surface, the 
image part £, has been added 
in Equation (4) with the 
pressure doublet term of the 
same sign and the pressure 
source of the opposite sign. 
Detailed derivations of the 
image part will be treated 
separately later. 

The detailed description for the image 
part will be provided later. 

The moving blade surface S is considered 
to be composed of helical lines of varying 
pitch in the r-direction; 

S:  X-9RA(r) = 0 

A = U(r)/wR 

where A denotes advance coefficient as a func- 
tion of r. It must be mentioned here that the 
theory developed will be applied to the wake- 
adapted flow field by varying X as a function 
of r as is seen above. By using the gradient 
components of this helical plane one can write 
the directional derivative 3/3n0 as follows, 

3_ 
3x 

where = dA/dr. 

(r(8 + wt)RA. 

Thus, 

?p 
(7) 

L° (\) 

and 

r (x  - -x)+RAr sin   V     - o -  r(9   +iut) RA r (r- -r cos V 
fr2+(RA) M' (6o+ü.t)RAj2 J^ Rm 

o 

d 

ds -[A (RA)2+ {" (9   +wt)RA„ o              r I2] 
>s 

de dr. 1 

(8) 

(9) 

In order to derive a simplified first-cut 
method of partially submerged propeller theory, 
we take only the doublet effects for the pres- 
ent analysis, neglecting the source effects, 
i.e., the cavity thickness effects on the 
induced flow velocities. Therefore, applica- 
tion of (8) and (9) into (5) yields 

p(v+x,r 

where 

,.-T> 'H//1 

x -(v+x) 

ap (r,e,T)—^ dr dB (10) 

"oT"k 

(ID 

(12) 

N  = rv + RXr  sin H1 - r {8 +WT). RX  (r-r  cos ¥ ) v v     o       r v 

(13) 

R =[v2+r2+r*2-2rr*cos Yy J (14) 

9[_, ej = angular coordinates of the blade 
leading and trailing edges, 
respectively 

rf, R = radial coordinates defining the 
radial distances at the free sur- 
face and tip measured from the 
center of shaft, respectively 

Substituting (10) into (3), one obtains 

* (x 

m 
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(v)) -j d(i# (15) 
rf(T<»))  0 

A further simplification of the problem is made 
by representing each of the submerged blades as 
a lifting line so that one can define the 
dipole-like singularity 

/ 

T 

^Ap (r,0,T)dO = P(r,T) MB) p c p 
(16) 

& (e) = Dirac delta function. 

The velocity potential $ in Equation (15) 
is now written under the linearized lifting 
line assumptions 

X   -X      R 

*(x   ,r   ,6   ;t) ™$ H ^ ?-*;<"> 
rf(T.(v)) 

Before calculating the induced velocities from 
$, all variable numbers will be nondimen- 
sionalized and expressed by the straight bar 
above each character 

* (x ,r ,;t) = if/*5/ P(r,T) ^  dr 
R- 

(18) 

rf(t(\i)) 

where the normalization has been made as 
follows; 

._* _* _ _   x *    * . 
(x   ,r   ,x,r,u)   5   (x   ,r   ,x,r,v)/R 

*   =   */RU 

P   =   P/2TipU 

N- =  N  /R     = 

r  v  +   Xr     sin  T— +   (x    - v) 

R- =   R,,/R 

t- =   -ut+ 

-X- <r"r    cos ^    (19) 

l4 

-    cos T-l (20) 

(21) 

Since the lifting line approach is used, x and 
e in Equation (17) have been set to zero. Thus 
T in (11) becomes 

z.  = t-(x - v)  /Xu. (22) 

The top bars used to identify the non- 
dimensional quantities will be dropped 
hereafter, but the reader should be reminded 
that all quantities from now on are nondimen- 
sionalized. The induced velocities due to a 
series of the vortex sheets are then calculated 

*  *  *       a A 
u ,(x ,r ,8 ;t) = -^-i 
x °      3x 

\ t        v_ 

+ /p(r,T(v».^|    (-£} 
r= 

* 
r=rf(t) 

P(r.T(v» -4 (23) 

where d is the distance of the free surface 
measured from the center of the shaft. It 
should be noted that the order of integration 
between r and v has been changed. This change 
has been made carefully with the change of the 
integration limits, particularly for r; in order 
to cover the maximum blade wetted length, the 
lower limit now should be "d" (the distance of 
the free surface measured from the center of 
shaft). This does not mean that the induced 
velocities are independent upon the time- 
varying blade-wetted length. The effect of the 
time-varying blade-wetted length is now taken 
care of by the integration in the v-direction; 
during the v-integration, the arc length of 
integration at each fixed r varies depending 
upon r since the blade wetted length changes. 

Since P(r,-r(v)) becomes zero at the free 
surface, the second term disappears and thus 

k[rf(t)L 
Rv 

1 
f *     f    9P(r,T(v 
V  J ~ä^~ ?dV 

+ i dr /p(r,x(v)) 

.«I 
(24) 

Furthermore, with the following identity 

3 

3x y. 
/r   3vNv\  A 

„3 

Equation  (24) becomes 

M/£(t) 
P(r,T(v)) dr 

.   f ,     f   3 P (r, T 

V ärJ ~77 
(v)) 

m 
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Integration by parts for the last integral I in 
Equation (25) will yield 

3vN„ 

R3    R5 
L V       V 

I = f är f P(r,T(v)) 

d 

Since Nv/Rv^ becomes zero as v-*-°° and aP/sv = 
- 3P/3x* by using Equation (22), Equation (25) 
can finally be written 

|E Ar /■p(rfT,v))U-^)dv (26) 

This form is similar to the induced veloc- 
ity in the x-direction obtained by Cox (1968) 
except that P(r,-r(v)) here is a function of 
both r and time so that this term is now inside 
the integral for v . It must be mentioned here 
that one would not immediately see if the 
loading term P in Cox's expression for the 
steady case could be moved into the v-integral 
without the detailed derivation like the one 
made above. 

The induced velocity in the tangential 
direction is obtained in the similar manner, 

*      *      * 13 0 
u Mx   ,r   ,e   ;t>   = 4 -i^f 

°o ° r     36 

-|E     /"dr/    i^ 
Zv\J J       r    36. 

p(r,T(v)) -j <äv       (27) 

Since P(r,-r(v)) is independent of e , 

u„.<x\r*,e*;t> = 

j   dr J    p(r,x(v))f- 

the air foil integral, did not work properly 
due to the fifth-order singularities existing 
in the propeller integrals (instead of the 
third-order singularities in the air foil 
integrals). The present work was therefore 
devoted to fixing this numerically unstable 
problem by entirely changing the forms for ux* 
and u0 *. 6 o 
2.2 Induction Factors for Unsteady Wakes 

The philosophy adopted here for avoiding 
the numerical instability is that similar to 
Moriya (1942), Lerbs (1952) and the work later 
elaborated on by Morgan and Wrench (1965). 
Since the propeller problem treated by these 
researchers was the steady flow one and thus 
had uniform wakes, they were able to introduce 
the ideas of the induction factors. All 
integrals for obtaining the induction factors 
were reduced to those involving only the third- 
order singularities where the loading part was 
expressed in terms of the derivative with 
respect to r. By virtue of the steady flow 
assumption, they were finally converted into 
the series of Bessel's functions. The real 
challenge for the present unsteady case will, 
therefore, be (i) to analytically derive the 
integral forms similar to those in the steady 
problem mentioned above, and then (ii) to 
numerically assure the accuracy of calculating 
these integrals by having lower-order singu- 
larities. 

First, the integral dummy variables v in 
Equations (26) and (28) are changed to new 
angular variables e with the following rela- 
tionship 

«-_..*_ )Lz*- -  «* (29) 

By rewriting the lifting-line .induced veloci- 
ties in the x- and e-direction by a more con- 
ventional expression, i.e., wa and wt, 
respectively, we can write 

w = u   *(x*,r*,e*;t) = 

1 - 
r r I 3(-A6 + X*)N5\ 

(30) 

w = uei(x*,r*,0*;t) 

3N r sin T 

)' 
(28) 

A numerical integral method of Hadamard 
(see the report of Mangier (1951) for detailed 
treatment) for handling the singularities of 
fifth order in ux* and ue* was used for 
Equations (26) and (28). It0 was discovered, 
however, that there existed a numerical 
instability; the numerical results first con- 
verged as the mesh size of numerical control 
points decreased, but started diverging as the 
mesh size was further reduced. The Hadamard 
integral method which was successfully used for 

lE /     dr     /  *P(r,T(6))|- 

sintA 

A cos Ys - A   r6 sin V: 

d 0 

3Nsr 

where 

RS     = 

(31) 

r 2        2        *2 * 1 K-AO + x*)     + r    + r       - 2rr     cos  fr 

N~     =      r(- A©  + x*)  + Ar* sin H'g + A. r9 (r - r* cos T~) 
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„t-e* (this value will be zero for 
° the induced velocity calcula- 

tion on the lifting line itself 
since ef * = -ü)t) Jo 

X = U(r)/uR 

xr = dx/dr-R (since this is in nondimen- 
sional expression). 

With the fact kept in mind that P is a 
function of both r and §, the following iden- 
tities have successfully been derived after 
lengthy algebraic computations, 

3(- A8+ X*)N: 

4 
(r-r* cos tg) 

n 
r* sin ^2 

»53 

-A cos Ts-A rBsin*-   3N;r sin Vx 

(32) 

(- A6 + x*) cos Tg + Ar6(r*-r cos V~)      _  ,,gv 

It is clearly seen from these results that the 
induced velocities obtained here consist of the 
two parts, i.e., the steady part relating to 
3(xP)/ar and the unsteady part relating to 
aP/ae. 

For the case of the steady propeller flow 
problem, 3P/36 becomes zero and aP/ar becomes 
independent of e. wa and wt in Equations (34) 
and (35) will be reduced to the forms exactly 
identical to those of the steady flow case in 
Cox (1968). It is considered that the present 
results will be extremely useful, not limited 
to the current partially submerged propeller 
problems, but also in analyzing any general 
unsteady propeller flows. 

wa and wt in Equations (34) and (35) are 
further modified for securing numerical stabil- 
ity, i.e., 

= .i/- i- 
.(r,r*) 

i/ 
I 2<r,r*) 

dr (36) 

X (r-r cos fs)  +  (-X9 + x*)r sin V; 

-.--*/ 
ltr(r,r*) (r,r*) i f   itelr'1 

2j r-r* dr  (37) 

36 

- (-X6 + x*) cos Ts + X B(r*-rcosT5)' (33) 

By using these identities, the kernel 
function of the integrals for wa and wt in 
Equations (30) and (31) will be converted into 
the radial and tangential derivative forms with 
only the third order singularities. Performing 
the integration by parts in terms of r and e, 
we will obtain 

w   (x*,r*,a*;t)   = a o 

1 

K0        rf(T(-e)) 

r(r-r    cosT*) 

,2\ \      r    sin    Vz 
^- ^—5- de    , (34) 

where 

ar<^*>   = E f\h [« <r ^ <5»]| 

(r-r*) -r- (r-r   cos H*^) 
(38) 

-(r   r*>   -V   /~?3P(r,T(9)) . 
r(r-r*)r* sin f; 

de , 

(39) 

r*>   -E/|sl[«(r.^5))]]x 

(r-r*)|x(r*-rcos 4>S) + (-A8 + x*)    rsin  M    _ 
 I r° Hi d9 ,    (40) 

and 
CO J_ 

4E/«/|^[«(r,x(g))]| 
0 rf(t(8)) 

(e)) 

r(r-r*)|-(- xe +x*)cos*g+ Xr6(r*-rcos *g)|     .       ( M ) 

A (r-r cos f 5) + (-A9 + x*) r sin fx 

(8)) 

and the order of integration between r and 8 
has been changed with the same justification as 
that for Equation (23). 

Ur. Iae- !tr> Ite in Equations <38) to 

(41) are similar to the induction factors 
introduced by Lerbs (1952) who developed the 
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steady-state propeller lifting-line theory. As 
a matter of fact, in the steady-state problem 
3/3r[AP(r,x(e))] is independent of e so that 
this term can be taken out of the e-integrals. 
Without the terms of 3/3r[AP(r,T(e))], Iar and 
Itr should be identical to the induction fac- 
tors of Lerbs who calculated them in a totally 
different way, as mentioned above. In order to 
test the accuracy of the numerical integral 
method to be employed for the present analysis, 
Iar and Itr in Equations (38) and (40) were 
numerically calculated with 3(sP)/3r =1, x* = 
0 and 6Q = -ut for various r/r* ratios and 
6-JO'S (flow pitch angles) by applying Simpson's 
rule. It was found that for large ß-j0's such 
as 60° and r/r* ratios larger than 0.6, Iar and 
Itr matched with those of Lerbs within 0.1% 
accuracy if 10 turns of wakes were used, where- 
as for smaller ß-jos's sucn as 15° and r/r* less 
than 0.6, the errors were about 3%. However, 
the accuracy greatly improved if 20 turns of 
wakes were taken for the numerical calcula- 
tions, with the accuracy less than 1% for all 
combinations of &]0 and r/r*. Furthermore, the 
errors were observed at only small r/r*'s so 
that they would play a negligibly small role in 
the overall integral with respect to r for the 
final values of wa and wt (a sample case showed 
an error less than 0.1%). Also, Iar and Itr 
values calculated with the present method 
showed smooth transition near r/r* = 1 (taken to 
be unity). Finally, it must be mentioned that 
reducing the integral intervals both in § and 
r made the calculated values of the integrals 
converge to the single numbers. 

It has now been determined that by apply- 
ing the integral method mentioned above to Iar, 
Ia§,_Itr and Ite with P varying as a function 
of e due to the flow unsteadiness, we will be 
able to obtain the accurate and numerically 
stable induced velocities for the present par- 
tially submerged propeller problem. 

The method for obtaining the image induced 
velocities is rather simple; instead of con- 
structing the image wake system in the air 
domain, we will first obtain the mirror image 
for the point of interest on the lifting line 
and then obtain the' induced velocities due to 
the real wake systems. In this flow config- 
uration, the relative geometry between the 
point of interest and wake system is identical 
to the one considered above except that the 
direction of wake helical windings is opposite. 
It means that the induced velocity in the x- 
direction will be added to the real part 
whereas that in the tangential direction will 
have to be subtracted from the counterpart. 

The only work to be done for implementing 
the above method is to obtain the new coor- 
dinates for the point of the lifting line in 
the water, i.e., (x*, r*5| e*). | Defining the 
image point by (x*', r*', e*'), one will 
readily find the following relationships (see 
Figure 2). 

x   = x  = 0 
* i      * t    * 

r  cos 6   = r cos o 
* *    * > 

r sin 6  + r  sin i 

(42) 

It is straightforward to obtain (x*' r*', 
e*') from Equation (42) once (x*, r*, e*) are 
given. These new coordinate points will be 
substituted' into Equations (36) and (37) to 
obtain the induced velocities, wa and wt> due 
to the image wakes, i.e., 

w = w (0, r  , 6 (t) ; t) in Equation (36)    (43) 

w = "t(0, r  , 9  (t) ; t) in Equation (37).   (44) 

The total  induced velocities are finally 
obtained 

Zwa = wa(0, r*, -wt; t) + w^ (O, r* ' , 6*'(t);t) (45) 

Ew. = w (0, r*, -wt; t) + wt (o, r  , BQ  (t) ; t).(46) 

3.0 SOLUTION METHOD 

The off-design propeller problem to be 
solved here is to satisfy the velocity vector 
relationship shown in Figure 3, i.e., 

tan ß. = 'i   wr-Ew. (47) 

ban ßg(r*)-ae(r*)   ^ -Zw^   (p(r\ ae(r*),t))J 

1 + Ewt (P(r*, ae(r*), t))J = 0 for all r 

where ßg is a propeller geometric parameter, 
see Figure 3. In Equation (48), P-function 
should be determined as functions of r* and 
time (or the relative position of blade in 
reference to the free surface). 

The relationship between the lifting 
forces and the P function will be given as 
follows: 

(49) 

where 
chord 

Ue = effective relative velocity 

[(U + w. )   + (ur+ w t'2] 
C|_ = lift coefficient 

U = Va if no wake reduction factor is 
considered 

It must be pointed out that in order to 
account for the induced flow effects on the 
location of the vortex sheets, use of Xi(r) 
instead of X(r) is recommended where 

U + £w (r) 
A . (r) = x tan (50) 

Unlike Prandtl-type of steady-state, 
three-dimensional wing problem, the P-function 
cannot conveniently be expressed in terms of 
Fourier series for two reasons. The first is 
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that P is an intermittent function of time, 
increasing from zero to the maximum value and 
decreasing back to zero when the blade is out 
of water and staying zero until the next entry 
of the blade to water. The second reason is 
that the span length of blade continuously 
changes as blades move and P-function does not 
have similarity even for the normalized span 
scale. 

A proposed method for solution will employ 
a numerical iterative method as in Furuya 
(1980). First, we use the geometric incidence 
angle at each blade spanwise position to calcu- 
late the lifting force as function of blade 
location or time. D.P. Wang's (1979) blade 
entry and exit theory will be used to evaluate 
this loading function P through Equation (48) 
by assuming Swa = zwt = 0. Once the initial 
distribution of P is given as functions of r 
and t, the induced flow velocities zwa and zwt 
will be calculated from the formula obtained in 
the previous section. These induced velocities 
now change the local effective flow incidence 
angles ae- With a new set of ae> a new loading 
function P is recalculated again with the two- 
dimensional water entry-exit method. This 
iterative procedure will be repeated until a 
convergent solution is obtained. 

4.0 CALCULATIONS OF TWO-DIMENSIONAL SECTIONAL 
LOADINGS WITH D.P. WANG'S PROGRAM 

In order to determine the strength of cir- 
culation at various blade radial stations in 
the propeller lifting-line theory, the two- 
dimensional lifting force must be provided as 
functions of blade geometry, angle of inci- 
dence, submergence depth and angle of entry or 
exit. D.P. Wang (1979) recently developed the 
theory for solving the problem of oblique water 
entry and exit for a fully ventilated foil. 
The theory employed a linearized initial value 
problem approach for the mixed-type boundary 
condition. However, the computer program 
developed there is only applicable for foils 
having straight line and circular arc camber 
profiles. Practically used ventilating pro- 
pellers under the partially submerged condition 
are usually designed to have a somewhat dif- 
ferent type of foil profile shape. One of the 
most frequently used blade profiles for this 
type of propeller is that of Tulin-Bukart 
(1955) two-term camber, which is expressed in 
the following equation 

Jb: >*B) (51) 

where the first group of terms in the brackets 
is the two-term camber part and Bxg is merely a 
rotation of (x-y) coordinates. It is readily 
understood that the terms related to xg and x| 
represent the straight line and circular arc 
profiles, respectively, whereas a term propor- 
tional to xjV2 is the specific term in the 
two-term camber profile. Incidentally, the 
partially submerged propellers, Models 3767 and 
4002, tested by Hadler and Hecker (1968) had 
the two-term camber expressed by Equation (51). 
Table 1 presents the values of coefficients A 

and B at various radial stations. More 
generally, supercavitating or fully ventilated 
blade profiles can be written 

yB = S>n*£
/2- (52) 

In order to handle these general blade 
profile cases, Wang's computer code needed 
modification. It was not simply a replacement 
of a few cards in the computer code, but 
involved the detailed understanding of the 
program due to the various variable transfor- 
mation and singularity removal techniques used 
in the program. After this modification was 
made, the program has become much easier for 
users to incorporate any type of blade profile 
shape such as that expressed in Equation (51) 
or (52); the only change of the computer code 
to be made for different types of profile now 
is that of a subroutine specifying the profile 
shape. 

With this modified computer code we made 
computations for lift and drag forces for the 
Tulin-Bukart two-term camber at various water 
depths and angles of blade entry and exit, some 
results being shown in Figures 4 and 5 (see the 
report of Furuya (1979) for the cases of h/ir = 
0.5 and 1.5). Use will be made of these graphs 
in the following manner. Assuming that the 
two-term camber is given by Equation (51) with 
h/TT and x, the force coefficients for the two- 
term camber and straight line can be read from 
each graph. The total C|_ and Cn. will then be 
calculated 

(£)- £(w,)-10(B-°e> 
(Flat) 

(Flat) 
(53) 

where Ad = .10186 has been used in the present 
calculation, which corresponds to C|_d = 0.2 and 
ae denotes the flow incidence angle. This 
calculation should be made for all h/ir's and 
x's since the specified h/ir and x for which C|_ 
and CQ to be calculated are usually different 
from those for which the present computation 
was made. Then an interpolation method is 
necessary in h/ir and X planes to finally deter- 
mine C|_ and Co for the specified values of h/ir 
and X. The computer code developed for the 
propeller calculation uses one such interpola- 
tion scheme. Incidentally, the accuracy of the 
modified Wang computer code was checked in the 
following way. By increasing h/ir values to 5, 
10, etc., for the two term camber, it was 
observed that calculated CL values asymp- 
totically approached 0.2. Since Ad used here 
corresponds to the lift coefficient of C[_d = 
0.2, it was considered that the accuracy of the 
computer code, as well as the theory, has been 
proved. 

It must be mentioned that one of the most 
interesting features regarding the two-term 
camber used for the partially submerged pro- 
peller appears in the results of the calcula- 
tions for the present two-dimensional sectional 
characteristics. For a short time period imme- 
diately after a blade leading edge entry into 
the water, the lifting forces for the two-term 
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camber show negative values. As the blade pro- 
ceeds and has a larger submergence, these nega- 
tive values turn around and rapidly change to 
positive values. This means that the blade tip 
material experiences the oscillatory force from 
a negative to a positive value at each cycle of 
rotation. The reason for this phenomena can 
readily be understood if one closely investi- 
gates the profile shape of the two-term camber, 
particularly near the leading edge where nega- 
tive slope exists (see Figure 6). When only 
the blade tip is plunged into water, the 
lifting force is naturally negative. However, 
as a larger portion of the blade is submerged 
into the water, the positive camber starts 
taking effect and thus the direction of force 
changes. 

It must be further pointed out that these 
lift and drag forces during such a critical 
period were calculated based upon an assumption 
that the face portion of the blade is wetted 
and the back portion has ventilation. This 
assumption may be erroneous; the flow con- 
figuration to be used for such a case is that 
the face part must have ventilation whereas the 
back part must be fully wetted. As the blade 
proceeds, the water starts filling in the face 
part, maybe trapping the air near the leading 
edge while the back part cannot sustain the 
negative pressure so that either cavitation 
and/or ventilation may suddenly take place. 
Therefore, the change of forces near the 
leading edge may be even more drastic than is 
shown in Figures 4 and 5; it could even be of 
impulse type. 

In any case, this type of repeated 
oscillatory force will easily lead to material 
failure due to fatigue phenomena. According to 
private communications with D.P. Wang and other 
documents, the partially submerged propeller 
can survive only for a few hours of operation, 
ending with material breakdown. As a matter of 
fact, most of the partially submerged pro- 
pellers designed to date employed the two-term 
or similar camber profiles (see Table 1). The 
findings mentioned here suggest that the use of 
the two-term or higher order cambers, known to 
be superior in the area of fully submerged 
supercavitating propellers, is not necessarily 
suitable for the environment encountered by the 
partially submerged propeller. Since material 
failure is the most critical problem in this 
type of propeller design, the selection of the 
propeller blade profile needs a specific con- 
sideration for material integrity as well as 
for avoidance of oscillatory forces at the 
time of entry. One of the possible candidates 
for the leading edge profile used for the par- 
tially submerged propeller may be that of 
smooth straight line or wedge type or even 
finite thickness with rounded leading edge 
followed by an appropriate camber profile. 

5. THRUST AND POWER COEFFICIENTS 

T   (e  + a. 

(54) 

P   (6   +   ok)   = /"wr jCL ■ lpUe'C SinBi 

.+    (D   +   Df)   cos^j (55) 

where 

D = form drag on the blade, D(r,e) 

Df = friction drag, Df(r,e) 

Ue =   [ Lr -wj2+    (ö +wa)2l\     (see Fig. 3) 

ß-j = tan"1 [(u +   wa)/<o>r-wt>] ,   (see Fig. 3). 

First T and P are normalized; 

JjpU  itR 

r i u 

(f)2   sin8i 

c_(e+ov) =  3—2 
P k SipU   nR 

'-f 

where 

U /U \2 
uAP-sinBi   +  ^   <CD  +  CDf)-c 

*P    =    T~   TT   °'CT 4TI    U L 

m \2 

(f) cosei IdF 

= L 
L We2' ■ c 

= D 
D 

>!pUe
2< • C 

Df 

c  = normalized chord 
(■ "■> 

In order to obtain the averaged thrust and 
power coefficients Cj and C>, T|< and P|< must be 
integrated over one rotation of propeller and 
then be divided by 2ir. 

The time-averaged thrust and power coef- 
ficients, Cj and Cp, can be calculated as 
follows. The thrust and power forces for the 
k-th blade at an instantaneous time t or 
equivalently at a rotational angle e are given 

*/i£ cT (e + ok) \ de (56) 
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2n 

cp (e + ok)!de . 
(57) 

The conversion of Dr and Cp into more conven- 
tional thrust and torque coefficients Kj and KQ 
is a simple matter, i.e., 

KQ = 16  CP 

(58) 

(59) 

where the definition of Kj and KQ is given by 

T(e+ov) 

16pn2R4 

32pn2R5 

(60) 

(61) 

The averaged efficiency of the propeller is 
thus provided 

2ir • (62) 

6.0 RESULTS 

The computer program was developed on the 
basis of the new theory and was applied for 
calculating the off-design performance of two 
different types of partially submerged pro- 
pellers, i.e., NSRDC Propeller Model 3768 and 
4002. The geometric characteristics of these 
propellers were provided in the report of 
Hadler and Hecker (1968) who conducted water 
tunnel tests for these propellers with sub- 
merged depth of 40% and 33.3%, respectively 
(the submergence depth was defined based on the 
propeller diameter). Some of the important 
features used for the present computations are 
summarized in Tables 2 and 3. 

The calculated results for the ^time- 
averaged thrust and torque coefficients Kj and 
Kg of Equations (58) and (59) are shown in 
Figures 7 and 8 and compared with the experi- 
mental data of Hadler and Hecker (1968). The 
experimental data used in this comparison for 
Propeller Model 3768 are those of the incoming 
tunnel flow speeds of U = 10.3 fps and 20.7 
fps. For U = 10.3 fps, much more data than are 
shown here (particularly beyond J = .6) are 
available in their report. However, they indi- 
cated that the transition from the leading-edge 
ventilation to the base-ventilated condition 
took place at around J = .5. Since the base- 
ventilated flow configuration is not of current 
interest, the data beyond J = .5 were omitted 
from the present comparison. On the other 
hand, for the data taken at U = 20.7 fps, there 
was no indication of such flow transition in 
the report. It is assumed that the flow con- 
figuration matches with that of the current 
theory and all available data are presented. 
For the Propeller Model 4002, Hadler and Hecker 
conducted the experiments with variable 
incoming speeds and did not indicate the tran- 
sition point in their data presentation. All 
experimental data for 4002 are presented for 
comparison. 

In any case the thrust coefficients 
obtained with the present theory compare 
favorably with the experimental data over a 
wide range of J's, whereas there exists some 
discrepancy for the torque coefficients. 
Various reasons for the discrepancy are con- 
sidered and they will be summarized in the 
following. 

i) The two-dimensional loadings used in 
the present calculations are those 
obtained with Wang's (1979) program 
which was based on the linearized 
theory.   According to the recent 
investigation of D.P.  Wang*, the 
effect of nonlinearity during the 
phase  of  blade  entry  sometimes 
accounts for 20 to 30% of the forces 
by the linearized theory. This dif- 
ference may be caused by the fact 
that the linearized theory is unable 
to determine the accurate wetted area 
of the blade during the entry phase, 

ii) In the present computations only the 
pressure doublet terms were con- 
sidered in the evaluation of the 
induced velocities and the pressure 
source terms were neglected.  It was 
reported in many documents that the 
thickness effect of blade or cavity 
played an important role in the pro- 
peller performance prediction theory 
(see, e.g., Kerwin and Leopold (1963) 
and Furuya (1980)). 

iii) There exists some uncertainty in 
interpreting the experimental data, 
particularly for the case of 4002 as 
mentioned above. _ As is, seen in 
Figure 8, both Kj and KQ of the 
experiments suddenly increase around 
J = .3 -.4.  There is a suspicion 
that this behavior represents the 
transition from the fully ventilated 
flow to the base-ventilated flow. If 
that is the case, the flow con- 
figurations of the theory and experi- 
ments are not comparable and thus the 
comparison beyond J of larger than 
say .4, may not be appropriate, 

iv) There exists a limitation of the 
present  lifting-line theory,  par- 
ticularly in the range of small J's 
where the induced velocities become 
substantial. 

Figures 9 to 12 present the detailed 
calculated data for 3768 at J = 1.0. Figure 9 
shows the time-dependent Kj and KQ as a func- 
tion of blade rotation. Angle "8" of the hori- 
zontal axis in this figure is measured from the 
point when a blade is located at the shaft cen- 
terline level.  Since the propeller .3768 has 
three blades, the shaft forces are periodic 
over every 120 degrees of rotation, as is seen 
from Figure 9.  The broken lines show KT and 
KQ at each blade, indicating that the water 
entry point of the blade is about 12 degrees of 
rotation after the blade passing the shaft cen- 
terline. 

* Private communication 
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Figure 10 shows the calculated results of 
the variation in local lifting forces on the 
blade at various spanwise points as a function 
of blade location. Figures 11 and 12 show 
their corresponding effective flow incidence 
angles, and the induced velocities, wa/U and 
(-wt/U), respectively. With the information 
provided in Figures 10 to 12, together with the 
geometric data shown in Table 2, one will 
readily construct the flow diagram at any loca- 
tion of the Propeller Model 3768 for J = 1.0. 

The numerical aspects regarding the pres- 
ent unsteady propeller problems with the new 
formula obtained will be discussed in detail in 
a separate literature in the near future. 

7.0 CONCLUSIONS 

The purpose of the present work was to 
develop a mathematical model for solving the 
time-dependent partially submerged propeller 
problems and computer program with suitable 
numerical methods. In the previous work of the 
author the direct integral forms were derived 
for calculating the induced velocities together 
with the Hadamard integral method applied. 
Unfortunately, this effort resulted in numeri- 
cal instabilities. Based on the experience 
encountered there, the new mathematical for- 
mulae have been successfully developed by con- 
verting the fifth-order singularities into the 
third-order singularities. The formulae are 
similar to those shown by Morgan and Wrench 
(1965) by utilizing the concept of the induc- 
tion factors (see also the work by Lerbs 
(1952)). These new formulae are not only 
applicable to the present partially submerged 
ventilated propeller problem but also useful 
for analyzing and designing any unsteady sub- 
cavitating and cavitating propeller problems, 
the loading of which does not necessarily have 
to be periodic. 

With the new development of the unsteady 
propeller lifting-line theory here, the singu- 
lar integrals in determining the induced veloc- 
ities have become numerically stable. By 
combining the two-dimensional water entry-and- 
exit theory of Wang (1979), the numerical 
results have been obtained and compared with 
the existing experimental data of Hadler and 
Hecker (1968). It has been found that the 
overall comparison for Kj is excellent, and 
that KQ is moderate, presumably due to the 
various power losses such as those of entry- 
and-exit, not accounted for in the present 
method. 
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Table 1 

Two-term camber profiles for NSRDC propeller 
Model 3768 and 4002 (see Hadler and 
Hecker (1968)) defined by Eqn. (51) 

*B - 1  (XB + ! XB3/2 "4 XB2) + BV 

Equation (51) 

Propeller Propeller 
r/R 3768 4002 

A B A B 
.2 .01718 .00286 0 0 
.3 .08446 .01408 .05833 .00972 
.4 .11974 .01996 .08333 .01389 
.5 .13748 .02291 .09552 .01592 
.6 .14516 .02419 .09583 .01597 
.7 .14514 .02419 .08729 .01455 
.8 .13606 .02268 .07982 .01330 
.9 .12734 .02122 .08855 .01476 
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Direction of blade rotation 

Jk Path of Integrals 

FIGURE 1    A schematic diagram for propeller flow 
configuration in which the propeller 
rotates at a fixed position while the 
flow approaches with the uniform 
velocity U 

FIGURE 3    Local  flow configuration 
in the two-dimensional  plane 

(**.r*.ep 

FIGURE 2 Mirror image point used for calcu- 
lating the induced velocity effect 
due to the image wakes 

Table 2 

Propeller Characteristics of NSROC 
Propeller Model 3768 and 4002 

Propeller 
Model 3768 

Propeller 
Model 4002 

Diameter 10" 12" 

Number of 
Blades 3 2 

Camber 2-Term Camber 
(see Table 1) 

2-Term Camber 
(see Table 1) 

P/D at x=0.7 1.180 1.319 

Table 3 

Detailed Blade Characteristics of Propeller Models 3768 and 4002 

Propel ler Model 3/68 Propeller Model 4UU2 
Geometric Geometric 

Radial Blade Angle ßg Blade Angle ßg 
Station/R Chord/R (Degrees) Chord/R (Degrees) 

0.2 .7640 61.966 .6876 64.118 
0.3 .7640 51.385 .6876 54.049 
0.4 .7640 43.199 .6876 46.033 
0.5 .7620 36.914 .6858 39.767 
0.6 .7460 32.047 .6714 34.850 
0.7 .7020 28.217 .6318 30.949 
0.8 .6120 25.150 .5508 27.816 
0.9 .4600 22.653 .4140 25.250 
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camber and flat plate calculated with 
Wang's theory (1979) where Ad =  .10186 
(i.e., C|_D =  -20)  in Equation (51) 
has been used and h/ir = 1.0 
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FIGURE 7    Comparison between 
the present theory 
and experimental 
data of Hadler and 
Hecker (1968)  for 
KT and Kn of pro- 
peller Model  3768 
at submergence 40% 
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FIGURE 8    Comparison between 
the present theory 
and experimental 
data of Hadler and 
Hecker (1968)  for 
Kj and Kg of pro- 
peller Model  4002 
at submergence 
33.3% 

SPEED    COEFFICIENT     J 

AT   SHAFT 

AT   BLADE 

PROPELLER   MODEL    3768 

SUBMERGENCE  40% 

FIGURE 9    Change of thrust 
and torque coef- 
ficients as  func- 
tion of rotational 
angle both for the 
propeller shaft and 
individual  blade of 
3768 at submergence 
of 40% and J = 1.0 
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PROPELLER    MODEL    3768, 

SUBMERGENCE  40% 

FIGURE   10 
function of rota- 
tional  angle at 
various blade 
radial  locations for 
3768 at J = 1.0 

FIGURE 11    Variation of ae as 
function of rota- 
tional  angle at 
various blade 
radial  locations for 
3768 at J = 1.0 

FIGURE 12    Variation of (Wa/U) 
and (Wt/U)  as 
function of rota- 
tional  angle at 
various blade 
radial locations 
for 3768 at J = 1.0 
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DISCUSSION 

WILLIAM B. MORGAN, 
David Taylor Naval Ship R&D Center, 
Bethesda, MD, USA: 

This paper is a most welcome addition to 
the literature on partially submerged propel- 
lers. It represents a significant advance in 
understanding these high-speed propellers. I 
have a question concerning the prediction of 
performance. It appears from Figures 7 and 8 
that the differences between theory and ex- 
periment, especially for the torque coefficient, 
might be due to an underestimation of the sec- 
tion drag, both viscous and cavity drag. Would 
the author care to comment on the drag predic- 
tion? 

Dr.-Ing. ERNST-AUGUST WEITENDORF, 
Hamburg Ship Model Basin (HSVA), 
Hamburg, FR Germany: 

In addition to the interesting paper of 
the author I would like to remind you of the 
investigations on ventilated propellers per- 
formed by Brandt (1) and Kruppa (2) in the free- 
surface cavitation tunnel of the Technische Uni- 
versität Berlin. His results were not quite 
consistent, in spite of the fact that they are 
sensible in a qualitative manner. The inconsis- 
tency of Brandt's results was explained - ac- 
cording to the memory of the discusser - by the 
airflow on the propeller blades when submerging 
under the water surface. For these flow behav- 
iors laws of similitude could not be formulated. 
Can the work of the author give some assistance 
regarding the law of similitude when performing 
model tests with partially submerged ventilated 
propellers? 

References: 
(1) Brandt, H.: Modellversuche mit Schiffspro- 

pellern an der Wasseroberfläche. Schiff 
und Hafen, Heft 5, 1973. 

(2) Kruppa, C: Testing of partially submerged 
propellers. Appendix V, Cavitation Commit- 
tee Report, 13th ITTC, Berlin/Hamburg, 
1972. 

available in the future, it is believed that 
the torque prediction of the present theory 
will also become much more accurate. 

With regard to the similitude law for the 
title problem, asked by Dr. Weitendorf, the 
present method did not consider any aspect of 
it. As shown in Figures 10 and 11, the experi- 
mental results show some transition regions 
at which the thrust and torque coefficients 
suddenly change. According to Hadler and 
Hecker (1968), they observed flow pattern 
change there, from the base ventilation flow 
to the leading-edge ventilation flow. Despite 
the fact that the partially submerged propel- 
lers tested and used for comparison in the 
paper have sharp leading edges, this flow 
separation problem still exists. Therefore, 
if the partially submerged propeller is designed 
so as to be used always at the design point, or 
in its neighboring range, neglect of real fluid 
similitude law may not cause a severe problem. 
However, if the propeller is designed for 
hybrid use as designed by Dr. Kruppa and his 
colleagues with section profile having rounded 
leading edges, or to be used over a wide range 
of speed coefficient, a rigorous real flow 
separation theory should be introduced. 

AUTHOR'S REPLY 

The author appreciates the comments of 
Drs. Morgan and Weitendorf. He fully agrees 
with Dr. Morgan in the inaccuracy of the drag 
prediction method used for the present theory. 
As pointed out in the text, the method is based 
on a two-dimensional linearized approach 
so that it does not take into account any 
nonlinear effects including splashes. Diffi- 
culties exist, however, as to how such non- 
linear effects can accurately be incorporated. 
Dr. D.P. Wang used a nonlinear method to eval- 
uate the nonlinear drag only at water entry 
(due to the complexity) discovering 20 - 30 % 
drag increase in comparison to the linearized 
theory. If accurate sectional forces become 
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FREE-SURFACE EFFECT ON THE HULL-PROPELLER INTERACTION 

R. YAMAZAKI   AND   K. NAKATAKE 

ABSTRACT 

By using the model ship hull N-S.1 (L=2.55 
m) which is geometrically similar to Nowacki- 
Sharma's mathematical model (L=4.5m), several 
experiments are carried out in order to grasp 
the effect of the free surface on the propul- 
sive performance of a ship. 

On the other hand, we attempt to eluci- 
date the mechanism of the free surface effect 
on the hull-propeller interactions by using the 
source-represented hull and the simple sink 
propeller model. This model is different from 
the actuator disk model, because the strength 
of the sink is determined by the boundary con- 
dition on the propeller plane. Calculations are 
performed for the combination of the model 
hull and the model propeller used in the ex- 
periments. Experimental results are qualita- 
tively explained by theoretical ones. 

1. INTRODUCTION 

The effect of the free surface on the pro- 
pulsive performance of a slow or moderate-speed 
ship is considered to be small in the full load 
condition. But the situation seems to be dif- 
ferent in the ballast load condition. Because 
of the shallow immersion of the propeller, 
the waves generated by the hull affect the 
wake distribution at the propeller plane and 
the propeller itself makes waves. Under these 
free surface effects, the hull resistance 
balances with the propeller thrust, and there- 
fore the interaction phenomena are fairly 
complicated. The phenomena will be more compli- 
cated in the presence of the rudder piercing 
the free surface. 

The thrust and torque diminutions of 
the propeller operating near the free surface 
were studied experimentally from old times 
(Kempf 1933). Dickmann (1938) explained the 
phenomena by making use of the sink propeller 
model and showed that the wave resistance 
of the propeller is only a small part of the 
thrust diminution. In recent years, Nowacki- 
Sharma (1971) caluculated the thrust diminu- 
tions by using the program of the lifting 
line theory for the propeller, but did not seem 
to give the clear clarification for the mecha- 

nism of the propeller-free surface interaction. 
By utilizing the generalized sink propeller 
model which Yamazaki (1968) derived, Nakatake 
(1976) showed that the thrust diminution is 
due to the wave resistance and the wave wake 
of the propeller itself and the former is a 
minor part of the diminution. This propeller 
model can take the boundary condition on the 
propeller plane into consideration. 

The interaction problems between the ship 
hull and the sink propeller have been studied 
by Nakatake (1967), Nowacki-Sharma (1971), 
Adachi et al. (1978) and Miyata et al. (1980- 
1981) and it became clear that the free surface 
effect on the propulsive performance of a ship 
is not small in the case of the high speed 
ship or in the ballast load condition of the 
moderate speed ship. Especially SR-138 (1975) 
reported that the wave pattern resistance of 
the self-propelled ship increases by more than 
50% compared with that of the towed ship in 
the ballast load condition. Tanaka et al. (197 
5) made a study of the wavemaking phenomena 
of the propeller by calculations and experi- 
ments and showed that the sink propeller can 
explain the wavemaking phenomena of the pro- 
peller on the whole. 

In spite of much efforts described above, 
a clear theoretical explanation seems to be 
lacking as to the mechanism of the free surface 
effect on the propulsive performance. We intend 
to clarify the mechanism of the hull-propeller 
interaction under the free surface effect by 
experiments and theoretical calculations in 
which we use the generalized sink propeller 
model and the mathematical hull form. 

Nowacki and Sharma treated this problem in 
1971. According to their results, the thrust 
deduction fraction changes violently with 
change of Froude number. In order to reexamine 
those results, we adopt the similar model to 
the mathematical hull which they used. The 
model propeller is different, but the ratio 
of the diameter to the draft is same. 

Experiments performed are the hull resist- 
ance test, the propeller open test, the self- 
propulsion test, the measurements of nominal 
wake distribution, the wake analysis and the 
wave analysis. The wave analyses are performed 
in both cases of towed and self-propelled con- 

t Kyushu University, Hakozaki 6-10-1, Higashiku, Fukuoka 812 
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ditions. 
Then we try to elucidate the free surface 

effect by the theoretical calculations de- 
veloped so far and show that experimental 
results are qualitatively explained by theo- 
retical ones. 

2. EXPERIMENT 

Experiments were performed in the towing 
tank (LengthxWidthxDepth=118mx2.67mx3~5m) of 
Kyushu University for three years from 1981 to 
1983. They are the hull resistance test, the 
propeller open test, the self-propulsion test, 
measurement of the nominal wake distribution in 
the propeller plane, the wake analysis in 
the towed condition and the wave analysis 
in the towed and self-propelled conditions. 
In addition, the hull resistance and the pro- 
peller open test, the self-propulsion test 
and the wave analysis were performed for the 
same models at the Ship Research Institute 
(S.R.I), Ministry of Transport, Japan, in 
order to get the more reliable results. 

2.1 Model Ship Hull and Model Propeller 

In order to reexamine the results which 
Nowacki-Sharma (1971) obtained for the mathe- 
matical model ship (length L=4.5m), we also 
adopt the geometrically similar hull N-S.1 (L= 
2.55m). The hull form is expressed by the para- 
bolic equation and symmetrical with respect to 
midship. Table 1 shows the principal particu- 
lars of N-S.1 and Fig. 1 shows the body plan. 

Table 1 Principal particulars of model 
hull N-S.1 

LENGTH   L   2.55 m 
BREADTH  B   0.255 m 
DRAFT     <3   0.1697 m 
WETTED SURFACE AREA  S   1.12267 m2 

VOLUME OF DISPLACEMENT   0.070662 m5 
BLOCK COEFFICIENT  Cb    0.64 0 

HEIGHT OF SHAFT CENTER LINE   0.0850 m 
DISTANCE BETWEEN CENTER OF 

PROPELLER AND A.P.   0.0255 m 

Sharma's experiments. 

2.2 Hull Resistance Test 

The piano wire of 1 mm^ is wound round the 
hull at 9.5 S.S. as the turbulence stimulator. 
The resistance tests of the model ship hull N- 
S.1 are carried out in the range of Froude 
number Fn from 0.1 to 0.35. The form factor K 
is obtained as 0.026 by using Prohaska's 
method (1960) and ITTC 1957 friction line 
following Nowacki-Sharma who got 0.025. Fig. 2 
shows the total resistance coefficient C* , 
the frictional resistance coefficient C^ and 
the viscous resistance coefficient Cv which 
are divided by ?SV2/2, where f is density 
of water, S the wetted surface area and V 

D.LW.L 
I 6 WL 

I 4 WL w 
I 2 WL i 

I0 WL \ u 9 

/ 

8 WL 
\\ 

w I \ 

6 WL 

\\3   \ 

\7 
^ \ 

4   WL 

\^ 

^> \\ \N \\ 

2 WL 

** 
^ ̂  

BASE LINE 

^< 
:^ 4. 

12 
BL 

I0        8         6         A          2         <t 
BL       BL      BL       BL       BL       * 

Fig. 1 Body plan of N-S.1 

In case of the wake analysis, we use the 
smaller model hull N-S.2 (L=1.0m). 

The model propeller used is not similar, 
but the ratio of the propeller diameter to the 
draft of the hull is same as Nowacki-Sharma's. 
We name the substitutive propeller MP-1 whose 
principal particulars are shown in Table 2. The 

Table 2 Principal particulars of model 
propeller MP-1 

DIAMETER  D   0.11314 m 
PITCH RATIO   1.0068 
EXPANDED AREA RATIO   0.6935 
BOSS RATIO  0.1848 
BLADE THICKNESS RATIO  0.053 
ANGLE AF RAKE  9° 58' 
NUMBER OF BLADES   5 

center of the propeller is positioned at 0.01L 
aft from A.P. and 0.5d under the still water 
surface. This arrangement is same as Nowacki- 
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is speed of the model ship. Humps and hollows 
appear clearly on C* curve as experienced 
by mathematical hull forms. In Fig. 3, we show 
a comparison between the obtained wave resist- 
ance coefficient Cu, and Nowacki-Sharma's one. 

Fig. 3 Comparison of wave resistance 

The agreement is good on the whole, but some 
difference is seen in the high Fn (> 0.31). 
The reason for it is not clear. Our experi- 
mental results agree well with those obtained 
at Ship Research Institute whithin experimental 
error. 

2.3 Propeller Open Test 

The open test of the propeller MP-1 are 
performed at the fixed rate of revolution n=14 
rps at the two different immersions: one is 
deep immersion (I=D, D:diameter) which seems 
to have no free surface effect on the propeller 
characteristics, and the other is shallow 
immersion (1=0.75D) which corresponds to the 
immersion fitted to the model ship N-S.1. The 
Reynolds number defined by Kempf is 1.573*10* 
and is lower than the critical one (4.5x10^). 
But it dose not seem to have effects on the 
self-propulsion factors. Fig. 4 shows the 
obtained thrust coefficient K-r, torque co- 
efficient Ka and propeller efficiency 17 . In 

0.7 

■7,0-6 
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1 / D - 1.0 

1 / D - 0.75 

1, 
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Fig. 4 Comparison of propeller character- 
istics (n=14rps) 

the case 1=0.75D, KT, Ka and >?p decrease a 
little in the range of J>0.4, where J is 
advance coefficient. Nowacki-Sharma stated the 
propeller characteristics are unchanged at the 
immersion deeper than 0.75D. But it seems to 
be reasonable that these values change a 
little, since the propeller makes wave to some 
extent. 

