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PREFACE 

The concepts of statistical mechanics have long been among the most 
widely applied of physical ideas. The most notable aspect of the symposium 
"Statistical Mechanics in Physics and Biology" is the sheer range of subjects, 
including molecular biology, cellular biology, chemical engineering, 
petroleum engineering, polymer science, and metallurgy, addressed by 
similar methods. 

This symposium could not have taken place without the financial support 
of the Office of Naval Research, Eastman Kodak Company, and Exxon 
Research and Engineering Company. In particular, we wish to acknowledge 
the generous support of Michael F. Shlesinger, Krishnan Chari, and 
Hans Thomann. We also wish to thank Robert Austin of Princeton University 
who was pivotal in the organization of the symposium. Finally, we wish to 
thank the MRS staff for its expert assistance with preparing these 
proceedings. 

Denis Wirtz 
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Adhesion of Soft Biological Shells controlled by Bending 
Elasticity and Macromolecular Networks 

R. Simson, A. Albersdörfer, E. Sackmann* 
*Physik Department E22, Technische Universität München, 
James Franck Strasse, 85748 Garching, Germany, 
sackmann @ physik.tu-muenchen.de 

Abstract 
We present an interferometric technique allowing reliable measurements of 

bending modulus K, membrane tension X and adhesion energy Wof cells crawling on 
substrates. All three parameters are important for cell locomotion and reflect the local 
balance of attractive and repulsive forces between cell and substratum as well as the 
internal coupling of cell membrane and the underlying cytoskeleton. Mutants of the 
Dictyostelium ameba lacking an important cytoskeletal protein, Cortexillin, exhibited a 
markedly reduced bending modulus and adhesion energy as compared to wild type 
Dictyostelium. In addition, experiments with model membrane systems suggest that 
the combination of attractive and repulsive forces results in a local clustering of 
receptors mediating cell adhesion. 

Introduction 
Cell adhesion is tuned by a complex interplay of specific (lock and key) and 

universal forces (Fig. 1). It is also most effectively controlled by the bending elasticity of 
the soft shells as demonstrated by both theoretical (Seifert et al., 1991) and 
experimental studies (Albersdörfer et al., submitted). The latter control mechanism is 
very complex since the plasma membrane is a stratified plate composed of two soft 
coupled shells, the lipid bilayer and the associated cytoskeleton. The latter can consist 
of a relatively simple quasi-two dimensional triangular network as in Erythrocytes or of 
an actin myosin network, about 1 urn thick, called the actin cortex. 
Numerous studies of lipid vesicles (Lipowsky and Sackmann, 1995) and erythrocytes 
showed that bending elasticity and shape changes of stratified membranes are 
sensitively dependent on the degree of coupling between the two shells (Discher and 
Mohandas, 1996).Therefore the bending elasticity is determined by the intrinsic 
stiffness of the cortex and its coupling strength to the bilayer. Measurements of the 
bending moduli of wild type and mutant Dictyostelium show that cells with a damaged 
cytoskeleton exhibit a reduced bending stiffness and adhesion energy as compared to 
normal cells. 
Various studies show that cells tend to avoid large contact areas with solid surfaces 
which results in rapid cell death (Hanein et al., 1994) but attach only strongly through 
local adhesion plaques (Fig. 1 b,c). This is essential for moving cells since it minimizes 
loss of membrane material during retraction. In this paper we also present model 
membrane studies, showing that local clustering of receptors occurs as a natural 
consequence of the interplay of strong attraction and week repulsion forces. 

Materials and Methods 
THEORY 

We present an interferometric technique allowing reliable measurements of 
bending modulus K, membrane tension Z and adhesion energy l/Kof cells or vesicles 

3 
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Figure 1 
(a) Adhesion is controlled by specific lock and key forces, by a variety of universal 
forces and by shape and elasticity of the soft shell 
(b) Areas of tight local contact (pinning centers) between a Dictyostelium cell and a 
BSA coated glass substrate can be observed by the tether formation (arrows) at the 
retracting end. 
(c) Indirect demonstration of local contact formation by staining actin left behind on a 
positively charged surface during retraction. The initial cell adhesion area was labeled 
with fluorescent phalloidin after the cell moved away. 



on substrates. This technique is based on the analysis of the cell contour near the 
contact zone. Plated cells, when observed with the interference reflection microscope 
(IRM) yield an interference pattern allowing reconstruction of the cell contour to a 
height of about 1 ^m from the edge of the adhesion area, referred to as the contact 
line L (Rädler at al., 1995; Fig. 2). The mechanical equilibrium at the contact line is 
determined by the balance of tensions which can be expressed in terms of Youngs law 
(Bruinsma, 1996), 

W=I(1-cosüc) (1) 
where öc is the contact angle as defined in Fig. 1c, and by the momentum equilibrium 
leading to the following relationship between adhesion energy W and bending 
modulus K (Seifert and Lipowsky,1990). 

W = K / 2 Rc (2) 
where Re"1 is the contact curvature. A direct measurement of the contact curvature is 
difficult (Rädler et al., 1995). However, following work by Bruinsma, a simplified 
procedure can be adopted. Assuming that adhesion does not alter the cell volume 
(Bruinsma 1996) the elastic energy is dominated by the contribution of the contact 
zone and can be written as 

\2     . 
AG = 27cu 

cTh 

dx2 

0 
>-  JW(x)dx (3) 

where the integral is performed along a section through the center of the adhesion 
disc. Minimizing this energy yields a differential equation of the form 

,d2h d4h 
(4) 

dx2       dx4 

This equation introduces a characteristic length scale 

x=4*ß (5) 
separating different regimes of the cell contour. For distances Ax < X, measured from 
the contact line, the elastic energy is dominated by bending elasticity, resulting in a 
curved bilayer. For distances Ax > X, the tension dominates and the contour is a 
straight line forming the contact angle tfc with the substrate. The height profile, 
satisfying the boundary conditions given in equs. 1 and 2, may be expressed as 

-exp h(x) = t?x - tM 

h(x) = 0 

x>0 

x<0 

(6) 

MODEL MEMBRANE SYSTEMS 
In order to study the effect of balance of short range attraction forces, mediated by 
receptors, and long range repulsion forces, based on polymer induced forces or 
undulation forces, we established the model system shown in Fig.3a. We studied the 
adhesion of giant lipid vesicles to a supported lipid bilayer using IRM. Both vesicles 
and supported membranes were composed of 94.9 mole% DOPC, 5 mole% DOPE- 
PEO2000 and 0.1 mole% DOPE-X-biotin and were prepared as described elsewhere 
[Albersdörfer et al, submitted]. The incorporation of lipopolymers (phospholipids with 
polyethyleneoxide head groups composed of 45 monomers corresponding to a 
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Figure 2 
Left: IRM micrograph of the contact zone of an adhering vesicle. Right: Example of the 
contour h(x) of the adhering vesicle in direction perpendicular to the contact line L as 
obtained by analyzing the interference pattern of the IRM micrograph. The width of the 
rim X and the contact angle $ are obtained by analyzing the contact contour along a 
straight line perpendicular to L , and a locally curved region, at the contact line. 

molecular weight of 2000 Da) models the cell glycocalix. The short range attraction 
was achieved by biotin-streptavidin-biotin coupling. 

The vesicle contour at the rim of the adhesion area was calculated from the 
interference fringe pattern as described above. Performing a linear least square fit to 
the tension dominated, straight part of the contour one can measure the characteristic 
length A, and the contact angle dc. Using equs. 1 and 5 one can locally determine 
tension £ and adhesion energy W for a known value of the bending energy K. 

MEASURING TENSION, ADHESION ENERGY AND BENDING MODULUS USING 
SMALL SHEAR FORCES. 
In order to determine both bending energy and tension for crawling cells, we exposed 
cells to a small laminar shear flow, using a standard parallel plate flow chamber. The 
flow chamber dimensions (500 p.m by 5 mm cross section) were carefully chosen in 
order to ensure a laminar flow profile, and a syringe pump was used to control flow 
rate and thus the shear force exerted on the cell. The applied flow rates and resulting 
shear stresses (0.4 to 1.2 Pa) were small enough to prevent a significant deformation 
of the cell shape or even detachment. However, the shear stresses were sufficiently 
large to measurably change contact angle and membrane curvature of the cell at the 
edge of the adhesion area. When observed with IRM, this change in curvature results 
in an alteration of the interference fringe pattern which can be quantified (Fig. 4). We 
compared the cell contour reconstructed from the perturbed fringe pattern with the 
contour of the undisturbed qell. Due to the bending stiffness of the membrane-cortex 
complex shear forces actind on the dorsal cell surface result in a change of tension 
right at the rim of the adhesion disk. At the edge of the cell facing the shear flow, the 
applied shear stress a therefore increases the membrane tension at the contact line 
(Bruinsma, 1996). 
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Figure 3 
(a) Model system mimicking the interplay of short range attraction and long range 
repulsion forces. The glycocalix is modeled by incorporation of lipopolymers 
(phospholipids with polyethyleneoxide head groups composed of 45 monomers 
corresponding to a molecular weight of 2000 Da), and the short range attraction is 
achieved by biotin-streptavidin-biotin coupling. 
(b) Demonstration of adhesion induced clustering of receptors leading to the formation 
of local pinning centers. The IRM micrograph shows only the contact zone of the 
adhering vesicle. The local sites of close contact between vesicle and substrate are 
outlined with a white border line. Note that dark areas correspond to short interracial 
distances. 
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Figure 4 
(a) A typical contact area of a wild type Dictyostelium on BSA coated glass observed 
with IRM. Note the interference pattern around the rim of the adhesion area. On the left 
side no shear force is exerted. On the right side a shear stress of 1.12 Ps is exposed to 
the cell. 
(b) Distribution of gray values measured for the image shown in 2a from A to B before 
(dotted line) and at the identical position shortly after (solid line) the laminar shear flow 
was turned on. 
(c) Cell contours reconstructed from the interference patterns shown in 2b. Note that 
the shear forces result in a reduced value of A, and increased contact angle a. 



Assuming that the bending modulus of the cortex remains unaltered by the 
small shear force , this increase in cell tension results in a measurable decrease of the 
characteristic length scale X(Fig. 4). Knowing the flow induced change in tension, both 
the undisturbed tension and the bending energy can be obtained from equ. 5 For flat 
cells, the increase in tension AX due to flow is approximately given by AS = a Rc , 
where Rc is the diameter of the contact area parallel to the direction of flow. Additional 
experiments on the laser scanning microscope show that most cells extend less than 5 
urn into the volume and the above approximation of a flat cell is valid (data not shown). 

For all experiments we used a bovine serum albumin (BSA) coated glass 
coverslip as substratum. The coverslip was incubated with a 10mg/ml BSA solution of 
Sörensen phosphate buffer at pH 6.0. As shown in previous studies (Schindl et al., 
1995) BSA coated glass provides a very homogeneous and well suited substratum for 
cell locomotion. 

Results and Discussion 
MODEL MEMBRANES 

As demonstrated in Fig. 3a,b, adhesion leads to the formation of local pinning 
centers which are separated by regions exhibiting strong flickering. Polymer induced 
forces as well as undulation forces associated with flickering are strong enough to 
overcome the Van der Waals attraction (Rädler et al., 1995). In order to form tight 
connections work has to be performed against these repulsive forces. Single 
streptavidin-biotin bonds, as used in this study, would be associated with an 
excessively high energy. Indeed, it has been shown that membrane undulations may 
mediate attraction forces between strong connectors (Bruinsma et al. 1994). This effect 
can be attributed to a phase separation of receptors and polymers in the contact area. 

LOCAL MEASUREMENTS OF MEMBRANE TENSION AND ADHESION ENERGY 
We observed the contact zone of adhering giant vesicles to streptavidin coated 
supported membranes using IRM (Fig. 5a). The diffraction fringes are remarkably 
distorted near pinning centers as shown by closer inspection of position 4 in Fig 5a. 
We calculated membrane tensions and contact angles at different positions of the 
contact area evaluating the vesicle contours along the sections marked in Fig. 5a. For 
this calculations we used a bending modulus of 35 kßT, which was measured for a 
comparable system (SOPC; Duwe and Sackmann, 1990; Evans and Parsegian, 
1983). Three examples of contours are shown in Fig. 5b: one in close proximity to a 
pinning center, another one in a region which seems to be not influenced by pinning 
and a third one in an intermediate region. The obvious differences in contact angles 
(Fig. 5b) indicate a higher tension and an increased adhesion energy in the proximity 
of a pinning center located close to the contact line. The bent in contour 4d may be 
attributed to a relaxation of the membrane tension far away from the contact line. Our 
results (Fig. 5c) show that the local adhesion energy at a pinning center is more than 
two orders of magnitude larger as compared to energies measured far away from such 
a center. The same holds for the tension (Fig. 5c). 

EFFECT OF MUTATIONS ON CELL BEHAVIOR 
An intriguing observation is that chemomechanical processes such as cell 

division and locomotion are often remarkably insensitive towards depletion of 
essential proteins regulating the structure of the actin based cytoskeleton. For 
example, removal of the motor protein myosin which is assumed to be essential for the 
formation of the cleavage furrow during cell division does not affect division of crawling 
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Figure 5 
(a) Time averaged RICM micrograph of the contact zone of an adhering vesicle. 
The inset shows an enlarged view of the upper section with the pinning center. The 
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white bars mark the directions along which contact contours are analyzed. The 
diffraction fringes are remarkably distorted near the pinning centers corresponding to 
increased contact angles $c and decreased values of X. 
(b) Three examples of contours near contact area: one in the region of a pinning 
center (position 4d), one in a region which is not influenced by a pinning center 
(position 8) and one that is situated in between these two regions (position 4g). 
(c) Local tensions (dashed line) and adhesion energies (drawn line) plotted versus the 
position line number marked in Fig. 2a. These values were determined by using the 
values of #c and X which were fitted into the local height profiles h(x). Additionally we 
used a value of K = 35 kBT for the bending modulus which was measured for pure 
SOPC vesicles by other techniques (Duwe and Sackmann, 1990; Evans and 
Parsegian, 1983). 

AX2 on BSA 

S=9.0±2.7 |jm/min 

P=<1.2tl.O min 

AX2 on mica 

S=8.5±5.1 ^m/min 

P=3.4±1.9 min 

TP1 on BSA 

S=10.<l±5.3|jm/min 

I'= 5.0±1.4min 

TP1 on mica 

S=3.8±1.0 nm/min 

P=2.7±I.2min 

Figure 6 
Comparison of random walks of wild type and triple mutant on glass (a) and freshly 
cleaved mica (b). Note that the mutant locomotion is strongly impeded on the smooth 
mica surface. Both cells were examined in the elongated state after 6 hours starvation 
(Weber et al., in press). 



cells. Triple mutants of Dictyostelium discoideum, lacking two cross-linking proteins (a- 
actinin, 120kDa gelation factor) and a severing protein (severin), exhibit unperturbed 
crawling on substrates exerting strong adhesion forces such as albumin coated glass. 
However, their advancement is strongly impeded on weakly adhesive surfaces as 
freshly cleaved mica (Fig. 6). 

Experiments show that mutations of the cytoskeleton can be overcome by strong 
adhesion. The strikingly different behavior of mutants on glass and mica points to an 
inability of mutants to stabilize adhesion of newly formed pseudopodia. Moreover, the 
quasi-periodic contact area oscillations, with periods of 3 to 6 min, (Schindl, 1995) 
suggest that the pseudopod formation, although occurring in random directions, is 
driven by an intracellular process. This process could in turn be associated with lateral 
contractions and expansions of the actin-myosin cortex. The cell can only advance, 
first if pseudopod spreading is followed by retraction of the cell near the opposite pole 
and second, if the newly formed pseudopod is attached strong enough to the substrate 
for transmitting momentum. If the adhesion is too weak the pseudopod is retracted 
again if a second pseudopod is formed in a different direction, as a consequence of 
the bilayer incompressibility. 

EVALUATION OF EFFECTS OF MUTATIONS ON BENDING MODULUS OF THE 
CELL CORTEX AND ADHESION ENERGY. 

Using small shear forces (Materials and Methods) we measured bending 
modulus, tension and adhesion energy for wild type and a mutant of Dictyostelium. 
discoideum lacking a protein called Cortexillin I. This recently found protein belongs 
to a new class of actin binding proteins. Cortexillin I has been shown to promote the 
formation of actin bundles that associate into meshworks and plays a key role in 
cytokinesis and maintaining the cell shape (J. Faix et al., 1996). It's presumed 
importance for mechanical cell stability could be confirmed by our measurements. With 
a bending energy of 94118 kßT the Cortexillin I- mutant appears to be much softer than 
the wild type cell which exhibited a bending modulus of 386 ± 158 keT. Also the 
membrane tension is higher for the wild type as compared to the mutant. Interestingly, 
the undisturbed contact angles of wild type and mutant cells do not differ at all. Only 
their response to an external force reveals the dramatic differences in their elastic 
properties. A difference could be observed for the adhesion energies, where the wild 
type adhered stronger (2.2 + 1.2 e-7 J/m2 ) than the mutant (1.5 + 1.0 e-7 J/m2). This 
reduction in adhesion energy my be attributed to an increased repulsion based on 
stronger undulation forces for the softer mutant. 
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Abstract 
We describe a new, high-resolution technique for determining the local viscoelastic response of 

polymer gels on a micrometer scale. This is done by monitoring thermal fluctuations of embedded probe 
particles. We derive the relationship between the amplitude of fluctuations and the low-frequency storage 
modulus G', as well as the relationship between the fluctuation power spectrum, measured between 0.1 Hz 
and 25kHz, and the complex shear modulus G{(o). For both, semiflexible F-actin solutions and flexible 
polyacrylamide (PAAm) gels we observe high-frequency power-law dependence in the spectra, which 
reflects the behavior of the shear modulus. However, we observe distinctly different scaling exponents for 
G((o) in F-actin and PAAm gels—presumably due to the semiflexible nature of the actin filaments. 

Introduction 
Synthetic polymer solutions and gels are common and technologically important materials. 

They exhibit rich equilibrium and non-equilibrium behavior, particularly in their response to shear 
stress not unlike their biological analogues. Plant and animal cells contain a multitude of 
filamentous protein, especially in the cytoskeleton, which is a complex network of biopolymers. A 
principal component of the cytoskeleton is polymeric actin (F-actin), which is largely responsible 
for the viscoelastic response of plant and animal cells [1]. To understand the mechanical 
properties and dynamics of living cells, the viscoelastic properties of F-actin solutions in vitro 
have been measured by a number of groups [2-7], using macroscopic rheology. These 
measurements focused on the elastic shear modulus, a quantity of particular significance for the 
elastic response of cells. The microscopic properties of actin filaments lead to fundamental 
differences between the actin cortex and synthetic polymer systems under similar conditions. 
Actin filaments are rather rigid on the scale of the characteristic mesh size of the networks. This 
appears to be responsible for the anomalously large shear moduli of actin solutions even at low 
concentrations of order 1 mg/ml (or about 0.1% volume fraction)[6]. Microscopic measurements 
of the viscoelasticity of actin gels and other polymer systems have been reported recently. 
Ziemann et al. [8,9] and Amblard et al. [10] used the manipulation of micron size magnetic beads 
by field gradients and video displacement detection. Other important experiments have employed 
multiple light scattering [11], 

In this paper, we describe a new method to measure local viscoelasticity based on the high- 
resolution observation of thermal fluctuations of probe particles (silica beads). The bead 
displacements can be measured to better than lnm resolution at frequencies up to 50kHz. The 
experiments with F-actin and PAAm gels are aimed at understanding the fundamental differences 
between semiflexible and flexible polymer gels, as well as the basic viscoelastic properties of 
polymer systems on a local scale. The method extends rheology to a frequency range that has not 
been studied before. 

Theory 
Consider the motion of a spherical bead of radius R in a viscoelastic medium. The drag force 

in a purely viscous fluid of viscosity 77 is given by the Stokes formula [12]: / = 6KT\RV , where v 
is the bead velocity. This result also applies to oscillatory motion, provided that the viscous 
penetration depth S = ^2r\l (pa) is large compared with R, where p is the fluid density. 

Inertial effects can be neglected at low frequencies. For a micron size bead in water this holds for 
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frequencies less than about 1 MHz. For oscillatory motions below this frequency, the motion of 
the fluid is described by an amplitude which is everywhere independent of the frequency. Thus, 
the stress is independent of a>, apart from the dependence on the velocity v. The analogous 
relationship between the applied force and particle displacement x in a viscoelastic medium is[13] 

/„=6aG(fl))Äx„, (1) 

where G(co) = G'{co) + iG"(a>) is the (complex) shear modulus. The Stokes formula assumes an 
incompressible medium. For a solution of polymer and solvent, this means no relative motion of 
the two. The full expression [14,15] for the force at zero frequency on a (rigid) bead of radius R 
displaced by a distance x in a continuum elastic medium is given by 

/ = J& = ^vOG.(0)te. (2) 
5-6v 

where K is the elastic spring constant. Taking the Poisson ratio v =1/2 (for an incompressible 
medium) this general expression reduces to Eq. (1). 

The extent to which the polymer solution behaves as an incompressible medium depends on 
the frequency of bead motion. At very low frequencies the stress in the solution is due entirely to 
the compressible elastic network. Both shear and compression moduli are finite, and the Poisson 
ratio need not be 1/2. At high frequencies, on the other hand, the medium behaves as an 
incompressible viscoelastic fluid. This can be seen within a "two-fluid" model [16,17], in which an 
elastic network is viscously coupled to the solvent. This coupling leads to a stress on the network 
given by a force per unit network volume 7]v / ^, where r\ is the solvent viscosity, £ is the mesh 
size of the network, and v is the relative velocity of the solvent with respect to the network. The 
elastic force on a volume element is given by GV2«, where u is the network displacement field. 
This is of order Gx I R2 for a bead of radius R, displaced by x. Thus, the viscous coupling is 

dominant for a> > G(£ I R) I r). For G of order lPa and £, = O.li? the lower limit is of order 

10Hz; for higher frequencies the two fluids move as one, while the Poisson ratio may fall below 
1/2 for lower frequencies. 

Given the force-displacement relationship in Eq. (1), the power spectrum can be determined 
from the fluctuation-dissipation theorem [18]. The result for the power spectral density (PSD) is 

/   2\_ 2*rT (     l     1-  kT lG"(ft))1 m 
\X" I      (0      {6nG{m)RJ    37rcoR\G(0}f 

() 

The complex shear modulus G{co) usually exhibits three distinct frequency regimes in polymer 
solutions [19]. For a non-crosslinked solution the behavior is essentially that of a viscous liquid at 
frequencies lower than 1/TK, where xR is the reptation time. At intermediate frequencies a 
rubber-like plateau appears, for which the dominant response is elastic, and nearly independent of 
frequency. Above this, the storage (G') and loss (G") moduli increase with frequency as power 
laws: G',G"°=«Z [19]. In this regime, Eq. (3) implies a power spectrum scaling as (0~'~z . 

Materials and Instrumentation 
Actin was purified from chicken skeletal muscle to about 95% purity following standard 

recipes [20]. Actin concentration was determined both by staining (BioRad) and by UV 
absorption at 290nm. Monomeric actin (G-actin) was stored at -85°C. Samples were prepared by 
mixing a small number of silica beads with G-actin, adding concentrated polymerization buffer (F- 
buffer: 2mM HEPES, pH 7.5, 2mM MgCl2, 50mM KC1, ImM EGTA, ImM ATP) and 
immediately transferring the solution into a glass sample chamber (15mm x 3mm x 70pm). The 
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chambers were sealed and the actin polymerized at room temperature for at least one hour under 
slow rotation. The samples were used within one day. 

PAAm gels were prepared according to a standard gel electrophoresis recipe [21], with a 
relative concentration of 3% bis-acrylamide. Solutions were degassed under vacuum, and 
polymerization started by adding TEMED and ammonium persulfate. The polymerizing solutions 
with silica beads were immediately transferred into sample chambers (15mm x 6mm x 140|im), 
which were sealed and slowly rotated at room temperature for at least one hour before starting 
experiments. All experiments were done with PAAm gels of a final concentration of 2% (w/v). 

The microscope we used is a custom built instrument, constructed on an optical rail system 
and mounted on a vibration isolated optical bench. To detect the thermal motion of beads 
imbedded in the gels we used an interferometric method employing near infrared laser illumination 
as described previously [22,23]. The laser power was typically about 0.6mW in the specimen, low 
enough to make optical forces negligible. The laser light is detected by two photodiodes. The 
normalized difference of the signals from the two diodes provides, due to a differential phase shift, 
a measure for the position of the bead. The linear range of the detector is about ±200nm for 
0.5pm beads and increases with bead size. The amplified position signal is anti-alias filtered at the 
Nyquist frequency and then digitized. For all experiments reported here, the data acquisition rate 
was 50kHz and the filter frequency 25kHz, the total duration of a run was typically 20 seconds. 
Fast Fourier Transforms (FFT) were performed using a Bartlett window. Power spectra were 
smoothed by averaging spectra obtained from windows smaller than the full data set. 

The detector was calibrated for each observed bead, immediately following the thermal 
motion recording, by moving the sample with a piezo-actuated stage with a triangular signal, 
producing between 150nm and lp.m peak-to-peak displacement at a frequency of 0.1 Hz. The 
driving voltage was corrected for the non-linearity and hysteresis of the piezo actuators. Piezo 
voltage and detector response were digitized and recorded for about 40 seconds. These time 
series were analyzed to obtain an averaged displacement vs. voltage curve for each individual 
bead. The slopes of linear fits (typical error 20%) were used to convert signal voltages to nm. 

Results 
Thermal fluctuations of entrapped silica beads (diameters: 0.5, 0.96, 1.8, and 5.0pm) were 

observed in actin gels of 1 and 2mg/ml concentrations. The spring constant K for elastic 
displacements of the bead in the gel can be obtained from the total variance in bead position (x2) 

(see [24] for a general discussion of micromechanical measurements). By Eq. (2), K determines 
the macroscopic zero-frequency shear modulus G'0 of the network. The variance could, in 
principle, be directly obtained from the time series data. Low frequency noise, however, can 
dominate this variance. Therefore we estimate the variance by summing the displacement power 
spectrum from a lower cut-off frequency of 1Hz. This cut-off was chosen by inspecting the 
dependence of the apparent variance on the lower cut-off frequency (data not shown). A sharp 
increase was typically observed with cut-offs below 1Hz. In Fig. 1 we plot the inverse of these 
high-pass variances of bead position in an actin gel, as a function of bead size. According to Eq. 
(2) the reciprocal variance is expected to be proportional to the bead radius. Some of the data 
points obviously deviate from a slope of 1 (line in Fig. 1). The 0.96pm and 1.8pm beads used in 
these experiments were aminopropyl and bromopropyl derivatized respectively. We believe that 
surface effects on the polymerization of the surrounding gel account for the deviations. 

Data from both 0.5 and 5.0 pm beads in 1 and 2mg/ml gels are consistent with a slope of 1 
with amplitudes corresponding to shear moduli of G' s0.2Pa and G' s0.4Pa. Because of the 
lower cut-off frequency discussed above, these are upper bounds for the shear moduli. At least 

17 



2 mg/ml actin gel 

Slope 1.0 

1.0 
Bead Size (um) 

part of the scatter in the observed total variances for 
each size beads in the same sample reflects local 
inhomogeneities in the gels. Smaller beads sample 
inhomogeneities   on   smaller   scales   and   should 
therefore show more scatter. This trend is clearly 
visible in the data. The absolute values of G' are 
consistent with other reported experiments [3,7,8], 
although discrepancies among labs persist [4]. 

The power spectral densities (PSD) for silica 
beads in an actin gel of 2mg/ml concentration are 
shown in Fig. 2. The downturn at about 10kHz is due 
to electronic  anti-alias  filtering.  The  PSD  for the 
largest bead diameter,  5.0um,  exhibits power law   FK;URE 1: Thereciprocal variance ,/(^) in 

behavior over about three orders of magnitude in . 
.  . , _,,,,, ■      bead position for silica beads in an actin gel ot 

frequency, with an exponent of about-1.75. The ratio   concentration   2mg/ml   at   room   temperature, 
of bead   diameter  to   mesh   size,   |,   is   about   20   obtained by summing the PSD for frequencies 
(<^=0.2um, [2,25]), so the continuum model of Eq.   above a 1 Hz cutoff. 
(3) should apply. Assuming that G'(co) and G"(ft>) scale, as for conventional gels [19], with the 

same power at high frequencies, Eq. (3) implies a scaling of G'(o>),G"(ft>) °= o>3'4. The different 
scaling exponent for flexible polymers can be understood using the Rouse or the Zimm models 
[19]. No existing model is consistent with our data on semiflexible polymers [26], For smaller 
beads, the amplitude of fluctuations increases, as described by Eq. (3), and the spectra 
increasingly deviate from power law behavior both at low and high frequencies. At low 
frequencies the assumption of incompressibility may break down, as explained above. This effect 
is expected when the bead size becomes comparable to the mesh size. The smallest beads are only 
about 2x larger than the average mesh, although they remain well trapped. To check for slow 
diffusion due to reptation of actin filaments, we observed 1.8um beads by video for two hours and 
estimated an upper limit for the long range diffusion coefficient of 4xl0"14cm2/s. Reptation is 
therefore not relevant on the time scale 
of our experiments. Note that the 
deviation of the power spectra from 
power law behavior is bead-size 
dependent, unlike what we observe for 
PAAm gels (see below), and can 
therefore not be the onset of the elastic 
plateau regime. We cannot explain 
deviations at high frequencies. Inertial 
effects are only relevant at frequencies 
higher than 1 MHz (see above). 

The shape of the PSD can be 
compared to direct measurements of 
G'(ft)) and G"(co) in actin networks. 

Refs. [3] report data suggesting ft)"2 

scaling, using macroscopic rheology. 
Recent microrheology data from the 
same    lab    [8],    however,    may    be 

10'        10 10 
Frequency (Hz) 

FIGURE 2: The power spectrum for beads in actin gels of 
concentration 2mg/ml. The line indicates a log-log slope of-1.75. 
Inset: Portion of the time series data for bead size 1.8 pm. 



consistent with ft)' scaling. In both 
cases, the observed range of 
frequencies is very close to the 
transition from the plateau regime. A 
different interpretation of the time 
dependence of bead motion in actin 
gels has been given in Ref. [10]. These 
authors observe particle dynamics 
consistent with our ft)-7'4 scaling of 
the PSD, but suggest an explanation 
based on single filament dynamics. We 
believe that at our higher 
concentrations, for which the mesh 
size is substantially smaller than the 
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FIGURE 3: The PSD for beads in Z 
line indicates a log-log slope of-1.5. 

polyacrylamide gels. The 

bead diameter, a continuum elastic 
approach such as we have described is 
correct. 

The PSD of thermally fluctuating 
silica beads in 2% PAAm gels for three 
different bead sizes are shown in Fig. 3. The downturn at about 10 kHz is again due to anti-alias 
filtering. The log-log curves are less linear than the actin spectra for all beads, but are in their mid 
range tangential to the line drawn in Fig. 3 with a slope of -1.5. This result is consistent with 
internal chain dynamics described by the Rouse model [19], which predicts a scaling behavior for 
the complex modulus at high frequencies: G'((0),G"((o) = ft)"2. This translates via Eq. (3) into a 
slope of-1.5 in the log-log power spectrum. 

The mesh size of a 2% PAAm gel is on the order of 50A [27], but relatively large variations 
are possible because this concentration is at the gelation threshold. As in actin, we observed no 
long-range diffusion, showing that the polymer is indeed cross-linked into a solid. The smallest 
bead (0.5um) is still about a factor of 100 larger than the mesh, and the continuum model should 
apply. At low frequencies, the slope of the spectra again decreases, but in contrast to the actin 
spectra in a bead-size independent way. This is consistent with the onset of a plateau, where 
G(ft>) becomes weakly dependent on frequency [19]. Eq. (3) then predicts a PSD proportional to 

ft)-1, consistent with the observed slope. This provides further evidence for the validity of our 
continuum viscoelastic interpretation. 

By integrating the spectra, from a lower cut-off frequency of 1Hz, we again obtain a spring 
stiffness K which is roughly proportional to the bead radius, and calculate a zero-frequency shear 
modulus of 4.6 Pa. The measured value for G' appears low compared with conventional 
rheology results [28]. Those are typically reported for higher gel concentrations, but extrapolating 
results assuming scaling as G' °= c9'4 predicts G' = 200Pa. PAAm gels are known to be complex 
and the deviation is most probably due to the proximity to the gelation threshold. On the other 
hand, the gels appear homogeneous on the scale of the bead size, judging from the high 
reproducibility of the spectra at various locations within one sample. 

Conclusions 
We have demonstrated that thermal fluctuations of micron size inclusions can be used to 

measure the viscoelastic properties of polymer solutions locally. The total variance of fluctuations 
determines the zero frequency shear modulus. The power spectrum, on the other hand, reflects 
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the frequency dependence of the complex shear modulus G(ffl). In particular, we find that the 
high frequency scaling of G(co) for actin differs from that of PAAm, as well as from the 
predictions of the Rouse model. This is in contrast to previous claims of Rouse-like scaling for 
actin [3]. Our continuum-elastic model should be valid for inclusions of diameter large compared 
with the mesh size of the polymer network. This is true for our largest beads in actin solutions, 
and for all of our experiments on PAAm. Judging from the appearance of the spectra, the 
continuum model appears to be a reasonable approximation even for the smaller beads. For 
PAAm we clearly see the onset of the rubber plateau for lower frequencies. 
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Proteins and Nucleic Acids 

Shekhar Garde,1,2 Gerhard Hummer,1 Michael E. Paulaitis,2'3 and Angel E. Garcia1'* 
^-Theoretical Biology and Biophysics T-10, MS K710, Los Alamos National Laboratory, Los 

Alamos, NM 87545 
2 Center for Molecular and Engineering Thermodynamics, Department of Chemical 

Engineering, University of Delaware, Newark, DE 19716 
3 Department of Chemical Engineering, Johns Hopkins University, Baltimore, MD 21218. 

We present a method that uses two- and three-particle correlation functions between 
solute atoms and water molecules to approximate the density profile of water sur- 
rounding biomolecules. The method is based on a potential of mean force expansion 
and uses X-ray crystallography, NMR, or modeling structural input information on 
the biomolecule. For small hydrophobic solutes, we have calculated entropies of 
hydration using the predicted water densities that are in good agreement with ex- 
perimental results. We have also predicted the hydration of the catabolite activator 
proiem-DNA complex. The method is extremely efficient and makes possible the 
study of hydration of large biomolecules within CPU minutes. 

1    Introduction 

The unique balance of forces underlying biological processes such as protein folding, 
molecular recognition, and formation of biological membranes owes its origin in part to the 
surrounding aqueous medium.[1] Hydrophobic interactions, in particular, are believed to con- 
tribute to the overall stability of folded proteins, protein-ligand complexes, and biological 
membranes. The hydrophobic driving force for self-assembly is mainly entropic in origin, and 
is directly connected to the inhomogeneous structure of water in the vicinity of hydrophobic 
solutes. [2] Thus, quantifying structural hydration of biomolecules and relating water struc- 
ture to the key thermodynamic properties of hydration constitute important steps towards 
understanding of the role of water in biomolecular structure-function relationship. 

Experimental information about the hydration of biomolecules at atomic resolution is ob- 
tained mainly from X-ray and neutron diffraction,[3] and NMR spectroscopic [4] techniques. 
Even though these techniques are widely used, unambiguous assignment of water molecules 
on the surface and in the interior of biomolecules is complicated due to methodological dif- 
ficulties. Further, the disorder of water molecules hydrating biomolecules in different unit 
cells of crystals presents difficulties in the interpretation of experimental results. [5,6] This 
disorder is quantified best by an inhomogeneous density of water molecules in space. The 
experimental analysis is however limited to identifying the regions of high localization of 
water molecules. 

Theoretical methods for the detailed study of the structural hydration of biomolecules 
rely mostly on the molecular dynamics (MD) and Monte Carlo (MC) computer simulation 
techniques. [7] Computer simulations of hydration of small molecules have advanced our fun- 
damental understanding of solvation phenomena. However, the computational effort needed 
to obtain satisfactory statistical precision increases significantly when applied to the study 
of biomolecular hydration. Further, analysis of systems like protein-DNA complexes would 
need simulations of the individual protein, the DNA, and the complex to understand the 
role of hydration in complexation. 
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We present here an alternative approach to predicting position-dependent water densities 
near biomolecules. Our method is based on the potential-of-mean-force (PMF) expansion 
[8] applied previously to hydration studies of B-DNA,[9] an a-helix,[10] t-RNA, the photo- 
synthetic reaction center, an antigen-antibody complex,[ll,12] and a host of other systems. 
We will show that the water densities surrounding biomolecules can be approximated by 
a limited number of well-defined, lower-order correlation functions accurately calculated 
from simulations of small molecules in water. The efficiency of the method allows analysis 
of hydration of biomolecules in CPU minutes rather than weeks. For purely hydrophobic 
molecular solutes we relate the calculated water densities to the entropies of hydration via 
an entropy expansion to show the feasibility of accurately estimating macroscopic thermo- 
dynamic properties from water density profiles. Finally, we analyse of the hydration of the 
interface of the catabolite activator protein (CAP)-DNA complex. 

2    Theory and Computer Simulations 

The hydration of biomolecules can be quantified by the equilibrium position-dependent 
density of water molecules surrounding them. The biomolecule is characterized by a set 
of atomic coordinates {sia}, where a indicates the type of atom, a = 1,..., M, and i = 
l,...,Na. The conditional density of water molecules at a position r (given that biomolecule 
is fixed in a given configuration {siQ}) is then given by,[ll] 

p(r| {sIQ}) = po   g{{Na})({Sia})   ■ W 

The n-particle distribution function, g(n), is related to the n-particle potential of mean force, 
W{r,\ by 9(n) = exp(-W(n)/fcr). and A) is the bulk density of water. Successful prediction 
of density thus depends on how accurately one can approximate the n-particle PMF. For 
strictly nonpolar molecular solutes, water structure is found to be only locally sensitive to 
the structural details of the solute. Thus, the water density around nonpolar solutes can be 
approximated simply by its correlations with one or two nearest solute sites.[13,14] Namely, 

p^1)(r\r1,...,rn)KPog(r\rJ), (2) 

ftn<1){r\ru...,Tn)*sPog{T\Tj,rk), (3) 

with j and k such that |r-r,-| = min(=i,..,n |r-r(| and |r — rfc| = minm=i,..,„;m^ |r-rm|. Eqs. 
(2) and (3) are defined, respectively, as the one- and two-site proximity approximations. 

In contrast to nonpolar molecules, biomolecules are a complex mix of a variety of sites. 
In this case, we formally expand W(n) in terms of multiparticle potentials of mean force. Dif- 
ficulties in calculating correlation functions of order four and higher necessitates truncation 
of this expansion at the three-particle level. Further, geometric and energetic considerations 
of interactions of nitrogen, oxygen, and sulphur atoms with water molecules allow us to 
effectively group these atoms into one class of solute sites. That is, their effect on ordering 
nearby water molecules is assumed to be similar to that of water oxygens. Also, the effect on 
water structure of nonpolar carbon atoms, represented as methyl [Me] sites, is treated using 
the one-site proximity approximation. That these approximations are reasonable for appli- 
cations to biomolecules has been shown elsewhere.[9-12] These approximations render the 
complex problem of biomolecular hydration tractable. The following approximate expression 
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for the conditional water density is obtained. 

P(r|si, 
gW{r,s},sk) 

!ASflW(r^)S4,9+1Ä,-^(-i.^»(-»,') X flMe-0(r,Sc-prox) ■ 

(4) 
Additional effects, such as polar hydrogens forming directional hydrogen bonds, can also be 
incorporated into this expression. [11] 

Application of eqn. (4) to biomolecules requires the calculation of the 0-0-0 triplet 
correlation function, </3', as well as Me-0 pair correlation function gMe-o- The g'3' is 
calculated from simulations of SPC water.[9,18] Simulations were also performed for a single 
Me and the Me-Me dimer in water where Me-Me dimer was held fixed at separations between 
0.12 to 0.66 nm. [14] These simulations were used to calculate Me-0 pair, and Me-Me-0 
triplet correlations required in the proximity approximations, as well as eqn. (4). 

3    Results and Discussion 

3.1    Hydration of nonpolar molecules 

3.5 

3 

2.5 

~o o 
0 1.5 

1 

0.5 

W \  «—C20 

ft * 

 1 1—I—1 1—,—J 1 1  

1 - 
0 

-1 
II      _2 
,'""\i   -3 

i!       \      0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9    1 
/ \ 

\ ^ *»***, , 

0.3 0.4 0.5 0.6 0.7 0.8 
r (nm) 

0.9 

Figure 1: Spherically averaged water-oxygen density in units of bulk density as a function 
of distance r from the center of benzene calculated from simulation (symbols) and the two- 
site proximity approximation (dashed line). Inset shows the C2o and C40 coefficients in the 
spherical harmonic expansion of the density. [14] 

Figure 1 shows a comparison of water-oxygen densities calculated from MC simulation of 
benzene (represented by six Me sites in a planar configuration) with densities calculated 
from the two-site proximity approximation. [14] The positions and heights of both peaks 
corresponding to the first and the second hydration shells, respectively, are well reproduced. 
The symmetry of the density profile about the plane of benzene, captured by the higher order 
coefficients in the spherical harmonic expansion, is also very well reproduced by the two-site 
proximity approximation. Application to other model solutes also gives similar results.[14] 
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This suggests a key feature of the hydration of nonpolar solutes is that water structure in 
their vicinity is only locally sensitive to the structural details of the nonpolar solute. 

Table 1. Standard entropies of hydration calculated using an entropy expansion. 

ASiUation/(cal/mol/K) 
solute calculated expt 
ethane -18.0 -20.1 
propane -21.7 -22.8 
n-butane" -23.3 -26.0 
benzene -28.8 -21.2 

a56/44 % trans I gauche mixture. 
The calculated entropies include two terms corresponding to positional and orientational corre- 
lations of water molecules with nonpolar solute approximated using two- and one-site proximity 
approximations, respectively. The latter amounts to an orientational entropy of 0.35 cal/mol/K 
per water molecule in the first hydration shell. [15] 

We have used the water density profiles obtained from proximity approximations to 
calculate standard entropies of hydration for various nonpolar solutes.[13,16,17] The results 
are given in Table 1. The entropies of hydration are large and negative and are in good 
agreement with experimental results for alkanes. A value significantly more negative than the 
experimental value is obtained for benzene. Note, however, that the description of benzene 
as six overlapping Me sites is a severe approximation for this molecule which neglects its 
complex electronic structure. [19] 

The PMF between two methane molecules in water and water contribution to the confor- 
mational equilibria of n-butane and n-pentane have also been predicted from water densities 
obtained using the proximity approximations to show that hydration favors the more com- 
pact conformations, as expected. [15] 

3.2    Ice-water interface 

Eq. (4) was applied to the ice/water interface. The ice phase is described by fixing 
SPC water oxygens at ideal hexagonal-ice Ih lattice positions while allowing for molecular 
reorientations representing thermal disorder in the ice phase. The basal plane of the ice 
layer is covered by liquid water. Figure 2 shows a comparison of the oxygen density pro- 
files predicted by the PMF expansion truncated at the level of pair and triplet correlations 
with calculations from explicit MC computer simulations. [9] It is seen that truncation of 
the PMF expansion at the level of pair correlations results in water densities much higher 
than those observed in MC simulations in the region close to the basal plane (Z< 0.2nm). 
Including triplet correlations improves the agreement. The position as well as the height of 
the first peak are well reproduced. The agreement at longer distances is qualitative. Clearly, 
information on triplet correlations is needed for identifying high density regions accurately. 
We thus include the terms up to triplet correlations in the PMF expansion eqn. (4) for the 
applications to the biomolecular hydration. 
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Figure 2: Water-oxygen density at the ice/water interface in units of the bulk- water density, 
p0. Z is the distance from the closest plane of oxygen atoms in the ice phase. (+) PMF 
expansion including only pair correlations; (o) PMF expansion including both pair and triplet 
correlations. Solid lines: explicit MC simulations using different system sizes and methods 
for Coulombic interactions.[9] 

3.3    CAP-DNA complex 

The catabolite activator protein (CAP), also known as cyclic adenosine monophosphate 
receptor protein (CRP), plays an important role in mediating transcription activation of sev- 
eral genes in E. coli. The CAP-cAMP complex binds, as a dimer, to the specific sequences 
in several E. coli promoter regions.[20] The activation process is complex, involving not only 
the binding of cAMP, but also the interactions of CAP with the DNA [21, 22] and with 
the RNA polymerase.[23] Atomic resolution structure of CAP bound to the consensus DNA 
sequence has been determined by X-ray crystallographic studies.[21, 22] Upon binding, the 
DNA molecule is bent at approximately 90° near the position where helix-turn-helix motif 
of each CAP monomer binds. Previous crystallographic studies of protein-DNA complexes 
have shown that the sequence recognition can also be mediated by water molecules bridging 
between hydrogen-bond acceptor groups in the protein and the DNA. [24] A recent moder- 
ately high resolution (2.7 Ä) crystal structure of the CAP-DNA complex also shows water 
mediated interactions. To elucidate the extent of water mediated recognition, we have stud- 
ied the hydration of the regions in the vicinity of the recognition sites by means of a local 
water density calculation using the PMF expansion. Here we present the results for one of 
the recognition motifs. 

Points corresponding to a high local density of water molecules near the binding region 
in the complex are indicated in the panels A and B. The binding region is seen to be consid- 
erably hydrated. We have also calculated water densities near the isolated protein and DNA 
molecule. Both the amino acids (panel D) as well as the DNA bases (panel C) comprising the 
recognition sites are considerably hydrated. Thus, water molecules corresponding to high 
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Figure 3: Hydration of the CAP-DNA complex. Regions of water density p(r)/po > 3 and 
p(r)/p0 > 5 are identified in each panel by small and medium sized dark gray spheres. Panel 
(A) and (B) show two different views of the CAP (white) and DNA (gray) complex at the 
recognition motif (5'-TGTGA-3'/3'-ACACT-5'). Panel (C) shows the hydration of the DNA 
recognition site in the absence of CAP. (white: DNA bases comprising the recognition site, 
gray: other bases). Panel (D) shows the hydration of the CAP recognition site in absence 
of the DNA. (white: amino acids comprising recognition site, gray: other amino acids.) The 
crystal structure from pdb file lber [22] was used for the calculations. 

local densities near the isolated recognition sites have to be removed upon binding. The 
release of bound water represents an entropic gain upon binding while the water molecules 
that hydrate the interface of the complex (as shown in panel A and B) give a favorable 
enthalpic contribution, e.g., by mediating hydrogen bonds. 

Our results demonstrate that we can efficiently investigate medium-to-low resolution 
structures (> 0.2 nm crystallographic resolution) where water molecules are difficult to 
assign. Further, we get the density profiles of water hydrating biomolecules which represents 
a more complete picture compared to assignment of only individual water molecules.   We 
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have studied the hydration of the recognition sites of the CAP and the DNA for which the 
binding free energies have been measured previously. [25] Based on our calculations, it is 
our hypothesis that water-mediated interaction in this complex can partly account for the 
observed specificity. 

4    Conclusions 

We have presented a method for studying the hydration of biological macromolecules. 
Detailed simulations of the hydration of purely hydrophobic solutes and the ice-water inter- 
face indicate that the water structure is only locally sensitive to the structure of hydrophobic 
solutes and that information at the level of three-particle correlations is essential for repro- 
ducing water density profiles observed in simulations of polar interface. These results have 
been incorporated into a truncated PMF expansion for describing biomolecular hydration. 

An advantage of this approach is that the database of well-defined, lower order corre- 
lation functions required for the determination of water densities around a macromolecule 
must be obtained only once. This makes the application of the PMF expansion extremely 
efficient. The direct connection to the statistical mechanics also allows us to include any 
additional information on correlations (e.g. directional hydrogen bonding interactions) in an 
unambiguous, systematic manner. 

The PMF expansion formalism can be applied to hydration studies in both crystals or so- 
lutions to give average density profiles rather than assigning individual water molecules. The 
method can also be applied to medium-to-low resolution X-ray structures for the assignment 
of water molecules in the process of refinement. 

The water density profiles surrounding hydrophobic molecules have also been used to 
calculate entropies of hydration. Similar application to an antigen-antibody complex was 
performed recently using water densities calculated from the PMF expansion. Qualitative 
correlation with experimental entropies of binding was observed. [11,26] Accurate calculations 
of free energies of binding are complicated by the orientational component in the entropy 
and the electrostatic part in the enthalpy. Thus, more detailed calculations on biological sys- 
tems are needed before quantitative agreement with experiments and possibly predictions of 
thermodynamic quantities can be achieved. However, our results for the CAP-DNA complex 
presented here underscore the importance of water in biomolecular interactions. 
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Part II 

Statistical Mechanics of DNA 



STRETCHED, TWISTED, SUPERCOILED AND BRAIDED DNA 

John F. Marko 
The University of Illinois at Chicago, Department of Physics, 
845 West Taylor Street, Chicago IL 60657 

ABSTRACT 

The DNA double helix is a semi-flexible polymer with twist rigidity. Its bending elas- 
ticity gives rise to entropic polymer elasticity, which can be precisely studied in single- 
molecule experiments. DNA's twist rigidity causes it to wrap around itself, or 'supercoil', 
when it is sufficiently twisted; thermal fluctuations destabilize supercoiling for DNAs 
twisted fewer than once per twist persistence length. Twisted DNAs under tension, 
braided DNAs, and the internal dynamics of supercoiled DNAs are discussed. The in- 
terplay between braiding and supercoiling free energy is argued to be important for the 
decatenation of duplicated DNAs in prokaryote cells. 

I. DNA BENDING, TWISTING AND STRETCHING ELASTICITY 

The DNA double helix has a bending persistence length of about A = 50 nm in 
'physiological' aqueous solution (300 K, « 0.15 M univalent ions)[l]. It also has twisting 
elasticity, described by a twist persistence length C « 75 nm[2]. Elasticity theory may 
be used to describe deformation of the double helix on such length scales, since A and 
C are well separated from the DNA diameter (2 nm) the helix repeat (3.5 nm), and the 
spacing of successive base-pairs (0.34 nm; note 1000 bp = 1 kb = 0.34 /mi). DNAs that 
encode genes in prokaryote cells (cells without nuclei and other organelles, e.g. bacteria) 
are 10 to 1000 microns in length, indicating that thermal conformational fluctuations will 
play a role in large-scale DNA organization in such cells. 

Several experimental groups have stretched[3,4,5] and twisted[6] single DNA molecules 
of lengths 10 to 30 microns, further motivating the study of DNA from the point of 
view of polymer statistical mechanics. As a polymer, DNA offers unique possibilities for 
experiments: it is available in essentially monodisperse form, and enzymatic techniques 
can be used to make precise changes to its structure. 

The bending elasticity, when thermal fluctuations are taken into account, leads to 
entropic elasticity. Idealizing a linear DNA as a worm-like chain of length L, a force must 
be applied to separate its ends by a distance z: 

A zi^w^iw-1" (1) 

When subjected to the force kßT/A ^ 0.1 piconewtons (pN), a DNA is about half- 
extended. Over the range / < 10 pN experimental data fit Eq. 1 very well[7], indicating 
that for such forces the DNA contour length is essentially fixed. 

For forces larger than 10 pN, the double helix starts to stretch, and at RS 60 pN 
DNA undergoes an abrupt 'overstretching' transition to a new structure 1.6 times the 
normal double-helix length[5]. This lengthening is consistent with the straightening of the 
normally helical sugar-phosphate backbones, while the force scale is consistent with the 
work that must be done to overcome the « 10fcßT/nm= 40 pN of free energy which binds 
DNA in its double-helix structure. It is plausible that the double helix untwists during 
overstretching, and it may be argued from symmetry that DNA stretching and twisting 
degrees of freedom must be linearly coupled[8]. The strength of this coupling might be 
determined in an experiment which measures how much the double helix is lengthened 
when it is twisted, or equivalently, how much it twists in response to stretching. 
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A simple model for the elastic energy per length of DNA which accounts for all the 
above effects is 

£ A   2  ,  Cn2  ,72,    n     ,  w (du 

r' ?+ (2) 

Here the elastic degrees of freedom are curvature K, the twist O (radians per length) in 
excess of the 1.8 radians/nm of the relaxed double helix, and the longitudinal strain u. 
The stretching elastic constant is 7 ss 300/nm [5]. Recent experiments [6,9] suggest that 
the twist-stretch coupling is on the order of g « 25[8]. These linear elastic constants are 
consistent with the assumption that DNA is an elastic medium with a Young modulus 
of roughly lOOfcrjT/nm3 = 4 x 108 Pa. 

The nonlinear-u terms of (2) define the extension of the 'overstretched' state, and the 
force on the 'plateau'. Fig. 1 shows the force-distance response of this model with q = 500 
nm , \u\ < 0.8 (enforcing this constraint eliminates the need for higher-order nonlinear 
terms), and w = 11 nm . This last constant gives energy to 'domain walls' between 
overstretched and normal DNA, and controls the 'width' of the plateau. 
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Figure 1: Elasticity of double-helix DNA. For forces < kgT/A w 0.1 pN, one observes 
linear polymer elasticity (A); for forces between 0.1 pN and 10 pN, the elasticity is that 
of an inextensible worm-like chain (B); for forces > 10 pN the double helix itself starts 
to stretch (C); there is a sharp transition (D) to an 'overstretched' state at about 40 pN 
(E). In experiments, either the DNA or the ligands used to anchor it break at ss 100 pN. 
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II. SUPERCOILING OF DNA 
The DNA elasticity described above suggests that a twisted DNA will wrap around 

itself in the manner of a twisted telephone cord. If the ends of a double helix are joined 
together, a circular DNA with a fixed integer linkage number Lk of its two strands is 
obtained. Lk is the number of times one strand is wrapped around the other, and is a 
topological property of a closed circular double-stranded DNA. A circular DNA of length 
L is relaxed when Lk=Lko = L/(3.5 nm), and may be considered to be a (closed) random 
coil. Change in linkage number away from the relaxed state is conveniently measured as 
a fractional linkage number change, a = Lk/Lko — 1. Most of the DNA in prokaryote 
cells is supercoiled (a typical circular 'plasmid' from E. coli is shown in Fig. 2a), with a 
typical linkage deficit of a w —0.05. Supercoiled DNA has thus been the focus of intense 
experimental study [10,11]. 

The simple physical problem of the conformation of a closed DNA with fixed linkage a 
is therefore of interest. Remarkably little work has been done on the statistical mechanics 
of supercoiled DNAs except using numerical MC simulation (Fig. lb) [12]; next it will 
be shown how simple statistical-mechanical calculations give insight into many of the 
features of experiment and simulation [13]. 

(b) 

Figure 2: (a) electron-microscope picture of 7 kb (2.4 /im) supercoiled plasmid with 
linkage number 3.3% below that of the relaxed double helix (a = —0.033) [11], bar 
is 100 nm; (b) MC simulation snapshot of 3.5 kb (1.2 /mi) supercoiled plasmid with 
a = |0.03|[12]; (c) regular plectonemic superhelix of radius R and pitch P. 
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First, one must impose the constraint of fixed a. The linkage number of the two DNA 
strands is a nonlocal function of the conformations C\ and C2 of the two strands, 

Lk=i   1   *1 x «fr • (ri - ra) 

JcJCi |ri-r2|
J 

Thanks to the fact that the two DNA strands are close to each other, the linkage number 
can be broken into (a) a contribution from the DNA twist fi, which measures the local 
crossings of one strand over the other, and (b) a contribution from the nonlocal crossings 
of the double helix over itself. These two contributions are termed Tw (twist) and Wr 
(writhe), and take the form[10,14]: 

Lk = Tw + Wr (4) 

rL 1   I   f dr x dr' ■ (r - r') 
Tw = Lkn H /   ds n(s) Wr = — *   A - 

27T Jo 47T Jc Jc 

where C is a curve running down the center of the double helix. 
Motivated by experiment and simulation (Fig. 2a and 2b) a simple model for a super- 

coiled DNA is a regular interwound superhelix (or 'plectoneme') of radius R and pitch P 
(Fig. 2c). The writhe per length of such a structure is [10] 

2-KWX/L = T-PA-P2 + -R2) (5) 

where the upper/lower signs are for right-/left- handed superhelicies. In concert with (4), 
(5) allows the constraint of fixed a to be imposed. 

The next challenge is to take into account the entropy of thermal fluctuations. If 
DNA forms an interwound structure, there will be a loss of conformational entropy. A 
simple estimate for this entropy cost is that of confinement of a worm-like chain in a 
tube of radius R.   For R < A, the free energy cost of confinement is on the order of 
kgT/iAR2)1/3. 

Taking the non-stretching linear elastic terms of (2), and inserting the curvature- 
squared of a regular superhelix K

2
 = R2/(R2 + P2)2, eliminating the twist fi in favor of 

a via (5), adding the confinement free energy, and finally minimizing the resulting free 
energy with respect to the undetermined parameters R and P, the free energy per length 
of a supercoiled DNA is 

FP —-— — mm 
kBTL     R,p 

R2 C 

2 (R2 + P2)2 + U™0±2
*R£P

2
) 

+
JA-RW

3
 
+

 
W{R) (6) 

Here wo = 27rLko/L =1.8 nm-1, the radians per length of twist (or link) of the relaxed 
double helix. The term w(R) is included to take into account short-ranged repulsions be- 
tween the double helicies, and might include hard-core and screened Coulomb interactions 
of range « 1 nm [13]. 

To understand the 'phase diagram' of (6), first consider its behavior without the third 
entropic repulsion term (i.e. in the absence of thermal fluctuations). For any nonzero 
linkage a, R and P may be chosen so that the second twisting energy term is zero. 
Then if R tends to zero, the curvature energy is reduced essentially to zero as well; for 
finite hard-core interaction w(R), R will be essentially determined by the range of that 
interaction. This is a reasonable description of a twisted telephone cord. It is clear 
that the sign chosen for the writhe is determined by the sign of a; positive a leads to 
left-handed plectonemes, while negative a generates right-handed ones. 
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For real DNA, the effect of the entropic repulsion term must be considered: for large 
enough a, its effect is minimal since it is overwhelmed by the very large elastic energy 
of the plectoneme. On the other hand, for small enough a, it will overwhelm the elas- 
tic energy, and destabilize the interwound supercoil. The point at which a transition 
from unsupercoiled DNA to plectonemic supercoiling should occur can be estimated by 
supposing that AK C and P ss R, and examining the scaling behavior of (6), 

kBTL 
C 

R    (R2 ■ C(aiü0)2 C\a\u>0 

R (Ci?2)!/3 (7) 

Due to the slow 1/i?2'3 decay of the entropic repulsion, the R = oo unsupercoiled state is 
always locally stable. However, for sufficiently large |<r|, (7) develops a minimum for finite 
R. At some point, that minimum becomes lower in free energy than the unsupercoiled 
state, corresponding to stable plectonemic supercoiling. From (7) it is evident that the 
critical value of linkage at which this transition occurs is |<r| ~ 1/(CUJQ) W 0.01 for DNA; 
this is close to the experimentally observed threshold for plectonemic supercoiling[10]. 
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Figure 3: Free energy of plectonemic and unsupercoiled states obtained from Eq. 6. For 
\a\ < 0.02, unsupercoiled DNA is stable, while for \a\ > 0.02, plectonemically supercoiled 
DNA is stable. The free energy is approximately linear for 0.02 < \a\ < 0.08. 
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At the point |<x| « 1/(CLOQ) the number of excess links per length, aojQ, is on the order 
of one per twist or bend persistence length, comparable to the random fluctuation of 
twist and writhe per persistence length along a linear chain. More detailed analysis of 
(6) gives R f« A1/2/(au}Q)3/2 and P w l/(au)o); the results for R and P obtained by 
numerically minimizing (6) are in good agreement with experimental data [10]. 

The free energy of the supercoiled state relative to the unsupercoiled state is shown 
in Fig. 3. As can be seen, the plectoneme becomes lower in free energy than the unsu- 
percoiled polymer for |<r| « 0.02. For this model, the free energy of the plectoneme is 
approximately F « kßT(Lk - Lko) in the regime where thermal fluctuations dominate 
the free energy (for 0.15 M NaCl, roughly 0.02 < |<r| < 0.07). In this regime, each added 
link essentially adds a turn of the superhelix, thus forcing one more constraint on the 
supercoiled configuration. Thus each turn of supercoil may be considered to be a correla- 
tion 'blob'. For \a\ > 0.07, the hard core interaction keeps R from decreasing further, and 
the free energy starts to increase quadratically with a; in this regime thermal fluctuations 
are not important. 

In Fig. 2, it is clear that supercoiled DNAs are not linear plectonemes; they have 
branch points in their structure. Creation of a Y-shaped branch point costs on the order 
of kßT of free energy since a turn of supercoil must be disrupted. However, there is an 
entropy gain on the order of kBTlogL/(R2 + P2)1/2 since that branch point may be 
placed at any superhelical turn. Assuming no correlations between the branches, one 
expects one branch point per every few turns of supercoil; a more detailed calculation 
based on the free energy difference of supercoiled and unsupercoiled states of (6) suggests 
one branch point per « 1 kb of DNA [13], in rough agreement with experimental (1 
branch/kb) and simulation data (0.5 branch/kb) [15]. Thermal fluctuations will cause 
long supercoiled DNAs to take the shape of branched polymers with annealed branch 
structure. 

III. STRETCHING TWISTED DNA 
The previous section discussed supercoiling of a closed double-helical DNA: how can 

the same ideas be applied to the problem of a twisted DNA under tension? Experimen- 
tation with a twisted telephone cord suggests that tension can bring an extended state 
into 'coexistence' with plectonemic supercoiling (Fig. 4). Once again, there are two 
main problems: imposing the linkage number constraint, and taking account of thermal 
fluctuations. 

Linkage number is of on the face of it, undefined for a linear DNA. However, any 
experiment expecting to probe DNA twisting elasticity must anchor both strands at 
both ends of the molecule (e.g. one end to a microscope slide, the other end to a colloidal 
particle to which tension and torque are applied). Once attachments to surfaces are 
made, the linkage number is well defined if one assumes that those surfaces are infinite in 
extent, so as to keep the polymer contour from passing 'behind' either end. Under such 
circumstances, Lk - Lk0 is the number of twists applied to e.g. the colloidal particle, 
starting from a torsionally relaxed state (i.e. where Lk = Lko). 

The thermodynamics of a twisted, stretched DNA may be treated by supposing a 
fraction 1 - x of its length is extended DNA, leaving a fraction x as plectonemic supercoil. 
Thanks to the fact that the start and end points of the plectonemic 'domains' are near to 
one another, it is reasonable that the total linkage is just the sum of the extended DNA 
linkage, and that of the plectonemic region. In terms of fractional linkage changes, this 
means 

a - xax + (1- x)av (8) 

where a is the linkage of the whole DNA, while ax and <rp are the linkage in the extended 
and plectonemic domains. 

Taking the extension of the entire molecule to be z, the extension per length of the 
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extended state is z/(xL). The free energy of a stretched twisted DNA is then computed 
from the free energies of extended and supercoiled 'pure phases' (using the plectoneme 
result of (6)): 

min {xFx(ax, z/[xL]) ■ (l-x)Fp(ap)} (9) 

where (8) is used to eliminate crp. 
The only remaining problem is to construct Fx(ax, y), the free energy of the extended 

state as a function of its linkage and fractional extension y. Since some writhing of 
the extended state is expected, one can begin with a uniformily writhed state, i.e. 
a helical supercoil, with added thermal fluctuations [13,16]. For forces larger than 
/ > (Caxu)o) kßT/4A, the writhing is expelled in favor of twisting. Therefore, in that 

0.7 pN 

1.2pN 

Figure 4: MC simulation configurations for DNA under tension after twisting [17]. The 
fixed linkage (|<r| = 0.043) leads to a plectonemically supercoiled conformation at low force 
w 0.2 pN (upper left), a fully extended conformation at high force ft! 1.2 pN (lower), and 
a mixed state of the two conformations at intermediate forces « 0.7 pN (upper right). 
Bar is 100 nm; total DNA length is 1000 nm. 
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regime the free energy is just that corresponding to the force law (1), plus the twist 
energy for Tw = Lk, or fi = <xxu;o: 

kBTL        A 2      4     4(1-2/)     4 

C(axuj0) 
(10) 

For lower forces, one can either make the approximation that there is no writhe and 
thus continue to use (10), or one can construct a free energy model for the writhed state 
[13,16]; this choice does not crucially alter the results. 

The main results of this model are as follows. When the linkage is well below \a\ « 
0.02, the force vs distance is unperturbed from that of unsupercoiled DNA (Eq. 1). In 
this regime, the added linkage per persistence length is less than the random thermal 
fluctuations of twist and writhe in each persistence length. For \a\ w 0.02, the force 
needed to obtain a given extension starts to increase with \a\ due to the appearance 
of plectonemic domains along the chain. As \a\ is increased, progressively more of the 
molecule is bound up as plectonemic supercoil at zero force. Finally a regime is reached 
where at zero force, all of the molecule is plectonemically supercoiled (Fig. 5). 

For larger |tr| than this, a finite force must be applied to obtain any extension at all, 
corresponding to the finite amount of work per length that must be done to unwind 
the plectonemic supercoil[13,16]. A rough estimate for this critical force is given by the 
twist energy per length, or /* RS CkBT(<Tu>0)2. Near the threshold of supercoil stability 
\a\ ss 0.02, this force is roughly /* « 0.1 pN. 
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Figure 5: Coexisting extended-plectoneme model for force versus extension of twisted 
DNA (0.01 M univalent salt). For low \a\ < 0.02, the elasticity is essentially that of 
untwisted DNA; increasing \a\ increases the force required to obtain a given extension, 
and for |u| ss 0.04 a finite force is required to obtain any extension at all, while at larger 
forces « 1 pN, enough work has been done on the molecule to alter the double-helix 
structure (force plateau). 
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An important result of this model is that as the molecule is extended, the linkage num- 
ber is highly concentrated in the plectonemic domain, leading to a buildup of torsional 
stress in the DNA. This will tend to destabilize the double helix, and one can expect 
transitions to alternate double helix structures for a < -0.04 and a > 0.08 at relatively 
low forces w 1 pN [13] (such transitions occur more readily for unwinding than for over- 
winding [16]). Fig. 5 shows this for the case where for \a\ = 0.12, the DNA strands inside 
the plectonemic domains start to separate (i.e. normal plectonemic supercoiling coexists 
with regions where |<rp| = 1). At the point where the DNA starts to change structure, 
this model predicts a force 'plateau' (Fig. 5) [13]. 

Strick et al [6] have twisted and stretched a 50 kb DNA, with both strands anchored 
at each of its ends using a magnetic bead to apply torque and force to one end. The 
results of their study are in good agreement with the extended-plectoneme coexistence 
model [13,16]: they observe a force at fixed extension that appreciably increases for 
\a\ > 0.02, they observe a force threshold for extension for sufficiently large a, and they 
observe 'plateaus' which plausibly indicate transitions to alternate 'melted' DNA states. 
Finally, we note that MC simulations of twisted DNAs by Vologodskii et al [17] are in 
good agreement with both experiment and the extended-plectoneme domain coexistence 
theory. 

IV. INTERNAL DYNAMICS OF SUPERCOILED DNA 
Plectonemic supercoiling introduces the possibility of a new type of dynamics, the 

sliding around of the molecule inside the supercoil. This motion has been proposed to be 
important to the juxtaposition of distant sequences along DNA in prokaryote cells (such 
juxtapositions are known to be required for recombination of distant regions along the 
E. coli chromosome) [19]. 

For an unbranched plectonemically supercoiled DNA of length L, such a process is 
bound to be slow, since slithering involves the 'reptation' of the molecule inside the 
supercoil. The typical time required for an encounter, starting from a random initial 
condition will be roughly 

rs,«g (12) 

where r\ is the solution viscosity. For a 1 fim (3 kb) DNA, this time is 250 msec. 
Branches modify this scaling law for large i; the motion of branches along their trunks 

accelerates the rate at which distant sequences can communicate. Numerical results for 
a model of this process indicate that rs\ oc L2 for very large L. 

The chemical kinetics of site-specific recombination of 4 kb and 8 kb supercoiled DNAs 
has been studied in the test tube[19], and characteristic times for the initial communi- 
cation process are consistent with (12), although the predicted strong length effect has 
not been observed [19]. Recent experiments on the same enzyme system operating in a 
prokaryote cell [20] over distances ranging from 10 kb to 100 kb show a strong length 
effect, in surprisingly good agreement with (12). 

V. BRAIDED DNAs 
If two double-helix DNAs are wrapped around one another, one can ask what the 

free energy of the resulting 'braid' is. Such braids naturally occur in prokaryote cells 
in replicated DNAs, due to incomplete removal of all the twists of the 'parent' double 
stranded DNA. The linkage number of the two DNAs is called the 'catenation' number, 
Ca. 

For large |Ca| > L/A, the DNAs are confined to a well-defined helical braid. Using the 
free    energy    functional    (6)    without    the    twist    energy,     and    fixing    instead 
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|Ca| = L/[2ir(R2 + P2)1/2] (the number of braid turns), one obtains 

-^— « 4TT(2/3)
3
/
4
 kBT |Ca| « 20 fcBr |Ca| (13) 

kBl 

in the regime where the DNAs are kept far enough away from one another by entropic 
repulsion that the hard-core interaction is not important. Eq. 13 is in accord with 
each additional catenation forcing one more constraint on the polymers; intriguingly 
there is a large numerical constant. As the catenation is increased, the fluctuations of 
the DNAs are progressively decreased; the tension generated in the DNAs is /braid = 

(kBT/A)(2nCa,A/L)2. 
For such large |Ca| that the hard cores are interacting, the free energy becomes dom- 

inated by static bending energy of the braid, and begins to increase oc Ca2. In terms 
of the specific catenation crc = Ca/Lkg, this upturn in the catenation free energy occurs 
for \ac\ > 0.07 under 0.15 M ionic conditions. Overall, the catenation free energy as 
a function of <rc has nearly the same shape as the plectonemic supercoiling free energy 
shown in Fig. 3. 

For small |Ca|, the DNAs can be considered to be random-coil polymers; Rudnick and 
Hu[18] have computed the free energy to be 

JL^Ca2/log(LM) (14) 

The logarithmic elastic constant is due to the wandering apart of the two chains between 
successive turns of the braid. 

An interesting possibility follows from considering how to connect the loose and tight 
braiding regimes. Consider <jc ~ Ca/L fixed, and take L —> oo: note that the loose- 
braid dF/dCa. ~ Lj logi, while the tight-braid dF/dC& is L-independent. This indicates 
that for any nonzero <yc, for sufficiently large L, the loose braids will be unstable to 
the formation of tight braids. For long DNAs, if |Ca| < L/A, one can expect 'braid 
separation', with a domain of tight braiding at the terminus of essentially unbraided 
chains. 

If a DNA braid is viewed as a 'double helix' (of double-helix DNAs), then the braiding 
free energy can be considered to be the 'twist energy' of that object. This twist energy 
is lower than that of DNA itself due to the lack of any permanent connection between 
the two DNAs in the braid. The bending energy of such a braid will be larger than that 
of DNA since two DNAs must be bent. Both these effects disfavor supercoiling of the 
braid, but for large enough |Ca|, the twist energy does become large enough for the braid 
to itself supercoil! [16] For 0.15 M NaCl, this point is reached for |Ca|/Lk0 « 0.07; for 
0.1 M NaCl, the longer range of the electrostatic repulsion of the nearby DNAs reduces 
this point to about 0.03. The force-distance behavior of braided DNAs can be computed 
using a extended-plectoneme coexistence model similar to that discussed in Sec. V. 

VI. DECATENATION OF REPLICATED DNAs IN PROKARYOTES 
During replication of DNA, not all of the twists of the 'parent' DNA are removed, 

leaving on the order of one catenation per kb between 'sibling' DNAs (each sibling carries 
one strand from the parent) [21]. Removal of these catenations is an important biophysical 
problem. Enzymes which can pass one DNA through a transient gap in another are 
implicated in this process, but the question remains of how those locally acting enzymes 
are guided to remove oHthe Ca. Once Ca is reduced below one per 10 persistence lengths, 
it is implausible that the free energy of catenation drives decatenation. 

Experiment provides a crucial hint: efficient decatenation of small circular plasmids 
requires the presence of an enzyme (gyrase) which supercoils DNA [22]. Consider the free 
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energy of supercoiled sister DNAs, each with excess linkage Lk-Lk0, with Ca catenations 
between them. Following the approach outlined above, this free energy is of the form 

^(Lk - Lk0, Ca) « Fp(|Lk - Lk0| + |Ca|) (15) 

where Fp is the supercoil free energy described in Sec. II. Thus, by cranking up |Lk-Lko|, 
the free energy per Ca liberated can be kept large, even when Ca -> 0: in this model, 
supercoiling-generated stress guides the removal of catenations betweeen the catenated 
siblings. A simple dynamic model based on (15) indicates that this process can efficiently 
remove sibling catenations. 

This invites the speculation that supercoiling of DNA was an advantageous variation 
for early prokaryote cells, allowing longer DNAs to be efficiently segregated following 
their replication. 

ACKNOWLEDGEMENTS 
A large part of this work was done in collaboration with E. D. Siggia and A. V. 

Vologodskii. The author thanks D. Bensimon, C. Bustamante, P. Cluzel, D. Chatenay, 
N. Cozzarelli, V. Croquette, M. Prank-Kamenetski, S. E. Halford, P. Higgins and P. 
Nelson for many useful discussions. 

REFERENCES 
1. P. J. Hagerman, Annu. Rev. Biophys. Biophys. Chem. 17, 265 (1988). 

2. D. M. Crothers, J. Drak, J. D. Kahn and S. D. Levene, Meth. Enzymology 212, 3 
(1992). 

3. S. B. Smith, L. Finzi and C. Bustamante, Science 258, 1122 (1992); 

4. T. T. Perkins, S. R. Quake, D. E. Smith and S. Chu, Science 264, 822, (1994); T. T. 
Perkins, D. E. Smith, R. G. Larson and S. Chu, Science 268, 83 (1995). 

5. P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J.-L. Viovy, D. Chatenay and F. Caron, 
Science 271, 792 (1996); S. B. Smith, Y. Cui and C. Bustamante, Science 271, 795 
(1996). 

6. T. R. Strick, J.-F. Allemand, D. Bensimon, A. Bensimon and V. Croquette, Science 
271, 1835 (1996). 

7. C. Bustamante, J. F. Marko, E. D. Siggia and S. Smith, Science 265, 1599 (1994); A. 
V. Vologodskii, Macromolecules 27, 5623 (1994); J. F. Marko and E. D. Siggia, Macro- 
molecules 28, 8759 (1995). 

8. R. E. Kamien, T. C. Lubensky, P. Nelson and C. S. O'Hern, preprint (1996); J. F. 
Marko, preprint (1996). 

9. P. Cluzel, Ph.D. thesis, University of Paris (1996). 

10. N. R. Cozzarelli, T. C. Boles and J. White, in DNA Topology and its Biological 
Effects, edited by N. R. Cozzarelli and J. C. Wang (Cold Spring Harbor Laboratory, 
Cold Spring Harbor NY, 1990) Ch. 4; 

11. S. D. Levene, C. Donahue, T. C. Boles and N. R. Cozzarelli, Biophys. J. 69, 1036 
(1995); 

12. K. V. Klenin, A. V. Vologodskii, V. V. Anmshelevich, A. M. Dykhne and M. D. 
Frank-Kamenetskii, J. Mol. Biol. 217, 413 (1991); A. V. Vologodskii, S. D. Levene, K. 
V. Klenin, M. Frank-Kamenetskii and N. R. Cozzarelli, J. Mol. Biol. 227, 1224 (1992). 

