
^ Carnegie Mellon University
Software Engineering institute

Playing Detective:
Reconstructing
Software Architecture
from Available Evidence
Rick Kazman
S. Jeromy Carriere
October 1997

Technical Report
CMU/SEI-97-TR-010

ESC-TR-97-010

DTIC QUALITY mSFEtTriSjy ö

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administra-
tion of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of
the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay, lesbian and
bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are available to
all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone
(412)268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

Technical Report
CMU/SEI-97-TR-010

ESC-TR-97-010
October 1997

Playing Detective:
Reconstructing Software Architecture

From Available Evidence

Rick Kazman

S. Jeromy Carriere

Product Line Systems

Unlimited distribution subject to the copyright.

Software Engineering Institute
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213
IJ3HC QUALITY IIJC?EÜTED S

This report was prepared for the

SEI Joint Program Office
HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

The ideas and findings in this report should not be construed as an official DoD position. It is published in the
interest of scientific and technical information exchange.

FOR THE COMMANDER

Thomas R. Miller, Lt Col, USAF
SEI Joint Program Office

This work is sponsored by-the U.S. Department of Defense.

Copyright © 1997 by Carnegie Mellon University.

Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative
works.

Requests for permission to reproduce this document or to prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL
IS FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRAN-
TIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT
LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR
RESULTS OBTAINED FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES
NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO FREEDOM FROM PATENT,
TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with
Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research
and development center. The Government of the United States has a royalty-free government-purpose license to
use, duplicate, or disclose the work, in whole or in part and in any manner, and to have or permit others to do so,
for government purposes pursuant to the copyright license under the clause at 52.227-7013.

This document is available through SAIC/ASSET: 1350 Earl L. Core Road; PO Box 3305; Morgantown, West
Virginia 26505 / Phone: (304) 284-9000 / FAX: (304) 284-9001 / World Wide Web: http://www.sai&:com/-

contacthtml / e-mail: webmaster@cpqm.saic.com

Copies of this document are available through the National Technical Information Service (NTIS). For informa-
tion on ordering, please contact NTIS directly: National Technical Information Service, U.S. Department of

Commerce, Springfield, VA 22161. Phone: (703) 487-4600.

This document is also available through the Defense Technical Information Center (DTIC). DTIC provides access
to and transfer of scientific and technical information for DoD personnel, DoD contractors and potential contrac-
tors, and other U.S. Government agency personnel and their contractors. To obtain a copy, please contact DTIC
directly: Defense Technical Information Center / Attn: BRR / 8725 John J. Kingman Road / Suite 0944 / Ft. Bel-
voir, VA 22060-6218. Phone: (703) 767-8274 or toll-free in the U.S. — 1-800 225-3842).

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Table of Contents

1 Software Architecture as Shared Hallucination 1

2 Hello Dali: An Extraction/Analysis Workbench 5
2.1 Concrete Model Extraction: Gathering Clues 5
2.2 A Repository Hybrid 6
2.3 Derived Relations 7
2.4 Model Manipulation: Organizing the Evidence 8

2.4.1 Direct Manipulation 8
2.4.2 External Manipulation and Analysis 9
2.4.3 Repository Synchronization 9

2.5 Tools of the Trade: Populating the Dali Workbench 10

3 Playing Detective: Dali on the Streets 11
3.1 Extraction 11
3.2 There's an Architecture in There? 12
3.3 Application-Independent Patterns 13
3.4 Common Application Patterns 17
3.5 Application-Specific Patterns 21

3.5.1 UCMEdit 21
3.5.2 VANISH 23

4 Assessing the Evidence: Why Not Any Four Boxes? 31

5 Related Work 33

6 Post Mortem 35

7 The Next Case: Where Do We Go From Here? 37

References 39

CMU/SEI-97-TR-010 i

CMU/SEI-97-TR-010

List of Figures

2-1 The Dali Workbench 5

2-2 A Derived Relationship 7

3-1 A Raw Concrete Model: White Noise 13
3-2 Patterns for Element Types 14

3-3 Patterns for Function Aggregation 15
3-4 The UCMEdit Concrete Model After Collapsing Classes 16
3-5 The UCMEdit and VANISH Models Showing (From Top to Bottom)

Classes, Files and "Leftover" Functions (Arcs Are Hidden) 17
3-6 Patterns for UCMEdit Graphics Subsystem 18
3-7 UCMEdit Model Showing the Graphics Subsystem, Classes,

Files, and Remaining Functions (Arcs Are Hidden) 19
3-8 Patterns for Class/File Containment 20
3-9 The UCMEdit and VANISH Models After Application of Common Patterns 21
3-10 UCMEdit Model After Application-Specific Direct Manipulations 22
3-11 UCMEdit Model After Clustering Based on Application-Domain 23
3-12 The Arch Metamodel of Interactive Software 24
3-13 VANISH Model After Removal of Unused Files 25
3-14 Patterns for VANISH Architecture 26
3-15 The VANISH Architecture (With and Without Utilities Layer) 27
3-16 Presentation and Its has_subciass Descendants 28

CMU/SEI-97-TR-010

iv CMU/SEI-97-TR-010

List of Tables

3-1 Elements and Relations Extracted from VANISH and UCMEdit 11

CMU/SEI-97-TR-010

^j ~~ CMU/SEI-97-TR-010

Playing Detective: Reconstructing Software Architecture
from Available Evidence

Abstract: Because a system's software architecture strongly influences its
ability to support quality attributes such as modifiability, performance, and
security, it is important to be able to analyze and reason about that architecture.
However, architectural documentation frequently does not exist, and when it
does, it is often out of sync with the implemented system. In addition, it is rare
that software development begins with a clean slate; systems are almost
always constrained by existing legacy code. As a consequence, we need to be
able to extract information from existing system implementations and reason
architecturally about this information. This paper presents Dali, an open,
lightweight workbench that aids an analyst in extracting, manipulating, and
interpreting architectural information. By assisting in the reconstruction of
architectures from extracted information, Dali helps an analyst redocument
architectures and discover the relationship between "as-implemented" and "as-
designed" architectures.

1 Software Architecture as Shared Hallucination
The formal study of software architecture has been a significant addition to the software engi-
neering repertoire in the 1990s. It has promised much to designers and developers: help with
the high-level design of complex systems; early analysis of high-level designs, particularly with
respect to their satisfaction of quality attributes such as modifiability, security, and perfor-
mance; higher level reuse such as that of designs; and enhanced stakeholder communication
[Garlan 93].1 These benefits seem enticing. However, much of the promise of software archi-
tecture has as yet gone unfulfilled. Why is this?

Some of the problems simply stem from the fact that architectures are seldom documented

properly:

• Many systems have no documented architecture at all. (Allsystems have an architecture,
but frequently it is not explicitly known or recorded by the developers and therefore
evolves in an ad hoc fashion.)

• Architectures are represented in such a way that the relationship between the
architectural representation and the actual system, particularly its source code, is unclear.

• In systems that do have properly documented architectures, the architectural
representations are frequently out of sync with the actual system, because maintenance
of the system occurs without a similar effort to maintain the architectural representation.

We see these problems on a regular basis at the Software Engineering Institute (SEI) when
we do architectural evaluations. There is little completely new development. Development is

1 See also Bass, Len; Clements, Paul; & Kazman, Rick. Software Architecture in Practice. Reading, MA: Addi-
son-Wesley, 1997 (this document is currently in press)

CMU/SEI-97-TR-010

typically constrained by compatibility with, or use of, legacy systems. And it is rare that such
systems have an accurately documented architecture. Because of these issues, we have a
serious problem in assessing architectural conformance, and if we cannot assess architectural
conformance—that is, if we cannot ensure that our architectural documentation matches what
we have implemented—what good is having an architecture? If we can not confidently estab-
lish the relationship between the documented and implemented architectures, much of the val-

ue of having an architecture is lost.

In addition, when a system enters the maintenance portion of its life cycle, it may sustain mod-
ifications that alter its architecture. Hence, a second problem arises: How do we know that
maintenance operations are not eroding the architecture, breaking down abstractions, bridg-

ing layers, compromising information hiding, and so forth?

All of these are manifestations of two underlying causes. The first is that a system does not
have "an architecture." It has many: its runtime relationships, data flows, control flows, code
structure, and so on. The second, more serious, cause is that the architecture that is repre-
sented in a system's documentation may not coincide with any of these views. "The architec-
ture" is frequently some abstracted runtime view of the system. For example, even though a
system is described as "layered," the location and boundaries of the layers are not obvious
from an examination of any of the architectural views.

Quite simply, there is no accepted way of enforcing a "layer" in a system's implementa-
tion—there is no explicit "layer" construct in any modern programming language. Layering may
be realized by programming language constructs such as modules or inheritance with acces-
sibility constraints. While these support layering, they in no way enforce it. Attempts to enforce
layering are typically made through other means such as naming conventions (e.g., all func-
tions defined by the X windows library, Xlib, begin with the letter "X"), code ownership (the
graph layout layer is owned by a single development group, and only they can change it), and
design conventions (the graph layout layer cannot directly call the window system, but must
instead call a virtual toolkit layer). For example, the "operating system" layer seen in many ar-
chitectural diagrams is only a layer by virtue of code ownership; few designers or developers
have access to its source. So, designers must treat it as a sealed layer. This is the best case.
In many cases we have access to all of the source code in our architecture. The architecture
as a whole does not exist in any artifact that we actually implement.

