
RL-TR-97-52 
In-House Report 
August 1997 

THEORIES AND APPROACHES TO 
ELECTROMAGNETIC TRANSMISSION IN 
NON-ISOTROPHIC MATERIALS 

Dawn Cryer 

19971007 221 
APPROVED FOR PUBL/C RELEASE; DISTR/BUT/ON UNLIMITED. 

Rome Laboratory 
Air Force Materiel Command 

Rome, New York 



This report has been reviewed by the Rome Laboratory Public Affairs Office (PA) and 
is releasable to the National Technical Information Service (NTIS). At NTIS it will be 
releasable to the general public, including foreign nations. 

RL-TR-97-52 has been reviewed and is approved for publication. 

APPROVED: 

J.  LUVERA 
Chief, Electronics Systems Engineering Division 
Electromagnetics & Reliability Directorate 

FOR THE DIRECTOR:    VvlwiV fco/lA 

JOHN J. BART, Chief Scientist 
Reliability Sciences 

If your address has changed or if you wish to be removed from the Rome Laboratory 
mailing list, or if the addressee is no longer employed by your organization, please notify 
Rome Laboratory/ERST, Rome, NY 13441. This will assist us in maintaining a current 
mailing list. 

Do not return copies of this report unless contractual obligations or notices on a specific 
document require that it be returned. 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway  Suite 1204, Arlington, VA  22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1.   AGENCY USE ONLY (Leave blank) 2.   REPORT DATE 

August 1997 

3.   REPORT TYPE AND DATES COVERED 

In-House 
4.  TITLE AND SUBTITLE 

THEORIES AND APPROACHES TO ELECTROMAGNETIC TRANSMISSION IN 
NON-ISOTROPHIC MATERIALS   
6.   AUTHOR(S) 

Dawn Cryer 

7.   PERFORMING ORGANIZATION NAME(S| AND ADDRESS(ES) 

Rome Laboratory/ERST 
525 Brooks Road 
Rome, NY 13441-4505 

9.   SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

Rome Laboratory/ERST 
525 Brooks Road 
Rome, NY 13441-4505 

5.   FUNDING NUMBERS 

PE-62702F 
PR - 2338 
TA-03 
WU-1Q 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

RL-TR-97-52 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

RL-TR-97-52 

11. SUPPLEMENTARY NOTES 

Rome Laboratory Project Engineer:  David O. Ross/ERST/(315)330-7624 

12a. DISTRIBUTION AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) 

Advanced composite materials are used extensively for commercial and military aircraft applications. This paper 
reviews numerous approaches and theories used for evaluating electromagnetic transmission through a variety of 
composite materials classes. The types of composite materials discussed are 1) graphite/epoxy composites; 2) chiral 
composites; 3) omega paniculate composites; 4) quasioptic composites;  and 50 dielectric composites.  Due to the 
availability of open literature references,  the primary focus is constrained of the first two classes (graphite/epoxy and 
chiral composites).  Topics discussed include AC circuit simulation programs, phase-correction modeling, and wave 
propagation theory. 

14. SUBJECT TERMS 

EM interactions, Em theory, composite materials 

15. NUMBER OF PAGES 

48 
16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 

UL 
Standard Form 298 (Rev. 2-89) (EG) 
Prescribed by ANSI Std. 239.18 
Designed using Perform Pro, WHS/DIOR, Oct 94 



ABSTRACT 

Advanced composite materials are used extensively for commercial and military 
aircraft applications. This paper reviews numerous approaches and theories used for 
evaluating electromagnetic transmission through a variety of composite materials classes. 
The types of composite materials discussed are: 1) graphite/epoxy composites; 2) chiral 
composites; 3) omega paniculate composites; 4) quasioptic composites; and 5) dielectric 
composites. Due to the availability of open literature references, the primary focus is 
constrained of the first two classes: graphite/epoxy and chiral composites. Topics 
discussed include AC circuit simulation programs; Phase-correction modeling; Wave 
propagation theory. 
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INTRODUCTION 

Natural electromagnetic (EM) radiation produced from surrounding environments 
and radio frequencies emitted from man-made avionics sources interrupt the command and 
communication signals necessary for desired combatant devices. Knowledge due to 
meticulous, persistent research has produced state of the art construction of aircraft 
component systems with advanced composite materials. The achievement of structural and 
economical goals, such as weight and cost, and electromagnetic compatibility are sought 
through such theoretical basis as cascading matrices and magnetoelectric coupling. Hence, 
a theoretical investigation of advanced composite behavior in response to various radio 
frequencies will certainly lead to superior performance. 

The various types of composite materials under investigation are: 1) graphite/epoxy 
composites; 2) artificially manufactured chiral composites; 3) quasioptic composites; 4) 
omega particulate composites; and 5) dielectric composites. Graphite/epoxy composites 
and chiral composites will dominate the focus of this review due to the limited open 
literature discussion of the other three materials classes. 

In order to accurately approximate the controlling properties that effect the 
electromagnetic response of composite materials, tests must be performed to determine the 
values of the electromagnetic parameters. Although the various tests are not discussed, the 
controlling electromagnetic parameters of interest for graphite/epoxy composites are the 
dielectric permittivity, magnetic permeability and resistance (or conductivity). Once the 
essential electromagnetic parameters values are known, effective computational analysis is 
possible. 

The controlling electromagnetic parameters for chiral composites are the effective 
permittivity, effective permeability and the effective chirality parameter. The study of chiral 
composites in relation to electromagnetic waves has been relatively new due to naturally 
occurring chirality observed during optical activity. Chiral, "left" or "right" handedness, 
refers to the natural response of a microscopic particle to rotate polarized light. Since light 
waves are electromagnetic waves, precise structural and electromagnetic analysis can be 
used to predict of the phase change induced by chiral composites. 

This paper contains four major sections. Section I contains the "Foundational 
Theory" which structures theoretical arguments such as cascading matrices via Maxwell's 
equations. Section II describes two theoretical models used to analyze graphite/epoxy 
composites: 1) the Equivalent-Transmission-Circuit-Line Model and 2) the Filament- 
Current Phase-Correction Model. Section III provides a brief overview of theories that 
define the research of helical and omega shaped particles embedded within a dielectric 
matrix. 



I.     Foundational Theory:    The Reflection and Transmission of EM Waves 

Throughout the investigation of improving advanced composite materials, one 
underlining theory remains the same - the multiplication of cascading matrices. Matrices 
are the three-dimensional, mathematical representation of the composite structure. A 
"transmission" matrix multiplied by a vector matrix, composed of incident and reflection 
coefficients, yield a third matrix that produce an increase or decrease in reflection and 
incident vector coefficients on a fourth or following matrix. Thus, composites are best 
modeled as the multiplication of infinite plane matrices in the x and y direction with 
specified boundary conditions in the z direction. In the following examples, the 
mathematical processes are outlined for a single-layer, infinite composite slab illuminated 
by a sinusoidal electromagnetic wave for normal and oblique incidence. 