13. J. F. Marko and E. D. Siggia, Science 265, 506 (1994); Phys. Rev. E 52, 2912 
(1995). 

41 



14. G. Calagareau, Rev. Math. Pur. et Appl. 4, 58 (1959); Czech. Math. J. 4 588 
(1961); J. H. White, Am. J. Math. 91, 693 (1969); F. B. Fuller, Proc. Natl. Acad. Sei. 
USA 68, 815 (1971); A. V. Vologodskii, Topology and Physics of Circular DNA (CRC, 
Boca Raton FL, 1990) Ch. 4. 

15. A. V. Vologodskii and N. R. Cozzarelli, Annu. Rev. Biophys. Biomol. Struct. 23, 
609 (1994). 

16. J. F. Marko, Phys. Rev. E (in press, 1996). 

17. A. V. Vologodskii and J. F. Marko (preprint, 1996). 

18. J. Rudnick and Y. Hu, Phys. Rev. Lett. 60, 712 (1988). 

19. C. N. Parker and S. E. Halford, Cell 66, 781 (1991); M. Oram, J. F. Marko and S. 
E. Halford (preprint, 1996). 

20. N. P. Higgins, X. Yang, Q. Fu and J. Roth, J. Bact. 178, 2825 (1996). 

21. D. E. Adams, E. M. Shekhtman, E. L. Zechiedrich, M. B. Schmidt and N. R. Coz- 
zarelli, Cell 71, 277 (1992). 

22. E. L. Zechiedrich and N. R. Cozzarelli, Genes and Devel. 9, 2859 (1995). 

42 



TWIST-STRETCH ELASTICITY OF DNA 

RANDALL D. KAMIEN, T.C. LUBENSKY, PHILIP NELSON, COREY S. O'HERN* 
Department of Physics and Astronomy, University of Pennsylvania, 
Philadelphia, PA 19104 
* ohern@lubensky.physics.upenn.edu 

ABSTRACT 

The symmetries of the DNA double helix require a new term in its linear response 
to stress: the coupling between twist and stretch. Recent experiments with torsionally- 
constrained single molecules give the first direct measurement of this important material 
parameter. We extract its value from a recent experiment of Strick et al. and find rough 
agreement with an independent experimental estimate recently given by Marko. We also 
present a very simple microscopic theory predicting a value comparable to the one observed. 

INTRODUCTION 

In this paper we will study the response of DNA to mechanical stress using the methods 
of classical elasticity theory[1]. While many elements of DNA function require detailed 
understanding of specific chemical bonds (for example the binding of small ligands), still 
others are quite nonspecific. Moreover, since the helix repeat distance of lo « 3.4nm involves 
dozens of atoms, it is reasonable to hope that this length-scale regime would be long enough 
so that the cooperative response of many atoms would justify the use of a continuum, classical 
theory, yet short enough that the spatial structure of DNA matters. 

Since various important biological processes involve length scales comparable to l0 (no- 
tably the winding of DNA onto histones), the details of this elasticity theory should prove 
important. Yet until recently little was known about the relevant elastic constants. Exten- 
sive experimental work yielded fair agreement on the values of the bend and twist persistence 
lengths, though the former was plagued with uncertainties due to the polyelectrolyte charac- 
ter of DNA [2]. A simple model of DNA as a circular elastic rod gives a reasonable account 
of many features of its long-scale behavior, for example supercoiling [3]. 

Recently, techniques of micromanipulation via optical tweezers and magnetic beads have 
yielded improved values for the bend stiffness from the phenomenon of thermally-induced 
entropic elasticity [4][5] [6], as well as a direct measurement of a third elastic constant, the 
stretch modulus[7][8]. Significantly, the relation between bending stiffness, stretch modulus, 
and the diameter of DNA turned out to be roughly as predicted from the classical theory of 
beam elasticity [7] [8] [9], supporting the expectations mentioned above. 

Still missing, however, has been any direct measurement of the elastic constants reflecting 
the chiral (i.e. helical) character of DNA. One such constant, a twist-bend coupling, was 
investigated by Marko and Siggia [10], but no direct experimental measurement has yet been 
devised. We will introduce a new chiral coupling, the twist-stretch energy. Electrostatic 
effects do not complicate the analysis of this coupling. We will explain why our term is 
needed, extract its value from the experiment of Strick et al. [11], and compare it to the 
prediction of a microscopic model to see that its magnitude is in line with the expectations 
of classical elasticity theory. J. Marko has independently introduced the same coupling and 
estimated its value from different experiments[12]; our values are in rough agreement. 
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EXPERIMENT 

DNA differs from simpler polymers in that it can resist twisting, but it is not easy to 
measure this effect directly due to the difficulty of applying external torques to a single 
molecule. The first single-molecule stretching experiments constrained only the locations of 
the two ends of the DNA strand. The unique feature of the experiment of Strick et al. was 
its added ability to constrain the orientation of each end of the molecule. 

We will study Fig. 3a of ref. [11], In this experiment, a constant force of 8pN was applied 
to the molecule, and the end-to-end length ztot was monitored as the terminal end was rotated 
through ALk turns from its relaxed state (which has Lko turns). In this way the helix could 
be over- or undertwisted by as much as ±10%. Over this range of imposed linkage ztot was 
found to be a linear function of a: 

e = e<r=o - 0.15(7, (1) 

where a = ALk/Lko and e = (ztot/ztot,o) — 1- Thus a is the fractional excess link, and e is the 
extension relative to the relaxed state. Eq. (1) is the experimentally observed twist-stretch 
coupling. 

THEORY 

Phenomenological Model 

A straight rod under tension and torque will stretch and twist. We can describe it using 
the following reduced elastic free energy per equilibrium length ztot:0 of the rod: 

M*,e) = £p± = f [Co* + Bi + 2Dea] . (2) 

The twist persistence length is C « 75 nm [2], while the helix parameter uio = 2n/lo = 
1.85/rim. We will take B ss UOOpN/ui^kBT iv 78nm [8]. In the experiment under study, 
there is an applied reduced force r = 8pN/kßT «a 1.95/nm. For a circular beam made 
of isotropic material, the cross-term D is absent [9] because twisting is odd under spatial 
inversion while stretching is even. For a helical beam, however, we must expect to find this 
term. 

Setting T = df\/dt\a, we find 

e = e.=o - {D/B)a . (3) 

Comparing to Eq. (1), we obtain the desired result: D = 12nm. To compare this to Marko's 
analysis, we note that his dimensionless g equals our DUJ0, SO that we get g = 22. The rough 
agreement with Marko's result g = 35 [12] indicates that the data show a real material 
parameter of DNA and not some artifact. We do not expect exact agreement, since Marko 
studied the nonlinear overstretching transition of [7][14]; our value came from the linear 
regime of small strains. 

Microscopic Model 

To gain further confidence in our result, we will now see how the expected twist-stretch 
coupling emerges from a simple elastic model for DNA. Fig. 1 reviews the relevant geometric 
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Figure 1: (a) Schematic representation of a cross section of DNA showing its intersections (Bi 
and B2) with the phosphate backbones, its intersection (line AiPA2) with the parameterizing 
helical ribbon, and its helical center C. (b) A section of ribbon showing oppositely oriented 
edges. At each point along the ribbon's center (dotted curve), there is a triad of orthonormal 
vectors, Ei, E2, and E3. E3 is parallel to the center line, E2 points to one of the edges, and 
Ei is perpendicular to the ribbon, (c) Representation of the helical ribbon. 

properties of DNA. Base pairs are connected by inequivalent sugar-phosphate backbones 
whose twisting pattern defines the major and minor grooves. These backbones intersect a 
given cross section of DNA at two points.  Lines parallel to the line connecting these two 
points sweep out ribbon-like surfaces as the DNA twists.  We will parameterize the DNA 
structure by one of these ribbons, whose center is a distance ro from the central helical axis. 
Any choice of ro is acceptable. We will see, however, that a small value of r0 can explain the 
measured value of D. 

Our ribbon is described by the triad of unit vectors Eu E3, and E2 = E3x Elt where E3 

is the unit tangent vector to the center of the ribbon and E2 points from the center of the 
ribbon to one of its edges. The triad varies as we move along the arc length s of the ribbon. 
The motion is described by 

HE- 
^ = -eijk^Ek. (4) 

The parameter s labels each point along the central axis of the ribbon in its unstressed state 
and runs from 0 to L. The actual arc length along the distorted central axis of the ribbon 
will not be ds but rather [1 + e2(s)]ds where e2 is the intrinsic strain. Therefore, the total 
length for constant e2 is £/ = (1 + e2)L. The intrinsic strain allows the spacing between 
successive phosphate groups to change. 

The edges of our ribbon, like the two sugar-phosphate backbones in DNA, are distin- 
guishable and point in opposite directions. This symmetry can be incorporated into our 
microscopic model by considering a rotation of 180° about the vector E\ followed by s —> —5. 
Under this transformation E2 and E3 change sign, but s derivatives of these vectors do not. 
Also, E\ does not change sign, but dEi/ds does. Therefore, the free energy should remain 
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unchanged upon changing the sign of fij but not of Q2 and f^lO]. The most general reduced 
free energy per length of ribbon relative to that of the flat unstretched ribbon up to second 
order in f2; and 62 is 

!DNA = ^[Anl
2 + A(n2-n20)

2 + c{n3-n30)
2 + Bu0

2el + 

2Du0Q3e2 + 2Gtt2ü3 + 2Kuj0n2e2 - AQ20
2 - Cn30

2}. (5) 

e2 does not change sign under s —> -s, and so it can appear in combination with fi2 and n3 

in Eq. (5). This model is the simplest semi-microscopic model that incorporates all of the 
symmetries of DNA. It is an expansion to harmonic order in first-order derivatives of the 
vectors Et (e.g. of Q3 = -E\ ■ ^). Thus, it is a model with quantitative predictive power 
so long as the Q, are slow on a scale set by the distance a = 0.6 nm between successive 
phosphate groups, (i.e. so long as Qjfl <C 1). In the ground state fi3 = O30 « w0 = 1.85/nm, 
so that O30 a m 1.1 is not small. This implies that higher derivative terms (e.g. (^)2, 
etc.) are needed for a quantitative theory. Nevertheless, our simple semi-microscopic model 
captures the essential symmetry of the DNA structure and allows us to address questions 
like the nature of the twist-stretch coupling. 

One can easily show that the center of the ribbon describes a helix in the ground state of 
Eq. (5). We will assume that D, G, and K can be made small by an appropriate choice of 
r0. Then, to keep the model as simple as possible, we will simply set these parameters equal 
to zero for this choice of r0. We parameterize the helical ribbon using three angles ^,7, and 

E3   =   sin 7z + cos 7<ji 

E2   =   cosip(— sin 7^ + cos 72) — sinipp 

Ei   =   — sin V>(—sin7$ +cos7z) - cosipp, (6) 

where p and <j> are cylindrical unit vectors spinning at frequency <j>. If <j> is a constant and 
%j) = 0, then the ribbon wraps around a cylinder of length Ztot and radius r. 

COS "V 
ztot = L(l + e2) sin 7    and    r = . (7) 

LO 

In its ground state the helix has the following properties: Oi = Q\o = 0,Q2 = ^20 = w0 cos 70, 

fi3 = Q30 = w0sin7o, 4> = wo = \]&w + ^ao2, and tp = tpo = 0. Also, the ground state 
length and radius of the molecule are, respectively, Ztot.o = L sin 70 and r0 = COS70/W 

We now consider deviations in the ground state length ztot and twist rate </> of the 
molecule. Since the total twist is tf>L, the excess twist is oL where a = (<j> — u)0)/uo = «5^/W 
Using Eq. (7) we find that changes in length are produced both by intrinsic strain e2 and by 
changes in 7: 

e = -^- - 1 = ei + e2    where    ex = cot 7067. (8) 
■Ztot.O 

The energy of harmonic deviations from equilibrium are obtained by expanding JDNA to 
second order in 6y(s), 6ip(s), and 8<j)(s). The ground state is a periodic helix implying these 
variables can be expressed in terms of Fourier modes in different Brillouin zones defined by 
wo- Rotations of the helix about space-fixed axes x,y, and z are described by the variables 
80x, S9y, and 86z. The variables 57, 8ip, and 6(j> can be expressed in terms of these variables: 
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§7   =   cos w0s 69x + sin u0s 69y 

Sib   =    (sin wos 69 x — cos uios 66L) 
cos 7 

6<b   =   tan7(sinwos5öI — cosu>os69y) + 69z. (9) 

Thus, variations of 69x and 6#y in the first BZ give rise to variations in 67 and 6tp in the 
second BZ. A complete long-wavelength theory can, therefore, be expressed in terms of the 
first BZ components of 69x, 66y, 67, 6ip, and 6(j> (whose 1st BZ component is equal to that 
of&9z). 

Using the relations for the 0; obtained from Eq. (4) and Eq. (6), we find 

Q2 — ^20   =   cos 7o§^> - w0 sin 7067 

^3 - ^30   =   sin 7oS</> + w0 cos 70157. (10) 

Then, using these expressions in JDNA, integrating out ip, and remembering that length 
along the pitch axis is a factor of sin 70 less than the ribbon length, we find that the effective 
reduced free energy per unit length of pitch axis is 

where 

f=fB + fTs, (11) 

!B = 4-^K + A sin2 70 + Ccos2 7o)(ö2 + 02) = \A{9\ + 62) (12) 

is the bending energy[16] and fas is the twist-stretch energy defined by 

frs = 7^^\Caa02 + B^2 + Be,2 + 2D£iae1(j], (13) 
l sin 7o 

where Caa = (A cos2 70 + Csin2 70), BnH = (Af^ + Csin2 7o), and Dtl„ = (C - A) sin2 7o. 
The twist-stretch energy can be expressed in terms of the total strain by setting t\ = e — e, 
and integrating over e2- The result is that frs has the same form as Eq. (2) with macroscopic 
elastic constants B, C, and D expressed in terms of our microscopic parameters A, B, and 
C. The stretch moduli associated with ei and e, add in parallel to yield a total stretch 
modulus B = ^T-(ß^ h B)

-1
- The twist-stretch coupling is 

nei 

D = j—^—-(C-A) sinl0. (14) 
(Beici + B) 

Thus, a description of DNA in terms of a helical ribbon with an axis offset from the 
central helical axis generates a twist-stretch coupling even if the bare twist-stretch coupling 
(D in Eq. (5)) is zero. We can estimate the offset ro necessary to produce the measured D 
assuming it arises entirely from Eq. (14). If we assume A' ss A and wor0 <C 1, then B s» B = 
75nm, CasC = 78nm, and A as A = 40nm, and we find D « {u0r0)

2(B/A)(C - A) and 
(woTo)2 « 0.176 or r0 ss 0.23nm[15j. Corrections to this estimate are of order (w0r0)

4 ~ 0.03. 
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CONCLUSION 

We have pointed out a strong twist-stretch coupling in torsionally constrained DNA 
stretching experiments, evaluated it, argued that it reflects intrinsic elasticity of the DNA 
duplex, and shown that the value we obtained is consistent with elementary considerations 
from classical elasticity theory. A greater challenge remains to predict this coupling from 
the wealth of available crystallographic information on the conformation of short oligomers. 
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ABSTRACT 
Distearyldimethylammonium (DSDMA) X (X" = OH, H2P04) interact with double 

stranded T4 DNA (166 kilobase pairs) below and above the CMC (l.SxlO"6). Below the CMC of 
either DSDMA X where the cationic double-chained surfactants are in the monomeric state, T4 
DNA and DSDMA+ form a compact complex where all surfactant molecules are bound. Close to 
the CMC, particularly for DSDMA OH but also in the presence of H2P04", T4 DNA exhibits a 
condensed (globule) conformation, though some DNA molecules are in the more extended DNA 
conformation. Above the CMC of DSDMA X a plateau is reached (up to 3.0 x 10"6M surfactant) 
revealing a penetration of DSDMA molecules into the DNA globules resulting in a loosening of 
the tightened state of DNA. The various stages of the transition from the condensed coil to the 
extended state of T4 DNA with changing DSDMA X concentrations was monitored by static and 
inelastic light scattering experiments which were supplemented by small-angle X-ray scattering 
measurements. 

INTRODUCTION 

The polyamine-induced co-operative transition of the DNA helix from an extended 
conformation to a highly condensed structure in vitro is of extreme significance in molecular 
biology, transcription and bending of DNA, charge distribution, and polymerase-DNA 
interactions, since nucleic acids often occur tightly packed in vivo and require polyamines to 
achieve and stabilise the compact form [1]. Calculations of the energy changes due to 
conformational changes of the packing of the DNA, performed by Riemer & Bloomfield [2] using 
the encapsulation of DNA by bacteriophage T4 as a model system, it became obvious that 
electrostatic repulsions dominate the other forces which oppose the collapse of DNA into an 
extended conformation. The process of collapsing can be facilitated by neutralisation of the high 
charge density within the condensed DNA domain. The purely electrostatic counterion 
condensation theory of polyelectrolytes [3,4] and neutralisation depend on the condensation of 
counterions close to the backbone of the DNA and/or the cationic double chained micelles (which 
are in equilibrium with their monomers) in the outer layer in a process which is driven by the 
charge density of the biopolymer, the character of the counterions (including their valence, 
structure and chirality), and as studied here, the physical solution properties of the double-chained 
distearyldimethylammonium (DSDMA) X salts. The extent of neutralisation under specified ionic 
and DSDMA X conditions can be estimated from theory which provides the means to determine 
critical conditions beyond which the collapse of T4 DNA becomes spontaneous. However, these 
conditions conceivably depend not only on the charge of the counterion, its structure [5], or the 
N-ionic surfactant concentration (concentrations of charged species vs. total surfactant 
concentration where the extended T4 DNA is the polyelectrolyte), but also on the geometry of the 
collapse and the DSDMA induced mechanism leading to a collapse, which is balanced between 
DNA-DNA contacts and DNA a DSDMA contacts (including solvent). The possible role of the 
counterions (including those having a chiral center), in stabilising various DSDMA X forms in 
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aqueous solutions (e.g. unilamellar vesicles, threadlike micelles & spherical micelles [6]) is an 
additional factor in stabilising the compact (globule) form of the DNA. Furthermore, cationic 
lipids are known as efficient non-viral reagents to transfect outer DNA into animal cells in vitro 
[7] through liposome like DNA complexes. Anti-viral and anti-microbial activities in-vitro & m- 
vivo of single and double chained N-cationic surfactants have been reported and are being used in 
medical applications [8]. In addition, the environmental concerns of double chained N cationic 
surfactants of the DSDMA X type (including their biodegradability which is related to the 
interactions between DNA (or RNA & proteins) and the surfactant at very low surfactant 
concentrations) prompted us to study the interactions of DSDMA X with T4 DNA since there are 
few in this area [9]. 

This paper reports on the conformation changes of double-stranded T4 DNA in the 
presence of DSDMA X (X= OH, H2P04"). Applying inelastic (QELS) and static (LS) light 
scattering measurements we were able to examine the transition of T4 DNA from discrete DNA 
transition states with respect to higher order structures between an uncoiled state (elongated coil 
state) and the compact ("packaged") globule state by addition of DSDMA X. Additional 
information has been obtained from small-angle X-ray-scattering experiments supporting the 
conclusions drawn from QELS & LS measurements of this complex system. 

EXPERIMENTAL 
Materials 

T4 phage was prepared by the method of Thomas & Abelson [10]. DNA preparation was 
performed by repeated phenol extractions (20 °C) in 0.1 M Na citrate, pH 7.1. In order to 
eliminate the polyamines inherent to T even phages, the ionic strength was increased to 2.5 M 
NaCl in the course of the phenol treatment. The presence of 0.5% SDS during the T4 DNA 
preparations has been avoided since it has been found that the T4 DNA, in the presence of SDS, 
interferes with the binding experiments of DNA and DSDMA X due to binding of residual SDS to 
DNA to DSDMA X. The purity of the T4 DNA was proved by measuring the A260 / A28o and A26o 
/ A23o ratios, which were determined to be 1.86 and 2.4, respectively and are close to those 
reported in the literature [11], suggesting pure preparations of T4 DNA. The absence of 
fragmented T4 DNA was confirmed by agarose gel electrophoresis (Pharmacia, Phase System). 
Acetylated T4 DNA was prepared by acetylation of T4 DNA under mild conditions and 
characterised according to Gerhard & Warren [12]. The concentrations of T4 DNA were 
determined spectrophotometrically by applying an extinction coefficient E250 = 6,650 cm"1 M1 

nucleotides DSDMA X was prepared as described in [6], and further purified by HPLC (reversed 
phase Ci6, Bondapak). 

Sample Preparations 
T4 DNA solutions were diluted into experimental buffer (ImM TRIS-H2P04 or TRIS-OH, 

containing 1 mM NaCl, pH 7.1) to twice the desired final concentration (0.55 - 1.5 uM DNA- 
H2P04), and centrifuged at 3,000 x g (20 °C) for 5 min. About 0.25 mL from the top was added 
to the scattering cylindrical scattering cells containing the counterion solutions (10 uM DSDMA 
OH or DSDMA-H2PO4) at pH 7.1. Mxing was performed through gentle tipping in order to 
avoid high local concentrations of DNA or DSDMAX, minimising the possibility of multi- 
molecular condensation or premature collapse to the globule state [13]. The samples were 
permitted to equilibrate for 2 h, centrifuged for 15 min at 2,000g (20 °C), and analysed. The total 
scattering intensities of buffer alone, of T4 DNA in experimental buffer, and of DSDMA X 
solutions at various concentrations were monitored with each set of data to provide proper 
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controls. The correction for light absorption by DSDMA X was negligible even at the highest 
concentrations of DSDMA X. The solutions contained 1 ug/mL DNA in the standard buffer. 

METHODS. 
QELS and LS experiments were performed and the data processed as described in [6]. 

The laser was a He-Ne laser (NEC 50 mW) and an ALV-5000 multi-t-correlator and a computer 
controlled stepping motor driven variable angle detector system was used. The cell holder was 
filled with index-matching fluid (toluene) and the temperature equilibrated at 20 °C (Lauda 15). 
Small Angle X-ray scattering (SAXS) experiments including data collection, processing, 
smoothing procedures were performed as described in [14] also at 20 CC. 

RESULTS 
LS and SAXS. In order to characterize the conformational transition of T4 DNA in the 

presence of DSDMA X, a series of experiments were performed by changing the DSDMA X 
concentration from 0.50-3.5 x 10-6 M (CMC=1.3xlO"6 M) at constant DNA concentration. 
Assuming that the flexibility of T4 DNA is reflected in its radius of gyration, it is important that 
the data recorded are in the "linear region" before the correct equations can be applied for 
analysis. However, using LS data where 9 < 15° and those from SAXS experiments, 
representative (HCDNA/Re)c^o for T4 DNA in ImM TRIS-H2P04, ImM NaCl, pH 7.1(20 °C) can 
be obtained. Applying the determined values for (CW<5CDNA)T,C = 0.165 mL g"1, no = 1.325 and X= 
632.8 nm, the radius of gyration was calculated to be < RG > = 1,327 + 58 A (0.37 urn). The 
value obtained from SAXS experiments is < RG > = 1,320 + 40 Ä, the weight-average molecular 
weight of our T4 DNA preparations was found to be 14xl06 by LS and 13.5xl06 by SAXS. Thus, 
for a chain of 160 kilobase pairs, the contour length, Lc, is estimated to be 520,000 Ä or 52 urn. 
Therefore, we calculate that the contour distance below which the T4 DNA is rodlike in solution 
(<r2>0 > 0.85 Lc

2 or <r2>0"
2 > 0.95 Lc) corresponds to a value of (l/3)(Lc/a) = 186 with a= 0.28 

u.m. From this we can estimate that Lc= 0.3a= 16.5 u,m which is equivalent to <r2>0'
Q = 52.3 + 

0.5 urn or 2,730 base pairs. However, as Lc increases, <r2>0< L2
C as the effect of curvature 

becomes significant. So at very high values of Lc the ratio <r2>0/Lc
2 = 2a/Lc, which means that 

<r2>o from the value expected for a rod is determined by the ratio of the persistence length to the 
contour length, hence bending of the DNA becomes manifest and has to be taken into account. 
Moreover, since Lc « a it follows that <i2> = Lt

2, which is the unperturbed end-to-end distance 
of the structure in solution (accessible by SAXS) and is equal to the contour length. These 
changes in the ratios are actually seen by the addition of DSDMA X in the various concentration 
ranges and monitored by SAXS and QELS experimentally. The persistence length, X, of the T4 
DNA molecule is determined to 0.08 urn under the assumption of a Gaussian chain. The number 
of Kuhn segments of this giant DNA molecule under our experimental conditions is approximately 
Lc/2x0.08 = 344. 

The effects of DSDMA OH or DSDMA H2P04" on the total intensity of scattered light from T4 
DNA samples at scattering angle 90° are shown in Fig. 1. 

All of the DNA samples tested, including acetylated T4 DNA, reveal a sharp increase in 
the intensity accompanying the co-operative condensing of the DNA into a compact 
conformation. The transition range is determined between DSDMA X concentrations of 1.0 x 10"6 

M for DSDMA+ OH" and 1.15 x 10"6 M for DSDMA+ H2P04". Although the concentration 
difference between the DSDMA hydroxide and the phosphate is small and the transition range is 
broader for the phosphate, background scattering and total scattering intensity after condensation 

51 



are closely comparable as the T4 DNA collapses by a different mechanism in the presence of 
DSDMA phosphate. 

Q5 1,0 1,5 20 25 30 

Fig. 1 Normalized relative intensity of scattered light, (I -1^,0 / (Imax - IM**) vs. DSDMA X (X 
= OH", H2P04") concentrations at scattering angle of 90° (20 °C) for solutions of 1 uM DNA in 
standard buffer. 

Furthermore, there is no consideration of effects related to charge densities and possible non- 
homogenous distribution of charge density leading to long-range effects along the DNA helix. 
Fig.2 shows the dependence of the determined hydrodynamic radii, RH, obtained from SAXS 
experiments according to < RG

2
 > = < R2

H > / 6 of the T4 DNA upon addition of DSDMA X. We 
noticed three different areas where the T4 DNA changes conformation with surfactant 
concentration. 

—■— (DSOm'OH) 
—»—(DSDMA* t^PO,-) 

Fig. 2 < RH> of T4 DNA molecules vs. CDSDMA x (X = OFT, H2P04") added to a luM DNA 
solution in standard buffer at 20 °C. 

At DSDMAX concentrations below 0.5xlO"6 M to 0.9X10"6 M all DNA found to be in the coil 
state and no changes of the apparent size with increase of DSDMA X concentrations appear to 
occur. However, between 1.0 xlO"6 M to 1.8 xlO"6 DSDMA X only condensed (globular) T4 
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DNA are observed This particular region of DNA^DSDMA X complexes tend to be excluded 
from the bulk aqueous phase when raising the concentration of DNA. At DSDMA X 
concentrations above 2.5xlO"6 M, which is well above the CMC, an increase of L can be noticed 
with a transition region between CDSDMAX = (1.9-2.5) x 10"6 M. This phenomenon can be 
reconciled by the penetration of DSDMA cations inside the tightly packed DNA globules due to 
attraction of the surfactant with both the negative charges of the DNA chain and the interference 
with the base pairing of the C]8 chains as seen in CD-spectra. Furthermore, the aggregation in this 
region can be enhanced in the presence of additional DNA molecules which also results in an 
increase of the size of the globules and denser packing. This is also consistent with CD-spectra 
using different T DNAs having different GC and AT compositions. Single-chained surfactants 
having the equivalent chain length and the same head group show a very narrow transition region 
but magnitudes higher than CSUIf = 2.5x10"6M, and no additional uncoiling region which levels off 
at CDSDMAX = 2.8X10"

6
M. 

Calculation of Shape-Dependent Hydrodvnamic Dimensions of T4 DNA in the presence of 
DSDMA X. - QELS studies directly yield the diffusion coefficient, DT, of particles in solution. 
Table I lists the diffusion coefficients of all the condensed DNA species as well as the ones in the 
uncoiled (extended) state. 

Table 1 
Hydrodynamic Properties of T4 DNA at 90° Scattering Angle in the Presence of DSDMA X 
(X" = OH, H2PO4") at 20 °C. 

Conditions DT(x 10"' cmV'r' Outside Diameter of Toroids, 
(x 10"6 M) 0 (Ä) b.) 

OH" H2PO4" OH" H2P04" 
T 4 DNA   CDSDMA = 0.01 1.05 + 0.20 1.02 + 0.20 4150 + 50 4200 + 50 
T 4 DNA   CDSDMA = 0.57 1.15 + 0.25 1.25 ±0.20 3790 + 50 3700 ±50 
T 4 DNA   CDSDMA = 1.50 4.00 + 0.15 4.15 + 0.20 1240 + 50 955+25 
T 4 DNA   CDSDMA = 1.90 4.15 ±0.15 4.20 + 0.25 1050 + 25 785 ± 24 
T 4 DNA   CDSDMA = 2.50 3.95 + 0.20 4.25 + 0.25 1350 + 30 751 ±24 
T 4 DNA   CDSDMA = 3.00 2.25±0.25 4.40 + 0.30 1940 + 25 720 ± 20 
T 4 DNA, acetyl 

CDSDMA 
= 2.00 4.35 + 0.25 4.20 + 0.30 1075 + 25 784 ± 24 

T 4 DNA   CDSDMA = 3.50 2.01 +0.25 4.95 + 0.25 2100 + 35 650 ± 25 
T4DNA   CSPERMIDIW.: = 100 4.15 ±0.15 - 1240 + 42 - 
T4DNA" Crr.vB = 640 4 00 + 0.25 4.19 + 0.25 1250 + 50 1150 + 50 
""' QELS measurements;  ' according to eq. 1;c,) CTAB = cetyltrimethylammonium Bromide 

Since T4 DNA appears under the electron microscope as toroidal in shape [18], DT, the 
translational diffusion coefficient of the studied samples can be related to the outer diameter, o, of 
toroids according to eqn. 1 [15]: 

(1) DT =   2k°'T x ■{—) -(0.127A + 0.908) ' 
3^77(0+7) U/rJ v ' 

where i is the inner toroidal diameter, h = ( o + i)/ ( o - i), and r| is the viscosity of the solution. 
Applying i = 0(h = 1) rests on the assumption that DT is remarkable insensitive to i what has been 
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found in the present work. The outer diameter of the tori that diffuse with DT are listed in Table I 
also. The diameters calculated from eqn.l, vary from 4150 Ä to 1050 Ä for DSDMA OH or 
DSDMA H2PO4", respectively. 

The angular dependence of the diffusion coefficient under these saline conditions was 
minimal and random in all samples studied and reflects monodisperse suspensions and no 
interference with dust contamination. At DSDMA X concentrations above 3.9xlO"6 M 
perturbation of the spectra with time has been noticed since forming of DSDMA X unilamellar 
vesicles started to occur. This interfered with the T4 DNA because of intercalation of DNA by the 
DSDMA X vesicles in the form of a liposome-DNA complex which can be isolated and physically 
characterised revealing very different hydrodynamic parameters. Three major trends can be 
observed: (1) DNA condenses in the presence of monomeric DSDMA OH or DSDMA H2P04" 
almost at the same concentrations; (2) the diffusion coefficient of the T4 DNA increases with 
DSDMA concentration regardless of OH" or H2P04" counterions as long as the ionic strength is 
low or not significantly changed during the experiments. However, this is only true until a 
concentration of 2.0 x 10"* M of DSDMA X is maintained; (3) the tightening is again loosened at 
Csurf^ 3.0 x 10"* M or higher. The additional trend in uncondensing of T4 DNA is not observed in 
the presence of H2P04" as the counterion of DSDMA+. A similar trend is observed for the 
acetylated form of T DNA. The changes in magnitude either by RH or £H obtained from the 
translational diffusion coefficient, as well as of the outer toroidal diameter, o, before and after the 
transition, is found to be of the order of three and higher. Since the spatial density of DNA is in 
the coil state and quite low, £H is somewhat smaller than for the extended state of the coil because 
t,H holds only for nearly spherical molecules with relative high density. Comparisons of relative 
sizes of DNA with surfactant concentration are only meaningful if the samples have the same 
basic shape and are almost monomolecular. However, the low ionic strength and low DNA 
concentrations used provide conditions that minimize interchain interactions. To ensure that the 
observed figures are the results of changes in tightening of DNA, and not intermolecular 
arrangements, the DT values were measured at various DSDMA X concentrations in the 
transition region. For all cases DT slightly increased by = 8% as the transition progressed and 
leveled off at DSDMA X concentrations at which the complex reaction was complete. This is in 
accord with the view that the condensed T4 DNAaDSDMA X complex were loosely folded at 
the onset of the transition (Fig.l), but tightened up as DSDMA X concentration was increased. 
The reversibility of tightening along the transition curve was provided by incremental additions of 
NaCl or MgCl2 (used as an additional control for macromolecular collapse in the presence of 
DSDMA X). Furthermore, a comparison of the torus volume (Tab. I) to the total volume of 
hydrated DNA helix of diameter d = 25 A and length L = 55 urn yields 2.8 x 10"16 and 3.1 x 10"16 

cm, respectively, strongly suggesting that the observed torus only accommodate a single DNA. 

CONCLUSION 
The double-chained surfactant DSDMA X below its CMC exhibits a discrete transition 

between a coil and globular state at uM concentrations. This transition is reversible upon addition 
of NaCl or MgCl2 resulting in a sort of uncoiling of the condensed state. The preliminary results 
reveal that a double-chained cationic surfactant having "point charge" characteristics not only 
could cause tightening of DNA but also seems to exhibit great efficiency: It took less than one- 
tenth as much a single chain length or as spermidine to induce DNA condensation. The particles in 
the collapsed state show a drastically smaller hydrodynamic radii than in the presence of 
spermidine or CTAB, respectively. 
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ABSTRACT 

We present a new method for electrophoretic separation of DNA Ferrofluid Array 
Electrophoresis (FAE). The method uses a stabilized suspension of an hydrophobic 
ferrofluid in aqueous buffer as the separating medium. When this suspension is placed in 
a slab cell and submitted to a magnetic field perpendicular to the slab plane, it organizes 
into a regular array of columns with micron-sized spacing. DNA migrating in this maze 
leads to size-fractionation. Resolution of lambda phage (48.5 kbp) and T4 (140 kbp) 
DNA molecules in 30 mn is achieved. The motion of individual DNA molecules during 
FAE is observed using fluorescence videomicroscopy, and the molecular mechanisms 
responsible for separation are discussed in the light of recent computer simulations. 
During migration, large DNA molecules temporarily wrap around the impenetrable 
ferrofluid columns. They disengage by slippage, like a rope on a pulley, and the 
dependence of the disengagement time upon DNA size is responsible for the size- 
fractionation. 

1. INTRODUCTION 

Electrophoresis, which consists in separating charged object by subjecting them to an 
electric field in a solution or in a gel, is probably the most widely used separation method 
for biological molecules. Gel electrophoresis of DNA in particular, is at the basis of 
essential projects in molecular genetics, such as physical mapping of genes or sequencing 
of the genome, and numerous diagnostic applications. More generally, it appears as a 
necessary step in almost any molecular genetics protocol involving DNA. The separation 
of duplex DNA is very routinely performed in agarose gels within a few hours, for sizes 
up to about 20 kilobase-pairs (kbp), and with a resolution of a few percent. For larger 
sizes, separation is impossible (1). This behavior is now rather well understood, and 
predicted analytically in the frame of the biased reptation and fluctuations (BRF) model 
(2-4). Basically, the model represents the motion of the chain as a curvulinear slithering 
or « reptation » in an effective « tube » representing the sequence of gel pores explored 
by the chain. Because of electric bias, this tube may orient in the direction of the field, 
and the orientation (which depends on a rather subtle balance between brownian lateral 
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and longitudinal fluctuations of the DNA, and electric forces), renders the effective force 
on the migrating polyelectrolyte chain proportional to its length for chains larger than a 
critical size N*. N* is proportional to the inverse electrid field, so that the upper limit of 
separation decreases with increasing field. As a consequence, in a reasonable time, DNA 
larger than a few tens of kbp cannot be separated by constant field electrophoresis in 
gels. A more detailed insight of the molecular mechanisms at play in DNA gel 
electrophoresis was provided by numerical simulations using Langevin (5) or non-local 
Monte-Carlo dynamics (6,7), and fluorescence videomicroscopy of individual molecules 
(8,9). It was shown, in particular that DNA chains can undergo motions more complex 
than simple reptation, involving the creation and annihilation of loops or « hernias », and 
migration in continuously renewing ramified tubes (6). However, the main predictions of 
the BRF model, and in particular the saturation of the mobility with increasing molecular 
size and its connection with the tube orientation, were confirmed by these studies. The 
limitation of constant-field electropohresis was overcome in 1984, and separation up to 
several Mbp was made possible, thanks to the invention of pulsed-field gel 
electrophoresis (10). Several variants of this technique exist, but the general principle is 
to change the direction or the orientation of the field periodically. This way, since the 
characteristic time required by a chain to create an oriented tube in the gel (reorientation 
time) is size-dependent, only chains smaller than an certain size have the possibility to 
orient in the field. Thanks to the dependence of the mobility upon the orientation of this 
tube with respect to the field, then, the use of pulsed fiels leads to fractionation in a range 
of DNA sizes having a reorientation time comparable with the pulse time (11). There are, 
however, limitations to the application of this nice principle. In particular, it was 
recognized rather soon that, the larger are the chains one wants to separate, the weaker 
is the field that can be used: At a given field, bands corresponding to DNA above a 
critical size are « lost », whatever the pulse frequency, and this critical size decreases 
rapidly with increasing field. This phenomenon was first reported by Olson (12), and 
studied in more detail by Slater et al. and by our group (13,14). It was attributed to the 
irreversible trapping of DNA molecules in the gel. The detailed molecular mechanism of 
this trapping is not known, although we suggested it could be due to the « knotting » of 
DNA loops aroung the permanent fibers of the gel (14). Indeed, this trapping, and the 
breakage of DNA molecules it can induce, are the main reasons for the long duration of 
pulsed-field runs (typically one day for separations up to 2 kBp, and one week for 
separation up to about 6 Mbp). 

In the last few years, very efficient separations of DNA have been achieved by capillary 
electrophoresis, using polymer solutions as a sieving medium, and this field is 
progressing fast (see e.g. 15). Since polymer solutions present no permanent obstacle, 
one can expect that they would not be prone to DNA trapping as rigid or permanent 
gels. It has been observed, however, that solutions of large DNA molecules in liquid or 
viscoelastic medai tend to undergo aggregation when they are submitted to an electric 
field, which makes the separation of large DNA in solution very difficult (16). 

A rather different and innovative method for separating large DNA has been proposed 
by Volkmuth et al.: these authors have demonstrated that separation can be achieved in a 
channel containing a micron-sized array of posts, prepared from silicon using 
microlithography techniques. These planar arrays of obstacles have several advantages as 
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compared with gels: The pore topology is perfectly controlled, and it can be modified at 
will; pore sizes much larger than the largest pore size achievable in agarose gels, e.g. in 
the micron range, can be easily obtained. However, this technique also has some 
drawbacks: because of the limitations of the engraving and bonding technique, the 
channel must be very thin (typically a few times the width of the posts); the fabrication of 
these channels require high technology, is expensive and difficult to upgrade to very long 
channels; electroendosmosis and/or current leakage at the surface are difficult to control. 

The present article is the first report of a new separation method, called « ferrofluid 
array electrophoresis » (FAE), which combines several advantages of capillary 
electrophoresis in solution and in planar arrays of obstacles. The principle of the method 
is indeed very simple: it amounts to perform electrophoresis in an array of posts, as in the 
Wolkmuth-Austin approach (17). The major difference lies in the way the posts are 
made. In our case, they are obtained by the self-assembling properties of magnetic 
suspensions (ferrofluids) under the action of an electric field. This assembling is fully 
reversible, so the separation medium can be switched at will from liquid-like to gellike, 
making it suitable to protocols issued from CE. The paper is organized as follows. In the 
following « materials and methods » section, the experimental details are given, together 
with a brief recall of the self-assembling properties of ferrofluids useful for our present 
purpose. Examples of actual DNA separations and a discussion of separation 
mechnaisms are given in section 3 (results and discussion). Conclusions and perspectives 
are provided in section 4. 

2. MATERIALS AND METHODS. 

Ferrofluids are made by a suspension of magnetic particles in a fluid (18). Their 
magnetomechanic properties certainly put them among the most spectacular existing 
complex fluids, and are at the basis of various applications in fiels as varied as 
automobiles (variable-viscosity suspension fluids), computers (fluid seals) bioseparations 
or drug delivery. In the present approach, we use a suspension of a hydrophobic 
ferrofluid in an aqueous buffer, stabilized with surfactant. The ferrofluid itself is a 
dispersion of iron oxide particles (of typical size 10 nm) in oil. A monodisperse emulsion 
of this oxyde-containing oil in aqueous buffer, with droplet size of order 500 nm, is 
prepared as previously described (18). Each droplet contains numerous monodomain 
magnetic oxide grains, and behaves as a superparamagnetic object: when the suspension 
is placed in a slab-cell and submitted to a magnetic field perpendicular to the cell plane, 
the magnetic droplets develop a strong induced dipole and tend to align in « pearl- 
necklesses » parallel to the field. These chains of beads can extend on all the thickness of 
the cell, and form an array of« pillars ». Depending on parameters such as the 
concentration of the ferrofluid, the magnetic field, and the cell thickness, these chains can 
later on aggregate laterally to form thicker pillars. The dipole-dipole interaction between 
columns keep them at regular spacing (the thermodynamically stable state is a hexagonal 
2-D crystal, but some hysteresis in the interaction with the wall can lead to defects, and 
to a glass-like order). This behavior has been studied in detail (19), and it has been 
demonstrated that the interbead spacing follows a power law with cell thickness: 
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a oc kd° (1) 

The constant k depends on the details of the ferrofluid suspension, but the exponent is 
universal. This relationship allows to control the pore size. 

The ferrofluid used in the present study is prepared from Fe2C>3 grains with a typical 
size of 10 nm, with an oil/oxide ratio around 50% (g/g) (Rhone-Poulenc, France). To 
avoid electroosmosis, the original emulsifying surfactant (SDS) is exchanged with a non- 
ionic surfactant by repetitive washing with a 0.05% solution of Tergitol NP10 (Sigma, 
France) in water. The solution is finally supplemented by a stock solution of buffer in 
order to reach a final 0.5X TBE concentration (TRIS 45 mM, boric acid mM, EDTA 
1.25 mM, pH 8.3) 

The cell was a cross-type slab cell similar in principle with those used for 
« electropohresis-on-chip » (see e.g. 20 ), placed in the center of a Helmoltz coil. To 
improve field homogeneity along the separation channel, the latter was given the shape 
of a portion of circle, concentric with the Helmoltz coil. (fig. 1). 

Loading 
electrodes 

Separation 
electrodes 

Helmoltz coil 

Figure 1: schematic view of the separation cell. The channel is rectangular and enclosed 
between a thick to glass plate and a thin bottom coverslip, to allow visualization by 
epifluorescence on an inverted microscope, holes drilled in the top plate at the ends of 
the circular separation channel and linear injection channel play the role of loading wells 
for the ferrofluid and for the sample, and of electrode compartments. They are connected 
with siphons to equilibrate pressures and avoid gravitational flow (not shown) 
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In the present set of experiments, the cell thickness was of order 50 um,a nd the 
intercolumn spacing of order 5 urn. The cell was first entirely filled with the ferrofluid in 
the absence of any field, and the magnetic field was raised to a value of a few mTesla 
(this value is not critical provided it is sufficient to « anchor » the ferrofluid colums to the 
surface). The injection channel was then rinsed with pure buffer using a moderate 
pressure, and the DNA sample was placed at one extremity of this channel. The injection 
channel was uniformly filled with DNA by applying a potential drop between electrodes 
placed at its both ends. The field was then applied along the separation channel, allowing 
the injection of a finite volume of sample, defined by the width of the injection channel 
(20). The migration and deformation of individual DNA molecules (Lambda phage, 
Appligene), T2 (Sigma) or Saccharomyces Cerevisiae (SC) (Bio-Rad) labeled with 
YOYO-1, Molecular Probes) could be observed and registered using an inverted 
microsope (NIKON) equipped with a xlOO oil-immersion objective, an intensified CCD 
camera (Hammamatsu) and a VCR. Simultaneous observation of DNA and ferrofluid 
columns was made possible by a combination of epifluorescence and transmission 
microscopy. Quantitative detection of electrophoregrams was performed by on-line 
transfer and integration of the video signal to a workstation. 

3 RESULTS AND DISCUSSION 

Upon visual observation, the first important point is that DNA molecules migrate in a 
manner qualitatively very similar to the one reported for microlithographic arrays: they 
migrate in the space between the ferrofluid colums, without evidence of adsorption or 
attractive interaction. The smallest DNA essentially avoid the posts, and their eventual 
collisions with them most often yield little or no observable stretching of the molecules 
(fig. 2a). The collision of larger DNA such as T2 (140 kbp) and the chromosomes of SC 
(ranging from 250 to 2000 kbp), often lead to a very different behavior (2b): different 
parts of the molecule slide along the post on the two different sides, leading to strongly 
extended U or J-shapes, with the bend located around the ferrofluid column. The 
molecule ultimately disengages by slippage around the post, and resumes progression 
downfield. Molecules of intermediate size, such as T2, often have time to relax partially 
before encountering a new post. This behavior is consistent with the results of computer 
simulations by Slater et al. (21), Duke et al. (22) and Yevick et al. (23), who simulated 
the interaction, entangling and undwinding of long polyelectrolytes with immobile posts. 
Larger molecules, in the Mb range, stretch on a length of several hundreds of microns, 
much longer than the distance between posts (fig. 2c). They never relax completely, and 
tend to hang around several posts simultaneously, and adopt conformations rather similar 
with the ones observed for constant-field migration in agarose gels, and depicted as a 
« reptation in a ramified tube » (6). When a polydisperse sample, such as the size 
standard containing all the chromosomes of SC, is injected, and the cell is observed at a 
fixed distance ( 5 cm) from the injection point, it is clear from visual observation that 
smaller molecules pass first, and that the size of the molecules reaching the observation 
point increases with time, suggesting a size fractionation effect. 
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Figure 2: view of the separation channel at 1 cm from the injection cross, at different 
times following the injection of a polydisperse SC sample (6 mn (2a, top previous page), 
10 mn (2b, bottom previous page) and 14 mn (2c, above)) The DNA is prestained with 
YOYO, and the electric field is 20 V/cm 
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To be more quantitative, we recorded the integrated full-frame light intensity as a 
function of time. Within an additive constant, this intensity is proportional to the total 
quantity of DNA passing in front of the detector at a given time. This mode is equivalent 
to this used in capillary electrophoresis. Typical results are shown in fig. 3. 

15       30       25       30 

(minutes) 
15       20       25       30       35 

(minutes ) 

—r- 
40 

Figure 3: electrophoregrams following the injection of Lambda-phage (48.5 kbp) alone 
(3 a, left) and of a mixture of lambda phage and T4 (140 kbp) (3b, right), obtained 5 cm 
downfield from the injection cross. 

When only lambda-phage DNA is injected(3a), two peaks are observed. We attribute the 
first peak to degradation products (i.e. smaller DNA): In these experiments, in contrast 
with e.g. agarose gels, the separating medium is very « open », and the migration of 
DNA molecules with a radius of gyration smaller than the pore is only weakly slowed 
down. All small molecules tend to achieve the same velocity, which is the free-liquid 
mobility. Therefore, all the broken molecules that tend to yield a fast «smear » in agarose 
gels, because they are far from their limiting mobility and retain a size fractionation, tent 
to collapse in a « compression band » ahead of the intact molecules, which is the 
signature of the free mobility (indeed, the position of this peaks corresponds to a mobility 
of order 2 m2/V/s, which has the right order of magnitude as compared with the 
commonly accepted free mobility of DNA. When T2 DNA (140 kbp) is co-injected with 
lambda, a third peak appears (fig. 3b), indicating size-fractionation. This result is 
consistent with the predictions of Yevick et al. (23). On the basis of semi-empirical 
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arguments, and information drawn from the simulations, the latter authors predicted an 
expression for the mobility in constant field (relative to the free liquid mobility): 

li/\i0=\-BN>n       (2) 

Where B is a constant depending on the geometric characteristics of the arrangement of 
posts. This prediction is not quantitatively correct, because the authors neglected 
important hydrodynamic interactions (24), and in any case it cannot stand for arbitrary 
values of N (since it leads to negative mobilites for N large). However, the main 
qualitative prediction, i.e the fact that the interaction of molecules with individual posts 
can yield size-fractionation in a limited range of sizes, seems in agreement with our 
observations. Indeed, we observed that the resolution between lambda and T2 is not very 
good in our experiments. In the present setup, we were also not able to resolve the 13 
bands of SC, which tend to provide an unresolved or poorly resolved bunch of peaks 
piling up to a second « compression band » at the end of the separation domain (we 
believe this compression is similar to the one encountered in constant-field gel 
electrophoresis, and related with the independence of DNA alignment in the direction of 
the field upon the molecular size). 

4. CONCLUSIONS AND PERSPECTIVES: 

We have demonstrated for the first time the possibility of using ferrofluid arrays self- 
assembled under a magnetic field, as a separation matrix for electrophoresis. The 
experiments presented here are still preliminary, and the experimental setup is not fully 
optimized. In particular, it should be possible to increase significantly the magnetic field, 
leading to stronger ferrofluid columns, and permitting in turn the use of larger electric 
field strengths. The system as it is, however, was succesfully applied to the separation of 
large duplex DNA molecules, and molecules up to 140 kbp were separated in constant 
field within about 30 mn. In conventional gels, such a separation is impossible in constant 
field, and even in pulsed fields it requires several hours. This improvement is due mainly 
to the larger spacing between obstacles, which leads to a larger mobility and shifts the 
compression band towards larger sizes. The molecular mechanisms of separation, as can 
be infered from direct observations by videomicroscopy, qualitatively resemble those 
observed in gels and in microlithographic arrays of posts, although with boundaries 
between regimes shifted to larger molecular sizes. In particular, one recovers the very 
general feature, of a strong stretching and aligment of large molecules in the direction of 
the field. This suggests that much better separation should be obtained with pulsed fields. 
Work is in progress in this direction. The second important advantage of ferrofluids as 
compared with gels or lithographic arrays, is that the network of obstacles can be 
destroyed and reformed at will by switching the magnetic field on and off. In the absence 
of magnetic field, the suspension has a viscosity of only a few centipoises, and it can be 
manipulated very easily. Therefore, many advantages of capillary electrophoresis, such as 
the possibility to replace automatically the separation medium between each run, and to 
« clean » the separation channel, can be transposed to this new approach with rather 
simple technical modifications. Also, the ferrofluid droplets can be functionalized, in 
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order to induce tailored interactions of analytes with the obstacles. In this case, the 
ferrofluid would play the role of a « solid phase », as e.g. in electrochromatography. For 
these reasons, we believe that the method of ferrofluid array electrophoresis may find 
various domains of application in the future. 
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DNA END-TO-END DISTANCE CHANGE DUE TO DIVALENT COUNTERION 
CONDENSATION STUDIED BY PULSE GEL ELECTROPHORESIS 

ANZHI Z. LI, HAIYAN HUANG, KENNETH A. MARX* 
Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854 

ABSTRACT 

The conformation change of DNA fragments due to divalent counterion condensation onto DNA 
was investigated by pulse gel electrophoresis, and interpreted by gel models (Reptation and 
Henry model) and Manning's counterion condensation theory. The measured mobility reductions 
u/u0 of A-DNA-Hind HI fragments, ranging from 23.13 to 2.027 kilobase pairs, due to interaction 
with divalent cation Mg24" (1-400 uM), and Ca2+(0-40 |iM) in tris-borate buffer were well fit by 
Manning's Counterion Condensation (CC) theory. We observed the normalized mobility 
reduction to be shifted by a small amount A(u/u0) relative to the CC prediction value. A(u/u0) is 
a function of DNA length, and the ion environment (divalent concentration C2 and ionic 
strength). The 'shift' phenomena only occurred close to where C2 began dominating the 
counterion binding, a condition described by the monovalent/divalent cation isocompetition 
point. Combining our observation with theoretical considerations, we conclude that the divalent 
counterion condensation changes the DNA fragments' conformation, resulting in an end-to-end 
distance decrease which is molecular weight dependent. The effect was enhanced by an increase 
of divalent ion concentration and a decrease of the ionic strength. 

INTRODUCTION 

There exists significant potential for the use of DNA in biomaterial applications. A requirement 
for its rational use is detailed knowledge of the effect of its environment on its structure and 
dynamic properties. Our focus in this study is on the interaction of divalent metal cations with 
DNA in aqueous buffer is to understand the nature of molecular weight effects on the polyion- 
counterion binding. In other words, how the conformation change of DNA fragments related to 
the divalent counterion condensation onto DNA? 

Pulse gel electrophoresis was employed to measure the mobility reduction of DNA 
fragments with excess divalent cations Mg2"1" or Ca2+ competing with tris+and Na+ in TB buffer. 
When the Henry gel model [1] and a simple ionic strength constant assumption applies [2-3], the 
mobility reduction u/u.0 reflects the effective residual charge fraction Q/Q0 where ii0 and Q0 refer 
to the controls (without excess multivalent concentration). In our previous studies [3-4], in the 
presence of relatively small concentrations of trivalent cations Co(NH3)6

3+, spermidine3+, or 
divalent cation Mg2*, the measured normalized mobility reductions expressed as effective 
residual charge fractions were found to be well fit with calculated predictions from Manning's 
Counterion Condensation (CC) theory [5-6]. In fact, the data is well fit by CC theory to a first 
approximation, when the distribution of u7ii0 values with DNA size is ignored. All the experi- 
mental data [3-4] showed a distribution of normalized mobility u/u0, or charge neutralization 
fraction 6 related to DNA size from 23.13 to 2.07 kbp while the CC theory, containing no size 
dependence, predicts only provide a single value. All the measurements showed consistent 
regularities, the larger the fragment size, the lower the value of mobility reduction, the higher the 
charge neutralization. 

* Author for correspondence 
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We applied the Reptation model [7-8] assuming that C, the friction coefficient per unit 
DNA length, which depends on temperature, gel concentration, and viscosity, remains constant 
when every experimental condition is the same except for small additions of divalent cations, 
which does not alter the ionic strength significantly. Then we have: 

u/H„=Q/Q0(<rh
2>/<rh0

2>) (1) 

where <rh
2> refers to the end-to-end distance of the DNA chain in excess divalent cation, and 

<rh0
2> refers to the control parameter without excess divalent cations. The ratio <rh

2> / <rh0
2> 

then represents a quantitation of conformation change. In Equation (1), the ratio of effective 
charge fraction of pöly ion Q/Q0 is independent of molecular weight [7] and only depends on 
binding competition conditions. If we apply Eqn.(l) to two DNA fragments, while keeping the 
ion environment (divalent concentration C2 and ionic strength) the same, then we have: 

(u/u0) „ / Oi/Ho) a = ( <rh
2> / <rh0

2>) „ / ( <rh
2> / <rh0

2>) a (2) 

Eqn.(2) creates a connection between mobility reduction measurements and conformation change 
prediction, which is related to DNA length since <rh

2> is a function of DNA length. Employing 
this equation we interpreted the molecular weight effect on counterion condensation binding in 
terms of <rh

2>. The observed normalized mobility shifts A(u/u.0) were investigated as a function 
of DNA length, divalent concentration, and the ionic strength. 

EXPERIMENT AND COMPUTATION 

Experimental Fragments of A-DNA-Hind III (23.130, 9.416, 6.557, 4.361, 2.322, and 2.027 
kbp) were purchased from New England Biolabs, Inc. A 0.8% mini thin agarose gel (1 mm thick) 
was used in all our pulse field electrophoresis experiments. Tris-borate-EDTA (TBE) (Bio-Rad, 
CA) was the electrophoresis buffer. In any single experiment, divalent cations were added during 
buffer dilution to the designed final ligand concentration before gel electrophoresis. The stock 
solution (445 mM Tris-borate and 0.1 mM EDTA: 5 X) was diluted to 0.25 X and 0.50X when 
Mg2+ was the divalent cation, and was diluted to 0.15 X, 0.45 X, 0.60 X, and 0.75 X when Ca2+ 

was the divalent cation. The concentration of Mg2+ was varied from 0 to 400 uM, while Ca2+ 

was varied from 0 to 40 uM. The pulse field (magnitude 10 v/cm) was set at the ratio of 1 to 3 (2 
s on and 6 s off). Total run time was about 4 h and the temperature was controlled at 20 °C for 
Ca2+, and 21.5 °C for Mg2+. 

Computational To apply Manning's two variable theory [5-6], we first need to have the ionic 
strength and monovalent cation concentration C, in which DNA was electrophoresed. From 
known values of pH, buffer concentration, temperature, and pKa, calculations were carried out to 
obtain effective concentrations for each species in the buffer based on the Henderson- 
Hasselbalch equation [9], where the pKa value was corrected iteratively according to the ionic 
strength dependence to the pK,' using the Davies equation [9]. In the case of DNA-Mg24 

interaction: (1) 0.25X TB buffer, the ionic strength (IS.) was calculated to be 8.67 mM and C, is 
8.65 mM; (2) 0.50X TB buffer, I.S. is 17.70 mM and C, is 17.67 mM. In the case of DNA-Ca2+ 

interaction: the I.S. is: 4.84, 14.97, 20.18, and 25.43 mM, and C, is 4.83, 14.95, 20.14, and 25.38 
mM corresponding to the 0.15 X, 0.45 X, 0.60 X, and 0.75 X buffer concentrations. For 
competition binding calculations, we first calculate the Debye-Huckel screening parameter K 

based on the known ionic strength, then calculate the bound volumes Vpl and Vp2 corresponding 
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to the valences Z=l, 2 [3-4]. We next employ a program written in the mathematica language[10] 
to solve the simultaneous Eqn.(3) and (4) iteratively, where the charge density parameter C = 4.2 
and average charge spacing b = 1.7 Ä for DNA, and obtain the charge neutralization fractions 8,, 
8,, and 8. 

and 
1 + In (1000 6,/C,Vpl) = -2^(1 - 8, - 28,) In (1 - e""b) (3) 

In (02/ C2) = In (V-2 / lOOOe) + 2 In (1000 8,e / C,Vpl) (4) 

The assumption u./u0 = Q/Q0 where Q0 = 0.24 [3] and equation Q = 1- (8, + 2 82) were used to 
convert the mobility reduction to charge binding fraction or vice versa when comparing the 
measured data with the CC prediction. 

When studying the conformation change due to counterion binding for DNA fragments 
with different size, Eqn.(3) and (4) were employed. The mobility reduction of DNA fragments fn 

(n = 1, 2, 3, 4, 5 corresponding to the lengths 23.13, 9.416, 6.557, 4.361, and 2.322 kbp) were 
normalized by the mobility reduction of fragment f6 (2.027 kbp): (\i/]x0)b/ (|i/|i0)f);= ( <rh

2> / 
<rho2>) fn I ( <rh2> / <rho2>) f6- After processing the measured mobilities in ratio form, we have the 
ratio of normalized conformation change expressed as normalized (<rh

2> / <rh0
2>) b, which 

indicate the end-to-end distance reduced ratio for fragment f„ over fragment f6. 

RESULTS AND DISCUSSION 

The counterion binding of divalent cations to DNA is reflected directly in the mobility reduction 
since each DNA fragment's charge density was lowered. Figure 1 and Figure 2 present 
normalized mobility vs divalent Mg2+ and Ca2+ concentration at different ionic strengths. The 
agreement between experimental data (symbols) and CC prediction (solid line, u/u0 converted 
from 8) are excellent. Both Figures show that higher divalent cation concentration results in more 
binding and higher ionic strength results in less binding. Higher ionic strength corresponds to a 
smaller K resulting in a lower binding fraction. Also a consistent DNA length effect on u/|i0 was 
observed. 

Mga+ Cone 
100     150 

Cone.  (ßM) 
200 

Fig.l Normalized mobility u/u„ of i-DNA-Hind HI fragments vs excess Mg2* concentration. 
The experimental data (symbols) were fit by CC prediction (solid line). 

69 



"I""!""!""!11 

(B)  0.45 TB I 

ilmilniilmilii 

111111111j11111111111111 

(C)  0.60  TB 

■ IIHIIHUIMHIIM 

NI>|""I""I""I"'L 

(D) 0.75 TB I 

'I'"'!""!1 

0    10  20  30  40 50    0    10  20  30  40 50    0    10  20  30  40 50 
Caz+ Cone.  (/iM)     Ca2+ Cone.  (fj.M)     Ca2+ Cone.  (fj.M)    Ca2+  Cone.  (^M) 

Fig.2 Normalized mobility u/u„ of X-DNA-Hind in fragments vs excess Ca2+ concentration. 
The experimental data (symbols) were fit by CC theory (solid line). 
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Fig.3 Normalized <rh
2> / <rM

2> vs Mg2+ concentration. The lines are only for eye guidance 

Figure 3 shows the normalized <rh
2> / <rh0

2> vs Mg2"1" concentration for different ionic strengths. 
The DNA length effect on the conformation change is shown clearly. The larger the 
DNA length, the lower the normalized <rh

2>/<rh0
2>. The above effect was enhanced by increasing 

divalent Mg2* concentration, and decreasing the ionic strength because the end-to-end distance 
decrease is due to counterion binding and is eventually governed by ionic strength and C2. 

Figure 4 and Figure 5 show the DNA length effect on the conformation change from a 
different perspective. The log (normalized <rh

2>/<rh0
2>) vs log(l/N) is displayed under different 

ionic strength conditions where N is the DNA length. The larger the DNA size, the lower the 
normalized <rh

2> / <rh0
2>, and the same conclusion applies for the higher C2. The least DNA size 

effect, or the least A (JJ./JJ.0) 'shift' was observed in Fig.5 (B) when the ionic strength is relatively 
high (0.75 TB). Linear fitting resulted in reasonably good fits to all the curves. 
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Fig.5 Logarithm of normalized <rh
2> / <rh0

2> vs logarithm 1/N. Linear fitting (solid lines). 

we next considered how the ionic strength governs the 'shift' phenomena. Table I reveal 
the 'shift' related to C2 and ionic strength. The relative shift A(U/U0)/(U/LL0) was calculated by 
subtracting the u/u0 of the largest fragment (f,) from that of the smallest (f6) and normalizing the 
difference by (u/Ho) of f6. A(u/|x0)/(u/Li0) was enhanced by increasing C2 and decreasing I.S. 
■When I.S. = 25.43 mM (0.75X TB), the relative shift was close to 0.01 and can be ignored. The 
'shift' phenomena only occurred when C2 is dominating the competition binding, which is related 
to a parameter we term the isocompetition point. The isocompetition point (IP) is a calculated 
value based on counterion condensation theory where the DNA binding fraction is equal from 
monovalent as well from divalent cations. Table 1 (bottom row) shows IP corresponding to each 
ionic strengths. For example, when I.S. = 4.84 mM, which is larger than its IP, a 'shift' could be 
observed and for I.S. = 25.43 mM, which is much smaller than its IP, the 'shift' can be ignored. 
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Table I Shift & Isocompetition point 
A(M/m)/(n/m) 

Ca2+ Cone. 
(uM) 

Ionic Strength (mM) 

25.43 20.18 14.97 4.84 

10 0.01 0.029 0.029 0.039 

20 0.009 0.037 0.039 0.048 

40 0.014 0.049 0.084 0.093 

I.S. 
(mM) 

Ionic Strength (mM) 

25.43 20.18 14.97 4.84 

Isoeompet. 
Point (uM) 

111.3 69.83 38.56 4.06 

*Isocompetition point where the DNA binding fraction is equal from monovalent and divalent cations. 

CONCLUSION 

The conformation change of DNA fragments due to divalent counterion condensation onto DNA 
was investigated by pulse gel electrophoresis. The normalized mobility was fit well by Manning's 
CC theory and a 'shift' phenomena, the mobility reduction p./u0 shifted by a small amount 
A()i/|i0) relative to the u/u0 of the smallest DNA fragment, was observed. Based on the Reptation 
model and CC theory, the parameter <rh

2> / <rh0
2>) f„ / ( <rh

2> / <rh0
2>) „, where f0 is the selected 

reference DNA fragment, and fn refers to any length fragment, was introduced to describe the 
conformation change for different DNA lengths due to counterion binding. We found that both 
the normalized (<rh

2> / <rh0
2>) h and shift A(u/u„) are functions of DNA length, divalent cation 

concentration C2 and ionic strength, The 'shift' phenomena only occurred close to where C2 began 
dominating the counterion binding (described by the monovalent /divalent cation isocompetition 
point), which is ionic strength dependent. We conclude that the divalent counterion condensa- 
tion changed the DNA fragments conformation, resulting in an end-to-end distance decrease 
which is molecular weight dependent. The effect was enhanced by an increase of divalent cation 
concentration and a decrease of the ionic strength. 
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Abstract 
Alignment algorithms are commonly used to detect and quantify similarities between DNA 
sequences. We study these algorithms in the framework of a recent theory viewing similarity 
detection as a geometrical critical phenomenon of directed random walks. We show that 
the roughness of these random walks governs the fidelity of an alignment, i.e., its ability to 
capture the correlations between the sequences compared. Criteria for the optimization of 
alignment algorithms emerge from this theory. 

Introduction 
The explosion of genetic information has made statistical sequence alignment an indispens- 
able tool in molecular biology [1]. The identity of new genes and relationships about known 
genes are routinely analyzed by aligning sequences on a computer. This underlies, for ex- 
ample, the retrieval of ancestorial relationships in the history of evolution. 

In a typical algorithm [2, 3, 4], each alignment of sequences is assigned a score specified by 
a set of parameters. Maximization of this score is then used to select the optimal alignment, 
which depends, of course, strongly on the parameters used to define the score. What are 
then optimal alignment parameters making the algorithm most sensitive to the inherited 
similarities between the sequences? This important problem has so far been solved mostly 
by trial and error, despite some recent efforts to establish a more solid empirical footing [5, 6]. 

In this paper, we study the parameter optimization problem using a recent analytical 
approach to sequence alignment introduced by two of us [7]. The approach is based on a ge- 
ometrical formulation of sequence alignment [2] and focuses on the morphology of alignment 
paths. This provides a fruitful link (see also Ref. [8]) to various well-studied problems in the 
statistical physics of critical phenomena. 

In a divergent evolution process, similarities between sequences stem from a common 
ancestor sequence and are gradually destroyed in the course of time. We use a simplified 
model of evolution: Sequences are altered by a stochastic process of local substitutions, 
insertions, and deletions. In this model, the mutual similarities between daughter sequences 
inherited from their common ancestor can be identified uniquely. Hence, we can quantify in 
an unambiguous way the fidelity of an alignment algorithm [7], i.e., its ability to retrieve the 
inherited similarities from the knowledge of the daughter sequences alone. Then we analyze 
the dependence of the fidelity on the evolution parameters and the alignment parameters. 
Maximizing the fidelity defines optimal alignment parameters for given evolution parameters. 
Conversely, unknown evolution parameters can be reconstructed from alignment data. 

In the sequel, we introduce the evolution model and the alignment algorithm used in this 
work, derive geometrical properties of alignment paths, and discuss how they govern the 
alignment fidelity and its parameter dependence. In particular, optimal alignment param- 
eters are seen to follow from a simple geometric criterion. Further details of our work are 
reported in a forthcoming publication [9]. 
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Evolution Model and Alignment Algorithm 

The simplified stochastic evolution process used in this paper generates two daughter se- 
quences V and V from a common ancestor sequence A = {Ak} taken to be a random 
sequence of length N ^$> 1. Each element Ak is with probability 1/4 one of the four different 
nucleotides A, C, G, T; we neglect any correlations within the ancestor sequence. A daughter 
sequence V is generated according to the following rules [7] (see also [10, 11]): (a) Each 
element Ak is deleted with probability p/2. (b) Each element Ak is substituted with proba- 
bility (1 — p/2)p by a randomly chosen nucleotide. (c) If an element Ak is not deleted, an 
additional random nucleotide is inserted immediately to its right with probability p/2. If a 
random element has been inserted, another random nucleotide is inserted immediately to its 
right with probability p/2, etc. (Notice that this algorithm conserves the average length of 
the sequence.) 

An ancestor element Ak that is conserved in the evolution process (i.e., not deleted or 
substituted at any point) gets shifted to a position i(k) due to the insertions and deletions 
of other elements, and appears as daughter element Vi(k)- Since the daughter sequences 
V and V are generated by independent realizations of the evolution process, a fraction 
(1 — p/2)2(l — p)2 of the ancestor sequence elements is conserved in V and V. Each such 
element At defines a unique pair of daughter elements (V^k) = Vj(k)) called a native pair. 

Alignment algorithms are designed to find the native pairs from the knowledge of the 
daughter sequences V and V alone. A global alignment of the two sequences is defined 
as an ordered set of pairings (Vi,V'j) and of gaps (£>,,-) and (-,V'j), each letter V{ and 
V'j belonging to exactly one pairing or gap (see Fig. 1 (a,b)) [2]. (It is clear that gaps are 
necessary to account for the shifts due to insertions and deletions and to allow the native 
pairs to be matched.) We define the fidelity of an alignment as the fraction of native pairs 
(VijV'j) that are correctly matched. 

In this paper, we use the simplest version of the classic Needleman-Wunsch algorithm [2] 
to align the sequences V and V. An alignment is assigned a score 

£ = VZN+-^=N_-^Ng (1) 
v3 

given in terms of its total number JV+ of matches (Vt = V'j), the total number iV_ of 
mismatches (V( =fi V'j), and the total number Ng of gaps. The scoring function (1) has a 
single adjustable parameter 7, the effective gap penalty. Without loss of generality, the score 
contributions of matches and mismatches have been chosen in such a way that a pairing of two 
independent random elements has the average score 0 and the score variance 1. Maximizing 
the total score E defines the optimal alignment of the sequences V and V for a given value 
of 7. (From a physicist's point of view, —E is an energy function that has to be minimized.) 

The following geometrical representation of global alignment will prove very useful. 
Fig. 1(b) shows a two-dimensional grid whose cells are labeled by the index pair (i,j). 
A given alignment of V and V uniquely defines a directed path on the grid [2]: A diagonal 
bond in cell (i,j) represents the pairing of elements (X>;,2V). A horizontal bond between 
cells (i,j) and (i, j + 1) represents a gap (Vt, -) located on sequence V between the elements 
V'j and V'j+1. Similarly, a vertical bond between cells (i,j) and (i + l,j) represents a gap 
located on sequence V between the elements Vi and Vi+r. Using the rotated coordinates 
r = i — j and t = i + j, this alignment path is described by a single-valued function r(t) 
measuring its displacement from the diagonal of the alignment grid. The path of the optimal 
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FIGURE 1: (a) One possible alignment of the sequences V = {G,T,A,C,T,G,A,T,G} and 
V = {G, A, G,T, A, G,T,T, G}; elements conserved from a common ancestor are shown in ital- 
ics. The alignment has six matches (solid lines), two mismatches (dotted lines), and two gaps, 
(b) Representation on the alignment grid. Horizontal and vertical bonds represent gaps, solid (dot- 
ted) diagonal bonds represent matches (mismatches). Matches corresponding to native pairs are 
marked with a circle. The directed path r(t) corresponding to the alignment in (a) is shown as a 
thick line. Its fidelity is 3/5. (c) The mean square displacement Aro(i) of the optimal alignment 
path, obtained from a sample of 200 mutually uncorrelated sequence pairs for each value of 7. 

alignment is denoted by r0(t). The set of native pairs resulting from a given evolutionary 
history corresponds to a set of special diagonal bonds marked by circles in Fig. 1(b). The 
fidelity of an alignment is the fraction of native bonds that lie on the alignment path r(t). 
Any shortest trajectory through all native bonds defines again a directed path R(t) on the 
alignment grid called target path. 

Alignment Statistics and Roughness 

The representation on the alignment grid enables us to express the statistics of the evolution 
process and of sequence alignments in terms of displacement fluctuations measuring the 
roughness of the directed paths R(t) and ro(t). 

Since insertions and deletions are assumed to be independent of each other, the target 
path R(t) is just a free random walk on the alignment grid; its mean square displacement 

(AR{h - t2)f = {R{h) - R{t2))
2 is given by 

AÄ(t) = (p|t|) 1/2 
(2) 

Here and throughout the paper, an overbar is used to denote the average over an ensemble 
of evolution processes for given p and p. 

At first glance, the optimal alignment path may appear to be a free random walk as 
well. However, this is generally not the case. Consider first the optimal alignment of a pair 
of random sequences with no mutual correlations (i.e., in the limit p = 1). As pointed out 

in Ref. [7], the mean square displacement (Ar0(ti — t2))
2 = (T"O(*I) — fofe))2 °f tne optimal 

alignment path follows the scaling law 

Ar0(i) = A(j) \t 12/3 (3) 
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in the asymptotic regime \t\ > A~3^(y), describing a correlated random walk.1 As expected 
from the theory of critical phenomena, the entire parameter dependence of the displacement 
Ar0(t) is contained in the amplitude ^(7). The exponent 2/3 of the power law is universal 
(i.e., independent of 7), just as the exponent 1/2 is universal for free random walks. We 
have verified this numerically (Fig. 1(c)) and have determined the amplitude function A(y) 
(for details, see [9]). Over the relevant range, A(y) is a monotonically decreasing function 
of 7, with A(j) oc 7~4/3 in the biologically relevant regime 7 > 1. 

We can compare the roughness of the free random walk R(t) and the correlated random 
walk r0(t). Equating the rms. displacements (2) and (3) defines the roughness matching scales 

*(7.P) = P3M6M , f(7,p) = ?IA\j) . (4) 
For \t\ < i(j,p), the displacement of R(t) exceeds that of r0(t). For \t\ > i(j,p), the 
displacement of the alignment path becomes dominant since the cost of gaps is outweighed 
by the gain in score from regions of the grid with an excess number of random matches. 

Roughness Matching and Fidelity 

For daughter sequences with nonvanishing mutual correlations (i.e., for p < 1), the statistics 
of matches and mismatches on the alignment grid differs from the case of uncorrelated 
sequences: along the target path R(t), there are U(p,p) = (1 — p)2(l — p/2)2 extra matches 
per unit of t due to the native pairs. The optimal alignment path contains a finite fraction T 
of these extra matches, thereby increasing its score. Hence, it has no longer the displacement 
(3) and remains confined to the vicinity of the target path R(t). The confinement length rc is 
defined by the relative displacement of the two paths, r2(j,p,p) = (r0(t) — R(t))2. Clearly, 
the average fidelity T decreases with increasing rc. A rough estimate of the fidelity is just 
T ~ l/rc, but there are corrections to this relation [9]. 

The behavior of the fidelity is well established for an evolution process without insertions 
and deletions (p = 0) [7]. In this limit, T is found to be a monotonically increasing function 
of 7, reaching its maximum T* = 1 for 7 —> 00. This is not surprising since there is no need 
for any gaps in an alignment if the evolution process has no insertions and deletions. 

For small values of T, the fidelity has the asymptotic form T ~ (1 + x) exp(—x), where 
x = C(j)/U(p, 0) and C(j) ~ A3/* is another amplitude function. This form is supported 
by our numerics [9]. For U —¥ 0, the fidelity approaches zero and the confinement length rc 

diverges. This singularity marks a continuous phase transition at U = 0, which we call the 
detectability transition. Positive correlations between sequences (U > 0) are recovered with 
a finite fidelity ^(7, U), while anticorrelations (U < 0) cannot be detected (i.e., T = 0). For 
the alignment path r0(4), this is a critical (de-)localization transition2 between the confined 
regime (rc < 00) for U > 0 and the regime of correlated displacement fluctuations (3) for 
U <0. 