2.4 Self-Propulsion Test 

At first, we tried to attain the self-pro- 
pelled state by adjusting the rate of revo- 
lutions of the propeller as usual but we found 
that this method was very difficult, because 
the speed range was high, and humps and 
hollows of the resistance curve were out- 
standing. Therefore we adopt the Propeller 
Load Varying Test Method (Adachi 1983), which 
measures the thrust, the torque and the hull 
resistance while the rate of revolutions of 
the propeller is fixed. Though Nowacki-Sharma 
analyzed the self-propulsion test at the ship 
point (scale ratio 80), we do it at the model 
point, because the scale effect of the thrust 
deduction fraction is little as accepted 
commonly. Based on the thrust-identity method 
the analyzed self-propulsion factors, 
i.e. the thrust deduction fraction t, the 
effective wake fraction we, the hull effi- 
ciency 7H, the propeller efficiency \, the 
relative rotative efficiency >?B and the 
propulsive efficiency ep are shown in Fig. 5. 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 
0.20 0.25 0.30 -Fn °-35 

Fig. 5 Change of propulsion factors 

We can see the undulations which are unusual 
in the low speed range. This seems to be 
caused by the wave-making and separation at 
the stern. Comparisons of the effective wake 
fraction we and the thrust deduction- fraction 
t are shown in Fig. 6 and Fig. 7, respect- 
ively. We decreases rapidly undulating 
considerably with increase of Fn, and this 
tendency is same among results obtained by 
Nowacki-Sharma, Ship Research Ins. and Kyushu 
Univ., though there are some discrepancies 
among those values. As to t, the undulation is 
not so clear but rapid decrease is same as we. 
In Fig. 7, we plot the values obtained by 
Lammeren's experimental equation, 
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Fig. 7 Comparison of thrust deduction fractions 

t = W*/|. ? + O.Ol 
This equation seems to express the appro- 
ximate relation between we and t. Nowacki- 
Sharma's results change violently in the range 
Fn<0.31 and they seemed to be confident of 
their results. We would like to, however, 
conclude from the results of Ship Research 
Ins. and Kyushu Univ. that the thrust de- 
duction fraction does not change so violently 
as their results. The differences of values of 
we and t obtained at three laboratories are, 
we guess, due to experimental difficulties 
such as differences of facilities or instru- 
ments, though there exist some scale effects 
on w- and t. 

2.5 Measurement of Wake Distribution in the 
Propeller Plane 

We know that the effectiv 
undulates considerably. Then i 
the behavior of the above 
measure the nominal wake dist 
propeller plane by using the 
velocimeter of 3 mmt. Fig. 8 
division in the propeller pi 
meter is traversed at each con 
the wake data on each depth is 
run. Two examples of  wake 

e wake fraction 
n order to check 

phenomena, we 
ribution in the 

propller type 
shows the mesh 
ane. The veloci- 
stant depth and 
recorded at one 
distribution are 
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Fig. 8 Mesh division of propeller plane 

Fig. 9a Measured wake distributions 
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Fn=0.30 

Fig. 9b Measured wake distributions 

shown in the form of wake fraction w in Fig. 
9a (Fn=0.27) and Fig. 9b (Fn=0.30).The distri- 
bution in the case Fn=0.27 is a usually 
expected one which has a peak around the 
center line, while the one of Fig. 9b shows a 
different type which has a wide high wake zone 
near the free surface. This difference of two 
types seems to depend on the difference of 
starting points of stern waves with change of 
Fn (DOI 1982). By data processing on a micro- 
computer, the wake contour curves are drawn in 
Fig. 10a (Fn=0.27) and Fig. 10b (Fn=0.30). The 
difference of two types appears as the dif- 
ference of extension of wake contours in the 
upper part of the propeller plane. And the 
type of larger extension (Fn=0.30) gives 
larger nominal wake fraction w„. The compari- 
son between we and wft is shown in Fig. 11. 
It is interesting to note that these two 
curves are quite similar, though the value of 
wn is fairly larger than we . Nowacki-Sharma 
obtained the nominal wake fraction by using 
wheel type velocimeter. Their values seem to 
be small even if the scale effect on the wake 
is taken into consideration. 

Fig. 10a Wake contours 

PORT FN = 0.300   WN = 0.183 STRR. 

Fig. 10b Wake contours 
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Fig. 11 Comparison of wake fractions 
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2.6 Wake Analysis 

At the transverse section half ship 
length aft from A.P., we measure the wake 
distribution at each depth by means of the 
same propeller type velocimeter as before, and 
the wave height above the velocimeter by the 
servo-type waterlevel meter, in order to 
obtain the wake resistance. The model ship 
used is N-S.2 having length of 1.0 m. Fig. 12 
shows the examples of wake distributions w at 
the depths z=18 mm and 25 mm in case Fn=0.225. 

Fig. 12 Examples of measured wake fractions 

ARV(9'/M) 
1.0 1.5 

0.6767x10 

= 0.5097*10 

100 

Fig. 13 Depthwise distributions of wake 
resistance 

We define the y-axis in the transverse 
direction and the z-axis in the depth-wise 
direction of the towing tank, and then the 
wake resistance ARV 

at eacn depth is obtained 
by ,» 

iRv= ?VJ u;(i-ur)<^ 

Denoting the mean waterlevel by H, the wake 
resistance of the hull is given as 

fH 

Rv(wake)=j & RvoU 
-to 

Fig. 13 shows the depthwise distributions ofaRu 
in cases Fn=0.225 and 0.30, and by integrating 

aR-u in the z-direction we get Rv(wake) which is 
compared in Fig. 14 with the viscous resist- 
ance derived from the resistance test and the 
ITTC 1957 friction line. The wake resistance 
is larger than the viscous resistance and 
undulates with increase of Fn. 

IOO 

50 

o R^CWAKE) 

K = 0.026 

\ Rv 

0.20 0.25 0.30 
-Fn 

0.35 

Fig. 14 Comparison between viscous resistance 
and wake resistance 

2.7 Wave Analysis 

By the capacity-type wave probe set on 
the tank wall 1.331m apart from the ship 
center line, we measure the wave profiles in 
both towed and self-propelled conditions. Fig. 
15 shows the examples of measured wave pro- 
files of both conditions in cases Fn=0.25 and 
0.30. In both cases, the wave of self-pro- 
pelled condition has larger amplitude and 
its phase lags a_little. The analyzed ampli- 
tude functions PQ are shown in Fig. 16. Fig. 
17 shows the wave pattern resistance coeffi- 
cient Cur obtained by integrating the curves in 
Fig. 16. In Fig. 17 the results of Ship 
Research Ins. are also plotted for comparison. 
Though the record length of wave profiles is 
not long enough in the high speed range Fn> 
0.31, the wave pattern resistance curve of the 
towed condition expresses well the shape of 
the wave resistance curve, but the values 
themselves are nearly the half of the wave 
resistance. The wave pattern resistance of the 
self-propelled condition has a tendency to 
increase at the speeds where the humps and 
hollows occur. From Fig. 16 we understand that 
the wave pattern resistance increases in case 
Fn=0.25 and remains unchanged in case Fn=0.30. 
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Fig. 15 Comparison of wave profiles 
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3. CALCULATION 

3.1 Basic Equation 

When a ship with only a propeller is 
being advanced straight on still water with a 
constant velocity V, the propulsive perform- 
ance of the ship is same as that of the ship 
fixed in the free stream of speed V. We define 
a rectangular coordinate system O-xyz fixed at 
the midship, with the z-axis vertically 
upwards, the xy-plane on the undisturbed water 
surface and the x-axis in the direction of the 
free stream (vide Fig.18). The one side of the 
hull form N-S.1 is expressed as 

*fr,D-iii-(*f]Mi (1) 

where -d*z<0, -Hx<l, l=L/2. 
And we designate the diameter, the radius, the 
effective pitch of the given propeller MP-1 
by D, r0, 2ta, respectively and assume that 
the center of the propeller is located at the 

m 



I 

Fig. 18 Coordinate system 

point (xo,0,zo) and the propeller disk is in 
the plane x=x0. 

The thin ship hull is represented by the 
center plane  source  distribution of the 
density V-m(x,z). Then the disturbed velocity 
potential <PH due to the hull becomes 

,1        ,o 

4>, = £l<*' m(x, z') 

•G(x, y.,2", X, 0,2'V2', 
where G(x,y,z;x',y',z') is the Green function 
of the source under the free surface and is 
expressed as 

QU4.2 ;x', «*,*') (3) 

UH: U
Ho +  ^HL+  WHF 

Up —  £ ^     —  Up0 +  UpL + U-pF 

(5) 

(6) 

The source distribution m(x,z) of the hull is 
approximated by Michel 1's distribution. De- 
notig the x-directional viscous wake fraction 
by wv(y,z) and the angular velocity of the 
propeller byii(=2rtn), the boundary condition 
on the propeller plane becomes approximately 

(HB
+UPL +<rOj,2)/2 

= .Qa-V{|-urv(v)} 

Next, we consider the hull resistance RH 
and the thrust T and the torque Q of the 
propeller. RH is divided into the pressure 
resistance RP and the viscous resistance Rv 
which is calculated by using the ITTC 1957 
line and the form factor. By applying the 
Lagally's theorem, RP is obtained by 

A      .o 

4 U 
•(uHf+aP0+uPL) dLz        (8) 

^X-x')%C^^')2t(2-2'f 

J (x-x')2+l<j-V)x+C2 + a')a 

del J . fed-fe. 

and g is acceleration of gravity and k0=g/V
2 . 

Then the propeller is represented by the 
generalized sink propeller model (Yamazaki 
1968) when the pitch of the propeller is very 
small. And the disturbed velocity potential <pp 
due to the propeller becomes 

db = _J_((<r(^V) £(*,»,*; x.y,2')<M (4) 
4-Tl 

where <r(y,z) is 
distribution over 
fective area is A 
effective radius. 

Next we divide 
three components, 
component, the loc 
free wave component 
the suffixes 0, L, 
x-directional velo 
pressed as 

the density of the sink 
the disk plane whose ef- 

nr<?). where re is an 

the disturbed velocity into 
that is, the double body 

al wave component and the 
which are distinguished by 
F, respectively. Then the 

cities uH and up are ex- 

where f is density of the 
is the wave resistance of 
expresses the interactive 
without free surface effe 
the interactive pressure 
the hull and the local w 
propeller. Therefore, ne 
of m(x,z) and Rv due to 
propeller, the increment 
ance is expressed only 
other hand, the propeller 

T = pnkl7<r(^HA     (9) 
j)^ > 

where 2nh is the pitch of the propeller free 
vortex which is determined later so as to 
agree with the thrust coefficient in the open 
water condition. Moreover, by introducing the 
correction term aKa. which expresses the torque 
increment due to viscosity and so on, the 
torque Q is approximated as 

fluid. In Eq.(8) RHW 
the hull only and RH, 
pressure resistance 

ct and RH2 expresses 
resistance between 

ave component of the 
glecting the changes 
the action of the 
of the hull resist- 

as RH\
+
RH2 • 0n tne 

thrust T is given as 

Q= 1-T+ fn2DfAk6 (10) 

The condition of the self-propelled state of 
the ship becomes 

T Rv. (ii: 

Here, in order to simplify the calculation 
and to make easy understanding of the mecha- 
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nism of the hull-propeller interactions, the where 
sink distribution is replaced by the point 
sink of strength V-MP located at (x0 ,0,zo ). _ 
Then, from Eq. (4) <j> becomes F0 - 

2^oA 
71 

V2 

exp(-2 sec 6/F2) secede, 

4>p =-~np-Cr{x,<i,l)Xo,o,20)_ (12) 

We use the volume mean value wv over the 
propeller disk instead of w^ty.z) and the mean 
value ?(=VMP/A) instead of<r(y,z), then Eqs. 
(7)  and (9)  become 

(UH+IAP)X= Xo, }~0, 2-i 
+ q/2 

= ila-T(l-urv) 

T = fAö=nft 

(13) 

(14) 

3.2 Characteristics of a Propeller in Open 
Water 

Let us approximate the given characteris- 
tics (KT,KQ.,7P~J) of a propeller by using the 
generalized sink propeller. Denoting the 
source density in this case by <r<, and the 
propeller thrust by T , these are given from 
Eqs. (13) and (14) as 

W0   = 2(jfla-T)/ 

To = fA?0ai. 
(15) 

Here we determine the value of ft so as that 
the relation KT=T0/p n2 D+ holds. That is, 

*.= kTTvzDy(A<f0n) 
By curve fitting of the value of h for every 
J (=V/nD) value, we obtain the curve of second 
degree h(J). As to the torque, we obtain as 

aKa= K*-*(j)Vpn'Df 

Similarly the curve of aKa is expressed by the 
curve of second degree A KBJJ) . Then, by making 
use of Eq. (15), h(J) and4Ka(J), we can 
obtain the characteristics of the given 
propeller in open water at an arbitrary J 
value. 

3.3 Propeller Operating Near the Free Surface 

Let us consider the characteristics of 
the propeller operating at the depth I (=-z0 ) 
under the free surface. Denoting the value 
in this case by <rF , the thrust by TF, then 5^ 
and TF are given as 

crF = <r0/( I + Fo) , 

Tf = fAffVa^(Jp). 
(16) 

JF = T(i- wF)/(n D), urF =- ¥0^/{zV) 
The torque QF is obtained from TF and Eq. 
(10). From Eq. (16), we understand that the 
thrust decreases under the free surface and 
this is caused by the decrease of sink 
strength which is due to wave wake since Fo>0. 
And when the propeller operates near the free 
surface, we note that the characteristics of 
the propeller depend on not only J value but 
also F value. 

3.4 Self-Propulsive Performance and Wave 
Pattern Resistance" 

In case of the self-propelled state, the 
propeller operates in the wake of the ship hull 
and  affects the flow field around the hull. 
The sink density? of this case is expressed 
from Eq.(13) as 

17) 

T = fA^rnUJs), 
where 

(rB-  2{Oa-T(l-Wn))i 

WH = -w,. ■urH 

WH= —(uH0
+UHL- U ■MF, 

'X=--X..,2=?0 y-c. 

js  =T(l-i^)/(nD)i 

W-e. = WH- F0ö/(2T) 

The torque Q is obtained from T and Eq. (10). 
Since the nominal potential wake fraction wH 
of the hull is usually negative, we see that 
the nominal hull wake increases the thrust and 
the propeller wake decreases the thrust. 

Now the self-propelled state of the ship 
is attained by determining the sink density <r 
so as to coincide the hull resistance RH with 
the thrust T iteratively. By making use of the 
propeller characteristics under the same 
condition, i.e. F value, as the self-propelled 
state, thrust deduction fraction t, effective 
wake fraction we, propeller efficiency n? » 
hull efficiency 7 , propulsive efficiency eP , 
effective horse power EHP and delivered horse 
power DHP are defined by the thrust-identity 
method as 

± = ( R„, + RH2)/T, TA^= / - n PJ/V 
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EHP = Rt-T.     DHP = EHP/eP 

(18) 

Next let us consider about the change of 
wave pattern resistance in both towed and 
self-propelled conditions. When the wave 
elevation % far apart from the ship is ex- 
pressed as 

5 = | f S(e)sLK(A.f>s«.*ö) 

-Yz 

+ CLQ) COS (fc0 I> s<ice))^e 
(19) 

by using the amplitude functions S(e) and C(e)_ 
of the wave, the wave pattern resistance Rw 
corresponding to this wave elevation is given 
as (Maruo 1965) 

fw ~ 

where 

Pa(&)de (20) 

•vz 

P& I») = [ {$ (e)}z+ {dce)}2jcose 

Now, making use of equations from (2) to (6), 
the wave elevation 5Hpfar apart from the 
self-propelled ship becomes 

-Vz 

+ CHP(e)coS(^fsec2e)}sec3eole|   (21) 

where 

$HP(e) = 5H(o) + 5p(s), 

CHP(e) = C„Cei-i- CpCe), 

CH(e) 
w.(x,2) e 

st n 

cos 
(•ü„XSec«)ldx<i2 

The corresponding wave pattern resistance RWHP 
is given from Eqs. (19), (20) and (21) as 

0 

4fsp(e))%{Cf(&))
2Jsec3^e (22) 

where RHvv and Rpw express the wave pattern 
resistance of the hull in the towed condition 
and the one of the propeller itself, respec- 
tively and the second term expresses the 
interaction term between the hull and the 
propeller. The sum of last two terms becomes 
the change of wave pattern resistance in the 
self-propelled condition and can have plus or 
minus value according to the second term. But 
usually it becomes the increase of the wave 
pattern resistance. Under the free surface 
effect, the sink strength, the thrust and the 
torque surely decrease as seen from Eq. (17). 
As to how these decreased values are connected 
with the change of the wave pattern resist- 
ance, we would like to leave for further 
theoretical investigation. Anyhow, we under- 
stand that the increase of wave pattern 
resistance of the self-propelled ship is 
caused by the consumption of a part of engine 
horse power for wavemaking of the propeller 
and is not due to the increase of the hull 
resistance and there exists almost no relation 
between the thrust deduction fraction and the 
change of wave pattern resistance. 

3.5 Calculated Results 

Above-described calculation method is 
applied to the model hull N-S.1 and the model 
propeller MP-1 used in the experiments. When 
the open characteristics of the propeller MP-1 
is known, we approximate the characteristics 
by setting 

A=ir(0.57344r0f , o.=1. 1D/(2TT) . 

Then we determine the values of h and AKa as 

h =0.01507(J=0.1)~0.01827(J=1.0) 

A K,.=0.00896( J=0.1)~ 0.00607( J=1.0) 

so as to agree with the given KT and K^ by 
using the procedure described in 3.2. And h(J) 
and & K& (J) are expressed by the curves of 
second degree of J. Fig. 19 shows the KT, Ka,*?P 
curves of the propeller immersed at 1=0.75D 
and I=D, rotating at the rate of revolutions 
n=14rps. These curves resemble with those in 
Fig. 4 obtained in the experiments. In the 
self-propulsion test, the speed of the model 
ship is kept constant, and therefore we need 
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Fig. 19 Comparison of propeller character- 
istics (n=14rps) 

the characteristics of MP-1 at the speed of 
the model ship. Fig. 20 shows an example of 
the characteristic curves calculated at V=1.4 
m/sec (Fn=0.28). These values, however, are 
found to be little altered in the range 
Fn=0.2-~0.35. In the calculation, we assume w„ 
=0.125. Fig. 21 shows the curves of 

Fig. 20 Comparison of propeller character- 
istics (V=1.4m/sec) 

the total hull resistance coeff 
/?SV2) and the strength of the 
M P (=?A/V) in the self-propel 1 
variation of MP corresponds to 
Fig. 22 we show the self-prop 
analyzed by means  of the 
method based on the characteri 
MP-1 obtained at each constant 
with the experimental results 
find that the tendencies of 

icient Ct (=2R^ 
propeller sink 
ed state. The 
that of Ct. In 
ulsion factors 
thrust-identity 
stic curves of 
speed. Compared 
in Fig. 5, we 
the factors are 

Fig. 22 Change of propulsion factors 
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Fig. 21 Total hull-resistance coef. and 
strength of propeller sink 

Fig. 23 Comparison of effective wake and thrust 
deduction fractions 

similar to each other, though the values 
themselves are a little different. Fig. 23 
shows comparisons between measured and cal- 
culated values of the effective wake fraction 
we and thrust deduction fraction t. There 
appear the similar undulations in both ex- 
perimental and calculated curves of we and t, 
and the speeds at which the humps and hollows 
occur are near to each other. The experimental 
value of t changes drastically in the high 
speed range (Fn>0.31). The reason for is not 
clear to us. 

Since the undulation of w? curve seems to 
be caused by the wake distribution in the 
propeller plane, we calculate the potential 
wake distributions at the speeds of humps and 
hollows and show them in the forms of wake 
contours and the mean wake fraction w„w in 
Fig. 24.  The case  Fn=0.01 represents the 
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Fn = 0.01 

Wnm = 0.145 

Fn = 0.23 

Wnm = 0.193 

Fn = 0.28 

Wnm = 0.155 

Fn = 0.21 

Wnm =0.113 

Fn = 0.25 

Wnm =0.066 

Fn = 0.33 

Wnm= 0.001 

wake contour of the double body flow, and the 
cases Fn=0.21, 0.25, 0.33 do the ones at the 
hollow speeds, and the rests at hump speeds. 
As seen from Fig. 24, the wake contours bend 
outwards in the upper part of the propeller 
plane at the hump speeds, while the ones do 
inwards at the hollow speeds. And these 
tendencies seem to correspond to the exper- 
imental contours in Fig. 10. In Fig. 25, we 
show the wave profiles around the propeller 
position corresponding to the above wake 
distributions. It is interesting that the wave 
elevations at the propeller position cor- 
respond to the values of wnvn. Fig. 26 shows 
the changes of the nominal wake fractions. We 
see that the potential mean wake fraction 
corresponds to the potential wake fraction at 
the propeller center where the point sink 
propeller is located. 
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Fig. 25 Wave profiles around propeller 
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Fig. 24 Potential wake contours 

Fig. 26 Change of potential wake fractions 

Lastly, we calculate the wave profiles by 
Eq. (21) at the constant transverse section 
(y=0.3L) and perform the wave analysis by 
using the wave profiles in both towed and 
self-propelled conditions according to the 
procedures in 3.4. The wave profiles are 
calculated approximately by the 100 point 
sources in the ship center plane. Fig. 27 
shows the wave profiles in the towed and self- 
propelled conditions and the propeller waves 
at Fn=0.280 and 0.320. In both cases, the 
amplitudes of the self-propelled conditions 
increase and the phases of the former lag a 
little. In Fig. 28 we show a comparison of 
amplitude functions of these waves obtained by 
means of Newman-Sharma's wave analysis method 
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Fig. 27 Comparison of wave profiles 
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Fig. 28 Comparison of amplitude functions 

(Newman 1963, Sharma 1963). Fig. 29 shows a 
comparison of wave pattern resistance coeffi- 
cients CM (=2fWPSV2) obtained by the . wave 
analysis and the direct calculation. The wave 
pattern resistance in the towed condition is a 
little larger than the wave resistance calcu- 
lated directly, because the wave pattern 
resistance has some numerical approximations. 
As seen in the experimental results in Fig.17, 
the wave pattern resistance has a tendency to 
increase considerably in the self-propelled 
condition  even at the non-shallow immersion 

Cw 
I 
10 

WAVE ANALYSIS 

SELF-PROPELLED CON. 

TOWED CON. 

DIRECT CALCULATION 

0.20 0.25 0.30 
'— Fn 

0.35 

Fig. 29 Comparison of wave pattern 
resistance coef. 

(1=0.75D). The amplitude functions of Fn=0.28 
give the unchanged wave pattern resistance in 
the self-propelled condition while the ones of 
Fn=0.32 do the increased wave pattern re- 
sistane. We can mention two reasons for the 
change of the wave pattern resistance: One is 
due to the hull-propeller interaction and the 
other is due to the change of hull form under 
water. Since the changes of the sinkage and 
trim are small and the above comparison 
between experiments and calculations shows the 
similar tendency, we dare to say that the 
former reason is the main one. 

As to the free surface effects on the 
hull-propeller interactions, we can summarize 
as follows. As the immersion of the propeller 
becomes small, the thrust T and the torque Q 
decrease due to wavemaking of the propeller. 
Therefore we should increase the rate of 
revolutions n so as to hold the self-propelled 
state. This increases Xl(=2nn) and the horse 
power Pp (=flQ/75) delivered to the propeller. 
Accordingly ep becomes worse with shallow 
immersion of the propeller and this effect 
appears mainly as decreases of fy and %. The 
decrease of >?H is due to decrease of w^,, and 
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the increase of wave pattern resistance does 
not affect the thrust deduction fraction. The 
difference of PD between the shallow and deep 
submergence of the propeller is considered to 
consist of the increase of wave pattern 
resistance and the horse power consumed for 
the decrease of the thrust due to hull-pro- 
peller interactions. Therefore, with increase 
of wave pattern resistance, it is expected 
that ep becomes worse. Another results calcu- 
lated by assuming no propeller waves tell ep 
becomes worse by about 5% at the immersion of 
1=0.75D. 

4. CONCLUSION 

From the experimental and calculated 
results for the model ship hull M-S.1 and the 
propeller MP-1, following conclusions may be 
drawn. 

1) The wake fraction and the thrust deduc 
tion fraction generally undulate under the 
free surface effect. 

2) It is confirmed experimentally that the 
nominal and effective wake fractions have 
close relation even under the free surface 
effect. Their undulations are caused by the 
wavemaking of the hull. 

3) The wave pattern resistance in the se- 
lf-propelled condition has a tendency to 
increase at the hump and hollow speeds, and 
is related little to the thrust deduction 
fraction. 

4) The simple theoretical models of the hull 
and the propeller can predict qualitatively 
the mutual interactions of the hull and the 
propeller under the effect of the free 
surface. 

5) In order to clarify wholly the mechanism 
of the hull-propeller interactions under 
the free surface effect, we should adopt 
the more accurate propeller model. 
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DISCUSSION 

Dipl.-Ing. JÜRG BLAUROCK, 
Hamburg Ship Model Basin (HSVA), 
Hamburg, FR Germany: 

First I want to congratulate the authors 
on their paper. There are two remarks I want 
to make on it: 

1. Fig. 4 gives a difference in KT- and 
KQ-values at J-values higher than 0.4 which is 
explained by you as a consequence of the dif- 
ference in propeller immersion. My impression 
is that this small difference could also be 
caused by uncertainty in measurement. On the 
other hand I would expect as a consequence of 
immersion more difference in KT- and KQ-val- 
ues at low J-values than at higher J-values. 

2. We normally at our institute correct 
the open water test result using the "method 
of equivalent profile" before using it for 
analysing the propulsion test results. In this 
we assume fully turbulent flow in the behind 
ship condition. As different from this we can 
expect laminar flow on a larger extent on the 
propeller blades in open water tests, especial- 
ly when the tests will be carried out at such 
extremely low Reynolds number as in your case. 
Did you apply any corrections like this? I 
think this will not influence the results of 
your investigation in general, but some of the 
analysed data, for example the wake fraction, 
might be different when applying such correc- 
tion procedures. 

Prof. HORST NOWACKI, 
Technical University of Berlin, 
Berlin, Germany, and 
Prof. SOM D. SHARMA, 
Institut für Schiffbau, 
Hamburg, FR Germany: 

The Authors have revisited a classical area 
of ship hydrodynamics, that of hull-propeller 
interaction, in which several fundamental ques- 
tions remain open despite so many efforts for 
more than half a century. In fact, they have 
repeated with much care our set of experiments 
performed in 1971. The independent verification 
of such a test series is very rare, and partic- 
ularly valuable in this case. 

Their experiments were carried out under 
very similar test conditions as ours, but it 
is important to note the few differences that 
did exist: There were, in particular, differen- 
ces with respect to model size, propeller rake, 
test evaluation at model versus ship self-pro- 
pulsion point, and most notably in the fact 
that the model was apparently free to move in 
their tests whereas it was constrained in sink- 
age and trim in ours. This may account for cer- 
tain differences in the results, especially at 
higher Froude numbers. 

Concentrating now on the important results 
for the interaction quantities we note, first, 
that the measured values of effective wake frac- 
tion were found to be in close agreement at 
three independent test sites and are showing a 

significant decrease toward high Froude numbers , 
as well as certain oscillations at lower speeds. 
These types of free-surface effects are well 
understood. 

As for the thrust deduction, its mean trend 
shows the same type and degree of Froude number 
dependence as the effective wake in both sets 
of tests. Regarding the magnitude of the Froude 
number dependent oscillations we do not want to 
overstretch the validity of data derived from 
such sensitive experiments. But we do maintain 
that one should be prepared to expect oscilla- 
tions in the thrust deduction of the same mag- 
nitude as in the effective wake fraction. Other- 
wise the close agreement in the large drop of 
the two quantities at high Froude numbers would 
be difficult to explain. 

Finally, the biggest remaining open question 
pertains to the large discrepancy between meas- 
ured and calculated thrust deduction. The au- 
thors' views on the cause of this would be of 
much interest. Among other possibilities we 
feel that one must improve the accuracy of both 
the propeller model (with respect to its finite 
extent, rake etc.) and of the hull representa- 
tion (with regard to displacement effects neg- 
lected in centerplane source distributions). 

Our compliments again for a very valuable • 
paper! 

Dr. EIICHI BABA, 
Mitsubishi Heavy Industries Ltd., 
Nagasaki, Japan: 

The authors' long term efforts in devel- 
oping theories of ship propulsion have inspired 
those researchers who study the interaction of 
hull, propeller and rudder. In the present pa- 
per, the authors have studied the free-surface 
effect on the hull-propeller interaction and 
compared calculated results with experiments 
in various aspects. The discusser would like 
to ask a question on one point. In Fig. 15 of 
the present text, phase difference is observed 
for measured wave systems with and without an 
operating propeller. On the other hand, in the 
calculation (Fig. 27) such difference is not 
observed. Is this difference between measure- 
ment and calculation suggesting inadequacy of 
physical modeling of flow by use of a sink disc 
representing a working propeller? The present 
discusser measured a wave system of a towed 
ship model when the direction of propeller rota- 
tion is reversed and compared it with the wave 
system for normal direction of propeller rota- 
tion, i.e. for the condition producing thrust. 
As shown in Fig. 30 the direction of phase 
shift of wave system changed toward ship stern. 
In addition to this, a remarkable reduction of 
wave heights is observed. This experiment sug- 
gests a clear interference between ship wave 
system and propeller wave system. The discusser 
suspects that the flow around a working propel- 
ler may affect in shifting the starting point 
of stern wave system of a ship. Thus phase dif- . 
ference between wave systems with and without 
a working propeller has occurred. There might 
be a difference of flow characteristics between 
a sink disc and an actual propeller. The flow 
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field corresponding to propeller slipstream is 
apparently different for both cases. The au- 
thors' comment would be appreciated on this 
matter. 

Ship Model Lpp = 4.2
m, Fn = 0.27 

Waves are measured at y - 1.5m 

from model centerline 
Propeller is rotating normally (12rPs) 

lcm 

25 m 

without propeller 

with propeller Propeller is rotating reversely (-12rPs) 

V^^Z-V^V^^^^-: 
10 m 15 m 20 m 25 m 

Fig. 30 Comparison of wave systems with and without a working propeller 

Prof. MICHAEL SCHMIECHEN, 
Berlin Model Basin (VWS), 
Berlin, Germany: 

The authors deserve our thanks for the 
wealth of data they have produced. It will cer- 
tainly take much time before we fully under- 
stand the implications. My remarks can there- 
fore only be of a more qualitative nature and 
relate to the observation that the values of 
the wake and thrust deduction fractions dras- 
tically drop in the speed range above F =0.3; 
Figs. 5, 7, 23. 

Looking at the wave profiles at the loca- 
tion of the propeller provided by the authors, 
Fig. 25, the reason for the phenomenon in 
question is immediately clear. Obviously the 
deceleration of the flow around the afterbody 
is suppressed by the waves, i.e. the potential 
or rather the displacement wake is decreasing 
with increasing speed. This argument is con- 
firmed by the computations of the authors; 
Fig. 26. 

From fundamental theory of hull-propeller 
interaction we know now that the thrust deduc- 
tion fraction is directly related to the rela- 
tive potential wake fraction' or the displace- 
ment influence ratio, as I prefer to call it in 
my paper to be presented right after this 
discussion. 

Although the data having been derived by 
the authors in the traditional way from hull 
resistance, propeller open water, and propulsion 
tests do not exactly correspond to my defini- 
tions I have used them to determine values of 

the displacement influence ratio. While up to 
the speed Fn = 0.3 the values slowly decrease 
without any detectable undulation, they ex- 
hibit a dramatic drop in the speed range from 
F =0.31 to 0.34 as expected. 
n  What disturbs me in the paper is that the 

authors, although computing decreasing values 
of the potential wake fraction, Fig. 26, do not 
come up with corresponding changes in the values 
of the thrust deduction fraction, Fig. 23, for 
increasing values of the speed. Maybe they can 
comment on this apparent inconsistency in their 
computed results. 

AUTHORS' REPLY 

To Mr. Blaurock: 
Thank you very much for your discussion 

from the experimental side. The first remark is 
related to Fig. 4. We admit there are some ex- 
perimental scatters in the obtained values. In 
case of more shallow immersion, say I/D = 0.5, 
there exists clear free-surface effect on Kj 
and Kn values, as you may admit. We think the 
immersion I/D = 0.75 is, maybe, near to the 
border region of the existence of the free-sur- 
face effect. Then one may treat such a small 
difference as an experimental scatter, if one 
does not know the free surface effect. Since 
the J (=V/nD) value decreases, the speed of pro- 
peller and the wave formation decreases. Then 
we think that the free surface effect appears 
reasonably in the intermediate J value range. 
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The next one is related to the analysis method 
of the propulsion factors. We did not make any 
correction for the open water propeller charac- 
teristics concerning the low Reynolds number. 
If we use such a corrected diagram, we will ob- 
tain a little different values of wake frac- 
tions. But we think that the general trends of 
the propulsion factors will not be affected. 

To Profs. Nowacki and Sharma: 
Thank you very much for your detailed and 

encouraging discussion. The discussers mentioned 
four differences of the test conditions between 
present work and theirs. Among them, we also 
think that the constraint of the model is the 
main reason for the differences of wave re- 
sistance coefficient and others. We agree with 
discussers' opinion that the thrust deduction 
fraction undulates fairly in the high speed 
range in case of the mathematical hull form. 
Since the conventional hull form is well de- 
signed so as not to make large waves, the un- 
dulation will become generally small. As to 
the analytical results we would like to say, 
at first, that we intended to explain the quali- 
tative behaviors of the hull-propeller inter- 
action under the effect of free surface. The 
smallness of the mean value of the thrust de- 
duction fraction will be much improved by using 
the double-body sources instead of Michel1's 
sources as pointed out by the discussers. We 
add the fact that Michel 1's sources correspond 
to the fairly fine hull form. We wish to treat 
the hull-propeller-rudder interaction problem 
including the free surface effects by using a 
more realistic propeller model. 

To Dr. Baba: 
Thank you very much for the discussion on 

the propeller model and for showing us very 
interesting wave profiles. In our theory, the 
wave due to the propeller rotating in the normal 
direction can be expressed approximately as the 
wave due to the equivalent sink, and is not 
concerned with the slip stream, i.e., the non- 
potential flow behind it. The thrust and torque 
of the propeller have no direct relation with 
the action of the sink. Further we suppose that 
the wave due to the propeller, i.e., the pro- 
peller wave, can be superposed linearly with 
the hull wave. Then the wave number k0 due to 
the propeller agrees with that due to the hull. 

The calculated wave profiles in Fig. 27 
show phase difference between the hull wave 
and the propeller wave though they are small. 
Fig. 31 indicates the three kinds of wave pro- 
files obtained from Fig. 30. One is due to the 
hull only and the others are due to the propel- 
lers in the two conditions. Figs. 27 and 31 
show that the phase difference between the hull 
wave and the normally rotating propeller wave 
is small theoretically and experimentally, and 
the phase difference between the waves due to 
the propellers in the two working conditions 
is about 180° experimentally. Thus, though the 
calculated results in the phase contain some 
errors, we may say roughly that the propeller 
rotating in the normal direction makes the 
wave due to the sink, and the propeller rotating 
in the reverse direction makes the wave due to 
the source in a sense. That is, we can not say 
that the sink disk propeller is an inadequate 
model in treating the hull-propeller interac- 
tion approximately. Furthermore, the sink disk 
propeller is, of course, the most simplified 
model obtained by approximating the exact theo- 
ry as derived in Reference of Yamazaki (1968). 
We wish to calculate numerically by using a 
more realistic propeller model in the future. 

To Prof. Schmiechen: 
Thank you very much for the discussion 

on the behaviors of the wake and the thrust 
deduction fractions. We expected that the 
thrust deduction fraction would change clear- 
ly according to the change of the wake frac- 
tion in the range Fn > 0.31. Though we do not 
know the true reasons, we can say the follow- 
ing: 

1. The calculated thrust deduction frac- 
tion is generally insensitive to the change 
of the wake fraction as seen from Nowacki- 
Sharma's calculated results (1971). 

2. In Fig. 23, the calculated wake frac- 
tion we shows a little different behavior from 
the experimental wake fraction in the range 
F„ > 0.31. Though we assumed wv = 0.125 for 
all Froude numbers, this value is expected to 
decrease in the high speed range, say Fn>0.3, 
since the thickness of the boundary layer de- 
creases. Taking such decrease into account, 
we may improve the inconsistency to some 
extent. 

Fig. 31 Comparison of hull wave and two kinds of propeller wave profiles 

479 



ON WAKE AND THRUST DEDUCTION FROM PROPULSION TESTS ALONE 

A RATIONAL THEORY OF SHIP HULL-PROPELLER INTERACTION 

MICHAEL SCHMIECHEN 

ABSTRACT 

In view of the inconsistencies and the de- 
ficiencies of the traditional evaluation of the 
propulsive performance of ships a method of 
evaluation based on propulsion tests, i. e. 
service conditions alone, applicable at model 
and full scale in the same way has been pro- 
posed. In accordance with modern methodology 
the conceptual solution of the problem is for- 
mulated as an axiomatic theory together with 
the corresponding interpretation and scaling 
theories. The formal presentation of the whole 
system of theories provides a sound and common 
basis not only for the discussion and evalua- 
tion of former and current research, but for 
future experimental and theoretical work as 

well. 
The basic concepts are the traditional 

ones with the addition of the mass, momentum, 
and energy flows to the propeller. In total 
there are fifteen basic concepts, of which only 
ten may be measured, at least in principle. The 
remaining five are coherently defined in terms 
of five axioms, i. e. a mathematical model im- 
plying the concept of an equivalent propeller 
outside the displacement influence of the ship. 
In terms of derived concepts, factors of merit 
independent of the displacement wake in partic- 
ular, some important implications of the axioms 
may be derived. 

The theoretical concepts of the axiomatic 
theory may be interpreted in terms of the meas- 
ured or computed inflow to the propeller. With 
the adoption of hypotheses on the invariance of 
the resistance and the propeller advance speed 
in overload tests at constant speed an inter- 
pretation in terms of results of thrust and 
power measurements in propulsion tests has been 
derived based on the concept of the equivalent 
state of vanishing thrust. In view of full 
scale tests, where no towing forces can be ap- 
plied under service conditions, and in view of 
the signal-to-noise ratio a technique using 
quasisteady oscillations around the conditions 
to be investigated is being developed. 

Further some results of hydrodynamic the- 
ory on hull-propeller interaction are analysed 
in terms of the axiomatic theory. And finally 

Prof.Dr.-Ing. Michael Schmiechen 
Versuchsanstalt fuer Wasserbau und Schiffbau 

the impact of the new theory on the design of 
propellers for optimum propulsion of ships is 
discussed. For given resistance and given cir- 
cumferentially uniform wake a procedure is out- 
lined for the design of optimal wake vorticity 
adapted ducted propellers, taking hull-propel- 
ler-duct interaction properly into account. 

NOMENCLATURE 

Note: The symbols introduced in the sec- 
tions indicated are as close as possible to the 
ITTC Standard Symbols (1976), but may have a 
slightly different meaning, which may not be 
concluded from the names stated, but only from 
the formal context and the operational inter- 
pretation developed in the paper. 

Symbol Section Name 

Quantit ies 

A 2.2 propeller disc area 
CX 2.3 loading factors 
D 3.2 propeller diameter 

e 7.5 volume specific energy 
eX it.2 errors 
E 2.2 energy flux 

f 3.4 differential force function 

f 7.5 mass specific external fore 
field 

F 2.2 towing force 
FS 5.5 sink force 

Fn 6.2 Froude number 

g 3.1 mass specific gravity 

g 3.5 differential power function 
JX 3.2 advance ratios 
Jij 4.3 matrix of powers of advance 

ratios 
kX 3.2 load functions 
Kx 3.2 load ratios 
m 4.2 number of measurements, 

sample size 

m. 5.2 mass, longitudinal inertia 

M 2.2 momentum flux 

n 4.2 order of approximation 

N 3.2 frequency of propeller 
revolutions 

Opq 4.3 orthogonalized matrix 

Mueller-Breslau-Strasse (Schleuseninsel) 

D-1000 Berlin 2, FR Germany 
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p 3.1 pressures 

PO 2.2 surface pressure level 

Pp 2.2 propeller pressure 

Px 2.2 powers 

Pp 2.3 propeller power 

q 7.5 flow rate, stream function 

Q 2.2 volume flux 

Qs 5.5 volume flux of suction 
QX 3.2 torques 

r T.5 radial coordinate 

R 2.2 ship resistance 

s 7.5 streamline coordinate 
SX 4.2 standard deviation's 

S 4.2 standard deviation function 

t 2.3 thrust deduction fraction 

T 2.2 propeller thrust 

Tpq 4.3 triangular transformation 

matrix 
vi 3.1 velocity vector 

V 2.2 ship speed 

vH 3.2 hull speed 

Vp 2.2 propeller speed 

Vx 2.3 velocities 

wx 2.3 wake fractions 

w 2.2 ship weight 

X 7.5 axial coordinate 

z 3.1 vertical coordinate 

^XY 2.3 efficiencies, factors of 
merit 

9 3.1 time, period 

P 2.2 water density 
TX 2.3 velocity increase ratios 

X 2.3 displacement influence ratio 

Indices 

E 2.3 energy 

E 7.5 inlet 

F 3.2 force 

H 3.2 hull 

J 2.3 jet 
J 7.5 outlet 

K 4.5 load 

L 3.3 loss 

M 2.3 momentum 

M 6.2 model 

0 2.'2 surface 

0 2.4 outlet 

PX 3.2 powers 

QX 3.2 torques 

R 2.3 resistance 

S 3-2 service 

S 5.5 suction 

S 6.2 ship 

T 2.3 thrust 

T 3.3 towing 

W 2.3 weight 

X.Y.Z 2.3 variable 

i.j.k operational 

l,m,n operational 

p.q operational 

Operators 

(j) 3.2 differentiation 

8i 7.5 partial differentiation: 3/3^ 

£() 2.3 element of set 
— 3.2 averages 
0 6.2 scale factors 

1 .     INTRODUCTION 

1.1 Problem 

The traditional evaluation of the propul- 
sive performance of ship models is based on the 
results of towing tests with the hulls and of 
open-water tests with the propellers. If the 
flows around the hulls in the resistance and 
propulsion tests are "very different" and the 
inflow to the propellers in the propulsion 
tests is "far from uniform" the traditional 
procedure is not particularly satisfactory. 
Furthermore, .hull towing and propeller open- 
water tests cannot be performed routinely with 
full scale ships, although a performance analy- 
sis, preferably on-line under service condi- 
tions, would be of extreme value for ship oper- 
ation and research. 

In view of these inconsistencies and defi- 
ciencies of the traditional evaluation of the 
propulsion factors of ships a method of evalu- 
ation based on propulsion tests, i. e. service 
conditions alone, applicable at model and full 
scale in the same way has been proposed 
(Schmiechen, Schiffstechnik and STG, 1980). 
This work is closely related to earlier studies 
on performance criteria for jet propellers and 
propulsors in general (Schmiechen, 1968, 1970). 

In accordance with modern methodology the 
conceptual solution has been formulated as an 
abstract axiomatic theory together with a cor- 
responding interpretation theory. While the 
axiomatic theory proved to serve its purpose as 
it was first proposed, further studies have 
shown that the solution of the interpretation 
problem could be greatly improved to meet all 
theoretical and practical requirements (Schmie- 
chen, 1984). 

Another problem having been studied in the 
meantime is that of propeller design in the 
context of the present theory (Schmiechen, 
1983). The rather speculative outline suffered 
from the drawback that some fundamental work 

on ideal propellers (Schmiechen, 1978, Sparen- 
berg, 1979) and the whole conceptual background 
had not been published in English so far, ex- 
cept for oral presentations of the latter to 
colleagues at many institutes all over the 
world (Schmiechen, 1980/1984). 

It is consequently felt that a complete 
survey of the state of the current research, 
which is a systematic continuation of Horn's 
school on hull-propeller interaction (Weinblum, 
1972), is more than due. 

1.2 Model 

The theoretical overall model underlying 
the following exposition is the dual structure 
of rational theories as already mentioned and 
shown in Figure 1. 

Accordingly the distinction is being made 
between the abstract axiomatic theory of hull 
propeller interactions and the theory of its 
interpretation, i. e. of the correspondence 
between measured and theoretical quantities. As 
the measurements are mostly performed on model 
scale an additional theory of scaling, i. e. of 
model-ship correlation is necessary. 
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The axiomatic theory is a formal language, 
or a representation space, adequate for the 
statement of the problems at hand and the de- 
sign of possible solutions. This language will, 
after appropriate extensions, in particular be 
used for the formulation of the theories of 
interpretation and scaling. The theoretical 
overall model itself is evidently the adequate 
formal structure for the whole exposition. 

factors of merit 

 4  
axiomatic 
theory 

theoretical 
quantities 

scaling 
hypotheses 

theoretical 
quantities" 

interpretation 
theory 

measurement 
hypotheses 

measured 
quantities 

Figure 1: Theoretical overall model: 
structure of rational theories 

The theoretical overall model, i. e. the 
theory of theories is well understood today 
(Leinfellner, 1980). After the development of 
many axiomatic theories from Euclid's Elements 
on, it is now possible to construct such theo- 
ries ad hoc according to the pattern, which is 
considered the ideal of mature theories. A well 
known more recent example is the axiomatic the- 
ory of probability together with its statisti- 
cal interpretation. 

1.3 Goal 

The goal of this paper is a coherent and 
self-contained exposition of the whole hier- 
archy of theories for ready reference in their 
further development and application. References 
to the basic philosophy and intermediate steps 
and discussions in the development so far shall 
be limited to the bare minimum in order not to 
obscure the essential issues, although the 
whole work as it stands would have been com- 
pletely impossible without permanent reference 
to the theory of ethics (Lorenzen, Schwemmer, 
1975), rational resolution of conflicts in par- 
ticular, to the theory of knowledge (e.g. Lein- 
fellner, 1980) and to hydromechanic theory and 
experience, and without continual discussions 
with many colleagues. 

The goal of the present paper is to devel- 
op the conceptual framework by way of a para- 
digmatic, maybe somewhat speculative recon- 
struction of the very fundamentals of the theo- 
ry of propulsion. The goal is not to discuss 
solutions of the many problems identified, may- 
be by more or less well established procedures 
directly or after appropriate adaptation. 

The purpose of the exercise is to estab- 
lish a solid foundation for common reference in 
qualitative arguments as well as quantitative 
evaluations, and to put some unresolved prob- 
lems into a new perspective, maybe showing 
that some of them are no problems any longer. 

1.1 Plan 

In the present scope this goal can only be 
reached if the presentation is rigorously 
structured and formalized as far as possible. 
The basis for this will be the theoretical 
overall model and axiomatic theories where 
applicable. 

Consequently the development will proceed 
in a top-down approach from the axiomatic theo- 
ry of hull-propeller interaction to the axio- 
matic theory of its interpretation and the 
statistical theory of measurements, and further 
to the theories of testing and scaling. 

In addition the relation of the present 
theory to hydromechanic theories of hull-pro- 
peller interaction and its impact on propeller 
design will be elaborated on. The paper shall 
conclude with a review of the results obtained 
so far and an outlook on problem areas iden- 
tified. 

In terms of the underlying philosophy the 
goal of the paper is to put forward basic pro- 
positions, which are generally acceptable as 
basis for the rational resolution of "con- 
flicts" between shipowners, shipbuilders, ship- 
designers, and ship-researchers. As the tradi- 
tional procedure the procedure proposed is a 
conventional one. Many discussions have ex- 
pressly been conducted to reach this accept- 
ance of the axioms. 

2.  THEORY OF INTERACTIONS 

2.1 Introduction 

According to the plan the problem of this 
chapter is the development of an abstract for- 
mal language for the description of ship hull- 

calculus of 

basic 

rules of 

derived 

concepts  propositions 

primitives 
V 

definition 

~JT. 

axioms 
V 

inference 

y derivatives       theorems 

Figure 2:  Structur of axiomatic theories: 
grammar of formal languages 
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propeller interactions, time averaged, without 
reference to its interpretation. 

The structure or grammar of such languages 
is shown in Figure 2. 

Any such language consists of two separate 
calculi: the calculus of concepts and the cal- 
culus of propositions. The structure itself is 
a calculus of concepts defining the terms 
"primitives", "axioms", etc. at least in the 
present context. 

The goal is consequently to develop these 
two calculi as far as necessary. In order to 
take advantage of past experience and in view 
of a wide acceptance and application the con- 
ceptual framework shall be as close as possible 
to the traditional one. 

According to the structure indicated the 
development will proceed from the primitives to 
the derived concepts and from the axioms to the 
theorems. The rules of definition and inference 
will not be touched upon, as the necessary 
rules for the transformation of equations are 

well known. 

2.2 Basic Concepts 

As basic concepts at first the usual ones 
are introduced, as already mentioned without 
reference to any operational interpretation 
despite the use of the traditional names: 

p :  the water density, 
p0 :  the free surface pressure, 
A :  the propeller (disc) area, 
W :  the ship weight, 
V  :  the ship speed, 
T :  the propeller thrust, 
Pp :  the propeller power, 
F  :  the towing force, 
Vp :  the propeller (advance) speed, 
R :  the ship (not hull!) resistance. 