Special   Case: 

Region a 

Normal   Incidence/Homogeneous   Isotropie [12], [26] 

Tx 

E; 

E„ 

Region 1 

E; 

E/ 

Region b 

Eb' 

Eb
r 

k , ri o'     lo ^.T] ko^o 

z=0 z=d 
Figure   1-1 

Plane wave equations representing the E-fields: 

Region a:     E; = A/ e *z x       and    Ea
r = Aa

r e *-z x 

Region  b:     Eb
r = Ab

r e'*^ x      and    E,1 = A,1 ejk°(z"d) x 

Composite: E/ = A/ e "jk'z x       and    E/ = At
r ejk'z x 

(Region   1) 

Plane wave equations representing the H-fields: 

Region a:     Uj = 1 Aa
{ e jk°z y       and     Ha

r = 4 Aa
r e jk°z y 

Region  b:     1^= 1 \T e -Jk°(z"d) y      and     H,1 = -1 A,1 e ^^ y 

Composite: H/=1 A/e jk'z y    and    rV = 4 A/ejk'z y 
(Region   1) rj, T^ 



An individual homogeneous conducting layer can be characterized in terms of the tangential 
electric and magnetic fields in Region a and Region b. These conditions yield the matrix 
equation: 

TAJ 1 rr, " T\ 
121       [Af\ 

lK J       "     LT, 
21 T, 

22 J       LA/J 

T, 
n = (1 + %? [e -jk,d -   (1 -Tu)2e jk'd] 

4Tl! (1+Tli)2 

Tx 
12 = n -TT^

2
 (e *d -    e *d) 

-P      21 _ -J,       12 

Tl 
22 = O+Jk)2 [eJM -   (l-iU2e "jkld] 

4"nx (i + iii)2 

with Tii^n^o. 

Thus, the cascading of n isotropic composite layers between the z = 0 and z = d interfaces 
are given by: 

[K 1 n [T, " Tx 
121 TA/! 

= (n ) 
lK J i=iLTt21 Tt 

22 J LA;J 

and the ith layer transmission parameters Ta are given by 

Tx" = H + i^2 [e "M -   (1 -n)2e M] 
4T1, (1+n)2 

T>12 = (1 - Tl,)2 (e 'JMi -    eM) 
4T|j 

y21 _     _    TP     12 
*i i 

Tj22 = n + iy>2 [e *•'• -   n -Tt^e JMi] 
4T1, (1 + Tl,)2 

with -qi=r|i/r|0_ 



Special   Case:      Oblique   Incidence/Homogeneous   Isotropie [12], [26] 

Region  a Region 1 Region b 

For the oblique incidence case, two separate subcases are examined, the transverse electric (TE) 
case and the transverse magnetic (TM) case. The equations that represent the electric and magnetic 
field for each case are shown below, following are the respective transmission parameters. 

Transverse  Electric  (TE)  Case 

The respective electric and magnetic fields for Region   a: 

E; = A,1 e -jk»(zcose° + xsine°> [x cos9o - z sinGo] 

Ea
r = -Aa

r e *(-cose,+x sine,) [x cos0o + z sin0o] 

fji —    J    A   » g -Jko(xsin9o+ zcos90) 

ur _  i A. r e ~*k°('~z cos8°+ x sul9°) v 
'Ho a 

The respective electric and magnetic fields for Region   b: 

Eb
f = -Aj e -^™B°+ w <-e°) [X cos9o+ z sinGo] 

Eb
r = Ab

r e *.<xrine.+ ^ -e°) [x cosGo - z sinGo] 

Jji _    J    A   i _  -jk^xsine,,- (z-d)cose„) 

Tic 
U r _    J    A"" g -jko(xsin90+ (z-d) cos6„) 



The respective equations that relate Region a with Region 1 at the z = 0 interface are: 

B, = 1/2 (TU + 1/Vj) A.1  +   1/2 Cnx - INt) AJ 

Q = 1/2 (TI1 - 1/vJ A/   +   1/2 (Th + 1/vJ A; 

The respective equations that relate Region 1 with Region b at the z = d interface are: 

Bj = 1/2 (% - 1/Vi) A,,1 e jk'dcos9'   +   1/2 (% + 1/vJ A„r e jk>dcos9' 

Q = 1/2 (Tij + 1/Vj) A,,1 e jk'dcose'     +   1/2 (% - l/v^) Ab
r e jk'dcos9' 

Therefore, transmission parameters, T{, for the transverse electric (TE) case of a composite 
slab of ith layers are given by: 

Tin= (1 + TijV,)2 (e-
jk'd'cos9' - (1 - Thy.)2   e*'^089') 

4*n,V, (1 +T|iVi)
2 

T12 = 1 - fn-v-Y2 (e "JkidiCOs9i   _ e -^"^A 

4T1.V, 

ryi 21           T-i 12 
i      — ~     i 

Tj22 = XL+HiYi)2 (e jkidiCOSÖ- - (1 - TijV,)2     e ^A«**) 
4H|V| (1 +TjiVi)

2 

where 0i = sin_1 (ko/ki sin Go) 

■Hi = 111/110 
Vj = COSGi / COS0o 

Transverse Magnetic (TM)  Case 

The respective electric and magnetic fields for Region  a: 

£ i _     A   i g -)K(Z cos6o + x sineo) y 

£ r _     A   r g -&(.-z cosöo + " sin9„) 

H,1 = 1 A,1 e -jk°(z cos9°+ xrin^ [-X cos6o + z sinGo] 

Tlo 
H,r = 1 Aa

r e -jk°(-z <-e°+*-e.>>>[x cosGo + z sinGo] 

Tlo 



The respective electric and magnetic fields for Region  b: 

£ i _ _ A  i e -jk„(-(z-d) cos90 +xsine„) 

£ r _     A  r g -jk„((z-d) sin9„+x sin60) 

H,1 = I A,1 e -^«^)cose0 + xSin6o)[x cos0o+ z sin0o] 

"Ho 
IV = 1 Ab

r e -Jk°((z-d) cos9°+ x ■"» [-x cosGo + z sinGo] 

The respective equations that relate Region a with Region 1 at the z = 0 interface: 

B, = 1/2 (1 + TU /Vi) A/  +   1/2 (1 - ri, /v,) A/ 

c1 = 1/2(1-%^) A; + i/2 (i + Th /vx) A; 

The respective equations that relate Region 1 with Region b at the z = d interface: 

B, = 1/2 (1 - TU /vx) A,1 e jk,dcos9>   + 1/2 (1 + TU fvx) \< e jk'dcos9' 

Q = 1/2 (TU Nx +1) Ab4 e -jk'dcose'    +  1/2 (- TU NX +1) AJ e -jk'dcos8> 

Therefore, transmission parameters, T£, for the transverse magnetic (TM) case of a 
composite slab of ith layers are given by 

Ti11 = (Ti, + v,)2 (e "jkidiCOs6i - (y\t - v^2   e jk'diCOs6') 
4TliVi (n. + Vi)

2 

T.12 = (r\. - v-)2 (e J^0086'   _ g -JMICOSOA 

4T1.V, 

-y21 _     rpi2 

T{
22= {Hi_+vj2 (e jkidiCOse' - (TI, - v,)2   e -Jk^cosft.) 

4*n,v, Cn, + vf 

where Gi = sin_1 (ko/ki sin Go) 

1/Vj = cosGo / cosGi. 

Corresponding formulas for the anisotropic/ normal incidence and anisotropic oblique 
incidence are given in reference [26]. 