'This class of random walks is in fact well known to physicists as directed polymers in a random 
medium ( [12], see also [13] and references therein). Perhaps the most prominent example occurs 
in the theory of magnetic superconductors. If these materials are placed into a magnetic field, they 
develop tubular regions of normal magnetic conductance. These flux lines are directed parallel to 
the applied field (the t direction) and can be described by a displacement vector r((). In addition, 
there is often a distribution of point impurities. These act on the flux lines just like a random 
distribution of matches and mismatches on the alignment grid, causing large displacements of the 
lowest-energy path ro(t). 

2The properties of this phase transition are known from the physics of a magnetic flux line 
interacting with an attractive linear defect R(t) = 0 [14, 15]. 
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FIGURE 2: (a) The average alignment fidelity J-(T,P,P) obtained from a sample of 100 sequence 
pairs (lines 1-5), and the inverse roughness matching scale f~l(i;p) (lines l'-3T) for several values 
of p and p. The curves belonging to the same value of p are shown in the same line style (solid: 
p = 0.2, dotted: p = 0.1, dashed: p = 0.05). The maximum of a fidelity curve is close to its 
intersection point with the roughness matching curve for the same value of p. (b-d) The optimal 
alignment path ra(t) (thin line) for the same sequence pair and the same target path R(t) (thick 
line) at three different values of 7: (b) in the random fluctuation regime, (c) at the optimal value 
7*(p,p), and (d) in the shortcut regime. 

For finite insertion/deletion rate p, it is clear that T should decrease to zero for sufficiently 
large values of 7, since a high gap penalty prevents the alignment path from following 
a fluctuating target path R(t). The behavior of the fidelity !F('Y;p,p) is rather complex. 
Fig. 2(a) shows the dependence of T on 7 for several values of p and p. Unlike for p = 0, 
these curves have their (single) maximum at a finite value 7*(p,p). Alignment patterns for 
7 < 7*(p,p) and 7 > J*{p,p) are clearly distinguished by the roughness of the optimal 
path r0(t), as one recognizes from the examples of Fig. 2(b-d): (b) For 7 < 7*(p,p), the 
displacement fluctuations of r0(i) exceed those of the target path R(t). This can be expressed 
by the relation rc > f with f(-y,p) given by Eq. (4). We call this regime of 7 the random 
fluctuation regime, (c) For 7 = 7*(p,p), the displacement fluctuations of boths paths are 
seen to be of the same size, i.e., rc ~ f. (d) In the shortcut regime for 7 > 7*(p,p), the 
dominant fluctuations are those of the target path, while the alignment path r0(t) has large 
straight patches with negligible intrinsic roughness. 

One can show that in the asymptotic random fluctuation regime and shortcut regime, 
the fidelity is a monotonically increasing (decreasing) function of 7, respectively. Hence, the 
fidelity maximum T* can be estimated by the roughness matching condition 

F: V.p) (5) 

As one verifies in Fig. 2(a), the maxima of the curves T(T:P,P) are indeed close to the 
intersection points with the curves f_1(7;p) given by Eq. (4) with A(~/) taken from Fig. 1(b). 
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This geometric picture of alignment can be extended into a quantitative theory. At any 
value of 7, the alignment of correlated sequences (U > 0) has an average fidelity 7 > 0 
and a higher average score than an alignment of uncorrelated sequences (U = 0). The score 
difference comes from the extra matches due to the native pairs, which outweigh the extra 
gaps imposed on the alignment path by the constraint of following the target path. This 
score balance determines the alignment fidelity T. It turns out to be quite different in the 
random fluctuation regime and in the shortcut regime, reflecting the different morphologies 
of the alignment paths in Fig. 2(b-d). The theory predicts fidelity patterns :F(7,p,p) in 
good agreement with the numerically observed behavior of Fig. 2(a). This will be described 
in detail in a forthcoming publication [9]. 
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Abstract 

Recent work on flexible membranes such as lipid bilayers with anchored polymers 
is briefly reviewed. These polymers exert bending moments onto the membranes and, 
thus, lead to a polymer-induced curvature. From the theoretical point of view, this 
curvature depends (i) on the membrane-polymer interactions; (ii) on the size of the 
polymers; and (iii) on the polymer coverage. Experimentally, these curvature effects 
can be deduced from systematic studies of polymer-decorated vesicles in which one 
monitors the vesicle shape with varying solvent conditions. 

1    Introduction 

The systems considered here consist of flexible membranes in aqueous solution such as 
lipid bilayers in their fluid state and of polymers which are attached to the membranes 
via anchors. The anchor segments of the polymers consist of hydrophobic blocks which fit 
into the hydrophobic region of the bilayer as schematically shown in Fig. 1. Several types 
of polymers with anchors have been synthezised in the chemistry lab; in addition, biology 
provides a large variety of such systems since most membrane proteins can be considered as 
anchored polymers. 

Apart from the anchor segments, the polymers are taken to be soluble in water and 
thus behave as self-avoiding chains. When anchored to the membrane, the polymers will 
experience various interactions with the membrane arising from molecular forces which can 
be repulsive or attractive. In addition, the chains try to maximize their configurational 
entropy in front of the membrane surface. If the non-anchored segments of the polymers 
are effectively repelled from the membrane surface, the anchored polymers form desorbed 
mushrooms or brushes depending on the polymer coverage. If this interaction is effectively 
attractive, the polymers form adsorbed pancakes. 

Anchored mushrooms and brushes exert bending moments onto the membrane which 
curve the membrane away from the polymers; anchored pancakes, on the other hand, lead 
to the opposite behavior since the membrane is now curved towards the polymers. In this 
article, we briefly review recent theoretical work on this polymer-induced curvature [1, 2, 3] 
and argue that these curvature effects can be experimentally deduced from a systematic 
study of vesicle shapes extending the approach in [4]. 

In what follows, we will first consider the dilute mushroom regime and the semi-dilute 
brush regime. In these regimes, the polymer-induced curvature depends on the chain length, 
on the the solvent conditions and on the polymer coverage. We also argue that mushrooms 
and pancakes, when anchored on both sides of the membrane, have a tendency to form 
checkerboard states, see Fig. 2. 
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2    Polymer—induced Curvature of Membranes 

If both monolayers of the bilayer exhibit a different polymer coverage, the decorated bilayer 
is asymmetric and will then exhibit a polymer-induced spontaneous curvature. The concept 
of a spontaneous curvature [5] is appealing from an intuitive point of view but, in general, 
its magnitude is rather difficult to estimate since it depends on many molecular parameters. 
In contrast, the spontaneous curvature induced by anchored polymers scales with a few 
parameters such as the chain length of the polymer which can be experimentally varied in 
a systematic way. 

2.1    Dilute regime and mushroom-induced curvature 

First, consider a single mushroom of a linear chain for which the anchor segment is located 
at one of its ends and for which the non-anchored polymer segments experience effectively 
repulsive interactions with the membrane surface. The size of the mushroom is comparable 
to the size of the free polymer, i.e., to Rp0 ~ apoN" with the persistence length apo and the 
size exponent v ~ 3/5 for good solvent conditions. 

Such an anchored polymer tends to exert entropic or fluctuation forces onto the bilayer 
membrane which bend the membrane away from the polymer. The resulting polymer- 
induced mean curvature is given by [1] 

Mpi l-T/KÜpo VT/KapoN
v        for mushrooms (1) 

milmin       mmmn 

Figure 1: Different ways to anchor polymers into bilayer membranes: (a) Lipid anchor, (b) 
Hydrophobie side chain; (c) Membrane-spanning polymer segment; and (d) Anchored and 
adsorbed chain 
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where T and K are the temperature and the bending rigidity of the membrane, respectively 
(here and below, temperature is measured in energy units, i.e., T is a short-hand notation 
for Boltzmann constant kB times temperature). 

In the above estimate, the effect of the anchored polymer onto the bending rigidity re 
and onto the Gaußian bending modulus reG of the membrane segment has been ignored. 
These effects can be determined within a small curvature expansion which gives [2] 

Keff m K + CiT       and        reG,e// = reG - c2T (2) 

with C\ ~ 0.21 and c2 ^ 0.17. Thus, re and reG are increased and decreased by the polymer 
mushroom, respectively. 

2.2 Overlap coverage and semi-dilute brush regime 

It is convenient to introduce the dimensionless coverage f s (apo/£an)2 where £an describes 
the mean distance between the anchors (i.e., the mean grafting distance). In general, each 
monolayer of the bilayer will be characterized by a different coverage. We will first focus on 
the asymmetric case where the polymers are attached only to one side of the bilayer. 

When £a„ becomes comparable to the size Rp0 of the mushrooms, i.e., when the coverage 
is equal to the overlap coverage Tov = 1/N2v, the polymers start to overlap and to squeeze 
one another. They then attain conformations which are stretched away from the surface and 
resemble brush states [6, 7, 8]. In such a situatin, the membrane again bends away from the 
polymers, and the corresponding polymer-induced curvature Mpi increases monotonically 
with the coverage F. For good solvent conditions, scaling arguments lead to Mpi ~ jV2r13/6 

and Mpi ~ jV^T13/21 for small and large F, respectively. [2] As in the case of mushrooms, 
the polymer brush acts to increase the bending rigidity re but to decrease the Gaußian 
bending modulus reG. [2, 9, 10]. 

2.3 Checkerboard states 

Two mushrooms which are anchored to two different monolayers, i.e., to two different sides of 
the bilayer have a tendency to avoid each other. Indeed, if we force two such mushrooms to be 
directly opposite to each other, we loose the free energy 2/S.T where AT ~ KM^R

2
 ~ T2

/K 

is the free energy gained for each curved membrane segment with an isolated mushroom. 
A similar situation arises, in general, if one has monolayer domains with area Ado and 
spontaneous mean curvature Mdo. In the latter case, AT ~ itM$0Ado- 

Now assume that the coverage f is of the order of f0„/2 on both sides of the bilayer. 
In such a situation, anchored mushrooms on different sides can still avoid each other if 
they attain a checkerboard array and the membrane aquires a corresponding curvature 
modulation as displayed in Fig. 2. In such a situation, the mushroom-covered membrane 
domains are connected by intermediate membrane segments which consist essentially of 
saddle points and thus do not contribute to the bending energy of the membrane (in a 
different context, such a modulation of the membrane curvature, which looks similar to an 
egg carton, has been obtained from fourth-order curvature terms [11]). 

The free energy difference between the checkerboard state and the flat state is AT ~ 
T

2
/K per domain.   Such a situation resembles an antiferromagnet with nearest neighbor 
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Figure 2: Checkerboard array of mushrooms and checkerboard modulation of membrane 
curvature, see text. 

coupling constant 3 ~ -AJ7 which undergoes a phase transition to an ordered state at 
J - Jc with \JC\/T = ln(l+\/2)/2 ~ 0.44. For the mushroom domains, one has \J\/T ~ T/K 

which is presumably too small to stabilize the checkerboard state on large scales. On the 
other hand, such a state seems to be a good choice for monolayer domains with KMj0Ado > T 
which can be fulfilled for anchored pancakes, see below. Furthermore, if the area Ado of 
these domains grows with time, e.g., because of an underlying phase separation process 
within the membrane, the checkerboard state should develop as soon as the membrane area 
has grown up to Ado = T/K,M}0. 

2.4    Pancake-induced curvature 

Finally, let us consider anchored chains for which the non-anchored segments experience 
effectively attractive interactions with the membrane surface. As mentioned, the polymer 
will then form an adsorbed pancake. It turns out that the membrane now bends towards the 
polymer in order to maximize the number of contact points with the pancake. Therefore, 
such a pancake induces a spontaneous curvature which has the opposite sign compared to 
the mushroom case and is given by [3] 

Mpi ~ —T/KL±       for pancakes (3) 

where the relevant length scale is now given by the pancake thickness L±. In [12], a similar 
parameter dependence for Mpi has been proposed but with the plus sign, i.e., with the 
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same sign as in (1). The minus sign as found by us is consistent with related work on 
polymers adsorbed onto curved surfaces [13, 14, 15]. If the anchored polymers undergo an 
adsorption-desorption transition, the polymer transforms from a pancake to a mushroom 
and the curvature of the adjacent membrane segment changes its sign. Therefore, anchored 
polymers close to such a transition provide a kind of 'curvature switch'. [3, 16] 

If the coverage on both sides of the bilayer is of the order of half the overlap concentration, 
pancakes will also have a tendency to form a checkerboard array. In fact, one now has 
AT ~ KM^ ~ {T

2
/K){RPOILXY which can be large compared to T and, thus, can 

stabilize the checkerboard state. 

3    Experimental perspective 

In general, the spontaneous curvature of membranes can be measured by investigating its 
effect on the morphology of vesicles. Prom the theoretical point of view, the shape of a 
vesicle is determined by the minimum of the bending elastic energy of its membrane subject 
to constraints on vesicle area and volume (for a review, see [17]). Thus, the two principal 
parameters governing the vesicle shape are the volume-to-area ratio and the spontaneous 
curvature of the vesicle. 

It it important to note that the spontaneous curvature of a vesicle has two rather dif- 
ferent contributions. One contribution arises from the spontaneous curvature of the bilayer 
membrane as determined locally by its chemical composition and by the adjacent solution. 
The second contribution stems from the difference in the number of molecules between the 
inner and outer monolayer of the closed vesicle. If one can ignore flip-flops between the two 
monolayers, this difference is fixed and leads to a global constraint for the integrated mean 
curvature of the vesicle. The vesicle shapes which are governed by one of these contributions 
separately have been calculated some time ago. [18, 19] In general, one has to include both 
contributions which leads to the so-called area-difference-elasticity model. [20] 

Systematic studies, in which experimental observations and theoretical calculations for 
vesicle shapes have been compared in a quantitative way, have been made only quite recently. 
[21, 22, 23] In particular, it is now possible to extract the spontaneous curvature of the 
membrane from the observed vesicle shape. [4] The technique applied in the latter study is 
quite general; it has also been used, for example, to monitor the effect of small molecules 
on the spontaneous curvature as will be described elsewhere. Thus, this technique should 
also be applicable to the polymer-decorated membranes discussed in this article. In order 
to determine the local contribution to the spontaneous curvature arising from the anchored 
polymers, one has to perform measurements on the same polymer-decorated vesicle for 
various solvent conditions. 

Another area of membrane physics in which anchored polymers play an important role is 
the adhesion of membranes. Indeed, specific interactions mediated by anchored stickers, i.e., 
by anchored macromolecules with a sticky end, are responsible for the adhesion of biomem- 
branes. Certain aspects of these systems can be studied in model systems consisting of lipid 
bilayers with anchored polymers. One example is the recent prediction that the membranes 
can only adhere by stickers if the sticker concentration exceeds a certain threshold which 
depends on the lateral tension. [24] 
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ABSTRACT 

Macroscopically, phase changes (induced due to change of curvature) were observed on the 
introduction of PEG (polyethyleneglycol) grafted on lipids (anchored polymers) in the 
Winsor phases of microemulsion. Replacing some of the surfactant in the monolayers of the 
micro-emulsion with polymer grafted lipids changes the interaction between droplets of 
micro- emulsion and a greater increase in the percentage of anchored polymer in the 
monolayer might even bring about structural changes. The results on winsor phases, droplet 
microemulsions and bicontinous phases with anchored polymers as studied by Small Angle 
Neutron Scattering (SANS) are reported below, together with the contrast variation 
techniques used to characterize average curvature in the system. 

INTRODUCTION 

The microemulsions macroscopically appear as homogeneous stable phases of oil, water 
and surfactants. Microscopically, the surfactant molecules adsorb to the interface between oil 
and water domains (-100 Ä). since this interface is saturated with surfactants this amounts to 
vanishing interfacial tension, the energy of such an interface is then dominated by its elastic 
curvature energy [1,2]. Depending on the curvature of such an interface we can have droplet or 
bicontinous microemulsions. Here we study the deformation and the change of curvature 
induced by anchored polymers on the fluid interfaces of the microemulsions. These changes in 
average curvature and interactions can be characterized by techniques of SANS [3,4]. 

Theoretically, the question which is less clear is how anchored polymers effect the elastic 
parameters of the Interface - bending rigidity K, the gaussian rigidity K and the spontaneous 
curvature C0. It has been suggested by deGennes [5] that in case of free polymers that the 
bending rigidity of the membrane would be enhanced but at the same time he points out the 
effect of polymer on K and the gaussian rigidity K is delicate. Brooks et al [6] predict that 
adsorbed free polymer on surfactant bilayers leads to a decrease in the mean curvature rigidity 
and an increase in the gaussian rigidity. Leibler [7] has shown that molecules intercalated in 
lipid membrane (adsorbed drugs, intermembrane proteins etc) could be coupled to the local 
curvature of the bilayer membrane. They do not seem influence the physical properties in an 
important way but change the phenomenological elastic parameters K, K and the spontaneous 
curvature C0. In the case of microemulsions it has been known since a long time that the 
addition of co-surfactants which intercalate into the surfactant built interface diminish the 
effective rigidity and thus the persistence length [1]. Recently, there has been a series of paper 
by Helfrich on this subject which say that spontaneous curvature give rise to a reduction in the 
bending rigidity of mixed surfactant monolayers [8]. Another relevant study is by Lipowsky[9] 
which describes the bending of membranes by anchored polymers. It points out the relation 
between curvature and the bending rigidity K in the mushroom and the brush regime of the 
anchored polymers. We have an ideal model system of fluctuating and flexible surfactant layers 
of microemulsions with vanishing interfacial tension to test the above proposed hypothesis. 
These effects have to be probed at very local scales and small angle neutron scattering provides 
us with a very powerful means to do so. 
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EXPERIMENTAL TECHNIQUES 

Small Angle Neutron Scattering CSANS1 

The scattering from the droplets and bicontinous systems both in bulk and film contrast were 
measured at Saclay (PACE spectrometer). Contrast variation experiments were performed by 
varying the amount of deuterated water in the bicontinous phases prepared with a known 
composition with and without the PEG lipids. The cross structure factors were thus deduced. 
The measurements were done in several different configurations to study different ranges of 
scattering vector from 5 10"3 to 0.12 A"1. Water which scatters isotropically was used to 
normalize the intensities. 

Sample 

We have incorporated in the monolayers formed from single tailed-surfactant some lipids 
with covalently attached polyethylene glycol polymer (PEG-lipid). The lipid molecule 
abbreviated DSPE is N-(carbamyl-poly(ethylene glycol methyl ether)-1,2 distearyl-sn-glycero- 
3-phosphoehanoamine, sodium salt (Liposome Technology). The molecular weight of DSPE is 
748. The molecular weight of the polymeric moieties was 2000g/mol and 5000g/mol. 

Droplet microemulsion-PEG moieties outside water continuum- Oil in water microemulsions 
(O/S), $=4% (cyclohexane/brine(l%)/hydrogenated SDS, pentanol) were used.The droplets 
radius R=50 A. 10% or 5% of the SDS molecules were replaced in mole by 2000PEG-DSPE 
or 5000PEG-DSPE. The experiments were done in core contrast with the polymer invisible. 

Winsor Phases- SDS (O.lg) was added to equal volume of oil i.e. deuterated toluene and 
water at the salinites of 6.5% and 8%. Butanol was used as a co-surfactant. At the salinity of 
6.5% we had a bicontinous phase co-existing with oil and water. At 8% salinity we had O/W 
microemulsion co-existing with water. The changes in the phase diagram were observed by 
incorporating various percentages of 2000PEG-DSPE and 5000PEG-DSPE in mole to the 
above winsor phases. 

Bicontinous Phases- The samples studied had composition close to the middle phases. The 
microemulsions were made of brine with salinty 6.5% by weight, deuterated toluene, sodium 
dodecylsulphate (SDS) and butanol. The volume of brine or water was the same as toluene , 
VW=V0, and the volume fraction fw=f0=Vw/Vw+V?=0.5. For a given mass of SDS we adjusted 
the amount of butanol to obtain a clear, monophasic microemulsion. In calculating the 
scattering length densities the butanol partition coefficient estimated from the titration curves 
as 0.06ml of butanol/ml of toluene and 0.02mlof butanol/ml of brine were taken into account. 
10% and 15% of the SDS molecules were replaced in mole by 2000PEG-DSPE in the 
bicontinous microemulsions. The contrast variation experiments were done on a series of 6-8 
samples for with and without PEG-DSPE, varying the scattering length of water by using 
different mixtures of H2O/D2O. At 87% D2O we were at film contrast condition. 

RESULTS 

Winsor phases 

In the winsor phases of water, oil, ionic surfactant and co-surfactant alcohol, as the ionic 
strength of water is varied, the following phases are observed [3] (Figure 1): (a) an oil in water 
microemulsion co-existing with an oil excess (b) a three phase equilibria, the middle phase 
microemulsion containing equal amount of oil and water separating the pure oil and water 
phases; (c) another two phase equilibria: a water in oil microemulsion coexisting with water 
excess. At low salinity, the electrostatic interaction between the polar head groups are not 
fully screened, the surfactant film in this case spontaneously bends towards the oil, resulting 
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Figure 1 Schematic representation of macroscopic changes which occur in Winsor phases on 
addition of free and anchored polymers. 
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Figure 2 SANS results in representation S(q) versus q showing the microscopic changes 
induced by anchored polymers when added to the Winsor bicontinous middlephases. 
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in oil in water microemulsion co-existing with a phase almost pure in oil. Salt addition changes 
the spontaneous curvature C0 of the surfactant film between oil and water, by screening the 
repulsion between the polar head groups. At optimal salt content, the spontaneous curvature 
of the surfactant film is close to zero, a bicontinous microemulsion phase co-exists with oil 
and water excess. At very high salinity, the curvature C0 (>0) inverses completely, the film 
bends towards the water, a water in oil microemulsion co-exists with pure water. 

Polymer grafted on the lipids were added to replace some of the SDS molecules in the 
winsor phases and the phases to which this system freely equilibriated to were then 
monitored. These effects were visualized macroscopically in the test tubes and the 
corresponding microscopic changes in structure have been monitored by SANS. Starting from 
the middle phase bicontinous microemulsion with 6.5™ o salt, increasing percentage of 
2000PEG-DSPE 5%, 7.5% and 10% were added to it, until at 10% of 2000PEG-DSPE a 
change in phase from the middlephase bicontinous (Figure lb) to a two phase: oil in water 
droplet microemulsion (Figure la) co-existing with excess oil was obtained. In the test tubes 
when a small amount of peg lipids 5% and 7.5% was added, we just achieve a shrinking of 
the middle bicontinous phase with expulsion of oil and water. The corresponding neutron 
scattering data S(q) versus q from such middle phases with increasing amount of lipids with 
grafted polymers is shown in Figure 2. The characteristic scattering peak q* (its origin will be 
discussed later-it is related to the persistence length of the surfactant film) of the original 
middle bicontinouse phase (q*~0.01Ä"l, q"'~100Ä) shifts first to lamer values of scattering 
vector q (q*~0.02Ä-', q-!~50A) when 5% and 7.5% of 2000PEG-DSPE were added. This 
probably amounts to a decrease in the persistence length of the film in the middle bicontinous 
phase on addition of polymer grafted lipids. While the characteristic scattering peak q* for 
oil in water droplet microemulsion formed on addition of 10% PEG lipids in the system 
corresponds to the typical size of the droplets in the system. 

Thus in the above bulk contrast, the concentrated solution of bicontinous middle phase exhibits 
a correlation peak q* in the scattering at low q not very different from the case where we have 
droplets of oil in water. Thus at low spatial resolution (low q) the correlation of the oil and water 
of a concentrated dispersion of droplets and of a random bicontinous structure with a well 
defined scale are very similar as seen from Figure 2. The difference between the two will appear 
on a semi-local scale or in the film geometry. This will be discussed in more detail below. 

Droplet Microemulsion 
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Figure 3 S(q) versus q plots of SANS for oil in water (o/s=2, R-50Ä) droplets with varying 
density and length N of the grafted or anchored polymer chains 
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In Figure 3, the S(q) versus q plots of SANS are shown for oil in water (o/s=2, R~50Ä) 
droplets with varying density and length N of the grafted polymer chains (PEG-DSPE). The 
experiments were done in core contrast (deuterated cyclohexane, hydrogenated water 1% salt). 
The effective interaction between the microemulsion droplets is modified by the grafted polymer 
which manifests itself by the change of scattering behaviour in the limit q—> 0. Decreasing 
scattering at q—> 0 implies that the system is not very compressible i.e. the interaction between 
the droplets is repulsive. The interaction for oil in water droplets is repulsive to start with, on 
replacing 10% of the SDS molecules in the interfacial film by the 2000PEG-DSPE makes the 
interaction between the droplets even more repulsive. Decreasing the density and increasing the 
chain length of the grafted polymer by using 5% of 5000PEG-DSPE makes the interaction 
between the droplets less repulsive. On increasing the grafting density further by using 10% of 
5000PEG-DSPE we change the interaction between droplets from being repulsive to attractive as 
seen by the great increase of scattering in the limit q—> 0. (One of the reason for this behavior 
could be physical bridging between droplets or this might indicate a structural change). Thus we 
can tune the interaction between the droplets by varying the size and the density of the grafted 
polymer chains. 

Bicontinous Microemulsion 

The sample made at optimal salinity of 6.5% with equal amounts of oil and water, known 
quantities of surfactant and co-surfactant results in a bicontinous microemulsion [3]. In the 
bicontinous phase, interfacial film has almost close to zero spontaneous curvature and is thus 
very flexible. The characteristic size of this structure is governed by the persistence length E, 
of the film [1]. The interfacial film is rigid and flat on scale smaller than q and wrinkled on 
larger scales. The film stiffness forbids the curvature fluctuations at the spatial scales smaller 
than %. In this model £=a exp (2KKJKQT, thus the persistence length % is extremely sensitive 
to the rigidity constant K. 

We have plotted S(q) versus q in bulk contrast. We observe the characteristic scattering 
peak q* (~ .0186 Ä"1, q*_1~55.6Ä) of the bicontinous structure. This peaks shifts to larger 
q* values on the addition of 10% 2000PEG-DSPE (~ .022 A"1, q*-M5.5A) and 15% 
2000PEG-DSPE(~ .025 A"1, q*_1~40A). We had already made such a macroscopic and 
microscopic observation in the case middlephase bicontinous structure. Our data implies that 
introduction of peg lipids in the interfacial film decreases the persistence length \ of the film 
i.e. it also diminishes the rigidity K of the film [1]. 

We have looked just at the interfacial film by doing the experiment in film contrast (87% 
deuterated water/deuterated toluene) which helps to unravel the structure even more 
The apparent average thickness of the film without anchored polymers is d=7 A. In fact we 
can estimate the value of d in the case of film with peg lipids by considering the asymptotic 
behavior of scattering, by assuming that at large q we observe scattering from a plane surface 
S, of volume V and thickness d, then for small d the scattering is given by S(q)=27tS/V( rio- 
nf)2(d2/q2)(l-d2q2/12). If we now plot q2S(q) versus q2 at asymptotic values of q we get a 
straight line with a negative slope. The ratio of slope to intercept is equal to -d2/12 and thus 
we can deduce a value of d from it. From such plots d=15Ä for 10% of 2000PEG-DSPE and 
d=23Ä 15% of 2000PEG-DSPE within experimental error. 

In order to distinguish between a bicontinous structure or a dense phase of spherical 
droplets we need to know the sign of the curvature. What is the sign of the curvature induced 
by the peg-lipids? We abeady guess the sign of curvature to be negative from the 
macroscopic middle bicontinous phase experiment which underwent a change to oil in water 
droplets when the peg-lipids were added. To verify at a microscopic scale, Sie sign of 
curvature induced by the peg-lipids we can use equation Sfw(q)=7tXcs<C>dq-4-7tXcsd

2q-2 

where cs is the surfactant concentration and measure Sftv(q) [3]. In order to do so we need to 
carry out a contrast variation experiment varying the contrast length density of water by 
using different proportions of deuterated water. In Figure 4 we show the results of such a 
contrast variation experiment. At large angles, the interfacial film should appear flat. Sf\y (q)=- 
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Figure 4 The water film partial structure factor in the representation q4Sftv(q) versus q2 for 
different values of peg lipids in monophasic bicontinous phase. 

Sff(q)/ 2=-7tXcsd
2q-2. Sfw(q) should be negative and proportional to q-2. We also note that 

there is an another contribution from the curvature <C>, Sfv, (q)=irXcs<Odq-4. The samples 
with a well defined curvature will show a deviation positive or negative from the asymptotic 
limit q-2. Clearly when we plot q4Sfw(q) versus q2: for the bicontinous structure we observe a 
well defined q-2 behavior at large q, but with the peg-lipids we see clearly a negative deviation 
from this behavior. This clearly shows the peg-lipids induce a negative curvature (decrease 
rigidity [9]) and probably form a dense phase oil in water droplets, the structure perhaps still 
remains connected. Also, this negative deviation increases with increasing concentration of 
peg-lipids. 

CONCLUSIONS 

We have clearly shown that anchored polymers change interaction between microemulsion 
droplets- it need not be just repulsive but could also be attractive. They induce structural 
changes or bring about complete phase changes as seen in the Winsor phases when added in 
sufficiently large amounts. In bicontinous phases the anchored polymers decrease the bending 
rigidity, the persistence length, increase the apparent average thickness d of the film and in 
large quantities bring about a negative curvature changes at a semi local scale. Contrary to the 
naive prediction that anchored polymers should increase membrane rigidity our experiments 
show a decrease. This is a subtle effect caused by perhaps an indirect coupling between film 
curvature and concentration fluctuations. 
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P.C. Mason and B.D. Gaulin 
Department of Physics and Astronomy 

R.M. Epand 
Department of Biochemistry 

McMaster University, 
1280 Main St.  West, Hamilton, Ontario, Canada L8S 4M1 

and 
G.D Wignall and J.S. Lin 

Center for Small-Angle Scattering Research 
Oak Ridge National Laboratory 

Oak Ridge, Tennessee 37831, USA 

The rich phase behaviour displayed by phospholipid bilayers and their structural re- 
lationship to biological membranes have made them fascinating objects of study. Despite 
being one of the most often examined of these model membrane systems, dipalmitoylphos- 
phatidylcholine (DPPC) continues to be a source of interest for scientists. In particular, 
the ripple phase, Pp, of fully hydrated DPPC has generated a great deal of attention 
over the years as scientists have tried to understand the structural details of this novel 
phase1-5. 

An interesting aspect of many phospholipid lamellar systems is the non-equilibrium 
behaviour they exhibit. Tenchov et al.6 were the first to report the emergence of non- 
equilibrium ripple phase in DPPC while recent work by Sun et al.7 reports non-equilibrium 
behaviour in the gel (L^) phase of longer chain PCs. In this paper, we present neutron 
and x-ray scattering results examining the history dependent morphology of DPPC, with 
emphasis on the ripple phase. 

We have performed Small Angle Neutron Scattering (SANS) studies on multilamellar 
vescical (MLV) samples of regular DPPC and samples of DPPC in which the hydrogen 
atoms in the quatenary ammonium methyl groups have been replaced with deuterium 
(DPPC-d9). The SANS experiments were conducted at the W.C. Koehler 30m SANS 
facility at the Oak Ridge National Laboratory using neutrons with A = 4.75Ä and sample 
to detector distances of 3.5m and 8.0m.8 Both samples were placed in a 2H20 buffer to 
increase the contrast between solvent and lipid and to reduce the incoherent scattering 
from hydrogen. 

Figure 1 shows neutron data taken while slowly warming the DPPC-cfo from 20 °C to 
55 °C with a sample to detector distance of 3.5m (qe[0.02,0.17 I-1 ]). The three phases 
of DPPC are easily identified by the shift in position of the lamellar repeat peak. The 
inset shows data taken under similar conditions with a sample to detector distance of 
8.0m (q e [0.007,0.075 A-1 ]). Figure 1 clearly shows that the small angle scattering is 
sensitive to the phase of DPPC. The small angle scattering (q<0.03 A-1 ) doubles upon 
entering the Pp from the Lp phase and falls by nearly a factor of four in the La phase 
when compared to the P^ phase.  The scattering appearing at q~0.05 AT1 in the Pp 
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ÖPPC-d9 Warming Runs 
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Figure 1: Colour contour plot of DPPC-dg warming through its three phases (L^P^L,,) 
in this temperature range. The plot shows neutron data taken with a sample to detector 
distance of 3.5m 

phase is due to the ripple periodicity. The undeuterated sample have similar scattering 
profiles but are not shown in this paper. 

Figure 2 is similar to figure 1, but shows the neutron profiles of DPPC-rf9 as the sample 
is slowly cooled. Figure 2 again shows the three distinct phases over this temperature 
range, but with some noteworthy differences. The scattering due to the ripple periodicity 
in the Pp phase is more prominent and the small angle scattering is markedly different. 
In the cooling scans, the small angle scattering in the P^ phase, while more intense than 
that of the La phase, does not approach the levels attained in the wanning scans and 
reaches its highest intensity in the Lp phase. 

To compliment the neutron work, x-ray diffraction experiments were conducted using 
an incident x-ray beam produced with Cu Ka radiation from an 18 kW rotating an- 
ode generator which was further monochromated via the (0,0,2) reflection of a pyrolytic 
graphite monochromator. 

Figure 3 shows the diffraction pattern obtained by these two techniques for DPPC 
wanned into the Pßi phase. The x-ray data has been scaled so that the data sets overlap. 
The lamellar repeat peak at q=0.086 A-1 exhibits the same width in both data sets, 
indicating that the neutron peak is not resolution limited. The neutron data also show 
a peak due to the ripple periodicity at q=0.05 A-1 which does not appear in the x-ray 
profile. 

Comparing these data to the corresponding data taken on cooling the sample into the 
Pp phase from the LQ phase, as shown in figure 4, reveals some interesting contrasts. 
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Figure 2: Colour contour plot of DPPC-rfs cooling through its three phases (La,Pßi,Lß>) 
in this temperature range. The plot shows neutron data taken with a sample to detector 
distance of 3.5 
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Figure 3: A comparison of neutron and X-ray scattering profiles of DPPC-dg in the ripple 
phase after slow warming from the Lp phase. 
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The neutron peak from ripple periodicity is enhanced in the cooling data and the peak 
attributed to the lamellar repeat appears broader. The x-ray cooling data shows that this 
broad peak is, in fact, made up of two closely spaced peaks at q=0.072 A-1 and q=0.087 
A-1 that are not fully resolved by the neutrons. In addition, the x-rays reveal a peak at 
q=0.10 A-1 which does not appear at all in the neutron profile. 

DPPC Ripple phase on cooling 
600 - ■   ■ - •   i   ■   ■   •   ■   i   ■   ■   •   -   i   ■   ■   i 

TM1.5 -C 
•                                   •neutrons - 

l                               • x—rays 

V*   2 ' 
400 

w 
C ;**  V. 
c -V        \ : 

200 _ 1    w % 
\_5 

n .     .     .     1     ,     ,     .     .     1     .    7^^^*<*fcNMp» . 
0 1 

q (A"') 

Figure 4: A comparison of neutron and X-ray scattering profiles of DPPC-rfg in the ripple 
phase after slow cooling from the LQ phase 

We believe the data can be explained as follows. On warming into the Pp phase, the 
formation of ripples in each bilayer is inhibited by the relative "stiffness" of the membrane 
at these temperatures. The preferred ripple wavelength of ~125 A is mixed with a variety 
of longer wavelength ripples leading to a large number of discontinuities and dislocations. 
This would account for the increased small angle scattering in the the 0.02<q<0.05 region 
in the ripple phase shown in figure 1 and poorly defined ripple periodicity peak in the 
neutron data of figure 3. As well, the disorder in the ripples would lead to irregularities 
in the stacking of the bilayers in the MLV construct, thus accounting for the relatively 
broad lamellar repeat peak demonstrated by both neutrons and x-rays in figure 3. 

On slow cooling into the P^ phase from the La phase, the fluidity of the bilayers 
allows them to more easily take their lowest energy arrangement a single predominant 
ripple wavelength with each bilayer in the MLV stacked in phase with its neighbouring 
bilayers. This scenario would explain the more pronounced ripple periodicity peak seen 
in figures 2 and 4 as well as the relative weakness of the small angle scattering in the 
Pßi phase on cooling (cp figs 1 and 2). Furthermore, when cooling into the L^» phase this 
structured Pp phase is difficult to erase. Below the pre-transition temperature, the long 
range order of the ripples is broken but residual ripples remain and are "frozen" into the 
gel phase, accounting for the increase in small angle scattering (figure 2) upon entering 
the Ljj> phase on cooling. Further evidence for this can be seen by tracing the the path 
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Peak Number Peak Label Calculated^"1 ) Measured(Ä l ) 
1 (01) — 0.050 
2 (10) — 0.072 
3 (11) 0.088 0.087 
4 (02) 0.100 0.100 
5 (12) 0.123 0.124 

Table 1: A comparison of the expected positions of diffraction peaks using our coherent 
ripple model and the measured positions as shown in figure 4 

of the ripple periodicity peak in figure 2 and noting that the peak decreases in q as the 
pre-transition temperature is approached, and appears to disappear into the small angle 
scattering at the phase transition. 

Finally, one can calculate the expected peak positions for this model of the ripple 
phase on cooling. Using the labels defined in figure 4, we attribute peak (1) to the 
ripple periodicity give a ripple wavelength of Xr = 125A, and peak (2) to lamellar repeat, 
yielding d = 87Ä. The results of these assignments are summarized in table 1. Our value 
for the lamellar periodicty is significantly higher than the generally accepted value of 72A 
obtained when when warming, and the value obtained by Yao et al. on slow cooling.9 

In conclusion, we believe that, on cooling slowly from the LQ phase, DPPC enters a 
more ordered P^ phase than the P^< phase formed on warming. The ordered phase is 
characterized by a predominant ripple wavelength coupled coherently to ripples through- 
out the lamelli in the MLV, while in the disordered phase the ripple wavelengths are more 
loosely defined with no coherence between bilayers even for the majority ripple. The 
mechanism behind this difference is the fluidity of the La phase compared to the relative 
rigidity of the L^ phase as precursors to the P^ phase. The softening of the bilayer as it 
nears the main transition temperature, as well as passage through the anomalous swelling 
regime could also be important to this effect.10'11 We have also presented evidence for the 
non-equilibrium behaviour in the Lßi phase and the possible existence of ripples frozen 
into this phase upon cooling. 
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SIZE DISTRIBUTIONS OF FLUID MEMBRANE VESICLES 
FAR FROM EQUILIBRIUM 
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ABSTRACT 

We investigate nonequilibrium behavior of a polydisperse ensemble of fluid membrane 
vesicles by means of a diffusive Boltzmann transport equation which incorporates vesicle 
diffusion and the reactions between vesicles. This approach is used to study the time 
evolution of the size distribution of an initially monodisperse vesicle ensemble and its 
interesting properties such as the internal aqueous, encapsulated volume. We investigate 
various nonequilibrium paths such ensembles may follow during the equilibration process. 

INTRODUCTION 

In recent years significant attention has been devoted to the equilibrium statistical 
mechanics of fluid membranes [1], and their phases [2]-[8]. However, many interesting phe- 
nomena involving membranes are non-equilibrium in nature. Technologically important 
example are liposomes which are potential vehicles for transporting therapeutic and diag- 
nostic agents [9]. They are vesicles formed by bilayers contaning amphiphilic substances 
like phospholipids dispersed in water. Vesicles such as liposomes have size distributions 
typically evolving due to reactions between vesicles. 

In thermodynamic equilibrium, mono-lamellar vesicles may form isotropic, liquid-like 
polydisperse droplet phases, which polydispersity properties have been recently investi- 
gated experimentally,[10] and theoretically [5]-[8]. These are so-called entropically sta- 
bilized vesicles, with the simple membrane curvature free energy, F = J dS[^H2 + KG], 

where H, and G are, respectively, membrane mean and Gaussian curvature, and re and re 
are membrane bending and saddle splay rigidity. Here we investigate various nonequilib- 
rium paths to reach the thermodynamic equilibrium in these vesicle phases starting from 
a nonequilibrium, monodisperse distribution of vesicle sizes. 

DIFFUSIVE BOLTZMANN EQUATION FOR REACTING VESICLES 

A dilute nonequilibrium polydisperse ensemble of nearly spherical vesicles can be 
described by a vesicle density p( A, x,t), suchthat p(A,x,t)dAd3x is the number of vesicles 
of the area A = AnR2 in the interval (A, A + dA) contained in a volume element d3x. A 
vesicle of area A is free to diffuse and undergo fusions with other vesicles or to split into 
smaller vesicles. Thus, the vesicle ensemble is a diffusion-reaction system where reactions 
are vesicle fusion and fission processes preserving total area of vesicles (i.e., total amount 
of the membrane material). Thus, the time evolution of p(A,x, t) can be described by a 
diffusive Boltzmann transport equation (TE) of the form 

—p(A,x,t) = D(A)Axp{A,x,t) + Ra + Rb + Rc + Rd, (1) 
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where the first term is ordinary diffusion with the size dependent diffusion constant 
D(A) = fcaT/67rJ7(A/47r)1/2, according to the Einstein-Stokes law, with 77, the viscos- 
ity of the solvent. Ra to Ri in (1) are reaction rates associated with vesicle fusions [Ra 

and Rh], and fissions [Rc and Rd]. If p(A,x,t) is slowly varying in space, these rates can 
be generally written in the form 

yoo 

Ra = -2        dAt T(A1, A) p(A,, x, t) p(A, x, t), (2a) 
Jo 

Rb=        dA1T(AuA-A1)p(A1,x,t) p(A-Aux,t), (2b) 
Jo 

/»OO 

Rc = 2        dAx n(Ai,A)/o(A + A1,x,<), (2c) 
Jo 

pA 

Ri = - I   dA,U(A1,A-A1)p(A,x,t), (2d) 
Jo 

with 
kaT 

T(Ai,A)mpfMS  2+(^)1/2 + 4)1/2 

where pfU3 is the probability that an encounter between the vesicles leads to a fusion [11]. 
Reaction kernels T and IT in Eqs. (2) are related by the detailled balance between fusions 
and fissions in the thermodynamic equilibrium. This gives the condition 

U(AUA2)=
P^P:^)T(A1,A2), (3) 

Peq(Al + A2) 

where peq(A) is the equilibrium vesicle density. For example, for the entropically stabilized 
vesicles [5][6] 

^)4(A)4/1^-. w 
with Amin, the minimum area of a vesicle; C = const.(K./kBT)2exp(—Ei,(Amin)/kBT), 
and Ei(Ami„) = 8TTK + 4TTK the curvature energy of the smallest vesicles ( with the 

area= Am;n). The power law prefactor (A/Amln) in peq arisis from the dependence 
of the membrane curvature rigidities K and re on vesicle size, [12] whereas the prefactor 
C/A5/2 originates from the entropy of vesicle's collective modes [5][6]. Amaz in (4) is, 
effectively, the area of the largest vesicles present in the system. It is determined by the 
total amount of the membrane material, i.e, total membrane area At0t present in the 
system 

Atot = / d3x dA A p(A,x,t). (5) 

Vesicle fusions and fissions processes included in our TE (1) preserve Atot and drive the 
density p(x, A, t) towards the equilibrium density (4) at long times. We remark that the 
actual value of Amax in (4) does not explicitely enter the TE (1) [ see Eqs. (3) and (4)]. 
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EVOLUTION OF INITIALLY MONODISPERSE VESICLES 

Here we discuss evolution of a spatially uniform, initially monodisperse ensemble of 
vesicles.   Let n0 be the density of these vesicles all initially, at t = 0, having the same 
area A0. Thus p(A,x,t = 0) = n0S(A — A0). The TE (1) will drive p to an equilibrium 
distribution of the form (4) with Amax determined by the conservation of Atot, Eq. (5). 
This conservation law gives Amax through the equation $,4 = n0A0 = J dA A peq(A), 

/3 W5 /    \6/5 

= A0 ( $^, membrane area per unit volume) yielding A 

with 

*AA1 

(6) 

The volume fraction encapsulated by vesicles, $v(t) = 3f4 \i/2 J dA A3'2 p(A, t), and the 

number of vesicles per unit volume nv(t) = J dA p(A,i), evolve from their initial values 

n0, to their equilibrium values *f(°) = 3(4TV/2
noAV2-, and nv{0) 

$^(00) = *v,e, = 
A4/5 *' mm     A 

c3/5 

8/5
       A4/5 (n A W5 / r>„ 

c3/5 

3/5 

(7) 

and 

nv(oo) ■■ 
6C 

d3/2 

1/6 6C 
l3/2 

^«■^■nA 
1/2 

1/6 

(8) 

Above and hereafter, we assume that membrane area density $^ = n0A0 is well above 
the critical vesicle concentration, $A,CVC = no.cvcAo = This ensures that An 

Amin- We remark that "3?v,eg < 1 throughout the fluid-like vesicle phases, whereas $v>e9 ~ 
1 at the first order transition from the vesicle to the lamellar phase [6],[7],[8]. So, at the 

transition, $A,crt( = no,critA0 ~ i/2 ■ Thus, for a given initial vesicle size A0, previous 

equations define several characteristic vesicle densities: n0tCVC , n*, n0tCrit , and nVif,q. 

Finally, as it must be the case that $y(0) < 1, it follows that n0 < n0>max w AÖ ■ As 
Aa > Amin, one has nV)t,q > n* > n0>cvc. The existence of several characteristic scales 
for n0 implies the existence of several types of the equilibration behavior discussed in the 
following. 

Type I equilibration. Initial vesicle density is above its equilibrium value, n0 > nv>eq. 
Then, also, n0 > n*, and, thus, A0 < Amaz, and $v(0) < $v,eg- Thus, the equilibration 
must be dominated by vesicle fusion processes [Ra and Rt terms of the TE (1)], which 

decrease the number density of vesicles nv(t), and, as A\'
2
 + A\'2 < (Ai + A2)

3/2, 
increase the encapsulated volume fraction $v(<)- This is illustrated in Fig. 1, obtained 
by numerically solving the TE (1). We see that *y(<) grows as tll2 until it saturates to 
its equilibrium value $v,eg at times longer than some equilibration time-scale teg. This 
growth can be understood analytically, as for t < teq, one can ignore the fissional terms 
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in the TE, i.e., j-(p(A, t) « Ra + Rb- This equation has an automodel solution of the form 
p(A,t) = $AA(t)-2f{A/A(t)) [ with / dx xf(x) = 1], characterized by a growing vesicle 
area scale A{t) = A(0) + *AIV, with T0 = pfuskBT/r]. Thus, for t < r,„ the typical 
vesicle size, R ~ A(t)1/2, grows as t1/2, whereas §v(t) = const.$A[A(i)]1/2 ~ t1!2, 
and n„(r)  = const.$A/A(t) ~ t-1.    For t » re„ the area scale A(t) reaches Amol, 

, or, equivalently, $y(£e?) « $v,eg- This yields 

*eg — 
48/5 

W*A)1/5, c«/5r„ (9) 

for n0 < n0iCrit, i.e., $A < ^.cHt , when the equilibrium state is the dilute vesicle phase. 
On the other side, if n0 > n0)Crit , the equilibrium state is the lamellar phase and vesicles 
will evolve via fusions until the encapsulated volume fraction becomes 0(1). At that 
time scale the monolamellar vesicles will transform into a multilamellar longlived vesicles 
(corresponding to confocal defects of a Smectic-A phase). Thus, the equilibration time 
scale (from mono- to multilamellar vesicle state) can be estimated from $v(teq) ~ 1, 
yielding 

(10) 

for *A > $A,cHt- By Eqs. (9) and (10), teq has a maximum for $A ~ §A,criu i-c, at the 
first order transition from the droplet to the lamellar phase at which ttq w Amin/C ' ro. 
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FIG. 1: Example of the Type I equilibration. Here, and in the figures 2 and 3, 

t = t/[t}, &v{i) = *v(*)/[*v], and nv(i) = nv(t)/[nv], with [t] = A3
m

/2,/CT0, [*v] = C, 
and [n„] = C/A3^. In this example Ä0 = A0/Amjn = 5, and n„(0) = 60. 

Type II equilibration. Initial vesicle density n0 is in the range n0]Crc < n„ < n* (then, 
also, n„ < n0,ef). Then A0 > Amaz, and $v(0) > $v,eq- Thus, the equilibration must 
be dominated by vesicle fission processes [Rc and Rd terms of the TE (1)], which increase 

the number density of vesicles n„(t), and, as A\
12
 + Al'2 < (Ai + A2)

3/2, decrease the 
encapsulated volume fraction $v(*)- This is illustrated in Fig. 2, obtained by numerically 
solving the TE (1). 
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FIG. 2: Example of the Type II equilibration. Here Ä0 = 100, and n„(0) = 0.042. 

We see that $v(<) decreases, whereas the vesicle density n„(t) increases, until they 
saturates to their equilibrium values at times longer than some equilibration time-scale 
teq. This growth can be understood analytically, as for t -C teq, one can ignore the 
fusional terms in the TE, i.e., j^p{A,t) fa Rc + Rd- By analysing this equation, we 
find that initially monodisperse size distribution gets replaced by a strongly polydisperse 
distribution of the form p ~ A'11'6, for A < A(t), and p « 0, for A > A(t).   Here, 

A(t) = A0 *-£ with 

A*'3 
■"■mil 

CTo 
■A\l* ~ R\'3. (11) 

Thus, the equilibration is dominated by the fissional decay of vesicles which occurs in a 
finite time proportional to R.I'3, where R0 is the initial vesicle size. The above results 
for p{A,t) and teq, Eq. (11), are consequences of the particular form of the equilibrium 
vesicle distribution, Eq.(4) [which enters only the fissional part of the TE]. Thus, they 
reflect the lengthscale dependence of membrane bending and saddle splay rigidity on the 
vesicle size [12], as well as entropy of vesicle collective degrees of freedom incorporated in 
peq, Eq. (4). 

Type I/II equilibration.   Initial vesicle density n0 is between n* and nVttq ( n* <C 
n0 < nVjCq). By numerically solving the TE (1), we obtain $v(<) and rtv(t) in Fig. 3. 
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FIG. 3: Example of the Type I/II equilibration. Here Ä0 - 20 and n„(0) = 1.6. 
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As n0 < n„]Cg, the vesicle density nv{t) increases untill it saturates to nV:eq. In this 
respect, this equilibration is simillar to the type II equilibration. As there, this increase 
of nv(t) is produced here by the fissional terms of the TE. However, as n* < n0 here, 
one has A0 < Amax, and $y(0) < $v,eq- Thus, the encapsulated volume fraction $v(t) 
increases until it saturates to $y,er In this respect, this equilibration is similar to the type 
I equilibration. As there, this increase of <lv(i) is produced here by the fusional terms of 
the TE. From Fig. 3, we see that the fissional increase of nv(t) produces an over-shoot 

above the equilibrium value, yielding a maximum of nv(t) at some characteristic time 
scale <i. For t < ti, the fission produced vesicles are small, and do not significantly affect 
the encapsulated volume fraction which continuously increases (see Fig. 3) due to fusions 
of the largest vesicles which contribute most to $y. Fusions, however, significantly less 
affect the number density of vesicles nv. For example, after the over-shoot in nv at t = t\, 
Fig. 3, there is only a small decrease of nv(t), which is due to fusions of the largest vesicles 
in the tail of the distribution. Thus, most of the production of nv is due to fissions and 

it is practically over already at the fissional time-scale t ~ tj «   cp'" Aj , as in the type 
II equilibration, Eq. (11). At this time-scale, fusions still go on and increase $v, see Fig. 
3. Thus, the ultimate equilibration time teg is determined by fusions. teg is thus given by 

the fusional time scale teq = c,fi$ (^A)
1
'
5
; as in the type I equilibration, Eq. (9). This 

teq is larger than the fissional time-scale ii as t\/teq m (n* /n,,)1'5 < 1 here. 
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ABSTRACT 

In this study we investigate the equilibrium conformational properties and dynamic 
relaxation behavior of polymer loops grafted at an interface using the discontinu- 
ous molecular dynamics simulation technique. Differences and similarities between 
the structural and dynamic properties of polymer loops and tails are identified. The 
conformational properties of mixtures of polymers loops and tails are also stud- 
ied using the bond-fluctuation method. The effect of mixture composition on the 
conformational properties of the individual components in the mixture is discussed. 

INTRODUCTION 

Polymers adsorbed or grafted to an interface are of critical importance in technolo- 
gies as varied as adhesive/protective coatings, antithrombogenic biomaterials, col- 
loidal stabilization and polymer blend compatibilizers.1 The dynamic behavior of 
grafted polymer layers has also become a subject of great interest due to its rele- 
vance in the processing of grafted layers. Most studies of grafted polymer layers 
have concentrated on elucidating the properties of layers of chains grafted at one 
end (polymer "tails"). Extensive theoretical formalisms2-4 have been proposed, and 
simulation studies5-7 conducted, to address the structural and dynamic properties 
of polymer tails. While single-tethered polymer chains have received considerable 
attention, other tethered conformations are also of practical and fundamental inter- 
est. In particular, double-tethered chains (or polymer "loops") provide an additional 
opportunity to tailor the properties of thin polymer coatings for specific applications. 

In this work, we analyze the equilibrium conformational and dynamic relaxation 
properties of looped chain molecules grafted at an impenetrable interface by apply- 
ing the discontinuous molecular dynamics (DMD) simulation technique. By compar- 
ing our simulation results for loops to previously available data for tails, we are able 
to discern the similarities and differences between polymer loops and tails, and iden- 
tify the role of a second tethered site on conformational and dynamic properties. We 
have also studied the structural properties of grafted layers consisting of mixtures 
of polymer tails and loops using the bond-fluctuation (BF) simulation technique. The 
effect of mixture composition on grafted layer properties, as well as on the structural 
properties of the individual component has been ascertained. 

SIMULATION OVERVIEW 

The conformational and dynamic properties of looped chain molecules are obtained 
using the DMD simulation technique. We limit this study to athermal cases and 
assume that there are no attractive monomer-monomer or monomer-wall interac- 
tions. In DMD simulations, looped polymers are modeled as chains of N tangent 
hard spheres, tethered at both ends to the surface.  The chains are simulated us- 
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ing the Rapaport8 algorithm.  Figure 1 depicts a typical conformational ensemble 
containing 20 looped chains of 40 spheres each. 

The molecular dynamics algorithm in- 
volves calculating the order in which par- 
ticles collide with each other, advancing 
the system to the impending collision, 
and calculating the post-event velocities 
of the participating segments using New- 
ton's equations of motion. Precise de- 
tails of the DMD technique are discussed 
elsewhere.910 The DMD simulations are 
performed for chains of length N = 20, 
40 and 80. Surface densities a range 
from 0.01 to 0.48, where a is defined as 
the fractional surface coverage: 

a 
TTNgd2 

4    A   ■ (1) 

Fig. 1 Typical initial configuration of 
20 hard sphere double-tethered chains 
of length N=40 at an anchor density 
o-=0.25. 

Here, Na is the number of anchor sites, 
d is the diameter of the particles, and A 
denotes the area of the impenetrable sur- 
face (at z = 0) in the primary simulation 
cell. 

The conformational properties of mixtures of loops and tails are studied using the 
BF simulation method. Unlike the DMD approach, BF simulations are conducted on 
a 3-D cubic lattice (a general description of the BF algorithm is provided by Deutsch 
and Dickman11). The BF algorithm used in this study is identical to the one used 
earlier by Jones and Spontak12 to study the conformational properties of looped 
chain layers. 

RESULTS 

Conformational Properties of loops 

The equilibrium conformational properties of grafted chains yield important infor- 
mation about the structure of the chains in the layer, as well as layer characteristics 
such as the effective surface coverage and layer height. The average height h of a 
grafted layer can be quantified in terms of the normal component of the radius of 
gyration, {Rlz}112. Classical SCF theory for polymer tails4 predicts that the height 
of a grafted polymer tail layer scales as h ~ Na113. In Fig. 2, (R2

z)1,2/a1/3 from 
both DMD simulations of polymer loops and SCF predictions for polymer tails of 
N/2 repeat units are plotted as a function of anchor density. 

As evident in this figure, two scaling regimes are clearly discernible. At interme- 
diate to high densities, (#|z)

1/2 scales as a113. This region is termed the "scaling" 
regime, where the observed scaling behavior of polymer loops is consistent with SCF 
predictions for polymer tails of N/2 repeat units. At low a, however, (i?|z)

1/2/o"1/3 

scales as a'113; i.e., (R2
Z)112 does not change with increasing a. This regime is 

termed the "mushroom" regime, where chains are isolated and assume an inverted 
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mushroom shape, thus covering the surface in patches.   The layer height in this 
regime scales only with chain length (h ~ N3,s). 

This density-induced transition in the scaling behavior of grafted layer height from 
the mushroom to scaling regime is referred to as "chain impingement."12 The chain 
impingement density (ac) can be gleaned from Fig. 3, which shows the radius of 
gyration of looped chains of various lengths as a function of anchor density. Initially, 
as a is increased, Rg decreases, indicating that the chains assume more spherical 
conformations. As a increases further, neighboring chains eventually begin to touch 
each other at the so-called impingement density. 
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Fig. 2. Density scaling behavior of re- 
duced layer heights, expressed in terms 
of <Rjz>ll2/cr113. Predictions from SCF 
theory for tails with N/2 segments are 
shown as solid lines. 

0.14 

0.10 

N 

0.07 

Anchor Density (a) 

Fig. 3. Normalized radius of gyration, 
Rg/N, of looped chains as a function 
of a. Arrows indicate the minima in 
the curves which correspond to the im- 
pingement density for a given N. 

Mixtures of Loops and Tails 

A mixture of double-tethered polymer loops and single-tethered tails represents the 
case of dual-end-functionalized chains in which only a fraction of the chains manage 
to attach to the interface at both ends. We investigate the effect of composition on 
the height of the loop layer in a tail/loop mixture where both chain species possess 
an identical number of repeat units. In Fig. 4, < R2

gz >\l20p /a
1'3 is presented as a 

function of anchor density for several loop compositions, Xi. 
As seen in Fig. 4, < R2   >]l\v increases with increasing X\. Tails tend to suppress loop 

the loop layer below, forcing the loops closer to the surface. As a result, < R2   > 1/2 
loop 

decreases with increasing tail composition. We also note that the high-density SCF 
scaling behavior observed in Fig. 2 for pure loops is also valid for loops in tail/loop 
mixtures; i.e., <RgZ>\Hp~ a113 at intermediate to high densities. One interesting 
difference, however, is that the onset of the scaling regime for loops occurs at lower 
density as Xi is decreased. Since loops have two tethered sites, the effective density 
per chain for loops is higher than that of tails. Therefore, with increasing loop com- 
position, the effective density at the surface increases, resulting in the onset of the 
scaling regime at lower anchor density. 
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Dynamic Properties of Loops 

The dynamic behavior of grafted polymer layers is of considerable interest as it pro- 
vides a microscopic understanding of the internal stress relaxation process, as well 
as of the dynamic response of such layers to external shear deformation. The re- 
laxation behavior of polymer loops is evaluated by monitoring the time correlation 
functions of the radius of gyration (CRg). This time autocorrelation function is given 
by 

CRAt) 
(Rg(t)Rg(0)) - {Rg)2 

(Rl > - <^>2 
(2) 

The dependence of CRg on time for looped chains at anchor densities ranging from 
0.05 to 0.48 is presented in Fig. 5. Simulation times are presented in reduced units 
defined as 

t* = t{kBTlmdl) 2U/2 (3) 

where t is the simulation time, kB is the Boltzmann constant, T denotes absolute 
temperature, and m and d are the mass and diameter, respectively, of each segment. 

22 

18 

a   14 

10 
10 

Anchor Density (a) 

4.  Effect of composition on the Fig 
leigl 
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height of loop layer (< Rgz >li2oP) in a 

200     300     400     500     600 
Reduced time (t*) 

Fig. 5. Radius of gyration time auto- 
correlation function CRg for loops with 
JV=40. The inset shows the non-expone- 
ntial decay of CR  at small t*. 

The decay of the autocorrelation function displays two regimes. At very short 
times, interactions are predominantly z'/ifrachain as chains do not feel the presence 
of other chains in the vicinity and are highly mobile in their localized pocket. In this 
regime, CRg exhibits a rapid non-exponential decay as shown in the inset of Fig. 5. At 
longer times, as chains diffuse out of their local pockets, interchain interactions slow 
down the motion of the chain, hence slowing the decay of CRg. As might be expected, 
the region of initial non-exponential decay becomes smaller as a increases, since the 
local pocket of a chain shrinks in size and interchain interactions occur at earlier 
times. 

From the autocorrelation function data presented in Fig. 5 we can calculate the 
average relaxation time T for looped chains using the techniques described by Murat 
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and Grest.13'9 Relaxation times are obtained for looped chain layers composed of 
N=20, 40, and 80 repeat segments at various densities. Figure 6 presents a double- 
logarithmic plot of T/CT

4/3
 as a function of a. As indicated in the figure, the relaxation 

time T scales as T ~ cr4/3. The relaxation times are fitted to an expression of the 
form T ~ Naab to obtain 

Tloop 
3^4/3 APo- (4) 

The relaxation time of polymer tails obtained from previous BF simulations14 and 
theoretical frameworks15 is found to scale as Ttau ~ N3a213. Thus, we find that the 
scaling dependence of loop relaxation time on chain length (T ~ AT3) is identical to the 
scaling behavior of polymer tails. The density dependence of loop scaling behavior, 
however, is much stronger (squared) compared to that of tails. We are presently 
unable to provide a theoretical explanation for this behavior. While an explanation 
for this difference in the density scaling behavior of loops and tails will have to await 
a more detailed theoretical analysis, the doubled exponent in density scaling of loops 
versus tails does offer some interesting speculations about the scaling behavior of 
chains with multiple grafted sites (i.e., polymer "trains"). 

The lateral self-diffusion coefficients are obtained from the average mean square 
displacement of the centers of mass of the looped chains.16 Our results are pre- 
sented in terms of the dimensionless reduced lateral diffusMty (D*), defined as 
D*=D/[kBTd2/m]1/2. Figure 7 shows the dependence of D* on a for looped chains 
with 20, 40, and 80 repeat units. In order to highlight the scaling behavior of D* at 
low density, D*a4'3 is plotted as a function of a. 
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Fig. 6. Variation of relaxation time T      Fig.  7.   Variation of reduced lateral 
with anchor density. We plot T/CT

4/3
 as diffusivity D* with density.    We plot 

function of <x to show the scaling behav- D*cr4/3 as function of a to show the 
ior of T at low density. scaling behavior of D* at low density. 

As in Fig. 2, two different scaling regimes are clearly discernible in Fig. 7. At low 
densities, lateral diffusivity scales with density as D*~a~il3. As density increases 
beyond the point where chain impingement occurs, the scaling behavior undergoes 
a gradual transition to a region where D*~a~2. The scaling dependence of D* on 
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chain length also goes through a smooth transition from D*~N~4/3 at low densities 
to D*~N~2. As was the case for scaling behavior of T, D* for looped chains exhibits 
a much stronger cr dependence (D*~er~4/3 to a~2) than that exhibited by polymer 
tails (D*~a~2l3).u 

CONCLUSIONS 
We have studied the structural and dynamic properties of grafted polymer loops and 
mixtures of loops and tails. Comparing the equilibrium conformational properties of 
polymer loops and tails, we find that polymer loops of JV repeat units are structurally 
similar to polymer tails of AT/2 repeat units. However, comparing the scaling rela- 
tionships of the dynamic properties of looped chains to those of polymer tails, we 
observe that despite the presence of the second anchor, the chain-length dependence 
of relaxation time and lateral diffusivity of polymer loops and polymer tails is found 
to be similar. In contrast, the dependence of relaxation time and lateral diffusivity 
of polymer loops on density is much stronger (squared) than that of polymer tails. 

ACKNOWLEDGMENT 

This work was supported by the Director, Office of Energy Research, Office of Basic 
Sciences, Chemical Sciences Division of the U.S. Department of Energy under Con- 
tract No. DE-FG05-91ER1481. Partial support is also provided by the Donors of the 
Petroleum Research Fund, administered by the American Chemical Society. 

REFERENCES 

1. S. Wu, Polymer Interfaces and Adhesion. (Dekker, New York, 1982). 
2. S. Alexander, J. Phys. (Paris), 38, 983 (1977). 
3. P. G. de Gennes, Macromolecules, 13, 1070 (1980). 
4. S. T. Milner, T. A. Witten, and M. E. Cates, Macromolecules, 21, 2610 (1988). 
5. M. Murat and G. S. Grest, Macromolecules, 24, 704 (1991). 
6. P.-Y. Lai and E. B. Zhulina, J. Phys. II (France), 2, 547 (1992). 
7. J. F. Marko and A. Chakrabarti, Phys. Rev. Lett., 48, 2739 (1993). 
8. D. C. Rapaport, J. Chem. Phys., 71, 3299 (1979). 
9. H. S. Gulati, C. K. Hall, R. L. Jones, and R. J. Spontak, J. Chem. Phys., 105, 7712 

(1996). 
10. S. W. Smith, B. D. Freeman, and C. K. Hall, J. Comput. Phys. (in press). 
11. H.-P. Deutsch and R. Dickman, J. Chem. Phys., 93, 8983 (1990). 
12. R. L. Jones and R. J. Spontak, J. Chem. Phys., 103, 5137 (1995). 
13. M. Murat and G. S. Grest, Macromolecules, 22, 4054 (1989). 
14. P.-Y. Lai and K. Binder, J. Chem. Phys., 95, 9288 (1991). 
15. L. I. Klushin and A. M. Skvortsov, Macromolecules, 24, 1549 (1991). 
16. D. A. McQuarrie, Statistical Mechanics. (Harper and Row, New York, 1973). 

114 



DYNAMIC ASPECTS OF FORMATION OF SYNTHETIC MEMBRANES 

M.THIES*, H.H.PARADIES*. S.F.CLANCY** 
*Biotechnology & Physical Chemistry, Märkische Fachhochschule, Iserlohn, D-58644, 
Frauenstuhlweg 31, P.O.BOX 2061, Germany,HParadies@aol.com 
**Witco Corporation, Research & Development, P.O.Box 646, Dublin, OH 43017, & 
Safety,Health, & Environmental Affairs, One American Line, Greenwich, CT 068131-2559,USA 

ABSTRACT 
A detailed physical analysis of data obtained from static light and dynamic light scattering 

experiments with polymer-like distearyldimethylammonium OH (DSDMA X") micelles has been 
undertaken at dilute and semidilute concentrations, and compared with those in the presence of 
racemic and enantiomeric anions, e.g. S-(+)-lactate or the R-(-)-enantiomer. 

INTRODUCTION 
A range of amphiphilic molecules forms lamella phases that can swell in a solvent. For 

ionic systems the swelling in water and in oil-like environments is caused by electrostatic double 
layer forces [1-3]. For liquid bilayers the swelling in water or saline solutions have traditionally 
been interpreted as due to a hydration force whose molecular origin is connected to a structure 
formed in the saline system, including counterions. In light of the challenges of this view [4-7], 
particularly not considering configurational arrangements of the head groups or the protrusions of 
the entire molecules, or a combination of both effects, and as a function of chiral, counterions, we 
investigated the dynamic aspects of the formation of synthetic membranes [8]. The synthetic 
membranes are built from distearyldimethylammonium (DSDMA) X " compounds in the presence 
of inorganic anions with X = OH, Cl or chiral counterions e.g. R-(-)-lactate or the S-(+)- 
enantiomer. In an effort to delineate the importance of the above mentioned contributions but also 
the influence of the counterions X" on these factors, we have performed a series of static and 
dynamic light scattering experiments to address the dynamic aspects of the formation of these 
fully synthetic membranes with respect to simple vs. chiral anions- By adding achiral anionic 
compounds, e.g. propionic acid, myristic acid (MA) or palmitic acid (PA) or OH" and most 
unexpectedly S-(+)-lactate or the R-(-)-enantiomers in a certain ratio to the double-chained 
cationic N-surfactants, one can induce the formation of large entanglements. Also the addition of 
MA can induce the formation of non-lamella inverted hexagonal (Hn) and /or inverted 
bicontinuous cubic phases as observed for dimyristoylphosphatidylcholine (DMPC) and 
dipalmitoylphosphatidylcholine (DPPC), respectively [9]. Didodecyldimethylammonium X'salts 
which are much more water soluble than the DSDMA X compounds have been studied 
extensively by Brady et al. [10] but not noticing the remarkable effects of the solution properties 
of DDMA X in the presence of enantiomeric lactates or racemic lactate in the semidilute regime 
e.g. increase of entanglement, swelling, changing of the persistence length and viscosity effects 
due to the formation of wormlike micelles, which follows in fact the same pattern as found for 
DSDMA X [11].- Furthermore, there are no experimental data available on the DSDMA X with 
X = R-(-)-lactate, the S-(+)-enantiomer or on the racemic a-hydroxy-propionic acid with respect 
to formation of vesicles or micelles including their solution structures. However, it has been 
shown that DSDMA OH reveals a fairly unusual pattern in aqueous solution : at low molarity of 
salt it forms vesicles, at high salt as well as high surfactant concentrations it forms threadlike 
micelles. Since the theory of the vesicle or spherical-to-wormlike micelle transition including the 
theory of the Theological behavior of wormlike micellar solution presently lack predictive power 
laws, particularly for these environmental and biological active materials [12], we believe it is 
important to establish convincing physical data of this system undergoing spherical (vesicular) to 
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wormlike micelle transition for DSDMA OH in comparison to DSDMA X" with X = S-(+)- 
lactate, the R-(-)-enantiomer and the racemic R,S-lactate, particularly for the threadlike micelles. 

EXPERIMENTAL 
Materials 

The preparation of DSDMA or DDMA X", X = CL, Br, OH including purification and 
characterisation has been reported [11]. The preparation of DSDMA- or DDMA « S-(+)- or R- 
(-)-lactate has been performed by ion-exchange chromatography of the appropriate chloride on 
Amberlite ERA-400 resin loaded with the enantiomeric or racemic oc-hydroxy-propionic acid or 
sodium salt, respectively, at pH 7.2 (20°C), or by direct ion exchange of the chloride in the 
presence of 0.1 M sodium cc-hydroxy-propionate in water-ethanol mixtures (35% v/v) [20]. The 
completeness of exchange was determined by analysis of chloride content or FAB-MS 
Spectroscopy (Finnigan 8200). 
Methods. 

Static and Dynamic Light Scattering (QELS) experiments were performed on an ALV- 
LSE Goniometer (ALV Langen, Germany), equipped with an He-Ne-laser (NEC, 50 mW). An 
ALV-5000 multibit, multi-T-correlator and a computer controlled stepping motor driven variable 
angle detector system was applied [11]. A thermostat permitted control of temperature of + 0.1 
C (Lauda 15) for all experiments performed. 

RESULTS AND DISCUSSION 
The strongest evidence in form of flexible micelles and observation of their changes into 

other hydrodynamic structures in aqueous solutions in the presence of different counterions i.e. 
OH vs. lactates, was obtained in the semidilute regime at surfactant concentrations large enough 
that the elongated micelles can overlap by forming a transient network. Also in this regime the 
system exhibits a viscoelastic behavior which is reminiscent of that of entangled polymer 
solutions. Since the concentration range studied is very similar to that used in the preparation of 
synthetic membrane systems for measuring proton transfer rates of intercalated biological active 
molecules [8] or in the biotransformation through active intermediates e.g. the corresponding N- 
oxides and Cope-arrangement [13]. The physical results obtained are fundamental in respect to 
the structures dealt with in the biochemical reactions (ATP, ADP) or bacterial cell structures. 

Static Light Scattering. 
In the semidilute regime, i.e. concentrations of 1 mM DSDMA in the presence of R-(-)- or 

S-(+)-lactate, the flexible chains overlap at concentrations still low enough for the system to be 
described by one interaction parameter, the screening length C,. This can be interpreted as the 
mesh size of the transient network formed by entangled chains. Fig. 1 shows that 1/IS increases 
linearly with q2, which is also observed for the most dilute solution of DSDMA- R-(-)- or S-(+)- 
lactate of 0.5-1.0 mM, whereas for DSDMA OH the same behavior has been observed at 
concentrations of 5 mM. The crossover between dilute and semidilute solutions of DSDMA and 
enantiomeric lactates as seen by plots of log Is vs. log M (data not shown) can be related to the 
strength of the maximum intensity for long DSDMA-chains in the presence of the chiral 
counterions (ImM) in reasonable good solvents. For long thin chains qRo «1 is not obeyed over 
the entire scattering range of q-values, which are not accessible experimentally. Therefore, for a 
fixed value the maximum Is was extrapolated at the crossover concentration where qC=l- To 
overcome this difficulty Is was extrapolated to q=0 for determining the overlapping of chains. The 
q values have been introduced in Fig. 1 as data points, and also for obtaining ls(q=0) at different 
surfactant concentrations at c2ä 1 mM up to 5 mM. 
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Fig. 1 Variation of 1/IS vs. g2 for DSDM- S-(+)-lactate solutions in the presence of 5 mM S-(+)- 
lactate solutions in the presence of 0.5 mM S-(+)-Lactate with CDSDMA = 0.5 mM (x—x); 1.0 mM 
(•—•); 1.5 mM (■—■); q in cm "\ 

The slope was determined to be -0.39 vs -0.31, as predicted by Des Cloizeaux according to £ = 
0" [14]. The decrease of the scattered intensity upon increasing DSDMA-lactate concentration 
can be attributed to the decrease in correlation range which is also supported by the q2 

dependence of Is. Since no curvature is seen in Fig. 1 we estimate the radius of gyration of RG = 
839 Ä. Table I lists all the hydrodynamic parameters for the DSDMA-lactate system and for 
DSDMA OH for comparison. 

Table I 

Parameter OH" S-(+)-Lactate R-(-)-Lactate R,S-Lactate 

Rg,Ä 815 839 840 835 
Mw,xl0"3 3.500 3.700 3.780 3.790 
A2, x 10   mLmolg 4.55 2.95 2.98 3.05 
UÄ 6.234 6.419 6.420 6.430 
1,A 330 340 345 349 
R.Ä 1969 2.000 2.090 2.050 
Rg, Ä calc. 805 820 825 825 
<D>Z x lO* cm-2 s"1 4.09 3.75 3.70 3.73 
Relaxation times 
Xi, exp, us 324 321 319 325 
ii, Zimm, free draining, 324 326 328 330 
us 
Ti, Fujima, coil, us 596 610 625 620 
x2, Fujima coil, (is 163 175 180 179 
c 1.85 1.15 1.10 1.09 
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a) Lc " M/ML, with ML = 565 A'1, the molecular weight per unit length; L is the computed from 
3Rg3/l2 = (UI1)- [1 + exp(-Lc /1)]. R2 

NA"); XI = 2Rg
2/(D7tV) 

■■ [Lc7 yL] with 1/y = 21: R 2  , i\.g ealc R„7 6. c = 3Mr / (47tRg
2 

That we do not observe any significant curvature in the plot of 1/Is vs.q2 as for DSDMA-lactate 
concentrations increase (lmM-5mM) above 1 mM, and not below 5 mM, is an indication that the 
DSDMA-lactate micelles do not show any significant polydispersity, and there are no changes of 
the characteristic length C, of this system as long as the narrow concentration range is fixed. 
Another explanation can well be an interpenetration of DSDMA-lactate micelles resulting in a 
new characteristic length, £, which is independent of the micelle length rather than polydispersity. 
So £ is independent of the DSDMA-lactate micelle length with no overlapping of micelle size with 
surfactant concentration, and the correlation length can be identified with RG. 

Dynamic Light Scattering. 
The values of the average diffusion coefficients obtained by the cumulants method as a 

function of angle increase due to contributions of the internal modes for DSDMA-lactate 
concentration of c=1.5mM (Fig.2). 