Of these ten quantities the first eight are 
considered in principle measurable more or less 
directly. 

In addition to these concepts convention- 
ally used in ship performance analysis the 
following concepts related to propeller, i. e. 
pump performance are introduced: 

Q  :  the volume flux, 
E :  the energy flux, and 
M :  the momentum flux into the propeller 

at 
pp :  the propeller pressure level, and 
Pj :  the jet power. 

Of these additional five quantities the first 
two are considered in principle measurable. 

^YX = nXY 
-1 

2.3 Derived Concepts 

As derived concepts 
Pw = WV 
PR = (R-F)V 
PT = TVP 

the reactive weight power, 
the net resistance power, 
the thrust power 

may be' introduced and subsequently the power 
ratios, so-called efficiencies, factors of me- 

nXY = Px/Py  = x.Y.Z e (W,R,T,J,P), 
for which the rules 

nXY nYZ " nXZ 
and 

hold. 
The choice of the power ratios to be used 

depends on the purpose, i. e. the aspects to be 
evaluated. Of more general interest are the 
factors of merit 

nvjR = PW/PR  : of the hull, 
nRJ = PR/Pj  : of the hull-propeller 

configuration, and 
Tljp = Pj/Pp  : of the propeller, 

while conventionally the efficiencies 
nRT E PR/PX  

: °f tne hull and 
nTP = PT/PP  : of the propeller 

are still preferred. 
Further the derived concepts 
VM = M/PQ     : the momentum velocity, 
Vg = (2E/PQ)l/2 : the energy velocity, 
Vj = (2(E+Pj)/PQ)1/2 : the jet velocity 

may be introduced and subsequently the velocity 
ratios or wake fractions 

wx = 1 - VX/V  : X E (P.M.E.J) 
and the ratios of increase 

TH = T/M      : of the momentum 
velocity, 

ig = VJ/VE; " 1  : of tne ener8y velocity 
and the corresponding loading factors or coef- 

ficients 
CX = TX(TX + 2) : X E (M.E). 

For short the notation 
w  = wp       : for the effective wake 

fraction, 
T  = TM       : for the momentum velo- 

city increase ratio, 
cP = Pj/E     : for the energy loading 

factor 
will be used. 

Finally 
X  = V^/Vp - 1  : the displacement in- 

fluence ratio and 
t  = 1 - (R-F)/T: the thrust deduction 

fraction 
are introduced as derived concepts. 

2.1 Basic Propositions 

In total fifteen basic concepts have been 
introduced, of which only ten are in principle 
directly measurable. The remaining five are 
implicitly or coherently defined in terms of 
five basic propositions, axioms, or principles, 
i. e. an explicit mathematical model of hull- 
propeller interaction. Independent operational 
interpretations are in general inadequate from 
the point of view of methodology and physics, 
as will be shown in the theory of interpreta- 
tion in Chapter 3. 

For more or less conventional afterbody- 
propeller configurations the following five 
axioms are introduced 

Vp = VM       : for the propeller speed, 
R = PQ(Vj-Vß)+F: for the resistance, 
M = PQVA-T/2  : for the momentum flux, 
pp = p0+p(VE

2-VP
2)/2: for the pressure 

level, and 
Pj = TQ/A : for the jet power. 
The axioms, which are arbitrary within 

certain limits are chosen in such a way, that 
they are at least plausible for the ideal model 
of ideal propellers in uniform wakes. The re- 
sistance axiom is the condition of selfpropul- 
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sion in this model, but not in general. The a- 
xioms imply the model of an equivalent propel- 
ler outside the displacement influence of the 
hull which has been introduced by Fresenius 
(1921) and used e. g. extensively by Horn 
(1935, 1956). This model may, contrary to past 
conceptions, be introduced as an artifice with 
no physical reality, and certainly independent 
of any additional assumptions on the flow. 

The argument that the axioms are nothing 
else but further definitions, as in the calcu- 
lus of concepts, does not hold for the simple 
reason that they "only" state equalities and 
not identities. E. g. Newton's law states that 
the value of the rate of change of the momentum 
and the value of the net force are equal, al- 
though the concepts are by no means identical, 
but have totally different meanings, i. e. 
intensions. For the same reason it would at 
least be highly artificial if not wrong, if any 
of the concepts coherently defined by the axio- 
matic system would be introduced as derived 
concepts by formal definitions. 

The five axioms proposed have been proved 
in a simple minded direct approach to be non- 
contradictory (Schmiechen .Schiffstechnik, 
1980), the minimum requirement an axiomatic 
system has to fulfill in order to be useful, i. 
e. to permit the derivation of true theorems 
and not of any. 

If instead of the propeller disc area, 
AQ: the outlet area 

of a duct or nozzle is a more adequate para- 
meter, the axioms may be changed as follows: 

M = PQ2/A0-T : for the momentum flow and 
Pj = TQ/A0 - T

2/(2PQ): for the jet power. 
The problem is that the thrust in this case 
includes the thrust of the duct. As has been 
shown earlier (Schmiechen, 1968) and will be 
done in the outline of a propeller design pro- 
cedure in Chapter 7, it may be of advantage to 
avoid the concept of thrust as a propulsive 
force under these circumstances altogether. In 
order to avoid confusion this line of thought 
will not be followed any further in this con- 
text. 

2.5 Derived Propositions 

Based on the axioms there may be derived 
any number of propositions, so-called theorems, 
for any particular purpose. Only some of more 
general interest will be stated here without 
derivation. 

For the factors of merit introduced the 
following relations are obtained: 

r^R = W/(PQ(Vj-VE)) , 
nRJ = 2V/(Vj+vE) , 
Ijp = PQ(Vj2-VE

2)/(2PP) . 
Obviously they are all independent of the dis- 
placement wake and the thrust deduction and 
equal for energetically equivalent propellers. 
Consequently they are particularly useful for 
the evaluation and comparison of configurations 
as has been stated earlier (Schmiechen, 1968, 
1970,1980). Another advantage of these factors 
of merit is that their values remain meaning- 
ful even at extreme conditions, e.g. at 100 % 
wake, where the values of the usual efficien- 
cies degenerate. 

The propeller factor of merit at vanishing 
propeller speed 

"JP (PA/2)I/2 T3/2/PP 
may be considered as an example. While the pro- 
peller efficiency vanishes at vanishing propel- 
ler speed the factor of merit assumes values in 
the range 

n 'jp = 0.1)5 0.68 
for the Wageningen B-Series. 

Thrust deduction, displacement wake, and 
propeller loading are in the present theory 
connected by the theorem 

t = (1+X+T-((1+X+T)2-2XT)'/2)/T . 
Under the condition 

2XT « (1+X+T)2 , 
which practically always holds,  the above 
theorem reduces to the approximate relationship 

t = X/O+X+T) , 
shown in Figure 3, for all values of the ratio 

T = (cn+lW2-!  . 

1+X T=(cT+l)
1/2-l 

Fig.3: Thrust deduction as function of propel- 
ler loading and displacement influence 

Further the theorems 
cT = 2T/PVp2A = Cfij: for the thrust loading 

factor and 
nTJ = 1/(1+T/2) = 2/(1+(1+cT)

l/2): for the 
jet efficiency 

may be derived. If the outlet area of a duct 
would have been chosen as reference the theorem 

"Xj = V(3+(1+2cT0)
l/2) 

is implied by the modified axioms stated be- 
fore. 

All the theorems are obviously not state- 
ments about physical relationships but formal 
consequences of the axioms chosen, for conven- 
ience. 

2.6 Conclusion 

The axiomatic system developed for the 
description of hull-propeller interaction uses 
the well-known conceptual frameworks for the 
evaluation of propulsive and pump performance, 
so far without reference to any interpretation. 
Contrary to the usual conceptual framework the 
present theory is a complete language contain- 
ing not only words but sentences as well. The 
theory includes a fully developed calculus of 
propositions, which was heretofore lacking. 
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In the present theory, which is an attempt 
to rationalize the traditional description of 
the hull-propeller interaction the problem of 
thrust deduction is a formal one. The solution 
derived already earlier (Schmiechen, 1968) 
shows that the usual way to deal with the prob- 
lem will not lead to success unless the dis- 
placement influence is explicitly taken into 
account. 

Instead of the usual breakdown of the pro- 
pulsive efficiency into hull and propeller ef- 
ficiencies the theory shows that the fre- 
quently suggested breakdown into configuration 
and propeller factors of merit appears to be 
much more adequate, independent of the inter- 
pretation of the abstract theory to be devel- 
oped in the next chapter. 

3.  THEORY OF INTERPRETATION 

3.1 Introduction 

While the water density, the surface pres- 
sure, the propeller area, the ship weight and 
speed, the propeller thrust and power, and the 
towing force may in principle be measured rath- 
er directly, though not always easily, the same 
does not hold for the volume or mass and the 
energy fluxes. Even in future there will be no 
chance to measure them directly in routine 
tests, model or full scale. 

For that purpose velocity and pressure 
distributions V]_ and p, respectively, would 
have to be measured over a typical period 0 on 
a relatively arbitrary control surface Ac with 
the vectorial elements dAj in front of the 
propeller provided its boundary could be agreed 
upon. From these distributions integrals 

and 

Q = 1/0 / de / dAx V]_ 

E = 1/0 / de / dAx v1(Pv
2/2+p-p0+Pg(z-z0)) 

0   A„ 

with the vertical coordinate z and the mass 
specific gravity g , alias gravitational accel- 
eration, would have to be determined with suf- 
ficient precision. Even with computer controll- 
ed Laser-Doppler velocimeters this problem can 
obviously not be solved, as they do not pro- 
vide the essential information concerning the 
energy of the flow. 

Consequently integral measurements of 
propeller thrust and torque or power in over- 
load tests have already been proposed by Horn 
(1935) for the solution of the interpretation 
problem. In terms of the theoretical overall 
model shown in Figure 1 , the interpretation 
theory to be developed has to establish a cor- 
respondence between the measured values and the 
theoretical concepts introduced before in 
Chapter 2. 

The structure of the interpretation theo- 
ry, as shown in Figure 1, suggests the distinc- 
tion between an axiomatic theory of interpreta- 
tion and a statistical theory of measurements 
to be developed in Chapter 4. 

The present solution of the interpretation 
problem greatly improves the first solution 

proposed (Schmiechen, STG, 1980), which was 
based on too many ad hoc and inadequate hypo- 
theses, with implications lacking the transpar- 
ency necessary for general acceptance and ap- 
plication. 

resistance  R 
propeller  speed VP 

axiomatic 
theory 

lost power 
hypothesis 

 ? 
extrapolated 
quantities 

statistical 
theory 

T 

extrapolation 
hypotheses 

measured 
JH>  KT,  KQP 

Fig.4: Structure of the interpretation theory 

3.2 Statements 

Assumed a ship or its model moves at con- 
stant speed and the frequency of revolutions of 
the propeller is changed stepwise, then the 
force, the thrust, and the power at equilibrium 
change as well. 

In view of the following this statement 
may be expressed in terms of the derived con- 
cepts: 

JH = VH/DN    : the hull advance ratio, 
KF = F/(PD"N2) : the force ratio, 
KT = T/(PD',N2) : the thrust ratio, 
KPp = PP/(PD

5N3): the power ratio. 
The additional basic concepts 

Vpj : the hull speed, 
D : the propeller diameter, and 
N  : the frequency of revolution 

are linked with those previously introduced 
by the followwing axiom and theorem 

VH = V , 
D  = (4A/TT)'/2 . 
The introductory statement may therefore 

be phrased: the force, thrust, and power ratios 
are functions of the hull advance ratio, i. e. 

Kx    = kXH(JH)       :   x e   (F.T.PP). 
For    convenience    the    functions    may    be 

expressed in terms of series 
n 

KX    " kXHUH>  =  ^ KxJH kJH(JH)" 

e.  g.  as Taylor series 
n    (j) 

KX    "  kXH(JH>   =  I KXHS/J!(JH-JHS)J   ' 
j=0 
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developed at the point of service condition S, 
practically always with a finite number of 

terms. 
The universal functions of the advance 

ratio may be chosen so as to suit the problem 
best, i.e. they need not be the powers of the 
hull advance ratio. The constants are addition- 
al basic concepts, which in the present context 
are considered as directly measurable. 

Instead of the power ratio usually 
KQP = QP/(PD

5N2) : the torque ratio 
is being used, where the basic concept 

Qp : the propeller torque 
is related to the propeller power by the axiom 

QP = PP/(2TN) , 
so that the relation 

KQP = Kpp/(2iT) 
hoids. 

Quite obviously the torque axiom or con- 
ventioncan be proved to be "wrong", if the an- 
gular velocity and the torque of the propeller 
oscillate as they always do. But it is an ac- 
ceptable approximation in view of the relative 
magnitude of the systematic errors possible and 
the random errors encountered in actual measu- 
rements. 

3.3 Basic Propositions 

In addition to the foregoing statements 
the following basic propositions may be intro- 
duced. 

Firstly it is assumed that the functions 
kXH observed in a limited range of the hull ad- 
vance ratio can be extrapolated to the state of 
vanishing thrust 

TT = 0 , 
i. e. to the advance ratio defined by the equa- 

tion 
Kjf = I<TH(JHT) = 0 * 

The details of the extrapolation procedure are 
dealt with in the next chapter. In principle 
the procedure has to be agreed upon, as also 
the axioms. 

At the state of vanishing thrust the fol- 
lowing "initial" conditions hold: 

(3F/3T)T = -1/O+X)  : for the force and 
(3Pj/3T)T = (Pj/T)T or 
(31nPj/31nT)T = +1 : for the jet power. 

The first condition implies vanishing thrust 
deduction at vanishing thrust, while the second 
implies the jet power vanishing with vanishing 
thrust. 

Secondly for 
P,  = pp - Pj       : the "lost" power 

or rather 
Q _ PT/(2TTN) : the "lost" moment 

the condition 
(QL/VH

2)T = const 
is assumed to hold. In terms of 

KPL = PL/(PD
5N3)     : the loss ratio 

or the corresponding torque ratio 
KQL = KpL/(2iO 

the condition reads 
(KPL/JH

2)T = const 
or 

(KQL/JH
2
)T = const. 

This crucial condition is at least plausible 
and, more important, is supported by experimen- 

tal evidence, as will be shown in Section 3-5. 

3.4 Resistance 

At the state of vanishing thrust 

TT = 0 
the force equals the resistance 

R = FT . 
It should be kept in mind that FT is the 
extrapolated force 

FT = (KFPD"N
2)T 

and not a real towing force. 
For 

CR = 2RA(PAVH
2) 

: the resistance coefficient 

the relation 
CR = 8/if(KT/JH

2)T 

holds. 
The resistance and consequently the thrust 

deduction fraction may in principle be deter- 
mined from the extrapolated differential force 

function 
f(T) = 1 + 3F/3T 

with the initial value 
f(T)T = X/O+X) =  o 

Integration results in 
T 

T + F - FT = / f(T)dT , 
0 

i. e. the resistance 
R = FT 

appears as integration constant and the thrust 
deduction fraction 

T   
t - 1/T / f(T)dT = 1 + 3F/3T 

0 
as average over the differential force function 

introduced. 
From the last statement it may be conclud- 

ed that random errors in the extrapolation of 
the differential force function will in general 
have little influence on the result. 

Formally introducing the function 

f(T) = aTb + c 
results in the thrust deduction fraction 

t = aTb/(1 + b) + c 
or, expressed in terms of derivatives 

t = (i-0+3F/3T)
2/(1-c+3F/3T+T32F/3T2)+c . 

This result shows again that simplified solu- 
tions of the problem, e. g. 

t - 1 + 3F/3T , 
as proposed by Holtrop (1978) and Keil (1983), 
will in general not be satisfactory. 

The fact, that the resistance of a ship 
under service conditions can in general only be 
determined by extrapolation is due to the na- 
ture of the flow around the afterbody, which 
changes with propeller loading. The value of 
the resistance determined in this way will in 
general be different from the force necessary 
to tow the ship with propeller at vanishing 
thrust or the bare hull. 

3.5 Propeller Speed 

At the state of vanishing thrust 

the jet efficiency of a propeller equals unity 
(nTJ)T = (TVP/Pj)T = 1 , 

i. e. the propeller velocity is 
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Vp = (Pj/T)T = (3Pj/3T)T • 
The propeller velocity and hence the wake 

fraction may in principle be determined from 
the extrapolated differential power function 

Tg(T) =  1 - 31n Pj/31n T 
with the initial value 

(Tg(T))T = 0 . 
Integration results in        T 

In T - In Pj + ln(Pj/T)T - / g(T)dT , 
0 

i. e. the propeller velocity 
VP = (Pj/T)T = ((PP-PL)/T)T 

appears as integration constant as did the re- 
istance before, while for the jet efficiency 
the expression 

T   
nJP = exp(/ g(T)dT) = exp(Tg(T)) 

0 
is obtained. Consequently the same remarks ap- 
ply as before concerning the thrust deduction 
fraction and a similar relation may be derived 
in terms of derivatives. 

The problem in this case is, that an in- 
terpretation along this line would require the 
knowledge of the lost power over the whole 
range from the condition of vanishing thrust to 
the service condition, while the original in- 
terpretation, which may be phrased 

(1)    (1)   (1) 
JPT = (KppHT - KPLHT)

/K
THT  • 

requires only the knowledge of the first deriv- 
ative of the lost power at the state of vanish- 
ing thrust. After the propeller advance ratio 
at this state has been determined the wake 
fraction is obtained according to the rule 

W = 1 - Jpj/J^'r 
and the values of all other quantities may be 
determined. 

The derivative in question is obtained 
from the basic proposition 

(KPL/JH
2)T = const 

for the lost power, which results in 

(1) 
KPLHT = (2KpP/JH)T , 

if the equality of total and lost propeller 
power at vanishing thrust 

KPLT = KPPT 
is taken into account. 

The determination of the propeller advance 
ratio at zero thrust may consequently be de- 
scribed in terms of the following simple graph- 
ical procedure shown in Figure 5: 

.1 extrapolation of the functions 
KT = kTH(JH) 
KPp = kPPH(JH) 

.2 determination of  the  zero crossing 
point from the equation 

KfT = k^fjC^HT' = 0 
.3 construction of the tangents touching 

the extrapolated functions at that 
point 

.4 determination of the intersections  p 
and q of the tangents with the axis 

JH = JHT
/2 

.5 determination of the propeller advance 
ratio 

JpT - Q/P 
and consequently the wake fraction 

W = 1 - Jpj/J^'p. 
If, as usual, instead of the power ra- 
tio ten times the torque ratio is 
plotted the rule is obviously 
jpT = 21T/10 • q/p . 

JPT=(27T/I0)*q/P = 0-8635 

0.5 

0.0 JpT/2 
= 0.432 

Figure 5: Verification of the interpretation 
rule using open water tests, e. g. 
VWS Propeller No. 1319 

The procedure has been tested on a great 
number of randomly chosen propeller open-water 
charts, Figure 5 being only one example. In all 
cases the agreement of the actual and the de- 
rived propeller advance ratios at zero thrust 
was very good, independent of the number of 
blades, the pitch ratio, and the blade area ra- 
tio. 

It has to be noted however, that in the 
test cases of propellers in the open-water con- 
dition no extrapolations were applied, but the 
observed physical functions have been used. In 
general this is not possible, due to the same 
reason mentioned before, i. e. the nature of 
the flow around the afterbody being dependent 
on propeller loading. Consequently the wake de- 
termined from extrapolation and from the actual 
condition of zero thrust must in general be 
different. 

Any reference to open-water tests, which 
is usually necessary in comparable procedures 
based on overload tests, e. g. that proposed by 
Horn (1935) and improved by Dickmann (1936), 
more recently e. g. by Adachi et al. (1983), 
would have been inadequate for the. performance 
analysis under service conditions aimed at. 

Horn's proposal, trying to avoid the ill 
defined wakes based either on thrust or on 
torque identity, replacing the latter by the 
condition 

31n KQP/31n JP = 2 - 31n QP/31n N , 
was recommended by the 3rd ITTC 1935 in Paris 
for testing by member organisations. Results of 
such tests were reported at the 4th ITTC in 
Berlin (Horn, 1937). Without reference to his 
earlier solution Horn (1964) proposed another 
solution of the wake problem based on the prin- 
ciple of virtual power, apparently without any 
resonance. 
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3.6 Conclusion 

The proposed interpretation of the con- 
cepts of resistance and propeller speed based 
on extrapolations of the results of integral or 
macroscopic measurements in load varying tests 
uses the customary format of the thrust and 
power or torque ratios as functions of the ap- 
parent or hull advance ratio. 

So far the axiomatic part of the theory 
has been developed. The introduction of the 
resistance and the propeller speed as integra- 
tion constants may be surprising, but is total- 
ly in line with other macroscopic theories. So 
e. g. in hydromechanics the group velocity of 
vortex streets (Schmiechen, 1960/62) and in 
thermodynamics the temperature (Schmidt, 1958) 
may be introduced as integrating factors. 

The actual interpretation of the resist- 
ance and propeller speed, or thrust deduction 
and wake fractions, respectively, along the 
lines proposed requires the "reliable" extrapo- 
lation of the thrust, force, and power func- 
tions. As has already been stated, the problem 
is not to predict the physical behaviour at 
vanishing thrust, but rather to construct a 
physically meaningful extension of the behav- 
iour of the flow around afterbody and propeller 
under service conditions. The extrapolation 
rules to be adopted have themselves the charac- 
ter of conventions or axioms to be agreed upon, 
preferably before the measurements. 

The idea underlying the extrapolation is 
to continue the "laws" of the functions ob- 
served in a limited range around the service 
condition, practically about 

0.6 JHT S JH < 0.8 JHT i 
to the condition of zero thrust, not to predict 
what happens there, but only to construct re- 
sistance and propeller speed in the narrow 
range of observation. The state of zero thrust 
considered is therefore an artifice and may be 
called the equivalent state of zero thrust in 
direct analogy to Fresenius' concept of the 
equivalent propeller underlying the axioms of 
hull-propeller interaction in Chapter 2. 

The concept of the equivalent state of ze- 
ro thrust is not a substitute for missing in- 
formation, but is the only way to exclude ir- 
relevant information outside the range of in- 
terest, e. g. a change from turbulent to lami- 
nar flow, a change in flow separation, etc. 

4.  THEORY OF MEASUREMENTS 

4.1 Introduction 

In view of the finite number of measure- 
ments and random disturbances of these measure- 
ments the force, thrust, and power functions 
can only be determined within certain confi- 
dence ranges. The goal of this chapter is con- 
sequently to develop an adequate statistical 
theory of extrapolation including the necessary 
numerical procedures and to test them. 

For convenience and lack of any other more 
adequate proposition optimum polynomials will 
be assumed for the functions in question. Imp- 
licit, non-linear techniques of extrapolation 
in terms of autoregressive models (Schmiechen, 

Lang, 1983) would have been another choice. 
Prerequisite for the application of the 

following procedure is of course that all rele- 
vant quantities have been measured without sys- 
tematic errors. Without sufficient information 
on the behaviour of the system it is obviously 
impossible to derive statements on its proper- 
ties and evaluate its performance. But the 
problems of data acquisition cannot be solved 
by confusing them with the present issue. 

4.2 Optimum Polynomials 

The determination of the optimum polynomi- 
als may be considered as a non-linear optimi- 
zation problem, which can be solved in two con- 
secutive steps. 

The basis is a number of "measured" quad- 
ruples of values 

JHi> KFi> KTi> KPPi: * = 1» ••• m • 
For stepwise increasing order the derivatives 
are now in each case determined in such a fash- 
ion, that the estimate of the variance will 
be minimal. 

The optimal polynomial order may subse- 
quently be determined from the required condi- 
tion of minimum confidence range. For assumed 
confidence range and given conficence level a 
condition for the minimum sample size may be 
derived; see e. g. Zurmflhl (1963). 

4.3 Numerical Procedure 

Basic requirement for the application of 
the procedure described are reliable optimum 
solutions of the systems of linear equations 

Jij xXj - KXi + eXi 
with 

Jij = (JH1 - JHs)
j/J! 

and      (j) 
xXj = KXHS 

providing that the condition 
exi exi = min 

is observed. 
Gauss' transformation, i. e. multiplica- 

tion with the transposed matrix J^ leads to 
the normal equation 

Jik Jij xXj = Jik KXi » 
which due to rounding errors may lead to erro- 
neous results. If only interpolation is intend- 
ed these may cause no problems, but in view of 
the extrapolation and differentiation they are 
quite unacceptable. 

In order to avoid such problems it is in 
general advisable to perform an orthonormaliza- 
tion        _i 

Jip Tqp Tqj xXj = KXi 
before the application of Gauss' transforma- 
tion. The triangular transformation matrix Tqp 
is built up recursively in a Gram-Schmidt pro- 
cedure (Zurmühl, 1963) so that the columns of 
the matrix 

°iq = Jip Tpq 
are orthonormal to each other. 

Consequently Gauss' transformation of the 
orthonormalized equation leads to a degenerate 
normal equation with the solution 

xXj - Tjk °ik KXi 
and the errors 

eXi = KXi _ °ik kXk 
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with the generalized Fourier coefficients 

^Xk = ^ik ^Xi * 
This recursive procedure of data analysis 

is perfectly reliable if applied to extremely 
ill conditioned or even singular systems of 
equations. It has the advantage that it may be 
applied to very large systems, due to the fact 
that for all operations necessary only single 
columns of the matrices have to be available in 
core, while the rest may be stored on external 
storage media. 

The procedure developed for purposes of 
systems identification (Schmiechen, 1969, 1973) 
had been proposed as a standard to the 12th 
ITTC in Rome (Schmiechen, 1969), but the writ- 
ten contribution was not published in the 
Proceedings. 

>\.i\  Statistical Confidence 

The optimal polynomials having been deter- 
mined, the values of all other quantities may 
be obtained. Due to the random disturbances of 
the measurements the resistance and propeller 
speed determined are themselves random vari- 
ables, the probability distributions of which 
have to be known in order to establish the con- 
fidence in the results. 

The simplest and most direct way to deter- 
mine the probability distributions in question 
is to perform the evaluation of the two quanti- 
ties repeatedly based on samples randomly drawn 
from the total set of measured values. This 
procedure can be done routinely without any ad- 
ditional assumptions as necessary for explicit 
error estimations, which are limited to linear 
problems anyway. 

The same procedure may be used even if 
only a limited number of measurements has been 
performed. In this case the samples are con- 
structed by repeated random selection of single 
values from the total set of measurements, i. 
e. the samples are not subsets of the total 
set. This so-called bootstrap (in German: 
Münchhausen) procedure (Diaconis, Efron, 1983) 
does provide reliable estimates of the proba- 
bility distribution, but can apparently not 
improve the confidence level of the values 
estimated. 

4.5 Numerical Example 

The whole procedure has been tested using 
as an example a fictitious propeller in a wake 
of 25 %. For simplicity the quadratic thrust 
and loss functions 

KT  = 0.50-0.30(JH/1.7)-0.20(JH/1 .7)
2 

and 
10KQL = 0.40-0.80(JH/1.7)+0.45(JH/1-7)

2, 
respectively, have been assumed, closely resem- 
bling a Wageningen B-Series propeller. 

From "measured" triples 
JHi, KTi, KPPi : i = 1, ..., 36, 

uniformly distributed over the range 
1.0 £ JH S 1.35, 

the wake could be reconstructed without prob- 
lems, when the computation was performed in 
double precision, fourth order polynomials hav- 
ing been assumed. Figure 6 shows the service 
chart of the fictitious propeller derived from 

the simulated results of overload tests in the 
range quoted. 

JpT=(27r/10)*q/P=l-
275 

W=1.-JPT/JHT=0.250 

7?TJ 

0.5 

0.0 

Figure 6: Service chart of a fictitious propel- 
ler derived from the simulated re- 
sults of overload tests 

In order to simulate measurement noise 
normally distributed pseudo-random values were 
added to the "measured" values, at first with 
the standard deviation 

sK = 10- . 
Depending on the order of the polynomials 

assumed the following averages and standard 
deviations were obtained 

2 0.306 0.003 
3 0.244 0.032 
4 0.221 0.233 

Due to the non-linearity of the problem the es- 
timated wake is not unbiased, and increasing 
the order of the polynomial does, as expected, 
not improve the confidence in the result. 

Reduction of the noise by an order of mag- 
nitude to 

sK = 10-
5 

resulted in the estimated wake 
w = 0.249 

with a standard deviation of 
sw = 0.003 

for third order polynomials. Consequently in 
order to avoid systematic errors and achieve 
acceptable tolerances large samples are neces- 
sary. 

Assuming a standard deviation of the indi- 
vidual measurements of 

sK = 10~
3 

requires apparently 10" repetitions of each of 
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the thirty-six measurements or a total of 
0.36-106 measurements. This is the price to be 
paid for the information wanted. 

1.6 Conolusion 

The exposition has shown that apart from 
the axiomatic theory of interpretation a fully 
developed statistical theory of measurements 
and extrapolation is necessary. The first nume- 
rical tests show that the requirements concern- 
ing data acquisition and reduction are much 
higher as compared with the traditional proce- 
dure, but the latter has the disadvantage that 
it may not be applicable at all, certainly not 
at full scale. 

The sensitivity of the procedure does not 
come as a surprise, but is a well known fact 
from comparable procedures of systems identifi- 
cation. An application of systems identifica- 
tion techniques to the analysis of the propul- 
sive performanceat full scale has been report- 
ed by Abkowitz (1980), the conceptual framework 
being the traditional one. 

Error sensitivity was already the problem 
of Horn's (1935) method, still depending on 
propeller open-water tests. Dickmann (1936) 
stated that at least five measurements over a 
wide range of load conditions would be neces- 
sary to ensure reasonably correct results. 

Although the present procedure permits to 
derive a complete service chart for a propel- 
ler, only the part in the range of measurements 
may be considered as physically meaningful. In 
order to reduce the error sensitivity of the 
procedure it appears possible to introduce fur- 
ther conventions. 

5.  THEORY OF TESTING 

5.1 Introduction 

In principle the propulsive performance of 
a ship can only be determined from measurements 
performed at the ship itself under service con- 
ditions. Consequently testing of full scale 
ships will be the first subject to be dealt 
with before the corresponding model test tech- 
niques are considered. 

In principle the procedure outlined for 
the first time permits the experimental deter- 
mination of the scale effects to be discussed 
in the next chapter. Horn (1935) already claim- 
ed this advantage for his procedure, although 
it still depended on propeller open-water 
tests. 

5.2 Selfpropelled Ships 

If the method of performance analysis de- 
scribed is to be applied to a full scale ship 
the various load conditions necessary can under 
service conditions not routinely be realized by 
application of external forces nor can steady 
states be achieved. In this case the external 
force can be replaced by the inertial force due 
to quasisteady changes of the velocity as a 
consequence of quasisteady changes of the fre- 
quency of propeller revolutions. 

At quasisteady changes of the frequency of 
revolutions the values 

Ni, Vi, Ti, QPi : i = 1 m 
of the frequency, speed, thrust, and torque, 
respectively, have to be measured as primitiv- 
es. From these the values of the force 

Fi = - IB, 3 Vi/3 0 
and the power 

PPi = STNiQpi 
and subsequently the values 

JHi> KFi» KTi« KPPi 
of the advance, force, thrust, and power ra- 
tios, respectively, may be derived. 

In order to determine the force, not only 
the acceleration, but also the longitudinal 
inertia including hydrodynamic components have 
to be known. The latter may in principle be de- 
termined from special experiments, particularly 
on model scale. Much more "realistic" are in 
general and for practical purposes theoretical 
estimates and agreements or, if possible, gen- 
eral conventions. 

More difficult is the determination of the 
acceleration which requires advanced filtering 
techniques. If the frequency of revolutions is 
changed periodically differentiation and fil- 
tering can be performed in the frequency do- 
main. The same technique has been used success- 
fully in an approximate way in case of non- 
periodic load changes. A similar technique has 
been developed for application in case of tran- 
sient changes (Schmiechen, Lang, 1983). 

5-3 Selfpropelled Models 

The test technique described for selfpro- 
pelled ships may be applied in model testing 
without change. The proposal to develop a test 
procedure utilizing the information that be- 
comes available during the initial unsteady 
phases of traditional steady state propulsion 
tests has found favourable response and will 
after all lead to a sponsored research project 
at VWS, the Berlin Model Basin. 

JpT=(27r/10)*q/p= 1.123 
W=1.-JPT/JHT=0.413 

/ \ 
IOKQP 

0.5- 

^ 
T ^^\       \ 

\v      pfopulsion 
N^  test results 

open—water \ 
test  results      \ 

0.0 \\           ^ -c» 
0.2 JHT/2 

= 0.962 
JHT 

= 1.924 

Figure 7: Determination of the wake from quasi- 
steady propulsion tests. 
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In order to show the feasibility of the 
procedure preliminary tests have been perform- 
ed and analysed. VWS Model No. 2005, 6 m long, 
fitted with Propeller No. 1195, 0.211 m in dia- 
meter, was run at the Froude number 0.180 in 
the VWS shallow water tank at 1 m water depth. 
The frequency of revolutions was changed manu- 
ally, certainly not always quasisteady. Data 
were acquired at a rate of 10 per second. 

Based on the data in the range 
0.75 < JH < 1.05 , 

about 250 values, optimum linear and quadratic 
extrapolations have been used for the thrust 
and torque functions, respectively. Figure 7 
shows the results including the open-water test 
results. In view of the very large scatter, 
partly due to a very poor resolution of the ve- 
locity, and the extreme range of extrapolation 
the resulting wake of 41 % must be considered 
as a reasonably successful estimate as compared 
with the wake of about 30 to 36 % determined in 
the usual way. 

5.1 Boundary Layer Suction 

The problem with model testing is that the 
flows around the ship and the model are only 
partially similar. The traditional way to ac- 
count for this dissimilarity in model propul- 
sion tests is the application of a towing force 
FD balancing the excessive drag of the model. 

In view of the hull-propeller interaction 
under consideration this very simple and conve- 
nient procedure is not particularly satisfac- 
tory. All the essential factors of merit are 
dependent on energy velocities, and the theorem 
on thrust deduction 

t = X/(1 + X + T) 
shows explicitly the r6le of the displacement 
influence ratio 

X S  VE/VP - 1 . 
This important parameter is different on model 
and full scale and remains unaffected by the 
towing force. 

The only way to affect this ratio is to 
modify the boundary layer of the model, either 
by additional propulsors, i. e. boundary layer 
"acceleration", or by boundary layer suction. 
The difficulty with both techniques is that 
they may introduce disturbances into the flow, 
which may easily upset the purpose of the whole 
exercise. 

Boundary layer suction, as far as possible 
uniformly distributed over the hull surface, is 
being tested in a preliminary research project 
at the Berlin Model Basin. Application in pro- 
pulsion testing is certainly far from routine 
and may in fact never become routine, if the 
correct simulation of the ship wake is to be 
achieved. 

One of the big problems apart of the expe- 
rimental set-up and the time necessary for ad- 
justment is that the full scale wake to be si- 
mulated cannot be computed so far, but may only 
be determined more or less crudely by some rule 
from the model wake (Sasajima, Tanaka, 1966; 
Tanaka et al., 1984). As has been shown experi- 
mentally by Huse (1977) the boundary layer 
thickness does affect the bilge vortices quite 
differently than the remainder of the wake. 

5.5 Suction Rule 

In view of the afore-mentioned problems it 
has been suggested that suction according to 
some simple rules may serve the same purpose. 
As already stated the suction should be as uni- 
formly distributed over the model surface as 
possible in order to avoid major disturbances 
of the flow and the wave pattern. 

The main parameter of the suction is the 
total volumetric flow rate Qg, which corre- 
sponds to a net force 

FS = P QS V . 
As simple suction rule 

FS " FD . 
may be suggested, i. e. the suction force 
should compensate the excessive model drag, re- 
sulting in the required suction rate 

Qs = FD/(P V) . 
In practical application it is necessary that 
no other forces are acting on the model. Ac- 
cording to a proposal by R. Snay of the Berlin 
Model Basin this can be achieved, if the model 
is fitted with a well from which a pump, mount- 
ed on the accompanying carriage, can suck the 
water without transmitting net forces to the 
model. Preliminary tests have shown the feasi- 
bility of this set-up (Schmiechen, 1984). 

5.6 Conclusion 

The present chapter does rather state 
problems and point out directions in which de- 
velopments are necessary and have been started. 
Results of on-going research and development 
projects will be published in due course. 

6.  THEORY OF SCALING 

6.1 Introduction 

Due to the lack of similarity between the 
flows around a ship and its geometrically simi- 
lar models in traditional model testing the 
problem of scaling of dynamical quantities a- 
rises. In terms of the overall model, shown in 
Figure 1, the scaling theory has to establish a 
correspondence between ship and model quanti- 
ties, the ratios of which are called scaling 
factors. 

The goal of this chapter is to show the 
impact of the axiomatic theory of hull-propel- 
ler interaction on the theory of scaling. The 
exposition will proceed from the scaling fac- 
tors to the scaling theorems, to the necessary 
scaling hypotheses, and finally to.the scaling 
rules. 

6.2 Scaling Factors 

As in the previous expositions of this 
subject (Schmiechen, 1980) the ship itself ope- 
rating in a fluid of reduced density and in- 
creased viscosity, but at the same mass speci- 
fic gravity, the same displacement, and the 
same velocity will be considered as its own 
model. The advantage of this artifice is that 
it reduces the problem to the essentials, name- 
ly the so-called scale effects. 

If, as usual, smaller models are tested at 
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the same Froude number 
Fn = V/(g L)

l/2 

additional, well-known scaling factors have to 
be applied, in order to obtain the model quan- 
tities used in the following. 

If ship and model quantities are denoted 
by upper indices S and M, respectively, the 
scaling factors may be uniformly and conven- 
iently introduced as shown by the example 

nXY° = T1XYS/T1XYM • 
Scaling factors of value 1  indicate, that 
there are no net (!) scale effects. 

6.3 Scaling Theorems 

Due to the fact that the axioms and the 
theorems apply to the ship and its model in the 
same way a large number of scaling theorems, 
i.e. relations between scaling factors may be 
derived. 

In the first place the whole calculus of 
concepts may be rephrased in terms of scaling 
factors, e. g. 

nXY° = PX°/PY° . 
The same holds for the calculus of propo- 

sitions although most of the relations cannot 
be put into a simple format. 

As an example it is assumed that the con- 
dition 

T° = 1 
is observed, i. e. propeller loading and jet 
efficiency are the same at  model and full 
scale. Consequently the condition 

poQo2/To = 1 

holds and the scaling factor for the power 
Pp° = P°/nWP

0 = T° QVnjp0 

may be expressed in the form 
Pp° = T03/2/(Hjp° P01/2) . 

6.1 Scaling Hypotheses 

In order to provide an operational inter- 
pretation of the abstract scaling theory some 
of the scaling factors, exactly ten, have to be 
known. If, as usual the values for the ship are 
not known, but to be determined, experiences 
with similar ships and hypotheses based on hy- 
drodynamic theory have to be introduced. 

So far no attempt has been made to outline 
the problems and possible strategies for their 
solution in the context of the present theory. 
It is felt that any solution will have to rely 
heavily on the vast experience accumulated 
using the traditional procedure. 

6.5 Scaling Rules 

Given the values of the scaling factors P° 
and PQ° and 

A» = W°/P° = V° = 1 
the values of five more scaling factors have to 
be known or five conditions have to be satis- 
fied to permit the complete determination of 
all the ship data from the model data. 

Assuming that the scaling factor of the 
resistance is known and that the selfpropulsion 
condition of the ship, i. e. 

Fs = 0 , 
is of interest, traditionally the condition 

pM = FD = RMd _ RO/pO) 

for the towing force of the model is satisfied. 
The above condition implies the condition 

Q°(Vj - VE)° = 1 
and consequently 

^WR0 = 1 • 
i. e. no net scale effect in the hull factor of 
merit. Without three further hypotheses the 
scale factors for neither the other two factors 
of merit nor anything else may be determined. 

The usual assumption, that there is no 
scale effect in the thrust deduction fraction, 

t° = 1 , 
e. g. Holtrop (1978), implies a scale effect in 
the propeller loading factor as may be seen 
from the thrust deduction theorem. 

So far no general agreement on hypotheses 
to be adopted has been reached by the Perform- 
ance Committee of the ITTC; see e. g. Lindgren 
et al. (1978) and later Reports of that Commit- 
tee. The present theory does not suggest any 
specific solution, but it permits to clearly 
state the problem and discuss the physical es- 
sentials and not formal matters taken care of 
by the calculi of concepts and propositions. 

In view of the problems of detailed scal- 
ing pragmatic procedures reduced to the bare 
essentials of predicting full scale power and 
frequency of revolutions, as e. g. proposed by 
Holtrop (1978),have very definite and practical 
merits. The method quoted claims, as the pre- 
sent one, not to require resistance and open- 
water tests, but it requires tests at vanishing 
thrust and the scale factor of the wake without 
explicitly stating how the wake concept is to 
be interpreted in terms of measurements. 

Further the approximation 
t = 1 + 3F/3T 

is implied for the thrust deduction fraction 
and it is assumed that the flow does not change 
its character at "extreme" conditions necessary 
for Prohaska's physical extrapolation. If only 
model-ship correlation is of interest these 
assumptions may be as sufficient as any others, 
"errors" cancelling each other to a certain ex- 
tent. 

6.6 Conclusion 

The theory of scaling has only been 
sketched. Its crucial dependence on hypotheses 
concerning a number of scaling factors has been 
stated, but nothing has been said about these 
hypotheses in the present limited scope. The 
essential statement is rather that the axioma- 
tic theory of hull-propeller interaction per- 
mits a large number of explicit formal rela- 
tions between scaling factors to be derived, 
while in the traditional conceptual framework 
these relationships are, in the absence of a 
calculus of propositions, of experimental cha- 
racter. 

7.  HYDROHECHANIC THEORY 

7.1 Introduction 

So far hydromechanic theory has only been 
mentioned in connection with the scaling hypo- 
theses. The problem to be discussed in this 
chapter, at least in outline, is the relation 
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of hydromeohanio theory in general to the pre- 
sent theory. 

As has been shown so far the propulsive 
performance of a ship can only be evaluated in 
terras of criteria derived in the framework of 
an abstract set of conventions and interpreted 
in terms of quantities measured on the ship it- 
self. If the interpretation takes place in 
terms of quantities measured on physical scale 
models and/or computed for abstract hydrome- 
chanic models the evaluation is indirect. 

7.2 Ideal Models 

Ideal models may be constructed under the 
assumptions that the momentum and energy wakes 
are uniform and that the energy wake is the 
same for equivalent propellers inside and out- 
side the displacement wake. 

A special ideal model is obtained if an 
ideal propeller is assumed, not necessarily an 
actuator disc as usual (Schmiechen, Sparenberg, 
1978/79). For this model the axioms do in fact 
conform to elementary hydromechanic theory of 
propulsion. The resistance axiom is in this 
case, as stated, the condition of selfpropul- 
sion, i. e. zero momentum flux across a control 
surface around the ship, i. e. hull and propel- 
ler. 

Consequently the theorem on thrust deduc- 
tion and its approximate form 

t = x/(1 + X + T) 
are implied by elementary hydromechanic theory. 
Taking into account the pressure ratio 

Cp = 2(pP - p0)/(PVp
2) , 

for which the relation 
cp = X2 + 2X 

holds, it becomes evident that the thrust de- 
duction is directly related to that pressure 
ratio as already stated by Akimov (1935) and 
Horn (1956). 

For small pressure ratios 
cp « 1 

the theorem on thrust deduction may be written 
in the form 

t - Op/O + cp + 2T) . 
Qualitatively this is directly evident 

from the fact that for all equivalent propel- 
lers the volume flux and the energy, i. e. the 
"pressure" jump 

Ae = T/A 
are the same. Consequently the propellers at 
the higher pressure levels have to be larger 
and have  proportionally larger thrusts to ac- 
count for the retarded inflows. 

If the position of a given propeller in a 
given wake field is changed the pressure ratio 
is changed and consequently the thrust deduc- 
tion fraction. More important is the fact that 
the same propeller at the lower pressure ratio 
represents a larger equivalent propeller with a 
correspondingly higher jet efficiency. 

7.3 Thrust Deduction Laws 

Similar "laws" on thrust deduction have 
been derived in many ways based on different 
assumptions, not always easy to follow. Not 
only the implications of the hydromechanic mod- 
els have to be considered, but also implica- 

tions of additional assumptions, which have 
usually to be made in order to make the prob- 
lems amenable to analytical and/or numerical 
analysis. 

Therefore most of the solutions differ 
from each other. A solution which is most easi- 
ly compared with the theorem derived from the 
axioms is that for the potential thrust deduc- 
tion arrived at by Nowacki and Sharma (1972, 
Eqn. B69) 

t - X/(1 + V2) . 
This solution is based on the model of equiva- 
lent sink strength with the approximation 

QS/(A Vp) « T 

due to Dickmann (1939). 
If instead of the above approximation the 

exact relation 
QS/(A Vp) = T(1 + T/2)/(1 + x) 

(Horn, 1956; Schmiechen,1978) is introduced the 
theoretical solution becomes 

t * X/(1 + t) , 
i. e. almost the same as that derived from the 
axioms. The remaining difference may be due to 
necessary linearisations in the theoretical so- 
lution. 

Horn (1936) has derived a solution for po- 
tential wake only from integral principles much 
in the same way as the present theorem has been 
derived from the axioms and identical with it 
for that special case. Horn could explain the 
difference between his solution and that of 
Fresenius (1921) along the lines indicated in 
the foregoing Section 7.2, and expected that 
the difference between his and Dickmann's 
(1939) solutions were due to the approximation 
mentioned before. 

The important result of the foregoing ana- 
lysis is that the general axiomatic solution is 
in line with the theoretical solutions for par- 
ticular hydromechanic models. The only possible 
reason for this situation is, that the resist- 
ance and wake concepts underlying the hydrody- 
namical investigations are implicitly the same 
as the ones explicitly stated in the axioms. 
This fact may further support the plausibility 
of the latter but clearly does not prove them. 

Due to the axiomatic approach the thrust 
deduction theorem cannot be proved by physical 
evidence. The reason for this situation is the 
fact that there are no independent interpreta- 
tions of mass and energy fluxes to the propel- 
lers, at least not those without duct. 

Horn (1935) already stated that independ- 
ent interpretations would lead to incoherent 
results and discarded them for that reason, 
while Vollheim (1972) expects that only such 
measurements will eventually lead to the true 
efficiencies and factors of merit; cf. Section 
7.4. Without reference to the existing solu- 
tions the law for the thrust deduction has 
e. g. been re-derived by Stierman (1981)) and 
used for scaling purposes. 

7.4 Hydromechanic Computations 

The essential feature of the hydromechanic 
theory in the present context is of course not 
that it suggests concepts and relationships be- 
tween them nor to show the plausibility of the- 
orems, which may be formally derived, but rath- 

m 



er its capability to provide, hopefully some 
day with the necessary reliability, extrapola- 
tion and scaling hypotheses and values for the 
quantities in question which the axiomatic the- 
ory by its very nature cannot. 

The situation is similar to that of the 
theory of probability, which based on axioms 
can derive relationships between probabilities 
whatever their interpretation, objective or 
subjective, but cannot provide any values for 
the basic probabilities. Another example is 
thermodynamics, the concepts of which have to 
be interpreted either in terms of macroscopic 
measurements or quantummechanic theory. 

As has been mentioned, measurements of the 
velocity and pressure distributions may not be 
performed routinely, certainly not on full 
scale ships under service conditions. But the 
distributions in question are or will become 
routinely available in numerical computations 
and may be integrated easily. 

Provided the border line of the control 
surface is defined or agreed upon, hydromecha- 
nic computations will consequently result in 
volume and energy fluxes instead of resistance 
and propeller speed resulting from hydromecha- 
nic measurements. In order to ensure coherent 
and comparable results computations should pre- 
ferably simulate overload tests and their eva- 
luation should be performed in the same way as 
has been described. 

7.5 Propeller Design 

Up to now apparently all propeller design 
procedures, including those for ducted propel- 
lers and pumpjets, are based on the naive con- 
ception of a propeller as a thruster. 

An inherent difficulty of this approach is 
that the thrust to be designed for depends on 
hull-duct-propeller interaction. As a matter of 
fact rather detailed assumptions about the dis- 
tribution of the wake and thrust deduction 
fractions are necessary as design input. 

