
S|»^*i®»PSfSiSfi«^SM«gMKSl«»MtÄ«S

Computer Science

(71007147

Carnegie
Mellon

DTio cii ALITT nisPscnsD %

Towards a formal treatment of implicit invocation

Dingel D. Garlan S. Jha D. Notkin

July 29, 1997
CMU-CS-97-153

School of Computer Science ; IMmgÜTlOR g?Ä^HEgiT K
Carnegie Mellon University j ^pxovsA icn pttßik: re.l©08iä

Pittsburgh, PA 15213 '• DiaaiiaaaaH unlimited .$

Abstract

Implicit invocation [SN92,GN91] has become an important architectural style for large-
scale system design and evolution. This paper addresses the lack of specification and
verification formalisms for such systems. A formal computational model for implicit
invocation is presented. We develop a verification framework for implicit invocation
that is based on Jones' rely/guarantee reasoning for concurrent systems [Jon83,St091].
The application of the framework is illustrated with several examples. The merits and
limitations of the rely/guarantee paradigm in the context of implicit invocation systems
are also discussed.

Effort sponsored by the Defense Advanced Research Projects Agency and Rome
Laboratory, Air Force Materiel Command, USAF, under agreement number F30602-
96-1-0299, and the the National Science Foundation under Grant No. CCR-9633532.
The U.S. Government is authorized to reproduce and distribute reprints for Govern-
mental purposes notwithstanding any copyright annotation thereon.
The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research Projects Agency, Rome
Laboratory, the National Science Foundation or the U.S. Government.

Keywords: Implicit invocation, rely-guarantee, assumption-commitment

I Introduction

A critical issue for large-scale systems design and evolution is the choice of an
architectural style that permits the integration of separately-developed compo-
nents into larger systems. Familiar styles include those based on remote proce-
dure call [BN84], shared variables, asynchronous message passing, etc.

One key factor determining the effectiveness of an architectural style is the
ability to reason effectively about properties of a system from properties of its
components. As a result, considerable effort has gone into techniques for compo-
sition based on procedure invocation [Dij76,Hoa69], shared data [CM88,OG76],
and message passing [Hoa85,Mil80,ISO87]. Even though practitioners rarely carry
out formal reasoning throughout the full design and implementation process,
they can both use the techniques as needed and also apply intuition that has
been built up during development of the supporting techniques.

One increasingly important architectural style for system composition is im-
plicit invocation (II) [SN92,GN91]1. At its heart, II is based on the idea that
a component A can invoke another component B without A being required to
know B's name. Components such as B "register" interest in particular "events"
that components such as A "announce." When A announces such an event, the
II mechanism is responsible for invoking component B, even though A doesn't
know that B or any other components are registered.2

There are a number of benefits of using the II architectural style, and it has
been used in diverse settings such as programming environments and operating
systems and others. Mechanisms to support II are found in commercial toolkits
(e.g., Softbench [Ger89], ToolTalk, DecFuse), communication standards (e.g.,
Corba), integration frameworks (e.g., OLE), and programming environments
(e.g., Smalltalk).

However, there is currently no established basis for reasoning about II sys-
tems. In particular it is difficult to answer questions like: What will be the ef-
fect of announcing a given event? Have enough event bindings been declared to
achieve desired system behaviour? Does a given component announce sufficient
events to permit effective integration? If a new component is added to an exist-
ing system, will it break the existing system? Are there the right components to
produce desired overall system behaviour?

■ In this paper we describe one approach to providing such a basis for rea-
soning about systems designed using the II architectural style. The basic ideas
are based on extending Jones' rely/guarantee approach to events. Specifically,
we augment the assertion language to allow us to express the conditions under
which a component will announce events. The overall system behaviour can then
be reasoned about by establishing invariants over the effects achieved by individ-
ual components together with the state of pending events (i.e., those waiting to
implicitly-invoke other computations). In order to reason with these invariants

In other contexts "implicit invocation" is referred to by other names, such as
"publish-subscribe" and "event multicast".
In this paper, as we will see, a "component" is just a procedure or method.

we are also led to impose several constraints on the form of system computa-
tions to guarantee the atomicity of certain state changes. As we will discuss, the
need for these additional constraints illustrates some of the limitations of an ap-
proach based on rely/guarantee, and suggests future extensions of the techniques
described in the paper.

1.1 II Systems: utility and challenges

As sketched above, the central notion underlying II systems is that the "invokes"
relation is decoupled from the "names" (or "knows-about") relation. That is, a
component A can invoke a component B without knowing B's name. One of the
simplest examples of II is when an operating system allows user code to register
a callback procedure. For example, user code might register a procedure that
is invoked when a particular signal is raised by the kernel. This allows the user
code added control without compromising the kernel.

A somewhat more complicated example arises in broadcast message-based
programming environments (such as those derived from Reiss' Field [Rei90] sys-
tem). A collection of tools, such as a compiler, a debugger, an editor, a pro-
gram visualization tool, etc., execute together. Rather than calling one another
directly, at appropriate times they each announce potentially interesting activi-
ties. For example, the editor might announce, "procedure f was saved", while the
debugger might announce, "the breakpoint in file x.c at line 173 was reached."
Other tools might decide to listen for particular kinds of announcements. For
example, the editor might listen for "breakpoint" announcements, so that it can
move the cursor to the appropriate file and line. A centralized message server is
used to deliver announcements to the tools that have registered interest.

