DRAFT SF 298

গ. Report Date (dd-mm-yy)	2. Report Type	3. Date	3. Dates covered (from to)			
4. Title & subtitle A Determination of V2O5 Activity in corrosive Molten Vanadate-Sulfate Phases Tri-Service Committee on Corrosion Proceedings			5a. Contract or Grant #			
		5b. Pro	5b. Program Element #			
6. Author(s) Dr. Robert L. Jones Dr. Richard F. Reidy		5c. Pro	5c. Project #			
		5d. Tas	5d. Task #			
	5e. Wo	5e. Work Unit #				
7. Performing Organization Name & Address			8. Performing Organization Report #			
9. Sponsoring/Monitoring Agency Name & Address Tri-Service Committee on Corrosion USAF WRIGHT-PATTERSON Air Force Base, Ohio 45433			10. Monitor Acronym			
			11. Monitor Report #			
12. Distribution/Availability S Approved for Public Release Distribution Unlimited	tatement					
13. Supplementary Notes						
14. Abstract		[DTIC	QUALITY	INSPECTED 2		
15. Subject Terms Tri-Service Conference on Co	prrosion					
Security Classification of 16. Report 17. Abstrac	t 18. This Page	19. Limitation of Abstract	20. # of Pages	21. Responsible Person (Name and Telephone #)		

A Determination of V₂O₅ Activity in Corrosive Molten Vanadate-Sulfate Phases

Dr. Robert L. Jones* and Dr. Richard F. Reidy (ONR-NRL Postdoctoral Fellow)

Naval Research Laborator Chemistry Division, Code 6170 4555 Overlook Ave., S.W. Washington, DC 20375-5342

ABSTRACT

Although aggressive hot corrosion by molten vanadate-sulfate deposits in boilers and engines burning low-quality fuel has been known for 75 years or more, there is surprisingly little data in the literature on the thermochemistry of vanadate-sulfate melts, especially as to the activity of the corrosive V₂O₅ component. We have recently devised a thermogravimetric (TGA)/SO₃ equilibrium technique that could potentially be used to "chart" the V₂O₅ activity in vanadate-sulfate melts over a wide range of Na/V ratios, SO₃ partial pressures and temperatures. The method is illustrated in a study of the reaction of CeO₂ with a NaVO₃-Na₂SO₄-V₂O₅-SO₃ melt system (Na/V = 1) at 800° C. Results from the study define the conditions under which CeO₂ will be chemically nonreactive with the melt, and also show the V₂O₅ activity coefficient to be, for the given experimental conditions, of the order of 1 x 10⁻².

INTRODUCTION

Hot corrosion by molten vanadate-sulfate deposits resulting from vanadium and sulfur fuel impurities has been a recognized problem in boilers and engines for many years. One may wonder, however, why study vanadate-sulfate hot corrosion when the U.S. military, along with the civilian sector, is presently being pushed to burn only clean fuels because of environmental concerns. The primary answer, of course, is that in war there can be no guarantee of always having clean fuel for our ship, tank and truck engines. It is important therefore that, even though "clean fuel" use is planned, we have engine materials and coatings that can tolerate low quality fuel if the wartime need arises.

.

A knowledge of the chemistry of vanadate-sulfate hot corrosion also has "dual usage" since many hot corrosion reactions are related to the reactions that can be used to clean up fuel. The removal of SO₃ from smoke stack gases by CaO or MgO additives, for example, involves the same type of chemical reactions as molten sulfate-induced hot corrosion. Similarly, the reaction between yttria (Y_2O_3) and V_2O_5 to form highly stable YVO_4 , which causes degradation of Y_2O_3 stabilized zirconia thermal barrier coatings in engines burning vanadiumcontaminated fuel, has been recently "turned around" and used as the basis for a yttrium-based fuel additive for the prevention of hot corrosion by vanadiumcontaining fuels (1).