So, is software architecture a shared hallucination that we, as developers, gladly and glibly as-
cribe to? If not, how do we know what the architecture of a system is? How do we validate this?
How do we measure the conformance of an "as-implemented" architecture against its "as-de-
signed" architecture? If we can't answer these questions then our use of software architecture
amounts to little more than a vague vision and blind faith in the abilities of the original design-

ers and their successors.

In this paper we present a prototype system, Dali, for helping a user reason about an imple-
mented architecture. Dali is an interactive system that aids the user in interpreting architectural
information that has been extracted automatically. The system does not attempt to do it all,

CMU/SEI-97-TR-010

which is to say that it does not attempt to automatically "find" the architecture for the user. This
approach has been tried before and has failed. Rather, Dali supports the user in defining ar-
chitectural patterns and in matching those patterns to extracted information.

There are three techniques used in reconstructing architectural views using Dali:

1. Architectural extraction, which captures the as-implemented architecture from source ar-
tifacts such as code and makefiles. We can augment this static information with output
from analysis tools that capture a system's dynamic behavior (such as profilers or test
coverage tools).

2. User-defined architectural patterns that collectively link the as-implemented architecture
to the as-designed architecture. The as-designed architecture consists of the kinds of ab-
stractions used in architectural representations (subsystems, high-level components, re-
positories, layers, conceptually-related functionality, and so forth). The architecture pat-
terns explicitly link these abstractions to the information extracted in technique 1.

3. Visualization of the resulting architecture—the extracted information, as organized by the
patterns—for validation by the user.

Each of these techniques on its own is insufficient to address the problem of architectural ex-
traction: The architectural extraction and visualization techniques used here are not in them-
selves new. The solution to "finding" an architecture from extracted artifacts derives from the
synergy of the parts and from our model of user interaction through pattern matching and in-
terpretation. This is the main contribution of our work.

In this paper we describe how Dali is used and the kinds of insights you can get from using it.
We exemplify its use through assessments of two systems: VANISH [Kazman 94], a system
for prototyping visualizations, and UCMEdit, a system for creating and editing Buhr-style use
case maps [Buhr 96].

In summary, our goals with Dali are to

• support architectural analysis, which implies the need to

• redocument architectures

CMU/SEI-97-TR-010

CMU/SEI-97-TR-010

2 Hello Dali: An Extraction/Analysis Workbench
Because there is a great deal of variance in languages, architectural styles, implementation
conventions and so forth, we believe that no single collection of tools will suffice for all archi-
tectural extraction and analysis. Thus, in creating support for extraction and analysis we have
created an open, lightweight "workbench:" an environment that provides an infrastructure for
opportunistic integration of a wide variety of tools and techniques. New elements must be easy
to integrate into the workbench (openness), and such integration should not unnecessarily im-
pact other elements of the workbench (dependencies are lightweight).

The following sections describe the components of the Dali workbench, as illustrated in Figure
2-1. The workbench is first discussed in general terms, leaving elements of the workbench that
may vary between applications (such as particular extraction techniques, analysis tools, or
manipulation techniques) unspecified. Section 2.5 then discusses a particular population of
the workbench.

Extraction

Lexical

Parsing

Combination

Profiling

Repository External
* Manipulation

Visualization
and Interaction

J
Analysis

^

2-1 The Dali Workbench

2.1 Concrete Model Extraction: Gathering Clues

A necessary first step in supporting the analysis and evaluation of a software architecture is
the extraction of a concrete model, a representation of the implemented system. Such a rep-
resentation contains a collection of elements (e.g., functions, files, variables, objects), a col-
lection of relations between the elements (e.g., "function calls function," "file contains
function"), and a set of attributes of these elements and relations (e.g., "function calls function
Ntimes," "object A has type B"). A concrete model may reflect several views of a system, such
as its static structure, dynamic (runtime) nature, or build-time structure.

CMU/SEI-97-TR-010

There are many techniques and tools for static source model extraction, and these are largely
divisible into two classes: those based on parsing and those based on lexical techniques. Lex-
ical techniques are usually more versatile and lightweight than parse-based techniques, but
lexical techniques typically achieve lower accuracy. Regardless, it is important to appreciate
that no one tool will successfully extract a complete source model; first, tools are designed to
extract particular source elements rather than comprehensive models, and second, extraction
tools frequently produce output that does not accurately reflect the source corpus [Murphy

96a].

Imperfect extractors may appear to be acceptable when considering systems from the archi-
tectural perspective: Why should one missed function call disturb the high-level model? How-
ever, this is a dangerous assumption as it will not be a single function call that is missed, but
more likely a whole class of related elements or relations. This deficiency will likely affect the
architectural model. So, what are we to do? We propose that composition of multiple extraction
techniques will alleviate these problems by providing a concrete model of higher accuracy than

any individual technique.

In the simplest case, extraction techniques will be directed toward different views—disjoint
sets of elements and relations (e.g., one technique for extraction of function calls and another
for extraction of variable access). Composition is then simply a matter of constructing the
union of the concrete models; however, this does not address the potential deficiencies of any
individual technique. Composition of techniques that are not intended to generate disjoint
models requires that one address several issues. First and foremost is that of conflicts be-
tween models: the situation when one extractor identifies a particular element or relation, and
another extractor does not. The simplest (though potentially incorrect) solution is to generate
a union in this case as well, resulting in a concrete model that incorporates false positives from
each contributing model. An alternate solution—analogous with software fault tolerance—is to
combine multiple overlapping models with "voting," where an element or relation is included in
the composite model if it appears in a majority of the contributing models, or weighted voting,
where the votes of some models weigh heavier than others with respect to specific extracted

artifacts.

This model of composition of extraction techniques contributes to the open, lightweight nature
of Dali. The method for integration of a new extraction technique is typically trivial and at worst
requires an analysis of the characteristics of the new extractor. Because extractors are igno-
rant of each other, integration of a new technique does not imply that the existing extractors
need to reanalyze the source corpus. For these reasons, a single all-encompassing extractor
is not necessary; instead, individual lightweight extractors are incorporated into the Dali work-

bench opportunistically.

2.2 A Repository Hybrid

Once a concrete model is extracted it must be stored. We considered two options for this stor-
age: use of a database that manages all access to the model and use of an interchange format

CMU/SEI-97-TR-010

that decentralizes model access. An interchange format provides more flexibility in a multitool
environment, but involves significant up-front effort for definition. As the intention of the work-
bench approach is to apply tools opportunistically, the use of a centralized database compli-
cates model maintenance; each tool must have an interface to the database and be
responsible for updating the database with any modifications that the tool makes. The inter-
change format, then, appears to be the solution. On the other hand, a database provides
handy functionality with respect to querying, multiuser support, and history mechanisms.

With Dali, we have adopted a hybrid approach in which we use an SQL (structured query lan-
guage) database for primary model storage, but application-specific file formats for inter-
change between tools. Tools may thus either access the database directly, via programmatic
interfaces (a less open solution), or depend on provision of data files in appropriate formats.
This scheme allows users to enjoy the advantages of having a repository, but alleviates the
burden of model maintenance by all participating tools. Once a tool has manipulated the mod-
el, the repository is updated. This approach is discussed further in Section 2.4.3.

2.3 Derived Relations
Extraction of information is the foundation of architecture reconstruction. But it is also impor-
tant to augment the collection of relations stored by the repository. Figure 2-2 illustrates an ex-
ample from socket-based interprocess communication (IPC).

ontains,

calls(SERVER) calls(SERVER)

is built from /^^ A is built from
connect (bind)

•K XO communicates with v_x

2-2 A Derived Relationship

The circles represent extracted elements from the concrete model: functions (f, g, connect,
and bind), files (x.c and y.c), and processes (p and q). Solid arrows represent relations, la-
belled with the type of relation and, in the case of calls, tagged with attributes (SERVER). The
dashed line, labelled communicates_with, depicts a derived relation. That is, this relation did
not exist in any of the extracted information—it had to be inferred from a collection of extracted
relations. Process q acts a server because it is built from a file containing a function that calls
bind, p is a client because it is built from a file containing a function that calls connect. We know
that p and q are a client/server pair because the arguments to connect and bind are identical.

CMU/SEI-97-TR-010

Thus, p communicates with q and vice versa. This relationship could have been defined asym-

metrically instead, for example, as "p connectsjo q."

Derived relationships of this type provide a mechanism for abstraction over the extracted arti-
facts, thus creating new views of the architecture. For this reason, flexible relationship deriva-
tion is an import feature in Dali. This functionality is facilitated by the off-the-shelf SQL

database that provides Dali's central repository [Stonebraker 90].

2.4 Model Manipulation: Organizing the Evidence

Perhaps the most important component of the Dali workbench is its interaction element: the
central component that is used to directly manipulate the model and guide analyses and au-
tomatic manipulation. This component is best realized by a flexible tool that effectively balanc-
es generality with domain applicability. For example, a generic graphics package would
provide a great deal of generality, but little or no functionality specific to the domain of soft-
ware. A tool such as DISCOVER [DISCOVER 97], on the other hand, provides significant do-
main functionality but little flexibility. We have found Rigi [Wong 94] to be a satisfactory
compromise between these competing concerns: Rigi provides generality via a control lan-
guage based on TCL, called RCL (Rigi Command Language). RCL also provides functionality
specific to the tasks of manipulation of software models, satisfying the domain applicability

concern.

While Rigi in fact comprises both an extraction component (a parser) and a user interface com-
ponent, and while both of these are applicable within the Dali workbench, we are currently only
using Rigi's user interface. The Rigi user interface (rigiedit) at its most basic level provides
graph editing functionality: layout, annotation, subgraph collapsing, and so forth. At a higher
level, Rigi provides semi-automatic facilities for subsystem identification-based graph-theoret-
ic properties such as interconnection strength. In experimenting with Rigi's more advanced
functionality, we did not find that the automatically identified subsystems corresponded with
the architectural components we wished to identify. Our alternative to using automatic archi-
tectural discovery techniques is to allow direct manipulation of the model augmented by exter-

nal manipulation and analysis tools.