By having tools announce potentially interesting events, and by having tools
register interest, the conventional link between "invokes" and "names" is bro-
ken. In the example above, for instance, the debugger "invokes" the editor by
announcing a breakpoint event, but the debugger is unaware of this. Indeed,
some editors might not listen for this event, or multiple tools (even multiple
editors) might listen for it. So, not only is implicit invocation used, but the invo-
cation relation becomes one-to-many as opposed to the conventional one-to-one
in conventional direct procedure invocation approaches.3

The conventional approach to reasoning about software systems depends on
the link between invokes and names. Specifically, it is hierarchical and thus
will not apply directly to II systems. In the hierarchical approach there are a
set of primitives—often language constructs—that are associated with specific
semantics (weakest preconditions, for example). Then one defines pre- and post-
conditions for procedures and uses standard compositional techniques over the
primitives to demonstrate that the axiomatic conditions hold. These conditions

Logically, there is no reason that conventional procedure invocation need be one-
to-one. But it happens at most rarely, and the one-to-many is a natural extension
of implicit invocation. Note, however, that the operating system callback case is a
situation in which it is implicit but also one-to-one.

are in turn used as primitives to prove properties about the enclosing procedures.
And so on, until one can prove a property (often correctness) at the top-level of
the program.

If one changes one of the primitives or procedures, a bounded amount of
reasoning needs to be reapplied: basically, proofs from that point to the root of
the tree need to be redone.

At the heart of these hierarchical reasoning approaches is the notion that the
invocation relation is known statically. This is what allows reasoning about a
procedure to be done in terms of the primitives and preconditions of procedures
in which the given procedure is written. This static invocation relationship is not
the fundamental composition structure used in II, so this reasoning approach is
not necessarily appropriate for II systems.

To see why, consider an approach that attempts to reduce reasoning about
II systems to standard hierarchical reasoning using pre- and post-conditions. In
the case of a sequential II system (one in which each event-triggered procedure
is executed to completion), one would be tempted to substitute:

announce e

with the corresponding procedure calls of the procedures bound to e. One can
then apply standard pre-post reasoning techniques to the system.

However there are two fundamental problems with this. First, it violates
the intended goal of decoupling the reasoning about a given component from
the system in which its events are bound to other components. This is because
changing any binding requires reanalysis of the components that announce the
events in the changed bindings. Second, the technique is not tractable. Since
the procedures bound to an event can be invoked in any order, it is necessary
to consider all n! sequences of procedure invocations where n is the number of
procedures.

In fact, the loosely coupled nature of the components in II systems cause
them to be formally much more like a concurrent system than a sequential one
(even when there is a single thread of control). Since the procedures associated
with an event can be invoked in any order by the underlying II mechanism,
there is inherent non-determinism in II systems, similar to that of concurrently
executing processes. This suggests that it should be possible to apply techniques
for reasoning about concurrent systems to II systems. In particular, it should
be possible to enhance the interface specifications of II components so that they
make explicit the role that they play in a system and environmental conditions
under which they expect to function.

Thus, the central challenge in reasoning about II is to find ways to specify
component interfaces and together with tractable composition mechanisms for
reasoning about aggregate behaviour. This theory would allow us to determine:

- Does a given component satisfy its interface?
- Is a given composition well-formed (complete and consistent)?
- Is the aggregate behaviour of a system as desired?

1.2 Related Work

There are two general areas of related work. The first is research on implicit
invocation systems. Most of the work on such systems has centered around de-
veloping practical mechanisms for exploiting the paradigm in real systems, such
as programming environments like Field and Softbench [Rei90,Ger89]. Our work
is inspired by the practical success of this work, and hopes to make engineering
efforts based on it more effective by providing more principled basis for reasoning
about II systems.

Within the general area of II research several researchers have attempted to
provide precise characterizations of implicit invocation systems. An early sur-
vey of applications of the technique appeared in [GKN88] in which the authors
illustrated how and why the ideas of II systems are pervasive in software sys-
tems. More recently [BCTW96] produced a taxonomic survey of II mechanisms,
together with a generic object model for comparison of them. While this line of
research has led to improved understanding of the design space for II-based sys-
tems, unlike our work, it does not attempt to provide a formal basis for reasoning
about them.

Closer to our line of research, several researchers have attempted to provide
a formal characterization of certain aspects of II systems. Two of this paper's
authors produced an early characterization of II systems in Z [GN91]. More
recently, researchers in software architecture have looked at some of the formal
properties of II architectural styles [AAG95]. This research was primarily focused
on taxonomic issues, and does not provide an explicit computational model that
permits compositional reasoning about the behaviour of such systems.

Other researchers have looked at formal issues of event-multicast and process
groups as a mechanism for achieving fault tolerance through replication [BJ89].
This work differs from that on implicit invocation in that multiple recipients of
an event typically perform the same computations. This leads to very different
requirements for underlying theory, since the main issue is how to add and
remove replicated servers correctly to a running system.

The second closely related area of research is the area is formal models of
concurrency. As we have said, this paper draws heavily on that work, and es-
pecially that of Jones and St0len [Jon83,St091]. In our work we attempt where
possible to apply existing research to this new domain, and to understand the
strengths and limitations of established techniques.

In the remainder of this paper we describe a formalization of implicit invo-
cation systems that is a first step towards this goal. The next section introduces
a formal model for II systems. Section 3 describes the specification language.
Section 4 demonstrates how II systems can be verified using rely/guarantee rea-
soning. Section 5 concludes and outlines further work.

2 A formal model of implicit invocation

We describe a computational model for II systems. A syntax and an operational
semantics are given. Two concepts are crucial to the model: methods and events.