Attempts in the past to apply thermodynamics to pre liet and/or prevent hot corrosion have had limited success, perhaps partly because the difference in fuel impurity levels between "corrosive" and "noncorrosive" fuels is often small. Hot corrosion does not simply increase monotonically with fuel level, but frequently shows strongly accelerated attack for only small increases in fuel contaminants. For example, little hot corrosion is seen with aviation-quality (< 0.05% S) gas turbine fuel, whereas extensive hot corrosion has been encountered with marine-quality fuel (< 1% S), although the actual difference in sulfur content may be only 10-20X. In "low temperature" hot corrosion, even very small changes in the combustion gas SO₃ partial pressure can determine whether engine deposits of eutectic $CoSO_4$ -Na₂SO₄ will be molten or not (2), which in turn can drastically effect the serverity of hot corrosion (3,4). Vanadate hot corrosion has a similar short range of criticality, with vanadate-accelerated corrosion being ger. rally negligible for \vee levels in fuel below 0.1 ppm, but often aggrestive at V concentrations of only 1-10 ppm.

The importance of such small, but critical, changes in the fuel contaminant level is difficult to distinguish in the thermodynamic treatment of molten salt systems, since their energy effect is often hardly more than the probable error associated with much of our available thermodynamic data. For example, as shown below, a 10X change in the V_2O_5 concentration (or equivalently, the V_2O_5 activity coefficient) in a simulated vanadate-sulfate engine deposit typically corresponds to a difference of only about -10 kJ amidst calculations involving Gibbs energies of -1000 to -1500 kJ/mol, where each Gibbs energy may have a probable error of ± 2 kJ/mol or more. There is a strong need therefore for more accurate thermodynamic data, especially standard Gibbs energies of formation and activity

2

coefficients in melts, if thermodynamics are to be used with maximum effectiveness in predicting and/or preventing vanadate-sulfate hot corrosion.

The problem is compounded also by the uncertainty that still exists as to which "solution model" should be used for melts involving strong acid-base species such as Na₂O, K₂O, SO₃, SiO₂, V₂O₅, etc. The solution model represents the framework by which the thermodynamicist seeks to describe how the activities of the various melt components change with concentration. In some cases, no solution model has been invoked, and the melts are simply assumed to be ideal (i.e., where the activity coefficient, γ , is unity, and the activity is equal to the mole fraction of the species). For example, Hwang and Rapp (5) assume ... at the Na-V-S-O systems at 900° C give ideal solution behavior, nd that the activities of the component species can be equated to their molar concentrations. On the other hand, Bonnell and Hastie (6) believe that strong acid-base systems can be highly nonideal, with the activity of such species as Na2O changing by many orders of magnitude over a narrow concentration range in some cases. Bonnell and Hastie have developed a solution model, the Ideal Mixing of Complex Components (IMCC) model, which they advocate as giving the best description of the solution behavior in strong acid-base melts. Numerous other possible solution models for melts have been proposed, however, as discussed, e.g., in the Proceedings of the Sixth International Conference on High Temperatures--Chemistry of Inorganic Materials (7).

In our own experience, we have found nonideal behavior for reaction [1],

$$2 \text{ NaVO}_3(l) + \text{SO}_3(g) \rightleftharpoons \text{Na}_2 \text{SO}_4(l) + \text{V}_2 \text{O}_5(l)$$
 [1]

which is, according to the "termodynamic calculations of Luthra and Spacil (8), the probable predominant reaction in blade deposits in gas turbine engines burning V- and S-containing fuels under normal marine operating conditions. Using a thermogravimetric analysis (TGA)/SO₃ equilibrium technique (9), we equilibrated NaVO₃ at 700° and 800° C with fixed partial pressures of SO₃ ranging from 1 x 10^{-7} to 1 x 10^{-3} atm, and determined the equilibrium weight gain resulting from the uptake of SO₃. From this data, we were able to calculate the mole fraction of V₂O₅ experimentally formed by reaction [1], which we then subsequently compared with the "ideal behavior" expected for reaction [1], as explained below.

The activity, a_i, of a given species is described by

 $a_i = \gamma_i \cdot X_i$

[2]

[3]

where γ_i is the activity coefficient and X_i is the mole fraction. If the species gives ideal solution behavior, then the activity coefficient is equal to 1, and the activity is simply the mole fraction of the species.