+ i i 

F f { 

tf 
f 

1 

sin* (0/2) 

Fig. 2 Dynamic light scattering of DSDMA~R-(-)-lactate for CDSDMA 
: 

scattering angle (0) (20°C). 

1.5 mM as a function of 

The values of the self-diffusion coefficient were obtained from plots of T vs q2, where T is the 
average decay rate for different surfactant concentrations in the presence of racemic or 
enantiomeric lactates, respectively. No significant differences in the self diffusion coefficient 
between the DSDMA-R-(-)-lactate and the DSDMA-S-(+)-lactate as well a for the racemic 
lactate have been found, although there are differences in the CMC between the DSDMA-R,S- 
lactate and the enantiomeric DSDMA-lactates having a smaller CMC than the DSDMA-R,S- 
lactate. The corresponding correlation functions were analysed by the CONTIN program [15], as 
shown in Fig.3, wheras Fig. 4 shows the relative amplitudes of the slow and fast component of 
DSDMA-S-(+)-lactate. The fast component is q2 dependent, showing diffusive behavior. The 
slow component is independent of q, which can be reconciled of a structural relaxation process of 
a stabilized remark, resulting also in viscoelastic properties as noticed by rheological experiments, 
too. The slow component may derive from the disruption/coalescense kinetics of the DSDMAX 
aggregates, which is in accord with rheological experiments (Paradies, Clancy unpubl.) 
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Fig.3   Decay time distribution function at different angles obtained throgh Laplace inversion 
with CONTIN for CDSDMA = 1.5 mM and 0.5 mM S-(+)-lactate. 

At lower angles only one peak is to be seen, representing the translational diffusion coefficient 
terms. By increasing the magnitude of the scattering vector length, a second peak appears in Fig.3 
at a faster decay time and hence smaller in apparent size. However, the proximity of the image 
peak to the minor peak causes a perturbation of the peak position of the minor component of the 
time scale. In order to eliminate this drawback the correlation function was divided by exp(-qDt) 
to yield a "normalised" correlation function. By applying the correct limiting value for D the 
contribution from the internal modes can be retained only by considering a single coil. The 
position of the fast-moving peak on the time scale corresponds then to both the diffusional and 
internal mode contributions of g(1)(t) At low scattering angles, e.g. qRc- « 1, the translational 
diffusion coefficient is the only one which contributes to gu)(t), so the correlation function decays 
approximately as a single exponential. But, when qRo becomes larger with increasing angle the 
internal modes will contribute to the correlation function, so it becomes multiexponentional (qRo 
= 1.95-2.20).The increase in the average diffusion coefficient (Fig.2) with scattering angle , also 
shows an increase in the relative variance from 0.65 to 1.04, in the angular range of 25-110°. 
Furthermore, when the DSDMA-lactate concentration increases, the variance of the correlation 
function decreases. This is in accord with the view that a progressive interpenetration of the 
flexible chains occurs which indicates that the diffusion coefficient becomes independent of the 
internal characteristics of the DSDMA-lactate micelle, but only dependent on the average 
distances between closest chain contact. 

The experimental data have been prosecuted by applying a double exponential expression 
with a fixed D-value which is related to the slow relaxation rate, Ts, according to eqn. (1): 

(1)      G(2)(t) = 1 + ß[Asexp(-rs t) + AFexp(-rp t) + C]2 

with G(2)(t) the measured correlation function, ß is a constant which accounts for the deviations 
from ideal correlation, and C is the base line. The variables fs and Tp are the relaxation rates of 

the slow and fast components, respectively, with Ts reflecting the translational mode, and Tp 

combines the fast internal modes and the diffusive component. This satisfies equation 11 so that 
Fp - rs = 2/t[ The diffusion coefficient determined was fixed to be 4 09 x 10~6 cm"2s"l as 

measured at low angles. Fig. 4 shows the amplitude of the fast mode dependence on angle for c = 
0.005 M DSDMA-lactate and the slow mode dependency, which is an indication for 
viscoelasticity. 
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Fig. 4 Relative amplitudes of the slow (As) and fast component (Ap) as a function of 
scatteringangle (left) 
at CDSDMA = l.OmM in the presence of R-(-)-lactate (1.5 mM), and of DSDMA-R-(-)- 
lactate (-1.5 mM) (right). 

The average t, value calculated according to eqn (1) fit the G(2)(t) measured correlation 

function, and was found to be 309 (.is. This obtained value can be compared with the one 
computed from the first normal mode t, for a free-draining coil according to Rouse [16] and 
Zimm [17]. Normally, the value is determined by extrapolation to infinite dilution, but using the 
low concentration applied here, the experimental value obtained in this study seems to be reliable. 
Now considering different interpretations of <D>Z, T„ T2, and RJJ, e.g. if a Gaussian coil model 
can be physically applied, the size of this model can be estimated. A Gaussian coil has to be long 
and very flexible. Following the Fujima notation for flexible macromolecules [18], y-L» 1 with 
varying degrees of flexibility, the flexibility can be expressed in terms of the product of the particle 
length, y-L, where y is the inverse Kuhn segment length, 1/y = 2/ with / the persistence length, and 
L is the length of the macromolecule in solution. Taking n=6020 as the apparent aggregation 
number for DSDMA-lactate, for a spherical micelle the radius of the hydrocarbon core, RJJC 

would be: 

(2)      RHC = (3VHC ' 4jc)1/3 = 12 77 A 

with: 

(3) 
where nc 

calculate: 

(4) 

VC = n[27.4 + 26.9(nc - 1)] = 485 • n 
18, the number of carbons in the chains. For a cylinder of the same radius we 

tyHc- 2 ■ L(n) = 485 • n 

which furnishes us with a value of L(6020) = 2498.9 Ä. If y L =10, for a Gaussian coil where 
minimum flexibility is assumed, then the statistical segment length of 1' = L / yL = 249.9 A is 
obtained with n' = L/l' =10. The radius of gyration of such a Gaussian coil is calculated 
according to: 

(5)      Rg = n'l2 / 6 
and would be 322.6 A. This is a much smaller value than the 840 A obtained for DSDMA-lactate, 
indicating that a Gaussian coil is not consistent with the experimental data obtained. The limit y • 
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L»l corresponds to a completely flexible coil, and would agree with the Rouse-Zimm model. 
We find a yL value of 9.9 (10) which indicates that the coil is not in the extreme limit of flexiblity. 
If we introduce these values into the Fujima model [18] we calculate x, = 596 u.s. This is much 
lower than the value obtained experimentally of 311 [is. One explanation for this discrepancy is 
that we are dealing with a semidilute solution so the overall rotational motion, which is related to 
x1; is suppressed. The x, value observed can also be related to a combination of xt and x2 which 

for is flexible rod is of the order of x2 = 100 us. In addition, the x, measured can be a 

combination of X[ and higher terms on the time scale which was not measured experimentally. 

However, the best qualitative description of the findings in this particular salt region (1.0 
mM - 5.0 mM R-(-)-/or S-(+)-lactate) in the concentration range of DSDMA - lactate (0.8 x 10"3 

M to 1,5 x 10~3 M, 1.15 c* - 2.12 c*) is that of a semidilute polymer solution, comprised of 
polymeric chains which are not at the extreme limit of flexibility, but revealing some stiffness of 
the hydrocarbon chains. 

Furthermore, the fastest decrease of D levelling off DKif follows a power law C"6 with 
8=0.7 in 1.0 - 5.0 mM lactate solutions. These values are closed to but significantly smaller than 
those previously observed for other systems. Note, Ott et. al. [19] observed a value of 1.35 ± 0,05 
for lecithin micelles which seem to agree with the description of tracer diffusion in living polymers 
as stated by Cates [20], This is not the case for our DSDMA-lactate system studied here where 8 
is larger than 1.35 for R-(-)- or S-(+)-lactate concentrations smaller than 5.0 mM, and where, at 
larger concentrations for R-(-)- or S-(+)-lactate of 10.0 mM a sort of anomalous diffusion takes 
placeatT=20-25°C[21]. 

CONCLUSIONS 
An important contribution in understanding the DSDMA-lactate system is the 

concentration dependence of the chiral lactates surfactant upon the dynamically time scale; that is, 
at higher surfactant concentration the distribution of decay times becomes bimodal. The fast mode 
reflects the co-operative motions of the transient network formed throughout the chain 
entanglements, which has a positive exponent (x cc c°68) similar to the previous study of the 
DSDMA OH system. In fact the DSDMA OH system parallels very closely the system studied 
here, however with the exception that the concentrations used are a magnitude lower than for the 
DSDMA OH hydroxide. It should be remarked that the application of the theory applied here is 
only valid for the description of the short time-scale dynamics, since the effect of topological 
constraints which dominates the long time-scale dynamics was not taken into account. 
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ABSTRACT 

The interfaces between the water-rich, oil-rich and disordered phases of a balanced ternary 
mixture of oil, water and amphiphile are studied, on the basis of a vector lattice model, by 
means of an exact partial integration and a local mean field approximation. The phase dia- 
gram exhibits a water/oil-rich phase, structured (ordered bicontinuous and lamellar) phases 
and a disordered phase with a microemulsion region. The interfacial tension and profiles 
at oil/water/disordered phase coexistence are calculated and the possibility of a wetting 
transition is discussed. 

INTRODUCTION 

In this paper we consider a mixture of water, oil and amphiphilic molecules [1], which 
are characterized by the presence of a polar head (which tends to attract water) and a 
non-polar tail (which tends to attract oil). When amphiphilic molecules are added to a 
mixture of oil and water, they tend to form layers at the interface to oil and water, thereby 
strongly reducing the interfacial tension. This feature is of fundamental importance in many 

biological and industrial processes. 
Amphiphilic mixtures have also attracted a great deal of interest from the theoretical 

point of view because they are complex fluids exhibiting several distinct thermodynamic 
phases, like water/oil-rich phases, liquid-crystalline phases, and a disordered phase in which 
a microemulsion region can be identified. From the point of view of thermodynamic phases 
a microemulsion is still a disordered fluid, but it is characterized by peculiar short-range 
correlations, related to the presence of fluctuating layers of amphiphile separating oil and 
water. Such short-range correlations are of course due to the amphiphilic interactions, and 
can be regarded as a reminiscence of the long-range ordered structures appearing at lower 
temperatures. From the theoretical point of view the boundary between the microemulsion 
and the ordinary disordered fluid is usually defined by means of the Lifshitz line or the 

disorder line [1]. 
It is both experimentally observed and theoretically predicted that under suitable ther- 

modynamic conditions the disordered fluid coexists with the water-rich and oil-rich phases. 
The purpose of the present study is then to calculate interfacial profiles and tensions at such 
a coexistence and to discuss the possibility of a wetting transition, for a balanced system 
(we assume that oil and water behave symmetrically) and for varying amphiphilic interaction 
strength. 

THEORY 

The model on which our investigation is based is a vector lattice model proposed by Ciach, 
H0ye and Stell [2, 3]. The model is most easily written in terms of two sets of variables. For 
each lattice site, the z-component s(r) of a spin-1 operator, taking values ±1,0, identifies 
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the chemical species (+1 corresponding to water, 0 to amphiphile and —1 to oil), while 
a vector variable n(r), meaningful only for s(r) = 0, specifies the amphiphile orientation. 
Since we are going to consider the model on the simple cubic lattice, the possible values 
of the orientational variables will be restricted to those pointing towards the six nearest- 
neighbors of a given site, for the sake of simplicity: it seems reasonable to believe that such 
an assumption will not alter the basic features of the model. Assuming oil/water symmetry, 
the model Hamiltonian (divided by kßT, where as customary kß is the Boltzmann's constant 
and T the absolute temperature) can be written as 

KB1 L   r,{ Z   1,6 

-   A£[l-s2(r)]S(r + <5)n(r).5, (1) 

where J and K are related to the chemical interaction strengths between different species by 
J = (e«™+e0»-2e„0)/4 and K = {eww+too+2eVJO)/A-(ewa+coa)+eaa (eaß being the interaction 
energy between molecules of species a and ß), D is related to a difference of chemical 
potentials by D = fia — (ftw + ß0)/2 + 3(ewa + eoa — 2eaa) (fj,a being the chemical potential 
for species a) and can be regarded as a rescaled chemical potential for the amphiphile, A is 
the strength of the amphiphilic orientation-dependent interaction, which characterizes the 
strength of the amphiphile and S is a vector of length equal to one lattice spacing pointing 
towards nearest neighbors. 

In previous papers [4, 5], we studied the phase diagram of this model doing first an exact 
integration of the orientational degrees of freedom, which is possible since these interact only 
with the spin ones, and not among themselves. This leads to a model in the spin variables 
only, with many multispin interactions (up to 7 spins for the simple cubic lattice), which is 
then studied by a local mean-field approach. Details of our approach have been given in Ref. 
[5]. As a result we found the water-rich, the oil-rich, the bicontinuous ordered and lamellar 
phases with different periodicities, and a disordered phase with a microemulsion region, 
which we identified by means of the Lifshitz line. In the temperature vs. chemical potential 
plane, we have found the three-phase coexistence line between water, oil and disordered 
phases, which emerges from the multiphase point at which these phases coexist also with 
a structured phase (bicontinuous or lamellar, depending on the amphiphile strength). The 
lamellar phases (the so-called L2 and L3 phases) are found only at non-zero temperature and 
for strong enough amphiphile, and occupy always tiny regions close to the multiphase point. 

In the framework of the local mean-field approach to the model which results from the 
integration of orientational degrees of freedom, interfacial properties like order parameter 
profiles and interfacial tensions can be studied simply by considering a one-dimensional 
sample of N x 1 x 1 sites, with periodic boundary conditions in the "short" directions and 
fixed boundary conditions in the "long" one (if we are going to study the interface between 
phases A and B, the order parameters at sites 1 and N of our sample will be constrained 
to the corresponding bulk values). The interfacial tension a AB at coexistence is then given 
by the excess free energy with respect to the bulk value, while interfacial profiles can be 
deduced from the couples (m„, qn), n = 1,2,... N, defined by 

^n     ~      \Sn)  = Pw,n        Po,n 

In     =     (si)  = 1 - Pa,n, (2) 
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where sn is the spin-1 operator at the n-th site of our sample and pQ>n (a = w, o, a for water, 
oil and amphiphile respectively) is the concentration of the species a at the same site. 

Among the possible interfacial phenomena, wetting of the water/oil interface by the 
disordered fluid is of particular interest. In order to investigate this possibility we shall 
determine the interfacial tensions awo, awd and a do, where d denotes the disordered phase. If 
the water/oil interface is dry the condition uwo < awd + (Jdo holds [1], while if the interface 
is wet (which means that a macrosopic region occupied by the disordered phase appears 
between the water-rich and oil-rich bulk phases) the condition awo = crwd + <?do holds [1]. In 
the case of a first order wetting transition, a metastable interface with amo > &-wd + &do is 
expected at temperatures higher than the transition temperature [6]. Notice that, since we 
are dealing with a balanced system in which oil and water behave symmetrically, we have 

OW = &do- 

RESULTS 

We have studied the interfacial properties of our model for KjJ = 1 (which amounts to 
assume two + eaa = cma + toa) and varying A/J, and report here the results for two typical 
cases of weak and strong amphiphile, corresponding to A/J = 1.1 and 3.0 respectively. We 
consider first the case A/J = 1.1, for which the portion of the phase diagram which is 
relevant for the present study is reported in Fig. 1. 

Figure 1: Phase diagram for KjJ = 1 and A/J = 1.1 in the temperature (1/J) vs. chemical 
potential {D/J) plane. Solid, dashed and dotted lines denote first order, second order and 
Lifshitz lines, respectively, while PT and PM are the tricritical and multiphase point and w/o, 
b, d and m stand for water/oil-rich, bicontinuous ordered, disordered and microemulsion. 

Here the bicontinuous ordered phase occupies a rather small region of the temperature 
(1/J) vs. chemical potential (D/J) plane (the multiphase point PM is at 1/J = 0.11, while 
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the tricritical point PT is at 1/J = 3.58 and the Lifshitz line meets the first-order, or three- 
phase coexistence, line at 1/J = 1.46), since A/J is very close to the value 1, at which 
this phase disappears at all. However, such weak amphiphile (i.e. small A/J) cases are 
very important to study since, as we shall see in the following, the possibility of wetting is 
enhanced for weak amphiphile. 

In Fig. 2 we have plotted the interface tensions vs. temperature along the coexistence 

1.5 

1.0 

0.5 

0.0 
0.5 1.0 1.5 

1/J 
2.0 2.5 

Figure 2: Interfacial tensions vs. temperature for K/J = 1 and A/J = 1.1. 

In the vicinity of the multiphase point, we have a water/oil interface tension aw0 ~ 10-2, 
that is two orders of magnitude smaller than the corresponding tension without amphiphile. 
The behavior of the tensions awo and awd + (Jdo shows that increasing the temperature one 
passes from a region in which the interface is evidently dry to a region in which the two 
curves are indistinguishable on the figure scale, but this does not imply rigorously a wetting 
transition. Numerical results indicate that, for any temperature up to 1/J = 2.8 (higher 
temperatures are very computationally demanding), among the many metastable solutions 
(the presence of many metastable solutions in a lattice model is a consequence of the fact that 
in real systems the interfacial profile varies continuously as the temperature increases) which 
are found for the w/o interface, taking a sample with N large enough (we used N < 100) it 
is always possible to find one with an interface tension awo smaller than trwct + Udo = 1<?wd- 
As a consequence, a thermodynamic wetting transition does not take place for 1/J < 2.8 
(but we cannot definitely rule out such a possibility at higher temperatures), although a 
substantial, even if not macroscopic, amount of amphiphile is found at the interface. 

A situation which resembles a very weak first order prewetting transition is instead ob- 
served at 1/J = 1.8, but this is clearly a spurious effect induced by the lattice. 

In order to examine more deeply the possibility of a wetting transition we have plotted 
the interface profiles at 1/J = 2.0 (Fig. 3) and 2.8 (Fig. 4). 
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Figure 3: Interfacial profiles of the order parameters m (solid lines) and q (dashed lines) at 
the water/disordered (a) and water/oil (b) interfaces for K/J = 1, A/J =1.1 and 1/ J = 2.0. 

20 40 60 80        100 
n 

Figure 4: The same as Fig. 3 for 1/J = 2.1 

It is readily seen that the interfacial regions are spread for the higher temperature: in 
particular, at the water/oil interface the amphiphile excess with respect to a completely dry 
interface (which would diverge at a second order wetting transition) is much higher at the 
higher temperature. Nevertheless, it has to be noticed that in the central part of Fig. 4(b) 
the values of m„ and qn never stabilize on the bulk values for a disordered fluid (although 
again this is not visible on the figure scale), as one would expect for a truly wet interface. 

Let us now consider the strong amphiphile case A/J = 3.0, for which the phase diagram 
was reported previously [5]. The multiphase point PM was found at 1/J = 4.76, while 
the Lifshitz line met the coexistence line at 1/J = 3.10 and the tricritical point PT was 
at 1/J = 3.75. For A/J = 3.0 the two interface tension curves (Fig. 5) are much more 
separated than in the previous case, and hence a wetting transition is much less probable 
here. Furthermore, the interfacial profiles for A/J = 3.0 in the range of temperatures that 
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we have been able to consider resemble very closely those depicted in Fig. 3. Finally, as far 
as the water/oil interface tension near the multiphase point is concerned, this stays of order 
10~2 for A/J = 3.0, but drops to the order 10"3 for A/J = 5.0. 

Figure 5: The same as Fig. 2 for A/J = 3.0. 

CONCLUSIONS 

We have studied the interfacial behavior at three-phase coexistence of a model for am- 
phiphilic mixtures proposed by Ciach, H0ye and Stell [2, 3], by means of a partial integration 
followed by a local mean-field approach [4, 5]. The analysis of the interfacial tensions con- 
firms, as already found in the context of other lattice models [1, 6], that the presence of the 
amphihile strongly reduces the water/oil interface tension. A significant tendency to wetting 
of the water/oil interface by the disordered phase is observed, especially for weak amphiphile, 
but no thermodynamic wetting transition has been found in the range of temperature that 
could be examined with a reasonable computational effort. 
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ABSTRACT 

Self-assembling protein filaments are important components of a cell's superstructure. Among 
these, actin filaments form the backbone of protrusions and extensions such as pseudopodia. The 
rates at which these structures extend cover a startlingly wide range: the acrosomal process of the 
sea cucumber may extend 90 |J.m in 10 seconds, which is more than 20 times the speed at which 
an epithelial goldfish keratocyte crawls. We seek to explain this range by examining the delivery of 
actin monomers to the growing filament ends. We show that the diffusive flux of actin monomers 
is adequate for fueling the slower movement of crawling cells, but is insufficient to propel the 
quicker acrosomal process of the sea cucumber. By introducing bulk fluid flow in response to the 
diffusive movement of water through the cell membrane, actin delivery can be enhanced. We 
compare the calculated speeds to experimental observations and discuss future refinements to the 
model. 

INTRODUCTION 

Cells reach and crawl, yet they do so without specialized muscle tissue. Instead, they actively 
rearrange their cytoskeletons. By selectively polymerizing and depolymerizing actin, cells create a 
variety of extensions and protrusions that serve their motile needs 13. For example, epithelial 
goldfish keratocytes extend lamellipodia—wide, shallow appendages that span the front of a 
moving cell. As the cell moves, the lamellipodium is continuously assembled at the front and 
absorbed at the rear, each portion staying stationary with respect to the surface while the cell slides 
around it4'5. In a different context, the sperm of the sea cucumber Thyone briareus penetrates the 
egg by shooting forth a very thin projection, the acrosomal process 6"8. 

Although the cell extensions are all dependent on actin filament assembly, their velocities differ 
dramatically 3. In particular, the acrosomal process of Thyone extends twenty fold faster than the 
goldfish keratocyte crawls. One key determinant of velocity must be the rate of delivery of actin 
monomers to the front. This is non-trivial, since diffusion delivers actin too slowly to maintain the 
observed extension speed of the acrosomal process of Thyone 9. Here we will focus on the 
epithelial goldfish keratocyte and the Thyone acrosomal process, seeking particularly to account for 
the impressive speed of extension of the latter. 

THEORY 

The problem of actin-based cell motility may be crudely broken into two pieces, protrusive 
force generation and actin delivery. As our focus is on actin delivery, we take an existing model for 
protrusive force generation and incorporate it into our model for monomer delivery. For monomer 
delivery, we first consider actin diffusion alone. Then we introduce osmotically driven bulk flow. 

The Brownian Ratchet 

The "Brownian Ratchet" model of force generation takes advantage of fluctuations in the cell's 
membrane 10. Actin filaments abutting the cell membrane are unable to lengthen due to obstruction 
of the ends by the membrane. When thermal fluctuations move membrane segments away from the 
filament, gaps larger than an actin monomer may be created, allowing polymerization to occur. The 
now-longer filament prevents the membrane from returning to its original position—this is the 
"ratchet" The speed of this extension is 10 

v« = %cte--*_], (1) 
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where k+ (k_) is the on (off) rate constant for actin filament assembly, cL is the actin monomer 
concentration at the front of an extension of length L, and CO = f5/kBT is the dimensionless work 
done against the load force / in adding a monomer of length 5 to the filament. This approximation 
is valid for cLk+S « 2D/S and k_8 « 2D/5, which are satisfied by the systems of interest in 
this paper. The flux of actin monomers onto the filaments for the Brownian Ratchet is 

JBR=n\KCLe     ~-j (2) 

where « is the number of filament ends involved per unit cross-sectional area. 

Actin Diffusion 

As the Brownian Ratchet draws down the concentration of actin monomers in the fluid at the 
front of the extension, diffusion tends to dissipate the gradient, bringing actin forward from the cell 
body. In the goldfish keratocyte, this is a steady state process. As the shape of the lamellipodium 
and the cell's speed both remain approximately constant, the flux of actin forward from the rear of 
the cell must balance the flux of monomers being added to the actin network. 

The diffusive flux of monomers to the tip can be easily estimated by Fick's law. If c0 is the 
concentration in the cell body (i.e., at x = 0), and cL is the concentration at the front (i.e., at 
x = L), then the flux of actin monomers (in particles per unit time per unit cross-sectional area) 
moving to the front of the extension is 

jD=(DJL)(c0-cL), (3) 

where Da is the diffusion coefficient of actin. The resulting concentration profile of actin 
monomers is linear. 

Equating the fluxes of Eqs. (2) and (3) gives the steady state actin concentration at the front of 
the extension 

_   c0+(nLk./Da) 
L     \ + {nLkJD.y 

The steady state extension speed is then obtained by substituting cL from Eq. (4) into Eq. (1). 

The Actin Strainer 

The Actin Strainer Model takes into account the possibility of osmotic effects. When 
polymerization draws down the actin concentration, water will tend to move to neighboring regions 
of higher solute concentration. This results in net transport of water through the permeable cell 
membrane. For a solute concentration difference of Ac, there will be a water flux 

L=PAc (5) 

through a membrane with a hydraulic permeability coefficient of Pf 
n. This flux will clearly be 

largest where the concentration difference is largest. Assuming that the cell body, with actin 
concentration c0, is in osmotic equilibrium, we consider only the concentration difference 
elsewhere due to actin polymerization and obtain the driving force 

Ac = (c0-c). (6) 
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FIGURE 1. A schematic of the Actin Strainer Model for the acrosomal process. 
Polymerization takes place at the front. Actin monomers are carried forward both by 
diffusion and by bulk fluid flow in response to the escape of water through the cell 
membrane. 

Since the volume of a cellular extension is stabilized by the presence of the actin network, we 
consider the volume of the extension to be constant. Neglecting the small compressibility of water, 
constant volume implies that water lost through the membrane around the extension must be 
replaced from the cell body. This fluid will carry a comparatively high concentration of actin. Thus 
actin delivery is enhanced by bulk flow when water leaving the membrane at the front causes actin- 
rich fluid to enter from the rear. Fig. 1 shows a schematic of this effect for the acrosomal process. 

Due to diffusion driven by assembly at the front, the concentration of actin will be depressed 
relative to its value in the cell body virtually everywhere along the extension. As a result, an 
osmotic pressure difference will develop everywhere along the extension (acrosomal process or 
cell lamellipodium), leading to water exit through every element of the membrane around it. 
However, bulk flow will cause the concentration profile to be relatively flat near the cell body and 
drop sharply near the front. Therefore, in steady state, most of the water discharge will occur near 
the front This situation can be approximated in a relatively tractable way by assuming that 
essentially all the osmotic flux occurs through the small area Amem of membrane near the front that 
surrounds the region in which the actin monomer concentration is depleted at least halfway from c0 

to cL. Under this assumption, water and actin monomers can only leave or enter the system at the 
two ends. With this simplification, the equations for the concentration of actin and the extension 
speed can be written explicitly and solved numerically. 

Again we seek the steady state in which the fluxes of actin monomers in and out are in balance. 
In addition to the flux of actin by diffusion, there is a flux of actin carried by the fluid. This flux 
may be written j. = c0v,, where fluid moving with velocity vf carries a concentration c0 of actin 
from the cell body. The magnitude of the bulk flow is determined by how much water leaves the 
extension per unit time. Multiplying the water flux given by Eqs. (5) and (6) by the membrane area 
Amem and the volume of a water molecule vw gives the volume of water escaping from the front per 
unit time. The fluid speed is then 

V/=v/,(c,-ct)(/l„„/4). (7) 

where Ar is the cross sectional area of the extension. 
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The one-dimensional diffusion-convection equation at steady state is 

r.  d c dc     n rtn 
D^-v^=0- (8) 

In the geometry described above, the solution to Eq. (8) is 

>exp(V/%)- 
c(x) = 

expf'X)- exp(''%)-l exp("'X)- (9) 

The total monomer flux carried forward by diffusion and buUk fluid flow is then 

J,„=-D,- + cvf=   Jj.,^   V (10) 

At steady state, this flux is equal to the flux of monomers onto the filaments in Eq. (2). The 
steady state value for cL is obtained numerically and the corresponding extension speed is then 
given by Eq. (1). 

RESULTS 

As we are interested in matching the experimentally observed speeds, it is important that we 
use realistic values for the parameters in the model. The values used are given in Table I, along 
with their sources. 

For the goldfish keratocyte system, the diffusion-only model presented above, with the 
parameters listed in Table I, predicts a speed of 0.31 (im/s, in good agreement with the observed 
value of about 0.5 (xm/s 4'5. Given that the concentration of actin, the load force, and other 
parameters may vary in living cells, we may consider the diffusion-only model to describe the 
movement of the goldfish keratocyte rather well. 

The extension of the acrosomal process is a different story. Even when the diffusion-only 
model is applied to the acrosomal process at a short length (minimizing the distance that actin 
monomers need to travel), the model predicts an extension speed of only 17 nm/s. This is almost a 
thousand fold slower than the 6-12 |im/s observed experimentally 12. It is also slow compared to 
the fish keratocyte. This is because the growing ends of the actin filaments in the acrosomal 
process are much more densely packed, requiring more monomers per unit extension. 

To apply the actin strainer model to the acrosomal system, the determination of the membrane 
permeability and driving force for water movement through the membrane must be done with some 
care. The extension of the acrosomal process is preceded by other stages of the acrosomal reaction. 
In particular, there is an initial dramatic swelling of the periacrosomal compartment due to rapid 
influx of water 8. This event suggests that water movement is functionally significant in this 
system. From the overall change in volume we can estimate an "effective osmotic activity 
coefficient" of yeff=\(ß for the actin monomers that are being released from storage aggregates at 
this stage. This large number actually reflects concomitant ion movements. However, in the 
absence of a more detailed model, we do not consider ion movements explicitly and lump their 
effects into the effective osmotic activity coefficient for actin which we insert in Eq. (7). From the 
rate with which the periacrosomal compartment approaches its expanded volume, we can obtain an 
estimate for the membrane permeability. This gives Pf=1.2 x 10~2 cm/s, a value that falls in the 
general range for biological membranes. By comparison, red blood cells have a hydraulic 
permeability of about P,««10"2 cm/s n, while some renal membranes have permeabilities as high 

as Pf~3 x 10"1 cm/s 13. 
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TABLE I. Parameter values used in calculating extension speeds. 

 Parameter (source) Value 
ratchet step size 8 (1/2 monomer)14 2.7 nm 
actin on rate constant k+ 15 11.3 (|J.M s)-1 

actin off rate k_ 15 1.4 s-1 

actin diffusion coeff Da 
16 10~8 cm2 s"1 

temperature T (assumed) 27°C 

Lamellipodium of epithelial fish keratocyte: 
length L 4- 5 

height h 17 

end density n 18, 19 

3.0 |im 
0.2 urn 

4.0 x 108 cm-2 

reservoir concentration of actin c0 
20 , 21 10mg/ml 

load force per fiber / a 0.875 pN 

Acrosomal process of Thyone briareus: 
length L u 

radius r 12 
0-90 um 
0.025 urn 

end density n b 
3.1xl010cm-2 

reservoir concentration of actin c0 
c 55 mg/ml 

load force per fiber / a 0.1 pN 
membrane permeability Pf 

d 
7.2 x lO"2 cm/s 

effective osmotic activity coefficient 160 

a. Calculated for each system assuming a membrane tension of 0.035 dyne/cm 10 

distributed over the stated density of growing filament ends. 
b. Electron micrograph show 60 filaments in the cross section of a 0.05 |im 

diameter process 12. 
c. A 90 (Xm process of 60 filaments contains 2 x 106 monomers, originally 

stored in the periacrosomal compartment whose volume (after doubling) is 
10-12 cm3 12 

d. See text. 

Using these parameters and the others listed in Table I, the Actin Strainer Model predicts a 
velocity of 4.3 nm/s for the extension of the acrosomal process. Although falling a bit short of the 
6-12 (xm/s observed in the Thyone system, it is more than a hundred-fold improvement over the 
diffusion-only results (17 nm/s) in this system. The calculated velocity is very sensitive to some of 
the parameters we have estimated, particularly the membrane permeability. If the permeability of 
the membrane were double what we have used (still well within the known range of permeabilities 
of biological membranes), the calculated speed would climb to 6.6 nm/s. Changes in other 
parameters such as actin polymerization rate and the concentration of actin monomers in the cell 
body could similarly affect the calculated extension rate. 

CONCLUSIONS 

We have presented a model for the extension of actin filament networks incorporating both 
diffusion and bulk flow delivery of actin monomers to the growing ends. The bulk flow is driven 
by the escape of water through the cell membrane in response to osmotic pressure changes. 
Addition of actin monomers to the filament network is described by the Brownian Ratchet Model. 
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Speeds of extension are calculated with realistic parameters for two systems, epithelial goldfish 
keratocytes and the acrosomal process of Thy one. We find that the observed velocity of goldfish 
keratocyte locomotion is adequately supported by actin diffusion alone. The rapid extension of the 
acrosomal process of Thyone requires bulk flow and is adequately modeled by the Actin Strainer 
Model introduced here. 

Some of the assumptions made in this model will be relaxed in future work. In particular, 
water should be allowed to escape through any region of the membrane, not just at the front. In 
addition, the steady state restriction should be relaxed for the extending acrosomal process. This 
will enable calculation of the time course of the extension of the acrosomal process and comparison 
of the length dependence of the velocity with experimental observations. A more explicit treatment 
of ionic movement in the acrosomal system would also be desirable. 
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ABSTRACT 

The effects of soft repulsions on hard particle systems are calculated using an avoidance 
model which improves upon the simple mean field approximation. The method not only yields a 
better free energy, but also gives an estimate for the short-range positional order induced by soft 
repulsions. The results indicate little short-range order for isotropically oriented rods. However, 
for parallel rods short-range order increases to significant levels as the particle axial ratio 
increases. 

INTRODUCTION 

Colloidal suspensions are often described as hard particle gases. However, hard particle 
systems are scarce in reality. In particular, suspended particles are often charged and electrostatic 
forces must be taken into account. In a seminal paper [1], Onsager suggested absorbing the 
effects of soft repulsions in an enlarged effective size for the particles. This approach has been 
elaborated by Stroobants et al.[2]. In particular, they found that for very long, rigid, charged rods 
in solution, the effects of the soft repulsions can be characterized by two parameters: the 
effective diameter and the so-called "twisting" parameter which represents the torque between 
two rods interacting with soft repulsions. These workers used a second order virial expansion in 
their derivation which gives asymptotically correct results as the concentration goes to zero. A 
similar effective hard particle model (using virial expansion to higher orders) has been used by 
Minton and Edelhoch to fit light scattering [3] and osmotic pressure [4] data for a charged 
globular protein (bovine serum albumin) at volume fractions less than 10%. Unfortunately, these 
methods of treating soft repulsions cannot be applied at higher concentrations. If the effective 
diameter obtained in the low concentration limit is assumed naively to be independent of the 
concentration, the osmotic pressure is overestimated at higher concentrations. Clearly, as the 
concentration increases, the particles must make greater use of configurations that they might 
populate infrequently at low concentrations. The effective radius must therefore decrease with 
increasing concentration, and a single value valid for low concentrations is not appropriate for 
higher concentrations. 

Historically, there is another way of treating soft repulsions. The method, introduced by van 
Laar [5], and later used extensively by Flory [6], employs a mean field approximation. Whereas 
Onsager introduced an enlarged effective radius, which represents a kind of short-range order, 
the mean field approximation ignores any short-range order. In other words, the mean field 
approximation assumes that the positions and orientations of any two particles are completely 
uncorrelated except as necessary to avoid interpenetration of their hard cores. With this 
assumption, the average potential energy can be calculated easily. Combined with an estimate of 
the configurational entropy, the theory provides the free energy of the system and thus a full 
thermodynamic description. 

The basic mean field approximation is simple, but does not consider the possible short-range 
order induced by the soft repulsions. With soft repulsions, it is energetically unfavorable for 
particles to approach one another. Approximating this correlation in an all-or-none fashion, it is 
as if particles with a larger effective size interact with weaker soft repulsions. Since this effective 
size is different from Onsager's, subsuming only part of the soft repulsions, we will refer it as the 
"avoidance size." A larger avoidance size reduces (but does not eliminate) the energy due to soft 
repulsions. On the other hand, it also reduces the configurational entropy. Under suitable 
conditions, one can find an optimal avoidance size that minimizes the free energy. This 

135 

Mat. Res. Soc. Symp. Proc. Vol. 463 e 1997 Materials Research Society 



variational method has two advantages over the usual mean field approximation: it provides a 
better estimate of the free energy and also gives a semi-quantitative picture of the short-range 
order induced by soft repulsions. 

The soft interactions between mesoscopic particles in solution can be complicated, including, 
e.g., electrostatic interactions, van der Waals interactions, and interactions due to perturbations of 
water structure. To illustrate the method here, we will use a screened electrostatic force. The 
shapes and orientations of particles can also vary widely. For mathematical simplicity, we will 
consider only monodisperse spherocylinders with isotropic or parallel orientations. For these 
systems, we use scaled particle theory [7] to estimate the configurational entropy as a function of 
avoidance size. The residual soft repulsion energy for any avoidance size is calculated readily in 
the mean field approximation. Then the minimization procedure outlined above can be carried 
out to obtain a better estimate of the free energy and avoidance size. 

THEORY 

Consider a system of isotropic or parallel spherocylinders with hard core diameter D0 and 
cylinder length L. As a measure of particle asymmetry, it is convenient to imagine that each 
spherocylinder is a linear aggregate of n spheres with the same diameter and conserved volume, 
in which case L = (2/3)(« - 1)D0. The free energy per particle (in units of kBT) includes three 
contributions: 

/  ~~ /ideal ■*■ /conf "*" /rep- V^J 

The ideal part of the free energy per particle is given by 

/ltal=ln(cpA
3)-l, (2) 

where cp is the particle number density and A = h/(2nmkBT)11 is the thermal wavelength of a 
particle of mass m. 

fmri is the configurational free energy per particle. Scaled particle theory [7] for hard 
spherocylinders gives: 

/„,=-ln(l-v.) + Ä 
1-v. 

+ C 
v!-v.y 

(3) 

where va = c (jtZ>3/6 +nD1L/4\ is the apparent volume fraction for the avoidance diameter D, 
and the coefficients are given by 

B = 
3 + (3/2)(L/D)2/[l + (3/2)(L/£>)]   for isotropic rods 

for parallel rods 
(4) 

and 

C = - 
(3/2)[l + (L/Z>)]3/[1 + (3/2)(L/D)f for isotropic rods 

(3/2)[l + 3{L/D) + 2(L/Df]/[l + {3/2)(L/D)f    for parallel rods ' 
(5) 
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Defining vs = CJKDI/6 + 7tD„L/4) = ncf{nDl/6) to be the hard core volume fraction of 

solute and a = D/D0, it follows that 

2/ ,w      \a\    for« = l 
va=vsa

2(a + n-l)/n=     2
S (6) 

[a v,    for n »1 

To calculate /   , the contribution of soft repulsions to the free energy per particle, we 
approximate the soft repulsion energy between two cylinders as the sum of that between pairs of 
constituent spheres with the pair radial distribution function 

{0    for r < D (the avoidance region) 

1   for r > D (the mean field approximation) 

There are n2 such pairs. Suppose the soft repulsion potential energy between two spheres is 
given by 

u(r) = ^exp(-rA), (8) 

where J and X are the strength and the decay length of the interaction, respectively. Then, 

f.e=\"\\<rM'-)4nr1dr. (9) 

Substitution of Eqs. (7) and (8) into Eq. (9) gives 

/rep = 12vs(«A2/D0
3)(l + DA)exp(-DA)- (10) 

This calculation of the dependence of /    on the avoidance diameter is obviously exact for 
n = 1. For n > 1 it is accurate within a geometric factor of order of magnitude one. 

The optimal avoidance diameter D is that which minimizes the free energy per particle given 
by Eq. (1). For given values of n and vs or cp, the minimization can be accomplished 
numerically to give a. If a > 1, then there is short-range order with an avoidance diameter 
D = rxD0. Otherwise we simply have D = D0, indicating that in this case it is not advantageous 
for a particle to have an avoidance diameter larger than the hard core diameter. The value of a 
represents a trade-off between fcmS and /   , since /ideal has no D dependence. The solution 
value of a obviously depends on the hard core volume fraction vs. In general, at lower 
concentrations the configurational free energy is small compared to the repulsive free energy and 
there is a solution with a > 1. As the concentration increases, the configurational free energy 
increases faster than the soft repulsion free energy (i.e., the soft repulsions become relatively less 
important) and, as a result, a approaches 1. Above some concentration, D = D0 (and va = vs). 

Once a is obtained, the free energy [Eq. (1)] and the osmotic pressure (II = c2 df/dc^) can also 
be calculated. 
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RESULTS 

We have used the avoidance model to study both isotropic and parallel spherocylinders. For 
the isotropic case, we do not find a > 1 unless the solution is very dilute or repulsions are long 
range (X is large) and strong (say />10, using energy units of kBT and distance based on 

volume units of ft£>„/6). Even then, the free energy density and osmotic pressure calculated 
using our method are not substantially different from that calculated using Flory's simple mean 
field approximation (i.e., a = 1). 

For parallel spherocylinders, the situation changes drastically: soft repulsions with moderate 

J values can have an appreciable effect for large n because (/conf//rep) for parallel particles is 

reduced with increasing axial ratio. The range of the soft repulsion X is also important. Figure 1 
shows three examples with different combinations of X and n. In all cases, J = 2. We do not 
show the effect of varying / since Eqs. (2)-(6) show that, for parallel particles, when n is large, 
/«mf l°ses its dependence on n. In this case, (3//3D) depends on J and n only as the product 
Jn fromEq. (10). 

An assessment of the degree of short-range order is provided by a, the ratio of the avoidance 
diameter to the hard core diameter. As can be seen from Figure 1A, a starts with a finite 
maximum value in the limit of zero volume fraction and decreases with increasing volume 
fraction. As discussed in the introduction, this is the qualitatively expected behavior. As the 
system becomes more and more crowded, avoidance becomes more difficult and eventually 
ceases altogether (a = 1). Figure 1A also shows that the short-range order decreases when either 
the range of the force (A/£>0) or the length of the rods (n) is reduced. 

Another measure of short-range order is given by the behavior of the apparent volume 
fraction as a function of the hard core volume fraction. Figure IB shows that, as the hard-core 
volume fraction increases from zero, the apparent volume fraction initially increases very sharply 
and then saturates. The effect is more pronounced for the longer rods and longer interaction 
ranges. In the cases shown, it is only at very high (probably physically irrelevant) volume 
fractions that the apparent volume fraction becomes the same as the hard core volume fraction. 

It is also interesting to compare the osmotic pressures obtained using the avoidance model 
and the simple mean field approximation. We found that in most cases the two are not 
substantially different. The largest effect is seen when the soft repulsion free energy and the 
configurational free energy are comparable in magnitude. In this range, the avoidance model 
gives a lower osmotic pressure at lower concentrations but a higher osmotic pressure at higher 
concentrations. This behavior arises because the avoidance model gives a lower free energy, 
except at extremely low concentrations (the ideal case) and very high concentrations (with no 
avoidance) where the two models yield identical free energies. Since the osmotic pressure is 
proportional to the derivative of the free energy per particle with respect to particle number 
concentration, the two osmotic pressure curves must cross. 

CONCLUSIONS 

In summary, we have proposed an avoidance model to calculate a variational free energy for 
hard particles with soft repulsions. The method is an improvement over the simple mean field 
approximation. We have applied the method to isotropic and parallel spherocylinders with 
screened electrostatic interactions and found extensive short-range order for parallel rods with 
large axial ratios. 
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FIGURE 1. The ratio of avoidance diameter to hard core diameter (A) and the apparent volume 
fraction (B) vs. hard core volume fraction for parallel spherocylinders with 7 = 2 (using energy 

units of kBT and volume units of (itDl/6)), and n = 1000 and X/Da = 2 ( ), or n = 1000 
and X/D0 =0.5 ( ), orn = 100 and X/D0 =0.5 ( ). In the absence of short-range 

order a = 1 and va = vs ( ). 
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ABSTRACT 

Situations where a polymeric material is exposed to a solvent mixture so that the different 
components within the mixture can diffuse into the polymer are common both in industrial 
applications and in biological processes. Often one of the components is taken up preferentially 
and its presence affects the diffusion properties of the remaining components. The problem of 
accounting for processes of this type has not been dealt with in a systematic way. This may in 
part be due to the difficulty of characterizing experimentally the separate diffusion behavior of the 
various components: data of this kind are now becoming available for simple binary mixtures. In 
order to model this class of problems, a lattice model involving a polymer matrix (M) and two 
diffusing components (A and B) has been introduced. The Monte Carlo evolution of the system 
has been examined for different values of the local A-M, B-M and A-B interactions. These 
results shed light on the microscopic origin of selective uptake. 

INTRODUCTION 

Diffusion of solvents in polymeric materials continues to be an active field of investigation. 
Considerable progress has been made both in the experimental techniques used to study processes 
of this kind and in the theoretical interpretation of these experiments [1]. However, thus far 
the overwhelming majority of the research effort has been devoted to situations where a single 
diffusant penetrates a polymeric material. By contrast, in many practical industrial applications 
as well as in biological processes, the polymer is often exposed to a mixture of different chemical 
components, each of which can diffuse into the polymer. 

Several experimental techniques are becoming available to study the separate diffusion of 
each component. For example, under appropriate conditions, FTIR spectroscopy can be used to 
obtain separate sorption curves tracking the weight uptake of each species within a polymeric 
sample as a function of time [2]. Techniques such as Rutherford backscattering spectroscopy [3] 
and NMR imaging [4], that were devised to obtain the concentration profiles of a single diffusant 
at a given time, may also be used in the case of mixed diffusion to obtain the concentration profile 
of a specific component that has been labelled for this purpose. Even in industrial applications, 
such as permeability testing of plastic films [5], use of gas chromatography or mass spectrometry 
is becoming increasingly common, since often there is a need to ascertain the composition of 
diffusant permeating across a film. 

At least in principle, the information obtained from the aforesaid experimental techniques 
can be used to determine the phenomenological parameters, namely diffusion coefficients and 
solubilities (or final equilibrium concentrations), that enter a macroscopic theoretical description 
of the diffusion process. In the simplest situations, such a description consists of a set of differential 
equations for the local concentration <fo(x, t) of each diffusing component at time t and at location 
x = (x, y, z) within the polymeric sample. For example, for two diffusing components A and B, 
the equations are: 

dA^3. = V • [DA{4>A, <PB) V^(X, tj) (la) 
dt 

dt 
a*B

a
(x'f) = v • (DB(<PA, 4>B) V*B(X, t)) (U) 
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Here D^ and Dß are respectively the diffusion coefficients for species A and for species B. In 
general, these diffusion coefficients are functions of the local concentrations of both diffusants, 
and this concentration dependence couples the equations for (j>^ and <f>ß. 

The physical assumptions underlying eqs. (1) are straightforward. In accordance with Fick's 
phenomenological law of diffusion, the local flux of each species is proportional to the gradient 
V0j(x, t) of the corresponding local concentration, with the proportionality constant given by the 
diffusion coefficient Di. This, together with the equation of continuity for each species, yields 
eqs. (1). In the simplest case where equilibrium is established at the polymer surface as soon 
as the polymer is put in contact with the mixture, the boundary conditions will require that the 
concentration of each species at the surface be equal to the final equilibrium concentration $^ for 
that species. However, it should be noted that for two diffusing components, the assumption that 
equilibrium is reached at the sample surface as soon as the polymer is exposed to the mixture, 
is stronger than in the single component case, since it implies equilibration not only for the total 
amount of solvent within the polymer but also for the separate concentration of each species. In 
general, other processes, such as swelling [6], development and release of macroscopic elastic 
stresses [1,7], and changes of state such as plasticization [7-9], may accompany diffusion in 
polymeric materials. The simplified picture described above must then be modified to account for 
these phenomena as it is done in the case of a single diffusant [1]. 

It should be clear from this brief overview that in practice the task of obtaining from exper- 
iments the phenomenological input quantities that enter a macroscopic description may be quite 
complex. Yet there is a need for predictive tools capable of addressing practical questions of 
the kind encountered in polymeric barrier technology, e.g., to predict both the amount and the 
composition of permeant that escapes across a given (single-layer or multi-layer) polymeric barrier 
in a given time. Molecular level computer simulations of the diffusion process [10] are at present 
of little help in this respect, due to the relatively small size of the systems that can be treated in 
this way. In the rest of this paper, we describe a class of lattice models that aim at bridging the 
gap between molecular level simulations and the macroscopic description outlined above. The 
goal of this work is to provide a simple tool capable of helping both in visualizing the diffusion 
process and in modelling how diffusion is affected by the interactions between the different species 
involved. 

COMPUTATIONAL MODELS 

Our starting point is the kind of lattice gas models that have been used extensively in the 
literature [11-13] to study cluster growth during phase segregation in a binary mixture. In the 
prototype such model [11], each of the N sites of a two dimensional square lattice is occupied 
either by a type A or type B particle. The microscopic state of the system can be specified by 
associating to each site a variable rn (i = 1,.., N), such that 77, = 1 for sites occupied by A particles 
and r)i = — 1 for sites occupied by B particles. The particles interact via an Ising hamiltonian: 

H = -J E mi      J>0 W 

where < i, j > means that the sum runs over nearest neighbors. At each time step, the particle 
occupying two randomly chosen nearest neighbor sites are exchanged with a probability W given 
by the usual Metropolis prescription: 

W = Min\l,e in[l,e~AH] (3) 

where AH is the energy difference between the updated and the starting configuration: this kind 
of Monte Carlo evolution preserves the number of particles of each species. For J larger than a 
critical (Onsager) value Jc, this system is known to phase separate. Much work has gone towards 
studying the time evolution of the structure function and of the cluster distribution following 
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quenching above Jc [11-13]. If, by contrast, J is taken to be smaller than Jc but the system is 
started in a non equilibrium configuration (for example, one where the right half of the lattice is 
occupied by A particles and the left half is occupied by B particles), the model becomes a tool to 
study the kinetics of mixing, i.e., interdiffusion, of A and B. In the non interacting case J = 0, 
each particle simply performs a random walk and the mutual diffusion coefficient coincides with 
the self diffusion coefficient of the single particle. 

The models of diffusion of small molecules in a polymeric solid that we consider here are 
variants of the above interdiffusion model. In order to be able to deal with relatively large systems, 
we renounce a description of the motion of the separate chains that make up the polymeric 
material. Instead, the polymer is treated as a lattice background. Solvent particles move in this 
background according to the same kind of Monte Carlo kinetics outlined above. Specifically, 
consider a situation where two solvent species A and B can diffuse into the polymeric material M. 
An interaction energy XRS 

ls associated with each lattice bond located between a site occupied by 
species R and a site occupied by species S: here R and S can take the values A, B or M. The total 
energy H is the sum of the interaction energies XRS associated with each bond. Again at each 
time step a bond is chosen at random and the particles occupying the sites joined by this bond are 
exchanged with a probability given by eq. (3). 

Since we want to model practical experimental situations, such as sorption or permeation 
across a film, we must give appropriate prescriptions to deal with the lattice boundaries. Here 
we restrict ourselves to two dimensional lattices of N = LxLy sites that are periodic in the y 
direction: e.g., site (m, 1) coincides with site (m, Ly + 1) (m = 1, ..,LX). To handle sorption we 
take the edge at m = Lx to be reflecting: e.g., any exchange involving particles located at sites 
(Li, n){n= 1,.., Ly) is forbidden. On the remaining edge, m = 1, we fix the concentration of A 
andB: in other words any particle exchange involving sites (l,n) and (2, n) is accepted, however, 
when such an exchange takes place, a site along the edge containing a particle of the type moved 
to (1, n) is chosen at random and updated to contain a particle of the type moved to (2, n). To 
handle permeation across a film, separating a region where solvent is present from one devoid of 
solvent, we use the prescription given above for the edge at m = 1 (solvent side), and we take the 
edge at m = Li (empty side) to be absorbing: in other words, all exchanges involving an A or B 
particle moving to these sites are accepted, but the A or B particle is then destroyed, e.g., updated 
to become an M particle. Both the sorption and the permeation boundary conditions described 
here imply that the numbers of particles of each species present in the lattice are not conserved. 

RESULTS 

In this section we present a few examples of the type of information that can be obtained 
using the procedures outlined above. Figure la and lb display results from sorption simulations. 
Figure la shows how the final equilibrium uptake of A particles changes as the concentration of 
A particles at the m = 1 boundary increases, for two different values of the interaction parameter 
XAM'- XAM = O-6 for me l°wer set of data and XAM = 0.8 for the upper set of data. In 
both cases, no B particles were present and \AA = XMM = 0. Under these conditions, the 
concentration of A particles at the m = 1 boundary plays the role of the vapor pressure in an 
actual sorption experiment, so that the results shown in figure la can be viewed as the analog 
of sorption isotherms. As the (repulsive) interaction energy XAM between the diffusant and the 
polymer increases, marked departure from Henry's law behavior (shown by the broken line) is 
observed at lower and lower values of the boundary concentration. Henry's law holds independent 
of the boundary concentration for the ideal (non interacting) case XAM = XAA = XMM — 0: 

in this case each A particle simply performs a random walk and the procedure described above 
amounts to solving Laplace's equation with a fixed concentration at the m = 1 boundary. These 
results can be qualitatively explained in terms of an effective particle-particle attraction resulting 
from the repulsive interaction between the diffusing particles and the polymer background. 

Figure lb shows how the final equilibrium uptake of B particles changes when, at the m = 1 
boundary, the concentration of B particles is held fixed and the concentration of A particles is 
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FIGURE 1. Results from sorption simulations: (a) gives the final equilibrium uptake of A particles 
as a function of the boundary concentration of A particles for XAM = 0-6 (•) ar*d XAM = 0-8 (■); 
no B particles were present and XAA — XMM = 0; the broken line corresponds to the behavior 
expected for the non interacting case XAM — 0. (b) gives the final equilibrium uptake of B 
particles as a function of the boundary concentration of A particles for XAM = XBM = 0-6 (•) 
and XAM — XBM = 0-8 (■); here the boundary concentration of B particles is 3/128 (this value 
is indicated by the broken line) and \AA = XBB = XAB = XMM = 0. 

increased. To obtain the results shown here we took XAA = XBB = XAB = XMM = 0 while 
XAM = XBM — 0-6 f°r me lower set of data and XAM — XBM = 0.8 for the upper set of 
data. Again, an effective A-B attraction resulting from the particle-polymer repulsion provides a 
rationale for these results. 

Figure 2 shows results obtained from a permeation simulation. In this case A (black) particles 
and B (dark gray) particles permeate across a wall made of three different polymer layers. The 
X parameters are chosen in such a way that there is an attractive interaction between the B 
particles and the polymeric material in the central layer (white in figure 2a) and also between the 
A particles and the polymeric material that makes up the two outer layers (light gray in figure 2a). 
Furthermore, there is a repulsive interaction between the A particles and the polymer in the central 
layer. Use of multilayer structures of this kind to reduce permeation of specific components is 
common in polymeric barrier technology [14]. In the present simulation when an A or B particle 
crosses the boundary between two layers, the site left empty reverts to the layer to which it initially 
belonged. Note that to handle this situation in the macroscopic description of eqs. (1), continuity 
of both the flux and the ratio between concentration and solubilities for each particle species must 
be imposed at the boundary between the two layers. 

A snapshot of the system taken after steady state has been reached is shown in figure 2a: the 
central layer acts as a barrier for the A (black) particles, but takes up a significant amount of B 
(dark gray) particles. These features are also evident in the concentration profiles of figures 2b 
and 2c. In 2b the continuous and broken curves are within statistical uncertainty: this indicates 
that steady state is reached for the A particles much sooner than for the B particles. Attainment 
of saturation for the B particles in the central region is very slow due to the limited rate at which 
B particles can diffuse through the left layer. The steady state concentration profile of A displays 
a sharp drop at the interface between the left and center layers, but increases again slightly at the 
interface between the center and right layer. Although the boundary concentration of A at the 
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left boundary is three times greater than that of B, the steady state permeation rate of A is much 
smaller than that of B, as seen by the slopes of the concentration profiles in the right layer. By 
choosing appropriately the solubilities of the two species in the different layers it is possible to 
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FIGURE 2. Results from a permeation simulation on a 64 x 256 lattice. A (black) and B (dark 
gray) particles diffuse across a three layer structure: the central layer is 16 lattice sites wide. At 
the left edge the concentration of A and B particles is fixed: it is 0.15 for the A particles and 0.05 
for the B particles; particles can escape from the right edge. The interaction parameters between 
the diffusing particles are XAA = XBB = —0.5, XAB = —0.25. Furthermore, XAM = —0.5, 
XBM = XMM = 0 for the two outer (light gray) polymer layers, and XAM = °-2> XBM = -°-5> 
XMM = 0 f°r me central (white) layer, (a) is a snapshot of a portion of the lattice, taken after 
steady state had been reached, (b) and (c) give the concentration profiles of A and B particles 
respectively after 108 (broken curves) and 2 • 109 (continuous curves) time steps. 
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obtain similar qualitative concentration profiles from the macroscopic description of eqs. (1). 
For the values of the interaction parameters used here there is no detectable dependence of 

the diffusion coefficients on particle concentration. Indeed the slope of the concentration profiles 
at steady state are constant through each layer, within statistical uncertainty. By contrast, in 
a practical experimental situation the diffusion coefficient can change substantially (for glassy 
polymers by orders of magnitude [7]) when a relatively small amount of solvent is taken up by 
the polymer. In principle this behavior can be included in the model described above by further 
biasing the exchange probability of each particle species. Likewise one can devise ad hoc rules to 
account for (passive) swelling. However, we stress that the motivation for introducing this model 
is not to mimic a posteriori specific features of experimentally observed behavior. Rather, as 
noted above, our aim is to gain understanding of the relation between local particle interactions 
and the macroscopic description surveyed in the introduction. Indeed, the present methods can be 
viewed as the lattice (microscopic) realization of eqs. (1). 

CONCLUSIONS 

In summary, we have described a class of simple Monte Carlo lattice models that we believe 
can be a useful arena to study the statistical (microscopic) basis of the diffusion process for both 
single component and multicomponent diffusion in polymers. In these models the polymeric 
material is treated as a passive lattice background, and no attempt is made to describe the motions 
of single polymer chains. As a result, properties that are determined by these motions, such as the 
actual values of the diffusion coefficients and their concentration dependence, cannot be predicted 
within this framework [15]. By contrast, equilibrium properties, such as sorption isotherms or the 
barrier effect due to repulsive polymer solvent interactions, are reproduced by our method. 
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ABSTRACT 

High resolution melting curves of total nuclear Dictyostelium discoideum DNA (AX3 
strain) are compared to theoretical melting calculated from GENBANK sequences(1.74 % of 
total) by the statistical thermodynamics program MELTSIM, parameterized for long DNA 
sequences(1,2). The lower and upper limits of simulated melting agree quantitatively with the 
experimental melting of total DNA. Calculated melting of coding, intron and flanking regions 
indicate that intron and flanking DNAs are extremely (A+T)-rich and account for the earliest 
melting DNA. There is no temperature overlap of these regions with coding DNA. A theoretical 
denaturation map of DNA containing the ribosomal DNA genes showed excellent agreement with 
subtransition positions of these genes in experimental curves. Agreement between these 
calculated and experimental melting data demonstrates our ability to accurately simulate DNA 
melting in complex eukaryotic genomes. This has important consequences for the understanding 
of sequence dependent energetic properties of nucleic acids and their potential use as 
biomaterials. 

INTRODUCTION 

Like other evolved biological macromolecules, DNA, by itself and in association with 
other molecules, possesses a number of properties that we associate with intelligent materials. 
We have previously described these properties(3). A requirement to rationally implement the 
use of DNA as a biomaterial is an understanding of the thermodynamic stability of the double 
helical form as a function of its sequence and environment. It is this consideration, along with 
the increasing availability of DNA sequences in the public databases, that has led us to 
undertake the following study comparing theoretical DNA melting behavior, computed from 
database sequence information, to experimental data. 

The slime mold, Dictyostelium discoideum, is a lower eukaryote, long studied as a 
simple developmental model system, for which considerable genetic linkage information exists. 
There is developing a significant DNA sequence database for this organism in GENBANK. The 
genome of Dictyostelium is also of interest because of its extreme utilization of (A+T) base 
pairs. The genome has an average base composition of 24.1 % (G+C) determined from the 
midpoint of the melting curve(4). This fact makes it of great interest from a physical 
chemical, information theory, as well biomaterials point of view. 

Since Dictyostelium DNA begins melting as early as the poly (dA.dT) marker DNA added 
to the melt as an internal standard, one may ask whether the melting of this unusual base 
composition genome can be accurately described by theoretical methods. We utilized MELTSIM, 
a program based on the algorithm of Poland & Scheraga(5) and Poland(6), with the 
approximation of the loop function by a sum of exponentials, as proposed by Fixman and 
Friere(7). Parameters have been experimentally determined(1,2) for long DNA sequences. 
The program enables calculation of a denaturation map of positions along any DNA sequence. 

In the present study, the experimental total genome melt was compared to the computed 
simulated melt of available GENBANK sequences. There was excellent agreement at the extremes 
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of the melting spectrum. That is, both earliest and latest melting DNAs were found to coincide 
with the theoretical melt temperature extremes. The computational melt was also performed 
on the Dictyostelium files broken up into total coding, intron and flanking DNA files and 
interesting differences described. The use of MELTSIM and this methodology provides a 
convenient and visual thermodynamic representation of the sequence distribution found in the 
individual files. It should prove useful in future studies as more organisms become fully 
sequenced under the aegis of different Genome Projects. 

MATERIALS AND  METHODS 

D. discoideum DNA Isolation. DNA was isolated from log phase D. discoideum AX3 
strain cells following washing twice with 0.2 M NaCI, and resuspension in nuclei buffer(0.25 
% ficoll, 1 M sorbitol, 0.0008% spermidine, 1 mM DTT, 0.05 M Tris buffer, pH 7.4). The 
cells were homogenized in a Dounce homogenizer with added NP-40 (2 %). Released nuclei 
were collected by centrifugation, resuspended and repelleted at 4 °C. Purified nuclei, in 10 mM 
Tris, 10 mM EDTA, pH 8.0, were treated sequentially with: NaCI, SDS and RNase added to 1 M, 
1% and 50 ug/ml respectively and the mixture incubated for 2 hr at 65°C. DNA was extracted 
3X with equal volumes of phenol:chloroform:isoamyl alcohol(: 1:0.04). Following extraction 
with chloroform, DNA was ethanol precipitated overnight, washed 2X with 70 % ethanol, air 
dried and resuspended in 5 ml TE buffer. Only DNA with the characteristic EcoRI restriction 
pattern was used for further experiments(8). DNA was purified from RNA in CsCI gradients 
and dialyzed into E buffer: 0.0716 M NaCI, 0.0038 M cacodylic acid, 0.00015 M EDTA, pH 
G.7 for melting. Immediately prior to melting, poly (dA.dT) marker was added and the DNA was 
filtered through a 0.45 urn filter to remove any contaminating paniculate matter. 

Equilibrium Melting Curves. High resolution derivative melting curves were 
obtained by a difference-approximation method(9,10), using a modified double beam Cary 
Spectrophotometer as previously described(1,2). 

Computational Melting Curves. The program MELTSIM was used to calculate the 
melting spectra for all files. This is a 32-bit Microsoft Windows operating system that 
calculates derivative melting curves with the algorithm of Poland and Scheraga(5) and 
Poland(6), with the Fixman and Friere(7) approximation of the loop entropy by a sum of 
exponentials. The model is the one-dimensional Ising lattice to which loop entropy has been 
appended(1 1-13). Neighboring nucleotide residues in this model exist in either the helical or 
coil state for each configuration of states. The probability the DNA chain will assume the kth 
configuration is given by Z^/Z, where Z is the partition function over all configurations, and Z|< 
is the fraction of residues in the kth configuration in the helical state, 

zk={\-elit)/ehi [i] 

The free energy for the kth configuration is therefore given by, 

AGk=-RTlnZk [2] 

6h is proportional to the statistical weights of different configurations, 

^.=I(A^/Z)/JV [3] 

where N^ is the number of paired residues in the kth configuration, and Z|< is the product of 
several weighting factors: 

Zk=a-f(Nk)-s,M
N> [4] 
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and where a is the cooperativity parameter. f(N) = Nk"1 -75 is the loop function, expressing 
the statistical weight for closed ring structures of Nk denatured base pairs, and SLM is the unit 
equilibrium constant for unstacking-unpairing pair L on M at the end of a helical segment of 
length Nk, 

, = exp[-(, AH... -7-AS. ,)M 5] 

A//„,u/ and AS„ü( are values for each of the ten unique nearest stacked and paired neighbor 
enthalpies and entropies for pair L on M. The program MELTSIM is due to be released to the 
public by the summer of 1997 and will be available on various Internet servers. 

RESULTS  AND   DISCUSSION 

Experimental Melts. Dictyostelium DNA was isolated from a number of separate 
preparations with and without a CTAB(cetyltriethylammonium bromide) extraction step to 
remove contaminating carbohydrate. There was no consistent difference noted in the melting 
spectrum. The average of 14 spectra is shown in Figure 1. The midpoint(+0.5%) of the 
melting curve occurs at a Tm of 74. 1 °C, indicating a genome composition of 24.1 % (G+C), 
according to the MSD equation(2), in good agreement with the value, 23 % (G+C) measured by 
CsCI gradient buoyant density centrifugation(8). Sharp melting features are probably due to 
sequences in two satellite DNAs previously observed in this organism. 

75 80 85 
temperature, degrees C 

Temperature {'C) 

Fig. 1   Derivative melt of D. disc, total 
DNA. Line indicates Tm. 

Fig. 2 Simulated derivative melt of D. disc. 
sequences using MELTSIM. Line indicates exp. Tn 

Melting begins at 66 °C, and is complete at 84 °C. Low temperature melting indicates a 
significant fraction of the pure homopolymer poly(dA.dT) exists in genomic DNA. This 
observation led us to examine the occurence of tract frequencies in Dictyostelium coding, 
intron and flanking DNA files as a function of their length N(14). These data described (A.T)N 

(T.A)M DNA homopolymers at higher than expected frequencies in flanking and intron 
sequences. We also observed that tracts of length 5 bp and longer were not spaced randomly in 
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the genome but occured with an average periodicity of 185-190 bp(15), exactly the 
nucleosome size in Dictyostelium-187 bp. These data also suggest that the long tracts(>10 bp) 
may be lengthened by a slip strand type mechanism during replication(16). 

Theoretical melts. Table I describes the D. discoideum GENBANK(11/96) files 
totalling 872,654 bp nuclear DNA, representing 1.74% of the genome. MELTSIM was applied 
and the resulting melting curve is presented in Figure 2. The asymmetric shape is due to the 

TABLE I 

file type bp Tm %(G+C) # % (G+C) range 

Nuclear total( 100%) 5.5 X 107 74.1 24.1 66-88 

GENBANK 
total(1.74%)* 872,654 76.6 30.1(28.8) 66-86 
coding( 1.1 5%) 573,667 77.7 32.7(33.3) 70-85 
intron(0.038%) 19,180 68.8 11.5(11.8) 65-75 
flanking(0.31%) 153,735 70.3 15.1(15.5) 66-78 
ribosomal 7,972 - - - — (43.2) 76-87 

17SDNA(0.37%) 1,870 - - - — (42.5) 80-83 
26 S DNA(0.65%) 3,240 - - --(43.3) 79-83 

*This is found from the GENBANK(11/96) documents comprising that file type. 
# Calculated from the Tm using the MSD equation. In parentheses are given the computed 
database values for comparison. 

overrepresentation of coding sequences deposited in the database. Consistent with this 
interpretation is the 2.5 °C higher Tm for this file compared to the experimental Tm, which 
contains more (A+T) rich flanking DNA. Individual peaks in the curve represent authentic 
melting subtransitions in the total database examined. 

Melting begins(66t) and endsfSöt) exactly as observed experimentally. MELTSIM is 
therefore calculating melting properties accurately. Distinct peaks in the simulated melt 
represent dominant domains for sequences in the database of limited representation. Database 
sequences were fragmented into files according to their functional roles: coding, intron or 
flanking sequences(Table I). Simulated melts are presented in Figures 3 A & B. Coding DNA 
melts over a significantly higher range, corresponding to a mean (G+C) % of about 32 %. This 
was expected since triplet codons are fixed within proscribed limits of 30-70 % (G+C) across 
the biosphere in the coding sequence distributions of amino acid compositions found in all 
globular proteins. 

In constrast, the melting of the flanking DNA occurs at significantly lower 
temperatures. Melting begins at 66 C and is nearly complete by about 78°C, where the coding 
sequences are just beginning their melting. The flanking DNA database shows a 'rougher' 
melting curve than coding DNA. This is due partially to the limited size of this database relative 
to the larger coding dataset. The lower melting temperatures, represent lower effective base 
compositions found in both these functional classes of sequences. A plausible explanation for the 
shift to lower % (G+C) in flanking and intron DNAs is due to biased DNA repair, and to the lack 
of biological constraints on the extension of (A.T) tracts. 

Theoretical Denaturation Map. A valuable description of any DNA sequence lies in 
the positional melting behavior of the sequences in a given region. Of particular interest in the 
experimental melt were the minor peaks observed at the higher melting temperatures(80-87 

°C). It has been known for a number of years that the ribosomal genes of eukaryotes are (G+C) 
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Temperature {"C) 

80 
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Fig. 3 Simulated derivative melts of D. discoideunr. A) coding sequences; B) flanking sequences, 
using MELTSIM. Lines indicate Tm of experimental melt. 

rich sequences and that they occur in a unit interspersed with spacer DNA. This DNA segment is 
tandemly repeated hundreds of times/haploid genome in most eukaryotes. In the case of 
Dictyostelium, this repeating unit is known to be located on a large, linear plasmid repeated 
anywhere from 100-200 fold/cell(8). This level of repetition places it among the most highly 
repeated sequences found in Dictyostelium and thus capable of being responsible for 
experimental melt subtransitions. 

A GENBANK file(AC# X00601  V00189) containing 7,972 bp of sequence which 
included the ribosomal DNA genes is a portion of the large linear Dictyostelium ribosomal DNA 
gene plasmid. The theoretical denaturation map of this sequence is presented in Figure. 4. The 
two highest theoretical melting subtransitions occur at the positions of the highest 
experimental subtransitions. Most likely these correspond to the ribosomal gene DNAs, whose 
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and derivative melt of D. disc.  DNA 
containing ribosomal genes calcula 
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positions are shown. Regions known to be major ribosomal DNA gene sequence(17S and 26S) 
correspond to the (G+C) rich 79-83 °C melting subtransitions. The Non-Transcribed Spacer 
DNA (1-998) and External Transcribed Spacer(999-1793) accounts for the most (G+C) 
rich 85-87 °C subtransitions. These are evident even in the Figure 2 experimental melt. The 
remaining 76-78 °C subtransitions in Figure 4 result from the melting of more (A+T)-rich 
Internal Transcribed Spacer 1 DNA(3665-3994) interspersed between the major ribosomal 
DNA genes. These may correspond to low temperature subtransitions in the total Figure 2 
experimental melt. 
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ABSTRACT 
We present mechanical measurements of the frequency-dependent linear viscoelastic storage and 
loss moduli, G'(co) and G"(co), and the yield stress, xy, and yield strain, yy, for calf thymus 
DNA (13 kbp) over a range of mitotically relevant concentrations from CDNA = 1 to 10 mg/ml. For 
large CDNA, we find a dominant plateau elasticity, G'p, at high CO. As co decreases, G' falls until it 
is equal to G" at the crossover frequency, coc, below which G" dominates. We measure G'p ~ 
CDNA

225
 and coc ~ CDNA'

24
, consistent with scaling exponents for classical polymer solutions. 

The mechanical \G*(co)\ agree well with those measured using a new microrheological technique 
based on video tracking microscopy of thermally-driven fluorescent colloidal spheres and a 
frequency-dependent Stokes-Einstein equation. We have developed this technique to probe how 
enzymes, typically available in small quantities, can affect the rheology of the DNA. Using it, we 
report preliminary measurements of a higher coc for a DNA network in which the ATP-powered 
enzyme Topoisomerase II transiently cuts and rebinds the DNA, thereby relaxing entanglements. 

INTRODUCTION 
During the prometaphase of mitosis, DNA is locally concentrated within the cell nucleus before 
replication and separation occur. In a typical mammalian cell, 109 nucleotides occupy a typical 
volume of 100 ,um3 [1], yielding a concentration, CDNA ~ 10 mg/ml. At such high concentrations, 
DNA molecules having micron-sized contour lengths can become entangled, leading to a 
viscoelastic Theological response typical of polymers in their semidilute regime [2]. In cell division, 
the entanglement elasticity would normally inhibit separation of the DNA after replication through 
the contraction of microtubules connected to the mitotic spindles. However, the action of an ATP- 
powered enzyme, known as Topoisomerase II (Topo II), which transiently cuts and rebonds one 
of two crossed DNA at an entanglement site [3], allows the entaglements to relax and the DNA to 
be separated. A theory based on the release of topological constraints predicts that active Topo II in 
sufficient concentrations at entanglement points for megabase-sized DNA should cause a faster 
viscoelastic relaxation [4,5]. Experimentally, Topo II has been shown to relax supercoiled, double- 
stranded, circular plasmid DNA [6], but its effect on entanglement networks of linear, double- 
stranded DNA have not been measured. 

We present mechanical measurements of the rheology of concentrated linear DNA in an aqueous 
buffer which can support the activity of Topo II. In the first part of this paper, we consider DNA in 
the absence of Topo II, and we report the frequency-dependent linear storage and loss moduli, 
G'(co) and G"(co), and the yield stress and yield strain, %y and jy, for a series of CDNA- Since 
repeating these measurements with Topo II would require prohibitively large quantities of the 
enzyme, we have developed a new technique which can locally probe the microrheology around 
fluorescent colloidal spheres which are tracked using video microscopy. This is the subject of the 
second part of this paper. By calculating the time-dependent mean square displacement, <Ar2(r)>, 
from the particle trajectory, we extract the magnitude of the linear complex modulus, \G*(co)\, 
using a frequency-dependent version of the Stokes-Einstein equation. This new technique permits 
us to reduce the sample volume to the microliter range where a reasonably high concentration of 
Topo II can be achieved. For one CDNA, we present preliminary measurements of \G*(co)\ without 
and with Topo n, which indicates there is a decrease in the relaxation time of the network. 

I. RHEOLOGY OF DNA IN THE ABSENCE OF TOPOISOMERASE II 

EXPERIMENT 
We disperse linear, double-stranded DNA from calf thymus having an average number N = 
1.3104 base pairs in an aqueous buffer containing: [Tris-HCl] (pH 7.9) = 10 mM, [NaCl] = 50 
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mM, [KC1] = 50 mM, [MgCl2] = 5 mM, [BSA] = 15 /fg/ml, and [EDTA] = 0.1 mM. An optically 
homogeneous dispersion is attained through gentle mechanical agitation from three days to one 
week for CDNA = 10 mg/ml. We employ a controlled strain mechanical rheometer equipped with a 
25 mm diameter cone and plate geometry requiring a sample volume of about 200 ji\. We enclose 
the sample with a vapor trap. The temperature is fixed at T= 25 C. 