Methods A method m is a piece of (imperative) code, denoted by code(m)
or just c, also called program, that uses local and global variables. We assume
there exists a set]' of global variables that can be read and written by the
entire system. Each method has its own set of local variables. The local variables
local(m) of a method m can only be read or written by the code of m and
changes to them are not visible to the outside. The bindings of local variables
local(m) = {j-i .r,,} are recorded in the code c itself and supersede the
bindings of global variables with the same name. To this end, c is required to be
of the form

r ::= local [xx = v\,..., xn = v„] in C

for some n > U where the values of the local variables are given by the declaration
list [.ri = f] x„ = (•„]. We assume that all of the x\ through x„ are distinct.

C is a program of a simple imperative language augmented with primitives
for announcing and consuming events and an atomic section construct:

C ::= x := expr \ C\\C2 \
if B then C\ else C2 | while B do C \
announce(e) | consume(e) | (C)

The formal semantics of these statements will be given in the next section. The
structure of a method m is illustrated in Figure 1.

local(m)

code(r

Fig. 1. Structure of a method m

Events The main purpose of an event is to trigger other methods. Typically,
the event thus communicates a certain state change that the rest of the system
needs to know about. In other words, an event is announced if and only if a
certain state predicate is met. Events are thus a carrier of semantics. The state
predicate whose truth is communicated through an event e is called the semantics
of e, written sem(e).

An event-method-binding EM, or binding for short, associates each event e
with a set of methods that are to be triggered when that event is announced.
Formally, EM is a possibly empty set of event-method pairs (e,m). Note that
an event need not be bound to any methods and that several methods can be
bound to the same event. Let EM(e) denote the set of methods that e is bound
to in EM, that is, EM(e) = {m | (e,m) G EM}. An event e is considered to be

external with respect to a set of methods M, if none of the methods in M issue
e. (Note, however, methods still can be bound to external events.) Events that
are not external are called internal.

Definition 1. A system S — (M, V, EM, Ex) is a collection of methods M to-
gether with a set of global variables V, a binding EM and a set of events Ex
that is external to M. □

2.1 Operational semantics

The essential operational behaviour of an II system is that when methods exe-
cute they may announce events. When an event is announced the set of event-
method pairs (as determined by EM) is added to an "active event" data struc-
ture ae. Concurrent with method executions, event-method pairs are removed
from ae, causing the invocation of the associated method. Let / be a list of
(e,m) pairs. We assume that ae supports two update operations store(ae,l)
and remove(ae,(e,m)), two predicates empty(ae) and (e,m) E ae, and an op-
eration #(ae,e) that counts the number of occurrences of e in ae, that is,
#(ae,e) = \{(e,m) \ (e,m) G ae}\. In this model, we leave unspecified (i.e.,
non-deterministic) how precisely the events are stored and retrieved. In other
words, our model does not contain any build-in assumptions about, for exam-
ple, the policy that decides which event-method pair will be selected from the
active event data structure or how duplicate occurrences of events or concur-
rent updates should be handled. In practice, systems institute specific policies
to achieve certain kinds of ordering relationships. In Section 3.1 we will see an
example where it is necessary to pick a particular dispatch policy. However, this
paper does not attempt to classify which policies are needed by which applica-
tions.

To achieve compositionality the semantics of a collection of methods will be
given subject to the behaviour of the environment the methods are executing
in. The semantics defines transitions between configurations. We first introduce
the components of a configuration. Methods can either be waiting for events
or executing. To distinguish between these states each method m,- is associated
with a boolean flag a,-. If a* = true, then c,-, the code of method ?n,, is currently
being executed, and we say that method m, is active, a,- = false indicates that
code a is currently not being executed. In this case, method m; is called idle.

A state s, is a mapping from global variables to values, s : V —> Val. Whenever
(e,m) E ae then event e is currently active and still needs to be delivered to
method m.

Definition 2. Let C{ be programs, a, be boolean flags, s a state, and ae the
active events data structure. A configuration is a 3-tuple

<((ci,a?-))"=1,s,ae)

where {(a, as-))™=1 = ((clt a{),..., (c„,, a„)). If the precise number of methods
is irrelevant, we will abbreviate this by ((c;-, a,)),-.

A transition is of the form (((c,-, s8-, a,-)};, s, ae) —> {{(c\, s\, a^)),-, s', ae')
where the label I is one of {env, pro}. If / = pro then we have a program transi-
tion. Environment transitions have / = env. Intuitively, environment transitions
model transitions made by other methods in the system. D

Method semantics Before the operational semantics of the overall system can
be defined, we need to give a semantics for the code of a method. This semantics
is a family of local transition relations ~*(EM,m) that is parameterized with the
current binding EM, and the method m which is currently executing. These
local transition relations link local configurations of the form -< c, s, ae y. A local
transition

-<c,s,ae>- ~*>{EM,m) -<c',s',ae'y

means that code c transformed state s and the active events data structure ae
to s' and ae1 respectively assuming that c is executed under the binding EM,
and that c is the code of method m. The remainder of the code is c'. A local
transition

-<c,s,aey ~*(EM,m) -<s',ae')-

additionally expresses that c terminates in one step.
The imperative constructs have the standard semantics. Assignments, for

example, are defined as follows:

if e evaluates to n in s
-<x :— e,s,aey ~-»(sM,m) <[s\x = n],ae>-

The atomic section construct hides intermediate states:

<C,s,ae> >*EM,m) <s',ae'y

-<{C),s,ae>- ~^[EM,m) <s',ae'>-

where '^'(EMm) denotes the reflexive and transitive closure of ~^(EM,m)-
The event primitives announce and consume behave as follows:

-<announce(e),s,ae^ ^(EM,m) -<s, store(ae, [(e, mi),..., (e, mn)]) >-

where EM(e) = {mi,...,m„}. That is, announce(e) causes (e,m') to be an-
nounced only if e is bound to m' in the current binding EM. Note that if an
announced event has no methods bound to it by EM, no pairs are added to the
active event data structure — that is, ae is unchanged.

