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ABSTRACT 

LIGA is a relatively new technology used to pattern high aspect ratio microelectromechanical systems 

(HARMEMS) in a resist material, using X-ray radiation. Resist materials used in LIGA typically have 

conduction and thermal expansion properties that are very different from those of the substrate that supports 

them during the exposure process, and thermal deformations may limit the ability of the LIGA process to 

reproduce patterns accurately in the resist. A knowledge of the temperature distributions in the resist and 

substrate will facilitate the study of thermal deformations and their effects on the manufacturing process. 

This thesis presents the solution of analytical models of the temperature distributions in the resist- 

substrate system. The primary models presented are a one-layer, two-dimensional model, and a two-layer 

model in one dimension. Boundary conditions are developed based on current practices used in the LIGA 

process. 

Subjects relating to evaluation of the solutions are discussed, including the characteristics of series 

solutions and the development of computer programs to handle the calculations. 

The results of some simple temperature measurement experiments performed at the Center for 

Advanced Microstructures and Devices (CAMD) are presented, along with a discussion of the relative 

merits of experimental, computational, and analytical methods of analysis. 
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CHAPTER 1 

INTRODUCTION 

The LIGA process (a German acronym for Lithographie, Galvanoformung, Abformung) is a relatively 

new technology used to pattern high aspect ratio microelectromechanical systems (HARMEMS) in a resist 

material. The process is similar to optical lithography used for the manufacture of microchips. X-ray 

radiation passes through a mask to a resist material, which is chemically altered by the incident radiation. 

The mask is patterned with an absorbing material, and a negative of this pattern is transferred to the resist. 

A variety of substances have been used for resist materials, but the most common is 

Polymethylmethacrylate, or PMMA. The resist must be supported by a substrate; the choice of materials 

for this component is more flexible, and depends on the application. The bonded resist and substrate will 

be referred to as a wafer. In many cases a layer of some other material, such as a metal base, is applied to 

the substrate before addition of the PMMA, to facilitate later processing. A metal layer allows 

electroplating of metal into the gaps that remain after the resist has been chemically treated to remove the 

material which was altered by the X-ray radiation. 

The advantage LIGA has over conventional lithography is the ability to produce structures with far 

higher aspect ratios. While the lateral dimensions of the structures may be accurate to a fraction of a 

micron, their height can be hundreds of microns. This flexibility has allowed the design of a variety of 

functional devices and systems, including such things as sensors, microactuators, various fluidic 

components, and microoptics. 

A diagram of a typical LIGA exposure station is shown in Fig. 1.1. During the exposure process, the 

X-ray beam is held steady while the carrier, which holds the mask and wafer, is moved up and down. The 

beam is typically rectangular in cross section, with a height on the order of a centimeter, and several 



centimeters wide. Sweeping the wafer through the beam is done to give an even exposure of the resist and 

to avoid damaging one part of the resist by overexposure. 

Synchrotrons are used to produce the X-rays for the LIGA process. Sources such as the one at the 

Louisiana State University Center for Advanced Microstructures and Devices (CAMD) in Baton Rouge can 

produce high flux, long wavelength radiation, which requires exposure times of only a few minutes. This is 

advantageous because of the high expense of using these facilities. However, the heat generated within the 

resist and substrate by the incident radiation may cause problems. 

Thermal stresses are generated within the resist material itself, because only part of the resist is being 

exposed to radiation. Also, resist materials typically have very different conduction and thermal expansion 

properties than the substrate. Thermal stresses within the resist and substrate may limit the ability of the 

LIGA process to accurately reproduce patterns in the resist. Thermal deformations may cause the resist to 

move with respect to the mask, causing incomplete exposure. In addition, the resist may move during 

cooling after the exposure process is finished, shifting away from the pattern that was imprinted on the 

heated structure. Thermal stresses may also contribute to bonding problems between the resist and 

substrate; the two materials often separate during the exposure or development processes. 

Knowledge of the temperature distributions in the resist and substrate will facilitate the study of 

thermal deformations, and hopefully allow researchers to minimize the effects of those deformations on the 

manufacturing process. This thesis presents the solution of analytical models of the temperature 

distributions in the resist-substrate system. The primary models presented are a one-layer, two-dimensional 

model, and one with two layers and one dimension. Boundary conditions are developed based on current 

practices used in the LIGA process, while allowing for flexibility in analyzing the effects of different 

configurations and exposure conditions. 
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1.1. Typical LIGA exposure station design 

The original goal of this thesis was to model the resist-substrate system with a two-layer, two- 

dimensional solution of the heat transfer equations. No analytical method was found to accomplish this. A 

number of authors have indicated that this type of solution is possible, notably Osisik (1980). A solution 

was derived using the method outlined by Ozisik (1980), and was found to be incorrect; a lengthy 

investigation revealed that the method itself is at fault. The reasons for this are outlined in Chapter 3. 



CHAPTER 2 

RELATED RESEARCH 

High flux X-ray lithography is a relatively new technology which can be practiced at only a few 

facilities in the world. So, despite the fact that excessive heat generation and heat induced deformations are 

common problems when very high fluxes are used, little has been published on these subjects. 

Some preliminary research into resist heating was done by Ameel et al. (1994). Their work presents 

three simple analytical models of resist temperature distributions. The models are based in a cylindrical 

coordinate system, and consider only the resist material; the difference between them is the boundary 

condition at the bottom of the resist, which approximates the interface with the substrate. An attempt was 

made to find minimum and maximum temperature rises, establishing a range of temperatures one might 

expect to see in practice. For the specific case studied, this range was from 2.3°C to 11.8°C. The large 

range, along with the simplicity of the model and boundary conditions, limits the utility of these models. 

A large amount of the X-ray radiation used in LIGA is absorbed by the mask. It is much thinner and 

has less volume than the resist-substrate system, and is harder to cool, so temperature rises in the mask are 

generally expected to be higher. For this reason, some effort has been put into determining heat generation 

and deformation in LIGA masks, while less of this type of work has been done on the resist and substrate. 

A Finite element analysis of temperature distributions in X-ray irradiated masks for the LIGA process 

has been reported by Feiertag et al. (1994). Actual surface temperature measurements were used to confirm 

the predictions of the model. The mask, like the resist, is composed of two layers of material with differing 

thermal properties. However, the two situations are fundamentally different; thick mask carriers increase 

the necessary exposure times, limiting their ability to act as heat sinks; thick resist substrates may be used to 

absorb heat and reduce deformation of the resist-substrate structure. 
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This work by Feiertag et al. (1994) is useful for its analysis of the conditions in the gap between the 

mask and the resist; this is an important aspect of the resist model. The authors assumed negligible heat 

loss due to convection and radiation from the surface of the mask and carrier. Their arguments are taken 

into consideration in the determination of appropriate boundary conditions for the present model. 

Vladimirsky et al. (1989) present an analysis of heating and thermal deformations in an X-ray 

irradiated mask, with both a theoretical model and experimental surface temperature measurements. The 

experimental results did not compare well with the calculations for most of the cases considered, but the 

authors made an attempt to explain these discrepancies. Variation of the mask temperature with the spacing 

of the mask-resist gap was documented. The temperature data and observations about heat transfer in the 

gap have applications to the determination of appropriate boundary conditions for the project reported 

herein. 

The application of mathematical solutions to the solution of conduction problems in multiple 

dimensions was begun in the 1930s. Only the simplest solutions may be calculated without the use of a 

computer, and the subject generated little interest until the 1960s, judging by the amount of work published. 

Osisik (1980) published the first edition of his Heat Conduction text in the mid-60s; it is the most recent 

edition which is used as a reference for this work, for almost all of the analytical conduction solutions. 

Many of the papers published since the first edition of Ozisik (1964) list it as a reference. The general 

solution in Ozisik (1980) provided the framework on which the two-dimensional, two-layer solution was 

based. The problems with this general solution are presented in Chapter 3. Cobble (1970) also presents a 

detailed analysis of the problem of multiple-layer conduction, though his work is limited to one dimension. 

The problem of heat generation in a multilayered system has a number of engineering applications, 

and many papers have been published on this topic. One situation closely related to the present problem is 

that of laser heating of thin films, a common problem in laser optical systems. The layers represent optical 

coatings, which rest on a mirror, modeled as an infinite solid. These studies generally use cylindrical 

coordinates, but have some similarity to the problem being studied here. Many simplifications and 

assumptions are made in these studies that would not be applicable to the LIGA system.  The authors are 
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generally more concerned with reflection and absorption in the film layers than with the conduction of heat 

between them. 

Cole and McGahan (1993) obtained a partly analytic solution for laser heating of a multilayer system. 

They used local Green's functions for each layer, along with Fourier and Hankel integral transforms, but the 

method required numerical integration to get a temperature distribution. The model took into account the 

contact resistance between layers, and heat generation within each layer. Though the author's model was 

based on a cylindrical coordinate system, the procedure could probably be applied to the LIGA problem; 

however, the numerical part is unavoidable, and not in accordance with the object of this thesis. 

The problem of laser heating in multiple layers was also studied by Kant (1988). Laplace and Hankel 

transforms were used to construct a two-dimensional model in the cylindrical coordinate system, and the 

author indicates that the procedure is applicable to any number of layers. As in Cole and McGahan (1993), 

numerical methods are needed to find the inversions of the transforms. The model is very similar to the one 

used in Cole and McGahan (1993), and in work by Madison and McDaniel (1989). The latter authors 

studied the same basic system, though they did use an exponential generation term similar to the one used in 

this thesis. 

El-Adawi et al. (1995) studied laser heating in a two-layer system. Their model was one-dimensional, 

and the only significant difference between it and the two-layer solution in the present work is that the heat 

generation was introduced through a constant flux boundary condition, as opposed to volumetric heating. 

The solution was obtained with Laplace transforms; this method is very different form the one used here, 

but no less complicated. The authors made no mention of the extension of the problem to more than one 

dimension. 

Mikhailov (1973) introduced a finite integral transform and inversion for the solution of the diffusion 

equation in an arbitrary region with coupled boundary conditions. The derivations were detailed but very 

general. The solution involves the derivation of eigenfunctions and eigenvalues from a corresponding 

Sturm-Louiville problem in two regions. Mikhailov notes that although the eigenfunctions will be different 



for the two regions, they must share the same eigenvalues.   This requirement is related to the problems 

encountered in finding a two layer solution for more than one dimension (see Chapter 3). 

Sareen and Gidaspow (1974) studied mass diffusion in a two-layer system. The mathematical model 

was almost identical to the model proposed for this thesis, but with one major assumption - that the 

diffusivity is the same for both layers in the lengthwise direction. For the LIGA model, this would mean 

assuming that the thermal diffusivity is the same for the resist and substrate (at least in the direction 

tangential to the surface), when in fact they differ by several orders of magnitude. This assumption and its 

implications are discussed in more detail in Chapter 3. 

The analytical work presented here is basically a continuation of work done by Ameel et al. (1994). 

That work was the only one found which directly addressed the problem of X-ray heating of a LIGA resist. 

The multiple-layer problems described above are mathematically similar to some of the problems developed 

herein, though the physical situation is very different. The works dealing with laser heating tended to 

concentrate on the effects of reflection and diffraction, and mixed analytical and numerical solution 

procedures. 

The two-dimensional, two-layer solution which was to be the object of the present work was not found 

in the literature in any form; a number of authors mentioned that such a solution is possible, giving Ozisik 

(1980) as a reference, but nobody (including Ozisik) developed a specific solution to that problem. 



CHAPTER 3 

PROBLEM DEFINITION 

The models used to predict the temperature field should be based as closely as possible on the physical 

system, consisting of the bonded resist and substrate (the wafer), the carrier which holds the mask and 

wafer, and the physical surroundings. It is also important to determine appropriate values for heat transfer 

coefficients and the thermodynamic properties such as thermal conductance. Many of these values are 

easily found, but others require a number of assumptions and calculations. In this chapter, the physical 

situation will be examined, and appropriate models, boundary conditions, and constants determined. 

Although the originally envisioned problem was not able to be solved in its complete form, some simpler 

models will be developed which may give useful data. 

3.1. Physical System 

The wafer is flat and may be either circular or rectangular. The heat transfer within the wafer may be 

easily represented by general heat conduction equations: 

V T+——= ——        a = — 
k       a at pc (3.1) 

where T is temperature, g is a generation function, t is time, k is thermal conductivity, a is thermal 

diffusivity, and r is a general spatial variable. The form of the Eq. 3.1 assumes thermal conductivity to be 

constant; this is a good assumption, given the small temperature ranges which will be shown to occur. 

One of the boundary conditions on Eq. 3.1 depends on the carrier, which supports the wafer during the 

exposure process, and its relation to the substrate. Because stability is important for maintaining proper 

alignment of mask and wafer, the carrier is very massive in comparison the resist. The wafer is clamped 

directly on the metal surface of the carrier, substrate side down, with the mask assembly in front of it. 
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There will be some resistance to conduction at the interface between substrate and carrier, with the carrier 

acting essentially as an infinite heat sink at constant temperature. 

The boundary condition on Eq. 3.1 that is opposite the carrier side of the wafer depends on conditions 

in the exposure station. Jara-Almonte (1995) has indicated that chamber conditions vary with the situation 

and researcher, but that he uses a mixture consisting of about 98% helium at a pressure of approximately 10 

kPa, or one tenth of an atmosphere, with the gas at approximately room temperature. The carrier assembly, 

with the wafer inside, is moved up and down through this gas. This surface may be water cooled, but the 

same boundary condition can be used for that situation, with a change in constants. The resist surface, 

however, is separated from the mask by a space typically on the order of tens of micrometers (microns). 

This gap will allow for very little gas flow through the space, and the oscillation of the system will act to 

further reduce constant circulation. 

3.1.1. Micro Effects 

If the scale of a system is sufficiently small, the relations commonly used for determination of physical 

phenomenon may be inaccurate. This is because the traditional relations treat matter as a continuous 

medium. Of course, this is a simplification; matter is made up of atoms, and when dealing with very small 

geometries interactions between the individual atoms may become important. A high vacuum, in which the 

molecules are widely spaced, may also necessitate consideration of individual molecules. Because the gap 

between the resist and mask has both of these characteristics, a detailed analysis of this region is needed. 

First, consider an estimate of the mean free path of helium atoms under the conditions given in the 

previous section. This quantity is easily calculated, given the right properties; Keesom (1942) gives some 

formulas and representative values. At one tenth of an atmosphere pressure and 300 K, the mean free path 

is about 2.0 x 10"3mm . The distance between the mask and the resist should be taken as the characteristic 

dimension. This distance is generally less than 0.5 mm (Feiertag, 1994), and the temperature of the gas in 

the gap will increase slightly during exposure. However, the ratio of mean free path to the characteristic 

dimension (the Knudsen number) should still be on the order of about 0.01. This is not large enough to 

cause a significant deviation from the classical material properties used in following discussions. 
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The resist layer, though thin by most standards (typically less than half a millimeter), is very thick 

when compared to the spacing of the molecules of which it is made, and will be governed by macro scale 

relations. However, there are often one or more layers between the mask and the resist, some of which may 

be thin enough to have nonclassical conduction characteristics. For instance, a layer of metal is often plated 

onto substrate materials before application of the resist, to act as a base for later electroplating processes, 

and antireflective coatings may be placed on the resist to keep reflected radiation from affecting the resist. 

Though the method used for the two-layer model here is applicable to any number of layers, additional 

layers would greatly complicate it. Little information concerning the details of these coatings and exposures 

has been published; it would be difficult to get an accurate estimate of the heat generation in many of these 

substances, even if a solution to the conduction equations were to be obtained. 

3.1.2. Convection in the Resist-Substrate Gap 

Convection heat transfer caused by gas in the exposure station moving between the mask and the resist 

could be a factor in the heat transfer away from the resist. A simple solution of the fluid flow equations will 

estimate the gas velocities in the gap and help to determine the method and amount of heat transfer from the 

resist surface. 

The momentum equation is given by 

p = -Vp + uV2V 
Dt (3.2) 

Neglecting buoyancy forces and simplifying to one dimension gives the governing equation for this 

situation, 

du        ?2a 
(3.3) ■ = v- 

dt       dy2 

The gas will be forced through the resist-substrate gap by the motion of the wafer. A good solution to 

Eq. (3.3) would be obtained by using a square wave as the forcing function; that is, the boundary conditions 

on the governing equation would model the up and down motion of the wafer. However, the solution 

becomes very complicated.   An upper bound on the velocity can be found by assuming the initial gas 
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velocity to be that of the wafer, then applying a negative velocity (in the opposite direction) for the 

boundary condition. 

The nonhomogcneous boundary condition at the walls can be separated by splitting the problem into 

steady-state and time-dependent parts. The steady-state solution is obviously the same as the boundary 

condition for all values of y; viscosity will force the velocity to reach a constant value. Subtracting this 

from the boundary and initial conditions and solving the remaining time-dependent problem gives the total 

solution: 

u(y,t)=V £1 isinC„,)< ^'' (3.4) 

where d is the gap between the resist and the mask, V is the velocity of the mask and wafer, and the C,m 's 

mn 
are the eigenvalues f m = . 

d 

The viscosity may be calculated from an empirical relation found in Keesom (1942): 

/i = 5.023 x7",,W7pP (3.5) 

where the unit U.P is a micropoise, and lu.P = 10~7 %.,. Substituting a temperature of 300 K gives a value 

of 201 U.P. Dividing by a density of 0.178 %, (Feiertag, 1994) and changing units gives a kinematic 

viscosity of 1.1 xlO-4"1^/, about ten times the value for air at these conditions, due to an order of 

magnitude difference in density. 