II.      Graphite/Epoxy   Composites 

The first composite class discussed in this paper are anisotropic carbon fiber 
composites (CFC). The carbon fiber composites (Figure 1-2) normally utilized in most 
aerospace applications are the graphite/ epoxy (G/E) composites. The special properties in 
specific directions are designed by choosing the required fiber and matrix. However, the 
most important mechanical properties are the specific tensile strength or specific modulus. 
These properties are the central to design decisions for aircraft applications because they 
present the ratio of strength (or stiffness) to weight [12]. 

Figure 1-2 Schematic Diagram of CFC [12] 

In addition to the composite fiber, the composite matrix properties, in the form of 
resin, performs two important tasks: (1) separation of fibers to maximize their 
contributions to strength and minimize the possibility of cracks and buckling caused from 
fibers in contact and (2) enabling the transfer of stresses between fibers by sufficiently 
binding the fibers throughout the material. 

The following two sections outline the basic formulation of the Equivalent- 
Transmission-Circuit-Line (ETCL) model and the Filament-Current Phase Correction 
(FCPC) model for graphite/epoxy composites. 

II.   A.      The   Equivalent-Transmission-Circuit-Line   Model 

An equivalent-transmission-circuit-line model represents the electric- and magnetic- 
field responses of graphite/ epoxy composites to radio frequencies as a complex yet simple 
circuit of alternating current. In addition to the electromagnetic properties of permittivity 
(e ), permeability (/i ) and conductivity (o-); inductance (L ), capacitance (C ) and 
conductance (G ) properties are utilized to describe transient propagation of plane waves 
through composite structures. Hence, graphite/ epoxy composites are characterized as a 
combination of semiconducting and/or insulating material. 



The wave-transmission-matrix (WTM) method was initially used to construct the 
solution of frequency-domain Maxwell's equations for laminated anisotropic composites 
illuminated by an obliquely incident plane wave. By imposing the necessary boundary 
conditions on the interfaces, and finally cascading the wave-transmission matrix for each 
lamina, a derivation was developed for the relationships between the incident, reflected, 
and transmitted field [24]. In the following problem statements, a brief analysis of 
anisotropic homogeneous and anisotropic inhomogeneous laminates are given for 
graphite/epoxy composites. 

II.  A.   1.     Frequency-Domain  Analysis  of Graphite/Epoxy  Composites 

II. A. 1. a.    Special Case:    Anisotropic    Homogeneous Laminates [24] 

Problem   Statement 

Consider a composite structure with M number of layers, each described by discrete 
electromagnetic properties such as permeability JIO ,anisotropic permittivity e 0£m , and 
conductivity (7m. (Figure 1, Appendix A). Where the permeability is essentially uniform, 
while the permittivity and conductivity are expressed as tensors in the following form: 

kr   £*>   0 1 

yx yy 

LO      0   ej, 
£m=     €yx    £„     0 

tv* ^ ol 
o> °yx °» ° 

Lo o  ö-J 

Here 
£xx = £* co^ <P + ey- siri <p 
£xy   =   £yx   = (£x-    ~   £y) COS 0 Sin <p 
Eyy = ey sin2 (f> + ey, cos2 <j> 

£„ = £,. 

The primed parameters of permittivity are the composite principal axes and ty is the angle 
between the global and the principal axis (Figure 2-2). The expressions for the 
conductivities are similar to those used for the respective permittivities (a^, a = ax, a , 



;* 

Figure   2-2 
Global   coordinates   (black 
coordinate axis)  and principal 
coordinates   (gray   coordinate   axis) 
for   laminated   composites [24]. 

The circuit simulation program, PS PICE, has been used to perform the numerical 
analysis of the ETCL model. However, before subjecting the ETCL model to a simulation 
program, the transmission lines must be individualized and their values estimated by 
cascading JT- and T-circuit sections as either JT-T-JT or T-JT-T circuit models (Figure 2, 
Appendix A). According to reference [24], the JT-T-JT circuit model produces better 
convergence and numerical stability than the T-JT-T circuit model. 

In the analysis of the ETCL model a composite lamina of length d contains an odd 
number, 2m + 1, of JT- and T- circuit sections, where m is the number of laminae of length 
d within the single-composite layer. Assuming the same method applied to inhomogeneous 
composites, an accurate convergence of the JT-T-JT circuit model may be obtained by 
calculating N number of circuit sections (where N = 2m + 1. The total length of the JT-T-JT 
circuit section is characterized by a length 1 where the xt-section (lj) is half the length of T- 
section (12) of the circuit [15]. For the ETCL model, the length of the JT- and T-sections 
should be less then half the effective skin depth, where the skin depth is a function of 
effective conductivity and frequency [24]. 

Vf' V 
rcM°eff 

The appropriate coupled transmission line equations for the homogeneous 
anisotropic ETCL model are: 

8 P = - L  ■ 8 £ 

8z 8t 

8_. =-(C §_+G ) ■ v 

8z 8t 

The  equivalent  inductance,   capacitance,   and  conductance  matrices   in  the  coupled 
transmission line equations for the homogeneous case are: 

fl-shfe 
L=ß0 

0 

Ol 

1 J 

U 
C   =£„ 

-£„ 1 *y 

L-^y       V Sin26 -I 



G  = 

the necessary boundary conditions for the voltage and current are given by: 

x>p(0,t ) + T]p ip (0, t ) = 2vp ' (r ) at incident boundary 

where p = 11 or ± 
vp(D,t ) + rjp ip (D, t ) = 0 at transmitted boundary 

Where 'p ' denotes the parallel component or the perpendicular E-field of the plane wave to 
the x-z plane of incidence. The voltage and current wave vectors are defined as in [24]: 
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D(z,f ) = rt)„l = r5x 1     =J    \EX(Z;ü))    l^dco 

IvJ   L-5yi=0     *   L -Ey(z;co) J 

c(z, t )=riMl = r^x 1     =J    \Hx{z;co)    ~\e*"da> 

LiJ    L-^yJJ=0    ~   L -#,(Z;ö>)J 

Here the transient waveform as a function of the incident angle 0 for the plane wave can be 
expressed as: 

S(x, z, t )=J   E (z;co )eioxe-'i°xsin0d(D 

W{x,z,t)=\   H ( z; ö) ) e7'"**f**™edco 

where k,, = CiW|ioe 0 = CD / c is the free-space wavenumber and c is the velocity of light. 

The combination of the ETCL model and the wave-transmission-matrix (WTM) 
method can be used to predict the transmittivity and reflectivity terms which are basically 
mathematical expressions of the transient plane wave behavior within a composite 
structure.     In the PSPICE simulation program, the command  ".AC",  conducts   the 
frequency-domain analysis. The transmittivity coefficients Tj | j |» T||>±, Tx>1, and Tx>| (   and 

the reflectivity coefficients R| 111, R| | ±, R± ±, and R± 11 in the frequency-domain  are given 
by the following definitions [24]: 

T     = F ' R     = F r 

p,i     — p.i- P.I-   —P.I 

E ' E' p p 

An estimation of the copolarization term for transmittivity in the lower frequency range for 
specific case where each lamina has equal thickness is given by: 

T n =          2 
p.p      

ripG^Md 

where r]   , the characteristic impedance of the incident wave, is given by 77 j j = 77 o cosö 

and 77 x= 77 o I cosö for the E| | and E± wave, respectively; and r\ o = V(i0/e 0 is the intrinsic 
impedance of the free space [24]. 

M 

aeff= j^rX (o-^xJ 
M Lm=1 J 
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((jrff )m (ohm/m) is the effective conductivity of the mth ply within the composite structure. 