Once a consume(e) is executed by method m, the event e is considered de-
livered to m and the pair (e, m) is removed from the active events data structure.

-<consume(e), s, aey -^(EM,m) -<s,remove(ae,(e,m))y

We want a local variable declaration to hide the changes of the declared vari-
ables. We adopt the standard operational treatment of local variables. If, from
a state in which the local variables carry their local values, C has a transition
to -< C". ■'•'. of' y, then -<; local lb in C, s, ae y has a transition that leaves the
values of the local variables unchanged and stores the new values of the local
variables in (lie updated declaration list dl'.

<(\{s\,v\ = i'i| .. .\xn - vn],ae> >(EM,m) {C',s',ae')

-< local dl in C, s,aey ~*(EM,m) ~< local dl' in C, s", ae' y

where dl = [xt = cj...., xn — vn] and dl' = [xi = s'(xi),..., xn = s'(xn)] and

s" = [••>■'|J-1 = -S-(J-|)| ... |a:n = s(xn)]. Termination of the body of a declaration
induces termination of the declaration.

-<('. [.s|.n - vi\ ...\xn = vn],ae> >(EM,m) <s',ae'y

-(local dl in C, s, aey ~^(EM,m)~<s"\ ae'y

where dl = [x i = ci xn = v„] and s" — \s'\x\ = s{x\)\ .. . \xn = s(xn)].

System semantics We are now ready to define the global transition relation
that describes the behaviour of the entire system.

Definition 3. For each binding AM the transition relation —>EM is the smallest
relation satisfying

• — environment transitions:

{((ci,ai))i,s,ae) ^\EM (((CJ, a,-)),-, s', ae')

for all C{, a,;, s, ae, s', ae' and
— program transitions:

(((cij ai), • • •, (ci, at),..., (c„, a„)), s, ae) ^>EM

<{(ci, ai), ■ • ■, (c-, a-),..., (cn, a„)), s', ae')

whenever
1. etj = fr«e and -<Cj,s, ae)>- -^(EM.m,) -< c[, s', ae'y and aj- = a,, or
2. a, = true and -<< cs-, s, ae >- ■^(EM.m,) <s' ,ae' y and c,' = code(rrii) and

a(- = /a/se, or
3. (e, ffl,) £ ae and ai = false and aj = true and c' = c and ae' = ae. D

The intuition behind the above definition is the following: The environment has
access to the global state and the active events data structure and can change
these arbitrarily in an environment transition. A program transition can arise in
three different situations:

1. If a method is active and its code is not yet terminated, then it continues to
be active and execute its code.

2. If a method is active and its code terminates, then it is set to idle, and the
code is restored.

3. If event e is active and bound to method m, that is not currently active,
then m,: can be activated.

Note that an event cannot trigger a method that is already active. In other
words, at most one "incarnation" of each method is active at any time. Once
a method has been activated, its code will be fully executed before it gets de-
activated. Also note that this formulation can readily be extended to handle,
for instance, changes to the EM binding at runtime, or the use of more specific
method activation strategies.

When reasoning about an II system it is typically the case that one wants
to assert the establishment of some predicate once the system has reached a
quiescent state. To facilitate that we identify a disabled configuration as one
that can make no transitions.

Definition 4. A configuration (((c;, Sj, a,)),-, s, ae) is disabled under EMU there
are no c\, s't, a't, s' and ae' such that

(({ci,Si,ai))i,s,ae) ^EM <((C-, S-, a'A)i, s', ae').

Definition 5. A computation under some binding EM is a possibly infinite se-
quence of program and environment transitions

(({ci,,sli,aii))i,si,aei) -^EM ■ ■ ■ -^ (((c,,, sjt, ajt))i, sj} aej) -^EM ■■■

such that the final configuration is disabled under EM if the sequence is finite.
A finite computation is also said to be terminating. D

Given a computation a, then C(cr), S(a), AE(a) and L(a) are the obvious
projection functions to sequences of programs, states, active events and transi-
tion labels. cr[i], C(a, i), A(a, i), S(a, i), AE(a, i) and L(a, i) denote, respectively,
the \th configuration (((cjt,Sjt,ajt))j,s,ae), the ith vector of programs (c;),-, the
\th vector of flags (a,),-, the \th state s,, the \th active events data structure aes-,
and the \th label /,• of a. Let SxAE be the product of the two projection functions
S and AE, that is, SxAE(cr,i) = (S(cr,i),AE(a)i)).

Given a system S, cr is a computation of S if it starts out with a set of
inactive methods.

Definition 6. Given a system S = (M, V, EM, Ex) with M = {mi,..., mn},
the set of all computations of S, comp(S), is given by all computations a under
EM with C{(T, 1) = (code(mi))f=1 and A(a, 1) = (false)?=1. D

3 Specification language

Rely/guarantee reasoning [Jon83,St091] has successfully been applied to concur-
rent systems. We now show this approach can be extended to our computational
model of II systems.

Predicates States are described by state predicates. As usual, these are formu-
las consisting of constants, variables, function and predicate symbols and the
standard boolean connectives. Unprimed variables will be used to refer to an
earlier system state. Note that this is not necessarily the previous state. Thus,
for each variable x, there is a primed variable x''. Primed variables cannot ap-
pear in programs. Let A be a state predicate. We write (sj, S2) (= A if A is true
when each unprimed variable x in A is assigned the value Si(x) and each primed
variable x' in A is assigned the value so{x). A state predicate A can thus be
interpreted as the set of pairs of states (si,so) such that (si,S2) |= A. In this
case, A is called a binary state predicate. If, however, A does not contain any
primed variables, then A may also be thought of as the set of states s such that
s \= A. A is called a unary state predicate in this case.