To find the velocity at the midpoint between the mask and the resist, Eq. (3.4) is solved with the 

values d = 50fjm, y = 25fim, V = 0.10"X (Feiertag, 1994), and v =l.lxl0"4 -2/. After less than a 

hundredth of a second, the velocity is uniform across the gap. This means that there will be extremely little 

circulation of gas through the gap, and convection heat transfer will be negligible. 

Although effects of the pressure outside the wafer, including buoyancy effects, might tend to increase 

the gas velocity in the gap, it will be very small, at best. In addition, the oscillation of the wafer will work 

to keep the helium from circulating, and any attempt to force circulation in the gap will jeopardize the 

integrity of the system, as masks are generally quite thin and would be warped by a pressure gradient in the 

gap- 
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The resist and substrate surfaces are generally highly polished. The metallic substrate has a very high 

reflectivity; this, coupled with the low absorptivity of the resist (which is clear PMMA), makes radiation to 

and from the wafer very small.   Because of the absence of radiation and gas movement within the gap, 

conduction will be the primary means of heat transfer from the resist surface. 

The thermal conductivity of helium in the irradiation chamber will be about 0.152V%1.K. In 

comparison, the conductivity of PMMA is about 0.19%.K; this will make conduction through the helium 

very important. The direction in which the heat is transferred will depend on the relative amounts of 

radiation absorbed by the mask and resist; because the mask generally absorbs much of the radiation, 

generating a lot of heat, the transfer will most likely be into the resist surface. 

3.2. Two-Dimensional Model 

Although wafers are generally round, the X-ray beam they are exposed to is approximately rectangular 

in shape. This, and the fact that the beam moves linearly, suggest the use of a Cartesian coordinate system. 

A solution using the cylindrical coordinate system would have to be three dimensional to model the 

rectangular shape of the generation function; this would result in a very complex model. Cartesian 

coordinates result in a relatively simple generation function, and the physical system can be modeled well 

with the two-dimensional, time-dependent version of the equation for heat conduction in solids, 

d2T     d2T     g(x,y,t)      1 dT k 
TT+ TT+  1 = T"'       a=— (3-6) oxi       dy1 k a dt pc 

The thermal conductivity is assumed to be constant; for the low temperature rises expected in the resist and 

substrate, this is a valid assumption. The model is illustrated in Fig. 3.1. 

Because the beam is wide with respect to its height, it is the temperature variations along its path (the x 

direction in Fig. 3.1) which will be most important.   A two-dimensional model is therefore used for the 

wafer.  Changing the model to three dimensions would add greatly to its complexity.  Because of the low 

conductivity of the resist material, most of the heat generated by the X-ray beam in the resist is transferred 

out through the substrate, and not lengthwise through the resist itself.   For this reason, the boundary 
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conditions on the edges of the resist matter little, and using a two-dimensional model which is symmetric 

along a cross section of the beam will produce the desired temperature profile. 

Fig. 3.1. Physical model for the one-layer problem 

A Robin boundary condition (boundary condition of the third kind) on the resist surface gives 

maximum flexibility in modeling the heat transfer at that surface, though this is typically used to model 

convection, which is not the primary mode of heat transfer for the system studied: 

dT(x,L,t) 

dy 
■+hT(x,L,t) = hTu (3.7) 

Because the conductivity of the helium and the PMMA are comparable, a suitable heat transfer coefficient h 

may be determined by examining the conduction resistance across the gap. Compare the equations for 

conduction and convection heat transfer, 

and 

AT 
q = -kHcA — 

Ax 

q = -hAAT, 

(3.8a) 

(3.8b) 
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respectively. These are approximations of Fourier's law and Newton's law of cooling, respectively, where 

the derivatives have been replaced with finite differences. The quantity AT represents the temperature drop 

across the gap in the former case, and the difference between surface and environment temperatures in the 

second. By giving h the value -^-, where d is the width of the gap, and choosing an appropriate AT , the 

conduction situation can be modeled with the Robin boundary condition. The disadvantage of this 

approximation is that the temperatures (and therefore the heat transfer coefficient) are in fact functions of 

time and the heat generation, and an average value must be used. 

The high conductivity and better cooling of the substrate (possibly by a water jacket) justify the simple 

boundary condition for that surface of 

T{x,0,t) = T, (3.9) 

Making the assumption of a good thermal connection between the substrate and the carrier, or support 

structure, we get the boundary conditions 

T(0,y,t) = 0 (3.10a) 

T{a,y,t) = 0 (3.10b) 

at the edges of the resist.   Actually, because the resist is so thin, and because of the assumption of no 

conduction resistance between resist and substrate, very little heat will be transferred lengthwise through the 

resist, and the boundary conditions become less important. Also, the generation function used cannot model 

the passing of the source off the end of the wafer, making these boundary conditions even less significant. 

3.2.1. Generation Model 

The heat generation from the incident X-ray radiation is approximately an exponential function of 

depth; as the radiation passes through the resist, it loses energy, and generation decreases (Ameel et al. 

1994). This is illustrated by the shading in Fig. 3.1. Adapting the equations proposed by Ameel et al. 

(1994) to the present geometry results in a generation function for the resist, given by 

g(x,y,t) = 

0 0<x</v 

Wße"[y'L) tv<x<tv+w (3.11) 

0        :v+H><Jt<a 
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where v is velocity, and w is the beam width in the x direction, as shown in Fig. 3.1. The irradiance Wand 

the absorption coefficient /I can be calculated from dosage profiles for a specific application. These 

profiles will depend on the synchrotron used and the types of filters used to modify the X-ray radiation 

before it reaches the resist. The filters can be tailored to obtain an optimum generation profile (Ameel et al. 

1994). 

A typical dosage profile from CAMD in Baton Rouge is shown in Table 3.1. Note the very high heat 

generation in the silicon; it absorbs far more of the X-ray radiation. As noted before, a variety of materials 

may be used for the substrate, and many have radically different properties. 

Table 3.1. Dosage profiles for a typical wafer at CAMD 

Material: Depth (mm) Dosage (W7cmA3) 
PMMA 0 577 

2.0x10'2 489 
4.0x10"2 422 
6.0xl02 368 
S.OxlO"2 325 

0.10 289 
Silicon 0.10 4390 

0.11 1140 
0.12 460 
0.13 231 
0.15 81 
0.20 14 

Source: Ameel et al. (1994). 

3.2.2. Multiple-Pass Solutions 

It is desirable to know the temperature field in the wafer after a number of passes of the X-ray beam. 

If a way could be found to modify the source term to produce this effect, it would probably require a 

different solution for each successive pass, and the complexity would quickly become prohibitive. This 

problem may be circumvented by including multiple passes of the same simple generation source in the 

mathematical model. Fortunately, the principle of superposition allows adding of the temperature fields for 

each pass (Zill 1989). The temperature rise due to each pass of the beam for times after the beam has 

passed of the wafer is represented by the homogeneous version of the conduction equation (3.6).  That is, 
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the generation term is removed. The homogeneous equation is the basis for a new problem, the dissipation 

problem. A solution is found for one pass of the source term, and used to determine the temperature 

distribution within the resist at the end of the pass. The resulting temperature distribution is used as the 

initial condition for the dissipation problem, with all other boundary conditions being the same. The 

nonhomogeneous generation problem can also be handled with superposition (Myers 1987), and added to 

the sum of the temperature fields for the previous passes. By adding a number of the dissipation solutions 

(with times corresponding to the time elapsed since their respective passes) to the generation solution, the 

temperature field for multiple passes of the source is obtained. Because the model is symmetric, simulating 

passes in opposite directions only requires reversing the field for successive passes. 

3.3. Two-Layer Model 

An analytical problem is constructed which can be solved for the temperature profiles in two layers 

simultaneously, with an interface condition joining them at their common boundary. Although this two 

layer model is limited to one dimension, it should still be useful for analysis of local temperature rises (the 

temperature rise immediately under the X-ray source) for short time scales. 

For a two-layer system, temperatures are modeled by a system of two conduction equations, identical 

in form, and given by 

TT+ -7— = T^       «1=—J- forO<y<L. 
dy *i        «1  dt p.c. y     ' 1        «1   t" P,c, 

2 
d % ^  gi(y)       1   dT, Jfc, 

t2   dt p c. 

(3.12) 

■1 "2~+ —;—= 7".       «2=—— for L.<y<L, ay k2        a,  dt - - '   J   ^ 

The physical model is illustrated in Fig. 3.2. 

To get the most flexibility in this model, convective boundary conditions are used on the upper and 

lower surfaces: 

-*,     ,V    ' + hJx{Q,t ) = hlT„ (3.13a) 
dy 

k2     
2p   , + hiT2{L2,t) = lhTl (3.13b) 
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where hx and A3 are the heat transfer coefficients on the resist and substrate surfaces, respectively. These 

conditions matter little because of the short time spans this solution is useful for, but their addition adds 

little to the complexity of the problem.   Tu is the ambient temperature near the surface of the resist, and 7] 

is the ambient temperature near the surface of the substrate. 

X-ray 

radiation 

resist 

substrate 

Fig. 3.2. Physical model for the two layer problem 

At the interface, the flux out of one layer and into the next must be constant, giving the relation 

ay dy 

The conduction resistance at the interface is modeled by a second condition on the interface, 

dT^t) 

(3.14) 

-k, 
dy 

^h^m^-T^t)] (3.15) 

This equation is identical in form to a convective heat transfer boundary condition, but the constant hj, 

represents the inverse of the conduction resistance across the interface. 

An initial condition of zero temperature will be used, as the use of this two layer model is limited to 

studies of short term, localized temperature immediately after irradiation. 

Generation of heat in the two layers will be modeled using the same exponential representation used 

for the one-layer model, though there will be separate functions for each layer: 



£,()•)= W./i.e'"^ (3.16a) 

g^W^e^-U (3.16b) 

The irradiance and absorption coefficients are determined from dosage profiles for the resist and substrate 

materials. The thickness terms appearing in the exponents are needed to normalize the depth term and get 

the correct value of the exponent for each generation function. 

3.4.  Problems with the Two-Layer. 
Two-Dimensional Model 

The conduction equations for the two-layer problem in one dimension were given by Eqs. (3.12). 

When these equations are expanded to two dimensions, and the generation term is ignored, they become 

k, 
dx2       dy2       a.   dt 

d2T^    d2T2        1   dT, 
or, = 

Pic> 

(3.17) 

dx2       dy2       a2   dt '     p2c2 

Although the two layer problem is well documented for the one-dimensional, transient case, with 

several explicit solutions in the literature, the two-dimensional version of this problem is not. Ozisik (1980) 

has published at least two general solutions to this problem, which this author believes to be incorrect. 

Ozisik (1980) gives a general solution, but all example problems are for the one-dimensional case. He 

states that for two and three-dimensional models the solution is the product of the one-dimensional 

eigenfunctions. These eigenfunctions are obtained by separating the governing equation and boundary 

conditions, and this cannot be done for a multi-dimensional problem. 

For the one-dimensional problem, the time function was assumed to be the same for both layers. This 

allowed separation of the interfacial conditions and evaluation of the eigenfunctions and eigenvalues for the 

y direction. If the same assumption is made for the two-dimensional problem, the solution will be of the 

form 

T(x,y,t)=Xi(x)Yi(y)e(t) (3.18) 
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Substituting this into the governing equations (3.17) gives 

aiXi Yie+cCiXX e=XiYi8' (3.!9) 

Separation of variables is then accomplished by dividing by the quantity XtfO, to give 

Xt Y,       6' 

x,     ' Y    e (3.20) 

Because x, y, and t can be varied independently, each of the terms in the above equation must be equal to a 

constant. Assigning constants to the two terms on the left gives 

ai-j- = ß2 (3.21a) 

The x direction eigenfunctions are given by the solution to Eq. (3.21a).   It does not matter what 

boundary conditions are applied; the general solution is 

X, (x) = G,„„ sin 4^+ HLm cos-^ (3.22) 
/«, V", 

where   *,.(*)   is the function from Eq. (3.18).    For constant temperature boundary conditions, the 

eigenvalues are found to be 

Pn=—Va< (3.23) 

Obviously, these eigenvalues are different for each layer. Regardless of the boundary conditions used, the 

eigenvalues will include the term 7«7. making them dependent on the layer. The eigenvalues appear in 

the time term, causing it to be layer-dependent as well, thus violating the assumption made at the beginning 

of the derivations. The practical effect of this is that the temperatures Tt and T2 do not agree with the 

boundary conditions at the interface. For instance, the temperature might have an unusually large 

discontinuity for very low interfacial resistances, or might jump in the wrong direction, giving a temperature 

profile that is physically impossible. This is how the problem was discovered, after an (incorrect) solution 

had been obtained and the evaluation program debugged. 
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Dropping the assumption of identical time terms causes problems.  The interfacial conditions are no 

longer separable, so individual problems for the X(x) and Y(y) eigenfunctions cannot be created.   Not 

being able to find these eigenfunctions precludes their being multiplied to obtain a solution, as Ozisik 

instructs the reader to do in Heat Conduction. 

In a telephone conversation, Ozisik (1995) admitted that the problem was "more complicated" than his 

text implied. He said he was aware of only a few researchers who had succeeded in solving multiple-region 

problems for more than one dimension, and that each of these solutions required major simplifications to 

the problem. One example of this type of solution is a paper written by Sareen and Gidaspow (1974) on the 

subject of mass diffusion. The model used in the paper is a two-layer, two-dimensional slab much like the 

one originally envisioned for the LIGA problem. This looked like a promising breakthrough until it was 

realized that the author had assumed the diffusion coefficient to be the same in the lengthwise direction for 

both layers. For the problem outlined above, this is the equivalent of letting the thermal diffusivity, a, have 

the same value for both resist and substrate in the x direction (a very bad assumption for the LIGA 

situation). Assuming equal diffusion coefficients in the two layers causes the ^-direction eigenvalues to be 

the same for both layers, which in turn makes the time terms the same, and the initial assumption is not 

invalidated. This peculiarity allowed the problem to go undetected for a long time. Among the arbitrary 

values used to test the (incorrect) solution obtained from Ozisik's general solution were identical values of 

thermal diffusivity, even while it was being tested with different values of thermal conductivity, which does 

not cause a problem. It was only when actual material properties were used and a number of cases studied 

that the problem was recognized. 



CHAPTER 4 

MATHEMATICAL SOLUTION 

This chapter will describe the solution of the mathematical models of the resist-substrate system. The 

validity of the solutions will be checked by comparing them with simpler solutions, and by an analysis of 

the data they produce. For instance, a steady-state solution may be used to confirm the results of a time- 

dependent solution by solving the latter for large values of time. 

4.1. One-Layer Solution 

Because of the form of the generation term, Eq. (3.10), only one pass of the X-ray source can be 

modeled with any one solution. It will be desirable to know the temperature distribution in the resist after a 

number of passes, and a single generation term which sweeps back and forth over the resist would be 

extremely complicated. The principle of superposition can be used to add the effects of individual passes of 

the generation term to obtain a final temperature distribution. To find the temperature during the nth pass, 

solutions are found not only for that pass but for all the ones that preceded it. Only the present pass has a 

generation term; all others are simply time-decay solutions, with an initial condition consisting of the 

temperature distribution at the end of one pass of the source term. 

The final solution for multiple passes of the X-ray source will utilize two similar versions of the 

problem. The first will include the generation term and will be used to calculate temperatures for a single 

pass (the present pass) of the X-ray source. The initial condition for this solution will be zero temperature 

in the wafer. The second version of the solution will be used to calculate the decay, or cooling, of 

temperature from previous passes of the source over the wafer. The initial condition for this version will be 

the temperature profile after one complete pass of the source, and the problem will have no generation term. 

To obtain the temperature distribution after a number of passes, -the distribution from the generation 

21 
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problem will be superimposed on a series of decay solutions solved for an appropriate time, corresponding 

to the time elapsed since each of the previous passes. Alternating the direction of the decay solution will 

model the passing of the X-ray source in opposite directions; because the resist is symmetrical, the same 

solution can be used for both directions, and the grid of solution data can simply be reversed. 

The solution of the conduction equation in one layer is straightforward, and well documented in many 

conduction texts (Özisik, 1980 and Myers, 1987). 

The complete statement of the one-layer problem with general generation and initial condition terms is 

d2T      d2T      g(x,y,t)      1 dT 
dx a dt 

a = ■ 
pc 

with the boundary conditions 

T(x,0,t) = 0 

dT{x,L,t 

dy 
+ HT(x,L,t) = 0 

(4.1) 

(4.2a) 

(4.2b) 

T(0,y,t) = 0 

T{a,y,t) = 0 

where H is the heat transfer coefficient h divided by the conductivity k, and the ambient temperature Tm 

assumed to be zero. Thus, Tmay represent a temperature rise in the resist above 7„ . 