This can be described by the corresponding formulas for the E| | and E± wave respectively 
as: 

(ax,)m cos2 $ + (oy,)m sin2 <|>,    for E,, wave 

( <*«ff )m   = 

(ax.)m sin2 (|) + (ay.)m cos2 <|>,     for Ex wave. 

Note: Although the formula for the cross-polarization terms are not given, when a wave 
performs multiple reflections in a region, the cross-polarization terms will be dominant if 
the thickness of the region is near a quarter-wavelength [24]. 

II. A. 1. b.    Special Case:    Anisotropie    Inhomogeneous Laminates [15] 

Problem   Statement 

Consider a composite structure with one-layer of length, D. The electromagnetic 
properties of the slab, such as permittivity, permeability and conductivity are described as 
tensors and expressed in the following form: 

[e     £     0 1 1     xx xy ■ 

£ =        e     e     0 
y*      yy 

L 0      0    ej 

T/^ nv ol 
ß= Vy*     ^yy 

Lo    o 
0 

r<r« °* ol 

Lo 0 

0      . o 

These tensors are assumed to be a function of z, but independent of frequency. The 
governing equations for the transverse field components are given by: 

Where 

L   =ß0 

L 

5_u =-L  ■ &_j 

5z               5t 

5_; = - (C 5_+ G )t) 

5z               5t 

sin20 ol Te« -J 
£zz C = e0 

0 1 J K £,,- sin20 J 
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G  = 

The incident plane is chosen to be the x-z plane with an incident angle of 6 and arbitrary 
transient waveform. The plane wave is divided into two components which are the parallel 
and perpendicular electric-field in reference to the plane of incidence, represented by E| | and 

Ex respectively. Considering the fields at the x=0 plane, the voltage and current wave 
vectors are defined as: 

x>(z, t ) = r-i)||l = r5x 1 
LDJ  L-sy-L 

c(z,t )=riMi=i>x i 

Last and most important, the necessary boundary conditions can be stated as follows 

vp (0, t ) + r\p ip (0, t ) = 2D, ' (t )   at incident boundary 
where p = 11 or ± 

D (D, t ) + rj  c  (D, t ) = 0 at transmitted boundary. 

II.  A. 2.     Time-Domain  Analysis of Graphite/ Epoxy  Composites 

Special Case:    Incident Transient Pulse, EMP 

A specific type of electromagnetic radiation produced from surrounding natural or 
man-made environments is the electromagnetic pulse (EMP). For this case, consider the 
field £(z, t ) at x=0 plane, under an obliquely incident, electromagnetic pulse waveform 
S\t) given by 

S\t )=Eo(e^-e-ßt)u(t) 

here u (t ) = 1 for t > 0. Also, the values of E0 = XKfT™ - e'ß,°) and t0 = In (ßla)l(ß-a) 
[24]. When plotting incident electromagnetic pulse versus time or frequency, the values of 
a and ß determine the shape and frequency spectrum of the EM pulse. 
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II. B.     The Filament-Current Phase-Correction Model [14] 

The goal of the filament-current phase correction model is to reduce the 
unpredictable scattering patterns which disrupt communication and control signals utilized 
by various applications. The electric-field radiated by a fiber embedded within the dielectric 
matrix and the electric-field resulting from the incident plane wave, constitute the total 
electric-field produced by the composite structure. The electric-field resulting from the 
incident plane wave can be expressed as: 

Einc = exp (-i kxsin 6 + iky cos 6) 

while the scattered electric-field resulting from the fiber embedded within the dielectric 
matrix can be expressed by the equation 

Es= -kr]IfD(x.y) 
4 

where t] = ^n0l(eoer) and 

D (x, y) = X 2 i exp (- ajyjj exp ( -iknx) 

and 

here 

kn = ksin 8 +2nn 
d 

i <k2 -k2
n   ]fk2>k2„ 

^k2
n -k

2,   if A2 <k"n 

In this analysis the composite structure is described by a periodic fiber-matrix 
(Figure 3-2). The total electric-field can be substituted into an equation representative of 
the concentrated electric current along the center of the conducting fiber. 

If = IIJ dxdy = II oE dx dy 
A A 

where E is the total field and A is the fiber area. 
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From this approximation of the electric current, the reflected and transmitted electric-field 
can be computed. 

V 

oil exp ( -i kxsin 8 + i ky cos 6) dxdy 
4_ 

1 + akr\  IIX   2 / exp(-ttjyjj. exp ( -iknx)dx dy 

4        A   n = - : -oo 

The relation between the reflected and transmitted electric-field, approximated electric 
current and phase-correction model follow in the succeeding discussion. 

The phase-correction model follows the logic of the foundational theory, the 
multiplication of matrices. In reference to the equation for the scattered electric-field, the 
Fourier transform, D(x, y ), contains an infinite number of discrete terms numbered as 
individual Roquet modes. The computations for the phase-correction model are formulated 
for a single Floquet-layer within a composite structure (Figure 4-2), where the Floquet 
layer contains 2m + 1 Floquet modes. 

The incident wave that illuminates the composite on the initial free space/ dielectric 
interface is represented by the vector Ax 

Ay=/£m£m+;...   E0    ... E^Ej 

Where E, (I = -m, . . . 0, . . . , m) is the amplitude of the / th Floquet mode and the 
superscript T denotes the transpose [14]. The same principle follows for the vectors A2, . 
. . , A6 and Bt, . . . , B6 within the 2m + 1 Floquet modes. 

Thus, the reflection and transmission phenomena at the air-matrix interfaces may be 
represented by 

|5yl     =    [R/d Tdfl    [A,~\ , 

lB2\ \jfd   Rdfl    UJ 

T5/1    =    lRdfTfd]     U/l 
iBj LTfRfJ     UJ 

and those at the Floquet layer (fiber grating) by 

[B3~]   =    [R    rl [A3~\ 

LfiJ IT   R] LAJ 

The subscripts fd for the R and T coefficients are the respective diagonal reflection and 
transmission matrices from free space to the dielectric matrix, and the subscripts df for the 
R and T coefficients are the respective diagonal reflection and 
transmission matrices from the dielectric matrix to free space. 
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The relationship between the wave vectors A i and 5, (where / = 1, 2, ... 5, 6) and 
the phase shift may be expressed by the multiplication of the following matrices: 

1X1 

TA51 

lB5] 

[p+ 
Lo 

\p- 
Lo 

o lr^i, 
P-JLBJ 

0    lfA/1. 
P+JLBJ 

Where 

P + = a diagonal matrix with dimensions (2m + 1) x (2m +1), whose iith 

element is exp[ta,r(B+//2] 

P - = the complex conjugate of P + 

Let a combination of the above matrices be represented by the four full matrices M,p Ml6, 
M61, andM66 (analogous to the transmission coefficients T;

u, T/2, T;
21, and Tj). The 

combination of the above matrices are represented by cascading the vectors [B, B6f and 
[Aj A6]T expressed by the following relationship 

r*/i \MnMj\ A,! 
IM61MJLAJ  [14]. 