RESULTS 
We measure the linear G' and G" of the DNA solutions by setting the amplitude of the perturbative 
oscillatory strain at y= 0.02 and sweeping from low to high 6); the results are shown in Fig. 1. At 
the highest (O, the plateau G' dominates G", while at the lowest CO, G" dominates G'. As CDNA 
decreases, the plateau elasticity does also, while the crossover frequency becomes larger. To 
characterize the transition from linear to nonlinear flow, we measure G' and G" at a> = 1 rad/s 
from low to high % as shown in Fig. 2. For strains less than the yield strain of yy ~ 0.7, we find 
that G' and G" are independent of y, yy is nearly concentration-independent for CDNA > 3 mg/ml, 

Figure  1. 
The frequency 
dependence of the 
storage modulus, 
G', (solid symbols) and 
the loss modulus, 
G" (open symbols) for 
DNA concentrations of 
1 mg/ml (triangles), 
3 mg/ml (circles), 
5 mg/ml (squares), and 
10 (diamonds) mg/ml. 

a> (rad/s) 

Figure 2. 
The strain dependence of 
the storage modulus, 
G', (solid symbols) and 
the loss modulus, 
G" (open symbols) for 
DNA concentrations of 
3 mg/ml (circles), 
5 mg/ml (squares), and 
10 (diamonds) mg/ml. 
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confirming that G'(co) and G"((0) have been obtained in the linear regime. By contrast, the yield 
stress, Ty, rises about two orders of magnitude to CDNA = 10 mg/ml. 

DISCUSSION 
If DNA behave as classical polymers, we expect the DNA to develop a dominant plateau elasticity 
for concentrations larger than a concentration corresponding to significant entanglements. We 
estimate this critical concentration by considering disordered random close packing (RCP) of DNA 
blobs (spheres) at a volume fraction of (J)RCP = 0.64; we take the sphere's radius to be average 
radius of gyration, Rg~3 Nv Ä, where v = 0.59, and estimate Rg = 0.1 yUm for our DNA. The 
critical concentration is C* = <1>RCP(MDNAIV), where MDNA is the average mass of a single DNA 
and V= AnRg^ß is its effective volume, yielding C* = 3 mg/ml. The large rise in G' we observe 
between CDNA = 1 mg/ml and CDNA = 3 mg/ml is in excellent agreement with this estimate. 

For CDNA > C*, a classical law for semi-dilute polymer solutions predicts that the plateau elasticity 
should scale with the concentration as G'p ~ CDNA

3VI(
-
3VA)

 ~ CDNA
23

 [2]. We extract the plateau 
elasticity at m = 100 rad/s and plot it as a function of concentration, as shown by the squares in 
Fig. 3. Our measured exponent is 2.25, shown by the dashed line on the plot, in good agreement 
with this prediction. Given the empirical relationship that the bare low frequency viscosity, r\o, 
varies as r\o ~ CDNA

4
-
1
 (without Rouse renormalization) [2], we estimate that the crossover 

frequency is where the viscous and elastic components are equal:fi)c = G'plr)o ~ CDNA'
2
'
4

- We plot 
the measured coc (circles) as a function CDNA in Fig. 3. Our measured exponent is -2.4, again in 
excellent agreement with this semi-empirical prediction. Our interpretation of results for calf 
thymus DNA agree well with those for much longer T2 phage DNA [2]. We conclude that the 
linear viscoelastic behavior of the DNA can be treated as that of a classical semi-dilute polymer 
solution. However, we know of know predictions which explain the large magnitude and weak 
concentration dependence of %, nor for the strong concentration dependence of iy as the strongly 
nonlinear regime is approached. 
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Figure 3. The DNA concentration dependence of the crossover frequency, ac, (circles) and 
plateau storage modulus, G'p (squares). 
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II. VIDEO MICRORHEOLOGY OF DNA AND DNA+TOPOISOMERASE II 

EXPERIMENT 
Our particle-tracking apparatus consists of an inverted fluorescence microscope at 2500 
magnification equipped with a SIT camera which is connected to a VCR and a computer-controlled 
frame grabber. Fluorescent spheres having radii a = 0.52 ßm are mixed into 30 ßl of DNA 
solution at a volume fraction of 10"4 and loaded into a cell having thickness 100 ßm. The 
illumination intensity and the voltage, gain, and black level of the SIT are adjusted to obtain 
intensity profiles of the spheres which exhibit a clear maximum at their centers. We set the focus in 
the middle of the sample cell to eliminate wall effects. Since uniform convection over the entire 
viewing area (caused by the gross mechanical contact of the oil-immersion objective with the cell) 
can disturb the diffusive motion of the spheres, we capture movies for pairs of spheres which are 
well-separated, yet in the same field of view. This allows us to eliminate this correlated convective 
motion in our later analysis. We obtain the two-dimensional trajectories for each of the two 
particles over 250 seconds at 20 frames/s using a centroid algorithm on the measured intensity 
profile of each frame. We subtract the two trajectories to eliminate convection, and calculate the 
mean square displacement between the particles by fixing the time interval and scanning all 
possible initial times. The actual three-dimensional mean square displacement for one particle, 
<Ar2(f)>, is three-forths of this result (6/4 from 2D to 3D times 1/2 from two to one particle). 
Here, the mean represents a time average; it is not a true ensemble average, since we have only 
considered two particles. However, a true ensemble average can be obtained by repeating the 
procedure for many pairs of spheres and averaging the results together. 

Figure 4. 
The separation trajectory 
between two spheres of 
radii a = 0.52 ßm 
measured with video 
fluorescence microscopy 
over about 250 seconds. 
Similar size in x and y 
indicate convection has 
been eliminated. 

-0.3  -0.2  -0.1    0     0.1    0.2   0.3    0.4 
x(/Jm) 

Assuming that the local viscoelasticity around a sphere is the same as the bulk viscoelasticity, the 
complex viscoelastic modulus can be calculated from the frequency-transformed <Ar2(f)> using a 
generalized Stokes-Einstein equation [7]. This approach has been demonstrated to hold for light 
scattering measurements of entangled polymeric solutions in which the radii of the probe spheres 
are much larger than the polymer radius of gyration or blob interspacing [7]. However, taking the 
numerical transform introduces errors due to the finite size of the dataset at the highest and lowest 
frequencies. To eliminate this problem, we approximate the generalized Stokes-Einstein equation 
using a simple algebraic computation: 

\G * (fi))| = 
knT 

7ia(Ar(t 
(1) 

t=y<o 
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where kß is Boltzmann's constant. This equation is exact for a sphere in a viscous fluid with no- 
slip boundary conditions: <Ar2(r)> = 6Dt, where D is the diffusion coefficient, so \G*(co)\ = 
[kBT/(6naD)]a> = rjco, verifying the limiting result of the simple Stokes-Einstein equation. A 
comparison of Eq. 1 with the transformation method reveals that it is a surprisingly good estimate 
despite its simplicity; it underestimates \G*\ by at most 40% for all CO. Most importantly, it yields 
accurate \G*\ at the lowest frequencies where the transformation method fails. For data taken using 
video microscopy over a limited range of CO, Eq. (1) is more accurate, so we use it in our analysis. 

For the composition with Topo II, we add [ATP] = 3 mM to CDNA = 10 mg/ml, and mix this in a 
2:1 volume ratio with 64 /zg/ml Topo II from Drosophila melanogaster [6] supplied in a buffer of 
15 mM sodium phosphate, 50 mM NaCl, O.lmM EDTA, 0.2 mM DTT, 0.5 mg/ml BSA, and 10% 
glycerol. This yields 30 /il at CpNA = 6.7 mg/ml and [Topo II] = 21 /jg/ml. Although this 
concentration may seem low since it reflects effectively one Topo II molecule (molecular weight of 
3.3-105 Daltons) for every four DNA molecules, it is actually very large compared to that we 
would have to use if we relied upon a mechanical technique. The microscopy was performed at T= 
25 C after a ten minute incubation period. 

RESULTS 
The measured separation trajectory for a single pair of spheres atCoNA = 6.7 mg/ml in the absence 
of Topo II is shown in Fig. 4. To our knowledge, this is the first extensive visualization 
measurement of the trajectory of thermally-driven spheres in a visoelastic complex fluid. The scale 
on the figure is less than a micron, so we are effectively resolving the displacement of a micron- 
sized sphere to an effective length scale of about 10 nm, much smaller than the wavelength of light. 
This resolution is achieved through the good signal-to-noise of the particle intensity profile 
provided by the fluorescence detection system and centroid averaging. No continuous or 
pronounced extension in either direction x or y is found, indicating that convection has been 
effectively eliminated. 

lo-1 

10 101 10° 101 

ft) (rad/s) 
102 

Figure 5. 
The ^dependence of the 
magnitude of the complex 
shear modulus, IG*I, 
measured mechanically 
(squares), and with video 
microscopy (circles) at 
CDNA = 6.7 mg/ml. The 
solid circles reflect the 
absence of Topo II 
(upper data points), while 
the open circles are with 
TopoIIat21/ig/ml 
(lower data points). 

DISCUSSION 
From the trajectory of Fig. 4, we calculate the mean square displacement in three dimensions, and 
then determine \G*(co)\ using Eq. (1). The results for DNA alone are shown by the small solid 
circles in Fig. 5, and mechanical measurements at identical CDNA are co-plotted as the large 
squares. There is excellent agreement between the two measurements, supporting the mean field 
assumption which should be valid for a > Rg. The irregularities in the shape of \G*(co)\ obtained by 
particle-tracking are a signature of the one specific trajectory we have measured, and they become 
more pronounced toward the lowest frequencies where fewer time averages are possible due to the 
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limited duration of our experiment. The error bars we have drawn at high and low co crudely 
indicate the polydispersity in a which directly propagates into the error for IG*(tt>)l through Eq. (1). 
Despite these sources of error, the good comparison in the magnitude and shape of the two sets of 
data gives us confidence that we are indeed measuring the rheology of the DNA solution. 

For DNA in the presence of Topo II, the data for \G*(co)\ are plotted in Fig. 5 as the small circular 
open symbols. They consistently fall below the data for DNA in the absence of Topo II, and there 
is a wider separation between the two datasets at low CO than at high co. This reflects the larger 
displacements of the spheres in the DNA+Topo II solution; the visualized random walk is similar 
in form to Fig. 4, but larger in scale. Given the large error bars and uncertainties we have listed 
above, our data are insufficient to quantify the effect of the Topo II with much certainty. Given the 
small ratio of Topo II to DNA molecules, we would have expected a much weaker effect than the 
factor of three difference we observe in the magnitude. Part of this discrepancy may be attributed to 
differently sized particles. However, comparison of the shapes of the data rather than their absolute 
magnitudes reveals that the Topo II does appear to raise the crossover (indicated by the knee) to 
higher co, consistent with its hypothesized transient cutting and rebinding activity. Although we 
cannot draw strong conclusions from this single preliminary result, we believe that video 
microrheology will enable us to precisely quantify changes in the rheology of concentrated DNA 
with sufficiently large Topo II concentrations that the action of the enzyme can be easily resolved. 

CONCLUSION 
Our mechanical measurements of DNA rheology reveal that it behaves as a semi-dilute polymer 
solution, exhibiting linear viscoelasticity which obeys known scaling laws. By contrast, the 
behavior of the yield strain and yield stress remains unexplained. The random structure of our 
artificial DNA network may not reflect the organized and time-dependent structures of real 
chromosomes, so we refrain from implying that our results reflect the true rheology within the 
nucleus. However, we have demonstrated that \G*(co)\ can be determined from real-space 
measurements of <Ar2(;)> for single particles in a viscoelastic medium, and we have demonstrated 
that fluorescence video microscopy can be used to visualize the the thermally-driven rms 
displacements of colloidal particles to an impressively small resolution of 10 nm. Although our 
preliminary results for the modification of DNA rheology by Topo II are not conclusive, we 
believe that this microrheological technique will be extremely beneficial to the biological 
community, since we ultimately envision its application in vivo, within a cell or its nucleus. For 
these applications, the assumption of homogeneity implied by Eq. (1) must be revisited. 
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ABSTRACT 

Zhelev and Needham have recently created large, quasi-stable pores in artificial lipid bilayer 
vesicles. Initially created by electroporation, the pores remain open for up to several seconds 
before quickly snapping shut. This result is surprising in light of the large line tension for holes 
in bilayer membranes and the rapid time scale for closure of large pores. We show how pores 
can be dynamically stabilized via a new feedback mechanism. We also explain quantitatively the 
observed sudden pore closure as a tangent bifurcation. Finally we show how Zhelev and Need- 
ham's experiment can be used to measure accurately the pore line tension, an important material 
parameter. For their SOPC/CHOL mixture we obtain a line tension of 3.0 x 10"6 dyn. 

INTRODUCTION 

Lipid bilayer membranes have remarkable physical properties. One of the most important 
among these properties is a membrane's resistance to rupture. In the body, this resistance is 
critical to the maintenance of well defined and properly-functioning cells. Indeed, when a cell 
needs to undergo a topological change (as it does during cell division, cell fusion, endocytosis, and 
exocytosis) it usually has to make use of specialized machinery which carries out the change at 
the cost of chemical energy. This cost is largely determined by the material properties of the lipid 
membranes in question. 

We can quantify a membrane's resistance to rupture in terms of a line tension (7), the free 
energy cost per unit length of exposed edge. Edges are disfavored due to the high cost of either 
exposing the hydrophobic lipid chains to water, or creating a highly-curved rolled edge to hide 
them. Many authors have devised ingenious indirect measurements of 7 in various lipid systems 
[1, 2, 3], but direct measurement has proven difficult. Among the biologically-relevant questions 
which require such measurements is the variation of 7 with lipid shape [4]. 

Recently Zhelev and Needham have found a new technique allowing direct mechanical mea- 
surement of the line energy [5,6]. In this paper we will present a new analysis of their experimental 
data. The experiment revealed some surprising qualitative phenomena involving pores, which we 
will explain. Briefly (see below), they created long-lived quasistable pores about a micron in ra- 
dius. After persisting for up to several seconds, the pores snapped shut in just one video frame. 
We will quantitatively explain the longevity of the pores and their sudden demise, fitting several 
quite different events with a common value of 7 and two auxiliary parameters. 

To see why long-lived pores are surprising, consider the usual energy of a circular hole in a 
flat bilayer membrane [1]. This energy can be written as a line tension term which is linear in the 
pore radius minus a surface tension term which is quadratic: 

E(r) = 2*T7 - ETIT
2
. (1) 

This energy has only one stable minimum (at r = 0). There is a critical radius (r = 7/S) above 
which the pore is unstable to rupture. To cross this critical point, the system must surmount 
a significant energy barrier {AE = 7r72/S). For typical estimates of the line tension (10~6 dyn) 
thermally-driven rupture thus requires a surface tension on the order of one dyn/cm, as observed 
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Figure 1: Geometry of the stabilized pore experiment of Needham and Zhelev. 

[7]. For lower tensions, any transient pore will reclose rapidly, while for larger tensions it will grow 
rapidly and lyse the vesicle; in either case, one does not expect large stable pores to exist. 

Zhelev and Needham surmised that the pores somehow sit at the unstable point of Eq. 1 
before suddenly falling off. Inferring E and r from the data then let them find the line tension 
from 7 = Er. It seems unlikely, however, that pores would remain in unstable equilibrium for 
so long. In this paper we will find a feedback mechanism that dynamically stabilizes pores. Our 
explanation will involve an effective pore energy with a minimum that can exist for several seconds 
before disappearing suddenly. From the critical point at which stability is lost, we will be able to 
produce estimates of various parameters in the theory; in particular, we will accurately determine 
the line tension of the bilayer membrane. 

EXPERIMENT 

Figure 1 defines our notation. A micropipette several microns in diameter is used to immobilize 
a chosen vesicle using a suction (— p). The suction pressure is held constant throughout the 
experiment at a distant manometer. Initially a small amount of membrane is pulled into the 
micropipette, leaving a tense spherical outer bulb of radius R-,mt- A square-wave electric field 
pulse is then applied across the vesicle: the effect of this field is to open a hole in the membrane 
by electroporation [8]. Occasionally the pore so created stabilizes and the vesicle moves slowly 
down the pipette in a controlled fashion. 

What is measured is then the constant applied suction (—p) at the manometer, the initial bulb 
size (Ajnit), the micropipette diameter (dp), and the location (£(*)) of the leading edge of the 
membrane as it advances down the micropipette. Figure 2 shows a typical time course. Other 
quantities in figure 1, such as the bulb radius (R), the pore radius (r), the lubrication layer thick- 
ness (h), the surface tensions (E, Eo), and the pressures (—pi, P2) are all time dependent and 
must be inferred from the directly measured data. 

STABILIZATION MECHANISM 

Here we outline the stabilization mechanism that is described more fully in [9]. The main 
ingredients of this mechanism are two frictional terms which oppose the aspiration of the vesicle 
into the pipette. The first such term arises from a decrease in pressure along the length of the 
micropipette due to Poiseuille loss. The corrected pressure is given by — p\: 

-Pl = -p+^(LeB-L)v. (2) 
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Figure 2: Progress of the leading edge of a SOPC/CHOL mixed lipid vesicle down the pipette 
(reproduced from figure 3 of [5]). For this event ijjnjt = 17.6 /jm and p = 353 dyn/cm2. The initial 
velocity (uj„jt) is approximately 35/jm/s. The solid line depicts the theoretical L(t) curve for our 
stabilized pore model. 

Here 77 is the viscosity of the sugar solution, L is the projected length of membrane in the mi- 
cropipette (figure 1), and v = L is the velocity of the vesicle's leading edge. Eq. 2 should really 
be regarded as a definition of the effective length (Leg) which accounts for several umneasureable 
effects in a phenomenological way [9]. As we shall see later, Leg can be determined from the data 
of figure 2 using our theoretical approach. 

There is a second velocity-dependent friction term which arises due to shear in the lubricating 
layer sandwiched between the membrane and the micropipette wall. This frictional force creates 
a difference between the surface tension (So) at the leading edge and (£) on the exterior bulb: 

£ = £„-$« (3) 

Here h defines the thickness of the lubrication layer. This parameter, like Leg will be fixed from 
the data in figure 2 using our model. These two sources of friction along with the manometer 
suction control the full dynamics of the inhalation process. 

We can use Eqs. 2 and 3 along with the two equations generated by the Laplace equation 
applied to the leading edge and the bulb of the vesicle to eliminate pi, P2, and £0 to give 

£ = 
2R 

2R-dt 
^.„(ffi^j)) (4) 

This equation for the surface tension now has explicit dependence on the projected membrane 
length (both through L itself and through the function R(L) which can be obtained from the 
constraint of fixed membrane area). We still need to eliminate the dependence of E on the velocity 
of the leading edge. 

This elimination is achieved by equating two expressions for the outflow of solution through 
the open pore. The first of these expressions is obtained by considering the time derivative of the 
total volume contained inside the vesicle. The second describes the outflow as a function of the 
pressure inside the vesicle which drives the flow. From these two calculations of the outflow the 
velocity is obtained: 

=     8 Sr3 

V     3irT/dp Ä(2Ä - dp) ' l ' 
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Figure 3: Energy as a function of pore size for supercritical, critical, and subcritical lengths of 
aspirated membrane: L = 0,45.8,90/im. (LO-JI = 45.8/im.) 

This equation can now be substituted back into Eq. 4 to yield a new expression for the surface 
tension. This form has the surface tension as a function of the projected length (L) and the pore 
size (r): 

S(r,L) = <*l 

where 
_   _ Pdp Q!  =  K. 

2R 
4  2R-cL 

and    »2 = 

1 + a2r
a 

16 (%(Lte-L)  ,  L 
3TT(2ä - dp)2dp ^       dp f) 

(6) 

(7) 

These equations define the feedback mechanism through which the effective surface tension is 
modified by the friction terms outlined above. The next step is to see how this feedback mechanism 
accounts for the experimentally observed behavior — that is, to see how it stabilizes pores. 

Our main physical hypothesis is now that at each moment the pore adjusts quickly to minimize 
an effective energy similar to Eq. 1, but with the tension replaced by the varying quantity just 
found (Eq. 6). As long as this effective energy has a nontrivial minimum, the pore size will track 
it. This gives the pore size, and hence v = L via Eq. 5 in terms of L. We can then solve this 
ordinary differential equation to obtain the time course L(t) and compare to the data in Figure 2. 
This program relies on the presence of two different time scales: a slow scale for changes of L 
and R, and a much faster time scale on which the pore size r adjusts and the membrane tension 
equilibrates. We are adiabatically eliminating the fast variable to obtain a simple dynamics for 
the slow one. Thus our effective pore energy depends on L: 

Eee(r,L) = 2Vn- 
TTQir 

1 + a2r
3 (8) 

This new form of the energy can indeed have two minima: the trivial one (r = 0) that appeared 
before and a new one at a finite pore size, depending on L. As long as L does not exceed some 
critical value (Lent), there will be a local minimum in the effective energy at some finite pore size 
(f8table(i))- When the projected length reaches this critical value, the second stable minimum 
disappears and the pore collapses (figure 3). 

As promised, we have succeeded in reducing the full dynamics of the problem to only one 
variable, the projected length (L). This can be seen by substituting the surface tension formulae 
(Eqs. 6 and 7) along with R(L) and the newly determined pore size (r8uble(£)) into the velocity 
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Table 1: Comparison of experimental [5] and theoretical (this paper) closure times for 
SOPC/CHOL vesicles. The fourth event was used to determine L^g, h, and 7. A bar (-) in- 
dicates that the pore did not reseal. 

■RinitQjm)    p(dyn/cm2)    texp(s) tth(s)    Bilayers 
18.3 399 - 2.7 1 
28.1 310 2.6 3.3 1 
14.3 331 - - 1 
17.6 353 1.7 1.7 2 
17.0 324 0.33 0.48 2 
16.3 337 0.33 0.62 2 
16.0 355 2.0 2.9 1 
25.6 168 11.0 11.2 1 
22.5 240 5.5 5.6 1 
16.2 320 2.5 3.7 1 

(Eq. 5): 

i=    (T\-    8     (    al(L)r°tableW3    \ 1 
(9) 

-MlOrst.b.eWV R(L)dp(2R(L)-dp) 

This equation for L as a function of L can now be integrated to obtain L(t). 

EXTRACTION OF PARAMETERS 

The model that we propose has seven parameters in all. Of these, two are measured directly 
from microscope images, namely the initial bulb radius (Hinit) and the pipette diameter (dp). The 
pressure (p) at the manometer and the viscosity (77) of the solvent are also determined experimen- 
tally. 

Of the remaining three parameters, Zhelev and Needham estimated Leg and h via auxiliary 
experiments, then deduced 7. Because these values were found through rather different exper- 
iments experiments however, we will consider them undetermined and fit them to experimental 
data using our model. Finally we will deduce the last remaining parameter in the model: the line 
tension (7). 

Zhelev and Needham [5] give the full time course for one event, which we will use to find the 
three undetermined parameters listed above. This event is reproduced in Figure 2 and appears as 
the fourth entry in table 1 below. From the experimental L(t) curve we first extract the projected 
length Lent = 45.8 /im at pore closure, the initial velocity wmn = 35.5 /im/s, and the final velocity 
ucrit = 15.7 fjm/s. These initial and final conditions can then be used to fix the three parameters: 
we find Leff = 317/jm, h = 0.47/im, and 7 = 3.0 x 10"6erff/cm [9]. 

With the parameters so determined, it is now possible to determine the time evolution of the 
other events in [5] from the initial conditions. For each of the other nine SOPC/CHOL events 
reproduced in table 1, we integrated Eq. 9 for the given initial bulb radius (Äinit) and pressure (p) 
to obtain the critical time at which the pore closed. In some cases a double-bilayer with twice the 
nominal line tension was needed to fit the data [5]. 

Although the parameters were fixed by data from a single event, they produce reasonable crit- 
ical times for the entire data set. The first event in table 1 is clearly an exception which we have 
no explanation for. Perhaps there was a large fluctuation in the manometer pressure or perhaps 
the electric field generated a pore so large that relaxation to the stable pore size was impossible. 
Despite this anomaly we are confident that we have faithfully determined the line tension of the 
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SOPC/CHOL membrane making up the vesicles in question. 

CONCLUSION 

In this paper we have explained the existence of the large dynamically-stabilized pores observed 
by [5]. By separating the fast timescale on which the membrane relaxation occurs from the slow 
one associated with the motion of the aspirated vesicle down the pipette, we have been able to 
establish a modified pore energy function with a stable minimum in the one micron range. In 
addition, we have described a new mechanism by which this minimum disappears destabilizing 
the pore. 

The theory that we have developed permits an accurate determination of an important mem- 
brane parameter: the line tension. From a single event in Zhelev and Needham's work, we were 
able to determine this parameter and two auxiliary parameters. The values so determined were 
then used to reconstruct all ten of the published SOPC/CHOL mixed lipid events: our theoretical 
post-prediction for the critical time at which pore stability is lost agreed well with the experimen- 
tal result for all but one event. The agreement supports the value of our theory as a method for 
experimentally determining the line tension of bilayer membranes. 
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ABSTRACT 

We have studied the late stages of the "pearling instability" in lipid bilayers, which is 
brought on by applying laser tweezers to a cylindrical vesicle. This produces a front that 
propagates down the vesicle, leaving behind it bilayer-covered droplets separated by thin 
tubes, which appear under the microscope as pearls on a string. At later times, the "pearls" 
are observed to drift slowly towards the "trap" (the spot where the tweezers are applied, 
into which the surfactant is drawn). We model the hydrodynamics of the drifting pearls as 
a combination of translation of the string of pearls, and "slipping" of the bilayer skin over 
the pearls, to relate the speed of the pearls to the underlying flux of the surfactant into the 
trap. 

INTRODUCTION 

Laser "tweezers" are becoming a useful tool for probing the dynamics of bio-membranes in 
a controlled way. An interesting example of this is the experiments of Bar-Ziv and Moses [1] 
where the application of laser tweezers to lipid tubules produces a peristaltic shape instability 
by inducing an effective surface tension in the membrane, ending in a beaded tube. 

The metastable cylindrical vesicles are made of unilamellar lipid bilayers (DMPC or 
DGDG) with water forming the inner and outer fluids. They are anchored at both ends by 
massive globules which seal off the inner volume and act as lipid reservoirs. 

Tweezing the vesicle causes a front to propagate out from the laser spot, leaving behind it 
a modulated state with a well-defined wavelength; this state coarsens to form nearly spherical 
shapes separated by thin tethers, giving the appearance of pearls on a string. The "pearls" 
migrate towards the laser spot where they jam up but do not coalesce. This process of pearl 
migration continues after the laser is shut off, the pearls forming a long-lived metastable 
state that relaxes slowly back to the original cylinder. Here we focus on the late stages of 
the instability where the pearled state is observed and describe the mechanism by which the 
pearls move towards the laser trap. 

The effect of the laser is to induce a sudden tension in the membrane. At optical fre- 
quencies the lipid has a higher dielectric constant than that of water making it energetically 
favorable for surfactant to fall into the trap, displacing water. The laser-induced tension 
E is the energy gain per unit area bilayer sucked into the trap and is estimated to be 
2 x 10~3ergs/cm2 for an applied laser power of 50mW, which is far in excess of the critical 
tension for shape transformations [2]. 

In the early linear stages, this large tension applied by the laser results in a Rayleigh-like 
instability [2, 3, 4, 5]. The system minimizes surface area at fixed volume by creating the 
modulated state, but incurs viscous losses in the water by doing so. When the modulation of 
the cylindrical vesicle saturates to the pearled state, the spherical shapes of the pearls that 
minimize surface tension are stabilized against pinching off by the bending rigidity K of the 
membrane. This provides a lower cut-off for the radius a of the thin tethers connecting the 
pearls, which is estimated to be ^/re/E « 0.1/mi (where K « 0.6 x 10~12 ergs for DMPC)[2]. 
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The tension in the surfactant skin is greatest at the laser spot and decreases along the 
string with distance from the spot [5], due to the viscous drag from the water surrounding 
the skin. At the high temperature of the experiment (i« 45°C) the membrane is in a pure 
fluid state, and we regard the surfactant skin as incompressible (the two-dimensional bulk 
compressibility K — 10_1ergs/cm2 >> E), which in flowing towards the trap entrains the 
interior water causing the observed migration of the pearls. If the pearls were rigid they 
would translate along in solid body motion with the surfactant skin: instead, their water 
cores are able to exert viscous stresses on the interior pearl surfaces, slowing them down 
relative to the moving skin. As water is not drawn into the trap with the surfactant, the 
pearls come to a halt at the spot, thus forming the jam. Our goal shall be to find the speed 
of the surfactant skin and the related speed of the pearl drift towards the trap. 

THEORY 

We divide the string of pearls into the stationary pearls that form the jam and the moving 
pearls. The pearls are assumed to be perfectly spherical with radius R and are connected by 
thin cylinders of radius a and length I, where (R/a) and (I/a) are large compared to unity. 
We neglect the surfactant viscosity throughout our analysis. Figure 1 shows the spherical 
co-ordinate system we use. 

Figure 1: Spherical co-ordinate system of the pearl. 

We represent the pearl motion as a superposition of two flows: 
i) Rigid translation of the pearl towards the trap, at a speed denoted by U. This is simply 
the well-known Stokes flow for a sphere. 
ii) The slipping of the surfactant skin over the surface of a stationary pearl. We shall assume 
that the water in the thin tethers is entrained in plug flow at a speed vT {U + vT in the 
laboratory frame), which will be the characteristic scale for the motion of the surfactant skin. 
Poiseuille flow of the interior fluid relative to the tether skin would create a large pressure 
drop across them and a correspondingly large dissipation, which seems physically unlikely. 

We calculate the flow field for this skin-slip motion using the Lamb solution [6], which is 
a prescription for finding the pressure and velocity fields inside and outside a sphere given 
the surface velocity field. Solving Stokes' equations for an incompressible fluid, the velocity 
field may be constructed as (see [7] for details) 

°° (n -{- 3)        T^ n v 
V = JL V X (rXn) + VK + 2(n+l)(2n + 3)VVy" " (n+l)(2n + 3)^       (1) 



Here Xn,<t>n and pn are solid spherical harmonics of degree n, which may be found directly 
by considering three independent combinations of the harmonics on the sphere surface that 
are related to natural boundary conditions on the velocity: 

r oo oo oo 

-v=^I„,-rV.v=^y„,r.Vxv = ^Z„ (2) 
n=l n=l n=l 

where v(ö, ip) is the surface velocity field, and Xn, Yn and Zn are surface harmonics. Sum- 
ming the pns produces the pressure field. Expanding r • v, V • v and V x v in a series of 
spherical harmonics and equating term by term gives us pn, Xn and <j>n in terms of Xn,Yn and 
Zn. In order that the velocity be bounded at the center of the sphere and decay to zero at 
infinity, we keep only positive harmonics for the interior solutions, and negative harmonics 
for the exterior. 

Boundary conditions for the skin-slip problem 

Since the surfactant skin is incompressible, there is a constant flux of lipid fluid through 
any cross-section of the pearl. This equals the lipid flux 2iravT in the thin tethers, where we 
impose a no-slip boundary condition at the tether surface so the water velocity tracks the 
lipid velocity. For a plane cutting through the pearl at a given 9, the surface velocity is 

v = --^ (3) 

where 9 is the unit tangent vector at the surface. Applying equation 2 we see that 
i) The radial component of the curl of this flow-field is zero by azimuthal symmetry. 
ii) Incompressibility of the surface fluid implies that the divergence of the surface velocity 
is everywhere zero, except where surfactant is injected into and withdrawn from the sphere. 
We model the inlet and outlet as a source and sink of known strength of surfactant so that 

-rV • v = ^vT[5(cos 6 - 1) - <5(cos6> + 1)] (4) 
R 

iii) The radial velocity of the fluid is also zero on the surface except where water is pumped 
into and out of the pearl. We treat the inlet and outlet as a source and sink of water, 
consistent with the surfactant flux of equation 4 

~v = \ (|)2 vr[«S(cos 9 - 1) - 5(cos 9 + 1)] (5) 

The delta-functions above may be expanded in the spherical harmonics; however the fi- 
nite radius of the thin tether implies that there is an upper cut-off R/a to the infinite series, 
which smears the delta-functions over the inlet and outlet of the sphere. Specifying these 
boundary conditions thus determines the interior and exterior skin-slip flow-fields completely. 

Determining the pearl migration speed 

We determine the pearl migration speed, U, by balancing forces on the moving pearl. 
These forces are due to i) viscous stresses exerted on the membrane by the surrounding 
water, ii) tangential stresses in the membrane due to the tension gradient across the pearl 
and iii) normal stresses in the membrane which arise in response to i) and ii). 
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We shall call these membrane normal stresses "constraint forces": a device we use to keep 
the pearl spherical, which otherwise must deform slightly with the flow. We assume that 
the surface tension is high enough that this deformation is small. These constraint forces 
increase across the pearl in proportion to the tension, and must sum to zero for the membrane 
to be in mechanical equilibrium, since they arise physically from small deformations of the 
surfactant skin and hence from intramembrane forces. 

The normal stress balance on the membrane is given by the Laplace relation [8] 

9TY/9 *) 
{a„fi — Crrr,i) + fc =  p— (6) 

where the o,j are components of the three dimensional stress tensor of the water evaluated 
at the sphere surface (calculated from the Stokes' and skin-slip pressure and velocity fields), 
and fc denotes the constraint forces in the membrane. 

To calculate T(9) consider a spherical ring at some 9 on the surface of the membrane. 
The tension force acting on the ring to the left must be balanced by viscous and constraint 
forces on the cap to the right: 

0 = -2-rrR sin 9T (9)9+2TTR
2
 [*(arg, 0-arg, i)9'sin 9'd9'+2irR2 ["'\{aTT0-arri)+fc]nsin 9''dB' 
Je        ' ' Je 

(7) 
where n is the outward pointing unit normal vector. Taking the z-component of the forces 
in this equation, differentiating with respect to 9 and using the Laplace relation gives us 

inn 

-7K = —R{Vre,o — VrO.i) (8) 

which may be integrated to give the tension variation across the pearl surface. 
The constraint forces for each of the two flows have no net vertical component from 

azimuthal symmetry, but non-trivial z-components, since the tangential forces in both upper 
and lower hemispheres of the pearl increase from right to left. The sum of these z-components 
is negative for the skin-slip flow and positive for the Stokes flow. These two sums must add 
to zero for the membrane to be in equilibrium, which gives us U in terms of vT 

Since a/R « 1 this means that the pearl drifts towards the trap more slowly than the skin 
slips over it, as we would qualitatively expect. 

Determining VT 

While U is determined from a local balance on a single moving pearl, the transport 
of surfactant toward the trap is communicated through the whole string of pearls. Hence 
VT must be determined from global considerations. This is done by calculating the viscous 
dissipation of the entire string and equating it to the rate of work done by the laser in pulling 
surfactant into the trap. We shall need to consider the dissipation due to the moving pearls, 
the pearls in the jam and the thin tethers. 

Using the Stokes' and skin-slip flow-fields the dissipation for a single moving pearl is 

77 
Em — —Trr]avT + GirrjaUvr + 6-KT]RU

2 (10) 
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The skin-slip term scales as rjavr2 showing that the bulk of the dissipation due to this motion 
comes from the mouth of the pearl where |v| ~ vT and V ~ | over a region of volume a?. 

The jammed pearls have the same skin-slip motion but are stationary. The water in the 
narrow neck between two jammed pearls is locally in a shear flow, so we use the lubrication 
approximation to calculate the important contribution to the exterior dissipation. With the 
same interior skin-slip solutions as for the moving pearls, the dissipation for a jammed pearl 
is (47/3)ir7)av%.. 

We use a result from slender body theory [9] to find the dissipation outside a thin tether 
moving at velocity U + v?, which is given by 4irr]l(U + i*r)2/ln(Z/a). 

RESULTS 

To sum the dissipation for the string we consider as an example a state of the string of 
pearls in which 1/8 of the length consists of those which have reached the jam. For cylinders 
of initial radii 1/um, and string lengths in the range 100 — 200/[im with R = 1.6^m,a = 
0.1 — 0.2/tmi and I = 5/wn , this represents a total of 15 — 30 pearls (and hence 4-8 jammed 
pearls). The rate of work done by the laser is the applied tension times the flux of lipid into 
the trap, equal to 2vavT^- Equating the total dissipation to the rate of work done by the 
laser, (for laser power in the range 50 —100 mW) and substituting equation 9 for U allows us 
to solve for a skin-slip speed of vT ss 2 — 13/^m/sec, and a pearl drift of 17 ss 0.2 — 3/im/sec. 
The high-end estimates are based on higher laser power, shorter strings and thicker tethers. 

Existing experimental data is for pearl speeds after the laser is switched off. This is 
because the same microscope is used to focus the laser beam and observe the experiment, 
and so the field of view need always include the spot when the laser is on. Our analysis 
depends on the operation of the trap as a sink of surfactant, and so only applies to pearl 
motion while the laser is on. An additional mechanism (as yet unknown) is required to 
explain why the pearls continue to move towards the spot after the laser is turned off. For 
pearl radii and laser power in the ranges we have used above, these speeds average 5/im/sec 
[1], which are the same order of magnitude as our high-end estimates for U. 

We can use the calculated vT to estimate other experimental observables. Since the 
modulation of the cylinder requires loss of area, the time to transform it into the final string 
of pearls is controlled by how fast lipid flows into the trap. Using the calculated vT for the 
flux of surfactant into the trap, we find coarsening times in the range of 12 to 340 seconds, 
where the high-end estimate for the flux gives the shorter time. Experimental coarsening 
times are on the order of 30 seconds [1]. 

The driving force for the instability is the drawing of surfactant into the laser trap. 
However the trap has a finite size, and so if it were to become full, the instability would 
stop. We use the surfactant flux calculated above and assume that lipid packs densely into 
the trap to set an upper limit on the filling time. For a spherical trap of diameter d = 0.8^m, 
and a lipid molecule of length D = 20Ä we calculate a time of (|7r(d/2)3)/{2-KaDv-r) which 
is 8-97 seconds. Yet the experiment generally goes on for much longer than this, so lipid 
must be leaking out of the trap. 

Nelson [10] has pointed out that surfactant micelles may be thermally excited out of the 
trap. A spherical micelle with a radius on the order of the length of a lipid molecule, has an 
energy in the trap of S|7rD2 K3X 10~16ergs = 7 x 10~3fcsT. A more accurate calculation 
of the binding energy of a micelle requires knowledge of the bilayer structure inside the trap. 
It would be interesting to confirm experimentally that lipid is released into solution, perhaps 
by tagging lipid molecules. 
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CONCLUSIONS 

We have identified two characteristic velocity scales in this problem: VT, the surfactant 
velocity in the tether, and a significantly slower pearl migration speed U which scales as 
(a/R)vT- The most direct test of these predictions would be a measurement of the surfactant 
flux itself in conjunction with a measurement of the pearl drift during laser operation. 

We have presented a simplified view of the hydrodynamics to elucidate the underlying 
physics. While we expect that the scaling of our predictions is robust, more refined calcu- 
lations for the hydrodynamics will likely produce 0(1) corrections to the prefactors. We do 
not explain why the pearls continue to drift after the laser is switched off, nor their subse- 
quent slowing down and relaxation back to the initial state. This remains an important and 
intriguing phenomenon. 
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Front propagation in laser-tweezed lipid bilayer tubules 
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Abstract We study the mechanism of the 'pearling' instability seen recently in experiments 
on lipid tubules under a local applied laser intensity. We argue that the correct boundary 
conditions are fixed chemical potentials, or surface tensions E, at the laser spot and the 
reservoir in contact with the tubule. While most qualitative conclusions of previous studies 
remain the same, the 'ramped' control parameter (surface tension) implies several new fea- 
tures. We also explore some consequences of front propagation into a noisy unstable medium. 

1    Introduction 

Recent experiments [1] have demonstrated a dynamic instability induced on tubules of 
single lipid bilayers by application of laser 'tweezers', whereby the cylindrical tubule of radius 
R0 modulates with a wavenumber given by q*R0 ~ 0.8. This instability has been attributed 
to an excess surface tension due to the gain in electrostatic energy when lipid molecules, 
of higher dielectric constant than water, displace water in the region of the laser. This 
phenomenon resembles the Rayleigh instability [2, 3] of a thin cylindrical thread of liquid 
with positive surface tension, which reduces its surface area at fixed volume by modulating 
and evolving towards a string of beads. The present problem, however, requires a different 
dynamical analysis which relates the flow of lipid molecules in the interface to the bulk flow 
in the surrounding fluid. 

At present there are (at least) two theoretical treatments of these experiments [1]. 
Bar-Ziv and Moses [1] and Nelson and co-workers [5] suggested that the surface tension 
rapidly equilibrates everywhere to an induced value E0, and the instability proceeds from 
this state. Granek and Olami [4] postulated a constant rate-of-suction of lipid molecules into 
the trap. This loss of lipid is accommodated by stretching out small wavelength fluctuations, 
leading to a uniform surface tension E0. Goldstein, et al. (GNPS) [6] demonstrated how the 
equilibration of the tension in the tube stays 'ahead' of a shape change, and argued that the 
primary loss of area is in the shape instability itself. 

We propose a slightly different picture. The tubules are several hundred microns long 
and are attached at either end to lipid globules of order lOjum in diameter [1]. If we assume 
the system is equilibrated, it follows that the chemical potential for exchange between the 
tubule and reservoir (lipid globules) vanishes [7], and we may assume a reference chemical 
potential of zero or, equivalently, zero surface tension. This coincides with the observation of 
visible thermal fluctuations on the tubules [1]. Treating the anchoring globules as reservoirs 
presupposes that damping processes retarding the transfer of lipid to and from the globules 
is negligible relative to other damping processes. We expect this to arise from the same 
source as two-dimensional surface viscosities, which we argue below to be negligible. 

In the electric field of a laser the chemical potential of a lipid molecule is lowered by 
SeEvo, where vo is the molecular volume, Se is the dielectric constant relative to water, and 
£ the energy density deposited in the trap. Nelson et al. [6] calculated an energy gain per 
area of bilayer of S0 ~ 2 ■ 10~3 erg cm-2, for a laser power of 50 mW. 

This reduction in the local chemical potential induces lipid motion into the laser spot. 
Loss of lipid adjacent to the spot may be interpreted, mechanically, as an increased surface 
tension. Because the other end of the tubule is in contact with a reservoir at zero chemical 
potential, the final state (prohibiting, for the moment, surface undulations) must be a non- 
equilibrium steady state in which: (1) Lipid flows at constant velocity from the reservoir 
to the laser trap; and (2) the chemical potential drops linearly along the tubule, and its 
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Figure 1: (Left) Dispersion relation u(k), with parameters as calculated by GNPS, ß = 
3.5, e = 0.5. Reprinted from Ref. [7]. Alternatively, we may consider this as a plot of ui(k, z) 
for a = 50 and z = L, 1/5,1/10, L/25, and L/50. Here, fc is in units of 2TT/ä0. (Right) 
Frequency LO* and dimensionless wavenumber k* of fastest growing mode as a function of 
position, obtained from (left) by taking a(z = L) = 20. 

gradient balances the frictional drag of the bulk fluid. This differs from the treatments of 
Nelson et al. and Granek and Olami in that lipid must flow out of the anchoring globules. 

Several consequences follow from this observation. We predict a speed of propagation 
and characteristic wavenumber which are largest near the laser spot and decreases to zero 
somewhere near the anchoring reservoirs (see Fig. 1). We also argue that, to initiate the 
pearling instability, an instability must occur to allow a continual flux into the trap. We 
have estimated the criterion for buckling inside the trap, although other mechanisms such 
as ejection of micelles or formation of multilamellar phases cannot yet be discounted. We 
discuss the implications of a small spatial variation in the surface tension on the calculation 
of GNPS [5, 6], and on front propagation [9]. This issue is delicate, and our results suggest 
front propagation which is either (a) characterized by by the so-called Marginal Stability 
Criteria (MSC) [6, 9], or (b) dominated by amplification of existing 'noise', which can lead 
to behavior reminiscent of front propagation for a steep enough ramp. 

2    Steady state 

First we calculate the steady-state flow profile in the tubule, prohibiting shape undu- 
lations, assuming the laser enforces a chemical potential —So at the laser spot. This implies 
a lipid reservoir in the trap.* An estimate of a buckling instability inside the supports this 
boundary condition [15]. Changes in chemical potential 8(i are related to changes in surface 
tension <5E by S/i = —<j>~l8Y,, where <j> is the lipid concentration (<f>-1 = a is the area per 
lipid). Also, E = —p, the 2-dimensional pressure of the fluid of lipid molecules. The bound- 
ary conditions are p(z = 0) = p0 (reservoir) and p(z = L) = p0 — E0 (laser spot), where E0 

is the surface tension induced by the laser; and the cylinder axis is parallel to the z-axis. 
The Navier-Stokes and continuity equations for the 2D fluid of lipid molecules are 

dt<t>: -V-( and /9s(d( + v-V)v=-Vp-rAT6.f. (1) 

We have ignored 2D surface viscosities (which can be shown to be negligible); ps is 2D lipid 
mass density, and AT6 ■ f is the viscous drag acting on the surface from the dissipative 

*After a long time the trap will fill up with lipid and the chemical potential return to zero everywhere. 
However, for strong enough laser power the shape instability will have occurred by this time. 
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Figure 2: (Left) Local dispersion relation UJ* for Eq. (4), for a = 1/2,1/4,1/8. The trap is 
at z/L — 1. (Right) Front velocity vs. time, averaged over 100 realizations of initial noise. 
The velocity was measured by tracking the leading edge of the envelope of wavelets, and 
is plotted in units of the characteristic velocity u>(ko)/k0, where io(k) = 2 kg k2 — kA is the 
dispersion relation for Eq. (4) for a(x) = 1. Ramp parameter a = 1/8. The noise is given as 
a fraction of the final amplitude. 

stress tensor T^n = |^(VaU/3 + VßUa) in the surrounding fluid. Flow is established in a 
vorticity diffusion time r„ ~ pB-l/r) ~ 10~7s, which is much smaller than other times in the 
problem. The boundary stress is given by the shear stress in the tube. For uniform flow 
v = vz, the interior flow is Poiseuille [10] and the boundary stress is AT6-? = —2TJV/R0. 

The pressure obeys the constitutive relation p = Po — Bcj>oSa, where B is the bulk modulus. 
The time to attain steady state after turning on the laser may be calculated from Eqs. (1) 
[15]; TSS ~ 2L

2
T1[(2TT)

2
R0B]-

1
 ~ 10~5 s, for B ~ 150erg cm"-2 [11] and L ~ 100/jm. This 

estimate ignores thermal fluctuations which soften B [12]. As shown in Ref. [6], fluctuations 
can reduce B by up to three orders of magnitude, increasing rss to of order 10~2 s. 

Solving Eqs. (1) yields the steady-state profile 

<5£ = En — , (2) 

with an average lipid velocity v = R0T,0/(2rjL). We estimate v 
10 3erg cm 2 

lfim s 

3    Microscopic Picture 

Lipid flow, which accompanies an effective non-zero surface tension far from the trap, 
follows from a boundary condition of fixed chemical potential at the trap. Here we argue that 
this boundary condition requires an instability in the trap, and we suggest buckling as a pos- 
sible scenario. Other mechanisms include ejection of micelles, or formation of multilamellar 
structures or 'cancerous' membranes. This is surely not an exhaustive list. 

The laser spot has a finite side A ~ 0.15/im in Ref. [1]. Upon applying the laser lipid 
can enter the trap until the electrostatic energy gain balances the cost of compressing the 
molecules in the bilayer. At this point flow stops and the chemical potential (and surface 
tension) of the tube reverts back to zero. However, for some critical tension E* the trap 
may become unstable with respect to buckling. For higher intensities the trap continues to 
fold to accommodate more lipid, allowing flow along the tubule. This flow is accompanied 
by a chemical potential (or surface tension) gradient, which drives the shape instability. A 
detailed calculation [15] or a simple comparison of bending and electrostatic energies yields a 
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Figure 3: (Left) Evolution of u(x,t) from Eq. (4), with: convection v = 0; initial perturbation 
u(L,t = 0) = 0.1«(i,oo); a = 1/2; initial mean noise amplitude a fraction 10-6 of the final 
amplitude. Intervals are every 80 time steps. The vertical and horizontal scales are not the 
same. (Right) Same parameters, except ramp parameter a = 1/8. 

critical intensity a" = 'E'RQ/K ~ 1. A typical experimental value is a ~ 20 [1]. Upon turning 
off the laser, the system could revert to the original tubule by unfolding or, if topological 
changes have occurred (e.g. budding in the laser spot or the creation of metastable 'pearls'), 
perhaps attain some other long-lived metastable state. 

4    Dispersion Relation and Front Propagation 

We turn to the effects of a surface tension gradient on growth. Rather than repeating 
the analysis of GNPS [6] with a non-uniform surface tension, we note that the characteristic 
wavenumber at which the instability occurs is typically q*Ro — 0.8. Since RQ <C L, we 
suspect that the assumption of a locally constant surface tension is a good first step. 

The growth rate u>(q) of a Fourier mode q of an undulation u(q,t) is defined by 

(I (dt 
+ iqv)u(q,t) = uj(q)u(q,t), (3) 

where the convective term arises because the lipids have an average velocity. 
GNPS [6] calculated io(q) for a uniform surface tension S (Fig. 1), including the effects 

of bending and intra-bilayer friction. Changing the boundary conditions to allow for flux 
from the reservoir adds the convective term above and, aside from the local approximation, 
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changes nothing else. Since a is z-dependent (Eq. 2), the growth rate UJ* and wavenumber 
q* of the fastest growing mode are z-dependent, and are greatest near the laser spot (Fig. 1). 

A position-dependent dispersion relation has several immediate consequences: The local 
wavenumber and apparent growth rate should decrease, with the instability vanishing at 
a point close to the reservoir where the induced surface tension is not strong enough to 
overcome the barrier due to bending, E* ~ K/R\. Hence, in experiments with a ~ 20 [5], 
this occurs at l/20th of the distance from the anchoring globule to the laser trap. 

GNPS argued that the MSC hypothesis provides a reasonable estimate for the propa- 
gation speed Vj and the selected wavenumber k* [6]. Extending this calculation to a local 
dispersion relation implies a spatially varying front speed and selected wavenumber. How- 
ever, front propagation implies: (1) the existence of a propagating front, and (2) the absence 
of noise. Rather than discuss the effect of a spatially varying control parameter on vj and 
k* [9], we focus on the issue of the existence of a propagating front. 

In the presence of 'noise' (i.e. thermal fluctuations) a propagating front can be expected 
to exist for times less than the characteristic growth times of fluctuations 'close' to the 
most unstable mode. Hence, after a quench into an unstable 'ramped' state with an initial 
perturbation (a 'pinch' induced by the laser) propagation occurs initially, followed by rapid 
growth everywhere as the initial conditions are amplified to visible length scales. The effect 
of a 'ramped' control parameter should be most dramatic after the noise overwhelms the 
front propagation: for no ramp the noise grows randomly everywhere, and the 'front' should 
break down when the noise has grown to visible amplitudes. For a steep enough ramp the 
non-uniform amplification of the noise could resemble front propagation. 

To check these conjectures we have employed a simple dynamics, specified by 

(~ + vr%Hx,t) = \a{x)2k2
0dl + ö<] u(x,t) - gu(x,t)3, (4) 

where a(x) mimics the dispersion relation and z-dependence of Fig. 1. A choice which gives 
reasonable agreement is a(x) = \x — xo\a+1 /(x — Xg), where Xo is the position at which the 
system is absolutely unstable. This is a toy model whose details do not correspond to the 
Bar-Ziv et al. experiments, but which we believe contains the essential physics of front 
propagation into an unstable inhomogeneous medium. For Fig. 1, XQ ~ 0.05L and a = 1/8 
are reasonable. Fig. 2 shows the local dispersion relation w*(s) for various a. 

Fig. 3 shows the evolution of Eq. (4) for an initial perturbation at the trap of 1% of the 
final amplitude, and noise comprising 300 harmonics with a Boltzmann weight corresponding 
to a non-zero surface tension (i.e. with an energy proportional to q2). The general features 
are as described above. We find a dimensionless initial front velocity of v ui(ko) / ko = 3.3, 
while the MSC [8] predict 4.6. A similar agreement was found by GNPS [6]. The steeper 
ramp has well-defined growth in the noisy region which almost resembles a front, while 
growth into the shallow ramp looks little like a front. The shallower ramp has a very faster 
'propagation' speed in the noisy regime, a consequence of the faster overall growth rate for a 
shallower ramp, because a larger fraction of the tubule is more unstable. For a noisier system 
the effective propagation speed in the noisy regime is faster, and the breakdown of the MSC 
propagation occurs earlier (Fig. 2). The initial propagation velocity is independent of the 
noise amplitude. The delay before noise-dominance increases logarithmically with increasing 
noise amplitude, consistent with a delay until the noise has grown (exponentially) to a given 
amplitude. This study raises several questions. If the noise is weak enough and an apparent 
front exists, can this be understood quantitatively in terms of the ramp, and how does this 
relate to previous investigations of 'ramped' control parameters [9]? 

5     Conclusion 

We have given the following picture of the action of lipid tubules upon the application 
of laser tweezers.  In the absence of buckling the laser induces a local compression of lipid 
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molecules in the laser spot. This takes place in a time of order rss ~ 10_5s. A sufficiently 
large laser intensity induces an instability such as buckling of the membrane in the trap, 
which initiates flow down the tubule from the reservoir. We do not have an estimate of 
the delay time for the instability in the trap. In the absence of undulations outside the 
trap, this flow would build up to a steady-state value v ~ 1 lira s_1 in a time order rss. 
Including the softening of B due to thermal fluctuations [12, 6] increases rss to TSS ~ 10"2 s, 
so that an accurate quantitative calculation must include the dynamics of the increase in 
surface tension. This leads to, effectively, a smaller applied tension a and hence a slower 
propagation speed. This spirit was followed in the approach of Granek and Olami [4]. 

Given the steady-state tension profile within the membrane and the reasonable assump- 
tion that the gradient occurs over a length (L) much larger than the critical wavelength 
(~ -Ro), the analysis of GNPS [6] leads to a Rayleigh-like instability to undulations. This 
instability initiates near the laser spot where the chemical potential (or surface tension) is 
lowest, and propagates away from the spot to a point along the tubule at which the local 
surface tension falls below the critical tension Ecr = K/R

2
0 which characterizes the instabil- 

ity. Typical growth frequencies are w ~ 25s-1 [6], which corresponds to times TU ~ 10_1s. 
Experiments find a significant time delay of order seconds before the instability, [14], a 
still-unexplained observation. 

Front propagation and the effects of propagating into a spatially-varying medium have 
only been touched upon in our numerical treatment. We have not studied non-linear effects. 
This has been addressed by: Olami and Granek [4], who considered the effect of removing 
lipid from the membrane; GNPS [6], who added the correct non-linear terms in the bending 
energy; and Goveas et ai. [16], who studied the motion of fully-developed pearls. 

Our theory differs from previous theories in several respects. Obviously, we expect flow 
out of the reservoir. The inhomogeneous surface tension implies that the velocity of front 
propagation vj and characteristic wavenumber should decrease farther away from the laser 
spot. It would also be interesting to test whether fluctuations are strong enough to destroy 
the front-like character, and whether two characteristic regimes exist in the experiments, as 
suggested in Fig. 2. 

Acknowledgements 

We thank E. Moses, R. Granek, P. Nelson, T. Powers, C.-M. Chen, S. Milner, and W. van Saar- 
loos for helpful conversations and correspondence. This work was supported in part by NSF Grant 
No. DMR 92-57544; The Donors of the Petroleum Research Fund, administered by the American 
Chemical Society; and NATO Grant CRG-960678. 

References 

[1] R. Bar-Ziv and E. Moses, Phys. Rev. Lett. 73 (1994) 1392. 
[2] Lord Rayleigh, Proc. Lond. Math. Soc. 10 (1879) 4; Phil. Mag. 34 (1892) 145. 
[3] S. Tomotika, Proc. Roy. Soc. Lond. A150 (1932) 322. 
[4] R. Granek and Z. Olami, J. Phys. II (France) 5 (1995) 1349. 
[5] P. Nelson, T. Powers, and U. Seifert, Phys. Rev. Lett. 74 (1995) 3384. 
[6] R. E. Goldstein, P. Nelson, T. Powers, and U. Seifert, J. Phys. II (France) 6 (1996) 767. 
[7] J. H. Schulman and J. B. Montagne, Ann. N.Y. Acad. Sei. 92 (1961) 366. 
[8] W. van Sarloos, Phys. Rev. A37 (1988) 211. 
[9] L. Kramer, E. Ben-Jacob, H. Brand, and M. C. Cross, Phys. Rev. Lett. 49 (1982) 1891; L. Kramer and 

H. Riecke, Z. Phys. B - Cond. Matt. 59 (1985) 245. 
[10] L. D. Landau and E. M. Lifschitz, Fluid Mechanics (Pergamon, Oxford, 1959). 
[11] E. Evans and D. Needham, J. Phys. Chem. 91 (1987) 4219. 
[12] W. Helfrich and R.-M. Servuss, Nuovo Cim. 3D (1984) 137. 
[13] R. Bar-Ziv, T. Frisch, and E. Moses, Phys. Rev. Lett. 75 (1995) 3481. 
[14] E. Moses, private communucation. 
[15] P. D. Olmsted and F. C. MacKintosh, Journal de Physique to be published (January, 1996). 
[16] J. Goveas, S. T. Milner, and W. B. Rüssel, submitted for publication (1996). 

178 



COLLISION OF A FIELD-DRIVEN POLYMER WITH A POST: IMPLICATIONS 
FOR ELECTROPHORESIS IN MICROLITHOGRAPHIC ARRAYS 

E.M.SEVICK* AND D.R.M. WILLIAMS** 
*Research School of Chemistry and **Research School of Physical Sciences & Engineering, The 
Australian National University, Canberra ACT 0200 AUSTRALIA, sevick@rsc.anu.edu.au and 
drwl 10@rsphy3.anu.edu.au 

ABSTRACT 

We study the simplest model of a polyelectrolyte impinging upon a point, frictionless obstacle in 
the presence of a field. Using numerical simulation, we show that the wide range of impacts, 
ranging from direct impact forming a long-lived hairpin conformation, to glancing impacts where 
the chain slides off of the obstacle in short time, can be described universally. In strong field, the 
average collision time,^c^, and average distance traveled during collision, {zc), depend upon the 
impact and follow universal curves over a large range of molecular weights and field strengths. 
This result provides analytic formulas for the chain's mobility in an array of posts and yields 
insight into the effect of post spacing. 

INTRODUCTION 

Gel electrophoresis is one of the most widely used techniques for size separating charged 
molecular chains such as DNA or synthetic polyelectrolytes. The separation is achieved by driving 
the chains through a gel, usually agarose or polyacrylamide with an electric field. As a result of the 
field-driven mobility and the obstacles that the gel provides, small chains pass through the gel 
quickly while longer molecules move more slowly. In constant field, very long chains, e.g., DNA 
in excess of 30 kilobase pairs, exhibit weak length-dependent mobility and consequently, 
separation of these chains is not possible. In a pulsed field, this saturation zone is postponed to 
longer chain lengths, but the mobility can be non-monotonic and can prevent a simple separation. 
Most recently, Austin has introduced a new electrophoretic medium fabricated from lithography, 
introducing the possibility of tailoring the medium to enhance size-separation. Endless 
possibilities exist including arrays of posts, perforated barriers, or complicated mazes. However, 
at present, there exist no predictions of what array geometry is best for chain separation. 

In this paper, we investigate the mobility of a charged chain through an array of posts in the 
single post approximation, i.e. where a chain interacts with one post at a time. We model the chain 
as a sequence of freely-jointed rods of fixed length £ and charge per rod Q, residing in an electric 
field, E. We define a dimensionless field strength e = QEl/kT and assume that the force 
required to maintain an average rod projection Hz in the field direction, is 

f({Q) = (kTH)Ld({lz)H) (1) 
where L^ is the inverse Langevin function in rf-dimensions. In the first section we review the 
conformation of an end-tethered chain in an electric field, providing some of the expressions which 
are used to construct the numerical simulation of the unhooking process of a free chain straddling 
an obstacle, which is described in the second section. In the third section, we construct analytic 
formulas for the characteristic time scale of unhooking in the strong field and weak field limits. In 
the final section, we describe a set of numerical simulations where chains more realistically interact 
with the post in a wide variety of ways, where partial hooking, glancing impact and incomplete 
unwinding predominate. Despite the wide range of possible interactions, we find a set of universal 
relations which describe the dynamics of the chain, and which can be used to predict length 
dependent mobility of the chains as a function of the spacing between post obstacles. 

EQUILIBRIUM:  A POLYELECTROLYTE END-TETHERED TO A STATIONARY 
OBSTACLE 
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Consider a freely jointed chain of N charged rods whose ends are labeled consecutively 
from n=0 at the tether site to n=N at the free end. The downfield position of bead n is z(n), 
measured from the stationary point in units of link length. The projection of each link onto the 
field direction, or the extension of the spring, z(n+l)-z(n), is found from minimization of the free 
energy of the chain, F. F is comprised of the field energy of the charged beads, which promote 
downfield advance of each bead, and the stretching energy, which prohibits dramatically different 
advances of neighboring beads:  F = Ffieu + Fstretch ■ Tne fie,d energy is 

N N     N 

F = -QElfdnz(n) + kTJdnjd({lz))f((lz)) (2) 
0 0      0 

where the first and second terms are the field and stretching energies of the chains. The integral 
over the spring extensions in Equation (2) can be simplified by noting that in the limit of large N, 
the average extension (lz) is limn_>„(lz) = (lz(n + 1) - tz(n))j((n + l)-n) =£dz(n)/dn, 
where the stretching variable is y = dz(n)/dn, and the force law is used in the definition for S, 

N u 

F/kT = fdn{s(n - N)y(n) + S[y]} where S[u] = JdxLd (x). (3) 
0 0 

The equilibrium extension of an end-tethered chain is found by minimization of the chain's free 
energy, Equation (3), with respect to the stretching profile y(ri), providing the equilibrium 
stretching profile 

y(n) = Ld[£(N-n)] (4) 
According to Equation (4) the tethered chain is maximally stretched at the tether point, n=0, and 
unstretched at the free end of the chain, y(N)=0. This agrees with fluorescence microscopy images 
of individual stained DNA molecules where the free ends of the chain appear brighter, indicative 
that the free ends are less stretched in comparison with the rest of the chain. 

DYNAMICS:  A NUMERICAL SIMULATION OF THE UNHOOKING OF A CHAIN 

The dynamics of a polyelectrolyte draped over a frictionless obstacle in an electric field is 
modeled as the response of a linear sequence of springs straddling a pivot obstacle, Figure 1. The 
unhooking process is assumed to begin with the P0-lh bead or monomer hooked by the obstacle, 
with P0 > N/2. Thus, the longer arm contains Pg monomers and the shorter one, N- P0 

monomers, respectively. Unhooking corresponds to the pivot monomer (/>) advancing through 
each monomer from P0 (initial pivot point) through N until the chain is released, i.e. the pivot 
monomer is the last or the Mh labeled monomer. During the whole unhooking process, the 
hooking obstacle is taken as a point that transmits forces between neighboring pivot segments, but 
does not introduce additional frictional forces. The lengths of the arms depends not only upon the 
magnitude of the field force, but also upon how fast each part of the chain responds to the force. 
Consequently, the stretching profiles of the arms of the hooked chain are generally not at 
equilibrium. However, we assume that the force law (Equation 1) is still strictly obeyed by each 
bead or monomer during the dynamics. The governing equation of motion for each monomer, n, 
is found by equating the hydrodynamic drag on the nth monomer moving at speed dk(n)/dt, to the 
conservative force: 

dlz(n) =    5F(z(n)) 

^    dt 8lz(n) 
Here g ~ Ar[l is the friction coefficient of the polymer where A is a dimensionless drag constant 
and 77 is the viscosity of the medium, and 8 denotes a functional derivative. Equation (5) is made 
dimensionless through % = tf%0 where the timescale T0 is T0 = g£ : 

*fl = £ + ±Ld(y(n)) (6) 
dx an 
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Equation (6) written for each nth monomer, l<n<N, provides a complete set of N equations of 
motion for solution. This set of first order differential equations is solved numerically using 
Euler's method. We adopt an initial configuration of a hooked chain with pivot monomer 
P0 =N/2+2. with arms containing N/2+2 and N/2-2 springs and stretched according to the 
equilibrium profiles of the preceding section. The extension and retraction of arms as a function of 
time characterizes the unhooking process. Figure 2 shows the dynamics of arm 
extension/retraction versus dimensionless time, T, for a chain of N =100 links in fields of 
dimensionless strength e=0.02 and 0.002 (weak field). At early stages of the unhooking process, 
the difference in arm lengths A=z(l)-z(N) is exponential in time and expressed as 

dA/dr = A/Tc (7) 
where ic is the characteristic unhooking time. The total length of the chain, or the sum of the arm 
lengths, z(l)+z(N), is almost invariant throughout the early unhooking process, but decreases at 
the end of the unraveling period sharply. In the late stage of unhooking (approximately the last 
25% of the whole unhooking process), the retraction of the shorter arm is exponential while the 
advance is slower and linear in time. The total length of the chain decreases approximately 20% 
from its initial hooked extension upon release from the obstacle. All of these observations 
coincide with the experimental observations presented by Song & Maestre, who interpreted these 
features as being related to chain elasticity. However, in interpreting the faster retraction, Song & 
Maestre assumed friction at the pivot point and assumed that the stretching of the arms followed 
that of the end-tethered arms. 

DYNAMICS:   AN ANALYTIC APPROACH FOR UNHOOKING IN STRONG & WEAK 
STRETCHING REGIMES 

The equation of motion can be cast into any general variable q (such as A or P) rather than 
the function z(n), using the Rayleighian dissipation function, 

N 

%_ = — gl   I dnz(n)  : the equation of motion appears as —- = —. 
2      Jo dq dq 

In the limits of strong field, Ne»l, and weak field, Ne«l, the equation of motion can be 
solved exactly with q set to A and P, respectively. 

A. Field-driven dynamics 

When the field is fairly strong, the extension of the chain is great and roughly a constant 
over the unhooking process, particularly the initial unhooking. Thus, to first order all monomers 
translate at the same rate and the Rayleighian term reduces to reduces to SR(z)/Stz = qlNz ■ 
Thus, equation of motion reduces to 

which can be recast into an equation of the form dA/dr = A/rcby expressing the free energy F(A) 
in terms of an invariant stretching profile. An obvious choice for the invariant stretching profile is 
the equilibrium stretching profiles (Equation (4)) of each of the initial arms, y(n,P0) and 
y(n, N - P0) where P0 is the initial pivot monomer. A varies with transient pivot monomer, P, 
according to 

P N-P 

A=jdny(n,P0)-  Jdny(n,N-P0) (9) 
0 0 

and the free energy of the chain is expressed in P as 
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^- = jdn{e(n - P)y(n, P0) + S[y(n, P0)]} (10) 
kl      0 

N-P 
+ Jdn{E(n -N + P)y(n,N-P0)+ S[y(n,N -P0)]}. 

0 
In the initial stages of unhooking of an centrally straddled chains, the springs which straddle the 
obstacle can be approximated as y(P0 -1, P0) ~ y(N -P0 + 1, P0) ~ Lj(eN/2) . This and eqs. 
(8-10) yield the characteristic time scale in the strong field limit, Ne—>°°, zc= N/(2e). 

B. Weak-field or Ouasi-equilibrium dynamics 

When the field is very weak, i.e. Ne« 1, the arms are not very stretched and the elastic 
energy plays an important part in the chain unraveling. In this case, we can assume the stretching 
profile varies with time in such a way that at any instant of time, each arm posses its equilibrium 
stretching profile.  In weak fields, the stretching profiles of the retracting arm (0<n<P) and 
advancing arm (P<n<N) are y(n, P) = sn/d and y(n, N -P) = e(N -n)/d , respectively. The 
Rayleighian can be expressed as 

R = jjS(elP)2(P3+(N-P)3) (11) 

while the free energy is 
P N-P 

^-^- = fdn e(n-P)y(n,P) + -y(n,P)2 +   fdn   E(n-N + P)y(n,N-P) +-y(n,N-P)2 

IcT      J 2 J
n 2 

0 P 
By noting the relation between A and P, 

P N-P 
A = Jdny(n, P) —  fdny(n, N-P) (12) 

0 0 
we can recast the equation of motion into the form dAjdx = A/rc where the characteristic time 
scale, in the limit of large N, is Tc = Nz /12. 

UNIVERSAL SCALING:  A NUMERICAL SIMULATION ANALYSIS OF A WIDE 
RANGE OF CHAIN -OBSTACLE INTERACTIONS, FROM GLANCING TO DIRECT 
IMPACT 

The dynamics of chains trespassing through an array of posts cannot be described solely as 
a simple unhooking process as described above. There exist a wide range of interactions between 
post and chain, varying from a glancing impact with minimal change in conformation of the chain, 
to direct impacts with incomplete hairpin formation. It is unreasonable to assume that the simple 
unhooking process above describes the full range of chain dynamics. We describe the range of 
impacts in the following way. Consider that a chain impacts the posts over a range of impact 
parameters, b, defined as the lateral displacement of the chain's center of mass from the post. At 
short times, portions of the chain extend downfield on either side of the post, forming a suspended 
conformation over a short time: as such, the hooking process itself does not significantly slow the 
chain. However, subsequent motion may or may not be seriously frustrated as different arms 
compete for length and exchange of monomers across the pivot obstacle. 

In this section we present the results of a simulation study of the wide range of interactions 
experienced by a chain and post, allowing for glancing as well as head-on impacts.  The release 
dynamics, i.e., dynamics by which a chain loses its contact with the obstacle, is solved by 
integrating the set of equations, Equation (6), starting from a random chain conformation with 
impact parameter b. The duration time of the interaction, tc, and the downfield advance of the 
chain's center of mass during the collision, zc, are found for each chain-post interaction. We have 
found that the release dynamics can be described for the full range of impacts using a set of 
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universal functions with time and length scaling parameters, Tc and CO. The time scaling 
parameter is simply the characteristic time scale of simple unhooking in strong field, 
Tc = N/(2e), and the length scaling parameter is the characteristic size or extent of the chain in the 
direction perpendicular to the field, co = Rx ~ N1'2. 

Figures 3 & 4 demonstrates the scaling behavior of collision time and downfield advance 
during release over a range of strong field strengths and chain molecular weights. The average 
time of collision varies with impact parameter according to (tc) /ic~ f(bN~1/l) where / is a 
simple exponential for b less than a few chain radii. The function / is a complex convolution 
between the probability of collision and the various dynamical process occurring during the 
collision - / is not a simple multiplication of the collision probability and a constant time, as the 
probability of collision for 0<b<l is nearly a constant (unity) and falls significantly for bN~ /2> 
1. For large values of b, the time of collision decays much more rapidly than this simple 
exponential; indeed, for b > N/2, there is no collision time as there is no collision. The average 
advance of the chain's center of mass during collision also follows a universal curve over a range 
of field strengths and molecular weights, Figure 4. The average downfield advance varies with 
impact according to (zc)/N ~ gtbN'1'^) where g is linear for about two radii of gyration. 

Apart from the average collision time and distance, non-averaged values are also of 
interest. Figure 5 plots the scaled center of mass distanced traveled after impact, zc/N, versus the 
scaled collision time, tc/Tc. Although there is some scatter to the plot, the numerical data all fall 
close to a simple universal curve: zc / N ~ h(tc / TC). The function h is linear at small times, 
corresponding to short interaction times for glancing impacts; but for long times, the function 
saturates at h=l/2, indicative of a single hairpin where release occurs when one full arm length 
advances downfield, or zc = N/2. Another saturation zone is discernible for h=I/4, 
corresponding to another frustrated conformation, a double hooked chain, or double hairpin, which 
is less frequent that a single hairpin. 

Although the universality of the numerical results is interesting in itself, these scaling 
relations are useful in deriving a general formula for the mobility of a chain in an array of posts. 
Let the posts be arranged in rows separated distance Z apart in the field direction and X apart in the 
perpendicular direction. The time taken for a chain to traverse a row of posts is the time for 
collision plus the time to drift to the next row: t = tc + (2 - zc) / v0. The ratio of the mobilities of 
the chain with and without obstacles is then /J./fJ.0 =Z/(Z+ tcv0 - zc). The process of chain 
impact is stochastic so that there is a distribution of times tc and distances zc which we 
characterize with the probability distribution P^ defined such that Pf, (tc, zc)dbdtcdzc is the 
probability that a collision occurs with impact parameter between b and b+db, with collision time 
between tc and tc +dtc, and center of mass advancement between zc and zc +dzc. The average 
mobility is then given by (p) = fdbdzcdtcPf, (tc,zc)/A. This expression can be simplified by 
invoking the universal relation between tc and zc and noting that our data for b < Rx show that 
the standard deviation in tc is less than ^fc) and can be approximated with a delta function 
centered at [tc). In the limit that N << Z, we obtain 

(jj)/H0 = 1 - BN3/2 /XZ (13) 
where B is a numerical constant. The decrease in mobility N I /XZ has a simple physical 
explanation. It arises from a factor N I /X representing the probability of collision, multiplied by 
a factor N, representing the decrease in speed of the chain, and a factor 1/Z which is the number of 
obstacles per unit length in the Z direction. The mobility is a strongly decreasing function of JV, 
and thus an array of posts should provide a reasonable means of chain separation. 

The mobility formula given above is based upon the single-post approximation, where a 
chain interacts solely with one post at a time and the interaction is complete before impinging upon 
an additional post. In practice, however, the post-chain interaction will interfere with subsequent 
interactions. This interference can take two forms. First, if the radius of gyration is larger than the 
X spacing, then a chain can interact with more than one obstacle at one time. The second effect 
deals with conformational relaxation of the newly released chain. After unhooking from a hairpin, 
the chain conformation is strongly distorted.  It first relaxes rapidly due to nonlinear elasticity, but 
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then much more slowly due to linear elastic effects. In this latter stage, the relaxation is controlled 
by the Rouse time, t   <* N2 /kT, which can be compared with the time taken to travel between 
rows of posts, <* Z/(QE£). Thus for the chain to fully relax between rows requires Z > eN . 
Row spacing less than this would violate the single post-approximation and render the process 
non-Markovian, requiring a more sophisticated treatment. 

figure 3 continued 

parameter, b/^N. The average is taken over a 
large number of chains with a prescribed length, 
20<N<80, and dimensionless field, I0<e<100. 
Chains which do not collide with the post are 
assigned tc = 0 and zc = 0. The data collapse 
onto a single universal curve which appears 
exponential for b /^N < 2. At large b /^N 
there is much scatter in the data as collisions are 

T~        ,    «     ■ - . rare. 
Figure 1: A schematic of the Langevin Spring 
model used for a polyelectrolyte draped over a 
frictionless obstacle. 
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Figure 2: Numerical results of the dimensions 
of a single hairpin during the unhooking process 
in a strong field. The length of the 
advancing/retracting arms are indicated by filled 
circles/stars. The dashed line represents the 
difference in arm lengths, which appears 
exponential in time. The solid line is the total 
length or sum of arm lengths. 
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Figure 4: A plot of the scaled average distance 
moved by the chain's center of mass during 
collision, \ZC)/ P/ .versus the scaled impact 
parameter, b/^jN. The data from various 
(N,e) collapse onto a single universal curve 
which is linear for nearly direct impacts. 
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Figure 3: A log-linear plot of the scaled average 
impact time,  \tc)/rc, versus the scaled impact 
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Figure 5: A plot of the scaled center of mass 
advance, zc / N, versus the collision time, tc, for 
each of the 300,000 simulated chains. Chains 
which interact with the post for significant time 
have frustrated, hairpin conformations: (A) 
single hairpins with zc/N near 0.5 (the 
discrete levels of zc /N less than 0.5 are due to 
short chains and lower fields, i.e. JVe < °°.) and 
(B) double hairpins with zc / N=0.25. 
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ABSTRACT 

We have simulated the dynamical failure of three-dimensional notched solids under 
tension using molecular dynamics and up to 100 million atoms. We discovered a dynamical 
brittle-to-ductile transition in the rapid cleavage of rare-gas solids when the crack velocity 
approaches one-third of the Rayleigh sound speed. At this transition, the crack tip has 
already begun to roughen on the atomic scale. This suggests that the brittle crack under- 
goes a dynamic instability which immediately leads to the initiation of plastic failure by 
the spontaneous emission and proliferation of dislocations and crack arrest. 
* NUT: nanocrystal under tension. We make note of P-G. de Gennes comment "...refrain 
from immediately resorting to a jackhammer to break open a hazelnut without first check- 
ing for an incipient crack on the surface of the shell." in Fragile Objects (Copernicus, NY, 

1996). 