In certain situations we also want to express how the active events data
structure will be changed in the course of a transition. To this end we introduce
event predicates. The variable ae is reserved to denote the active events data
structure. Given an event e, an event predicate is a boolean combination of the
atomic predicates active(e), c++ and e—. Let ae and ae' be two active events
data structures. We say active(e) is true in (ae, ae') if there is a method m such
that (e,m) £ ae', that is, (ae,ae') \= active(e) iff (e,m) 6 ae' for some m.
c++ expresses that e has just been announced, e— says that e has just been
consumed. e++ (or e—) is true in (ae,ae') if the number of occurrences of e
in ae' is one greater (or smaller) than the number of occurrences of e in ae.
Formally, (ae,ae') f= e++ iff #(ae,e) = #(ae',e) + 1 and (ae,aer) |= e— iff
#(ae,e) = #(ae',e) — 1. A state-event predicate is the boolean combination of
state and event predicates and is thus interpreted over 4-tuples ((s, ae), (s', ae'))
in the obvious fashion.

Specifications A specification is of the form ip — (P,R,G,Q), where the
pre-condition P is a unary event-state predicate, and the rely-condition R, the
guarantee-condition G, the input/output-condition Q are binary event-state pred-
icates.

Let len(cr) be the number of configurations in <x. Given a set of variables
X and two states S\, S2, then s\ =x «2 denotes that for all variables x £ X,
Si(x) = S2(x) while Si ^x «2 denotes that there exists a variable x £ X, such
that si(a;) ^ S2{x).

Definition 7. Let V be the set of global program variables. Given a binding
EM, a pre-condition P, a rely-condition R, then env(V, P, R) denotes the set of
all computations a under EM, such that

- SxAE(a, 1) |= P,

- for all 1 < i < len(cr), whenever L(a,i) = env and S(cr,i) ^v S(a,i + 1),
then (SxAE(a, i), SxAE(<r, i+ 1)) \= R. That is, all environment transitions
that change the value of at least one variable satisfy the rely R. D

10

Definition 8. Let V be the set of global program variables. Given a binding
EM, a guarantee-condition G, a input/output-condition Q, then prog(V, G, Q)
denotes the set of all computations u under EM, such that

- a is finite,
- for all 1 < i < len(v), whenever L(a,i) = pro and S(cr,i) ^v S(a,i + 1),

then (SxAE{<7, i),SxAE(a, i+1)) (= G. That is, all program transitions that
change the value of at least one variable satisfy the guarantee G.

- {SxAE{<r, 1), SxAE{(T, len(a))) \= Q. D

Judgements A judgement is a pair consisting of a system S = (M, V, EM, Ex),
and a specification ip = (P,R,G,Q), written S \= <p. A judgement is true, if
all computations a of M under EM are such that whenever a terminates and
satisfies the relies (on initial state and environment transitions), then it will also
satisfy the guarantees (on the program transitions and the final state).

Definition 9. Let S = (M, V, EM, Ex) be a system. The judgement

S\=(P,R,G,Q)

is true iff
com.p(S) n env(V, P, R) C prog(V, G, Q).

D

We now define executions. These are finite computations that start and end
with an empty active events data structure and restrict top-level environment
interference to the announcement of external events while the state is left un-
changed.

Definition 10. Let S = (M, V, EM, Ex) be a system. The set of executions of
S, exec(S), is given by

e^ec(iS) = comp(S) fl env(V, empty(ae), REX) H prog{V, true, true)

where REX is

(Kev
x> = X)A

(ae' = store(ae,[(ei,mi),...,(en,mn)]))A
(VI < i < n.ei 6 Ex A (e,-, m,-) e EM)

and thus restricts the top-level environment to the announcement of external
events. For state-event predicates P and Q, a partial correctness triple

{P}S{Q}

is true iff every execution of S that starts in a state satisfying P terminates in
a state such that Q holds. D

When considering executions the system is thus regarded not as a closed sys-
tem but one that is still subject to interference by the top-level environment.
However, this interference is limited to the announcement of external events.

11

3.1 Example: sets and counters

A common use of II systems is to provide loose coupling between parts of a
system that are individually responsible for updating separate portions of the
state. The EM binding is used to provide establish relationships between the
different parts of the system state: specifically, when one part of the system
changes its part of the state, events trigger corresponding updates to other parts
of the state.

As a simple example, consider a system in which the state consists of a set
and a counter. The set has methods to insert and delete elements. The counter
has increment and decrement methods. The EM binding is then used to establish
a system "invariant" that the value of the counter be the size of the set. Formally,
consider a system S with methods

M — {insert(x), increment, delete(x), decrement],

global variables V = {C, S}, external events Ex = {ins(n), del(n) | n £ N},
internal events {incr, deer}, and binding EM with

event method

ins(n) insert(x)
del(n) delete(x)
incr increment
deer decrement

The idea is that an element n can be inserted into or deleted from the set
S using the method insert(x) or delete(x). Analogously, the counter C can be
incremented or decremented using increment or decrement. In this case EM
provides the necessary binding between events announced by the methods that
change the state of the set, so that the state of the counter can be updated. The
methods have the following structure.

m : insert(x) delete(x)
local(m) : 0 0
code(m) :

local P in localW in
consume(ins(i)); consume) del(x));
if x $. S then if x G S then

(S :=Sl){x}; (S:= S\{x};
announce(mcr)} announce(decr)}

In the methods above x is used as a formal parameter that is instantiated
upon method invocation.

