
ARMY RESEARCH LABORATORY t
Project Focus: A Study of Virtual Proving

Ground Software Architecture Requirements

Geoffrey C. Sauerborn
Kenneth G. Smith
Alan W. Scramlin
Robert R. Shankle
Robert W. Gauss

Weiqun Zhou
Toney R. Perkins

Patrick E. Corcoran
John A. Weiler

Richard W. Marvel
Joseph P. Schimminger

ARL-TR-1429 SEPTEMBER 1997

19971022 068

teJIO QUALITY INSPECTED I

Approved for public release; distribution is unlimited.

ARC/INFO is a trademark of Environmental Systems Research Institute, Inc.
AutoCAD™ and DXF™ are trademarks of AutoDesk, Inc.
Designer's Workbench™ is a trademark of Coryphaeus Software, Inc.

The findings in this report are not to be construed as an official Department of the Army position
unless so designated by other authorized documents.

Citation of manufacturer's or trade names does not constitute an official endorsement or approval of
the use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005-5066

ARL-TR-1429 September 1997

Project Focus: A Study of Virtual Proving Ground
Software Architecture Requirements

Geoffrey C. Sauerborn
Weapons & Materials Research Directorate, ARL

Kenneth G. Smith
Information Science & Technology Directorate, ARL

Alan W. Scramlin
Robert R. Shankle
Robert W. Gauss
Aberdeen Test Center

Weiqun Zhöu
Computer Science Corporation

Toney R. Perkins
Patrick E. Corcoran
Weapons & Materials Research Directorate, ARL

John A. Weiler
US Army Tank-Automotive and Armaments Command

Richard W. Marvel
SFA, Inc. (Frederick Manufacturing Division)

Joseph P. Schimminger
Aberdeen Test Center

LDTIC QUALITY HT8FECTED 5

Approved for public release; distribution is unlimited.

Abstract

The virtual proving ground (VPG) is a concept being developed within the
U.S. Army Test and Evaluation Command to harness the power of state-of-
the-art sophisticated modeling and simulation technologies to augment and
enhance test and evaluation in support of product acquisition. VPG is a
cohesive and comprehensive capability for testing concepts, virtual
prototypes, hardware prototypes, subsystems, and full systems. A broad,
far-reaching, and diverse set of capabilities is envisioned within the VPG.
Critical to the successful implementation of the VPG is an architecture able
to support or enable those capabilities. A major function of the VPG
architecture will be to integrate dissimilar heterogeneous engineering level
models and simulations of prototype and production hardware and the
synthetic environments in which they operate.

In 1996, the U.S. Army Aberdeen Test Center and the U.S. Army Research
Laboratory jointly conducted "Project Focus" to help determine the
architectural requirements that support the VPG concept. This report
contains a description of Project Focus and the architectural requirements
that resulted from it.

ACKNOWLEDGMENTS

The authors wish to gratefully acknowledge the contributions made by the following
persons: to Mr. Paul Oxenberg and Major Michael Smith for their leadership, encouragement,
and extended freedom which allowed meaningful exploration; to Scott Redding, Tim Hart, and
John Reilly for their additional software development "behind the scenes"; to Alan Etzel, Doug
Gipprich, Drew Moore for lending their consultative expertise and "brain storming."

HI

INTENTIONALLY LEFT BLANK

IV

TABLE OF CONTENTS

Page

LIST OF FIGURES ^

LIST OF TABLES k

1. INTRODUCTION l

2. PURPOSE j

3. PROJECT FOCUS j

3.1 Overall Architectural Structure 3
3.2 Project Focus: A Pseudo VPG Application Test Project (tying disparate

simulations together) 24

4. ARCHITECTURE REQUIREMENTS 40

4.1 Critical Functional Requirements 41
4.2 Critical Technical Requirements 42

5.

6.

SUMMARY 44

CONCLUSIONS 45

APPENDICES

A. VPG Database (DB) API Procedures 47
B. VPG API Procedures 61
C. "VPG_Command" Language Syntax 103
D. Original Architectural Requirements 109
E. Acronyms and Terms 12i

DISTRIBUTION LIST 125

REPORT DOCUMENTATION PAGE 129

INTENTIONALLY LEFT BLANK

VI

LIST OF FIGURES

Figure

1.

Page

Project Focus VPG Architecture 4
2. Implementation View of Project Focus VPG Architecture . . 6
3. Terrain Database Server (TDS) Design \ j
4. "TDS_SUBMIT" Command Syntax 13

5. VPG Main GUI 19
6. Sample vpg_Command Language Syntax 21
7. Example CGI Script Accessing vpg_Command via WWW Interfaces 22
8. Example List Scenarios Command "Web Page" 23
9. Sample VPG Command Through a "Web" Browser '.'.'.'.'. 23

Parameters Associated With a Particular TOP ' ' 25
A Selected Test Scenario Topology 27
Scenario Build and Execution Steps 33
Scenario Model Build Example 35
Scenario Build Example 36

Scenario Execute Example 3-7
16. Gun Pointing Errors and Other Measurements From the ARL and ATC Models . 39
17. Pitch, Roll, Yaw, and Other Measurements From the TARDEC Model 40

10
11.
12.
13.
14.
15.

Vll

INTENTIONALLY LEFT BLANK

Vlll

LIST OF TABLES

Table

1.

Page

General Physical Tester's Test Process 2

2. Project Focus Virtual Tester's Test Process 2
3. Objects Supporting the Conceptual Test Process. g
4. A Subset ofVPG API Libraries . . 9
5. TDS Service Commands 12
6. Example of ARL Fire Control "Path" Input 14
7. TARDEC Hull Motion Model Path Description [',][15
8. Proposed TECOM Ground Truth Classes '.] [' '.' .' 17
9. "vpg_command" Project Focus Implemented Capabilities 20

10. Steps Required to Insert External Applications (simulations) into the VPG
Core Demonstration Architecture 39

IX

INTENTIONALLY LEFT BLANK

PROJECT FOCUS: A STUDY OF VIRTUAL PROVING GROUND
SOFTWARE ARCHITECTURE REQUIREMENTS

1. INTRODUCTION

The virtual proving ground (VPG) is a concept being developed within the U.S. Army Test

and Evaluation Command (TECOM) to harness the power of state-of-the-art sophisticated

models and simulations (M&S) technologies to augment and enhance test and evaluation in

support of product acquisition. VPG is a cohesive and comprehensive capability for testing

concepts, virtual prototypes, hardware prototypes, subsystems, and full systems. A broad, far-

reaching, and diverse set of capabilities is envisioned within the VPG. Critical to the successful

implementation of the VPG is an architecture able to support or enable those capabilities. A

major function of the VPG architecture will be to integrate dissimilar heterogeneous engineering

level models and simulations of prototype and production hardware and the synthetic

environments in which they operate.

In 1996, the U.S. Army Aberdeen Test Center (ATC) and the U.S. Army Research

Laboratory (ARL) jointly conducted a project to determine specific architectural requirements

and software features that support the VPG concept. This report describes that project and the

concluding architectural requirements identified to date. This effort was called "Project Focus."

2. PURPOSE

The purpose of Project Focus was to distill the existing list of software architectural

requirements, identify additional requirements, and focus on those requirements that are both

necessary and sufficient for conducting tests and evaluations in the VPG. Specifically, it was

decided to construct a prototype VPG system that would enable a tester to duplicate the process

of conducting a simulated test on the VPG. The scope covered all phases of the process: (a)

virtual test planning, (b) test design and execution, (c) virtual instrumentation, (d) data collection,

and (e) post processing data analysis (including incorporation of ground truth data). Design and

development for each phase of the prototype VPG were conducted with the intent of identifying

and classifying issues and requirements germane to the VPG, particularly its (software)

architecture.

3. PROJECT FOCUS

The goals of Project Focus (namely, determining architectural requirements for fuzing

[possibly disparate] simulations in a virtual test environment) were addressed by building upon

architectural research conducted before Project Focus. This research was the result of a

technology program annex (TPA) between TECOM and ARL. Results of this earlier work

provided the design and implementation of a low level set of "core" software services (the "VPG

core"). The VPG core was greatly expanded and enhanced during Project Focus.

In the conceptual implementation of the VPG, system software (and underlying software

architecture) would support a test director's design and conduct of a test. To the greatest

reasonable extent, the same processes and procedures used to conduct a physical test would be

implemented in the virtual test. A general scenario followed by the test director would be as

shown in Table 1.

Table 1. General Physical Tester's Test Process

1. Review the test item performance requirements.

2. Determine which types of tests could prove or disprove these requirements.

3. Design and execute the tests.

4. Analyze the results.

Steps 1 and 2 are assisted by documents called test operations procedures (TOPs). TOPs

outline in a general way the types of tests and procedures that generally could be used to

determine whether the equipment meets requirement objectives.

In the VPG, the tester would follow the steps in Table 2.

Table 2. Project Focus Virtual Tester's Test Process

1. Review on-line TOPs applicable to the virtual equipment.

2. Determine which types of simulations would be appropriate to test the
applicable requirements.

3. Run those simulations.

4. Analyze the results.

For Project Focus, Steps 1 and 2 were integrated so that just by selecting a particular TOP,

the tester was ensured that simulations applicable to that TOP would be available (and

simulations that may not be appropriate were hidden). After initial selection of a TOP, the user

could select parameters to vary within those applications, run the applications, and analyze the

results.

These steps sound simple enough, but there is much that goes on behind the scenes to

support this functionality. Where are data sets (if any) that could be used as input to the

application? How are these data transported to the place where the simulation can use them?

Where do disparate simulations place their "output" and how should this output be analyzed?

What if the tester wished to search for different kinds of data or simulations to use? These and

many other mechanisms must exist somewhere; therefore, it makes sense have them available as

overall low level VPG system functions since they are likely to be used repeatedly among many

VPG applications. Therefore, these functions were organized beneath the tester's interface in an

area call the "VPG core." Procedures that were determined to be "core" to the type of operations

required by all or many VPG applications were placed in the VPG core.

In the following sections, we explain the overall architecture structure and organization of

the VPG core.

3.1 Overall Architectural Structure

The prototype architecture that was used for Project Focus was designed with several

premises in mind. The first premise is that the role of the architecture is to provide the means for

compatibility and interoperability of models and simulation in a synthetic testing environment.

The second premise is that the diversity of models and simulations expected to be used in the

VPG (particularly considering those already existing or being developed) is such that a single all-

encompassing architecture is unrealistic. The third premise is that even if such an architecture

existed or could be designed, the success of VPG would then hinge on the entire user community

"getting on board" and using or adapting to this architecture. Hence, an approach was taken to

try to design a "low level" architecture or infrastructure that functions below the operational level

commonly viewed by most M&Ss today. In short, the approach taken is to try to describe

M&Ss operationally, that is, describe them in terms of their input and output (I/O)

characteristics and requirements and do so in such a way that testers/evaluators, using

sophisticated VPG software tools, can configure and construct test scenarios (virtual tests) from

existing and available M&Ss in as seamless and automated a fashion as possible.

In Project Focus, the architecture employed can be viewed in terms of an infrastructure (the

low level architecture) and a superstructure (see Figure 1). The infrastructure provides the basic

functionality for the integration, interactability, and interoperability of M&Ss. The superstructure

extends that capability by applying it to a particular implementation of a system-in this case, the

VPG. In object-oriented parlance, the superstructure would be a class derived from the infra-

structure base class and from which an instance, VPG, is created.

Superstructure
Tools, capabilities, functionality,
particular to VPG.

Figure 1. Project Focus VPG Architecture.

The Project Focus prototype architecture is centered around the M&Ss' I/O description

concept. A language, called a model description language (MDL), is being developed to

sufficiently describe M&S I/O characteristics and requirements. The notion is that all elements

available to the VPG (models, simulations, simulators, test procedures, test data and even VPG

"tools" [defined later in this section]) are described by an MDL file. These MDL files provide

the basis for determining what can be done in VPG and how to do it.

3.1.1 The Architectural Core

The core architecture, as the infrastructure is commonly referred to, is a prototype

architecture being developed around this MDL approach. It is designed to operate in a "plug-

and-play" fashion. Where and when they fit, test procedures, guidelines, ground truth data, and

M&Ss to be used/evaluated in the VPG can all be individually plugged into the VPG and be

immediately available for interaction with other such elements. This is made possible by the core

architecture being able to read, understand, and manipulate (often with control from the user) the

MDLs of the elements.

First, "element" needs to be defined. To VPG, an element is any object that can be

operated on, by, or within the VPG. Software models or simulations that emulate or represent

actual (or conceptual) systems or subsystems are considered to be elements. Hardware or

soldier-in-the-loop simulators are viewed as elements. Data generated by these M&Ss and

simulators, as well as data collected from actual field tests, are all viewed as elements. Finally,

the software programs (known as VPG tools) that add user functionality to VPG (such as

programs for constructing, configuring, and executing test scenarios [comprised of elements] in

the VPG) are themselves viewed as elements.

From the core architecture's perspective, the VPG is simply a collection of elements, some

of which are VPG tools that work with the other elements. Tools enable the user to do virtual

testing of the elements that represent concepts, virtual prototypes, hardware prototypes,

subsystems, and full systems. To this end, the core architecture really provides two services: (a)

a collection point for accessing all the elements, and (b) utilities for accessing, interpreting, and

manipulating the elements.

In practice, it is often difficult and unnecessary to clearly delineate between layers such as

infrastructure and superstructure. For implementation purposes, a slightly different view of the

architecture is discussed. This view takes a more layered look at the architecture developed for

Project Focus. Figure 2 depicts this view, which shows two main areas: (a) the architectural core

and (b) the supporting components. Each of these is discussed in the following sections. If these

two views are merged, the infrastructure (from Figure 1) would be shown to encompass most of

the VPG application programmer's interface (API), VPG database (DB) API, and DB plus one

or two supporting components tools. The remaining tools and uncovered portions of the VPG

API, DB API, and VPG DB would represent those attributes or behaviors comprising the

superstructure.

The core architecture is comprised of three layers (VPG API, DB API, and VPG DB)

which cooperatively (a) serve as a collection point for accessing all the VPG elements, and (b)

provide utilities for accessing, interpreting, and manipulating those elements. The collection

point for accessing the VPG elements is referred to as the VPG DB. The routines for accessing,

interpreting, and manipulating those elements reside in the two API layers. These three layers

are discussed in the next two subsections.

Tools
Supporting
Components

VPG API

Database (DB) APi

VPGDB

Architectural
Core

I
Figure 2. Implementation View of Project Focus VPG Architecture.

3.1.1.1 VPG Core: VPG DB and DB API

The lowest level layer (and fundamental to all layers) is the VPG database layer (VPG

DB). The database layer's purpose, not surprisingly, is to serve as a general database. However,

in an organizational sense, the database is only used to store information about elements

(applications and their associated data sets [inputs and outputs]). These data are not the actual

applications or data themselves but are "Meta-Data" (references to the actual data). This

information serves as a basis for determining where to find an application, what type of data is

needed to run it, what type of data it produces, etc. These facts are pieced together by VPG

tools. By parsing these data, an appropriate tool could determine, for example, which

applications are prerequisites to other applications (because output produce by one is required as

input by another).

The VPG DB API consists of API calls that are used to initialize and connect to the

database, define data records, store and retrieve data, and many other functions common to

general database usage. Use of the API allows the actual database program (which is doing all the

grunt work) and its details to be hidden from the applications and other layers that use it.

Another advantage to using an API is that the database underneath could be replaced without

affecting the applications that depend on it. Appendix A outlines the service calls available
within the API DB layer.

3.1.1.2 VPG Core: VPG API

VPG API functions serve as the interface between application programs (supporting

components seen in Figure 2) and the architectural core. The philosophical design for VPG is to

build within this layer all procedures that operate on VPG data objects and are needed by the

supporting components. This implies that it is unnecessary for a tool to directly access the DB

API. This frees tools from the concern of low level database structures and allows a more
abstract data object concept to be used.

Creating a more abstract view of data objects and concepts was based on VPG's
intended purpose (namely, test and evaluation in a virtual environment).

Creating a more abstract view of data objects and concepts was based on VPG's

intened purpose (namely, test and evaluation in a virtual enviroment). In order to translate

proceedures taken by a tester into a virtual environment, we must translate the tester's actions

into base software functionality. Some of the base software functionality that (in one form or

another) must lie underneth these actions would be knowledge of how to make a simulation do

what the tester has in mind. Also, associations need to be maintained between the data needed to

run a simulation subject and the environment description the tester wishes to impose. That is, a

knowledge base must be maintained to keep track of "which switches to turn on" in a simulation

and the data required to "feed" the simulation in order to get it to respond to the test conditions
the operator had in mind.

Not required but certainly worth having is a configuration service to the tester, the

recording of the particular simulations used, their initial conditions, and (possibly abstracted)

outputs (i.e., analysis). These data should be maintained as a cohesive unit, and the underlying
architectural services should support that.

To implement these base VPG API functions, certain data objects were defined in
Table 3.

The philosophical approach is to subdivide the VPG API layer into logical sections,

each of which is especially designed to service a particular abstract data object or service. These

objects were supported by software library functions for creating, destroying, editing, and

manipulating the objects in a manner that would support the concept of a virtual test scenario

(see Table 2).

Table 3. Objects Supporting the Conceptual Test Process

Object Description

tool
(or MDL) A description of data, models, or simulations. (Tools are very similar to the

model description language [MDLs] objects first discussed in Section 3.1).

scenModel An instance of a tool, for use in a scenario (also called a "scenario model").

seen Scenario. A collection of simulations (scenario models) run during a particular
test case.

The VPG API is designed to be expandable. Whenever a new set of functions (a library)

was determined to be necessary, it could be easily added to the VPG API layer. (Syntactically, it

was agreed to prologue VPG API system calls with "vpg_" followed by an acronym alluding to

the object or function serviced by that library. (For example, all software functions manipulating

the "tool" object of Table 3, would be named "vpg_tool_something" [e.g., vpg_tool_create(),

vpg_tool_destroy(), etc.].) Some of the VPG API libraries completed during Project Focus are

described in Table 4. (See Appendix B for a short description of each software procedure from

the VPG API libraries.)

3.1.2 Supporting Components

Supporting components differ from VPG "external" applications. (Some examples of

external applications might be tape storage/retrieval utilities, interactive conferencing tools, spread-

sheets, documenting applications, etc.) External applications have general purpose utility, and

while that utility could be enhanced by making these applications "VPG aware," it is not required.

VPG supporting components, on the other hand, have to be aware of the VPG environment

to perform their function. (An example of a supporting component would be an application to edit

MDL objects. An MDL editor would need to be able to retrieve, change, and store these VPG

objects and hence would have to [at least indirectly] use the VPG API.) Supporting components

tend to be fundamental to many other VPG test procedures and processes.

Table 4. A Subset of VPG API Libraries

Library

vpg_tool

vpg_scenModel

vpg_scen

vpg_launchTool

vpg_err

vpg_printf

Description

In the VPG, a tool describes an object referencing an executable program that can
be started (or launched) by VPG but which is not compiled directly into the
VPG core. (That is, the tool itself is not part of the VPG architectural core.)
Tools could be simulations, word processors, and other general purpose appli-
cations. As mentioned, tool objects are not the actual applications themselves
but are "Meta Data" (which refer to them). Procedures within the vpg_tool
library created, destroyed, edited, and examined tool objects.

Basically, a "scenModel" is a copy (or instance) of the tool object. The copy is
created for use in a test scenario. By using an instance of the tool and not the
original, the information can be customized for a particular test scenario without
corrupting the original "vpg_tool." Functions within the vpg_scenModel
library create, destroy, edit, and examine scenario model objects.

A scenario is a collection of specific scenModel objects (and their data sets)
executed during a virtual test exercise. The vpg_scen library is used to create,
destroy, or retrieve scenarios, add or remove scenModel objects from the
scenario, etc.

The launch tool section is used to start stand-alone programs that run outside
VPG. Launching tools is really the job of VPG daemons. (A daemon is a pro-
gram that lies dormant until triggered by a certain event. After execution,
daemons usually revert to their "dormant" state.) This section of the API
determines which daemon is responsible for launching the tool and then it sends
a "launch" message to that daemon with all the necessary information required
by the tool. By using VPG daemons within the VPG architecture to start
programs (tools), the Tester is able maintain control of tools even when run
remotely on distant computers.

This is a generalized error-reporting and exception-handling library. Though it
can be used by supporting components, mostly it is used by other VPG
libraries.

The print library portion of the VPG API allows the control of the amount and
redirection of various messages generated internally by the VPG core. Many
messages can be generated during the course of building, executing, and analyzing
virtual tests and are useful for debugging or tracking. These routines allow these
messages to be channeled to an inconspicuous place until needed.

Another way of viewing supporting components is as "plug-in" tools. That is, even though

they are aware of the VPG environment, they can be treated as external stand-alone tools in the

sense that they can be described by an MDL (tool) object. The advantage to doing this is that

they may now be launched as one would start (or stop) other applications (from a "main" VPG

control panel or graphic user interface [GUI]). Also, because information about them is stored in

the VPG DB, newly created components have the potential to be immediately available to all

VPG users.

As mentioned, supporting components tend to be fundamental to many other applications

and VPG processes. Two noteworthy examples are (a) architecture user interface mechanisms,

and (b) simulated environment data management. These components (while not a part of the

"core" architecture) are so basic to most applications that it was thought to experiment with their

functionality early in the prototype VPG to determine how best to integrate them within the

VPG. These two subject areas are covered next. In subsection 3.1.2.1, we discuss approaches to

data-providing services, and in 3.1.2.2, we examine some user interface approaches.

3.1.2.1 Database Integration (supplying simulations with commonly available data)

All simulations have an initial state. Most often, this state is not "hard coded" into

the simulation algorithms but read as data. In the next two subsections, we discuss data-

providing services (servers). The first (subsection 3.1.2.1.1) examines a case for providing terrain

information (an input data component very common in ground vehicle simulations). In

subsection 3.1.2.1.2, we explore more general data server concepts.

3.1.2.1.1 Terrain Database

Because much of ATC's testing involves ground vehicles (although not

exclusively ground vehicles), an essential requirement to many VPG simulations is accurate

terrain-related information. The approach used to meet this requirement is to provide a specific

terrain data service-the terrain database (TDB). The TDB is tailored to provide real-world

terrain-related information for simulations. The following subsection gives a brief description of

the TDB server (TDS). Figure 3 outlines the TDS's design structure.

Layer (1) of Figure 3 represents the client for the TDS. The client can be any

program that uses the TDB API to communicate with the TDS. The TDB API is portrayed in

Layer (2) of the same figure. It provides the communication and protocol procedures required to

"talk" with the server application (3). The client program (1) will embed these API procedures

into its design. At compile time, the client is linked with the TDB API object library. Note. The

10

client program does not have to be a stand-alone application. It could actually be part of a large

service structure. For example, the VPG core's VPG API layer (see Figure 2) will eventually add

the TDB API as one of its services.