The initial condition for a single pass of the generation term is 

Ti(x,y,0) = 0 

and the generation term is 

(4.2c) 

(4.2d) 

(4.3) 

0 0<x<tv 

Wfie'^ tv<x<tv+W 

0        tv+ w< x£a 

g(x,y,t) = 

For the time-decay solutions, the generation term is g{x, y,t) = 0, and the initial condition 

(4.4) 

is 

W*.*o) = ^*.*^] (4.5) 
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where the quantity —— is the time needed for the leading edge of the X-ray beam to reach the end of the 

wafer; the beam is assumed to travel the length of the wafer, minus its own width. If Ms allowed to become 

large enough that part of the beam could move beyond the outer edge of the wafer, the solution is incorrect; 

this condition does not correspond to the physical situation. 

A separation of variables solution of Eq. (4.1) is begun by assuming that the solution is of the form 

T{x,y,t) = Y(y)X(x)e(t) (4.6) 

Substitution into the governing equation (4.1) yields 

X'ye + XY"8 = — XY6' 

Dividing this equation by XYG gives 

(4.7) 

X"    Y"     1 6' 

~X~ + T = äJ (4-8> 
For Eq. (4.8) to hold, each of the terms must be equal to a constant.  This allows us to separate the 

equation into the three problems: 

v" 
= - ß2 (4.9a) X 

V' 
— = - i2 

Y 
— = - A (4.9b) 

~-J=ß  +A (4.9c) 

The signs of the constants in Eqs. (4.9) are interchangeable, as are the forms of the general solutions 

derived from these equations. The choice is not arbitrary; only one will lead to the correct solution. Here, 

the choice is made with a previous knowledge of which solution will lead to an answer. 

The general solution to the X(x) part of the problem is 

X(x) = Acos ßx + Bsin ßx (4.10) 

By substituting Eq. (4.6) into the boundary conditions given by Eqs. (4.2c and d) and dividing by the 

unchanged terms, the boundary conditions on Eq. (4.10) are obtained as 
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x(o) = o 
X{a) = 0 

(4.11) 

Applying the first of these boundary conditions to Eq. (4.10) shows that .A is equal to zero. The second one 

gives the relationship 

Bsinßa=0 (4.12) 

For this equation to hold, the eigenvalues ß must be: 

ß„=—, « = 0,1,2,... 
a 

(4.13) 

and the eigenfunction for the x direction becomes 

■-/ \     r. •   « n x 

X{x) = Bsm  
a 

(4.14) 

The general solution of the separated equation in y (4.9b) is 

Y(y) = Csin Ay + DcosAy (4.15) 

The constants C and D are determined by applying the boundary conditions in the y direction. 

Equation (4.6) is substituted into the boundary conditions (4.2a and b), resulting ir l the boundary conditions 

for the function Y(y): 

y(o) = 0 (4.16) 

dy            V  ; 
(4.17) 

Applying the first of these conditions to the general solution (4.15) results in the condition  D = 0. 

Application of the second condition gives 

A cos AL + H sin XL = 0 (4.18) 

For this equation to hold, the eigenvalues Am must be the roots of the equation 

-AmcotAmL=// (4.19) 

The y direction eigenfunction is then 

K(y) = CsinAmy (4.20) 

By substituting the separated solutions (4.20 and 4.14) into Eq. (4.6), the final solution takes the form 
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T(x,y,t) = JjJjA(t) sin ß„x sin X,„y (4.21) 

with ßn and A„, defined by Eqs. (4.13 and 4.19), respectively. The constants A and C have been integrated 

into the function A(t). 

The above solution is substituted into Eq. (4.1), and orthogonality is applied.  In the x direction, the 

orthogonality relation is 

Jo 
" .   nnx .   mux , 0        m*n 

sin sin ax = <„/ 
a a 172   m = " * 0 

(4-22) 

The orthogonality relation for the y direction is 

;L .   n7Zy  .   mny 
I      nn I—cm — 

Jl) 
sin ^sm —dy = 

L L     y 

0 m^n 
L(A2

m + //2) + //2 

m=n^0 (4.23) 
2(A2„1+W2) 

The simplifications used to obtain the quantity on the right side of this equation utilized Eqs. (4.17 and 

4.15), and are relatively simple, if not immediately obvious. Özisik (1980) presents an example of this 

simplification for a general solution with the boundary conditions used here. 

The orthogonality constants given by Eqs. (4.22 and 4.23) may be combined into a single constant for 

this solution, Nnm: 

N. 
a{L{X\i+H>)+H>] 

4(A2
m+//2) 

(4.24) 

The general solution (4.21) is now substituted into the governing equation (4.1).  Orthogonality is applied 

by multiplying by the appropriate eigenfunctions and integrating, to get 

~^^,m->4(0A>„.m+j;j;^sinAmJsin/?„x^a^)^ 
a   dt 

(4.25) 

Rearranging: 

dA{t) 

dt 
a   r" rL g{x,y,t) 

+ a(ßl + Xl)A(t) = -fL£ f^isin Am,sin ßnx dydx (4.26) 
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The integration on the right hand side eliminates the dependence on x and y, leaving a nonhomogeneous 

differential equation which may be easily solved for the function A{t). By examination, the integrating 

factor is observed to be e"(/)"+A")'. Multiplying by this factor and integrating both sides with respect to t 

gives the relation 

[) ~ A?   J Jo Jo —i—sm?i"-ysm v»x dydxdt (4.27) 

and the solution to the time dependent part of the problem is given by Eq. (4.21) with A(t) given by the 

relation 

r Uo^-^M^ysmßnX dydxdt (4.28) 

where A[t) is seen to be dependent on the general function g(x, y,t), and the initial condition will be used 

to complete the indefinite integral with respect to time. 

4.1.1. First Pass Solution 

To obtain the solution for a single pass of the X-ray source over the resist, Eq. (4.28) is solved with 

the initial condition and generation functions given by Eqs. (4.3 and 4.4), respectively. The integral 

involving the generation term is solved first. 

The generation term, Eq. (4.4), specifies that the generation is zero everywhere but on the interval 

tv < x < tv + w . Therefore, the integral with respect to x in Eq. (4.28) is zero for all x not on that interval, 

and the integral reduces to 

rg(x,y,t). r">+»g(x,y,t) . 
\0^^smßnxdx = l    -V~^in/J"; 

The x dependence of the generation function has been removed, and the int 

(4.29) 

r+ws(x,y,t) . g{x,y,t)-l 
 smß xdx = —-——!-  

J» k k      ßn 

The integral with respect to y is straightforward: 

cosß„(fv + 

,5) 

.n/3„w 
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Jo £ Sln A^' <fy = J0 7 sin kmy dy (4.31) 

Wp   eß{y-L)  . 

Wp 1 
—-(nsmkmL- XmcoslmL + e-',LXm) 

Substituting these results back into Eq. (4.28), we get 

4,) = _£Le-
B(Ä+*-)'. 

N 
afi+WjtWn -1 

* M"2+*2«) 
(/isinAmL- AmcosAmL + e-"

LA,„)[cos)3n(fv + w)- cos/*„*]<&} 

and performing the integration with respect to time gives 

(4.32) 

- a Wp 

H^n + ^)[cosi3Jrv + vv)-cos/J„fv] + ^v[sin)3„(rv + »v)-sin/?„fw]}-e"a^+4')V(x,).) 

where F(x,y) is a "constant" of integration. 

Applying the initial condition (4.3) to Eq. (4.21) leads to the requirement that the function A(t) equal 

zero for t = 0; this is the only way the summation can be zero for all points. The function F(x, y) is then 

easily determined: 

F{x,y) = - 
Wp 

(4.34) 

and A(t) becomes 

N„[k  ß„[p+Xm) [«$ + £)] +ftv 

{"{ßt + ^)[cosßStv+W)-CosßntV + e-a{ß''+^\cosßnW-l)y 

ßnv \smßl,(tv + w)-s\nßntv + e'a^1"*X'^'smß^ 

(4.35) 
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This completes the solution for one pass of the X-ray source over the resist.   Verification of this 

solution will be accomplished using the two-layer solution at the end of this chapter. 

Figure 4.1 shows a temperature distribution produced by the one pass solution, using the constants in 

Table 4.1. 

o 

y (um) 

Fig 4.1. Temperature rise for generation part of one-layer solution 

Table 4.1. Constants used for generation solution 

L 0.03 cm a 6.0 cm 

h 100-4- 
nr-K a 1.182xlO"9Jf 

k 0.198 ^_ W 250360 ■%■ 
m~ 

V 0.10 f ß 2304.7^ 

t 3.0 s w 1.0 cm 

These constants were chosen for illustrative purposes, but most correspond to the conditions one might find 

in an exposure chamber. The material properties a and k and the thickness L are typical for a PMMA resist. 
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Likewise, the generation function constants W and fi correspond to a filtered exposure at CAMD with a 

synchrotron energy of 1.5 GeV and moderate current. The length of the resist and the width of the X-ray 

beam are both unrealistically long; these values make the trend of the temperatures in Fig. 4.1 more 

obvious. 

In Fig. 4.1, the X-ray beam is moving from left to right. The temperature is zero on the right half of 

the graph, where the resist has not yet been exposed, and it rises as the beam passes over the center. The 

temperature is highest at the trailing edge of the beam, which has received the maximum exposure, then 

drops on the left side of the graph due to conduction and convection out of the resist. The steeper slope on 

the left end of the graph is caused by the beam having started there; a full dose of radiation is not received 

for those points. The temperature at the back of the graph drops to zero, as required by the boundary 

condition given by Eq. (4.2a). 

4.1.2. Time-Decay Solution 

The first step in the solution of the time-decay problem is to determine the temperature distribution at 

the end of one pass of the source term.   The appropriate length of time for the end of the first pass is 

a— w 
A prime is added to the time variable in subsequent formulas to distinguish it from the time 

used in the most recent pass, which is used in the generation solution. However, when the complete, 

superimposed solution is evaluated for a number of passes, the decay solution will be solved with different 

times corresponding to each of the passes. Letting 

t =t- 
a — w 

(4.36) 

will simplify later derivations. This will make t' the time elapsed since the end of the pass whose 

generation the solution represents. Substituting Eq. (4.36) into Eq. (4.21), with A{t) given by Eq. (4.35), 

gives 

T(x,y,t'=0) = JjJjA—-  sin/3„;csinAmy (4.37) 

where 



A(f'=0) = 
- a 

~N7I IT n (  2     ,2 J^sin A,„L- AmcosAmL + e-^Am)—  

A2„,)]2+^v2 
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(4.38) 

«(# + *. cosj3„a-cos^„(a-w) + e 

ys„v 

■"{ß'.+^i 
(cosß„w-\) 

sin/^a-sin/jja-wj + e v  sin/Jnw 

Because there is no generation for this part of the solution, g(x, y,t) = 0, and the general coefficient 

given by Eq. (4.28) simplifies to 

*>f-e-4Wl(0)* (4.39) 

n,m 

where the function B(t') will be the series coefficient for the time-decay solution. Equation (4.38) is the 

initial condition, and is used to solve for the function Fd(x,y) by equating it with the time-decay solution, 

with t = 0. Because both functions arc double series of the same form, the coefficients must be equal; this 

requirement gives 

a 
■Fd{x,y) = A 

"(ßl+^mV J a-w 

Solving for Fd(x,y) and substituting into Eq. (4.39), we get 

B{t') = e   ( ' A 

and the solution to the decay part of the problem is 

(4.40) 

(4.41) 

^ß„xsinkmy (4.42) 

The above equation is exactly what one would expect for this solution; intuitively, it makes sense. The 

time-decay solution is simply an exponential decay of the temperature distribution when the heat source is 

taken out of the problem (corresponding to its passing off the end of the wafer). 

A plot of the temperature as a function of time is shown in Fig. 4.2. The variables used in this 

calculation are from Table 4.1, with the exception of time, which has been changed to 60 seconds. 
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14 T 

-y=0.03cm 

-y=0.015cm 

Fig. 4.2. Temperature for multiple passes of the X-ray beam at center of resist 

Each of the small oscillations of the temperatures in Fig. 4.2 corresponds to one pass of the X-ray 

beam. During the initial passes, the temperature increases quickly from one pass to the next. After 60 

seconds, this increase has slowed, and the temperatures approach a "steady-state" oscillation pattern, with 

constant temperature range and maximum temperature. 

4.2. Steady-State Solution 

If multiple solutions are not going to be added together, nonhomogeneous boundary conditions can be 

considered. This may be used to compare the effects of different types and amounts of heat transfer at the 

surfaces of the resist, and the flow of heat through and along the resist.  The steady-state problem in two 

dimensions is stated as 

d2V     d2Y 

dx2 
■ + 

dy2 
• = o 

with the boundary conditions 

Y{x,0) = T, 

dV(x,L) 
+ HY(x,L) = HTu 

(4.43) 

(4.44a) 

(4.44b) 



"F(0,y) = 0 

f(a,y) = 0 

Separation of variables is begun by assuming a solution of the form 

V{x,y) = Y{y)X{x) 

Substituting Eq. (4.45) into the governing equation (4.43) and dividing, we get 
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(4.44c) 

(4.44d) 

(4-45) 

. // .,// x"  r__ 
x +~~ (4.46) 

Each of the terms on the left side of this equation must be a constant, because x can be varied independently 

of)', so we get the two equations 

x     v 

Y"      2 
— = T Y 

with the general solutions 

X(x) = Asm r\x + Bcos t]x 

Y(y) = Csinh r\y + Dcosh T\y 

(4.47a) 

(4.47b) 

(4.48a) 

(4.48b) 

nn 
Applying the boundary conditions in the x direction shows r\ to be  , where n is the set of positive 

a 

integers. Also, the coefficient B must be zero. The ^-direction eigenfunction becomes 

X{x) = AsmT}nx (4.49) 

multiplying the solutions given by Eqs. (4.49 and 4.48b), and letting AC = Cn, and AD = Dn, we get 

¥*(*. y) ~ ESi" VnX^n Sinh ll«y + Dn COSh 7J„)') 

applying the boundary condition at y = 0 gives 

^(*.0) = f>n sin 7^ = 7} 

(4.50) 

(4.51) 
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This is in the form of a Fourier series representation of 7), which allows the constant Dn to be easily found. 

From Greenberg (1988), we get 

Dn=-\T,smT}Hxdx 
n JO 

nn t 
!-(-!)- 

(4.52a) 

(4.52b) 

Applying the convection boundary condition (4.44b) to Eq. (4.50) results in the solution for C : 

^sin77;ix(C,177,1cosh77nL+Dn77,1sinh77nL)+ (4.53a) 
n=\ 

H£sin J]nx(Cn sinh T]nL + Dn cosh j\BL) = HTU 

Rearranging and again using the Fourier representation, we get 

C„(^„cosh7j„L+//sinh 77nL)+D„(T?nsinhr/nL+//cosh77nL) = -J"//r„ sin 77„xJ.v     (4.53b) 

and substituting the solution for Dn given by Eq. (4.52b) results in: 

2 

C = 
—[l-(- l)"][//ru - 7;(r,„ sinhr,„L + //cosh77„L)] 

(4.54) 
rjn cosh r\nL+H sinh T]nL 

The solution to the steady state problem is given by Eq. (4.50) with the constants given in Eqs. (4.52b 

and 4.54). 

4.2.1. Confirmation of the Steady-State Solution 

To check the steady-state solution, a one-dimensional problem is solved, with boundary conditions 

identical to the ^-direction boundary conditions on the two-dimensional problem. The governing equation 

is then 

with the boundary conditions 

dy 

d2Y 

Y(0) = T, 

HY{L) = HTU 

(4.55) 

(4.56a) 

(4.56b) 
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Equation (4.55) is integrated twice with respect to )>, and the solution takes the form of the linear equation 

Y{y) = Ay + B (4.57) 

Applying the boundary conditions and solving for the constants A and B gives 

\ + LH 

B=T, 

(4.58a) 

(4.58b) 

Observe that the two-dimensional solution, Eq. (4.50), must agree with the boundary conditions in the 

x direction, because each of the sinr/„x terms in the summation is zero when x is equal to 0 or a. The one 

dimensional solution above is used to check agreement with the remaining boundary conditions in the y 

direction, and the upper and lower surfaces of the resist. The resist is made to approximate an infinite slab 

by making it far longer than it is thick. Points near the middle will be affected very little by the heat loss 

from the ends of the resist, and the temperature profile of a cross section should be very close to the one- 

dimensional solution. Comparison of the two solutions will also check the computer program used to 

evaluate them. 

Table 4.2 shows the properties and dimensions used for the calculations. The boundary temperatures 

are arbitrary, but choosing them to be nonzero minimizes the chance of missing errors in the solutions. The 

long, thin resist (a and L) causes the two-dimensional solution to approximate the one-dimensional solution. 

Table 4.2. Constants for test of the steady- 
state solution 

L 0.01 cm Th 5K 
a 6.0 cm T, 2K 

k 0.198 & h 1600 A 

The one and two-dimensional solutions both produce a temperature profile in the form of a straight 

line. Table 4.3 lists the values of the two functions at the top and bottom surfaces, showing very good 

agreement at these boundaries. The discrepancies in the two values are due to conduction out of the sides 
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of the two-dimensional slab (though this is very small), and truncation of the infinite sum. The latter topic 

will be discussed in more detail in Chapter 5. 