2.4.1 Direct Manipulation

Notwithstanding any foreseeable advances in automatic manipulation or pattern matching of
software models, it is necessary to provide a direct manipulation interface for users. Facilities
such as those mentioned above (layout, annotation, subgraph manipulation) enable a user to
impose their interpretation of the architecture on the model being manipulated.

Designers have standard ways in which they visually organize the components of their archi-
tecture to correspond to their understanding of some property of the system (e.g., top-down
control flow or bottom-up data flow). So, it is helpful to be able to visually reorganize the cur-
rently visible set of components arbitrarily to reflect this understanding.

CMU/SEI-97-TR-010

2.4.2 External Manipulation and Analysis

Dali supports the ability to apply tools to the current architectural model opportunistically. This

is achieved through a three-step process:

1. exporting the model (or some subset thereof) from Rigi

2. applying an appropriate tool to manipulate or analyze the model

3. (optionally) importing the result

The simple example of this process exists within Rigi by default: Rigi can export a snapshot of
its current model in a graph representation language, execute an external graph layout algo-
rithm, and then import the result. We have extended this approach to incorporate tools that
structurally alter the model. We do this by implementing, in RCL, "glue code" that synchronizes
Rigi's model with any changes to the model from the application of external tools.

The central technique for external model manipulation within Dali is based on queries over the
SQL database that stores the model. Although the SQL query language does not provide suf-
ficient expressive power to describe constructs such as the transitive closure of a relation, we
have found that it is sufficient to allow model manipulation based on structural relationships as
well as attributes of elements and relations. This is because our model of manipulation is iter-
ative, and depends on the user to define higher order relations.

These query-based manipulations are the basis for the architectural patterns that collectively
relate an as-built architecture to an as-designed architecture. In addition, they provide the
foundation for one mechanism of architectural pattern matching. These applications of query-
based manipulation will be discussed in Section 3.

One goal of reasoning architecturally about a system is to support the ability to analyze an ar-
chitecture for properties such as availability, performance, security, schedulability, and so
forth. The literature provides many techniques for such analyses and many tools have been
developed to perform them [Kazman 96a], [Smith 93]. Dali provides a mechanism by which
analyses can be performed on the architectural model currently being explored, using the ex-
port-process-import model described above. Integration of a new technique for which an anal-
ysis tool exists is simply a matter of implementing appropriate translators to produce a format
acceptable to the tool and to interpret its results (if appropriate). We have done this with Inter-
active Architecture Pattern Recognition (IAPR) [Kazman 96c], a tool that determines the pres-
ence of patterns in a software architecture, and with RMTool [Murphy 95], a tool that measures
architectural conformance. Each of these generates output that is viewed by other external

tools.

2.4.3 Repository Synchronization

The concrete model within Rigi is a local "working copy" of the model stored within the SQL
database. It is important to recognize the potential difficulties resulting from lack of synchroni-
zation between this local working version and the central repository. The most significant ex-

CMU/SEI-97-TR-010

ample is the query-based manipulation mechanism outlined above, as a query over the SQL
database may manipulate the model in ways that conflict with what is currently being displayed

by Rigi.

Repository synchronization is achieved through additional RCL code that updates the SQL da-
tabase with modifications made to the Rigi model (those made by external tools or by direct

user interaction).

2.5 Tools of the Trade: Populating the Dali Workbench

The Dali workbench, as described, specifies only one constraint: the use of a database for
central model storage. The other elements of the system—extraction techniques, methods for
combination of extracted data, the visualization system and its interaction, and particular anal-
ysis or manipulation tools—are left unspecified. This is in theory. In practice, we have specified
tools, as illustrated in the preceding discussion of Rigi for visualization and interaction. We cur-

rently populate the rest of the workbench as follows:

• Lightweight Source Model Extraction (LSME) [Murphy 96b], Imagix [Imagix 97], make,
and Perl [Wall 91] for extraction of source model information for C and C++

• gprof for extraction of dynamic (profile) information

• PostgreSQL (based on POSTGRES [Stonebraker 90]) for model storage

• IAPR [Kazman 96c], RMTool [Murphy 95], and Perl for analysis and manipulation

As Dali has an open, light weight architecture, replacement of any of these components or in-
clusion of new components is intended, and has proven to be, straightforward.

10 CMU/SEI-97-TR-010

3 Playing Detective: Dali on the Streets

This section describes the application of Dali to the architectural reconstruction of two sys-
tems, both implemented in C++: VANISH [Kazman 96b], a 50-KLOC system for prototyping
visualizations, and UCMedit, a 15-KLOC system for creating and editing Buhr-style use case
maps [Buhr 96]. We liken this process to detective work; we gather evidence, pose hypotheses
that organize the evidence, and view and interpret the resulting organization. We iterate
through this process until we are satisfied with the results. What does it mean to be satisfied
with an architectural representation? We discuss this in Section 4.

3.1 Extraction
Extraction of static source models for both VANISH and UCMEdit was performed using LSME
[Murphy 96b]. To apply LSME, you provides a set of patterns specified as regular expressions
and a set of actions written in the Icon programming language [Griswold 83]. Actions are ex-
ecuted when patterns match elements of a source corpus. To perform extraction of elements
from C++ using LSME, a set of patterns and actions were developed.

The elements and relations that were extracted are shown in Table 3-1.

3-1 Elements and Relations Extracted from VANISH and UCMEdit

Relation
"From" Element "To" Element

Element Type Element Name Element Type Element Name

calls function tCaller function tCallee

contains file tContainer function tContainee

defines file tFile class tClass

has_subclass class tSuperclass class tSubclass

has_friend class tClass class tFriend

defines_fn class tDefined_by function tDefines

has_member class tClass member variable tMember

defines_var function tDefiner local variable tVariable

has_instance class tClass variable tVariable

defines_global file tDefiner global variable tVariable

It is important to note that variable accesses are not included in Table 3-1; that is, there are no
"function reads variable" or "function assigns variable" relations. LSME was not designed with
these relations in mind. A second extraction technique, based on the Imagix [Imagix 97] C++
parser, was incorporated to accomplish the extraction of this disjoint set of relations. The Imag-

CMU/SEI-97-TR-010 11

ix C++ parser (a component of the Imagix 4D program-understanding tool) generates rich and
detailed output, including variable accesses, in any easy-to-process format. A simple Perl
script post-processes this output, generating the relations of interest. Additional "file depends
on file" relations are extracted by processing the output from running the GNU make utility on

the application's makefile.

Once the concrete model of interest was extracted, functions thought to be "uninteresting"
were filtered out; among these are built-in functions, such as return, and standard C library
functions such as scant and printf. Next, an SQL database was populated with the extracted
relations. Two additional database tables, relations and components, were defined for conve-
nience; the former identifies all defined relation types, and the latter identifies all defined com-
ponents. The components table has an additional field (called type) that stores the

component's type (file, function, etc.).

3.2 There's an Architecture in There?

The process of manipulating the concrete model to derive the as-built architecture of the sys-
tem is an iterative, interactive, and interpretive one. It requires the interaction of not just any
person, but of a person familiar with the system. This interaction consists of alternating pat-

tern-definition and pattern-recognition activities.

The end result will be a representation of information extracted from the as-built architecture,
as organized by the analyst/detective. Clearly, it is possible to group source elements into ar-
chitectures in a huge variety of ways. This is why the task must be done by someone familiar
with the system's design. Recall that we are interested in architectural conformance, which
means that an as-designed architecture exists, even if it is only in the architect's mind.

But how do you get there from here? How do you get from a mountain of evidence to a concise,
accurate representation of the architecture? We illustrate this process by walking through a
typical set of pattern applications in Dali that move an analyst from the raw data that is a con-
crete model to a (hopefully) simple, elegant software architecture.

Consider Figure 3-1, which shows the raw extracted concrete model of UCMEdit that contains
830 nodes and 2507 relations. (The corresponding image for VANISH would not be recogniz-
ably different with 2844 nodes and 7387 relations.) This is the starting point of the architecture

reconstruction process.

-12 CMU/SEI-97-TR-010

General-1 Boot ««ACTIVE» M

W»;

/.
R Z=
AreType: lew I WtrrwlO node»,0 arc*

3-1 A Raw Concrete Model: White Noise

The following sections describe the use of application-independent patterns to transform the
models of UCMEdit and VANISH and discuss the use of patterns leveraging architectural in-
formation common to both applications. The examples will conclude with the application of di-
rect manipulations and patterns specific to each system.

3.3 Application-Independent Patterns

The first step toward reconstructing a system's architecture is to apply several simple low-lev-
el, application-independent patterns to augment and simplify the raw concrete model with
some derived information. Patterns are specified as sets of SQL queries; a Perl wrapper acts
as the "glue" for importation of the results into Rigi. The first pattern set is used to identify the
types of source elements, as shown in Figure 3-2.2 A pattern set contains a series of patterns,
where each pattern is made up of an SQL query and a Perl expression. The former selects a
set of elements from the concrete model, and the latter post-processes the query, extracting
and manipulating important fields. For example, consider the second group of patterns in Fig-
ure 3-2 that specifies the element type "class." This group is made up of three patterns used
to identify sets of elements that are classes. These sets may or may not overlap with each oth-
er.