INTRODUCTION 

"At liquid hydrogen temperatures, ... imperfect crystals of krypton have about the 
hardness of butter on a cold day," so state Kelly and Macmillan [l]in their now classic text 
"Strong Solids". However, even at liquid hydrogen temperature, krypton is at two-tenths 
of its melting temperature and therefore not exceptionally cold. This, along with the 
imperfection in crystal structure, can explain the softness of the krypton solid at twenty 
degrees Kelvin. A perfect krypton crystal at zero temperature may fracture in a brittle 
fashion, but theory suggests that it will not. Theoretical support for the inherent ductility 
of the rare-gas solids and, indeed, of most face-centered cubic solids at low temperature has 
been given by Rice and Thomson [2] this being in sharp contrast to our earlier simulation 
findings in two dimensions where the cold rare-gas films failed brittlely [3,4]. Our two- 
dimensional simulations revealed a very rich dynamics in the failure process (see Figure 

Pulling apart the simulated rare-gas film, the crack started out straight, then became 
rough, but finally started zigging and zagging. Also, the fracture advanced at considerably 
less than the speed of sound. Because the simulated system is perfect, we proved that the 
instability and the speed limitation have nothing to do with impurities or imperfections in 
the material or difficulties in the experimental setup. Rather, they are inherent properties 
of the fracture dynamics itself. 

We have now simulated the dynamical failure of three-dimensional notched solids 
under tension using molecular dynamics and up to 100 million atoms and find that the rare- 
gas solid begins to fail by rapid brittle fracture [5]. When the crack velocity approaches one- 
third of the Rayleigh sound speed, the crack tip begins to roughen on the atomic scale. This 
suggests that the brittle crack undergoes a dynamic instability.   This immediately leads 
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Fig. 1. The time evolution of the propagating crack in a 2D solid is seen using a gray- 
scale rendering of the instantaneous local velocity, going from dark gray for the most 
negative velocity to light gray for the most positive velocity. Initially, the brittle crack 
propagates in a straight line. At the onset of the instability, the crack first begins to 
roughen, and then to oscillate back and forth. The zigs or zags in the crack direction 
are accompanied by propagating dislocations that are thirty degrees to the vertical and 
travelling at approximately the speed of sound for the bulk solid. These dislocations appear 
as slanted, inverted Vs being emitted from the moving crack tip, first to the right, then to 
the left and are simply an acoustical wake created by the moving dislocation. 

to a dynamic brittle-to-ductile transition, the initiation of plastic failure, the spontaneous 
proliferation of dislocations and crack arrest. The details follow. 

METHOD AND RESULTS 

It has been suggested that atomic systems on the order of 108 to 1011 atoms could begin 
to bridge the gap between numerical experiments on the computer and "real" experiments 
in the laboratory [6]. In this study, we describe a simulation of 100 million atoms. The 
van der Waals bonding giving the cohesion of the rare-gas solid can be modelled accurately 
by two-body Lennard-Jones potential and has served as a paradigm for studying classical 
many-body phenomena of atomistic systems in computational physics [7]. At the time 
when the Lennard-Jones potential was being adopted for the simulation of the liquid 
state, and hence rare-gas liquids, Feynman [8]suggested that the single most important 
statement describing our real world is "that all things are made of atoms, little particles 
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that move around in perpetual motion, attracting each other when they are a little distance 
apart, but repelling upon being squeezed into one another." This continues to be a rich 
prescription and certainly proved to be a good choice for studying the generic features of 
rapid fracture dynamics in two-dimensions. The Lennard-Jones potential has the form 

4>LJ(T) = 4e [(a/r)12 - («r/r)6] , (1) 

where e is the LJ well depth, a is where the potential goes through zero. We express 
quantities in terms of reduced units; lengths are scaled by a, energies by e. The system 
is a three-dimensional slab with Lx = 336 atoms by Lj, = 336 atoms by Lz = 896 atoms 
for the three orthogonal sides. The notch is a slit beginning midway along Lxfory = 0, 
having a y extension of length lt = 120 which extends through the entire thickness Lz. 
The exposed notch faces are in the y-z planes with (110) faces, and the notch is pointed 
in the < 110 > direction. We note that the (110) face does not have the lowest surface 
energy. This choice is contrary to conventional wisdom which would identify the lowest 
energy surface, i.e., the (111) surface, as the cleavage plane for brittle fracture. The choice 
of the (110) surface is based our recent finding that the nonlinear elastic anisotropy of the 
crystal, and not the anisotropy of surface energy, dictates the cleavage behavior [9]. This 
continues to be true in three dimensions. 

Periodic boundary conditions are imposed between the x-y faces at z = 0 and z = Lz. 
This notched slab geometry has a total of 100,509,696 atoms, and the total simulation 
time for this study is 30,000 time-steps or 135 in reduced units. It takes 12 CPU seconds 
per time-step for a 306-node spatial decomposition simulation on the IBM SP2. This 
timing compares very favorably with other timing studies reported for parallel molecular 
dynamics programs for comparable system sizes (for example, see reference 10). However, 
the physical size multiplied with the total simulation time span is the proper measure 
for the computational burden (remember space-time is relevant for dynamics) and equals 
~ 1012 for this study. A crack would traverse a laboratory nanocrystal in approximately 
a nanosecond; our crack in the computer nanocrystal takes one hundred clock-hours. The 
slab is initialized at zero reduced temperature, and an outward strain rate ex is imposed 
on the outer most columns of atoms denning the opposing vertical faces of the slab. A 
linear velocity gradient is established across the slab, and an increasing lateral strain with 
time occurs in the solid slab with an applied strain rate of ex = 0.00033. With this choice, 
the solid fails at the notch tip after 10,000 time-steps when the solid has been stretched 
by ~ 1.5 percent, in agreement with the Griffith energy-balance criterion. The imposed 
strain rate is set to zero after another 3,500 time-steps, and the simulation is continued a 
further 20,000 time-steps. We adopt the initiation of crack tip motion as zero time. 

In Figure 2, snapshot pictures of the notched solid dynamics are presented for early 
times. In order to see into the interior of the solid, we show only those atoms that have a 
potential energy greater than -6.1, where the ideal bulk value is -6.3; this trick was used 
earlier in our 2D work. This reduces the number of atoms seen by two orders of magnitude; 
the visible atoms are associated with faces of the slab and initial notch, surfaces created by 
crack motion, local interplanar separation associated with the material's dynamic failure 
at the tip, and topological defects created in the otherwise perfect crystal. In this figure, 
the crack's depth, projected on to the x-y plane with an off-diagonal perspective view, is 
only one third of the total actual slab thickness. This cut-away of depth was done in order 
to emphasize the important features of the early-time dynamics which are associated with 
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Fig. 2. Early-time sequence of the propagating crack is shown as overlapping partial 
landscapes of the growing surface due to brittle fracture in the first three images (times 
1, 16, 32) and the subsequent appearance of dislocations in the fourth image (time 48) 
after the transition to ductility. Only atoms with a potential energy less than 97 percent 
of the bulk value are displayed, resulting in the selected visualization of atoms neighboring 
surfaces and dislocations. Approximately a third of the crack's depth is shown, and the 
slab's rear exterior surface is included. The other exterior surfaces are omitted. 

the crack's brittle motion in the forward direction. The sequence is for times 1, 16, 32 and 
48 (reduced time unit). In the time interval 0 to 42, the crack motion is representative 
of brittle fracture, with planar cleavage of the bonds between the two (110) neighboring 
atomic sheets defined by the initial notch. The small bud at the crack tip represents local 
expansion, and we will refer to this region as the "process zone." During brittle fracture, 
this process zone represents no plasticity, but, at a time of 43, the bud begins to blossom 
into a "flower of loop dislocations." This is apparent from the snapshot picture at time 
48. Also, the crack slows to a stop and continues to dissipate elastic energy through the 
continued creation and motion of dislocations. Hence, a "dynamic brittle-to-ductile" (B-D) 
transition occurs in the fracturing of this rare-gas nanocrystal. 

Figure 3 shows a late-time sequence of the propagating crack for the entire depth of 
the 100 million atom slab at times 43, 52, 68 and 90. We see the time evolution of the loop 
dislocations emitted from the arrested crack surface neighboring the vertical crack edge 
and propagating in the (111) family of slip planes through the solid slab. The dislocations 
move at approximately a quarter of the longitudinal sound speed (c3 = 8.5) and eventually 
terminate as steps on the front surface of the slab (not shown). For a comparison with 
laboratory experiment, we refer the reader to the transmission electron micrograph of an 
arrested crack in silicon above the ductile transition temperature [11], where very similar 
dislocation activity is visible in the presence of the silicon crack tip. However, unlike 
our computer experiment, it was not possible to determine the dynamic origin of these 
dislocations. 

Figure 4 shows magnified off-diagonal perspective views of the process zone during 
the time period of the brittle-to-ductile transition (at times 36, 43, 49 and 54). We note 
that just prior to the B-D transition (time 34) the process zone is symmetric. The zone 
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Fig. 3. Late-time sequence of the dislocations propagating through the 100 million atom 
slab is shown for times 43, 52, 68 and 90. With the exceptions that the entire depth and 
the top surface are shown, the rendering procedure described in the previous figure applies. 

then becomes asymmetric with the onset of a roughening as a quasi one-dimensional strip 
(time 43) and rapidly broadens into a wall of embryonic dislocations (time 54). The crack 
surface begins to roughen prior to dislocation emission. In our two-dimensional fracture 
simulations [3], we saw a similar roughening which was identified as the onset of an intrinsic 
dynamical instability of the brittle fracture process. For the three-dimensional simulation, 
this roughening extends in depth as a one-dimensional step which is a few atom diameters 
wide. However, the three-dimensional B-D fracture transition immediately follows, in 
sharp contrast to the fracture of the two-dimensional rare-gas films where brittle fracture 
prevails. Furthermore, the surface roughening (i.e., the brittle instability dynamics) occurs 
when the crack tip velocity equals ~ 0.33 of the Rayleigh sound speed for the rare-gas solid, 
the same as we found in the two-dimensional systems. 

We construct the following scenario for the dynamic failure process in the 3D rare-gas 
solids. From zero velocity, the crack accelerates smoothly by brittle fracture along the (110) 
plane until it approaches one third of the Rayleigh sound speed. At this point, a dynamic 
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Pig.    4.   Magnified off-diagonal perspective views of the process zone during the time 
period of the brittle-to-ductile transition (at times 36, 43, 49 and 54). 

instability in the brittle fracture process occurs and manifests itself as a atomic surface 
roughening of the created surfaces. The brittle nature of this failure process marginally 
exists for the perfect (110) planar cleavage, and the deviation from planar cleavage gives 
rise to plasticity, and a spontaneous proliferation of dislocations. We are now studying 
whether the nonlinear elastic anisotropy for different fracture planes gives markedly differ- 
ent fracture behavior, similar to our findings in two-dimensions [9]. 

Finally, we considered a 3D thin film, only twelve atomic layers thick with approx- 
imately five million atoms (see Figure 5). By 'film', we mean that periodic boundary 
conditions are not imposed across the x-y faces, hence they are free surfaces. As time 
progresses, grooves appear at the free surfaces in the region of the crack tip and grow out- 
ward from the notch as well as into the slab's depth. The notch "grows" in length as the 
depth of the grooves reaches half of the slab's thickness, which occurs farther away from 
the original tip position as time increases. This mechanical grooving is a consequence of 
loop dislocations being emitted from the crack edge, meeting the free surfaces, and forming 
steps that move away from the stationary tip as the dislocations move down stream. The 
original notch is not of sufficient length (for the imposed strain) to fail by breaking bonds; 
however, the strained slab still fails by dislocation grooving. 

A multimedia version of this atomistic simulation of fracture is available via World 
Wide Web: 

http://www.tc.cornell.edu/ " farid/fracture/lOOmilhon/ 
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Fig. 5. Figure 5. Mechanical grooving of a very thin 3D film, twelve atomic layers thick. 
The shading is according to depth; the interior bulk atoms are not shown. 
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ABSTRACT 
By studying the morphology of the fracture surfaces of both a metallic alloy and of a 

silicate glass for various very low crack propagation velocities, it is shown that the pin- 
ning/depinning scenario of a line moving through randomly distributed obstacles seems 
well adapted to describe fracture of heterogeneous materials. The crossover length sepa- 
rating the large length scales regime characterised by a roughness index ( ~ 0.78 and the 
small length scales one, for which (c ~ 0.5, is shown to decrease with the measured crack 
velocity as a power law, (c a u~*, with <f> ~ 1. £c and v also vary with the pulling force as 
power laws, and the measured values of exponents u and ß are close to: v ~ 2 and ß ~ 2. 

It has been proposed in [1] that the recent progresses made in statistical physics in 
the understanding of the problem of lines moving through randomly distributed obstacles 
[2, 3, 4] could be useful to describe fracture in heterogeneous materials. The line being 
there the fracture front and the obstacles elements of microstructure, the fracture surface 
is just the trace left behind it during its propagation. 

Experimental results concerning the morphology of the fracture surfaces of two very 
different materials - a metallic alloy and a silicate glass - are analysed here within the 

framework of these models [5, 6]. 
After the pioneering work of Mandelbrot et ai [7], the fracture surfaces of many het- 

erogeneous materials have been investigated thanks to various experimental techniques. 
These surfaces are usually self-affine [8], with a roughness index ( close to the value 0.8, 
which was conjectured to be a universal value [9, 10], i.e. independent of the material 
and of the fracture mode. This exponent has recently been measured over five decades of 
length scales (0.5 nm-0.5 mm) [11] on the Supera2 Ti3Al-based alloy. However, Milman et 
aJ [12] have reported significantly smaller values (close to 0.5) of the roughness exponent 
from Scanning Tunneling Microscopy experiments, where the fracture surfaces of metal- 
lic materials were investigated at the nanometer scale. This effect has been interpreted 
[11, 13] as a kinetic effect similar to the one expected for a moving line near its depinning 

transition. 
Various models have been proposed in that context. Ertas, and Kardar studied a local 

nonlinear three-dimensional Langevin equation to describe the morphology of polymers 
in shear flows or the motion of flux lines in superconductors [5]. The line is pulled away 
with a constant force F. Non linearities account for the variations of the local crack speed 
with the local orientation of the front. This equation leads to a large number of regimes, 
depending on the relative values of the prefactors of the non linear terms. For some 
values, this model predicts that for a finite velocity v, the roughness exponent is 0.75 at 
"large length scales" and 0.5 at "short length scales", the two regimes being separated by 
a crossover length £c. The short length scales regime corresponds to the vicinity of the 
depinning transition [2, 3] where the crack front is just able to free itself from the pinning 
microstructural obstacles. In this case, i.e. when F is close although higher than a critical 
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force Fc under which the line remains still, the velocity v tends to zero, v cc (F — F^f', 
and £c diverges as £c cc u~*. In this particular model [5], (f> = 3. It will be shown in 
this paper that this scenario is qualitatively correct [11], although the actual values of the 
various exponents are not the ones predicted. 

It is worth noticing also that recent large-scale molecular dynamics simulations [14, 15] 
for amorphous materials are in remarkable agreement with the experimental results. 

In this paper, (c is shown to decrease with the crack velocity as a power law (c cc t)-*, 
with (f> ~ 1, both for the fatigue fracture of the Supera2 and for the stress corrosion 
fracture of soda-lime silica glass, which is heterogeneous at a small scale [16, 17]. 

Two notched compact tension specimens of Supera2 are broken in fatigue, thanks 
to an electro-servohydraulic testing machine, operating under load control. The test is 
performed in air with a constant stress ratio R = (Jmin/amax = 0.1 [amax and amin are 
respectively the minimum and the maximum stresses), at a frequency / = 30Hz. The 
evolution of the crack length a with time is measured with the potential drop method [18]. 
The fracture surfaces are observed for 4 different velocities spanning a wide range, using 
both an atomic force microscope (AFM) and a standard scanning electron microscope 
(SEM). The SEM observations consist in cutting and polishing the NiPd-plated fractured 
samples perpendicularly to the direction of crack propagation and registering images of 
the profiles at various magnifications for each of the 4 regions (see [19]). For AFM 
observations, five profiles of length 1 pm are registered in each region. 

Fracture surfaces of soda-lime silica glass have been prepared by controlling the crack 
propagation with a four points bending system. The average crack velocity is measured 
by imaging the crack tip with an AFM at different times [20]. The humidity rate has 
been kept between 37 and 41%. The controlled crack propagation is maintained over a 
distance of about 30^m, so that fracture surfaces can be easily probed with AFM. Crack 
velocities range from 2 10"9 to 10"7 ms"1. Ten AFM height profiles of length Lö^m are 
registered perpendicularly to the direction of crack propagation (±), on three samples, 
and along this direction (||) for four other specimens. No significant anisotropy has been 
detected. 

In order to determine the roughness exponents ( and the crossover length (c of the 
profiles recorded, the Hurst method is used [21]: Zmax(r) = (max[z(r')]ro<r,<ro+r - 
min[z(r')\ro<r,<ro+r}ro cc r( is computed for each record. 

As already shown previously [11], the fracture surfaces of the Supera2 can be inves- 
tigated over 5 or 6 decades of length scales thanks to the simultaneous use of AFM and 
SEM. Within the whole range of observations, Zmax(r) is very well fitted by the sum 
of two power laws, Zmax(r) = A((r/(c)

0-5 + {r/(cf-7S) with exponents chosen to fit the 
results of previous experiments [11], In the case of glass, the crossover is much sharper, 
and £. is determined as the intersection of the two asymptotic power law regimes with 
exponents 0.5 and 0.78. Once the crossover lengths have been determined in each case, 
Zmax is plotted as a function of r/£c. In Fig. 1, the curves Zmax(r)/^~c relative to each 
material are plotted as a function of r/fc and shown to collapse on the same master curve. 
In both cases, the asymptotic regimes are well described by power laws with exponents 
0.5 for r/& « 1, and 0.78 for r/£c > 1. Thus: 

Zmax(r) cc r0'5 /(f) (1) 

with /(i -> 0) ~ 1 and f(x > 1) ~ x0,28, showing that the amplitude of the small length 
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Figure 1: Plot of Zmax(r) / (lJ2 against r / (c. for the two materials separately. In 
these reduced units, the plots corresponding to the various velocities collapse on the same 
master curve (see Eq. (1)). Although the crossover regions are quite different for the two 
materials, the asymptotic regimes are well described by power laws with exponents 0.5 
(r / (c <C 1) and 0.78 (r / (c 2> 1). It is worth noticing that three orders of magnitude 
separate the results on glass from those on the Supera2 

scales contribution is independent of crack velocity. 

The results obtained on materials as different as an intermetallic alloy and a glass thus 
confirm previous observations [11, 13], where the short and large length scales regimes 
were interpreted, respectively, as a "quasi-static" and a "dynamic" regime. 

As can be seen in Fig. 2, (c decreases with the crack velocity v in both cases, although 
the measured values of £c are approximately 1000 times larger in the case of the Supera2 

than in the case of glass. However, both series of results are compatible with a power law 
decrease u~* with <f> — 1- 

As far as the fatigue of metallic materials is concerned [22], the low crack velocity 
regime: AK = (<Jmax — <fmin)\/ä — AÄ'TJ, is known as being intermittent. As a matter 
of fact, when AÄ' is close to the threshold value AA'ji, below which the external load is 
unable to move the crack, the crack tip opens and closes many times before it can extend 
over a small distance. This process is repeated several times and the crack propagates by 
successive "jumps". The number of cycles required to get the crack to advance decreases 
as AA increases, and crack motion is more and more continuous, microstructural obstacles 
being efficient at smaller length scales. At a given time, it can be considered that the 
force F exerted on the fracture front is proportional to A7\, while the threshold force 
Fc is proportional to AA'n- The frequency of oscillation of these forces (f=30Hz) being 
far more rapid than crack propagation, one can consider only the average force, which 
legitimates the analogy with the above-quoted models. 

In the case of glass, F is proportional to the stress intensity factor K, while Fc is 
proportional to the threshold Krh- Preliminary results indicate that, in the sub-critical 
regime, the crack velocity is not uniform, and intermittency is likely to occur. Thus, in 
both cases, the pinning/depinning scenario is qualitatively satisfactory. 
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Figure 2: The cross over length (c is plotted against the crack velocity uoiii log-log dia- 

gram for the Supera2 (°) and for soda-lime silica glass (A/ü: perpendicular [_L]/parallel 
[||] to the direction of crack propagation). The data are well fitted by a power-law with 
exponent <f> ~ 0.91. It can be noticed that £c strongly depends on the considered material 
(it is approximately 103 times smaller for glass), although the exponents are very likely 
to be the same. 

Fig.3 shows the evolution of the crack velocity v as a function of AÄ' — AA'yfc f°r the 
Supera2 and as a function of K — Kj-h for glass. When static fracture occurs, a clear 
deviation from the power law can be observed for high values of AA' — AA'r/i. A fit of 
these data gives ß ~ 2. This value is compatible with the measurements on glass (Fig. 
3). 

In Fig. 3, {c is plotted for both materials as a function of F ' — Fc. A power law decrease 
can be observed, and the fit of the data relative to the metal gives v ~ 2, compatible with 
the results on glass. 

It is expected that the exponent n characterising the range of interactions (n = 2 for 
local models [2] and n = 1 when the non-locality of elasticity is taken into account [6]) is 
related to the exponents v and £y through the relation: 

di + (2) 

where (|| is the in-plane roughness exponent [24], shown previously on the Supera2 to be 
close to: (|| ~ 0.54. This leads to a value of n ~ 1.03, very close to unity, as expected for 
elastic interactions [6, 23]. 

Knowing ß and v, one can in principle deduce the value of the dynamic exponents 
2|| and zj_ describing the short time evolution of the front, repectively in the direction 

of crack propagation and perpendicularly to it. zy = (|| + f leads to z\\ ~ 1.5, while 
zx = z\\ + \ should indicate that z±_ ~ 2. 

For ductile materials as the Supera2, the plastic zone size should be a relevant length 
scale as well. Although the same regimes are observed within the whole range of AA's, 
it can be noted that Rpiast overpasses fc for the two experiments corresponding to higher 



10" 10" 10 10 
K-IC,,, (MPa.m"2) AK-AK^ (Mpa.m"2) 

Figure 3:   Supera2 (o):   the fatigue crack velocity (white symbols) is plotted against 
A A' — AA'K on a log-log plot, as well as the crossover length (c (black symbols). 
Glass (A / □ perpendicular [_L]/parallel [||] to the direction of crack propagation):  the 
crack velocity is plotted as a function of K — KTh (white symbols), as well as £c (black 
symbols). 

velocities.  When £c becomes negligible in comparison to the plastic zone size, different 
mechanisms [25] might be relevant at short length scales. 

The results presented here strongly support the interpretation of crack propagation 
at very low crack speed as a pinning/depinning phenomenon, close to those described 
by theoretical models [1-6,23]. Further experiments on different materials are needed in 
order to confirm the general character of this scenario, and to allow for a more precise 
determination of the critical exponents. In order to investigate the role of plasticity, 
experiments will be performed on an aluminium alloy, for which plastic zones are much 
larger than in the case of the Supera2. 
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ABSTRACT 

A conformal mapping technique is presented which allows to solve efficiently harmonic 
and bi-harmonic problems in semi-infinite domains limited by a rough boundary. This tech- 
nique is applied to obtain the statistical distribution of flux and elastic stress in the vicinity 
of a self-affine boundary. This computation justifies the occurence of Weibull statistics for 
the strength of glass fibers, with Weibull modulus depending on the roughness amplitude. 
Another application concerns the determination of the local mode III stress intensity factor 
ahead of a rough crack. Extension of the method to surface stress-corrosion, and interfacial 
crack propagation are discussed. 

INTRODUCTION 

This text presents an efficient technique to obtain the solution of two dimensional harmonic 
problems in the vicinity of a rough boundary, with any prescribed topography h(x) provided 
the slope \dh/dx\ is less than unity — although this limitation can be overcome at the 
expense of a larger computation time. This technique is based on a conformal mapping 
technique of a semi-infinite domain V limited by a rough boundary onto a semi-infinite 
plane, V. The conformal map can be obtained numerically from repeated one-dimensional 
fast Fourier transforms, and thus this technique is extremely easy to implement and requires 
a very low computation time to produce accurate maps. Moreover, following the first steps of 
the algorithm analytically, we can use this technique to obtain systematically the harmonic 
or bi-harmonic field perturbation from a flat boundary as a perturbative expansion on the 
roughness amplitude. 

CONFORMAL MAPPING 

The conformal map fi associates to each point z = x + iy from the semi-plane V, y < 0, to 
its image w = u + iv in the domain V, v < h{u) as shown in Figure (1). For the mapping 
to be conformal, ti has to be a function of z only — independent of z — and it should be 
inversible over the domain of interest. 

For practical purposes, we consider the boundary h(u) to be periodic, and without re- 
striction, we can choose the period to be 2TT. The map is searched for as the identity plus a 
series of evanescent modes close to the boundary: 

fi(z)=«+Ew»e_<M W 
n>0 

The complex coefficients wn have to be determined so that the image of the real axis coincides 
with the boundary u + ih(u).   Considering the imaginary part of Eq.(l) on the boundary 

201 

Mat. Res. Soc. Symp. Proc. Vol. 463 ° 1997 Materials Research Society 



Ihllllll+ll|j||||| itJIIIIUHM^ 

-L III  j 41 ^  
-i h-^-i H 1  

w=Q(z) 

z=n (w) 

z w 

Figure 1: Schematic illustration of the geometry of the problem and of the mapping fi. 

y = 0, we observe that uin is nothing but the Fourier transform of h(u(x)). The difficulty 
is that u(x) is not known. The proposed algorithm is to start from the zeroth order guess: 
u(x) = x. Using this first approximation, we can compute the coefficients wn as the Fourier 
transform of h. The real part of Eq.(l) can then be used to compute a better determination 
of u(x). From the latter new coefficients wn are computed as a Fourier transform of h(u(x)) 
— i.e. h with a non-uniform sampling of points. The same procedure is repeated until the 
desired accuracy is reached. We refer the reader to Ref.1 for a detailed discussion of this 
numerical procedure. As presented, the algorithm always converges if the slope \dh/dx\ does 
not exceed 1. If it does, under-relaxation can be used to recover convergence, at the expense 
of a larger computation time. Alternatively, one can contruct intermediate maps from low 
pass filtering of the initial profile, in such a way that each mapping problem can be solved 
with the previous algorithm. 

STATISTICAL DISTRIBUTION OF HARMONIC FIELDS CLOSE TO SELF-AFFINE 
BOUNDARIES 

As a direct application of the conformal map technique, we studied the statistical distribution 
of the flux, / = |V$|, on the boundary, for a harmonic field 4> such that 0 = 0 on the 
boundary and V(j> —> e„ when v -> —00. The boundary is chosen to be self-afnne, with a 
roughness exponent C- It is constructed in Fourier space as 

h(k) = Ari{k)k -1/2-c 
(2) 

with k the wavenumber, A the amplitude of the profile, and ri(k) independent random 
Gaussian complex numbers centered in 0 and unit variance for both real and imaginary 
parts. It is useful to introduce the lower cut-off of the self-affine regime as I, such that the 
maximum wavenumber is kmax = 2-K/L Figure (2) shows the log-log plot of the histogram 
of flux for different amplitudes of the roughness and a roughness exponent £ = 0.8. 

A first order (in A) perturbation analysis shows that the flux / has a log-normal distrib- 
ution. The logarithm g = log(/) is distributed as a Gaussian, centered on 0, and of standard 
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Figure 2: Log-log plot of statistical distributions of the flux, g = log10(/) computed on self-afRne profiles of 
different amplitudes with a roughness exponent ( = 0.75. Note the power-law tails of the distributions. 

deviation a„, which assumes the following expression 

rr2 = A 
9      2(1-C)      V2TT 

2(C-i) 

(3) 

A second-order analysis3 allows to correct the large gradient behavior of the flux distri- 
bution. The statistical distribution of g can be cast in the following form 

p{g) 
ag^/2n(l + IKg) 

exp 
-1-Kg + y/l + 2Kg 

(4) 

where if is a constant, K « 2. Figure (3) shows a data collapse of distributions obtained for 
various roughness amplitudes when plotted as a function of ,/U(<?) = (\/l + 2Kg~ l)/(Kag). 
Using the latter reduced variable, the distribution function is a Gaussian function (dotted 
line in Fig. (3)) independent of A up to logarithmic corrections. 

The probability distribution, p, behaves for large flux / as a power-law /~T_1 with an 

exponent 

T = J- a A-H^-V (5) 

It is worth noting here that the exponent of the power-law is not directly dictated by the 
roughness exponent (, and it is a continuous function of the roughness amplitude, and of the 
lower cut-off of the self-affine regime. In particular as the amplitude vanishes, a diverging 

exponent is predicted. 
Application of this result to glass fiber rupture statistics will be presented in a subsequent 

Section. 
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Figure 3: Collapse of different statistical distributions of the flux computed on self-afnne profiles of different 
amplitude (same data as the previous Figure). A change of coordinate on the flux JA (g) has been made so 

that Eq. (4) reduces to a parabola as shown by the solid curve. 

MODE III STRESS INTENSITY FACTOR 

Using the above method, it is possible to address problems of anti-plane elasticity, which 
involve the solution of a simple harmonic field. As a particular application in this context, 
we have considered the effect of the crack roughness on the local stress intensity factor of a 
mode III crack. 

The reference case we consider is a semi-infinite straight crack and we prescribe at infinity 
a stress field which corresponds to a pure mode III. The stress intensity factor at the crack 
tip is Kaa. Now we perturb the crack geometry by introducing a small amplitude roughness. 
We can define a local stress intensity factor Kloc at the crack tip. The question we wish to 
address is the relation between Kioc and K^. 

In order to solve this problem we first apply the transformation z' = i/w, so that the 
crack is unfolded and without roughness it would then coincide with the real axis. This 
puts the problem into a form similar to the previous geometry. The conformal mapping 
which remains to be computed makes use of the image of the crack geometry in the first 
transformation. In the z1 plane, the latter is denoted as 

y' = V{x') (6) 

and due to its construction, ip is an odd function. 

Performing a perturbation analysis in the roughness amplitude, one can show that to 
first order in A, these two stress intensity factors coincide.  They however differ at second 
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Figure 4: Relative correction to the stress intensity factor as a function of the relative roughness amplitude 
H/L. The numerical simulation results are shown as symbols and the perturbation analysis as a dotted line. 

order. The ratio of these stress intensity factors can be written as 

Klnr_      .      ß2 

K„ 
1 + 7 (7) 

where ß is the slope of the tangent to the crack at the tip with respect to the s-axis. This 
term reduces the local stress intensity factor systematically and varies quadratically with 
the roughness amplitude. The last term in Eq. (7), 7, is a non-local kernel whose expression 
to second order in amplitude is 

TOO     rk 

7 = 4/     /   k(k' - k) (p{k)(p{k') dk dk', 
Jo    Jo (8) 

where <f>(k) denotes the Fourier transform of the y>{x'). Figure (4) shows the numerically 
computed relative correction to the stress intensity factor, as a function of the roughness 
amplitude, together with the second order perturbation result. 

Now we specialize our discussion to the case of a self-affme geometry since the latter is 
observed experimentally in a number of cases (unfortunately pure mode III cracks are rather 
scarse, so that we refer here to results obtained in mode I). We introduce the roughness 
amplitude A, lower cut-off £, upper cut-off L = 2-K SO as express the scaling of the correction 
to the stress intensity factor. Both correction terms display the same scaling so that the 
relative correction is proportional to 

.Kc 0 -*MoCv A 
2(<-l) 

(9) 
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The important message is that the local stress intensity factor is decreased as compared to 
the far-field one, implying a strengthening of the medium by the crack roughness. 

Another interesting feature is that the far-field singular stress field is not centered ex- 
actly on the actual crack tip, but slightly off, by a distance of order A2, for fixed spectral 
components n(k) of the crack geometry. One can understand qualitatively the above results 
by noting that the roughness close to the crack tip has the effect of defocusing the stress 
field so that only part of the large scale singularity is actually carried by the crack tip. 

BIHARMONIC PROBLEMS 

We now present an extension of the previous computation to the case of bi-harmonic prob- 
lems, V4$ = 0. The latter are naturally encountered in the context of hydrodynamics 
(Stokes flow), or elasticity theory (Airy potential). In the spirit of considering the effect 
of surface roughness at a small scale compared to the typical size of the domain or of the 
scale over which the loading ceases to be homogeneous, we will assume that a uniform field 
is applied at infinity (Couette flow for hydrodynamics, simple traction along the boundary 
for elasticity). We map the bi-harmonic problem on the half-plane geometry so that the 
potential is searched for under the following expression: 

$ = Q(z)F{z) + Q(z)F(z) + H(z) + H(z) 

which form garantees the bi-harmonicity of $ in the w-space. 

(10) 

Figure 5: Contour lines of the stream function close to a rough surface. Closed contours indicate the presence 
of a recirculation eddy. 

In the case of Couette flow at infinity, the velocity potential has the following asymptotic 
behavior: $ ~ j/2/2 with unit shear rate at infinity. The no-slip boundary condition along the 
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rough surface imposes $ = 0 and 9x$ = 0. Exploiting the two latter conditions determines 
the two unknown functions F and H. They are both written in terms of a a; periodic function, 
subscript p, plus an additional part determined from the far field: 

F(z) 

H(z) 

+ Fp(z) 

■Z{FP{Z)+UJ{Z)/8) + HP{Z) 
(11) 

The periodic component is decomposed on a basis of evanescent modes, Fp(z) = Y,k fk£~lkz, 
and similarly for Hp. The spectral coefficients fk and hk are determined from the linear set 
of equations   

f   fk + Uh/8 + l 52 nfafk+n + fn^n+k) = 0 
(12) 

hk - 2^(^n/fc+n — fnUn+k) 

An essential property is that the above system is well-conditioned, and hence the solution 
is obtained straighforwardly with any chosen accuracy. In particular, one can go much 
beyond the amplitude of the boundary roughness which gives rise to recirculation vortices. 
Figure (5) shows the velocity potential for a Stokes flow past a rough surface. As in the 
harmonic case, we can study a number of different problem with this method. In particular, 
we may define an equivalent no-slip straight boundary so that the velocity field matches that 
of a rough boundary at infinity. 

0.0 

-1.0 

-0.5 0.0 0.5 

l°g](,(°) 

Figure 6: Log-Log plot of the tangential stress distribution along a rough self-affine boundary for different 
amplitudes. We have underlined the power-law tails of the distribution by fitting straight lines on the graph. 

For elasticity, with a constant traction auu = a0 exerted parallel to the boundary at 
infinity v —*• — oo, resorting to the Airy potential gives a strictly equivalent problem to the 
above Stokes flow with a Couette flow at infinity. 
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We can also study the stress field statistics along the rough boundary. The analytical 
approach (second order in perturbation) is much more cumbersome than for the harmonic 
problem, but numerically, we can easily record the statistics. Analysing the results using a 
similar form as in the harmonic case (see Eq. (4)) we can rescale the data on a single curve 
for all amplitudes using a constant K = 0.25. This leads to a veriation of the exponent in 
the power-law regime which is similar to that of Eq. (5). However, the latter form remains 
to be theoretically justified. 

APPLICATION TO RUPTURE STATISTICS 

One application of the above result can be found in the rupture statistics of fiber glass. 
The topography of fiber glass exhibits some roughness at a very small scale. Atomic Force 
Microscopy measurements have revealed that the roughness of glass displayed a self-affine 
character 6. Moreover the fiber geometry allows to use freely Weibull analysis to access 
the failure statistics. The latter analysis is based on the weakest link assumption, stating 
that only the weakest element in the fiber will cause the rupture, so that failure statistics 
can be reduced to a pure statistical question once one can relate the local resistance to the 
description of the material properties, or here topography. The probability of rupture under 
a tension stress a0 of a representative element of fiber (at a scale f larger than the upper 
cut-off of the topography correlations) being written 1 - R(aQ), the probability that a fiber 
of length L can sustain such a stress is written 

P(o,L) = exp[-(L/t)R(<r)] (13) 

A very common form for the R distribution is the phenomenological one proposed by Weibull 
7, namely R is often fitted by a power-law, R oc am where m is called the Weibull modulus. 
For glass fibers, the observed modulus ranges typically from 6 to 15, from low to high 
quality fibers. It is important to note that in spite of the fact that this form is purely 
phenomenological, it describes the statistics remarkably well, and even allows to distinguish 
different kinds of defects. We however note that the exponential of the stress raised to such 
a large power does not allow for a very severe test of the power-law form. 

From our previous analysis of the stress distribution at the surface, we can easily built 
the R distribution assuming a constant maximum tensile stress ac which can be supported by 
the material. The R distribution is nothing but the local stress distribution (oc/a). Hence, 
the Weibull form naturally emerges for a self-affine topography. The Weibull modulus is 
thus expected to follow the same variation as the r exponent from Eq. (5). 

No quantitative comparison has been made yet. Qualitatively, we do obtain a decrease of 
the Weibull modulus as the surface gets rougher, as is observed for fibers drawn at different 
speeds, and for fiber ageing under hot and humid conditions where the surface corrosion 
increases the roughness. The next section is devoted to this problem. 

SURFACE EVOLUTION UNDER STRESS CORROSION 

A first order perturbation analysis shows that the tangent stress along the rough free bound- 
ary can be expressed in a simple form as 

fdh~\ 
(14) 

0"ll J = 1- -7M 
00 dx 
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Figure 7: Plot of the tangential stress a^ along the rough boundary (solid curve), together with the Hilbert 
transform of the profile slope (dotted curve). 

for a tensile stress i?o far from the boundary. The notation %[...] has been introduced 
for the Hilbert transform (convolution with the inverse Fourier transform of ik/\k\). This 
approximation is valid for slopes typically less than 0.1. For steeper profiles, second order 
terms have to be taken into account. Figure (7) shows one example of the comparison 
between the Hilbert transform of the profile slope, and the tangential stress computed as 
discussed in a preceeding section. The topography of the surface is also shown on the same 
graph. 

Materials such as glass are very sensitive to humidity. Water reacts easily with the glass 
surface. This process alterates the surface topography and is believed to be responsible for 
at least part of the ageing of glass. One important point is that the rate of reaction is 
dependent on the stress state of the material. The activation energy is reduced by a tensile 
stress8. On a free surface only the tangential stress matters and thus the velocity of reaction 
front is written — to first order in the stress — as 

V = V0(l - CK7||) (15) 

where a is proportional to an activation volume divided by kT, and v0 is the front velocity 
under no stress. We introduce the simplifying assumption that the reaction front can be 
identified with the free surface. 

Introducing an additional stochastic component r\ as a source term, we can write the 
following equation for the surface evolution 

dh(x,t) 
dt 

■ v0(l — aa0) — 2avüaa'H - j](x, h,t) (16) 

The above equation can be seen as a Langevin equation describing the front evolution. 
Its main characteristic as compared to classical growth models 9 is its non-local character 
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resulting from the Hubert transform. The constant velocity tern in the r.h.s. of the above 
equation can be absorbed in a moving frame of reference (h —> h — vt where v = v0(l — aero)). 

A comparable model has been proposed for the description of flame fronts by Sivashin- 
sky5, with an additional non-linear term, proportional to (dh/dx)2. The latter can be argued 
for from Galilean invariance although it is a second-order term. An additional laplacian term, 
d2h/dx2, can also be included in the r.h.s. in order to account for a finite surface tension. 

This model has been studied recently 10 using a conformal mapping technique different 
from the above proposed one. Instead of decomposing the map on a set of evanescent waves, 
a set of singular fields with poles in the outside domain is used. The evolution equation 
then can be translated into an equation of motion of these singularities. The main output 
of these studies is the existence of a single cusp which is being formed, in the absence of 
surface tension. This cusp corresponds to the initiation of a fracture from the surface. The 
important and practical question is the time needed to reach such a stage, which essentially 
depends on the initial topography of the surface. 

It is interesting to note that such a stress-corrosion model has a formal structure which 
is amazingly close to an interfacial crack front model introduced by Schmittbuhl et al u. 
However, the key difference is the sign of the non-local term which is such that the inter- 
facial crack front is stable, and the front corrugation are initiated by the heterogeneity of 
the interface, but smoothened in the crack advance, whereas the stress-corrosion model is 
unstable, leading to the cusp singularity. 

CONCLUSIONS 

We have introduced a conformal mapping technique which offers a simple and efficient way 
to solve harmonic fields close to rough boundaries. This technique lies on the iterative use of 
one-dimensional Fast Fourier Transforms. Beyond the pure harmonic case in a semi-infinite 
medium, this tool has been applied to different problems and geometries: mode III stress 
intensity factor with a rough crack, solution of Stokes flow close to a rough boundary, stress 
distribution along a free rough surface. Besides an efficient way of solving problems in the 
vicinity of a given rough interface, this method presents two more advantages. First, the 
iterative algorithm naturally gives way to a perturbative expression of the mapping function 
and to a perturbative solution of the problem. Second, the technique is well adapted to 
scale invariant geometries. A simple constraint on the mapping function allows to generate 
automatically self-affine interfaces of given roughness exponent and makes possible at a low 
cost statistical studies on a large amount of samples. Recent results suggest that the stress 
ditribution on self-affine rough boundaries presents a power law tail. Although this behavior 
has still to receive a complete theoretical explantion, it could give a fundamental basis of the 
rupture statistics Weibull law. Furthermore, the analytical results obtained in this context 
open the way to a stress-corrosion model. More quantitative applications to experimental 
cases are under current investigation. 
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ABSTRACT 

We study the behavior of fracture in disordered systems close to the breakdown point. We 
simulate numerically both scalar (resistor network) and vectorial (spring network) models 
with threshold disorder, driven at constant current and stress rate respectively. We analyze 
the scaling of the susceptibility and the cluster size close to the breakdown. We observe 
avalanche behavior and clustering of the cracks. We find that the scaling exponents are 
consistent with those found close to a mean-field spinodal and present analogies between 
the coalescence of microfractures and the coalescence of droplets in a metastable magnetic 
system. Finally, we discuss different experimental conditions and some possible theoretical 
interpretations of the results. 

INTRODUCTION 

The breakdown of solids under external forces is a longstanding problem, that has practical 
and theoretical relevance. The way a material breaks, under the effect of an external electric 
field or under mechanical stress are closely related problems, due to the formal similarities in 
the underlying laws governing those phenomena. The first theoretical approach to fracture 
mechanics dates back to the twenties with the work of Griffith [1], who formulated a theory 
of crack formation, which is similar to the classical theory of nucleation in first-order phase 
transitions. Cracks grow or heal, depending on whether the external stress prevail over the 
resistance at surface of the crack. Similarly in bubble nucleation [2], a critical droplet will 
form when the change in free energy due to the bulk exceeds that of the surface. Griffith 
theory assume the presence a single microcrack of a particular shape surrounded by an 
homogeneous medium, and therefore is not appropriate in disordered systems, where cracks 
can start from different positions and coalescence may take place. 

Spinodal nucleation [3], contrary to classical nucleation, is characterized by scaling prop- 
erties and fractal droplets. The spinodal point in fact has some characteristics of a critical 
point in second order phase transitions. The similarity between a solid driven to the thresh- 
old of mechanical instability and spinodal nucleation has been discussed in the past. Rundle 
and Klein [4], using a Landau-Ginzburg analysis of a single crack, showed that the crack 
growth obeyed scaling laws expected for spinodal nucleation. Selinger et al. [5] have shown 
by numerical simulations and mean-field theory of thermally activated fracture that the 
breakdown has the characteristics of a spinodal point. 

In this paper we concentrate on disordered media and we disregard the effect thermal 
fluctuations. The system is driven by an increasing external load to the point of global 
failure. It has been experimentally observed that the response, detected by acoustic emission 
(AE) measurements, to an increasing external stress takes place in bursts or avalanches 
distributed over a wide range of scale. Examples of this are found in foam glasses [6], fiber 
matrix composites [7], concretes [8], hydrogen precipitation [9] and volcanic rocks [10]. We 
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observe a similar behavior for two dimensional discrete models. We show that the scaling 
behavior close to the breakdown is in quantitative agreement with the mean-field theory and 
it is suggestive of a first-order transition. The values of the scaling exponents are consistent 
with those found close to a spinodal point in thermally driven homogeneous systems. 

THE MODELS 

We study here two models, the random fuse model [11] for electric breakdown and a spring 
network model [12] for fracture. In the random fuse model [11] each bond of a two dimen- 
sional lattice is occupied by a fuse of conductivity a = 1, which burns when the current 
flowing in it exceeds a quenched random threshold. We consider a rotated square lattice 
with periodic boundary conditions in one direction. We impose a constant external current 
on the two other edges of the lattice. The currents in each bond are computed solving the 
kirchhoff equations. This step corresponds to the minimization of the total energy dissipated 
in the lattice 

E({a})^\j2a,(AV)l (1) 
i 

where (AV); is the voltage drop in the bond i. We employ a multigrid relaxation algorithm 
with precision e = 10-10. When all the currents are below the threshold we increase the 
current until the next bond reaches the threshold. The process is continued until a path 
of broken bonds spans the lattice and no current flows anymore. We chose a uniform 
distribution of thresholds, D G [0,2]. 

The second model is an elastic network [12] which has central and rotationally invariant 
bond-bending forces. The potential energy is 

E=lY.^,fat+
h-Y.m]fata1 (2) 

where (5r; is the change in the length of the bond i and 66^ is the change in the angle 
between neighboring bonds i and j. The constant IT,- is equal to one if the bond is present 
and it is zero otherwise. A slowly increasing external stress is applied on all the edges and 
the lattice dynamics is obtained by numerically solving the equations of motion for each 
spring. Bonds break when stretched beyond a randomly chosen threshold. 

SIMULATION RESULTS 

The response of the model to the increase of the external force takes place in widely dis- 
tributed avalanches. The average size of the avalanches (i.e. the number of broken bonds) 
increases when the global failure is approached. We were able to show [13] using mean-field 
theory that the average avalanche size (m) diverges at the breakdown as 

<m> ~ Uc - /r        7 = 1/2. (3) 

where / is the stress or the current per unit length imposed on the lattice. We note that 
the same scaling law is expected close to a spinodal point, in the case of thermally driven 
first-order transitions. The macroscopic quantities of the system (i.e. elasticity) have a 
finite jump at the breakdown, indicative of a first-order transition. 
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Figure 1: a) The average avalanche size (m) is plotted as a function of / = I/L, the fit is 
done using the mean-field value 7 = f/2. b) The "susceptibility" of the spring network with 
the mean field fit (7 = 1/2). The parameter <j> is the fraction of bond that are not broken. 
The average avalanche size (m) is proportional to d<j>/df. 

We confirm the validity of mean-field scaling by computer simulations of two dimensional 
models. For both models mean-field theory is obeyed remarkably well (see Fig. la and 
Fig. lb). 

The reason for the observed mean-field behavior is probably due to the long-range nature 
of elastic interactions. The formation of cracks in those models takes place by the coalescence 
of several microcracks. This is confirmed by the behavior of the average crack size which 
does not diverge at the breakdown (see Fig 2). 

DISCUSSION AND CONCLUSIONS 

The breakdown of driven disordered media is described by scaling law which are reminiscent 
of those found close to a spinodal point. It appears that the behavior of a driven disordered 
system is similar to that of a thermally driven homogeneous system. This analogy is not 
too strict since the concept of metastability and spinodal are not well defined in the first 
case. 

Despite several experimental investigations of avalanche dynamics in fractures [6, 7, 8, 
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Figure 2: The average crack size for the fuse model as a function of the current for different 
systems sizes. The crack size does not seem to diverge at the breakdown. 

9, 10], there is not a clear theoretical interpretation of the results. We believe that different 
experimental conditions can all give rise to similar scaling behavior, but the underlying 
physical mechanisms could be quite different. We can distinguish the following experimental 
setups: 

1. A solid driven by a constant stress rate can be described in the framework discussed 
in this paper. The system responds to the increase of the external load by AE bursts 
of increasing size [7], diverging at the point of global failure. It would be interesting 
to check if the scaling exponents agree with the mean-field theory. 

2. A solid subject to a constant load breaks because of thermal fluctuations. The AE 
is due to the formation of "droplets" and should be power law distributed close to 
the limit of stability (spinodal). Scaling exponents consistent with those of spinodal 
nucleation were observed in a recent experiment on cellular glass [6]. To confirm this 
interpretation it would be necessary to study the scaling for different values of the 

applied load. 

3. A solid in a perfectly plastic state could respond to the increase of the external strain 
by a stationary AE signal. In this case one can interpret the results as a manifestation 
of self-organized criticality. Such a behavior was shown in numerical models [14, 15], 
but to our knowledge it has not yet been observed in experiments. 

We believe that extensive and systematic experiments along these lines can resolve these 

longstanding problems. 
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A MODEL OF CRACK PROPAGATION IN 
A 2D HETEROGENEOUS MATERIAL 

P. DAGUIER, E. BOUCHAUD, G. LAPASSET 
O.N.E.R.A. (OM), 29 Avenue de la Division Leclerc, 
B.P. 72, 92322 Chätillon Cedex, FRANCE 

ABSTRACT 
A continuous numerical model of pure mode I crack propagation in a bidimensional het- 

erogeneous material is presented. This model describes the propagation of a macrocrack 
into a two-phases brittle material containing a finite density of second phase precipitates. 
The morphology of cracks produced for various mechanical and microstructural conditions 
is analysed. It is shown that the simulated cracks are self-affine with a roughness index 
~ 0.6 independent of the microstructure. Relevant length scales, on the contrary, strongly 
depend on the microstructural parameters, and indicate an optimum density leading to a 
maximum fracture toughness. 

INTRODUCTION 
It is now well established that fracture surfaces can be considered as self-affine fractal 

objects [1]. Although many experiments performed on metallic alloys [2, 3], rocks [4, 
5], glass [6] or numerical simulations [7] report a roughness exponent ( (related to the 
fractal dimension of the surface) which is independant of the material (( ~ 0.8 for three 
dimensional systems, and ( ~ 0.7 for two dimensional ones [8, 9, 10]), the universality of 
this index is still controversial [11, 12]. 

It has been argued recently that, contrarily to the roughness exponent, relevant length 
scales are strongly correlated to the microstructural parameters, and hence to the fracture 
toughness. As a matter of fact, by rewritting the Griffith criterion for a self-affine crack, 
Bouchaud et al. [13] argued that the fracture toughness is related to the spikiness hmax/( 
of the fracture surface, where { is the self-affine correlation length and hmax is the typical 
heigth on the fracture surface outside the fractal regime. The higher the ratio hmax/£, 
the steepest the local slopes on the considered surface or profile. 

The central point of this paper is to deal with the influence of the microstructural pa- 
rameters on the morphology of the simulated cracks and hence on the fracture toughness. 
So, a continuous numerical model of pure mode I crack propagation in a bidimensional 
heterogeneous material is built up. The principles of the simulation are presented first, 
followed by an analysis of the morphology of the simulated cracks. 

PRINCIPLES OF THE SIMULATION 
Description of the model 
The propagation of a macrocrack lying along the x-axis under a purely Mode I loading 

condition is considered. The crack, after running over a distance /„, enters into a box of 
dimensions (xj,yi), with x;,y; <C /„. This box contains N sites (the positions of which are 
randomly distributed with a uniform probability law) where microcracks may nucleate. A 
cleavage type criterion is chosen for the nucleation of microcracks: if the stress produced 
by the macrocrack at site i overcomes a critical stress Oc{i), then a microcrack of length 
s0 nucleates. The threshold cleavage stresses Oc(i) are random variables, distributed with 
a uniform probability law. The stress acting on site i is given by: 
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(1) 

where d,- is the distance between the macrocrack tip and site i. k/ is the opening stress 
intensity factor (SIF) at the tip of the macrocrack in the direction of crack propagation. 
The computation of ki takes into account both the macrocrack deflection and the presence 
of the microcracks. 

Once opened, the cleavage microcracks may progress towards the main crack tip if the 

local SIF overpasses a threshold K\h for propagation into the matrix. In order to take 
into account the presence of heterogeneities in a "mean field" type of approximation, each 
microcrack follows a directed random walk to the main crack tip. 

If the distance between the tips of the macrocrack and microcrack i is smaller than 
a distance Rpiasto, they coalesce instantaneously. The back tip of the microcrack then 
becomes the new main crack tip. After the microcraks' nucleation / growth stage, the 
modified SIFs of the main crack tip, due to the presence of microcracks, are computed 
assuming that the main crack is approximately straigth and under mode I and that the 
interactions between the microcracks are negligible compared to the interaction with the 
macro-crack. 

The computation of the new SIFs at the main crack tip is based on first order analytical 
results due to Rose [14]. The modification of the SIFs due to the presence of microcracks 
is mainly governed by the ratio of the length 2s; of microcrack number i to its distance 
to the main crak tip rt-, and the position and orientation of the ith microcrack, defined by 
two angles Ö, and a, (see Fig. 1): 

KI = KI,O  [l+E!=T"^>ö»a.)] 
Kn = K,,0   E^reCM.'a.) 

where A'/|0 is the remote SIF, T and Q are first order pertubative terms, and N01 

the number of microcracks. 

(2) 

Figure 1: Interaction between the macrocrack and the ith microcrack. 

The appearence of a local non-zero K;i produces crack deflection. The crack will 
propagate in the direction where , where 6 is the kink angle. Within the Cotterell-Rice 
approximation [15], this two criteria give the same result: 

Ki 
= -tg(e/2)-r 

cos2(ö/2) 
(3) 

Ki ay '   '3cos2(ö/2) -2 

As the main crack propagates into the box, more microcracks are produced or grown. 
The damage produced generates a decrease of the elastic moduli v (Poisson modulus) and 
\i (shear modulus) of the material following (for /<1) : 
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1-1/ 
a ~ 1 + JLI (4) 

where / = Ei=T" -^- is a microcrack density parameter and v and ß are the elastic 

moduli of the damaged material. 
For a circular damage zone, the modified SIF has been computed by Hutchinson [16]: 

Kl,d»magCd     =1_5_J__(g:_1)+3^^(_^_i/) (5) 

I<I,undamaged 8 1 - 1/    fl 41-1/       ^ 

This approximation is used to take into account the shielding effect due to the nucleation 

and growth of the microcracks. 
Parameters of the model 
The influence of the following parameters on the morphology of the cracks is studied: 

- p = — ^v1, the surface fraction of precipitates; 
- s0, the initial size of the microcracks; 
- aext, the external stress. 

while: 
- v0 = 0.1, the microscopic dimensionless speed of the macrocrack and of the microcracks; 
- Kjh, the propagation threshold into the matrix; 

- Rpiasto = 0-05, the "plastic zone size"; 
- <Tc{i) is the critical stress above which microcrack i is created (random variable, uni- 
formely distributed) 

are kept constant. 
For each condition, severals cracks are produced which correspond to various samples 

of the same microstructure. 
Crack morphology parameters 
Both the roughness exponent and the spikiness of the simulated cracks are measured 

in order to have their morphology characterized. The roughness exponent ( is determined 
with the Hurst method [17]: 

Zmax{r)  =< mai(2(r')),0<r.<ro+r - min(z(r'))ro<r,<t.o+r >ro (6) 

WÜhz-^X{hm
rl        (r»0 

where r is the width of the window. zmax(r) is the difference between the maximun 
and the minimun heights z within this window, averaged over all possible origins r0 of 
the window belonging to the profile. In practice, the saturation value hmax is taken to 
be equal to zmax(xi), and £ is defined as the intersection of the power law regime valid at 
small length scales with the saturation plateau zmax{r) = hmax (see Fig. 2). 

It has been argued by Bouchaud et al. [13] that the spikiness ratio hmax/( is related 
to the fracture toughness through the relation: 

Klc * 2 -JVE(^)^ (7) 

This result is in qualitative agreement with the common observation that "shallow" frac- 
ture surfaces are associated to more brittle materials (rocks, glass, ...) while spikier ones 
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are observed in the case of toughter materials (metallic alloys for example) 
used in the following this parameter and the microstructure is performed. 

It will be 

RESULTS 
The simulations are performed on a personnal computer PENTIUM 90 Mhz. The 

cracks simulated as explained above are analysed in this section. The influence of the 
microstructural parameters on the morphology of the simulated cracks is considered first. 

Effect of the microstructural parameters 
To analyse the effect of density, simulations are performed for p, ranging from 8% to 

78%. 
As it can be seen in Fig. 2, the craks are self-afRne and the roughness exponent ( 

seems independant of p. Small variations of the measured exponent are due to the small 
size of the scaling domain. 

On the contrary, the spikiness evolves with p in a non monotonic way and a maximum 
is observed for p ~ 58%. 

10' 

10" 

10" 

10" 
1000 

Figure 2: Evolution of zmax(r) for various values of p. The measured roughness 
index is close to 0.63 in each case. 

s0 is varied between 0.05 and 0.5. No significant variation of ( is observed either, while 
the fracture toughness monotonically increases with s0. 

Finally, because there are two mechanisms for crack propagation — pure deflection or 
microcrack coalescence —, the macro crack speed increases beyond v0 when the external 
load is increased. When the external load is increased, the number of microcracks increases 
as well, and so the probability of coalescence. Hence, the average crack speed increases 

also, and saturates when the external load is able to open microcracks in all the brittle 
precipitates. 

DISCUSSION 
Bidimensional cracks propagating in mode I through a heterogeneous material have 

been simulated with a local model and their morphology has been analysed. The cracks 
are shown to be self-affine, with a roughness exponent £ ~ 0.63, in agreement with the 
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Figure 3: Evolution of the fracture toughness K of the material with the site 
density p. The maximum fracture toughness is obtained for p ~ 58%. 

results of the model of Hansen et al [8], and with experimental observations on paper 
sheets [9] or on wood [10]. The value of ( is independant of the density and size of 

precipitates (see Fig. 2). 
On the contrary, the relevant length scales hmax and ( and their ratio hmaxj^ vary with 

the microstructural parameters. An optimal fracture toughness should be obtained for a 
surface fraction of secondary phases of 58%. The very existence of an optimum is due 
to shielding: by screening the stress field due to the presence of the macrocrack, damage 
around the tip decreases the effective probability of opening/growing microcracks, which 
cannot exceed a certain value. 

On the other hand, the evolution of the spikiness reflects the well-known result that 
fracture toughness increases with the inclusions size. 

0.25 

-   0.20 

0.15 

0.10 
1.0      2.0      3.0      4.0      5.0      6.0      7.0      8.0 

Figure 4: Evolution of the macrocrak speed with the external applied stress 
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CONCLUSION 
A continuous numerical model of pure mode I macrocrack propagation into a two 

phases bidimensional material is presented. The morphological parameters of self-affine 
cracks produced for several mechanical and microstructural conditions are analysed. An 
optimum of the fracture toughness with the surface fraction of secondary phases is pre- 
dicted by this model. 
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PATTERN EVOLUTION OF GRANULAR MEDIA 
ROTATED IN A DRUM MIXER 

K. M. Hill, J. Kakalios 
School of Physics and Astronomy, The University of Minnesota, Minneapolis, MN 55455 USA 
A. Caprihan 
The Lovelace Institute, 2425 Ridgecrest Drive Southeast, Albuquerque, NM 87108 

ABSTRACT 

A homogeneous mixture of different types of granular material will often segregate when rotated 
in a drum mixer. In the traditional axial segregation effect, the mixture of two different sizes of 
granular media will appear from the surface to separate into bands of relatively pure single 
concentrations along the axis of rotation. The initial pattern is not stable, but evolves in time with 
continued rotation through metastable states of fewer and fewer bands. We describe two 
experimental methods for measuring this evolution which provide a more complete picture of the 
dynamics involved in the pattern progression. The use of a CCD camera in conjunction with 
digital analysis techniques provides a consistent and precise measure of the state of the surface as 
a function of time. Nuclear Magnetic Resonance Imaging (MRI) techniques are used to 
noninvasively measure the segregation beneath the surface. These methods indicate that the 
underlying mechanisms of the pattern evolution originate in the bulk of the material beneath the 
avalanching surface. 

INTRODUCTION 

Mixtures of granular materials such as powders and sand tend to segregate by particle property, 
which is a significant problem for many areas of particle processing, such as pharmaceutical and 
agricultural industries. (See, for example, Ref. 1-2).   In pharmaceutical industries, for example, 
different powders must be well-mixed within a length scale of a single pill diameter.   Imperfect 
mixing remains a deterrent to consistent efficient production, as granular materials can segregate in 
any one of the various handling stages, even in situations where one is trying to mix different 
components.   When a mixture of two different -Ä.V .,„--^-.-,--_,~„-™T-*.ju> 

sizes   of granular  materials   is   rotated  in   a 
horizontal cylinder, the mixture will first radially 
segregate, with the smaller component becoming 
more highly concentrated near the center of 
rotation.  Further segregation into what appears 
from the surface to be bands of relatively pure 
single concentration along the rotational axis then 
occurs, as illustrated in fig. la and lb [3-11]. 
Figure la shows a 50/50 mixture of 0.75 mm 
(dark) and 3.0 mm (clear) glass spheres in a 2 ft. 
long cylinder.  After 5 minutes of rotation at 15 
rpm, segregation of the large and small beads 
into sharp bands is observed (fig. lb). When a 
mixture   which   has    segregated   into   bands 
continues to rotate for an extended period of 
time, the original pattern of bands is not stable 
but evolves as bands move and merge as shown 
in fig.  lc and Id [8,10,11].    This may have 
strong implications for the understanding of axial 
segregation,   as   theories   which   appear   to 
successfully model the axial segregation effect 
using    surface    dynamics    do    not    include 
consideration of this band evolution. (See, for 
example ref. 11 and references therein.) 

Fig.l Banding patterns observed in 
granular media. (Figs. lb,c,d are images 
of the top surface of the mixture as 
indicated by the white box in fig.la.) A 
mixture of spheres only differing in size 
(la) segregates into bands along the axis 
of rotation (lb). When rotated for an 
extended period of time bands merge two 
at a time (lc and Id). 
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The band merging events appear to involve subsurface interactions. When two bands merge, they 
do not, in general, simply move toward each other until they meet. Rather, in the case of the 
merging of two small bead bands, for example, it appears from the surface that the region between 
the small bead bands becomes increasingly more concentrated with small beads, while the small 
bead concentration within the bands themselves appear to decrease slightly, until the concentration 
of all three regions is roughly uniform. Finally, a new single band of small beads "sharpens". 
That is, the band itself narrows while the region within it becomes more highly concentrated with 
small beads. The pattern is then stable again for a period of time with only minor axial movement 
of the bands until the next relatively sudden merging event occurs. 

Studies of the surface segregation using a CCD camera and digital image analysis techniques 
provide a quantitative evaluation of the surface segregation. Results of these studies presented in 
the next section indicate that there is indeed some local remixing that is associated with band 
merging events and suggest that interactions beneath the surface are at least in part responsible for 
the band evolution. The use of Nuclear Magnetic Resonance Imaging (MRI) provides a method 
for non-invasively examining concentrations and other details beneath the surface of granular 
materials [12-15]. 

DIGITAL SURFACE ANALYSIS 

The experimental apparatus for the surface segregation studies is similar in part to that in Ref. 
[11]. The drum mixer used was a two-foot long Plexiglas cylinder, five inches in diameter, 
rotated about its axis with a 1/17 hp motor (providing rotational speeds of 0 - 15 rpm). For the 
results reported here, the cylinder was one-third filled with the same mixture shown in the images 
in Figure 1: a 50/50 mixture of .75 mm (dark) and 3.0 mm (clear, appearing light) glass spheres. 
The results from this mixture are typical of results from other bead mixtures of similar sizes but 
different bead diameter ratios. While the mixture was rotated in the cylinder, digital images were 
taken of the surface of the beads as in figs, lb-d at regular time intervals with a Cohu 4915 CCD 
camera and Scion LG-3 frame grabber operated with the public domain NIH Image software on a 
Power Macintosh. The regions near the endplates were not included in this analysis as, unlike the 
majority of the axial bands farther from the endplates, the development of the bands near the ends 
of the cylinder appear to depend largely on endplate-bead interactions and evolve differently from 
the rest of the pattern [11]. 

Figure 2 shows data for the segregation of the mixture described above where segregation was 
monitored by taking images every 30 seconds for the first 20 minutes of rotation at 15 rpm. 
Figure 2a shows the average intensity as a function of distance along the cylinder axis for the 
mixed state (similar to the area outlined in figure la) after only 30 seconds of rotation. Since the 
0.75 mm beads are dark and the 3.0 mm beads are clear, the intensity in the images of figure 1 at 
any given point roughly corresponded to the concentration of large beads near the surface: thus a 
high intensity in the graphs of figure 2a-d corresponds to high concentration of large beads; a low 
intensity indicates a high concentration of small beads, and an intermediate intensity reflects a 
mixture of the two. Fig. 2b corresponds to the image in Figure lb when the mixture had been 
rotated for 5 minutes and the axial bands had formed. Fig. 2c and 2d correspond to the images in 
lc and Id respectively, and show some of the intensity data during the merging event. As 
suggested by surface observation, these traces indicate that the band merging event does not 
simply involve two bands moving together. Instead, all the bands involved in the merging 
become less distinct until the final band sharpens. 

The mean and the standard deviation of the mean for all the images in this experiment are shown 
in figure 2e. While the mean value (dashed line) is roughly constant in time, indicating no loss of 
beads of either type and no loss of information beneath the surface, the standard deviation is 
closely related to the state of segregation. When the mixture was still fairly uniform in distribution 
as indicated by "a" in fig. 2e, the pixel value at every point in the surface is fairly close to the 
mean value, and the standard deviation of the mean is low. If the bands are sharply defined, the 
pixel values in images taken of the surface should be far from the mean value. Thus the sharp rise 
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in the standard deviation in the graph corresponds to the initial formation of the bands, until the 
bands finally sharpen, indicated by "b" in fig. 2e. The dip in the standard deviation as the bands 
are merging support the subjective surface observation that there is local remixing during a band 
merging event. When the band number is finally reduced, there are fewer band-band interfaces 
and thus fewer regions closer to the mean value of the traces, which is presumably why the next 
semi-stable pattern (indicated by "d" in fig. 2e) has a higher standard deviation than the previous 
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Fig. 2: Results from digital image analysis for 
the mixture shown in figure 1. Figures 2a-d 
shows the average intensity as a function of 
distance along cylinder axis for images taken of 
mixture surface run shown in fig. la-d. Figure 
2e is a graph of the mean value and the standard 
deviation of the mean for similar traces taken 
from images during the entire experiment The 
approximate locations on the graph for images 
and graphs la-d and 2a-d respectively are 
indicated. 

NUCLEAR MAGNETIC RESONANCE IMAGING EXPERIMENTS 

In order to investigate the local remixing during band merging events Nuclear Magnetic 
Resonance Imaging (MRI) was used. MRI allows for non-invasive observation of the evolution 
of the pattern within the bulk as it moves from one stage to the next. Nakagawa and coworkers 
first demonstrated that liquid state MRI techniques may be used to image arbitrary planes within 
the bulk of granular media for material containing some sort of fluid [12]. They have used these 
techniques to investigate the dynamics of granular flow in a partially filled rotating drum as well as 
the migration of the radially segregated core of a mixture with continued rotation. 

In a recent report [15] we described the use of MRI to obtain a full three-dimensional picture of 
axial segregation by imaging planes both perpendicular and parallel to the cylinder axis at 
successive stages of the development of the bands. The experimental setup used for the band 
development studies is similar to that above. We use a mixture of one MRI sensitive component 
and one that is not MRI active, so that a concentration image will directly show the distribution of 
the MRI active species. The MRI-sensitive beads are 1 mm diameter pharmaceutical spherical 
pills while the inert beads are 3 mm plastic spheres. The spheres were rotated in a 24 cm long, 
7.5 cm diameter acrylic cylinder.   Fluid-filled spheres were taped around the outside of the 
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cylinder at 5 cm intervals to provide reference points in the images. An NMR imager/spectrometer 
(Nalorac Cryogenics Corp.) was used at the Lovelace Institutes with a 1.9 Tesla Oxford 
superconducting magnet with a bore diameter of 31 cm. The magnet bore is horizontal, so the 
cylinder may be placed into the magnet without disturbing its contents. Digital image analysis was 
performed on a Power Macintosh 7100/80 computer using the public domain NIH Image 
program. The partially-filled cylinder was first rotated outside the magnet and any segregation 
was noted. Rotation was then stopped and the cylinder placed within the bore of the magnet 
where the material was imaged using standard stationary NMR imaging techniques. This 
procedure was repeated for extended rotation periods. In this way, the evolution of the radial and 
axial segregation was serially monitored. The MRI experiment images a 5 mm thick slice either 
perpendicular to the axis at any point along the length of the cylinder as illustrated in fig. 3a or 
parallel to and containing the axis of the cylinder as illustrated in fig. 3c. The smaller MRI 
sensitive spheres appear as bright regions in the images and dark regions correspond to high 
concentrations of the larger non-MRI sensitive spheres. 

After the mixture had been rotated for approximately 5.5 minutes at 30 rpm in a 7.5 cm diameter 
24 cm long cylinder, the mixture appeared both radially and axially segregated on the outside as 
indicated in the sketch in figure 3a. Images taken beneath the surface at this point indicate an 
interdependence between radial and axial segregation. Figure 3a illustrates the state of the mixture 
as observed from the outside, as well as the approximate location of the images taken 
perpendicular to the cylinder axis shown in fig. 3b. The images in 3b serve two purposes. They 
indicate that the high concentration of small spheres near the center of the rotational axis, the radial 
segregation, exists both within the bands of the smaller spheres and the larger spheres. These 
images also assure that the pattern is roughly cylindrically symmetric around the axis of rotation at 
any given location, and thus the images containing the cylinder axis (as in 3d) are sufficient for a 
first order representation of the state of the mixture below the surface. Figure 3c shows the 
location of the image taken down the length of the cylinder axis shown in figure 3d. In figure 3d, 
it is verified that the "radial mode" of small beads appears to run down the entire length, widening 
to the surface in the regions where axial bands of small spheres are seen from above. 

NJ^ 
-..*?!■£■* i-y, "•^^■^*t^£*A'^Bjt 

3a 

^ T 

3c 

Fig. 3 MRI data for a mixture of pharmaceutical spheres (1 mm) and plastic spheres (3 mm) 
rotated in a 24 cm long cylinder for 5.5 min. at 30 rpm. From outside the cylinder, the mixture 
appears to have segregated radially and axially. Fig. 3a illustrates the state of the system as 
viewed from outside after rotation and the approximate locations of the planes from where the 
images shown in 3b were taken: within small sphere band (1), and within the large sphere 
band (2). Fig. 3c indicates the location of the image taken parallel to the axis shown in figure 
3d. The brighter regions represent higher concentrations of small spheres. 
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Figure 4 illustrates the pattern development of this granular material system. Figure 4a-4c are the 
subsurface images taken using MRI as two of the bands merged. Figure 4d-4f are sketches 
illustrating the state of the surface extrapolated from MRI data taken near the surface. These 
images are all vertical and parallel to the cylinder axis in the position indicated in figure 3c. Figure 
4a is the subsurface image taken after approximately 15.5 minutes of rotation after the mixture had 
radially segregated and axially segregated into three bands of small beads and four bands of large 
beads (as shown in figure 4d). After approximately eight minutes of further rotation, the bands 
had begun to merge, mostly beneath the surface as illustrated in figures 4b and 4e. The radial 
mode of small beads increased significantly in the region between the small beads which were 
merging, and that region became more highly concentrated with small beads. The bands as seen 
on the surface had not moved much closer together. Finally, after ten more minutes of rotation the 
bands had completely merged as illustrated by figs. 4c and 4f. 

4a 
III1 

4d 

Fig. 4 Subsurface MRI data (4a-4c) and corresponding surface illustrations (4d-4f) for a mixture 
of pharmaceutical spheres (1 mm) and plastic spheres (3 mm) rotated for an extended period of 
time in a 24 cm cylinder at 30 rpm. The images were taken while a band merging event was 
occurring. Figs. 4a and 4d correspond to the state of the mixture after 15.5 minutes of rotation. 
Figs. 4b and 4e correspond to the system after 23 minutes of rotation and 4c and 4f to the state of 
the system after 33 minutes of rotation. Again, brighter regions represent higher concentrations 
of 1 mm spheres 

CONCLUSIONS 

The evolution of the axial banding pattern in a system of granular material rotated in a drum has 
been studied. Analysis of digital images taken of the surface segregation in conjunction with sub- 
surface measurements using MRI techniques provide important information about the details of 
the evolution of the surface pattern. The data from the surface segregation shows that as a band 
merging event occurs there is some local mixing, indicating the existence of interactions beneath 
the surface which are driving the pattern evolution. MRI data support this conjecture as these 
images reveal a relationship between the radial and axial segregation and movement in the radial 
mode when the axial bands are merging. 
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TEMPERATURE AND CHEMISTRY EFFECTS 
IN POROUS-MEDIA ELECTROKINETICS 
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ABSTRACT 

Electrokinetic phenomena in brine-saturated porous media, such as electroosmosis (fluid-flow 
induced by applied electric fields) and streaming current (the complementary process) depend on 
the density of ions adsorbed on the pore surface and the characteristic thickness of the diffuse 
space-charge layer A. These, in turn, depend on brine chemistry, ambient temperature and possibly 
other parameters. We report on a series of measurements of natural rock and synthetic glass-bead 
samples: for one sample group, we varied the temperature over 0-50 ° C; for another, we changed the 
brine cation species. We find that the electrokinetic coefficients depend only weakly on temperature; 
this is shown to follow from the expected trends in A, n, and a. The chemistry dependence follows 
qualitatively but not quantitatively the predictions of the Debye-Hückel approximation. 

INTRODUCTION 

In brine-saturated porous material, such as porous rock, the flow of fluid current is accompanied 
by a weak electric current situated near the pore surface. This streaming current arises from the 
electrochemical double-layer that forms whenever a fluid electrolyte comes into contact with a solid 
[1]. The layer may form from two types of processes: either preferential solvation of certain ions 
in the solid, or preferential adsorption of ions from the solution. In either case, a tightly-bound 
charged layer develops at the solid surface while ions of the opposite charge form a diffuse mobile 
space-charge layer in the fluid. In the model due to Stern, [1, see Kortüm] tightly-bound ions at 
the solid surface are separated from the closest ions in the fluid by a minimum distance d given by 
twice the mean radius of the two (possibly hydrated) charge species. Beyond d, the charge density 
of the diffuse layer falls off with a characteristic length A. Within the Debye-Hückel approximation, 
which treats the charges as point particles, 

where e is the dielectric constant of the brine, kß is Boltzmann's constant, T is the absolute 
temperature, and n; and <;,' are the number-density and charge of the ith ion in the brine. For 0.1 
M NaCl solution, A « 10 Ä. The electrostatic potential at the hydrodyanmic sip-plane is known as 
the ^-potential. In the limit of q( < kßT, the charge density in the fluid and the static potential fall 
of exponentially. It can be shown that £ is related to the areal charge density Es by E£ = EsA. The 
flow of fluid in the pores drags along the charge in the diffuse layer. This gives rise to a streaming 
current proportional to Es A and inversely proportional to the fluid viscosity n [1]. Conversely, 
upon the application of an electric field, the charge flow in the diffuse layer drags the fluid to 
flow. This results in an electroosmotic current. The phenomena of these coupled currents is known 
as electrokinetics, and dates to the experiments of Saxen [2]. These effects were not well studied 
historically because they are very weak and difficult to measure.   With modern techniques and 
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instrumentation, we have shown recently that high precision measurements can be made and they 
are extremely useful probes of porous-media properties [3, 4, 5]. 