+ —+

Client (1)

+ +
| TDB API | (2)
+ +

v

[3)

v

(4)

Figure 3. Terrain Database Server (TDS) Design.

The TDS is shown in Layer (3) of Figure 3. This layer has two functions: it (a)

parses and attempts to service client requests and (b) acts as a cache to the geographic

information system (GIS). Requests that require terrain database regeneration, culling,

translation, or many other direct GIS procedures normally are computationally intensive. Service

delays can be avoided by having the TDS keep track of data queries already requested and then

provide those (cached) results. If the requested data are not available (in the cache), the server

contacts the TDB services in order to generate the requested data.

TDB services are displayed in Layer (4) of Figure 3. The TDB service layer

provides a command interface to the GIS engine. Table 5 displays the commands currently

available.

11

Table 5. TDS Service Commands

COMMAND

TDS STATUS

TDS SUBMIT

TDS DISCONNECT

TDS HELP

DESCRIPTION

Return the current status of the TDS, such as "Idle," or the current name
of the current command/ARC/INFO Macro Language (AML) being
processed. This command also returns a list of real time servers running
and the computer-operating system processes (process IDs) they are
supporting.

usage: TDS_SUBMIT [batch file | message] {output database filename}
Submit batch file to the server to supply a database. See format for
batch file (see Figure 4).

Break connection to the server.

TDS HUMAN 1

TDS AVAILABLE

TDS_GET_FILE
filelD

TDS INFO

Provide help about commands.

Start AML menu to create files and/or perform maintenance

TDS will keep track of available terrain databases and paths. When TDS
receives the "TDS_AVAILABLE" command, it will list the available
files, with a unique ID and description of each. The description will
include dimensions, spheroid, datum, projection, units, and attribute
types. For a path, it will also list speed and frequency of sample.

When the TDS_AVAILABLE command is given, a list is returned of
available terrain databases and paths. Each file will have a unique
filelD. Use TDS_GET_FILE to request a specific file.

usage: TDSJNFO x,y {,z}
Get the attributes for x,y,{z}, in terrain database specified by
"TDS_SUBMIT" or "TDS_GET_FILE". If z is missing, it will return
z also.

The TDB services module will create new databases based upon the information

provided with the "TDS_SUBMIT" command. Figure 4 displays available commands

understood when submitted as the batch file (or message) for the "TDS_SUBMIT". Note. If

there is more than one option for a parameter, then the first listed is the default.

12

Spheroid (WGS 84 | Clark 1866)
Datum (NAD 83 | NAD27)
Projection (UTM)
Units (Meters | FEET | Miles | KM)

Database type: (3D Terrain | Vehicle path | Point Data)

If Database type is 3D terrain: {
Specify Southwest and Northeast corners of database

(East Min, North Min, East Max, Northing Max)

If Database type is a Vehicle path: {
Specify the speed of vehicle (15 Km/s)
Specify the frequency of sample (1Hz)
Specify path to follow (Premade | File of Easting, Northing points)

If Database type is a Point: {
Specify Easting and Northing of point:

}

Number of attributes: (1)
Attributes: (Elevation)

(another example:
Number of attributes: 4
Attributes: Elevation, ITD code, color, surface type)

Output file format: (DWB, SI000, ARL path, Open Flight, textfile)

Figure 4. "TDS SUBMIT" Command Syntax

3.1.2.1.1.1 Populating the Terrain Database with Source Data

Source data used in Project Focus test scenarios were generated from a

highly detailed survey of the U.S. Army ATC "H-field" firing range. The data's accuracy was

± 0.1 meter elevation for each given longitude/latitude point. These data were measured every

1 to 10 m apart, depending upon the terrain profile (i.e., if a section of a surveyed road was

straight, fewer data points were needed, but many points were collected to accurately describe a

curve). As an example, when measuring ATC's H-field firing range, more than 5,300 survey

points were collected; most of these were points on road edges. Open areas between roads were
interpolated, based upon the road edges.

13

Once survey data were collected, they were used to generate an

AutoCAD™ database showing the connectivity of the points. This database was exported to a

Drawing eXchange Format (DXF™) American standard code for information exchange (ASCII)

file. This provided a drawing of the road edges, building locations, and shore lines (Aberdeen

Proving Ground is situated on the shores of the Chesapeake Bay). This DXF™ file and the

original data points file were then loaded into a commercial GIS database called ARC/INFO™.

Once read into ARC/INFO, a triangulated irregular network (TIN) was created using the DXF™
layer to denote the features (roads, buildings, etc.).

AML was used to create programs that exported the desired formats

needed by simulations (e.g., ARL's Ml Al fire control model and the Tank Automotive Research

Development and Engineering Center's [TARDEC's] hull motion model). Another AML

program exported to an ASCII file which could be read by a commercial tool called Designer's

Workbench™ (DWB). DWB was used to create the visual TDB. This TDB is featured in

ATC's Stealth application (a tool for visually rendering a vehicle traversing the VPG).

3.1.2.1.1.2 Applying the TDB to Project Focus

As mentioned, the GIS system (ARC/INFO) was used to export data for

several applications in various formats. Specifically, Table 6 displays a sample portion of the

ASCII files required by the Ml Al fire control simulation. These data represented the path

traveled by the test vehicle.

Table 6. Example of ARL Fire Control "Path" Input

0.050, 388493.26, 4354743.82, 5.77
0.100, 388493.53, 4354743.90, 5.78
0.150, 388493.80, 4354743.97, 5.78
0.200, 388494.07, 4354744.05, 5.79
0.250, 388494.34, 4354744.12, 5.79
0.300, 388494.61, 4354744.20, 5.79
0.350, 388494.88, 4354744.27, 5.80
0.400, 388495.15, 4354744.35, 5.80
0.450, 388495.42, 4354744.42, 5.80
0.500, 388495.69, 4354744.50, 5.81

.etc...

14

Column headings (not included in file) were time (seconds), X (meters), Y

(meters), Z (meters), respectively, based in a local Cartesian coordinate system (or NAD83

datum, Grid 18).

Menu-driven programs were written in ARC/INFO, which allowed the

user to generate a vehicle path based on the simulation's requirements. These requirements were

vehicle speed, VPG terrain sampling rate, and points roughly describing the vehicle path. A

backdrop of H-field was provided for placement of points. Once the user roughly described the

path, the points were then smoothed with a cubic spline algorithm to generate a continuous path

with points taken at the desired frequency for the given speed. A set frequency of 20 Hz was

used (that is 20 sample points along the path per second). Two fire control test vehicle paths

were generated, one with the vehicle going 25 mph and one at 12.5 mph (over the same path). In

addition, a second path was generated to simulate the moving target. The target vehicle started

3000 m away from the test vehicle and traveled 20 mph toward it. (A program was written to

ensure that the starting points of the shooting and target vehicles were 3000 m apart.) The target

path was described in the same format as the fire control test vehicle (see Table 6).

The TARDEC hull motion model required the description of its simulated

vehicle's path in a different format. An example of this format appears in Table 7.

Table 7. TARDEC Hull Motion Model Path Description

1,388493.26329,4354743.82248,5.773
2,388493.53239,4354743.89752,5.777
3,388493.80148,4354743.97256,5.782
4,388494.07057,4354744.04758,5.786
5,388494.33975,4354744.12259,5.790
6,388494.60887,4354744.19756,5.794
7,388494.87801,4354744.27250,5.797
8,388495.14724,4354744.34743,5.801
9,388495.41639,4354744.42228,5.805
10,388495.68552,4354744.49707,5.809

The column headings (not included in the file) were time index (no units),

X (meters), Y (meters), Z (Elevation) (in meters).

15

Both ARL and TARDEC used the same source path information, but the

data formats differed. ARL required the first column to be in seconds; therefore, the time index

was divided by the sampling frequency (20 Hz). TARDEC and ARL were provided the same

source data for the test (shooting) vehicle and target vehicle. TARDEC required an additional file

to compute roll; therefore, a "grid" file was generated to allow roll calculations. The grid file was

generated in ARC/TNFO by using the TIN of H-field. A rectangular grid was created with

equally spaced points based from this TIN. Only elevation was provided at each "grid" point

(one per line). Using this data set, TARDEC was able to calculate its simulated vehicle's roll.

This was the extent of terrain data needs for Project Focus. Future

improvements include a terrain database server (TDS) that will allow data to be automatically

extracted (with very little human intervention) from the GIS database and provided to simulations.

3.1.2.1.2 Ground Truth Database

"Ground truth" is the combination of experience gained by the material tester

community, test procedures, and collected test data. In a software architecture sense, capturing

test community experience is the most difficult of these three. In Project Focus, this was

addressed through the use of TOPs. In addition, in the future it could be advantageous to have

lessons learned, on-line test reports, and other forms of tester's knowledge base available. Test

procedures were used by integrating software that addressed those procedures. An example of

how TOPs were addressed and used is explained further in Section 3.2. The final and most

voluminous portion of ground truth is the set of collected and analyzed test data.

There have been various approaches toward ground truth. For instance, TECOM

has previously conceptualized ground truth into classes of data sets, as shown in Table 8.

We do not necessarily agree with this taxonomy since there is some overlap

(e.g., time space position really is just a sub class of performance data). However, whatever the

final classifications become, the eventual goal is for these data to be stored in the ground truth

library. The ground truth library is envisioned as a distributed set of databases. Data collected

shall be for a diverse set of systems and components (over a wide spectrum of tests). Therefore,

the types, frequency, and quality of these data shall vary greatly in both content and quality.

Thus, an essential component for the ground truth library will be a data dictionary that clearly

describes and categorizes the data. Also, each data set should include a knowledge base archiving

the data's source and other information that allows potential users to qualitatively assess the

data's fitness for their particular purpose.

16

Table 8. Proposed TECOM Ground Truth Classes

Class Meaning

Time Space Position

External Environmental Factors

Performance Data

Validation and Verification

Lethality and Vulnerability

Position, velocity, orientation, etc., relative to an initial
reference point over the course of time (tracking data).
Weather, road conditions, other factors that will influence
the test item and results.
Test item parameters such as weapon accuracy, and
failure rates. (The exact nature of data collected depends
on the test item and requirements.)
This class of data is collected for the specific purpose
of validating and verifying a model and/or simulation.
Data that can be used to support calculation of lethality
or vulnerability assessments. These could be system
signatures which can add or subtract from a system's
detectability (thus, vulnerability).

The ground truth library is an eventual goal in TECOM's vision for the VPG.

Our more immediate objective (during Project Focus) was to examine how to best incorporate

ground truth into the virtual testing process and to do this in as automated a fashion as makes

sense. This would serve to scrutinize proposed approaches toward handling ground truth data

from both the databasing side (data server) and from the simulation application side (data client).

Herein lies a philosophical question mainly concerning how to best capture data for the future.

Concerning ground truth data, (a) is the interface to VPG supposed to be an interactive session or

(b) is the user/client supposed to already know what data are available and explicitly request

them? We think the answer lies in both being true. Testers should be able to browse through

various classes and examples of data available in the ground truth library. Results of this data

search could influence which tests are conducted and how.

3.1.2.1.2.1 Ground Truth Data Used for Simulation Input

In Project Focus, a virtual fire control test was being applied to the VPG.

Therefore, it was decided to use fire control ground truth data for both input to the simulations

and as output (for post processing comparative analysis). For our simulated test, the goal was to

replicate as faithfully as possible initial test conditions from an actual test and compare the real

and virtual test results. It was thought that we would extract the paths followed by the actual

test vehicles. This path would then be overlaid on top of VPG terrain (see 3.1.2.1.1 Terrain

17

Database) to extract the virtual test terrain profile. This profile would then be fed into the

simulations.

We searched for historical ground truth data that matched the type of

simulated test we were to conduct. However, the state of the available data confirmed several of

our concerns. Namely, many data items that could have been used were missing from the existing

ground truth tabulation. Of those that were available, many were in a state that limited their use.

The greatest shortfall was the inadequate correlation between geometric field measurements and a

geographic model. Specifically, what was needed was a correlation between actual field

geographic measurements and VPG terrain stored in the GIS database (see 3.1.2.1.1 Terrain

Database). Such a correlation could not be made because the historical record provided a

localized Cartesian coordinate system. This coordinate system remained consistent for all

measured test trials; this was good. However, one could not determine the exact points "on the

earth" where the origin and major axis of this local coordinate system lay. Through trial and

error, we were able to come close but not close enough to justify using historical "ground truth"

as input to the vehicle path.

3.1.2.1.2.2 Data Used for Comparative Analysis With Simulation Output

Project Focus's simulated results and the historical test results could be

related but only in an aggregate sense. Too many variations in physical test conditions (for the

historical measurements) and assumptions made for initial simulation conditions (for the

simulated results) make side-by-side comparison impractical. In addition, as stated earlier, a

major consideration was that we were unable to correlate the test vehicle path with the simulated

environment. Furthermore, physical test outputs (the historical record) were the result of

transformations and filtering made on raw measurements. We can only assume that proper

transformations were made and any round-off errors are well below the overall noise.

Another influence embedded within historical test measurements are

characteristics of the test instrumentation used to conduct the measurements. If these test

instruments significantly influenced the historical measurements, then those same influences

should be accounted for (see 3.2.1.3 ATC Through-Sight Video Simulator).

3.1.2.2 User Interface

We have just discussed a major supporting component in the VPG environment (data

services). Another supporting component also of extreme importance is the user interface. The

architectural core provides a general application programming interface into the fundamental VPG

18

procedures. Using this API, an experienced programmer could design and build his or her own
interface. The interface could be as simple as a single program that executes a specific task. Of
far greater use would be a more general purpose interface allowing the user to conduct a variety of
commands and actions. Two pervasively popular interfaces are the command line interface
(CLI) and GUI. The CLI is text based requiring the user to type commands interactively or
submit prepared commands (batch files). A GUI interactively presents the user with visual

menus, icons, buttons, and other selectable widgets. (Even with a GUI, however, eventually
some type of keyed input is almost always necessary.) During Project Focus, prototypes for
both types of user interfaces were demonstrated (CLI and GUI). These are discussed in the next

two subsections.

3.1.2.2.1 VPG Graphic User Interface (GUI)

The VPG GUI demonstrates the simplicity with which user interfaces can be

created when an underlying service call structure (the VPG API) is available. The VPG main
GUI (seen in Figure 5) is a simple X-Windows "Xt" application and consists of four buttons and
a few pull-down menus. The "tools" pull-down menu can be used to start the VPG database (if
it is not already running). The four buttons seen are linked to VPG database records.
(Specifically, the database records are MDLs that describe the application to be launched.)
These are "soft links" and can be changed easily (e.g., by modifying an initialization text file or

by adding a command line argument).

VPG Main Gilt 10
File Tools !-.. .;>

Exit |

Figure 5. VPG Main GUI.

The "models" button ensures that all scenario models (see Table 3) created by
the user are loaded in the database. The "build scenario" button launches an application where
the tester may combine models and data into a logical test scenario. The "execute scenario"
button launches a very simple application that queries the VPG database for the latest scenario

19

created by the user and then executes that scenario. "Post process data analysis" executes an

analysis tool to examine test scenario results. For Project Focus, this consisted of plotting

various measures of effectiveness from simulation output. Also, the post processing done was

specific to the test scenario executed during Project Focus (see subsection 3.2.2.3 Post Processing

and Analysis: [A Manually Intensive Task]). However, the point being made concerning the

VPG main GUI is that it outlines some of the basic building steps taken in the virtual testing

process. Any number of tools with greater sophistication can be easily attached to the GUI.

Generally speaking, the VPG core is designed to run on POSIX operating

compliant operating systems. The VPG main GUI is UNIX X-Windows based and also

normally would run on that same type of computer platform. In the next subsection, we describe

another approach (using world wide web [WWW] techniques) to the user interface, which allows
the GUI to be even more platform independent.

3.1.2.2.2 HTTP Server

The hypertext transport protocol (HTTP) server is a command line user

interface which can also serve as an interface to a hypertext markup language (HTML) WWW

browser interface to the VPG, and this is precisely what it was used for during Project Focus.

By default, this user interface (called "vpg_command") expects input from a

WWW client, but it can also be run interactively as a CLI. As a CLI, the server accepts typed

user commands from the keyboard (or a file). This is a generalized command processor interface

to the VPG API. However, as with the VPG GUI, the VPG database server must be running

first. This is because the database is the only means by which test scenarios and scenario

components can be accessed. Table 9 lists vpg_command's implemented capabilities at the time
of Project Focus.

Table 9- "VPS command" Project Focus Implemented Capabilities

Define (build) a Scenario Model.
Define (build) a Scenario.
Delete a Tool.
Delete a Scenario Model.
Delete a Scenario.
List Tools.
List Scenario Models.
List Scenarios.
Execute a Scenario.

20

The syntax for each of these commands is given in Appendix C. The following

is an example of how the VPG user could execute one of these commands (specifically, the build-

a-test scenario). First, in interactive mode, the vpg_command is started by typing

vpg_command.exe -i

The "-i" option causes the command interface to operate interactively. (Recall

that by default, vpg_command looks for input from an HTTP server and not from standard input

[the keyboard].) Figure 6 displays the syntax for building a scenario. (Note. The control-D

[AD] ends the standard [keyboard] input stream. Indentation and line breaks are insignificant.)

VPG_COMMAND = SCENARIOMODEL_DEFINE
BEGIN = SCENARIOMODELJDEFINE

NAME = "this is my new test scenario's name"
(text after any "#" symbol is ignored)

the key that follows must be a TOOL'S key (an MDL's key)
in the VPG database.

KEY = KEYverSep96_385_0x803f279a_511_842878033_20423_2

END = SCENARIOMODEL DEFINE

VD

Figure 6. Sample vpg command Language Syntax.

When run under an HTTP server (e.g., not interactively), vpg_command

processes commands as an HTTP/1.0 "Post" query method. What this means is that commands

are received in the syntax of "variable name=value" pairs. This explains the proliferation of "="

symbols woven into the vpg_command language syntax.

Simple common gateway interface (CGI) scripts can then be constructed, which

call vpg_command to process the Post query. For example, Figure 7 displays a CGI script

(written in UNIX Bourne shell syntax).

21

#!/bin/sh
VPG_DB_HOST=www. vpg.db.com

echo 'Content-type: text/html'
echo
echo '<HTML>'
echo '<body>'
echo '<H1><P ALIGN=CENTER>VPG COMMAND(S) SUBMITTED</H1>'
echo ''

./vpg_command.exe -d ${VPG_DB_HOST}

echo ''
echo '</body>'

Figure 7. Example CGI Script Accessing vpgcommand via WWW Interfaces.

Suppose we name the script of Figure 7 "vpg_command.cgi." Using

"vpg_command.cgi," we will now be able to process any vpg_command (that is sent to the

HTTP server via the Post query format). By default, vpg_command expects the VPG database

server to be running on the same host on which it is being run. The "-d" option can be used to

specify a different host. Note that in this example, the fictitious host "www.vpg.db.com"

represents the internet protocol (IP) address of the host machine that is running the VPG

database. To send commands with the Post query format, do the following:

Now that we have established a CGI script that is ready to accept commands

from the WWW, the next step is to construct a "web page" to do just that. The following is a

sample Post query HTML page that could be used to submit a command to the WWW address

running the HTTP server. Let us assume that the WWW address running the HTTP server is

"www.vpg.com" and the CGI script is saved as "/cgi-bin/vpg_command.cgi" on that server.

Figure 8 is an example Post query HTML page that could be used to send a command ("list

saved scenarios") to vpg_command.

Note. This HTML page could be run from a WWW browser residing on any computer. When

read by a browser, it would appear similar to Figure 9. The user would select the "submit"

button, and the built-in command ("VPG_COMMAND - SCENARIOJJST") would be sent to

the vpg_command interface.

22

Content-type: text/html

<HTML><body><Hl>Scenario list Example</Hl>
<FORM METHOD="POST"
ACTION="http://www.vpg.com/cgi-bin/vpg_command.cgi">
<H2>List Scenarios Example Form:</H2>

<INPUT TYPE="hidden" NAME=VPG_COMMAND
VALUE=SCENARIO_LIST >

To submit your choices, press this button: <INPUT TYPE="submit'
VALUE="Submit Choices'^. <P>

</FQRM></bodv><HTML>

Figure 8. Example List Scenarios Command "Web Page.'

Pletecape: exampfe_vpg_commar}rJ.bfm{ (Unfitted)

:0t>;";&»; Vfear:J2b: ft»km«ks■: O^Som Dtoecfoiy Window H# |

■fcii
ttm* liillifilllri

3^ I ö ftid
*!

Scenario list Example

last ScenariosJ^raple Form:

To submit ^ SubmitQx>ides| I

fWaaawteiMB^^ i
Figure 9. Sample VPG Command Through a "Web" Browser

23

If vpg_command were run locally (and interactively), the same results could be

achieved by typing "vpg_command.exe -i -d www.vpg.db.com" to start vpg_command and then

interactively typing the command

VPG_COMMAND = SCENARIO_LIST

In the same manner, other web pages could be constructed to build an entire

GUI interface on top of the CLI program. The next section (3.2) demonstrates numerous

examples of these "WWW GUI" interfaces (notably subsection 3.2.2.2). The execution phase

consists strictly of a series of HTML pages used to make Post queries of CGI scripts (which in

turn call the vpg_command program). The great advantage is that all interactive processing could

be done from just about any computer with a web browser.

3.2. Project Focus: A Pseudo VPG Application Test Project (tying disparate simulations
together)

To prove how well the architecture design works in practice, a trial case was designed.

This section of the report describes the Project Focus trial scenario and ideally, how the user

would interface with the VPG GUIs. Some of the more interesting (and hidden to the user)

capabilities of the VPG architecture were not implementable within the constraints of this trial;

these are pointed out later in subsection 3.2.2.2.

The trial case was designed to mimic the general process taken by a test when conducting a

ground vehicle fire control weapon system test. Ideally, for a given system or component,

general test operations procedures are outlined in a document call a TOP. The TOP describes the

types of measurements that need to be made to test the performance of the components or

systems in question.

Through the VPG GUI and WWW interfaces, the test director was able to select which

TOP he was interested in following. After TOP selection, the user was presented with

parameters that could address the performance characteristics outlined in the TOP. This was

accomplished by varying parameters relating to the tests to be conducted. In the case of the fire

control test, parameters describing the test vehicle, target, and other test conditions were available

as shown in Figure 10. Associated with these parameters were simulations that could model the

test(s) required by the TOP. However, the specific simulations themselves remained hidden for

the moment, allowing the test engineer to concentrate on the environmental conditions.