It should be noted that this step would not necessarily be required for all extracted concrete models. Some
extracted concrete models would already contain typing information.

CMU/SEI-97-TR-010 13

The first of the class patterns selects all "definers" from the def ines_f n relation. That is, any
element that is the definer in a "defines function" relation is a class. The second pattern selects
all components that "have instances," and the third selects all components that are either a
superclass or a subclass. The Perl expressions associated with each of these patterns simply
generate output of the form: "null <component> class," identifying <component> as a
class. (The first field will be discussed further below.) The output is processed by Rigi and

used to update its internal model.

File typo.
SELECT tName

FROM components
«HERE tName LIKE '%.h'

OR tName LIKE 'H.cc';

print -null $fields[01 File\";

tt Class type.
SELECT DISTINCT dl.tDefined_by

FROH de£ines_£n dl;

print "null $fieldstO] Class\n";

SELECT DISTINCT il.tVariable
FROM has_instance il;

print "null $fields[0] Class\n";

SELECT DISTINCT cl.tName
FROH components cl, has_subclass si
WHERE cl.tName-sl.tSuperclass
OR cl.tName-sl.tSubclass;

print "null $fialds[0] Class\n";

Member variable.
SELECT DISTINCT hl.tMember

FROM has_member hi;

print "null $fields[0] MemberVaribleNn";

Local variable.
SELECT DISTINCT dl.tVariable

FROM defines_var dl;

print "null $£ields[0] LocalVariable\n";

Global variable.
SELECT DISTINCT dl.tVariable

FROM defines_global dl;

print "null $£ields[0] GlobalVariable\n"

3-2 Patterns for Element Types

Any elements that have not been assigned a type by this pattern set will retain Rigi's default

type of "Function."

At this point, we have a database synchronization problem, as discussed in Section 2.4.3; the
type information that we have just derived is stored only in the Rigi model, not in the SQL da-
tabase. To synchronize the two models, a Rigi RCL script is executed to export the derived

types back into the database.

Thus far, the concrete model as displayed in Rigi will be indistinguishable from Figure 3-1. We
have not yet made any structural modifications to the model; we have only identified the types:
Function, File, Class, LocalVariable and Globalvariable. The next collection Of
low-level patterns applied to the model group together functions with any variables that they

declare locally.

Figure 3-3 shows the pattern set for function aggregation. This pattern set has the effect of
incorporating a function and all of the local variables that it defines into a new composite com-
ponent. This new component has the original function's name appended with a V. The follow-

ing Perl expression specifies the aggregation:

print "$fields[0]+ $fields[0] Function\n";

14 CMU/SEI-97-TR-010

In this expression, $f ields [0] + identifies the name of the new composite; $f ieids [0] is
the name of the original function; Function is the type of the new composite.

Function grouping.

SELECT tName
FROH components
WHERE tType='Function';

print »$fields[0]+ $fields[0] Function\n";

SELECT dl.tDefiner, dl.tVariable
FROM defines_var dl;

print "$fields[0]+ $fields[1] FunctionXn";

3-3 Patterns for Function Aggregation

After this pattern set is applied, the models for UCMEdit and VANISH still appear as inscruta-
ble webs of nodes and arcs. However, they are simpler than the concrete model of Figure 3-
1, prior to the application of the function aggregation patterns. The UCMEdit model now shows
710 nodes and 2321 relations, and the VANISH model shows 2282 nodes and 6586 relations.

The next low-level pattern set applied is similar in nature to that for collapsing functions, but
generates a much more significant visual effect. This pattern set collapses together classes
and their member variables and functions, representing them as a single node. The resulting
concrete model for UCMEdit is shown in Figure 3-4; it contains 233 nodes and 518 arcs.

CMU/SEI-97-TR-010 15

General i'1 Root ««ACTIVE»

ay-.hei0

.fck
FT

3-4 The UCMEdit Concrete Model After Collapsing Classes

The VANISH concrete mode! now contains 798 nodes and 2359 arcs. The dramatic simplifi-
cation of the models is one that should be expected after application of these patterns to ob-
ject-oriented systems. By virtue of the fact that there are still elements that are not related to
any class in the concrete model, we have already exposed either a deficiency in the extractors
applied, or ways in which these systems deviate from pure object-oriented designs. In fact,

each of these cases has occurred.

There are false positives generated by the LSME extraction patterns in the form of apparent
calls to global functions that are actually calls to member functions, and there are several func-
tions that are indeed global functions, belonging to no class defined in the system. Of course,
some global functions, in the form of system calls or windowing system primitives, are neces-
sary. How these "leftover" cases are separated from the rest of the architecture is discussed

below.

The models for UCMEdit and VANISH are now collections of files, classes, leftover functions,
and global variables. Local variables have been incorporated into the functions in which they
are defined, and member functions and member variables have been incorporated into their
associated classes. At this point we can compose global variables and functions into the files
in which they are defined, in much the same manner as functions and classes were composed.
The resulting models, shown in Figure 3-5, contain three separate groups of elements: files,

classes, and the remaining leftover functions.

16 CMU/SEI-97-TR-010

a; General - 1 Root «ACTtVE» M

XfPresrntatbff>tot'+ Segra^Pon^tel^ratbiVptte'™-
Dependent+Pojr;l+ Ljrt+ ListlteiiM*rTOS*ntaikW!<TOid+

PSPresanatbi^th+ctoripo'n^?irirnicArro,!U5i1ndle+ Box+
BSpline+

O, □ . D Ü D D D G
bo^Veserjgtonrti^ofegm^txoft^i^cÄtiler^ttfti^c^te.^Wi'^.cof

«Iba^.^e^j^sepyasep^^^^
corrpo[ijn<l>-r*tjofw.4s^ili[Tg.cof txfgh bspjge.h pajri^fpres^TTjtatiirttttQtor.h

listi£jTvh st^^rese^titfHyfcijgnt.h lirtjh dynarrow.HiandlätfJponsbility.h
press niatbn.Boin^i^resenla-ife(j)^nderg>tvp0r,enth

IT-

LA

31

CoiBial I Hoot «ACTTVF.»

Ä

m

3-5 The UCMEdit and VANISH Models Showing (From Top to Bottom) Classes, Files and
"Leftover" Functions (Arcs Are Hidden)

3.4 Common Application Patterns

Until now, each of the pattern sets applied has been application-independent, but specific to
the extraction techniques and to the domain of C++ software. The next sets of patterns to be
applied use expert knowledge of the UCMedit and VANISH architectures. At this point the re-
construction process diverges from a rote analysis, where we apply off-the-shelf patterns, into
opportunistic pattern recognition and definition, leveraging the kinds of information that a de-
signer or experienced system programmer could be expected to know about a specific sys-
tem's architecture.

CMU/SEI-97-TR-010 17

The first application-specific knowledge that we apply to our example systems is as follows:

. They are both interactive, graphical applications.

. They both attempt to encapsulate access to the underlying windowing and graph.cs

subsystem within a layer.
. The functions comprising the graphics libraries used (Xlib, XForms, and Mesa) have

characteristic naming conventions.

These observations lead to the pattern set shown in Figure 3-6. which is intended to identify
Te graÖh cs subsystem, those externa. »unctions providing rendering and interaction function.
Io th«ion. ahe patterns shown are for UCMEdit; the VANISH patterns arc only
siw^dmeren, due to a mere elaborate encapsulation of the graphics layer) Consider the

sCttem h firs, constructs a new table from the components table by filtering out all func-
onsTa are members of classes (those that appear as «he tDefines fie d ,n a tuple of the

aef mes.fn reiation). Then the pattern selects from this new table all unctt«, that«e
called by functions defined by subclasses of the Presentation class Note tha thispattem
references subclasses of the Presentation class. In doing so, it implicitly identifies the lay-
erThatthe^Inal designers created to encapsulate accesses to the graphics subsystem. This
info^tton will be leveraged further below. The second, third, and fourth patterns ,n ttvs pat-
tern™ identify functions defined by the Mesa, XForms, and Xlib libraries, respectively, by

specifying patterns over the function names.

1: Identify calls from graphics access

layer.
DROP TABLE tmp;
SELECT * INTO TABLE tmp

FROM components;

DELETE FROH tmp
WHERE tmp.tName=defines_fn.tDefines;

SELECT tl.tName
FROM tmp tl, calls cl, defines_fn dl,

has_subclass si, has_subclass s2
WHERE tl.tName=cl.tCallee
AMD cl.tcaller=dl.tDefines
AND dl.tDefined_by=sl.tSubclass
AND sl.tSuperclass='Presentation';

print »Graphics $fields[0]+ null\n»;

2: Identify calls to Mesa functions.

SELECT tName
FROM components
WHERE tType='Function'

AND tName LIKE 'glVj

print »Graphics $fields[0]+ null\n»;

3: Identify calls to XForms functions.

SELECT tName
FROM components
WHERE tType='Function'
AND tName LIKE '£1_V;

print »Graphics $fields[0]+ null\n»;

I: Identify calls to Xlib functions.

DROP TABLE tmp;
SELECT * INTO TABLE tmp

FROM components;
DELETE FROM tmp

WHERE tmp.tName=defines_fn.tDefines;

SELECT cl.tName
FROM tmp cl
WHERE tType='Function'

AND tName LIKE 'XV;

print »Graphics $fields[0]+ null\n»;

3-6 Patterns for UCMEdit Graphics Subsystem

CMU/SEI-97-TR-010
18

These patterns collectively identify an architectural component, Graphics. This component
does not exist in the extracted information, but it does exist in the as-designed architecture.
This is an example of linking the as-built and as-designed architectures through a cumulative
series of pattern applications. The results of the application of this pattern set to the UCMEdit
model are shown in Figure 3-7.