Thus, the ETCL model and the FCPC model parallel in three different areas: 1) Theoretical 
Basis; 2) Structural Modeling and 3) Fundamental Compartmentalization. The theoretical 
basis for both models are the same, cascading matrices. The structural modeling for the 
ETCL model is an AC circuit, while a periodic fiber-matrix describes the FCPC model. 
Finally, the fundamental compartmentalization for the ETCL model and the FCPC model is 
2m + 1 T- and jt- circuit sections and the 2m + 1 Floquet modes, respectively. This 
information has been tabulated in Table 4. 

Table 4 Summary of ETCL and FCPC model 

ETCL Model FCPC  Model 
Theoretical    Basis Cascading Matrices Cascading Matrices 
Structural   Modeling AC Circuit Periodic Fiber-Matrix 
Fundamental 
Compartmentalization 

2m + 1 T- and n- circuits 2m + 1 Floquet modes 
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Phase-Correction   Model   for   Graphite/Epoxy   Composite 

yt 

*  X 

Figure 3-2.   Geometry of a lossy, single-layer G/E composite. The periodic-fiber matrix 
(graphite) of radius a and conductivity G embedded in dielectric matrix (epoxy) of 
thickness t and relative Dermittivitv e 

interface  2 
(fiber   rating) 

t 

Rfdl 

1   1 j 

li   fd 

Ai 8||M B, 

free  space ■ ^WBIMMIm 
■ free space 

interface  1 interface  3 

Figure 4-2. Phase-correction model for multi-mode reflection and transmission due to fiber grating 
within a dielectric matrix. 
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III.     Chiral  Composites 

in. A.    Brief History 

In 1812, Biot observed the phenomenon of optical rotation, or more appropriately 
termed, optical activity. Optical activity occurred when white linearly polarized light 
changes to a rainbow of colors when shown through the crystal, quartz [21]. In 1848, 
Pasteur accredited the rotation of plane polarized light and the observation of the two forms 
of tartaric acid salts to the handedness of the material's microstructure [25]. The term chiral 
comes from the Greek word %po, which means "hand" or a typical mirror-asymmetrical 
object [9]. In the early 1900's, Lindman discovered the handedness, chirality, of 
artificially constructed materials. His measurements of plane polarization through a 
collection of wire helices in a lower frequency range have established studies of observed 
rotation and absorption of electromagnetic waves in dielectric material, since light is an 
electromagnetic wave [21], [25]. In 1956, Winkler performed similar experiments with 
200 randomly oriented right-handed copper helices embedded in a dielectric matrix, but 
concluded the measurements of plane rotation were due to diffraction effects rather than 
optical activity [10], [21]. He found that over a frequency band from 1.5 to 2.7 Ghz the 
electric field of a linearly polarized wave was rotated by angles varying from 0 to 12 
degrees. 

Later in 1957 and 1960, Tinoco and Freeman conducted numerous measurements 
of effectively anisotropic chiral material. They discovered that illumination of a composite, 
consisting of right handed helices oriented parallel to the direction of propagation, yields an 
electric field with an angle variation from 0 to 30 degrees in the frequency range of 8.3 to 
11.5 Ghz. The resonance band frequency of 12.5 Ghz yields rotated angles varying from 
30 to 180 degrees [10]. Winkler, Tinoco, and Freeman all assumed the light remained 
linearly polarized after leaving springs, since they lacked the equipment used to measure 
copolarized and cross-polarized components of the transmitted elliptically polarized waves 
[10]. In 1974, Bohren introduced the decomposition of electromagnetic waves into left and 
right circularly polarized fields [21]. Therefore, the wave leaving a medium of springs, of 
the same handedness, was usually elliptically polarized [10]. 

Since then, the discovery of chiral helices has expanded to inclusion shapes such as 
omega particles [17]. Once a solid theoretical and economical basis has been formed chiral 
composites might be utilized as a advance in the control of electromagnetic interference. 
The following section is a brief synopsis of the various theories related to chiral 
composites. 

III.  B.  1.     Theoretical  Approaches 

Numerous approaches have been developed to account for the behavior of chiral 
composites. The first approach discussed in this section, the Waterman-Truell approach 
[11] analyzes the dielectric-dielectric composite in which chiral particles are made of chiral 
material but do not necessarily possess chiral shape. This approach assumes a 
homogenized medium with no interaction between the microscopic particles. The argument 
begins by stating equations for point dipoles at the origin and then relating the scattered 
electric and magnetic fields to the average dipole moments. 

From previous studies, medium characterized by the above relations is isotropic 
chiral. As mentioned before, propagation in chiral material produces elliptically left (+) and 
right (-) circularly polarized plane waves. The circularly polarized plane waves for the 
respective incident electric and magnetic fields are: 
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Ei„c(r) = (1/V2)(ux ± iuy) exp (ikoz) 

H^r) = ±(l/ir]V2)(ux ± iuy) exp (ik0z) 

therefore the average dipole moments for the circularly polarized plane waves are given by: 

P=(l/V2)(are±aeh/nJ(ux±iuy) 

m = ±(l/iii0V2)( <^h ± aehTi0) (ux ± iuy). 

By examining the electric field in the far zone, the following limit can be stated as: 

Limkor-+oo E(r) = to{o^0[p - ur(p • u)] - l^u, x m}{exp (i^r)/4m) 

The forward and backward plane-wave scattering amplitude can then be described bv the 
equations: y 

Fforw = (^/4%)(lH2)(ux ± iuy) {u0 (cc^ ± aehMo) + £ „(a,, ± aehr|o)} 

Fback = (tf/4K)(lrt2)(ux ± iuy) {Po (o^ ± aeh/no) - £ Ä, ± aehr,o)} 

and the wavenumbers for the left (+) and right (-) polarized wave according to the 
Waterman-Truell approach are: 6 

YWT ± = k0V{l + ((öN/ko
2)[co( u^ + 8 0ahh) + 2 k0aj 

+ (coN/kJ2^ a,, + aeh (a^ + CC^/TIJ] }. 

The Maxwell Garnett approach [11] derived constitutive relations for the 
homogenized chiral medium in the form of bulk parameters. The effects of electromagnetic 
radio waves was examined in the low frequency range. Each chiral particle has been 
encapsulated in a biamsotropic sphere which is described by the Tellegen chirality 
parameter. Thus, isotropic chiral medium adhere to the following Tellegen constitutive 
relations given by the respective electric and magnetic flux densities 

D=eMGE+CMGH 

B =uMGH-CMGE 

where 

eMG= £0 j^^^^^^i^^ii^ ^ 

is the permittivity, 
[9uo £ o - 3N(£ oahh + 2PoaJ + 2N2(aeeahh- aeh

2)] 

[9u0 £o - 3N(£oahh + 2uoaJ + 2N2(aeeahh- aeh
2)] 

19 



9^£-*K& 

is the permeability, 

[9u0 £ 0 - 3N(8 oahh + 2poa J + 2N2(aeeahh- aeh)] 

k the Telleeen chirality parameter. The wavenumbers for the left (+) and right (-) circularly 
S^^tÄSnd medium according to the Maxwell Garnett approach are. 