24

»cigtomiMaMCTmiiamaMamam^ ^t^JW:^^ti^r;^--Jn<^^^-n^«^.^^^w^.-8^aMi^:5:^rwi.-.iy

File Edit View Go Bookmarks Options Directory Window Help

CENAI3IO P! NER
TOP 3-2-602, Gun Stabilization Systems (Vehicular)

VEHICLE

Select Ammunition:

Select Vehicle Course:

Starting range to target:

Enter vehicle velocity:

M829 KE

Zig-Zag

meters

Select path source: I Default

TARGET

Select target course: Zig-zag

.LlL
r-föH

^j-a,».»«»^«»«»..^^,.»«^.^^«,^-,,.^^..—i . ,.-.—.-» ;—, niim-i»iiiiry^imrftmiiit>MirwiiniriwBfimimnt^^,'^'"""''l~,'*;

Figure 10. Parameters Associated With a Particular TOP.

25

Following this, the test director could determine which computer models were available to

simulate these parameters in the fire control test scenario. In our trial case, the test director could

select from a number of models. For each permutation of models selected, there was only one

topology that would make sense as far as how the models related to one another for the purpose of

analysis. The final selected topology was visually displayed for the test director. (Figure 11

shows the visual display when the ARL tank fire control simulation, TARDEC hull motion

simulation, and ATC through-sight video simulator were all selected for the virtual test.)

Simulation results for these simulations fed into a plotting program (GNU Plot) which displayed

test results. Determining which results to display is a result of having selected a particular TOP (in

this case, the gun stabilization systems [vehicular] TOP).

3.2.1 Participating Project Focus Simulations

As mentioned, the trial case was designed to prove how well the architectural design works

with "real simulations," particularly engineering level simulations. The models used in these

experiments were a tank fire control simulation, a tank hull motion simulation, a through-sight

video simulator (developed at ATC), and a hull motion simulation developed at TARDEC. Details

of these simulations follow in the next three subsections.

3.2.1.1 ARL Tank Fire Control Simulation

The origin of the Ml Al engineering simulation began in the early 1970's when a

family of computer codes called HIT-PRO (HIT PRObability) was developed to evaluate the

performance of combat vehicles and their weapon systems. Several versions of HIT-PRO were

developed over the years to model different combat vehicles, and in 1985, under contract to ARL

(then the Army's Ballistic Research Laboratory), the Ordnance Systems Division of the General

Electric Company, the developer of HIT-PRO, adapted it to model an Ml Al tank.

The Ml Al simulation contains detailed engineering models of the suspension, hull,

and turret. The fire control system includes the ballistic computer, the turret azimuth and gun

elevation control systems, and gunner azimuth and elevation tracking models. The azimuth and

elevation gunner models differ but they are universal models in that these same models are used

regardless of target or Ml Al motion. In reality, the gunner is adaptive whereby he would tailor

his response to the target and Ml Al motion.

Inputs to the model are the Ml Al design characteristics, ammunition characteristics,

target motion, Ml Al motion, and the terrain over which the Ml Al moves. Although many

outputs are available from the simulation, the primary outputs are the azimuth and elevation

tracking errors and lead angles. Tracking error is defined as the angular displacement of the reticle

26

measured with respect to the target. Lead angle is the angular displacement of the gun measured

with respect to the target. These primary outputs from the simulation are the same as those

measured during actual fire control tests conducted at ATC.

«HttN -.^.^^.i^,...m.^ii— L.*~..L.-.....—......J..L. :.. ,,,.. , nlllmn -111.» ill'T 1 rt'illHVI'i'i il'JII
■^..„„..„^»„.„^.^.....^..^„.»».„„.S.^^.w,

File Edit View Go Bookmarks Options Directory Window

Back Home Reload ,E ^0

Open
Ö
Print Find

Location: http://vpg4.arl .rni "l/cgi-bin/vpg-cgi/verify_mode1 .cgi

What's New? What's Cool? Destinations Net Search People Software

Figure 11. A Selected Test Scenario Topology.

27

Before the Ml Al engineering simulation was used in the VPG, the simulation was

reviewed in detail to ensure its correctness. This review showed that there were numerous

approximations, and many variables were improperly initialized. These approximations were

replaced with the actual equations and all the variables were properly initialized. Several errors

were also found and corrected.

To ensure the fidelity of the reviewed and updated Ml Al engineering simulation, its

primary outputs were compared to actual test results. Rather than conduct a test to obtain the

data necessary to validate the simulation, data from a test conducted in the 1992-1993 time frame

were used. The purpose of this previous testing was to determine the feasibility of incorporating

an auto-tracker into the Ml Al. Two basic scenarios were considered: a stationary Ml Al

engaging a maneuvering target, and a maneuvering Ml Al engaging a stationary target. Manual

tracking as well as auto-tracking engagements were included in this test. Only the manual

tracking trials were used for this comparison analysis.

The first testing scenario was designed to evaluate the performance of a stationary

Ml Al against both air and ground targets maneuvering at ranges of 1, 2, 3, and 4 kilometers.

When engaging ground targets, the gunners simulated firing kinetic energy (KE) and high explosive

antitank (HEAT) rounds, and when engaging air targets, the gunners simulated firing KE and

training rounds. The training round served as a surrogate for the multipurpose antitank (MPAT)

round since the flight times of these two rounds are similar. This testing was conducted in

ATC's moving target simulator (MTS).

The maneuvering Ml Al versus stationary target testing scenario was conducted at

ATC's H-field zig-zag course. As the name implies, the course is basically sinusoidal. The

Ml Al-to-target initial range was approximately 3 kilometers, and the Ml Al traveled over this

course at speeds of 12.5 and 25.0 mph. Only KE rounds were considered for this scenario.

Along with the Ml Al and target motion, the primary signals measured during all this

testing were tracking errors and lead angles. Similar outputs from the simulation were compared

to these measurements for the same Ml Al-target conditions when gunners manually tracked the

target.

Results of this comparison showed that the simulation does a fair job of duplicating

the tracking errors but most importantly, does a very good job of duplicating the lead angles.

Since the lead angles showed very good agreement, the simulation can be used with a high degree

of confidence to estimate a given projectile's probability of hit for the types of engagements

considered in this comparison. To improve the gunner tracking models, future plans call for

developing adaptive models using system identification techniques to determine the gunner's

response.

Two reports1 have been written documenting in detail the Ml Al engineering

simulation, and the results of the comparison between its outputs and the outputs of the actual

system.

3.2.1.2 TARDEC Hull Motion Simulation

One of the envisioned capabilities for the VPG is to be able to draw upon various

models during a simulated test scenario. In this manner, one could use models within the context of

what they are best suited to simulate. (For our test scenario, the ARL tank fire control simulation

was used to simulate the fire control performance, while the hull motion model simulated forces on

the hull.)

Use of the hull motion simulation, developed by the U.S. Army TARDEC,

demonstrated another VPG envisioned capability, that of remote distributed computing. Because

of its configuration, the TARDEC hull motion simulation had to be run at a separate site. In such

an event, the VPG would request the remote site to launch the specified simulation (the TARDEC

hull motion simulation), specify or provide require inputs, and retrieve the simulation results. (Of

course, proper user permissions and protocol would first be established before this could occur.)

Because of time constraints, this remote execution step was not automated for the hull motion

model during Project Focus.

The TARDEC hull motion simulation is a physics-based, multi-body, three-

dimensional dynamics model of a combat vehicle's turret, hull, track, and suspension subsystems.

This model is an engineering simulation that predicts the motion histories of these subsystems and

the histories of reaction loads acting on these subsystems and the ground. The TARDEC hull

motion simulation was built using the commercially available software, Dynamic Analysis and

Design System (DADS). DADS is a general purpose modeling and simulation method for

determining the spatial, transient-dynamic response of controlled, articulated multi-body

mechanical systems to excitation by irregular external and internal forces. The methodology

consists of a library of subroutines defining primitive rigid body, kinematic joint, control element,

1 Corcoran, P.E., and Perkins, T.R., "A Comparison of ARL's Ml Al Engineering Simulation Results With
Actual Test Results," ARL-MR-347, March 1997.
Perkins, T.R., and Corcoran, P.E., "M1A1 Engineering Simulation for the Virtual Proving Ground: Description
User's Guide," ARL-MR-360, May 1997.

29

and force-building blocks that can be combined in numerous ways to assemble complex system

models to the desired level of detail and accuracy.

The hull motion simulation contains detailed models of the suspension, track, and

ground-track interface. It has been used to simulate a variety of operating scenarios of a combat

vehicle including traversal of proving ground courses, stationary firing, firing while moving, target

tracking (static and moving), obstacle crossing, transportation scenarios (bridge crossing, trailer

and rail transport), and others. Motion histories from this model are routinely used as input to

drive the controllers of the motion base simulators at TARDEC.

The TARDEC hull motion simulation model inputs include

• Mass, center of gravity, and mass distribution (moments and products of inertia)

for each body of the vehicle (i.e., hull, turret, gun).

• Suspension characteristics such as torsion bar stiffness, shock characteristics, road

arm and road wheel masses and inertias, track mass and stiffness, and suspension

assembly geometry.

• Desired speed (constant or varying), path to be steered, and terrain to be traversed.

• Terrain/obstacle profile and soil properties.

• Turret traversal and gun elevation angles (constant or varying).

• Gun firing time(s) and loads (time varying).

For Project Focus, the hull motion simulation outputs were the hull northing, easting, altitude,

roll, pitch, and yaw. Velocities and accelerations of these quantities were also available.

3.2.1.3 ATC Through-Sight Video Simulator

To achieve correspondence with physical testing, it has been determined that

modeling of the test instrumentation is essential to the VPG effort. The objective of virtual

instrumentation is modeling the effect of instrumentation on the physical parameters that are

measured during test. It encompasses characterization of instrumentation in terms of bandwidth,

accuracy, and test item loading. Virtual instrumentation is also concerned with providing insight

in determining the requirements of the potential integration of instrumentation into future

systems to be tested, in such a manner that minimizes system loading.

30

was analyzed to develop a computer model that characterizes the instrumentation's transfer

function. The bandwidth of a through-sight imaging system used to measure tracking error was

derived. The results of the analysis were then simulated through computer implementation of the

measurement process. This computer simulation was applied to the tracking error signals

generated by the ARL Ml Al fire control simulation.

3.2.2 Results From Applying VPG Concepts to These Simulations

In Section 3, we outlined the hypothetical steps made when conducting a test in the VPG.

In the following subsections (3.2.2.1, 3.2.2.2, 3.2.2.3), we walk through those steps and see how

they were implemented during Project Focus.

3.2.2.1 Preparing Heterogeneous Simulations for the VPG (a manually intensive
task)

We mentioned (in Section 3) that the on-line TOPs already contained knowledge of

which models applied to the TOP in question. This might be advantageous to the user by

providing assurance that only simulations applicable to that TOP are available (and simulations

that may not be appropriate were hidden). However, when designing the test, it makes sense to

allow the tester to be able to add or subtract from the list of available models. This functionality

was not included in the demonstration because of the manually intensive process needed to fold

new simulations into the VPG database. At this time, at least manual procedures are required as

outlined in Table 10.

The VPG core provides all the root (core) services needed to find simulations and data

and combine them any number of ways. However, preparing the VPG core to do this

(populating the VPG database with data) is a manual process. This situation can be greatly

improved with user-friendly tools to assist and debug this process. Such tools are needed to

make the VPG test scenario process a reality that is usable "to the masses."

3.2.2.2 The Execution Phase

The execution phase consists of connecting the models and data into logical test

scenarios and executing that scenario. Once simulations and their required data have been

accurately described and inserted into the VPG database, connecting those pieces together and

executing the resulting scenarios is simplistic. This simplicity is a result of tools that were

completed during Project Focus. Figure 12 illustrates the build and execution phase. (Figure 12

31

is a snapshot taken of an actual web-based tool that uses the VPG HTTP command server

described in subsection 3.1.2.2.2.)

Table 10. Steps Required to Insert External Applications (simulations)
into the VPG Core Demonstration Architecture

Procedure Description

1. Insert references to the
simulation into VPG database

2. Preparation for Executing
Parametric Trials.

All references to the simulation are described by MDL records in
the VPG database. Building MDL records is a manually inten-
sive process (although portions of MDL build process could be
automated with user-friendly tools).

This step requires knowledge of all input data location and
delivery method. This includes information regarding any other
applications that are prerequisites (or must be run simultaneous-
ly) with the simulation. The reference to prerequisite applica-
tions must be described in the simulation's MDL.

This step also requires knowledge of which parameters are
applicable to virtual test and what are the reasonable boundaries
for them.

Simulations differ in how they are initialized. The VPG must
incorporate a capability to change simulation parameters.
(Currently, this is achieved by explicitly citing parameters and
their initial values in the MDL.) Some simulations allow (or
require) alternatives to specifying fixed parameters values on a
command line. They may require launching an interface GUI
specific to that simulation. (In reality, this could be something
as simple as running an editor to change the input data file[s].)
However, there are configuration considerations in doing this.
The tester would want to (and the VPG environment ought to)
maintain a record of what was run, when it was run, and what
were the initial conditions. Keeping track of such information
will prove difficult if the VPG cannot ascertain the initial
condition set by a simulation's interface GUI.

32

File Edit View Go Bookmarks Options Directory Window Help

Steps to building and executing scenarios

Recall the steps needed to run scenarios:

m t
i
i
i
V

Define
&Load
Tools

Build

(Step 2)

(Stepl)

Build
Scenario
Models

Z7

Execute
Scenarios

(Step 3)

The following are links to example cgi scripts and forms that sub-out to executables (which call
vpg api routines).

VPG HTML Server Examples:

• Build a Scenario Model to see an example of a converting a Tool into aScenario Model,

• Build aScenario to see an example of ascenario build

• Execute aScenario to see an example of an execute Scenario form.

• List Tools listing of saved Tools.

• List Scenario Models listing of saved Tools.

" List Scenarios.listing of saved Tools. (Or if you know the command to give the server, you
can accomplish the same thing with a POST FORM .

• Delete Tools a TO PL delete FORM. Hi

Figure 12. Scenario Build and Execution Steps.

Note that the dashed cell entitled "Define & Load Tools" has already occurred.

"Defining Tools" is the manual process referred to in the previous subsection (3.2.2.1). "Loading

tools" can take place by starting the VPG database and interactively loading MDL files just

defined. Alternatively, one could initiate the VPG main GUI (discussed in subsection 3.1.2.2.1

VPG GUI) to load these MDLs, but (currently) initiating the VPG main GUI is also a manual

process. In either event, the defining and loading tools must occur before launching the scenario

build and execution phase (via external web-based tools shown in Figure 12).

The next step toward creating a test scenario is to define an instance of a tool for use

in the scenario. This instance (called a scenario model) was described in Table 3. Creating a

scenario model is started by selecting the underlined "Build a Scenario Model" hypertext seen in

Figure 12. Doing so reveals the menu shown in Figure 13.

This menu presents tools found in the VPG database. Choosing any one of them and

then selecting the "submit" button (which is scrolled off the bottom of the screen) will create a

scenario model from the chosen tool. (Notice the test designer has chosen to create a scenario

model from the "RunMlAl [Association of the U.S. Army {AUSA} Script]" tool.)

After creating scenario models from a number of tools, it is time to combine those

models into a logical test case scenario. Selecting the underlined "Build a Scenario" hypertext

from Figure 12 presents the menu shown in Figure 14.

Building a scenario consists of indicating which scenario model(s) will participate. In

this instance, all scenario models shown (two) have been selected. The scenario is created when

the "submit choices" button is selected. Note that the test directory has named this scenario

"Trial#5 Vehicle 5m/s CrossWind 0." ("CrossWind 0" has scrolled off the visible portion of the

"Enter scenario name:" field.)

With the scenario created, the last step is to execute it. Figure 15 shows the execute

scenario display. (This display is activated when the underlined "Execute a Scenario" hypertext

is chosen from the menu shown in Figure 12.)

Using this menu, the VPG tester can run or re-run scenarios by selecting and

activating the "submit choices" button. (Notice that "Trial#5 Vehicle 5m/s CrossWind 0" has

been designated for execution.)

34

Fife Edit Wew Go Bookmarks Options Directory Window He(p

Scenario Model BuM Example
(VPG http host 5 erver will b e: vpg4 or I. mil)

You are Here

Define
& Load
Tools

i
i
i
-

Build
\S%JKS3M3kX. M&ß

Models)

Build
Scenarios

Execute
Scenarios

Build VPG Scenario Model Example Form:
Select from among the tools shown to in order to ronvert one of them into a Scenario Model;

START

» ^Scenario Model Loader (cr&xtei. Tue$ep24 11:13:53 1996)

• ^Scenario Model Loader-w/o plot (created: TueSep 24 16:20:02 1996)

• vYPG Scenario Executor Starrop (created- Wed S«p IS lO.-dlM 1996)
• <A.aii5Xh Netscape (created: W&£ Sep JS J0.-13.-S71996)
• QPost Processor ccol (treated: Wed Sap IS 10:13:5? 1996)
• C-YPG Daemon- SGI (created: ThuSep 1914.17:20 1996)

• OVPG Daemon- Sun (create?,; Thu Sep 1914:19:581996)
• blotter (AUSAscript) (crm&Z: FriStp 20 09.35:551996)
• QRurta! (AUSAscript) (created: FriSsp 20 09:26:261996)
• <JRunMlAl (AUSAscript) (created: Fri Sep20 09:16:111996)

• ORunTardec (AUSAsetipt) (treated: Fri Ssp2Q 09.31:52 J996)
• vATC Stealth (mated: Wed Sep25 D9.-21-361996)
• ^est (created: 5

Figure 13. Scenario Model Build Example.

File Edit View Go Bookmarks Options Directory Window Help

Scenario Build Example

(VPG http host server will be: vpg4.cwl.mil)

3

Name the scenario you are creating, Select from among the Scenario Models those models
which you which to included into this scenario.

i Define j
! & Load i
i Tools]

Build
*~ Scenario

Models
^—..." s

I Mid
1 Scenarios

 ^ Execute
Scenarios

1 <■ ;„„ .J

*You are Here" t

Build VPG Scenario Example Form:

Enter scenario name: Trial #5 Vehicle 5m/s

Select the raodel(s) which will participate in this scenario:

START

gfcuriMl Al (AUSA script) (created: FriApr 1811.05:22 1997)

gRunTardec (AUSAscript) (created: FriApr 18 11:05:15 1997)

END

To submit your choices, press this button: |[Submit Choices|.

To reset the form, press this button: •Reset],

Figure 14. Scenario Build Example.

Füe Edit View Go Bookmarks Options Directory Window Help

Scenario EXECUTE Example
(VPG http host server will be: vpg4.ari.mil)

I
I
I
V

Define
& Load
Tools i

J

Scenarios

Build
Scenario
Models

Z7

You are Here

Execute a VPG Scenario.
Select from among the scenarios to execute:

START

• OTrialM Vehicle Om/s CrossWind 0 (created: FriApr IS 11:15:171997)

• Orrial#2 Vehicle 10m/s CrossWind 0 (created: FriApr IS 11:14:59 1997)

• </Trial#3 Vehicle 10m/s CrossWind 5 (created- FriApr IS 11:14:461997)
• </Trial#4 Vehicle 5m/s CrossWind 5 (created: FriApr 18 11.-06:491997)

• <&Trial#5 Vehicle 5m/s CrossWind 0 (created: FriApr IS 11.06:201997)

END

To submit your choices, press this button: j Submit Choices

To reset the form, press this button: 'Reset

*u~—u —~i. c« *.u~~-x„*. »*, u.,i%4 ..^.,- «j .1, ~» *u~ \ 'TV« I

Figure 15. Scenario Execute Example.

37

3.2.2.3 Post Processing and Analysis (a manually intensive task)

The purpose of the post processing and analysis component of Project Focus was to

explore the problem of integrating analytical and display tools in the virtual test process. These

tools are vital because they transform the raw test results into a form much more easily

understood by the test customers, engineers, and program manager. Being able to easily post

process (examine, filter, analyze) results of simulations is extremely crucial to a virtual testing

environment. In fact, the whole point of running a model is being able to examine the results.

In an ideal simulation environment, users would be able to identify data variables of

interest within a simulation and then specify how and when they were displayed or represented

(simple enough). However, simulations developed independently are almost always going to

describe their results (and required inputs) in different ways. Tables 5 and 6 are good examples.

Both describe the same semantic content (vehicle path information), but they appear in very

different forms. Even so, almost surprisingly, they have many similarities. One of them could

have easily been a binary file (instead of ASCII), used a different coordinate system, or a

multitude of other variations. This presents a complicated translation dilemma for a generalized

post processing service. Yet such translations ought to be possible in some manner (and as

transparent to the user as is reasonable). To conduct any translation, one must know two very

specific things concerning the data in question: (a) their semantics (what do the data say?) and

(b) their syntax (how do they say it?). Each data set (model inputs and outputs) would have to

be described with this "data description language." In fact, such a language was being developed

during Project Focus, the MDL discussed in Sections 3.1 Overall Architectural Structure and

3.1.1 The Architectural Core. Unfortunately, the role of the MDL would have to be greatly

expanded to conduct translations "on the fly." This would require a highly complex descriptive

language, data dictionary, and language parser. Once this is done, we still have not solved the

original problem (implementing an integrated post processing service). Finishing the job would

require another VPG library and tools supported by that library. The library would provide

services such as parsing though output files (of different formats) or monitoring network traffic

(looking for specific data items). These data items would then be collected into a logger file so

that they would be available for further filtering or analysis. Supporting tools would allow the

tester to control these actions through a user-friendly and intuitive interface. However, the

implementation of such a complete capability was beyond the scope of Project Focus.

As a compromise, in order to have something implemented in time for Project Focus,

it was decided to imitate most of this functionality. A simple script-based facility was

implemented that allowed the user to specify what data from the simulation were to be processed

38

and how. The user specified in plain English text what display program was needed for post

processing, what data set was to be processed, and how the data set was to be processed. This

partial solution required the user to be far more familiar with the internal nature of the post

processing tools than was desired. MDL files were then constructed which provided the

information need by the VPG core to find the outputs and launch the post process application.

(In this case, the user had chosen a 2D/3D data plotting application called GNUplot.) Finally,

the VPG main GUI's "post process data analysis" button (see Figure 5) was used to query for

this MDL description and then launch the post process control application. The results were

post process visual plots of certain critical outputs from ATC, ARL, and TARDEC simulations

(shown in Figures 16 and 17).

Tr.irJti-g Err:r - ASHTOIMI irrxsd)

Raw Input Siyi; 1 —
Instr^meii-ztion OuTbut Sign; 1 —

Sir1' u
EJapicdTjnc's)

::aatjnj £i:o: - tisvausa (mrati)

-- wlnp TSif-al —
, InsTur ".encaioc Outp -iSli-al —,

]J\
1

I
4^ n{ r

K
^v <l»

E]3p>«jTjTic.;s;i

LiC ad Anjue -■ Äzim-üi (röräd)

^m^m^^^cm^^^^r^^:^
.tsd rir.fjc - H.i .£jc - i.t^a-on ;m.-ft

-1.S

■2

-2.5

3

V*/

•w«V,

\ ■V w
\ /

\S

,/n-v-v,

UA'V \,Ä \\,l
4N

30 40 50 6C
Elzpicd Tuns (i)

LO SC -tn 4TJ 53 OIL.

jSjI^S^B,
Gun'?'c3nbij ^rrcer - Azimui-(mrsdi

10 23 30 40 50 00

Click "OK" to return to luin sc

0 -

-a; ■
-a-

^okay,

ML ■ i> ^, IJM
ä

rs</
'%, Vl

Vi"

Figure 16. Gun Pointing Errors and Other Measurements From the ARL and ATC Models.