Note that the names of the elements to be aggregated into the Graphics component include
the '+' that was appended by the patterns in Figure 3-3. This technique thus refers to previ-
ously constructed composite elements without the patterns explicitly querying the database for
the composites. An alternative approach for synchronizing the database with the interaction
component is to populate the database with relations reflecting the compositions and include
these new relations in the pattern queries. We chose to avoid this alternative for efficiency con-
siderations, but it is supported equally well by Dali.

3 General - 1 Root «ACTIVE» -m

Graphics

XfPresfrntatiorStttp* SegrrefespomMj^imtbAi''!»?''»
Dependent+PqTnt+ Lgt Listlt^* firesgpratiiW**; d+

PSPresentatioifiBtri+OorrponSl*\1«imi<AmJ«*ndte+ Bax+
BSpline-t-

DDDÖDDDÜ
bo:£f*wese rrratio n i»£jeo*eg mgit. COA» Qc&titera1p:n«ftpc^1e. fcrvx^. c w-

«Ibagjcs.fe*>eg,jr}i>j.Serj9«seM! pBGSJSgjion,»^,;,» pat|gcc»
oorrpopjnd,lswr[gw.t¥pltrig.co+ bfgh bspfjrje.h pajttptfpres^Tjtatfcltiägtor.h

fcti£jn.h s:gbj)KpiiesejfHaticw4rfijnt.h Istjh dynarrow.Kiandlff*sportsbtlity.ri
prese ntttio n #p in J>^prese naiblPAnde r&^fpo ne nt. h

D
0*

D
fabs-t

a
pr

3-7 UCMEdit Model Showing the Graphics Subsystem, Classes, Files, and Remaining
Functions (Arcs Are Hidden)

Examining Figure 3-7, we see that there are only two leftover functions remaining: f abs and
[]; the latter is obviously an extraction error while the former is a math library function that
should have been filtered out along with standard C library and built-in functions. Regardless,
neither of these functions is of interest, so they can be pruned from the model. Identifying the
graphics subsystem for the VANISH model has reduced the number of leftover functions by
more than half, from 259 to 120. These were similarly identified as either extraction errors or
uninteresting low-level functions and pruned from the model.

Rather than identifying uninteresting functions as a side-effect of creating the graphics sub-
system, a more direct approach could have been applied. Such an approach would simply

CMU/SEI-97-TR-010 19

have selected all functions not contained within a source file of the system or defined by a

class of the system and removed them from the model.

It is important to realize that the determination of which functions are "interesting" or "uninter-
esting" is an arbitrary one. An analyst interested in a different aspect of the system, such as
how its subsystems depend on platform- or operating system-specific libraries, would not have
pruned these functions from the concrete model. These functions would more likely be aggre-
gated into a layer to analyze how they are used by the rest of the application. As we are inter-
ested in constructing an architectural representation of the application-specific part of the

system, we remove these types of functions from the model.

A second common application pattern set takes advantage of knowledge about the relation-
ship between classes and files in the example applications, thus bridging two architectural
views. First, a source (.cc) will contain functions for at most one class, and second, a header
(.h) file will contain a definition for at most one class. This makes it possible to define a unique
containment relationship: A class can include the header file in which it is defined and the
source file which contains its functions. The pattern set that generates these aggregations is

shown in Figure 3-8.

SELECT DISTINCT tDefined_by
FROH defines_fn;

print »$fields[0]+ $fields[0]+ Class $fields[0]++\n";

SELECT DISTINCT dl.tDofined_by, cl.tContainor
FROM defines_fn dl, contains cl
WHERE cl.tContaineo=dl.tDofinos;

print "$fields[0]+ $fields[l]+ ClassNn";

SELECT dl.tClass, dl.tFile
FROM defines dl;

print »$fields[0]+ $fields[1] Class\n";

3-8 Patterns for Class/File Containment

We see one additional feature of pattern specifications in this example: The last field in the
Perl expression associated with the first pattern ($f ields [0] ++) specifies a renaming of the
component being incorporated into an aggregate. In this pattern, we are incorporating classes
(named with trailing Vs due to the class-collapsing patterns of Section 3.3) into new compos-
ite components. The names of the new composites are <class>+; the original class compos-

ites are renamed <class>++. The results are shown in Figure 3-9.

20 CMU/SEI-97-TR-010

w «General - 1 Root «ftCnVE» xi M. äi«iäi«if n«ot' «tfÄCTWE»*1»

/-yfiUA 'm

7m
pjuhfwj

D
fisheye.co*-

Graphic

upd^e*f

kiterpobte.co+

Graphics

',y
m S3?.

3-9 The UCMEdit and VANISH Models After Application of Common Patterns

3.5 Application-Specific Patterns

The patterns applied in Section 3.3 were completely application independent, while those ap-
plied in Section 3.4 were applicable to both systems because of commonalities in their con-
struction. At this point, the analyses of UCMEdit and VANISH diverge as we apply patterns
specific to each application.

3.5.1 UCMEdit

UCMEdit was constructed as a prototype, intended to demonstrate the advantages of comput-
er-based editing of use case maps. The high-level architectural design of the application was
not considered at the start of development; thus, identification of architectural components
from the concrete model must be guided by an understanding of the application's structure as
it stands at the completion of development. Our understanding of the application will be im-
posed on the model via direct manipulation, as follows.

First, we know (and can tell by observation of the model) that callbacks.cc is central to
the structure of the application, containing all of the system's event handlers and the bulk of
the user interface implementation. Second, we can observe the obvious relationships between
the two remaining files and the classes to which they are connected; interpolate.ee is
associated exclusively with BSpiine, and fisheye.ee is used only by Box and compo-
nent. Third, we may now re-apply our knowledge of the structure of the system's graphics-
encapsulation or presentation layer; it is embodied in the Presentation class and its sub-
classes. Fourth, we can make the observation that the List, Listitem, and Listitera-

CMU/SEI-97-TR-010 21

tor classes are functionally related to one another and are used by almost all of the other

classes.

We realize the above observations in Dali by

• identifying the callbacks. cc file with an architectural component, interaction

• incorporating interpolate. cc into the BSpline component (we'll ignore the
observation about fisheye.cc for now)

• aggregating the Presentation class and its subclasses into a presentation
component

• aggregating the List, Listitem and Listiterator classes into a List component
and hiding it, treating it as a "utility layer"

The results of these changes to the model are shown in Figure 3-10. At this point, it is neces-
sary to carefully consider how we may further simplify this model. Automatic clustering based
on graph-theoretic properties, such as interconnection strength, does not provide any insight.
Another option is to attempt to build layers based on the organization generated by the graph
layout algorithm, as shown in Figure 3-10. However, this approach results in little functional
consistency within the layers. Instead, we chose to cluster classes based on the domain of use
case maps. Further discussion addressing how to choose appropriate architectural compo-
nents appears in Section 4.

General - i Root «ACTIVE»»

Respon*tility+ X^R^^', // \

1
5

Graphics

FT

3-10 UCMEdit Model After Application-Specific Direct Manipulations

After considering concepts from use case maps, we identified two broad categories of ele-
ments: those related to components and those related to paths, these being the two primary
constructs comprising a use case map. DynamicArrow, Path, Point, Responsibility,
Segment, Stub, and BSpline are related to paths; Box, Component, Dependent, Han-
dle, and fisheye.cc are related to components. Figure 3-11 shows the effect of clustering
these elements into two architectural components: Path and component. In probing the con-

22 CMU/SEI-97-TR-010

nections between elements, we find that there are still a large number of interrelationships.
While this is not necessarily harmful in itself, it suggests that UCMEdit's architecture demon-
strates a lack of functional consistency within the elements and their connections.

H* General - 1 Root «ACTIVE» 1
,„..^.._. ?\
V N

A i \
'Ooirponent^

(■'"
~-.,\

,-? ^,„ .-"" / \'"--.
V _-—\fM

P'äjifu.——- --■---.^ ^k_j\
vx.

'mleracton .

-■■''' \ \

V .'■' ' ! \ I 1
:■-»* —-_/ M

: / ——..._, ^_1 j, j
Y \ """""""—-——rna)ij.cc+

Presentation ^s'

""'•'- \ '''
^>K
Graphics I

FT f. V
J

3-11 UCMEdit Model After Clustering Based on Application-Domain

Unfortunately, there are no significant improvements we can make to the UCMEdit model. The
system was not well designed—the mapping from functionality to software structure is com-
plex. This makes the abstraction of functionally coherent high-level components within UC-
MEdit's architecture impossible. However, we can take advantage of what we have learned to
suggest improvements to the UCMEdit design.

3.5.2 VANISH

With VANISH we have a different situation: It was developed following an explicitly document-
ed architectural design [Kazman 96b]. VANISH is a system for prototyping visualizations and
as such must easily accommodate incorporation of new visualization domains as well as inte-
gration of new presentation toolkits. The Arch metamodel of interactive software [UIMS 92] is
intended to provide exactly these benefits by specifying five architectural components:

Functional Core - the system's core functionality or purpose

Functional Core Adapter - a mediator between the dialogue and functional core by
providing a unified, generic view of the functional core to the dialogue

Dialogue - a programmable mediator between domain specific and presentation specific
functions

Logical Interaction - a virtual interaction toolkit layer that mediates between the dialogue
and the presentation

Presentation - the toolkits that implement the physical interaction between the user and
the application

CMU/SEI-97-TR-010 23

These components are arranged in a strictly layered fashion, as shown in Figure 3-12. The
Arch metamodel in fact loosely defines an architectural style: a collection of component types
and a set of constraints on their relationships. VANISH'S architecture is a particular instantia-
tion of this style. Thus, we should be able to identify these architectural components within the
implemented VANISH system and, taking an optimistic attitude, verify that the as-built archi-

tecture conforms to the as-designed architecture.