For reaction [1], we have

$$\Delta G_{T}^{\circ} = -RT \ln K$$

where R is 8.3144 joules/degree-mole and T is 1073° K (i.e., for 800° C conditions), while

$$K = (a_{v205})(a_{Na2SO4})/(a_{NaVO3})^{2}(P_{SO3})$$
[4]

and ΔG_T° is determined by

$$\Delta G_{\rm T}^{\rm o} = \sum \Delta_{\rm f} G^{\rm o}_{\rm T, Products} - \sum \Delta_{\rm f} G^{\rm o}_{\rm T, Reagents}$$
^[5]

If reaction [1] follows ideal solution behavior, then using the standard Gibbs energies of formation for NaVO₃ (l), SO₃ (g), Na₂SO₄ (l) and V₂O₅ (l) provided by Luthra and Spacil (8), we can reduce equation [3] to [6a]

$$K \cdot P_{s_{03}} = (MF_{v_{205}})(MF_{Na2SO4})/(MF_{NaVO3})^2$$
 [0a]

or, as a quadratic equation,

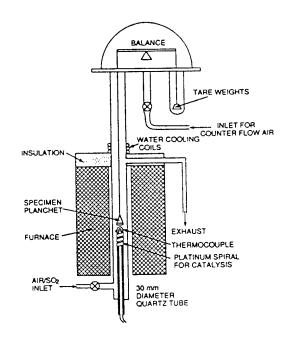
91 61166
$$\cdot P_{so3} = x^2/(1-2x)^2$$
 [6b]

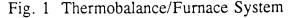
Solving equation [6b] by numerical approximation o., the computer then yields the ideal mole fraction of V_2O_5 that should be formed at each given $\mathbb{C}O_3$ partial pressure.

The experimental mole fraction of V_2O_5 was determined by converting the weight of SO₃ taken up in reaction [1] to reflect the millimoles of Na₂SO₄ and V_2O_5 formed, as well as the millimoles of NaVO₃ consumed, and calculating the resultant mole fraction of V_2O_5 . (Note that the amount of free SO₃ contained in the melt is so small that it can be ignored in this calculation.) The ideal vs. experimental mole fractions of V_2O_5 formed at the different SO₃ partial pressures are compared in Table 1, which also shows that division of the ideal V_2O_5 mole

TABLE 1

P _{so3} (atm)	Wgt. Gain (mg/50mg <u>NaVO₃)</u>	Ideal <u>M-F_{v205}</u>	Exptl. <u>M-F_{v205}</u>	"Activity <u>Coeff.", γ</u>
1x10 ⁻⁷	2.0	0.003	0.06	0.05
1x10 ⁻⁶	2.8	0.009	0.08	0.11
1x10 ⁻⁵	4.0	0.028	0.12	0.23
1x10 ⁻⁴	8.0	0.078	0.24	0.33
1x10 ⁻³	11.0	0.18	0.34	0.53


Experimental vs. Ideal Solution Mole Fractions of V_2O_5 Formed at 800° C at the SO₃ Partial Pressures Indicated


fraction by the experimental V_2O_5 mole fraction yields an "activity coefficient" that indicates the nonideality of the V_2O_5 solution behavior. This "activity coefficient" is not quantitative, however, because the actual V_2O_5 activity in the melt is <u>not</u> (since $a_{V_2O_5} \neq a_{Na_2SO_4}$) the ideal V_2O_5 activity calculated here.

In the present paper, we describe a means, derived in a study of the reaction of CeO₂ with the NaVO₃-SO₃ system at 800° C (10), by which it in fact appears possible to obtain quantitative values for the V₂O₅ activity coefficient in vanadate-sulfate melts.

EXPERIMENTAL

Our experiments were conducted using a Cahn 1000 thermobalance (Fig. 1) fitted with a system for controlling, and analyzing, the SO₂ concentration in the furnace input air stream. The SO₃ concentration was then established by equilibrating the SO_3 -air mixture over a Pt catalyst at

temperature in the furnace. Details of the experimental apparatus and procedure were published previously (9).