This very disturbing problem can be avoid- 
ed if a propeller is conceived as a pump sup- 
plying energy to the flow around the vehicle so 
that the condition of selfpropulsion is satis- 
fied. 

This concept has been worked out in a re- 
cent paper on optimum ducted propellers for 
bodies of revolution (Schmiechen, 1983), close- 
ly related to the work of Dyne (1983) on opti- 
mum wake vorticity adapted propellers. 

Differences in the expositions are partly 
due to the fact that the use of existing pro- 
peller design programs may require a different 
wake concept, certainly not the Taylor wake 
concept based on thrust identity. On the other 
hand the resistance concept appears to be ex- 
actly the one proposed here. 

The basic model underlying the investiga- 
tion is shown in Figure 8. 

The flow past the vehicle moving in the 
negative x-direction with speed V in an incom- 
pressible fluid of density P and at rest at in- 
finity is assumed to be circumferentially uni- 
form in the average, i. e. only depending on 
the longitudinal position x and the radial po- 
sition r in body-fixed coordinates. 

qDuct=Q 

/eE(q) 
qHuii=o , / 

Figure 8: Basic propeller model 

Accordingly the flow field may be de- 
scribed by a stream function 

q = q(x, r) , 
specifically the flow rate, and an energy func- 
tion 

e = e(x, r) , 
specifically the volume-specific energy 

e = Pv2/2 + p - Po + Pg(z " zo) 
the sum of the local kinetic and potential 
energy . 

In accordance with the assumption of cir- 
cumferential uniformity the propeller is repre- 
sented by a circumferentially uniform external 
force field f. The fluid is assumed to be 
Newtonian and the flow to be turbulent and 
fluctuating. 

With the specific energy distributions 
eE = eE(q) 

and 
ej = ej(q) 

at the inlet and outlet surfaces, respectively, 
and the hydraulic efficiency distribution 

ijp = ijp(q) . 
the power absorbed is 

PP = /(ej - eE) dq/nJP , 
and the condition of self-propulsion may be ex- 
pressed in terms of the resistance axiom 

R = P/(Vj - VE) dq . 
The distributions of the energy velocity 

at the propeller inlet and of the hydraulic 
efficiency being given, the optimum distribu- 
tion of the energy velocity at the propeller 
outlet has to be determined according to the 
requirement 

/ VjVljp dq = min 
under the condition 

/ Vj dq = const , 
which leads to the optimum condition 

Vj/rijp = const, 
which was incorrectly stated in the original 
paper. 

Pertinent in the context of the present 
paper is the fact that the factor of merit of 
the configuration determined in this way ob- 
viously represents an upper limit under the 
conditions given and may become an important 
criterion in performance evaluation. 

For the design of ducted propellers, i. e. 
pump stages meeting the specified optimum re- 
quirements, flow fields have to be constructed 
at least approximately. Computations including 
turbulence, e. g. by Zhou (1982), are far from 
being standard practice today, the inclusion of 
propeller models in such computations has hard- 
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ly been tried. In order to obtain useful re- 
sults now the flow model has to be simplified 
to become tractable routinely in propeller de- 
sign. 

In accordance with the usual practice it 
is assumed that within a limited region around 
the propeller, momentum and, consequently, 
energy and vorticity exchange between stream 
lines are negligible (Dyne, 1978), i. e. 
Cauchy's equation reduces to Euler's equation, 
which may be integrated along stream lines. In 
this simplified model the specific energy is 
independent of the coordinate s along the 
stream line, outside the propeller region. 

The problem, still formidable enough, may 
be greatly simplified, if it is transformed be- 
fore the solution is attempted. The transforma- 
tion is particularly simple, if the considera- 
tion is restricted to shock-free entrance into 
the duct, the stagnation point being located at 
the forward point of the duct. Even in this 
simple model there is considerable freedom in 
design to account for cavitation, noise etc. 

For the purposes of numerical computations 
the flow rate and its radial coordinate may be 
further transformed as proposed by Zhou (1982) 
in order to account for the boundary condition 
at infinite flow rate without extra computa- 
tions and matching of boundary conditions. 

In conclusion of this outline it may be 
stated that the rigorous conception of a pro- 
peller as a pump apparently leads to a coherent 
design procedure,allthough in many respects 
closely resembling the usual procedure, in 
principle clearly distinct from it. 

As in pump design the thrust and its dis- 
tribution are by-products of the flow field 
computations and for this reason they did not 
even have to be mentioned in this outline. This 
fact may at first appear surprising, but as has 
been stated earlier (Schmiechen, 1968) is an 
inherent feature of the basic conception. 

It is evident that duct-propeller config- 
urations designed according to the procedure 
outlined cannot be tested in the open-water 
condition, not even in the "wrong" model wake. 
The only meaningful way to establish their per- 
formance appears to be the evaluation of over- 
load conditions in propulsion tests, at model 
or full scale in principle alike, maybe in the 
same way as described before. All of the proce- 
dures outlined by Stierman (198*0 are unsatis- 
factory, resistance tests with the nozzle fit- 
ted will certainly result in rather meaningless 
data. 

7.6 Conclusion 

The whole chapter on hydromechanic theory 
and its relation to the axiomatic theory is not 
more than a sketch and had to be limited to 
some essential ideas, hopefully throwing some 
new light on some unresolved problems. 

Obviously hydromechanic theory cannot re- 
place the axiomatic theory of hull-propeller 
interaction. But it can support the axioms and 
the extrapolation to the state of vanishing 
thrust ■and it can provide scaling hypotheses 
and values of the quantities introduced. 

8.  CONCLUSIONS 

8.1 Review 

The proposed conceptual framework is an 
attempt to rationally reconstruct the tradi- 
tional procedure for ship performance evalua- 
tion presented by R. E. Froude (1883) hundred 
years ago and followed since by an ever growing 
community of ship model basins despite its in- 
herent inconsistencies. 

The axiomatic theory is the first attempt 
to explicitly state a formal language including 
basic propositions, i. e. principles or conven- 
tions, which may serve as an adequate general 
basis for the rational resolution of the prob- 
lems and conflicting interests and require- 
ments, e. g. of shipowners, shipbuilders, ship- 
designers, and ship-researchers or of ship op- 
eration, ship testing, ship design, ship hydro- 
dynamics, and ship theory. 

In order to serve its purpose the formal 
language has been designed as a macroscopic 
theory adequately reflecting the structure of 
the micro-universe of discourse by abstraction 
from the past hundred years of experience in 
hydromechanic theory and testing. The concepts 
introduced are consequently independent of any 
specific experimental and computational tech- 
niques and devices, e. g. towing and open-water 
tests, sources and sinks, lightly loaded actua- 
tor discs, etc. however useful the latter may 
be in their place.The conceptual model underly- 
ing the axiomatic theory is the readily grasped 
artifice of the equivalent propeller outside 
the displacement influence of the hull. 

According to the dual model of mature the- 
ories the abstract axiomatic theory is comple- 
mented by an interpretation theory, which it- 
self consists of an axiomatic theory, implying 
the concept of the equivalent state of vanish- 
ing thrust, and a statistical theory of meas- 
urements and extrapolation. Provided the neces- 
sary data can be acquired, the test procedure 
outlined can be applied on full and model 
scale, requiring only load variations around 
the service conditions, but no reference to 
towing tests with the hull or open-water tests 
with the propeller.Like comparable methods of 
systems identification the procedure is sensi- 
tive to measurement noise. 

The theories of testing and scaling are 
rather outlines of necessary developments, the 
latter providing a series of scaling theorems 
and once again showing the lack of adequate 
scaling hypotheses. The reason for this situa- 
tion is that so far no adequate procedure to 
determine full scale values experimentally has 
been available, not even conceptually. 

The outline of the relation between the 
present theory and hydromechanic theory shows 
that the rSle of latter in hull-propeller in- 
teraction research will be different in future. 

The whole exposition has been extremely 
structured, maybe overstressing the point of 
methodology, in order to avoid the usual con- 
fusion of problems caused by the necessity to 
provide complete procedures, which could be ap- 
plied immediately to practical problems. 
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8.2 Outlook 

The proposed theory of ship performance is 
a formal language, which has proved to be use- 
ful in restating the physical problems to be 
solved by theoretical and experimental hydrody- 
namics. To expect solutions now for the many 
problems, which can be stated only after this 
exposition, is to underestimate the effort ne- 
cessary so far and in future. 

Specific problems of high priority to be 
solved have been mentioned in the respective 
chapters: rigorous foundation of the axiomatic 
theory, development of practical procedures for 
measurements on model and full scale, including 
extrapolation to the equivalent state of van- 
ishing thrust, experimental and theoretical 
determination of scaling hypotheses, and theo- 
retical flow computations for design purposes. 

Most of the problems are not new, but the 
context in which they have been put. A general 
task will be to re-analyse past practice and 
experience from the present point of view in 
order to rationalize them. This task may only 
be undertaken by the community concerned, shar- 
ing a common language, maybe eventually the one 
proposed. 
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DISCUSSION 

Mr. LIAN-DI ZHOU, 
China Ship Scientific Research Center, 
Wuxi, Jiangsu, PR China: 

I congratulate Dr. Schmiechen on such an 
interesting paper. The aim of this paper is to 
improve the present tradition or concept of pro- 
peller-hull interaction, and to regard the flow 
of the propeller and hull as an inseparable 
system. As a result the method of testing and 
design is also different from the traditional. 

I am very interested in this design pro- 
blem, since in my paper the need of knowledge 
of thrust deduction is also abandoned before- 
hand, but comes out as a natural outcome of the 
computation. There are a few questions I would 
like to ask: 

1. Regarding the optimum condition as gi- 
ven on page 495, the condition Vj/rijp = const., 
how is it deduced? 

2. How is the distribution of rijn as a 
function of q determined or given in a certain 
design case? 

3. Where should the entrance and exit con- 
ditions of Fig. 8 be actually placed? If the 
entrance condition is placed very near to the 
duct entrance, then how could VE(q) be deter- 
mined beforehand? 

Dr. GILBERT DYNE, 
SSPA Maritime Consulting AB, 
Gothenburg, Sweden: 

Let me first congratulate the author on a 
very refreshing paper on an important topic. I 
really hope that his ideas, when they are made 
known to a larger audience, will start a dis- 
cussion on the validity of the propulsion prin- 
ciples. The conventional way of analysing the 
propulsing by using self propulsion, resistance 
and open water tests has too long been accepted 
and used without critical considerations. 

The procedure to determine the thrust de- 
duction and the effective wake by comparing the 
results from self propulsion tests with results 
from resistance and open water tests respective- 
ly has the great advantage of giving relatively 
consistent results for single screw ships. Draw- 
backs are, however, that 
o it gives little information on the energy 

relationships in the propulsion process and 
that 

o it does not work for more unconventional pro- 
pulsion systems (how do you, for example, 
define the thrust deduction and the wake 
for a water jet system?) 

The author has based his theory on energy con- 
siderations and regards the propeller as an 
energy-producing pump. If I have understood him 
right the energy velocity Vn at the propeller 
is related to the frictionaT wake wf as follows: 

VE = V(l-wf) 

see Dyne 1983, and the jet velocity 
. UAOO\ VJ V(l 

where wF is the final wake and UAQ0 is the pro- 
peller-induced velocity far behina the propel- 
ler. Since the author ignores the slipstream 
rotation the optimum condition reads 

V,- 
— = constant 
nJP 

see Fresenius 1921. It would be interesting to 
hear what the consequences for the theory would 
be if the slipstream rotation is considered. 
Certainly some of the basic propositions and 
maybe also some of the calculation results 
would be different. 

The proposed method to determine the thrust 
deduction t and the wake w has, however, a 
serious drawback in its present form: It is 
too sensitive to the choice of polynomial fair- 
ings and does not give consistent results. The 
result from an overload test recently carried 
out in SSPA towing tank (8 different loadings) 
may illustrate this: The relationship between 
F and T was found to be nearly linear, giving 
a thrust deduction of 

t = 0.11 

If instead a second order polynomial was used, 
then 

t = 0.21 - 0.28 

i.e. a curvature of the F-T-curve, which was 
barely visible doubled the thrust deduction! 
Also the K-r-J and KQ-J relationships were fair- 
ly linear giving a wake fraction of w = 0.37 
with the proposed method. Second and third 
order polynomials did not give any intersection 
with the J-axis in the range of interest! Hence 
no wake could be determined in these cases. My 
conclusion of this result is therefore: If the 
thrust deduction and the wake should be deter- 
mined from self propulsion tests alone with 
the proposed method only linear relationships 
must be used to get consistent results. This 
is probably true also if the number of tests 
is increased dramatically as suggested by the 
author. 

Personally I believe that the self pro- 
pulsion test must be combined with some other 
test to give the information wanted. Would not 
pressure and velocity measurement around the 
stern and in the wake be an alternative? The 
problem with measurements of this kind is, 
however, that they are not simple enough to 
be accepted in the daily work of towing tanks. 

Mr. MITSUHIRO ABE, 
Mitsui Eng. & Shipbuilding Co, Akishima Lab., 
Tokyo, Japan: 

First I congratulate, as a tankery man, 
Prof. Schmiechen on his fascinating theory. 
Really, the now one-hundred year old efforts, 
namely, self-propulsion tests combined with 
propeller open-water test, are still valid 
for conventional and moderately shaped ships. 

In recent years, the demand for energy 
saving has produced unconventional hull-pro- 
pulsor systems, ducted propellers and flow 
controlling fins, etc. For such a system the 
conventional propulsion test may be discour- 
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aging,as is being discussed at the 17th ITTC. 
In this situation, the author's theory 

will meet our expectation to evaluate the un- 
conventional hull-propulsor systems as well as 
conventional ships. However, the power predic- 
tion requires a consistent and accurate method 
as good as the present method has been. 

My point is how the new method which the 
author has presented shall become routine at 
the tank. In so doing, it will be much appre- 
ciated if the author will tentatively give us 
a physical and realistic method in relating 
the present one, relevant propulsion factors 
and scaling factors. 

Prof. KUNIHARU NAKATAKE, 
Kyushu University, 
Fukuoka, Japan: 

I appreciate the author's new proposal 
concerning the propulsion test and its analy- 
sis. Though I can not understand well the theo- 
ry of theories, the axioms and other terminolo- 
gies, the author bravely, I think, proposes the 
method as a substitute for the traditional 
method. The traditional propulsion test has 
hydrodynamically two main deficiencies between 
the model and the full-scale ship. One is the 
relative difference of the viscous resistance 
and the other is the relative difference of 
the wake thickness in the propeller plane. The 
former is almost compensated for by the skin 
friction correction, but the latter is not. 
Then Dr. Schoenherr proposed a new method 
(JSR 1965) to use a larger model propeller than 
usual one, which was made by considering the 
scale effect on the wake. However, since the 
diameter of the model propeller becomes too 
large, his method is not used usually though 
the scale effect on the propulsion factors 
becomes small. I hope the author's method may 
improve the traditional one through careful 
examinations. 

At last, I raise one question concerning 
the presence of the rudder, since the behavior 
of the rudder drag is complicated but interest- 
ing. Is the proposed method applicable to the 
ship with a rudder? 

AUTHOR'S REPLY 
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in the discussion for their valuable contribu- 
tions and suggestions. In particular I would 
like to thank them for their kind support of 
my attempt to solve a problem which in my view 
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Mr. Zhou in his discussion is touching on 
the design problem, which is covered only cur- 
sorily in the paper and has hardly been men- 
tioned in the presentation. The optimum condi- 
tion stated in the paper is the well-known one 
due to Fresenius, as Dr. Dyne points out, and 
may be derived by variational principles. The 
distribution of the hydraulic efficiency with 
respect to the flow rate will have to be esti- 
mated at the beginning based on past experience 
and will have to be checked when the propeller 

design is completed, maybe necessitating an 
iteration as mentioned in my paper. 

Concerning the actual locations of the 
inlet and outlet control surface it has to be 
kept in mind that the description in terms of 
the energy distributions with respect to the 
flow rate is practically invariant with regard 
to those locations. This invariance is due to 
the fact that within the variations in question 
the energy exchange between stream tubes is 
negligible, and is the reason for the adoption 
of the description and its success. 

Dr. Dyne's first question concerns the 
slipstream rotation, which in the design of 
optimal propellers, conceived as rotor-stator 
stages, is not "ignored" but has to be avoided 
right from the beginning. This optimum condi- 
tion does, however, not imply, as Dr. Dyne 
does, that the axiomatic system needs to be 
changed to account for slipstream rotation, 
which is present in general. In my view this 
is taken into account by adequate interpreta- 
tions of the concepts of jet efficiency and 
propeller factor of merit, which may be not 
the ones Dr. Dyne has in mind. 

The second point raised by Dr. Dyne con- 
cerns the problem of extrapolation, which I 
have dealt with in great detail in my paper, 
but hardly outlined in the presentation. As I 
have stated earlier the problem is essentially 
the reliable estimation of second derivatives. 
Consequently the proposal to restrict consider- 
ations to linear relationships is not accept- 
able, as it implies additional inadequate axioms 
leading to a number of inconsistencies. 

In a practical application of the proce- 
dure using propulsion tests at only five steady 
conditions I have avoided the problem of extra- 
polation by using the physical state of vanish- 
ing thrust. As Dr. Dyne already states addi- 
tional measurements of pressures may be quite 
unacceptable in routine work, full scale in 
particular. Although the model had an extremely 
full form the results turned out to be very 
close to those obtained by the traditional pro- 
cedure. In that particular case the goal was to 
compare the propulsive factors at the model 
without and with boundary layer suction, as 
explained in the paper rather too briefly. The 
results, which will be published in a German 
research report shortly, agree perfectly well 
with corresponding geosim tests carried out by 
the Berlin Model Basin some twenty years ago. 

Dr. Abe in his contribution addresses the 
problem of routine application in power predic- 
tions. From my paper and the presentation it is 
evident that we are still far from such a rou- 
tine. But it is hoped that future applications, 
full scale in particular, will help to improve 
our present state of knowledge on scale effects 
and help us in providing more adequate power 
predictions, even for unconventional configura- 
tions, which Dr. Abe is referring to and where 
the traditional procedure is not applicable. 
The tests with boundary layer suction just 
mentioned have certainly been an important step 
towards the final goal of properly simulating 
full scale conditions on model scale. In my 
opinion this technique will in fact have to be 
applied for the investigation of unconventional 
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configurations. There will be no chance to 
collect enough data on scale effects for power 
predictions along the traditional line, even 
in another hundred years of testing. 

Prof. Nakatake refers to the same problem 
of flow dissimilarity between model and full 
scale and mentions the idea of Dr. Schoenherr 
to account for this dissimilarity by changing 
the propeller geometry. In my view this proce- 
dure would require too much knowledge in ad- 
vance, more maybe than can be gained from the 
subsequent tests. The same argument applies to 
the change of hull geometry as proposed by Dr. 
Björheden in an oral contribution to the dis- 
cussion of the paper by Professors Yamazaki 
and Nakatake. 

With regard to Prof. Nakatake's question 
concerning the presence of rudders, it may be 
inferred from the title of the paper that rud- 
ders are always included: There are no ships 
without rudders. If we want to study the behav- 
iour of the rudder drag in detail special tests 
will have to be designed. At the present stage 
I have not yet looked into this problem and may 
consequently offer no particular procedure. 

In an oral contribution Dr. Huang, DTNSRDC, 
expressed the opinion that in five years time 
we might compute everything and that the whole 
theory presented might be not necessary any 
more. Quite apparently this opinion is based 
on a misconception of the present undertaking, 
which aims at solving problems hydrodynamic 
theory due to its very nature can neither state 
nor ever solve. As mentioned at the beginning 
of the presentation the present theory has 
little or nothing to do with hydrodynamic theo- 
ry. It is rather an example of hydromechamc 
systems theory, macroscopic theory of ship pro- 
pulsion in particular, which may be interpreted 
by hydrodynamic theory but not replaced. The 
relationship between both theories is the same 
as that between thermodynamics and quantum 
mechanics. 

To be more specific: If we want to know 
the propulsion factors of a given ship there 
is no way except taking measurements at that 
ship under service conditions and evaluating them. 
Clearly the traditional procedure cannot be 
applied at full scale: Nobody has ever made an 
open water test with a propeller of 6 or 8 m 
in diameter. And no hydrodynamicist has so far 
defined or computed the resistance of a self 
propelled vehicle. The present paper now for 
the first time proposes a coherent set of con- 
ventions which, if adopted or agreed upon by 
the community, may help to solve an urgent pro- 
blem, which can clearly not be solved by hydro- 
dynamic computations. 

Although it may sound pretty pretentious 
I would finally like to quote from the words 
with which R.E. Froude in reference to the 
scope of his paper concluded the discussion 
in 1883: . 

It (the paper) professes to suggest 
a way which, I think, is the only way of doing 
it if it can be done, though I am not as yet 
certain that it can be done very effectively 
or successfully. ... I feel that, even if we 
are baffled ..., this paper has a value, in 

that the propositions which I have put forward 
are a contribution to the science of the sub- 
ject, and, I think, in virtue of the light 
thrown on the question by the propositions, 
we shall be able to do a good deal in analysing 
and systematising the results which are to be 
obtained from full-sized trials with ships; and 
that we can thus make much better use of results 
obtained from steamship trials than can be made 
without the light which is thrown on the gener- 
al question of propulsive efficiency by this 
investigation." 

501 



SESSION VIII 

FRONTIER PROBLEMS 



CALCULATION OF STERN FLOWS BY A TIME-MARCHING 

SOLUTION OF THE PARTIALLY-PARABOLIC EQUATIONS 

H.C, CHEN AND V.C, PATEL 

ABSTRACT 4> 

The     major     features      of     a      general (5\n ,?) 
numerical method for the calculation of the 
flow over the stern and in the wake of a 
three-dimensional    body   are   described.       The Subscripts 
method is based on the solution of the 
partially-parabolic  equations   for a  turbulent NE.SW, etc. 
flow in curvilinear, nonorthogonal, numer- 
ically-generated, body-fitted coordinates 
using the novel "finite-analytic" numerical 
scheme.     It  is   shown  that  the  entire zone of e,w,d,u,etc. 
viscous-inviscid interaction can be captured, 
thus avoiding separate viscous-flow and 
potential-flow     calculations     and     iterative p 
matching, by using a large enough solution 
domain     and     coordinate     stretching. The $ 
generality  and   flexibility  of  the method  are 
demonstrated      by      applications      to      two- 
dimensional,        axisymmetric        and        three- (? ,n ,? ) 
dimensional   bodies. 

=   U,V,W,k,  or e 
turbulent viscosity 
general   nonorthogonal 
coordinates 

nodal   points of the 
numerical   element (north- 
east,  south-west, etc.); 
Fig.  5(a) 
nodal   points  in a staggered 
grid  (east,west,downstream, 
upstream,etc.);  Fig.  5(b) 
central   point in numerical 
element;  Fig.  5 
coefficient or value 
corresponding to U,V,U,k 
or e 
derivatives with respect to 
these space variables 

PRIMARY NOMENCLATURE 

b^.g ,gij,J 
ij 

UNE> °SU- 

fi 

k 
P 
«eff 

(U.V.W) 

(x,r,8) 

etc. 

coefficients in equations 
(11), (14); equations (13a); 
4> =   U,V,U,k, or e 
coefficients in equations 
(13b,c); <)> s U,V,W,k, or e 
geometric quantities from 
coordinate transformations 
finite-analytic coef- 
ficients; equations (18) 
grid-control functions; 
equation (1) 
metrics in orthogonal 
coordinates 
turbulent kinetic energy 
pressure 
effective Reynolds number, 

(v + v p 
source functions in 
equations (11,14); equations 
(13) 
time 
velocity components in 
(x,r,8) coordinates 

basic cylindrical 
coordinates (see Fig. 1) 
rate of dissipation of 
turbulent kinetic energy 

1.  INTRODUCTION 

Experiments and calculations indicate 
that first-order boundary-layer equations 
adequately describe the flow over a large 
part of a ship hull if phenomena associated 
with the free surface are excluded. The 
assumptions embodied in boundary-layer theory 
begin to breakdown gradually over the stern, 
in a region which may be typically 10 percent 
of the ship length. Experimental information 
pertaining to the evolution of the flow over 
the stern and in the near wake has been 
reviewed by Patel (1982). Among the features 
which differentiate the stern flow from that 
in the boundary-layer over the hull are: (a) 
a rapid thickening of the viscous layer; (b) 
variation of pressure across the layer, 
implying a strong viscous-inviscid 
interaction; (c) the development of a large 
longitudinal vorticity component which may 
lead to a free-vortex type of separation; and 
(d) a general reduction in the level of 
turbulence. The wake of the ship evolves 
gradually from this flow and also shows bas- 
ically the same features. An important 
observation that also emerges from the ex- 
periments is that there is usually no region 
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of flow reversal in the direction of ship 
motion. The flow features noted above are 
precisely those which can be addressed by 
the so-called partially-parabolic or semi- 
elliptic equations which are obtained from 
the fully-elliptic Navier-Stokes or Reynolds 
equations by neglecting terms which represent 
diffusion in the predominant flow di- 
rection. In particular, these equations can 
be used to describe the flow in the region 
between the thin boundary layer upstream and 
the wake far downstream of the hull. 

Previous solutions of the partially- 
parabolic equations in three-dimensional 
external flows are quite limited. Abdel- 
meguid et al. (1979) presented the first 
application to ship hulls and Markatos et al. 
(1980), Muraoka (1980, 1982), Tzabiras and 
Loukakis (1983) and Tzabiras (1983) have 
pursued it further. All of these use 
essentially the same numerical scheme, based 
on the work of Patankar and Spalding (1972), 
and the k-e model of turbulence. 

This paper is also concerned with the 
solution of the partially-parabolic Reynolds- 
averaged equations.   However, the present 
approach differs from the previous work in 
several important respects.  First, in the 
interest of generality and flexibility for 
applications to arbitrary ship hulls, the 
method  uses  numerically-generated,  body- 
fitted nonorthogonal coordinates which are 
continuous in all three dimensions.  This 
approach  also offers  the opportunity to 
investigate  the  influence  of  coordinate 
choice on the numerical solutions.  Secondly, 
a large solution domain is chosen such that 
the  entire  zone  of  viscous-inviscid 
interaction is captured.  Thus, it is not 
necessary  to  perform  a  potential-flow 
calculation or match the viscous and inviscid 
solutions.  The results of the method can 
therefore be used to guide the selection of 
appropriate  matching  conditions  in  con- 
ventional viscous-inviscid interaction tech- 
niques.  Thirdly, the equations are solved 
using the novel "finite-analytic" numerical 
scheme of Chen and Chen (1982, 1984) which is 
quite different from conventional  finite- 
difference and finite-element methods.  It 
uses analytical solutions of the locally- 
linearized  momentum  equations  for  each 
numerical cell in the computational domain 
and combines them to obtain the global 
solution.   Fourthly, the pressure field, 
which  is elliptic,  is obtained from a 
modified version of the SIMPLER algorithm of 
Patankar   (1980)   which   improves   the 
convergence  properties  of  the  solution. 
Finally, the method is formulated for general 
unsteady three-dimensional flows and can be 
readily extended to fully-elliptic flows.  In 
the present applications, the steady-state 
solutions are obtained by a time-marching 
procedure  in which  time  serves  as  an 
iteration parameter. 

The various aspects of the method will 
be described in detail in a forthcoming 
report (Chen and Patel, 1984). Therefore, it 
suffices  here to describe them briefly. 

Although our primary interest lies in the 
flow over ship sterns, with all the 
complicating factors noted earlier, we shall 
also present solutions of some two- 
dimensional and axisymmetric flows in order 
to demonstrate the detailed performance of 
the method. 

2. OUTLINE OF THE SOLUTION PROCEDURE 

2.1 Coordinate System 
Tu previous solutions for ship hulls, 

the Reynolds equations were first written in 
cylindrical polar coordinates (x,r,e), with x 
in the direction of ship motion (Fig. 1). 
After neglecting the x-derivatives of the 
stresses, these were transformed such that 
the hull surface became one of the coordinate 
surfaces. Abdelmeguid et al. and Muraoka 
employed analytical transformations which led 
to a nonorthogonal distorted polar coordinate 
system in the (r,e) plane, while Tzabiras 
and Loukakis employed conformal-transforma- 
tion techniques to generate orthogonal co- 
ordinates in this plane. In both cases, the 
coordinate lines in the (x,r) planes were 
nonorthogonal. The improved results obtained 
by the latter authors have been attributed to 
this difference in the coordinates. 

Here we shall follow the increasingly 
popular method of numerical grid generation, 
as suggested recently by Cheng and Patel 
(1983), since it offers the advantages of 
generality and flexibility and, most import- 
antly, transforms the computation domain into 
a simple rectangular region with equal grid 
spacing. 

In the numerical grid-generation tech- 
nique, we seek a coordinate system for the 
numerical analysis of the flow in the domain 
D shown in Fig. 1. This domain is bounded by 
an arbitrary hull surface S, the ship 
centerplane C, the free surface or water 
plane U, the upstream and downstream sections 
A and B, respectively, and the surface I in 
the external flow. Section A may be located 
at a hull section where the boundary layer is 
thin, and B may be placed at a section in the 
far wake. The basic idea of a boundary- 
conforming curvilinear system is to find a 
transformation such that the curvilinear 
boundary surfaces of the physical domain D in 
cylindrical or in any other basic orthogonal 
coordinate system, say (x1, x , x ), are 
transformed into boundaries of a simple 
rectangular domain in the computational 
space (C , n, c) shown in Fig. 2. 

With the values of the curvilinear 
coordinates specified on the boundaries of D, 
it then remains to generate the values of 
these coordinates in the interior of D. This 
is a boundary-value problem in the physical 
field with the curvilinear coordinates 
(5,n,c) as dependent variables and the 

orthogonal coordinates (x1, xS xJ) as the 
independent variables, with boundary 
conditions specified on the curved boun- 
daries. Thus, a system of elliptic partial 
differential equations can be used to gen- 
erate the coordinates since the field sol u- 
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tion of such a system is determined entirely by 
the boundary conditions. However, the elliptic 
system must be chosen such that it precludes 
the occurence of extrema in the interior of the 
domain and assures a one-to-one mapping between 
the physical and the transformed planes. 

For the general three-dimensional but 
simply-connected domain of interest here, a set 
of Poisson equations of the form 

v25 = f1^, n, c)   v2n = f2(S, n, c) 

v c = f (€. n> c) 

may be taken as the basic coordinate gener- 
ating system. Here V is the Laplacian 
operator in orthogonal coordinates (x1, x , 
x*). The nonhomogeneous source functions f1 

may be assigned appropriate values to yield 
the desired concentration of coordinate 
surfaces. The choice of these functions for 
specific applications are discussed later. 
Equations (1) are subject to either Dirichlet 
or Neumann boundary conditions on the 
boundary surfaces, which are surfaces of 
constant 5 , n  or ?. 

Since    it    is    desirable    to   perform   all 
numerical     computations    in    the    transformed 
(5,n,s) plane with equal grid spacing, 

i.e., AS = An = A? = 1. equations (1) are 
cumbersome to use. It is more convenient to 
invert them and solve for the orthogonal 
coordinates. In other words, the dependent 
and independent variables are interchanged so 
that the orthogonal coordinates (x , x , x ) 
in the physical plane become the dependent 
variables,   with    the   curvilinear   coordinates 
(C.TI.C) as the independent variables. The 

boundary-value problem in the transformed 
field then involves generating the values of 
the orthogonal coordinates x1 = x1 (5 , n , 5 ) 
in the interior from the specified boundary 
values of x1 on the rectangular boundary 
surfaces of the transformed field. Since the 
boundaries in the transformed plane are all 
rectangular      (constant 5 , n, or c plane), 
these computations are carried out on a cubic 
grid regardless of the shape of the physical 
boundaries. 

The  inversion of equations  (1) yields 

vV= 1 
hlh2h3 V? 

h?h. 

„2 2 13     f
hlh3, X   "Wlax^V 

(2) 

hi are the metric coefficients in the chosen 
orthogonal coordinates x1, and g1J is the 
conjugate metric tensor. For example, for 
the cylindrical polar coordinates (x,r,e), 
the metrics ^ are (1, 1, r), respectively, 
and g1J  is given by equations  (12b,c). 

Equations (2) can be solved numerically 
in the transformed domain (5 , n , c ) when 
proper boundary conditions are specified on 
all boundary surfaces. If f1 = f = f =0, 
the transformation is said to be homeomor- 
phic. In general, however, non-zero values 
are assigned to these functions to exercise 
control   over.the grid distribution. 

Two examples of the numerical grid are 
shown in Figs. 3 and 4. The former shows the 
coordinates for an axisymmetric body. In 
this case, the constant-5 stations are chosen 
to be the constant-x planes (i.e., tranverse 
sections). The     first     station, 5=1, is 
located at x = 0.6L while the last station, 

5 = 60, is located in the far wake at x = 
5.881L, where L is the body length and x is 
axial distance from the nose. In the radial 
direction, the outer boundary is placed at r 
= 0.4609L which corresponds to n = 23 in the 
transformed domain. Under this arrangement, 
equations  (2)  reduce to 

9UV g22%n+ 2gl2rV + flf'+ f2f- 5n 

with f1- 
11 x55 

(4) 

(5) 

for the radial coordinates r(5,n). In order 
to obtain the desired grid concentration 
inside the boundary layer, the control func- 
tion f2 is prescribed by 

f2(5,n] 

where 5 , 

FA(n) 

rr 
FB(n) 

5  <5A 

5 > 5 

+   I    Fc(e,n)     CA< 5 < 5B    (6) 

B 

15, 42,      FA and  F, rB 
determined   by 'the   irode   distributions "at   the 
initial   and final   stations as 

5 = 1, 
FA = 

22 rnn 

■9 V 

FB = -922>- 
n 5=60 

.2 3 13    rhl\ 

where 
9 ?                  2 

2         11 3 22    3     x  „33    3 
V    =  g     ^-7 + g     —? + g     —7 

35 3n                3r 

„  12    32    x   ,13      32   .   ,n23    32 

+ 2g     innnr + 2g     5T5F + 2g     ^ 353"n 353? 3n3? 

+ f1 3- + f2 L- + f3 i- +  f    W 3n 3? 

and  Fc is given by 

FC = [(5B"?)   V  (5  -?A}  FB]/(EB- 5A5 

Equation (4) was approximated by finite- 
difference equations using a central- 
difference scheme. With the Dirichlet 
boundary conditions specified at the initial 
and final stations, the resulting system of 
algebraic equations was solved by an SOR 
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algorithm with an over-relaxation factor of 
1.8. As seen from Fig. 3, the boundary- 
fitted coordinates thus obtained evolve 
smoothly from the body into the wake, and 
give the desired grid expansion in the thick 
boundary layer region. 

Figure 4 shows the coordinate system for 
the three-dimensional 3:1 elliptic body of 
Huang et al. (1983). In this example, the 
outer boundary is a cylindrical surface of 
radius r = 0.8137L which corresponds 
to n = 19 in the transformed plane. For 
simplicity, the constant - 5 stations are 
again chosen to be the constant-x planes, 
with the initial (? = 1) and final (? = 66) 
stations located at x = 0.5L and x = 5.27L, 
respectively. In      the      circumferential 
direction, 7 stations are used, with ; = J. 
and 6 corresponding to 6=0° and 90°, 
respectively. Under     this      arrangement, 
equations  (2)  become 

+ 2g23rn?+ f
1 r?+ f

2rn + f3r?= I       (7a) 

gUe5C+ g2 V A?
+ 2gl V 2Ac 

+ 2g236       + f1 6r+ f
26     + f39   = 0    (7b) 3     n? i i <> 

The control functions f1 and f2 defined in 
equations (5) and (6) are again employed 
here, while f (c) is determined by the grid 
distribution on the outer boundary by 

33 6
?? 

19 
(8) 

In order to facilate the use of wall 
functions in the turbulence model, Neumann 
boundary conditions are specified on all 
boundaries; i.e., n = 1,19; ? = 2,6; of the 
constant - ? stations to ensure local 
orthogonality of these coordinates. Equa- 
tions (7), are then solved by a finite- 
difference method. Because the central- 
difference scheme used in the previous 
example indicated a lack of convergence for 
large f1, f2 and/or fJ, an exponential 
scheme, based on the one-dimensional analytic 
solution (see Spalding, 1972, for example) 
was employed here to formulate the 
discretization equations. The resulting 
system of algebraic equations was then solved 
by the tridiagonal matrix algorithm with an 
over-relaxation factor of 1.4. The boundary- 
fitted coordinates thus obtained are nearly 
orthogonal at each cross-section, and also 
provide a desired expansion in the thick 
boundary layer. Fig. 4 shows several views 
of the coordinates in the stern region. 

2.2 Governing Equations 
Since most of the applications presented 

in this paper are associated with external 
flows past axisymmetric and three-dimensional 
bodies, such as ship forms, it is convenient 
to choose cylindrical polar coordinates as 
the basic coordinate system in the physical 
domain. Formulations starting with other 
basic coordinate systems can be derived in a 
similar manner. Limitations of space do not 
allow us to write out all the equations in 
full. Consequently, we shall highlight only 
the overall features. 

The exact Reynolds-averaged equations of 
continuity and momentum are first written in 
cylindrical coordinates (x, r, e) shown in 
Fig. 1. The six Reynolds stresses appearing 
in the momentum equations are related to the 
corresponding mean rates of strain through an 
isotropic eddy viscosity v. which, in turn, 
is related to the turbulent kinetic energy k 
and its rate of dissipation e by 

v = C 
t v 

(9) 

where C is  a constant  and k and e are 
obtained from two model equations. 

Although it is possible to transform the 
independent variables as well as the 
dependent variables in these equations from 
the (x, r, 8) coordinates to the (5 , n, ?) 
coordinates of the previous section, we 
consider only the transformation of the 
independent space variables leaving the 
velocity components (U, V, w) in the original 
(x, r, e) coordinates. This approach is 

similar to that used by some previous 
investigators and results in some simpli- 
fications in the equations without loss of 
generality. If such a transformation is 
made, and all quantities are made dimension- 
less by the characteristic velocity and 
length scales U and L, respectively, where 
Un is the stream (or body) velocity and L is 
the length of the body, the equation of 
continuity becomes 

(bju + b*V + b^W)5 + (b2U b2V + b
2W)n 

+ (b3U + b3V + b3W)? = 0 (10) 

and  the  five  transport  equations  for 
4> = U, V, W, k, e  can be written in the 
compact form 

g1 V A/ 93\c= 2A*V 2Vn+ Vs 

+ Vt + h (ii) 

where   the   subscripts 5, n  and?  denote   deri- 
vatives along those coordinates. 

All quantities appearing in equations 
(10) and (11) are defined in the following 
set of equations: 
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1 

r(rne?- rc6n)  r(x^- x^) x„rc- 

r(rcec-rce?)  r(x?V x^) x?V 

r(rsV rnee> r(Vr xeen} Vn' 

Vn 

V? 

99 

99 

99 

99 

99 

11 

22 

,33 

12 

13 

23 
99 

9ll 

922 

933 

912 

9l3 

923 

922 933 " 923 
2 

911 933 " 913 

911 922 - 9i22 

9921 = 9i3 923 " 912933 

99      = 912 g23 " 913922 
32 gg 912 913 - 923911 

2        2        2 2 

2        2        2 2 

x2 + r2 + r2e2 

921 = Vn + Vn + r Tn 

931 = \\ + Vs + r "C"? 

932 " V; + V? + r "n"? 

J = /g 

XC    xn    x? 

r5    rn    r; 
re? ren re? 

^=^(bK-K2-K3)-^3 

R 
2B, eff ,J- 1 a. k2 2  ,   .2 3,      f2 b,^   + b„a,   + b,a, )  - T 

1  2  .   . 1  3, 
^'T*   '  °2a* + b3<V 

Vs 
(12a) 

(12b) 

(12c) 

(12d) 

D,   = 4Ü (bk1 + bL2 + bio.3) - f1      (13a) 

E4> _ a* Reff 

V S* " 2<912*5n+ *\,+ 923*„?) 

-J " V " T- <b2 \,,+ b2 vt,n + b2 vt)?> 

%-V*-VbJvt.5+b3vt.n + bK.e> 
(13b) 

aU = *' bU = 2' CU = *' dU= 1 

av = 1, bv = 1, cv = 2, dv= 1 

a,, = 1.    b, = 1,      cu = 1,     du= 2       (13c) 

ak=V    bk m l'     ck = *•     dk= X 

ae = ae'    be=  *' c£  =  1,      de=  1 

(13d) 

^ = Reff[j<bU+b2.Pn+bk) 

♦lj<biVbiVbikc) 

-V{b2Wtrf+biwt.n+b2»trf
) 

J 

(bK + biv, + bK) 

-7(b3WbK/b3vt,?> 

(bK + blV bK)] 

-7^t.5+blvt.n+bK.c) 

(b2Uc+b2Un+b2UC) 

->3vt,C+b3vt,n+b3vt,?> 

[i(b^+b
2

2Wji+b
3

2wc)-^ 

+ |j(b3Vb3Vb3M
5
)+7 (13e) 

+ IT ^v b2y b3V 

-7(bk,5
+b?vt,/bi\>5> 

^v biv b3V 

-j(b2vt,?
+b2vt,,+ b2vt,^ 

[j <b3V
? 

+ b3Vn+ bsV 

2V „1 i*. (biv.  c+ b^v.    + b^v      )} rJ v 3 t,C      3 t,n      3 t,c 
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stream    boundary   A    is    placed    at    a    section 
- i_ (blv    + b

2
v + b^V  )  + Xr (13f) where   the   boundary  layer  is   thin   so  that  the 

rJ      3£ 3n       3? / man   vei ocity   components   (U,   V,   U)   and   the 
turbulence   parameters  (k,e)  can   be   prescribed 

s    =  -a    R      (G-e) (13g) readily    from    a    boundary-layer    calculation. 
k k    eff The    location    of   the    downstream    boundary   B 

2 should    be    "far   enough"    from   the   body   such 

s    -iR„(C,T6-C,r) (13n) tnat   the   local    flow   is   Parabolic'    Ue-    no 

e e  eff     el  k zl  k influence    propagates    upstream    from    there. 
The  coordinates  and  the  numerical   scheme  used 
here     enable     this     boundary    to     be    placed 

G = v    r2- [bl\i + b?U + b,U  ) several   body-lengths downstream of the  stern. 
tj2      1Clnl? The  extent  of the  solution  domain  normal 

to   the   body   can   be   taken   to   be  of  the   order 
+ 2    (b^    + bh + b^V  ) of   the   thickness   of  the   viscous   flow  but   in 

iterative     solutions     to     account     for     the 
+  2 \- (b1U + b^W + b,W  )  +-] influence   of   the   viscous   flow   on   the   outer 

J      3?      3 "      ix-        r potential    flow.       In   the   present   approach, 
, ! o o      7 such    iterations    are    avoided    altogether    by 

+ JL (b}v + b?V    + b,V + b,Ur+ b,U + b,U„ ) placing     the     external      boundary t  of     the 
j2      IS      lT*        i?      l 5      L n      c c solution     domain    at    a     sufficiently    large 

distance   from   the   body   so   that   uniform-flow 
+ i_ (b}\i + b,U + b?W + b,U,+ b,U    + b,U) conditions    can    be    imposed.        The    distance 

j2      !?      lT1      ic      J^      ■in        Je required    to    capture    the    zone    of   viscous- 
inviscid   interaction   in   this   manner   depends 

+ \l (bk.+ b^W    + b,W + bhlc+ b,Vr,+ b,V  ) upon  the body geometry. 
J25211        itit,ii\i<, In  the  girthwise  direction,  the  solution 

is  bounded  by the  free  surface W and the  ship 
.Ü]2} (13i) centerplane    C.        Plane-of-symmetry    boundary 

r conditions    are    imposed    on    these    surfaces. 
All   qualities   in   equations   (12)   involve   only The       present       formulation       is       therefore 
coordinate   geometry  and   can   be  obtained   from restricted   to   double   models.       All    examples 
the  solutions  of equations   (2).     In equations presented  in this  paper are of this  type. 
(13),   p   is   pressure;  C    =   0.09,     C  ,  =   1.44, Since  the  turbulence model   employed  here 

C    '=   1.92, a.   =   1.0,y and a    =   l.V are   the does    not   extend    into   the   sublayer   and   the 
standard    constants    in    the   turbulence-model transition     layer    on     the     hull,     the    hull 
equations;   and   Rpff   =  (v  +v   )     , where v   is boundary   conditions   are   prescribed   by   a   set 
the     molecular     viscosity     and v    the     eddy of   "wall    functions".      At   least   two   of   the 
viscosity. grid   points   close  to  the  wall   are   located   in 

Equations    (10)    and    (11)    are   still    the the   fully-turbulent   layer,   and   it   is   assumed 
exact   equations   insofar   as   no   approximations that   the   resultant   velocity   at   these   points 
have   been   made   beyond   those   inherent   in   the satisfies   the   law  of  the  wall   (corrected   for 
turbulence   model.       Formally,    equation    (11) pressure   gradients)   and   the   velocity   vector 
can   be   rendered   partially   parabolic   by   neg- in    this    region    is    collateral.        The    shear 
lecting    the    first    term    which    involves    the velocity U        is    determined   iteratively   from 
second    derivative    with    respect    to 5.   Phy- the  velocity at  these  points  and  this  is used 
sically   this   is   not   the   same   as   neglecting to   provide   the   boundary   values   of k and e  at 

4>      nor    does    it    imply    that    diffusion    in the   first   mesh   point   through   the   assumption 
ei!fier    x    or 5   direction    is    neglected.       In of  local   equilibrium  between  turbulent  energy 
fact,     if     all     diffusive     terms     in     these production and dissipation, 
directions   are   to   be   dropped,   the   equations The    boundary   conditions    which    are    ap- 
become   much   more   complicated,   especially   in plied  on  the  various  surfaces  of.the solution 
the     curvilinear     nonorthogonal      coordinates domain are  summarized  below, 
adopted   here.      Be   that   as   it   may,   we   shall 
neglect 4>       in    equation    (11)    and    solve   the Initial   condition:  p = 0 everywhere 
resulting55   equation,       together      with      the _ 
equation      of      continuity      (10),      as      the Upstream, A: U,  V, W,  k, e   prescribed 
partially-parabolic    system.        This    approach 
has   the   advantages   that   the   subsequent   nu- Downstream,  B: p^= 0 
merical   procedures  can  be  readily extended  to 
solve  the  fully-elliptic  equations  or to  take External, I: p=0,  U=l, U =  k^= e^  -0 
into     account     the     neglected     terms     in    an 
approximate    manner.       This    then    offers    the Planes of 
opportunity   to   study   the   limitations   of   the Symmetry,  C, W:        U = 0,  U = V - k

?-
£

?-  ° 
partially-parabolic approximations. 

Hull   surface S:        wall   functions via U 
T 

2.3    Solution Domain and Boundary Conditions 
The   solution   domain   for   a   typical    sHip 2.4    Numerical   Scheme 

stern   is   shown   in   Figs.    1   and   2.      The   up- Thl     partially-parabolic     form     of     the 
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convective-diffusion equations (11), namely       * = CNE+ NE+ CNW*NW+ CSE*SE+ CSW*SW+ CEC*EC 

+ Cwc*wc+ CNC*NC+ CSC((.SC- Cpg    (18) 
g"<i>     + g-3'3*     =2A^<(>  + 2B. ♦  + D A,+ Ejp.+ S, y   %n    b   *c?     <Tc       4> n     <|>TC     <|>Tt     $ 

(14) 

are solved using the finite-analytic numeri- 
cal scheme of Chen & Chen (1982, 1984), 
assuming that the pressure field is known, 
and the equation of continuity (10) is used 
to update the pressure field. These proce- 
dures are outlined in the following. 

In the finite-analytic approach, equa- 
tions (14) in each rectangular numerical 
element, A? = An = Ac = 1, are locally 
linearized as 

g22* + g nn    bp 
33A 

rCC 
2<yPv 2<VpVg (15) 

with 

g=<Vp Vu^-42 V C1)+ (Vp 
where the subcript p denotes the center node 
of the element shown in Fig. 5(a) and x is 
the time increment. Both the time and £ - 
derivatives are approximated by backward- 
difference formulae, subscript U denoting the 
upstream nodal value, and superscript 
(n-1) denoting the nodal value at the 
previous time step. If we introduce the 
coordinate-stretching functions 

where 
Bk 

CSC = (? cosh Bk ) PA 

LNC  e  LSC 

eAh 
CWC = ^Z coshAh) PB 

2Ah„ 
CEC = e °wc 

„Ah+Bk 
"SW  U cosh Ah cos 

„  _ -2Ahr 

OFX^A-V 

JSE 

CNW = e 

"SW 

2Bkr 
"SW 

-    -2Ah-2Bk- 
LNE " e       SW 

r _ h tanh Ah n „ » _ k tanh Bk n p » ur, _ 73  U-r.; m  V1_rR' ~ZA~ 2B~ 

22 
, ? 