Dialogue

Z S"
Functional

Core Adapter

/
Functional

Core

Logical
Interaction

X
Presentation

3-12 The Arch Metamodel of Interactive Software

The first step towards uncovering VANISH'S architecture is consideration of the files remaining
in the model, as shown on the right side of Figure 3-9. Because we know that VANISH has a
single-process architecture, and we know the name of the executable file, we can determine
which of the remaining files are "interesting" by applying the depends_on relation extracted
from the system's makefile. Source files that do not contribute to the construction of the exe-
cutable can be removed from the model. Examination of these unused files identifies them as
either "dead code," elements of the application's earlier versions or tools used to test particular
aspects of the application's functionality. This pruning is an example of how one architectural
view can be used to constrain another. Figure 3-13 shows the VANISH model after the removal

of unused files.

24 CMU/SEI-97-TR-010

FT

3-13 VANISH Model After Removal of Unused Files

The two remaining files are interpolate. cc and vanish-xforms. cc; the former contains

global functions used exclusively by the BSpline class and the latter is the main initialization

and event-handling component of the application. Direct manipulation is used to include in-
terpolate, cc in the BSpline aggregate.

Note that this technique would provide additional insight when manipulating a multiprocess

system: candidate processes could be identified from analysis of the depends_on relation

and used as top-level architectural components. Thus, a runtime "process view" could be de-
veloped.

Now we are ready to apply the pattern set that identifies the top-level architectural components

in VANISH; it appears in Figure 3-14 and defines architectural components as follows:

• The Logical Interaction component is composed of the Presentation class, its
subclasses, and two generic interaction-related utility classes: BSpline and Colour.

• The Presentation component is composed of classes that have a superclass whose
name properly contains the substring "Presentation."

• The Functional core Adapter is composed of the BaseNode class and the
BaseAttribute class and its subclasses.

• The Functional Core is composed of subclasses of the BaseNode class.

CMU/SEI-97-TR-010 25

The Dialogue is more complex. In VANISH, it is realized by a visual programming
language The first pattern for the Dialogue component specifies that all subclasses of
the primitiveop class are included. The second pattern enumerates the other
elements that make up the visual programming language. This enumeration was
developed by iterative application of this second pattern, starting with an initial guess at
which classes should be included and refining the enumeration as additional classes were

identified.
A final utilities layer is composed of a set of generic list manipulation classes used
by many other classes in the system.

SELECT tSubclass
FROH has_aubclass
WHERE tSuperclass-'Presentation';

print »Logical_Xnteraction $fields[0]+ mill\n";

SELECT tName
FROM components
WHERE tName-'Presentation'
OR tName-'BSpline'
OR tName-'Colour';

print »Logical_Interaction $£ields[0]+ null\n";

SELECT si.tSubclass
FROM has_subclass si
WHERE sl.tSuperclass - 'Presentation'
AND sl.tSuperclass !- % »Presentation' ;

print -Presentation $fields[0]+ null\n";

SELECT tName
FROM components
WHERE tName-' BaseNode'
OR tName-'BaseAttribute';

print »Functional_Core_Adaptar $fields[0]+ null\n»;

SELECT tSubclass
FROM has_subclass
WHERE tSuperclass-'BaseAttribute'

SELECT tSubclass
FROM has_subclass
WHERE tSuperclass-'PrimitiveOp';

print "Dialogue $fields[0]+ null\n";

SELECT tName
FROM components
WHERE tName-'vanish-xforms.cc'
OR tName-'PrimitiveOp'
OR tName-'Mapping'
OR tName-'MappingEditor'
OR tName-'MappingLibrary'
OR tName-'Attributes'
OR tName-'Application'
OR tName-'Renderer'
OR tName-'InputValue'
OR tName-'Point'
OR tName-'VEC
OR tName-'MAT'
OR ((tName - 'Dbg$' OR tName - 'Event$')

AND tType-'Class');

print »Dialogue $fields[0]+ null\n";

SELECT tName
FROM components
WHERE (tName - '»List'
OR tName-'MapS' OR tName-' Socket')
AND tType-'Class';

..i .. ,r n.tM. ,„„.... print »utilities $fields[0]+ null\n" print "Functional_Core_Adapter $fields[0]+ null\n»; "

SELECT tSubclass
FROM has_subclass
WHERE tSuperclass-'BaseNode';

print »Functional_Core $£ieldstO]+ null\n"

3-14 Patterns for VANISH Architecture

Also, the Graphics component identified in Section 3.4 is incorporated into the presenta-
tion component. The resulting model, with the utilities component both shown and hid-

den, is presented in Figure 3-15.

26
CMU/SEI-97-TR-010

J3 General -1 Root «ACTIVE» 11| EFT General -1 Root «ACTIVE» X||

II

Fu
i/

I

3;

1 /1\ 1
| ;: ^ |

// Da

..-■''if /

3gue '. \

H N '

\

// Dalogue •. \

: \ }' i /)J //f \ \
Functc nEfl_Qir£_Adafci.ter J3ff«al Interaction Functor*! QJi£_AdapKr Lu^M,^,..,^,,

\ '/;' \\\

/ / / ,A
'*> 1 /

\ \ \
W

/ /
L ./'
,''''

-jjfcfeies \ !

Fu nctbiarOo " Presentation
nctoijal_uore Pnese^itatio

M | v^ J3T I y
I

3-15 The VANISH Architecture (With and Without Utilities Layer)

We are now in a position to consider how well VANISH'S as-built architecture conforms to its
as-designed architecture. We can see immediately that the basic arch shape is present; there
are no connections between components on opposite sides of the arch. However, it is also im-
mediately apparent that there are several instances of layer bridging in the architecture: be-
tween the Dialogue and the Functional Core, and between the Dialogue and the
Presentation. These are architectural deviations. We can identify three classes of devia-
tions:

• acceptable - Although the architecture was not designed with a particular feature, the
feature does not degrade the conceptual integrity [Brooks 75] of the architecture. The
architectural description against which conformance is being tested does not need to be
updated to reflect the feature.

• exceptions - As for acceptable deviations, exceptions do not degrade the conceptual
integrity of the architecture. Exceptions should be incorporated into the model against
which conformance is being tested.

• opportunities for improvement - The architecture's conceptual integrity is degraded by
the deviation. The implementation should be modified to remove it.

We can consider the existence of the utilities layer an acceptable deviation: It does not
affect the conceptual integrity of the intended architecture, nor does it contribute to its overall
structure. For this reason it should be not incorporated into the architectural description.

The connections between the Presentation and the Dialogue are exceptions that should
be documented in the system's architectural description. The connection from the Presen-
tation to the Dialogue represents classes in the Dialogue directly instantiating classes
in the Presentation (has_iristance relations). This appears to be a violation of the con-
straints of the Arch model. However, this violation is necessary due to the way the Logical In-

CMU/SEI-97-TR-010 27

teraction was implemented in VANISH. The Logical interaction layer (the
Presentation class and its immediate subclasses) provides an abstract interface to the
concrete Classes in the Presentation component—AmPresentation, MIFPresenta-
tion, xfPresentation, and so forth (see Figure 3-16). For the Dialogue to take advan-
tage of this abstraction layer, it must directly create instances of the concrete classes.
Thereafter it refers to an abstract class from the Logical Interaction layer, and these references
are resolved via polymorphism into calls to the appropriate concrete class. Therefore, the ar-

chitectural implications of this layer bridging are constrained.

General - 1 Root «ACTIVE»

Pnesenston

Presentation2d Presentation 3d

rn
AmPresenlaton

01
XIMesaPresentotbn y|

3-16 Presentation and Its has_subclass Descendants

The connection from the Dialogue to the Presentation represents calls to the construc-
tors of the classes mentioned above. This, then, is an exception for the same reasons.

The Structure underlying the Functional Core Adapter and the Functional Core is
much like that of the Logical Interaction and the Presentation; the BaseNode class
(in the Functional Core Adapter) provides an abstract interface to the concrete classes
that make up the Functional Core. Thus, connection from the Dialogue to the Func-
tional core is identical in nature to that from the Dialogue to the Presentation; it is
made up of calls to constructors of the concrete classes. This is also a justifiable architectural

exception.

Finally, the connection from the Functional core to the Dialogue must be examined. One
might think that it is analogous to the connection from the Presentation to the Dialogue,
for the reasons described above. However, probing the connection shows that the relations
that form it are not has_instance relations because no class within the Dialogue maintains
an instance of a class from the Presentation. Instead, these relations are calls from classes

28 CMU/SEI-97-TR-010

in the Functional Core to Classes in the Dialogue. These calls expose the Functional
core to the details of the Dialogue, bypassing the stated intent of the Functional core
Adapter: to keep these components isolated. This is an opportunity for improvement as it de-
grades the conceptual integrity of the connection between the Dialogue and the Functional
core Adapter. Also, unnecessary coupling between the components will hamper integration
of new visualization domains, which is central to the stated objectives for VANISH.

Analysis of architectural conformance, such as that performed above, can be supported by an
automatic tool such as RMTool [Murphy 95]. We use RMTool by giving it a description of an
architectural representation of a concrete model (as reconstructed using Dali) as well as an
as-designed architecture, and it computes the conformance of the former to the latter. This
provides a documented starting point for examining of architectural deviations.

