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1    Introduction 

Understanding and predicting the growth of unstable disturbances in the Earth's atmosphere 

is recognized by meteorologists as perhaps the most important factor in successful weather 

prediction. The pioneering work on baroclinic instability by Charney(1947) and Eady(1949) 

demonstrated that the eigenfunctions of simple linearized forms of the equations of motion 

yield eigenvalues which correspond surprisingly well with observed time and space scales 

of mid-latitude disturbances. In subsequent years linear stability analysis of various forms 

of the linearized equations became the foundation for rapid advances in the understanding 

of atmospheric instability. Beginning in the 1950's numerical computation made a critical 

contribution to this progress by making it possible to solve eigenvalue/eigenvector problems 

that were intractable with analytic solution methods. 

All of the early studies of atmospheric instability were based on finding the normal 

mode eigenfunctions of some form of a linear evolution operator A , formulated for a steady 

state mean flow. However, Lorenz (1965) showed that the eigenvalues of ATA, called the 

singular value eigenvalues of A, can be much larger than the normal mode eigenvalues of A 

itself. AT is the transpose, or adjoint, of A. The eigenvectors associated with the singular 

values are the singular vectors of A. In a meteorological sense the largest singular values 

and their associated singular vectors are optimal in that they maximize linear disturbance 

growth over a given evolution (prediction) period. Also, because the product operator ATA 

is symmetric, solutions for non-steady basic states are potentially more tractable, at least 

in a linear algebra sense. However, the completely general singular vector problem, for an 

A with a realistic time and space varying basic state trajectory, produces linear systems 

of enormous size that require considerable computational effort and special methods for 

solution. For example, the evolution operator A for a numerical weather prediction model 

of relatively modest resolution can easily yield linear systems of O(107).   Only recently, 



therefore, has computational power made practical meteorological applications of singular 

vectors feasible. Lacarra and Talagrand (1988) made singular vector calculations for a 

barotropic shallow water model, and Molteni and Palmer (1993) did similar calculations 

with a barotropic model and a 3-level quasi-geostrophic model. Buizza et al. (1993) were the 

first to compute singular vectors for a low resolution (T21) numerical weather prediction 

(NWP) model based on the primitive equations. Ehrendorfer and Errico (1994) made 

similar calculations for a limited area NWP model. 

Singular vectors have potential important application to a wide variety of practical 

meteorological problems. In recent years operational NWP centers have begun running 

ensemble prediction systems, in which each member of the ensemble is an NWP model 

integration run from initial conditions which differ from those of other ensemble members 

by some suitably chosen perturbation vector. Ideally, the envelope of forecast trajectories 

from the ensemble forecasts will occupy the full uncertainty spectrum for this set of numer- 

ical forecasts. Singular vectors are a particularly attractive source of these perturbations 

because they are orthogonal to one another and represent the potentially fastest growing 

modes of instability for their associated basic states. These instabilities can be expected 

to give maximum divergence of forecasts running from initial conditions which differ by 

combinations of singular vectors. 

Singular vectors are also important tools for analysis of numerical model prediction 

error. It is commonly understood that uncertainty in the initial conditions (analysis error) 

contribute to the forecast errors that grow with time in an NWP model. However, knowledge 

of the geographical distribution of analysis error is not sufficient for understanding of why 

these forecast errors grow. It is also necessary to know where the model is sensitive to errors 

in its initial conditions. The geographical co-location of analysis error and forecast model 

error sensitivity is the critical combination that leads to rapid growth of forecast error. 

Singular vectors associated with the largest singular values are ideal representations of the 



forecast model error sensitivity patterns, since each singular vector shows the geographical 

distribution of perturbation growth for the associated singular value. 

This report describes the formulation of the singular vector system based on the Navy 

Operational Global Atmospheric Prediction System (NOGAPS) spectral forecast model 

(Hogan and Rosmond 1991). In section 2 a brief overview of the NOGAPS spectral model 

is given. Section 3 describes the linearized version of the NOGAPS spectral model about 

a time and space varying basic state, often called the tangent-linear model (TLM). Section 

4 describes the adjoint model, which is the implicit matrix transpose of the TLM. Section 

5 describes the procedures used for testing TLM and adjoint models and presents some 

testing results. Section 6 describes the formulation of the singular vector system, which 

is a linear operator based on a combination of the TLM and adjoint operators. Section 7 

presents the results of example singular vector calculations. Section 8 is a summary and 

gives potential future directions for singular vector and adjoint model applications. 

2    The NOGAPS spectral model 

The basis of the singular vector system is the non-linear model from which the TLM 

and adjoint models are developed. We use the NOGAPS spectral forecast model, described 

in detail by Hogan et al. (1991). The model is representative of the sophisticated global 

atmospheric models run by major operational weather forecast centers and meteorological 

research groups around the world for numerical weather prediction, data assimilation, and 

climate simulation. NOGAPS is the heart of the Navy's operational weather prediction 

system run at Fleet Numerical Meteorological and Oceanographic Center (FNMOC). The 

model contains diabatic parameterizations of all of the important physical processes of the 

atmosphere, such as cumulus parameterization, cloud and radiation interactions, and the 

planetary boundary layer. Linearizations of all of these parameterizations would be desir- 



able, but the complexity of these schemes is daunting, and only a few attempts at linearizing 

diabatic processes for NWP models have been made, e.g. Vukicevic and Errico (1993). Fur- 

thermore, mid-latitude atmospheric instabilities are dominated by the dry dynamics, and 

experience to date (Buizza 1994) has shown that a linear model with no diabatic processes 

except a very simple planetary boundary layer gives quite satisfactory results. 

For the above reasons the linearizations described in the next section will be restricted 

to the dry dynamics with a simplified planetary boundary layer (PBL), so in this section 

only the details of the dynamical equations are presented, as formulated for the NOGAPS 

global spectral model. Complete description of the rest of the model formulation is in 

Hogan et a/. (1991). Parts of the model which are already inherently linear, such as the 

semi-implicit scheme, will not be discussed. Likewise the normal mode initialization, whose 

non-linear operations are essentially identical to those in the dry dynamics, will not be 

discussed. Note that even though the linearization is restricted to the dry dynamics, the 

basic state trajectory forecast about which TLM or adjoint model perturbations vary is 

always generated by a full physics version of the non-linear model, usually at relatively high 

resolution. This ensures that the basic state trajectory will give the best possible synoptic 

forecasts and realistic linear instability growth behavior. 

2.1     The basic equations 

The NOGAPS spectral forecast model is a primitive equation model formulated in spherical 

coordinates in the horizontal and a hybrid vertical coordinate similar to that described by 

Simmons and Striifing (1981). The horizontal coordinates are the longitude, A, and the 

latitude, </?. The vertical coordinate is normalized pressure represented by the variable 77 

which ranges from 0.0 at the model top to 1.0 at the surface. If ptop is the pressure at the 

top of the model atmosphere and ps is the terrain pressure then the pressure p is a function 



of 77 given by 

p = A(r)y+B{r))ir, (1) 

where -K — ps — ptop.  The functions A{rj) and B(rj) are any two functions defined on the 

interval 0.0 to 1.0 with the boundary conditions: 

A(0) = ptop 

A(l) = ptop 

B{0) = 0.0 

5(1) = 1.0 

where ptop is the model's top pressure, ps the surface pressure and IT = ps — ptop- 

The continuity equation for the conservation of mass in this coordinate system is 

<L(?1L\    v ( ^    — (-^\-o 
dt \dpj I   dr)J     dr\ I   dr\) 

(2) 

(3) 

where u is the horizontal velocity vector. Integrating (3) with the top and bottom boundary 

conditions 

»)(0) = i)(l) = 0, (4) 

yields the 7r tendency equation 

dir 

'dt'' ■ iv(»!) *>=-£> ww- (5) 

where dp a function of A, ip, and r\. We obtain the vertical motion equation by integrating 

(3) from 0 to 77 and substituting for the dir/dt term with the right hand side of (5), yielding 

.dp ^=^/olv-(ui)^-rv-(ui)^ (6) 

The thermodynamic energy equation in terms of potential temperature 9 is 

m_ 
dt 

u   de    vde 

a cos pdX     a dp 
dp 

dp dp 
+ Qe, (7) 



where a is the Earth's radius, u and v are the zonal and meridional wind components, 

respectively, and Qe is the diabatic forcing due to radiation, latent heat release processes, 

horizontal diffusion, and vertical mixing. 

The moisture conservation equation is 

dq u     dq      v dq . dp 
drj i+«" (8) 

dt a cos ip d\     a dp 

where the forcing term Qq is due to condensation/evaporation processes and turbulent and 

cumulus vertical mixing. 

We write the hydrostatic equation in the form: 

where (j> is the geopotential and P is the Exner function 

p=(ä"- (10) 

In (10) p0 is 1000 mb and K = R/cp is the ratio of the gas constant R to the heat capacity 

The dependent variables describing the motion field in NOGAPS are the vorticity C 

and divergence D. This choice is a routine one for global spectral models because as scalar 

quantities ( and D are easily expandable in terms of spherical harmonics. To represent the 

relationship between C, D and the horizontal wind components it is convenient to define the 

operator a(g, h), which operates on any two functions g and h, as 

1     dg     dh ,    s 
aM = T=fd\ + d? (1) 

where fx = sin <p. The vorticity and the divergence are expressed as 

( = a(V,-U), (12) 

and 

D = a{U,V), (13) 



where we have defined the scaled wind velocity components 

U = u 
cosy 

(14) 

and 

V = v 
COS if 

Similarly, the tendency equations for vorticity and divergence are 

| = -a(G,H), 

and 

^ = a(tf,-G)-V2(</> + /), 

where the functions G, H, and / are: 

G   =   U(( + f) + 

H   =   V(( + f)- 

I   = 

(^+(1-^)^(^-1 
dp 
dr]\ \dpJ 

dp 

Cr, „ fdP\ fdiTs 

dir J \9/^/ 
Wv 

cosy 
a 

drj 

a2     (U2 + V2 
(f)-Mfxa^ cosy 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 
i - Ai2 v   2   ;' 

and / is the coriolis parameter and Qu and Qv are diabatic forcing terms due to surface 

friction and vertical mixing of momentum. 