'9, 
33 

(16) 

equations (15) reduce to the standard two- 
dimensional convective-transport equations 
described in Chen &  Chen, i.e., 

fc*5*+*n*n*= 2A*c*+ 2B*n*+ 9 (17) 

with 

A =-±± 
/q 

(BJ ♦ 'P 

/9P 

for a local element with dimensions 

A5 = 1 

An* = k 

^g 
22 

A?* = h = 
33 

/9 v 
With the boundary conditions properly speci- 
fied, equation (17) can be solved analyti- 
cally by the method of separation of var- 
iables for each local element. A nine-point 
finite-analytic algebraic equation is then 
obtained by evaluating the analytic solution 
at the center node p of the local  element: 

PA = 4E2Ah cosh Ah cosh Bk coth Ah 

D        i  j. Bh coth Bk  in      ,\ 
HB " 1      Ak coth Ah  lKA~  l; 

E2= 

X h m 

m=l 

(m 

-(-D"'(Xmh) 

[(Ah)2+ (Xmh)
2]2cosh /A2+ B2+ X* 

The above coefficients are simple rearrange- 
ments of those given in Chen & Chen, but are 
more convenient for efficient numerical 
calculations. Note that 

CNC + CSC 

CEC + CWC = PB 
CNE + CNW + CSE + CSW 

Since both Pn and PB are positive and (PA + 
PB) < 1 , th e fimte-analytic coefficients 

upwind 
J2Ah| 

inor of 

are always positive. Also, the exponents in 
these coefficients provide a gradual upwind 
bias as the cell Reynolds numbers 
and/or |2Bk| increase. .Thus the behavi 
the convective-diffusion equation is properly 
captured and false numerical diffusion is 
minimizied due to the inclusion of all corner 
points. For large cell Reynolds numbers, the 
series summation in E2 can be avoided by 
considering the asymptotic expressions of PA 
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and   Pg   based   on 
characteristics, i.e., 

the  theory  of where 

P = 0, P = 1 - Bh/Ak 
A D ' ' 

]AkI > jBh 

|Ak j < )Bh| : Pg= 0, Pft= 1 - jAk/Bh| 

Since the downstream influence is negligible 
at large cell Reynolds numbers, no apprec- 
iable changes are observed due to the above 
approximations, but the computing time is 
greatly reduced. 

By substituting the nonhomogenous term g 
in equation (17) into equations (18), an 
eleven-point finite-analytic formula for 
unsteady, three-dimensional partially-para- 
bolic equations can be obtained: 

1 

1 + C. (VP+ 'A 
ICNE*NE+ cNW«j>r 

CSE*SE + CSW*SW + CEC*EC+ CWC*WC + CNC*NC 

(EJr 
+ CSC*SC +  <VpCpV     T 

'p /- *n-l 

(19) 

It is seen that $ depends upon all the eight 
neighboring nodal values in the cross- 
sectional (n?) plane as well as the values 
at the upstream node U and the value at the 
previous time step (n-1). Since the finite- 
analytic coefficients are all positive, the 
elliptic nature of the flow at each cross- 
section is represented accurately. Note that 

4> is not directly dependent upon the 
downstream nodal value <f>p. This parabolic 
feature enables us to employ a marching 
procedure along the 5- direction as well as 
in time. However, the flow is not truly 
parabolic in the ?- direction since the 
pressure gradient P£, which appears in the 
source functions, rntroduces the downstream 
influence of the elliptic pressure field. 
Due to this indirect pressure transmission, 
several sweeps in ?- direction are needed to 
obtain a fully-converged pressure and velo- 
city field. 

If the pressure is known a priori, 
equations (19) can be employed directly to 
solve the partially-parabolic convective- 
diffusion equations (14) for U, V, W, k 
and E . However, in most practical applica- 
tions the pressure field is not known and 
must be determined indirectly through the 
equation of continuity. The SIMPLER algor- 
ithm of Patankar (1980) has been modified and 
extended to update the pressure field. 

In the present algorithm, the pressure 
field is obtained directly tjirojjg^ the de- 
finition of pseudovelocities (U, V, W): 

Ud " Ud " dd(PD-Pp> 

Vn = "Vn " dn<PNC- Pp) 

We = "We - de ^EC" Pp> 

(20) 

dd = 
(Reffb!>dCd 

JdCi ♦ cd(Du + Ji)d] 

V1 + Cn<V A] 

J
eV + Ce<DW + A] 

and Cd, Cn 
coefficients 

and Ce are the finite-analytic 
C evaluated at the staggered 

velocity nodes d, n and e shown in Fig. 
5(b). Note that the pseudovelocities defined 
here still contain part of the pressure 
gradient terms if the coordinate system is 
nonorthogonal in the physical plane. If we 
require the velocity field to satisfy the 
discretized equation of continuity of the 
form of 

(bju + b*V + bh 3"'d 
(b}u + b^V + bH 

(b?U + b?V + b3W>r 

(b^U + b*V + b^w)s 

(bfu + b^V + bjv)e 

(b^U + b^V + b^W),. 0 (21) 

an equation for pressure can be derived in 
terms of the pseudovelocities. Note that 18 
velocity components are involved for each 
small control volume. However, due to the 
staggered grid system employed here, only six 
of these, i.e. Ud,Uu,Vn,Vs,We, and Ww, can be 
obtained directly from the governing 
equations (14). It is therefore necessary to 
approximate the remaining twelve by in- 
terpolation. A linear interpolation is used 
to obtain these from the values known at the 
previous iteration, so that the continuity 
equation becomes: 

(b}u)d- (bjü)u ♦ (b2V)n- (b2V)s 

+  (bgW)e    -   (b^W)w + D1 = 0 

where 

Dx =  [b\\l + b^l)d -  (b*V + b\v)u 

+ (b^U + b^W)n - (b^U + b^w)s 

(22) 
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+ (b^u + b|v)e- (bju + b|v)w djp EC "PP> 

is the mass source obtained from the velocity 
field at the previous time step or sweep. If 
we require the velocity field to satisfy 
equation (22), an equation for pressure can 
be derived: 

apPp _ W auPu+ anPNC+ asPsC 

+ VEC + Vwc ■ *D (23) 

where 

ad=  (bl>ddd- au -  <blW    an -  <b2>ndn 

as= <b2>sds« ae " <b3>ede'    aw = <b]'wdw 

ap= ad+ au + ae + aw + an + as 

D =  (b} U)d-  (bj U)u +  (b| V)n 

"  <b2 "V)s + (b3 *V  (b3 *W)w " Dl    (23a> 
It should be noted that no additional 
approximations are made in obtaining this 
equation and, therefore, if a correct velo- 
city field is employed as the initial guess, 
it would at once give the correct pressure 
field. In this fashion, the pressure can be 
obtained directly from an estimated velocity 
field, and the slow convergence usually 
encountered in the SIMPLE algorithm is a- 
voided. 

Although the guessed pressure field can 
be updated directly by equation (23), in 
practical applications the new pressure field 
may produce a velocity field which violates 
the equation of continuity. In order to 
improve this imperfect velocity field, a 
pressure-correction equation similar to that 
used in the SIMPLE algorithm is derived 

apPp = adPu + VÜ + VNC + asPsc 

with 

+ aePEC + awPwC " D 
(24) 

2«** D*=  (bjU*)d-  (bJuV  (b2V\ -  <b2V 

+ (b3w\ - (b3w*)w - Dl 

where (U*,V*,W*) is the imperfect velocity 
field obtained from the imperfect pressure 
field p , and p' =p - p* is the pressure 
correction. The improved velocity field 
based on this pressure correction is then 
given by 

Ud = Ud - dd<PD - Pp) 

Vu = C- VPNC - Pp) (25) 

where the coefficients a_, ad, dd etc. are as 
defined in equations (20) and (23). The 
overall numerical solution procedure for the 
case of a steady flow may be summarized as 
follows: 

1) Construct the coordinate system for 
the given body and calculate the geometric 
coefficients b-j, g^, g^, J, etc. from 
equations (12). 

2) Specify the velocity and turbulence 
profiles at the first station ? = 1; set p = 
0 everywhere. 

3) Calculate the finite-analytic coef- 
ficients for pressure, pressure-correction 
and momentum equations at downstream station. 

A4J  Calculate  the  pseudovelocities 
(U,V.W)  in terms of velocity field at 
(n-lr" time step. A 

5) Calculate D from equation (23a) and 
solve the pressure equation (23) by tridia- 
gonal matrjx algorithm. Treat this pressure 
field as p . 

6) Solve the momentum equations based on 
the updated pressure fie^ld^to^ obtain the 
starred velocity field (U ,V ,w ). The re- 
sulting system of algebraic equations is 
solved by a tridiagonal matrix algorithm. 

7) Calculate the mass source D , and 
solve the pressure-correction equation (24) 
by tridiagonal matrix algorithm. 

8) Correct the velocity field using the 
velocity correction formulae (25), but do not 
correct the pressure field. 

9) March to downstream station and 
repeat steps (3) to (8). 

10) After reaching the last downstream 
station, return to step (2) and repeat steps 
(2) to (9) for several sweeps until both the 
pressure and the velocity field have con- 
verged within a specified tolerance. 

3. EXAMPLE SOLUTIONS 

The method described above has been used 
to calculate a variety of two-dimensional, 
axisymmetric and three-dimensional flows and 
many calculations are still in progress. 
Here, we shall present a few examples which 
illustrate the capabilities of the method and 
indicate areas which require further study. 

3.1 The Wake of a Flat Plate 
[his is by far the simplest example of 

flows which involve the evolution of a wake 
from a boundary layer because the viscous- 
inviscid interaction at the trailing edge is 
weak, the flow is two dimensional and the 
equations can be solved in Cartesian co- 
ordinates. Nevertheless, it provides a 
useful test of the numerical method and the 
turbulence model. 

The calculations presented below cor- 
respond to the experiments of Ramaprian, 
Patel and Sastry (1982). If x,y are co- 
ordinates measured along and normal to the 
plate, x = 0 being the trailing edge, L is 
the length of the plate and UQ is the free- 
stream velocity, the calculations correspond 
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to a Reynolds number, U L/v = 1.6 x 10 , and 
the solution domain was chosen as -0.4 < x/L 
< 1.0, 0 < y/L < 0.05467. A nonuniform grid, 
with 46 points in the x direction and 10 
points in the y direction was used. Standard 
flat-plate boundary-layer profiles were 
specified at the upstream station. 

The principal results of the calcula- 
tions are shown in Figs. 6, 7 and 8. The 
level of agreement between the calculations 
and experiments with respect to the mean 
velocity profiles (Fig. 6) and the increase 
of the wake centerline velocity (Fig. 7) is 
comparable with that achieved by Patel and 
Scheuerer (1982) who solved the boundary- 
layer equations using the same turbulence 
model but a different numerical method. 
Computationally, the two methods differ in 
the number of grid points required to resolve 
the large gradients in the near wake. The 
solutions of Patel and Scheuerer were 
obtained with 60 points across the wake and 
some 800 streamwise steps in the region 0 < x 
< 610 mm whereas the present solutions, as 
noted above, employed 46 x 10 grid nodes over 
the entire domain. This difference is 
attributed largely to the use of the finite- 
analytic scheme in the present method. 
Physically, the two methods are also dif- 
ferent. The use of boundary-layer equations 
neglects the viscous-inviscid interaction at 
the trailing edge while the partially-para- 
bolic equations take it into account. Fig. 8 
shows that the latter predict a small 
increase in the wall shear stress on the 
plate just ahead of the trailing edge and 
associated with this is a small but sharp 
reduction in pressure. The pressure recovers 
rather quickly to near-zero values in the 
near wake. In fact, the wall shear-stress 
and pressure variations shown in Fig. 7 are 
qualitatively similar to those obtained for 
laminar flow by the present method and by 
Davis and Uerle (1981) and Rubin and Reddy 
(1983) using other numerical methods. 

At large distances from the trailing 
edge the present calculations agree with 
those of Patel and Scheuerer with respect to 
the asymptotic behavior. However, as dis- 
cussed there, and in Ramaprian, Patel and 
Sastry (1982), the k-E model fails to predict 
the growth and decay constants for far wakes. 

3.2 Flow Over the Tail of an Axisymmetric Body 
Calculations using tfie present method 

have been made for five different axisymme- 
tric bodies for which detailed experimental 
data are available. We shall, however, 
present the results for only one case, namely 
the model with Afterbody 5 tested by Huang, 
Groves and Belt (1980). This is a 
particularly interesting case since the stern 
contains a point of inflexion and leads to 
quite dramatic changes in the surface 
pressure distribution. 

For an axisymmetric body it is possible 
to calculate the flow in two ways. The 
conventional, and easier, way is to solve the 
axisymmetric-flow equations, with $ = 0 , 
along  a  single  generator of the  body. 

Another is to perform a fully three- 
dimensional calculation over some circumfer- 
entional segment of the body, with plane-of- 
symmetry boundary conditions applied at the 
sides of the segment. If such calculations 
are performed using a nonuniform grid dis- 
tribution in the circumferential direction, 
comparison of the results with those of a 
conventional axisymmetric solution would in- 
dicate the influence of coordinate geome- 
try. Such tests have been performed with the 
present method using the coordinates shown in 
Fig. 3 and, in the case of the three- 
dimensional solutions, using 4 points in the 
circumferential direction at 9 = 0, 37.5, 
67.5 and 90°. The two sets of results agreed 
well within the convergence tolerances ac- 
cepted in the overall iterative solutions. 

The axisymmetric calculations were 
performed with 60 points in the domain 0.6 < 
x/L < 5.881 and 22 points between the body 
and the external boundary at r/L = 0.4609. 
Location of the external boundary beyond 
about 0.35L produced no appreciable 
differences in the solution and consequently 
we conclude that the region of viscous- 
inviscid interaction in this case extends to 
about 0.35L or 4 maximum body diameters. 

The solutions are started by specifying 
the grid geometry and the velocity and tur- 
bulence-parameter profiles in the boundary 
layer at the upstream station and assuming 
that a constant ambient pressure prevails 
throughout the solution domain. Figure 9 
shows the pressure distribution on the body 
surface and along the wake centerline 
calculated at different time steps. It is 
seen that the solution converges 
monotonically and a "steady-state" or 
converged solution is obtained after about 80 
time steps. The converged solution is in 
excellent agreement with the experimental 
data. 

Figure 10 shows the variation of pres- 
sure in the radial direction across the 
boundary layer and in the external flow from 
the body surface, r = r„, to the external 
boundary of the solution domain where Cp = 
0. Here again the agreement with the avail- 
able experimental data is quite satisfactory, 
considering the difficulties of measuring 
pressure in such an environment. 

Detailed comparisons between the calcu- 
lated and experimental profiles of the axial 
(U) and radial (V) components of mean velo- 
city and the turbulent kinetic energy (k) 
shown in Fig. 11 at several streamwise 
stations indicate that the agreement, in 
general, is good with respect to the 
boundary-layer thickness, the flow in the 
relatively thin boundary layer upto x/L = 
0.87 and the velocity field away from the 
wall in the tail region where the boundary 
layer is thick. The larger values of the 
mean velocity in the wall region of the thick 
boundary layer are no doubt related to the 
over-estimation of the turbulent kinetic 
energy by the basic k-e model and the wall 
functions used here. The features noted 
above  have  also  been  observed  in  the 
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calculations for other bodies and suggest 
that some modifications are required in the 
turbulence model or the wall functions, or 
both. Results similar to those presented 
here have also been obtained by a variety of 
other methods, ranging from interacting 
boundary-layer analyses (Patel and Lee, 1977; 
Lee, 1978; Huang, Santelli and Belt, 1979; 
Dietz, 1980; Hoffman, 1980), through 
partially-parabolic solutions (Muraoka, 1980; 
Hoffman, 1982; Hogan, 1983), to a fully- 
elliptic solution (Zhou, 1983). Un- 
fortunately, only Huang et al. and Hogan have 
presented calculations for the body 
considered here and in both cases somewhat 
improved velocity profiles were obtained in 
the wall region by incorporating an empirical 
correction in the turbulence model. 

A particulary noteworthy feature of 
these solutions is the behavior of the pres- 
sure distribution close to the tail. The 
present solution, as well as that of Hogan, 
indicates a region of pressure decrease 
followed by an increase over the extreme tail 
and then a monotonic decrease to zero in the 
wake. In the interacting boundary-layer 
solutions of Huang et al., on the other hand, 
the calculated pressure increases 
continuously at the tail. We believe that 
the features predicted by the present method 
are genuine and are associated with the rapid 
changes in the geometry of this body as well 
as the upstream influence of the complex 
pressure interaction in the tail region. 
Mote that such a pressure behavior is also 
predicted by the present and previous 
calculations for even the simplest case of 
the trailing edge of a flat plate (Fig. 8). 
Fully-elliptic solutions with a much finer 
grid in this region will shed some light on 
this phenomenon. Such calculations are in 
progress. 

3.3 Flow Over Three-Dimensional Sterns 
Huang, Groves äncl B~eTt (1983) have 

reported extensive measurements in the stern 
boundary layers of two ship-like bodies whose 
cross-sections are elliptic, with axes ratios 
3:1 and 2:1. We shall present some aspects 
of the calculations performed with the 
present method for these bodies. Some 
features of the numerically-generated co- 
ordinates for the 3:1 body are shown in Fig. 
4. Similar coordinates were also used for 
the second body. As noted in Section 2.1, 
the mesh points in the (5 , n , ? ) directions 
are (66, 19, 7), respectively. Although the 
calculations were continued for 80 time 
steps, convergence was achieved within about 
30 time steps. 

Comparisons between calculated and 
experimental results for a three-dimensional 
flow are somewhat difficult not only because 
there is a large body of information which 
needs to be examined from various perspec- 
tives but also because a considerable amount 
of interpolation is required due to the 
different coordinates employed in the cal- 
culations and experiments. In view of this, 
we shall present only the results along the 

two planes of symmetry, namely 6=0° and 
90°. 

Figure 12 shows the pressure distribu- 
tions on the body surface and along the wake 
centerline. It is seen that the calculations 
are in agreement with data along both lines 
and that the pressure recovers to zero quite 
rapidly in the wake. As in the previous two 
examples, significant pressure changes are 
again observed in the tail region. It is 
interesting to note that the oscillations in 
the pressure along e = 90° are somewhat 
larger due to the more rapid changes in the 
body curvature along that line. The small 
difference in the calculated pressure at the 
tail itself is due to the finite numerical 
control volume surrounding that point. 

Figure 13 shows the distributions of the 
two nonzero components (U,V) of mean velocity 
within the boundary layer and in the wake in 
the planes of symmetry. This is a close-up 
view of the viscous region since the solution 
domain extends well into the external 
inviscid flow. The calculations are seen to 
be in good agreement with the measurements, 
which extend only upto x/L = 0.954. In fact, 
the agreement in the wall region is somewhat 
surprising in view of the discrepancy noted 
earlier in the axisymmetric flow on Afterbody 
5. It is also interesting to observe the 
evolution of the three dimensionality of the 
flow over the stern. The boundary-layer 
thickness is nearly constant around the girth 
at x/L = 0.719 but the thickness along 8 = 
90° is almost three times that along 6=0° 
at x/L = 0.954. Although no data are 
available in the wake, the calculations 
indicate that the three-dimensionality of the 
wake persists for quite large distances. 
Finally, we note that conventional boundary- 
layer calculations performed by Huang, Groves 
and Belt (1983) and Patel, Sarda and 
Shahshahan (1983) for this body breakdown 
before x/L = 0.93 due to the thickening of 
the boundary layer, whereas the present 
method does not encounter such a difficulty 
and continues smoothly into the wake. 

For the 2:1 axes-ratio body, the calcu- 
lated pressure distribution is also in good 
agreement with the corresponding data and 
shows a behavior very similar to that ob- 
served in the other cases. The velocity 
profiles, which are shown in Fig. 14, also 
demonstrate excellent agreement with the 
measurements. The calculated wake again 
shows three dimensionality for distances as 
large as five body-lengths downstream of the 
tail. 

4. CONCLUDING REMARKS 

A new method for the calculation of the 
flow over the stern and in the wake of ship- 
like bodies has been outlined and some ex- 
amples have been presented to demonstrate its 
capabilities. We note two significant 
aspects of the method: first, it requires 
only the body geometry and initial boundary- 
layer information as inputs and does not 
involve separate viscous and inviscid sol u- 
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tions and matching between them; and second, 
all calculations presented here were per- 
formed on a Prime 750 minicomputer with 
computing times of the order of 2 hours for 
the three-dimensional bodies. 

While the overall numerical framework of 
the method has been established and cal- 
culations for practical hull forms are now in 
progress, there are several basic physical 
and numerical aspects of the method which 
require further scrutiny and development. 
Among these are: (a) the validity of the 
turbulence model, in general, and the 
limitations of the wall functions, in part- 
icular, in complex three-dimensional flows; 
(b) the influence of the choice of coordi- 
nates on the solutions; and (c) the limita- 
tions of the partially-parabolic approxima- 
tions. The first of these can best be 
studied by comparisons with detailed experi- 
mental data, the second would require the 
application of rigorous numerical tests in 
well known laminar and turbulent flows, while 
the third can be investigated by comparisons 
with corresponding fully-elliptic solutions. 
It is planned to subject the present method 
to such tests. Finally, the generality of 
the approach adopted here offers encouraging 
prospects for incorporating propellers and 
appendages in the solution domain in a more 
comprehensive manner than has been possible 
with presently available methods. 
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DISCUSSION 

YU-TAI LEE and Dr. THOMAS T. HUANG, 
David Taylor Naval Ship R&D Center, 
Bethesda, MD, USA: 

The authors have made a very significant 
advance in the computation of ship stern flows. 
We sincerely congratulate them. The clarifica- 
tion to the following questions will improve 
our understanding of this new method. 

1. A mild and small streamwise separation 
region on the plane of 6 = 90° of the two sim- 
ple 3-D sterns was measured by the flow visu- 
alization. The location was determined to be 
at x/L = 0.91 for the 2:1 stern and at x/L = 0.90 
for the 3:1 stern. This new method predicted a 
sharp pressure drop over the extreme tail. How- 
ever, the strong adverse pressure gradient as- 
sociated with this pressure drop did not cause 
flow separation. Do you think that this new 
method predicts flow separation properly? How 
do the partially-parabolic equations behave 
near the separation point? 

2. The predicted distributions of mean 
axial velocity and turbulence kinetic energy on 
afterbody 5 by Hogan (DTNSRDC report) agree 
with the measured values better than the pre- 
dicted results obtained from this new method. 
Do the authors know the reason - turbulence 
modelling or the numerical procedure? 

3. Is the solution procedure for deve- 
loping body-fitted coordinate system appli- 
cable to the wing/body juncture? 

Prof. THEODORE LOUKAKIS, 
National Technical University of Athens, 
Athens, Greece: 

The authors are to be congratulated on an 
excellent paper, which certainly improves the 
state of the art in viscous flow numerical cal- 
culations. 

The purpose of this discussion is solely to 
give some information related to comparisons 
between the partially-parabolic approximation 
used by the authors and the fully-elliptic 
solution mentioned in their concluding remarks. 

At the National Technical University of 
Athens we have developed a computer program 
which can work with either of the aforemen- 
tioned procedures. Some preliminary results 
indicate that the pressure and the crosswise 
velocity profiles are predicted with the same 
degree of accuracy and that the fully elliptic 
version gives slightly better results for the 
longitudinal velocity profiles. Hence, it seems 
that a serious suspect for the continuity dis- 
crepancies between calculated and measured re- 
sults is the turbulence model, used both by 
the authors and at N.T.U.A. 

Prof. KAZU-HIRO MORI, 
Hiroshima University, 
Higashi-Hiroshima, Japan: 

The results computed by Dr. Chen and Prof. 
Patel are quite impressive. They may be cele- 
brated as the first for the case of a ship-like 
body by the partially parabolic method where a 
body-fitted coordinate system is employed. 

It is surprising that the present results 
which were obtained by such small numbers of 
grid, as shown in Fig. 3 and 4, agree so well 
with the measured. This may be due to the 
"finite analytic technique". However, because 
the results presented in Fig. 13 and 14 are all 
on the special planes where U , \L and W are 
prescribed as boundary conditions, we miss re- 
sults on other 0's, although I understand the 
numerical situation. 

Usually waterplanes of ships have finite 
end-bluntness. And the stern flow is more or 
less asymmetric and unsteady. Although it may 
be little in the present case where the water- 
plane-end has an infinitely small radius and 
L/B is more than ten, the symmetric and steady 
flow condition have to be removed when it is 
applied to blunter bodies. In the course of 
our computations for 2-D elliptic cylinders, 
we could not succeed under those conditions. 
Once they were removed, we could get satisfying 
results as shown in Fig. Al*. My question is 
that the time step which is introduced for 
iteration in your scheme can serve for the 
above purpose. 

The boundary condition for U and p on E 
always bothers us in the method where they must 
be prescribed. This is because the perturbed 
velocity and pressure do not diminish so rap- 
idly as expected. For example, I seems still 
not enough in your computations for the 3:1 
elliptic body. It is advised that the numbers 
of grid in the r-direction may be changed 
depending on x. 

As far as I understand the definition of 
Y in Fig. 13 and 14 is not clear. Is it the 
normal distance from the hull (from x-axis 
in wake), although it differs from that in 
Fig. 4? If so, both U on 9 = 0° and 90° must 
be the same. 

*Mori, K. and Ito, N.: Wake Calculations around 
2-Dimensional Elliptic Cylinders by Time-De- 
pendent Vorticity Transport Equation. J. of 
Soc. of Nav. Arch, of Japan, Vol. 154, 1983. 
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Fig. Al Flow patterns of 2-D elliptic cylinders 

LIAN-DI ZHOU, 
China Ship Scientific Research Center, 
Wuxi, China: 

The authors are to be congratulated on 
their achievement in employing the three-di- 
mensional numerically generated body-fitted 
coordinates and the novel "finite-analytic" 
numerical technique. There is a question I 
would like to ask. In Fig. 4 the numerical 
grid consists of only five stations. Where 
do the c=l and c=7 stations locate and how 
are the boundary conditions at these places 
determined? The numbers of circumferential 
stations are few and the distribution is non- 
uniform. Maybe this distribution of circum- 
ferential stations may be suitable for an 
elliptic body, but is it suitable for a general 
ship form? 

AUTHORS' REPLY 

To Drs. Lee and Huang: 
1. The detailed boundary-layer data for 

the 2:1 and 3:1 elliptic bodies do not indicate 
any streamwise separation. Our calculation also 
did not show any streamwise flow reversal al- 
though small regions of circumferential flow 
reversal are present at several constant-x 
crosssectional planes for both bodies. Whether 
the latter is associated with the separation 
you mention remains to be verified. 
The present partially-parabolic formulation 
neglects longitudinal diffusion and is there- 
fore not suitable for handling longitudinal- 
flow reversals, although it is fully capable 
of handling recirculation in the transverse 
direction. If small streamwise separation 
exists, one may modify the present formulation 
by either (a) using the FLARE approximations 
for the streamwise convective terms or (b) 
employing a locally elliptic formulation. 

2. Hogan included (a) a curvature correc- 
tion, (b) an intermittency factor, and (c) dif- 

ferent wall functions in his turbulence model, 
while we have used the standard k-e model in 
the present calculations. We believe that these 
are the main reasons for the differences be- 
tween Hogan's and our calculations. 

3. The numerical grid-generation technique 
employed in the present calculations can be 
used for wing/body junctions without major 
modifications. 

To Prof. Loukakis: 
We thank Professor Loukakis for showing 

some of the results of their calculations. We 
believe that many more detailed comparisons 
between calculations and experiments for dif- 
ferent shapes are required before we can con- 
clusively demonstrate the limitations of the 
turbulence model. Some of the limitations of 
the present model are well known but we are 
not sure how important a role does the turbu- 
lence model play in stern flows. Our experi- 
ence thus far indicates that accurate predic- 
tion of the pressure field is much more im- 
portant than the turbulence model. 

To Prof. Mori: 
1. Although Figs. 13 and 14 show only 

the two planes of symmetry, the calculations 
also show the same qualitative features (e.g., 
transverse flow reversal and boundary-layer 
thickness distribution) as those.observed in 
the experiments. However, as mentioned in the 
paper, detailed comparisons between calcula- 
tions and experimental data require consider- 
able interpolations. Such comparisons are in 
progress and will be shown in the IIHR Report 
of Chen and Patel which is under preparation. 

2. Prof. Mori shows some calculations 
of vortex shedding behind a two-dimensional 
strut. In order to calculate such a flow it is 
obviously necessary to use an unsteady formula- 
tion, and a fully-elliptic one, to handle the 
separation from the body. This is not necessary 
for the examples presented here. Our numerical 
technique is, however, fully capable of such 
calculations and is not restricted to two- 
dimensional or axisymmetric bodies. 

3. We apologize for the confusion caused 
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by the similarity of the notation used in Figs. 
4, 13 and 14, which prompted the remaining 
comments by Professor" Mori. 
Y in Fig. 4 is the distance from the body axis. 
This figure clearly shows the computation do- 
main. Note that the external boundary E is at 
0.8137L. In Figs. 13 and 14, however, Y refers 
to the physical distance from the body surface 
in feet. These figures show only the boundary 
layer region, which is a very small part of 
the total computation domain (the outer edge 
of which is at approximately 8 feet in those 
coordinates). Thus, the changes in the external 
inviscid flow are captured totally and the 
boundary conditions on E are simply U = 1, 
p = 0 for all 6 (or ?). 

To Dr. Zhou: 
1. In the generation of body-fitted 

coordinates for the 2:1 and 3:1 elliptic 
bodies, seven circumferential stations are 
used with the symmetry conditions specified 
as follows: 

r(?,n,l) = r (?,n,3) at e = 0 (c = 2) 
e(S,n,l) =- 6(5,n,3) 

r(?,n,7) = r (5,n,5)    t e=90° (c=6) 
e(?,n,7) TT - e (?,n,5)      ^ ' 

The coordinates at 6 = 0° and 90° are, there- 
fore part of the numerical solution and are not 
specified directly. 

2. For general ship forms, more circum- 
ferential stations are certainly needed in 
order to properly resolve the flow in the con- 
stant-5 planes. Our current applications to 
the SSPA 720 and the Wigley hulls employ 13 
to 18 stations. Whether this is sufficient 
remains to be determined by comparisons with 
experiments. 

and 
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A CALCULATION METHOD FOR SHIP STERN FLOWS USING AN 
ANALYTICAL BODY FITTED COORDINATE SYSTEM 

LEIF BROBERG AND LARS LARSSON 

ABSTRACT 

A new method for calculating ship stern flows 
is described. The method is based on the thin 
boundary layer equations cast in an analytic, 
body-fitted coordinate system. The major part 
of the paper deals with the definition and 
generation of this system and the computation 
of the related metrics and Christoffel symbols. 
Derivations ofthe governing flow equations are 
also made, using tensor algebra, and a short 
account is given of the numerical solution 
method. Finally, results from some test calcu- 
lations are presented. 

NOMENCLATURE 

"mn 
- matrices of coefficients 
- transformation coefficients 
- diffusion constant 
- coefficients in conformal transformation 
- matrices of coefficients 

bj - coefficients of the global stretching 
polynomial 

C-| ,C2 - three dimensional vectors 

d2 

an 

c 
Cf 
Ci 

ds 
ei 
F 
f 
9i>9 

constant 
- skin friction coefficient 
- coefficients of the local stretching 

polynomial 
- line element 
- Cartesian unit vectors     __. 
- vector containing u1, u^ and qd 

- global stretching polynomial 
" - covariant and contravariant base 

vectors of the curvilinear coordinate 
.system 

g-H,g1J - covariant and contravariant components 
of the metric tensor 

,/g - Jacobian 
h  - local stretching polynomial 
I  - number of coefficients c^ 
J  - number of coefficients bj 
L  - length of ship model 
Lp - dissipation length 
M  - number of rows in Amn 
N  - number of coefficients an, number of grid 

points in circumferential direction 
P  - point in space, instantaneous pressure 
p  - time averaged pressure 
p' - turbulent fluctuations of the pressure 
Leif Broberg, Division of Mechanics, Chalmers U 
Lars Larsson, SSPA and Div. of Ship Hydrod. Cha 

7 - 
''max 

Rik,R 

Lij 
,,i 

speed at the edge of the grid 
twice the turbulent kinetic energy 

- maximum turbulent kinetic energy in the 
.outer 75% of the boundary layer 
I  - contravariant and mixed components of 
k the Reynolds stress tensor 

- radius in transformed plane 
- position vector of P 

t-M,ti3,t1 - covariant, contravariant and 
mixed components of a second order tensor 

,Ui - contravariant and covariant components 
ofthe time averaged velocity 

u'i - contravariant component of the turbulent 
velocity fluctuations 
- covariant and contravariant components 
of v 
- covariant and contravariant components 
of the vector v in a Cartesian coordinate 
system 
a.vector, instantaneous velocity 

V-j.V1 

V-j.V1 

hj. 
x p>x p'A p 
y  - the arc length along the x2-axis 

x3 - curvilinear coordinates 
x^n,x

3
D - coordinates of point P 

nl    _ 
ljk 

ij'6j 

y 

P.. 
,t 

Christoffel symbols of the second kind 

boundary layer thickness 
- covariant and mixed components of 

Kronecker's delta       „ 
the arc length along the x^-axis,dimen- 
sionless by 6 
dynamic viscosity 
kinematic viscosity 

,53 - global Cartesian coordinates 
.density 
^ - contravariant and mixed components of 
''the viscous shear stress tensor 
contravariant component of volume force 
a scalar 
partial derivative with respect to x1 

partial derivative with respect to time 

covariant derivative 

1. INTRODUCTION 

In June 1980 a workshop on ship boundary layer 
calculations was held at the Swedish Maritime 
Research Centre SSPA, (Larsson, 1981). Com- 

.niversity of Technology, Gothenburg, Sweden 
lmers University of Technology, Gothenburg, Sweden 
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parative calculations were carried out for two 
different hulls using 17 different calculation 
methods, developed by universities and commer- 
cial organizations within aero- and hydrody- 
namics. 14 of the methods were based on first 
order boundary layer theory, while two included 
extensions of this theory, in order to approxi- 
mately incorporate some effects of higher or- 
der. One method was of a completely different 
type: the partially parabolic approximation. 
From the comparative calculations it could be 
concluded that almost all methods worked rea- 
sonably well, except close to the stern. In 
this region the boundary layer grows thick and 
the first order theories become too approxi- 
mate. Better results were obtained by the more 
exact methods, notably the partially parabolic 
one. 

There seem to be four main reasons why or- 
dinary boundary layer methods fail close to 
the stern. 

1.The curvature of the surface is assumed 
zero, so the normals are considered parallel 
to one another, while in reality they may even 
intersect within the boundary layer. This has 
a serious effect on the solution since parti- 
cularly the continuity of the flow is not main- 
tained downstream. 

2.The pressure is assumed constant across 
the boundary layer, which makes the prediction 
of, for instance, bilge vortices impossible. 

3.No interaction between the boundary layer 
and the potential flow is considered. 

4.The only shear stresses taken into account 
are the ones in the plane of the surface. Mo- 
mentum diffusion is thus considered only in the 
normal direction. 

In higher order boundary layer theories, 
attempts are made to incorporate, at least 
approximately, the features of items 1-3 
above, while in the partially parabolic ap- 
proach also the fourth approximation is im- 
proved, by accounting for lateral diffusion. 

Since the workshop, large efforts have 
been made to enable more exact calculations, 
see the report of the 17th ITTC Resistance Com- 
mittee for a survey, (1984), In the aircraft in- 
dustry a number of methods based on either 
higher order boundary layer theory or the par- 
tially parabolic approach have been presented. 
Most of them are, however, two-dimensional and 
only a few can be applied to ship flows. More 
suitable methods in this respect have been de- 
veloped in hydrodynamics. A higher order inte- 
gral method was presented by Larsson & Chang 
(1980), and later the development of a com- 
pletely different aDDroach, the streamline 
curvature method, was reported by Larsson & 
Johansson (1982) and Johansson & Larsson (1983). 
Other papers of interest are the ones by Odabasi 
& Davies (1983), Tzabiras (1983) and Cheng & 
Patel (1983). A promising development of the 
original partially parabolic method has re- 
cently been made by CHAM in England, Spalding 
(1981). In principle, full.v elliptic calcula- 
tions based on the time averaged Navier-Stokes 
equations can now be made. 

In the present work, which started in 1980 
as a cooperation between Chalmers University 
of Technology and SSPA, the emphasis is placed 

on the development of a body-fitted coordinate 
system for ship flow calculations. The system 
fits exactly into the space outside the hull 
and is convenient as a frame for numerical 
methods. Ultimately a method of the partially 
parabolic typ will be developed based on this 
system, but in the present approach the flow 
equations are still based on the boundary layer 
approximation. Since the most serious one of 
the above restrictions of such methods has now 
been removed, reasonably accurate results might 
be expected even near the stern. 

The coordinate system is described in para- 
graph 2, and in 3 the necessary geometrical 
quantities, such as metrics and Christoffel sym- 
bols, are computed. A derivation of the flow 
equations is given in paragraph 4 and the re- 
sults from some test calculations are presented 
in paragraph 5. For a more detailed description 
of the project, see Broberg (1984). 

2. THE COORDINATE SYSTEM 

The advantage of using body-fitted coordinate 
systems for the numerical solution of partial 
differential equations is that all computations 
can be done in a fixed square grid in the rec- 
tangular transformed region, regardless of the 
shape of the physical boundaries. In the case 
of a ship hull one such boundary is the free 
surface, which in the present work is considered 
flat, or equivalently, a plane of symmetry. On 
this and the vertical plane of symmetry one co- 
ordinate should be constant. Another coordinate 
should be constant on the hull and it is con- 
venient to let the remaining coordinate be con- 
stant on the hull cross sections. 

The location in the physical space of the 
grid points, defined by constant increments of 
the coordinates, is of paramount importance for 
all numerical methods, and this is particularly 
true in the normal direction, if the viscous 
sublayer is to be resolved properly. 

Several techniques are available for the 
construction of body-fitted coordinate systems. 
Examples are differential, algebraic and con- 
formal transformation techniques. Although a 
conformal transformation is basically a surface- 
to-surface correspondence, it can be used as 
one component of a three-dimensional grid gener- 
ation process, see Ives ( 1982). This technique 
is used here to construct a body-fitted coordi- 
nate system that satisfies all the requirements 
above. 

The system is based on conformal transform- 
ation in each cross section of the hull, where 
a n-paramerer generalisation of the well known 
Lewis-transformation is used for representing 
the hull contour. By making the "constants" of 
the transformation functions of a coordinate 
along the hull, its surface may be represented 
analytically. The hull itself thus corresponds 
to the unit circle in the transformed plane, 
and other coordinates surfaces of the same kind 
are generated by concentric circles with radii 
greater than one. By letting r be a function of 
the coordinates, the distribution of node points 
in the physical plane can be controlled and all 
requirements above satisfied. 

Let (C1,?2,?3) be a Cartesian coordinate 
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system iri the physical space with the C1-axis 
along the axis of the ship . For later purpose 
it is convenient to denote coordinates by 
superscripts. 

Fig. 1 Coordinate systems 

Using the polar coordinates r, x3 in the trans- 
formed plane, the transformation in each plane 
£l = constant can be written 

2   N   ßn      3 
r = Z är  cos ß x° 

n=1 n 

N   ßn     3 I    a r  sin fix0 

n=1 n      n 

= 3-2n (1) 

->?' 

(?2,?3) 

Fig. 2 Conformal transformation (1) 

The contour of the ship hull is defined by the 
line r = 1. 

The coefficients an can be determined in 
the sense of the least-squares, if a set of 
points is given from the body plan. Thus the 
set of coefficients an is to be choosen so that 
the sum of the squares of the distances between 
the points of the real contour and the gener- 
ated contour is minimized. Assume that P points 
from the body plan, are used. Then there are P 
corresponding unknown angles for the generated 
contour. However, it is possible to prescribe 
these angles a priori, and then calculate the 
corresponding coefficients an, see Miao (1980). 
The calculation starts with a first guess on an 
from the Lewis transformation. The an's are 

then corrected in an iteration process until 
the error falls within a specified error bound. 
It is necessary to calculate the optimum fit 
using successively increasing N:s to achieve 
convergence. 

The transformation (1) can represent the 
ship-hull, if the coefficients an are con- 
sidered functions of x1 = C1, see von Kerczek 
(1982), for instance in the form of polynomials 
in x' 

M 
*n(x1) " \  Amn(x

1)m-1 
m=1 

(2) 

Knowing the coefficients ap for a number of 
sections, the coefficients A  can be deter- 
mined in a least squares sense. 

The matrix A  has been calculated for the 
SSPA Model 720, iW the interval 
0.3 > C1/(L/2) £ 0.95. The an's (N = 12) were 
calculated for 11 sections in the interval and 
the input consisted of 18 data points for each 
section, taken from the input package of the 
SSPA- ITTC Workshop on Boundary Layers 1980, 
Larsson (1981). These sets of an's were then 
used to calculate the Amn's for M = 8. Fig. 3 
shows the approximated hull and the coordinate 
lines r = 1, x3 = constant and r = 1, x1 = 
= constant, respectively. Because of the orto- 
gonality of the conformal transformation the 
contours must meet the waterline at right 
angles. From the figure it can been seen that 
this effect is concentrated very close to the 
waterline, especially near the stern. 

Fig. 3 Hull approximation and lines x = 
= constant and x3 = constant resp. on r=1. 

The transformation defines a body fitted 
coordinate.system (x1, r, xJ). It's coordinate 
surfaces x1 = constant are flat and parallel, 
normal to the axis of the ship. The surfaces 
x3 = constant are flat at the symmetry planes 
but in general they are curved. As mentioned 
before, the surface r = 1 approximates the ship 
hull and from (1) it can be seen that 
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C2 = a^ cos x3 + 0(1/r) 

C3 = a,,r sin x3 + 0(1/r) (3) 

so the lines r = constant » 1 and x'=constant 
are circles almost concentric with the unit 
circle. The coordinate system is in general non- 
orthogonal but the coordinates in the surface 
x1 = constant are always orthogonal, because of 
the conformal transformation, see Fig 4 

Fig. 4. The grid generated by equation (1), 
r £ 1. Two sections £1 = constant. 

From Fig 4 it can be seen that the sectional 
area of the mesh is diminishing considerably 
downstream. This makes the system inconvenient 
for calculations of boundary layers, which 
usually grow thicker in the downstream direc- 
tion. To cover the boundary layer at the stern 
a large part of the grid must be outside the 
boundary layer upstream and to avoid this, the 
coordinate system has to be stretched. In the 
following this will be called global stretching. 

Many second order finite differeence 
schemes are restricted to constant mesh 
spacing, that is Ax' = C],    Ar = C2 and Ax3 = 03. 
If such a method is used to solve a problem with 
more than one length scale it is the smallest 
scale that determines the number of grid 
points. This means that an enormous number of 
grid points is needed to calculate a boundary 
layer, even if the turbulence is modelled, be- 
cause the viscous sublayer must be properly 
resolved. In Fig. 4, Ar = 0.044, Ax3 ^ TT/9 and it 
can be seen that the grid points are evenly 
distributed along a normal. It would be an ad- 
vantage if the coordinate system could be 
stretched in the normal direction so that the 
grid points would be smoothly redistributed 
and concentrated near the hull. This is in the 
following called local stretching. 

In both types of stretching there is a 
difficulty involved because the flow field is 
unknown so it is not evident where the outer 
edge should be positioned or how to distribute 
the grid point for the purpose of obtaining 
higher resolution of the boundary layer. It can 
be done in connection with flow calculation but 
there are several difficulties in such a pro- 

cedure and it is not applied in this work. 
The stretching is performed by letting 

the coordinate r be a function of x1, x3 and a 
new coordinate x2: 

r = r(x x2, x3) 

If x2 is defined as zero on the hull, then the 
following condition must hold if the hull should 
be left unaffected 

r(x1, 0 x3) = 1 

and to preserve symmetry, the function must be 
periodic in x so that 

r(x1,x2,x3 + TT) = r(x1,x2,x3) v x3 e R 

In the following, the function r is assumed to 
be independent of x3, which limits the possi- 
bilities of adjusting the grid. Nevertheless 
the outer edge of the grid essentially follows 
the variation in boundary layer thickness, ex- 
cept close to the keel, where the boundary 
layer is extremely thin. More important is the 
effect on the local stretching. The physical 
distance between the hull and the innermost 
grid point is greater in the concave parts of a 
contour than in the convex parts. This is com- 
pensated to some extent by a smaller skin fric- 
tion in the concave part, which thickens the 
viscous sublayer. Experience from the SSPA- 
Model 720 shows that this effect is not large 
enough to balance the geometrical effect. It 
is thus the concave region, that must determine 
the local stretching. 

In the present work the function r is 
defined as: 

r(x1,x2) = 1 + h(x2) • f(x )  where 

h(x2) = E c.(x2)i-1 ; h(0) = 0 
i = 1 

1   J    1 J_1 

f(x]) = I b.(x') (4) 
j=1 

The coefficients b, in the global stretching 
function f can be determined by the least 
squares method if one x , x3 = constant line is 
prescribed. For the SSPA Model 720 the pre- 
scribed line was taken as straight and parallel 
to the £l-axis in the symmetry plane x3 = 0. 
Note that the outer edge of the grid may be 
chosen inside this line. The local stretching 
function h(x2) was normalized to one at the 
line and the value of r, corresponding to the 
line was obtained by a method of inverse inter- 
polation for several sections. A polynomial of 
the 5'th degree was fitted to the calculated 
r's and used as global stretching function f. 
The function was calculated for several cases 
with the prescribed line located at a distance 
of 1 - 2 times the boundary layer thickness out- 
side the hull at £1/(L/2) = 0.3. With the aid 
of a graphic unit, coordinate surfaces were 
plotted and it was possible to choose an outer 
coordinate surface that covered the boundary 
layer and was suitably curved along the hull. 

The local stretching is more difficult to 
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determine. It demands knowledge of global 
stretching, number of grid points and skin fric- 
tion. For the SSPA Model 720 the measured skin 
friction was used to secure that at least three 
points were located inside the vicous layer at 
the most critical part of the model. The choice 
of a stretching function like (4) makes it easy 
to change the local stretching without any ef- 
fects on the global stretching. This is an ad- 
vantage because if more than one calculation 
is performed on a model the local stretching 
can be used for smaller adjustments. Some co- 
ordinate surfaces of the final coordinate sys- 
tem are shown in Fig. 5. 

£7(L/2) = 0.5 51//L/2) = C.7 

^/(L/2) = 0.8 d/(L/2) = 0.9 

3. GEOMETRICAL QUANTITIES OF THE COORDINATE 
—SYSTEM ~       ~ 

Since tensor formalism is used in the following 
some general relations from tensor analysis will 
be given first in this paragraph. Thereafter 
the computation of metrics and Christoffel sym- 
bols will be described. 

The coordinate system (x is de- 
fined by the transformation (5), which can be 
written: 

eV.xV) 1,2,3 (6) 

Thjs tjelati 
(x 2,X3' 

ion transforms the new„coordinates 
,.. ,.. ,.. , to the old ones (?1,£ ,?3) and it 
can not be inverted explicitly. 

Fig. 6 shows a general point P and the 
three lines formed by the intersection of sur- 
faces of x1 = constant. 

Fig. 6 Curvilinear coordinate system 

Let e_-j denote the Cartesian unit vectors. The 

position vector of P is r = ^Up, x , x ) • ei. 