CMU/SEI-97-TR-010 29

— ' ' CMU/SEI-97-TR-010
30

4 Assessing the Evidence: Why Not Any Four Boxes?
What does it mean to reconstruct the software architecture of a system? We started off this
paper with the claim that software architecture was, in some ways, a mass hallucination, that
it does not really exist in anything that you can examine directly. That is, the abstractions that
are commonly used in architectural representations are typically not those found in the sys-
tem's source artifacts. Software designers create an architecture and then hope that what is
implemented properly reflects what was designed.

The problem for a software analyst attempting to understand and assess an architecture is
therefore one of being a software detective: sifting through clues and putting evidence together
in coherent patterns. To use a different metaphor, it seems that you could mold any number
of software architectures out of the amorphous clay that is a concrete model. So, why can't we
just recursively group extracted information together until we have achieved a picture with four

boxes and a few connections?

How do we know what is a good, meaningful architecture? This is really asking two questions:

• What makes a "good" architecture?

• How do we know when we've found it?

Our guide in reconstruction is that a good architecture exhibits conceptual integrity [Brooks
75]; it is built from a small number of components that are connected in regular ways. But this
is only half of the battle. There should be a consistent allocation of functionality to the archi-
tecture's components and connectors [Kazman 94]. Thus, any four boxes are probably not a
good architecture because the components of those boxes have little to do with each other in
terms of the system's functional allocation.

We have used this rule of thumb as our guide in deciding when to group components together
in the examples in Section 3. Consider the application-independent patterns (presented in
Section 3.3). These patterns group together components that are functionally coherent, irre-
spective of the application. Grouping a class's member functions and variables together is one
example of this.

The common application patterns for VANISH show an application-dependent version of this
principle; in Section 3.4 we showed how VANISH'S Presentation layer consists of all and
only those classes that make calls to functions in Mesa, XForms, Xlib, etc. The Presenta-
tion layer is functionally coherent, which is to say that the functional decomposition provided
by the Arch metamodel is respected by the structure of VANISH; it consists of all and only pre-
sentation functionality.

By way of contrast, the structure of UCMEdit does not show a consistent allocation of function-
ality onto structure, which is why, even though we can build a relatively simple architecture for
UCMEdit, this architecture does us no good. We, as analysts, get little insight into the system
by looking at this simple structure, because the components and their interconnections are not
functionally consistent.

CMU/SEI-97-TR-ÖTÖ ~~ 31

— ■ ~" CMU/SEI-97-TR-010
■oe~

5 Related Work
Dali owes much to Murphy's work on LSME [Murphy 96b] and RMTool [Murphy 95]. LSME pro-
vides a substantial amount of the source model extraction to populate Dali's database. RMTool
has the same goals as Dali, but with a narrower scope, extracting only from source artifacts
and lacking the tightly coupled user interaction. More importantly, RMTool provides a language
of limited expressive power for construction of architectural components from source ele-
ments. As mentioned earlier, RMTool has been incorporated as one of the analysis options in

Dali.

Another system that is closely related to Dali is ManSART [Yeh 97], a tool for recovering ar-
chitectural information and manipulating views ofthat information. Dali and ManSART are sim-

ilar in the following ways:

• Both systems have, as their goals, the reconstruction of architectural information from
lower-level sources.

• A view, in ManSART terms, is generated by an operator operating over the results of
some recognizer. This is similar to our notion of a view being generated by one or more
patterns (SQL queries) operating over a table populated by some extraction tool.

Both systems visualize the resulting information and provide some means for an architect
to interact with extracted and derived information.

Dali and ManSART are different in some important ways as well:

ManSART recognizers depend exclusively on parsing and the production of an Abstract
Syntax Tree (via REFINE/C [Reasoning 97]). Therefore it is harder for ManSART to switch
languages/dialects because it has to integrate an appropriate parser into the system and
it requires compilable code.

• ManSART concentrates on the code as the artifact of interest; it does not appear to extract
non-language artifacts (such as makefiles or profiling information).

ManSART lacks the notion of combining the same kind of information from multiple
sources in a fault tolerant manner.

• Our architecture is generic: It does not assume the existence of particular extraction,
visualization, or analysis components. We store information in a standard relational
database, and we can thus accept input from any source, as long as it creates a table in
the database. We could, in principle, integrate ManSART as a part of a Dali workbench.

• ManSART's approach is more "heavyweight" in terms of computation and infrastructure.
Recognizers are "complex combinations of feature extractors and view manipulators"
[Yeh 97]. Dali, on the other hand, extracts everything and lets the user iteratively and
incrementally build up a view through opportunistic pattern recognition and definition. In
this way, our approach is more "lightweight."

Dali is also related to the Desire system, developed at MCC [Biggerstaff 89]. Desire was de-
veloped with the goal of recovering detailed design information from implemented systems to
support maintenance and the harvesting of reusable components. To represent a system, De-
sire constructs a dictionary of system constructs and applies Prolog queries to probe the dic-
tionary. This is analogous to Dali's use of a repository. Both Desire and Dali apply pattern

CMU/SEI-97-TR-010 " 33

matching to identify constructs in a model of the system under study. The central element of
Desire is a domain model that stores conceptual abstractions to be matched. These concep-
tual abstractions contain idioms made up of linguistic and structural patterns. Conceptually,
both Dali and Desire recognize the importance of an expert. Desire relies on the knowledge of
an expert to identify the conceptual abstractions that populate the domain model.

However, there are some differences between Desire and Dali. While Desire is focused on the
recovery of detailed design information, Dali's goal is the construction of high-level architec-
tural representations that can be used to evaluate properties of the system has a whole. Desire
has an additional goal of harvesting reusable components. In contrast, Dali identifies architec-
tural constructs. Also, Desire is not intended to be open or lightweight. It depends on its "out
of the box" functionality to meet its goals. As with ManSART, a Dali workbench could incorpo-

rate Desire as appropriate to the analysis task at hand.

^ — " CMU/SEI-97-TR-010

6 Post Mortem
This paper has presented the Dali workbench for architectural extraction and reconstruction.
The tool was born out of our need to have something to examine when we do architectural
analyses. Frequently we are asked to analyze a system's software architecture and are given

only its code and the limited time of a designer.

This tool goes a long way in helping an analyst reconstruct a software architecture from vari-
ous artifacts such as source code, makefiles, and profiling information. Dali allows an analyst
to interact with the recovered information by assessing the results of the reconstruction effort
to see whether composite elements demonstrate functional consistency, and by seeing places
where the as-built architecture differs from the as-designed architecture.

We have not attempted a "big-bang" solution here. One of our emphases has been to provide
an open, lightweight environment so that tools can be integrated opportunistically. We believe
that no single tool is right for all jobs. Certainly, extraction demands different tools for different
languages and styles of systems. Our other emphasis is that no extraction technique is useful
or complete without user interaction. In some respects, software architecture is a mass hallu-
cination, but a convenient and useful one that is created by and for humans. So a human must
be part of the recovery process, interpreting evidence and creating and testing theories.

CMU/SEI-97-TR-010 35

36" " ~ CMU/SEI-97-TR-010

7 The Next Case: Where Do We Go From Here?
Dali is still an experimental system. In the near term, there are three directions in which we
want to extend this work: extend its scope, improve its extraction capabilities, and improve its

user interaction. We will discuss each of these directions briefly.

We have only applied Dali to half a dozen systems, all of which used C or C++ dialects. Our
intention is to extend Dali's scope by applying it to the extraction and analysis of larger sys-
tems and other languages (particularly legacy COBOL and Fortran systems). This means aug-
menting Dali's extraction capabilities with tools and techniques appropriate to other
languages. Similarly, we want to augment Dali's analysis capabilities by integrating other tools.
One avenue is to export and import an ACME [Garlan 97] representation of the architecture
from Dali. We view these enhancements of Dali as relatively rote and easily achieved.

An area of more speculative research is the improvement of Dali's capabilities for a combina-
tion of extracted information. Extraction is an error-prone process [Murphy 96a]. We realize
that no extraction tool is going to reliably retrieve everything of interest about an architecture.
So, when dealing with noisy, error-prone input, a sensible thing to do is to not rely on any single
source of information. We must do multiple extractions and combine them intelligently. The
meaning of "intelligently" is the research area here. There are several possibilities: After char-
acterizing the trustworthiness of individual techniques in extracting particular source elements,
the techniques would be used to populate only those database relations for which they are
"trusted." Additionally we can take a fault-tolerance view of the problem and have each of the
extraction techniques vote on a particular source element. We would only accept the informa-
tion into the database when a majority of the relevant extraction techniques agree. Or, we
could use a hybrid of these two techniques, where the vote of each extraction technique is
weighted according to the trustworthiness of that technique.

Another way of making Dali more useful is to improve its interaction with the user. This, once
again, has a near-term and a long-term aspect. In the near term, the addition of a history mech-
anism with the option of playback will make a user braver in taking exploratory excursions,
knowing that they can always be undone. Providing user-guided pattern inferencing (where a
user modifies the architecture through direct manipulation and the system infers the architec-
tural rules from this interaction) is our long-term user interaction goal.

Finally, we can envision using Dali as a tool for guiding architectural evolution; for example, in
determining how difficult it would be to change an architecture's connection mechanisms. This
might be used to make a legacy system "Web-enabled," or distribute it using CORBA.

CMU/SEI-97-TR-010 37

33 " ~ CMU/SEI-97-TR-010

References
[Biggerstaff 89]

[Brooks 75]

[Buhr 96]

[DISCOVER 97]

[Garlan 93]

[Garlan 97]

[Griswold 83]

[Imagix 97]

[Kazman 94]

[Kazman 96a]

[Kazman 96b]

Biggerstaff, Ted. "Design Recovery for Maintenance and Reuse." IEEE

Computer 22, 7 (July 1989): 36-49.