YMG ± =   G)N(£MGUMG) ± ^MG / * ] 

Therefore, the intrinsic impedance 

flMG =   ^(PMG^MG) 

of the chiral composite is independent of the wavenumbers.  Thus, the Wa^erm^-Truell 

approaclTdoes  not account for the ^^^J^^^iS^X 

impedance of the surrounding atmosphere. 

ffl. B. 2.     Theoretical Models, Formulas and Equations 

The generalized Maxwell Garnett model [2] for isotropic chiral composites yields 
thefidÄ|fe?Äod^ electromagnetic parameters of permittivity, permeability and 

chirality. 

eeff = eeo+_l_(Naee-N
2_A_0 

D 3uu( 

p-r = Wi0+_l-(NaBll-N2_^LJ 
D 3ee0 

K^ = _j_ N _&_ 

D Ve0p0 

where D = 1-N _a«- N _&_ + N2 A_ 
3ee0     3uu0 9uu0££0 

A = aKaim,-aan a^ 

where e and u are the relative parameters of the matrix (er = e/eo pr. - u/p 0 [1]). 

The constitutive relations for the bi-anisotropic chiral media in terms of electric and 
magnetic flux Sties and corresponding dipole moments are expressed in the following 

equations 
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D = £.E-iV(£0p0)K
T.H 

B =p. H+iV(£0po)K-E 
and 

p = a^ • E  + a^ • H 

m = a^ • H - am • E 

In addition to the above approach, another formula was developed for the design 
chiral composites. The modified Maxwell Garnett formula for chiral composites, the Chiral 
Maxwell Garnett Mixing formula [6], describes the macroscopic electromagnetic 
parameters of permittivity, permeability and chirality with the necessary electric and 
magnetic polarization terms. The argument begins by stating the material constitutive 
relations which represent magnetoelectric coupling for the bi-isotropic media 

D   =EE -iKV(p0£Jff 

B   =ptf  +iKv/(p0£0)£ 

Where 
D =  electric flux 
B  =  magnetic flux 
£ = permittivity of chiral material 
£ o = permittivity of the vacuum (or achiral background) 
p = permeability of chiral material 
p0 = permeability of the vacuum (or achiral background) 
K =  dimensionless parameter of chirality 

Thus, the homogeneity of the composite material can be defined by the effective parameters 
of the mixture. The constitutive equations described by the average flux densities and the 
associated electric and magnetic fields are: 

0)=EtBE-iKtB^(jio£^H 

(B) = ^H+iK^i^E^E 

Including the electric and magnetic polarizabilty of the constitutive relations yields 

(D) =£0E +Pt = Z0E +Pee + Pm 

(B) = yi0H + Pm=]i0H + Pnm + Pim 

The definition of the polarizability can be stated as follows: 
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where i and; are any combination of e andm and let n be the number of spherical chiral 
scatters per unit volume, whose parameters are e, u, and K. Therefore, the dipole 

moments,/^. ,are equal to or directly proportional to the polarizability factor, ay , and the 
Lorentzian fields, EL and HL ,that encompass the surrounding polarization of the field 
created by the shape of the scatter. 

Pee   = «„ EL 

Pem   = «an #L 

*   im nwn        L 

Pne =   <*m EL 

The exciting field for spherical inclusions are defined as: 

EL = E 

3e0 

HL = H + Pm 

3u0 

Polarizabüity factors for single chiral scatters defined in compliance with quasistatic 
analysis yield 

aee = 4TIa3 e0 {ii±_2»0Jfcc£„^KL^ e0 

(H + 2u0)(e + 2e0)-K2 p0 e0 

aem = 4jca3 V( u0 e0) -  J3KUQ £0  

(^ + 2u0)(e + 2eo)-K2 u0 e0 

«™ = 4* a3 u0 UL_zj^M±_2e J K^ e 0 

(^ + 2po)(e + 2eo)-K2"poeo 

am£ = 4jca3V(uo£o) JSKU^EO  

(H+2uo)(e + 2e0)-K2 uoe0 

where a is the radius of the sphere with em parameters, permittivity, permeability and 
chirality. Thus, the effective electromagnetic parameters of the homogeneous chiral slab 
are: 
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es* = e0 + 3/e0 x    jfe^£0)(n + 2uu)- f (n~ua)l-K
2 y^jkijl 

[(^+2uJ-/(^-u0)][(e + 2e0)-/(e-e0)] 

-K2 u0e0(l-/)2 

Pdr = P. + 3/p„  x    gL=_^)[(e + 2e0)]-K
2 MoJEoüzLJ)  

[(^+2Po)-/(n-p0)][(e + 2e0)-/(e-e0)] 

-K2 u0e0(l-/)2 

Keff=  2£gi^  
[(^+2uJ-/(^-u0)][(e + 2e0)-/(e-e0)] 

-K
2
 u0e0(l-/)2 

where/ = «4raz3/3. 

According to reference [5], there are four additional constitutive equations which 
describe the effective properties of isotropic chiral composites: 1) the Tellegen equations 
(also used to support the previously cited Maxwell Garnett Approach); 2) the Drude-Born- 
Fedov equations; 3) the Condon's Time-Harmonic equations; and 4) the Post equations. 
Assuming the volumetric inclusion portion of the chiral material to be represented by small, 
mutually noninteracting spheres. LetiV be the number of spheres per unit volume. Also 
assume the composite medium to be a homogeneous, nonvacuous region with polarization 
and magnetization for the respective polarization and magnetization field approximated as 

P=JVPo,        M=iVm0. 

Therefore the D and B fields for the effective medium can be written as 

D = (e0+ NaJE + iNaemll, 

B=(K+NanJH-iNaemE 

These constitutive equations are applicable to isotropic chiral composites [5]. 
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The   Teilegen   Constitutive   Equations 

The Tellegen constitutive relations describe the discrete random composite as an effectively 
isotropic, reciprocal chiral medium [5]. 

D =emE+CmH 

B =M
mU- CmE 

Where 

£m=£0+Naee        Mm=K + Namm ^=iNaem 

The   Drude-Born-Fedorov   Constitutive   Equations 

The Drude-Born-Fedorov constitutive equations are yet another representation of the 
effective parameters of isotropic chiral medium. 

D=£'MF)[E+rF,VxE] 

B ^«[H+PVxH] 

where 
ewm = (£o + N aJ _ (N aj

2/(M0 + N «_), 

M mF) ^„+iVaJ- (N ajlie0 + N aJ, 

ß <DBF) = (N ajco) I [(e 0 + N aJ(M0 + N a„J- (N aJ] 

If the small spheres are not chiral, ß, C,m and ß(DBF) are all equal to zero, then 

£(DBF) =£m =e^i+4n Na 3(£r _ 1)7 (£r + 2)] 

f* mF) =Mm = /*„[ l+4nNa V - 1)/ (wr+ 2)] 

and the effective medium is also achiral [5]. 