In the investigation, we first established a "baseline" curve of equilibrium weight gain vs. SO₃ partial pressure at 800° C for 50 mg (0.41 mmols) of pure NaVO₃. We then ran duplicate experiments using just the same conditions except that 17 mg (0.1 mmols) of CeO₂ was now mixed with the 50 mg of NaVO₃. The weight gain curve (Fig. 2) for CeO₂-NaVO₃ was just the same as for for NaVO₃ alone (100% NaVO₃) up to the SO₃ partial pressure at which the V₂O₅ activity of the melt was increased sufficiently, by reaction [1], that reaction [7] could commence:

$$2 \text{ CeO}_2(s) + V_2O_5(l) \rightleftharpoons 2 \text{ CeVO}_4(s) + 1/2 O_2(g)$$
 [7]

X-ray diffraction was used to confirm that only CeO_2 exists in the melts at SO₃ partial pressures below the critical P_{so3} for reaction [7], and that $CeVO_4$ is formed above this SO₃ artial pressure.

RESULTS AND DISCUSSION

Our experimental data are summarized in Fig. 2. The weight gain for CeO₂-NaVO₃ as a function of SO₃ partial pressure is the same as for NaVO₃ alone up to an SO₃ pressure of 2-3 x 10⁻⁶ atm. The absence of any extra increment of weight gain at the lower SO₃ partial pressures shows that CeO₂ is chemically inert (just as the Pt v. ...ghing planchet is) to the NaVO₃-SO₃ system over this lower P_{SO₃} range.

However, an additional increment of weight gain begins to occur at 2-3 x 10⁻⁶ atm of SO₃, which marks the onset of reaction [7] where CeO₂ \rightarrow CeVO₄. The extra weight gain

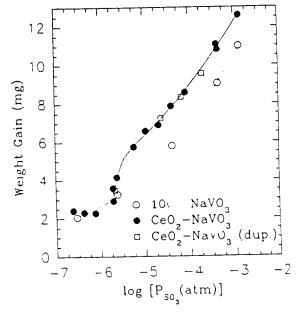


Fig. 2 Wgt. gain vs P_{so_3} for NaVO₃ and CeO₂-NaVO₃ at 800° C.

arises by the following mechanism. The Na_2O , V_2O_5 and SO_3 components of the melt are interrelated through two dissociation reactions,

one involving NaVO₃,

$$2 \text{ NaVO}_{3}(l) \rightleftharpoons \text{Na}_{2}O(l) + V_{2}O_{5}(l)$$
[8]

and the other, Na_2SO_4 ,

$$Na_2SO_4$$
 (l) $\rightleftharpoons Na_2O$ (l) + SO_3 (g) [9]

(Note that reversing reaction [9], and then adding reactions [8] and [9] to "cancel out" Na₂O (1) yields reaction [1].) When V_2O_5 begins to be consumed from the melt via reaction [7], this increases the Na₂O activity in the melt through reaction [8]. The increased Na₂O activity, in turn, allows more SO₃ to ence, the melt to form additional Na₂SO₄ by reaction [9]. The combined reactions thus esult in a "weight gain step" just at the P_{so3} at which reaction [7] commences.

The theoretical weight gain, by way of reactions [7]-[9], for the conversion of 0.1 mmols of CeO₂ totally to CeVO₄ is 3.2 mg. In an ideal, infinite system, one would thus expect a "vertical step" additional weight gain increment of 3.2 mg just at the critical P_{so_3} at which reaction [7] becomes possible. In contrast, the maximum observed weight gain increment in Fig. 2 is only slightly more than 2 mg. However, subsequent work (10) since these initial experiments has confirmed that the experimental weight gain does in fact approach the theoretical value when higher dilutions (i.e., more NaVO₃ to CeO₂) are used. The failure to obtain full theoretical weight in Fig. 2 for CeO₂ \rightarrow CeVO₄ is therefore probably only the result of the experimental conditions.