2.2     Vertical differencing 

NOGAPS uses second order finite differencing for representing vertical derivatives. The 

distribution of variables on the model's vertical grid is shown in Figure 1. The dashed lines 

denote 'full' levels and the solid lines 'half levels which are at the interfaces between model 

layers. The discrete analogue to (1) is 

Pk+i/2 = Ac+i/2 + Bk+i/2n, (21) 
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Figure 1: Terrain following vertical coordinate for 18 level NOGAPS model. Solid lines are 

'half levels ,dashed lines are 'full' levels. 

subject to the boundary conditions of (2). Model layer thicknesses are given by: 

Apk = AAk + ABk7T, (22) 

where 

AAk = Ak+i/2 — Ak-i/2, 

ABk = Bk+i/2 - Bk_i/2- 



The discrete analogue to (5) is 

ß-rr L 

-£[A4V-u, + ABjV-(7ru,)], 
1=1 dt 

(23) 

where L is the number of model layers. Analogous to (6) in the continuous case, the vertical 

velocity in the hybrid coordinate system is 

.dp 
=   Bk+w'EiAAtf-vn + ABiV-iirvii)) 

k+l/2 1=1 

J2 (A4, V • u, + ABt V- (TTUO) 
I=I 

(24) 

At the half pressure level, the Exner function P is: 

p    _ (Pk+i/iY Pk+i,2-[ir)' 
and at full levels is given by Phillips (1974) as 

Pk = 

(25) 

Pk+1/2      Pk-1/2 (26) 
(K + l)pg  \ Apfc 

From (21), (25), and (26) the term (dP/dn)k in (18) and (19) becomes, after a little algebra, 

dPk 
dn 

Bk+l/2 [Pk+l/2 - Pkj + Bk~l/2 [Pk ~ Pk-1/2 
(27) 

Vertical advection requires that we define half level values of U, V, 9 and q. These 

choices are important for energy conservation. The general form for vertical advection in 

the discrete equations is 

. dp 
dr] V 

8X\ 

dp)k 

+ 

.dp 
drj 

dp 
drj 

V 
k+l/2 

fc-1/2 

Apk 

Xk — Xk-i/2 (28) 

where X represents any dynamic variable. 

For the thermodynamic energy equation the correct choice for half level 6 is 

0jfc+i/2 = 0fc+i + Wfc+i/2 (9k - 6k+i), 

9 

(29) 



where 

Wk+l/2 = 
Pi fc+1/2 (30) 

-Pfc+1 — Pk 

(Haitiner and Williams 1980). This ensures total energy conservation in conversions between 

kinetic and potential energy in the model atmosphere. Note that this is not a linear inter- 

polation in P. Details can be found in Hogan et al. (1991). Using (29) the discrete form of 

(7) is 

°^ = ekDk-a(ukek,vkek) ot 
. dp 

drj V 

fe fc+1/2 Ok 

fc+1/2 Apk 

. dp 

drj J Jt—1/2 

9k — fffc-l/2 
+ Qek, (31) 

where we have used the identity u-V0 = V-(u0) - 0V-u and a generalization of (13) to 

redefine the horizontal temperature advection terms. 

For half level U and V the linear interpolation 

' Xk + Xk+i" 
X, fc+l/2 - (32) 

where X is one of the two scaled wind components, guarantees kinetic energy conservation 

for vertical advection of momentum. This is equivalent to W = 0.5 in (30) . The same 

form is used to define half level q, although this can lead to problems because it cannot 

guarantee that positive definite moisture is preserved by the vertical advection. However, 

because we are mainly concerned with the linearization of the dry dynamics of NOGAPS, 

we will not concern ourselves with this problem here. Using (32) for defining half level U, 

V, and q, the discrete forms of (16), (17), (18), (19), (20), and (8) are, respectively, 

^   =   -a(Gk,Hk) 
at 

dt 

Gk   =   Uk((k + f) + 

=   a(Hk,-Gk)-V2(c/>k + Ik) 

(33) 

(34) 

. dp 
Vd~V 

'vk fc+1 vk 

Jfc+l/2 2Ap* 
+ . dp 

fc-l/2 

'Vk-Vk-i 
k    2Apfc 

10 



and 

+   (1-A 
a 

dP\   ch 
2"M ^/.d/z 

^ek[
a-^\ °^-Qvk^ 

Hk   =   Vk{(k + f) 
.dp £4+i - Uk 

a2     (U2k+Vk
2\ 

1-^1       2      J' 

—j-    =   gfcJDjt - a {Ukqk, Vkqk) 
at 

2Apk 

. dp 

fc-l/2 .    2Apk    , 

?7 
J Jfc+l/2 

/gfc+1/2 ~ gfc .dp 

J /c—1/2 

gfc ~ gfc-1/2 
+ <?**, 

The discrete form of the hydrostatic equation (9) is 

(35) 

(36) 

(37) 

(38) 

(39) 
(j>k - (/>s     =     cp6k(Pk+i/2 - Pk),     k — L 

<f>k-(ßk+i   =   cpek+1/2(Pk+i-Pk),   L-l>k>l 

where (j)S is the terrain geopotential and 9k+l/2 is the half level potential temperature given 

by (29). 

2.3    Spectral transforms 

The NOGAPS model equations presented above are solved in a sequence of steps which 

require that model variables be represented both in 'spectral space' and 'grid point space'. 

Spherical harmonic transforms are the natural choice for the equations expressed in spher- 

ical coordinates. Spherical harmonics are the associated Legendre polynomials, P™ (p) 

multiplied by the complex Fourier series, eimX. The subscript n is the total wavenumber 

and superscript m the zonal wavenumber. The series are truncated assuming a triangular 

truncation with M indicating the total number of resolvable waves. If S™(t) is a set of 

complex spherical harmonic coefficients for a variable X, then the spectral to grid spectral 

11 



expansion of X is 

X(\l,iMj,Vk,t)=   E 
M 

E 
M 

eimX\ (40) E S™MP™{VL0: 
n=\m\ 

where X is any of the model dependent variables n, C, A &, or q at any time t. The 

subscripts I and j represent the discrete grid longitudes and latitudes, respectively, of a 

suitably chosen transform grid, and the r]k are discrete vertical coordinate values. The inner 

sum in (40) yields a set of complex Fourier coefficients, so the outer summation is a discrete 

backward Fourier transform which is solved by fast Fourier transform (FFT). The choice of 

the transform grid resolution associated with a particular value of M is an important one 

to ensure accuracy and integral property conservation. Details of this choice are in Hogan 

et al. (1991). 

The grid point to spectral transform is obtained from (40) by applying the orthogon- 

ality property of the spherical harmonics: 

s™ (v, *)=T- r pn M f rx (A' * ^i) e~tmxdx\d^-     (4i) 
The expression inside the square brackets is a forward Fourier transform also solved by 

FFT. After the FFT, (41) is 

S™ (V, t) = £ F" [X {n, V, t)] P? (n) dß, (42) 

Where Tm [X (p, rj, t)} are the coefficients from the Fourier transform described above. The 

integration in (42) is performed using the method of Gaussian quadrature, for which, given 

any polynomial g(fj), of degree 23 - 1 or less, the integral of g from -1 to 1 is computed 

exactly as 

/   g{p)dp = Y,wjg{pj), 
i=i 

where p3 are the so-called Gaussian latitudes and wj the Gaussian quadrature weights. 

With this the discrete form of (42) is 
(3M+l)/2 

s™M=   E   ^[x^mMKM- (43) 

12 



The upper limit on the summation is the number of Gaussian latitudes necessary to ensure 

that the integral in (42) is evaluated exactly. 