Whenever the same letter appears as a subscript 
and as a superscript in a product or in a ten- 
sor of order two or more the sum is to be taken 
over this index, unless otherwise stated. The 
covariant base vectors £n- are defined as 

Fig. 5 The stretched grid at some section 
z)  = constant 

The equations for the coordinate system may 
finally be summarized as follows (see also Fig. 
1) 

K2 =    l      I Amn(x
1)m"1 -r(x1,x2) %s(ßnx

3) 
n=1 m=1 

53 = I I    /Ln(x
1)ra"1T(x1,.xZ) nsin(ßnx

3) 
n=1 m=1 

(5) 

where ßp = 3-2n, r(x1,x2) = 1 + 

+ ( I    c,(x2)U])-(  Z    b,(x1)j"1) 
i=1 1       j=1 J 

3r   aFJ 
Sl  8X1  3X1  -J 

(7) 

Replacing the dummy.index j by k and multiplying 
both sides by 3xV3?J gives 

3x n 
-j = ~7 Si 

(8) 

The covariant base vector gi at P is parallel 
to the intersection line through the point, on 
which x^ varies (while the other two coordinates 
are constant). Such a line is called coordinate 
line and the direction of increasing x1 is 
called positive. Note that the direction and the 
magnitude of g^ depend on the position of P. In 
general the g, are not unit vectors and they 

may even have-different dimensions. 
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The contravariant base vectors jj1 are defined 
as 

J (9) 

where /g is the Jacobian of the transformation 
The first part of (9) yields ej = ej 

The inversion of (9) is given by 

e1 = IV :io) 

The covariant and contravariant metric tensors 
are defined in terms of base vectors, respect- 
ively, as 

'u' 

[1D 

:i2) 

The quantity g. . is proportional to the cosine 
of the angle between the coordinate lines x"i 
and xJ. The arc length of the coordinate line 
x1 is proportional to /g~j" (unsummed), and for 
a general line the arc length is given by 

(ds)z = g^ dx1 dxJ (13) 

Equation (13)can be used to calculate the metric. 
For a cartesian coordinate system the metric 
equals Kronecker's delta &,-,  so for a general -,, •, . ,13) gives  u line element 

>2 (ds) 

9kl 

9kl 

dxk • dx 

dc1 d?J 

1 

ij 
3?  3£J 

3xK 3x' 
■dxk dx1 = 

351 
1    2 

3? + El. 
3x   3xk 3X1 

3T 

3xk 
3? 

3x 

A vector v_ defined in P, may be decomposed 
respect to the covariant or the contravaria 
bases. If the components are denoted by vn" 
v.- respectively, then 

:i4) 

with 
nt 
and 

v = v gi = vi g 

Multiplying the last equation of (15) by g• 
respectively, and making use of the definit 
of g. and g_i yields 

(15) 

• 9j' 
ions 

nJ1 

An index of a general tensor is raised or 
lowered by g^,-, g1 J, for example 

(16) 

(17) 

hik 

tik 

kj 

kj t? 
Contravariant components and covariant com- 
ponents are generally different. They are equal 
only in Cartesian coordinates. 

The vector v is easily transformed from the 
curvilinear to the Cartesian coordinate system. 
Let v1 denote the components in the 

Cartesian system and substitute (7) into the 
first equation of (15). Then the following can 
be identified 

vJ 3CJ 

3x 
(18) 

In a similar manner the natural transformation 
in the other direction can be obtained. It 
yields 

vJ'^v1 (19) 

The fundamental difference between contravariant 
and covariant components is that they are trans- 
formed in opposite directions.by the transform- 
ation matrices 3£V3xJ and 3xn/3?J, that is 

.i 
= 1*. 

3£J 

3xJ 

vi 

Vi 

(20) 

(21) 

The process of differentiation involves a com- 
parision of a quantity at points separated in 
space. In a curvilinear coordinate system the 
base vectors differ from point to point, so 
differentiation of a general tensor must take 
into account the change of the components and 
the base vectors..Consider a partial derivative 
of a vector v = v^ g-j 

3v 

3xJ 3xJ 1     3xJ 

By the use of (7) 

3xJ 
X(iCe.) 
3xJ 3xn 

32gk 

Sx^x1 3?K  ' 
(22) 

The Christoffel symbols of the second kind are 
defined as 

V1. = 3V 
10 dx^dx3 

3X1 

3?" 
(23) 

From (22) it can be seen that if the i'th base 
vector is differentiated in the j ' th,direction 
the I'th component of the cange is IV-. 

It is the values of the geometric quanti- 
ties at the grid points that are of interest 
in this work, rather than the functions them- 
selves. Therefore it is convenient to derive 
anlytical expressions for the derivatives 

3C1'/3xJ and 3 51/3xJ3xk from (6) and use their 
numerical values for calculating the metrics 
and the Christoffel symbols of the second kind. 
The components of the covariant metric tensor 
g-jj can be calculated directly from (14) and 
the components of the contravariant metric ten- 
sor giJ by inversion of g-jj. The Christoffel 
symbols can be obtained from (23). The calcula- 
tions are straightforward and are not presented 
here. 

There are some features of the coordinate 
system which should be pointed out. The g-jj and 
gij are of course symmetric, as can be seen 
from (13). The component g£3 = 0 because of the 
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orthogonality in the x^ = constant planes and 
on the symmetry planes g-|3 = 0. This implies 
that also g23 = g13 = 0 on the symmetry planes. 
Further it can be.shown that g11 = 1. From (23) 
it is seen that rL is symmetric in the two 
lower indices and it can be verified that 

r!j = °- 
The conformal transformation and the poly- 

nomial fitting may cause some waviness of the 
hull approximation and the coordinate system. 
To give and idea of the waviness due to the 
conformal transformation, the Christoffel sym- 
bol r^3 is plotted in Fig. 7 as a function of 

x3 at C1/(L/2) = 0.9 and x2 = 0. The sharp 
bend of the hull contour near the water line 
(Fig. 4) is reflected in the Fig. 7 as a spike. 
In Fig. 8 the Christoffel symbol r?. is plotted 

as a function of £1/(L/2) for x2 = 0 and x3 = 
= - IT/6, which gives a good indication of the 
waviness, due to the polynomial fitting. The 
low frequency of the waviness is remarkable, 
bearing in mind that the coefficients an are 
fitted by a polynomial of the 7'th degree. 

There are several boundary layer methods 
which utilize the present transformation for 
representing the surface of the hull, for in- 
stance von Kerczek (1982), Himeno and Tanaka 
(1981) arid Cebeci et al (1981). These methods 
do not suffer from the minor fluctuation in the 
hull representation, since the numerical inte- 
gration of the flow equations smoothens the 
waviness. For the three-dimensional coordinate 
system used here there may occur waviness in 
other coordinate surfaces too. However, as 
pointed out in paragraph 2,the x3-coordinate 
lines can be considered as pertubated circles 
with perturbations decreasing as 1/r. The wavi- 
ness in the transverse and normal directions 
are proportional to the pertubation terms and 
are thus reduced outside the hull. It may there- 
fore be concluded that the influence of the 
waviness in the present method can be at the 
most of the same magnitude as in the boundary 
layer methods. 

o.ooi 

Fig. 7 The distribution of one of the 
Christoffel symbols around the girth. 

51/(L/2)  = 0.9; x2 = 0 
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-2000 .. 
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Fig. 8 The distribution of one of the 
Christoffel  symbols around the girth. 

0, x 3 _ TT/6 

4. GOVERNING EQUATIONS 

As already pointed out, the main reason for the 
use of body fitted coordinate systems is that 
expressions for the boundary conditions are 
simplified. On the other hand, the transformed 
equations will contain more terms. For ortho- 
gonal curvilinear coordinate systems the trans- 
formed equations of motion and the derivation 
of the boundary layer equations can be found in 
Nash and Patel (1972). The equations transformed 
to the present body-fitted coordinate system 
(.5) will contain more terms, due to the non- 
orthogonality. General tensor formalism is used 
in this paragraph to transform and derive the 
governing equations. One important advantage of 
this formalism is that it provides and effec- 
tive way of handling the huge number of terms 
in the equations. 

In this paragraph a partial derivative will 
be denoted 

3. =X 1 ax1 

and a covariant derivative will be denoted by 
the symbol;. Let cp be a scalar and v1, tij compo- 
nents of a first and second order tensor, re- 
spectively. With the notation introduced in 
paragraph 3 the covariant derivatives can be 
written: 

vL ■ v1' + rkVk 

t
3;k = aktj+rklt3-rd1tl 

v!jk = Vjvi + rkiv] + rji9kvl 

- r]^/ + v1 • 3lr]k 

An useful  definition is 

vi;kE gkV 
;j 

(24) 

(25) 

(26) 

(27) 

(28) 
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Let p be the density, v1 the contravariant vel- 
ocity components, xnJ the contravariant compo- 
nents of the stress tensor and $1 the contra- 
variant components of the volume forces. The 
equation of continuity and the equations of mo- 
tion may then be written 

V + (pv };k = ° 
k.,i p3tv

1 + pvV;k 
J , ik 

;k 

(29) 

(30) 

The Newtonian stress tensor components can be 
written as 

T- = - (P + lvvk,)&\  + y(v|. + v.;i)   (31) 3^v;k'uj ;j 

where y is the viscosity and 6- is the Kronecker 
delta, see Yih (1969).      J 

In the following it is assumed that the 
flow is incompressible and the volume force 
zero. It is also assumed that the flow is tur- 
bulent but steady in the sense that time mean 
values of the velocity components are constant. 
The instantaneous values can then be written as 
the sum of the time mean values and the turbu- 
lent fluctuations: 

+ u'1 ; P P + P (32) 

The equations for the time mean values are ob- 
tained by substituting (32) into (29-31) and 
taking the time average. This yields 

U;k = ° 

uV,=-lp;i +vu^
k.k-R

ik 

,K      p ,* 

,ik 

;k 

(33) 

(34) 

where R  are the contravariant components of 
the Reynolds stress tensor 

Rik = u'V1 (35) 

Introducing the expressions (24-28) for the .co- 
variant derivatives and substituting the gnJ 
and rjk calculated in paragraph 3 the equations 
can be specialized to the body-fitted coordinate 
system. However, because of the second derivaive 
in the viscous term, the equations become very 
lengthy and will not be written out here. In 
Broberg (1984) the equations are given for the 
partially parabolic approximation, but in this 
paper only the boundary layer equations will be 
considered. 

As mentioned in the Introduction, three- 
dimensional boundary layer methods are based on 
two types of approximations. One is related to 
the coordinate system and the other to the equa- 
tions of motion. In the present method the co- 
ordinate system is exact, while the common first 
order boundary layer approximations are made 
for the equations (33-35). It is thus assumed 
that 

i. The x2-equation can be replaced by 32p= 

ii. The only .significant viscous terms are 
vg^2 u1.22 

0 

iii. The only significant Reynolds stress 
terms are g22R2.2 

This yields 

S^1 + 92u
2 + 33u

3 + (r21 + r
3

J1)u + 

+ (r22 + 
r32)u2 + (r23 + r33)

u3 = ° (36) 

u13.u1+u23,u1+u33.u1+l(3.p + g    3,p)  - 2"    ' u  "3"    ' pvur ' 3    "3' 
1 

vg22(3o37u1-  rLs-u1-rLs.u ) + 

22J n + g    R2.2 = 0 (37) 

1       3      ?      3      3      3       1    t   1 321 
u h^ + u dzu + uJ33uJ + r^u 'u + 2r21u u   + 

+ 2r,31u
3u1 + r3

2u2u2 + 2r32u3u2 + r33u3u3 + 

+ l(g313lp + g3333p) - vg^O^u
3 + 2r2132u

1 + 

+ 2r3232u
2 + (2r33 - r

2
2)32u

3 - r2233u
3 + 

+3^^ u1 + 32r
3
2u
2 + 33r22u

3) + g22R2;2 = o 

The boundary conditions are 

x2 = 0 ; u1 = u2 = u3 = 0, 

x2 -*  <5 ; u1.2 = u3.2 = 0, 

and on the symmetry planes 

u1.3 = 0 ; u3 = 0 

The Reynolds stress terms are modelled as 
follows 

(38) 

(39) 

(40) 

(41) 

R] = cVq2" Ln u D " ;2 

R: 
3 = cV7u u3 D u ;2 

(42) 

Ln is the dissipation length, q
2 the double 

kinetic energy of the turbulence and c =-0.0225. 
The model for the dissipation length, in- 

cluding the van Driest damping factor, is 

l» =  7.175   (1_e-y
+/26) ; (43) 

6  H4n4+5n
7 

y is the arc length along x2, measured from the 
surface, 6 is the boundary layer thickness, and 
n = y/6. If the skin friction coefficient is 
denoted by Cf, y+ can be written as 

yQe-y cf/2 /v. Qe is the speed at the outer edge. 

The kinetic energy of the turbulence is 
determined from its transport equation 
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u131 q2/2 + u232 q^ + u^ <?/2 + ^ jR12 + F1 
m+1 ,n 32Fm,n+1 + !3Fm,n 34Fm-1,n 

B32,„j + 93j
R )u ;2 + -Q 

3/2 

-D 

max  1 
32(a2q ) + 

«IS-  -0 (44) 

where the diffusion and dissipation terms are 
modelled following Bradshaw (1971). q2 

7 max 
is the maximum of q1-  in the outer three-fourths 
of the boundary layer. The diffusion constant, 
a2 is expressed as 

a2 = 1.125n2 - 0.375n
4 (45) 

The boundary conditions are 

1  F1 Vm,n- (50) 

where B^ - B5 are square matrices containing 
linear combinations of the A's in (49) and B5 
is a vector, which also contains values of F 
and 3<j F at 1 - 1. The ADI method scans the 
cross-plane alternatingly in the n-, and m - 
directions. During the scan in the n-direction 
F! „,. are taken from the last solution. Moving 

the passive terms of equation (50) to the right- 
hand side it will represent a recursion rela- 
tionship for F on the line n-constant, 
1 < m<< M 

J F1 T m+1,n ¥m,n + B4Fm-1,n = C1 (51) 

0 0 

32 = 0 

and on the symmetry planes 
72 

3, q 0 

(46) 

(47) 

(48) 

In the same way, 

A finite difference method of the ADI type has 
been used to integrate the governing equations. 
The method has previously been used by Nash and 
Scuggs (1977),Pate 1 and Choi (1979) and Johans- 
son (1981). The numerical scheme is only brief- 
ly described in this paper. A more comphrehen- 
sive description is given in Broberg (1984). 

The equations of motion (37-38) and the 
transport equation for the turbulent kinetic 
energy (44) can be written in matrix vector 
form: 

A}F +A^Ft A333F +A432F +A53232F +As = 0 
(49) 

F is a three-dimensional vector containing u^, 
3    2 u and q . The matrices of coefficients A, to 

A5 are 3x3 matrices and Ag is a three-dimen- 
sional vector. 

These equations are solved simultaneously 
in a x^ = constant plane. The equations are non- 
linear and therfore a local linearization tech- 
nique is used, involving an iteration procedure 
which updates the coefficients of the partial 
differential equations until they are consistent 
with the converged values of the dependent vari- 
ables. Within this iteration procedure the vel- 
ocity components u^ and u^ are matched to the 
potential flow. The u2 component is calculated 
from the continuity equation (36) but is not 
involved in the matching procedure. 

Let 1, m, and n denote index for the x1 - 
x2 - and x3 - direction, respectively. If the 
solution in the previous section x1>l "1 is 
known, the second order finite difference ap- 
proximation of (49) can be written: 

3 F1 Vm,n+1 33Fm,n 35Fm,n- (52) 

will represent a recursion relationship for F 
on the line m=constant, 1 S n £ N during the 
scan in the m- direction. In both cases the 
sequence of equations (51-52) leads to a linear 
system of M or N equations. The matrix of the 
system is tridiagonal, and is solved using a 
extended Choleski method. 

5. CALCULATIONS 

The input data for the test calculations have 
been generated by an improved version of the 
indata program from the SSPA-ITTC Workshop, see 
Larsson (1981). This program uses algebraic 
formulae for the velocity and turbulent kinetic 
energy. Indata are the boundary layer thickness 
6, the wall cross-flow angle ßw and the friction 
velocity uT. -=- 

The indata program generates a q - profile 
which is not smooth because different algebraic 
formulae are used in different regions. If the 
boundary layer program is started using such a 
q2"- profile it takes about 1 -2 boundary layer 
thicknesses downstream until the profile is 
smoothed out. Therefore a smoothing technique, 
similar to the one used by Johansson (1981) at 
the SSPA-ITTC Workshop has been applied. The 
initial profiles from the indata program are 
taken as a guess of the solution at the first 
new station, so that the program can calculate 
a solution at this station. The q^- profiles of 
this solution are then taken as initial profiles 
and the program is restarted. After 2-3 restarts 
the qZ"- profiles are much smoother, and the 
profiles are more consistent with the turbu- 
lence model of the method. 

Calculations were first carried out for 
the boundary layer on a flat plate and along a 
circular cylinder. Various grids were tested 
for zero and non-zero pressure gradients and 
the results were quite good, see Broberg (1984). 

The next test case was the SSPA Model 720, 
also used in the Workshop, see Larsson (1981). 
In order to obtain indata for the generated grid 
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the x2-axis was considered a normal to the 
hull in the indata plane. As appears from Fig. 
5. This is a good approximation, if this plane 
is not too close to the stern. 

The calculations were started at 
£l/(L/2) = 0.3 (at 65% of the model length) 
using 43 grid points in the normal direction 
and 25 in circumferential direction. There are 
two reasons to start so "far" from the stern 
region: the indata program can be used with 
good results and the distance downstream to the 
point were the difficulties start is long 
enough to reduce the sensitivity of the indata. 
The initial profiles were generated for ßw = 0, 
a constant value of 6 and uT. Interpolated 
values of 6  and uT from measurments were also 
tried. These gave very small improvements of 
the results, except at the keel where the re- 
sults were improved considerably. 

The potential flow at any point outside 
the hull was calculated by the Hess and Smith 
method (1962). When the u1-and u3 - components 
were matched to the potential flow at the outer- 
most point, instabilities could occur in the 
solution outside the boundary layer. More pre- 
cisely, they occured if the boundary layer 
was much thinner than the computational grid 
(at least 6-10 grid points outside the bound- 
ary layer) and if the flow was not strongly 
divergent. The instabilities can be explained 
by the small amount of diffusion in this region 
and by the fact that the artificial viscosity 
introduced by the difference formulae is to 
small compared to the relatively big step size 
in the normal and circumferential directions. 
Therefore, the velocity components were matched 
at the point located 3-4 points outside the 
boundary layer and the solution outside this 
point was substituted by the potential solution. 
(The velocity component u2 is not involved in 
the matching procedure.) 

To achieve good accuracy in the forward 
marching direction the step size had to be very 
small at the beginning. Thereafter it was in- 
crease to the order of the boundary layer thick- 
ness. At the start of the calculation, using 
indata from the indata program, the iteration 
process required about 6-8 iterations but 
after 2 or 3 stations 3-5 were sufficient. 
Further astern the process again needed more 
iterations, and in order to achieve faster 
convergence the step size was reduced by 10% 
if the required number of iterations exceeded 
8. If the iteration process failed the step 
size was reduced by 30% and if it was larger 
than a minimum value the program was restarted 
from the previous station. A frequent reason 
for slow convergence was that the scans in the 
two directions found different solutions, which 
converged slowly towards each other. 

The pressure distribution is of great im- 
portance near the stern and to study its effects 
three different distributions were used. The 
pressure distributions A and B were calculated 
from the po:?ntial flow at surfaces x2-constant, 
the first one fairly close to the hull and the 
second one very close to the outer edge. The 
pressure distribution C was interpolated from 
measurements on the surface, Larsson and 
Johansson (1982). The three distributions are 

plotted in Fig. 9 as functions of x3 at four 
stations, cVU/2) = 0.5, 0.7, 0.8, 0.9. Note 
that x3 = - IT corresponds to the water line and 
x3 = - TT/2 to the keel and that a constant in- 
crement x3 does not correspond to a constant 
length. The curve is thus stretched at the ends, 
which means that the changes in the centeal 
part look more drastic than they really are. 
The pressure distribution B is very smooth as 
could be expected and A is in better correspon- 
dence with C, particularly at the stations 
51/(L(2) = 0.5 and 0.7. Cp <^0A 

A- A, +-B, 0 - C 
x3 

Water line keel 

C/a/2) = 0.5 
1 1-0.2 

Cp 41.0.1 

?1/(L/2)  = 0.7 

Fig. 9. Pressure distributions A, B and C. 
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Calculation A. Q/Q. , = 0.5, 0.6, 0.7, 0. 
0.9, 0.95 

t I t ' ' 

Calculation A. Q/0_.  = 0.5, 0.6, 0.7, 0.8, 
1    0.9, 0.95 

Calculation B. 0./0.. , = 0.5, 0.6, 0.7, 0.8, 
0.9, 0.95 

Calculation C. Q_/Q. , = 0.5, 0.6, 0.7, 0. 
0.9, 0.95 

Calculation B. Q/0_. , = 0.5, 0.6, 0.7, 0.8, 
lnr  0.9, 0.95 

Calculation C. 070.. f = 0.5, 0.6, 0.7, 0. 
0.9, 0.95 

Mea surements. Q/0_. , = 0.7, 0.8, 0.9, 0.95      Measurements. CL/Q. f = 0.6, 0.7, 0.8, 0.9, 0.95 
i nr ' 

Fig 11. Calculations and measurements at 
51/(L/2) = 0.5 

Fig 12. Calculations and measurements at 
5V(L/2) = 0.7 
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Calculation A. Q/Q.  = 0.5, 0.6, 0.7, 0.8, 
0.9, 0.95 

Mil 

Calculation A. Q/Q. , = 0.5,0.6,0.7,0.8,0.9 

I   '  '  t 1 '   \ \ 

Calculation B. Q/Q. , = 0.5, 0.6, 0.7, 0.8, 
0.9, 0.95 

Calculation C. Q/Q. , = 0.5, 0.6, 0.7, 0.8, 
'inf 

Ml' 

0.9,  0.95 Calculation C.   Q/Qinf = 0.5 , 0.6 , 0.7, 0.8, 0.9 

Measurements.  Q/Q    , = 0.6,  0.7,  0.8,  0.9,   0.95 u *      n/n        -nAn7n8nqoqq inf Measurements.  Q/Q.   , = U.o,  U./,  u.o,  u.y,   u.ys 
inr 

Fig 13. Calculations and measurements at 
51/(L/2) = 0.8 

Fig 14. Calculations and measurements at 
?1/(L/2) = 0.9 
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Since the calculations were carried out using 
a non-orthogonal curvilinear coordinate system 
it is difficult to present the solutions in 
terms of integral parameters. Instead the re- 
sults are represented by the isowakes based on 
the speed Q = u^-j and by the secondary flow 
(the projection of the velocity on to the plane 
x1 = constant). Note that the velocity is made 
dimensionless by the undisturbed speed Qjnf. 

The calculated results are given in Fig:s 
11, 12, 13 and 14, each one showing the iso- 
wakes and the secondary flow at one particular 
cross-section t)  =  constant. The sections are 
CV(L/2) = 0.5, 0.7, 0.8, and 0.9. For compari- 
son isowakes computed from Larsson's measure- 
ments by Larsson and Johansson (1982) are also 
shown. 

At C1/(L/2) = 0.5, all results are very 
nearly the same, while at 0.7 differences start 
to occur. The pressure distribution B seems to 
yield results which correspond better with the 
measurements than those of A and C. All results 
are, however, reasonably good. 

At 51/(L/2) = 0.8, calculation B still 
produces the best results while the A and C 
results are too irregular. Note that these two 
cases have the largest cross-wise pressure 
gradients, which are obviously responsible for 
the variations. There seems to be no influence 
of waviness in the coordinate system. 

From Fig. 13 it is possible to see that 
the flow close to the waterline approaches 
separation in calculation B. This calculation 
could not be carried further than ?V(L/2) =0.86. 
Results are, however, available to the two 
other cases up to £1/(L/2) = 0.9, Fig. 14. At 
that position both, are close to separation at 
the waterline. Obviously the variations are to 
large girthwise, but the position of maximum 
thickness seems to be about right. It might be 
considered somewhat surprising that the measured 
pressure distribution on the surface did not 
produce better results than the theoretical 
one of case A. A possible explanation for this 
is the effect of the boundary layer approxima- 
tion 8£P = 0, which will be removed in further 
work. 
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DISCUSSION AUTHORS' REPLY 

Dr. MING S. CHANG, 
David Taylor Naval Ship R&D Center, 
Bethesda, MD, USA: 

Your success in the development of an ana- 
lytical body-fitted coordinate system for ship 
stern flows is a significant contribution in 
the stern flow computation. Could the authors 
clarify the following questions: 

1. Equation (40) states that the boundary 
condition of numerical method is the velocity 
gradient being zero at the edge of the boun- 
dary layer. However, the matching of the po- 
tential-flow solutions with the computed boun- 
dary layer results was used in the calculation 
procedure. The velocity gradient computed by 
the potential-flow solutions at the edge of 
the boundary layer is not zero. 

2. A few streamwise vortices can be iden- 
tified around the edge of the boundary layer in 
Fig. 13 and 14. At the edge of boundary layer 
the boundary-layer solutions were matched to 
the potential-flow solutions, which should not 
allow solutions with streamwise vortices. 

3. The comparison of the measured and cal- 
culated results shows that the measured results 
are in between the results computed from stream- 
wise pressure distributions of B and C. Why is 
it so? How do you include the normal pressure 
distribution across the boundary layer in your 
computation procedure? 

It should be stressed that the present 
method is still essentially based on the usual 
boundary layer approximations. The important 
improvement as compared with ordinary boundary 
layer methods is that the coordinate system is 
now exact. As in other boundary layer methods 
there is no matching in the normal gradient 
of the velocity between the potential and boun- 
dary layer flows. The treatment of the outer 
boundary condition is not fully explained in 
the paper. It is as follows: First the viscous 
region equations are solved all the way to the 
outer edge of the grid using the boundary con- 
dition given in the paper. Thereafter the boun- 
dary layer edge is determined (usually well 
inside the computational region) and the u1 

and u3 components of velocity at the edge are 
computed using potential theory. The corre- 
sponding components inside the boundary layer 
are then multiplied by the ratio of potential 
flow and actually computed values at the edge. 
Outside this all u1 and u3 components are re- 
placed by the potential flow values. Finally 
the u2 component at all points is obtained from 
an integration of the continuity equation out- 
wards from the surface. 

Due to the fact that the pressure is con- 
stant across the boundary layer, the u2 compo- 
nent of velocity sometimes becomes too large, 
which will also influence this component in the 
computational region outside the boundary layer. 

The pressure distribution B is computed 
using potential flow theory at a location which 
should correspond to the outer part of the boun- 
dary layer. This distribution might represent 
the pressure in the entire layer better than 
the measured pressure on the hull. 
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UTILIZATION OF WAVE ENERGY INTO PROPULSION OF SHIPS 

- WAVE DEVOURING PROPULSION - 

HlROSHI ISSHIKlt,  MlTSUNORI MURAKAMI+ AND ' YuTAKA TERAOtt 

ABSTRACT 

A possibility of utilization of wave 
energy into propulsion - Wave Devouring Pro- 
pulsion or WDP - is discussed. To the naval 
architects, the concept seems to be unfamiliar, 
since resistance of a ship in waves becomes 
considerably higher than that in calm water, 
and the phenomenon is well known to them as 
resistance increase in waves. 

In the present paper, an example of a 
floating body which moves against waves without 
any power supply from outside is introduced. In 
order to clarify the basic aspect of the phe- 
nomenon, an oscillatory hydrofoil propulsor 
which is driven by wave energy and generates 
thrust is also investigated experimentally. The 
thrust generation is verified, and the amount 
of thrust is measured. Some theoretical discus- 
sion is also given on the model. 

A possibility of easing average and slowly 
varying components of wave drift force acting 
on a moored ocean platform through utilization 
of the above mentioned phenomenon is discussed 
briefly. 

1. INTRODUCTION 

In general, resistance of a ship in waves 
becomes considerably higher than that in calm 
water. The fact is too well known to the naval 
architects as the phenomenon of resistance in- 
crease in waves. Hence, a possibility of utili- 
zation of wave energy into propulsion -Wave 
Devouring Propulsion or WDP- has long been 
ignored by them. According to the author's 
survey, some inventions, observations and inves- 
tigations related to the possibility have been 
reported as described below. 

Surprisingly enough, in 1895, Linden (Ref. 
1) filed a British patent. According to the 
contemporary report, he really built a boat of 
13 ft in length named Autonaut, and the boat 
could move of her own motion due to waves 
against wind and wave at a speed of three to 
four knots. Unfortunately, much attention does 
not seem to have been paid to the invention. 

Huse (1977) reports that, for certain plat- 
forms and sea states, model tests have shown 
the towing resistance in head seas to be smaller 
than in calm water. He explains the phenomenon 
by introducing viscous drag force. 

Longuet-Higgins (1977) gives an example 
of a submerged body like a sand bar which moves 
against short and steep waves at a mean speed 
of 1.2 m/s when wave breaking takes place be- 
hind the body. According to him, this phenom- 
enon is qualitatively similar to "the well known 
behavior of offshore sand-bars". He proposes a 
theory on the basis of the energy and momentum 
balance when the wave breaking takes place. 

Recently, Jakobsen (1981) published an 
interesting paper about his experiment. Accord- 
ing to hip paper, a model ship of 1.03 m in 
length moved against a wave of wave length 2.25 
m and wave height 0.1 m at a speed of about 1 
m/s by utilizing wave energy alone. The speed 
may be surprisingly high. 

One of the authors (Terao (1982)) found by 
chance a floating body which moves against waves 
at fairly high speed, when he was conducting 
experiments on a floating breakwater. Some ex- 
periments are newly conducted, and the results 
are discussed in §3. 

On the other hand, Wu (1972) first discus- 
sed, without knowing Linden's experiments, the 
problem on utilization of wave energy into pro- 
pulsion, and he showed theoretically that pro- 
pulsive efficiency in waves can become more than 
one or even minus if an oscillatory hydrofoil 
propulsor is used. The negative propulsive ef- 
ficiency means that the power put into the 
propulsor becomes minus and the surplus energy 
is taken outside. According to Wu, the opti- 
mization of foil motions is the most important 
for the efficient conversion of wave energy. 
A method to obtain the optimized foil motions 
is shown in his paper. 

Since Wu's idea aims at direct conversion 
of wave energy into propulsive one through an 
oscillatory hydrofoil, the hydrofoil should be 
placed near the free surface. This may suggest 
that the free surface effect should not be 
neglected, but the effect is not included in 
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Wu's theory. An approximate treatment of the 
free surface effect and the results are dis- 
cussed by Isshiki (1982a,b). 

In order to make the above mentioned theo- 
retical and experimental results more clear, 
some basic experiments were conducted on "a 
passive-type oscillatory hydrofoil propulsor" 
as shown in Fig.23 by Isshiki et al (1983). 
The thrust generation by an oscillatory hydro- 
foil in waves was verified experimentally, and 
the amount of thrust was shown. Some of the 
results are included in §4.1 of the present 
paper. Since the above mentioned experiments 
were conducted in a short wave range, some ex- 
periments have been added to clarify the 
performance of the propulsor in a longer wave 
range, and the results are discussed in §4.2 in 
comparison with the results in §4.1. 

Some theoretical calculations are also 
conducted for the above mentioned hydrofoil 
propulsor on the basis of Wu's theory (Wu 
(1972)). The comparison with experiments shows 
a rather good correlation in the case cited 
(§4.3), though the free surface effect is not 
satisfied. 

The theoretical results obtained under an 
assumption that wave energy is absorbed com- 
pletely and converted into propulsive energy 
as much as possible by "a wave devouring pro- 
pulsor" are discussed in §2. According to the 
results, the idea of wave energy utilization 
into propulsion -wave devouring propulsion- 
seems to be promising, if the assumption is 
fulfilled. 

Recently, Ogilvie (1983) has pointed that 
thrust generation through utilization of wave 
energy may be applied to reduce average and 
slowly varying components of wave drift force 
acting on a moored ocean platform. So, thrust 
generation by an oscillatory hydrofoil at 
bollard condition is also discussed. 

2. POTENTIAL POSSIBILITY OF AN IDEALIZED WAVE 
DEVOURING PROPULSION 

An "idealized" wave devouring propulsion 
refers to a wave devouring propulsion which 
absorbs wave energy completely and converts as 
much energy as possible into propulsive energy. 

Let Pw be wave power per unit breadth of 
an incoming wave of wave amplitude a and wave 
length A. Then, Pw is given as 

"~ " (1) 

for a deep water, where p, g and U are density 
of water, gravitational acceleration and advance 
speed respectively. If the complete conversion 
of wave energy into propulsive oneis assumed, 
an ideal thrust per unit breadth Ti: 

T?=P$IU= pg 
(2) 

may be obtained. This, however, is impossible. 
In case of complete absorpsion of wave energy, 
the wave drift force per unit breadth AR*: 

must be subtracted from Tj. Hence, the thrust 
per unit breadth T* is obtained as 

r* = r*-A/?*=-^o2 1 + (4) 

and the wave devouring efficiency nw may be 
written as 

i + 1U 
(5) 

nj*j, therefore, is independent of the incoming 
wave amplitude a and has the following nature: 

when U -+< (6) 

Figs.l and 2 show some numerical results 
of T* and njj. These results are calculated 
under an assumption that the wave devouring 
propulsor is attached to a model ship of about 
2 m in length. According to the results, the 
potential possibility of wave devouring pro- 
pulsion may not be denied. 

3. EXPERIMENTS ON H-TYPE WAVE DEVOURING 
PROPULSOR 

In this section, some experimental results 
of H-type wave devouring propulsor or H-type 
model are shown. The model was found by chance 
when one of the authors (Terao (1982)) was 
conducting experiments on a floating breakwater. 
The results discussed below were obtained 
recently by using a more refined model and 
measuring device. 

3.1 Model and Experimental Apparatus 

The model particulars and shape are shown 
in Tab.l and Fig.3. The model consists of an 
upper hydrofoil, fore and aft lower hydrofoils 
and two side plates. The upper and lower foil 
sections are NACA-1410 and NACA-0015 respective- 
ly. The model is named "H-type", since the two 
side plates and upper foil forms a cross section 
like an alphabetic letter "H". 

The model moves against incident waves in 
head seas in a wide range of wave frequency. 
In following seas, the model, however, moves in 
the direction of wave propagation at speed 
faster than that usually observed as a result 
of wave drift force. 

The experimental apparatus is shown sche- 
matically in Fig.4. The size of the tank is 
25 m x 1 m x 0.7 m (LxBxd), and a piston-type 
wave maker is equipped at one end of the tank. 
A servomechanical carriage is adopted to mea- 
sure the heave, pitch and surge of the model. 
The carriage can follow the surge of the model 
without applying any significant external 
resistance to the model. The incident and trans- 
mitted wave heights are measured with wave 
probes before and behind the model respectively. 

4 (3) 
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3.2 Results of Experiments on H-Type Model 

3.2.1 Performance of H-Type Model in Calm Water 

The lift, drag and moment which act on 
the H-type model in calm water are measured in 
a circulating water tunnel. The results are 
shown in Fig.5, where C|_, Cn, and CM refer to 
the coefficients of lift L, drag D and moment M 
(about midchord of the upper foil) respectively. 
The coefficients are non-dimensionalized with 
the chord 2«. and span b of the upper foil. 
The lift and moment are positive into vertically 
upward and nose up directions respectively. 

When the draft is decreased and no water 
flows over the upper surface of the upper foil, 
the lift and moment are very small. On the other 
hand, once the model has enough draft to make 
the water pass over the upper surface, they 
become very big. It should be noticed that quite 
a big lift force is generated even when the 
thickness of water layer above the upper surface 
is very small. This may suggest that the lift 
force plays an important role in generating 
thrust in waves. 

3.2.2 Experimental Parameters for Experiments 
in Waves 

Based on the experience in the preceding 
experiments (Terao (1982), Isshiki et al (1983)), 
the position and the attack angle of the aft 
lower foil and the position of the center of 
gravity are chosen as experimental parameters. 
They are changed as follows: 
a) Position of the aft lower foil 

••■ A, B, C (Fig.3) 
b) Attack angle of the aft lower foil 

••• -5 , -8°, -11°, -14° (in the nose up 
direction) 

c) Center of gravity 
••• high and low (Tab.l) 

The experimental conditions n>iv are difined in 
Tab.2. The attack angle of the fore lower foil 
is 0°, and that of the upper foil is 4.2° in 
nose up direction. 

The model is given an initial bow up trim 
to cancel the nose down moment which acts on 
the model when it moves at a constant forward 
speed. The amount of trim required for the ex- 
perimental conditions ivrv are 2.6°, 8.9°, 9.5° 
and 9.6° respectively. 

3.2.3 Advance Speed 

Fig.6 is an example of oscillograph records. 
The advance speed is obtained by analizing the 
surge record, and the results are shown in 
Figs.7^10. 

In these figures, 0 is a kind of non-dimen- 
sional advance speed defined as 

U=Ü2-2ll(ga*). (7) 

This definition corresponds to a ratio of thrust 
to wave drift force, since the resistance is 
proportional to pU2 as shown in Fig.5 and the 
wave drift force is proportional to pga2 as 
discussed in §2. 

The advance speed is very sensitive to the 

position and the attack angle of the aft lower 
foil as shown in Figs.7^10. Figs.7 and 8 show 
the effects of the position of the center of 
gravity, and Figs.8^10 refer to those of the 
position of the aft lower foil. The maximum of 
the advance speed is obtained for condition II 
as shown in Fig.8. In Figs.7 and 8, peaks of 
the advance speed are present at A/2x.«2. On 
the other hand, the advance speed is slower for 
condition III and IV than for condition I and 
II, and the effect of the wave length on the 
advance speed becomes less eminent. In Fig.9, 
the peak position and value are strongly af- 
fected by the attack angle of the aft lower 
foil. The wave length at the peak becomes 
longer, as the attack angle increases. 

3.2.4 Heave and Pitch Motions 

The heave and 
at the midchord of 
amplitude Z and the 
in Figs.lKlS and F 
Comparing these fig 
advance speed, the 
nificant effects on 
pitch motion. 

The phase lag 
in Figs.17^19. The 
120^130° to 90°, as 

pitch motions are measured 
the upper foil. The heave 
pitch amplitude e are shown 
igs.14^16 respectively, 
ures with those for the 
heave motion has more sig- 
the advance speed than the 

of pitch from heave is given 
phase lag decreases from 
the wave length increases. 

3.2.5 Transmitted Waves 

If a reflected wave is assumed to be small, 
a quantity 1 - |at/a|

2, where at is the am- 
plitude of the transmitted wave, may give "a 
measure" of wave energy absorption. The quantity 
is shown in Figs.20^22. 

From these figures, it is clear that the 
transmitted wave amplitude increases as the wave 
length becomes longer. This means that the less 
wave energy is utilized in longer waves. On 
the other hand, there exist obvious peaks in 
Figs.20 and 21. This may correspond to the high 
advance speed observed in the wave length range 
of A/2<> between 2 and 4. 

An oscillograph record of the transmitted 
wave is given in Fig.6. The wave pattern is 
sinusoidal, and the biharmonic frequency com- 
ponent seems to be negligible in the pattern. 
This suggests that the thrust due to the wave 
breaking (Longuet-Higgins (1977)) may be small 
and the unsteady lift force may play an dominant 
role in generating thrust. 

4. BASIC EXPERIMENTS AND SOME THEORETICAL 
CONSIDERATIONS ON A PASSIVE-TYPE OSCILLATORY 
HYDROFOIL PR0PULS0R 

In order to clarify the basic aspects of 
Wave Devouring Propulsion or WDP, an experi- 
mental device is made specially. The device 
consists of a hydrofoil and heave-pitch-motion- 
mechanism as shown in Figs.23 and 36. Heave and 
pitch springs are attached to give a restoring 
force and moment to the heave and pitch motions 
respectively. The wave energy is absorbed 
directly by the hydrofoil and converted into 
the propulsive energy through the same foil. No 
power is supplied from outside and the foil is 
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driven by wave force alone. So, the device is 
called "passive-type". 

The purpose of the experiments discussed 
in this section is to verify the direct con- 
version of wave energy into propulsive one 
through an oscillatory hydrofoil and to measure 
the amount of thrust. 

4.1 Experiments in a Short Wave Range ••-Model I 

At first, experiments in a short wave range 
(Isshiki et al (1983)) are discussed below. 
The model used in the experiments is called 
model I. 

The experimental system is shown in Fig.23. 
Rails of about 7.5 m in length are laid on both 
sides of a two-dimensional wave making tank of 
25 m in length and 1 m in breadth, and a car- 
riage of 1 m in length is set movable on the 
rails. For measurement of the thrust delivered 
to the carriage, the carriage is composed of 
main and sub carriages, and a load cell is set 
between both carriages. A gravity-type towing 
device is used to change the velocity of the 
carriage. A two-dimensional hydrofoil is set 
under the carriage, and the half chord 1 and 
the span b are 0.2 m and 0.96 m respectively. 
The hydrofoil is connected to the heave rods by 
hinges placed at the position of 0.12 m from 
the leading edge of the hydrofoil. Heave and 
pitch spring are used in order to give restoring 
forces for the heave and pitch motions of the 
foil. The pitch spring is attached to the foil 
at the position of 0.175 m from the leading 
edge. A series of the heave and pitch springs 
were prepared. Details of the heave and pitch 
springs are given in Ref.5. 

Servomechanical wave height meters are 
used for measurements of wave heights of inci- 
dent and transmitted waves. The heave and pitch 
motions and the displacement of the carriage 
are measured by using potentiometers. As men- 
tioned above, the thrust can be measured direct- 
ly by the load cell set between the main and sub 
carriages. On the other hand, the thrust may be 
estimated indirectly also by using the results 
of resistance tests in still water and in waves. 

The wave maker used in the experiments dis- 
cussed in this section is a pneumatic wave 
maker, and the wave height is controlled by 
the opening of a valve, but, for simplicity, 
the experiments are conducted with the valve 
opened fully. The wave making performance of 
the tank for the fully opened valve is shown in 
Fig.24, where a and A are the wave amplitude 
and length. The dispersion equation of a shallow 
water wave: 

:Ttanh( — (8) 

is used to calculate 
wave period T, where 

Since the length 
effects of reflected 
er may easily appear 
Close attention is pa 

A series of prel 
conducted to determin 
the experiments. The 

the wave length A from the 
h is the depth of water, 
of the tank is only 25 m, 

waves from the wave absorb- 
especially for long waves, 
id to avoid the effects, 
iminary experiments were 
e a standard condition of 
draft and attack angle of 

the hydrofoil and the combination of the heave 
and pitch springs as shown in Tab.3 refer to 
the condition under which the highest advance 
speed was attained at free running or self-pro- 
pulsion tests. In the experiments discussed in 
this section, this condition is adopted as the 
standard one. 

In Fig.25, results of resistance tests of 
the carriage alone and the carriage with the 
hydrofoil in still water are shown. The resist- 
ance of the hydrofoil is the difference between 
the resistance of the carriage with the hydro- 
foil and that of the carriage alone. The foil 
resistance in' waves may be different from that 
in still water, but the latter is assumed to be 
equal to the former in the present paper. 

In Fig.25, results of resistance tests in 
a wave are also shown. 

In the following, two kinds of definitions 
of the thrust generated by the hydrofoil are 
used, that is, the apparent thrust Tapp and 
the net thrust Tnet. The former is the dif- 
ference between the resistance of the carriage 
with the foil in still water and that in a wave, 
and the latter is the difference between the 
apparent thrust and the foil resistance._ 

Comparisons between the net thrust Tnet 
derived as the time average of the fluctuating 
thrust measured by a load cell and that esti- 
mated from the resistance test results are also 
shown in Fig.25. A good correlation may be 
observed between both thrusts, but, as shown in 
the figure, the thrust measured by the load cell 
shows a rather big variance. Hence, the thrust 
estimated from the resistance test is adopted 
in the following discussions except in case of 
bollard condition. In case of bollard condition, 
the thrust is measured by the load cell. 

In Figs. 26^30, effects of wave length A 
on the advance speed U, thrusts Tnet, Tapp , 
foil motions Zc, ec and wave devouring propul- 
sion (or WDP) efficiencies ^Wnet» nWapp are 

shown for free running test. Zc and ec refer to 
the amplitudes of heave and pitch motions at 
the rotational axis of the foil. The draft and 
attack angle of the foil and the combination of 
the heave and pitch springs are the standard 
ones as shown in Tab.3. Some correlation may be 
observed between the advance speed and the foil 
motion. For example, the heave amplitude Zc is 
maximum at A=1.8 m. On the other hand, the 
advance speed U attains its maximum at A=1.75 m. 

The net and apparent WDP efficiencies ^Wnet 
and n, Wapp in Fig.30 are defined as 

VWnet 

VWapp. 
■U/(P„b) 

where Pw is the power of the incident wave per 
unit breadth of the wave and is given as 

cg   =group velocity of the wave 

if,, 4**A \x 

2 I     sinh (47T/!/X)JT 

(10) 

(11) 
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in P.,, refer to head rW 

;t is only half as 
\  the resistance of 

The plus and minus signs 
and following seas. 

As shown in Fig.30, rk 
big as iwapp Tnis means " 
the foil is rather big. 

The effects of the attack angle and draft 
of the foil on the advance speed at free running 
test are shown in Figs.31 and 32 respectively. 
According to the results in Fig.31, the attack 
angle of about -8.0 deg seems to give the best 
results. Fig.32 suggests that the very shallow 
draft gives good results. Hence, the free sur- 
face effect on the performance of a hydrofoil 
of very shallow draft may be very important 
problem. 

The above-mentioned results are limited to 
those in head seas. In Figs.33 and 34, some 
results in following seas are shown. Only the 
directions of the wave propagation are differ- 
ent in Fig.26 and in Fig.33, and, in this case, 
much better results are obtained in head seas 
than in following seas. 

The thrust generated by the hydrofoil at 
bollard condition is shown in Fig.35. As men- 
tioned above, the thrust in this case is the 
one measured by a load cell. For bollard condi- 
tion, the thrust is rather big and shows a flat 
response with respect to wave length. Ogilvie 
(1983) has pointed that the thrust generation 
through utilization of wave energy may be ap- 
plied to reduce average and slowly varying 
components of wave drift force acting on a 
moored ocean platform. 

4.2 Experiments in a Long Wave Range •••Model II 

The experiments mentioned in §4.1 were 
conducted in a range of rather short waves, 
since the pneumatic wave maker could not make 
regular long waves with sufficiently big wave 
height. So, the wave maker has been replaced by 
a piston-type one as shown in Fig.36 to make the 
experiments in a long wave range possible. At 
the same time, the towing device and the heave- 
pitch-motion-mechanism etc. are also changed. 

Since the resistance of the hydrofoil was 
quite big in the experiments mentioned in §4.1, 
the foil support has been changed to make the 
resistance as small as possible. The rotational 
hinges placed on the foil surface has been re- 
moved as shown in Fig.36. The new model is 
called model II. 

The results of the resistance tests for 
model II are shown in Fig.37 and compared with 
those for model I. The draft and attack angle 
of the foil are 7.7 cm at the midchord and 7.7° 
in the nose down direction respectively. The 
foil resistance of model II becomes smaller than 
that of model I, but the resistance of the car- 
riage is increased since the heave-pitch-motion- 
mechanism becomes more complex and heavier. 
These invite a little increase of the total 
resistance in calm water. 

Waves used in the present experiments are 
shown in Fig.38. Three kinds of wave height are 
used, that is, (2a)i, (2a)x//rand (2a)!/2. The 
subscripts refer to the designed values of the 
wave height ratio between them. 

Effects of the wave length and height on 
free running speed are shown in Fig.39. 

The maximum speed of about 0.65 m/s is attained 
at x = 3.5 m. The wave length at the maximum 
advance speed becomes longer for model II than 
for model I. This is because softer springs are 
adapted for model II, refering to the results 
of preliminary tests. 

The apparent and net thrust coefficients 
are shown in Figs.40 and 41 respectively. The 
corresponding WDP efficiencies are shown in 
Figs.42 and 43. The net WDP efficiency is rather 
small and less than 0.05 for waves of A/2«, > 10. 
The improvement of the WDP efficiency may be 
the most important problem. 

In Fig.44, the results of the thrust at 
bollard condition are shown. The thrust coef- 
ficients are rather big in the whole range of 
wave length. In general, the smaller wave 
heights give the bigger thrust coefficients. 
The reason is not clear enough, but the non- 
linear components involved in the long waves 
with big wave height may be partly responsible 
for this. Since the water depth is rather 
small, such waves, strictly speaking, become 
cnoidal ones. 