12

m : increment decrement
local(m) : 0 0
code(m) :

local Q in
(C:=C+l;
consume(mcr))

localW in
(C:=C-1;
consume(dec7'))

Given the external event ins(n), the formal parameter x of method insert(x)
is replaced by n and the method is invoked. Similarly for external events del(n).
If necessary, the set S is updated by inserting or deleting the element n and
the corresponding event is announced. This in turn triggers either increment or
decrement.

The above methods communicate by exchanging the events incr and deer.
These events have the following semantics.

event e

incr
deer

sem(e)

3X.X<£SAS' = SL){X}

Bx.xeSAS' = S\{x}

Given a set of events E, the characteristic formula of E expresses that all
events in E get announced if and only if their semantics is met. Formally, c/g is
AeGf;(e++ ^ sem(e)). Making cfE part of the guarantee condition, thus allows
us to show that a given method respects the semantics of its events.

When run in an initial state in which x £ S, insert(x) announces the event
incr precisely when its semantics is met. Similarly for delete(x) and initial states
in which x £ S. If these preconditions are not met, both methods will not cause
any state change (the next state relation is restricted to stuttering through the
guarantee false). Unrestricted environment interference prevents us from being
able to make any non-trivial assertions about the final state. Formally,

{msert(x), V, EM, Ex) \= (x <£ S, true, cf{incrtdecr}, true)

(insert(x)', V, EM, Ex) (= (x £ S, true, false, true)

{delete(x), V, EM, Ex) |= (x £ 5, true, cf{incl.tdecr}, true)

(delete(x), V, EM, Ex) \= (x £ S, true, false, true).

We assume that events are commutative, that is, the order in which they are
announced is irrelevant. In this case an implementation of ae as a multiset would
therefore be correct.

Suppose we wanted to extend our system by the external event init, the
internal event res, the methods initialize and reset and the bindings

event method

init initialize
res reset

13

where

initialize
reset

local(m) : 0
0 code(m) :

local W in
consume(inzY);
<S:=0;
announce(res))

local W in
(C*:=0;
consume(res)}

The external event init causes method initialize to be invoked, which empties
the set and announces the res event. This in turn triggers the reset method
which sets the counter to 0. Note that in this extended system events are not
commutative anymore. We need to keep track of the order in which events are
announced and thus require a more refined computational model. More precisely,
the active events data structure ae must thus be kept in a queue rather than a
multiset.

4 Formal reasoning

Assume that we want to reason about the system S = (M, V, EM, Ex) and show
that it satisfies some partial correctness triple {Ps} <5 {Qs}- This section shows
how this can be accomplished.

1. We start with some local reasoning on the method level.
(a) First, we choose appropriate predicates P, R, and Q describing the ini-

tial state, the relies on the top-level environment, and the final state
respectively.

(b) For each method m £ M and the corresponding "rest of the system"
M\{m} we identify guarantees Gm and Gjw\{m} such that .

i. whenever m is executed from an initial state satisfying P and in
an environment satisfying R V Gju\{mj and terminates, then m will
change the state according to Gm and the final state will be such
that Q holds. Formally,

(m,V,EM,Ex) \=(P,RvGM\{m},Gm,Q)

for all m £ M, and
ii. whenever M\{m}, the rest of the system, is run from an initial state

satisfying P and in an environment satisfying R\/Gm and terminates,
then M\{m} will change the state according to GM\{m} and the final
state will be such that Q holds. Formally,

(M\{m},V,EM,Ex) \= (P, RV Gm,GM\{m],Q)

for all m e M.

14

Intuitively, the above shows that both the method m and the rest of the
system M\{m} stick to their guarantees if the other one does,

(c) Now it is safe to conclude that whenever the entire system is executed
in an initial state satisfying P and in an environment satisfying R and
terminates, then it will change the state according to \Jm€M Gm and the
final state will be such that Q is met. That is,

(M, V, EM, Ex) \= (P, R, VmeMGm, Q).

The soundness of this step is implied by the rely/guarantee reasoning
method put forward by Jones and others [Jon83,St091].

2. Now we weaken the above judgement. By definition, every execution starts in
a state with empty(ae) and the interference allowed by the top-level environ-
ment is described by RBX. Moreover, we are only interested in initial states
satisfying Ps ■ Thus, we need to show Ps A empty(ae) =>■ P and RBX => R-
In this case, we get

(M, V, EM, Ex) (= (Ps A ae = 0, RBlc, true, Q).

3. Due to the semantics of announce(e), ae cannot contain events that do not
trigger anything. Thus, every disabled configuration must have empty(ae).
To obtain the desired partial correctness property, we therefore need to show
Q A empty(ae) =>• Qs. In this case, it is sound to conclude that the partial
correctness property holds

{Ps} S {Qs}.

Following [Jon83,St091] a more general formulation step 1 would be possible.
However, the present treatment is sufficient for our purposes.

4.1 Example: sets and counters

Let S be the system introduced in Section 3.1. By binding the incr and the deer
events to increment and decrement respectively, we hope to have established a
link between the size of the set S and the value of the counter C. More precisely,
we want the triple

{\S\ = C}S{\S\ = C}

to hold.

1. Let I\ be given by

h = (\S\ = C + #incr - #decr)

where #e abbreviates the number of occurrences of e in ae, that is, #(ae, e).
To prove the partial correctness property above we adopt the outlined strat-
egy in a somewhat degenerate but sufficient fashion. We show that Ix is
an invariant for each of the methods and thus also for the entire system.