Horizontal derivatives of spectral variables are found by differentiating (40), which 

yields 
AY M \  M ' 

(44) 
dX l^ A       £    • 
0A m=-M n=\m\ 

AraXi 

and 

°^ m=-M 

M dPm(a-> 

E «%,*)-       ^ 
n—\m\ dfj, 

SmXi (45) 

It is also necessary to have transform expressions relating the wind field to vorticity 

and divergence. The scaled wind components U and V are defined in terms of the stream 

function ip and velocity potential x as 

and 

a2 dX a2    dji' 

y   _    1-/^2^X 1    dljj 

(46) 

(47) 
a2    d\x     a2 dX 

C and D are related to tp and x by ( = V2^ and D = V2x-   Spherical harmonics are 

eigenfunctions of the Laplacian operator V2, with eigenvalues —n(n + 1)/a2. Therefore 

/-m   n(n + 1)" 
a2 

K = - 
"n(n + l)" 

a2 

ibm 

m 
An ' 

(48) 

(49) 

Combining (46) and (47) with (48) and (49) gives the spectral expansions 

M 

U(\i,fij,rik,t)   =     E   ~im 

m=—M 

M 

?,ÄTT)D™(""()P™('") 
i   , n(n + 1) 

n=|m|     v ' 

imXi 

M 

+ (i-M2) E 
m=-M 

M 

E 1     COM)™ n(n + l) d^x 
Am\i (50) 

13 



and 

M 

V(\hii3,r]k,t)    =      J2   -{m 

m=—M 

M i 

V —-— 
7, n(n + l) n=|m|      x ' 

C(vk,t)P™(H) 0im\[ 

M 

- (i-/i2) E 
m=—M 

M 

E 
n=|m| n{n + 1) 

DZM ^imXi (51) 

The spectral coefficients of the vorticity and the divergence can be obtained from the grid 

point fields of U and V by using the spectral representations, which are given by (50) and 

(51), the orthogonality of the expansion functions, and the zero boundary conditions of U 

and V at the poles. Following the procedure outlined in (42) and (43) this yields 

(3M+l)/2 r Pm(u) 

C(Vk,t)   =       E    wjUm^iV^v^f^- 
i=i 

+ r* Mnj^t)] dP?M 
dfj, 

(52) 

and 

D™(Vk,t) 
(3Af+l)/2 r Pm(u-S 

Y:     wAzmJ^[U(H,Vk,t)}f^ 
3 = 1 

^[VifJLj^t)] 
dP™{H 

dfj, 
(53) 

where as before the T represents the complex Fourier coefficients of the respective wind 

components in the square brackets. 

2.4     Time integration 

The NOGAPS spectral model uses leapfrog time differencing with a Robert time filter. This 

is particularly important for the adjoint model, which must integrate backwards in time in 

a way that is consistent with the forward time integration scheme. An integration is started 

with a forward time step: 

Xu —   Xt—Q -f~ dt 
dt 

(54) 
t-0 

14 



followed by leapfrog and time filter steps, 

Xt=2   =   Xt=0 + 2dt 
dt 

(55) 

Xt=1   =   Xt=1 + e[Xt=2-2Xt=l+Xt=0] (56) 

then 

Xt=3   =   Xt=l + 2dt 
dX 
dt 

(57) 
t-2 

Xt=2   =   Xt=2 + e[Xt=3-2Xt=2 + Xt=l} (58) 

and so on. dt is the time step and e is the time filter coefficient: 0 < e < 0.25. The X(t) 

are the time filtered values that replace the existing X(t). Distinguishing between the X(t) 

and X(t) is an important detail for the adjoint of the time integration scheme. 

3    The tangent linear model 

The linearization of the set of equations given in section 2 above is straightforward. The only 

novel feature of the resulting linear system of equations is that they describe the behavior of 

perturbations about a basic state which varies in time and all three space dimensions. This 

means that the coefficients of the linear model that depend on this basic state will be tangent 

to the nonlinear model trajectory in phase space, hence the term tangent linear model, or 

TLM. The TLM is nearly always an extremely close approximation to the nonlinear model 

unless the linear approximation breaks down even for very short time and space scales. 

A very important practical implication of the time varying basic state is that during a 

trajectory generating non-linear model integration the forecast variables (coefficients) must 

be writing to a file at sufficiently high frequency to resolve the trajectory. This is often every 

time step of the non-linear model integration. Then during a TLM model (or adjoint model) 

integration based on this trajectory the file must be read at this frequency to retrieve the 

15 



coefficients in the appropriate order. This implies a tremendous I/O bandwidth overhead 

for TLM and adjoint model integrations far in excess of normal NWP model integrations. 

During singular vector calculations this I/O requirement can be extremely burdensome and 

often requires alternate strategies such as storing the trajectory in memory, if possible, or 

using special I/O devices with much better performance than typical rotating mass storage 

devices. This extra burden on TLM and adjoint integrations led Errico et al (1993) to 

discuss the impact of less frequent trajectory update on TLM integrations. 

To demonstrate a simple linearization example, consider the simple quadratically non- 

linear equation y = ab. Assume a, b, and y are composed of basic state components ö, b, y 

and perturbations a', b', and y' about the basic state. We have 

y + y' = (ä + a')(b + b'). 

Collecting terms and assuming y = ab yields 

y' = ab' + ba' + a'b'. 

The linearization is completed by neglecting the a'b' term, which should be small compared 

to the linear terms if perturbations are small. For higher order nonlinearities there would 

be additional terms to be neglected, but the assumption of small perturbations relative to 

the basic state variables is still the basis of successful linearization. 

We shall derive tangent linear expansions of each of the important governing equations 

presented in section 2(b) above. Intermediate variables will be defined where convenient 

and to assist clarity. An important issue in TLM and adjoint model development is coding 

order, since the adjoint model is a series of matrix transposes which are equivalent to exact 

reversal of the logical flow of expressions in the TLM model. We will therefore present 

equations in essentially the same order they occur in the TLM model code. The complete 

TLM code is available upon request from the author. We will follow the normal convention 

of representing a perturbation variable as ( )' and a basic state variable as ( ). A nonlinear 
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NOGAPS model variable expansion in discrete form is therefore 

Xijk{t) = Xijk(t) + Xljk(t), 

where l,j,k are the indices for longitude, latitude, and vertical coordinate, respectively. 

Note the full space and time dependence of the basic state. For convenience in the following 

we will drop all but the vertical index. 

3.1 Spectral to real transforms 

The time stepping process in the NOGAPS spectral model is done with the variables defined 

in 'spectral space'. The same is true for the NOGAPS TLM and adjoint models. Therefore 

at the beginning of each TLM time step spectral variables must be transformed from spectral 

to 'grid point space' to allow calculation of linearized grid point tendencies. To get grid 

point 7T, (, D, 9, and q we use (40). Horizontal gradients of dependent variables are found 

using (44) and (45). For the vector wind components U and V (50) and (51) are used. Since 

these are linear transforms the TLM model needs no changes from the nonlinear NOGAPS 

code. The basic state variables are also carried in spectral form so equivalent transforms 

must be made to get grid point basic state quantities. With these three-dimensional grid 

point fields for the dependent variables we can compute all necessary diagnostic quantities 

and TLM tendencies. 

3.2 Terrain pressure dependent linearizations 

The perturbation forms of (21) and (22) are 

p'k+1/2 = Bk+1/27r', (59) 
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and 

Ap'k = ABkir'. (60) 

Note that for linear equations such as these the basic state does not appear.  The surface 

pressure tendency (23) yields 

L   r /   Uk    dir'     — dit' dir'   _       ^ 

k=\ dt 
AAkD'k + ABk I YZJ2^ + Vk~— + Dkrr' 

djj, 

+ 1     dWrT.     dWrr.    __. 
-U'k + —Vk' + 7vD'k 

l-V2d\   k    dfj. 
(61) 

and (24) 

.dp 

dr] fc+l/2 

+ 

/    C/fc   97r'     — dix'    -=-    , 

- Bk+1,2^. 

k 

-E 
fc=l L 

1        Ö7fTT/        Ö7fT^       — T^/
N 

(62) 

Note the general characteristic of the linearized equations to be more complex than their 

nonlinear counterparts, typically with each nonlinear term becoming two or more linear 

terms. Therefore the TLM is significantly more expensive to run that the dry version of the 

nonlinear NOGAPS. 

Linearization of the transcendental Exner functions (25) and (26) is most convenient 

with a first order Taylor series expansion. Because P is only a function of the terrain 

pressure ir, we have   

so the half level perturbation Exner function is 

r>> _ KBk+l/2Pk+l/2^, 
■^fc+l/2 - = ^ ■ 

Pk+1/2 

At full levels using (27) yields 

'Bfc+l/2 (ffc+l/2 - Pk) + £fc-l/2 (Pk ~ Pk-l/2)\     , 

(63) 

Pl = 
&Pk 

71 (64) 
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To linearize (27) we use (60), (63), and (64): 

dPk 
dn 

Bk+l/2 (-Pfc+l/2 ~ P'k) + Bk-l/2 [P'k ~ Pk-1/2) 

Wk _ 
Bk+l/2 [Pk+l/2 - Pk) + -B/c-i/2 [Pk - Pk-1/2J 

M 
ABfcTr'. (65) 

3.3     The hydrostatic equation 

The linearization of (30) is 

W^l/2 = W*+1/2 

which combined with (29) leads to 

Pk+l/2       Pk   _   P'k+\ - P'k 

Pk+l — Pk Pk+l/2 Pk 

fyfc+1/2 — @k+l w'k+i/2{0k - ek+i) + wfc+1/2 (e'k - e'k+l). 

(66) 

(67) 

The hydrostatic equation (39) is linearized using the definition for 0'k+l/2, Pk+1/2, and 

P'k given in (67), (63), and (64). We have 

ft =       cp8'k(Pk+i/2-Pk) + cMPUi/2-Pk),       k = L I 

4>'k-<t>'k+i = cpe'k+ll2{Pk+i-Pk) + cpek+i,2{P'k+l-P'k), L-i>k>\\ 

The discrete hydrostatic equation is an integral of atmospheric mass from the Earth's surface 

upward. (68) shows the dependence of a layer k on layers below it, e.g. k 4-1. The ordering 

of the k index is also explicitly shown. Reversing this order will be critical for the adjoint 

of the TLM hydrostatic equation. 