4.3 Some Theoretical Considerations 

In this section, some simple theoretical 
calculations are conducted on the basis of 
Wu's theory for an unsteady hydrofoil in waves 
(Wu (1972)), and the results are compared with 
the experimental ones for model I discussed in 
§4.1. Since Wu's theory neglects completely 
the free surface effects, a good correlation 
between the theory and experiment was not 
expected. But,' to the authors' surprise, the 
theory seems to give results better than ex- 
pected. 

In the first place, Wu's result is re- 
written as follows. Let a hydrofoil move in a 
wave of wave length X and amplitude a with the 
advance speed U as shown in Fig.45 and make 
the heave and pitch oscillations ?(t) and e(t) 
with the encounter frequency cuo as 

f (0 = Ze'"o' 

6(t) = @e'uot , 

(12) 

(13) 

where s and e is defined at the midchord of 
the foil (Fig.45), i is the imaginary unit 
/^Tand t is the time. Then, the hydrodynamic 
lift L(t) and the moment about the midchord 
M(t) acting on the foil may be written as (Eqs. 
(27) and (28) in Ref.3)) 

<"o 

TJ~2("o)0-77 l+—ä(°o) V, "o ffo ' 

kl 

HW2(o0)\e 

^[{(i-mj^-wAoo) 

g/wof 
(14) 
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(*^4zts(^+^(o°K' 
+Uhi^ 
+-~(l -A.£(ao)-cF(a„))9-2£F(Oo)0 

irO« (o0)+i\W2(°o) 

^»-F^ 
where 

(W)} (?'WOf  . (15) 

^o=amplitude of wave orbital  velocity 

in z-direction at z=-A, 

o0 = reduced frequency =GJ0//£/ 

(16) 

(17) 

and the definitions of ff, Q,Ui,W2 and Jn are 
found in Ref.3). 

The heave cn(t) and pitch 6p(t) with 
respect to the rotational axis of the foil are 
related with ?(t) and e(t) as 

ä- = rc-'c
ec e = öc> (18) 

where £„ is the distance between the midchord 
and the rotational axis and positive when the 
axis locates on the side of the leading edge. 
Similarly, the hydrodynamic lift Lp(t) and 
moment M~(t) with respect to the axis have a 
relation with L(t) and M(t) as 

Lr = L , Mr = M-lcL . [19) 

Then, substitution of Eqs. (14), (15) and (18) 
into Eq. (19) may easily lead to the expressions 

written in of Lr and M, 
LLet th 

C- and 8p. 
mass, moment of inertia about the 

rotational axis, heave spring constant and 
pitch spring constant of a vibration system com- 
posed of the hydrofoil, heave-pitch-motion- 
mechanism and heave and pitch springs be M1, I1, 
kH and kp respectively. For simplicity, it is 
assumed that the rotational axis coinsides with 
the center of gravity of the foil. Then the 
equation of motion may be written as follows. 

For the heave motion 

\M' + 7rPPb(l + — g(a0))\tc + 2irpUlbS(a0)(c 

+kHk-„pPb{±^y-^}ec 

-Tvf/PA jl + -|^(a„)+ (i + ^£-\F(O„)1 ec 

-2-nplfll b¥(o0)6c 

= 2i,pUlbAa [jVl - ^ 

+ iW2(o0)\e'"ot 

/,(*/)-«', fro) 

(20) 

and for the pitch motion 

- npl3 b 
2'c+A  2/A2g(ao) 

'o t'c 

+ irpUPb    1 2/c 
3(oo)fc 

+\r+±*Pi*bU~u^ 1-4 ic\S("> 
* 

+ j-7rpUPb>h + ^f- -2 1 

l-4^-)T((Jo)^c 

2/c\5(°-o) 
°o 

+{kP-npU*Pb3;(o0)(l-2f\}ec 

= *PUPbA0[-{Vf(l-'fyjI(kr) 

+ 1 +mi-?fjw2(o0) 

+ U-%U: (21) 

If the advance speed U is assumed, the 
heave and pitch motions are determined by solv- 
ing Eqs^ (20) and (21). The thrust (apparent 
thrust Tapp.) may then be obtained by using 
Eq. (13) in Ref.4). The free running speed is 
now calculated as the speed where the apparent 
thrust is equal to the resistance of the car- 
riage with the foil in still water. 

In Fig.46, a comparison of the apparent 
thrust between theory and experiment is given, 
where M1, I1, ar,  kH and kp are 1.63 kgf-s

2/m, 
0.0241 kgf-s2, 0.08V 5740 kgf/m and 
437 kgf-m/rad. A comparison of free running 
speed is shown in Fig.47 and that of foil mo- 
tions in Figs.48 and 49. 

In Fig.50, theory and experiment are com- 
pared in case of non-oscillatory hydrofoil or 
1inear Wells turbine. 

The above-mentioned theory is based on Wu's 
theory for an unsteady hydrofoil in waves 
(Wu(1972)) which neglects the free surface 
effect completely. Hence, it may be question- 
able to apply the theory when the draft of the 
foil is very shallow as in the present case. 
In the above mentioned cases, the theoretical 
results, nevertheless, seem to show rather 
reasonable correlation with the experimental 
results contrary to the authors' anticipation. 

5. CONCLUSION 

The following items are discussed in the 
present paper. 

1) If wave energy is fully utilized into 
propulsion, potentiality of WDP may not be 
denied. 

2) An example of a floating body which 
moves against waves is shown. The effects of 
experimental parameters on the performance are 
discussed. 

3) In order to clarify, the basic aspect of 
WDP, a passive-type hydrofoil propulsor is in- 
vestigated experimentally. The model is an 
oscillatory hydrofoil which is driven by wave 
force. The thrust generation is verified and the 
amount of thrust is measured. WDP efficiency is 
calculated from the experimental results. The 
efficiency, unfortunately, is not big enough. 
Its improvement is the most important problem. 
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4) Some theoretical investigations are also 
conducted on the passive-type hydrofoil pro- 
pulsor. The theory is based on Wu's theory 
(Wu (1972)) for an unsteady hydrofoil in waves. 
Wu's theory neglects completely the free sur- 
face effect which may be important for a 
hydrofoil of very shallow draft as in the 
present case. Nevertheless, a rather reasonable 
correlation is found unexpectedly between theory 
and experiment. 
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Lpp                        650 mm 

B                           924 mm 

d (side plate)           200 mm 

weight of the model     1.70 kg 

low high 

Center of gravity 
above B.L. 

40 mm 6 1 mm 

from fore edge 
of side plate 213 mm 

radius of 
gyration /2l 0.212 0.221 

Tab.2 Experimental conditions of H-type model 

condition 
center of 
gravity 

position of 
oft foil 

I low C 

n high C 

i high B 

w high A 

Tab.3 Standard condition of model I 

draft of the foil 

hi 
0.06 m 

attack angle of  the 

foil        a 
- 8.0 deg 

spring   for  heave H20-2 

spring for pitch P25-2 

0 5 10 
advance speed U (m/s) 

Fig.l Thrust T   generated by an idealized wave 
devouring propulsor 
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RESISTANCE INCREASE DUE TO SURFACE ROUGHNESS 

M, NAKATO, H. ONOGI, Y. HIMENO, I. TANAKA AND T. SUZUKI 

ABSTRACT 

This paper deals with the roughness 
effects (ACF) on skin friction from a hydro- 
dynamical point of view. 

The former part of the paper consists 
mainly of the experimental reports, that is, 
the devices of pipe flow experiments, the 
friction measurements in the roughened pipes 
and the analyses of their data. 

The main results obtained are as follows; 
(a) The frictional resistances of 

variously roughened pipes are obtained. The 
resistance curves of painted pipes and wavy 
roughened pipes show clearly different 
tendencies from those of sand roughened pipes 
as mentioned by Prof. Sasajima in 1954. 

(b) However if the slope of wavy roughness 
is steeper than about 1/10, its resistance 
curve becomes a sand roughness type. 

(c) The hydrodynamical relationship 
between the roughness height, measured by the 
BSRA roughness analyser, and the so-called 
equivalent sand roughness height, determined by 
comparing Nikuradse's experimental results, is 
shown. The relation can be expressed by 

ks = 1.47 kA . 

(d) The roughness functions of various 
kinds of roughness are analyzed. 

The latter part of the paper consists 
mainly of the theoretical considerations of ACF 
and their applications. 

The main results obtained are as follows: 
(e) Having a logarithmic type of velocity 

distribution in the boundary layer, the local 
ACI can be expressed simply by local  Ci and 
the roughness function AU/u* as 

ACI°= CIO
3/2
(AU/UJ 

(f) The procedures used to determine 
the roughness function AU/U* from the 

measured resistance data are explained. It can 
be done without measuring the velocity 
distribution in the boundary layer. 

(g) A new roughness parameter h =  k-Fn2/3 
.(g/v2)1'3 is proposed, concerning the 
similarity law for ACF . As the parameter can 
be applied commonly to both the model and the 
ship, the new parameter may be a powerful tool 
for estimating ACF. 

(h) As an application of the above stated 
considerations, the frictional resistances of a 
tanker are calculated in the various roughness 
conditions. 

NOMENCLATURE 

C   constant in the Coles' wall wake law 
CF   total skin friction coefficient 
ACF  augmentation of total frictional 

resistance due to surface roughness 
Ci   local skin friction coefficient 
ACf  augmentation of local frictional 

resistance due to surface roughness 
Ci   cross sectional mean of Ci 
D   pipe diameter 
Fn   Froude number (= U//Lg) 
f        frictional resistance coefficient of pipe 
g   acceleration due to gravity 
H   shape factor in boundary layer 
Hw  wave height of wavy roughened surface 
h new roughness parameter 
k   roughness height (in general) 
kA   roughness height measured by the BSRA 

roughness analyser 
ks   equivalent sand roughness height 
L   length of ship or flat plate 
lw       wave length of wavy roughened surface 
R   pipe radius (= D/2) 
Re  Reynolds number (= UL/v) 
RnD  Reynolds number (= QD/v) 
r   roughness function (= AU/u*) 
U   velocity at the outer edge of boundary 

layer or the maximum velocity in pipe 
AU  velocity defect at the outer edge of 

boundary layer 
u   velocity in the boundary layer or pipe 

flow 
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AU velocity defect in the boundary layer 
u mean velocity in pipe  
u* friction velocity (= /Wp~) 
y distance from the wall 
a scale ratio 
<5 boundary layer thickness 
6 momentum thickness 
v kinematic velocity 
£ roughness Reynolds number (= u*k/v) 
n coefficient in the wall-wake law 
p density of fluid 
TW shear stress on the wall 

suffix 

0  smooth surface 
m  model 
s  ship 

1. INTRODUCTION 

About twenty years ago, the late 
Professor Sasajima published a series of papers 
on roughness research ll21-31 . Since that time, 
research on the problem has not been so active 
in Japan until the recent publication by 
Tokunaga and Baba1*1,51 . However, roughness 
problems have been noted containuously by many 
researchers around the world. 

In the Göteborg symposium in 1978, 
Lewkowicz 61 ■ Musker71 and Karlsson8' made 
valuable reports on the roughness effects on 
skin friction. 

The term ACF has been used in two ways 
recently. The first meaning is the 
augmentation of frictional resistance due to 
surface roughness and the second one is the 
model-ship correlation factor in the ship trial 
analysis. This paper deals with ACF as in the 
first meaning. 

As is well known, the essentials of the ACF 
problem are to investigate the roughness 
functions which are characterized by the kind 
of roughness. 

The main purposes of this report are to 
find the roughness functions experimentally and 
with them to discuss the ACF problems. The 
kinds of roughness treated here are; uniform 
sand roughness, newly painted and regular wavy 
roughness. 

2. EXPERIMENTAL EQUIPMENT 

The general view of experimental equipment 
is shown in Fig. 1. The test section is 4 m 
in length and has about a 50 mm inner-diameter. 
The inner-diameter of each test pipe was 
determined by measuring water volume filled in 
each pipe. The smooth pipe is an ordinary 
brass pipe and the roughened ones are specially 
prepared aluminum pipes which are smoothly 
connected by twenty short pipes as sown in Fig. 
1 and in Photo. 1. 

To make the sand roughness inside the 
pipes, the waterproof abrasive papers or 
abrasive grains are attached by adhesion and to 
make the paint roughness inside the pipes, they 
are coated with ordinary marine paint by 
brushing circumferentially. 

The two dimensional wavy roughness inside 

the pipes is manufactured by cutting with a 
numerical controlled lathe, and three 
dimensional wavy roughness is made by the so- 
called wire cut method using a strong electric 
current. 

Measuring the inside roughness of pipes 
is rather difficult, so nearly the same 
roughness as in the pipes is prepared on flat 
plates and this roughness is measured instead 
of the inside pipe roughness. 

In the roughness measurements, the BSRA 
(British Ship Research Association) roughness 
analyzer (Photo. 2) is mainly used because it 
is very popular and convenient. However, the 
recordings of the BSRA roughness analyser have 
some ambiguities, as Musker (1980) pointed out91 

, and another type of roughness meter which is 
widely used in the field of mechanical 
engineering, is also used. The static calibra- 
tion results of these roughness meters and the 
measured roughness of pipes are listed in Table 
1 and 2, and the examples of roughness records 
are in Fig. 2. 

The four static pressure holes (1.0 mm0) 
are arranged around the circumference at each 
of the four sections as in Fig. 1 (c) and with 
these holes the pressure drops between 
sections. Consequently, friction losses are 
obtained. In the sand roughened and painted 
pipes, the region within a radius of about 2.5 
mm from each static pressure hole is made 
smooth for measuring conveniences. 

The inlet length for developing the 
boundary layer is taken as 2 m i.e. about 40 
times the pipe diameter. 

The velocity distribution inside the pipe 
is measured by traversing a micro pitot tube. 
The traverser and the pitot tube are shown in 
Photo. 3 and in the upper side of Fig. 3 
respectively. 

3. MEASUREMENT OF FRICTIONAL RESISTANCE AND 
VELOCITY DISTRIBUTION IN PIPES 

3-1 Smooth Pipe 

All the measuring systems are first 
checked by performing smooth pipe experiments. 
Velocity distributions at the four sections are 
compared with each other in Fig. 3 and from the 
figure it is confirmed that the boundary layer 
in the pipe is developing sufficiently at the 
test sections. The symmetry of the velocity 
distribution along the diameter in section C is 
also examined (Fig. 3, + marks). The relia- 
bility of measured pressure losses between each 
section is checked by alternating the order of 
test sections A, B, C and D, and get the same 
results are gotten in every case. 

The frictional resistance of the smooth 
pipe is obtained by the measured pressure 
losses and Darcy-Weisbach's formula, 

Ap 2D 

■* ~ AX  pü2 
(1) 

where Ap/Ax is the pressure loss between 
sections, D is the pipe diameter, ü is the mean 
velocity, and P is the density of water. In 
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Fig. 4, the measured results of the frictional 
resistance of smooth pipes are shown together 
with Streeter's results (1935)10i and Prandtl's 
formula11' and they are in close accord. The 
frictional resistance is also obtained by 
measuring the velocity distribution at section 
D. At Reynolds number RnD = 5.5 x 105, 
the frictional resistance coefficient f  is 
0.0129 so obtained is very  close to the value 
/ = 0.0128 obtained from the pressure drop 
measurements. 

From the above mentioned facts, it is 
confirmed that the whole experimental system 
works well. 

3-2 Sand Roughened Pipes 

The frictional resistance of sand 
roughened pipes obtained by pressure drop 
measurements is shown in Fig. 5 (Pipe number SI 
- S5). As seen in the figure, almost 
experiments are performed in the all 
hydrodynamically fully rough region and from 
the figure, the equivalent sand roughness can 
be determined by comparing the authors' data to 
Nikuradse's data, or with the Nikuradse's 
formula11!, 

(2 1og^-s + 1.74)- (2) 

The equivalent sand roughness ks obtained is 
listed in Table 3. The relationship between 
the sand roughness kA, measured by the BSRA 
roughness analyzer, and the hydrodynamical 
equivalent sand roughness ks after Nikuradse is 
found as seen in Fig. 6 and the relationship 
can be expressed by 

ks = 1.47 kA  . (3) 

The measured velocity distributions of 
smooth and sand roughened pipes are shown in 
Fig. 7. 
The friction velocities u* are computed by 
the relation, 

/xw/p (4) 

where the values of f  for sand roughness are 
taken from Fig. 5. 

In Fig. 7, the wall friction law for the 
smooth pipe, 

u/u* = 5.75 log (u*y/v) + 5.5 (5) 

and the roughness function for the completely 
rough regime after Schlichting (1960)11!> 

AU/U* = 3.0 - 5.75 log (u*ks/v) ,    (6) 

are also drawn. 

3-3 Painted Pipes and Wavy Roughened Pipes 

The frictional resistance of painted pipes 
is shown in Fig. 5 (pipe number PI, P2 and P3). 
In the figure, the marks D . S , 0 
indicate additional experiments in heated 

(about 45°C) water. The resistance curve of 
painted pipes shows clearly different 
tendencies from those of sand roughened pipes 
as pointed out by Sasajima1) in 1954. The 
resistance curves of painted pipes are nearly 
parallel to that of smooth pipe . It is very 
interesting to compare the resistance curve of 
the No.S2 pipe with that of the No.P3 pipe. 
Doth pipes have about the same roughness height 
in k* and in kA (Table 2), however, their 
resistance curves show quite different 
tendencies. 

To investigate the differences in the 
resistance characteristics between the sand 
type of roughness and the wavy type of 
roughness, two series of wavy roughened pipes 
were tested. In the first series (W1-W5), the 
wave heights were intended to be kept constant 
(=130ym), like the No.S2 and the No.P3 pipe, 
and the wave lengths were varied. In the 
second series (W4, 6, 7), to the contrary, the 
wave lengths were intended to be kept constant 
(^4mm) and the wave heights were varied. 
However, to make wavy roughness inside the pipe 
was not so easy and the wave forms could not be 
kept exactly in the intended dimensions. The 
wavy roughened pipes are tabulated in Table 4 
and the examples of roughness features are 
shown in Fig. 8. 

The fictional resistance of wavy roughened 
pipes is shown in Fig. 9. In the figure, the 
mark attached ('), (" ) and mark O show the 
additional experimental results obtained by the 
cooling or heating of water. 

All of the frictional resistance curves of 
wavy roughened pipes except No.W3 are almost 
parallel to that of the smooth pipe in the 
range of higher Reynolds number. In the first 
series (Wl- W5) in which the roughness heights 
are kept constant (=130ym) and their slopes 
varied, the resistance augmentations from the 
smooth pipes are in order of roughness slopes. 
In the second series (W4, 6, 7) in which the 
roughness length is kept constant (Mmm) and 
their heights varied, the resistance 
augmentations from the smooth pipes are in 
order of roughness heights. The problem of how 
the roughness height and the slope contribute 
to the resistance augmentation will be 
discussed in the later section on roughness 
functions. 

Comparing the resistance curves of W2 and 
W3, the curve of W3 shows sand roughness 
characteristics and that of W2 wavy charac- 
teristics, even if both roughness have about 
the same dimensions of wavy form as seen in 
Table 4 and Fig. 8. This interesting fact 
cannot be explained at the present stage. 
However, the slope of roughness 1/10 seems to 
be a critical value which separates the resis- 
tance characteristics. Sasajima already 
discussed this in 1954a' and showed the 
critical slope of roughness to be about 1/12. 

The roughness of W8 is three dimensional 
and it is the same roughness as W4 longi- 
tudinally and is the same as Wl circumferen- 
tially. The resistance curve of W8 is in Fig. 
10. As seen in the figure, the resistance 
curve of W8 is quite similar to that of W4 and 
P3, however the slope of W8 is a little more 
gradual. 
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The measured velocity distributions of 
painted pipes and two dimensional wavy 
roughened pipes are shown in Fig. 11 and in 
Fig. 12 respectively. In these figures, the 
friction velocities u* are computed by 
equation (4) and the origin of distance y is 
taken from the trough of wavy roughness. 

The mean lines of universal velocity 
profiles in these cases are also parallel to 
that of smooth pipe and the resistance 
augmentation can be characterized by the 
roughness function AU/U*. 

4. ROUGHNESS FUNCTIONS 

The augmentation of frictional resistance 
caused by surface roughness is explained by 
momentum loss near the wall i.e. the velocity 
defect in the viscous sub-layer. The velocity 
defect AU is transmitted to the outer part of 
the turbulent boundary layer and the following 
relation is valid. 

example, Dvorak (1969)12> proposed an empirical 
roughness function which depends on the 
roughness Reynolds number u*k/v and density 
of roughness distribution. 

Once the roughness function can be found 
for a certain kind of roughened surface, then 
the friction velocity u* can be obtained by 
the iterative computations of eq. (9) or (10). 

4.1 Method of Obtaining Roughness Function 
from Force Measurements Data 

As mentioned above, the roughness function 
AU/U* is determined experimentally by 
measuring the velocity distribution in the 
boundary layer. However, such experimental 
data are limited in number and utilizing the 
force measurement data are considered. This 
approximate method starts from assuming the 
velocity distribution in the boundary layer. 

For the case of a roughened pipe, the 

velocity distribution, 

U0   AU 

u* u* 
= 5.75-log^) + r AU 

(11) 

where u* is the friction velocity including 
the roughness effect and Au can be considered 
constant except in the sub-layer. The uo is 
the velocity in the turbulent boundary layer 
for a smooth surface and it is generally 
represented by an equation of logarithmic form 
which is a little different from the pipe flow 
boundary layer or to the flat plate boundary 
layer. 

As equation (7) is valid also at the outer 
edge of the boundary layer, the velocity u in 
the equation can be replaced by the velocity U 
of the edge value, 

_Uo 

u* 

AU (8) 

As for Uo/U*, the following equations are 
available, 
  pipe flow — 

77s = 5.75-log ■u*Rx +  5.5 (9) 

(Prandtl-Schlichting) 

open boundary layer   

#=-Lin(^)+ C + ^-n 
U*       K V K 

(Coles wall-wake law) 

(10) 

where K= 0.41, C = 0.50 andn= 0.55 for flat 
plate.The value n is a coefficient in Coles' 
wake function and it depends on the pressure 
gradient. 

The roughness function AU/U* in eq. (8) 
is dependent on the roughness form and density 
of roughness distribution, and as still unknown 
functions, they have to be investigated. 
Usually, it is determined experimentally, for 

is assumed. 
Integrating the equation from very near 

the wall (u>0) to the center of pipe, the 
relationship between the mean velocity u and 
the maximum velocity U is obtained. 

(1 - 
2K U 0-u (12) 

With the definition of the resistance 
co-efficient of pipe flow, 

jf = 8iw/pü2 = 8- 
U ' ü ; (13) 

together with the above mentioned relation- 
ships, the roughness function may be written, 

f=lln(>^a)+5.5-iL (14) 

where Rno = üD/v 

With the measured TW and U, one can 
calculate the roughness function and u*k/v 

For the case of roughened flat plate, the 
velocity distribution, 

-ilnfi^W C+^ 

{l-cos(^)}-£ AU (15) 

is assumed, where K= 0.41, C = 5.0 and n= 
0.55. 

Integrating this through the boundary 
layer, the relationship between momentum 
thickness e and the boundary layer thickness 
6 is obtained, 
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R6      U   (  Il_ if l2) (16) 

where 

Ii =-( 1+n )  , 

I2 =-^( 2+ 3.179n+ 1.5n2) , 

Re = U-e/v      ,    R« = U-6/v    . 

with the momentum relations in the flate plate 
boundary layer, 

CF = 2-e/ L , 

Ci   = CF +  Re-dCf/dRe = 2(u*/U)2     , )    (17) 

Re = UL/v     , 

the local skin friction Cf i.e. Re can be 
obtained by graphical differentiation on the 
resistance curve of the flat plate. Then RS 
i.e. 6 at the trailing edge of plate is obtained 
in eq. (16) and the roughness function can be 
calculated in eq. (15) putting y =6. However, 
the accuracy of the roughness function thus 
obtained is rather poor because of graphical 
differentiation. 

4.2 Roughness Functions of Sand Roughened Pipe 

The roughness functions of sand roughened 
pipes obtained by friction measurements are 
shown in Fig. 13. In the figure, the marks 
are the values obtained by velocity distribu- 
tions and the results of the two methods are in 
close agreement. For comparison, the 
experimental data by Nikuradse and by Streeter101 

are also shown in Fig. 13. 

4.3 Roughness Functions of Painted Pipes and 
Wavy Roughened Pipes 

The roughness functions of painted pipes 
are in the lower side of Fig. 13 together with 
the painted flat plate data by Sasajima et al. 
(1965)21. In the analysis of flat plate data, 
the roughness height kA is converted to ks by 
eq. (3). 

The roughness functions of wavy roughened 
pipes are in Fig. 14. 

From these two figures, it can be under- 
stood that paint roughness belongs to wavy 
roughness from the skin friction's point of 
view. However, the roughness functions of 
painted flat plates which are nearly the same 
as a voyaged ship shell, indicate a little 
different tendency from those of painted pipes. 
It is supposed that the reason is the painted 
roughness of flat plates possibly includes a 
little higher roughness or steeper slope and 
also has three dimensional roughness 
characteristics as the pipe W8 in Fig. 14. 

In Fig. 14, the roughness function of 
three dimensional wavy roughness develops 
slower than that of the two dimensional, 
however, it coincides with the two dimensional 
one in the fully developed roughness Reynolds 
number. 

Roughness functions of wavy roughness are 
characterized by these regions, 
hydrodynamically smooth, transition and fully 
developed regions as illustrated in Fig. 15. 
The remarkable feature is that they take 
constant values in the fully developed 
roughness Reynolds number. 

From these experimental results, the 
empirical formulae are introduced for two 
dimensional wavy roughness functions as 
fol1ows. 

1) for fully developed region 

M=  e(
Al+ Bl^w/R)-Hw/R (18) 

where Hw is wavy roughness height, lw  is wave 
length, R is pipe radius and Ai, Bi are 
constants (Ai = 8.30, Bi = -12.11). 

2) for transitional region 

AU/u*Er= C0+  Ciln?+ C2ln
2?+  C3ln

3?      (19) 

where 5 = u*k/v, and the four constants Co-Cs 
can be determined by the following four con- 
ditions (cf. Fig. 15); 

at 5=5o » r=0 and <ir/d(lnc)=0 , 

at c=5i » r  is given by eq.(18) ,  J (20) 

dr/d(lng)=0 . 

The coefficients obtained are listed in Table 
5. 

3) for the values of Co and 51 (cf. Fig. 15) 
This case, as seen in Fig. 14, can be 

regarded as constant and the value ?o = 4. ?i 
seems to can be taken be related to the 
roughness slope as in Fig. 16, and the approxi- 
mate formula is 

ln?i = A2ln(WHw) + B2 (21) 

where A2 = -1.139, B2 = 7.322. In future, it 
might be considered better to replace the 
formula of 51 by the formula of A£. 

The roughness functions thus approximated 
are shown in Fig. 14 in dotted lines and they 
represent the experimental data fairly well. 

5. DISCUSSION ON ACF 

In this section some discussion of the 
local skin friction law of roughened surface, 
the hydrodynamic similarity law of roughened 
surface and the augmentation of frictional 
resistance (ACF) caused by surface roughness 
are reported. 

5.1 Linear Relation between AU and ACI 

The following relationships can be written 
by putting eq. (8) into eq. (9) or (10), 

U +AU 5.75 logrt +5.5 
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U +AU _ 1 -, /U* 
or — = — ln(— C +—n (10)' ACFs/ACFm=  (CF0 )s/(CF )m]2 (24) 

The interpretion of these relationships is 
that the local skin friction law of roughened 
surface can be obtained only by subsituting (U 
+ AU) for U in the local skin friction law of 
smooth surface. This interpretation seems to 
call for introducing a new roughness friction 
law more directly, however, the authors have not 
yet succeeded in doing it. 

Now, the linear relationship between the 
velocity defect AU and the augmentation of 
local skin friction ACI will be shown. 
Separating the friction velocity u* as 
follows; 

U* = U*o + AU* 

u*o= /Cio/ 2 

AU*= /ACI/ 2 

(22) 

put these into eq. (8) and (10), and expand eq. 
(10) under the condition of ACf /Cf0 << 1 . the 
next relation is obtained, 

ACi = 
Jl    K f.-AU. (23) 

where Cro is the frictional resistance 
coefficient of a smooth flat plate and the 
suffixes s and m indicate a ship and a model 
respectively. 

A numerical example is presented in Table 
6. The numerals in the upper column in Table 6 
show an example of comparison between a ship 
and a model, keeping the Froude number and Uk/v 
constant. On the contrary, the numerals in the 
lower column in the table show the case of 
keeping roughness height k and Uk/v constant, 
but, the Froude numbers are not equal. 
This latter case can not be realized by a model 
ship in a towing tank except for a flat plate 
because the wave making phenomenon is 
inevitable at the test speed. 

Although  ACFS  can be estimated from the 
model test with the afore mentioned diagram or 
simple formula, it is rather inconvenient 
because of the condition Uk/v = const. 

Now, a new and more convenient parameter 
is introduced. Let the length ratio of the 
ship and model be a = Ls/Lm,and let the 
roughness height k be common to the ship and to 
the model, then the following relationships can 
be described, 

This linear relation is almost strict in 
the range of AU/u*< 25. 

5.2 Hydrodynamic Similarity Law of Roughened 
Surface 

The roughness effect is confined to only a 
very narrow region near the wall of the 
boundary layer, and the roughness function. 
AU/u* may be determined by the roughness 
Reynolds numbers u*k /v and some geometrical 
roughness parameters. The momentum equation is 
applicable also to the rough walls. Therefore, 
the flow around a body having a rough surface 
can be determined completely by the Reynolds 
number of the body, UL/v, and a certain 
non-dimensional roughness parameter e.g. k/L or 
Uk/v. In other words, the similarity law of 
boundary layer flow in the case of a roughened 
body is to be satisfied by adjusting the body 
Reynolds number and a certain roughness 
parameter simultaneously. Of course, it is 
assumed that the roughness of the bodies are 
geometrically similar. 

However, these parameters are inconvinient 
to use because another similarity law, Froude 
law, must be taken into consideration. 
Moreover it is difficult to duplicate the 
roughness of a real ship on the model ship by 
reduction or magnification. 

Until now, the Prandl-Schlichting diagram 
for sand roughened plate had been widely used 
in the discussion of the similarity law of skin 
friction between ships and models. 

Sasajima and Himeno (1965)31 introduced 
a simple formula based on the Prandtl - 
Schlichting diagram under the condition of 
Uk/v = const., 

Us -/a Um, 
3. 

Res= UsLs/v = a2 Rerr 

Usk/v   =/S"Umk/v   , 

k/Ls = a_1k/Lm . 

(25) 

Eliminating the scale ratio      in the equations 
(25), a new parameter "h"  is defined, 

Uk_ 
V If)"* 

This is written also, 

,ULN 

(26) 

(27) 

or h = k FnMg/v2)*. 

From the last equation 
value common to the sh 
because the roughness 
are the same. Accordi 
is previously prepared 
a little later shown i 
very useful in estimat 
If the correction of k 
necessary, the followi 

, it is seen h  takes a 
ip and to the model 
k and Froude number Fn 
ngly, if a diagram of ACF 
with the parameter h  (as 

n Fig. 17) it will be 
ing ACFS practically, 
inematic viscosity v is 
ng equation is available, 

(28) ( Vm/Vs ) hm 

however, in usual cases, the correction can be 
neglected. 
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5.3 Augmentation of Frictional Resistance ACF 

The ACF is calculated assuming, a flat plate 
is covered with uniformly distributed sand rough- 
ness; Inthe calculation, Coles' wall-wake law, 
Dvorak's roughness function (1969)12'and Karman's 
momentum equation of boundary layer are used. 

The momentum equation is integrated on the 
flat plate by Runge-Kutta's method under the 
condition of U=const. and k=const. i.e. Uk/v 
=const., and the frictional resistance of 
roughened flat plate CF and ACF(= CF - CFO) 
can be calculated. It is convenient to plot 
the calculated ACF on a logarithmic graph in 
which the abscissa is h  (eq. (26), (27) J and 
each curve of ACF is drawn according to the 
Reynolds number Re. Utilizing this graph as a 
cross curve, the diagram of Fig. 17 is 
obtained. It is well understood from the 
figure that the roughness effects do not appear 
at the Reynolds number up to Re - 106. The 
dotted line in the figure is the calculated 
result based on the Prandtl- Schlichting 
formula and shows fairly high ACF , compared 
with the former results. One of the reasons 
for this discrepancy is the very small 
difference in the friction lines of the smooth 
flat plate. The Prandl-Schlichting friction 
line of the smooth plate is deduced from eq. 
(5) for a pipe flow and it shows a little 
higher value than the line deduced from Coles 
wall-wake law. Hence, as mentioned previously 
eq. (23) , the higher the Cf the higher the 
Ad . 

Until now, the case of sand roughness has 
been discussed. However, the case of painted 
roughness also can be treated in the same way 
as Fig. 13 and Fig. 17, and in this case, ACF 
becomes very small. 

5.4 Increase of Hull Frictional Resistance due 
to the Roughness 

The frictional resistances of a ship 
having roughened surfaces are calculated by 
combining Coles-Dvorak's local friction law and 
the three dimensional boundary layer theory 13). 

In the iterative calculations of 6, the 
following relationships are used, assuming the 
momentum thickness e and the shape parameter H 
are known, 

The ship used in the calculation is a 
tanker having particulars LxBxdxCß= 385m 
x 70m x 23.27m x 0.84 and her surface is 
covered with various kinds of roughness of 
which all the heights are the same, 130pm. The 
Reynolds number and the Froude number of the 
ship are assumed to be Rn=2.70xl09 and Fn=0.13 
respectively. The body plan and the potential 
stream lines of the tanker are shown in Fig. 
18. 

The calculated mean local skin frictions 
for various kinds of roughness are drawn in 
Fig. 19 and the calculated ACF is in Table 7. 

From these calculated results it is found 
that in the condition of the same roughness 
height; 

* the ACF of painted cases are about a 
quarter of the sand roughened case, 

* in the cases of two dimensional regular 
wavy roughness, the ACF are in order of 
roughness steepness, 

* the ACF of three dimensional wavy roughness 
shows a little lower value than that of the 
two dimensional. 

Also it can be said that; 
* Himeno's formula1")for the roughness 

function of the painted surface is useful 
for estimating ACF, 

* generally, the effect of roughness on skin 
friction is more remarkable in the front 
part of a ship, as pointed out by Tokunaga"*1. 

6. CONCLUDING REMARKS 

The main results obtained are as follows; 
(a) The frictional resistance of variously 
roughened pipes are measured (Fig. 5, Fig. 9), 
and it is found that the resistance curves of 
painted pipes and wavy roughened pipes show 
clearly different tendencies from those of sand 
roughened pipes. 
(b) However, if the slope of wavy roughness is 
steeper than about 1/10, its resistance curve 
becomes a sand roughness type. 
(c) The hydrodynamical relationship between the 
roughness height measured by the BSRA roughness 
analyser and the so-called equivalent sand 
roughness height determined by comparing 
Nikuradse's experimental results is obtained 
(Fig. 6). 
The relation can be expressed by 

i=lln(ReH)+ c + An.ML s 
a      K  v Ii      K   u^   ' 

9 = 6 (all -a2I2) » 

H = Ii/(Ii -ah)      , 

where  a=u*/U=/C(/2 , K =0.41 , C =5.0 

and 

* 
"Ux2 

Jo v u* 

>{ 
/0  u* 

J. 
K 

dn 

2+ (i+L852)n + M 

(29) 

(30) 

(31) 

(32) 

(33) 

ks = 1.47-kA 

(d) The roughness functions of various kinds of 
roughness are analyzed (Fig. 13, Fig. 14) and 
discussed. 
(e) Having a logarithmic type of velocity 
distribution in the boundary layer, the local 
ACi can be expressed simply by local Ct and 
theroughness function as 

AC. 3/2 (AU/U* 

(f) The procedures to determine the roughness 
function from the measured resistance data are 
explained. It can be done without measuring 
the velocity distributions in the boundary 
layer. 
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(g) A new roughness parameter h  = k-Fn2'3 

•(g/v2)1/3is proposed, concerning the similarity 
law of ACF; As the parameter can be applied 
commonly to both the model and the ship, the 
new parameter may be a powerful tool in 
estimating ACF. 
(h) As an application of the above stated 
considerations, the frictional resistance of a 
tanker is calculated in the various roughness 
conditions (Fig. 19). 

Lastly, the authors would like to mention 
future problems to be solved. The important 
problems are to find the roughness functions of 
complex roughness and to investigate the 
density or the distribution effect on the 
roughness functions. Further, the roughness 
representation must be examined, 

because the ks and kA are merely conventional 
and they have a certain limitation for 
hydrodynamic usage. 
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Fig. 1 Experimental equipment 

Photo. 1 Example of a roughened pipe 

Table 2  Pipe roughness measurements 

Pipe Grain 
k. 

Pipe No. Kind of Roughness Diameter Size 
(mm) (lim) (vim) (urn) 

0 Smooth  Surface 51.79     _— 
SI Abrasive  Paper(#600) 51.65 20 55 64 

S2 (#240) 51.51 70 110 130 

S3 (#100) 51.34 150 240 202 

S4 Abrasive  Grain(#  46) 51.45 350 525 538 

S5 (#   24) 51.20 750   1137 
Painted Surface  -1 51.84   21 35 

-2 51.70   60 78 

P3 -3 51.63   123 139 

k*  : Peak to valley height in 5-10 mm length 

I- 
Pipe No. 0 

Fig. 2 Roughness records examples 

Photo. 2 BSRA hull roughness analyser 

Table 1  Calibration of BSRA hull 
roughness analyser 

Calibration 
Plate 

Roughness 
Analyser Depth 

Micrometer 
(Vim) 

BSRA 
(urn) 

Kosaka 
(ym) 

No.   1 

2 

3 
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Fig. 3 Velocity profiles in smooth pipe 
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Photo. 3 Pi tot tube 
traverser 
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Fig. 4    Frictional  resistance in smooth 
pipe 
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Fig. 5 Frictional resistance in 
roughened pipes 

Table 3  Experimental results of sand 
roughened pipes 

2000 

e 

CO 

1000 

Pipe 
No. 

f kS/D *S 
(um) (pm) kS  /kA 

SI 0.0180 0.00070 36 64 0.49 

S2 0.0280 0.00381 196 130 1.51 

S3 0.0307 0.00542 266 202 1.32 

S4 0.0438 0.0151 778 538 1.45 

S5 0.0590 0.0324 1685 1137 1.46 

Pipe No. S5f 

/\*S = 1.47 k A 

/No.S4 

/No. S3 
/No. S2 

/NO.SI ,               , 1                 ' 

0 1000 kA(/zm)   2000 

Fig. 6    Relation between ICA and ks 
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Fig. 7 Universal velocity profiles in 
smooth and sand roughness pipes 

Fig. 8 Roughness records examples of wavy 
roughened surface 
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Table 4  Wavy roughness characteristics 

Pipe No. 
Wave    Shape 

H„/i„ Diameter Heiqht     H» Lenqth    i» 

W     2 
W     3 
W _ 4  
W_   5__. 
W     6 

1 20    ßm 2.00   mm 1 /I 6.7 52.00 mm 
_.L?2 

100 
1.22 1 /1 0.0 52.00 
1.00 1 /1 0.0 52.00 

1 18 3.94 1/33.4 51.90 
140 7.78 1/55.6 51.90 
300 3.8 1 1/12.7 52.00 

W     7 
~ W     8*f 

60 3.97 1 /66.2 52.00 
52.00 

tt   Three-Dimensional   Wavy   Roughness 

-Lr 

O 
o 

W  4 (2-Dimensional)_ 
/     W   8( 3-Dimensional) 

 L r Pipe   NO. P3 

10= 8      10° 

Rno 

Fig. 10 Frictional resistance in three 
dimensional wavy roughened pipe 
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Sasajima et al     (Flat Plate) 

Plate No. (2)(7)(8)©   ©   © 
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<;>*)   :  from Fig.  7 

Nikuradse's Exp. 

NO.SI*) 
Dvorak's Formula _ © © 
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Fig. 13 Roughness function AU/U* of sand and painted 
surface obtained by friction measurements 
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Fig. 11 Universal velocity profiles in 
smooth and painted roughness pipes 
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Fig. 12 Universal velocity profiles in two 
dimensional wavy roughened pipes 
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Fig.  14 Roughness function AU/U* of wavy roughened 
surfaces 
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Table 6 

Hydrautically 
smooth 
region 

Transition 
region 

Fully  developed 
region 

y 
?0 •d? 

5= u » k /£> 

Fig. 15 Three regiones of wavy roughness 
function 

200 

100 

VN 

50 

20 

in(?,)«As »in(Jt/Hw)+B2 
/ 

-   W2V   / 
W6\(o 

Wl\ oW5 

o\ 

W4 

L^_i 1  

\w7 

10 20 50 100 

Fig. 16 Boundary values of roughness 
Reynolds number 

Table 5  Coefficients of empirical 
formula for transition region 

Pipe   NO. CO C 1 C2 C3 

W    1 7.58 -12.32 5.94 -0.72 

W   2 7.18 -1 1.49 5.36 -0.59 

W   3 6.60 -1 1 .06 5.65 -0.80 

W   5 3.05 -  5.29 2.87 -0.46 

W   6 6.41 -10.32 4.89 -0.56 

W   7 1 1 .24 -19.82 1 1 .04 -1.87 

L x B xd  - 385m x 70m x 23.27m 

Fig. 18 Body plan and potential 
streamlines 

Numerical 
calculati 

data used 
ons 

in the 

Item Model Ship Note 

L   (m) 7.0 300 scale=l/15 

Fn 0.20 0.20 

U  (m/s) 

Re 

CFO 

1.657 

1.018xl07 

2.931xl03 

10.85 

2.737x109 

1.352xlÖ3 

%=1.139xlÖ6 

vs=l.188x10 
Schoenherr 

Uk/v 300 300 

k   (ym) 

ACF 

206 

0.60xlÖ3 

33 

0.128xl03 Schlichting 

k  (ym) 30 30 

Ü  (m/s) 11.4 11.9 Uk/v=300 

Re 

CFO 

ACp 

7.0x107 

2.186X1Ö3 

0.33X1Ö3 

3.0xl09 

1.337X1Ö3 

0.12xl03 

Schoenherr 

ACF-(CFO)
2 

5 

«a- 
O 4 

O 3 

  Coles -Dvorak (Flat Plate) 
  Prandtl - Schlichting (Flat Plate) 

O(ksTt00/im)   Coles-Dvorak 

A(ks»200^m)   (Ship Form) 

5 6 7 8 9 10 
logRe = log(UL/)J) 

Fig. 17 ACF expressed by a new roughness 
parameter "h" 

Table 7  ACF calculated by the three 
dimensional boundary layer 
theory 

Kind  of   Surface 
Calculated 

ACF 

Authors'   Pipe  No.   P3 (KA=130/m) 0.86xl0~4 

Himeno's  Formula (KA%130/<m) 0.60xl0~4 

3-Dimensional  Wavy 
(Hw=130   m Jw=4.Omm) 

1.20xl0~4 

2-Dimensional  Wavy 
(Hw=130  m Jw=4 .Omm) 

1.99xl0~4 

2-Dimensional  Wavy 
(Hw=130  m _£w=8.0mm) 0.36xl0~4 

Sand (Ks=130,<m) 2.70xl0~4 

Calculated  C_     of   Smooth  Surfac 
r o 

s=1.243xl0"3 
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Fig. 19 Longitudinal distribution of cross sectional 
mean of local skin frictions. 

DISCUSSION 

Dr. PAUL S. GRANVILLE, 
David Taylor Naval Ship R&D Center, 
Bethesda, MD, USA: 

It should be pointed out to the authors 
that the determination of the roughness func- 
tion (AU/u*) or any of its equivalents without 
measuring the velocity distribution close to 
the rough wall may be termed the indirect 
method. Such indirect methods may be said to 
have been started by Nikuradse for pipe flow 
in his classic 1932 paper on sand grain rough- 
ness wherein the average pipe velocity and the 
wall shear stress were used. Other indirect^, 
methods have been developed for flat plates 
involving the total drag.and forward velocity 
and for rotating disks3 ^involving the torque 
and rotary speed. 

It should also be pointed out that the 
roughness function found by Lewkowicz and 
Musker6)>7)(also analyzed by Grigsona3)) for 
actual hull roughnesses corresponds mostly to 
a Colebrook-White engineering roughness which 
is very unlike that for the painted surface 
investigated in this paper. 

In general, the effect of roughness on 
ship resistance may be more easily understood 
by the following: In Reference *4) a nondimen- 

sional length A is introduced where A = Re/Fn 
L3/2^. for smooth hulls such that 

or 
f(Re.Fn) 

CT = f (Re,A)= f (Re,L
3/2^/v) 

Here CT is the total resistance coefficient. 
For rough hull 

CT = f(Re,Fn,K/L,T) 

CT = f(Re,A,K/L,T) 

/s and eliminating L with L=(Av//i)2/3 results in 

CT = f(Re,A,Kg
l/3/A2/V/3,T) 

Here T is the roughness texture representing 
the geometry of the rough surface. 

RfifsrGncss* 
al) Granville, P.S. (1958): The Frictional 

Resistance and Turbulent Boundary Layer 
of Rough Surfaces, Journal of Ship Re- 
search, Vol. 2. No. 3. 

a2) Granville, P.S. (1982): Drag-Characteriza- 
tion Method for Arbitrarily Rough Surfaces 
by Means of Rotating Disks, Journal of 
Fluids Engineering (ASME), Vol. 104, p. 373. 
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a3) Grigson, C.W.B. (1981): The Drag Coeffi- 
cients of a Range of Ship Surfaces, Trans- 
actions of the Royal Institution of Naval 
Architects, Vol. 123. 

a4) Granville, P.S. (1956): The Viscous Re- 
sistance of Surface Vessels and the Skin 
Friction of Flat Plates, Transactions of 
the Society of Naval Architects and Marine 
Engineers, Vol. 64. 

ANTONY J. MUSKER, 
Admiralty Research Establishment, 
Haslar, England: 

I should like to thank the authors for the 
interesting paper they have presented - it is 
good to see continued interest in this subject 
particularly since it has such an immediate 
application to the economical operation of 
ships. 

There are a number of points I wish to 
make - most of them are minor. Various sources 
of possible error appear in the paper. The 
surface topography measurements have been made 
on plates whose surfaces are not replicas of 
the original pipe surface. The surfaces are merely 
coated in the same manner. I doubt whether 
adequate quality control can be maintained for 
this practice but I would appreciate the au- 
thors' comments. 

The roughness function appears to have 
been deduced from the cross-stream velocity 
profile without taking into account the so- 
called "e correction", first described by 
Clauser, which circumvents the problem of not 
knowing which datum to use for the wall dis- 
tance. In my experience this parameter,e , can 
have a significant effect on the local C^ (and 
hence the value AU/U0). 

I note that no provision for a wake flow 
is made in the profile described by equation 
(9) despite the fact that it is obviously pre- 
sent in the data of Fig. 7. 

Finally may I draw the authors' attention 
to a typographic error in equation (10): I 
believe C should be 5.0 and not 0.5 as quoted 
in the text. 

AUTHORS' REPLY 

The authors would like to thank Dr. 
Granville for the comments on the present 
indirect method which the authors did not 
know about. 

As for the nondimensional length A which 
the discusser mentioned the authors would not 
always agree that it is more easily understood 
because A takes different values between model 
scale and ship scale. 

The authors would also like to thank Dr. 
Musker for his comments on several points. 

As you pointed out, the rough surfaces on 
the flat plate are not exactly the same as those 
in the pipe. However, the authors have con- 
firmed that the peak to valley heights k* in 
both rough surfaces are nearly equal. 

We also have other small approximations as 
you pointed out which should be improved in 
future work. 

The authors also appreciate Dr. Lewkowicz's 
comments on the importance of the wake component 
in velocity profile even in the pipe flow, and 
his advice on the equivalent sand roughness 
height ks and the lack of the Reynolds number 
range in equation (23). 

Finally the authors would like to comment 
on this problem from a general point of view. 
The most important problem in hull-surface 
roughness is a lack of hydrodynamic background 
for the relationship between the rough-surface 
configuration and its local friction from a 
statistical point of view. 