Table 4.3. Boundary point temperatures for steady-state solution 

Surface: 
Temperature Rise 

2-D solution 1-D solution 

top 3.34043 3.34078 
bottom 1.99886 2.00000 

The temperatures produced by the two-dimensional solution vary little in the x direction, because of 

the extreme thinness of this resist. However, they do decrease toward the outer edges of the resist, and drop 

to zero at the boundaries, as expected. 

4.3. Two-Layer. Time-Dependent Solution 

The one-dimensional problem in two layers, outlined in Chapter 3, is stated as 

d2T,      gl(y)      1  dTx 
-T- + 

dy2 kt        or,  dt ' 
a, =• 

d2T,      gi(y)_   1   dT2 

for 0 <>></,, 

+ ^^= ^,       «  = _2l 
dy k2        a,  dt 

with the boundary conditions 

*7j(0,r) 

dy 

2 for L. <y<L, 

+ H[Tl{0,t) = H]Tu 

i^d^H^M-T^i)] 

K 
dTfa.t) = dT2{L,,t) 

dy dy 

dy 
+ H,T2{L2,t)=H,Tl 

(4.59a) 

(4.59b) 

(4.60a) 

(4.60b) 

(4.60c) 

(4.60d) 

the initial condition 



and the generation terms 

Ti{y,0) = 0 

gi(y)=Wlple'"l>-U 

The following simplifications have been made for conciseness: 
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(4.61) 

(4.62a) 

(4.62b) 

*, k, 
*h 

To begin, it is assumed that a solution exists of the form 

(4.63) 

T,(y>t)=YAy)0(t) (4.64) 

Note that the time function 0(r) is the same for both layers. Substituting this into the homogeneous form of 

the governing equations (4.59a and b) and dividing by Yi(y)6(t) gives 

a, 
Yj_=(y_ 
Y,   ~ 6 

(4.65) 

The two sides of this equation must be equal to a constant. Because the time function was assumed to be 

the same for both layers, the terms on the left must be equal to the same constant, though their component 

functions are layer dependent. This requirement gives 

'  Y 
(4.66) 

The general solution to this equation is 

Yi(y) = A,msin^l+B,mcos^l 
a; ,/a, 

(4.67) 

Note that the km above is not the same as the one used in the two-dimensional solution; in fact, it has 

different dimensions. The eigenvalues (Xm) and corresponding specific eigenfunctions {Atm and ß,m)are 

found by substituting the general form of the eigenfunction given by Eq. (4.67) into the homogeneous form 

of the boundary conditions (4.60), resulting in the system of equations: 
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(4.68a) 

■»I.™ cos 

H- 

^■mU ß \.m sin KU 
(4.68b) 

\m sin^- + BUm cos^fhr-A^ sin^4- B2m cos ^ 

K M,m rCOS 
^mA 

7Ö1 
■B 

"*2.m- rCOS 

./a, JÖ7 

l,m 

-ß 

^m   „:_ ^mA sin = /I 

'2,m 

'2,m 

sin-^+tf, 

COS ^m^l -B 

2; 

rSin- '2,m 

4       nin ^mLl   I   ft      rr,Q ^"'^ ^.m SIn     I  + ß2,m cos 

""2 ; 

(4.68c) 

= 0    (4.68d) 

This set of equations can be expressed more concisely in matrix form. Using the simplifications 

7 = AL,   and    J1=  
k 

and grouping the terms results in 

-//, 

sin yLx + 
Tcosj^i 

~~H~ 
cos yt. - 

7 sin yL, 

Ky cos yLx 

0 

H2 

-Ky sin)£, 

0 

0 

-sin rjL, 

-r/cosr^L, 

Tj cos r?L; 

0 

- cos rjL, 

H-sinr/Lj    - 

r/sin r/L, 

rjsinr/L; 

//3 //, 
+ COS r/Z^ 

ß, 

ß. 2,m 

(4.69) 

(4.70) 

0 

0 

0 

0 

Because these equations are homogeneous, the constants AUm, A2m, Blm , and B2m can only be found in 

terms of any one of the four, or in terms of some arbitrary constant. However, this is not a problem, 

because in the final solution, they will appear in both the numerator and denominator, and the arbitrary 

constant will cancel out. With this in mind, then, the constant Aim is set equal to one, and Eqs. (4.68b, c, 

and d) are used to find the remaining constants: 

\» = 1 (4.71a) 

*..« = 
H, 

(4.71b) 
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Ky 

^2,111 - ' 

y sin yl^ 
-cosyLt 

T] sin rib 
-COS77L2 

7]sin7]L, 
77 cos T]^ 

I        «3 
+sin77L2 + 77COS77L, 

HsinnL, ^ 
+COSTJL2 

*r 
**.. = ■ 

cos)!, - 
ysinyL^ rjcosrjL, 

«3 

tf, 

+ sin 77^ 

(4.71c) 

77 sin 77z., 
77 cos 77^ 

"3 

+ sin 77^ + 77COS77L, 
77 sin 77^ 

tf3 

+cos 77^ 

(4.71d) 

The equation for the eigenvalues is obtained from the requirement that the determinant of the 

coefficient matrix in Eq. (4.70) must be zero, as shown in Eq. (4.72). 

-H, 

.     7cos}iL                    ysinyL. 
sin yLx + ' '     cos yLt -- '-1- 

#2 

Ky cos yLx 

0 

Hi 

-Ky sin yLi 

0 

0 

-sin 77L, 

- 77 cos 77/., 

77 cos 7]L2 

0 

- COS TjL, 

77 sin r\Lx 

77sin77Zo 
+ sin77L2 ' +zosr\L1 

:0      (4.72) 

This completes the solution of the eigenvalues, given by the roots of the transcendental equation 

(4.72), and the eigenfunctions, given by Eq. (4.67) with the constants in Eqs. (4.71a,b,c, and d). The 

boundary conditions are now used with these eigenfunctions to obtain a complete solution. 

Ozisik (1980) obtained the general solution to a two-layer problem with generation using integral 

transforms: 

(4.73) 
.= i"lA.) L - j 

where 

^(r-0 = I^J^A;V,n(r)[F(A„) + £e^''A(A„,r>' 

>-l   Rj J=l  s 70 

y-l a, *, 

(4.74a) 

(4.74b) 

1 = 1   «   ,     o 
(4.74c) 
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In this notation, F.(r') is the initial temperature distribution in layer;, /y(r',r')is the temperature 

distribution on the surface of layer;, and the general dimensional variable r is used. In the present solution 

this is replaced by the single thickness variable y. For the resist surface, /,(r',f) = HJU, and for the 

substrate surface, f2(r',t') = H3T,. The initial condition (4.61) states that the initial temperature 

distribution is zero for the whole volume. This makes the term F(A,„) zero, and Eqs. (4.73 and 4.74) 

reduce to 

"1=1 n in 

where 

The orthogonality constant N(Xm) reduces to 

■=k 

and substituting the appropriate limits for the present problem gi\ lves 

k,  fii 

W^W*^/^)1* 
For the eigenfunctions under consideration, the integral 

jyiiyfdy 

is given by 

:-Ky . „    ... Amy 
\2 

Ai.msin-ß^+Bimcos dy 
i J 

Integration of this term gives 

LKy_lsin2Xmy) 
l2V«,-   4    v«.- *i.m"i,m    «       *-OS 

*-my + B lA^+isin2Amy 
r         T 3111    . 

1,2 V«,     4       fö 

(4-75) 

(4.76a) 

(4.76b) 

(4.77) 

(4.78) 

(4.79) 

(4.80) 

(4.81) 

Substituting the above equation into the definite integral in Eq. (4.78) and using the simplifications given in 

Eq. (4.69) gives the final form of the orthogonality constant: 
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{    '    7«, IL2 

w2 

2 « + BD^ + 7«, - <)sin 2^, - ^mßlm cos2 >*,, + A,A (4.82) 

2« + BQrjL, + -(i?2
m-<)sin2^ - A2mB2_mcos2 77Z, 

J 

-_2« + C))*-, +\{Blm ~Osin2^, -^mß2m cos2 yL{ 

The boundary condition terms in Eq. (4.76) are easily evaluated 

y^HJA  .. = //,T,B, \,m      I    u \ (4.83a) 

Y^HiTi\y=Li = H3T,{A2,m simiL, + B2m cosrjL,) (4.83b) 

These terms are in an integral with respect to time in Eq. (4.75).   Because they do not vary with 

respect to time, they may be removed from this integral, which is then evaluated as: 

V      J2 ,. e
Xm' 

I     ekm' dt' = ^- 

ekl'--\ 
(4.84) 

At this point, enough of the solution has been constructed to allow a simple test of the derivations. 

Using the boundary condition terms in Eqs. (4.83a and b), the orthogonality function in Eq. (4.82), and the 

time decay term (4.84), Eq. (4.75) can be evaluated to get some actual temperature rises. 

4.3.1. Test of Solution With No Generation 

Although the two-layer solution is less calculation intensive than the multiple-pass, single-layer 

solution tested earlier, the formulas are considerably more complicated, and the eigenvalues are very hard to 

find. The computer code used to get this solution is therefore very complex; it will be discussed in more 

detail in Chapter 5. For now, discussion will be limited to a comparison with a simpler solution. 

A test of the initial condition would be trivial at this point; inspection of Eq. (4.75) shows that every 

term in the series will be zero for t = 0, because of the removal of the term J(Xm), in accordance with the 

initial condition. The temperature will be zero for every value of y; a test would yield correct values, but 

this would not say much about the validity of the derivation. However, as t approaches infinity, the steady- 
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state temperatures should serve as a check of the eigenvalues, the eigenfunction constants given in Eqs. 

(4.71), and the orthogonality constant given by Eq. (4.82). 

Removing the generation term and time dependency from the governing equations (4.59) will give a 

simple, linear, steady-state temperature distribution. This new problem is stated as: 

with the boundary conditions 

d2T, 

dy 
= 0 

d2T2 

dy2 

dm 
dy 

+ H)Tl(0) = HlTu 

K 
dT\[L^j_dT2{Ll) 

(4.85a) 

(4.85a) 

(4.86a) 

(4.86b) 

^l = //2[rl(A)-72(M] 

dT^L,) 
+ H,T2{L2)=H,Tl 

(4.86c) 

(4.86d) 

Note that because this problem is not time-dependent, neither specific heat nor the thermal diffusivity 

appears in the equations. The governing equations (4.85) are integrated twice, resulting in: 

Tl=C]y + Dl (4.87a) 

T2=C2y + D2 (4.87b) 

These general solutions are substituted into the boundary conditions (4.86), and the coefficients C and D are 

solved for through some simple, if tedious, algebra. 

 T,-T„ C,=- 

i+[i+L'-*L<+^+i 
(4.88a) 



A =T„ +■ 

! + //, 

C2=- 

T,-T„  

— +Ll-KLl+KL2 + 
\H2 

Ti-T, 

K_ 

KH, KKH2 
+ KLl-Lx-¥L1+-L 
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(4.88b) 

(4.88c) 

D2 = T, 
{T,-Tu) 

H, 
1 K 

— +L, -KL.+KL, + — 
V«2 //3 

(4.88d) 

This solution can be used to check the two-layer solution by substituting a sufficiently large value of 

time in the time-dependent solution, thus allowing it to approach steady state. The generation term is set to 

zero; the term containing it in Eq. (4.76a) becomes zero and is ignored. 

Table 4.4 shows the variables used to calculate the temperature distributions for the two models. The 

physical properties for layer one are those of PMMA; all other values were chosen to make the match of the 

two solutions more apparent. 

Table 4.4. Constants for test of two-layer solution with no generation 

u 0.05 cm t 1.0 hr *. 0.198 Ä- 
L, 0.10 cm A. 4xl04-*- 

m  -K *2 1.0* 

«i 1.18xl0"9 -mi h2 1000 -¥- 
m--K T. 10.0 K 

«2 3xl0"7-mi h, 3xl04-^ 
III2-K 

T, 2.0 K 

The temperature distributions are given in Fig. 4.3. The two solutions agree well for most interior 

points, with the infinite sum in the time-dependent solution truncated after 150 terms. The agreement of the 

time-dependent solution at the endpoints is quite bad, because of the truncation of the summation. Each of 

the two governing equations is defined at the boundary point y=Lt. The discontinuity in the temperature 

at L, does not signify a problem with the solution; there is some resistance to conduction at the interface 

(because of the small value of h2), and the temperature should be expected to experience a jump there. 
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0.00       0.01        0.03       0.04        0.05        0.06        0.07       0.09        0.10 

v (cm) 

Fig. 4.3. Temperature distribution for steady state test of two-layer solution 

Table 4.5 shows the temperatures for the resist and substrate solutions at the boundary points. There 

is excellent agreement at the boundary between the resist and the substrate, but the time-dependent solution 

is off by more than 25% at the substrate surface. This should not detract from the usefulness of the solution. 

A good approximation of the correct temperature may be inferred from a graph of the data such as that 

Fig. 4.3. 

in 

Table 4.5. Boundary point temperatures for steady state test 

Surface: 
top 

boundary (T,) 

boundary (7*2) 

bottom 

Temperature Rise (°C) 

Time dependent 
8.520 
5.009 

3.080 

1.424 

Steady state 
9.951 
5.004 

3.058 

2.066 

4.3.1. Generation Terms 

The generation function for this solution appears in the coefficient term of the general solution, Eq. 

(4.76a). Specifically, the term we are now interested in is 
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with Sj{y'^') given by Eqs. (4.62). Substituting, we get 

(4.89) 

>=i 
(4.90) 

where /\ is L, for ; = 1, and (L, + L2) for ; = 2, to agree with the definitions in Chapter 3. 

Substituting the eigenfunction (4.67) into Eq. (4.90) and rearranging gives: 

A.ms«n-^+ß,,„cos-^ 
V V"; V".- j 

M'-Vtf (4.91) 

Integrating this expression gives 

Vih'-rA 

») + 
i,m HjSm-ßLr ^Lrcos   m> + B fij cos-£i- + -^=rsin 

in 

\ 
a. 

(4.92) 

^^[A.m(^,sinr^-ycos7Z1+ye-'''t') + ß,,n(/j|cos7L1+ysinyL,-/i,e-'JlLl)J+       (4.93) 

Substituting the appropriate limits and variables, and using the simplifications given in Eq. (4.69): 

^^KJ^''2L|(^2sin77^-T]cos7]L2)-e-'J24(/i2sin77L1-r;cosr/L1)] + 

B2,n[e~"2Ll fa cos77^ + Hsin 77^) - <T"2i2 (/i2 cosr/L, + r/sin 77^)]} 

This solution is substituted into Eq. (4.76a). The derivation is completed by observing that with an initial 

condition of zero temperature rise in the wafer, the functions Fj(y) are zero, making the function F(Aj 

zero also.   This initial condition therefore makes Eq. (4.74b) equal to zero, and the derivation of the 

solution is complete. 

4.3.2. Confirmation of the Generation Terms 

The two-layer solution with generation may be compared to the single-layer solution. This 

comparison will help to verify the derivations of the generation terms in both solutions. With no generation 

in the substrate and very high conductivity in that layer, the temperature distribution in the resist is 

compared with a cross section of the temperature for the one-layer problem. To check that the generation in 
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the substrate is correct, the variables for the two-layer problem are simply reversed; the temperature profile 

should be reversed also. 

The constants used for the first test are given in Table 4.6. The beam width for the two-dimensional 

solution is the width of the wafer, and the velocity is almost zero; this approximates the one-dimensional, 

two-layer solution. A relatively low value of time is used, to minimize the effects of the end conditions on 

the two-dimensional solution. The high values of h2, A,, and a2 make the substrate in the two-layer 

solution essentially disappear; that is, the resistance to heat transfer is so small that the boundary condition 

at the interface in the two-layer solution is essentially identical to the zero-temperature boundary condition 

on the one-layer problem. 

Table 4.6. Constants for test of the resist generation term 

One-laver solution 

L 0.03 cm W -1.082x10s-^ 
ill" 

k 0.198 Jjj- 

a 100.0 cm H               -2310^ h 600 -¥- 
m'K 

a 1.18x10-" Jf- w               95.0 cm vO.0001 lxlO^f 

Two-layer solution 

Ly 0.03 cm a                  6.0 cm t 4.0 s 

L2 0.1 cm W.    2.164 xlO5-^ 
1                                            111 *i 0.198 & 

hx 10-£r 
in   K 

W,               0.0-^ 
*                                    in" *2 IxlO5^ 

h2 1x10"^- 
in   K 

J"i              2310^ «1 1.18x10-'-^ 

h, 1x10"-*- 
ill    K 

H2             100.0^ 
«2 lxlO-4^- 

The results of this test are shown in Table 4.7; the two solutions agree very well, with small 

differences due to convergence and computational errors. 