3.4     The potential temperature and moisture equations 

To linearize any of the multi-level prognostic equations such as (31) we need a linearization 

of the vertical advection operator (28). Using (60) and (62) the perturbation form of (28) is 

. dp dxY 
dp)k 

. dp 
dr/ 

'X k+1/2 X, 

fc+l/2v 
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. dp 
dt] 

'X k+1/2 -X 

fc+1/2 

+ .dp 
drj V 

'-^fc+1/2 ~ Xk 

k \     i dp Xk — X 

Ap* 
+ 

fc+l/2\ "^ / 

With (69) the perturbation forms of (31) and (38) are 

dp 
drj 

fe_1/2V      (APk)2 

k-1/2 \    , 
-         7T 

k-1/2 &Pk 
(69) 

^ = Dk6'k + 9kD'k - a (U'k6k, Vk%) - a (Uk6'k, Vk9'k) - ( r, 
. dp 

~~>— 
dn 

and 

dt 
Dkq'k + qkD'k - a (U'kqk, Vk\) - a (Ukq'k, Vkq'k 

. dp 

df 
dp, 

dq\ 

+ (70) 

drj\ dp)t 
+ Q'0 ft' (71) 

Because we only has a dry TLM at this point, the Q'6k and Q'qk terms only contain a simple 

vertical mixing process in the planetary boundary layer (PBL). No perturbation surface 

sensible or latent heat fluxes are included. Future applications will require the inclusion 

of these fluxes as well as some linearized moist physics parameterization. The simplified 

linear mixing parameterization is described in section (f) below. 

3.5     The vorticity and divergence equations 

The perturbation forms of the ( and D tendency equations (33) and (34) are derived by 

first linearizing the expressions for Gk (35) ,Hk (36), and Ik (68). Using (69) and (65), we 

have 

G'k   =   U'k(Ck + f) + Uk('k + 
. dp 

V 
dVY 
dPJk 

2\ CP 
+    (1-AOtt 

cosy 

n,fdP\  dw    3  fdP\' dw    s (dP\  dir' 

H^A^     H^A^     *W^ 

H'k = vack+f)+vka 
dp 
dn 

dUY 

dPJk 

(72) 
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Cp 

02 
*^*+^y»+w^*' t\d*lkd\^™\air)td\^™\!h)td\ 

^,    COS 09 .      , 

+     <&*"/> (73) 

I'k   =   ^—.(U'U. + V'V,). (74) 
1 — /Lr 

With these definitions the TLM tendency equations for ( and D are 

^   =   -a(G'k,H'k), (75) 

^   =   a(H'k,-G'k)-V2(<l>'k + I'k). (76) 

The diabatic forcing terms Q'Vk and Q'^ in G'k and #£, respectively, could potentially 

include perturbation momentum fluxes by model parameterizations such as gravity wave 

drag and cumulus friction. Currently, however, the terms only include a simplified planetary 

boundary layer parameterization that will give us a perturbation surface drag and vertical 

mixing of momentum contribution to prevent the growth of spurious unstable disturbances 

in the lowest model levels (Buizza 1994). The form of these forcing terms is given in section 

(f) below. 

3.6    Diabatic forcing terms 

The surface flux and vertical mixing parameterizations in the NOGAPS spectral model are 

based on Louis (1979). Details are in Hogan et o/.(1991). In the linearization of this scheme 

we will neglect buoyancy effects and make other simplifying assumptions described below. 

The vertical diffusion of any variable X = 9,q, U, or V is: 

dX___  dT_ 
dt  ~    9dp' 

where g is the acceleration of gravity and T is the vertical flux of X. We choose the following 

TLM discrete form: 
dX'k  _ -^ fc+l/2       "Ofc-l/2 

9 —zz: -i UV 8t Apk 
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where we have neglected the effects of pressure perturbations, i.e., TT', on the perturbation 

mixing. Above the surface the half level perturbation fluxes Tk+i/2 are given by 

F'k+l/2 - ^fc+1/2 Pk+l/2 u* fk+1/2 l<k<L-l, (78) 
A^fc+l/2 

where p is air density, ü* is the friction velocity, h0 is the PBL depth, z is the height above 

the surface, and Az is model layer thickness. l%+1/2 is the mixing length with an asymptotic 

limit A given by 

ci/2=, y_+i/2
n, (7g) 

where kv = 0.4 is the Von Karman constant. fk+1/2 is the similarity function 

A+1/2 = exp(_!^), (80) 

Perturbation surface fluxes are given by 

_   Kpsü* (81) 
•'S — i    /—    /     \      Li y      ' 

where z0 is the surface roughness length. The T's are surface momentum flux perturbations 

for X = U and X = V. We are not allowing perturbation sensible and latent heat fluxes in 

the TLM, so the T's are zero for X = 9 and X = q. 

There are several free length scale parameters in (78), (79), (80), and (81).  In the 

NOG APS TLM we use the values proposed by (Buizza 1994). 

^o = 1000.0 m 

A = 80.0 m 

z0    =       0.05m   (land),     z0 = 0.0005m   (ocean). 

For simplicity we use the same value of A for both heat and momentum mixing. A logical 

choice for the friction velocity u* would be a basic state ü* generated by the nonlinear 

NOGAPS model and included as part of the time and space dependent trajectory which the 
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TLM and adjoint models need. Buizza (1994) proposed a simpler alternative that eliminates 

the need for any trajectory dependence. He set 

u+ 0.5 m sec l  (land),   u* = 0.2 m sec 1  (ocean) 

We have experimented with both approaches and find little difference in TLM/adjoint res- 

ults. For simplicity reasons most of our results to date have been with the Buizza values, 

but the trajectory method is available as an option in the TLM and adjoint codes. 

To solve (77), we use a backward implicit leapfrog time differencing scheme. This 

leads to a simple adjustment scheme for the dependent variables, as described in Hogan 

et aZ.(1991). Substituting (78) and (81) into (77), rearranging terms, and dropping the 

primes on the X's yields 

akXk_i + bkXk 4- ckXk+i = Xk, (82) 

where Xk is the vertical profile of X before vertical mixing, and 

Oi = 

o-k = 

ck = 

CL = 

h = 

bk = 

bL = 

-2dtg 

-2dtg 

0, 

Ap4Azfc_1/2 

'£+1/2^+1/2^*^ + 1/2 
ApfcAZfc+i/2 

2 < k < L, 

l<k<L-l, 

0, 

l-ci + 2dtg 
l?/2 Pl/2U* fl/2 

ApjAzj/2 

l-ak- ck, 

l--L + 2dtg[^i^} 

2<k<L-l, 

(83) 

(84) 

(85) 

(86) 

(87) 

(88) 

(89) 

Equation (82) is a tri-diagonal system of linear equations easily solved by Gaussian 

elimination. The set of coefficients (83) - (89) is appropriate for the vertical fluxes of U 

and V. For 6 and q vertical mixing the same set is used, except that currently we have no 

perturbation surface fluxes of heat or moisture, so bL = 1 - aL for these TLM variables. 
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3.7    Real to spectral transforms and time stepping 

The preceding TLM development yields the linear tendencies of 7r, £, D, 8, and q in 'grid 

point space'. These grid point tendencies are transformed to 'spectral space' using (42), 

(52), and (53). The spectral tendencies are adjusted for the semi-implicit corrections as in 

Hogan et al.(1991). Finally a time step is done in spectral space as in (54) to start a model 

integration, or as in (55) and (56) for a leapfrog and time filter step, and the TLM model 

variables are ready for the next time step. 

4    The adjoint model 

We define the adjoint of the tangent linear model operator A as AT. We also define A as 

a sequence of linear operations with two levels of abstraction. At the first level it is the 

product of matrices that represent the time evolution nature of a model integration, i.e., 

n 

A = n Ak (90) 
fc=i 

where each Ak is the matrix operator at time step k in a time integration of n steps. At the 

second level each Ak is broken down into the product of linear operators, i.e., 

Ak = f[ai (91) 
i=i 

where the a; are the individual fortran DO loops and lines of code of the TLM, here shown 

to number m. From the formal definition of the adjoint as the matrix transpose of A we 

have 

Al = II *f, (92) 
l=m 

as the adjoint of (91) and 

AT = ft AT
k, (93) 

k=n 
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as the adjoint of (90). Notice the exact reversal of matrix product order between the 

TLM and adjoint operations. In the following sections we will preserve this ordering in the 

discussion of the adjoint code development. The special case of the self-adjoint spectral 

transforms will be discussed separately after the rest of the adjoint model is presented. 

There are two approaches to developing adjoint codes at the practical level, by manual 

methods and with automatic adjoint generating software. Each approach has its strengths 

and weaknesses, and a strategic combination of the two was used for the NOGAPS adjoint 

code development, as discussed below. 

4.1     Time step and time filter adjoint 

In the manual adjoint coding method each DO loop of the TLM is written as a matrix oper- 

ation, the matrix is transposed, and an adjoint DO loop is written based on the transpose 

matrix. As an example consider the leapfrog time step and time filter of (55) and (56). 

In practice, of course, this is not how it would be programmed in a numerical model. In 

NOGAPS we have 

X' = X° + 2dtX', (94) 

X° = Xn + e{X'-2Xn + X°), 

Xn = X', 

(95) 

(96) 

where X' is the tendency, dX/dt, overwritten with the 'new' value of X, X° is the 'old' time 

level, and Xn is the 'now' time level. In matrix form (94) expands to 

(97) 
x° 

X' 
= 

1     0 

1   2dt 

X° 

X' 
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(95) becomes 

X' 

Xn 

X° 

1       0       0 X' 

0       1       0 Xn 

e    1 - 2e    e X° 

(98) 

and (96) becomes 

X' 

Xn 
= 

1   0 

1   0 

X' 

Xn 
(99) 

Following the steps outlined above for adjoint code ordering, we can write 

K = 
l l 

0   0 Kl  _ 

(100) 

K 

x: 

x°a 

1   0        e K 
0   1   1 - 2e xi 
0   0        c x«. 