Although the post processing worked flawlessly, Project Focus demonstrated the need

for a complete and integrated approach to post processing. A standard data journalizing tool and a

robust set of post processing tools should be available to the user. These tools should minimize

39

the worry and hassle of data management and let the user concentrate on the business of the

simulation.

-11f

if' \,.'v'"* J *~*S*-'"'';!\\'i
: - a

;- .. ■. -- - .-. /*■ A. .'.. ■".■! •>_'\ .„ jv:„ ,. ., ."..„~\ .;.-.,:1
V '""i :-

:

: >;
EiV.«>-i..-V

v; «r

rsptmKsjmmtßinmm*~~'yF-^T~~ """""" - — — ——™ ^-r—~— ~-T—-■ —: .- .-:: ■■?qP

3
1
i

i

h

1 ?c '

! __. .. _ . . „

J:' v. V

|W.:.1Mlve.WWJIN«<Nrttf". ..; - __ - —_ —-»a
q: .m:\£+ ..'-'i*.

1 ::;;
3 i-

! :-:

1 ■•'*

~" \---^.., y--^/ -. ,-'-"■

^.V.-.-lTuv' ■;■ »:
■ "'• ' - ■.

- -

j
i

" 1 L :: ::c :.: jo ^ j, >:: ::: *:: «:; rt

Figure 17. Pitch, Roll. Yaw, and Other Measurements From the TARDEC Model.

4. ARCHITECTURE REQUIREMENTS

Before Project Focus, a list of preliminary requirements was generated. It was supposed

that these architectural requirements would satisfy the tester's needs. One of Project Focus's

objectives was to inspect these requirements in the light of having conducted a trial case scenario

using a prototype architecture. Following Project Focus, the original requirements were

reviewed. This section presents the results of this review process. For reference and historical

reasons, the original requirements are presented in their virgin state in Appendix D.

40

The intent of a requirements list is to provide a fundamental checklist that can be used as a

basis to examine the qualities of a product (which looks promising to achieve the vision for the

VPG).

The requirements list is divided into two levels: (a) a high functional level and (b) a lower,

technical level.

We believe these help define an environment that allows modeling and simulation software

components (loosely, models and data) to be organized in a consistent and cooperative

framework (architecture) that allows effective communications, interoperability, and

interchangeability among components.

4.1. Critical Functional Requirements

4.1.1. Testing and Training

The architecture shall provide seamless and user-oriented ways and means to design,

implement, and conduct engineering level testing and constructive force-on-force engagements for

operational and training exercises using modeling and simulations. This is the primary functional

requirement for the VPG interface architecture. All other architectural requirements in some way

or another relate to this requirement.

4.1.2. Interoperability

The architecture shall provide ways and means to achieve interoperability among models

and simulations.

4.1.2.1. Interchangeability

The architecture shall incorporate interfaces to provide for plug-and-play software

and hardware for models and simulations and their components.

4.1.2.2. Simulation Controls

The architecture shall provide simulation controls to coordinate and orchestrate

models and simulations into multiple simulation exercises or a larger single simulation.

4.1.2.3. Access

The architecture shall provide interfaces to facilitate access to models and simulations.

41

4.1.2.4. Incorporate Models

The architecture shall provide ways and means to incorporate "disaffected" models

and simulations. Disaffected models and simulations are legacy software and more generally,

models developed outside the structure of the VPG interface architecture described herein. These

are "alien" or unfriendly models.

4.1.3. Re-use

The architecture shall provide ways and means to reuse models and simulations and their

components.

4.1.4. Extendibility

The architecture shall provide ways and means to extend the architecture to incorporate

commercial off-the-shelf technologies (COTS) or Government-developed software tools.

4.2 Critical Technical Requirements

A. The architecture shall not be necessarily bound to a single machine. Users shall be

able to remotely access architecture procedures and services from various platforms.

B. The architecture shall not be specific to one hardware system (machine). That is,

the architecture should not be so tightly coupled to a particular vender's operating system and

hardware that it cannot be ported to other operating systems of a similar nature.

C. The architecture shall not impede or prevent distributed simulations across

hardware platforms. The architecture shall be capable of starting distributed portions of

applications that are already distributed. Additionally, the architecture shall be capable of

starting multiple simulations that are globally part of one exercise.

D. The architecture shall support load balancing. The architecture shall be capable of

monitoring and recording resource use and performance parameters of simulation components

during execution.

• The architecture shall be capable of arbitrating resource contention (i.e., with

respect to models, data, etc.) by means of various methods to include first come, first-served;

"round robin" time sharing; or a user-designated priority system.

42

E. The architecture shall allow simultaneous multiple simulations. The architecture

shall be capable of maintaining control of multiple simulations executed concurrently by multiple

users. These simulations may be stand-alone models or an integration of individual models

running on different machines with independent or synchronized simulation clocks. The

architecture shall have the ability to coordinate, execute, pause, suspend, monitor, save, resume,

iterate, record, and replay distributed and non-distributed simulations.

F. The architecture shall provide time synchronization services. These services shall

include real-time, non-real-time, and event-based time synchronization.

G. The architecture shall allow the inclusion or replacement of models and simulation

components without having to rebuild the architecture core program.

H. The architecture shall provide automated simulation communication services.

These services shall include the means for an individual user (i.e., simulation) to request a specific

data transport or to independently manage its own data transport.

1. The architecture shall be capable of external communication by means of
transmission control protocol/internet protocol (TCP/IP) protocols.

2. The architecture shall be capable of external communication by means of

distributed interactive simulation (DIS) protocols.

3. The architecture shall be capable of external communication by means of

RS232/RS422 serial ports.

4. The architecture shall support serial line internet/point-to-point protocol
(SLIP/PPP) and common modem protocols.

I. The architecture shall incorporate an interface description service to allow

simulation interfaces to be registered and documented with configuration and control mechanisms.

The interface description service shall provide the means for applications to request interface

descriptions of other applications to include the following data:

1. Input/output data descriptions to include data formats, data units, and data out-
of-range bounds.

2. Hardware and software requirements needed to run the model.

3. Known sites where the model can be run and what connectivity prerequisites
are needed.

43

4. Command line arguments that can be used to initiate execution.

5. Simulation time controls that are used by the model.

6. Metrics of fidelity that can be used to determine if the simulation is compatible.

7. Verification, validation, and accreditation (VV&A) certifications that have been
applied to the model.

8. Documentation describing the physics of the model.

J. The architecture shall provide a transparent and seamless I/O interface to logically

aggregate individual models and simulations into higher level components.

1. The architecture shall provide the end user with a display of the logical

connectivity of the overall simulation under the control of the architecture.

2. The architecture shall provide means for the end user to configure the overall

simulation (under the control of the architecture), as well as the components it encompasses.

K. The architecture shall provide on-demand, transparent terrain database services.

L. The architecture shall provide the means for configuration management of models

and simulations and their related data elements.

M. Security. The architecture's function shall not be disabled by attaching point-to-

point (hardware) security devices on the computer network.

N. Permissions. User authentication (by password or other acceptable means) shall be

required. File system elements (files, data, directories, devices, etc.) shall be owned by a single

user at any one time. That is, ownership of computer and file system elements shall never be

ambiguous in this multi-user multi-processing environment. Users shall be able to add (or

remove), read, and/or write permissions to any of their owned elements. Permission shall be at

least designatable for themselves, selected groups of users, or all other users.

5. SUMMARY

Practical virtual testing requires an environment in which simulations, data, procedures, (as

well as modeler and tester expertise and experience) can be easily merged. ARL and ATC jointly

developed a set of "first cut" functional requirements for such an environment. Using this

baseline, a prototype software architecture was designed and developed. During Project Focus,

44

several models of varying fidelity were applied in an exercise to demonstrate the proof of

principle of these architectural concepts.

Based on the results of Project Focus, the baseline requirements were reviewed and refined.

6. CONCLUSIONS

In the VPG vision, simulations, data, procedures, tester experience, simulation developer/

user expertise are merged into a cohesive and approachable system. Achieving this vision could

be greatly advanced by paying particular attention to the architecture aspects referred to in this

section.

• A mature simulation databasing capability is needed. This databasing capability must

extend to both simulations, their abilities, required inputs, intended use, as well as to all means of

simulation data (inputs and outputs) and configuration records.

In Section 3, we mentioned that by selecting a particular TOP, the tester was assured that

simulations applicable to that TOP would be available (and simulations that may not be

appropriate were hidden). This was both a benefit and a drawback since tools where not matured

enough to be able to conduct the extensive database parsing required to determine whether a tool

was suited for a particular purpose. The lesson here is that we need a more mature database as

well as database development tools in order to conduct the types of sophisticated procedures

envisioned for the VPG. Two examples are complicated meta-data queries and data mining. We

shall define meta-data queries to be searching through the types of data available (not the data

themselves). Data mining is a term used to described the concept of compiling a useful synopsis

from very general unorganized voluminous data sources.

Another place where mature data management tools can greatly enhance VPG testing is in

the form of data loggers. The post processing procedure conducted for Project Focus was an

unsatisfactorily manual procedure. What is needed is the capability to identify and keep track of

simulations' outputs (for use in later post process analysis). Furthermore, tools for conducting

the analysis should be highly integrated with the VPG environment. In this way, these tools can

best employ the data logs and be able to present analysis options to the tester (in a user-friendly

and highly automated manner).

• Establish a VPG users' needs process. A process needs to be established whereby VPG

needs are communicated to live/system test directors. The test director should be required to

45

satisfy these needs to the best of his or her ability (subject to requirements of the item being

tested).

The value of captured test data (for re-use in the VPG) can be severely compromised by

ignoring modeler's requirements. One notable example is the form in which positional

measurements are taken in the field. Historical live tests (especially vehicular) need to reference

geodetic coordinates. This is because the VPG terrain is tied to an earth coordinate reference

frame (universal transverse mercator [UTM] coordinate system, earth-centered coordinate

system, or other). It is recommended that, when it makes sense, all future field tests correlate

geometric field measurements to an earth-referenced coordinate system of some type.

Since it is anticipated that this shall not be the last recommended practice, we strongly

suggest that a process be established to communicate simulators' known needs to live test

designers. One possible means of documenting these recommendations is to reflect them in the

set of TOPs. In particular, suggestions should be incorporated in a revised TOP 3-2-602

(Vehicular Gun Stabilization Systems).

Note that documenting modeler's needs and ensuring that they are met by data collectors

will not guarantee that the VPG will be able to repeat the results of live tests. Too many

variations in physical test conditions (for the historical measurements) and assumptions made in

the algorithms and conditions (for the simulated results) often make side-by-side comparison

impractical. For these reasons, we do not ever expect "exact" matches between the real and

virtual worlds. However, directors of live tests should be made aware of procedures that can

enhance the usefulness of test measurements. Live test results and other field data remain

invaluable for confirming (validating) general trends and simulation results.

46

APPENDIX A

VPG DATABASE (DB) API PROCEDURES

47

INTENTIONALLY LEFT BLANK

48

VPG DATABASE (DB) API PROCEDURES

This appendix displays database level application program interface (API) procedure calls. The

VPG core architecture prototype developed for Project Focus was implemented in the "C" American

National Standards Institute (ANSI) programming language. Proper calling syntax for each procedure

is shown in either ANSI C or traditional (Kernigan and Ritchie) prototype forms.

The underlying database engine used in the Project Focus implementation was the distributed fact

base (DFB) database management system. One of the attractive features of DFB is that it is a distributed

database. The VPG database should be distributed in some manner (in the spirit of the architectural

requirements. However, it was unnecessary to use this feature during Project Focus. That is, during

Project Focus only one (centralized) database server was serving clients at any one time. DFB is

Department of Defense (DoD)-developed software, but just about any contemporary database engine

could be used. In the following procedure descriptions, when it is noted "DFB specific interpretation:",

this specifies that the comment that follows applies to the specific database engine used (in this case,

DFB).

1. db_open() 50
2. db_close() 50
3. db_is_connected() 50
4. db_get_DB_hostname() 50
5. db_obj_define() 50
6. db_pbj_create() 51
7. db_obj_remove() 51
8. db_obj_update() 51
9. db_obj_query() 52
10. db_obj_set_arg_retrieve() 52
11. db_obj_set_arg_define() 52
12. db_obj_set_arg_store() 53
13. db_obj_retrieve_args() 53
14. db_obj_retrieve_list() 54
15. db_obj_list_to_str() 54
16. db_copy_obj0 54
17. db_dup_obj() 54
18. db_obj_cmp_idO 55
19. dbjprintO 55
20. db_objid_to_str() 55
21. db_str_to_objid() 55
22. NULL_DB_Object() 56
23. dblfidtoobjO 56
24. db_freeDB_List() 56
25. db_free_DB_List_struct() 56
26. db_free_DB_Object_structO 57
27. db_obj_list_append_item() 57
28. db_notify_check() 57
29. db_notify_set() 57
30. db_notify_cancelO 58
31. notice_handlerO 58
32. dbljpkg_error() 58
33. dbl_do_synch_resp() 59

49

1. dbopenO.

Connect to a DFB. 'num_tries' specifies the number of times to try to connect before returning a
failure.

Returns -1 on failure.

Prototype Syntax:

int db_open(hostname,prog_name,num_tries)
char *hostname,*prog_name;
int num_tries;

2. db_close().

Command the DB to terminate. This routine should be used by programs that are terminating or
otherwise breaking their connection to the DB.

Prototype Syntax:

void db_close()

3. db_is_connected().

This routine returns TRUE if connected to the DB, FALSE otherwise.

Prototype Syntax:

int db_is_connected()

4. db_get_DB_hostname().

This routine returns the name of the machine that the DB is on for this connection. It returns
NULL is not connected to the DB.

NOTE: it is the calling routine's responsibility to free the memory pointed to by the return.

Prototype Syntax:

char * db_get_DB_hostname()

5. db_obj_define().

This routine defines the structure of an object in the database. For the DFB this is equivalent to
dkb_define(), where ther structure of a facttype is defined.

50

Returns: 0 on success, < 0 on failure.

Prototype Syntax:

int db__pbj_def ine (fact type, args, num_args)
char *facttype; /* Type of fact being defined. */
DB_Arg args[];
int num_args ;

6. db_obj_create().

This routine creates an object in the database. For the DFB, the object created is a fact of type
"facttype". db_obj_create() is responsible for creating the fact in the DB and returning a pointer
to the DB_Object that references it.

Prototype Syntax:

DB_Obj ect * db_obj_create(facttype,args,num_args)
char *facttype; /* Facttype of DFB fact to create.
*/
DB_Arg args[];
int num_args;

7. db_obj_remove().

This routine removes an object from the database that is identified via 'obj'.

Prototype Syntax:

void db_obj_remove(obj)
DB_Object *obj; /* Object to remove. */

8. db_obj_update().

Each DB_Arg contains the name of a field, the new value for the field, and the data type of the
field in a particular database record. db_obj_update() then takes the DB_Arg value pairs
identified by "args" and updates the data for each pair in the database object "db_obj".

DFB specific interpretation: (That is depending on what database engine is running under the
API, this procedure may behave differently).

Returns 0 on success, -1 otherwise.

Prototype Syntax:

int db_obj_update(args,num_args,db_obj)
DB_Arg args[];
int num_args;

51

DB_Object *db_obj;

9. db_obj_queryO.

Returns a list of database object identifiers. A database object is a fact or record. A database
object identifier is the "handle" to that object so that it may be referenced, or accessed, later,
'num' is set to the number of objects that are in the list.

Note that it is the calling routines responsibility to free the DB_Object that is returned.

DFB specific interpretation:

This routine queries the DFB for all facts of type "objjype" using the query string "query". It
returns a linked list of DB_Objects which contain the factid of each matching fact, "num" is set to
the number of items in the list, i.e., the number of facts that satisfied the query.

Prototype Syntax:

DB_Object * db_obj_query(obj_type,query,num)
char *obj_type,*query;
int *num;

10. db_obj_set_arg_retrieve().

Sets up the DB_Arg value pair associating the "name" of a database object field with a memory
location "data" of where to retrieve the value associated with "name", "type" indicates what type
data "name" represents.

DFB specific interpretation:

This routine sets up a DB_Arg structure for subsequent use by db_obj_get_args() to perform a
dkb_getfact and dkb_getvar to obtain the data for the fact field called "name".

Prototype Syntax:

void db_obj_set_arg_retrieve(DB_Arg *arg, char *name, void *data,
int type)

11. db_obj_set_arg_defineO.

Sets up the DB_Arg value pair to set the "name" of a database object field, "type" indicates what
type data "name" represents. This is used inconjunction with db_obj_define().

DFB specific interpretation:

52

This routine sets up a DB_Arg structure for subsequent use by db_obj_define() to create a
facttype definition.

Prototype Syntax:

void db_obj_set_arg_define(DB_Arg *arg, char *name, int type)

12. db_obj_set_arg_store().

Sets up the DB_Arg value pair associating the "name" of a database object field with a memory
location "data" of where to store the value associated with "name", "type" indicates what type
data "name" represents.

DFB specific interpretation:

This routine sets up a DBArg structure for subsequent use by db_obj_get_args() to perform a
dkb_getfact and dkb_getvar to obtain the data for the fact field called "name".

Prototype Syntax:

void db_obj_set_arg_store(DB_Arg *arg, char *name, void *data, int
type)

13. db_obj_retrieve_args().

Takes the DB_Arg value pairs identified by "args" and retrieves the data for each pair from the
database object "db_obj". Returns 0 if all value pairs were successfully retrieved, -1 if unable to
access "db_obj", and a bit mask reflecting the value pairs that could not be retrieved if all value
pairs were not retrievable. If no args are being retrieved return -2. Expects the 'value' field in the
DB_Arg structure to be a pointer to where to store the data.

DFB specific interpretation:

This routine performs a dkb_getfact on "db_obj" and a dkb_getvar for each DB_Arg. Each
DB_Arg contains the name of a field, the data type of the field, and a memory location of where
to store the value of the field that is gotten from the fact pointed to by "db_obj". If the data type
is a DF_STRING or DF_NAMREF, memory will be malloc'ed and value will be set to point to
it. It is the calling routine's responsibility to free the memory.

Prototype Syntax:

long db_obj_retrieve_args(args,num_args,db_obj)
DB_ArgL ist args;
int num_args ;
DB_Object *db_obj;

53

14. db_obj_retrieve_list().

This routine takes a DB_Object and list name and returns a pointer to a DBList linked list
containing the data values of the elements found in "list". On failure, for any reason, a NULL
pointer is returned, 'num' is set to the number of items in the list being returned, or -1 upon
failure (for an empty list, 'num' is 0).

It is the calling routine's responsibility to free the list - the routine db_freeDB_List() exists for
this purpose.

Prototype Syntax:

DB_List * db_obj_retrieve_list(DB_Object *db_obj, char *listname,
int *num)

15. db_obj_Hst_to_str().

This routine takes a DBList converts it into a string suitable for use in a DB_Arg for creating or
updating objects. A pointer to the string is returned. The calling routine is responsible for free'ing
the returned string.

Prototype Syntax:

char * db_obj_list_to_str(DB_List *list)

16. db_copy_obj0.

This routine copies the CONTENTS of one DB_Object, pointed to by "from_obj", into another
DBObject, "to_obj". It returns -1 if either DB_Object is NULL; returns 0 otherwise.

Prototype Syntax:

int db_copy_obj(to_obj, from_obj)
DB_Object *to_obj, *from_obj;

17. db_dup_obj0-

This routine duplicates the orig_obj and returns a pointer to the new copy of it.

Prototype Syntax:

DB_Object *&b_dup_obj(orig_obj)
DB_Obj ec t * or i g_obj;

54

18. db_obj_cmp_id().

This routine compares two DB_Objects to determine if they are the same. It is similar to bcmp(),
but bcmpO cannot be used because DB_Object is a structure that contains a "next" field and it is
not necessary that the "next" fields in two DB_Objects be identical. If either of the two objects
are NULL, returns -1.

Returns 0 if identical, non-zero otherwise.

Prototype Syntax:

int db_obj_cmp_id(objl,obj2)
DB_Obj ec t * obj1,* obj 2;

19. db_print().

Prints the message and the database object identifier.

DFB specific interpretation:

This routine prints the factid in "db_obj".

Prototype Syntax:

void db_print(msg,db_obj)
char *msg;
DB_Obj ec t * db_obj;

20. db_objid_to_strO.

This routine takes a DB_Object's obj_id and returns a pointer to an ASCII string representation
of it. Note that it is the calling routine's re- sponsibility to free the return string. If called with a
NULL DB_Object for 'db_obj' this routine returns a string for the NULL_DB_Object.

Prototype Syntax:

char * db_objid_to_str(db_obj)
DB_Obj ec t * db_obj;

21. dbstrtoobjidO»

This routine takes an ASCII string representation of a DBObject obj_id and returns a pointer to
a DB_Object that contains the converted DBObject obj_id. Note that it is the calling routine's
responsibility to free the memory pointed to by the return.

Prototype Syntax:

55

NOTE: Not callable as an API - used internally.

static DB_Object * db_str_to_objid(db_obj_str)
char * db_obj _s t r ;

22. NULL_DB_ObjectO-

This routine returns a pointer to a DB_Object whose 'obj_id' is 0. This
represents a NULL DB_Object.

Prototype Syntax:

DB_Obj ect *NULL_DB_Obj ec t()

23. dbl_fid_to_obj0.

This routine turns a DFB factid into a DB_Object. It is similar to db_str_to_objid(), except that
db_str_to_objid() takes an ASCII version of fact_id' not a DFB representation.

Prototype Syntax:

NOTE: Not callable as an API - used internally.

static DB_Object *dbl_f id__to_obj (fact_id)
dkb_factid_t fact_id;

24. db_freeDB_ListO.

This routine frees a linked list of DBJList structures.

Prototype Syntax:

void db_freeDB_List(DB_List *list)

25. db_free_DB_List_struct().

This routine frees the memory associate with a DBJList structure. It assumes the struct was
malloc'ed to begin with and the 'data' field references malloc'ed memory as well if the type is
DB_STRING, DBLIST, or DB_OBJECT.

Prototype Syntax:

void db_free_DB_List_struct(DB_List *list)

56

26. db_free_DB_Object_structO.

This routine frees the memory associated with a DB_Object structure. It assumes the DB_Object
was malloc'ed to begin with.

Prototype Syntax:

void db_free_DB_Object_struct(DB_Object *obj)

27. db_obj_list_append_itemO.

Append an item, "newltem", to a list, "listName", in the fact, "pObj".

Returns 0 on success, -1 on failure.