In earlier work (11), we determined the solubility of CeO_2 in molten NaVO₃ at 800° C to be approximately 0.2 mole percent, and showed also that CeVO₄ crystals were precipitated at temperature from molten deposits produced by equilibrating NaVO₃ on ceria-stabilized zirconia at 700° C with SO₃. In the latter case, the residual molten deposits were so depleted of vanadium (being strongly converted to sulfates) that no V could be detected by energy dispersive x-ray analysis. Only minimal solubility of the initial CeO₂ in 800° C NaVO₃ (less than 1/125 of the total CeO₂ present), or of the CeVO₄ product in the reaction melt, is expected therefore in the present experiments.

If ideal behavior is assumed, then the Gibbs energy for reaction [7], and an "ideal" Gibbs energy of formation for CeVO₄, can be calculated as follows. As shown in Fig. 2, the amount of weight gain of the melt before reaction [7] begins is 3.0 ± 0.2 mg. This weight gain represents the uptake of 0.0375 mmols of SO₃ which, by reaction [1], corresponds to the formation of 0.0375 mmols each of Na_2SO_4 and V_2O_5 , and the consumption of 0.075 mmols of the 0.41 mmols of $NaVO_3$ originally present. The resultant mole fraction of V_2O_5 is 0.091 which, for ideal behavior, equates to a V_2O_5 activity in the melt of 0.091. This is the V_2O_5 activity at which reaction [7] just begins, and for reaction [7] we therefore have the thermodynamic relationship,

$$\Delta G^{\circ}_{1073K} = - RT \ln \frac{(a_{CeVO_4})^2 (P_{O_2})^{0.5}}{(a_{CeO_2})^2 (a_{V_2O_5})}$$
[10]

where, as pure solids, CeVO₄ and CeO₂ have activities of 1, and the activities of O₂ in the air and V₂O₅ are 0.21 and 0.091, respectively. This yields a calculated ΔG°_{1073K} for reaction [7] of -14.422 kJ, where the experimental uncertainty is ± 0.4 kJ assuming the melt weight gain to be 3.0 ± 0.2 mg, the weight of the initial NaVO₃ to be 50.0 ± 0.5 mg, and the temperature to be 1073 $\pm 5^{\circ}$ K. Taking the Gibbs energies of formation for CeO₂ (s) and V₂O₅ (l) at 800° C as -865.890 kJ/mol and -1098.211 kJ/mol (12), we can then derive, as indicated by equation [5], an "ideal" standard Gibbs energy of formation of CeVO₄ (s) at 800° C of -1422.207 kJ/mol.

There are no experimental $\Delta_f G^{\circ}$'s for CeVO₄ in the literature to compare with this "ideal" value, but Yokokawa <u>et al</u> (12) have estimated the Gibbs energy of formation of CeVO₄ (s) at 800° C as -1444.785 kJ/mol. This gives agreement to within about 20 kJ/mol. However, we know from our earlier study (9) that the NaVO₃-V₂O₅-Na₂SO₄ melt system is clearly nonideal, with the V₂O₅ activity coefficients being of the order of 0.1 to 0.01 at the lower V₂O₅ concentrations (Table 1). If V₂O₅ activity coefficients of 0.1, 0.01, etc. are introduced into equation [10], the resultant $C_f G^{\circ}_{CeVO_4}$ becomes about 10 kJ/mol more negative for each 10X reduction in the activity coefficient, and equals -1442.749 kJ/mol for a V₂O₅ activity coefficient of 0.01. This last value agrees very well with the $\Delta_f G^{\circ}_{CeVO_4}$ of -1444.785 kJ/mol estimated by Yokokawa <u>et al</u>, and we take the agreement therefore as indicating that a $\Delta_f G^{\circ}$ for CeVO₄ at 800° C of about -1445 kJ/mol, and a V₂O₅ (l) activity coefficient in the melt of about 0.01, are both essentially correct.