15

More precisely, with respect to the above strategy we let P = R = Gm =

GM\{m] — Q = h for all m £ M. We can show that all methods preserve

(m,l/,M,fo)H/i,/i,/i,/i)

for all m £ {insert(x), delete(x), increment, decrement}.
This part of the verification reveals an important point. I\ expresses a

relationship between the state variables and the active events data structure.
For this invariant to be preserved by every transition, it is necessary that
every method announces changes to the state variables that destroy that
relationship by simultaneously announcing the corresponding event using
the atomic section construct. If, for instance, a method first updates the
state variables and then announces the event at some later stage, it is likely
to be impossible to establish any non-trivial relationship between the state
variables and the pending events for that method. We regard the need for an
atomic region construct as a limitation of our framework that compromises
practicality. Section 5 contains a more detailed discussion of this issue.

Next, it is easy to see that for each m the rest of the system M\{m}
also preserves the invariant.

(M\H,V,£M,&)H/i,A,/i,/i)

for all in £ {insert(x),delete(x), increment, decrement}. Thus, I\ is an in-
variant for all of S.

S\=(h,h,h,h).

2. We weaken the specification {I\, h,Ii,I\) to (C = \S\Aempty(ae), REX, true, Ii)
Note that C = \S\ A empty(ae) => h and REx => Ix. Thus,

S \= (C = \S\ A empty(ae), REX, true, I\).

3. We show

{C=\S\}S{C=\S\}

by arguing that I\ A empty(ae) implies C = \S\.

Note that the above reasoning could easily be extended to handle the example
system augmented with the methods initialize and reset under the appropriate
binding.

4.2 Example: a filesystem

We now consider an example inspired by the common application of implicit
invocation to software development environments, such as Field [Rei90].

Previously, a state was a mapping from variables to values. We now consider
a slightly different scenario, in which the state is given by the contents and the
attributes of a file system T. Suppose F is a set of source files. We assume that

16

the files in F correspond to an executable file target and that make(F, target)
creates a new executable with respect to the current contents of F.

In the following, / will range over files in T. The system T contains the
methods M = {edit(f), compile], the internal event modified, the external events
update(f), and the binding EM with

event method

update(f) edit(f)
modified compile

The semantics of the modified event is

sem(modified) = ->fresh(target,F)

where fresh(f, F) denotes that the last modification date of / is more recent
than that of all files in F, that is, for all /' £ F,

dateJast-modified(f) > dateJasLmodified(f').

We assume that the methods are of the following form:

m : edit{f)
local(m) : buf
code{m) :

local [buf= 0] in
consume(update(f))
read(/, buf);

(if dirty{ buf, f) then
save(6w/,/);
if / G F then

announce(modified))

compile

local W in
(make(i?, target);
consume(modified))

An external update(f) event causes the file / to be edited. The edit(f) method
copies the contents of / into a local buffer buf and if, at the end of the edit
session, the buffer differs from the contents of /, then / is updated with buf.
If / also is a source file relevant to target the modified event is announced. The
modified event triggers the compile method which updates the executable. Note
that the update(f) and the modified event are not commutative, that is, the order
in which events are announced does matter. Again, this means that ae must be
kept as a queue rather than a multiset.

We would like to show that

{fresh(target, F)} I {fresh(target, F)}.

To this end, we again first establish an invariant. However, in contrast to the
previous example, we make use of the semantics of the modified event to prove

17

the invariant. Let

In = fresh(target, F) V sem(modified)

I2 = fresh(target, F) V active(modified) V

(F' = F A ^(modified++) A -^(modified—)).

I2 is a tautology and thus trivially an invariant. We can show that whenever
the environment changes the state according to I2, then edit(f) will announce
modified if and only if its semantics is met. Similarly for compile.

(edit(f), V, EM, Ex) \= (true, I2, cfmod, V2)

(compile, V, EM, Ex) |= (true, I2, cfmod, I2)

where cfmod = modified++ f-> sem(modified). Using the tautology I2 it is easy to
see that cfmod implies V2. Consequently, the relies and guarantees fit together,
and we can conclude

T f= (truej2, cfmodJ2).

Since Rßx implies I2, this can be weakened to

T (= (empty(ae) A fresh(target, F), REX, true, F2)

which then implies the desired result

{fresh(target, F)} T {fresh(target, F)}.

5 Conclusion and further work

We have presented a formal model of II. Using this model as a guideline, we
developed a framework that supports formal reasoning about II systems. This
framework was obtained as an extension of Jones' rely/guarantee reasoning, and
thus naturally inherits many of its benefits and deficiencies like, for instance, the
reconciliation of concurrency and compositionality and the lack of support for
liveness properties. Several examples illustrated the use and applicability of the
proposed framework. A potential abstraction mechanism is offered through the
event semantics.

The problem of atomicity is inherent to concurrent systems with shared re-
sources. It resurfaces in this work with the following interesting consequences.
To allow for fine-grained parallelism we also chose a fine-grained operational se-
mantics. On the specification level, however, we would like to be more abstract
and not always be forced to reason about every transition. Unfortunately, the
kind of rely/guarantee reasoning adopted here requires us to do exactly that: An
assertion is only an invariant, if it is preserved by every transition. As we have
seen, invariants are crucial for the verification. To be able to prove non-trivial

18

invariants, we thus had to enforce certain atomicity constraints by means of an
atomic region construct.

This is undesirable for three reasons: First, it conflicts with our ideal of fine
grained parallelism. Second, it compromises the practicality of the framework,
since sometimes II systems are implemented without such a construct. Third,
and most importantly, it seems to be, in some sense, an unnecessary restric-
tion. Consider the set/counter example. Suppose we removed all critical region
constructs. The invariant would obviously fail, whereas the partial correctness
property would continue to hold. What is essential here is that every set update
is eventually followed by the announcement of the appropriate event. The simul-
taneity in our framework enforced by the need for an invariant is just a special
case of this. This reveals a fundamental mismatch between judgements that are
true on the one hand and judgements that can be proven in our framework on
the other hand.