Prototype Syntax:

int db_obj_list_append_item(DB_Object *pObj, char *listName, void
*newltem, int type)

28. db_notify_check()-

This routine checks to see if the DB has sent notice of changes to information that is of interest
to the calling program. Such interest is registered with the DB via the db_notify() routine.

Note: in the DFB notices are referred to as triggers.

Returns 1 if a notice is pointed to by ret_notice, 0 if no notices, -1 if not connected to DB, and -2
if an error of some type is detected. It is the calling routines responsibility to free the
notice_q_item structure pointed to by 'ret_notice'.

Prototype Syntax:

int db_notify_check(ret_notice)
struct notice_q_item **ret_notice;

29. db_notify_set().

This routine enables the calling application program to register with the DB "interest" that it has
in changes to a particular type of record (fact) or more specifically certain fields within a record
(fact).

Note: for the DFB implementation of the DB this is referred to as setting triggers.

Returns: -1 on failure, 1 on success.

57

Prototype Syntax:

int db_notify_set(handle, obj_type, cond)
char *handle; /* String by which triggers are
identified. */
char *obj_type; /* Object type of interest. */
char *cond; /* Conditions that specify interest in
obj_type. */

30. db_notify_cancel().

This routine is for cancelling previous notification (trigger) requests. Notifications are identified
by their 'handle'.

Note: for the DFB implementation of the DB notifications are called triggers.

Prototype Syntax:

void db_notify_cancel(handle)

31. notice_handIer().

Called when triggers are pending on the DFB pkg connection. Triggers are queued for later
processing. The are de-queued in db_notify_check(). This is to try to avoid a messy situation
where a trigger might arrive (asynchronously) while this routine is blocking awaiting the arrival of
a synchronous DFB response - i.e., this routine issued a DFB command. The problem is that an
incoming trigger would be misinterpreted as the expected DFB response.

Prototype Syntax:

NOTE: Not callable as an API - used internally.

static void notice_handler(pc,buf,length)
struct pkg_conn *pc;
int length;
char *buf;

32. dbl_pkg_error().

Responds to MSG_ERROR or MSG_SYNREQ pkg message.

Prototype Syntax:

void dbl_pkg_error(type,buf,len)
int type,len;
char *buf;

58

33. dbI_do_synch_resp().

Complains about an unexpected DFB synchronous response.

Prototype Syntax:

void dbl_do_synch_resp(pc,buf)
struct pkg_conn *pc;
char *buf;

59

INTENTIONALLY LEFT BLANK

60

APPENDIX B

VPG API PROCEDURES

61

INTENTIONALLY LEFT BLANK

62

VPG API PROCEDURES

This section lists most of the general VPG API routines in the VPG core discussed in

Section 3.1.1.2 VPG Core: VPG API. The VPG core architecture prototype developed for Project

Focus was implemented in the "C" (ANSI) programming language. Proper calling syntax for each

procedure is shown in either ANSI C or traditional (Kernigan and Ritchie) prototype forms. This

appendix is not meant to be a tutorial; its purpose is to display the prototype API in order to present a

flavor for this VPG layer.

The naming convention used was to prologue VPG API system calls with "vpg_" followed by

an acronym alluding to the object or function serviced by that library. (For example, all software

functions manipulating the "tool" object would be called named "v^g_too_something" (e.g.,

vpg_tool_create(), vpg_tool_destroy(), etc.)

1. vpg_link_new() 65
2. vpg_link_free() ''.'.'.'.'.'.'.'.'.'.'.'.. 66
3. vpg_Ilist_new() 66
4. vpg_llist_free() 66
5. vpg_llist_size() 66
6. vpgllistaddheadO 66
7. vpg_llist_addtail() 67
8. vpg_llist_delete() 67
9. vpg_llist_head() 67
10. vpg_llist_tail() ZZZZ...ZZZZZ"'Z'Z''"'ZZ. 67
11. vpg_llist_istail() 67
12. vpg_llist_ishead() 67
13. vpg_llist_next() "..'.'.".".'"" 68
14. vpg_llist_previous() 68
15. vpg_llist_dup() 7.ZZIZZZZ\"""\"\"". 68
16. vpg_llist_ftnd() 68
17. vpg_llist_search() 68
18. vpg_llist_prmt() 69
19. vpg_mdl_getByNameO 69
20. vpg_mdl_getByKey() 69
21. vpg_mdl_getKey() \.""\""\\]\\"'.'.'.'. 69
22. vpg_mdl_getNameO 70
23. vpg_mdI_getExec() ..'.^ 70
24. vpg_mdl_getProgramPath()]"[70
25. vpg_mdl_getRunHost() 70
26. vpg_mdl_getExecPath() '. "' 71
27. vpg_mdI_getFileType() 71
28. vpg_mdl_get0utputlnput() 71
29. vpg_mdl_getGroups() 71
30. vpg_mdl_getArgs() _ 72
31. vpg_mdl_getRunDir() 72
32. vpg_mdl_setKey() 72
33. vpg_mdl_setName() 72
34. vpg_mdl_setExec() 73
35. vpg_mdl_setProgramPathO 73
36. vpg_mdl_setRunHostO 73
37. vpg_mdl_setExecPath() 74
38. vpg_mdl_setFileType() 74

63

39. vpg_mdl_set0utputlnput() 74
40. vpg_mdl_setGroups() 74
41. vpg_mdl_setArgs() 75
42. vpg_mdl_setRunDir() 75
43. vpg_scenModel_create() 75
44. vpg_scenModel_destroy() 76
45. vpg_scenModel_getRunHost() 76
46. vpg_scenModel_getRunName() 76
47. vpg_scenModel_getExecPath() 77
48. vpg_scenModel_getExec() 77
49. vpg_scenModel_getArgs() 77
50. vpg_scenModel_getRunDir() 77
51. vpg_scenModel_getGroups() 78
52. vpg_scenModel_getKey() 78
53. vpg_scenModel_getByKey() 78
54. vpg_scenModel_getScenario_R() 78
55. vpg_scenModel_getOriginal_R() 79
56. vpg_scenModel_getParseTree() 79
57. vpg_scenModel_getName() 79
58. vpg_scenModel_setScenario_R() 79
59. _vpg_scen_modelCreate() 80
60. _vpg_scen_modelDestroy() 80
61. vpg_scen_createO 80
62. vpg_scen_destroy() 81
63. vpg_scen_getScenarios() 81
64. vpg_scenj>etByKey() 81
65. vpg_scen_getByName() 81
66. vpg_scen_addModel() 82
67. vpg_scen_removeModel() 82
68. vpg_scen_getName() 82
69. vpg_scen_setName{) 82
70. vpg_scen_getModels() 83
71. vpg_scenjetModelsKeys() 83
72. vpg_scen_jetKey() 84
73. _vpg_scen_getModelsIds() 84
74. _vpg_scenGetModels() 84
75. vpg_sym_addSymbol() 85
76. vpg_sym_findSymbol() 85
77. vpg_sym_printSymTable() 85
78. vpg_sym_freeSymIdStruct() 85
79. _vpg_sym_checkChangeImpact() 86
80. _vpg_sym_getDBObj() 86
81. _vpg_sym_DBObjToSymId() 86
82. _vpg_sym_getSymIdStruct() 86
83. vpgjooldestroyO 87
84. vpg_tool_getToolList() 87
85. vpg_tool_getByName() 87
86. vpg_tool_getByKey() 87

87. vpg_tool_getName() 88
88. vpg_tool_getRunHost() 88
89. vpg_tool_getExecPath() 88
90. vpg_tool_getExec() 88
91. vpg_tool_getArgs() 89
92. vpg_tool_getRunDir() 89
93. vpg_tool_getGroups() 89
94. vpg_tool_getKey() 89
95. vpg_tool_getOutput_Input() 90
96. _vpg_tool_getToolListObject() 90

64

97. vpg_db_open() 90
98. vpg_db_close() 90
99. vpg_numObjects() 91
100. vpg_fileTransport() 91
101. vpglaunchToolO 91
102. old_vpg_launchTool() 92
103. vpg_free_vpgMDL_tO 92
104. vpg_free_vpgScenario_tO 92
105. vpg_free_vpgScenModel_tO 92
106. vpg_free_vpgTool_t() 92
107. _vpg_extractHostName() 93
108. _vpg_extractExecPathO 93
109. vpg_makeKey() 93
110. vpg_makeKeyShowFormat() 93
111. _str_substring_remove() 93
112. str_tolower() 94
113. vpg_util_createProg_Info() 94
114. vpg_util_freeProg_InfoO 94
115. vpg_printf_control(); 94
116. _vpg_err_channel_file() 95
117. _vpg_err_channel_string() 95
118. vpg_printf_fflushO 95
119. vpg_printf() 96
120. _vpg_error_integrity_checkO 96
121. _ypg_error0 96
122. _vpg_err_handle_errorO 97
123. vpg_perror() 97
124. _vpg_perror() 97
125. vpg_error^getErmo() 98
126. vpg_model_getListByGroup() 98
127. vpg_SL_addItem() 98
128. vpg_SL_removeItem() 99
129. vpg_SL_numItems() 99
130. vpg_SL_getItems() 99
131. vpg_SL_getCurrItem() 100
132. vpg_SL_getNthItem() 100
133. vpg_SL_setCurrItem() 100
134. vpg_mdl_duplicateMdl() 100
135. _vpg_SL_getObj() 101

1. vpg_link_new().

The VPG_LINK and VPG_LLIST libraries are a specialized adaptation of a general linked list. It
can be used for handling any data objects internally.

This routine creates a new vpgJLink. 'pobj' must be provided as input.

Prototype Syntax:

vpg_Link * vpg_link_new(void *pobj)

65

2. vpg_Iink_free().

Delete a vpg_Link pointed to by plink. This function is also responsible for freeing the object it
contains. The function to free Obj, (obj_free) is provided as input.

Prototype Syntax:

void vpg_link_free(vpg_Link *plink, void (*obj_free)(void *pobj))

3. vpg_Hist_newO.

The VPG_LINK and VPG_LLIST libraries are a specialized adaptation of a genral linked list. It
can be used for handling any data objects internally.

vpg_llist_new() creates a vpg_Llist structure and returns a pointer to it (or a NULL if unable to
create it).

Prototype Syntax:

vpg_Llist *vpg_llist_new()

4. vpg_llist_free().

Delete a vpg_Llist pointed to by pllist. This function is also responsible for the deletion of all the
vpg_links it contains and all the objects contained in vpgJLink's. pllist must be provided as input
and the function for deleting an object, (*obj_free), should also be provided.

Prototype Syntax:

void vpg_llist_free(vpg_Llist *pllist, void (*obj_free)(void
*pobj))

5. vpg_llist_size().

Get the number of vpgJLink's in the vpg_Llist pointed to by pllist.

Prototype Syntax:

int vpg_llist_size(vpg_Llist *pllist)

6. vpg_llist_addheadO.

Add a new vpg_Link in the vpg_Llist at the head

Prototype Syntax:

void vpg_llist_addhead(vpg_Llist *pllist, void *pobj)

66

7. vpg_llist_addtail().

Add a new vpg_Link in the vpg_Llist at the tail.

Prototype Syntax:

void vpg_llist_addtail(vpg_Llist *pllist, void *pobj)

8. vpg_llist_delete().

Delete a link from the Hist.

Prototype Syntax:

void vpg_llist_delete(vpg_Llist *pllist, vpg_Link *plink,void
(*obj_free)(void *pobj))

9. vpg_llist_head().

set the current link pointer pel to head phead.

Prototype Syntax:

void vpg_llist_head(vpg_Llist *pllist)

10. vpg_llist_tail().

Set the current link pointer pel to tail ptail.

Prototype Syntax:

void vpg_llist_tail(vpg_Llist *pllist)

11. vpg_llist_istail().

Check if the current pointer pel is pointing to the last link

Prototype Syntax:

int vpg_llist_istail(vpg_Llist *pllist)

12. vpg_Ilist_ishead().

check if the current pointer pel is pointing to the first link

Prototype Syntax:

int vpg_llist_ishead(vpg_Llist *pllist)

67

13. vpg_llist_next().

advance the current link pointer pel to point to the next link

Prototype Syntax:

void vpg_llist_next(vpg_Llist *pllist)

14. vpg_llist_previous().

Move the current link pointer pel to point to the previous link

Prototype Syntax:

void vpg_llist_previous(vpg_Llist *pllist)

15. vpg_llist_dup().

Duplicate a Hist.

Prototype Syntax:

vpg_Llist *vpg_llist_dup(vpg_Llist *pllist_orig, void
*(*obj_dup)(void *pobj))

16. vpg_llist_find().

Look for "lookfor" in the Hist. If found, returns a ptr to the link that contains it; if not returns a
NULL ptr.

note: an object match function must be provided.

Prototype Syntax:

vpg_Link *vpg_llist_find(vpg_Llist *pllist, void *lookfor, int
(*obj_match)(void *pobj, void *lookfor))

17. vpg_llist_search().

Search for "lookfor" in the Hist. If found, returns 1, otherwise a 0 is returned.

Prototype Syntax:

int vpg_llist_search(vpg_Llist *pllist, vpg_Link *lookfor)

68

18. vpg_llist_print().

Prototype Syntax:

void vpg_llist_print(vpg_Llist *pllist, void (*obj_print)(void
*pobj))

19. vpg_mdl_getByName().

This routine returns a list of MDLs whose name is "tName". The name field should be unique,
but that is not this routine's responsibility. If no is found with name "tName" then NULL is
returned.

Returns: a linked list of vpgMDLs, or NULL on failure.

Note: it is the calling routine's responsibility to free the vpgMDL structs that are returned. (This
will not release the instance of the vpgMDL in the DB.)

Prototype Syntax:

vpgMDL_t * vpg_mdl_getByName(char *tName)

20. vpg_mdl_getByKey().

This routine returns the MDL whose key is "tKey". The key field should be unique, but that is
not this routine's responsibility. If none is found with key "tKey" then NULL is returned.

Returns: a pointer to a vpgMDLt, or NULL on failure.

Note: it is the calling routine's responsibility to free the vpgMDL struct that are returned. (This
will not release the instance of the vpgMDL in the DB.)

Prototype Syntax:

vpgMDL_t * vpg_mdl_getByKey(char *tKey)

21« vPg_mdl_getKey().

This routine returns the "key" field from a vpgMDL object.

Returns: a pointer to a dynamically allocated string on success, NULL otherwise. Note: It is the
calling routine's responsibility to free the memory pointed to by the return value.

Prototype Syntax:

char * vpg_mdl_getKey(vpgMDL_t *mdl)

69

22. vpg_mdl_getName().

This routine returns the "MODEL_NAME" field from a vpgMDL object.

Returns: a pointer to a dynamically allocated string on success, NULL otherwise. Note: It is the
calling routine's responsibility to free the memory pointed to by the return value.

Prototype Syntax:

char * vpg_mdl_getName (vpgMDL_t *mdl)

23. vpg_mdl_getExec().

This routine returns the "Executable" field from a vpgMDL object.

Returns: a pointer to a dynamically allocated string on success, NULL otherwise. Note: It is the
calling routine's responsibility to free the memory pointed to by the return value.

Prototype Syntax:

char * vpg_mdl_getExec (vpgMDL_t *mdl)

24. vpg_mdl_getProgramPath().

This routine returns the "PROGRAM_PATH" field from a vpgMDL object. This field contains
a value that looks like: "@hostname:path". There are separate routines for extracting just the
"hostname" or the "path". This routine returns the entire value.

Returns: a pointer to a dynamically allocated string on success, NULL otherwise. Note: It is the
calling routine's responsibility to free the memory pointed to by the return value.

Prototype Syntax:

char * vpg_mdl_getPrograraPath(vpgMDL_t *mdl)

25. vpg_mdl_getRunHostO-

This routine returns the "Run Host" field from a vpgMDL object. The host is stored in the
PROGRAM_PATH field which looks like: "@hostname:path". This routine just returns
"hostname" from that string.

Returns: a pointer to a dynamically allocated string on success, NULL otherwise. Note: It is the
calling routine's responsibility to free the memory pointed to by the return value.

Prototype Syntax:

char * vpg_mdl_getRunHost <vpgMDL_t *mdl)

70

26. vpg_mdl_getExecPath().

This routine returns the "Executable Path" field from a vpgMDL object. The path is stored in the
PROGRAM_PATH field which looks like: "@hostname:path". This routine just returns "path"
from that string.

Returns: a pointer to a dynamically allocated string on success, NULL otherwise. Note: It is the
calling routine's responsibility to free the memory pointed to by the return value.

Prototype Syntax:

char * vpg_mdl_getExecPath(vpgMDL_t *mdl)

27. vpg_mdl_getFileType().

This routine returns the "File Type" field from a vpgMDL object.

Returns: a pointer to a dynamically allocated string on success, NULL otherwise. Note: It is the
calling routine's responsibility to free the memory pointed to by the return value.

Prototype Syntax:

char * vpg_mdl_getFileType (vpgMDL_t *mdl)

28. vpg_mdl_getOutpiitIiiput().

This routine returns the "OUTPUTJNPUT" field from a vpgMDL object.

Returns: a pointer to a dynamically allocated string on success, NULL otherwise. Note: It is the
calling routine's responsibility to free the memory pointed to by the return value.

Prototype Syntax:

char * vpg_mdl_get0utputlnput (vpgMDL_t *mdl)

29. vpg_mdl_getGroups().

This routine returns the "Groups" field from a vpgMDL object.

Returns: a pointer to a dynamically allocated string on success, NULL otherwise. Note: It is the
calling routine's responsibility to free the memory pointed to by the return value.

Prototype Syntax:

char * vpg_mdl_getGroups (vpgMDL_t *mdl)

71

30. vpg_mdl_getArgs().

This routine returns the "Arguments" field from a vpgMDL object.

Returns: a pointer to a dynamically allocated string on success, NULL otherwise. Note: It is the
calling routine's responsibility to free the memory pointed to by the return value.

Prototype Syntax:

char * vpg_mdl_getArgs(vpgMDL_t *mdl)

31. vpg_mdl_getRunDir().

This routine returns the "Run Directory" field from a vpgMDL object.

Returns: a pointer to a dynamically allocated string on success, NULL otherwise. Note: It is the
calling routine's responsibility to free the memory pointed to by the return value.

Prototype Syntax:

char * vpg_mdl_getRunDir(vpgMDL_t *mdl)

32. vpg_mdl_setKey().

This routine sets the "key" field of an mdl to be "newKey".

mdl - mdl handle
newKey - new key for mdl

Returns: 1 on success, 0 on failure.

Prototype Syntax:

int vpg_mdl_setKey(vpgMDL_t *mdl, char *newKey)

33. vpg_mdl_setName().

This routine sets the "MODEL_NAME" field of an mdl to be "newName".

mdl - mdl handle
newName - new name for mdl

Returns: 1 on success, 0 on failure.

Prototype Syntax:

int vpg_mdl_setName(vpgMDL_t *mdl, char *newName)

72

34. vpg_mdI_setExec().

This routine sets the "PROGRAM_EXECUTABLE" field of an mdl to be "newExec".

mdl - mdl handle
newExec - new executable for mdl

Returns: 1 on success, 0 on failure.

Prototype Syntax:

int vpg_mdl_setExec(vpgMDL_t *mdl, char *newExec)

35. vpgmdlsetProgramPathO.

This routine sets the "PROGRAMPATH" field of an mdl to be "newPath". This field contains
a value that looks like: "@hostname:path". There are separate routines for setting just the
"hostname" or the "path". This routine sets the entire value.

mdl - mdl handle
newPath - new program path for mdl

Returns: 1 on success, 0 on failure.

Prototype Syntax:

int vpg_mdl_setProgramPath(vpgMDL_t *mdl, char *newPath)

36. vpg_mdl_setRunHost().

This routine sets the "PROGRAM_PATH" field of an mdl to be "newPath_Host".
"PROGRAM_PATH" is actually a field that contains a value that looks like: "@hostname:path".
This routine sets only the "hostname" parth of the value.

mdl - mdl handle
newPath_Host - new program path hostname for mdl

Returns: 1 on success, 0 on failure.

Prototype Syntax:

int vpg_mdl_setRunHost(vpgMDL_t *mdl, char *newPath_Host)

73

37. vpg_mdl_setExecPath().

This routine sets the "PROGRAM_PATH" field of an mdl to be "new_path".
"PROGRAMPATH" is actually a field that contains a value that looks like: "@hostname:path".
This routine sets only the "path" part of the value.

mdl - mdl handle
new_path - new program path for mdl

Returns: 1 on success, 0 on failure.

Prototype Syntax:

int vpg_mdl_setExecPath(vpgMDL_t *mdl, char *new_path)

38. vpg_mdl_setFileTypeO-

This routine sets the "FILE_TYPE" field of an mdl to be "newFileType".

mdl - mdl handle
newFileType - new file type for mdl

Returns: 1 on success, 0 on failure.

Prototype Syntax:

int vpg_mdl_setFileType (vpgMDL_t *mdl, char *newFileType)

39. vpg_mdl_setOutputInput().

This routine sets the "OUTPUTJNPUT" field of an mdl to be "newOutputlnput".

mdl - mdl handle
newOutputlnput - new outputinput for mdl

Returns: 1 on success, 0 on failure.

Prototype Syntax:

int vpg_mdl_set0utputlnput(vpgMDL_t *mdl, char *newOutputlnput)

40. vpg_mdl_setGroups().

This routine sets the "GROUPS" field of an mdl to be "newGroups".

mdl - mdl handle
newGroups - new groups for mdl

74

Returns: 1 on success, 0 on failure.

Prototype Syntax:

int vpg_mdl_setGroups(vpgMDL_t *mdl, char *newGroups)

41. vpg_mdl_setArgs().

This routine sets the "ARGUMENTS" field of an mdl to be "newArgs".

mdl - mdl handle
new Args - new args for mdl

Returns: 1 on success, 0 on failure.

Prototype Syntax:

int vpg_mdl_setArgs(vpgMDL_t *mdl, char *newArgs)

42. vpg_mdl_setRunDir().

This routine sets the "RUN_DIR" field of an mdl to be "newRunDir".

mdl - mdl handle
newRunDir - new run directory for mdl

Returns: 1 on success, 0 on failure.

Prototype Syntax:

int vpg_mdl_setRunDir(vpgMDL_t *mdl, char *newRunDir)

43. vpg_scenModel_create().

This call uses the tool (or MDL) pointed to by aModel is used as the basis for creating a
"scenario model" fact in the database. The "key" field from "aModel" is used as the value for the
"orig_model_r".

The resulting "scenario model" handle returned can then be used to include the tool as part of the
tools run in a "scenario" (via the vpg_scen_addModel() call).

A unique key is generated (via vpgMakeKey()) an<^ assigned to the scenModel's "key" field. All
other fields are copied from the "aModel" object except for the "scenario_r" field which is not
assigned until the scenModel is attached to a particular senario (via the vpg_scen_addModel()
call).

75

Returns: handle to the new "scenario model" fact - success; NULL - failure.