Our TGA/SO₃ equilibrium technique can be expanded to include different temperatures, vanadate-sulfate melt compositions (i.e., by using different Na/V ratios in the initial vanadate deposit), and "indicator" reaction pairs (i.e., CeO₂ \rightarrow CeVO₄). We have shown earlier (9), for example, that Sc₂O₃ \rightarrow ScVO₄ at \sim 5 x 10⁻⁶ atm of SO₃, and In₂O₃ \rightarrow InVO₄ at \sim 5 x 10⁻⁴ atm of SO₃, in the NaVO₃-SO₃ system by reactions analogous to CeO₂ \rightarrow CeVO₄. The TGA/SO₃ equilibrium technique therefore has the potential to provide, by a series of studies of the various oxide \rightarrow vanadate reactions over an array of different sulfate-vanadate melt compositions and temperatures, the high accuracy thermodynamic data (including Gibbs energies of formation, activity coefficients, solution models, etc.) that are needed to understand and predict the reaction behavior of high temperature oxides with vanadate-sulfate melts.

CONCLUSIONS

A thermogravimetric analysis (TGA)/SO₃ equilibrium study of the reaction of CeO₂ with the NaVO₃-SO₃ system at 800° C shows CeO₂ to be inert to chemical reaction with the NaVO₃-SO₃ melt at SO₃ partial pressures up to 2-3 x 10^{-6} atm, with CeVO₄ being formed above this SO₃ partial pressure.

Thermodynamic analysis of the reaction data indicates the $\Delta_f G^\circ$ for CeVO₄ (s) at 800° C as being -1445 kJ/mol, and the V₂O₅ activity coefficient of the melt at the point of CeVO₄ formation as being approximately 1 x 10⁻².

The TGA/SO₃ equilibrium technique has the potential to significantly increase our knowledge of the thermochemistry and melt solution chemistry involved in the reactions of high temperature oxides with molten vanadate-sulfate melts.

ACKNOWLEDGMENTS

This research was sponsored by the Office of Naval Research with Dr. A. J. Sedriks as Scientific Officer. The support is gratefully acknowledged.

REFERENCES

- N. Bornstein, H. Roth and R. Pike, "Vanadium Corrosion Studies", Report R93-918120-2, Jun 30, 1993, Contract N00014-89-C-0053, United Technologies Research Center, E. Hartford, CT.
- 2. D.A. Shores and K.L. Luthra, J. Electrochem. Soc. 127, 2202 (1980).
- D J. Wortman, R.E. Fryxell, K.L. Luthra and P.A. Bergman, "Mechanism of Low Temperature Hot Corrosion: Eurner Rig Studies," in Proc. 4th Conf. on Gas Turbine Materials in a Marine Environment, pp. 317-337, Annapolis, MD (1979).

- 4. R.L. Jones, "Cobalt Oxide-SO₂/SO₃ Reactions in Cobalt-Sodium Mixed Sulfate Formation and Low Temperature Hot Corrosion," in High Temperature Corrosion, NACE-6, pp. 513-518, ed. R. A. Rapp, NACE, Houston (1983).
- 5. Y.-S. Hwang and R.A. Rapp, <u>Corrosion</u> 45, 933 (1989).

- 6. D.W. Bonnell and J.W. Hastie, "A Predictive Thermodynamic Model for Complex High Temperature Solutions Phases XI," in Materials Chemistry at High Temperatures, Vol. 1, Characterization, ed. J.W. Hastie, pgs 313-334, Humana Press, Clifton, NJ (1990).
- 7. Proceedings of the Sixth International Conference on High Temperatures-Chemistry of Inorganic Materials, NIST, Gaithersburg, MD (1989), originally published in <u>High Temperature Science</u> Vols. 26-28 (1990).
- 8. K.L. Luthra and H.S. Spacil, <u>J. Electrochem. Soc.</u> 129, 649 (1982).
- 9. R.L. Jones, <u>J. Electrochem. Soc.</u> 139, 2794 (1992).
- 10. R.L. Jones and R.F. Reidy, "Thermogravimetric Analysis of the Reaction of CeO₂ with the NaVO₃-SO₃ System," submitted to <u>J. Electrochem. Soc.</u>
- 11. R.L. Jones and C.E. Williams, <u>Surface and Coatings Technol.</u> 32, 349 (1987).
- 12. H. Yokokawa, N. Sakai, T. Kawada and M. Dokiya, <u>J. Am. Ceram. Soc.</u> 73, 649 (1990).