Table 4.7. Temperatures (in °C) from test of the two-layer solution 

V Position (cm) One-Layer 
Two-Layer 

Normal Reversed 

Surface 
Midpoint 

Interface or Bottom 

10.6403 
8.2623 
1.3e-14 

10.6426 
8.2627 

0.00016 

10.6420 
8.2631 

0.00024 
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To test the substrate generation term, the constants were redefined to reverse the orientation of the 

wafer. The convection coefficients /J, and /i, are simply swapped, as are the conductivities and thermal 

diffusivities. The irradiation and absorption coefficient must be redefined because of the form of the 

generation terms. The interface conduction coefficient h2 remains the same. Although the physical 

situation has been reversed, a simple change of variables doesn't transform the solution to an exact reverse 

of the original. For instance, the generation term is defined for an energy source which decays 

exponentially with depth. The constants W2 and fi2 can be defined to reverse the decay profile for the 

substrate, but the new values are not simply the opposite of the originals. Because of this nonsymmetry, 

truncation and roundoff error will introduce small variations in the temperatures, as shown in Table 4.7. 



CHAPTER 5 

ANALYSIS OF SOLUTIONS 

Solving the differential equations of conduction heat transfer is only the first step in getting a 

temperature distribution. For series solutions such as the ones presented in Chapter 4, evaluation of the 

series can be more difficult than the mathematics involved in obtaining it. 

In this chapter, some of the characteristics of series solutions will be discussed, and the impact of these 

characteristics on the evaluation of solutions will be examined. The computer programs used to evaluate 

the solutions are discussed, along with an analysis of the programs' advantages and limitations. Some 

temperature distributions produced by the computer programs are presented for a variety of test cases. 

Experimental tests of the temperature rises were performed at the Center for Advanced 

Microstructures and Devices in Baton Rouge. The chapter concludes with an explanation of the 

experimental procedure and the results of several exposure tests. 

5.1. Series Solutions 

The most basic problem encountered in evaluation of series solutions is that the infinite series must be 

truncated at some point. This error may be minimized by calculating a large number of terms in the series. 

For many series, though, this is not necessary; only a few terms may be adequate. In general, the magnitude 

of the terms in the series decreases as the index (here denoted asmorn) increases, and this decrease may be 

approximately linear, or may be some other function of the index. For the solutions presented in Chapter 4, 

the eigenvalues are complex functions of the indices, and the terms themselves are very complicated. Some 

experimentation is therefore necessary to find the number of terms needed for an accurate solution. 

The shape and complexity of the function being represented can give an indication of what the 

convergence of its series will be. For instance, the surface temperature for the one-layer, two-dimensional 
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solution has a relatively complicated shape, which bears very little resemblance to the sine function which is 

used to represent it in the series. The series therefore converges slowly (see Fig. 5.1). Summing 70 terms 

gives a very good solution, and ten terms is a close approximation, with sharp edges rounded. Four terms 

gives a very bad approximation. Compare this to Fig. 5.2, which shows the convergence of the same 

solution in the y direction. Because of the simplicity of the temperature profile, one term gives a reasonable 

approximation, and any summation of more than four terms is essentially the same. The number of terms 

summed for each of the profiles in these two graphs is indicated by n and m, respectively. 

0.0      0.6       1.2       1.8      2.4      3.0      3.6      4.2      4.8      5.4      6.0 

x(cm) 

Fig. 5.1. Convergence of one-layer solution in x direction at y = L 

Another way of characterizing the convergence is by examining the magnitude of the individual terms 

in the series. Each term consists of sine and/or cosine waves, and the maximum value of each term may be 

used as a measure of the importance of that term. The error in the final solution depends on where the 

series is truncated, and on the magnitudes of those terms which are not added to the solution. The poor 

convergence of the two-layer solution is illustrated by the scatter graph shown in Fig. 5.3. 
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Fig. 5.2. Convergence of one-layer solution in y direction 
at the center of the resist 
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Fig 5.3. Convergence of one and two layer solutions 

The values for the one-layer solution in Fig. 5.3 represent the maximum value of the term for any 

particular y-direction eigenvalue; no particular ^-direction eigenvalue is used. The convergence of the one- 

layer solution is very uniform - the magnitude of the terms decreases quickly and predictably. By the tenth 
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term, there is a decrease of three orders of magnitude. This explains the accuracy of the limited summations 

shown in Fig. 5.2. The resist and substrate summations for the two-layer solution do not converge well at 

all. By the one-hundredth term, there is a decrease of only two orders of magnitude in the terms. For these 

summations, the magnitude does not decrease in any predictable fashion; the data points in Fig. 5.3 are 

spread over a range of three or four orders of magnitude for successive terms. 

5.2. Computer Programs 

The solutions presented herein were evaluated using programs written by the author. Although there 

are commercially available programs that are capable of evaluating these series, there are two reasons why 

these were not used. First, because of their generality and user interfacing, these programs are quite slow, 

and use a lot of memory. Mathcad 5.0 was able to evaluate some of the preliminary solutions, but took 

several minutes to calculate abbreviated sums. The number of terms evaluated was severely limited by the 

memory of the machine. 

Time delays are simply a nuisance; the primary reason that programs were written from scratch was to 

insure precise knowledge and control of the numerical methods used in the evaluation of the solution. This 

was particularly important in the finding of eigenvalues, because of the transcendental equations involved. 

5.2.1. Finding Eigenvalues 

Formulas such as Eq. (4.13) are easily evaluated, but solving transcendental equations such as Eq. 

(4.19) or Eq. (4.72) can be quite complicated, and it is extremely important that all of the desired 

eigenvalues are found. The first one is often the most important, and the hardest to find. 

For the one layer problem, the eigenvalues are the roots of the equation 

-Amcot XmL=H (5.1) 

Specifically, the program finds the zeros of the function 

/(Aj = // + AmcotAraL (5.2) 

The routine used to evaluate Eq. (5.1) is relatively simple, and very reliable, because the eigenvalues lie 

within intervals of equal length, bounded by singularities. The positions of these singularities correspond to 
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the period of the cotangent function in Eq. (5.2).  Figure 5.4 shows a graph of this function.  The vertical 

lines show the positions of the singularities, at which the function approaches positive or negative infinity. 

+-H +H 

0   70  140  210  280  350  420  490  560  630 

?i(l/m) 

Fig. 5.4. Graph of the eigenvalue function for one-layer problem 

Because of the nature of the cotangent function, an intersection point must lie in each interval. The 

positions of the singularities are calculated from the material properties and dimensions (which determine 

the argument in the cotangent function), and Ridder's method is used to find the roots (Press et al. 1992). 

This is a simple and efficient routine, which is perfectly suited to this purpose; given two points bracketing 

a root, the method will find that root, without any possibility of jumping out of the interval to settle on a 

different one. It also has the advantage of converging very quickly, gaining as much as two or three 

significant digits of accuracy with each iteration. 

Evaluation of the eigenvalues for the two-layer problem proved to be much more difficult. These 

eigenvalues are given by the zeros of the determinant: 
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sin yL, + '       ' '     cos yL. - 
H2 H 

-Hi 

Ysin yL, 

Ky cos yL, 

0 

-Kysin)*,, 

0 

0 

-sin T]Lt 

—T7 cos 77L, 

0 

-COSTJL, 

rj sin 77z., 
= 0        (5.3) 

TjcosiTL^    . T7sinr/L, 
— +sm 77^2    - '^+cos TJLJ 

3 "3 

With all the dependencies and different functions in this transcendental equation, no simple means of 

finding the roots could be devised. The appearance of the determinant may vary greatly, depending on 

constants and dimensions used, but a typical graph is given in Fig. 5.5. 

4E+9 j 

3E+9 - - 

2E+9 

J 1E+9 + 

I OE+0 
u -o 
-1E+9-- 

-2E+9 - - 

-3E+9 I I 1 I 
0 4 5 6 

Ms") 

Fig. 5.5. Determinant of the eigenvalue matrix for two-layer probl em 

to 

This function is highly irregular, and the roots do not lie on any obvious intervals, making them much 

harder to find. The position and spacing of the roots is dependent on a variety of constants, and will be 

different for any two cases. This requires an algorithm that is relatively flexible, yet reliable, allowing it 

be used for a variety of cases without having to modify the search routine and recompile the code. 

Fortunately, the determinant is finite, at least over the range of interest. This means that a simple step 

routine can be use to find the roots. The routine works by evaluating the function at the beginning and end 

of an interval (determined by the step size), and checking the sign of the values to see if the function has 
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crossed the axis. A sign change over an interval always means that a root lies on that interval (with the 

single-layer eigenvalue function, this may have signified a singularity). Once a root has been bracketed in 

this manner, Ridder's method (Press et al. 1992) can be used to pinpoint it. The difficulty with this 

algorithm is that if the step is too large, it might miss roots altogether. If the function has crossed the axis 

twice within the interval, the signs of the endpoint values will be the same, and the algorithm will not 

recognize that a root exists on the interval. 

The routine used in subroutine LAMDA of program THESIS3.CPP in the appendix uses a variable 

step size, which was refined during evaluation of various solutions. Because the first root is generally very 

close to the origin, the step size starts off small. After the first root is found, the step is increased, based on 

the distance between previous roots. This routine has worked without error for a variety of cases; however, 

if the program gives unexpected results, the eigenvalues should be checked, as the method is by no means 

foolproof. This may be easily done by graphing the eigenvalue function (as shown in Fig. 5.5) and 

estimating the eigenvalues. 

5.2.2. Series Summation 

Finding the temperature at even one point in space requires a large number of calculations. For the 

two-dimensional solution, taking only thirty terms in each summation requires that many of the formulas in 

the terms be calculated nine hundred times. For the multiple-pass solution, finding the temperature at one 

point at a specific time requires the evaluation of the two-dimensional solution for several passes. 

Obtaining the temperature at several points as a function of time requires that many terms be calculated 

thousands of times, with the terms themselves containing several calculations. This was unacceptable, 

especially for testing and debugging purposes, when many cases were being studied. 

One way to achieve significant time savings is to recognize that the position variables x and y appear 

only in the arguments of the sine and cosine terms of the eigenfunctions. All other calculations in the terms 

are the same for every point, and need only be performed once. The term is then completed for each point 

by multiplying by the sine or cosine term containing x or y, and adding this to the running total of the 

summation for the respective point. Although the temperatures must be stored in an array because they are 
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solved simultaneously, the total number of calculations is greatly reduced. This in turn reduces the time 

needed to get a temperature distribution, even for a one-dimensional solution with a small number of points. 

For a two-dimensional, multiple-pass solution, the time savings is even larger. 

Another way to cut down on the number of calculations is to take as many of them as possible out of 

the loops for the summations. For instance, the eigenvalues are the first thing to be removed from the loops; 

their calculation is very time consuming, and they are saved into arrays before the summation loops are 

begun. This means that the eigenvalues need only be calculated once, and storing them in arrays does not 

use much of the computer's memory. Other parts of the terms which depend only on one set of eigenvalues 

may be separated from one of the summations. For instance, the calculations 

4a WVI ,     X 
(5.4) 

can be removed from the term 

A(t) = - a \Wfi 1 
~\~B (u2 + Ä> >sin^-A„,cosAmZ.-f e-'%, -— '      

a(# + A„) 

smßn(tv + w)-sinßntv-e~a(ßl+*m)'SmßnW\, 

(5.5) 

cosßn(tv + w)-cosßl,tv-e"'^" + "">'(Cosßnw-\) 

ßnv 

which is the coefficient of the two dimensional solution given by Eq. (4.35). The group of terms in Eq. 

(5.4) can then be taken out of the loop for ßn, so the calculations are done only once for each m term, 

instead of being done in each of the fifty or more n terms needed to get an accurate value of temperature for 

this solution. 

5.3. Test Cases 

Some observations may be made about the expected temperature distributions and resulting 

deformations. Strictly speaking, there will never be a steady-state temperature distribution in the wafer, 

because the X-ray beam is always moving with respect to the wafer. However, after a number of passes 

have heated the wafer, the heat generation from the beam will equal the total dissipation through convection 
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to the surroundings and through conduction into the substrate. The time previous to this condition might be 

called a warm-up time. Deformations in the resist will presumably be relatively large when going from time 

zero to the warm-up time, then drop to smaller values as the temperature fluctuates with each pass. Being 

able to establish the length of this warm-up time and the magnitude of the temperature differences involved 

will allow the researcher to determine whether exposure during these first few passes will have a detrimental 

effect on the final structure. 

5.3.1. Resist Deformations 

Thermal stresses in the wafer along the boundary between the resist and the substrate may weaken the 

bond between the two materials. Bonding problems are often observed, so one should expect to find 

significant stresses along the interface. A two-layer, two-dimensional solution would have provided the 

best estimate of the temperature distributions in the resist and substrate, but the simpler solutions derived in 

Chapter 4 can give some insight into the temperatures and resulting stresses. 

Most substrate materials have high thermal conductivity, so the temperature in the substrate should be 

expected to be almost uniform, and thermal gradients in the substrate itself should not be high enough to 

produce any deformation of the resist. The two-layer, one-dimensional model may be used to confirm this 

theory. Table 5.1 shows the constants used for this calculation. The intensity of the X-ray beam 

approximates a limiting case; it is as high as one might expect to see in an exposure station at CAMD. The 

heat transfer coefficients are also chosen for a limiting case; the convection on the resist surface is zero, 

while the convection on the back of the substrate is high; this will force more of the heat to flow through the 

substrate, causing a higher temperature gradient there. 

Figure 5.6 shows the temperature distribution in the wafer after 20 seconds. The temperature gradient 

across the substrate is only 2 °C, while the gradient across the resist is 140 °C. No thermal stresses should 

be expected in the substrate due to temperatures within the substrate itself. This is not to say that there 

would be no stresses at all; but they would be caused by different expansion of the resist and substrate, and 

the temperature of the substrate may safely be treated as uniform. 
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Table 5.1. Constants for test of the substrate temperature gradient 

h 0.03 cm w, -41700 -4 
111 *. 0.198 ^, 

Ll 0.1 cm w2 -130-*- 
111" *2 83-0^ 

A. 0-S_ 
Ml -6914 ± ". 1.18xHr*jf 

K IxlO7-^- M2 -15390 i 
«2 5.04x10-'-^ 

hi 6000-?- 
in -K 

t 20 s 

1000 

0        0.1        0.2       0.3      0.04     0.05     0.06     0.07     0.08      0.09        1 

)' (mm) 

Fig. 5.6. Temperatures from test of the substrate temperature gradient 

Note that the high resist temperatures shown in Fig. 5.6 should not be seen in practice. After 20 

seconds, the one-dimensional model is approaching steady-state, and the heat transfer coefficient on the 

resist surface is set to zero, but should be about 600 -¥- 
in -ic ' 

5.3.2. Multiple Pass Temperatures 

The scanning of the wafer through the X-ray beam will cause some thermal cycling in the resist. This 

will probably compound any stress-related problems in the exposure and developing processes. The cycling 

may cause some fatigue in the bond between resist and substrate, and may compound the problem of 

misalignment between the mask and the wafer. 
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Two types of misalignment problems may be experienced during the manufacturing process. In the 

first, the resist is deformed by some steady-state temperature, remaining in one position for most of the 

exposure. When the wafer is cooled after exposure, the structures imprinted on it can shift. Edge definition 

should be good, though the structures may be slightly warped; for instance, walls may not be straight. The 

second misalignment problem is related to the thermal cycling. If the resist is constantly moving during 

exposure, some areas may not be fully exposed, and therefore will not develop properly during processing. 

Because of the small feature dimensions which may be made by the LIGA process, even very small 

temperature gradients may cause misalignment problems. An analysis of the temperature fluctuations in the 

resist as a function of lime may give some insight into both types of misalignment problems. 

Table 5.2. Constants for calculation of multiple 
pass temperatures 

L 0.03 cm a 6.0 cm 

h 
ni    K a 1.182x10~9-f- 

k 0.198 & W 8340 -Ä- 
111" 

V 0.010 f ß 6914 ^ 

t 100 s w 0.10 cm 

Figure 5.7 shows temperatures with respect to time for six locations in the resist, calculated with the 

values given in Table 5.2. The thick gray lines trace the temperature for locations at the center of the resist; 

the X-ray beam passes over these points at regular intervals. The thin black lines trace temperatures near 

the end of the beam's travel; when the beam reverses direction at that end of the resist, it passes over these 

points twice in quick succession, resulting in a higher maximum temperature than is observed at the center 

of the resist. The end of the resist then has almost the entire period of oscillation to cool down; it also 

reaches a lower temperature than is seen at the center of the resist. Obviously, the thermal cycling of the 

resist can vary greatly from one physical location to another. 
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Fig. 5.7. Temperatures with respect to time for one-layer geometry 
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The temperatures and the magnitude of their changes are smaller near the interface between the resist 

and substrate, compared to the temperatures at the surface. This should result in smaller local stresses near 

the interface. Near the surface, there will be higher stresses and more deformation; it is here that 

incomplete development will be a problem. Deformation can move a part of the resist with respect to the 

mask; this misalignment will cause parts of the PMMA near the edge of exposed areas to move in or out of 

the beam, resulting in an incorrect dosage and unpredictable structure shapes. 