The   Condon's   Time-Harmonic   Constitutive   Equations [5] 

B=e<QE + ico^C)H 

B =n<C) K-iarfC)E 

where 

e<C)=e0+Naee   M<c> =M0+N cc^     X
(Q=NaJco 
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The   Post's   Constitutive   Equations [5] 

H=(1/M
(P>) B + if'E 

where 

em = (e0+N aJ-(N ajli}i0 + N aj), 

p<P) =pe + N a^ 

^ = NaJ(p„+ N oO- 

ffl.   B.   3.     Strong-Property-Fluctuation   Theory   (SPFT) 

An alternative to the various forms of the pronounced Maxwell Garnett model is 
Strong-Property-Fluctuation Theory (SPFT). This theory is based on variations of the 
Maxwell equations and position averaged values of individual particle polarizabilities. 
(SPFT) has been formulated for homogenizing chiral composites [3]. The argument begins 
with the Drude-Born-Fedov constitutive relations of a nonhomogeneous chiral medium 

D(r) = e (r)[E(r) + ß (r)V x E(r), 

B(r) = p (r)[H(r) +ß (r)V x H(r), 

where 
e (r) = permittivity scalar ] 
ß (r) = permeability scalar I    All three being implicit functions of 

ß (r) = chirality pseudoscalar ) co (circular frequency) 

Rewritten, the constitutive relations in compact matrix notation are given by: 

C(r) = ^jtf(r) F(r) 

with 
C(r)=   fD(r)V Jf=±(0   0 

\B(r)) co {-i  0) 

(ß (r) iCQH(r) ~] 

I k (if I 

j, (r) = r+(r) r-(r) = I -io)s(r) ß (r)  I ,  F(r) = (E(r)^ 
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where 

k(r)=arie(r)p(r)      and  y+(r) =k (r)/[l-jfc (r)   /?(r)] 

7-(r) = *(r)/[l+*(r) /?(r)] 

The goal of this theory was to generalize the strong-permittivity-fluctuation theory of 
dielectric mixtures to chiral-chiral composites, a composite material in which the paniculate, 
in addition to the matrix media, are chiral. A detailed explanation of this theory can be 
found in reference [3]. 

Up to this point, the constitutive relations presented have only applied to 
variations homogeneous or inhomogeneous forms of isotropic chiral media. The following 
constitutive relations will form the basis for the behavior of linear polarized waves in 
anisotropic chiral composites. 

IE. C.    Electromagnetic Fields in a Composite Anisotropic Chiral Medium 

A homogeneous composite anisotropic chiral material is described by the following tensor 
constitutive relations 

D = e • E + /£ B 

H = i£cE+p »B 

where [ e    -ig      ol 

e = I ig     e     01, is the permittivity tensor 
L 0      0    ej 

T fi      -ik    01 

ß = I ik      ß     0 I, is the permeability tensor 

L o    o   ftJ 

and t,c is the chirality admittance [20]. 

Ferrite is any of several magnetic substances that consist essentially of an iron 
oxide combined with one of more metals (as manganese, nickel, or zinc), have high 
magnetic permeability and high electrical resistivity. Another proposed form of composite 
is a combination of chiral and ferrite media. 

Constitutive   Relations   for   Nonreciprocal   Composite   Chiral-Ferrite   Media 

The constitutive relations for chiral media are [19] 

D=£E +£H, 
B=//H+£E, 
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$=acrl+ iacil 

C= Marl +   Weil 

where for lossless chiral media 

acri = acr2= 0 (f°r tne reciprocal case), 

acrl * 0,    acr2 # 0 (for the nonreciprocal case), 

The constitutive relations for ferrite media are [19] 

D = eE, 

B=/tH, 

where 

r P        ikm     Ol 
ß = I -ikm      p      0  I, 

L 0 0    pQ\ 

p = p' -p",   km=km' -ikm", and the dc magnetic fieldB0 is in the z direction. 
Thus, the composite medium is hypothesized to have the following constitutive relations: 

D = eE +£H 

B=//H + £E. 

III. D.    Wave Propagation and Scattering Characteristics of Chiral 
Materials 

The wave propagation and scattering characteristics of chiral materials differ from 
those of G/E composites (nonchiral composites) because the conversion of linear polarized 
waves to alternating elliptical RCP and LCP , right circularly polarized and left circularly 
polarized fields, respectively. The difference depends on the surface induced current and 
charge densities at the boundary of chiral materials. The RCP and LCP fields produced by 
the incident linearly polarized waves, within the spherically shaped chiral inclusion, cause 
differences in velocity. If multiple interfaces between the chiral inclusion and the achiral 
matrix are incorporated into the design of the chiral material, multiple scattering occurs due 
to alternating conversion patterns, i.e. RCP to LCP fields and LCP to RCP fields. Then, 
as the system experiences multiple scattering, the decrease in the effective transmission of 
em waves will increase absorption [16]. 
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in.  D.  1. The Small  Spheres Assumption 

The use of spherical geometry when referring to the individual inclusion particles, 
whether helical or omega (Q) shaped, is assumed for uniform size distribution. This 
assumption reduces complications due to inclusion size and shape. Further studies have 
shown that the absorption patterns due to cross section are larger for spheres than those for 
spheroids. For this reason, the term chiral sphere is used when addressing the chiral 
inclusions embedded in an achiral matrix [16]. 

III.  D. 2. Transmission Line Theory For Chiral  Composites 

Initially, the transmission line theory was used to develop an understanding of how 
an electromagnetic wave, in the form of a plane wave, propagates through a composite 
plate composed of a series of uniformly constructed lamina. In this paper, the developed 
theory was termed, "The Foundational Theory". Assuming the same criteria on a 
macroscopic basis, a T matrix can be formulated for spherical chiral inclusions embedded 
within an achiral matrix. The final result of a T matrix, presented below, for a single chiral 
sphere in nonchiral (or achiral ) dielectric medium. The boundary conditions on the 
electromagnetic fields (E- and H-fields) inside and outside the sphere (assuming continuity 
at the interfaces) which are expanded through vector spherical functions such as M(3) and 
N(3), in the T matrix and LCP and RCP fields in a chiral composite (which is analogous to 
the A; and Bi coefficients, where i = 1, 2, 3, . . . , n number of lamina or vectors for the 
filament-current phase correction model) [14],[16]. 

Thus, the analytical expressions for the effective dielectric constant can be obtained from a 
software package called MACSYMA . Once the analytic expressions for the lowest order 
T-matrix elements are known in long-wavelength, results can be used in the Maxwell 
Garnett and Bruggeman models to calculate initial estimates to the roots of dispersion 
equations at higher frequencies and concentrations of spherical particles [16]. 

Scattered Field Coefficients for a Chiral Sphere in a Nonchiral Medium 

ES = S 

r M<3>   iro  (T-)e 

M(3)„ 

N<3) 

0      (T 0 " \ /oon 

0 

L N<3>     JLo 

0 

0 

0 

0 

cr"> 

o iroi 

0 

ll inQn + 1) 

I      n(n + 1) 
-i 

(T22)oen       o J LoJ 

where the elements of the T matrix for a chiral sphere in a dielectric host medium are given 
by 

CT1 \on=- [WnCLJA, (R) + Wn (R) A, (L)]/[ Wn (L)Vn (R) + Wn (R) Vn (L)] 

<T22)een = - [Bn (L)Vn(R) + Bn (R) Vn (L)]/[ Wn (L)Vn (R) + Wn (R) Vn (L)] 
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(T1 \on = - [Wn (L)Bn (R) - Wn (R) Bn (L)]/[ Wn (L)Vn (R) + Wn (R) Vn (L)] 

(T22)     =_(Tn) VA     /oen ^ /eon 

where 

Wn(J) = mcpn(mJx)(£n' (x)-<pn'(mJx) C„(x) 

Vn (J) = (p„(mJx)(C n' (x) - m(pn'(mJx) £n(x) 

\ (J) = (pn(mJx) (pn'(x) -m(pn'(mJx) (pn (x) 

Bn (J) = m(pn'(mJx) cpn'(x) - <pn'(mJx) (pn (x) 

J is either L or R, and x is k'a (where the prime denotes differentiation with respect to the 
argument). (pn (z) = z j n (z), C, n(z) = z h n (z), and j n and h n are the spherical Bessel and 
Hankel functions, respectively. The parameters mL = kj/k', mR = 1%/k', and m = 

2mLmR/(mL + mR) [16]. 

in. D. 4.    Propagation in Anisotropie Chiral Medium 

The general bianisotropic medium is characterized by the constitutive equations [4] 

D = e«E +^H, 
B=n»H+C«E 

Assuming lossless reciprocal medium. 