Prototype Syntax:

vpgScenModel_t * vpg_scenModel_create(vpgMDL_t *aModel)

44. vpg_scenModel_destroy().

Deletes a "scenario model" fact from the DB. Any reference to it by its "scenario" fact (whose
"key" is in "scenario_r") must be removed by the application programmer.

This is easily accomplished by first calling vpg_scenModel_getScenario_R() to get the scenario
(if one exists) which uses this scenario model. Next a call to vpg_scen_RemoveModel() is made
to remove the scenario Model from the scenario. Lastly vpg_scenModel_destroy() is called to
delete the Scenario Model itself from the database.

Returns: 1 on success. 0 on failure.

Prototype Syntax:

int vpg_scenModel_destroy(vpgScenModel_t *aScenModel)

45. vpg_scenModel_getRunHost().

This routine returns the "Run Host" associated with a scenModel.

Returns: a pointer to a dynamically allocated string on success, NULL otherwise. Note: It is the
calling routine's responsibility to free the memory pointed to by the return value.

Prototype Syntax:

char * vpg_scenModel_getRunHost (vpgScenModel_t *scenModel)

46. vpgscenModelgetRunNameO»

This routine returns the "run_name" associated with a scenModel.

Returns: a pointer to a dynamically allocated string on success, NULL otherwise. Note: It is the
calling routine's responsibility to free the memory pointed to by the return value.

Prototype Syntax:

char * vpg_scenModel_getRunName(vpgScenModel_t *scenModel)

76

47. vpg_scenModel_getExecPath().

This routine returns the "Executable Path" associated with a scenModel.

Returns: a pointer to a dynamically allocated string on success, NULL otherwise. Note: It is the
calling routine's responsibility to free the memory pointed to by the return value.

Prototype Syntax:

char * vpg_scenModel_getExecPath(vpgScenModel_t *scenModel)

48. vpg_scenModel_getExec().

This routine returns the "Executable" associated with a scenModel.

Returns: a pointer to a dynamically allocated string on success, NULL otherwise. Note: It is the
calling routine's responsibility to free the memory pointed to by the return value.

Prototype Syntax:

char * vpg_scenModel_getExec(vpgScenModel_t *scenModel)

49. vpg_scenModel_getArgs().

This routine returns the "Arguments" associated with a scenModel.

Returns: a pointer to a dynamically allocated string on success, NULL otherwise. Note: It is the
calling routine's responsibility to free the memory pointed to by the return value.

Prototype Syntax:

char * vpg_scenModel_getArgs (vpgScenModel_t *scenModel)

50. vpg_scenModel_getRunDir().

This routine returns the "Run Directory" associated with a scenModel.

Returns: a pointer to a dynamically allocated string on success, NULL otherwise. Note: It is the
calling routine's responsibility to free the memory pointed to by the return value.

Prototype Syntax:

char * vpg_scenModel_getRunDir (vpgScenModel_t *scenModel)

77

51. vpg_scenModel_getGroups().

This routine returns the "Groups" associated with a scenModel.

Returns: a pointer to a dynamically allocated string on success, NULL otherwise. Note: It is the
calling routine's responsibility to free the memory pointed to by the return value.

Prototype Syntax:

char * vpg_scenModel_getGroups (vpgScenModel_t *sceriModel)

52. vpg_scenModel_getKey().

This routine returns the "key" associated with a scenModel.

Returns: a pointer to a dynamically allocated string on success, NULL otherwise. Note: It is the
calling routine's responsibility to free the memory pointed to by the return value.

Prototype Syntax:

char * vpg_scenModel_getKey(vpgScenModel_t *scenModel)

53. vpg_scenModeI_getByKey().

This routine returns the scenModel whose key is "tKey". The key field should be unique, but
that is not this routine's responsibility. If none is found with key "tKey" then NULL is returned.

Returns: a pointer to a vpgScenModel_t, or NULL on failure.

Note: it is the calling routine's responsibility to free the vpgscenModel struct that are returned.
(This will not release the instance of the vpgscenModel in the DB.)

Prototype Syntax:

vpgScenModel_t * vpg_scenModel_getByKey(char *tKey)

54. vpg_scenModel_getScenario_R().

This routine returns the key of the scenario referenced by the "scenariojr" field of a scenario
model.

Returns: a pointer to the key on success, NULL otherwise. Note: It is the calling routine's
responsibility to free the memory pointed to by the return value.

Prototype Syntax:

char * vpg_scenModel_getScenario_R(vpgScenModel_t *scenModel)

78

55. vpgscenModelgetOriginalRO-

This routine returns the key of the MDL (tool) referenced by the "orig_model_r" field of a
scenario model.

Returns: a pointer to the key on success, NULL otherwise. Note: It is the calling routine's
responsibility to free the memory pointed to by the return value.

Prototype Syntax:

char * vpg_scenModel_getOriginal_R(vpgSceriModel_t *scenModel)

56. vpg_scenModel_getParseTree()-

This routine returns the "parse_tree" associated with a scenModel.

Returns: a pointer to a dynamically allocated string on success, NULL otherwise. Note: It is the
calling routine's responsibility to free the memory pointed to by the return value.

Prototype Syntax:

char * vpg_scenModel_getParseTree(vpgScenModel_t *scenModel)

57. vpg_scenModel_getName().

This routine returns the "name" associated with a scenModel.

Returns: a pointer to a dynamically allocated string on success, NULL otherwise. Note: It is the
calling routine's responsibility to free the memory pointed to by the return value.

Prototype Syntax:

char * vpg_scenModel_getName(vpgScenModel_t *scenModel)

58. vpgscenModelsetScenarioRO-

set the "scenario_r" field for the given scenModel_t to the character string pointed to by
"key_str".

No checks are made as to the validity of the string being assigned to the field. It is up to the
caller to ensure that it the "key" of a valid scenario in the database.

returns 1 on success. 0 on failure.

Prototype Syntax:

int vpg_scenModel_setScenario_R(vpgScenModel_t *sm, char
*key_str)

79

59. _vpg_scen_modelCreate().

Create/Destroy a "scenario_model" fact in the data base. These two functions are used internally
in the API, so they are declared static.

modelKey - key to the model (same as the key to the corresponding mdl)

return values:
for "vpg_scen_modelCreate()M: fact handle - success; NULL - failure
for vpg_scen_modelDestroy()": NONE

Note: for "vpg_scen_modelCreate()", the corresponding "mdl" fact has to be identified and acces-
sed in order to retrieve info to fill out the "parsejxee", "run_host", "run_path" and "run_name"
fields. Also note: it is the responsibility of the calling function to add the scenario Id to the fact
an update the record in the database... (though this work break-down does not make sense).

Prototype Syntax:

NOTE: Not callable as an API - used internally in vpg_scenModel_create().

static vpgScenario_t *_vpg_scen_modelCreate(char *modelKey)

60. _vpg_scen_modeIDestroy().

static void _vpg_scen_modelDestroy(char *modelKey);

Destroy the scenario_model. Remove it from the database and free allocated components within
its structure. (Note: scenarior is not affected by this function.)

Prototype Syntax:

NOTE: Not Callable as an API - used internally in vpg_scenModel_destroy().

static int _vpg_scen_modelDestroy(vpgScenModel_t *sm)

61. vpg_scen_create().

Create a scenario fact in the database. A unique key is generated (via vpgMakeKeyO) and
assigned to the "key" field. The "name" field is instantiated with "scenName". All other fields are
uninitialized.

return value: handle to the "scenario" fact - success; NULL - failure.

Prototype Syntax:

vpgScenario_t * vpg_scen_create (char *sceriName)

80

62. vpg_scen_destroyQ.

Deletes a "scenario" fact from the DB. All the "scenariojnodel" facts associated with the
scenario must be deleted as well (using "vpg_scenModelDestroy()").

aScen - handle to the "scenario" fact to be deleted.

return value: NONE

Prototype Syntax:

void vpg_scen_destroy(vpgScenario_t *aScen)

63. vpg_scen_getScenarios().

This routine returns a list of scenarios from the DB. If none are found, then NULL is returned.

Returns: a linked list of vpgScenarios, or NULL on failure.

Note: it is the calling routine's responsibility to free the vpgScenario structs that are returned.
(This will not release the instance of the vpgScenario in the DB.)

Prototype Syntax:

vpgScenario_t * vpg_scen_getScenarios()

64. vpg_scen_getByKeyO«

This routine returns the scenario whose key is "tKey". The key field should be unique, but that
is not this routine's responsibility. If none is found with key "tKey" then NULL is returned.

Returns: a pointer to a vpgScenario_t, or NULL on failure.

Note: it is the calling routine's responsibility to free the vpgScenario_t struct that is returned.
(This will not release the instance of the vpgScenario in the DB.)

Prototype Syntax:

vpgScenario_t * vpg_scen_getByKey(char *tKey)

65. vpg_scen_getByName().

This routine returns a list of scenarios whose name is "sName". The name field should be unique,
but that is not this routine's responsibility. If none is found with name "sName" then NULL is
returned.

Returns: a linked list of vpgScenarios, or NULL on failure.

81

Note: it is the calling routine's responsibility to free the vpgScenario structs that are returned.
(This will not release the instance of the vpgScenario in the DB.)

Prototype Syntax:

vpgScenario_t * vpg_scen_getByName(char *sMame)

66. vpg_scen_addModeI().

Adds a scenario model to a scenario. Checks to see that scenjnodel is not already in the DB.

Associates the scenario model with this scenario (by having the "scenario_r" field of
"scenjnodel" point to the scenario supplied (e.g. "aScen")).

Returns: 1 on success, 0 if scenjnodel is already in scenario, and -1 on failure.

Prototype Syntax:

int vpg_scen_addModel(vpgScenario_t *aScen, vpgScenModel_t *
scen_model)

67. vpg_scen_removeModel().

Removes a model from a scenario. The model "aModel" is left untouched.

Returns: 1 on success, 0 on failure.

Prototype Syntax:

int vpg_scen_removeModel(vpgScenario_t *aScen, vpgScenModel_t
*aModel)

68. vpg_scen_getName().

This routine retrieves the "name" from the given "scenario" fact.

Returns: a pointer (char *) to the name on success, NULL (char *)0 otherwise. Note: It is the
calling routine's responsibility to free the memory pointed to by the return.

Prototype Syntax:

char * vpg_scen_getName(vpgScenario_t *aScen)

69. vpg_scen_setName().

This routine sets the "name" field of a scenario to be "newName".

82

aScen - scenario handle
newName - new name for scenario

Returns: 1 on success, 0 on failure.

Prototype Syntax:

int vpg_scen_setName(vpgScenario_t *aScen, char *newName)

70. vpg_scen_getModels().

This routine retrieves the "models" from the given "scenario" fact. The return value is a pointer to
a linked list of vpgScenModel_t structs.

Returns: a pointer to the first vpgScenModel_t in a linked list of vpgScenModels or NULL (if
the list is empty).

Note: it is the calling routine's responsibility to free the vpgScenModel_t structs that are
returned. This will not release the instance of the vpgScenModel_t in the DB. Use
vpg_free_vpgScenModel_t().

Prototype Syntax:

vpgScenModel_t * vpg_scen_getModels (vpgScenario_t *aScen)

71. vpg_scen_getModelsKeys().

This routine retrieves the "models" from the given "scenario" fact. The return value is a pointer to
a linked list of DB_List structures. The values in the structures are the keys of the models in the
in the scenario. To access the actual value within the structure one would access the "s" union
element of the "data" field. For example:

DBList *list;
char *key;

list = vpg_scen_getModelsKeys(aScen);
key = list->data.s; /* list->type == DB STRING */

Returns: a pointer to a linked list of DBList structs on success, NULL on failure or if the list is
empty.

Note: it is the calling routine's responsibility to free the DBJList structs that are returned. This
will not release the instance(s) of the scenario models from the DB.

Prototype Syntax:

DB_List * vpg_scen_getModelsKeys (vpgScenario_t *aScen)

83

72. vpg_seen_getKey().

This routine retrieves the "key" from the given "scenario" fact.

Returns: a pointer (char *) to the key on success, NULL (char *)0 otherwise. Note: It is the
calling routine's responsibility to free the memory pointed to by the return.

Prototype Syntax:

char * vpg_scen_getKey(vpgScenario_t *aScen)

73. _vpg_scen_getModelsIds().

This routine retrieves the "model ids" from the given "scenario" fact. The return value is a pointer
to a linked list of vpgScenModel_t structs.

Returns: a pointer to the first vpgScenModel_t in a linked list of vpgScenModels or NULL (if
the list is empty).

Note: it is the calling routine's responsibility to free the vpgScenModel_t structs that are
returned. This will not release the instance of the vpgScenModelt in the DB. Use
vpg_free_vpgScenModel_t().

Prototype Syntax:

static vpgScenModel_t *_vpg_scen_getModelsIds(vpgScenario_t
*aScen)

74. _vpg_scenGetModels().

DB_List *_vpg_scenGetModels(vpgScenario_t aSecn)

This routine retrieves the "models" from the given "scenario" fact. The Returns: a pointer to the
list (represented by a linked list of DBJList structures) on success, or NULL otherwise. Note: It
is the calling routine's responsibility to free the memory pointed to by the return. Use
db_freeDB_List().

Prototype Syntax:

NOTE: Not callable as an API - used internally

static DB_List *_vpg_scenGetModels(vpgScenario_t *aScen)

84

75. vpg_sym_addSymboI().

This routine adds "symbols" and an associated value to the symbol table. The symbol table
contains all variables that can be set through command line arguments, input files, programmatic
defaults, or client inputs. The format for 'sym_exp' is: "SYMBOL_NAME value". New
symbol_names are appended to the table, existing entries in the table are updated with the new
value, 'src' identifies the source of the symbol (see vpg.h for values). If the state of a symbol value
is STATIC the symbol value cannot be changed. If state is NONE, the state field is not changed.
This allows a symbol's state to be set once when it is initialized. Subsequent calls to change a
symbol's value do not need to know what state the symbol should be, they can simply set the state
to NONE which leaves the original setting unchanged.

Returns: 1 on success, <1 otherwise.

Prototype Syntax:

int vpg_sym_addSymbol(char *sym_exp, char *src, int state)

76. vpg_sym_findSymboI().

This routine searches the DB symbol table for 'symbol'. If found, it returns a pointer to a
symboMdentifer structure with the symbol info.

NOTE: It is the calling routine's responsibility to free the symbol_- identifier structure pointed
to by the return.

Prototype Syntax:

struct symbol_identifier * vpg_sym_findSymbol(char *symbol)

77. vpg_sym_printSymTabIe().

This routine prints the symbol table.

Prototype Syntax:

void vpg_sym_printSymTable()

78. vpg_sym_freeSymIdStruct().

This routine frees a malloc'ed symbol_identifier structure.

Prototype Syntax:

void vpg_sym_freeSymIdStruct(symid)

struct symbol_identifier *symid;

85

79. _vpg_sym_checkChangeImpact().

This routine checks for the impact of a changed parameter value. The effects of such a change could
be far reaching. This routine is only called once it has been determined that a value will change, but
BEFORE the change is made. So, symid is the old info and value, src and state is the new info. The
following are the parameters whose change needs to be acted on:

Prototype Syntax:

void _vpg_sym_checkChangeImpact(symid,value,src, state)

struct symbol_identifier *symid;
char *value, src;
int state;

80. _vpg_sym_getDBObj0-

This routine searches the DB for a symbol whose name matches 'sym_name'. It returns a pointer
to the DB_Object that matches, or NULL.

Prototype Syntax:

NOTE: Not callable as an API - used internally.

static DB_Object*_vpg_sym_getDBObj(sym_name)
char * sym_name;

81. _vpg_sym_DBObjToSymId0.

This routine converts a symbol DB object into a symbol_identifier structure.

Prototype Syntax:

NOTE: Not callable as an API - used internally.

static struct symbol_identifier *_vpg_sym_DBObjToSymId(db_obj)

DB_Obj ec t * db_obj;

82. _vpg_sym_getSymIdStruct().

This routine allocates memory (mallocs) and initializes a symboMdentifier structure. It returns a
pointer to the new structure.

Prototype Syntax:

NOTE: Not callable as an API - used internally.

static struct symbol_identifier *_vpg_sym_getSymIdStruct()

86

83. vpg_tool_destroy().

remove the tool (or mdl) pointed to by "tool".

Returns
1 on successful deletion.
0 on failure.

Prototype Syntax:

int vpg_tool_destroy(vpgTool_t *tool)

84. vpg_tooI_getToolList().

This routine returns a list of tools. In the VPG DB a tool is a program that can be started, or
launched, by VPG that provides a service for VPG, but which is not compiled directly into the
core VPG executable. Tools are actually just models.

Returns: a linked list of vpgTools, or NULL on failure.

Note: it is the calling routine's responsibility to free the vpgTool structs that are returned. (This
will not release the instance of the vpgTool in the DB.)

Prototype Syntax:

vpgTool_t * vpg_tool_getToolList()

85. vpg_tool_getByName().

This routine returns a list of tools whose name is "tName". The name field should be unique, but
that is not this routine's responsibility. If no is found with name "tName" then NULL is
returned.

Returns: a linked list of vpgTools, or NULL on failure.

Note: it is the calling routine's responsibility to free the vpgTool structs that are returned. (This
will not release the instance of the vpgTool in the DB.)

Prototype Syntax:

vpgTool_t * vpg_tool_getByName(char *tName)

86. vpg_tool_getByKeyO«

This routine returns the tool whose key is "tKey". The key field should be unique, but that is not
this routine's responsibility. If none is found with key "tKey" then NULL is returned.

87

Returns: a pointer to a vpgTool_t, or NULL on failure.

Note: it is the calling routine's responsibility to free the vpgTool struct that are returned. (This
will not release the instance of the vpgTool in the DB.)

Prototype Syntax:

vpgTool_t * vpg_tool_getByKey(char *tKey)

87. vpg_tool_getName().

This routine returns the NAME" field from a vpgTool object.

Returns: a pointer to a dynamically allocated string on success, NULL otherwise. Note: It is the
calling routine's responsibility to free the memory pointed to by the return value.

Prototype Syntax:

char * vpg_tool_getName(vpgTool_t *tool)

88. vpg_tooI_getRunHost().

This routine returns the "Run Host" associated with a tool.

Returns: a pointer to a dynamically allocated string on success, NULL otherwise. Note: It is the
calling routine's responsibility to free the memory pointed to by the return value.

Prototype Syntax:

char * vpg_tool_getRunHost(vpgTool_t *tool)

89. vpg_tool_getExecPath().

This routine returns the "Executable Path" associated with a tool.

Returns: a pointer to a dynamically allocated string on success, NULL otherwise. Note: It is the
calling routine's responsibility to free the memory pointed to by the return value.

Prototype Syntax:

char * vpg_tool_getExecPath(vpgTool_t *tool)

90. vpg_tool_getExecO«

This routine returns the "Executable" associated with a tool.

Returns: a pointer to a dynamically allocated string on success, NULL otherwise. Note: It is the
calling routine's responsibility to free the memory pointed to by the return value.

Prototype Syntax:

char * vpg_tool_getExec(vpgTool_t *tool)

91. vpg_tool_getArgs().

This routine returns the "Arguments" associated with a tool.

Returns: a pointer to a dynamically allocated string on success, NULL otherwise. Note: It is the
calling routine's responsibility to free the memory pointed to by the return value.

Prototype Syntax:

char * vpg_tool_getArgs(vpgTool_t *tool)

92. vpg_tool_getRunDir().

This routine returns the "Run Directory" associated with a tool.

Returns: a pointer to a dynamically allocated string on success, NULL otherwise. Note: It is the
calling routine's responsibility to free the memory pointed to by the return value.

Prototype Syntax:

char * vpg_tool_getRunDir(vpgTool_t *tool)

93. vpg_tool getGroupsf).

This routine returns the "Groups" associated with a tool.

Returns: a pointer to a dynamically allocated string on success, NULL otherwise. Note: It is the
calling routine's responsibility to free the memory pointed to by the return value.

Prototype Syntax:

char * vpg_tool_getGroups(vpgTool_t *tool)

94. vpg_tool_getKey().

This routine returns the "key" associated with a tool.

Returns: a pointer to a dynamically allocated string on success, NULL otherwise. Note: It is the
calling routine's responsibility to free the memory pointed to by the return value.

89

Prototype Syntax:

char * vpg_tool_getKey(vpgTool_t *tool)

95. vpg_tool_getOutput_Input().

This routine returns the "OUTPUT_INPUT" associated with a tool.

Returns: a pointer to a dynamically allocated string on success, NULL otherwise. Note: It is the
calling routine's responsibility to free the memory pointed to by the return value.

Prototype Syntax:

char * vpg_tool_getOutput_Input(vpgTool_t *tool)

96. _vpg_tool_getTooIListObject().

This routine returns the tool_list object from the DB. It currently only expects to find one.

Returns a pointer to the DB_Object on success, otherwise it returns a a NULL pointer.

NOTE: it is the calling routines responsibility to free the DB_Object that is pointed to in the
return. Free it using db_free_DB_Object_struct().

Prototype Syntax:

NOTE: Not callable as an API - used internally.

static DB_Object *_vpg_tool_getToolListObject()

97. vpg_db_open().

This routine manages connections to the VPG DB. It keeps a reference count of the number of
times a connection is established.

Prototype Syntax:

int vpg_db_open(char *host, char *prog, int num)

98. vpg_db_close().

This routine manages requests to close a connection to the VPG DB.

Prototype Syntax:

void vpg_db_close()

90

99. vpg_inimObjects().

This routine returns the number of objects in the list "obj_list".

Returns: an integer 0 or higher.

Prototype Syntax:

int vpg_numObjects(DB_Object *obj_list)

100. vpg_fileTransport().

This function is used for transferring files from one machine to another. It is a part of the
VPGcore services.

"filename" - Name of file to transfer (including path),
"host" - Name of host to transfer to.

Returns 1 on success, -1 otherwise.

Prototype Syntax:

int vpg_fileTransport(char *filename, char *host)

101. vpgJaunchToolO.

This routine is for starting up standalone programs that run externally to VPG. If'state' is SYNC
(as opposed to ASYNC) vpgJaunchTool waits for the prog being launched to terminate before
returning.

Launching tools is really the job of VPG Daemons. This routine determines which daemon is
responsible for launching the tool (prog->Run_Dir) and then it sends a "launch" message to that
daemon with all of the necessary info.

SYNC and ASYNC are defined in CORE/H/vpg.h.

Returns 1 on success, -1 otherwise.

Prototype Syntax:

int vpg_launchTool(int state, Prog_Info *prog)

91

102. old_vpg_launchTool().

This routine is for starting up standalone programs that run externally to VPG. If state' is SYNC
(as opposed to ASYNC) old_vpg_launchTool waits for the prog being launched to terminate
before returning.

SYNC and ASYNC are defined in CORE/H/vpg.h.

Returns 1 on success, -1 otherwise.