In the techniques we developed, we do not measure electrokinetic currents directly, but measure 
steady-state potentials that arise from them: the streaming potential and electroosmotic pressure. 
We place a brine saturated sample between two closed reservoirs of brine, suitably equipped with 
electrodes and attendant instrumentation [4, 5]. We then measure the streaming potential coeffi- 
cient Ks, defined by 

Ks = -AVs/APa , (2) 

where AP„ is an applied pressure differential across the sample, and AVS is the voltage generated by 
the displacement of charge coming from the streaming current. We also measure the electroosmotic 
pressure coefficient KE, as defined by 

KB = -APe/AVa , (3) 

where AVa is an applied voltage across the sample, and APa is the back-pressure resulting from the 
displacement of fluid by electroosmosis. We have shown previously that the hydraulic permeability 
k of a brine-saturated sample can be obtained by determining Ks-, KE, and the electric conductivity 
ay of the sample [3]. This result is independent of the details of the double-layer. It is a general 
consequence of Onsager's relations in nonequilibrium thermodynamics [6], and may be shown to 
follow from conditions even less restrictive than used in Onsager's original proof [7]. We have also 
proposed that Ks and KE can be used to define and effective pore radius and effective ^-potential 
for porous media [3]. 

While nonequilibrium thermodynamics is useful for relating Ks and KE to other bulk properties 
of the porous media, their actual values are determined by the microscopic details of the brine/pore 
interface, such as the local surface geometry, chemistry of the ions, and other fluid properties. A 
starting point is to consider the predictions of the simple Debye-Hiickle theory for a cylindrical 
pore with radius R > A and compare them with experiments. The most important predictions of 
the theory are 

Ks = eC/Ww ~ SsA/7?(Tr , (4) 

and 

KE = 8eC/R2 « SsV*, (5) 

where we have identified the permeability k with iJ2/8 and replaced the brine conductivity aw with 
the brine-saturated media's conductivity oT in the approximation. The approximate equalities 
are valid in the g£ -C kßT limit. With the exception of k, each of the parameters in these 
equations is either temperature dependent, chemistry dependent, or both. In this paper, we report 
measurements of Ks ar|d KE for a selection of samples to investigate the effects of changing the 
temperature and the cation species. As we show below, the simple theory captures the physics of 
the system to a surprising degree despite the enormous complexities of real porous media such as 
rocks. 

TEMPERATURE EFFECTS 

For the temperature dependence study, we built a temperature controlled insulated box for our 
experimental cell (see [4, 5] for more details). Within the box, four platinum resistance thermome- 
ters continuously monitored the temperature uniformity and stability, which was within 0.01°. We 
selected four samples from among a suite of twelve samples we have studied previously [4, 5]: a 
Fontainebleau sandstone (k = 2500 mD), a Berea sandstone (k = 680 mD), an Indiana limestone 
(k = 5 mD), and a 100 pm fused-glass-bead sample (k = 620 mD). They were saturated with 0.1M 
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Figure 1: (a) Berea sandstone electrical resistance R and (b) water viscosity T\ as a function of 
temperature. The fit in each is to the thermally activated form AeA/T. Viscosity values are taken 
from the CRC handbook [8]. 

NaCl brine. The sample resistance R, and the electrokinetic coefficients K$ and KE were measured 
at roughly 10° intervals from 0-50°C. Fig. 1 shows the temperature dependence of the resistance R 
of the Berea sandstone along with the data for water viscosity taken from Ref. [8]. Figure 2 shows 
the temperature dependence for Ks (a) and KE (b). These data are representative of the behavior 
found for all four samples: R decreases with increasing T, while A's and KE are nearly constant. 

The behavior of R is readily understood because the conductivity <JT of a brine-saturated rock 
comes mainly from the conductivity of the of the brine aw which is well known to be thermally 
activated: aw oc e~A/T. This is due to the fact that the ions move by exchanging positions with 
water molecules, and that involves overcoming an energy barrier fcgA. Thus we expect 

R = ÄoeA/T (6) 

Fitting the data in Fig. 1(a) and those for other samples to Eq. (6) yields A « 1800 K, which 
corresponds to an energy barrier of about 0.15 eV. We note that fitting the viscosity data in 
Fig. 1(b) to the same activated form (rj = rj0e^'lT) yields a similar value for A' (ss 2000 K). This 
shows that the movement of water molecules also takes place by the exchange mechanism with a 
similar energy barrier. 

To understand why KE is insensitive to temperature change, note that in Eq. (5), only the 
numerator should depend on temperature, as k depends only on the pore geometry. The surface 
charge density Es should depend very weakly on temperature, as the binding energies of the tightly- 
bound layer are typically much higher than kßT. Where temperature might be important is in 
the screening length A. However, in the numerator of Eq. (1), the dielectric constant of water e 
is known to roughly follow a 1/T Curie-law behavior near room temperature, so ekßT is nearly 
temperature independent. Using the empirical data of e(T) for pure water from Ref. [8] would 
cause a change by no more than two percent over the temperature range studied. The denominator 
in Eq. (1) gives the density of unpaired ions in the solution. For low concentrations of soluble salts, 
such as the 0.1M NaCl used here, this number is a constant. Thus A is essentially constant and, 
according to Eq. (5), the same is true for KE- That is indeed what we observed. 

For A's, we note that Eq. (4) has the same numerator as Eq. (5), so we only need to consider 
the behavior of the denominator r]ar. It is easy to see that this term is also nearly temperature 
independent.    As noted above, charged ions and water molecules move by the same activation 
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Figure 2: Variation of Ks (a) and Kg (b) as a function of temperature. The double data points 
represent separate measurements, taken in order of increasing (A) and then decreasing (O) tem- 
perature. 

mechanism with very similar energy barriers. From the discussion following Eq. (6), we expect 
■q<jT a e(A'-&)/r x, e200K/T As T cnanges from 273 K to 323 K, this factor decreases from 2.08 to 
1.86. This would cause Ks to increase by about 10%, consistent with the data in Fig. 2. Instead of 
using these figures for A and A' obtained from empirical fits, a simple model can be used to explain 
why Tjar is temperature independent. If we think of the ion species i as (possibly hydrated) spheres 
of radius r,- and charge g,-, under the influence of applied field E, the ions will reach a steady-state 
speed V{ when the viscous force Fy from Stoke's law balances the electric force Fg: 

FE + Fy = q{E — 6-KTiJJVi = 0 . (7) 

Upon summing the contributions from the different ion species, the conductivity of the brine aw is 
given by 

i  „,.„? 
(8) E Gnrjri 

Hence the product t]aw depends on the parameters n,-, g,- and r,-, each of which is a constant. This 
is an example of Waiden's rule [9]. 

While the above arguments explain why Ks and KE are insensitive to changes in temperature, 
we do note that the two "dirtier" samples we studied—Indiana limestone and Berea sandstone— 
showed slightly larger increase in Ks and KE than the two "cleaner" samples—glass beads and 
Fontainebleau sandstone. One possible explanation is that £s may actually increase slightly with 
temperature. The reason is that, for rocks, the mobile ions in the diffuse layer comes from the 
hydration of a fraction of the counterions originally bound to the pore surface. With increased 
temperature more of these counterions will go into the hydrated state, leaving a larger £s of the 
opposite sign on the solid surface. Dirtier samples have more surface counterions, so this desorption 
effect is likely to be stronger. The magnitude of this effect will clearly depend on the adsorption 
energies of different ions on different surfaces, and how they compare with the hydration energy. 
For the same sample and the same ions, the temperature dependence of Ks is slightly larger than 
KE because of the r\aT factor as explained above. 
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Figure 3: Dependence of resistance R (a) and coefficients Ks (b) and KE (c) for a 200 fim sample 
on cation species versus conductivity of three 0.1M brines: NaCl, KC1, and CaCl2. The sample is 
200 //m glass bead. The lines show the expectations from only a change in cw. 

BRINE CHEMISTRY EFFECTS 

In previous work, we have studied the effects of changing the conductivity of the brine using 
different concentrations of NaCl [4, 5]. For the twelve samples studied, we found that Ks <x a~a 

and KE OC CT~", where a and ß were sample dependent, but a > ß always. The Debye-Hückel 
theory predicts a = 3/2 and ß — 1/2. Deviations from this prediction are substantial in some 
samples and the cause of this is not undertsood. It may have to do with microscopic structural 
changes in the double layer when the brine concentration is varied. 

To study the effects of changing the cation species, we selected a different group of four samples 
from our original twelve: a Berea sandstone (k = 34 mD), a Whitestone calcite (k = 8 mD), a 50 ^m 
fused-glass-bead sample (k = 68 mD) and a 200 /im fused-glass-bead sample (k — 5000 mD). Three 
different types of brine were used: 0.1M solutions of NaCl, KC1, and CaCl2. In turn, each sample 
was saturated, allowed to equilibrate to the new brine, and then measured at room temperature 
(23±2°C). 

Figure 3 shows the effects of changing the cation type on R, KE and Ks for the 200 /im glass 
bead sample. We have plotted the results against brine conductivity aw, because, even though the 
molar concentrations are the same, the brine conductivities are not. This is due to two effects. 
First, the cation mobilities vary from species to species because the effective size of the ions vary; 
differences in hydration energies attract different numbers of loosely bound water molecules, thus 
varying r,-. Second, calcium is doubly-valent in solution, so it carries a larger charge and there are 
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more chlorine ions in the brine.   By plotting the results against aw, we can see if the change in 
cation has any other affect than that due to the change in conductivity alone. 

In Fig. 3(a), the dotted line has aslope equal to -1, indicating a direct proportionality between 
the sample resistivity and the brine conductivity. That the points lie close to this line indicate 
that the sample was well equilibrated. In Figs. 3(b) and (c), the dotted lines have slopes of -1 
and 0 which represent the denominators in Eqs. (4) and (5). Interestingly, KE and Ks show the 
same deviations and it is logical to attribute them to the common numerator ESA. The large 
drop in the response with CaCla can be qualitatively understood as two separate effects. First, 
the doubly charged Ca-ions are more tightly bound to the surface, so a much smaller fraction of 
them would become hydrated. This reduces Es substantially. Second, we note that, for the same 
molarity, Eq. (1) predicts that A for CaCl2 would be smaller than that for NaCl or KC1 by a factor 
of %/3- Comparing NaCl to KC1, we note that they have the same A according to Eq. (1), so the 
difference can only be attributed to the areal charge density Es. We note that the surface binding 
energy {/(, and the hydration energy Uh should both be weaker for K+ ions than for Na+ ions due 
to its larger size. We expect Es = E0e~AC//*BT where AU = Uh - Uh > 0 and E0 is the total 
density of exchangeable ions on the surface. The fact that KE and Ks are similar for Na+ and K+ 
suggests that AU for the two ions are close to each other. Among the four samples we studied, 
the sandstone and glass bead samples show the same trends as Fig. (3). Only the Whitestone 
calcite shows a different behavior: KE and Ks for CaCl2 are enhanced above the dotted lines that 
represent the conductivity trends. This may be due to the fact the the surface interaction (Ub) 
for calcium based material is very different from that of silicon based materials. Although these 
conclusions are tentative, it is clear that the details of surface chemistry play an important role in 
determining the electrokinetic effects. This, in turn, makes the measurements valuable as tools for 
studying solid-liquid interfaces. 
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AC RESPONSE OF HETEROGENEOUS MATERIALS: 
A NUMERICAL STUDY 
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Intevep S.A., Apartado 76343, Caracas 1070A, Venezuela. 

ABSTRACT 

The ac and dc electrical properties of composite materials are studied using hi- 
erarchical lattices. First we show that the hierarchical model can correctly account 
for the main scaling properties of critical percolative structures. Then we study the 
effect of potential disorder by assuming that the microscopic conductances are dis- 
tributed according to a power law distribution function. We find that in the limit 
of strong disorder, the predictions are in qualitative agreement with reported experi- 
mental measurements. 

INTRODUCTION 

This paper concerns the ac and dc electrical properties of a model of hetero- 
geneous materials such as water-saturated rock, granular metallic films, etc. The 
electrical properties of such materials vary continuously when the volume fraction of 
the conducting phase changes. It is well known that when the fraction of conducting 
material (p) approaches the percolation threshold (pc), the effective dielectric con- 
stant and electric conductivity behave in the following way: 
for u> —* 0 (dc) 

<?e{p) ~ (P ~ Pc)*,    ec(p) ~ \P-Pc\~', (1) 

while in the frequency range OJI <U><LJ0: 

ae ~ ux,   ee ~ UJ~V (2) 

where wi and LIQ are the macroscopic and microscopic cutoff frequencies of the system 
which will be defined later in this paper. The above exponents have been determined 
numerically [1]: t = a fa 1.3, x = y = 1/2 for d = 2, and t fa 2.0, s « 0.7, x « 0.74 
and y = 0.26. For a recent review on this subject see [2]. 

On the experimental side [3], measurements generally indicate that x is close 
to 1 while y is close to 0. The difference between the dispersion exponent found 
experimentally and the predictions of percolation theory has been recently attributed 
to the presence of mechanisms of conduction, such as hopping and assisted tunneling, 
that are generally neglected in the numerical simulations [4]. In this paper we show 
that the deviations may be attributed to hopping conduction, but also to disorder of 
geometric origin. 

Here, we use hierarchical lattices to model the heterogeneous material. Hierarchi- 
cal lattices are self-similar structures generated recursively by replacing every bond 
by a chosen motif. The advantage of this kind of lattices is that they not only simplify 
the calculations but also allow us to change the effective dimension with ease. Figure 
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la depicts a few steps of the generation of a hierarchical lattice of effective dimension 
de = 2, figure lb shows the motif used here two generate a lattice with dc = 3. 

Two Kinds of disorder are studied: structural and potential. In the first case, 
each bond of the lattice is assumed to be either metallic with conductivity g, or 
dielectric with capacitance C. For potential disorder, the microscopic conductances 
are sampled from a power law distribution function. 

The macroscopic admitance (complex conductance) of the sample is given by: 
Y, = Li~'la\ where cr* = ae + iuee is the complex macroscopic conductivity, L is the 
size of the sample and d is the dimension. As we will show later, <re and ee may or 
may not depend on the scale, depending on whether the size of the system is above 
a disorder length of the system or not. 

(a) (b) 

Fig.  1.  (a) Recursive construction of a hierarchical lattice  of de = 2 and (b) motif 
used to generate a hierarchical lattice with dt = 3. 

STRUCTURAL DISORDER 

For structural disorder, we assume that each bond is either metallic or dielectric, 
with admitances Y = g = 1/R and Y = iuiC, respectively. When the fraction of 
metallic bonds is near the percolation threshold, a characteristic length £ ~ (p — pc)~" 
of geometrical origin emerges, which is the usual percolation correlation length. When 
the size of the system is below this scale, the effective transport coefficients depend 
on L, while for L > £, the transport coefficients assume their macroscopic values. 

Figure 2 and 3 show the results for the macroscopic electric conductivity and 
dielectric constant of the network as functions of frequency, for L = 16 to 1028 at 
p ss pc, and de = 2 and 3, respectively. The number of realizations were 1000 for 
dt = 2 and 20 for de = 3. We observe from these figures, that there exists dispersive 
behavior of the form: <r€ ~ uf and ee ~ u-", in the range Ui < ui < w0, where u>i 
is the macroscopic cutoff frequency of the sample given by l/ReCe, where Re and Cc 

are the effective resistance and capacitance of the sample, respectively, and u>o is the 
microscopic cutoff frequency, given by l/RC. It is found that x + y = 0.99 ± 0.02, in 
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agreement with the expected dimensional relation x + y = 1. 

104 

CO/COo 

Fig.   2.   Results for the effective dielectric constant and electric conductivity for 
dc = 2 at the percolation threshold. 

10 , 1 
co/co„ 

Fig.   3.    Results for the effective dielectric constant and electric conductivity for 
de = 3 at the percolation threshold. 

For frequencies ui lower than the macroscopic frequency cutoff of the network, the 
system is effectively at dc. In this range of frequencies, the dielectric constant and 
electric conductivity of the sample depend on the size of the system according to: 
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et ~ L'l" and a, ~ L~t/v, respectively. The values for the exponents s, t, x and y 
obtained in this work are presented in table 1 for both two and three dimensions. 
Observe that they are in good agreement with the reported results obtained using 
regular lattices [2]. 

We have also observed that when the dielectric phase is at the percolation thresh- 
old there is also a dispersive behavior in the same range of frequencies observed before. 
The difference is that, under these conditions, ct ~ w~y and te ~ ux. This behav- 
ior is expected at least for high frequencies, where the dielectric phase is far better 
conductor than the metallic phase, resulting in an inverted percolation problem. We 
also observe that, in the infinite frequency limit (u> > u0), cre ~ L'l" and ee ~ L~''". 

d X y 3 i V 

2 0.49 ± 0.01 0.49 ±0.01 1.30 ±0.05 1.4 ±0.05 1.63 

3 0.78 ± 0.02 0.21 ±0.02 0.64 ± 0.05 2.32 ± 0.05 1.23 

Table 1. Dispersion and scaling exponents for de = 2 and de = 3 obtained in this work. 

POTENTIAL DISORDER 

For potential disorder we assume that each bond of the lattice has a capacitor and 
a resistor, connected in series. We have studied the two-dimensional case in which 
the distribution function for the capacitances is a Dirac delta function, while the 
conductances are sampled from a power-law distribution function: 

P(g) = iMlff 
n-l (3) 

In this case, a finite disorder length £D = £O/J~" will emerge [5]. Various limits of 
the above distribution are interesting: (a) The case 0 < n < 1, which is related 
to continuum percolation and (b) the limit ß —» 0, which is related to the case of 
disordered semiconductors in the hopping regime [6]. 

Figure 4 shows results for <re and ec as functions of frequency for values of L 
from 2 to 1028 at \x — 0.03. In this case we observe that there exists a dispersive 
behavior in the frequency range defined by wi < u> < w0, where ui\ is the macroscopic 
cutoff frequency defined in the previous section, and UJQ is the maximum microscopic 
frequency of the system. At least for high frequencies this dispersive relation seems to 
adjust well to a power law behavior, deviations occur when the frequency approaches 
wi and only for systems of size L w &■ Our most important result is the fact that 
strong heterogeneity (i.e. y. —> 0) seems to drive the dispersion exponents to the 
experimental values of x —* 1 and y —» 0. The strongly heterogeneous limit, in our 
view, makes at least two possible scenarios: 1) \i small but finite which is related to 
narrow necks in the structure of conducting structures and 2) ft = 0 which is related 
to hopping conduction. 
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In the de regime it is observed that the macroscopic transport coefficients, at and 
ee, depend on L when the size of the system is below the disorder length. Above that, 
ac and ee reach their macroscopic value. 

It is well known that for highly disordered materials, the conductivity exponent 
t depends on /J as t(p) = (d - T)v + 1/p. Preliminary results show that the super- 
conductivity exponent s depends weakly on ß. This result is consistent with the fact 
that x tends to 1 when \i goes to zero since x = t/(a + t), this implies that, in the 
case that s depends on p, this dependence must be weaker than l//i. 

Fig. 4. Results for the dielectric constant and electric conductivity for the potential 
disordered case with ji = 0.03. 

CONCLUSIONS 

In this work we have used hierarchical lattices to model the ac response of het- 
erogeneous materials. In the case of structural disorder we have found dispersive 
behaviors for both the effective dielectric constant and electric conductivity, that are 
in agreement with previously reported results on percolative structures. The conduc- 
tivity and superconductivity exponents obtained here are also in agreement with the 
reported values for two and three dimensional systems. 

The most important result of this work is the fact that the exponents x and y 
depend on the strength of the disorder of the material. We have found, for the two 
dimensional case, that x and y approach to 1 and 0, respectively, when the disorder 
parameter p goes to zero. This results support the theory of [4] which suggests that 
the deviations of experimental dispersive exponents from numerical calculations may 
be due to the existence of hopping conduction, but also suggests that such deviations 
may also be due to heterogeneities of geometrical origin, such as the presence of nar- 
row necks in the conducting materiell. 
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ABSTRACT 

An influence of sheet electron beam irradiation ( SEBI) on the wettability is investigated of 
the hydroxy apatite ( HAP ) [ Ca,0( P04 )6( OH ), ]. The wettability is one of the important 
factors to control bio-compatibility. The SEBI is homogeneously performed by an 
electrocurtain processor. The temperature of the sample is below 323 K just after the irradiation. 
The wettability is evaluated by measuring the wet angle 0 in a drop of water. The SEBI 
increases the wettability. Based on rate process, the influence of SEBI on wettability is 
discussed. Using the SEBI, we can precisely control the surface condition of HAP. 

INTRODUCTION 

Based on biological application, it is important the bio-compatibility of biological materials. 
The wettability from the biological point of view, it is important to know a wettability of 
hydroxy apatite   ( HAP ) of artificial bone. The wettability is one of dominant factor to control 
the growth rate of HAP. The rapid growth rate likely shortens the term of cure. 

On the other hand, an argon ion irradiation modifies surface properties [ 1,2 ]. However, the 
irradiation retains the argon atoms in the sample. Since a sheet electron beam irradiation 
( SEBI) doesn't retain the impurity atoms, the reproducible values can be obtained. Therefore, 
an influence of SEBI on the wettability is investigated for HAP. 

EXPERIMENTAL PROCEDURE 

The SEBI [ 3,4 ] was homogeneously performed by an electrocurtain processor. Figure 1 
shows the schematic diagram of the apparatus. The acceleration potential and the irradiating 
current were 175 kV and 4 mA, respectively. The SEBI treatment was not continuously 
performed. In order to control the temperature of the sample surface, the conveyer speed was 
kept constant at 0.17 m/s. The temperature of the sample was below 323 K just after the 
irradiation. The repeated performance increased the dose of irradiation. Although the SEBI 
generalized in vacuum. The irradiated specimen was under a nitrogen with atmospheric pressure 
in the SEBI process zone. The oxygen concentration was less than 400 ppm in nitrogen 
atmosphere. The amount of irradiation dose was proportional to the SEBI time ( tt). The dose 
rate was 36.15 Mrad/s.The structure of the sample was monitored by x-ray diffraction ( Rotafrex 
RU-200B, Rigaku Denki, Tokyo ).The diffraction was performed under a step scanning method. 

245 

Mat. Res. Soc. Symp. Proc. Vol. 463 • 1997 Materials Research Society 



W filament 

Process zone 

Vacuum chamber 

Ti foil window 

Fig. 1. Schematic diagram of electrocurtain processor. 

RESULT AND DISCUSSION 

Structure changes 

Figure 2 shows the x-ray diffraction patterns of the samples. HAP and ß-tricalcium phosphate 
( ß-TCP ) phases are found. ( a ) and ( b) are before and after SEBI for 4.5 s, respectively. The 
SEBI decreases the peaks angles of both phases. Namely, the SEBI increases the lattice constant. 
We deduce that the SEBI increases the attractive binding force between atoms. Thus, we have 
studied the x-ray photoelectron spectrum ( XPS ) analysis, as shown in Fig. 3. 
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Fig. 2. X-ray diffraction patterns of HAP before and after SEBI. 
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Fig. 3  X-ray photoelectron spectra before and after SEBI. (a) Ca (2p), (b) P (2p), (c) O (Is) 

The SEBI increases the electron binding energy of oxygen atoms and slightly decreases the 
energies of calcium and phosphate atoms. If the SEBI affects the atom distribution ( see Fig. 4 ), 
the polarization probably occurs. Since the polarization parts of water molecule attracts the 
polarized surface of HAP, the SEBI enhances the wettability. 

V^ 0°2" 

(b) 

I ^   p5 

+ 

A 
Q. 

SEBI 

Fig. 4.    Schematic diagrams of hydroxy apatite molecule. 

(a) and (b) are before and after SEBI for 4.5 s, respectively. 

(b) is for polarized condition. 



Wettability 

The wettability is evaluated by measuring the contact angle 8 in a drop of water. The 6 value 
is measured by taking a photograph of the drop of water ( see Fig. 5 ).    The mass of the drop is 
approximately 0.001 g. Figure 5 shows the 6 value change against the SEBI. The SEBI decreases 
the 9 value. If the 6 value shows a low value, the wettability is high. The wettability is often 
evaluated by the interfacial energy (Wa) at constant temperature. 

W,= ao(l+cos8) (1) 

Here, a o is interfacial energy of water between liquid and gas. The reduced interfacial energy 
R(x) depends on the term ( l+cos8 ) of the contact angle. 

R(x) = W1/ao=(l+cos8) (2) 

Figure 6 shows the change in reduced interfacial energy R(x) versus U. The R(0) is about 1.391 
for the HAP sample before irradiation. The SEBI enhances the wettability, as shown in Fig. 6. The 
longer the U, the larger the reduced interfacial energy R(x) becomes. 

(a) 

(b) 

lmm 

Fig. 5. Photographs of sessile drop of water on apatite ceramics, 
(a) before SEBI, (b) after SEBI for 4.5 s . 
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Fig. 6. Change in reduced interfacial energy R(x) on HAP versus SEBI time (t). 

The rate process is a useful equation to describe the phenomena [ 5-7 ]. If it is applied here to 
the SEBI process, the change X in reduced interfacial energy R(x) is assumed to be expressed by 
the following equations in relation to the f,: 

X=l-exp(-kf,-n) 

Here, k and n are constants. X is assumed to be expressed by 

X=[(R(x)-R(0))/(R(m)-R(0))] 

(3) 

(4) 

where R(m) and R(0) are the R(x) values after the infinite irradiation time and before the 
irradiation, respectively. The values are calculated in a self-consistent way. R(x) of the irradiation 
sample approaches R(m). It is the saturated value. When the correlation coefficient, F, of 
equation ( 3 ) is maximum, as shown in Fig. 7, the saturated reduced wettability value R(m) is 
1.877.    From these results, X is expressed by the following equation: 

1.0000 

0.9995 

0.9990 

0.99851 
1.8651.8701.8751.8801.8851.8901.895 

R(X) 
Fig. 7. Change in correlation coefficient (F) versus R(x). 
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Fig. 8 Variation of logu)[-ln(l-X)] versus r. 

log10[ -ln( 1 -X ) ] = n log101, + log10 k (5) 

The linear plot ( see Fig. 8 ) of equation ( 5 ) confirms the assumption of the rate process 
( see equation ( 3 )). The values of n and logiok are 0.86 and -0.089, respectively. 

We conclude that we can precisely control the surface active condition of HAP by using the 
SEBI. It's useful for patients to shorten the cure team in a hospital. 

CONCLUSION 

In summary, the SEBI enhanced the water wettability of HAP. The wettability wae 
evaluated by the reduced interfacial energy R(x) between HAP and water. Since the change in 
R(x) is applied by the rate process, we can precisely control the surface condition of HAP. 
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ABSTRACT 

We propose a Monte Carlo method to simulate the magnetization decay for NMR in 
porous media. In this method, the diffusive spins in the fluid phase are modeled by 3-d 
random walkers, whose absorption at the solid surface simulates surface-mediated decay. 
Our method is 20 times faster than direct relaxation of the diffusion equation when a 
variable-step size implementation is used. We demonstrate our method by computing the 
surface relaxivity p for a Fontainebleau sandstone, whose structure was determined by 
X-ray tomography. 

INTRODUCTION 

Nuclear Magnetic Resonance (NMR) has emerged as one of the most useful probes of 
the structure of porous media [1]. However, the forward modelling of magnetization decay 
for these systems is complicated by the difficulty of solving partial differential equations 
in the complex geometry of the interconnected pore space in these materials. In this 
contribution, we present a fast Monte Carlo simulation method, which is particularly well- 
suited for this type of problem. 

Consider a porous material whose pore space is filled with a liquid. The liquid can 
be magnetized parallel to an external field by an applied pulse. One can then study the 
relaxation this moment ("Ti"-relaxation), or one can rotate the magnetization into the 
plane perpendicular to a constant field with an rf pulse, and then study the relaxation 
of this transverse, precessing magnetization ("T2" relaxation) [2]. There are a number of 
mechanisms by which this magnetization can relax. Inhomogeneous processes in the fluid 
can lead to the "bulk" relaxation of the magnetization; field gradients in the sample can 
also lead to relaxation. We are primarily concerned in this study with surface-mediated 
relaxation, in which microscopic magnetic moments relax only in the neighborhood of the 
surface of the pore space [3]. Unlike bulk relaxation processes, this type of relaxation can 
yield information about the microscopic structure of the pore space. For surface-mediated 
relaxation, the equations determining T\ and Ti relaxation are identical, provided the 
constant background precession is removed in the latter case. 

The basic physics is described by [4] 

9m(x, t) 
=BV2m(x,t) 

dt m 
m(x,t = 0)=M0/V 

y> 

Dh ■ Vm(x, t)\xeS = - pm(x, t)\xeS 

where m(x, t) is the local magnetization density in the porous volume V bounded by the 
surface S. MQ is the total initial magnetization, D the diffusion constant, and p the 
surface relaxivity. The simplest observable quantity is the total magnetization M(t) = 
fy m(x, t)d x. 
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Note that the elementary diffusion constant D will presumably be the same as for 
the self-diffusion of the molecules of the fluid in bulk, and is thus typically well-known. 
By contrast, the surface relaxivity p is a complex function of the interaction between the 
fluid near the surface and the surface itself. Thus its value will vary with rock type. 
Typically, values in the range 5/mi/s < p < 30/Lim/s are obtained, albeit by highly indirect 
means [5]. One advantage of our approach is that the surface relaxivity p can be left as a 
fitting parameter to reconcile simulation with experimental results, allowing fairly direct 
determination of this important quantity. 

The problem described by Eq. (1) is analogous to the relaxation of random walkers, 
which are partially absorbed at the pore walls, in the same pore space [6]. Consider NQ 

such walkers, of diffusivity D', whose distribution is described by the local number density 
u(x, t). When walkers contact the pore surface, there is a probability of a that the walkers 
are absorbed when they contact the wall, and a probability oil-a that they are reflected 
(in practice, moved a small distance a from the wall) and continue their walk. In the 
continuum limit, u(x, t) is governed by the equations 

^-*"•<*<>. (2) 

u(x, t = 0) =N0/V. 

A straightforward calculation shows that the boundary condition at the pore wall is 

£>'n-Vu(x,t)|xe5 = --j-^-u(x,t)|x€5l (3) 

provided that a is much smaller than any surface length scale. Comparing to Eq. (1) for 
m(x.,t), we see that the systems are identical if 

D      (l-a)Dr W 

This relation provides us with a convenient way to determine p by comparing exper- 
imental results to simulation results obtained with varying values of a. To obtain a fast 
method, we need only speed up the Monte Carlo process by 1) constructing our simulation 
so that we can obtain results for different values of a simply by varying a at the end of the 
simulation, with a fixed data set, 2) using variable-step size random walks, and 3) working 
in the Laplace transform variable s instead of in time t. This is a generalization of the 
method of ref. 6. In the next section we describe our Monte Carlo process in more detail, 
and in the final section we demonstrate it by computing p for a Fontainebleau sandstone. 

IMPLEMENTATION OF MONTE CARLO METHOD 

The quantity analogous to total magnetization M(t) is U(t) = jv u(x, t)d?x, the total 
number of walkers still inside the pore space at time t. This can be given in terms of a set 
of functions {Pn(t)}, which refer to the motion of random walkers inside the identical pore 
space with completely reflecting boundary conditions; Pn(t) is the probability that such a 
walk makes its n'th contact with the wall before time t. Then 

U(t) = N0 

00 

l-^(l-a)X+l(i) 
n=0 

(5) 
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We can calculate Pn{t) in the simulation by averaging over all possible paths of walk as 
well as all possible initial positions of walkers. Note that although the magnetization which 
we are simulating decays in time, our simulation procedure utilizes "immortal" random 
walkers. 

To accelerate the simulation process, we adopt a variable-step size algorithm [7]. In 
such an algorithm, the walker step size is fixed to be just smaller than the closest distance 
between the walker's current position and the pore wall. Of course, the step size has some 
minimum value, A. If the walker is closer than A to the wall, it still takes a step of size A, 
which creates the possibility that the step may cross the wall. Steps in which the walker 
crosses the wall are taken back, and count as contacts with the wall. 

It is convenient to choose the step sizes always to be integral multiples of A. Formally, 
we write Pn{i) as 

/ ft rt-tm 12 \ 
PnW = (  /   dtmp(tm,rm)--- dtip(ti,r\)) (6) 

Here pferj) is the probability density that a walker setting off from the center of the 
sphere with radius r± reaches its surface at the first time at time ij. The angle brackets 
( )n represent the average on all possible paths of walk and all possible initial positions of 
walkers, with the restriction that the walk must make n contacts with the wall of the pore 
space. It is convenient to avoid the convolutions by working with the Laplace transforms, 

Pn(s) =-{P(s,rm)---p(s,r1))n 

00 (7) 

Ü(s) =N0{l/s - ff £(1 - o)nPn+l(s)), 
71=0 

where p(s, r) = J0°° e~stp(t, r), and similarly for the other Laplace transforms. 

The function p(t, r) is related to the local probability density of a walker </>(x, t) in a 
sphere of radius r through 

p{t,r)=--J d3x<f>(x,t) 

= -D f d3xV2(t)(x,t) (8) 

= -(W.D)f-V0(x,t)||x|=r. 

where <j>(x, t) obeys the boundary conditions 

c^(x,t) 
— LJ V     ty\Ji., I) 

(9) 
m      =DV2<P(x,t) 

0(x, t = 0) =<5(x) 
0(|x|=r,t)=O, 

corresponding to a step which starts at the center of the sphere at time t = 0 and arrives 
at the sphere surface at time t. Equations (8-9) can be solved analytically, and the result 
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for p(t, r) is 

p(t,r) 
8nrD     ^ (2fc + l)2 

2Dt 
exp 

(2fc + l)V 
4Dt 

(10) 

and the Laplace transform of p(t,r) is p(s,r) = (r yJs/D)/ sinh(r^/s/D). 

The Monte Carlo procedure is now straightforward to design. First, we acquire a 
digital representation of a pore space. For materials of geological or petrophysical interest, 
this representation may be obtained by X-ray tomography of an appropriate sample [8]. 
We segment the tomographic volume image to produce a binary representation of the pore 
space, with each voxel assigned either to the pore space or to the rock matrix. Then we 
make a "6-neighbor distance map" for the pore space, determining in each elementary voxel 
of the digital representation the distance to the nearest pore wall. Now variable-step size 
walks may be conducted, using the Euclidean distance map to determine local step sizes. 
Note that the walk need not be confined to any lattice, even though the representation of 
the pore space is digital, we used continuous random walks. 

The output of each history of an individual walk is then a sequence of step sizes, as 
well as information about the sequence of contacts between the walk and the pore walls. 
Averaging over many walks, Equation (7) then allows the determination of Pn{s). We 
repeat that in our simulation, the walks are never absorbed-they are allowed to continue 
up to some fixed, arbitrary number of contacts with the pore walls. 

One technical problem with this procedure lies in the correspondence between the sur- 
face absorption a and the surface relaxivity p of the original magnetic relaxation problem. 
The correspondence given in Eq. (4) above requires the use of a microscopic parameter 
a, which gives the distance from the surface at which a walk is restarted after contact is 
made. However, in the random walk algorithm, the step leading to contact is taken back, 
so while the walker restarts a distance of order A, the elementary step-size, from the wall, 
in practice the exact magnitude of this distance will vary. We deal with this problem by 
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Figure 1: T<i distribution from the experimental data for a Fontainebleau sandstone. 
/(T2) is normalized by J dT2f(T2) = 1. 
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calibrating our algorithm against a digitized sphere, for which we know the exact solution 
to the relaxation problem. This calibration yields the result a = 0.64A, which allows us to 
uniquely compare a random walk simulation with a particular value of A to a relaxation 
problem whose fundamental length scale is D/p. 

APPLICATION TO FONTAINEBLEAU SANDSTONE 

We tested our method by determining the surface relaxivity p for a Fontainebleau 
sandstone, by comparing simulation results in a representative region of the pore space 
(obtained by X-ray tomography) with experimental results [9]. NMR relaxation spectra 
were obtained using the commercially available Resonance Instruments Maran NMR spec- 
trometer. The sample was saturated with water; we then applied a magnetic pulse, and 
measured the magnetization decay M(t). The results are plotted as a T2 distribution, 
shown in Fig. 1. This distribution is defined implicitly by 

M(t) 
Jo 

dT2/(T2)exp(-t/T2). (11) 

The T2 distribution is the spectrum of the magnetic relaxation, which characterizes the 
pore-size distribution of the medium [3]. 

We wish to compare this experimental result with simulation results. The pore struc- 
ture of the sample in a small, presumably representative region can be obtained by X-ray 
tomography. The tomography has the resolution of 6.9ßm which was defined as one voxel; 
we used a spatial volume of 298 x 298 x 298 voxel. We chose A to be the side of one 
pixel. Since the sample had about 0.12 pore volume fraction, the total pore volume for 
the walkers in simulations was about 3 x 10 (A ). 

For this pore geometry, we performed the Monte Carlo simulation and computed U(s) 
for a variety of values of a. We found that the simulation data for 1 — SU(S)/NQ was well 
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Figure 2: T2 distribution of the simulation for a = 0.03. We have also added the effect 
of the bulk relaxation time T2# sa 3 sec to this data, to simplify comparison with the 
experimental result in Fig. 1. 
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fit by the function (1/2)[1—tanh(os+&)] where a(a) and b(a) are two fitting parameters. We 
then calculated U(t) by performing the inverse Laplace transform of the fitting function 
and plotted the results as a T2 distribution, shown in Fig. 2. In this latter figure we 
have included the effect of the bulk magnetic relaxation, which modifies the surface T2g 
according to the formula 1/T2 = l/T2B + V^2Si where T2B is the bulk relaxation time, 
as 3 sec for water [10]. 

To fit the T2 distribution from our simulation with that from the experiment, we 
then matched the main peak position by varying a. Our result is a = 0.03. From this, 
we determined p ss 15/^m/s where we used D sa 2.3fi2/ms [10]. This result is in good 
agreement with results obtained by the Schlumberger group using an entirely different 
method [5]. 
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ABSTRACT 

Several random walk-algorithms are used to model relaxation processes on disordered 
structures. Substrates are regular lattices in d = 1,2 with disorder variables attached to each lattice 
site. For the simulations, we consider diffusing particles obeying different rules according to the 
transport process being studied. Relaxation description is done in the time domain by calculating 
the characteristic function F(k,t), and in the frequency domain through the study of the complex 
susceptibility x(k,uj). Two types of relaxation mechanisms are seen both in simulations and in 
Nuclear Magnetic Resonance (NMR) experiments done on sandstones. These are expressed as 
stretched exponential forms of the relaxation function, and the Cole-Cole form of the imaginary 
part of the complex susceptibility. Longitudinal and transversal NMR measurements were done 
on fully saturated samples at 90 MHz. NMR relaxation data can be qualitatively understood 
using the random walk models proposed here. 

INTRODUCTION 

Relaxation phenomena occurring in many systems are very complex and not described by the 
classical exponential form in the time domain, or the Debye function in the frequency domain. 
Frequently relaxation data is fitted to empirical laws such as stretched exponentials, power laws, 
Cole-Cole form among others [1-3]. These relaxation processes are called anomalous. 

Anomalous relaxation results from many body effects within a single system making it 
very hard to study from first principles. This is why there has been some effort to reproduce 
many of its features in terms of a one-body picture by applying geometrical constraints to the 
movement of the relaxing particles [4-7]. We have explored the "limits" of this approach by 
using random walks on disordered structures, such as regular lattices with disorder variables 
attached to each site, and percolation clusters at criticality. The effect of disorder on such 
structures is to temporarily trap the particles, thus reducing their diffusion. We use these models 
to analyze Nuclear Magnetic Resonance (NMR) data of water saturated sandstones trying to 
identify different relaxation mechanisms on those complex systems. The model is able to give 
essential features of the relaxation process. 

Quantities related to the relaxation process, such as the relaxation function and the complex 
susceptibility, are calculated for the simulation model. Also, the relaxation response of water 
saturated sedimentary sandstones is used to calculate the complex susceptibility, and finally 
we made a comparison between the experimental data and results from the simulations of the 
random walk model. 
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MODEL AND SIMULATIONS 

A particle released from a chosen site on a disordered structure, cannot move freely, 
since spatial irregularities will set restrictions on its motion. Frequently, particles are trapped 
(sometimes temporarily) in poorly connected regions, thus their diffusive transport is effectively 
reduced. In the model, a localized signal is allowed to relax on a disordered substrate. The 
"signal" is made up of a swarm of walkers which are allowed to diffuse in such medium. Two 
different substrates are considered. One is a regular lattice with random variables taken from a 
power-law distribution of the form Hf-1 with 0 < /< < 1. The second substrate is a percolation 
cluster at criticality. 

In the case of a regular lattice, a walker is released from the origin, and allowed to move if 
a random number (drawn from a uniform distribution) is smaller than the value of the disorder 
variable attached to its site. It moves to one of its nearest neighbors with equal probability. We 
distinguish between the "quenched" case, where the disorder variables are frozen on the lattice, 
and the "annealed", where disordered variables are updated each time a walker attempts to move. 
A sampling over many disorder configurations is done, typically for 104 realizations. Lattices in 
d = 1 and 2, are used for the simulations of particles' motion up to 220 time steps with system 
sizes big enough to avoid situations where the walkers reach the boundaries. 

The transport on the percolation cluster is simulated similarly. A site is randomly chosen 
on each percolating system, and a random walker is released from it. At each unit of time, the 
walker is allowed to move on the structure, with equal probability to a nearest neighbor site 
if it belongs to the structure. Percolation clusters generated on a 400 x 400 lattice were used 
averaging the transport related quantities over 20 different cluster realizations. For the two cases, 
the walker position is recorded as a function of time. 

With this information we calculate the relaxation function, F(k,t), which is the characteristic 
function of the random variable r(t) - r(0), i.e., 

F(k,t)=<eik"<f(t»-r(°»>, 

where k is the wave vector (for the 2D lattice it is chosen as k = (1,1) i.e., along the main 
diagonal of the lattice), r is the particle's position vector, and the angular brackets denote the 
sample average, and the complex susceptibility 

-7^ \(k,u>) = l + ju.' / elulF(k,t)dt. 

o 

These quantities are compared with their corresponding counterparts calculated for transport on 
a regular non-disordered structure. 

NMR MEASUREMENTS 

NMR has proven to be a valuable technique for understanding porous media [8]. Information 
about the geometrical attributes of the sample, such as porosity, is easily obtained from the NMR 
signal, whereas the relaxation times provide a measure of the characteristic length scales in the 
porous medium. 
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Samples of sedimentary rocks were cut from original rock nuclei, cleaned and completely 
water saturated with distilled water. The NMR longitudinal and transversal relaxation times were 
measured with a Bruker spectrometer at 90 MHz. For the transversal relaxation measurements, 
the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence was used, and for the longitudinal 
measurements it was used the inversion-recovey pulse sequence [9,10]. 

RESULTS 

The relaxation function was calculated using the position of diffusing particles, recorded 
as a function of time, for two types of substrates: regular lattices with disorder variables 
and a percolation aggregate. We find that for regular lattices, when the disorder variables 
are quenched on the lattice, F(k,t) is drastically affected by the disorder "intensity", measured by 
exponent /« (which describes the power-law distribution from which the disorder variables are 
drawn).7 = (1 + (i)/n for ID lattices and 7 = 2//i for 2D lattices respectively. The response 
was less sensitive for the annealed case. We also find that the relaxation time, r ,(calculated 
as the value of time at which F(k,t) decays to a factor 1/e) follows a power-law dependence 
with the wave number value, i.e., r ~ k~7. Exponent 7 being a function of \i for quenched 
disorder. 7 increases as \i decreases. For the annealed case 7 = 2 as for regular transport 
(normal relaxation). Figure 1, shows a log-log plot of r as a function of k for different p. values 
and 2D lattices with quenched and annealed variables. A similar behavior was observed on the 
percolation cluster. For this case the value of exponent 7 is 3.06 ± 0.09. 
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Figure 1. Relaxation time as a function of wave number magnitude for 2D regular lattices 
with quenched (left) and annealed disorder variables (right). Different lines are (from top to 
bottom) for \i = 0.4, 0.5, 0.6, 0.7, 0.8. Bottom curve is for a 2D non-disordered lattice. 

For the two types of substrates, one with potential disorder (regular lattice with disorder 
variables attached to each site) and the other with structural (percolation cluster), we find that the 
product of the exponents 0 x 7/2 = 1, here 6 is the exponent that describes the time dependence 
of the mean-squared displacement (r(t)) ~ te holds regardless of the disorder strength (in the 
case of regular lattices) and system's dimensionality. 
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Regarding the complex susceptibility, we have computed its imaginary part for relaxation 
in regular lattices and the percolation cluster. As a function of frequency, the curves x"(k,u>) 
increase monotonically up to a maximum at a particular frequency cjmax; beyond that value, the 
curves decrease monotonically. Around the maximum the curves have the Cole-Cole form 

Y(w) = 0 <Q <  1. 
l+(-iwr)" 

For small and high frequencies linear regimes are observed on a log-log plot. Figure 2 shows 
a plot of the imaginary part of this function for potential and annealed disorder. The functional 
Cole-Cole form of \ (k,w) for various values of a is shown in Figure 3. The slopes of the 
lines are different for the two frequency regimes suggesting different relaxation mechanisms as 
a function of frequency. This linear behavior is associated with stretched exponential relaxation. 
The value of wmlx depends on the dimensionality of the system and the particular type of disorder. 
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Figure 2. Imaginary part of complex susceptibility \ (k,cj) as a function of frequency for 2D 
lattices with: quenched disorder, /t = 0.8, k = 3TT/250 (D) ; annealed disorder, /i = 0.5, k = 
3TT/250 (O), and percolation cluster at criticality lor k= 37r/125 (A). 

For the NMR relaxation measurements of water in sandstones we find substantial nonex- 
ponential time dependence. The stretched exponential behavior is generally followed, although 
some departure for very small times is observed. This is characteristic of samples with different 
relaxation times acting independently in different parts of the samples. Figure 4 shows typical 
relaxation curves for the rock samples studied. These curves were fitted using non-linear re- 
gression with a stretched exponential form F(t) = exp -(t/T)'3 . The exponent ß is found to 
monotonically increase with the width of the distribution of pore sizes, which can be considered 
as a disorder indicator. ,6 values are in the range 0.51 < ß < 0.89. Using these relaxation curves, 
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we calculated the imaginary part of the complex susceptibility and found that as a function of 
frequency this function has qualitatively the same behavior as the one seen in the simulations, 
i.e., there is a maximum at some characteristic frequency, and the linear regime observed in the 
simulations in a double log plot is only observed in the low frequency regime. 
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Figure 3.   Cole-Cole form of the complex susceptibility for a = 0.7, 0.8, 0.9 and 1, and a 
typical simulation on a 2D regular lattice with quenched disorder for p. = 0.8 and k = 37r/250. 

CONCLUSIONS 

In summary, we have used a simple model based on the motion of random walkers on a 
disordered structure to describe anomalous relaxation. The model is able to reproduce qualitative 
features commonly observed in experiments such as NMR longitudinal and transversal relaxation 
in porous rocks. This approach indicates that a one-body picture is able to reproduce the essential 
features of the relaxation process. 

We find that the relaxation function in time domain, for a fixed wave vector magnitude, 
depends strongly on the value of the disorder parameter /( for quenched variables on a regular 
lattice, whereas for the annealed case, the results are clearly described by the current relaxation 
theory. A power-law dependence of the relaxation time with the wave number allows to verify 
that the product of exponents 0 x 7/2 = 1 holds for both potential and structural disorder and 
is independent of dimensionality. 

The imaginary part of the complex susceptibility makes possible the identification of different 
relaxation mechanisms. As observed for relaxation processes on the two types of substrates, 
around the maximum of this function the relaxation is of Cole-Cole type, whereas for small and 
high frequencies the relaxation is stretched exponential. 

For small wave numbers, as the NMR longitudinal and transversal relaxation data clearly 
shows, the simple model presented here describes qualitatively magnetic relaxation processes 
observed in fully saturated consolidated porous rocks. 
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Figure 4. Typical relaxation curves of fully saturated rock samples measured by NMR at 90 
MHz. 
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MONTE CARLO SIMULATIONS OF PHASE TRANSITIONS 
IN A TWO-DIMENSIONAL RANDOM-BOND POTTS MODEL 

R. PAREDES, J. VALBUENA 
INTEVEP S.A, Apartado 76343. Caracas 1070-A Venezuela. 

ABSTRACT 

Motivated by recent experiments on phase behavior of systems confined in porous media, we 
have studied the effect of quenched bond randomness on the nature of the phase transition in the 
two dimensional Potts model. To model the effects of the porous matrix we chose the couplings 
of the q state Potts Hamiltonian from the distribution P(Jij) = pS(Jij — J) + (1 — p)S(Jij). 
For a range of p values, away from the percolation threshold, the transition temperature follows 
the mean field prediction Tc(p) = Tc(l)p. Furthermore, we observed that the strong first order 
transition, that appears in the pure case for q = 10, changes two a second order transition. It is 
also clear from our simulations that the second order transition of the q = 3 pure case changes to 
a second order transition of a different universality class. A finite size scaling analysis suggests 
that in both cases the critical exponents, in the presence of disorder, fall into the universality 
class of the two dimensional pure Ising model. This result agrees with theoretical calculations 
recently published [1]. 

INTRODUCTION 

During the past few years a great deal of effort has been devoted to the study of the effect 
of quenched randomness on phase transitions. Bond and field randomness can produce drastic 
effects in a phase transition. For example, critical exponents change in systems with positive 
heat capacity exponent if bond randomness is introduced [2]. Additionally it has been argued 
that the introduction of quenched bond randomness has a drastic effect on all temperature driven 
first-order phase transitions [3]. There is some experimental evidence that disorder produced by 
porous media affect drastically phase transitions of systems inside them. An extensive study of 
the isotropic to nematic phase transition of nCB liquid crystals in aerogel shows that the transition 
temperature is lowered compared to the pure situation and that the order of the transition changes 
from first to second [4-7]. The same effect is observed in 3He-4He mixtures in aerogels [8]. 
Using renormalization group calculations [9] and Monte Carlo simulations [10] Falicov et al. 
explained the latter experiment introducing bond randomnes in a lattice model of 3He-4He 
mixtures. 

The q-state Potts model is a simple model that exhibits first and second order phase transitions 
depending on a simple parameter q. Chen et al. made an extensive Monte Carlo study on the 
random-bond Potts model in 2D [11]. They used a double delta distribution with two different 
bond strengths, occuring with equal probability. The ratio between the two strength values was 
finite. They found a second order phase transition instead of the first order found in the pure 
case. Additionally they found that this second order transition belongs to the same univerasality 
class as the Ising model. In 3D, Uzelac et al., also performed Monte Carlo simulations, but 
instead of randomizing the bonds they eliminated sites according to a random dilution model 
emulating the structure of aerogels and site percolation [12]. They found, in both cases, that it is 
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neccesary to have a finite amount of disorder to observe a change in the order of the transition. 
Additionally they computed the phase diagram where it was found that the transition temperature 
is proportional to the concentration of Potts sites. 

In this paper we describe the effects of random bond dilution on the q = 3 and q = 10 Potts 
model in 2D. The q = 3 and q = 10 exhibit respectively second and first order transitions for the 
pure case. In both cases we study the behavior of the temperature transition with disorder. The 
specific heat exponent of the q = 3 Potts model is positive and its critical exponents must change 
with the introduction of disorder [2]. It is interesting to study both cases because recently it was 
predicted that, with disorder, both systems should belong to the same universality class [1]. 

In the next section we discuss the random-bond Potts model. Then we discuss the method- 
ology followed by us. We end with a discussion and conclusions. 

THE RANDOM-BOND POTTS MODEL 

The q-state Potts model is described by the Hamiltonian 

ßH=Y, JiJssiSj, (1) 

where ß = 1/kßT. The spin s can take the values 1,2,...,? and 8 is the Kroneker delta 
function. The sum runs over all nearest-neighbor bonds in the system and Jl;- is the strength of 
the interaction betwen s; and SJ. In a pure system, J^ is constant for all bonds. The q-state 
Potts model is a simple generalization of the Ising model which has the advantage of exhibiting 
first order phase transitions for q > qc(d) and second order transitions for q < qc(d). In 2D 
(d = 2), qc is equal to 4. 

The random-bond Potts model is described by the above Hamiltonian with couplings Jij 
randomly selected from the distribution 

P(Jii) = pSiJij - J) + (1 - P)6(Jij). (2) 

METHODS 

We performed extensive simulations of L x L lattices (16 < L < 128) with periodic boundary 
conditions using the Swendsen-Wang multiple spin flip method [13]. Histogram techniques were 
used to determine several thermodynamic quantities over a range of ßJ [14]. Between 5 x 105 

and 4 x 106 Monte Carlo steps were performed and up to 25 different bond samples were used 
in the configurational average over randomness for bulk properties. 

We considered the probability distribution of energies defined by 

NL(E)exP(-ßJE) 
Pl{E) =       ZL(-ßJE)      ' (3) 

where E is the energy in units of J, Zi(ßJE) is the partition function, and Ni(E) is the number 
of configurations of the system with energy E and size L. It has been shown that a finite size 
scaling analysis of PL(E) can be very efficient in detecting first order transitions even when 
the system size is smaller than the correlation length [15]. When the transition is of first order, 
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PL(E) exhibits two maxima which are of the same magnitude for T = Tc. Denoting EM the 
energy of one of these maxima and Em the energy of the minimun in between, the quantity 

PL(EM) AFL = In 
PL(E„ 

(4) 

is known to represent the interface free energy. If the transition is first order, AFi should scale 
as Ld while it should go to zero otherwise [15]. 

We also calculate the specific heat which involves higher moments of the energy distribution: 
2 

f  . 7 \ 

(5) CL(T)=(^)((E\-{E)1), 

(6) 

where the moments are given by 

(En)L = J2EnPL(E). 
E 

According to finite size scaling theory, the maximum in the specific heat scales with system 
size as 

Cmax oc I«/'. (7) 

For a first order transition, the specific heat grows as Ld, so a measure of the scaling behavior 
of Cmax will also provide additional confirmation of the order of the transition. 

RESULTS 

The phase diagram for the random-bond Potts model, taking specific heat maxima to indicate 
critical temperatures, is shown in Fig. 1. For a range of p values, close to p = 1, the transition 
temperature follows the mean field prediction Tc(p) — rc(l)p[12]. This result is also observed 
using Monte Carlo simulation for the q = 3 and q = 4 Potts model in 3D [12] and using real 
space renormalization group in 2D and 3D for several q values [16]. 

0.70      0.75      0.80      0.85      0.90      0.95      1.00 

Figure 1 Phase diagram of the random-bond Potts model. 
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We are interested in what happens to the order of the transition for the q = 10 case when 
quenched disorder is included. We calculated the probability distribution of the energy for 
p = 0.9 to obtain the interface free energy. The resultant free-energy barrier AF(L) is plotted 
as a funtion of inverse lattice size in Fig 2. Clearly the trend for large L is towards a zero free- 
energy barrier which indicates that the transition has indeed changed from first to second. Note 
that for small L, AF(L) can be quite large indicating the presence of strong finite size effects. 
In Fig. 3 the probability distribution of the energy (PL(E)) is plotted for several sizes. We note 
that the double peak structure, typical of the first order transition, is maintained until large L. 
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Figure 2 Free energy barrier, AF(L), versus inverse lattice size (p = 0.9). 
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Figure 3 Probability distribution of energy for several lattice 
sizes. The double peak structure tends to dissapear for larger L. 
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Using Monte Carlo simulations in 2D, Chen et al. [10] have recovered the Ising exponents 
for the second order phase transition, induced by random impurities, for the q = 8 Potts model. 
On the other hand, critical behavior of the specific heat in a 2D Ising model has a logarithmic 
size dependence, i.e., 

= a + blogL. (8) 

To see if our data follows this behavior for the q = 3 and the q = 10 random-bond Potts model, 
we plotted in fig. 4 the maxima of the specific heat versus log L. Both figures show the p = 0.9 
case. In figure 4.a the pure case (p = 1) is also plotted. It is clear, for q = 3, that the pure case 
does not follow the logarithmic behavior but the disordered case does. This suggests a change 
in the universality class of the system. Note that for large L the tendency to a linear behavior is 
also clear for q = 10 (fig 4.b). We omit the smallest values of L because finite size effects are 
strong. We also fit these data with a power law but the fit was not as good. At this moment, 
from our data, we can conclude that our specific heat results for the q = 3 and q = 10 random 
bond Potts model do not exclude an Ising type behavior as was predicted theoretically by Kardar 
and collaborators [1]. To improve these results it is neccesary to go to stronger disorder and 
try to reduce finite size effects. 

(a) (b) 

Figure 4 Specific heat maxima versus lattice size L. (a) q = 3 Potts model for the pure (p = 1) 
the disorder (p = 0.9) cases, (b) j = 10 Potts model for the disorder case (p = 0.9). 

and 

CONCLUSIONS 

From the results above it is clear that introducing bond randomness, in the q = 3 and 5 = 10 
Potts model, changes the nature of the transition. The presence of disorder also decreases the 
transition temperature as has been seen in liquid crystal systems. The dependence with p found 
is linear close to p = 1. It is similar to previous results using renormalization calculations 
[16] and Monte Carlo in 3D[12]. For q = 10 the order of the transition changes from first 
to second. In q = 3 there is a change of universality class. Futhermore, we found evidence 
that in both cases the specific heat maxima follow a logarithmic behavior which suggests that 
when bond randomness is introduced the q-state Potts model changes to the universality class 
of the Ising model. 
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ABSTRACT 

Preliminary results of an aggregation model that takes into account both the Brownian 
motion as well as the gravitational drift experienced by the colloidal particles and clusters 
is presented. It is shown that for high strengths of the drift the system crosses over to a 
regime different from diffusion-limited colloid aggregation, for which there is an increase of 
the fractal dimension, a speeding up of the aggregation rate and a widening of the cluster 
size distribution, becoming algebraically decaying with an exponent T. 

INTRODUCTION 

With a few exceptions [1, 2, 3], most of the studies on colloidal aggregation [4, 5] neglect 
the effect of sedimentation due to gravity on the resulting cluster formation. However, the 
combined action of Brownian motion and the external gravitational field may lead to a dif- 
ferent behavior on the structural and kinetic quantities describing the aggregates. Although 
for theory and simulations it may be an advantage to single out the aggregation under 
Brownian motion only, experimentalists need to resort to a number of tricks to eliminate 
the action of the gravitational field on the aggregating system, like flipping the sample very 
often during the aggregation, considering a suspension fluid whose density matches closely 
that of the colloidal particles, or even considering a space lab experiment. It seems therefore 
to be necessary to advance our theoretical and simulational knowledge of colloidal aggrega- 
tion under the action of a gravitational drift. 

Currently, our basic knowledge [6] of diffusion-limited colloid aggregation (DLCA), the 
limiting regime of colloidal aggregation with no external field that occurs when the sticking 
probability after encounters is one, is as follows: (a) The fractal dimension d°, of the clusters 
in the dilute limit is close to 1.80 and has a square root type of increase with concentration, 
ds = d", + acj)13, where a ä: 0.91 and ß « 0.51, <f> being the volume fraction of the colloidal 
particles, (b) The number-average (Sn(t)) and weight-average ((Sw(t)) cluster sizes grow 
linearly with time in the dilute limit: Sn(t) ~ tz' and Sw(t) ~ tz, with z = z' = 1. However, 
the exponents z and z' increase from their zero-concentration value, again as a square root 
type of growth. This behavior of the average cluster sizes is in opposition to the reaction- 
limited colloid aggregation (RLCA) case, that occurs when the sticking probability tends 
to zero, for which an exponential increase of the averages is obtained, (c) The cluster size 
distribution N„(t), that gives the number of clusters of size s at time t, is bell shaped in the 
late stages of the aggregation. This is also in opposition to the RLCA case, for which an 
algebraic decay Ns(t) ~ s~T (r « 1.5) [7] is seen, again in the late stages of the aggregation. 

Much of this basic knowledge has been obtained through computer simulations, which 
have assisted researchers by proportioning a great deal of information about the structural 
and kinetic properties of the formed clusters. After a successful development of an aggre- 
gation model [8, 9], capable of providing the correct fractal dimensions, the simulations of 
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colloidal aggregation have advanced up to the point as to furnish the correct kinetics and 
scaling of the cluster size distribution [10], as well as the scaling of the structure factor 
[11, 12]. In this paper we present preliminary results of a colloid aggregation model that 
takes into account both the Brownian motion experienced by the particles and clusters, as 
well as the sedimentation due to a gravity field also undergone by the same particles and 
clusters. In the next section we write down the basic sedimentation equations leading to 
the aggregation model developed here. Then, in the section that follows we present and 
discuss the results of the model for the fractal dimension, the average cluster sizes and the 
cluster size distribution function. It is worth mentioning here that the deposition of big 
clusters on the bottom of the container as well as the depletion of them on top are not 
considered here; in our simulations we have periodic boundary conditions not only on the x 
and y directions but also on the z direction. This would describe the aggregation well in the 
bulk of a tall container. We also need to mention that all our simulations were stopped just 
before gelation, always working in the sol phase. We hope to relax those two restrictions in 
the future. 

THE MODEL 

The sedimentation velocity vs experienced by a cluster of N spherical particles of radius 
a and mass m0 is 

= m0(l - p/p„)gN = m0{l - p/p0)g . . 
f kBT { ' 

where p„ is the density of the particles, p is that of the suspension fluid, / is the friction 
coefficient of the cluster, £>(~ N~lldi) its diffusion coefficient and T is the temperature. Let 
t0 be the time for which the cluster diffuses a particle diameter (2a), that is, t0 = 2a2/D. 
During the same time, the cluster drifts a distance 

ds = vst0 = KNd  , (2) 

where if E m„(l - p/p0)ga/kBT and d is the diameter of the particles. It is found that K 
is of the order of unity if the particles are 1 p in diameter, p0 is of the order of 1 gm/cm3, 
T is room temperature and 1 — p/p0 is not too small. However, if the diameter is 0.1 p such 
quantity is of the order of 10~4, while if the diameter is 10 p, K goes up to 104. Therefore, 
1 p marks the transition size between diffusive and drifting behavior for individual particles, 
with density different from that of the medium. 

We will simulate the physical system on a simple cubic lattice with periodic boundary 
conditions and with lattice spacing equal to d. Each of the cells of the lattice can be 
occupied by a colloidal particle or can be empty, in which case is considered as occupied by 
the suspension fluid. As the aggregation proceeds, we deal with a collection of clusters made 
of nearest neighbor lattice cells that are diffusing randomly and sedimenting downwards. 

Let us define At*/ = d2/2Dmax as the time taken by the most mobile cluster of the 
sample (the smallest one) to diffuse one lattice spacing. Also, let Atdrtf SE djvfax be the 
time taken by the largest cluster to sediment downwards one lattice spacing. The algorithm 
goes as follows: 

a) If Atdrtf < Atdif then 

1. We pick a cluster in a cyclic way. 

2. The time is increased by Ai^/A^c, where Nc is the number of clusters at that time. 

270 



3. The quantity Atdrif v3/d is calculated and the result is added to a variable correspond- 
ing to that cluster. If the sum is greater than one, the cluster is moved downwards 
one lattice spacing and the new value of the variable becomes the remainder of the 
sum modulus one. 

4. If the cluster is moved, we check for overlapping with other clusters, in which case 
the moving cluster is taken back to its original position and the overlapping clusters 
are merged. Afterwards, we go back to the starting situation to calculate Atdi; and 
Atdrif. 

5. The cluster now moves one lattice spacing on a random direction, with probability 
(Atdrif/Atdif){D/Dmax). 

6. We then check for overlapping with other clusters, etc., as in point 4. 

b) If, on the other hand, Atdis < AtdTif, we follow exactly the same procedure as in a) with 
the exception that everywhere we find Atdrij, this is changed to Atdif. 

The simulations were stopped just before gelation. One volume fraction <j> = 0.01 was 
considered, for which three values of K were chosen: K = 10"8 (DLCA simulation), 10"3 

(the drift is felt predominantly by clusters of size ~ 1000 or larger) and 10_1 (the drift 
is felt by clusters ~ 10 or larger). For each value of K, 50 simulations of 156 250 initial 
particles were performed in order to have enough statistics for the evaluation of all relevant 
quantities. 

RESULTS 

In Fig. 1 (top) we are plotting on a log-log scale the radius of gyration Rg vs. the number 
of particles N, for all the clusters formed in the 50 simulations with K = 10^8. We fitted 
a straight line to the data points with N higher than 50 (such as to consider the asymtotic 
behavior for large clusters), shown in the figure, from which the estimate df = 1.888±0.002 
was made. Although it appears that the straight line is not passing through the middle of 
the data points, this is due to the fact that the points are denser below the straight line. 
We note that the d; estimate is in excelent agreement with a previous DLCA estimate of df 
as a function of (j> [6], evaluated at </> = 0.01. In Fig. 1 (middle) a similar plot for K = 10"3 

was made, where we can clearly see a change in behavior. We note two different slopes for 
the plot, with a breaking point at around N « 1000. We fitted two straight lines to the 
data points in this case. In the first one we considered clusters with N ranging from 50 up 
to 1000, while in the second one we fitted clusters with N greater than 1000. For the first 
straight line we obtained the estimate d) = 1.871 ±0.002, while for the second one we found 
dj = 2.265 ± 0.013. The first estimate is again very close to the known DLCA value for 
4> = 0.01, while the second indicates another regime: that of big drifting clusters sweeping 
smaller ones on their way to the bottom. That the fractal dimension of these clusters is 
higher indicates that the small clusters may fit in some of the holes of the big clusters, 
making them more compact. Finally in Fig. 1 (bottom), for K = 0.1, we find a single 
straight line for all N greater than 50. In this case the df estimate was df = 2.216 ± 0.001, 
which is close to the second estimate for K = 0.001. It is worth noting that our df values 
for this "sweeping regime" are also close to the value obtained in [3]: 2.32 ±0.05. Although 
the authors explain this value by a restructuring and rearrangements within the clusters 
mechanism, including bond breakage, that is something we didn't have to invoke; just the 
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sweeping of the small clusters, including single particles, by the big ones. 

Rg    10 

Rg     10 

fractal dimension 1 = 1.87 

fractal dimension 2 = 2.27 

1000 10000 100000 
N 

1000 10000 
N 

Fig. 1. Top: A log-log plot of Rg vs. iV for all the clusters formed with 16 or more particles, 
in all the 50 simulations performed for K = 10~8. Middle: Same as in the figure at the top, 
but now for K = 10~3. Bottom: Same as in the top figure, this time for K = 10"1. 
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In Fig. 2 we plotted on a log-log scale the weight-average cluster size vs. time, averaged 
over all the 50 simulations, for the three mentioned cases. For K = 10~8 we find a straight 
line (shown between the arrows), defining the exponent z of growth. Note that after the 
second arrow the graph of Sw curves again due to finite size effects. For the case of K = 10~3, 
the curve splits from the 10~8 one in the zone of the straight line, making it much shorter. For 
the K = 10_1 case, the splitting occurs well before the zone of the straight line, indicating 
a sharp speeding up of the aggregation. The exponent z obtained from this graph for 
K = 10~8 is equal to 1.42 ± 0.04, which is just a little different from the value 1.32 found in 
[6], applied to the case <j> = 0.01. 

000 

A. 
100 

/     /\ 

10 

Fig. 
curve 

2. A log-log plot of the weight-average cluster size Sw vs. time t, for K = 10 8 (solid 
K = 10~3 (dashed curve), and for K = lO^1 (dotted curve). 

In Fig. 3 we show, for the K = 0.1 case, the cluster size distribution function Ns(t) 
vs. s, coming from all 50 simulations. All the times in steps of 0.1 in the ln(time) variable 
were considered in the plot. That is, for ln(time) = 0.0,0.1,0.2, ...,6.1 (= final ln(time)). 
As we can see, for the final times we lose the bell shaped curves characteristic of DLCA 
and an exponent T now appears. The 8 straight lines passing close to the 8 last curves 
all have a slope of 1.16, indicating this value for the exponent r. The envelope exponent 
is now 2.15, which is a little different from the standard value of 2 found in DLCA or 
RLCA simulations. We are currently investigating if there is any relation between this odd 
value for the envelope exponent and the value found for the exponent r. The widening of the 
cluster size distribution indicated by the appearance of an exponent r has an understandable 
physical origin: there is an apparent instability in which the big clusters start to grow bigger 
at a very fast pace, the small clusters being uncapable of disapearing at the same rate. We 
therefore have the coexistence of very small and very big clusters in our system, widening 
the size distribution. 

In summmary, we have shown that the introduction of a gravitational drift changes the 
the structural and kinetic quantities of the aggregating system. For high strengths of the 
drift we crossover to a regime different from DLCA, with a larger fractal dimension, a faster 
rate of growth, and a wider, algebraically decaying cluster size distribution. 
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Fig. 3. A log-log plot of the cluster size distribution function Ns vs. s, for the K = 10 1 

case, for all the times in steps of 0.1 in the ln(t) variable, starting from 0.0 up to 6.1 (final 
ln(t)). 
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Abstract 

The effect of non-equilibrium charge screening in the kinetics of the one-dimensional, diffusion- 
controlled A + B —> 0 reaction between charged reactants in solids and liquids is studied. In- 
correctness of static, Debye-Hückel theory is shown. Our microscopic formalism is based on the 
Kirkwood superposition approximation for three-particle densities and the self-consistent treat- 
ment of the electrostatic interactions defined by the nonuniform spatial distribution of similar 
and dissimilar reactants treated in terms of the relevant joint correlation functions. Special at- 
tention is paid to the pattern formation due to a reaction-induced non-Poissonian fluctuation 
spectrum of reactant densities. This reflects a formation of loose domains containing similar 
reactants only. The effect of asymmetry in reactant mobilities (DA ~ 0, DB > 0) contrasting 
the traditional symmetric case, i.e. equal diffusion coefficients, (DA = DB) is studied. In the 
asymmetric case concentration decay is predicted to be accelerated, n(t) oc t~", a = 1/3 as 
compared to the well-established critical exponent for fluctuation-controlled kinetics in the sym- 
metric case, a = 1/4 and/or the prediction of the standard chemical kinetics, a = 1/2. Results 
for the present microscopic theory are compared with the mesoscopic theory. 

1     Introduction 

Bimolecular A + B —> 0 reactions are quite common in condensed matter physics and physical 
chemistry; e.g. they occur between primary radiation defects of two types, A and B, which re- 
combine when they approach each other during diffusion walks to within some critical distance r0. 
These particles (called Frenkel defects in solids and/or electrons and radicals in liquids) could be 
neutral or charged. 

Many-particle effects caused by the spatial fluctuations of the reactant densities have been 
intensively studied in recent years in the kinetics of bimolecular chemical reactions, including the 
above-mentioned A + B —> 0 reaction. A number of quite different techniques and methods were 
developed for this purpose, including direct computer simulations, a mesoscopic approach, the 
scaling, as well as microscopic theory see review articles [1, 2], a monograph [3]) and proceedings 
of the conference [4]. These studies clearly demonstrated that the kinetic laws established long ago 
in standard chemical kinetics [5] could be violated, usually at high particle concentrations/long 
reaction times. In particular, the asymptotic (t —> oo) concentration decay rate turns out to be 
n(t) oc t~d/4, where d < 4 is the spatial dimension, i.e. it is slower than the one in standard 
chemical kinetics, a — 1/2,1 and 1 for d = 1,2 and 3, respectively. This effect, called sometimes 
'abnormal kinetics' - abnormal from the standard point of view - is directly related to the reaction- 
induced non-uniform reactant distribution wich is in contrast to the main prediction of chemical 
kinetics that all reactants are well stirred and the reaction volume is homogeneous. As a result, 
modern chemical kinetics uses the language of critical exponents, correlation lengths, etc similar to 
the physics of critical phenomena. 

Presently almost all studies of fliH't.iin.t.ioii-rontrolled effects deal with neutral, non-interacting 
particles thus neglecting effects caused by their interaction. In this paper, we study iiiany-purliclv 
effects between charged reactants focusing on the dynamical Coulomb potential screening in the 
A + B -+ 0 reaction. 
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2    Kinetic equations 

Tim basic equations of our microscopic theory for interacting particles have been derived and 
discussed recently for d = 3 for the cases of Coulomb [G] and elastic (U(T) OC 1/r') [7] interactions. 
Now, based on results of our review article [2], we generalize these equations for arbitrary space 
dimension d. This helps to show peculiarities in the transition to low dimensions. 

Use of the Kirkwood superposion approximation [8] for decoupling the infinite hierarchy of equa- 
tions for the correlation functions leads to a minimum set of variables describing the fluctuation- 
controlled reaction kinetics. They are: macroscopic concentrations, nA = nB = n(t), and three 
kinds of joint correlation functions [1, 2] - two for similar particles, Xu(r,t), v = A, B and a third 
one for dissimilar particles, Y(r,t), where r is the relative distance between two particles. These 
functions describe a spatial distribution of pairs AA, BB and AB, respectively and are analogous 
to the radial distribution function in statistical physics of dense gases and liquids [8]. The phys- 

ical meaning of these correlation functions is the following [2, 6]: CA (r,t) = n(t)XA{r,t) and 

C(ß\r,t) - n(t)Y(r,t) are mean densities of particles A and B, respectively at the relative distance 
r provided that a probe particle A is in the coordinate origin. Introducing for simplicity a new 
function X(r,t) = (XA(r,t) + XB(r,t))/2 the basic set of kinetic equations read: 

^ß = -K(tW(L) , A'(0 = 7rf ''o"' lifo.OI  - (1) 
dt 

dY(r,t)/dt = Vj(M) - 2n(t)K(t)Y(r,t)J4X) , (2) 

)(rj) = (D, + DB) [VY(rJ) + ßVU'AH(r,l)Y(rJ.)} , (3) 

dX„(r,t)/dt = Vjl,(r,t)-2n{t)K(t)X„(r,t)Jd[Y}, (4) 

Ur,t) = Wu{VXu{r,t) + ßVUlv{r,t)Xv{r,t)}  . (5) 

In Eqs.(l) to (5) the black-sphere recombination model is assumed implicitly: any AB pair 
recombines instantly when two reactants during their diffusive walks approach each other to within 
some critical distance r0 [1, 2]. This fact is incorporated into the (Smoluchowski) boundary condi- 
tion for the correlation function of dissimilar particles; Y(r < r0,t) = 0 in Eq.(2). This correlation 
function defines the quantity of primary importance - the reaction rate K(t) which is a flux of 
particles over the recombination sphere's surface (7,; = 2,2ir,47r for d = 1,2,3, respectively). For a 
finite ru the reaction rate reads 

K(t) = lir
i

0-
ldY{r,t)ldr\r=ra. 