Brooks, F. The Mythical Man-Month—Essays on Software Engineering.

Reading, MA: Addison-Wesley, 1975.

Buhr, Raymond J. & Casselman, R. Use Case Maps for Object-Orient-
ed Systems. Upper Saddle River, NJ: Prentice-Hall, 1996.

Software Emancipation [online]. Available WWW
<URL: http://www.setech.com> (1997).

Garlan, David & Shaw, Mary. Software Architecture: Perspectives on an
Emerging Discipline. Upper Saddle River, NJ: Prentice-Hall, 1996.

Garlan, David; Monroe, Bob; & Wile, David. ACME: An Architecture De-
scription Interchange Language [online]. Available WWW:
<URL:http://www.cs.cmu.edu/afs/cs/project/able/ftp/acme-esec97.ps>

(1997).

Griswold, Ralph E. & Griswold, Madge T. The Icon Programming Lan-
guage. San Jose, CA: Prentice-Hall, 1983.

Imagix Corporation home page [online]. Available WWW
<URL: http://www.imagix.com> (1997).

Kazman, Rick; Abowd, Gregory; Bass, Len; & Webb, M. "SAAM: A
Method for Analyzing the Properties of Software Architectures," 81-90.
Proceedings of the 16th International Conference on Software Engi-
neering. Sorrento, Italy, May 16-24, 1994. Los Alamitos, CA: IEEE
Computer Society Press, 1994.

Kazman, Rick; Abowd, Gregory; Bass, Len; & Clements, Paul. "Scenar-
io-Based Analysis of Software Architecture," IEEE Software 13, 6 (No-
vember 1996): 47-55.

Kazman, Rick; & Carriere, Jeromy. "An Adaptable Software Architec-
ture for Rapidly Creating Information Visualizations," 17-27. Proceed-
ings of Graphics Interface '96. Toronto, ON, May 22-24,1996. Toronto,
ON: Canadian Human-Computer Communications Society, 1996.

CMU/SEI-97-TR-010 39

[Kazman 96c]

[Klein 93]

[Murphy 95]

[Murphy 96a]

[Murphy 96b]

[Reasoning 97]

[Shaw 96]

[Smith 93]

[Stonebraker 90]

[UIMS 92]

Kazman, Rick & Burth, Marcus. Assessing Architectural Complexity
[online]. Available WWW <URL: http://www.cgl.uwaterloo.ca/assess-

ing.ps>(1996).

Klein, Mark; Ralya, T.; Pollak, B.; Obenza, R.; & Gonzales, Harbour M.
A Practitioner's Handbook for Real-Time Analysis: Guide to Rate Mono-
tonic Analysis for Real-Time Systems. Boston, MA: Kluwer Academic,

1993.

Murphy, Gail C; Notkin, David; & Sullivan, K. "Software Reflection Mod-
els: Bridging the Gap Between Source and High-Level Models," 18-28.
Proceedings of the Third ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering. Washington, DC, October 25-29, 1995.
Los Alamitos, CA: IEEE Computer Society Press, 1995.

Murphy, Gail C; Notkin, David; & Lan, Erica S. C. "An Empirical Study
of Static Call Graph Extractors," 90-99. Proceedings oflCSE 18. Berlin,
Germany, March 16-18N1996. New York, NY: ACM Press, 1995.

Murphy, Gail C. & Notkin, David. "Lightweight Lexical Source Model Ex-
traction." ACM Transactions on Software Engineering and Methodology
5, 3 (July 1996): 262-292.

\
Reasoning Inc. home page [online]. Available WWW
<URL: http://www.reasoning.com>.(1997).x

Shaw, Mary; DeLine, Rob; & Zelesnik, Greg. "Abstractions and Imple-
mentations for Architectural Connections," 2-1 o:Proceedings of the
Third International Conference on Configurable Distributed Systems.
Annapolis, MD, May 6-8,1996. Los Alamitos, CA: lEEE^Cpmputer So-

ciety Press, 1996.

Smith, C. & Williams, L. "Software Performance Engineering: A Case
Study Including Performance Comparison with Design Alternatives."
IEEE Transactions on Software Engineering 19,7 (July 1993): 720-741.

Stonebraker, M.; Rowe, L; & Hirohama, M. 'The Implementation of
POSTGRES." IEEE Transactions on Knowledge and Data Engineering

2,1 (March 1990): 125-141.

UIMS Tool Developers Workshop. "A Metamodel for the Runtime Archi-
tecture of an Interactive System." SIGCHI Bulletin 24,1 (January 1992):

32-37.

40 CMU7SEI-97-TR-010

[Kazman 96c]

[Klein 93]

[Murphy 95]

[Murphy 96a]

[Murphy 96b]

[Reasoning 97]

[Shaw 96]

[Smith 93]

[Stonebraker 90]

[UIMS 92]

Kazman, Rick & Burth, Marcus. Assessing Architectural Complexity
[online]. Available WWW

<URL: http://www.cgl.uwaterloo.ca/~rnkazman/assessing.ps> (1996).

Klein, Mark; Ralya, T; Pollak, B.; Obenza, R.; & Gonzales, Harbour M.
A Practitioner's Handbook for Real-Time Analysis: Guide to Rate Mono-
tonic Analysis for Real-Time Systems. Boston, MA: Kluwer Academic,
1993.

Murphy, Gail C; Notkin, David; & Sullivan, K. "Software Reflection Mod-
els: Bridging the Gap Between Source and High-Level Models," 18-28.
Proceedings of the Third ACM SIGSOFT Symposium on the Founda-
tions of Software Engineering. Washington, DC, October 25-29, 1995.
Los Alamitos, CA: IEEE Computer Society Press, 1995.

Murphy, Gail C; Notkin, David; & Lan, Erica S. C. "An Empirical Study
of Static Call Graph Extractors," 90-99. Proceedings oflCSE 18. Berlin,
Germany, March 16-18 1996. New York, NY: ACM Press, 1995.

Murphy, Gail C. & Notkin, David. "Lightweight Lexical Source Model Ex-
traction." ACM Transactions on Software Engineering and Methodology
5, 3 (July 1996): 262-292.

Reasoning Inc. home page [online]. Available WWW
<URL: http://www.reasoning.com>.(1997).

Shaw, Mary; DeLine, Rob; & Zelesnik, Greg. "Abstractions and Imple-
mentations for Architectural Connections," 2-10. Proceedings of the
Third International Conference on Configurable Distributed Systems.
Annapolis, MD, May 6-8, 1996. Los Alamitos, CA: IEEE Computer So-
ciety Press, 1996.

Smith, C. & Williams, L. "Software Performance Engineering: A Case
Study Including Performance Comparison with Design Alternatives."
IEEE Transactions on Software Engineering 19,7 (July 1993): 720-741.

Stonebraker, M.; Rowe, L; & Hirohama, M. "The Implementation of
POSTGRES." IEEE Transactions on Knowledge and Data Engineering
2, 1 (March 1990): 125-141.

UIMS Tool Developers Workshop. "A Metamodel for the Runtime Archi-
tecture of an Interactive System." SIGCHI Bulletin 24,1 (January 1992):
32-37.

40 CMU/SEI-97-TR-010

[Wall 91] Wall, Larry & Schwartz, Randal. Programming Perl. Sebastopol, CA:

O'Reilly & Associates, 1991.

[Wong 94] Wong, Ken; Tilley, Scott; Müller, Hausi; & Storey, Margaret-Anne. "Pro-
grammable Reverse Engineering." International Journal of Software
Engineering and Knowledge Engineering 4, 4 (December 1994): 501-

620.

[Yeh 97] Yeh, Alexander S.; Harris, David R.; & Chase, Melissa P. "Manipulating
Recovered Software Architecture Views," 184-194. Proceedings of
ICSE 19. Boston, MA, May 17-23,1997. Los Alamitos, CA: IEEE Com-
puter Society Press, 1997.

CMU/SEI-97-TR-010 41

_ CMU/SEI-97-TR-010

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (leave blank) 2. REPORT DATE

October 1997

3. REPORT TYPE AND DATES
COVERED

Final
4. TITLE AND SUBTITLE

Playing Detective: Reconstructing Software Architecture from Available Evidence
5. FUNDING NUMBERS

C —F19628-95-C-0003
6. AUTHOR(S)

Kazman, Rick and Carriere, S. Jeromy
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-97-TR-010

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/AXS
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ESC-TR-97-010

11. SUPPLEMENTARY NOTES

12.a DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12.D DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)

Because a system's software architecture strongly influences its ability to support quality attributes such
as modifiability, performance, and security, it is important to be able to analyze and reason about that
architecture. However, architectural documentation frequently does not exist, and when it does, it is
often out of sync with the implemented system. In addition, it is rare that software development begins
with a clean slate; systems are almost always constrained by existing legacy code. As a consequence,
we need to be able to extract information from existing system implementations and reason
architecturally about this information. This paper presents Dali, an open, lightweight workbench that
aids an analyst in extracting, manipulating, and interpreting architectural information. By assisting in the
reconstruction of architectures from extracted information, Dali helps an analyst redocument
architectures and discover the relationship between "as-implemented" and "as-designed" architectures.

14. SUBJECT TERMS

software architecture, source model extraction, redocumentation, reengineering,
reverse engineering

15. NUMBER OF PAGES

42
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION OF
THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-1B
29S-102