(101) 

x„° 

XL 

X° 

XL 
(102) 

1     1 

0   2dt 

where the Xa are adjoint variables. Expanding back to equation form yields the adjoint of 

(96) 

y   —   v -u Yn 

(103) ^a      -     X'a + -^"a 

the adjoint of (95) 

*r 

xi 

X" 

*a°     = 

0 

*r + ex° 

(1 - 26)Xa° 

eX„° 

(104) 

and the adjoint of (94) 

x: = x° + x' 

X„   — 2dtX'a 

(105) 
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Now for some observations. Notice that in (97), (98), and (99) each left-hand side 

variable was assigned to the bottom row of its matrix expansion. This is required to ensure 

proper ordering of the adjoint expressions. Also notice that in (103), (104), and (105) the 

first equation is an accumulation into a variable, i.e., a variable occurs on both sides of the 

equal sign. Therefore care must be taken to ensure that this variable is initialized properly 

at the beginning of each adjoint time step. With almost no exceptions adjoint variables 

should be set to zero at the beginning of each time step, and often at intermediate points 

in the code as well. The general rule is that when in the TLM a variable is assigned a 

new value with no dependence on a previous value, then at the corresponding point in the 

adjoint code the companion adjoint variable must be set to zero. For example, in (103) the 

right-hand side X'a must be set to zero for correct results from this sequence of equations. 

Failure to set adjoint variables to zero at appropriate times is the overwhelming source of 

errors in adjoint models, as this author can wearily attest. 

Clearly the preceding exercise demonstrates the mechanical nature of adjoint code 

generation, which leads to the obvious question: what about automatic adjoint generation 

software? In recent years considerable effort has be devoted to such software development, 

and it has made adjoint model development much less arduous by relieving modelers of 

the tedium of hand coding the operations such as described above. For the NOGAPS 

adjoint model the software of Giering and Kaminski (1996) was used on nearly all of the 

TLM code described in part 3. Adjoint software is particularly well suited for operating 

on individual subroutines at the bottom of a calling tree with all communication to the 

rest of the model through calling arguments, i.e., no COMMON. In general the software 

cannot reliably produce correct adjoint code for routines which contain subroutine calls or 

COMMON variables. The best strategy for adjoint model development is therefore to use 

the automatic software for clean code areas of the TLM, and use manual methods in top 

level routines which contain inter-procedural communication.  The fortran code produced 
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by the automatic software is also cumbersome and difficult to read, so hand editing is often 

necessary to get more esthetically pleasing code. The automatic software is also unable to 

recognize self-adjoint constructs such as the spectral transforms in the NOGAPS TLM, so 

here too manual methods must be used. 

We will now proceed step by step though an adjoint model time step in the appropriate 

order. We will drop the subscript a for convenience, since in the subsequent sections ALL 

references to dependent variables will be to the adjoint variables. For sake of brevity not 

all the details will be presented. In particular the adjoints of the semi-implicit algorithms 

and horizontal diffusion will not be shown, since they are linear operations and are easily 

handled by automatic adjoint software. Each adjoint model step begins with the adjoint 

of the time step and time filter, which is already described above. Next is the adjoint 

of the grid-to-spectral transform. We shall postpone the discussion of this until the end 

of this section, since it is easier to understand the self-adjoint properties when both grid- 

to-spectral and spectral-to-grid transform adjoints are described together. 

4.2     Diabatic forcing adjoint 

The simple form for TLM perturbation surface fluxes and vertical mixing also makes the 

adjoint quit simple. The TLM dependent variables appear only in the tri-diagonal linear 

system (82). The adjoint is therefore 

Ck-iXk-i + bkXk + ak+iXk+i = Xk, (106) 

where Xk is now the vertical profile of the adjoint variable X before the adjoint mixing is 

applied. The coefficients are identical to those of (83) - (89). 
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4.3     Vorticity and divergence adjoint equations 

We need the adjoints of (75) and (76). In the TLM the sequence of operations is to evaluate 

(72), (73), and (74) in grid point space, add the diabatic forcing terms and perturbation 

geopotential <ß', and then do grid-to-spectral transforms to get spectral tendencies of £ and 

D. In the adjoint, therefore, we must first do the adjoint of the transform. As mentioned 

earlier, we shall postpone the details of this for now, except to observe that a grid-to- 

spectral transform adjoint is a spectral-to-grid transform with scaling. The reverse is true 

for a spectral-to-grid transform adjoint. For convenience we define the adjoint operators 

TZa and <Sffi, where 

R = TZaS (107) 

for the grid-to-spectral transform adjoint, and 

S = SaR (108) 

for the spectral-to-grid transform adjoint. 

The first terms to consider are the Laplacian of energy terms in (74).   In spectral 

space we have an adjoint expression 

Sk = Sk + V2 (dDk/dt), (109) 

where dDk/dt corresponds to X'a in (105). Then we transform Sk to grid point space with 

the appropriate adjoint transform operator 

Rk = nask, (no) 

and finally the adjoint is 

Uk   =   Uk + ^%Rk, (111) 
1 — jJLz 

Vk   =   Vk + ^\Rk, (112) 
1 — /r 

<f>k   =   <f>k + Rk, (113) 

Rk   =   0, (114) 

29 



for 1 < k < L. 

Now we must find the adjoints of a (G'k, H'k) and a (H'k, G'k) in (75) and (76). The a 

operator is a spectral transform of grid point vector wind components to spectral vorticity 

and divergence. It is a generalization of the scalar transforms already discussed above 

and will be described in greater detail in a section below. For the sake of brevity we will 

proceed with the assumption that the adjoint of the a operator has transformed spectral 

adjoint variables (d(k/dt) and {dDk/dt) to grid point Gk and Hk. Then the adjoints of (72) 

and (73) are, for 1 < k < L: 

vorticity 

Cfc   =   (k + UkGk + VkHk, (115) 

U wind 

U,   =   Uk + 
§2 

L'^J fc+1/2 vdfv fc-1/2 

2Ap, 
Hk + ((k + f)Gk, 

£4-i   —  £4-i + 

£4+i   =  £4+i— 

Ä fc-1/2 

2Ai4 

fc+1/2 
1 drj 

2Ap* 

Hk 

Hk 

(116) 

(117) 

(118) 

V wind 

V,   =   14 
^ fc+1/2 ' dr]_ fc-1/2 

2Apfc 
Gk + ((k + f)Hk, 

dp 

L   ÖV J fc—1/2 ,-» 
Vfc-i   =   Vjt_i --—: Gk, 2Apfc 

T4+1   =   V* 
9v 

fc+1 
fc+1/2 

2Ap, 
C4 

(119) 

(120) 

(121) 

vertical velocity 

. dp 
ÖTj fc-1/2 

. dp 
drj 

,    Vk-Vk-\                 Uk — Ük-lrj 
H ^T^ ^fc ^T= -"*) 

fc-1/2 2AJ5* 2Ap* 
(122) 
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. dp 

drj fc+l/2 

.dp 

dr] k+l/2 
H z-r= ^k TTT: Hk, 

2Apk 2Apk 

(123). 

and if 

'■-Sa-^-l*. 
then the potential temperature 

#*:   =   öfc + —z 
Bk-l/2JPk - Pk-lß) + Bk+i/2(Pk+l/2 - Pk) 

Xa, (124) 

Exner functions 

-Pfc-1/2 

■ffc+1/2 

p   |  cpABkek^.a 

Pk-l/2 — 

a2Apk 

cpBk-i/29k 

a2Apk 

L/4" «.   ya 

CpBk+l/20k va 

a2Apk 

(125) 

(126) 

(127) 

terrain pressure 

ABk 
IT     =     TV — -  \2 

(Apfc) 

+ dp 

A (ßfc-i/2(^ - -Pfc-1/2)+Bk+1/2(pk+1/2 - Pk)) xa 

(Vk+1-Vk))o.5Gk (Vk - Vk^) + 
/2 

dp 

dr] J fc+1/2 

.dp 
Vd-V 

(Uk - Uk-i) + 
fc-1/2 

terrain pressure horizontal gradients 

dp 
(Uk+i - Uk)    0.5Hk 

k+1/2 

(128) 

ch    =    drr  |  cpgfc(l-M2) 

9/i d/u. a2 

Ö7T 

9Ä 
Ö7T        Cp6k 

2' [Bk_1/2(Pk - Pfc_1/2) + Bk+l/2{Pk+1/2 - Ffc) 
2 L_      _ APk_ 

Bk-i/2(Pk - Pk-1/2) + -Bfc-n/2(-Pfc+i/2 - -Pfc 

Apfc 

i^jt 

Gfc, (129) 

(130) 
dX       a2 

Notice how the adjoint variables are accumulated and also coupled in the vertical. 

They must be initialized to zero at the beginning of each adjoint time step to ensure correct 

results. In the actual code the Uk, Vk, 6k, and qk adjoints are initialized from the solution 
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to (106). The above equations are the result of the adjoint of the vorticity and divergence 

equations only, additional sensitivities will be accumulated in the adjoint equations for the 

other dependent variables. The actual generation of the adjoint code corresponding to these 

equations was by the Giering and Kaminski (1996) automatic adjoint software. 