Prototype Syntax:

int old_vpg_launchTool(int state, Prog_Info *prog)

103. vpg_free_vpgMDL_tO-

Frees the vpgMDL_t struct pointed to by ptr.

Prototype Syntax:

void vpg_free_vpgMDL_t(vpgMDL_t *ptr)

104. vpg_free_vpgScenario_t().

Frees the vpgScenario_t struct pointed to by ptr.

Prototype Syntax:

void vpg_free_vpgScenario_t(vpgScenario_t *ptr)

105. vpg_free_vpgScenModeI_t().

Frees the vpgScenModel_t struct pointed to by ptr.

Prototype Syntax:

void vpg_free_vpgScenModel_t(vpgScenModel_t *ptr)

106. vpg_free_vpgTool_t().

Frees the vpgTool_t struct pointed to by ptr.

Prototype Syntax:

void vpg_free_vpgTool_t(vpgTool_t *ptr)

92

107. _vpg_extractHostName().

This routine extracts the hostname from a "PROGRAM_PATH" value. A "PROGRAM_PATH"
value looks like "hostname:path", where 'hostname' is optional. Therefore, 'hostname' is anything
that precedes a colon. If no colon is found, then there is no hostname.

Returns a pointer to the hostname on success, or NULL if no hostname is found.

Prototype Syntax:

char *_vpg_extractHostName(char *in_path)

108. _vpg_extractExecPath().

This routine extracts the pathname from a "PROGRAMPATH" value. A
"PROGRAM_PATH" value looks like "hostname:path", where 'hostname' is optional. The colon
is optional if there is no hostname.

Returns a pointer to the pathname on success, or NULL if no hostname is found.

Prototype Syntax:

char *_vpg_extractExecPath(char *in_path)

109. vpg_makeKey().

Return a uniq string that can be used as an indexing key in the vpg database.

NOTE: it is the calling routine's responsibility to free the key.

Prototype Syntax:

char * vpg_makeKey(void)

110. vpgmakeKeyShowFormatO-

vpg_makeKeyShowFormat() prints (to stdout) a table showing the known format(s) for (the)
vpgKey(s). See also: vpg_makeKey();

Prototype Syntax:

void vpg_makeKeyShowFormat(void)

111. _str_substring_remove()

Replace big_string with all of big_string minus the contents of sub_string.

93

RETURN 1 upon success.
otherwise if sub_string was not found, or could not be removed, then RETURN 0

Prototype Syntax:

int _str_substring_remove(char *big_string, char* sub_string

112. str_to!ower().

char * str_tolower(char *s);

return the string pointed to by s converting UPPERCASE to lowercase.

Prototype Syntax:

char * str_tolower(char *s)

113. vpg_util_createProg_Info().

Mallocs and initializes a Prog_Info structure.

Prototype Syntax:

Prog_Info * vpg_util_createProg_Info()

114. vpg_util_freeProg_Info().

This routine frees memory previously allocated for a Prog_Info structure.

Prototype Syntax:

void vpg_util_freeProg_Info(Prog_Info *prog)

115. vpg_printf_control();.

int vpg_printf_control(int msg_type, int on_off, FILE* destination);

An interface to allow applications to control VPG LIBRARY msg level & destination.

msg_type is one of:
VPG_ERR
VPG_WARN
VPG_STAT

on_offisoneof:
0 (turns off reporting all msgs of msgjype)

94

1 (turns on reporting message of msg_type)

destination if not NULL, will redirect and write all messages of type msg_type to the file pointed
to by destination. The default destination for all messages channels is stderr.

Returns 1 on success 0 on failure.

Prototype Syntax:

int vpg_printf_control(int type, int on_off, FILE*dest)

116. _vpg_err_channel_file().

Return file stream associated with "int channel" or stderr if none.

Prototype Syntax:

NOTE: Not callable as an API - used internally.

static FILE * _vpg_err_channel_file(channel)

117. _vpg_err_channel_string().

Return string associated with vpg (error) message channel "channel"
or the locally defined constant VPG_LIB_STRING if none.

Prototype Syntax:

NOTE: Not callable as an API - used internally.

static char * _vpg_err_channel_string(channel)

118. vpg_printf_fflush().

int vpg_printf_fflush(msg_channel)
channel is one of

VPG_ERR
VPG_WARN
VPG_STAT

Flushes the buffers for the channel associated with msg_channel,

On successful completion these functions return a value of zero. Otherwise EOF is returned.
For fflush(NULL), an error is returned if any files encounter an error.

Prototype Syntax:

int vpg_printf_fflush(int c);
int vpg_fflush(int channel); /* vpg_fflush is a synonym. */

95

119. vpg_printf().

int vpg_printf(msg_channel, fmt, args....)

Prints a message on a VPG Error channel. Defined default channels ("msg_channel") are:
VPGJERR
VPG_WARN
VPG_STAT

fmt is standard formatted print format (see printf())
args are optional variable arguments for formatted print.

Return value:
mimics vprintf (returns #of characters transmitted or -1 on err).

On successful completion these functions return a value of zero. Otherwise EOF is returned.
For fflush(NULL), an error is returned if any files encounter an error.

See also:

vpg_fflush() (vpg_printf_fflush()), vpg_printf_control()

Prototype Syntax:

int vpg_j5rintf (int channel, char *fmt, ...)

120. _vpg_error_integrity_check().

static int _vpg_error_integrity_check(error_no)

do sanity checks on the argument "error_no".

returns:
0 if error_no does not make sense, or other errors.
1 otherwise.

Prototype Syntax:

NOTE: Not callable as an API - used internally.

static int _vpg_error_integrity_check(error_no)

121. _vpg_error().

void_vpg_error(int vpg_msg_num, char *addedmsg)

report a known message number to vpg error system for processing.

96

vpg_msg_num is the numeric id of the error.

addedmsg is an additional string of text to be printed along with the system default message. The
system default message, (and addedmsg), are only printed when vpg_perror() is called.

if addedmsg = NULL, then just the system default message is printed (only after vpg_perror()
is called).

An internal VPG system error handling function is called for each known error (vpg_msg_num).

Prototype Syntax:

void _vpg_erro-r(int vpg_msg_num, char *addedmsg)

122. _vpg_err_handle_error().

static void _vpg_err_handle_error(Vpg_Msg_Id vpg_msg_num, char *moreinfo)

Called after testing for integrity of vpg_msg_num. this function prints the system msg associated
with vpg_msg_num (see vpg_perror()) and it executes

The only difference between vpg_perror() and if moreinfo != NULL, then it is assumed to be a
string msg and is printed to stderr.

Prototype Syntax:

NOTE: Not callable as an API - used internally.

static void _vpg_err_handle_error(Vpg_Msg_Id vpg_msg_num, char
*moreinfo)

123. vpg_perror().

void vpg_perror(char *s)

Print to stderr the last reported error (which was generated by a _vpg_error() call.

Prototype Syntax:

void ypg_perror(char *moreinfo)

124. _ypg_perror().

static void _vpg_perror_(Vpg_Msg_Id vpg_msg_num, char *moreinfo)

97

just print the system error message associated with "vpg_msg_num". If moreinfo != NULL, then
it is assumed to be a string msg and is printed to stderr.

Prototype Syntax:

NOTE: Not callable as an API - used internally.

static void _vpgjierror_(Vpg_Msg_Id vpg_msg_num, char *moreinfo)

125. vpg_error_getErrno().

int vpg_error_getErrno(void);

Returns the integer value of the last error generated.

The integer returned is not the same as the values defined in the unix intro(2). This value should
never be compare to a number (e.g. "3") Rather, compare the value with the enumerations defined
in vpg_err.h

See vpg_err.c for a list of errors numbers and messages.

e.g.:

iff vpg_error_getErrno() == V_EISCONN)
printff"socket in use");

Prototype Syntax:

int vpg_error_getErrno(void)

126. vpg_model_getListByGroupO-

Returns a list of models (DB_Objects) that belong to one of the specified groups of models.

Prototype Syntax:

DB_Object * vpg__model_getListByGroup(char *group_name)

127. vpg_SL_addItem().

The VPG Symbol List library (vpg_SL) can be used to maintain lists of objects.

Adds an item (a DB_Object) to the list. The current list is checked to see if the new object is in
it. If so the object is not added (duplicate objects cannot exist). Currently, this routine will find
the list. Future version may be passed the list to work with.

98

Returns: -1 on failure, 1 on success, 2 if item was already in list.

Prototype Syntax:

int vpg_SL_addItem(DB_Object *new_obj)

128. vpg_SL_removeItem().

Removes an item (a DB_Object) from the list. If the item being removed is the currently selected
item, then the current selection is set to NULL. Currently, this routine will find the list. Future
version may be passed the list to work with.

Returns: -1 on failure, 1 on success, 2 if item was not in list.

Prototype Syntax:

int vpg_SL_removeItem(DB_Object *remove_obj)

129. vpg_SL_numItems().

This routine returns the number of items in the selection list. Currently, this routine will find the
list. Future version may be passed the list to work with.

Returns: the number of items in the list or -1 upon failure.

Prototype Syntax:

int vpg_SL_numIterns()

130. vpgSLgetltemsO«

Returns the list of items in the selection list. Sets the arg 'num' to the number of items in the list,
or -1 on error. Currently, this routine will find the list. Future version may be passed the list to
work with.

Returns: a pointer to the list (represented by a linked list of DB_List structures) on success, or
NULL otherwise. Note: It is the calling routine's responsibility to free the return list. Use
db_freeDB_List().

Prototype Syntax:

DB_List * vpg_SL_getItems(int *num)

99

131. vpg_SL_getCurrItem().

Returns the current item from the list of items in the selection list. The current item is the item
most recently picked, selected, highlighted, or otherwise designated. Currently, this routine will
find the list. Future version may be passed the list to work with.

Returns: a pointer to a DB_Object upon success, otherwise NULL.

NOTE: it is the calling routine's responsibility to free the DB_Object pointed to by the return, if
it is not NULL.

Prototype Syntax:

DB_Object * vpg_SL_getCurrItem()

132. vpg_SL_getNthItem().

Returns the n'th item from the list of items in the selection list. Currently, this routine will find
the list. Future version may be passed the list to work with.

Returns: a pointer to a DB_Object upon success, otherwise NULL.

NOTE: it is the calling routine's responsibility to free the DB_Object pointed to by the return, if
it is not NULL.

Prototype Syntax:

DB_Object * vpg_SL_getNthItem(int n)

133. vpg_SL_setCurrItemO-

Sets the 'cur_selected_item' in a selection list. The current item is the item most recently picked,
selected, highlighted, or otherwise designated. If 'set_obj' is not in the selection list an error is
returned. To unset the item, 'set_obj' should be a NULL DB_Object pointer ((DB_Object *)0).
Currently, this routine will find the list. Future version may be passed the list to work with.

Returns: 1 on success, -1 on failure.

Prototype Syntax:

int vpg_SL_setCurrItem(DB__Object *set_obj)

134. vpgmdlduplicateMdlO.

This routine creates a copy of an "mdl" and returns a reference to the copy. The new mdl is
created in the DB and referenced via a DBObject structure.

100

Note: it is the calling routine's responsibility to free the DB_Object struct that is pointed to by
the return. (This will not release the instance of the DBObject in the DB.)

Prototype Syntax:

DB_Object * vpg_mdl_duplicateMdl(DB_Object *obj_to_duplicate)

135. _vpg_SL_getObj().

This routine returns the selectionjist object from the DB. It currently only expects to find one.

Returns a pointer to the DB_Object on success, otherwise it returns a NULL pointer.

NOTE: it is the calling routines responsibility to free the DB_Object that is pointed to in the
return. Free it using db_free_DB_Object_struct().

Prototype Syntax:

NOTE: Not callable as an API - used internally.

static DB_Object *_vpg_SL_getObj()

101

INTENTIONALLY LEFT BLANK

102

APPENDIX C

"VPG COMMAND" LANGUAGE SYNTAX

103

INTENTIONALLY LEFT BLANK

104

"VPG_COMMAND" LANGUAGE SYNTAX

The vpg_command command line interface by default receives its input from an HTTP

(world wide web) internet server. This is because it is linked to client libraries of the National

Computational Science Alliance (NCSA) HTTP daemon (HTTPd), which provide this capability.

Optionally, vpg_command can receive its input from the keyboard (or a file). Before operating

vpg_command, the VPG database must be launched and running. (This is because vpg_command

acts as a client to the VPG database server.) By default, vpg_command expects the database to be

running on the same host; however (and in the spirit of VPG architectural requirements for

distributed computing), an optional host may be specified with the "-d" command line option (see

section 3.1.2.2.2 HTTP server). The VPG database uses unique keys to identify data records

externally. These keys can be any text string but are similar to "KEYverSep96_385_0x803f279a_

511_842878187J0462_T and are usually proceeded by a "KEY =" identifier.

This appendix displays examples of syntactical construction for the implemented

commands recognized by vpg_command during Project Focus. It is not meant to be a rigorous

definition of the vpg_command language, but we think that the simple examples are straight-

forward enough to be self explanatory.

1. Define (build) a Scenario Model:

VPG_COMMAND - SCENARIOMODEL_DEFINE
BEGIN = SCENARIOMODEL_DEFINE
NAME = an instance of a scenario model.

the key that follows must be a TOOL'S key (an MDL's key).
KEY = key_for_the_mdl

END = SCENARIOMODEL_DEFINE

2. Define (build) a Scenario.

VPG_COMMAND = SCENARIO_DEFINE
NAME = my scenario name
BEGIN = ADD_MODEL

scenario Model keys follow, these are added to the
scenario

KEY = key 1
KEY = key2
KEY = key3

END = ADD MODEL

105

3. Delete a Scenario.

VPG COMMAND = SCENARIO DELETE
BEGIN - DELETE

keys for scenarios to be removed follow.
KEY = KEYverSep96 385 0x803f279a 511 842878187 20462 2
KEY - KEYverSep96 385 0x803f279a 511 842878150 20459 2
KEY = KEYverSep96 385 0x803f279a 511 842878033 20423 2

END = DELETE

4. Delete a Scenario Model.
-

VPG COMMAND = SCENAPJOMODEL DELETE
BEGIN = DELETE

keys for scenarios Models to be removed follow:
KEY = KEYverSep96 385 0x803f279a 511 842878187 20462 1
KEY = KEYverSep96 385 0x803f279a 511 842878150 20459 1
KEY = KEYverSep96 385 0x803f279a 511 842878033 20423 1

END = DELETE

5. Delete a Tool (MDL).

VPG COMMAND = TOOL DELETE
BEGIN = DELETE

keys for Tools (MDLs) to be removed follow:
KEY = KEYverSep96 385 0x803f279a 511 842878187 20462 0
KEY = KEYverSep96 385 0x803f279a 511 842878150 20459 0
KEY = KEYverSep96 385 0x803f279a 511 842878033 20423 0

END = DELETE

6. List Tools. Lists all VPG TOOLs (MDL's) and their keys.

VPG_COMMAND = TOOL_LIST

7. List Scenario Models. Lists all Scenario Models and their keys.
*

VPG_COMMAND = SCENARIOMODEL_LIST -

8. List Scenarios. Lists all Scenarios and their keys.

VPG_COMMAND = SCENARIOJLIST

106

9. Execute a Scenario. (Run a given scenario or scenarios).

VPG_COMMAND = SCENARIO_EXECUTE
BEGIN = SCENARIO_EXECUTE

keys for scenarios to follow
KEY = KEYverSep96_385_0x803f279a_511_842878187_20463_0

END = SCENARIO EXECUTE

107

INTENTIONALLY LEFT BLANK

108

APPENDIX D

ORIGINAL ARCHITECTURAL REQUIREMENTS

109

INTENTIONALLY LEFT BLANK

110

ORIGINAL ARCHITECTURAL REQUIREMENTS

The intent of the original requirements was to fulfill the perceived needs of the tester in

a virtual environment. The requirements were generated by experienced testers, simulation/model

builders, and users thereof. In addition to attempting to repair or alleviate the drawbacks of

modeling and simulation of the past, the requirements list was developed to

1. Provide the capability to validate weapon system simulations;
2. Allow interoperability, interchangeability, and reuse of VPG elements and model

components; and
3. Comply with DoD architectural standards and guidance as they develop.

These requirements are a mixture of high level functional requirements, technical objectives, and

specific solutions to foreseen needs. The requirements are displayed as shaded text. Each

requirement is justified by a rationale. Many of the requirements include a further explanation to

clarify the requirement's meaning. This stated, we now present the list of VPG requirements

preceding Project Focus.

ATC Required Capabilities for the VPG Architecture

1. The architecture shall be distributed.

Explanation: By distributed, it is meant that components of the architecture do not necessarily
have to be bound to one machine. Users shall be able to access (remotely or otherwise)
architecture procedures and services from various platforms. Additionally, the architecture shall
not be specific to one hardware system (machine). That is, the architecture should not be so
tightly coupled to a particular vender's operating system and hardware that it cannot be ported
to other operating systems of a similar nature. (For example, if the architecture operates in a
"UNIX-like" operating system, it should reasonably portable to other "UNIX-like" operating
systems.)

Rationale: The distributed nature of the architectures adds to the user's (tester's) flexibility and
overall usefulness and attractiveness. Portability is important as it will allow the exploitation of
computer hardware advances.

2. A) The architecture shall support distributed processing at the M&S level
for those M&S applications that can benefit from distributed processing.

Explanation: Some M&Ss are a capable of subdividing their tasks and processing duties in a way
that each portion can be processed by different (distributed) system resources. The architecture
will be able to be used to start distributed portions of applications that are already distributed.

Ill

Another aspect is that the architecture shall be able to be used to start multiple simulations that
are globally part of one exercise.

Rationale: Sometimes it is advantageous to use all the computing assets available (especially
when real-time processing is necessary). If a simulation has distributed processing capabilities,
the architecture should be able to take advantage of this capability.

See also: requirements 15,17d, 18

2. B) The architecture shall support load balancing.

Explanation: Load balancing is when computer system resources (especially CPU usage) are
balanced among processors in the distributed environment.

Rationale: Efficiency - especially to support real-time simulations.

Notes: Each simulation may or may not have internal load balancing. (For example, ModSAF
will balance CPU load among platforms in an exercise with other platforms that are also running
ModSAF.) In cases such as this, the architecture cannot do much to prevent (or support) load
balancing. However, a global capability to control CPU resources of remote systems should be
supported.

3. A) The architecture shall allow simultaneous multiple simulations.

Explanation: The architecture needs to be able maintain control of multiple simulations
concurrently executing. Each of these simulations may consist of numerous individual models
accessing a variety of data resources. The resources and models may be configured and
maintained by various users of the VPG. It is important that individual user ownership of data,
model, and other resources be maintained. Individual users must be able to set access
permissions and restrictions for all owned resources. These restrictions must be strictly
enforced.

Rationale: It is expected that multiple simulations will be run concurrently by multiple test
directors (VPG users). Executing of simulations should not (except by design) intrude, interrupt,
or otherwise interfere with the other executing simulations.

3. B) These simulations may be stand-alone or an integration of individual
models running on different machines with independent or synchronized
simulation clocks.

Explanation: "Stand-alone" means the simulation seeks and accesses its own input data,
initializes and writes to its own output destinations, and otherwise communicates with no other
"simulation."

Rationale: All simulations have a way of maintaining their internal sense of "time." Models
interacting with each other absolutely must maintain some form of simulation clock synchroniza-

112

tion. We think that this requirement implies that the architecture itself should have available
some form of simulation synchronization timing service.

4. The architecture shall allow the inclusion or replacement of models and
simulation components without having to rebuild the architecture core
program.

Explanation: "Rebuilding" the architecture core implies major modifications of the fundamental
source code that manages the architectural services, or even minor changes that require the
architecture to be shut down, re-compiled, and replaced with the newly rebuilt version. Such
modifications should only occur during distribution revision updates of the VPG architecture. If
they are required whenever a model is incorporated into the VPG, then there is something
fundamentally incorrect with the architecture's design. It is conceivable that occasionally minor
modifications of an architectural sub-process might help integrate a simulation to make it
compatible with the architecture or other simulations using the VPG, but this should be the
exception rather than the rule.

Rationale: It is expected that multiple users will be accessing the architecture simultaneously. It
will likely be an unbearable burden on some user's schedule if other users are shutting down the
VPG, recompiling and re-installing it, in order to get their simulation "up and running."
Furthermore, users should not have to be burdened with the detailed understanding of the
architectural internal workings normally required to recompile and install the fundamental
architecture. Furthermore, incorrectly installing or configuring a multi-user system (such as the
VPG architecture) could lead to security holes, effectively corrupting or destroying the hard work
of others. This type of operation should be a strictly privileged access procedure, not executable
by the casual user.

5. A) The architecture shall provide a scripting interface to construct and
execute simulations.

Explanation: "Scripting" is a means of keyboard input that includes typing according to a defined
syntax language the desired commands and having those commands executed interactively or in
"batch" mode. A "scripting interface" is a tool that will make scripting easier by doing providing
services such as syntax checking, on-line help, etc. In addition to the graphic user interface
detailed in Requirement 17, a scripting mechanism should be available which duplicates many (if
not all) services available through the GUI.

Rationale: Once familiar with a syntax language for executing typically available procedures via
architectural services, many users find it convenient to build scripts. Numerous GUI steps can
be compiled into scripting files. These script files may facilitate executing large batch jobs during
which, parametric variations are conducted on simulation initial conditions.

113

5. B) This interface shall facilitate automated simulation communication.

Explanation: Data elements, inputs, outputs, should flow freely form one simulation to another.
The mechanism by which this occurs should be selectable by the user or left to the architecture to
decide which is the best means to transport the data. For example, the user might specify that
two simulations (which are capable of doing so) shall be communicating on a particular
networking port via UDP2 . On the other hand, the user might just specify that certain outputs
from one model are to be used for certain inputs to another model and let the architecture decide
how to conduct the data transport.

Rationale: This is a convenience to the implementer who is installing a virtual test scenario on
the VPG. It adds flexibility by allowing a variety of communication means (those supported by
the architecture and those not).

6. A) The architecture shall not prevent a simulation application from
directly interfacing to other simulation applications or resources (as may
be necessary for performance requirements).

Explanation: Communication means not supported by the architecture by means of a
convenience service, but for which simulations are capable, shall not be purposely blocked by the
architecture unless the communication interferes with the architecture's stability/integrity.

Rationale: This is a convenience to the implementer who is installing a simulation system on the
VPG. It shall minimize the time required to install some simulations—at the possible cost of
future simulation component re-use.

6, B) The architecture shall be capable of maintaining a description of the
interface, even if the ability to monitor or control the interface cannot be
provided.

Explanation: In a well-documented model that is highly integrated into the VPG, all its required
interfaces will be documented (described) in some manner. The architecture should support the
description of all INPUT/OUTPUT requirements—even those requirements that specify
heretofore unknown data types or transport medium.