Another artifact of our need for low level invariants is the explicit consume(e)
statement. On the one hand, it allows us to pinpoint changes to the active events
data structure to transitions that also update the state in a specific way. On the
other hand, it compromises practicality and maintainability. II systems in gen-
eral do not have an explicit consume(e) statement. Instead, system runtime
mechanisms invoke the method bound to an event, automatically removing that
event from active event set. Moreover, the explicit consumption of events intro-
duces an unnecessary dependency between the event-method binding EM and
the code of a method. In particular, changes to EM must be reflected by changes
to the consume statements.

Further work The most important focus of further work will be the devel-
opment of a verification framework that does not impose the restrictions men-
tioned above. Such a framework would allow, for example, the proof of the par-
tial correctness triple of the counter example even when the insert(x) method
chooses to announce the incr after the actual update of the set. The framework
should also not depend on the explicit consumption of events. A formulation of
rely/guarantee reasoning in which relies and guarantees can be given in terms
of temporal logic formulas seems promising in this respect.

The event semantics plays only a peripheral role in this paper. However, we
envision it as a powerful abstraction mechanism that forms the basis of a two
stage process: First, it shown that events are announced precisely when they are
supposed to. In other words, using local reasoning similar to the one described
in this paper, we prove that all methods respect the event semantics. Second,
this event semantics is then used to do global reasoning, that is, the behaviour
of the overall system is reasoned about purely in terms of the events and their
semantics. To structure the reasoning, it might then be helpful to organize the
dependencies between events by means of a graph or even a Petri net.

Acknowledgement We thank Stephen Brookes for carefully reading drafts of
this paper.

19

References

[AAG95] G. Abowd. R. Allen, and D. Garlan. Formalizing style to understand de-
scriptions of software architecture. ACM Transactions on Software Engi-
ntt ring and Methodology, October 1995.

[BCTW9G] D..I. Barrett, L.A. Clarke, P.L. Tarr, and A.E. Wise. A framework for event-
based software integration. ACM Transactions on Software Engineering and
Mithodology. 5(4):378-421, October 1996.

[BJ89] K. Birman and Th. Joseph. Exploiting replication in distributed systems. In
Muhender and Sape, editors, Distributed Systems, pages 319 - 365. Addison

Wesley. 1989.

[BN84] A. Birrel and B. Nelson. Implementing remote procedure calls. ACM Trans-
actions on Computer Systems, 2(l):356-372, February 1984.

[CM88] K.M. Chandy and J. Misra. Parallel program design: a foundation. Addison

Wesley. 1988.

[Dij76] F.W. Dijkstra. A Discipline of Programming. Prentice-Hall, Englewood
Cliffs. XJ. 1976.

[Ger89] (.'. Gerety. HP Softbench: A new generation of software development tools.
Technical Report SESD-89-25, Hewlett-Packard Software Engineering Sys-
tems Division, Fort Collins, Colorado, November 1989.

[GKN88] D. Garlan. G.E. Kaiser, and D. Notkin. On the criteria to be used in
composing tools into systems. Technical Report 88-08-09, Department of
Computer Science, University of Washington, Seattle, WA, August 1988.

[GN91] D. Garlan and D. Notkin. Formalizing design spaces: Implicit invocation
mechanisms. In VDM'91: Formal Software Development Methods, pages
31-44, Noordwijkerhout, The Netherlands, October 1991. Springer-Verlag,

LNCS 551.
[Hoa69] C.A.R. Hoare. An axiomatic basis for computer programming. Communi-

cations of the ACM, 12(10), October 1969.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.
[IS087] ISO. Information processing systems - open systems interconnection -

LOTOS - a formal description technique based on the temporal ordering of
observational behaviour. Technical Report ISO/TC 97/SC 21, International
Standards Organization, 1987.

[Jon83] OB. Jonesl Tentative steps toward a development method for interfering
programs. Transactions on Programming Languages and Systems, 5(4):569-
619, October 1983.

[Mil80] R. Milner. A Calculus of Communicating Systems, volume Lecture Notes
in Computer Science, volume 92. Springer-Verlag, 1980.

[OG76] S. Owicki and D. Gries. Verifying properties of parallel programs: an ax-
iomatic approach. Communications of the ACM, 19(5):279-284, May 1976.

[Rei90] S.P. Reiss. Connecting tools using message passing in the FIELD program
development environment. IEEE Software, July 1990.

[SN92] K. Sullivan and D. Notkin. Reconciling environment integration and com-
ponent independence. ACM Transactions on Software Engineering and
Methodology, 1(3), July 1992.

[St091] K. St0len. A method for the development of totally correct shared-state
parallel programs. In CONCUR '91, pages 510-525. Springer Verlag, 1991.

20

nn

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required
not to discriminate in admission, employment, or administration of its programs or activities
on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil
Rights Act of 1954, Title IX of the Educational Amendments of 1972 and Section 504 of the
Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or
administration of its programs on the basis of religion, creed, ancestry, belief, age, veteran
status, sexual orientation or in violation of federal, state, or local laws or executive orders.
However, in the judgment of the Carnegie Mellon Human Relations Commission, the Depart-
ment of Defense policy of, "Don't ask, don't tell, don't pursue." excludes openly gay, lesbian
and bisexual students from receiving ROTC scholarships or serving in the military. Neverthe-
less, all ROTC classes at Carnegie Mellon University are available to all students.

Inquiries concerning application of these statements should be directed to the Provost,
Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone (412) 268-
6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA 15213, telephone (412) 268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