5.4. Experimental Results 

In order to get an idea of the actual temperature rises in thick resists, some experiments were 

performed at CAMD in Baton Rouge. Wafers were constructed with thermocouples on the surface and at 

the interface between resist and substrate. The temperatures in these locations were then measured during 

exposure, using a computer and data acquisition system. 
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Thermocouples 

1. Interface 

2. Interface 

3. Surface 

4. Surface 

Fig. 5.8. Wafer used in experimental test of heat transfer 

The resist used in these experiments was 0.5 mm thick PMMA, and the substrate was a 0.5 mm silicon 

wafer. Dimensions are shown in Fig. 5.8. The inner circle in the figure, labeled "exposed area," matches 

the location of the hole in the mask through which parts of the X-ray beam (rectangle) can pass. The 

thermocouples were J type, made with 75 urn iron and constantan wires. Though very small, the junction 

(where the temperature is measured) was quite large when compared to the 500 urn resist and substrate; for 

this reason, the junctions were hammered flat to minimize their disruption of the heat transfer. The silicon 

wafers used in the making of microstructures are typically coated with a metal, used as a base for 

electroplating later in the process. Uncoated silicon was used in this experiment to avoid shorting the 

thermocouples which are in contact with the substrate. Because of the high conductivity of nickel, and the 

thinness of the metal layers generally used in this application (about 1 nm), the absence of this layer should 

not significantly change the heat transfer characteristics of the wafer. Silicon is a semiconductor, but 

preliminary tests showed that contact with the silicon wafer had no measurable effect on the accuracy of the 

thermocouples. The small size of the junctions produced very fast response times in the thermocouples. 
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Two wafers were made for this experiment; on the first, the bond between the PMMA and the silicon 

was not very good, with small air pockets under much of the PMMA.  This might produce a high thermal 

resistance at that junction, causing higher temperatures in the resist.   The second wafer had a very good 

resist-substrate bond. 

The first irradiation test was designed around a worst-case scenario. A wire mesh mask was used; 

about 80 percent of the radiation incident on the mask passes through to the wafer. The positions of the 

thermocouples are shown in Fig. 5.8. The synchrotron was running at 1.5 GeV, and between 125 and 100 

mA, and the X-ray beam was not filtered before the irradiation chamber. The scan length was 3.8 cm, with 

a scan velocity of 0.635 cm/s, and the pressure in the chamber was 10 torr. A 500 micron layer of PMMA 

cannot be successfully exposed under these conditions. After 30 minutes, the resist was overexposed, and 

the surface of the PMMA appeared puffy and discolored, as if bubbled from heat. Figure 5.9 shows the 

temperature ranges near the beginning and the end of the run. The maximum temperature measured in the 

resist was 50°C, at thermocouple 3. 

During the first test, thermocouple 3 was inadvertently placed just inside the exposed area of the resist, 

so the temperatures from that location are comparable to the ones measured at thermocouple 4. This 

supports the assumption made elsewhere that variations in the x direction (parallel to the surface) are small 

compared to variations in the y direction (normal to the surface). 

Because the measured temperatures were so low (less than half of the melting point of PMMA), the 

bubbling of the PMMA must be assumed to be caused by a chemical phenomenon, and not by high 

temperatures in the resist. The chemical reaction caused by irradiation of PMMA with X-rays may produce 

gasses as a by-product. It appears that the high dose is preventing these gasses from escaping quickly 

enough, causing them to swell the PMMA. 
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Fig. 5.9. Temperature ranges for the first exposure test 
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Fig. 5.10. Temperature ranges for the second exposure test 

For the second and third exposures of the temperature test, the better wafer was used. A 14 um 

aluminum filter was placed in the beam line, and at the beginning of the second exposure the current in the 

ring had fallen to about 80 mA, at 1.5 GeV.  All other parameters were unchanged. These conditions are 
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similar to those of a typical exposure. Figure 5.10 shows the temperature ranges for this test run. The 

temperatures are quite low, with the fluctuations at the center limited to about 33°C. 

Before the third run, the synchrotron was reinjected, increasing the current to about 130 mA. The 

wafer was also turned 90 degrees and shifted such that the thermocouples were near the top and bottom of 

the area exposed to the X-ray beam; that is, they were near the ends of the beam's travel. 
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Fig. 5.11. Temperature ranges for the third exposure test 

Figure 5.11 shows the temperature ranges for the third run. The increased current in the ring probably 

caused most of the difference between these temperatures and those obtained in the previous exposure. It is 

worth noting, however, that the temperature range in exposure three is a much larger percentage of the 

maximum temperature; the ends of the exposed area have almost the whole period of the beam oscillation to 

cool down between passes, while the center of the wafer has only half that amount of cool-down time. This 

is the same phenomenon that was illustrated in Fig. 5.7. 

5.5. Conclusions 

Though the analytical solutions derived in Chapter 4 have some inherent limitations, such as 

truncation of the series and the difficulty of finding eigenvalues, these were successfully overcome by 
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designing computer programs specific to this application. The programs appeared to be completely 

successful in finding all the eigenvalues, both for the tests presented in this chapter and for many others not 

included here. For the one-layer solution, truncation does not appear to be a problem, even when a 

moderate number of terms are used. However, the two-layer solution requires a large number of terms to 

insure accuracy, especially near the surfaces of the resist and substrate. The maximum number of terms 

handled by program THESIS4 (found in the appendix) is 300; this is the number that was used for all of the 

tests presented here. 

The analytical and experimental tests both indicate that temperature rises in the resist will be relatively 

small; at most, one might expect to see temperature fluctuations of 20°C when using scan speeds of at least 

0.635 cm/s. Most masks allow only a small percentage of the X-ray radiation to pass through to the resist, 

and the synchrotron is rarely running at its maximum energy. For most combinations of mask and wafer, 

the temperature rises should be a few degrees, at most; the resist deformations produced by fluctuations of 

this magnitude should be very small. 



CHAPTER 6 

CONCLUSIONS AND RECOMMENDATIONS 

A number of conclusions may be drawn from the analytical and experimental work presented here, not 

only about temperature distributions in irradiated wafers, but also about the best methods of finding these 

temperatures, and the usefulness of these methods in the study of deformations. 

The analytical and experimental tests both indicate that temperature rises in the resist will be relatively 

small; at most, one might expect to see temperature fluctuations of 20°C when using scan speeds of at least 

0.635 cm/s. Faster scan speeds will produce lower maximum temperatures and smaller temperature 

fluctuations. For most exposure situations, the temperature rises should be a few degrees, at most. The 

resist deformations resulting from such small temperature fluctuations should be minimal. 

6.1. Analytical Models 

Two principle analytical solutions were developed in Chapter 4, and the computer code necessary to 

evaluate them was presented in Chapter 5. The accuracy of the temperatures generated by these programs 

with respect to the governing equations and boundary conditions has been established. However, this does 

not guarantee a good approximation of the actual temperature distribution during exposure. 

A number of simplifications were necessary to construct problems which could be solved analytically. 

It was discovered that multiple-layer solutions are limited to one dimension except in special cases (see 

Chapter 3); this prevented the realization of a two-dimensional, two-layer analytical solution. For the one- 

layer problem, the rectangular shape of the beam necessitated a Cartesian coordinate system. A zero 

temperature boundary condition was assumed for the lower surface, and a convection condition was used 

for the upper surface, which is in fact bordered by a very thin layer of gas and a mask; this mask has a 

temperature distribution of its own.   It was also not possible to take into account the shape or thermal mass 

64 



65 

of the carrier which holds the wafer during exposure. The utility of both of the analytical models is severely 

limited by the large number of simplifications. 

The solutions to the analytical models must be evaluated computationally, because of their complexity. 

The programs used for evaluation of these solutions were very difficult to develop, 

Another limitation of the analytical models is that they cannot be used for analysis of local 

deformations in the resist. The generation terms can only model the part of the X-ray beam that passes 

through the mask as a rectangle of energy; heat generation in the shape of individual microstructures would 

require new and far more complicated generation terms. Bulk deformations will undoubtedly cause 

alignment problems. However, with certain masks, large scale temperatures predicted by the analytical 

models might be insignificant, while local temperature changes in the vicinity of small irradiated areas 

might be very important. This phenomenon cannot be adequately handled with the analytical solutions 

presented here, and construction of analytical solutions which could produce data of this type would be 

subject to all of the simplification problems described above. 

6.2. Experimental Analysis 

The experiments described in Chapter 5 produced some interesting and potentially valuable data, 

though the design was relatively simple. Its primary flaw is the presence of the thermocouples. Metals 

absorb much more radiation than PMMA; if the size of a thermocouple junction is too large, it might absorb 

enough radiation to raise its temperature significantly above the temperature of the surrounding PMMA. A 

large junction may also interrupt the normal flow of heat in the wafer. 

With only four thermocouples, too little data was gathered from these experiments to perform a 

detailed analysis of deformations in the resist. Though other methods of measuring the temperatures may 

be used, it would most likely be very difficult get measurements with high enough spacial resolution for an 

analysis of local deformations and the effect of those deformations on the shape of the finished 

microstructures. 
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6.3. Recommendations 

The usefulness of the analytical solutions presented herein is severely limited by the simplifications 

necessary to construct solvable problems.  In theory, these simplifications need not be made when using a 

finite element or finite difference model.   Such programs can more easily handle complexities such as 

multiple layers, different materials, convection heat transfer, and unusual generation profiles.   If one is 

concerned with the accuracy of a numerical solution, keep in mind the complexity of the programs required 

for the evaluation of the analytical solutions presented here, and the inaccuracies produced by truncation. 

From a heat transfer standpoint, there is nothing particularly unusual about the wafer, the structure that 

supports it, or the environment in which it is irradiated, which should be challenging to model numerically. 

A numerical model of the resist would not only allow a more reliable study of the large-scale 

temperature changes in the resist, but would enable the researcher to study more complex situations, such as 

the temperature field and deformations around an individual microstructure, without significant changes to 

the basic model. In addition, a computational model can most likely be developed on common commercial 

software more quickly than analytic problems of this complexity can be solved. 

Measuring temperatures experimentally may also be useful in predicting problems with the exposure 

process. This method limits data collection to a small number of points, and is not very useful for 

calculation of deformations. However, the experiment described in Chapter 5 was simple and inexpensive, 

and took little time to perform. Careful experimentation may be the best method of determining the 

temperature ranges to be expected during exposure, when a detailed analysis of deformations is not 

required. 



APPENDIX 

COMPUTER CODE 

All of the code used for evaluations of the solutions in this thesis was written in C++, and compiled on 

Borland C++ for Windows. Proper allignment of the characters from one line to the next makes the code 

easier to read and understand, so a courier font is used; this is the default font in the Borland C and C++ 

editors. 

Steady State Part of Single Layer Solution 

/*    file:  1-dss.cpp 

This program calculates the temperature rise in a two dimensional 

slab with nonhomogeneous boundary conditions on the upper and lower 

surfaces (convection at y=l, prescribed temperature at y=0.)  The ends 
are at zero temperature rise. 
*/ 

#include<math.h> 

#include<iostream.h> 
# include< iomanip.h> 

#include<stdio.h> 

#include<conio.h> 

#include<stdlib.h> 
#define NMAX 1120 

#define PI (4*atan(l.)) 

#define XPOINTS 10. 

#define YPOINTS 10. 

#define outputfile "2-dss.csv 
/*  variables 

// maximum iterations for sum 

// points in data grid 

a 

alpha 

eta 

h 

k 

L 

n 

sum 

A 

B 

C 

D 

H 

width of resist(x direction) 
thermal diffusivity 

eigenvalues in the x direction 

convection coefficient on upper surface 
thermal conductivity 

thickness of resist 

summation variable variable 

summation of term in the series 

constants for 1-d solution 

constants for 2-d solution 

h/k; a simplification 
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NMAX 

Tl 

Tu 

XPOINTS 

YPOINTS 

*/ 

// define global constants 
void main(void) { 

truncation value of infinite sum - x direction 
temp on lower surface 

temp on upper surface 

number of data points in x direction 

number of data points in y direction 

// initialize constants 

double L=0.01; 

double k=0.00198; 

double h=0.16; 

double a=6.0; 

double Tl=2; 

double Tu=5; 

double H=h/k; 

double sum,x,y,xincr,yincr 
double A,B,C,D; 
double eta; 

int n; 

//cm 

// watts/cm/K 

// watt/cm2/K 
//cm 

// K 

// k 

xincr=a/XPOINTS; 

yincr=L/YPOINTS; 

// open output file 
FILE *outfile; 

outfile=fopen(outputfile,"wt"); 
fprintf (outfile, "dummy, x—>\n") ,- 

// calculate temperatures 

cout«" Summation" <<endl ; 

for(x=0.0;x<=a;x=x+xincr) { 

for(y=0;y<=(L+yincr/2);y=y+yincr) { 
sum=0.0; 

for(n=l;n<=NMAX;n++) { 
eta=n*PI/a; 

C=2*(l-pow(-l,n))/n/PI*(H*Tu-Tl*(eta*sinh(eta*L)+H*cosh(eta*L)))/ 
(eta*cosh(eta*L)+H*sinh(eta*L)) ; 

D=2*(l-pow(-l,n))*Tl/n/PI; 

sum=sum+sin(eta*x)*(C*sinh(eta*y)+D*cosh(eta*y)); 
} // end n 

fprintf(outfile,",%G",sum); 
if((x==a/2)&&(y==0)) 

cout<<"bottom :  "<<sum<<endl; 
) // end y 

if((x==a/2)) 

cout<<"top    :  "<<sum<<endl; 
fprintf(outfile,"\n"); 

} // end x 

fclose(outfile); 
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// calculate correspoding one-d solution at top and bottom 
cout«endl«"One - d solution"«endl; 
B=T1 ; 

A=H*(Tu-Tl)/(l.+L*H); 

cout«"bottom :  "«B«endl; 

cout«*top    :  "<<(A*L+B)«endl; 
} // end main 

Eigenvalue Functions 

/*    file: egnvalus.cpp 

This program calculates the eigenvalue function as a function of 

lambda, producing data for a graph.  Roots are the eigenvalues 
*/ 

#include<math.h> 

# include< ios trearn. h> 

# include< i omanip.h> 

#include<stdio.h> 

#include<conio.h> 

#include<stdlib.h> 

#include<fstream.h> 

#include<cstring.h> 
#define RANGE 700.0 

#define POINTS 1000 

#define INPUTFILE "solutn_g.dat" 

#define OUTPUTFILE "evgraph.csv" 
/* variables 

elements of the eigenvalue matrix 
thermal diffusivity 

value of determinant 

preliminary calculation result 
preliminary calc. result 

heat transfer coefficient 

thermal conductivity 

distance between data points 

h/k; a simplification 

thickness of the resist 

thickness of the substrate 
number of data points 

range of lambda for calculations 

substrate ambient temperature 

resist ambient temperature 

a 

alpha 
det 
e 

g 
h 

k 

step 

H 

LI 

L2 

POINTS 

RANGE 
Tl 

Tu 

*/ 

main(void) { 

double all,al2,al3,al4; 

double a21,a22,a23,a24; 

double a31,a32,a33,a34; 

double a41,a42,a43,a44; 

double Ll,L2,hl,h2,h3,kl,k2,K,Hl,H2,H3,g,e; 
double alphal,alpha2, det; 

double a,Tu,Tl,step; 
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string dummy; 

// open input file 

fstream input; 
input.open(INPUTFILE,ios::in); 

getline(input,dummy); 

cout<<dummy<<endl<<" "<<endl; 

getline(input,dummy); 

getline(input,dummy); 

// read values from input file 

input>>Ll; 

cout<<dummy<<"    "<<Ll<<endl; 

getline(input,dummy); 

input»L2 ; 
cout<<dummy<<"    "<<L2<<endl; 

getline(input,dummy); 

input>>a; 
cout<<dummy<<"    "<<a<<endl; 

getline(input,dummy) ; 

input>>hl; 

cout<<dummy<<"    "<<hl<<endl; 

getline(input,dummy),- 

input>>Tu; 
cout<<dummy<<"    "<<Tu<<endl; 

getline(input,dummy); 

input>>h2; 
cout<<dummy<<"    "<<h2<<endl; 

getline(input,dummy); 

input>>h3; 
cout<<dummy<<"    "<<h3<<endl; 

getline(input,dummy); 

input>>Tl; 
cout<<dummy<<"    "<<Tl<<endl; 
getline(input,dummy); 

input>>kl; 
cout<<dummy<<"    "<<kl<<endl; 

getline(input,dummy); 

input»k2 ; 

cout<<dummy<<"    "<<k2<<endl; 

getline(input,dummy); 

input>>alphal; 
cout<<dummy<<"    "<<alphal«endl; 

getline(input,dummy); 

input>>alpha2; 
cout<<dummy<<"    "<<alpha2<<endl; 

// close input file 

input.close(); 
// preliminary calculations 
K = kl/k2;        // ratio of thermal conductivities 

HI = hl/kl 

H2 = h2/kl 

H3 = h3/k2 
// open output file 

// h/k for front surface 

// interfacial resistance term 

// h/k for back surface 
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FILE *outfile; 
outfile=fopen(OUTPUTFILE,*wt"); 

// loop on lambda to get values of determinant for graph 

Step=RANGE/POINTS; 

for (double lambda=step;lambda<=RANGE;lambda=lambda+step){ 

// calculate elements of coefficient matrix 

// first calculate simplifying terms: 

g = lambda/sqrt(alphal); 

e = lambda/sqrt(alpha2); 

// now get the elements themselves 

all = g; 

-HI; 

'/ 

al2 

al3 

al4 

a21 

a22 

0.0 

0.0 

(-g*cos(g*Ll))/H2-sin(g*Ll); 

-cos(g*Ll)+(g*sin(g*Ll))/H2; 

a23 = sin(e*Ll); 

a24 = cos(e*Ll); 

a31 = K*g*cos(g*Ll); 

a32 = 0.0-K*g*sin(g*Ll); 

a33 = 0.0-e*cos(e*Ll); 

a34 = e*sin(e*Ll); 

a41 = 0.0; 

a42 = 0.0; 

a43 = e*cos(e*L2)/H3+sin(e*L2); 

a44 = -e*sin(e*L2)/H3+cos(e*L2); 

// find the determinant of the matrix 
det=all*(a22*(a33*a44-a34*a43)-a23*(a32*a44-a34*a42)+a24*(a32*a43-a33*a42)) 

-al2*(a21*(a33*a44-a34*a43)-a23*(a31*a44-a34*a41)+a24*(a31*a43-a33*a41)) 

+al3*(a21*(a32*a44-a34*a42)-a22*(a31*a44-a34*a41)+a24*(a31*a42-a32*a41)) 

-al4*(a21*(a32*a43-a33*a42)-a22*(a31*a43-a33*a41)+a23*(a31*a42-a32*a41)); 

// output term for this value of lambda 

det=Hl+lambda/tan(lambda*Ll); 

fprintf(outfile,"%G",lambda); 

fprintf(outfile,",%G",det); 

fprintf(outfile,"\n"); 
} // end for(lambda) 

fclose(outfile); 
// end main 

Superposition Solution 

/* program thesis3.cpp 

This program calculates the temperature increase in a slab with a moving 

energy source.  The source is exponential, and the slab is insulated on the 

left and right edges with t = 0 on the bottom surface and convection on the 

top surface.  Multiple passes are considered; data is temp as a function of 

y and time.*/ 

# include<math.h> 

#include<iostream.h> 



72 

#include<fstream.h> 

#include<cstring.h> 

#include<iomanip.h> 

#include<stdio.h> 

#include<conio.h> 

#include<stdlib.h> 

#include<time.h> 

#define UNUSED (-1.11E30) 

»define PI 4*atan(l.) 