Now, assuming isotropic permittivity and permeability, the constitutive relations for the 
general anisotropic chiral medium follows 

D = eE -jV(en)v H, 
B = |iH + jV(en)K(p« E 

the relative chirality K^ dyadic being real. Consider a special case where a chiral medium is 
made of metal helices with different handedness aligned with x and y directions. The 
chirality dyadic can be taken as 

The wave numbers are 

S = Mu*ux_uyuy)- 

k, = k Vl-K%_ 
Vl ± Ky sin20 cos2cp 
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In the present case, there are two planes defined by cp = ± JI/4. The wave numbers for the 

right-handed and left-handed ellipsoid surfaces illustrated in Figure 1 are k- (6, <p) and k+ 
(6, (p), respectively. The values of the main axis of the ellipsoids are 

K^Wriut*,!,    Ky±=kVri±K9i,    K^kVt l-K,]. 
Li± sJ LI(-/+)K(PJ 

Figure  1-3.  The Elliptic Wave Number Surfaces  of 

k-(9,q>) and k+(8,<p) 

u. 

k-/k 

K 
■y- Uv 

k+/k 

K y+        uy 
—> 
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in. E.     Constitutive Relations for Omega Shaped Inclusions 

While advancing the concept of helical shaped inclusions in chiral composites, 
omega shaped inclusions demonstrated properties which enhanced absorption and/ or 
reduced reflection from planar lossy slabs. Metal particles shaped like an Q, could reduce 
the reflection of surfaces when illuminated by linearly polarized and unpolarized 
electromagnetic waves. The stems of the particles would align with the x-axis with the loop 
in the (x-y) plane. The medium which consists of these omega particles are termed uniaxial 
bi-anisotropic, with constitutive relations given by [17] 

D =£-E +iK^( £0pi0)J 'H 

B = ji .H + iKJ(£of40)J-E 

Here 

The uniaxial dyadics with transverse (t) and normal components (n) are: 

e=ejeft + enz0z0), 

where z0 stands for the unit vector along the z-axis (normal to the interfaces) and the 

transverse unit dyadic and the 90° rotator in the (x-y) plane are: 

It = x0xD + y0y0     and     J =z0 xl = y0x0 - x0y0 

Additional coupling provided by the omega particles is measured by the coupling parameter 
K, given by the following equation: 

2 
when the reflection coefficient equals zero. The respective reflection and transmission 
coefficients for a nonsymmetric slab in air can be found using transmission-line theory and 
are expressed as the following [17]: 

R =     CY„+Y-)(Y_-Y+)n-exp(-2ißd)l 

(Ye + Y+)(Y0 + Y-) - (Y0 - Y-)(Y0 - Y+) exp (-2jßd) 

T =    2(7+ + Y- )F e.xp f-ißd) 

(Y0 + Y+)(Y0 + Y-) - (Y0 - Y-)(Y0 - Y+) exp (-2jßd) 

where d is the slab thickness and Y0 symbolizes the free space wave admittance. 
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The polarization of transverse electric and magnetic fields are best characterized by wave 
impedances or admittances for plane linearly polarized electromagnetic waves propagating 
in uniaxial Q media. The admittances for TM- and TE-polarized fields are: 

Y±=V   fe.e. )       1 xh/(l-Jt?_ -K2)(-l+)i     K__l 

Y± = V/^44 ) h/(l - _£_ -EL) (-/+)j    K_l 

(MO»,JL K2 Wn    5H, y/(ejit)  J 

respectively, where the upper sign corresponds to the waves in the positive z-direction and 
the lower sign to the waves traveling in the negative z-direction. Here kt is the transverse 
part of the propagation factor and k0 = o>J(ejio). 

The propagation factors of the TM- and TE-polarization waves, ß , included in the 
reflection and transmission coefficients are: 

ß = Hsjk/eji, -kf ) -k0
2K2]     and     ß= ±J[&JVejun -k,2 ) -k2K2] 

respectively [17]. 

Therefore, there are three material parameters that control the reflection and transmissions 
properties of uniaxial omega bianisotropic composite slabs: the dielectric permittivity, 
magnetic permeability and the coupling parameter. Thus, the adjustment of the magneto- 
electric interaction, K , the input impedance and the free-space impedance can be matched 
to achieve low levels of reflection over wide frequency bands [17]. 

32 



IV. Other Composite Types 

IV. A.     Quasioptic Composites 

The Faraday-Kerr effect is the scientific explanation of how certain material 
properties change plane polarized light at optical frequencies (Figure 1-4). By using 
composites made of rare-earth materials and ferrites, similar effects can be simulated at 
quasioptical frequencies, otherwise known as microwave and millimeter wave frequencies. 
Such composite types are useful for changing the polarization of incident microwave 
energy [1]. 

4> 

References: 
http://phsg.uni- 
bielefeld.de/helium/carsil.htm 

http://bessrc.msd.anl.gov/llid.htm 

Figure   1-4.  The Faraday Effect 
describes the rotation and the Kerr Effect 
explains the directionality. However the 
Kerr Effect can be described by three 
different subeffects: 

a) Polar effect - Magnetization occurs 
normal to the surface of reflection. 
b) Longitudinal effect - Magnetization 
occurs parallel to the surface of reflection. 
c) Transverse effect - Magnetization 
occurs perpendicular to the plane of 
incidence. 

IV.  B.     Dielectric  Composites 

One of the major concerns in the manufacture of composites is low cost, high 
quality. The design of modern electronic/communication components requires low-loss, 
high-permittivity dielectrics. For example, consider a two-phase mixture of polystyrene, a 
high-quality dielectric with low permittivity and a dielectric constant of 2.1; and barium 
titanate, an expensive high-permittivity material, with a dielectric constant greater than 
1,000. With the appropriate volume fractions, the composite formed would possess the 
low-cost, low-permittivity properties of polystyrene and the high-permittivity properties of 
barium titanate. Thus, the resulting composite would have high permittivity with respect to 
polystyrene and low cost with respect to barium titanate [1]. 
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CONCLUSION 

In conclusion, graphite/epoxy composites currently make the greatest contribution 
to industrial and military systems. Chiral composites have the potential to make substantial 
contributions to future applications due to the additional degree of freedom supplied by the 
chirality parameter. Finally, quasioptic and dielectric composites have electromagnetic 
properties that produce the predictable behavior needed in electromagnetic radio frequency 
responses. A separate research study is suggested for the latter composites due to then- 
potential economic and structural improvements. Additional research topics include: 1) 
Techniques used to Measure Parameters of Advanced Composite Materials; and 2) 
Evaluation of Advanced Composite Materials as a Function of Frequency and Temperature. 
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APPENDIX   A 

GEOMETRY OF LAMINATED COMPOSITES 

T- AND n- cmcurr SECTIONS 

OF 

EQUIVALENT-TRANSMISSION-CIRCUIT-LINE   MODEL 
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Figure 1.    Geometry of M-ply laminated composites. 
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