4.4    Potential temperature adjoint equations 

In (70) we again have the a linear operator relating spectral temperature tendencies to 

horizontal advection. As in the previous section we assume we have the adjoint of this 

linear operator, so the spectral adjoint quantity d9k/dt yields the zonal advection adjoint 

gk and the meridional advection adjoint hk. Then we have for 1 < k < L 

6k   =   6k + Uk9k + Vkhk, 

Uk   =   Uk + dkdk, 

vk = vk + ekhk. 

(131) 

(132) 

(133) 

Next as in (110) we transform d9k/dt to grid point space. 

xk = n*{dek/m), (134) 

and the adjoint equations are: 

potential temperature 

1k+l/2 

Dt 
ek = ek + fc+1/2 

APk 

'dVik-l/2   v 

= e. 

§2 

fc+1/2 
Xk. 

0k-l/2     =     4-1/2 + 
^ *?Jfc-l/2    v 

—r= Ak Apk 

(135) 

(136) 

(137) 
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vertical velocity 

.dp 

dr] 

. dp 

dr) 

J /=—1/2 

-lfc+1/2 

. dp 

dr] 

. dp 

dr] 

Ok-l/2 - Ok   v 

fc-l/2 APk 

9k — 9k+l/2 + 

divergence 

terrain pressure 

,    ABfc 

(Aft)' 

Jfc+1/2 

Dk — Dk + 9k Xk, 

&Pk 
Xk, 

(138) 

(139) 

(140) 

. dp 
(0fc-l/2 ~ ^) + 

it—1/2 
»7 

dp 

977 
(0* - ^+1/2)    Xfc.        (141) 

fc+1/2 

We are accumulating sensitivity contributions into the adjoint variables to add to 

those from the vorticity and divergence adjoint equations of the previous section. Since the 

moisture adjoint equation for q is exactly analogous to the 9 equation we will not show this 

set of equations. The model code for them is available upon request from the author. 

4.5    Hydrostatic equation adjoint 

The adjoint equations of the hydrostatic equation (68) are 

for 1 < k < L — 1 and 

(pk+i 

<fik 

9k 

Pk+l/2 

Pk 

=    <Pk+l + <t>k, 

=    Cp <j)k, 

9k + {Pk+l/2 - Pk) 4>k, 

Pk+l/2 + 9k 4>k, 

Pk — 9k (f>k, 

9k   —   9k + Cp(Pfc+i/2 — Pk) 4>k, 

(142) 

(143) 

(144) 

(145) 

(146) 

(147) 
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Pk+1/2     —     Pk+1/2 + Cpök <$>k, 

Pk   =   Pk~ Cp8k 4>k, 

(148) 

(149) 

for k = L. 

Now the adjoints of the vertical temperature interpolation equations (66) and (67): 

Pk+l — Pk —1/2   n 
0k+\     =     Ok+l H =fj 75  Pfc+l/2, 

P fc+1 P* 

P 
Ok     —     9k + ~7^" 

fc+1/2 -Pi 

Pjfc+1 — Pk 
e, k+1/2-, 

D r>        /Q        ä       \ Pk+l ~ Pk+1/2  n 
Pk     =     Pk - [Vk - Vk+1)-7B 15~Y2    yfc+l/2> 

i-r k+1 - *k) 

Pk+l     =     Pk+l - (ßk - ßk+l)-^1 =5-77 Ok+l/2, 
(Pk+l ~ Pk)2 

&k+l/2     —     0, 

for 1< k < L-l. 

(150) 

(151) 

(152) 

(153) 

(154) 

4.6     Vertical velocity and terrain pressure adjoints 

We begin the calculations for the adjoints of (61) and (62) as in (110) with the transform 

of dn/dt to grid point space, combined with summations over the previously accumulated 

vertical velocity adjoint variable. We have 

Xk+i/2 — z2 

XL+1/2 

Then the adjoint expressions are: 

. dp 
V d-q 

,    1 < k < L- 1, 
fc+l/2 

L-l 

Tla (dn/dt) - Y, Bk+i/2 
fc=l L   "'U k+1/2 

. dp 

drj 

(155) 

(156) 

Uk 

Vk 

Uk 

Vk 

ABk dW 
X, 

1 - y? d\ 

APfc—Xk+l/2 

fc+1/2, (157) 

(158) 
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Dk   =   Dk - ApkXk+1/2, (159) 

ix   =   7T - ABkDkXk+lf2, (160) 

dir          drr       ABk — .     . 
dx  =  d\-T^ßUkXk+1/2> (161) 

^   =   ^ - ABkVkXk+1/2, (162) 
a/i          op 

^k-1/2     =    ^fc-1/2 + -Xfc+i/2> (163) 

for L > A; > 1. Because of the recursive behavior of (163) it is essential to evaluate (158)- 

(163) from the bottom up, i.e. indexing k from L to 1. 

4.7    Exner function adjoints 

The Exner functions from (63) and (64) are dependent only on the terrain pressure, so 

the adjoint expressions are surprisingly simple. We continue accumulating terrain pressure 

sensitivity with: 

Bk+1/2{Pk+i/2 - Pk) + Bk_l/2{Pk - Pk-H2) 

Apt 
,    J-'k+l 2K-L fc+1/2       ■>■  k) ^ -^fe-l/^V-1  k       ■<■ k-l/2J r-, 

7T     =     7T H — "k 

+   KBk+_1,2Pk+l/2Pk+y2, (164) 
Pfc+1/2 

for 1 < k < L. 

At this point we have completed grid point space computations of all adjoint depend- 

ent variables. In summary, since the TLM completes a time step with the leapfrog and time 

filter operations, we began the process with the adjoint of these time stepping algorithms 

with adjoint variables in spectral space. We then transformed these to grid point space 

using a spectral-to-grid point adjoint transform, followed be the adjoint calculations de- 

scribed above in exact reverse sequence from the TLM order of calculations. The next step 

is to transform back to spectral space using a grid-to-spectral adjoint transform. 
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4.8     Spectral transform adjomts 

The scalar grid point to spectral transform (41) can be written symbolically in matrix form 

as 

S! 

SM
2 

K 

X1 

Xn 

(165) 

where K is the linear operator composed of the discrete Fourier transforms and the Gaussian 

quadratures which converts a horizontal grid point field of mn degrees of freedom to a set 

of complex spherical harmonic coefficients with M2 degrees of freedom. From the definition 

of the adjoint we have 

X, 

Xr, 

K1 

Si 

SM
2 

(166) 

where the ( ) are now adjoint variables and KT is the matrix transpose of K. After some 

tedious but straightforward algebra (166) can be shown to be equivalent to 

M 

X{\i,Hj) = Wj   E 
m=—M 

M 

E S?P?(K 
n=|m| 

0im\i (167) 

Equation (166) is identical in form to (40) except for the Gaussian weights w3 proceeding the 

summations. Therefore the adjoint of the grid-to-spectral transform is the spectral-to-grid 

transform of the forward model with an additional scaling factor weighting each Gaussian 

latitude of the horizontal grid point field after the transform. 

A similar examination yields the adjoint of the spectral-to-grid transform as: 

(3M+l)/2 ___ 

s™=   E   ^IxfaJliTM, (168) 

which is similar to (43) except that the Gaussian quadrature weights are absent from the 

summation. In the adjoint code the grid-to-spectral transform code of the forward model is 
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used except that an array with element values of 1.0 instead of the quadrature weights is 

passed as a subroutine argument. 

Not surprisingly, the adjoint of the spectral vorticity and divergence to grid point 

wind transform is a grid-to-spectral transform analogous to (52) and (53). Deriving the 

adjoint expressions in matrix form as shown above, it can be shown that 

(3M+l)/2 
/-m       
Sn n(n 

1 ^iviTi-)/ t- 

—   E    imrv(w; 

1 dPptßj) \ 

Pn(H 

+ (i - ^r* u{ß] 
d/j, 

(169) 

and 

(3JW+l)/2 

K 

;i7o) 

Similarly, the adjoint of the grid point wind to spectral vorticity and divergence is a 

spectral-to-grid transform analogous to (50) and (51) and is 

U{\uiij) w 
1       r? m=-M 

M 

E ~im 
M 

E V%P?M 
n=\m\ 

0im\i 

M 

+   E 
m=—M 

M   ~   dPm(u) 

n=\m\ d\i 
„imXi (171) 

and 

M 

V(XhfJ,j)    =    WJ{T—2    E -%m 

M 

E 
m=—M 

^j m=-M 

M 

M 

E CP?M 
_n=|m| 

imXi 

E    ^ dß 
imXi (172) 

Comparing (169) and (170) to (52), (53), and (43) suggests we scale the input U and 

V with 1 - \j?p set the quadrature weights to 1.0, call the forward model subroutine for 

grid point wind to spectral vorticity and divergence transforms, and then scale the output 
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spectral coefficients with 1.0/(n(n + 1)) to produce the correct adjoint values of C and D. 

Likewise for (171) and (171) we scale the input ( and D with n(n + 1), pass these to the 

forward model spectral vorticity and divergence to grid point wind transform subroutine, 

and then scale the output grid point winds with Wj/(l - (*j) to yield the correct adjoint 

values Ü and V. Note the symmetry of the scaling factors between the two transform 

directions. This is necessary if the adjoint transforms are to retain the inverse properties 

of the companion transforms of the forward model. 