As for this point the authors have recently 
read again the old paper of Prof, van Driest 
concerning the damping factor in the vicinity 
of the wall. We assumed unsteady Stokes solution 
for the turbulence damping near the wall. If 
we would get back to such a primitive level 
we might be also able to obtain a new aspect 
for the statistical hydrodynamics of the sur- 
face roughness problem. 

REFER TO PAGE 58 6 FOR ADDENDUM 
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NUMERICAL SIMULATION O^ FLOW AROUND BLUFF BODIES 

AT HIGH REYNOLDS NUMBERS 

J.J.W, VAN DER VEGT AND R.H.M, HUIJSMANS 

ABSTRACT 

The use of vortex models to simulate the 
flow around bluff bodies has received increas- 
ing attention during the last few years. Vor- 
tex models possess the elegant feature simu- 
lating the actual relevant physical phenomena. 
Much effort has been devoted to the develop- 
ment of two dimensional numerical models for 
the simulation of vortical type flows. Many of 
these numerical methods suffer from bad numer- 
ical efficiency. In this paper a modified vor- 
tex tracing scheme is presented that correctly 
models the physical behaviour of the flow and 
also possesses some very nice numerical advan- 
tages over previously developed numerical 
schemes. In Section 2 a short review of the 
most commonly used vortex models is discussed. 
Special attention is paid to the physical 
modelling of the flow and the numerical effi- 
ciency of the described algorithms. In Section 
3 a description is given of a new numerical 
model developed at NSMB, in which a vortex 
blob representation is used, combined with a 
variationally optimized grid insensitive vor- 
tex tracing technique as developed by Buneman 
(1974). In Section 4 the results of computa- 
tions of the flow around a circular cylinder 
are presented. The numerical results show that 
the presented model adequately describes the 
flow for both moderate and high Reynolds num- 
bers at low computational costs. 

NOMENCLATURE 

ö 
aD 
aL 

6kx, 6ky 

source strength 
standard deviation of random walk 
variance of least squares ap- 
proximation 
measure of core radius of vortex 
v 
kinematic viscosity 
vorticity   distribution   of   vortex 
v 
Dirac function 
wave number spacing in kx, k„ 
direction 
circulation of vortex p 
gradient operator 

03 

Kc 
Ly,     Lv 

m 
M 
n 

N 
P(|k|) 

body contour 
stream function 
Fourier transform of  stream 
function 
index of vortex 
doublet strength 
vorticity field 

body contour 
exponential integral 
unit vector perpendicular to 2- 
D flow field 
action function 

Fourier 
function 
wave number vector 

transform  of  action 

S 
S" 
s+ 
s 

u?t) 
u 
U-B 

% 
t 
x, y 
x 
-VI 

[x] 

1. INTRODUCTION 

X» -yj 

Keulegan-Carpenter number 
size of computational  space do- 
main in x, y direction 
number of Fourier harmonics 
number of grid points 
normal  vector on body 

number of vortices 
filter  function,   only  depending 
on modules of k 
distance between field point p 
and point q on surface S 
Reynolds number 
body surface 
inner part of surface S 
outer part of surface S 
distance along body contour, 
positive clockwise 
standard cubic spline 
undisturbed onset velocity 
local  fluid velocity 
fluid    velocity    due    to    onset 
flow or disturbances. 
velocity of the body surface 

tangential  vector on body 
Cartesian co-ordinate system 
position vector of vortex y 

entier function on x 

The development and exploration of natu- 

J.J.W. van der Vegt and R.H.M. Huijsmans, Maritime Research Institute Netherlands (MARIN) 
Haagsteeg 2, P.O. Box 28, 6700 AA Wageningen, The Netherlands 
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ral resources is increasingly engaged in water 
depths beyond 500-1000 m. The fatigue and op- 
erational limits of production and drilling 
systems, like riser bundles, is dominated by 
strong vibrations induced by vortex shedding. 
The engineering approach to determine the 
forces on bluff bodies commonly uses the equa- 
tion of Morison with use of experimentally 
obtained coefficients. In order to describe 
the forces on bluff bodies more accurately, it 
is of importance to take into account the 
nature of the instationary flow around bluff 
bodies. This flow is dominated for high 
Reynolds numbers by vortex shedding. The 
numerical simulation of high Reynolds number 
flows can be achieved through the use of 
discrete vortex models. 

There are, however, severe limitations to 
the application of these methods in engineer- 
ing practice. This is due to the fact that 
these discrete vortex models inadequately de- 
scribe viscous effects in the flow and require 
large computational efforts. 

In this paper an alternative method is 
presented which solves most of the problems 
connected with discrete vortex models. 

2. REVIEW OF EXISTING METHODS 

At the moment there exists a vast amount 
of numerical methods for fluid dynamical prob- 
lems, each having its own special range of ap- 
plications. They can be roughly subdivided in- 
to three main categories: Eulerian, Lagrangian 
and Coupled Eulerian-Lagrangian descriptions. 

The Eulerian methods can be associated 
with finite difference methods (FDM) and fi- 
nite element methods (FEM) using a grid fixed 
in space. However, despite their wide-spread 
use, it is still difficult to calculate an un- 
steady flow around bluff bodies at moderate to 
high Reynolds numbers using FDM or FEM. 

Therefore an interesting alternative is 
presented by the Lagrangian description of the 
flow field which is related to vortex models. 
These methods are based on the fact that the 
behaviour of high Reynolds number flows with 
large embedded vortical structures can be de- 
scribed with an inviscid model. However, these 
Lagrangian descriptions suffer from a poor 
computational efficiency, which can be im- 
proved by using a grid fixed in space, yield- 
ing the coupled Eulerian-Lagrangian descrip- 
tions such as the Vortex in Cell methods 
(VIC). 

In this paper the discussion is confined 
to Lagrangian and Coupled Eulerian-Lagrangian 
descriptions. 

2.1 Basic Principles of Vortex Methods for 
Two-Dimensional Flows 

In this section the basic principles of 
vortex methods will be discussed. The oldest 
and most simple vortex method is the point 
vortex method in which the vortices are rep- 
resented by Dirac distributions. Then the vor- 
ticity field can be represented by: 

u(x, t) = I    r 6(x-x (t)) (1) 
u=l v    ' ~v 

in which x (t) is the instantaneous position 

of the point vortex with index u and circula- 
tion r and 6 is the Dirac distribution. 

To satisfy the 2-D inviscid vorticity 
transport equation: 

£*<S V)tt (2) 

the velocity of each vortex has the value of 
the velocity field at its present location: 

dx 

dTT=-u(V t} (3) 

This   local   fluid   velocity u(x ,  t)  is   induced 

by all other vortices, except the vortex it- 
self, plus an additional potential velocity, 
e.g. due to an onset flow or the disturbance 
velocity caused by an obstacle. The induced 
velocity caused by the vortices is given by 
the Biot-Savart law of interaction: 

, N (x -x.)xe,r. 
u(x , t) = -i- i -v -J -' J 

- -y 2* j=l      lx -x,|2 
(4) 

J*y 
|_U   _ji 

with e    the   unit   vector   perpendicular   to   the 

2-D flow field. 
The local induced velocity is the solu- 

tion to the Poisson equation: 

V2u = -V x(uez) (5) 

subject to the boundary condition: 

u.n =0 at da (6) 

where n is the unit outward normal at the body 
contour 3H. Inserting equations (1) and (4) 
into equation (3) finally yields a set of 2N 
non-linear ordinary differential equations for 
the position of N point vortices. 

dx 
-u 

dt 

N    (x -x.)xe r. 

2ir 
j=l 
3*u 

-V  ~J '  'I J + uR(x  ,  t)        (7) 
|x-x.|2 "B -v 
1 -y -J' 

in which uD is an additional velocity due to 
-D 

an onset flow and the disturbance velocity 
caused by an obstacle. These ordinary differ- 
ential equations can be solved, e.g. by using 
an Euler or Runge-Kutta time step integration 
method. 

The    described   procedure   possesses   some 
advantages over FDM or FEM such as: 
- The numerical procedure outlined above is 

gridless, therefore preventing the occur- 
rence of problems related to the generation 
of a grid or to the numerical viscosity 
caused by a grid at high Reynolds numbers. 

- Since no time-averaging is used the proce- 
dure   can   simulate   unsteady   flows.   Notwith- 
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Standing these advantages, there are some 
serious problems related to the point vortex 
method which will be discussed shortly. 

2.1.1 Chaotic Motions 

The velocity induced by a point vortex 
shows a strong singular behaviour when two 
vortices come close together. This leads after 
some time steps to chaotic motions of the vor- 
tices. There are two ways of dealing with this 
singular behaviour: 
- Shear Layer approximation; 
- Vortex Blob method. 
For relatively high Reynolds numbers the vor- 
ticity is confined to a very thin shear layer 
emanating from the body. The velocity induced 
by these shear layers can be calculated by us- 
ing panel methods. Applications of first order 
panel methods are shown by e.g. Faltinsen 
(1982) while higher order panel methods are 
used by Hoeijmakers (1984). In order to elimi- 
nate the singular behaviour which causes the 
chaotic motions a rediscretization technique 
must be applied, Fink and Soh (1974). However, 
Moore (1981) showed that this process for a 
circular vortex sheet is not sufficient to 
eliminate the chaotic behaviour at all times, 
although most of the time it gives reasonable 
results. 

Another way to avoid the singular behav- 
iour of the point vortex is the spreading of 
vorticity over some finite core (called a 
blob) based on the fact that real vortices 
have finite cores. This method effectively 
reduces chaotic behaviour and will be dis- 
cussed in detail somewhat more. In the vortex 
blob method the vorticity field is represented 
by a set of smooth functions of compact sup- 
port. 

J(X, t) 
N 

i=l 

r Y (x-x (t)) 
u u - -v 

(8) 

in which y      is the vorticity distribution 
function normalized by: 

/ yv(x')  dx' = 1 (9) 

If it is assumed that all vortices have the 
same circular core shape one may write: 

V|x-xw(t)|) =V (l.x-xp(t)|/ap)     (10) 

where the function f is common to all vortices 
and a     is a measure for the core radius. A 
particular choice for f(.) is a Gaussian dis- 
tribution. 

Y (|X-X (t)|) expf-lx-x^ft)!2^)  (11) 

Inserting equation (10) into the Poisson equa- 
tion written in terms of the stream function $ 
yields the equation for a vortex blob centered 
in the origin of a Cartesian co-ordinate 
system. 

A<JJ -£f(|x|/a   ) 
a 

v 

(12) 

This equation can be solved analytically for a 
Gaussian vorticity distribution yielding: 

r 2   2 
*U, y) = - -£■ {ln(x2+y2) + Ejf^-JL)}        (13) 

which is a useful result for the investigation 
of the accuracy of a Fast Elliptic Solver 
(FES) for a vortex blob method using Gaussian 
vorticity distribution, as will be discussed 
later. Once the Poisson equation (12) is 
solved it is possible to calculate the induced 
velocities. Only the final result for the in- 
duced velocity in the x-direction is presented. 

r       „   \|xV 
u(x, y) = --&-J-J1    S    rf(r/a  )dr        (14) 

a    x +y        0 v 

v 

The y-component of the induced velocity v(x,y) 
is analogous. Introducing a function g(n) de- 
fined as: 

2TT 
n 

(15) g(n) =-^r     /    zf(z/a   )dz 
cT    0 v 

p 

the induced velocity of a set of N vortex 
blobs becomes: 

.    N (x -x,)xe r g(|x -x.|/a  ) 
u(x ,t) = - -i-X    -y -J   -zua '-P -J1   v (16) 

^/=i lvx/ 
A limiting analysis x + x. now shows a regu- 

lar behaviour of the induced velocity. Equa- 
tion (16) is nearly the same as the result ob- 
tained for the point vortex method equation 
(4), which showed that the vortex blob with a 
circular core behaves at all distances similar 
to a point vortex with an adjusted circulation 
rpg(.). 

Actually the vortex blob method is an ap- 
proximation to the exact solution of the in- 
viscid transport equation. Therefore its ac- 
curacy was investigated intensively, showing 
that special forms of vorticity distributions 
are superior. Leonard (1980) showed that when 
using a Gaussian vorticity distribution this 
would yield a second order accurate method. 

2.1.2 Computational Efficiency 

The point vortex method and related meth- 
ods, the vortex blob and panel method, all 
have a computational efficiency which is very 
poor. The most time consuming part in the al- 
gorithm is the calculation of the induced ve- 
locities of the vortices which has an opera- 

tion count proportional to Nz where N is the 
number of vortices. The Vortex in Cell method, 
using FES, has an operation count proportional 
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to N+Mlog2M, where M is the number of grid 
points used for the solution of the Poisson 
equation for the induced velocities or the 
streamfunction. In this method the induced ve- 
locities are calculated by solving the Poisson 
equation {5) on a grid fixed in space using 
FDM after distributing the vorticity to the 
grid points through linear interpolation. Then 
the vortices are advanced using a Lagrangian 
scheme. 

An application of this method to the so- 
lution of the flow around a circular cylinder 
can be found in Stansby and Dixon (1983). 

Despite its improved efficiency the meth- 
od is not very useful because improved compu- 
tational efficiency is gained at the cost of 
reduced accuracy. When two vortices come close 
together the resolution of the grid becomes 
too small leading to incorrect vortex-vortex 
interactions and anisotropy. 

2.1.3 Viscous Effects 

The point vortex method and related meth- 
ods are inviscid in nature, which causes prob- 
lems with the creation of vorticity at the 
wall or the reduction of circulation in the 
wake. There are a number of ways to cope with 
the problem based on empirical or semi-empiri- 
cal approaches, e.g. Sarpkaya (1979). The 
Kutta condition is very useful when dealing 
with a fixed separation point at some sharp 
edge, but if separation occurs on a smooth 
surface, knowledge about the location of the 
separation point is necessary. This must be 
obtained through experiments which are rather 
difficult in unsteady flow. Deffenbaugh and 
Marshall (1976) report that the results of 2-D 
unsteady boundary layer calculations are not 
very promising. Chorin (1973) proposed a more 
ambitious algorithm based on operator split- 
ting of the Navier-Stokes equations. This will 
be elucidated in the next section. 

3. NUMERICAL SIMULATION OF FLOW AROUND BLUFF 

BODIES USING AN EFFICIENT VORTEX BLOB 

METHOD 

with boundary conditions at the body 

3.1 Discussion of the Chorin Scheme 

All the methods discussed in Section 2 
either suffer from a poor computational effi- 
ciency or problems associated with viscous ef- 
fects such as the introduction of vorticity in 
the fluid. A way to get around these problems 
is using the scheme proposed by Chorin (1973) 
and combining this with a vortex blob method 
and a very accurate and efficient FES. 

The Chorin scheme is based on operator 
splitting, a general review of which has been 
given by Sod (1980). Consider the Navier- 
Stokes equations for an incompressible flow 
written in vorticity transport form: 
3d) 

^ + (U.V) (i) = v A (U (17) 
9t    -    -       " 

and continuity equation: 

div (u) = 0 (18) 

u = u,, at an -w 

and at infinity: 

u = U(t) 

(19) 

(20) 

Then operator splitting is used to separate 
this set of equations into two parts: 
- the Euler equations 

at + (u.v) u = 0 

with continuity equation 

div uE = 0 

(21) 

(22) 

subject to boundary conditions at the body 

u    . n = u     at an (23) -      -w 

and at infinity 

uE = U(t) 

and the diffusion equation 

a D 

-    „ D 
at 

V A ID 

(24) 

(25) 

The coupling between these two sets of equa- 
tions is established through the no-slip con- 
dition in order to remove the non-zero tangen- 
tial velocity at the boundary which still ex- 
ists after the solution of the inviscid Euler 
equations. The effect of viscosity results in 
the creation of vortices at the boundary of 
the body with strength: 

D !s)  = uE(s)   .  t(s) vsean (26) 

These vortices and the vortices already pre- 
sent in the fluid from previous time steps are 
diffused according to equation (25). In this 
way a solution is achieved through the subse- 
quent application of an Euler and a diffusion 
step. 

In general the concept of operator split- 
ting should be considered carefully because 
convergence to the Navier-Stokes solution is 
not guaranteed. However, Chorin et al. (1978) 
showed that the method converged if each sub- 
step was convergent. Beale et al. (1981) gave 
expressions for the error introduced by this 
splitted algorithm showing that the method was 
second order accurate in time, if a modified 
algorithm was used. The method consisted of 
applying a diffusion step with time step At/2, 
followed by an Euler time step At and finally 
one more diffusion step with At/2. In this way 
an interesting grid-free solution method be- 
comes available which is especially suited for 
moderate and high Reynolds number flows, be- 
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cause the error in the splitting scheme de- 
creases with increasing Reynolds number. 

3.2 Solution of the Diffusion Equation 

The solution of the diffusion equation 
presents no special problems. A grid free 
solution technique of the diffusion equation 
is the random walk concept in which the vor- 
tices are diffused using a random walk with a 
Gaussian probability distribution and zero 
mean and standard deviation. 

(27) aQ  = /2Atv 

3.3 Variationally Optimized Grid Insensitive 
Vortex Tracing Method 

An accurate and numerically efficient 
grid free solution technique for the Euler 
equations presents more problems as discussed 
in Section 2. 

A method which solves most of the prob- 
lems is introduced by Buneman (1974) for point 
vortices. It presents a more fundamental 
approach to the construction of fast elliptic 
solvers originally given by Lewis (1970). He 
derived a general three dimensional variation- 
al principle for plasmas in the Vlasov limit 
based on an exact Lagrangian description. In 
the Vlasov approximation it is possible to re- 
present particles by time-dependent distribu- 
tion functions, one for each particle. The 
same approximation is made in vortex blob 
methods. It is possible to show that a plasma 
in the Vlasov limit and an inviscid vortical 
fluid are mathematically equivalent, Wang 
(1977). Buneman extended the method of Lewis 
and applied it to two-dimensional time depen- 
dent flows with point vortices. He used a 
variational formulation for point vortices and 
obtained through filtering in Fourier space 
vortices with finite cores. However, this fil- 
tering in Fourier space was performed without 
a direct relation with physics. Therefore, the 
variational formulation is extended for the 
vortex blob method. 

The action function for the inviscid mo- 
tion of a set of vortex blobs in an unbounded 
fluid, which is energy and momentum conserva- 
tive, is given by: 

J{+, v V = W °-5lv*l2 dxd*dt + 

- I  ry{/// rdx-xj) +(x, y) dxdydt + 

+ 0.5/   (^  dyp  -yy  dx,,)} (28) 

in which u   is  the  vortex  index, if  the  stream- 
)  the vortex position  in a 

Cartesian   co-ordinale   system.   Variation  of i/, 

IM III!    I   Uli p I   J V"" »   w 

function and (x^, y ) 
Cartesian co-ordinate 
x    and y    now yields: 

Aijj I  T(|X-X   |) (29) 

dy. 

dt 7^="//^ K_x  |)i%JLldxdy 
8x 

dx 
 H 
dt // Ydx-xJ) 

3i|)(x, y) 
ay 

dxdy 

(30) 

(31) 

The paths of the vortex blobs now can be found 
by solving the Poisson equation (29) and ad- 
vancing the vortices according to the equa- 
tions (30) and (31) which is in accordance 
with the theorems of Kelvin and Helmholtz. 
These equations, however, can be solved more 
easily in Fourier space. Applying a two-dimen- 
sional discrete Fourier transform with period 
Lx   and   Ly   in   x-   and  y-direction  yields   the 

transformed action function: 

3(V VV=LxLy'°-5l I* I2 l*kl2dt + 

ik.x 
I r {IS P(|k|>*ke      "dt + 
u   M k 

+ 0.5 /(x,, dyu - yy dx^)} (32) 

in which 

6kx = 2Trn/Lx, 6k y 
(n,m 

2Trm/Lv 

0, +1, +2 ) 

and the filterfunction P(|k|)  is defined as: 

P(|k|) =/ Y(|X-XJ) e 
•ik.x 

" ~v dx 

Variation of 4^, x and y yields: 

LxLy |k|2Yk = P(|k|) I    Vv  e -'*» 
v 

dy u 
dt 

dx 
 H 
dt 

-I ikxP(|k|) \e~'*~v 

k 

3X ■I P(|k|) *k e 
ik.x 
- -u 

ik.x 
I iky P(|k|) *k e 

äy-pdkD^e1-*^ 
Jv  k 

(33) 

(34) 

(35) 

(36) 

(37) 

(38) 

However, the solution of these equations is as 
expensive as the direct method using the Biot- 
Savart equation, because it requires at each 
time step the evaluation of twice as many tri- 
gonometric functions as there are vortices. 
This problem can be circumvented using cubic 
spline interpolation to trigonometric func- 
tions which has the additional benefit of 
creating the possibility of using Fast Fourier 
Transforms (FFT). This cubic spline approxima- 
tion procedure then leads to an operational 
count of order N + m log m, in which m is the 
number of Fourier components. The cubic spline 
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approximation can be performed in several 
ways, but the method using a least squares ap- 
proximation turned out to be the most appro- 
priate. The main reason for this is the fact, 
that standard cubic spline approximations 
force agreement between function and approxi- 
mant at the knot points x=n, (n=l,2, ), but 
since the function to be approximated is known 
throughout the whole interval a more accurate 
approximation can be obtained. 

The mean square error over the interval 
can be minimized by a proper choice of the co- 

efficient S(k) in the approximation of e1kx 

with unit intervals: 

x +2 

eikx = S(k) eikjS3(x-j) S(k)I(x) (39) 

-1 

in' which S3 is the standard cubic spline. 
Since the approximation is independent of the 
chosen interval the function S(k) is deter- 
mined with a least squares approximation in 
the interval  [0,1] . 

S(k)  =   /    I(x) e 
0 

■ikx dx/j 
' 0 

I(x)2dx (40) 

LxLy|k|
2 *k = S(kx)S(ky)  P(|k|) 

-i(kxj+k 1) 
X X  e       x     y      • 
j 1 

I r s,(x -j) S,{y -1) (43) 
L       pop J      VI 

dy 
dt 3X 

[x]+2       [yp]+2 

X I 
M. j=[xj-l    l=[yj-l 

{IS(kx)S(k ) P(|k|) *k e 

h{\-t]h{\-}) 

i(kxj+k 1) 

(44) 

dx 
 p 
dt 

3^ 
8X 

x    +2 

v  3= |x. T[y„]-i 

l£S(k  )S(k   )  P(|k|)*k e 
k      x       y 

i(kxj+kyl) 

yielding: s3(Vj) VV1 (45) 

S(k)  =(2 sin  (k))4/((l-4 sin2(k)  + 

+ |sin4(|)-^sin^))] 

with mean square error: 

o[  = l-(2 sin(k))8/(l -i}sin2(k) + 

+ 
2sin^)-^sin^)] 

(41) 

(42) 

In Fig. 1 the square root of the mean square 
error is given for Nearest Grid Point (NGP), 
linear, quadratic and cubic spline interpola- 
tion, which shows superior behaviour of cubic 
spline interpolation. For the higher wave 
numbers near the aliasing frequency, which is 
TT for interpolation with unit intervals, the 
error increases rapidly. However, the wave 
numbers in this region are heavily filtered by 
P(k). Inserting the interpolation for the tri- 
gonometric functions in equations (34) and 
(38) yields the final equations for the paths 
of large numbers of vortex blobs. 

in which j and 1 run through the entire range 
of data points in equation (43). Using the 
symmetry for S(k) and P(|k|), the summations 
can be transformed into the standard form for 
application of FFT algorithms. In this way an 
enormous improvement in computational effi- 
ciency is achieved. Equations (35) to (38) 
show that the induced velocity can be deter- 
mined in two different ways. Either through 
multiplication with kx and ky, (35) and (37), 
or differentiation of the cubic spline, (36) 
and (38). Both methods were tested; the dif- 
ferentiation of the cubic spline gave slightly 
better results. The main reason is that after 
multiplication with kx and ky the streamfunc- 
tion is nearly zero at low wave numbers thus 
reducing the accuracy of the FFT. An addition- 
al advantage of differentiating the spline 
function is that only one FFT is needed for 
the calculation of the induced velocities, 
equation (44) and (45). Therefore all subse- 
quent calculations are performed using differ- 
entiation of the cubic splines. 

The filter function still has to be de- 
termined. The most convenient choice is a 
Gaussian filter because: 
- real vortices frequently have Gaussian 

cores, Tung et al. (1967) 
- vortex blobs with Gaussian cores are second 

order accurate 
- Gaussian vorticity distributions yield a 
Gaussian filter in Fourier space, eliminat- 
ing side band effects and reducing aliasing 

- a Gaussian filter effectively reduces the 
errors in the interpolation of the exponen- 
tials at aliasing frequency 
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- vorticity distributions with Gaussian cores 
satisfy the diffusion equation. 

Two filter functions were tested: A Gaussian 
probability function truncated at kmax = TT 

P2(k) = exp(-6 k2/*2) (46) 

and  a  spline  approximation  of P2(k)  cubicallj 
tending to zero at kmax = TT 

P2(k) = 1 --^k2(l-|k|/Tr: 
TT 

2(l-|k|A)3 

|k|<£      (47) 

7<|k|<ir       (48) 

The filters gave slightly different results in 
the close vicinity of the vortex, Figs. 2 
through 4, in which the results of the velo- 
city for different filters and numbers of 
Fourier harmonics are plotted. 

In the vortex tracing method derived in 
this section it is assumed that the stream- 
function \|i is periodic in x- and y-direction. 
In practice one is mostly interested in solu- 
tions in a domain extending to infinity. There 
are several ways to transform the problem to 
an infinite domain. One way is to transform 
the problem into an internal Dirichlet problem 
using an asymptotic expansion of the exact 
solution of the streamfunction, Ting (1983). 
This method is rather expensive because the 
streamfunction of each vortex has to be calcu- 
lated  at many   boundary  points   thus   increasing 

the operation count to 0(N2). An alternative 
method is discussed in a paper by Hockney 
(1970); he showed that, by using only one 
quarter of the computation domain and if in 
the remaining domain no vortices are present, 
it is possible to simulate an infinite domain 
with a periodic FFT. This method has the dis- 
advantage that the computing time for the FFT 
is four times that for a periodic domain. How- 
ever, the most time consuming part in the cal- 
culations is the calculation of the spline 
weights; therefore at the moment some overhead 
in the FFT is considered to be not so serious. 

3.4    Introduction of a Body in the Vortex 
Tracing Method 

The vortex tracing method discussed in 
Section 3.3 described the behaviour of a set 
of vortex blobs in an unbounded fluid without 
a body. A body can be represented with a boun- 
dary integral method using a surface source 
and vorticity distribution. Stansby et al. 
(1983) showed that it is advantageous to use a 
vorticity distribution. Then the strength of 
the vortices, which must be shed from the body 
in order to satisfy the no-slip condition, 
equation (26), is immediately known. Stansby 
only used a vortex layer but it can be shown 
that an additional source layer is necessary 
when the exterior flow is non-uniform, e.g. 
with the influence of vortices in the exterior 
flow, Hunt (1980A). In order to obtain a more 
managable integral equation viz. a Fredholm 
integral   equation   of   the   second   kind,   it   is 

necessary to transform the external Neumann 
condition, equation (23), into an internal 
Dirichlet condition using Green's theorem. 
Consider an unbounded fluid with unperturbed 
potential $a, viz. the potential of the uni- 
form onflow with vortices present in the 
fluid, in which a body with surface S is 
introduced. The potential <|>p inside S becomes: 

/I- (49) - // a(q)   (i)dS 
S K 

in which a and pn are the unknown source and 
doublet strength, n the unit normal vector 
pointing in the exterior fluid domain and R 
the distance between the field point P and the 
point q on the surface S. Suppose that the in- 
ternal   velocity V<|>p  is  required to be equal   to 

the undisturbed velocity v^p then the source 
strength a must be equal  to: 

«(q) = (nq • v^q) (50) 

because otherwise there exists a finite mass 
flux through the body. Introducing equation 
(50) into (49) and differentiating equation 
(49) along S" the inner side of surface S, re- 
sults in an integral equation for the vorti- 
city strength y, using some well known identi- 
ties to transform a doublet distribution into 
a vorticity distribution, e.g. Hunt (1980B). 

1 R 

UP x w //  (Xq x -j) ds = 

üp*i /s/ V vWVi)ds (51) 

The integral equation can be simplified by 
confining the problem to two dimensions (\„ = 
Yqez) yielding: 

Y dx dy     / 

[<vv2 + (ypV]} w 

nv\/+ (yn-ya>2]]<!Vv*»o>dso 

i 
"2T 

p  q 'p Jq 

vpes (52) 

where the distance s is positive measured 
clockwise and C is the body contour {$> denotes 
the principle value of integral). This inte- 
gral equation can be discretised using a panel 
method with straight line segments and con- 
stant vorticity distribution on it, which 
presents no special problems. However, the re- 
sulting matrix is nearly singular which is 
caused by the non-uniqueness of the surface 
vorticity formulation. This can be solved by 
requiring the additional  condition: 
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£ Y(S) ds = 0 (53) 

expressing the fact that the only way to in- 
troduce vorticity in the fluid and thereby 
changing the circulation is through satisfac- 
tion of the no-slip condition, equation (26). 
It is now very easy to calculate the tangen- 

tial velocity at the exterior surface S+ of 
the body. Approaching the surface from the ex- 
terior and interior part of the body and sub- 
tracting the exterior and interior tangential 
velocity using the fact that the internal ve 
locity is equal to 
finds: 

p . t , one easily 

t + Y 
-P   P 

vpes (54) 

where t is the unit tangential vector, posi- 

tive clockwise. Then the strength of the vor- 
tices which must be shed from the body to 
satisfy to no-slip condition (equation (26)) 
is immediately known. 

The paths of the vortices now can be de- 
termined by integration in time of the induced 
velocities of the vortices, equations (44) and 
(45), the uniform onflow velocity, equation 
(24) and the induced velocity of the vortex 
and source layer. 

3.5 Time integration 

The set of ordinary first order differen- 
tial equations for the paths of the vortices 
equation (7) can be solved in several ways. 
The methods of Euler, Heun and Adams- 
Bashforth-Moulton were all tested. The Euler 
method showed to be the most useful time inte- 
gration method with regard to computing time 
and memory requirements. Many authors use a 
constant time step in their vortex tracing 
method. However, large variations in induced 
velocitites can occur due to the appearance of 
large vortical structures for which reason the 
time step was continuously adjusted to ensure 
a constant global error during the simulation. 
The global error can be estimated rather ac- 
curately using step doubling, as discussed by 
e.g. Stoer and Bulirsch (1980). Each basic 
step At is done twice; once as two steps At/2 
and once as one step At. In this way the opti- 
mum time step can be determined for a certain 
level of accuracy. 

3.6 Final algorithm for flow simulation using 
a Chorin scheme 

The Chorin scheme as discussed in Section 
3.1 can now be constructed using the methods 
discussed in the previous sections. The vari- 
ant of Beale and Majda (1981) was used, be- 
cause of its improved accuracy. This splitting 

algorithm gives an error proportional to vAt 
when using an exact solution of the Euler and 
diffusion equations with time step At. In this 
way the following steps can be discerned: 
1. At time t=0 the fluid is impulsively set 

into motion. 

2. The vortex and source strengths are calcu- 
lated to satisfy the condition of zero nor- 
mal velocity at the body surface. 

3. Vortices with strength y are created at the 
body surface to satisfy the no-slip condi- 
tion. Due to the fact that one half of the 
vortices disappears in the body as a conse- 
quence of the random walk approach twice as 
many vortices are created to satisfy the 
no-slip condition in the average. 

4. The vortices at the body surface are dif- 
fused using the random walk method with 
time step At/2. The vortices which diffuse 
into the body in the time step after their 
creation are removed; vortices from previ- 
ous time steps which diffuse into the body 
are replaced at the surface. 

5. The vortices are transported using the vor- 
tex tracing method with time step At. 

6. A second diffusion step is applied with 
time step At/2 and the induced velocities 
are updated. 

7. New vortices are created at the body sur- 
face to satisfy the no-slip condition and 
the process continues at point 4. 

4. DISCUSSION OF RESULTS 

A computer program was written for the 
numerical method discussed in Section 3. The 
computations are performed on a CRAY IS super 
computer and tests were carried out for the 
following problems: 
- The influence of various filter functions, 

number of Fourier harmonics and direction on 
the velocity field of a single vortex. 

- The velocity field of one vortex at various 
locations to study inaccuracies caused by 
the cubic spline approximation of the. expo- 
nentials. 

- Paths of two vortices in a fluid which is at 
rest at infinity. 

- A circular cylinder in a steady onflow at R^ 

= 104. 
The computations for the circular cylinder 
were performed using 128x128 Fourier harmon- 
ics, average time step At = 0.2/U, 44 panels 
at the body surface and a cylinder diameter of 
10 grid spacings. 

The results of the two filter functions 
differ slightly, Fig. 2-3, showing that the 
cubic spline approximation of the Gaussian 
vorticity distribution was slightly better 
than the truncated Gaussian distribution when 
compared with the exact solution, eq. (13). 
Fig. 4 demonstrates that the influence of 
polar angle on the tangential velocity is 
small. The influence of increasing the number 
of Fourier harmonics disappears above 64x64 
Fourier harmonics, Fig. 2-3. Then the errors 
caused by the interpolation of the exponen- 
tials and by aliasing prohibit further 
improvements of the results. For a further 
improvement of the accuracy a smaller inter- 
polation interval is necessary. It is, 
however, possible, to correct for numerical 
errors caused by the interpolation process by 
adjusting the filter function because the 
results are nearly independent of position. 
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The tangential velocity of a vortex blob is 
2 

shown in Fig. 3 if a filterfunction e" ' ' > 
is applied. 

In Fig. 5 a vector plot of the induced 
velocity of a vortex located in an arbitrary 
position somewhere between the interpolation 
points (co-ordinates (7.3;9.8)) is shown. 
There Is no visible distortion of the stream- 
lines through inaccuracies in the interpola- 
tion of the exponentials. The absolute value 
of the largest differences in the induced 
velocities at various locations is about 5% 
compared with a value of about 50% in the 
vortex-in-cell method, Eastwood and Hockney 
(1974). 

Another means to study the accuracy is 
calculating the paths of two vortices. In Sec- 
tion 2.1 it was shown that vortex blobs with 
circular cores behave like point vortices with 
an adjusted strength. Therefore the paths of 
two vortex blobs in a fluid at rest at infini- 
ty are concentric circles both having a dia- 
meter equal to the distance between the vor- 
tices. In Fig. 6 the paths of the two vortices 
are presented, showing an almost perfect cir- 
cular shape. When the two vortices have 
covered the circle twice the deviation from 
the circle was about IX. The positions of the 
grid points used in the interpolation process 
are marked with + signs. 

In Fig. 7-16 vector plots at various time 
steps of an impulsively started flow around a 

circular cylinder at RN = 1CP are shown. It is 
interesting to compare them with the pictures 
obtained by Prandtl (e.g. Batchelor (1980), 
plate 10 and 11) showing perfect agreement. 
The flow field starts with a potential flow, 
Fig. 7, which lasts for quite a long time. 
Next an almost triangular area develops at the 
trailing end of the cylinder with low fluid 
velocities, Fig. 8. In this area two small 
vortices develop which are symmetric and 
become larger with time. The wake behind the 
body is closed and the exterior flow resembles 
a potential flow around an adjusted body, viz. 
cylinder and wake, Fig. 9. The vortices grow 
and remain symmetric until their diameter is 
about two third of the cylinder diameter. In 
the meantime the separation points move rapid- 
ly to an angle of about 110 degrees measured 
from the forward stagnation point and a con- 
siderable back flow occurs at the base of the 
cylinder toward the separation points, Fig. 
10. Suddenly the vortices become asymmetric, 
Fig. 11, without an external instability being 
introduced. The wake grows but remains closed, 
Fig. 12, until the upper vortex is shed from 
the body, Fig. 13. Then it is no longer pos- 
sible to discern a closed wake and the well 
known Von Karman vortex trail can subsequently 
be seen to develop, Fig. 14-15. Compared with 
the relative slow changes when the wake was 
closed now the variations are large and the 
separation points are no longer fixed in loca- 
tion. A limiting streamline between the wake 
and the exterior flow is no longer visible. 

One of the most important and powerful 
properties of the numerical method is its 

ability to introduce vorticity into the fluid 
without requiring any knowledge about the lo- 
cation of the separation points. The vortex 
layer at the body surface represents an infin- 
itely thin boundary layer, which is broken up 
into small vortices and diffused using the 
random walk method. The effects of viscosity 
are most important when the vortices are 
created and diffused into the fluid. Due to 
the small variance of the random walk an ac- 
curate representation of the body surface is 
necessary at the points where the vortices are 
created. It is interesting to see that the 
thin boundary layer at the front end of the 
cylinder is not disturbed despite the large 
core radius of the individual vortex blobs. At 
the end of the simulations more than 13000 
vortex blobs were present in the fluid. In 
this way the large vortical structures in the 
wake consist of thousands of individual vortex 
blobs. In that case the diffusion is much 
better simulated using the random walk method 
than by diffusing some large individual vor- 
tices. It must be remarked that in the simu- 
lation process no vortices are clustered or 
removed to reduce computing time or chaotic 
behaviour. The vortex tracing method showed no 
chaotic behaviour as observed for instance by 
Baker (1979) with his vortex-in-cell method. 
The vector plots proved to be a powerful tool 
in examining both the accuracy of the numeri- 
cal method and the physical modelling, as 
opposed to the widely used plots of the posi- 
tions of vortices, e.g. Stansby (1983). 

The computer program is fully vectorized 
for a CRAY-IS computer and tests were run on a 
CRAY-IS as well as a CYBER 175-855 computer. 
The program was ten times faster on the CRAY, 
but when calculating paths of vortices without 
a body in the fluid domain the code was 100 
times faster on the CRAY due to the fact that 
the FFT is very efficient on this machine. The 
numerical method is suited to vectorization 
because it consists of a large amount of 
matrix-vector multiplications and Fast Fourier 
Transforms. However, as in all particle codes, 
it is rather difficult to solve the problems 
of indirect addressing which occur in equa- 
tions (43) to (45). This can be solved by 
sorting the vortices as discussed by Hockney 
et al. (1974). In Fig. 16 the CPU time is 
given as a function of the number of vortices, 
showing that the calculation of the induced 
velocities of the panels is by far the most 
time consuming part. The computing time for 
the induced velocities of the panels is linear 
in the number of vortices instead of quadratic 
as in other methods, e.g. Faltinsen et al. 
(1982). As an illustration of the CPU-timing 
for a panel method (Faltinsen) the CPU-time 
for a new time step for 900 shear layer ele- 
ments amounts to about two minutes on a CRAY- 
IS computer. 

5. CONCLUDING REMARKS 

The   vortex   tracing  method   is   able   to   simu- 
late    unsteady    two-dimensional    flow   around 
bluff bodies at moderate Reynolds numbers. 
The   method   is   accurate   compared   with   the 
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Vortex-in-Cell Method and does not suffer 
from noticeable grid effects and chaotic 
behaviour. 

- The method requires no knowlegde about the 
separation points and the vortices are 
created in a physically correct manner. 

- The method has a very good computational ef- 
ficiency and is able to simulate the behav- 
iour of large numbers of vortices at low 
costs. 

- The vector plots of the computation of the 
flow around a circular cylinder show a 
remarkable agreement with flow visualization 
experiments. 
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Figure 1 Square Root of Mean Square Error 
vs.k for Nearest Grid Point, 
Linear, Quadratic and Cubic Spline 
Interpolation of a Pure Harmonic 

Figure 2 - Tangential Velocity Induced by a 
Vortex With Strength 10, Using a 
Cubic Spline Approximation of the 
Vorticity in the Blob 
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Figure 3 - Tangential Velocity Induced by a 
Vortex with Strength 10, Using a 
Trucated Gaussian Vorticity Distri- 
bution in the Blob 

Figure 4 - Tangential Velocity Induced by a 
Vortex With Strength 10 for Various 
Polar Angles $ 
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Figure 5 - Vector Plot of the Induced Velocity 
of a Vortex Located at  (7.3;9.8) 

Figure 6 - Paths  of Two Vortices  in a Fluid at 
Rest at Infinity 
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Figure 7 - Evolution of FLow Around A Circular Cylinder in a Steady Onflow 
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Figure 9 - Evolution of Flow Around a Circular Cylinder in a Steady Onflow 

581 



■ 

, / , „ % 

"  . 1 

- . , • • ' "" 

-, -~ ^ y y 

Figure 10 - Evolution of Flow Around a Circular Cylinder in a Steady Onflow 
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Figure 11 - Evolution of Flow Around a Circular Cylinder in a Steady Onflow 
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Figure 12 - Evolution of Flow Around a Circular Cylinder in a Steady Onflow 
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Figure 13 - Evolution of Flow Around a Circular Cylinder in a Steady Onflow 
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Figure 14 - Evolution of Flow Around a Circular Cylinder in a Steady Onflow 
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Figure 15 - Evolution of Flow Around a Circular Cylinder in a Steady Onflow 
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Figure 16 - Timing on CRAY-IS for Calculation 
of One Time Step: 
1. Total CPU-Time 
2. CPU-Time for the Calculation of 

the Induced Velocities of the 
Vortices 

The first one is a purely mathematical 
one: It is shown in the literature that the 
operator splitting method of Chorin converges 
to the exact solution if the time step At 
tends to zero. This time step At is the period 
over which the Euler step and thereafter the 
diffusion step is carried out exactly. The 
authors carry out the Euler step and diffusion 
step approximately. I wonder whether they can 
give some more information now or in the fu- 
ture about the convergence of their method. 

My second question concerns the stability 
of the method. One of my students worked out 
the method of Graham for vortex shedding at 
sharp edges in an oscillatory flow. The vortex 
pattern looked quite realistic except in the 
area where the distance between the vortices 
becomes too small. A recombination of vortices 
has to be carried out. Similar phenomena turn 
up if you use Faltinsen's method. Do the au- 
thors expect that their method does not show 
a similar chaotic behavior if they carry out 
their computations over a large period of 
time? 

DISCUSSION 

Dr. BJÜRNAR PETTERSEN, 
The Norwegian Institute of Technology, 
Trondheim, Norway: 

Ut What is the time (dimensionless f.ex t* /R) in Fig. 15, and how far have you gone 
with your simulation? 

The time when the vortices become asymme- 
tric, is it the same in every run? Is it sensi- 
tive to other parameters? 

Can the authors give more details about 
the motion of the separation points? 

In some situations when the vortices are 
close to the cylinder we have large velocities 
on the back of the cylinder. Secondary separa- 
tion occurs. Has this been discovered in your 
model? 

I am not sure about the CPU-time for the 
panel method mentioned in the last part of the 
paper because we have not used a CRAY 1. We 
are using a Cyber 205 and in our calculations 
we use at most 500 elements in the 2D case. 
The number of elements in the wake varies, it 
increases with time. 

Prof. Dr. AAD J. HERMANS, 
Technische Hogeschool Delft, 
Delft, Netherlands: 

First I would like to congratulate the 
authors on their fine paper on the interesting 
topic of vortex simulation. I am impressed by 
the fact that the authors are able to combine 
and improve a classical method of integral 
equations with a modern method of operator 
splitting, together with a fast Fourier solver 
for the overall field equations. To my know- 
ledge it is the first time that these methods 
have been combined successfully. 

I would like to ask the following two 
questions: 

AUTHORS' REPLY 

We would like to thank the discussers for 
their interesting and valuable comments on our 
paper. 

To answer the questions of Dr. Pettersen 
we must acknowledge that the uniform flow ve- 
locity has been dropped from the text in the 
paper, the uniform onflow velocity amounts to 
1.15 E-3 m/s so the dimensionless time in Fig. 
15 amounts to approximately 11.9. The time 
where the vortices start to grow asymmetrical- 
ly is solely dependent in this case on the 
realisation of the random walk. It can be seen 
from Fig. 8 that the separation point moves 
from the aft stagnation point up to 110°, meas- 
ured from the forward stagnation point, as 
explained in the text. From thereon the se- 
paration point starts to oscillate. More de- 
tailed results will be presented in the near 
future. 
The mechanism for secondary separation is not 
due to the large velocities at the back of the 
cylinder near the surface. The effect of using 
the vortex blob model is, that when the vortices 
come close to the wall of the cylinder (with 
other vortices) the induced velocities remain 
finite; however, still secondary separation 
occurs as can be seen in Fig. 10 and 11 at the 
back of the cylinder. 

The question about the timing of a panel 
method, e.g. as has been developed by Faltinsen 
and Pettersen, relates to the calculation of 
the induced velocities which is done following 
the Biot-Savart law of interaction. In this 
case the calculation of the induced velocities 
at the vortex location is by far the most time- 
consuming part of the code. As has been explained 
in the text the computation effort is quadratic 
with the number of vortices which increases in 
time. 
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The question raised by Prof. Hermans about 
the convergence of the Chorin scheme can be 
answered by considering that the accuracy of 
the variant of the Chorin scheme as used by 
the authors is second order accurate in time. 
However, the proof given by Beale and Madja 
(1981) is valid for a flow without the presence 
of a body. The vortex shedding process still 
has to be incorporated in the proof. 

As far as the question of Prof. Hermans 
about the chaotic motion is concerned, we be- 
lieve that the vortex blob method is capable 
of suppressing randomization of the paths of 
vortices at all times even if two vortices are 
very close to each other. A final test of the 
stability of the Chorin scheme would be the 
simulation of the growth of a vortex sheet over 
a large period of time. However, this h.as still 
to be performed. 

Additional Reference: 
Beale J.T. and Madja (1981): Rates of con- 
vergence for viscous splitting of the 
Navier-Stokes equation. Math, of Comp., 
Vol. 37, 156, pp. 243-259. 

ADDENDUM PAGE    REFER TO PAGE 568 
FOR AUTHOR'S REPLY 

From Dr. A.K. Lewkowicz, The 
University of Liverpool, England 

The authors of "Resistance In- 
crease Due to Surface Roughness" have 
presented a very interesting and use- 
ful contribution to the topic which 
ought to be noticed by many who work 
in the field. However, to widen the 
discussion, I should like to raise a 
few points of argument instigated by 
the paper. These are: 
1. An instrumental concept evolved 
in the paper is that presented in Sec. 
5.2 where the authors propose a new 
scaling factor for the height of the 
hull roughness. It is meant to be 
helpful in interpreting hydrodynamic 
results, obtained on a hull model, in 
the light of the flow conditions pre- 
vailing on the full size ship. In 
deriving the thereto pertaining Eq. 
(28), they seem to have applied the 
wrong "roughness Reynolds number': 
Uk/O. It would have been more appro- 
priate to employ here not the free 
stream velocity U but the wall fric- 
tion velocity u*. Should the latter 
velocity be engaged in this context, 
a somewhat different Eq. (.28) would 
emerge giving the scaling factor a 
more realistic meaning. 
2. In Sec. 4 the authors show how 
the roughness function AU/u* could be 
formulated. Coles' law of the wall is 
being employed in this procedure with 
the recommendation that R (strength of 

the wake component) be given the value 
there is ample evidence now that the 
surface roughness (including modest 
waviness) can change this value sub- 
stantially. This is naturally caused 
by the fact that non-smooth surfaces 
can interfere with the turbulence dif- 
fusivity in a boundary layer which in 
turn affects the large eddies in the 
outer region whence the effect on n . 
There is not much prospect in finding 
a substitute value for turbulent boun- 
dary layers on rough plates as such a 
'universal' value probably does not 
exist and each roughness generates 
its own flat plate n. The only safe 
way would be to determine n experi- 
mentally in a fully developed tur- 
bulent pipe flow for each type of 
hull, roughness in question. 
3. Presumably the authors would 
agree that their formula for 'aug- 
mentation of local friction resis- 
tance due to surface roughness' 
ACf = Cfo  ( AU/u*) is Reynolds 
number (Re = UL/O ) dependent and it 
is so mainly through Cf0.  Such a 
dependence could profitably be 
untangled in Eq. (23) in order to 
render it immediately applicable to 
large ship hulls. 
4. Most likely unintentionally, the 
authors seem to have overemphasized 
the relationship between kg and ka. 
Someone less knowledgeable in the 
field than the authors might jump 
into the conclusion that there always 
is an equivalent sand grain size (in 
the Nikuradse sense) for every kind 
of marine roughness.  Of course, this 
is false since in no way Nikuradse's 
sand grain roughness could simulate 
structurally (not only as regards the 
wall eddy shedding and thereto relat- 
ed local form drag on excrescences) 
that of a typically irregular marine 
nature, even though both can be 
matched on the classic Nikuradse 
friction factor plot. 
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