#define OUTFILE "thesis3.csv" 

idefine INPUTFILE "wafer.dat" 

#define MAXIT 60 

/*  variables 

a 

alpha 

be[n] 

bn 

bnsq 

dec 

g 
h 

i, j 
k 

ltm] 

lm 

lms q 

loop 
lower 

mu 
now 

npass 

pass 
remain 

rs 

stem 

t 

time 
tterm 

upper 

v 

w 

x, y 
Amn 

Bmn 

H 

L 
MAXIT 

MMAX 

N 
NMAX 

W 

XPOINTS 

width of resist(x direction) 

thermal diffusivity 
eigenvalues in the x direction 
eigenvalue for present summation term 

bn squared 
sum of decay solution coefficients 

uniform heat generation 

heat transfer coefficient 

loop variables 
thermal conductivity 

eigenvalues in y direction 

eigenvalue for present summation 

lm squared 
time required for one loop 
lower limit for root-finding algorithm (eigenvalue search) 

linear absorption coefficient 

present clock time 
number of passes to current time 
time required for one pass of source 

time remaining for calculations 
spacing between roots for eigenfunction in y 

portion of answer derived from the source term 

time of last pass 

maximum elapsed time 
portion of answer derived from the time term 

upper limit for root-finding algorithm 

velocity of X-ray beam 

width of the X-ray beam 

coordinate variables 

single pass coefficients 
part of decay solution coefficients 
h/k - simplification used in derivation 

thickness of resist 
maximum # of iterations for ridder's method 

truncation value of infinite sum - y direction 

orthogonality constant 
truncation value of infinite sum - x direction 

irradiance at surface 

number of data points in x direction 
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number of data points in y direction YPOINTS 

*/ 
// define global constants 

double L=0.03;      //cm 
double k=0.00198;   // watts/cm/K 

double h=0.010;     // watt/cm2/K 

double H=h/k; 

// declare subroutines 

double froot(double y); 
double ridder(double xl,double x2,double xacc) 

void fileerror(void); 

void main(void) { 
// initialize constants 
double sum[21],x,y,yincr,pass,p,t,dir, decl; 

double lmsq,lm,bn,bnsq,b212,Amn; 

double 1ml,lm2,N,Bmn,dec,time,tincr; 

double XPOINTS,YPOINTS,NMAX,MMAX; 

double 1[30+1]; 

double be[100+1]; 
double W,mu, v,w, a, tmax,alpha; 

// open input file 

fstream input; 
input.open(INPUTFILE, (ios::in | ios:rnocreate)); 

if (! input) fileerrorO; 

// open output file 

fstream log; 
log.open(OUTFILE,ios::out) ; 

if(!log) fileerrorO; 

string dummy; 
// input constants 
log<<"2-d; one layer; moving heat source (mult passes) "«endl; 

getline(input,dummy);    getline(input,dummy) ; 
getline (input, dummy) ; input»L; log«"L: "«L«endl; 

getline(input,dummy); 

input>>a; log<<"a: "<<a<<endl; 

input>>h; log«"h: "<<h<<endl; 

getline(input,dummy); 

getline(input,dummy); 

getline(input,dummy); 

getline(input,dummy); 

input>>k; log<<"k: "<<k<<endl; 

getline(input,dummy); 

getline (input, dummy) ; input>>alpha; log«"alpha: "<<alpha«endl; 

getline(input,dummy);    getline(input,dummy); 

getline (input, dummy) ; input»W; log«"W: "<<W«endl; 

getline(input,dummy); 

getline(input,dummy); 
getline(input,dummy); 

getline(input,dummy); 

getline(input,dummy); 

getline(input,dummy); 

getline(input,dummy) 

getline(input,dummy) 

getline(input,dummy) 

getline(input,dummy) getline(input,dummy); 

getline(input,dummy); input>>mu; log«"mu: "<<mu<<endl; 

getline(input,dummy);    getline(input,dummy); 
getline(input,dummy); input>>tmax; log<<"tmax: "<<tmax«endl; 

getline(input,dummy); input»v; log<<"v: "<<v<<endl; 
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getline(input,dummy) 

getline(input,dummy) 

getline(input,dummy) 

getline(input,dummy) 

getline(input,dummy) 

getline(input,dummy) 

input.close(); 

log«endl<<endl ; 

double rs=PI/L; 

int m,n,npass; 

clock_t start,now; 

yincr=L/YPOINTS; 

// start the timer clock 

start=clock(); 
// calculate eigenvalues in y direction 

cout«" calculating eigenvalues" «endl ; 

for(int i=l;i<=MMAX;i++) { 

lml=(i-.999)*rs; 

lm2=(i-.001)*rs; 

l[i]=ridder(lml,lm2,.00001) ; 

cout<<i<<"   "<<1[i]<<endl; 

} 
// calculate eigenvalues in x direction 

for(int j=l;j<=NMAX;j++) { 

be[j]=j*PI/a; 

) 
// set up output file 

cout<<" "; 
for (y=L,-y>=(0-yincr/2) ;y=y-yincr) { 

log«", "<<y; 

} // end x 

log<<endl; 

input>>w; log<<"w: "<<w<<endl; 

input»NMAX; log«"NMAX: "<<NMAX«endl ; 

input»MMAX; log«"MMAX: " <<MMAX«endl ; 

input»XPOINTS; log<<"x position: "<<XPOINTS<<endl; 

input»YPOINTS; log«"y position: "<<YPOINTS<<endl; 

input>>tincr; log<<"time incr: "<<tincr<<endl; 

// calculate temperatures 

x=XPOINTS; 
pass=a-w/v; 

log<<"y->"; 

y=0; 
for(i=l;i<=10;i++) { 

y=i/10.0*L; 

log«","«y; } 

log<<endl; 

for(time=80.0;time<tmax;time=time+tincr) 

log<<time; 

npass=time/pass; 
t=time-npass*pass; 

//  for (y=L;y>=(yincr/2) ,-y=y-yincr) { 

for(i=l;i<=20;i++) 

sum[i]=0.0; 

for(m=l;m<=MMAX;m++) { 

lm=l[m]; 
lmsq=lm*lm; 
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for(n=l;n<=NMAX;n++) { 

bn=be[n]; 

bnsq=bn*bn; 

b212=bnsq+lmsq; 

N=(L*(lmsq+H*H)+H*H)/4*a/(lmsq+H*H); 

Bmn=-alpha/N*W*mu/k/(bn*(mu*mu+lmsq))*(mu*sin(lm*L)-lm*cos(lm*L)+ 

exp(-mu*L)*lm)/(pow((alpha*b212),2)+bnsq*v*v)*(alpha*b212* 

(cos(bn*a)-cos(bn*(a-w))-exp(-alpha*b212*(a-w)/v)*(cos(bn*w)-1.)) 

+bn*v*(sin(bn*a)-sin(bn*(a-w))-exp(-alpha*b212*(a-w)/v)* 

sin(bn*w))); 

dec=0.0; 

decl=0.0; 

dir=1.0; 

for(p=time-pass;p>=0;p=p-pass){ 

if(dir<0) 

dec=dec+Bmn*exp(-alpha*b212*p); 

else 
decl=decl+Bmn*exp(-alpha*b212*p); 

dir=(-1.0)*dir; 

} 
Amn=-alpha/N*W*mu/k/(bn*(mu*mu+lmsq))*(mu*sin(lm*L)-lm*cos(lm*L)+ 

exp(-mu*L)*lm)/(pow((alpha*b212),2)+bnsq*v*v)*(alpha*b212* 
(cos(bn*(t*v+w))-cos(bn*t*v)-exp(-alpha*b212*t)*(cos(bn*w)-1.)) 

+bn*v*(sin(bn*(t*v+w))-sin(bn*t*v)-exp(-alpha*b212*t)*sin(bn*w))); 

y=0.0; 
for(i=0;i<=10;i=i+l){ 

y=i/10.0*L; 

if(dir<0) 
sum[i]=sum[i]+(Amn+dec)*sin(bn*x)*sin(lm*y)+decl*sin(bn*(a- 

x))*sin(lm*y); 

else 
sum[i]=sum[i]+(dec)*sin(bn*x)*sin(lm*y)+(Amn+decl)*sin(bn*(a- 

x))*sin(lm*y); 

} // end i (y loop) 

} // end n 

} // end m 
for(i=l;i<=10;i++) 

log<<","<<sum[i]; 

log<<endl; 

cout<<time«endl; 
} // end time 

clrscr(); 

now=clock() ,- 
cout«"elapsed time(min): "<<setprecision(3)«((now-start)/CLK_TCK/60.0); 

log.closet); 

} // end main 

// subroutine to tell user if an error is caught in the input file, 

// or is the file isn't in the working directory, 

void fileerror(void) { 

cout<<"File error check for:"<<endl; 

cout<<"  — existence of wafer.dat in directory"«endl; 
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cout<<" 

abort(); 

} // end fileerror 

proper format of file" 

double froot(double y) { 

// evaluates root function for eigenvalues 
double value; 

value=y*l/tan(y*L)+H; 

return value; 

} // end froot 

double ridder(double xl,double x2,double xacc) { 

// ridder's method from "numerical recipes in C, " Press et.al. 

// finds roots of function in froot given bracketting values 
int j ; 

double ans,fh,f1,fm,fnew,s,xh,xl,xm,xnew; 
fl=froot(xl); 

fh=froot(x2); 

if ((fl>0.0&&fh<0.0)||(fl<0.0&&fh>0.0)) { 
xl=xl; 

xh=x2; 

ans=UNUSED; 

for(j=l;j<=MAXIT;j++) { 

xm=0.5*(xl+xh) ; 

fm=froot(xm); 

s=sqrt(fm*fm-fl*fh) ; 

if(s==0.0)return ans; 

xnew=xm+(xm-xl)*((fl>fh ? 1.0:-1.0)*fm/s); 
if(fabs(xnew-ans)<=xacc) return ans; 
ans=xnew; 

fnew=froot(ans); 
if(fnew==0.0)return ans; 

if(((fnew)>0.0 ? fabs(fm):-fabs(fm))!=fm) { 
xl=xm; 

fl=fm; 

xh=ans; 

fh=fnew; 

} else if(((fnew)>0.0 ?fabs(f1):-fabs(f1))!=f1) { 
xh=ans; 

fh=fnew; 

} else if(((fnew)>0.0 ?fabs(fh):-fabs(fh))!=fh) { 
xl=ans; 

fl=xnew; 
} else { 

cout«"error  in usbroutine ridder"; 
abort; 

} 
if(fabs(xh-xl)<=xacc)   return ans; 

} 

cout«"ridder exceeded maximum iterations"; 
abort(); 

}     //  end if 
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else cout«"root must be bracketed in ridder" 
return  0.0; 

}     //  end ridder 

Two-Layer Solution 

Program thesis4.cpp 

This program calculates the temperature increase in a two layer 

wafer.  Model is one-dimensional with nonhomogeneous boundary- 

conditions. Output is 1-D temperature profile in y direction. 
  definitions   

c output loop counter 

f output loop counter 

gamma simplification variables 

gterml, gterm2 generation terms in theta part of solution 

i generic loop variable 
m loop counter 

min number of minutes elapsed 

mul,mu2 absorption coefficients for resist and substrate 
now present clock time 

nowt clock ticks elapsed sinlce beginning of program 
sec number of seconds elapsed 

start clock time at start of calculations 
stp step used in eigenvalue search 

t time for mathematical model 
tm system time 

tstart time at start of theta calculations 

v scanning velocity of wafer 

w width of incident radiation beam 
y spacial variable 

Aim, A2m 

Blm, B2m 

Cl, C2 

Dl, D2 

PI 

LI 

L2 

Tl, Tu 

Tres[] 

Wl, W2 

*/ 
# include<math.h> 

# include< ios trearn.h> 

# include< iomanip.h> 

#include<cstring.h> 

# include<s tdio.h> 

#include<conio.h> 

#include<stdlib.h> 

iinclude <malloc.h> 

eigenvalue coefficients 

eigenvalue coefficients 

coefficients for steady state solution 

coefficients for steady state solution 
duh! 

y position at interface 

y position at back of resist 

temperatures on substrate and resist surfaces, respectively 

Tsub[] temperatures in resist and substrate, respectively 

irradiation constant - layers one and two 
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#include<fstream.h> 

#include<t ime.h> 

#include<dos.h> 

#define MAXIT 60 

♦define UNUSED (-1.11E30) 
#define INPUTFILE "wafer.daf 

#define OUTPUTFILE "twolayer.csv" 

// define an easy squaring function for later use 

static long double sqrarg; 

»define SQR(num) ((sqrarg=(num))==0.0 ? 0.0 : sqrarg*sqrarg) 
double lamm[301]; 

// define the subroutines 
void fileerror(void); 

double evaKdouble A,double B,double C,double D,double yl,double y2, 
double 1,double a,double p) ; 

double lambda(double LI,double L2,double kl,double k2,double alphal, 

double alpha2,double K,double HI,double H2,double H3,int MMAX) 

void main(void) { 

//declarations 

int i, cm,min, sec; 

double MMAX,RESPOINTS,SUBPOINTS,a,stp,tincr,y,bcterm,gterm; 

double Tu,Tl,LI,L2,hi,h2,h3,kl,k2,K,HI,H2,H3; 
double alphal,alpha2; 

double gamma,eta,Aim,A2m,Blm,B2m,N; 
double Wl,W2,mul,mu2,t; 

double C1,C2,D1,D2; 

time_t start,now; 

struct  time tm; 

// start the timer clock 

start=time(NULL); 

// open input file 

fstream input; 

input.open(INPUTFILE,ios::in | ios::nocreate); 

if(!input) fileerror; 
// open output file 
fstream log; 

log.open(OUTPUTFILE,ios::out); 
if(!log) fileerror; 
string dummy; 