5    Testing of TLM and adjoint models 

Developing tangent-linear and adjoint models from a parent non-linear NWP model 

such as NOGAPS requires an orderly sequence of steps to minimize the risk of errors. For- 

mulation of the TLM model described in section 3 is straightforward but tedious. Recently 

automatic TLM generation software has been introduced (Giering and Kaminski, 1996), 

but it was not available for the NOGAPS TLM , so all coding was by hand. The testing 

method for NOGAPS TLM, as with any linearized model, is to examine its behavior for a 

range of perturbation initial conditions. The criteria used is that 

Le « N{x + e) - N(x) (173) 

where L is the tangent linear operator derived from the non-linear model TV and e is the initial 

perturbation on a full initial field x. In the limit of sufficiently small e, (173) will become 

an effective equality if the linearization is robust. As e increases the non-linearity of TV will 

cause the approximation to break down. Errico et al.(1993) shows that for an e equivalent 

to analysis uncertainty (errors), the TLM of a mesoscale forecast model (MM4) is quite 

accurate for 48 and even 72 hours for winter forecast cases. We expect the NOGAPS TLM 
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TLM ERROR 

LOG2(100*eps) 

Figure 2: Correlation of TLM solution to difference between two non-linear solutions for 12 

hour forecast lengths. Model resolution is T21. 

to have similar capabilities. To test the NOGAPS TLM we perturb each spectral coefficient 

of each dependent variable randomly with values in the range ±e. The correlation error 

between the NOGAPS TLM and difference of two non-linear (dry) forecasts as a function 

of e is shown in Fig 2. 

Fig 2 is a log-log plot of (1-correlation coefficient) vs. perturbation size. Over most 

of the perturbation size range the relationship is quite linear, corresponding to a quadratic 

growth of the correlation error as a function of e.   In fact, it shows that the non-linear 
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solutions of the dry dynamics have essentially quadratic behavior for perturbations with 

magnitudes nearly as large as the original unperturbed coefficients. It also shows that 

the TLM solution is quite accurate over this range, with better than 95% correlation over 

the same perturbation range. Only for extremely large perturbations does the quadratic 

behavior break down, probably because the cubic dependence of the vertical advection terms 

begins to have significant impact on the non-linear solutions. Certainly the lack of any moist 

physics or other discrete physical processes contributes to this surprising result, and if we 

repeated the experiment for a difference between two full physics non-linear forecasts we 

would certainly see a breakdown of the TLM solutions much sooner. 

Adjoint model testing presents special problems because, unlike forward model testing, 

there is no simplified physical or meteorological solutions available that allow validation of 

some basic model properties such as dynamic balance or energy conservation. Therefore we 

must depend on linear algebra tests derived from the formal transpose relationship between 

the TLM model and its companion adjoint model. Insuring that the TLM is a correct and 

robust proxy for the parent nonlinear model, using the method described above, is also a 

top priority for developing a useful adjoint model. 

The diagram below shows schematically a forward (TLM) integration from time 0 

to time t, and a backward (ADJ) adjoint integration from time t to time 0. The adjoint 

integration is shown in terms of a gradient dJ/dX of a cost function J whose gradients are 

of interest. Typically J is based on an energy norm or some integrated measure of forecast 

skill such as RMS error. See Ehrendorfer and Errico (1995) for a discussion of the choice 

of norms. 

X0       -    TLM       Xt 

f£0        ADJ - gxt 

In this diagram the X and dJ/dX represent vectors of spectral coefficients.  For an 
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adjoint model to be the correct transpose of a TLM model, we must have 

<*&;> = <x'Wt> w 
where < > represents the inner product.   This is called the gradient test, and is 

performed by making the TLM and adjoint integrations shown, saving the initial and final 

conditions as indicated so the inner products can be computed. For testing purposes there 

is no constraint on the nature of the X0 and dJ/dXt initial conditions, for the NOGAPS 

adjoint model random numbers were used. 

The gradient test is an extremely sensitive indicator of the validity of an adjoint code. 

For 64 bit floating point calculations the two inner products above should have 9-10 decimal 

digit agreement for real data integrations of 24-48 hours. Poorer agreement than this is 

almost certainly due to coding errors, often because accumulated adjoint sensitivities are 

not initialized properly. In practice it is usually best to first do gradient testing of individual 

code modules for single time steps, combining modules as they are validated. When the 

complete adjoint model is assembled and tested for a single time step, then multiple time 

step testing can begin. This is the best way to isolate errors in variable initialization. 

6    The singular vector system 

A powerful application of TLM and adjoint models is their combination to form a 

singular vector matrix operator, the leading eigenvalues and eigenvectors of which describe 

the most unstable dynamical structures of a time-evolving basic state. This instability is 

manifested by the growth of some appropriately chosen norm computed from the perturb- 

ation variables of the TLM and adjoint models. The total energy norm is most commonly 

used. It is the sum of perturbation kinetic energy and available potential energy summed 

over all resolved wavenumbers and the depth of the atmosphere. 
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6.1     Energy norm formulation 

At any time t the energy norm is 

M M    ,   L    r 

Et   =      E    E    E7(M)C(M)2 + 7(n,fc)ir(M)2 

m=-M n=m ^k=l ^ 

+   a(fc)C(*.*)2]+/?C(*)2} (175) 

where 

7(n,Ä)   = 

a(k) 

ß   = 

5 n(n+ 1)' 

cpAfffcP0(fc)2 

PT0 

with S = 4 for m = 0 and 5 = 2 for m > 0. Po(k), T0, and 7r0 are suitable chosen reference 

values for Exner function, temperature, and terrain pressure, respectively. 

In compact matrix form (175) is 

Et = xT
t C

2xt, (176) 

where the x is a vector of all spectral coefficient values of the perturbation variables C, D, 6, 

and IT, and C2 is a diagonal matrix of the energy norm coefficients 7, a, and ß. At time 

t = 0 the energy is 

E0 = x^C2x0. (177) 

From the definitions of the TLM and adjoint model we have 

xt   =   Lx0, (178) 

x t    —   U/o-LJ  ' xW, (179) 

which can be substituted into (176) to yield the energy at f = i. 

Et = xlLTC2Lx0. (180) 
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6.2    Singular vector formulation 

We want to find the eigenvalues and eigenvectors of the linear system (180) which maximize 

the growth of E over the time interval t. If we normalize the initial vector x0 such that 

E0 = 1, (181) 

then we can pose the algebraic eigenvalue problem in variational form as 

Jt = xlLTC2Lx0-X{xlC2x0-l). (182) 

Taking the first variation of (182) yields 

^- = LrC2Lx0 - AC2z0 = 0. (183) 
ox0 

In this form (183) is awkward because it is not a symmetric eigenvalue problem. However, 

if we introduce an energy norm scaling transformation 

xo = C-^o, (184) 

and multiply both sides by C_1, we get 

C-1LTC2LC-1z0 - Xz0 = 0, (185) 

a much more tractable symmetric eigenvalue problem. Notice that substitution of (184) into 

(177) and imposing (181) yields 

#*> = I- (186) 

6.3     The Lanczos algorithm 

The primary obstacle to solution of (185) is the enormous size of the matrix operator. As 

described in section 1, it can easily be of O(107) for linear operators based on models such 
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as NOGAPS. However, because we are interested only in a few of the leading eigenvalues 

of the system, we do not need an explicit representation of the operator. The Lanczos 

algorithm (see Golub and Van Loan (1989), Strang (1986), and Simon (1984) for details) is 

ideally suited for this problem, since it only requires as its input the result vector produced 

when a normalized input vector z0 is passed through the matrix operator in (185). For 

computation purposes the matrix operator is treated as a 'black box' called by the Lanczos 

algorithm code as it iterates. 

The Lanczos iteration process proceeds as follows, given an initial z0 scaled to satisfy 

(186): 

1. Compute C~lz0. This is equivalent to scaling the z0 back to the model dependent 

variables C, A 0, and ir. 

2. Compute LC-1z0. This is the TLM integration over an appropriate forecast time, 

called the optimization time. 

3. Compute C2LC_1z0- This is the energy norm scaling. 

4. Compute LTC2LC-1z0- This is the adjoint model integration over the 

optimization time . 

5. Compute C-1LTC2LC_1z0- This transforms the dependent variables back 

to the z0 energy norm scaling form. 

The result of step 5 is passed to the Lanczos algorithm, which re-scales the vector to 

yield an updated estimate for z0, and then steps 1 - 5 are repeated. The Lanczos algorithm 

generates estimates for the largest eigenvalues and associated eigenvectors as these iterations 

proceed, both refining the estimates and increasing the number of candidate eigenvalues. 

Typically the number of converged eigenvalues equals about 1/3 the number of iterations. 

The Lanczos calculations themselves are not computationally expensive, but since each it- 

eration involves both a TLM and adjoint model time integration, the overall computational 

cost is considerable. For example, A 50 iteration singular vector T47 NOGAPS calculation 
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for a 36 hour optimization time requires about 25000 CPU seconds on a CRAY C90 super- 

computer. This includes the cost of a non-linear forecast to produce the time dependent 

basic state trajectory. I/O costs are also large, since the TLM and adjoint model each must 

read a ~ 100 Mbyte trajectory file every iteration. 

6.4     The local projection operator 

As described, the singular vector system implicitly defines a global optimization domain 

because of the global nature of the spherical harmonic coefficients. More desirable is a 

regionally defined optimization domain to allow exclusion of singular vectors which lie out- 

side an area of interest. Such a targeted domain will be influenced by a small number of 

singular vectors, typically 1-3, requiring only about 10 Lanczos iterations, instead of the 

~ 50 iterations needed to find the leading singular vectors for a global domain. 