Rationale: A description of the model's interfaces is vital and necessary to assist in a model's re-
use. Users not familiar with a particular model could be aided if the architecture can inform them
about particular interface requirements ofthat model, even if the architecture cannot support
those requirements. The ability to describe as yet unknown data objects and communication
means is important for further explanation of VPG capabilities.

7. A) The architecture shall be capable of external communication by means
of TCP/IP and DIS protocols.

2 UDP - Universal Datagram Protocol.

114

Explanation: This means that convenient procedures shall be available, which allow simulations
to use these protocols.

Rationale: These are popular simulation communication protocols.

7. B) Additionally, the architecture shall be capable of providing
communication services through RS232/RS422 serial ports.

Explanation: Convenient procedures shall be available, which allow applications to use these
input/output media.

Rationale: These are popular communication protocols especially for data collection, hardware in
the loop (HIL), and instrumentation monitoring.

7. C) Both SLIP/PPP connections and simple modem protocols shall be
supported.

Explanation: Convenient procedures shall be available, which allow applications to use these
network extension tools.

Rationale: This will expand the availability of VPG services to computers and workstations not
directly connected to the network on which the VPG is operating.

8. The architecture shall support H.320 video conferencing and T.120 multi-
point data conferencing.

Explanation: These protocols are transparent to a TCP/IP network when bundled in internet
protocol packets under such systems as the Virtual Internet Backbone for Multicast IP
(MBONE). This does not imply that required hardware (cameras, microphones, video cards,
etc.) are supplied any more than the CPUs, disk spaces, memory etc., required to run the base
VPG architecture are supplied. It merely means that if the recommended and supported
hardware and host environment are available, then they will be supported by VPG "tools" to
access these items or capabilities (in this case, video conferencing).

Rationale: Building simulations (and even analyzing existing simulations) is often a collaborative
effort. Video conferencing (VTC) is a tool that can be used to support these efforts.
Furthermore, VTC is one of the more taxing activities on a network's bandwidth. If the network
has the capacity to support VTC, then it should surely be able to support other (less taxing)
activities, such as marker boards, audio conference sessions, etc.

9. The architecture shall provide a transparent and seamless I/O interface.

Explanation: Transparent and seamless refers to the quality that not much "human" intervention
is required when the input and output interfaces for a simulation are sufficiently described for the
architecture. For example, given that the architecture is able to execute and manipulate two
models "A" & "B" selection of inputs and outputs. Suppose that model B requires terrain of a

115

specified format as an input. Suppose that model A can provide three terrain databases, each of
which satisfies model B's requirements, then the architecture may require the user to select from
one of these three databases. After that, the architecture "takes care of everything else." That is,
because the rest of the things needed to be done in order to execute each model have been
sufficiently described, the architecture is able to execute B transport its terrain output to (where
and when it is needed by) A.

Rationale: Ease of use and configuration "sanity checking." The architecture could warn when
unsupported input types or formats are about to be force fed to a simulation.

10. The architecture shall provide on-demand, transparent data import and
export facilities for data, models, and terrain databases.

Explanation: This refers to specific tool sets or library procedures that are specific to the three
mentioned areas: data, models, and terrain databases. Data can be thought of as primarily
input providers (although the provider itself might be a model or simulation). Models primarily
refer to simulations (which normally require some form of data). Terrain databases are chosen
because they are often very central to ground vehicle testing (which is a primary focus of ATC).

Rationale: It is expected that these areas will require specialized support or will benefit from
such support.

11. The architecture shall accommodate multiple levels of fidelity of models
and terrain databases.

Explanation: Models will have an inherent fidelity level associated with them according to certain
criteria. Thus, when assembling a test scenario, the tester will be able to choose from among
higher and lower fidelity simulations, which all model the same phenomena. This will help the
tester to conduct a reasonable balance of simulation strengths in order to apply the proper trade-
offs to meet his or her needs.

Rationale: Simulations and data come with a broad variety fidelity trade-offs, to say the least.
The architecture should not only adjust to this fact but take advantage of it.

12. The architecture shall support hardware in the loop (HGUL) simulations
concurrently with software simulations.

Explanation: Many of the synchronizing controls needed to allow concurrent communication
between disparate simulations are the same (though their physical interfaces may vastly differ).
Therefore, it should not matter to the architecture whether a model is a software simulation, HIL,
or even a simple data file. Passing data from and to these models when and where the data are
needed requires similar high level control procedures. The architecture shall supply these
required procedures that will support HIL.

Rationale: Hardware systems are often used for testing purposes, both to provide stimulus for
other devices and as the test items themselves. Interfacing a physical (hardware) device with

116

software simulations is a common practice and can take advantage of the strengths of both types
"models."

13. A) The architecture shall incorporate an MDL. (Note. The MDL is intended
to provide a description of a model of simulation usable by the VPG architecture
and other simulation environments [including stand-alone applications] and to
serve as a bridge between the architecture and these environments).

Explanation: In order for the architecture to provide the types of services we have already
mentioned, the architecture needs to know a lot about the objects (models or data) it intends to
service. Some of things it needs to know are what the object can "do" (model output), what it
"needs to do it" (model input), what is the object's intended purpose, and perhaps what are the
strengths and weaknesses of the object. This knowledge and the ability to apply it to achieve the
functionality which has been described (Requirements 4, 9,10, 11, 12, 13, 14) is what is really
required. The "MDL" is just a particular implementation of this concept (its mention does not
really belong in a list of requirements). The other section of Requirement 13 (13B, 13C, 13D,
13E) affirms the type of qualitative information that should be retrievable using such a concept.
Any other concept that can fulfill the vision of this concept is a likely candidate to satisfy this
requirement.

Rationale: A means by which the architecture can achieve the stated objectives and services
needs to be implemented.

13. B) The MDL shall also be capable of providing detailed hardware and
resource requirements.

Explanation: See Requirements 15,11.

Rationale: Intended to allow intelligent test scenario assembly.

13. C) The MDL shall also provide known out-of-range parameters for the
output data.

Explanation: A model (or simulation) is just that. It is a (hopefully faithful) reproduction of the
original. More precisely, it is an imperfect replication of certain aspects of the original.
Normally, only the aspects of interest are modeled. It is usually impossible, and not necessary,
to model the phenomenon's whole universe. Inseparable from the model are assumptions
(implicit or explicit) made concerning known (and as yet unknown) factors that can impact the
behavior or process being modeled. When internal or external parameters stray beyond the limits
of these assumptions, the behavior of the model may become less faithful than otherwise.
Indeed, the model may become unstable and fail catastrophically.

Ideally, all initial "safe operational" states should be known. If known, they should be described
in some manner (MDLs or otherwise). However, this would be the exception; instead, it is more
likely that only certain conditions are known which will cause the model to behave out of range
of its intended purpose (and most faithful replication of the modeled phenomena. In either event,

117

there should be a means by which safe (or unsafe) operating conditions can be documented and
used in a way that facilitates re-use of the models and/or its components.

Rationale: Intended to facilitate error checking and boundary conditions. Designed to help during
the process of interconnecting various models (building them into a test scenario).

13. D) The MDL shall be available for review and editing as human readable
text.

Explanation: The intent here is that whatever the means used to describe models (their intended
purpose, parameters, boundary conditions, fidelity limits, and the like), it shall be understandable
by a person wishing edit or review it. It makes sense to use a "texf'-based language syntax to
model traits. This is because the text can then be edited by hand. As a future alternative, a GUI
or other editor's assistant tool could be built on top of this base language.

Rationale: Intended to facilitate debugging data/model descriptions.

13. E) The MDL shall provide the necessary descriptions of models at varying
levels of fidelity/level of detail to address problems relative to
"uniqueness of models" and "too much detail."

Explanation: See Requirements 11 & 15. Uniqueness of models? What is that? "Too much
detail" means too much fidelity is provided in areas where the user's test scenario does not
require it.

Rationale: Intended to allow intelligent test scenario assembly.

14. A) The architecture, upon receipt of a "save simulation" command shall
save the state of the simulation and issue a save simulation command to
all external computing platforms that are part of the overall simulation.

Explanation: This is stated as a specification. However, the intent is to require the architecture
to support a capability whereby one may maintain some form of control of remote components
(presumably during a simulation exercise). At its most basic level, this reverts to the ability to
start, stop, and save, load, and resume a loaded simulation. Note. The requirement is that the
"command" is issuable. This means that the architecture sends the command only. The
simulation must then correctly execute that command.

Rationale: The architecture should have a built-in support facility to coordinate, execute, save,
and resume the distributed simulations of a test scenario. This is because it is often necessary to
suspend or stop a test. This is particularly true when integrating virtual and "live" systems (or
other HIL). Coordinating starts and stops in this case is often non-automated and it should not
be overly burdensome to implement. Even when not integrating the live and virtual worlds, it is
often necessary to save the state of a simulation. Of course, being saved is of little use if the
saved state cannot be reloaded into the model and the simulation resumes at that point.

118

14. B) The architecture shall be able to load and restart a saved simulation to
include issuing reload and restart commands to external computing
platforms.

Explanation: See 14A.

Rationale: The architecture should have a built-in support facility to coordinate, execute, save,
and resume the distributed simulations of a test scenario.

14. C) The restart of each simulation component shall be capable of being
relegated to a different computing platform than was executed before the
save simulation command.

Explanation: See 14A.

Rationale: The architecture should have a built-in support facility to coordinate, execute, save,
and resume the distributed simulations of a test scenario.

15. The architecture shall support the capability of a dedicated platform
(Resource Manage, RM) for the resource use optimization of connected
resources. (Notes: That is, requesting architectures could communicate with
the RMifone existed rather than with individual external instantiations of the
architecture. The RMand the services that it provides are not, however, a
necessary component for the architecture to perform as required herein.)

Explanation: This relates to the load balancing (Requirement 2). The RM is a means to perform
efficient distribution of resources. If a test director is defining a test scenario "offline," he or she
has no knowledge whether a certain resource will be available at the time the test is conducted.
The RM will be able to arbitrate resource contention and the most optimal use of resources at the
time the test scenario is conducted.

Rationale: Efficiency - especially to support real-time simulations.

16. The architecture shall support the connectivity and integration to
documentation, analytical, and data visualization services for M&Ss.

Explanation: There are a large number of superior documentation tools (word processors, spread
sheets, drawing programs) analytical tools (statistics packages, database management system
[DBMS], engineering tools) and data visualization programs/libraries (2/3D plotting programs,
GIS, polygonal and solid modeling environments). It would be wasteful to attempt to produce
lesser quality duplicates of these available capabilities. The architecture should have "hooks"
built in to attach and (at least partially) integrate such utilities.

Rationale: Tools such as these are likely to be used in any event. It makes sense to integrate
them into the environment as much as is practical.

119

17. A) The architecture shall support a highly user-oriented interactive GUI
to construct, execute, and monitor simulations.

Explanation: GUIs are nice for some people.

Rationale: Casual users will likely find the VPG more accessible if those procedures most often
executed are presented in a GUI environment. Casual and new users will be able to immediately
produce useful work without having to know every capability or memorize a particular syntax.

17. B) The interactive interface shall provide a display of the logical
connectivity of the overall simulation under the control of the resident
architecture.

Explanation: Most people gain a better concept of simulation connectivity by looking at a pictorial
map ofthat connectivity rather than by lengthy listings or textual descriptions of the same. The
architecture should show those unions (both before and during test scenario execution).

Rationale: One of the primary procedures foreseen for the VPG is the operation of piecing together
simulation components or modeling them in a test scenario mosaic. Therefore, it is important to
present the user with as clear a picture of the couplings as possible.

17. C) The interface shall be capable of monitoring and recording the real-
time performance and execution of all model-level components of a
simulation including resource usage (CPUs, processes, disks,
instrumentation, etc.)

Explanation: See Load balancing #2.

Rationale: The VPG user should be able to decide (when appropriate) what systems will be used to
run certain applications, especially in the event that some systems would otherwise be overbur-
dened. These stated metrics (CPUs, processes, disks, instrumentation) and other system
resource measurements are indicators of a system's overall capacity to accept more processing
burden.

18. The architecture shall support resource contention arbitration (i.e., with
respect to models, data, etc.) by means of user-selectable criteria to
include first come, first served; round robin time sharing; or a user-
designated priority system.

Explanation: The intent is for the architecture to support resource contention at some level by
some method(s). By their nature, certain devices and resources can only process service requests
serially.

Rationale: It is expected that multiple simulations will be run concurrently by multiple test
directors (VPG users). The architecture must therefore support some form of handling this
situation in a reasonable manner.

120

APPENDIX E

ACRONYMS AND TERMS

121

INTENTIONALLY LEFT BLANK

122

ACRONYMS AND TERMS

AML ARC/INFO macro language
API application programmer's interface
ARL U.S. Army Research Laboratory
ASCII American standard code for information exchange
ATC U.S. Army Aberdeen Test Center
AUS A Association of the United States Army
CGI common gateway interface
CLI command line interface
COTS commercial off-the-shelf technologies
DB database
DBMS database management system
DFB distributed fact base
DIS distributed interactive simulation
DWB designer's workbench
DXF drawing exchange format
GIS geographic information system
GNUplot (not an acronym) a computer application for drawing 2D and 3D graphics
GUI graphic user's interface
HEAT high explosive antitank
HIL hardware in the loop
HTML hypertext markup language
HTTP hypertext transport protocol
I/O input and output
IP internet protocol
KE kinetic energy
M&S models and simulations
MDL model description language
ModSAF modular semi-automated forces
PPP point-to-point protocol
SLIP serial line internet protocol
TCP/IP transmission control protocol (over) internet protocol
TDB terrain database
TDS terrain database server
TECOM U.S. Army Test and Evaluation Command
TIN triangulated irregular network
TOPs test operations procedures
TP A technology program annex
UDP user datagram protocol
UNIX (not an acronym) an operating system
VPG virtual proving ground
VTC video teleconference
W&A verification, validation, and accreditation
WWW world wide web

123

INTENTIONALLY LEFT BLANK

124

NO. OF
COPIES ORGANIZATION

ADMINISTRATOR
DEFENSE TECHNICAL INFO CENTER
ATTN DTICDDA
8725 JOHN J KINGMAN RD STE 0944
FTBELVOIR VA 22060-6218

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRLCSALTA

RECORDS MANAGEMENT
2800 POWDER MILL RD
ADELPHIMD 20783-1197

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRLCILL

TECHNICAL LIBRARY
2800 POWDER MILL RD
ADELPHIMD 207830-1197

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRL CS AL TP

TECH PUBLISHING BRANCH
2800 POWDER MILL RD
ADELPHIMD 20783-1197

US ARMY TACOM
ATTN AMSTA TR D (JOHN WELLER)
BLDG 215 MAIL STOP 157
WARREN MI 48397-5000

FISCHER FRANCIS TREES & WATTS INC
ATTN WEIQUNZHOU
200 PARK AVENUE
NEW YORK NY 10166

HQDA
DAMO FDQ
DENNIS SCHMIDT
400 ARMY PENTAGON
WASHINGTON DC 20310-0460

CECOM
SP & TRRSTRL COMMCTN DIV
AMSEL RD ST MC M H SOICHER
FTMONMOUTHNJ 07703-5203

PRIN DPTY FOR TCHNLGY HQ
US ARMY MATCOM
AMCDCGT M FISETTE
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

NO. OF
COPIES ORGANIZATION

1 PRIN DPTY FOR ACQUSTN HQS
US ARMY MATCOM
AMCDGA D ADAMS
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

1 DPTY CG FOR RDE HQS
US ARMY MATCOM
AMCRD BG BEAUCHAMP
5001 EISENHOWER AVE
ALEXANDRIA VA 22333-0001

1 DPTY ASSIST SCY FOR R&T
SARDTT TRILLION
THE PENTAGON
WASHINGTON DC 20310-0103

1 OSD
OUSD(A&T)/ODDDR&E(r) J LUPO
THE PENTAGON
WASHINGTON DC 20301-7100

1 INST FOR ADVANCD TCHNLGY
THE UNIV OF TEXAS AT AUSTIN
PO BOX 202797
AUSTIN TX 78720-2797

1 DUSD SPACE
1E765 J G MCNEFF
3900 DEFENSE PENTAGON
WASHINGTON DC 20301-3900

1 USAASA
MOAS AI W PARRON
9325 GUNSTON RD STE N319
FTBELVOIRVA 22060-5582

1 CECOM
PM GPS COL S YOUNG
FTMONMOUTHNJ 07703

1 CPS JOINT PROG OPC DIR
COL J CLAY
2435 VELA WAY STE 1613
LOS ANGELES AFB CA 90245-5500

1 ELECTRONIC SYS DJV DIR
CECOM RDEC
JNEEMELA
FTMONMOUTHNJ 07703

125

NO. OF
COPIES ORGANIZATION

3 DARPA
L STOTTS
JPENNELLA B KASPAR

3701 N FAIRFAX DR
ARLINGTON VA 22203-1714

NO. OF
COPIES

1

SPCL ASST TO WING CMNDR
50SW/CCX
CAPT P H BERNSTEIN
300 O'MALLEY AVE STE 20
FALCON AFB CO 80912-3020

USAF SMC/CED
DMA/JPO MISON
2435 VELA WAY STE 1613
LOS ANGELES AFB CA 90245-5500

US MILITARY ACADEMY
MATH SCI CTR OF EXCELLENCE
DEPT OF MATHEMATICAL SCI
MDNA MAJ DON ENGEN
THAYER HALL
WEST POINT NY 10996-1786

APPLIED RESEARCH ASSOCIATES INC
ATTN MR. ROBERT SHANKLE
219 W BEL AIR AVENUE SUITE 5
ABERDEEN MD 21001

SFA INC
FREDERICK MFG DIVISION
ATTN RICHARD MARVEL
20 S WISNER ST
FREDERICK MD 21701

ORGANIZATION

COMMANDER
WHITE SANDS MISSILE RANGE
ATTN STEWS IDD R (MARIO CORREA)
WHITE SANDS NM 88002

PET COORDINATOR (VIRGINIA TO)
PROGRAMMING ENV AND TRAINING
939 I BEARDS HILL ROAD SUITE 193
ABERDEEN MD 21001

NE PARALLEL ARCHITECTURES CENTER
ATTN DR GEOFFREY FOX
111 COLLEGE PLACE
SYRACUSE UNIVERSITY
SYRACUSE NY 13244-4100

MS MARIE M G DERICO
COMPUTER SPEC/RSCH ANALYST
US MILITARY ACADEMY
OFC OF ARTIFICIAL INTELLIGENCE

ANALYSIS & EVALUATION
WEST POINT NY 10996

TMAS
BLDG 345 SOUTH (DAVID EDMISTON)
SSAE ASM TMA PA
PICATINNY ARSENAL NJ 07806-5000

US ARMY TACOM
ATTN AMSTA TR S (TIM BAILEY)
MAIL STOP 157
WARREN MI 48397-5000

ABERDEEN PROVING GROUND

DIRECTOR
US ARMY REDSTONE TECH TEST CENTER
ATTN STERT TE C (CHARLES CROCKER)
REDSTONE ARSENAL AL 35898-8052

COMMANDER
US ARMY DUGWAY PROVING GROUND
ATTN STEDP TD SP (DR LYMAN CONDIE)
DUGWAY PROVING GROUND
DUGWAY UT 84022

COMMANDER
US ARMY ELECTRONIC PROVING GROUND
ATTN STEWS EPG TT (DANIEL SEARLS)
FORTHUACHUCA AZ 85613-7110

DIRECTOR
US ARMY RESEARCH LABORATORY
ATTN AMSRLCI LP (TECH LIB)
BLDG 305 APGAA

COMMANDER HQ TECOM
ATTN AMSTE TM T

(DR DAVE BROWN)
RYAN BLDG

COMMANDER HQ TECOM
ATTN AMSTE CD

(RAYMOND G POLLARD III)
RYAN BLDG

US ARMY AVIATION TECH TEST CENTER
ATTN STEATCO (LARRY EAGERTON)
FORTRUCKER AL 36362-5276

126

NO. OF
COPIES ORGANIZATION

5 COMMANDER
US ARMY ABERDEEN TEST CENTER
ATTN STEAC CO (COL BAILER)

STEAC TD (JAMES FASIG)
STEAC TE (HARRY CUNNINGHAM)
STEAC TEF (PAUL OXENBERG)
STEAC RM C (ANDREW MOORE)

BLDG 400

20 US ARMY RESEARCH LABORATORY
ATTN AMSRLWMP MAJ M SMITH

AMSRLWTWE J LACETERA
AMSRL WT WE G SAUERBORN (15 CYS)
AMSRLWTWE TR PERKINS
AMSRLWTWE P CORCORAN
AMSRL IS CS DR A MARK

BLDG 120

8 US ARMY ABERDEEN TEST CENTER
ATTN STEAC TE F A SCRAMLIN

STEAC TE F R GAUSS
STEAC TE I JSCHIMMINGER

BLDG 400

127

INTENTIONALLY LEFT BLANK

128

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate tor Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

September 1997
3. REPORT TYPE AND DATES COVERED

Final

4. TITLE AND SUBTITLE

Project Focus: A Study ofVirtual Proving Ground Software Architecture Requirements
6. AUTHOR(S)

Sauerbom, G.C. (ARL); Smith, K.G. (ARL); Scramlin, A.W., Shankle, R.R., Gauss, R.W. (ATC);
Zhou, W. (CSC); Perkins, T.R., Corcoran, P.E. (ARL); Weiler, J. (TACOM); Marvel, R.W. (SFA);
Schimminger, J.P. (ATC)

5. FUNDING NUMBERS

PR: 1L1622618AH80

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
Weapons & Materials Research Directorate
Aberdeen Proving Ground, MD 21010-5066

8. PERFORMING ORGANIZATION
REPORT NUMBER

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
Weapons & Materials Research Directorate
Aberdeen Proving Ground, MD 21010-5066

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

ARL-TR-1429

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

The virtual proving ground (VPG) is a concept being developed within the U.S. Army Test and Evaluation Command to
harness the power of state-of-the-art sophisticated modeling and simulation technologies to augment and enhance test and
evaluation in support of product acquisition. VPG is a cohesive and comprehensive capability for testing concepts, virtual
prototypes, hardware prototypes, subsystems, and full systems. A broad, far-reaching, and diverse set of capabilities is
envisioned within the VPG. Critical to the successful implementation of the VPG is an architecture able to support or enable
those capabilities. A major function of the VPG architecture will be to integrate dissimilar heterogeneous engineering level
models and simulations of prototype and production hardware and the synthetic environments in which they operate.

In 1996, the U.S. Army Aberdeen Test Center and the U.S. Army Research Laboratory jointly conducted "Project Focus" to
help determine the architectural requirements that support the VPG concept. This report contains a description of Project Focus
and the architectural requirements that resulted from it.

14. SUBJECT TERMS

requirements
simulation
software architechture

software reuse
virtual proving ground

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

15. NUMBER OF PAGES

140
16. PRICE CODE

20. LIMITATION OF ABSTRACT

NSN 7540-01-280-5500 129 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Sid. 239-18
298-102