// input constants 

log<<"l-d; two layer; data in y and time"«endl; 

getline(input,dummy);   getline(input,dummy); 

getline (input, dummy) ; input>>Ll; log«"Ll: "«Ll«endl; 
getline (input, dummy) ; input»L2; log«"L2: "«L2«endl; 

getline(input,dummy); input>>a; log<<"a: "<<a<<endl; 

getline(input,dummy); input>>hl; log<<"hl: "<<hl<<endl; 

getline (input, dummy) ; input»Tu; log«"Tu: "<<Tu«endl; 

getline (input, dummy) ; input»h2; log«"h2: "<<h2«endl; 

getline (input, dummy) ; input>>h3; log«"h3: "<<h3«endl; 

getline (input, dummy) ; input>>Tl; log«"Tl: "<<Tl«endl; 

getline (input, dummy) ; input>>kl; log«"kl: "<<kl«endl; 
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getline(input,dummy) 

getline(input,dummy) 

getline(input,dummy) 

getline(input,dummy) 

getline(input,dummy) 

input»k2; log«"k2: "<<k2«endl; 
input>>alphal; log<<"alphal: "<<alphal<<endl; 

input»alpha2; log«"alpha2: "<<alpha2<<endl; 

input»Wl; log«"Wl: "<<Wl«endl; 

input»W2; log«"W2: "<<W2«endl; 

getline (input,dummy) ; input»mul; log«"mul: "<<mul«endl; 

getline (input, dummy) ; input»mu2 ; log«"mu2: "<<mu2«endl; 

getline (input, dummy) ; input»t; log«"tmax: "<<t«endl; 

getline(input,dummy) 

getline(input,dummy) 

getline(input,dummy) 

input>>MMAX; log« "tu- "<<MMAX<<endl; 

input»RESPOINTS; log«"RESPOINTS: "<<RESPOINTS«endl; 

input»SUBPOINTS; log<<"SUBPOINTS: "<<SUBPOINTS<<endl; 

input»tincr; log«"time increment: "<<tincr<<endl; 

getline(input,dummy) 

getline(input,dummy) 

getline(input,dummy) 

getline(input,dummy) 

getline(input,dummy) 

getline(input,dummy) 

getline(input,dummy) 

log<<endl<<endl; 

// close input file 

input.close(); 

double *Tres,*Tsub; 
if (RESPOINTS>40 || SUBPOINTS>40) { 

cout«"Exceeded 40 data points"; 

abort(); 

} 
try { 
Tres=new double [41]; 

Tsub=new double [41]; 

} 
catch(xalloc) { 
cout«endl<<"could not allocate memory"; 

exit(-l) ; 

} 
// initialize tres and tsub 
for(i=0;i<=RESPOINTS;i++) { 

Tres[i]=0.0; 

} 
for(i=0;i<=SUBPOINTS;i++) { 

Tsub[i]=0.0; 

} 
// preliminary calculations 
K = kl/k2;        // ratio of thermal conductivities 

HI 

H2 

H3 

hl/kl 

h2/kl 

h3/k2 

// h/k for front surface 
// interfacial resistance term 

// h/k for back surface 

// find the eigenvalues in the y direction for the theta (time 

//    dependent) part of the solution 
stp=lambda(LI,L2,kl,k2,alphal,alpha2,K,HI,H2,H3,MMAX); 

lamm[0]=0; 

cout<<endl<<"calculating temperatures. . ."; 

// calculate temperatures 

for(m=l;m<=MMAX;m++) { 

gamma=lamm[m]/sqrt(alphal); 

eta=lamm[m]/sqrt(alpha2); 
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// define the constants for the y direction eigenfunctions 

A2m=1.0; 
B2m=(-(eta*cosl(eta*L2)/H3+sinl(eta*L2)))/ 

(-eta*sinl(eta*L2)/H3+cosl(eta*L2)); 

Blm=(-B2m*cosl(eta*Ll)-sinl(eta*Ll))/(Hl/gamma*(-gamma*cosl(gamma*Ll)/H2- 

sinl(gamma*Ll))+gamma*sinl(gamma*Ll)/H2-cosl(gamma*Ll)); 

Alm=Blm*Hl / gamma ; 
// define orthogonality constant 
N=kl/(alphal*gamma)*(Alm*Alm*(gamma*Ll/2.-sinl(2.*gamma*Ll)*.25)- 

Alm*Blm*cos(2.*gamma*Ll)12 .+Blm*Blm*(gamma*Ll/2.+sin(2.*gamma*Ll)/4.) 

+Alm*Blm/2.)+ 
k2/alpha2/eta*(A2m*A2m*(eta*L2/2.-sin(2.*eta*L2)/4.) 

-A2m*B2m*cos(2.*eta*L2)/2.+B2m*B2m*(eta*L2/2.+sin(2.*eta*L2)/4. )- 

A2m*A2m*(eta*Ll/2.-sin(2.*eta*Ll)/4.)+A2m*B2m*cos(2.*eta*Ll)12.- 
B2m*B2m*(eta*Ll/2.+sin(2.*eta*Ll)/4.)  ); 

gterm=Wl*mul/(SQR(mul)+SQR(gamma))*( Aim*( mul*sin(gamma*Ll)- 
gamma*cos(gamma*Ll)+gamma*exp(-mul*Ll) )+Blm*( mul*cos(gamma*Ll)+ 

gamma*sin(gamma*Ll)-gamma*exp(-mul*Ll) ) )+W2*mu2/(SQR(mu2)+SQR(eta))* 
( A2m*( exp(-mu2*Ll)Mmu2*sin(eta*L2)-eta*cos (eta*L2) )-exp(-mu2*L2) * 

(mu2*sin(eta*Ll)-eta*cos(eta*Ll)))+B2m*(exp(mu2*Ll)*(mu2*cos(eta*L2)+ 

eta*sin(eta*L2))-exp(-mu2*L2)*(mu2*cos(eta*Ll)-eta*sin(eta*Ll)) ) ); 

bcterm=(Tu*hl*Blm+Tl*h3*(A2m*sin(eta*L2)+B2m*cos(eta*L2))); 

// add theta term to resist solution 
for(c=0;c<=RESPOINTS;c++){ 

y=c*Ll/RESPOINTS; 
Tres[c]=Tres[c]+1.0/N*(Alm*sin(gamma*y)+Blm*cos(gamma*y)) 

*(l-exp(-SQR(lamm[m])*t))/(SQR(lamm[m]))*(bcterm+gterm); 

} 
// add theta term to substrate solution 
for(c=0;c<=SUBPOINTS;c++) { 

y=c*(L2-L1)/SUBPOINTS+L1; 
Tsub[c]=Tsub[c]+1.0/N*(A2m*sinl(eta*y)+B2m*cosl(eta*y)) 

*(0.0*expl(-(SQR(lamm[m]))*t)+bcterm); 

} 
} // end m loop 
gettime(&tm); 

if (tm.ti_hour>12)tm.ti_hour=tm.ti_hour-12; 

printf("\n finished at: %2d:%02d:%02d", 

tm. ti_hour, tm. ti_min, tm. ti_sec) ; 

// output the temperatures 

//  print column headings (y values) 

log«" " ; 
for(c=0;c<=RESPOINTS;c++){ 

y=c*Ll/RESPOINTS; 

log<<","<<y; 

} 
for(c=0;c<=SUBPOINTS;c++) { 

y=c*(L2-L1)/SUBPOINTS+L1; 

log«", "<<y; 

} 
log<<endl; 

// output the temps 
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for(c=0;c<=RESPOINTS;c++){ 

log<<","<<Tres[c] ; 

} 
for(c=0;c<=SUBPOINTS;c++) { 

log<<","<<Tsub[ c ] ; 

} 
log<<endl<<"steady state:"<<endl; 

// calculate and output steady state, 

//  no generation temperatures 

log<<" "; 
for(c=0;c<=RESPOINTS;c++){ 

y=c*Ll/RESPOINTS; 
C1=(T1-Tu)/(1/Hl+(1/H2+Ll-K*L1+K*L2+K/H3)); 

Dl=Tu+Cl/Hl; 

log<<" , "«(Cl*y+Dl) ; 

} 
for(c=0;c<=SUBPOINTS;c++) { 

y=c*(L2-L1)/SUBP0INTS+L1; 

Cl=-(T1-Tu)/(1/Hl-(1/H2+Ll-K*L1+K*L2+K/H3)); 

C2=K*C1; 

D2=T1-C1*(K*L2+K/H3); 

log<<", "«(C2*y+D2) ; 

} 
log<<endl; 
// output iegenvalues 

for(i=l;i<=MMAX;i++) { 

log<<endl<<i<<","<<lamm[i]; 

} 
log<<endl ; 

// delete arrays to clear memory 

delete[] Tres;  delete[] Tsub; 

// close output file 

log.close(); 
cout<<endl<<endl<<"data written to file - processing completed"; 

now=time(NULL); 
sec=difftime(now,start); 

if (sec>60) { 

min=sec/60; 

sec=sec-min* 60; 
cout<<endl<<"   elapsed time: "<<min<<"m "<<sec<<"s"; 

} 
else { 

cout«endl<<"   elapsed time: "<<sec«"s"; 

} 
}  // end main program 

// subroutine to tell user if an error is caught in the input file, 

// or is the file isn't in the working directory, 

void fileerror(void) { 

cout<<"File error check for:"<<endl; 

cout«"  — existence of "«INPUTFILE«" in directory"«endl; 

cout<<"  — proper format of file"; 
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abort(); 

} // end fileerror 

// evaluates a portion of the theta part of the solution 

double eval(double A,double B,double C,double D,double yl,double y2, 
double 1,double a,double p)  { 

double ret, soa,ch2,sh2,c2,s2,chl,shl,cl,sl; 
soa = sqrt(a); 

ch2=cosh(p*y2); 

sh2=sinh(p*y2); 

c2=cos(l*y2/soa); 

s2=sin(l*y2/soa); 
chl=cosh(p*yl); 

shl=sinh(p*yl); 

cl=cos(l*yl/soa); 

sl=sin(l*yl/soa); 

ret=1.0/(p*p+l*l/a)* 

(A*C*(p*ch2*s2-l/soa*sh2*c2)+B*C*(p*ch2*c2+l/soa*sh2*s2)+ 

A*D*(p*sh2*s2-l/soa*ch2*c2)+B*D*(p*sh2*c2+l/soa*ch2*s2)- 

(A*C*(p*chl*sl-l/soa*shl*cl)+B*C*(p*chl*cl+l/soa*shl*sl)+ 

A*D*(p*shl*sl-l/soa*chl*cl)+B*D*(p*shl*cl+l/soa*chl*sl))); 
return(ret); 

} // end eval 

// subroutine to calculate the value of the determinant of the 

//   coefficient matrix given a guess at lambda (roots of the 
//  matrix are the eigenvalues in the y direction.) 

long double froot(double lambda,double alphal,double alpha2,double LI, 
double L2,double K,double HI,double H2,double H3) { 

// This subroutine finds the value of the determinant for a 
// given value of lambda. 

long double all,al2,al3,al4; 

long double a21,a22,a23,a24; 

long double a31,a32,a33,a34; 

long double a41,a42,a43,a44; 

long double g,e,det; 

// calculate elements of coefficient matrix 
// first calculate simplifying terms: 
g = lambda/sqrt(alphal); 

e = lambda/sqrt(alpha2); 

// now get the elements themselves 
all = g; 

al2 = -HI; 

al3 = 0.0; 

al4 = 0.0; 

a21 = g*cos(g*Ll)/H2+sin(g*Ll); 

a22 = cos(g*Ll)-g*sin(g*Ll)/H2; 
a23 = -sin(e*Ll); 

a24 = -cos(e*Ll); 

a31 = K*g*cos(g*Ll); 

a32 = 0.0-K*g*sin(g*Ll); 

a33 = 0.0-e*cos(e*Ll); 
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} 

a34 = e*sin(e*Ll); 

a41 = 0.0; 

a42 = 0.0; 

a43 = e*cos(e*L2)/H3+sin(e*L2); 

a44 = -e*sin(e*L2)/H3+cos(e*L2); 

// find the determinant of the matrix 

det = all*(a22*(a33*a44-a34*a43)-a23*(a32*a44-a34*a42)+a24*(a32*a43-a33*a42)) 
- al2*(a21*(a33*a44-a34*a43)-a23*(a31*a44-a34*a41)+a24*(a31*a43-a33*a41)) 

+ al3*(a21*(a32*a44-a34*a42)-a22*(a31*a44-a34*a41)+a24*(a31*a42-a32*a41)) 

- al4*(a21*(a32*a43-a33*a42)-a22*(a31*a43-a33*a41)+a23*(a31*a42-a32*a41)); 
// return value of determinant 
return det; 

// end subroutine froot 

// find roots given bracketing values 

double ridder(double xl,double x2,double xacc,double alphal,double alpha2, 

double LI,double L2,double K,double HI,double H2,double H3) { 

// ridder's method from "numerical recipes in C," Press et.al. 

// finds roots of function in froot given bracketting values 

// xacc is the accuracy of the routine 
int j ; 

long double ans,fh,f1,fm,fnew,s,xh,xl,xm,xnew; 

fl=froot(xl,alphal,alpha2,LI,L2,K,HI,H2,H3); 
fh=froot(x2,alphal,alpha2,LI,L2,K,HI,H2,H3); 

if ((fl>0.0&&fh<0.0)||(fl<0.0&&fh>0.0)) { 
xl=xl; 

xh=x2; 

ans=UNUSED; 

for(j=l;j<=MAXIT;j++) { 

xm=0.5*(xl+xh); 

fm=froot(xm,alphal,alpha2,LI,L2,K,HI,H2,H3); 

s=sqrt(fm*fm-fl*fh); 

if(s==0.0)return ans; 

xnew=xm+(xm-xl)*((fl>fh ? 1.0:-l.0)*fm/s); 

if(fabs(xnew-ans)<=xacc) return ans; 
ans=xnew; 

fnew=froot(ans,alphal,alpha2,LI,L2,K,HI,H2,H3); 
if(fnew==0.0)return ans; 

if(((fnew)>0.0 ? fabs(fm):-fabs(fm))!=fm) { 
xl=xm; 

fl=fm; 

xh=ans; 

fh=fnew; 

} else if(((fnew)>0.0 ?fabs(f1):-fabs(f1))!=f1) { 
xh=ans; 

fh=fnew; 

} else if(((fnew)>0.0 ?fabs(fh):-fabs(fh))!=fh) { 
xl=ans; 

fl=xnew; 
} else { 

cout«"error in subroutine ridder"; 
abort; 
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} 

if (fabs (xh-xl)<=xacc)   return arts; 
} 

cout«"ridder exceeded maximum iterations"; 
abort(); 

} 

else cout«"root must be bracketed in ridder"; 

return 0.0; 

} // end ridder 

// main eigenvalue finding routine 

double lambda(double LI,double L2,double kl,double k2,double alphal, 

double alpha2,double K,double HI,double H2,double H3,int MMAX) 

{ 
double rl,step,v; 

int m,chk,inc; 

double ace; 

/* find sign changes in the value of the determinant by walking 

through potential values of lambda, and use ridder's method on 

the intervals with sign changes to find the roots (eigenvalues) 
 variable list  

ace   desired accuracy of the eigenvalues 

rl    start value for root search interval 
r2    end value for interval 

m     subscript for lambda 

step  size of intervals to be searched 

'I 

passed variables are the same as their counterparts 

in the main program. 
i 

step= 0.00001; 
acc = 0.0000001; 
rl = 0; 

//  find first root with very small steps 
clrscr(); 

cout<<endl<<"Looking for first eigenvalue. . ."<<endl; 
do { 

rl=rl+step; 

} 

while(froot(rl,alphal,alpha2,LI,L2,K,HI,H2,H3)/ 

froot((rl+step),alphal,alpha2,LI,L2,K,Hl,H2,H3)>0.0); 

// first root is between rl and rl+step; now find it 

lamm[l]=ridder(rl,(rl+step),ace,alphal,alpha2,LI,L2,K,HI,H2,H3); 
step=lamm[l]/100.; 

rl=lamm[l]+step; 

m=2 ; 

//  now find rest of roots with new step size 

cout«"searching for eigenvalue 2 of "«MMAX; 
chk=0; 

inc=0; 

do { 

v=froot(rl,alphal,alpha2,LI,L2,K,HI,H2,H3)/ 
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froott(rl+step),alphal,alpha2,LI,L2,K,H1,H2,H3); 

if(v<0.0) { 

// root is in range; find it 

lamm[m]=ridder(rl,(rl+step),ace,alphal,alpha2,LI,L2,K,Hl,H2,H3); 

// reset starting value to just past the last root 

rl=lamm[m] +step/10. ,- 

m++ ; 

chk=0; 

clrscr(); 

if (m<=MMAX) 

cout<<"searching for eigenvalue "<<m<<" of "<<MMAX<<" above lam="<<rl 

<<endl<<"stepping at "<<step<<"; increased step "<<inc<<" times"; 

}  // end if 

else { 

// root is not in range 

if (chk>3000) { 

inc=inc+l; 

step=step*1.4; 
chk=0; 

} 
chk=chk+l; 

rl=rl+step; 

}  // end else 

} // end do 

while (m<=MMAX); 

return(step); 

} // end subroutine lambda 

Input File for Programs 

Data for wafer heating problems 

resist thickness: 

0.03 

wafer thickness: 
0.1 

wafer length: 

100.0 

hi: 

0.001 

resist surface temp: 

10.0 

h2: 
1.0e7 

h3: 
1.0e7 

substrate surface temp: 

0.0 

res. conductivity: 

0.00198 

sub. conductivity: 
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1000 
res. diffusivity: 

0.00001182 

sub. diffusivity: 

1.0 

Wl: 
-10.82 

W2: 

0.0 

mul: 
-23.10 

mu2 : 

-1.0 

time: 

4.0 
beam velocity: 

0.01 
beam width: 

95.0 
NMAX (<100) 

70 
MMAX (<30, or 300 for two layers) 

29 
xpoints, x value, respoints 

4 
ypoints, subpoints 

10 
time increment 

0.5 
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