A regional optimization domain is constructed by simply discarding the variance in 

the model's dependent variables outside the domain, so that energy norm growth will depend 

only on what happens inside the domain. We define a local projection operator (LPO) as 

F = S~lnS, (187) 

where S is the spectral-to-grid transform operator (40), its inverse <S_1 (41), and 11 is a 

Gaussian grid point mask equal to 1.0 in the optimization domain and 0.0 elsewhere. The 

mask TZ is a grid point operator, but the LPO is an operator in spherical harmonic space, 

so in practice there is some non-zero grid point variance due to spectral truncation Gibb's 

phenomena in the periphery of the projection area. This is only cosmetic, since the variance 

drops off very rapidly away from the projection area and does not contribute significantly 

to perturbation energy growth. F is a symmetric operator, so it can be introduced into 

(185), yielding the modified symmetric eigenvalue problem 

C-^l/FC^FLC-^o - Az0 = 0, (188) 
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that is still solvable with the Lanczos algorithm. 

7    Example Calculations 

We will demonstrate the application of the TLM, adjoint, and singular vector model- 

ing systems on a case study from the recent Fronts & Atlantic Storm Tracks Experiment 

(FASTEX) (Joly et al 1997 ). The particular example includes the 'FASTEX' cyclone, an 

intense and rapidly moving storm that developed in the mid-Atlantic between 1997021612 

UTC and 1997021912 UTC and was the subject of intense observational study during its 

life cycle. Figures 3a, 3b, 3c, 3d, 3e, and 3f are the NOGAPS 1997021612 UTC initial con- 

ditions and the 24, 36, 48, 60, and 72 hour forecasts respectively. The incipient FASTEX 

cyclone is initially visible at tau=24 as a diffuse low pressure area south of the Canadian 

Maritime provinces. During the next 48 hours the storm races across the Atlantic and be- 

comes a relatively small, very intense system that brought gale force winds to Ireland, Great 

Britain, and the North Sea. This storm is ideally suited for study with singular vectors and 

adjoint sensitivities because of its relatively small size in the FASTEX validation area of 

the eastern Atlantic. The 72 hour 1997021612 UTC forecast shown here is the basic state 

trajectory chosen for the singular vector calculations. 

7.1     Singular vectors 

During FASTEX singular vector and adjoint sensitivity calculations were used to select 

areas for objective targeting of aircraft dropsondes in the far-upstream area from the val- 

idation zone. Because of aircraft scheduling constraints and experimental planning require- 

ments it was necessary to run the singular vector calculations more than 24 hours before 

the actual targeting times. In the example shown here a 36 hour lead time was used, giving 

a 36 hour optimization time for the singular vectors from 1997021800 UTC to 1997021912 

46 



fcst_p72m36 fcst_p72m36 

SEA LEVEL PRESSURE : NOGAPS T79L18 SEA LEVEL PRESSURE : NOGAPS T79L18 

ANALYSIS FOR 1997021612 24 HR FORECAST VALID 1997021712 FROM 1997021612 

fcst_p72m36 fcst_p72m36 

SEA LEVEL PRESSURE : NOGAPS T79L18 SEA LEVEL PRESSURE : NOGAPS T79L18 

36 HR FORECAST VALID 1997021800 FROM 1997021612 48 HR FORECAST VALID 1997021812 FROM  1997021612 

fcst_p72m36 fcst_p72m36 

SEA LEVEL PRESSURE : NOGAPS T79L18 SEA LEVEL PRESSURE : NOGAPS T79L18 

60 HR FORECAST VALID 1997021900 FROM 1997021612 72 HR FORECAST VALID 1997021912 FROM 1997021612 

Figure 3: Time series of sea level pressure forecasts showing 72 hour development history 

of the 'FASTEX' cyclone. 
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UTC of the trajectory forecast. The 'target time' for the aircraft mission was therefore 

1997021800 UTC (Tau=36 in the trajectory forecast), and the verification time 1997021912 

UTC (Tau=72). Figure 4a is the perturbation temperature variable of the leading singular 

vector at 680 mbs for the LPO box shown bounding the FASTEX validation area. It has 

the largest growth of the total perturbation energy norm in the LPO. Figure 4b is this per- 

turbation temperature after a 36 hour integration of the TLM initialized with the leading 

singular vector. It is the 'evolved' singular vector, and shows the growth of the perturbation 

energy in the LPO. 

SINGULAR  VECTOR   at TARGETED   OBSERVING TIME 

SV#1        Initial TEMP    680hPa MSA Amp= 7.6 

SINGULAR VECTOR   at FORECAST VERIFICATION TIME 

SV#1 Final TEMP    680hPa MSA Amp= 7.6 

NOGAPS  Singular Vector T47L18  ( + 72   h,-36h) Valid     '997021800 NOGAPS  Singular Vector T47L18  ( + 72   h,-36h) 
From      1997021612 

Valid     1997021912 
From     1997021612 

Figure 4: (a) Leading singular vector, and (b) its 36 hour TLM evolution for the FASTEX 

LPO. Note that the contour interval for the evolved vector is 10 times that for the initial 

vector. 

The potential of singular vector calculations such as this is considerable. They tell 

us 'where the action is' in our forecast models, and by implication, in the real atmosphere. 

The use of an LPO allows us to focus our attention on a forecast area of interest. NWP 

model forecast error is the result of initial condition error growing during a forecast. This 

error growth is concentrated in areas of atmospheric instability such as baroclinic zones. 

The singular vectors tell us where these areas of instability are, and evolved vectors can 
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tell us where the forecast error will occur. Because the singular vectors are normalized 

eigenvectors, we cannot infer any magnitude or sign information about the forecast error, 

at least in real time, but they do tell us where improving our initial conditions, i.e., reducing 

the initial analysis error, will have the greatest potential for reducing forecast error. This 

was the premise of the objective targeting strategy in the far-upstream area of FASTEX, 

where aircraft dropsondes were targeted in the areas of maximum singular vector amplitude. 

7.2    Adjoint sensitivities 

Another equally powerful application of the adjoint model is computing the sensitivities of 

some appropriately chosen cost function J to perturbations in meteorological variables. In 

this example we define a cost function as the perturbation vorticity in the lower troposhere 

of the FASTEX LPO at a time of interest, e.g. the verification time (1997021912 UTC) of 

our example NWP forecast. Figure 5a is this cost function. We ask the question: what will 

be the sensitivity dJ/dT0 of this cost function to perturbations to an atmospheric variable, 

in this case temperature, at some earlier time, i.e., at 1997021800 UTC? The adjoint model 

integration is 

*L = I/^, (189) 
dT0 &Tt 

where the 'initial' condition dJ/dTt, is the derivative of our perturbation vorticity cost 

function at the verification time 1997021912. The sensitivity pattern shown in Figure 5b 

is dJ/dTo at 680 mbs. Because we use the same basic state trajectory as in the singular 

vector calculations, and the cost function is non-zero over the same LPO used for the 

singular vector calculations, the resulting patterns are strikingly similar to the singular 

vector temperatures, although of larger horizontal scale. Adjoint sensitivity patterns such 

as this can be interpreted as a composite of the full spectrum of singular vectors, essentially 

an weighted average depending on the eigenvalues of each singular vector, which tends to 
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spread them out as we see. The choice of cost function is obviously an important factor in 

this interpretation, but that is beyond the scope of this report. 

INITIAL  ADJOINT  FIELD     at  FORECAST  VERIFYING  TIME 

COST FUNC: Initial VOR    680hPa 

ADJOINT  SENSITIVITY AT  TARGETED   OBSERVING  TIME 

d(J)/d(TEMP)    680hPa 
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MOGAPS Adjoint Sensitivity T47L18   (+72   h,-36h)       Valid     1997021912 NOGAPS Adjoint Sensitivity T47L18   (+72  h,-36h)       Valid     1997021800 
From     1997021612 From     1997021612 

Figure 5: (a) Perturbation vorticity cost function J in FASTEX LPO at 1997021912 UTC, 

(b) dJ/dT at 1997021800 UTC. 

8    Summary 

The NOGAPS adjoint modeling system is a powerful new tool for understanding the beha- 

vior of the atmosphere and the NWP models used to predict it. In recent years the major 

operational NWP centers have reached a plateau in forecast model skill, particularly at 

forecast times less than 72 hours. Increasing model resolution with each new generation 

of computer technology, once a near guarantee of better model performance, no longer has 

the positive impact it once did. There are many reasons for this plateau in NWP model 

skill, including unrealistic parameterization of diabatic processes, model climate drift that 

is insensitive to resolution change, and inadequate date coverage in the tropics and southern 

hemisphere. Short-term forecast error (< 72 hours), however, is primarily an initial value 

problem, and reducing initial analysis error is the only way to improve these forecasts. 
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Singular vector and adjoint sensitivity calculations such as the examples in section 7 can 

now find the areas of collocation of analysis error and sensitivity to these errors. We can 

focus our attention on these 'hot spots' with additional observations, special attention to 

data quality control, or special objective analysis techniques, to reduce the analysis error. 

An exhaustive discussion of other potential applications of adjoint models is far beyond 

the scope of this report. Errico (1997) gives very complete and detailed descriptions of the 

many other ways adjoints have been used to open new meteorological research areas or 

re-address old questions in more rigorous and efficient ways. This report should give a 

flavor of what real TLM and adjoint models are, and why they will be so important for the 

future of meteorological research. 
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