The non-linear terms in Eqs.   (2), (4) containing the functional Jd[Z] arise directly from the 
Kirkwood approximation [3, 8]. Their expressions for d = 1, 2, 3 are given in ref.[2]. In particular, 

J1[Z] = (Z(r + r0,t) + Z(\r-r0\,t))/2-l . (6) 

Expressions for the flux densities j(r,t) and j„(r,t) (ß = l/kBT) are also non-linear since the 
effective potential energies U'Xß{r, t) have contributions of both direct (A/J pair) and indirect, lateral 
particle interactions through surrounding particles. The technique for their calculation in the case 
of a short-range potential has been discussed in ref.[7], whereas that for the Coulomb potentials in 

ref.[6]. 
Low-dimensional (d = 1,2) systems with Coulomb interaction reveal a peculiarity which allows 

us to reduce the number of independent variables and to simplify the kinetic equations.  Namely. 
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we can do the limiting transition r0 —> 0 retaining the finite reaction rate. Physically this means 
that the reaction rate is governed by the effective radius. This radius is the largest one of the 
scale lengths in the system. For the Coulomb systems such a scale is called the Onsager radius, 
R = e2/zkßT [6]. This is a distance at which the thermal energy equals the attraction energy; when 
approaching to within R two reactants cannot separate and thus inevitably recombine. Usually 
R » To and thus R determines the reaction rate. Neglecting many-particle effects, the latter has 
a very simple form: K = 4%DRcff [2, 5]. In the limiting case of rQ -> 0 the functional Jd[Z] in 
eqs.(2),(4) is greatly simplified, Jd[Z]=Z(i,t)-i.. 

The recombination kinetics is defined by the following dimensionless parameters: (i) the initial 
particle concentration n(t = 0) = n(0), (ii) the parliul diffusion coefficient K = D.\/D (note thai 
dimensionless diffusion coefficients are related by the condition DA + DB = 2 , i.e. DA = 2K, 

DB = 2(1 - «)), (iii) the capillary radius rc (in the Id case). For more details see [3, 10]. 

3    Results 

3.1     Concentration decay 

The kinetics of the concentration decay has been calculated for high initial concentration n(0) = 1 
and long dimensionless time, t = 108. At this moment particle concentration drops by three orders 
of magnitude. (Further concentration decay hardly could be measured experimentally.) To make 
results more obvious, in Fig.l we plotted not the very kinetic curves, n = n(t), but their slopes on 
a logarithmic scale which defines the so-called current critical exponents 

d In * v  ' 

To demonstrate the importance of the effect of non-equilibrium charge screening neglected in 
many previous studies, we present results for three different approximations as follows. 

(i) The traditional, Debye-like treatment of the reaction kinetics with unsreened Coulomb in- 
teraction [8]. 

Many-particle effects are neglected, the kinetic equations arise due to linearization of equations 
for the correlation functions. As a result, the equation for the correlation function of similar 
particles A'„(r, 4) no longer affects the kinetics. In fact, the latter is defined entirely by the joint 
correlation function of dissimilar particles obeying the simple kinetic equation 

dY{r,t)      d / d d 
{§;Y(r,t) + Y(T,t)l;Hr)}, (8) 

dt dr 

where U(r) = — 1/r is the unscreened Coulomb potential. After linearization of a set of kinetic- 
equations, their solution no longer depends on the partial diffusion coefficient K (solid and dashed 
fines in Fig.l). At long times the solution of Eq.(8) is practically defined by the diffusion length 
£ = \/i, i.e. the decay kinetics obeys the 'classical' algebraic law, n(t) a t~a, a = 1/2. 

(ii) The complete set of Eqs. (1) to (6) incorporating many-particle effects (via non-linear 
terms) but with linearized potentials, (7^(r,i) = t7B(r,i) = —U(r,t) = 1/r. 

In this intermediate approximation the kinetics under study begins to depend on the mobility 
parameter K but asymptotically it still follows the kinetics known for neutral, non-interacting 
particles with U(r) = 0. 

(iii) The complete set of kinetic equations is combined with non-equilibrium treatment of charge 
screening making now no linearization. 

The dimensionless capillary radius was chosen as rc = 0.1. (Its reduction to the value of 0.01 
results in a small, logarithmic correction which does not affect the critical exponent.) Curve 1 in 
Fig.l shows that in the time interval considered the critical exponent rather rapidly approaches 
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FIG. 1. The critical exponent characterizing the algebraic con- 
centration decay, Eq. (?.J. as a function of dimensionlcss reaction 
time. Solid curves—symmetric reactant mobilities, DA = DB; 
dashed curves—asymmetric mobilities, DA = 0. Dotted lines show 
the two expected asymptotes: a=\ and \. Curves 1 correspond to 
the Debye theory, curves 2 to a solution of the kinetic Eqs. (^ )- 
(6) incorporating spatial reactant correlations but neglecting dy- 
namical charge screening, and curves 3 to the case when a!! screen- 
ing effects are incorporated. 
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FIG. 2. The joint correlation function of dis- 
similar particles, Y{rtt) (solid curve), and thai of 
similar particles, XA(r,i) (dot-dashed curve) and 
XB(r,i) (dashed curve). Curves 1-3 correspond 
to the dimensionless times 10\ I06, and !08. re- 
spectively, (a) Symmetric mobility case, 
DA = DB. (b) Asymmetric case, DA = 0. Note 
that in case (a) XA{r,t) = Xg(r,t) = X{r,l)\ in 
case (b) XA(r,t) is plotted on a logarithmic scale. 

278 



its limiting 'classical' value of 1/2. Curves 2, incorporating many-particle effects, approach their 
gjKzsi-steady-state after nearly the same time but their further approach from above to another 
asymptote wich a = 1/4 has a logarithmically slow character. For example, for the symmetrical 
mobilities a(t = 108) = 0.264. In the asymmetric mobility case the deviation from the asymptote 
is larger, a(t. = 108) = 0.280. Such a behaviour results from the long-range nature of the Coulomb 
interaction between particles. 

Strictly speaking, the a = 1/4 law of the fluctuation-controlled kinetics in d = 1 is proved only 
for non-interacting particles [1, 2, 4]. It was generalized for interacting particles provided that their 
interaction potential is short-range and does not lead to the similar-particle collapse [3]. In fact, 
this law has been proved for the case when the largest length parameter in the problem is the 
diffusion length, which is the case if the interaction potential was a Debye- Hiickel like. However, 
the uncreened Coulomb potential, U(r) = -1/r, has an infinite interaction radius and thus defines 
the asymptotics of the correlation functions at large distances. The approach to the asymptotic 
character is very slow, it has diffusion-controlled character. Moreover, in the asymmetric case there 
is no mechanism of smoothing the fluctuations of the immobile particle distribution at all. This is 
why the results of our case (ii) are far from trivial. 

Lastly, curves 3 in Fig.l show a considerable difference for the symmetric and asymmetric 
mobilities which is more pronounced than that in curves 2. However, due to a very slow approach 
to their limiting values it is not clear whether and by how much the relevant critical exponents 
differ as I —• oo. Analytical arguments are given in ief. [10] that in the symmetric case a = 1/1 
(as for non-interacting particles), whereas for asymmetric mobilities the critical exponent is larger 
and the reaction occurs respectively faster, a = 1/3. Note that a similar reaction acceleration 
between charged particles with asymmetric mobilities was predicted earlier in the 3d case [6]. We 
found there that a = 5/4, to be compared with a = 1 known in the standard chemical kinetics, 
and a = 3/4 in the fluctuation-controlled theory. Analogously, in 2d [9] we predict a = 1/2 and 
3/4 for symmetric and asymmetric mobilities, respectively. Consider now briefly the kinetics of the 
pattern formation in the particle spatial distribution. 

3.2     Spatial reactant distributions 

Figure 2 shows the time development of the joint correlation functions (note the logarithmic scale 
on the x axis and the same scale for immobile similar particles XA)- A key role of the diffusion 
length £(i) = \/t is evident here: the characteristic relative distance £' at which no AB pairs exist 
(Y(r < f',t) << 1) increases in time as \ft: £' increases by an order of magnitude as time increased 
by two orders of magnitude, £' = £(i). 

Irrespective of the n value, the correlation functions of mobile particles, A'„(r, (), have a plateau 
at the same scale r < f' and decrease rapidly to zero at r < 1. (This comes from the repulsion of 
similar particles at the relative distances which are short compared to the Onsager radius). In the 
asymmetric case the correlation functions of similar immobile particles have singularities at short 
r, where Xyi(r,t) drops by several orders of magnitude in a narrow interval r g (0,1). 

A comparison of these results with earlier findings for non-interacting particles [11] shows their 
remarkable similarity. The main difference lies in the depletion in the correlation functions of similar 
mobile particles at short relative distances caused by particle repulsion, whereas for neutral particles 
the correlation functions are finite asr-» O.For non-interacting particles and symmetric diffusion 
such a behaviour of the correlation functions led to the conclusion that the pattern formation occurs 
in a form of alternating domains of similar particles, A or B, with linear size £(t) [1, 2, 3]. This 
reaction-induced reactant-structure greatly differs from the basic assumption of standard chemical 
kinetics about well-stirred and homogeneous reactant distribution. In the domain structure reaction 
occurs only at the boundaries of the domains of particles of different type. In the asymmetric 
diffusion case for both non-interacting and interacting particles mobile B reactants remain randomly 
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distributed within their domains, whereas immobile A reactants form compact clusters - a kind of 
"raisins in dough" [6, 11]. The 2d case will be discuss in detail in ref. [9]. 

4    Conclusions 

We compare in the conclusion the main results of the mesoscopic [3] and the present, microscopic 
formalism for the diffusion-controlled A + B —» 0 reaction between charged particles in the Id case. 
The former theory claims that the critical exponents in the concentration algebraic decay is the 
same for charged and neutral particles provided: 

(i) similar particles (AA, BB) repel each other, and (ii) the pair interaction potential is not 
divergent (e.g. the Debye- Hückel potential). 

Our microscopic theory generalizes this result (valid for the case of symmetric particle mobil- 
ities) for the unscreened (divergent) Coulomb potential. Moreover, we have studied here the case 
of asymmetric mobilities (DA = 0, DB > 0) and predicted reaction acceleration, i.e. an existence 
of a new critical exponent, a = 1/3. We have also demonstrated that this peculiarity is a direct 
consequence of the specific spatial distribution of reactants studied by us in terms of the joint cor- 
relation functions for both similar and dissimilar reactants. A large discrepancy between the two 
approaches takes place for the accumulation kinetics under permanent particle source [9, 10]. 
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ABSTRACT 

A video photographic study of the kinetics of the precipitation reaction Na,2HPOi 
+ CaCl2 —► CaHPOi in agarose gels is presented. Periodic precipitation, known as 
Liesegang bands, are observed when one of the reactants is incorporated in the gel and 
the other allowed to diffuse in. The time evolution of the first Liesegang band's profile 
provides a direct confirmation of the supersaturation model, with a decrease in intensity 
as the monomer concentration is depleted and the formation of a broad plateau behind 
the sharp band from large particles left after the incorporation of the smaller mobile 
particles into the rapidly growing aggregate front. The time dependence of leading edge of 
the precipitate front agrees with the predictions of the reaction-diffusion-supersaturation 
model of Liesegang band formation. 

INTRODUCTION 

The study of non-linear chemical reactions exhibiting features such as temporal oscil- 
lations, chaos and pattern formation is currently attracting considerable attention. There 
has been much recent interest in the study of diffusion controlled reactions in gels or other 
unstirred media. The simplest case is the reaction A + B —> C(solid) [1-3] in systems 
where the initially separated reactants after diffusing are allowed to react irreversibly and 
the products C are inert particles which may diffuse [4] or not [5]. Such a reaction is 
usually conducted by allowing one electrolyte front to diffuse and react with another elec- 
trolyte which is embedded in a gel forming a slightly soluble product that precipitates 
discontinuously in bands parallel to the diffusion front's surface. This phenomenon, called 
Liesegang bands [6], has been widely studied because it offers a model to explain a great 
variety of formations in nature, ranging from agate rocks and gold veins to gallstones [6-8]. 
The patterns appear to follow some general laws. First, the position xn (measured from 
the gel surface) of the nih band is related to the time tn of its formation by the so called 

time law xn ~ tn
1'2 which is the hallmark of the diffusion mechanism. Second, the ratio 

between the positions of adjacent bands , x„/i„_! = p, approaches a constant value p > 1 
for large n; although the phenomenon of reverse banding, i.e. p < 1 has sometimes been 
observed. Third, the width of the bands u>n grows with the distance according to the 
relation wn ~ (xn)a with a smaller than one. 

Many theoretical and simulation studies have been made to explain the formation 
of Liesegang patterns [9-10]. No single model can explain all the observed results, such 
as the presence of precipitate particles between the bands, the reverse spacing (p < 1) 
phenomena or the formation of complex patterns (double banding). However, there is 
considerable evidence to support the supersaturation theory of Ostwald and Prager [4- 
5] which considers band formation as a spatially discontinuous nucleation process. The 
formation of sharp rings is preceded by the onset of a turbidity front, implying that colloidal 
particles are continuously distributed initially and the sharp band formation is a post 
nucleation process involving aggregation and growth mechanisms [11]. 

Recently we have performed precipitation reactions in agarose gels by diffusing two 
salts from opposite ends of a tube containing the gel and allowing them to react and form 
an insoluble precipitate in the gel. From such a study we observed that a crossover from 
a confined precipitate to Liesegang bands occurs when the reactant concentrations change 
from equal at the two ends to unequal [12]. 
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In an attempt to reproduce the observed behaviour we performed numerical simula- 
tions with the diffusion-reaction model [12]. We assumed that in the reaction A + B —♦ C, 
the product C is a neutral molecule capable of diffusing and aggregating. The aggregation 
is modelled by an additional reaction C-»fl where D, although chemically identical to 
C, represents the solid phase. Following Dee's [4] simplification we considered that the 
aggregation term consists of two parts: the first one accounts for nucleation and has the 
form Knc for c > cn, where cn is the the supersaturation threshold at which nucleation 
is no more hindered by kinetic barriers. Nucleation is assumed to be the only mechanism 
responsible for the triggering of the precipitation in the gel because cluster-cluster aggre- 
gation is inhibited by the trapping of mesoscopic particles in the gel structure. The second 
part of the precipitation term is in general a complicated integro-differential expression [4] 
of the concentration of C and D. It is based on the fact that in presence of aggregation, 
precipitation of nuclei is no more hindered by kinetic barriers and occurs for concentration 
c > cs, where cs, the saturation threshold is < c„. In order to simplify the equations, we 
followed the approach of Chopard et al. [9] and retained the non linear term Kv c d so that 
the simplified equations become: 

Sta = DaV
2a - Kab (1) 

6tb = DbV
2b - Kab (2) 

6tc = DcV
2c + Kab - KncH(c - c„) - KpcdH(c - c.) (3) 

Sid = KncH(c - c„) + KpcdH(c - c.) (4) 

where H{x) is the Heaviside step function. By changing the initial distributions of the 
reactants and the boundary conditions, this model can also be used to describe Liesegang 
band formation when one of the reactants is incorporated at a uniform concentration in 
the gel and the other allowed to diffuse into the gel from one end. 

In this paper we report the early stages of the kinetics leading to the formation of 
the first Liesegang band for a precipitation reaction carried out by incorporating one of 
the reactants in the gel and allowing the other to diffuse in. We also examine whether the 
phenomenon depends on which of two reactant species is incorporated in the gel. Previous 
studies of the kinetics [7,8] have focussed on the temporal evolution of the successive bands; 
our focus is on the time evolution of the first band. 

EXPERIMENT 

The experiments were carried out in capillary tubes of 2mm diameter and 12.5 cm 
length. Aqueous solutions of Na2HPO^ and CaCh were used as reactants. Solutions of 
both electrolytes at several different concentrations were prepared at room temperature. 
A pre-gel mixture containing 1.5% agarose and one of the two reactants, either Na2HP0i 
or CaCli, (i.e. the inner electrolyte) at a concentration of 20 mM was made at room 
temperature. The agarose was dissolved by by heating at 90°C for about half an hour. 
The bottom half of the capillary tube was filled with the hot pre-gel solution. The samples 
were allowed to stand undisturbed at room temperature (22°C) for approximately one 
hour until a colorless gel was formed. The top half of the capillary tube was then filled, 
using a syringe, with the other electrolyte solution, leaving the gel at the bottom. The 
capillary tubes were sealed to avoid evaporation of the solvent during the experiment. All 
the experiments were performed at room temperature (22°C). Care was taken to keep the 
tubes in a horizontal position during the experiment (over 30 days). 

The time evolution of the precipitate was recorded using a CCD camera and the 
images were stored on a video tape. The video signal was transformed using a PC-vision 
image processing card to a digital image. The profiles were grabbed from the original 
images using a frame grabber and analysed using a digital image analysis program. 
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RESULTS 

Figure 1 shows the periodic precipitate pattern formed in the tube twenty hours after 
the reaction had been initiated. The inner and outer electrolyte ratio is varied for the 
different cases shown. Classic Liesegang bands are observed in both cases (a, b) where 
the inner electrolyte (i.e. inside the gel) is Na2HPOi and the outer electrolyte is CaCh 
at a higher concentration. As seen in the Figure decreasing the relative concentration of 
the outer/inner electrolyte from 4 to 2 decreases the number of bands from 4 to 3. After 
waiting for over one month tube (a) shows 6 bands while tube (b) shows 8 bands. Similar 
bands were observed when the CaCl2 was embedded in the gel and the Na^HPOi was 
allowed to diffuse into the gel. A comparison of the experiments where the concentrations 
of the outer and inner electrolyte concentrations are the same but the type of electrolyte 
is reversed shows that the extent to which the outer electrolyte has diffused and reacted 
is roughly the same in the two cases (CaCl2 diffuses about 15% faster than NajHPOi), 
implying that the flux is quite similar for the two electrolytes. The formation of same 
number of bands irrespective of whether the cation or the anion is the inner electrolyte 
shows that the number of bands is insensitive to the influence of the surface charge of 
the growing colloidal droplet and any charges that may be immobilised by the agarose gel 
which is known to carry some residual sulfate. The slight variation in the spacing of the 
bands reflects the roughly 15% variation in the diffusion constants of the two species. 

Figure 2 shows the time evolution of the initial stages of the precipitation process 
leading to the formation of the first band in the case of the reaction shown in Figure lb. 
At the earliest time only a sharp narrow precipitate peak is observed. The position of 
this peak shifts into the gel with time while the width of the precipitate band increases. 
A slight asymmetry is evident even at the earliest time of observation. This asymmetry 
becomes more pronounced as the peak moves further into the gel leaving behind a broad 
plateau which widens. The intensity of the sharp peak decreases with time. At late time, 
around 2.5 hours the peak position gets fixed and is clearly visible at the leading edge 
of the plateau; a second Liesegang band has also appeared by this time, as shown in the 
3-dimensional plot. Figure 3 shows a trace of the density along the flow direction, obtained 
by averaging the density over the cross-section of the tube, 14 hours after the initiation of 
the reaction. Four Liesegang bands are clearly visible. 

This profile represents the moving reaction front of the precipitated particles. As 
shown in Fig. 4, at early times the distance travelled by the leading edge of the precipitate 
front R(t) ~ A t1!2 - Bt3/2 where t is the elapsed time, as predicted by the reaction- 
diffusion-supersaturation model [13] at short times. The i1/2 term dominates at the earliest 
times, while the t3!2 term becomes important later. The systematic deviation at the latest 
times'implies that the full solution in terms of the error function is needed to model the 
position of the edge as the band asymptotically settles into its fixed position. The time- 
evolution of R(t) over the entire duration of the experiment is very similar to the numerical 
results obtained in ref. 13 (c.f. Fig. 3 of [13]). 

The decrease in the intensity of the peak at the leading edge (clearly visible in the 
3-d plot of Fig. 2) is a direct visualisation of the Ostwald ripening mechanism. The 
precipitated particles nucleate when the concentration of C particles exceeds c„; however 
the rapid growth into a sharp band represents the aggregation process which starts at 
c > c, (c3 < c„). The depletion of the small particles by their incorporation into the 
rapidly growing aggregate particles D leaves behind the broad plateau, while the moving 
peak is the rapidly growing aggregate which continues to move until the region in front of 
it is depleted of monomer. This depletion of the monomer is responsible for the decrease 
in the intensity at the leading edge and the slowing down in the distance travelled by the 
advancing precipitation front. The broad plateau results from the largest particles which 
are left behind in the Ostwald ripening process, since their mobility is very small. Similar 
broad tails can be seen preceding each of the subsequent bands ( c.f. Figs. 2 and 3). The 
width of these broad tails appears to decrease with increasing band number, suggesting 
that as the reaction proceeds in time, the concentration of the outer electrolyte may also 
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Figure 1. Photograph showing the precipitates of CaHPOt produced in a 1.5% 
agarose gel containing one of the reactants in the gel and allowing the other to diffuse 
in, after 20 hours of reaction. In both (a) and (b) the inner electrolyte is Na2HPOi at 
a concentration of 20mM. In (a) the outer electrolyte is 40mM CaC72, while in (b) the 
CaClj concentration is 80 mM. Similar results were observed by reversing the inner and 
outer electrolytes. 

Figure 2. A 3-dimensional plot of the time evolution of the precipitate profile for the 
reaction shown in Fig. lb. The first two Liesegang bands are identified as 1 and 2 at the 
latest times. 

60   £• 

10000 

6000 

% 4000 ■«  JP* 

284 



Figure 3. A density profile of the reaction in Fig. lb after 14 hours of reaction. The 
graph shows 4 Liesegang bands. Note the broad plateau trailing the sharp first band and 
broad tails preceding each of the subsequent Liesegang bands. The position axis is in 
arbitrary units. The bar in the figure shows the actual length scale of the experiment. The 
y-axis is proportional to the density of the precipitate. 
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Figure 4. The time dependence of the position of the leading edge of the precipitate 
front, R(t) for the first Liesegang band of the reaction in Fig. 1(b). The fitted line describes 
the short time limit of the reaction-diffusion-supersaturation model as described in ref. 13. 
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be decreasing. The characteristic profile of a broad plateau or tail with a sharp band at the 
leading edge is also similar to the profile observed in our experiment on confined precipitate 
produced by bringing the reactants from opposite ends of the gel [12]. In that experiment 
the confined precipitate's profile is a broad band in the middle with a sharp edge at either 
side. The simulation in that case [12] had shown that the sharp band is produced where 
the concentration of the precipitated particles equals cs, the saturation threshold; whereas 
the broad band is centered where the concentration equals the nucleation threshold, cn. 

CONCLUSIONS 

We have obtained direct confirmation of the supersaturation mechanism as being 
responsible for the formation of the discrete bands in a Liesegang band precipitation ex- 
periment in a gel. The time evolution of the first Liesegang band is in excellent agreement 
with the predictions of the reaction-difFusion-supersaturation model. The density of pre- 
cipitated particles decreases as the supersaturation mechanism comes into play, with the 
condensation of the smaller particles onto the rapidly growing aggregates. We observed 
that band formation is independent of which electrolyte is inside the gel and which is out- 
side the gel. This symmetry indicates that the kinetic barriers and the diffusion rates of 
the growing particles are not strongly dependent on the interaction of the ions, the surface 
charge of the colloidal particles and the residual charges, if any, of the gel. 
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PHASE TRANSITIONS, PATTERNS AND STATISTICAL MECHANICS OF 
FRONT PROPAGATION IN A DYNAMIC RANDOM IMPURITY MODEL FOR 

STRIP, UNUSUAL TREES AND OTHER GEOMETRIES 

N. VANDEWALLE, M. AUSLOOS, 
SUPRAS, Institut de Physique B5, Universite de Liege, B-4000 Liege, Belgium 

ABSTRACT 

A dynamic random impurity model is studied for describing the evolution of an advancing 
interface through a multiphase random medium containing mobile impurities. A short range 
repulsion between the front and the impurities leads to an aggregation process along the front, 
and to the trapping of aggregates behind the front. The patterns of trapped impurities are found 
to be self-organized. Some theoretical treatment is performed through a transfer matrix technique 
in various geometries: trees with loops instead of branches, chains of squares and triangles 
joined by vertices. Arguments are given for applications of such concepts, techniques and 
models in various cases: chemistry, biology, trafic, sociology, economy,... 

INTRODUCTION 

Pattern formation is a common phenomenon in nature [1]. Various physical processes 
leading to spatial and/or temporal self-organization have been investigated: coalescence, 
aggregation, convection, fragmentation, ... However, less attention has been paid to the 
trapping of a collection of particles pushed by an advancing interface. This case is e.g. of high 
interest in crystal growth where the decoration of a crystal by impurities [2] could improve the 
mechanical and electrical properties of the crystal. The trapping of bubbles during solidification 
[3] and the behavior of biological cells on a ice/water interface [4] are also addressed with this 
problem. 

While the pushing/trapping of a single particle by a smooth interface has been experimentally 
and theoretically investigated [5], there is a lack of studies about the more complex phenomenon 
of collective motion/trapping of many pushed particles near an interface. We recently introduced 
a model [6] (so-called "dynamic epidemic model") which provides a tool for studying this 
phenomenon. Unexpected results were obtained and some of them are collected in this paper. 

MODEL 

The model is constrained to be the most simple as possible. The model was first defined on a 
two-dimensional half-space of width W. Periodic boundary conditions are used. Each site can 
receive a liquid unit (phase L), a solid unit (phase B) or a particle (phase A). A single site is 
assumed to contain at most one phase. Initially, all sites are turned into the liquid phase (L) 
except for a fraction x of sites which each contain an A-particlc. The initial spatial distribution of 
particles is supposed to be random. 

The growth starts from a homogeneous seed line made of the B-phase at the bottom of the 
lattice. At each simulation step, all liquid sites in contact with the so-called B-cluster are 
selected. One of them is randomly chosen and is turned into the phase B following the trivial 
reaction L^B. Such a growth rule is equivalent to the classical Eden one [7]. 

The repulsive dynamical mechanism occuring between the front and the particles is then 
introduced as follows. If a particle is touched by the newly added solid unit, the particle makes a 
random move towards a nearest neighbour liquid site reducing the contact with the solid front. If 
the particle cannot reduce its number of nearest neighbouring solid units by such a jump, the 
position of the particle remains unchanged and later becomes trapped by the front in the cluster. 
One should note that a particle can be trapped following two different ways (i) an A-particle can 
be trapped directly by the front because the former one cannot reduce its number of nearest 
neighbour B-solid units, or (ii) the displacement of an A-particle can be forbidden by the 
presence of other particles on neighbouring sites leading further to the trappingsince the 
pushing of aggregates is not considered herein. The selection, growth and particle motion 
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process described here above is repeated a large number of times if possible. Indeed, the growth 
can sometimes stop if there is no liquid site in contact with the cluster. The growth is irreversible 
(i.e. far from equilibrium) and history dependent (i.e. non-Markovian). 

Applications to various types of interfaces (two unmixing fluids, solid/liquid, ...) are 
obvious. Non-solid particles can be also envisaged like non-coagulating liquid droplets or 
vesicles. Many other spreading phenomena like epidemia, dielectric breakdown, gelation,... are 
also concerned by the present study. Extensions of this model for attractive interactions 
front/particles but also for interactions between particles themselves arc of interest. The 
dissolution of the pushed particles was also considered in a parallel work for the application to 
superconducting materials in isothermal undercooling conditions [8]. 

NUMERICAL INVESTIGATIONS IN TWO DIMENSIONS 

Figure 1 presents a typical simulated pattern for x=0.20. One should first note that the 
distribution of A-particles in the B-matrix is inhomogencous behind the front. In fact, the A- 
particles rejected by the interface are aggregating and the aggregates arc then trapped behind the 
front [6,9]. 

For x=xc=0.56±0.01, a kinetic phase transition between the ever growing B-clustcr case and 
a blocked B-cIuster case takes place. Indeed, for x<xc the B-cluster are growing for ever; while 
for x>xc, the growth of B-clustcrs is stopped due to a large amount of hindrances (A-impurities) 
along the front. One should remark that the xc value is much higher than the value xc=0.41 
obtained in the case of static particles, i.e. in the simple percolation problem [10] or usual 
epidemic model [11]. The high xt value is explained as resulting from the aggregation 
phenomenon occuring along the advancing interface [6] and kink front instabilities. 

Figure 1 - A typical growth patterns of width W=64. The solid-liquid interface and the trapped 
particles arc denoted by black dots. The fraction of particles is x=0.20. 

Figure 2 presents snapshots of the trapped particle distributions behind the growing front for 
eleven different concentrations. Mobile particles, i.e. particles which can minimize their contact 
with the B-phase by a move, are not represented. Patterns are illustrated for various particle 
fractions, i.e. from x=0.05 to x=0.55 by steps of 0.05. The distribution of trapped particles is 
clearly inhomogencous in all cases except for very low values of the particle fraction x where the 
distribution consists in isolated trapped particles (see the x=0.05 case). As the fraction x of 
particles increases, the patterns tend to be made of trapped aggregates. Filamentary-like 
structures are well seen for a fraction x close to 0.25. Such filaments are roughly oriented 
parallel or at 45° to the direction of the front propagation. For higher values of x, larger 
aggregates are trapped showing branched structures. This is well seen for e.g. the x=0.40 case. 
For a particle fraction close to x=0.50, some "voids" appear in the distribution of trapped 
particles. Indeed, liquid regions of finite size cannot be reached by the growth since such 
regions are blocked by surrounding particles forming static hindrances at that high fraction of 
particles. One should recall that mobile particles are distributed in these voids and are not drawn 
in Figure 2. For x=xc, it can be shown [6] that the voids in the trapped particle distribution have 
all sizes. It is not possible to specifically observe the scale invariance in the last snapshot of 
Figure 2 because of the finite size (40x40 lattice cells) of the picture. However, the scale 
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invariance was numerically dcmonslralcd considering cluster density profiles in rcf.[6]. The 
fractal dimension of the trapped patterns was found to be Dr=91/48 at x~xc, i.e. the fractal 
dimension of epidemic clusters with static particles [11]. 
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Figure 2 - Snapshots of some typical trapped particle distribution much behind the front. Eleven 
different particle fractions \ arc illustrated ranging from 0.05 to 0.55 by steps of 0.05. The size of 
the snapshots is 40x40 lattice cells. Particles which are still mobile in the "liquid" phase are not 
drawn. 

THEORETICAL INVESTIGATIONS IN ONE AND INFINITE DIMENSIONS 

The above model has been analytically studied on simple chains [121 and simple trees 
[12,13], i.e. on one and infinite dimensional lattices. For solving this problem, a transfer matrix 
method has been elaborated and its usefulness has been demonstrated for hierarchical lattices 
[13]. The main results are collected herein. The transfer matrix method provided two main 
results: (i) the threshold xc for the transition and (ii) the critical exponents describing this 
transition. The exact solution of the model has been obtained on various chain and tree 
geometries as those shown in Figure 3. The chains and trees of Figure 3 are decorated by loops 
or not. The "loop" nature of a lattice allows the trapping of particles behind the front since the 
front is able to surround and bypass the small aggregates. This is not the case of loopless lattices 
(Figures 3a and 3d) where the front is blocked by small aggregates. 

On chains (d=l), the critical fraction xc is zero meaning that it is not possible to grow 
indefinitely the B-phase in presence of A-impurities. On trees (d=°°), it was found non-zero xc 

values [?]. We gave [?] the exact solution xc=(z2-l)/z2 for mobile particles on the Cayley tree. 
This is in contrast with the xc=(z-l)/z result in the case of static particles on the Cayley tree. 

Moreover, the values of the critical exponents (v and y) describing respectively the 
divergence of correlation length £ at xc and the divergence of the cluster size S at Xc have been 
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also calculated. In infinite dimensions (on trees), the critical exponents v=l and y=l are those of 
percolation (the case of static particles). However, in one dimension (on chains), the values of 
the critical exponents depend surprisingly on the loop nature of the chain. Indeed, chains with 
loops have the exponents v=3 and Y=3 while simple chains have the exponent values v=l and 
y=l, i.e. those of percolation. This was unexpected. 

(a) (d) 

-O— 

(c) 

Figure 3 - The various chains (a-c) and trees (d-f) for which the problem of pushed particles was 
exactly solved [12,13]. In contrast with other lattices (b,c,e,f), the chain (a) and the Cayley trees (d) 
do not contain loops. 

CONCLUSION 

The dynamic epidemic model considers the growth of a cluster in a medium containing a 
fraction x of mobile "particles" which are pushed by a propagation front. It can be the source of 
many investigations and interesting predictions when being generalized to more realistic 
constraints as in [8] for superconducting ceramics. 
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Fluctuations, Lindemann Criterion and 
Liquid-Solid Transition in Thin Films 

Alexei V. Tkachenko and Yitzhak Rabin 
Department of Physics, Bar-Ilan University 

Ramat-Gan 52900, Israel 

Abstract 

A simple model of confinement-induced freezing in thin liquid layers is pre- 
sented. Under boundary conditions of vanishing displacement field at the walls, 
confinement suppresses the amplitude of fluctuations in a solid film below a crit- 
ical value determined by the Lindemann criterion of melting. The resulting in- 
crease of the melting temperature compared to that of a bulk solid, is estimated 
and the connection with experiments is discussed. 

1    Introduction. 
Recent experimental and theoretical studies[l]-[6] show that when the thickness 
of a thin liquid film confined between two solid plates is reduced to the point 
where only a few molecular layers can fit between the plates, the film acquires 
shear rigidity characteristic of a solid. Computer simulations and some simple 
models suggest that this effect is related to the existence of wall-induced epitaxial 
ordering in the confined film[4]-[6]. Although this mechanism appears plausible, 
experiments[2, 3] have shown that the phenomenon occurs even when the diameter 
of the molecules of the liquid is much larger than the typical size of the constituents 
of the walls, i.e., under conditions which rule out the epitaxial mechanism. Indirect 
evidence against the epitaxial mechanism comes from the fact that, in the liquids 
where confinement-induced freezing is observed, solidification does not take place 
in films spread on a single solid surface[7] (the other surface is in contact with 
air). Other possible scenarios such as pressure-induced solidification or density 
increase due to strong attractive interactions between the walls and the molecules 
in the thin layer, cannot explain recent experiments which were performed under 
zero normal stress conditions and which reported an abrupt transition into a solid 
phase when some critical film thickness (6 to 8 molecular layers, depending on the 
molecular constituents) was reached[3]. 
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2    Description of the Model 

The difficulty in constructing a theory of confinement-induced freezing (CIF) start- 
ing from first principles is that there exists no reliable theory of the liquid-solid 
transition even in the simpler, bulk case. Instead of following this path, we will 
present a phenomenological approach, based upon the theory of elasticity of solids 
and the empirical Lindemann criterion of melting[8]. Note that this approach al- 
lows us to avoid delicate issues related to the structure (crystalline vs. amorphous) 
of the solid phase and define the film as solid if it has non-vanishing shear rigidity, 
at least on experimentally relevant time scales. 

What is the minimal model which could describe CIF? It is known that a liquid 
near a smooth solid surface has a layered structure [9] and one could expect that 
such layering in the confined geometry may stimulate freezing under conditions 
when the bulk is liquid. If this was true, it would be sufficient to ensure that the 
solid walls restrict molecular motion normal to their plane but do not affect motion 
in the parallel directions. However, even in the extreme limit of a single molecular 
layer confined between two planes with purely hard-core molecule-plane interac- 
tions, we have essentially a two-dimensional liquid whose freezing temperature 
(under low pressure conditions) is lower than that of the corresponding three- 
dimensional one. 

Since confinement-induced freezing is observed at temperatures for which the 
bulk phase is still in a liquid state, one concludes that the presence of a hard wall 
which suppresses only molecular motion normal to its plane is not sufficient to 
produce CIF, and that the observation of the phenomenon implies that the in- 
plane degrees of freedom are also affected by the wall. In the following, we will 
assume that the coupling between the molecules in the thin film and the solid 
surfaces is sufficiently strong to suppress molecular motion near the walls, in all 
three directions. Instead of discussing the effect of confinement on the freezing of a 
liquid, we consider a thin solid film confined between two rigid walls and calculate 
the effect of boundary conditions on the thermal fluctuations of the molecules 
about their average positions in the solid. Then, we use the Lindemann criterion 
of melting (for fixed pressure) to estimate the shift of the melting temperature of 
the thin film with respect to that of the bulk solid. 

Consider a solid film confined between two planes, z = 0 and z = L. We 
introduce the displacement field u which describes arbitrary deviations (e.g., due 
to thermal fluctuations) of the molecules from their average positions in the film. 
We demand that the displacement field vanishes on the boundaries of the sample 
due to strong coupling to the rigid walls: 

\z=L = 0 (1) 
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Using elastic free energy of an isotropic solid[10]: 

H = ^jdr [avav + r^ (öu)2] (2) 

one can obtain [11] a simple and remarkable result that the maximal fluctuation 
amplitude in the confined film (which corresponds to the midplane of the film) is 
smaller than its bulk value and that the correction is inversely proportional to the 
number N of confined molecular layers: 

g(u»(£/2)).,     1 

(u2)0       -    N {6} 

This result is not sensitive to the non-universal behavior of the elastic theory on 
molecular length scales. This provides an a posteriori justification for our use of 
the continuum free energy, Eq. (2). 

The calculated suppression of the amplitude of fluctuations at the center of the 
layer is a direct consequence of our assumption that fluctuations in all directions 
vanish at the wall (it can be shown that if only normal fluctuations were to vanish 
at the wall, the amplitude at the center would actually increase compared to the 
bulk). 

3    Results and Discussion 
We now relate our estimate of the confinement-induced suppression of fluctuations 
to the shift in the melting temperature, by using the Lindemann criterion. Accord- 
ing to the strong form of this criterion which states that the value of the maximal 
fluctuation amplitude at the melting point is independent of N and thus is the 
same in the bulk and in the confined film (this statement is supported by stud- 
ies of finite size effects on thermal flucutations in solids under periodic boundary 
conditions [13]), the confinement-induced temperature shift is given by: 

STmM(N)       1 
 -—- ~ — (4) 

In deriving the above result, we used Eq. (3) and the fact that (u2)0 is proportional 
to temperature. Strictly speaking, the Lindemann criterion should only be used to 
estimate the limit of stability (spinodal) of the solid phase. We assume, however, 
that the scaling and the sign of the relative correction to the critical temperature 
is the same for all the characteristic points of the transition (i.e. for the spinodals 
of the liquid and solid phases and for the point of equilibrium transition). 

Note that according to Eq. (4), the temperature shift is positive for any finite 
thickness of the confined film. If this was true, confinement-induced freezing could 
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be observed even in macroscopically thick layers. Clearly, this expression can not 
be valid when the calculated temperature shift is very small and the precision of 
the Lindemann criterion is not sufficient to describe it correctly. Moreover, the 
strong version of the Lindemann criterion can not be applied to most experiments 
in which CIF is produced by rapid expulsion of liquid layers from the film (at 
constant temperature) [2, 3]. As is clear from Eq. (4), squeezing out a molecular 
layer from the space between the walls is equivalent to instantaneous cooling of 
the film. When the thickness of the film falls below a critical value (for a given 
temperature), the liquid film becomes rapidly supercooled and freezes. This is 
likely to result in a solid phase characterized by very irregular structure and large 
unrelaxed stresses, which is less stable than the equilibrium crystalline phase. A 
disordered non-equilibrium solid film may also be formed due to the presence of 
impurities or surface roughness. In all these cases, the critical fluctuation amplitude 
which enters the Lindemann criterion of melting, is expected to be smaller in the 
confined solid film than in the bulk. 

In the light of the preceding discussion, one can formulate a weaker version 
of the Lindemann criterion for rapidly confined films: the critical fluctuation am- 
plitude at the melting temperature does not dependent on the thickness of the 
non-equilibrium film but is smaller than the critical amplitude in the equilibrium 
bulk solid. This suggests that the confinement-induced shift of the melting tem- 
perature of non-equilibrium films can be described by the following expression: 

6TmeU (N) ^ 1 

T0
me"      ~ ~N (5) 

The parameter yVmax is the maximal number of molecular layers, for which the 
confinement-induced freezing can be detected. This number is likely to be universal 
for pure substances with the same molecular geometry, but may be different for 
spherical and linear molecules. For N > 7Vmax, the suppression of fluctuations by 
the presence of the boundaries is overcome by the destabilizing effect of internal 
unrelaxed stresses and CIF can no longer be observed. 

Eq. (5) suggests that under fixed temperature conditions, there is a sharp liquid 
to solid transition when the number of confined layers becomes smaller than some 
critical value. This general result is in qualitative agreement with experimental 
observations[3, 12]. The critical film thickness at a given temperature T can be 
determined from Eq. (5) which yields: 

-^d^ + T^) (6) 1 0 1 'max / 

The predicted temperature dependence of the critical number of molecular layers 
at which CIF is expected, awaits experimental confirmation. A sharp confinement- 
induced transition to the solid phase was observed in recent measurements of the 
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shear response of the film[3]. The experimental study was based on the following 
notion. Solids, unlike liquids, possess finite shear rigidity and, as the result, the 
solidified confined film exhibits an elastic response up to a certain critical stress. 
Above this stress, mechanical instability leads to fast stress relaxation. If the 
film is subjected to shear at a constant shear rate, the alteration of such elastic 
and inelastic responses leads to the well-known stick-slip phenomenon[14]. Con- 
versely, the observation of a stick-slip response in confined liquids is the signature 
of confinement-induced freezing. 

The available experiments do not allow one to determine which physical pro- 
cesses are responsible for the onset of slip observed when the shear stress reaches 
a critical value. One possibility is fracture of the entire film, similar to the process 
which determines the yield stress of bulk solids. Another explanation is that the 
mechanical instability takes place at the film-wall interface (wall slip) and that 
the magnitude of the critical shear is determined by the maximal frictional force 
between the walls and the confined film. The latter scenario appears more plausi- 
ble in most cases, since the coupling between the wall and the molecular layer of 
the film adjacent to the surface is probably weaker than that between two internal 
layers. 

4     Conclusion 

Our model suggests several possibilities for further experimental studies of CIF. 
One can perform measurements of the melting temperature of thin solid films 
obtained by CIF and test our prediction for the shift of the melting temperature, 
Eq. (5). In principle, one can also start with a confined liquid film and reach 
its freezing point by slowly changing the temperature while keeping constant the 
spacing between the walls. In this case the structure of the resulting solid is 
expected to be close to that of the equilibrium bulk crystal, and the stress-free 
result, Eq. (4), is likely to apply. 

Finally, we would like to comment on the generality of our results. Note that 
the proposed mechanism is expected to apply to situations in which the difference 
between the temperature of the experiment and the bulk melting temperature is 
not too large. CIF was indeed observed in OMCTS and cyclohexane whose melting 
points (290 and 280 degrees K, respectively) are close to room temperature, but 
only liquid behavor was reported for ultra-thin layers of toluene [15] whose melting 
point is 178 degrees K. Note also that although our boundary conditions on the 
displacement field, Eq. (1), are not equivalent to the non-slip boundary conditions 
for fluid flow, the two types of boundary conditions have a similar physical origin. 
Therefore, we expect no CIF in cases where a finite slip at the boundary is observed 
[15]. 
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ANNULAR RINGLIKE ARRAYS FROM 
MIXTURES OF METAL NANOPARTICLES 
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90095-1569, pohara@ucla.edu 

ABSTRACT 

We describe a theory for hole nucleation in volatile, wetting, thin liquid films. Hole nucleation 
in this system can occur due to two independent driving forces: evaporation (volatile hole 
nucleation) and by disjoining pressure effects (non-volatile hole nucleation). Although a 
concerted combination of these two can be in effect, the cases are treated separately here and will 
be treated jointly in the context of a simulation elsewhere. Growing holes — dry areas of the solid 
surface which are otherwise wet by solvent — are conjectured to be responsible for the formation 
of close-packed 2D annular ringlike arrays from dilute solutions of nearly monodisperse, large (3- 
5nm diameter), organically passivated metal particles [1]. When organic solutions of these 
nanoparticles are evaporated on a solid carbon substrate (a TEM grid), the resulting sub- 
monolayer structures are annular ringlike arrays due to the pinning of the rim of an opening hole 
by a sufficient collection of particles. 

INTRODUCTION 

Recently, there has been much interest in ordered, non-templated arrays of monodisperse 
semiconductor [2-5], metal [6-8], and metal oxide [9] nanocrystals. Attention is placed on both 
the formation of the superlattices, as well as their physical properties [10-11]. Most experimental 
work has involved extended 2- or 3-dimensional close-packed structures. Our work has focused 
on 2D annular ringlike arrays (0.1-lmicron diameter) of organically passivated metal 
nanoparticles (3-5nm diameter) [1]. These rings are different in origin, and in size — being 
»zeroscopic — compared to other rings [12-13], which are typically macroscopic. The 
macroscopic rings generally originate from single, sessile, non-wetting, drops placed on a 
substrate. Because fluid flow must compensate for evaporation near the three-phase regions 
associated with the contact lines, particles are drawn by solvent fluxes to the edges of the pinned 
drop, producing a thick ring [12]. Our situation is fundamentally different, resulting in the 
spontaneous formation of many mesoscopic rings of /Heso(nano)particles arising from a single 
macroscopic film of solution. We believe that these rings form when holes nucleate in the 
evaporating, wetting thin liquid film (as opposed to the non-wetting sessile drops). The rings 
result from the pinning of the contact lines of opening holes in the thin liquid film, due to the 
presence of particles. 

While a great deal of work has been done on hole nucleation in de-wetting films below a critical 
thickness [14], only Elbaum and Lipson [15] appear to have investigated the corresponding 
problem for wetting layers. Their efforts, however, focus on volatile hole nucleation in «50- 
500nm films involving wet holes, whereas our problem involves thinner films (a few nanometers 
thick) and dry holes. Our films also contain suspended colloidal particles, and their effect on the 
inherent instabilities of these thin evaporating films must be explicitly accounted for. 

There is also much theoretical work on the non-volatile behavior of liquids on solid surfaces 
[16]. For a wetting liquid, the liquid film never wants to thin too much because of the disjoining 
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pressure contribution to the free energy per unit area, which has the form An/t2, where AH = (A,i - 
Au) >0 is the relevant Hamaker constant. At the same time, it wants to avoid forming holes or 
otherwise de-wetting the substrate, because of the positive spreading coefficient, S = y™ - (y,\ + y), 
where y is the liquid-vapor interfacial tension and y,v(y»i) the corresponding value for the solid- 
vapor (sold-liquid) interface. The equilibrium thickness tc=(3AH/S)1/2 [16] reflects a compromise 
between these competing tendencies of the thinning, wetting film. 

THEORY 

We formulate here separate theoretical scenarios for volatile and non-volatile hole nucleation in 
wetting, thin liquid films. For the first case, we assume for simplicity that the rate of evaporation 
far exceeds the rate of fluid flow, such that hole nucleation is only driven by the volatility of the 
liquid. Furthermore, we assume that evaporation at the rim of a hole is faster than uniform 
evaporation — keeping the film thickness unchanged. 

In this case, we start with a drop of nanoparticle solution that spreads across the carbon 
substrate as a thin film. The liquid film is in a large box (large compared to the volume of liquid), 
and evaporates because the equilibrium vapor pressure of solvent, P°, greatly exceeds the actual 
pressure above the film, P. Because of this condition (P « P°), the film would need to thin, via 
evaporation, to unphysically small dimensions in order for the liquid to be in equilibrium with its 
vapor - equilibrium is reached when all of the liquid has evaporated. Before reaching this point, 
the liquid evaporates steadily as a thin film until it becomes unstable with respect to the nucleation 
and growth of holes. 

The formation of holes in an evaporating thin film is analogous to ordinary bubble nucleation 
[17] in a bulk superheated liquid, with the difference that holes in thin films are "open" to the 
vapor above the film. For a system with total pressure Paim« latm, a given liquid thickness t, a 
fixed area of the substrate A, and number of liquid molecules N, the Helmholtz free energy can be 
written as: AMIUI = N(ii(P,ta) - PatalA,t + A,(y,i + y + An/t2), where ui is the chemical potential of 
the liquid. A (assumed) cylindrical hole of radius R then nucleates, such that Ng liquid molecules 
have evaporated. We can write the free energy of this system as Ahoic,voiatiic = (N-Ng)ui(Patm) + 
Ngu,(Patol) - Pate,(A,t-7iR2t) - pi3iR2tkBT + (A, - rcR2)(ySi + y + AH/t'2) + rcR2ys + 27tRty, where R 
can be obtained by using the liquid number density pi, where Ng = nR2tpi. The change in free 
energy AA for the nucleation of this hole is then given by AAv„iatiie = Ahoie.vouuie - AMUI: 

AAVAU,, « TCR2{PltkBT[log(P/P0) - 1] + (S - AH/I
2
)} + 27tRty (1) 

If this free energy difference is monitored as the hole grows, the barrier associated with hole 
nucleation can be obtained. When this barrier AA^^voi = Tr/tR™,* is sufficiently small, on the order 
of kBT, holes of critical radius R™ = yt/[tpikBT{log(P7Pi + 1} - (S - AH/t2)], will nucleate and 
grow. Equation (1) presented above is similar to that presented by Elbaum and Lipson [15], with 
the primary difference that our holes are dry, due to the lack of an equilibrium film thickness for 
our system. For our system from which annular rings are observed, typically P«P°, such that 
holes can nucleate at thicknesses greater than %.. This is where the importance of time scales 
(which can be accomplished via controlled evaporation experiments) becomes evident — if the 
fluid flow is faster than evaporation, these holes will close. Holes will only nucleate and open 
when the solvent thickness is less than the equilibrium thickness, which will be discussed next. 
This is also the case when the vapor pressure P is close to the equilibrium vapor pressure, which 
may result if the system size is significantly reduced. 
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In addition to the above case, hole nucleation can also occur in non-volatile wetting fluids, 
where the film becomes unstable at thicknesses below a critical value (<U) [16]; holes open in 
order to restore the film to its equilibrium thickness te=(3AH/S)1/2. Elsewhere [1], we chose to 
develop a mechanism for ring formation in a slowly disappearing (effectively non-volatile) fluid, 
based on the assumption that evaporation is much slower than fluid movement — which gives rise 
to a "local equilibrium" — and has allowed us to relate equilibrium ideas to our system. Given the 
same initial condition as above, allow a hole of radius R open in this non-volatile system. Let 
AAhoicnv denote the free energy associated with the formation of this hole. It is then 
straightforward to show that this quantity can be written approximately as 

AAhole,„v = [yt] 2TIR + {S - AH/t2- AH/II" - AH/t'2}7cR2 (2) 

where t' is the final thickness, determined by conservation of liquid volume. Fluctuations 
corresponding to small holes will grow when barrier AAma^m, = 7cytRmax is brought down to «kßT, 
where R,™ = yt/[AH(l/t2 + 1/t'2 + l/tt')-S]. This happens when the film thickness t is sufficiently 
small (a few per cent) compared to the "pancake" thickness te. Below this thickness, the thin film 
becomes unstable against the nucleation and growth of holes, in its drive to achieve the optimum 
thickness te. 

As holes open up and grow, solvent and particles are "pushed out" toward the bulk film of 
solution (see Fig. 1). The rim continues to grow unless the outward thickening force is balanced 
by frictonal effects due to particle-substrate interactions [19]. The mechanism for ring formation 
due to hole nucleation and growth, and the effects of particle size and concentration, are 
discussed in detail elsewhere [1]. The observed inverse dependence of ring size with 
concentration has provided the crucial argument that holes are important in our system. In the 
absence of a sufficient number of large particles collected along the hole rims, these holes will 
percolate to form drops — resulting in compact structures [6]. 

In determining the effect of the particle on the film, we noted that capillary forces [20] between 
particles — arising from the deformation of the liquid surface due to the presence of particles — 
are weak because the film thickness is small enough for disjoining pressure to dominate over 
hydrostatic pressure (gravity). For nanometer film thicknesses, the effective capillary length A, or 
decay length of the capillary forces, is short-ranged — on the order of angstroms. 

CONCLUSIONS 

We have presented here two mechanisms for hole nucleation in volatile, wetting thin liquid 
films: volatile hole nucleation driven by evaporation; and non-volatile hole nucleation due to 
disjoining pressure effects. The importance of each mechanism can be varied in an experimental 
setup, via controlled evaporation experiments, the use of different solvents, or by varying the 
vapor pressure. Hole formation and the presence of particles in solutions have been related to 
mesoscopic annular ring formation. Although both forms of hole nucleation may be operative in 
producing rings, we have presented the two cases separately. The importance of the time scales 
of fluid flow and evaporation on the resulting annular ringlike configurations are currently being 
addressed, and these results will presented elsewhere. 
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■ Evaporating Solution 
• Wetted Substrate ,—Hole Nucleates 
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FIGURE 1. This figure shows a pictorial scenario of the evaporating solution wetting the solid 
substrate (top), and thinning to a thickness W^, at which a hole nucleates (middle). The hole 
opens, pushing most particles out along its advancing rim (bottom), which becomes an annular 
ring. 
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Foam Drainage: Extended Large-Q Potts Model Simulation 
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ABSTRACT 

We study foam drainage using the large-Q Potts model extended to include gravity on a 
three dimensional lattice. Without adding liquid, homogeneously distributed liquid drains 
to the bottom of the foam until equilibrium between capillary effects and gravity is reached, 
while in an ordered dry foam, if a fixed amount of liquid is added from the top, a sharp flat 
interface between the wet and dry foam develops. The wetting front profile forms a downward 
moving pulse, with a constant velocity. The pulse decays over time while its leading edge 
for a brief time behaves like a solitary wave. With continuous liquid addition from the top, 
the pulse does not decay and we observe a soliton front moving with a constant velocity. 
Continuously adding liquid to an initially wet foam keeps the liquid profile constant. Our 
simulations agree with both experimental data and simplified mean field analytical results 
for ordered foams but predict an unstable interface for disordered foams. 

INTRODUCTION 

Foams are macroscopically structured cellular materials, of practical importance in ap- 
plications from brewing to lubrication. A liquid foam, with clearly separated liquid and 
gas phases, has a characteristic time scale of evolution and distinct rheological properties 
[1]. Foams are also a model for other nonequilibrium, disordered materials, such as poly- 
crystalline metals, in which the dynamics is driven by the surface energy. Characterizing 
the structure and evolution of foams challenges current theory and experiments. In three 
dimensional liquid foams, gravitational drainage of the liquid is an additional complication. 
Often drainage, rather than diffusion, determines foam stability and properties. Mysels et 
al. were the first to investigate the different types of thin film drainage [2], concentrating on 
vertical films formed by withdrawing glass frames from pools of surfactant solution. Early 
experiments, measuring the amount of drained liquid as a function of time, did not offer 
much immediate insight [3]. Princen [4] has discussed the asymptotic vertical equilibrium 
profile of drainage by considering the osmotic pressure of foams. Mean field calculations on 
the microflow in Plateau channels in relatively dry foams suggested a solitary wave solution 
for liquid flow in foam [5] [6]. Recently Weaire et al. measured the velocity of the interface 
between the dry and wet monodisperse foams in terms of the rate of continuous addition of 
liquid from the top. AC capacitance and conductance measurements of the vertical liquid 
profiles for different types of drainage could not distinguish horizontal wetness changes [7] [8] 
[9]. Because the foam is inhomogeneous and resembles a porous medium, we might expect 
that the penetration of liquid into the Plateau channels would result in an unstable interface 
or in viscous fingering. Instead, the mean field theory predicts a flat interface. 

Magnetic resonance imaging (MRI) allows a non-invasive visualization of the interior 
structure of foams. German, McCarthy et al. measured one dimensional vertical wetness 
profiles of draining beer foams, whipped cream, and egg white etc. [10]. Prause et al. have 
taken images of three dimensional foams with high resolution [12] and 1-d drainage profiles, 
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but the full three dimensional drainage experiments remain to be done. 

MEAN FIELD CALCULATIONS 

Theoretical calculations of the liquid flow during foam drainage assume that the liquid 
flows through a system of interconnected, randomly oriented Plateau channels, with neg- 
ligible flow through the much thinner soap films [2]. A monomolecular layer of surfactant 
on the film surfaces reduces the surface tension and retards liquid flow, resulting in non-slip 
conditions on the boundaries of channels. Neglecting bubble size distribution, bubble density 
and liquid viscosity etc. produces a mean field theory. 

The capillary pressure, i.e. the pressure across the liquid surface, is: Papillary = Pi-Pg = 
2
T

COS#
, where 7 is the surface tension, 6 is the contact angle between liquid and gas, and Pi 

and Pg are the pressure of the liquid and gas, respectively. 
For an incompressible liquid, the derivative of equation (1) yields the between the change 

of gas pressure 5P and the change in the channel area 8s: 

SP = -yas-^Ss, (1) 

where a is a constant determined by the curvature of the lateral surface of the channel. For 
ideal Plateau channels, the radius of curvature of the lateral surface r can be related to the 
area of the Plateau channel s by s = (v^3 - 7r/2)r2, yielding a = (\/3 - 7r/2) 2. 

Assuming the motion of the liquid in Plateau channels to be microscale flow, we apply 
the continuity equation to the channel flow: 

ds       ds       du     „ ,„.. 
m+uö-x 

+ xä-x 
= 0' (2) 

where u is the velocity of the flow. 
Following the derivation in [5], we consider the solution of the Navier-Stokes equation for 

massive fluid in a tube of arbitrary cross section: 

s IdP 
(3) 

where t) is the viscosity of the fluid, the factor 1/3 comes from averaging over the directions 
of motion of the liquid, and ß is a numerical coefficient depending only on the shape of the 
cross section of the channel: e.g. ß = 87r for a tube of circular section, ß = 49.1 for a cross 
section in the form of a Plateau triangle [5]. This equation can also be viewed as the force 
balance between the capillary force, the pressure gradient and gravity [6]. 

If we eliminate p and u from the above equations and introduce x0 = \Jj/pg and to = 
ßT]/y/ypg, the equations are reduced to a nonlinear PDE: 

dS___d_ 
dr     dX '**& 

= 0, (4) 

with dimensionless variables X = X/XQ, T = t/t0 and S = s/xo2. 
Solving equation(4) in a moving frame, we get the following three solutions: 

S=\ vta.nh2\f(X-VT)\ (5) 

VCOth2[f{X-VT)\ 
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The first solution to the channel area describes a steady state, in which the drainage reaches 
an equilibrium with the influx of liquid. The second solution is not physical as it diverges at 
X — VT = 0. The last one, a solitary wave traveling at a constant velocity, was observed in 
experiments and was proposed in [5] and [6]. 

SIMULATIONS 

The large-Q Potts model partitions the foam on a three dimensional square lattice. A 
bubble, a, is the collection of lattice sites i = (x, y, z) with spin a(t) — a, a ranging from 1 
to Q ( Q > 5000 in this study). While it was originally used to simulate foam coarsening 
[13] in static one-phase systems, it can be easily extended to include drainage. We treat the 
two phases in the system, liquid and gas, as two bubble types, with the liquid represented 
as a single bubble subject to a gravitational field. The extended Potts Hamiltonian of the 
system is then: 

UPOUS= Yl        MwA1 ~ Sa(t),a(i>)\ +   ÜC 9 ^liquid- (6) 
tj'neighboTS liquid 

where JT^tT^ is the coupling constant between bubbles, where Jgas,gas > JgasMwid > 
Jiiquidjiquid: 9 is the force of gravity per unit density and xuqmi is the average height of the 
liquid component of the foam. The second term in %pott3 applies to liquid only. 

At each time step, a site is selected at random, and a spin change to a neighboring 
spin proposed. Only the changes that lower the total energy of the system are accepted, 
corresponding to zero temperature dynamics. 

Boundary conditions are periodic in the horizontal direction but rigid in the vertical 
direction. We use a very ordered initial foam which affects the shape of the wetting interface. 
We monitor the mean liquid fraction as a function of vertical position. Free drainage has 
no input of liquid and the liquid begins with a homogeneous vertical distribution. In pulsed 
drainage, the foam is initially dry and a fixed amount of liquid placed above the dry foam 
drains under gravity. In forced drainage, liquid is added from the top of the foam at a 
constant rate, different initial conditions (wet or dry foams) resulting in different profiles. 

DISCUSSION 

Figure la shows the time evolution of the liquid profiles in free drainage. With no 
liquid input, the initially homogeneously distributed liquid drains downwards until gravity 
is balanced by capillary effects, to produce an equilibrium profile. Drainage profiles from 
MPJ experiments by McCarthy [10] and our group(figure lb) are very similar, though it is 
difficult to compare them quantitatively. Efforts to quantify the slope of the linear part of 
the profile have not had much success. 

In figure 2, we plot the liquid profiles for pulsed drainage. The pulse is monitored as it 
descends. The leading edge of the pulse, over short intervals such that decays is negligible, 
is quantitatively identical to the soliton in [9] [8]. In figure 2, we fit the leading edges of 
profiles to the same soliton solution. A longer time simulation (long distance for the pulse) 
allows us to see liquid transfer from the peak of the soliton to the tail, resulting in pulse 
spreading. The wave front of the soliton moves at a constant velocity, in good agreement 
with [9]. The high frequency structure of the solitary wave is due to the ordered structure 
of the simulated foams, shown in the vertical cross sections in figure 3. 
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Figure 1. Liquid profiles for gravitational drainage as a function of time 
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Figure 2. Liquid profiles for pulsed drainage in Monte Carlo steps (MCS) 
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(a) 3000 MCS (b) 8000MCS 
Figure 3. Snapshots of vertical cross sections of pulsed drainage 

Naturally, for a continuous liquid supply, the soliton has a non-decaying fixed profile 
(Figure 4a), matching both the analytic solution and the experiment results. In addition, 
the width of the wave front spreads over time, as predicted in [7]. 

On the other hand, if the foam is initally wet, continuously adding liquid does not change 
the shape of the profiles except to increase the foam wetness (Figure 4b), indicating equi- 
librium between the liquid input, gravity and capillary forces, corresponding to the steady 

state solution S = v = constant. 
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Figure 4. Liquid profiles for forced drainage 

When the rate of coarsening is comparable to that of drainage, the interface between the 
wet and dry foam is diffuse due to the disordered structure. The liquid forms clusters in the 
middle of the foam (Figure 5). The penetrating of liquid into relatively dry foam through the 
Plateau channels resembles the front instability of viscous fingering. Thus mean field theory 
fails for disordered foams. When drainage is much faster than coarsening, the interface is 
flat, within a band thinner than the dimension of a bubble. Thus drainage of a disordered 
foam is actually a porous medium problem with evolving pore sizes and shapes. 

ü 

fffikf IHKf 

W «B 

W&& 

Figure 5. Snap shot of drainage in a disordered foam. 

CONCLUSIONS 

The extended large-Q Potts model simulations produce results comparable to experiments 
and also validate the mean field drainage theory for ordered foams. The model allows us 
to continuously vary the liquid content, as well as the strength and range of interactions 
between like and unlike phases. With experimental data for foams of varying compositions 
and growth characteristics, we will develop our simulation to predict the behavior of foams 
of arbitrary viscosity and wetness, leading to quantitative simulations of the properties of 
industrial foams. 
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DYNAMICS OF GRAINS IN DRIVEN GRANULAR MEDIA 
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ABSTRACT 

We use diffusing-wave spectroscopy (DWS) to study microscopic dynamics in the interior of 3- 
dimensional granular systems. We study two granular systems where particle motions are excited 
by different driving mechanisms — gravity-driven channel flow and a gas-fluidized bed. In both 
instances we obtain detailed information about short-time collisional dynamics such as rms 
velocity fluctuations, mean free paths, and collision frequencies. We also observe a slow 
crossover from short-time ballistic motions to long-time, grain-scale diffusive motions. 

INTRODUCTION 

In the absence of external driving forces, a granular system comes to rest because of 
dissipative interactions such as friction and inelastic collisions between individual grains. 
However, when subject to geophysical processes, human handling or manipulation in industrial 
situations, granular systems are driven into motion '. We do not, however, have an established 
'fluid mechanics' for sand to describe macroscopic response to external sources of energy. The 
major effort toward such a continuum description are in the form of kinetic theories 2 based on the 
intuition that sand may be described as a gas of inelastic particles. In contrast to molecular fluids, 
the scale of velocity fluctuations is non-thermal and in these models is introduced as a temperature 
(referred to as the 'granular temperature') which is determined by the state of flow. While this 
qualitative picture appears reasonable (at least in the limit of a dilute, highly-driven system), it has 
never been established by experiment or been quantitatively probed in real 3-dimensional flows. 

In this article we present a direct probe of local, short-time dynamics of grains in dense, 
fully three-dimensional systems with Diffusing Wave Spectroscopy (DWS) 3 a multiple light 
scattering technique which measures mean-square particle displacements as a function of time 
down to 10"8 sees with a resolution of 1Ä. For two different driving mechanisms — gravity-driven 
flow and gas-fluidization — we deduce important microscopic inputs to a description of transport: 
the rms velocity fluctuations, the mean free path and mean collision frequencies. Since granular 
systems are opaque due to scattering at grain surfaces, most previous experimental work has been 
confined to quasi-two-dimensional flows. MRI techniques [4] and (less directly) video imaging of 
tracer beads [5] can yield information about 3-dimensional flows. However, as we shall show 
here, the short-time collisional dynamics are at too short length (.01 - 1 urn) and time (10"5-10"* s) 
scales to be directly accessible to these techniques. Furthermore, we shall also show that the 
relationship between the short-time collisional motions and long-time diffusive and convective 
processes is more complex than previously believed, rendering it impossible to infer the collisional 
parameters from measurements at scales greater than the particle size. 

EXPERIMENT 

Materials 
We use cohesionless, smooth, spherical glass beads with diameters, d = 49±5, 95±15, 

97+11, and 194±17 urn. The beads are prepared by baking them and cooling in a dry, inert 
atmosphere before use.   In channel flow, we monitor the effect of humidity on the beads and 
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repeat this procedure as necessary, 
such effects. 

In the fluidized bed, a continuous flow of N2 gas prevents 

Gravity-driven channel flow: 
Sand flows from a large reservoir into a vertical, rectangular channel (30 cm high, 10 cm 

wide and 0.3 - 1 cm thick), and then flows out through a grid of finely-spaced holes at the bottom. 
The flow velocity in the channel is varied between .03 and 3 cm/s by controlling the size and 
spacing of the grid. The flow is stationary, and if a uniform grid is used, may be characterized by a 
single average density and flow velocity, Vf, everywhere in the channel. Spatial gradients are 
found to be small in all three directions by long-range video microscopy, light transmission, and 
DWS. We have also studied non-uniform flows, where we create macroscopic velocity gradients 
using a non-uniform grid at the outlet. The arrangement of beads in flow shows no evidence of 
density inhomogeneities or crystalline clusters. The effect of the ambient air is small: the Bagnold 
number, given by the ratio of grain inertia to the Stokes drag, is greater than 10 . 

Fluidized bed 
The bed is contained in a glass cell of square cross-section (5.9 cm x 5.9 cm) and 

supported on a frit which also functions as a gas distributor. The fluidizing gas is N2, metered 
into a chamber below the distributor at a regulated pressure through a needle valve. A flowmeter 
measures the volume flow rate of gas. The pressure drop across the frit is measured by a 
differential pressure transducer as a function of gas velocity and is subtracted from the total 
pressure drop to obtain the drop across the bed. 

Light scattering 
We illuminate the sample using an Ar+ laser with wavelength, A=488 or 514 nm and 3mm 

beam waist. Incident photons perform random walks through the sample due to multiple 
scattering by the beads, and interfere producing a speckled interference pattern. A description of 
diffusive photon transport3 through the medium involves two length scales: a transport mean free 
path, 1*, and an absorption length 1A. These lengths are determined by measuring the fraction of 
light transmitted through the sample, T, as a function of its thickness and fitting to the solution of 
the diffusion equation treating the sample as a slab of infinite extent and thickness, L: 

sinh( Vy) + ^/y cosh(7y ) 

(l + y)sinh^- Vy) +2Vycosl|—Vy 

(1) 
where y = 31*/1A (we assume here and in equation 
2 that the extrapolation length ratio 3, ze=l). In 
Fig. 1 we show the results of such a fit applied to 
transmission through our samples. 

DWS involves measuring intensity 
fluctuations of speckles due to grain motions. 
From the measured intensity autocorrelation 
function, we compute the normalized electric- 
field autocorrelation function gi(t) using the 
Siegert relation 3: gi(-r) = [<I(T)I(0)>/ <I(T)>

2
- 

l]/ß, where ß is a constant related to the 
collection optics. Using diffusion theory with the 

 .   O 

""^ .*- 
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8V 
10° %\ 

io-1 V 
IO"2 

m-3 

Sample thickness. L (cm) 

Fig.  1    Transmission vs. thickness, L, in cm for 
194fim beads (open circles) and 
circles). The lines are fits to eqn. 
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Fig.2 Electric field autocorrelation function, 
g!(x) vs. T in sees. Circles (open and solid) 
represent 95 um beads, prepared dry, the plus (+) 
and cross (x) symbols represent increasing 
exposure to atmosphere. 

appropriate boundary conditions for the specific 
sample and scattering geometry in use and 
including absorption effects 3, gi(t) may then be 
inverted to obtain the mean-squared 
displacement <Ar2(x)> of the scattering sites. The 
relevant expressions are: g,(x) = f(x + y) / f (y) 
where in transmission, 

sinhlVx J + Vx cosh(Vx) 
f(x) = - 

(1 + x) sinh -^Ucoshf1^' 
1* )        { \* 

(2) 

and in back-scattering, f(x)=exp(-2Vx) 
where x=x(x)=k2<Ar2(t)>, kr=2n/ X, and y=31*/lA 

RESULTS 
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Fig. 3 a) Electric field autocorrelation function, gi(x), 
vs T, in transmission (+) and backscattering (o). (b) 
<Ar2(x)> VS T. The solid line is a fit to 
(8VT)

2
/(1+(T/TC)

2
), showing ballistic motion with a 

random velocity, 5V, in a cage of size 8VT.. The inset 
shows <Ar2(x)> vs t for 194 um sand (l*/d=5.3, 
1A/1*=5). The open symbols are from DWS and the 
solid circles are video measurements in 1-d, 
perpendicular to the flow. In both the inset and main 
figure, there is sub-diffusive motion (diffusion is 
indicated by dashed lines) over 3-4 decades in time for 

Gravity-driven channel flow: 
Typical data for normalized electric-field 

autocorrelation functions, gi(t), are shown in 
Fig. 2 for light transmitted through the sample. 
The agreement of the solid and open circles, 
which show different experimental runs on 
identically prepared beads, demonstrates 
reproducibility. The shape of g,(t) is very 
different for sand that is aged by exposure to air 
— presumably by adsorbing moisture — in spite 
of the fact that the flow velocity, Vf, is not 
appreciably affected by aging. Aside from 
presenting a useful diagnostic to test the 
preparation of beads, this suggests that the 
features in gi(t) are determined by relative 
motions of beads rather than their average flow 
(which decorrelates gi(r) at times of 0.1-10s) 

In Fig. 3a we show two more examples 
of the electric field autocorrelation function gi(r) 
measured in transmission and backscattering on 
95 urn sand with a flow velocity Vf = 0.32 cm/s 
along with the grain displacement, <ATi(-z)>, 
obtained by the prescription of eqns 2 a and b. 
The dynamics inferred from very different gi(r) 
in Fig. 3a coincide, showing the robustness of 
the analysis. This also implies that the dynamics 
of grains are uniform across the thickness of the 
channel, since photons transmitted through the 
sample are scattered by sand grains through the 
bulk of the cell whereas photons backscattered 
from the sample are scattered mainly by sand 
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grains within a few 1* of the walls. The 
short-time motion of sand grains is 
ballistic, i.e. <Ar2(T>=(SV)V, where 5V is 
a randomly directed velocity. The mean 
free time tc represents the duration of this 
ballistic flight, which is terminated by a 
collision with a neighbouring grain. The 
mean free path, s=8Vtc, corresponds to 
the mean distance between surfaces of 
neighbouring beads. Further changes in 
the relative positions of grains of grains 
requires many collisions. The slow 
increase in <Ar2(t)> at times longer than xc 

is interpreted as a gradual distortion of 
the cage of neighbours. The solid line in 
Fig. 3b shows ballistic motion of grains 
with a randomly directed velocity 8V 
within a fixed cage of size s. 

In Fig. 4 we display the 
dependencies of the mean velocity 
fluctuation (8V), the mean free path (s) 
and mean free time (TC) on the flow 
velocity, Vf. Transmission measurements 
taken on cells of different thicknesses as 
well as in back-scattering have the same 
dependence on Vf showing that velocity 
gradients perpendicular to the walls of the 
channel are negligibly small. (Gradients in 
the other two directions are directly 
confirmed to be small by scanning the 
beam over the sample). Fig. 4a shows 
again that 8V is comparable in magnitude 
to Vf and that 8V oc Vf

2'3 over this range. 
The mean free time xc, (Fig. 4b) has only a 
weak dependence on Vf.    The collision 
frequency ranges from about 500 kHz (for d=95 urn) to 10 kHz (for d=194 urn). The mean free 
path, s, is small compared to the particle diameter, d. Thus, the dilation is tiny (-0.1 um) ranging 
from 0.01 to 0.1% of d. An optical or MRI image therefore cannot even identify the flow as 
being in a collisional regime (as opposed to particles being in constant contact). The physical 
picture of collisional dynamics represented by the data in Fig. 4 are consistent with energy and 
momentum balance at the level of orders of magnitude as is illustrated by the lines in Fig. 4c 
which show the dilation required to produce a free fall velocity of 8V, scaled to the particle 
diameter. Naive energy and momentum budgets do not, however, recover the dependence of the 
measured parameters on the driving velocity Vf. The rate of inelastic losses, l/2m(8V)2(l-e2)/tc, is 
comparable to the rate of gravitational work, mgVf, but balancing these two terms with the 
assumption that TC is independent of Vf(as suggested by Fig. 4b) gives an incorrect scaling of 8V 
oc Vf"2. Likewise, assuming that velocities of neighbouring grains are uncorrelated and that a 
collision completely decorrelates the velocity autocorrelations yields an estimate me8V~ mgtc. 

Fig.4 Microscopic scales of motion vs. macroscopic flow 
velocity Vf. The open symbols are for 95 urn beads 
(squares and circles are transmission in 0.32 and 0.625 cm 
thick cells; diamonds are back-scattering). The solid 
symbols are for 194 um beads (circles and squares are 
transmission in 0.625 and 0.92 cm thick cells; diamonds 
are back-scattering), (a) 8V vs Vf, both in cm/s. The lines 
are power-law fits with exponent 2/3 to the 95 um (dashed) 
and 194 urn (solid) data, (b) Mean collision time, TC (sec) 
vs. Vf. (c) Mean free path, s (=SVxc), scaled to the particle 
diameter, d. The lines show (8V)2/2gd, the fraction of its 
own diameter a particle must fall to attain a speed 8V 
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This also leads to an incorrect scaling 8V °c Vf. A treatment of the particle motions as 
uncorrelated thus seems insufficient, suggesting that effects such as velocity correlations between 
particles or slowly decaying velocity autocorrelations, may be important. Long time motions, 
which we discuss next, give further indication of such complex dynamics. 

At times longer than x0, the relative displacement of particles is characterized by sub- 
diffusive motion over several decades in time, as displayed in Fig. 3b and its inset. Indeed, we do 
not obtain the diffusive limit, <Ar2(t)> « T, even at the end of the range available to DWS. The 
four data points (solid circles) at the extreme long time end of the inset in Fig. 3b show data from 
long-range video microscopy of self-diffusion of sand grains in the direction transverse to Vf and 
in the plane of the channel. Our data indicate that the parameters of collisional dynamics such as 
5V and s are not simply related to long-time diffusion and therefore cannot be deduced from 
measurements at long time- and length-scales. 

The data of Fig. 4a also demonstrate that velocity fluctuations can be large even in the 
absence of a macroscopic velocity gradient, contrary to the simplest models of granular 
hydrodynamics.  In Fig. 5 we plot <Ar2(t)> 
taken at various points in a cell with 
spatially varying velocity gradients (dashed 
lines). For comparison, we also plot (solid 
lines) data taken at two different values of 
Vf in a uniform flow.  It is quite clear that 
the imposition of a macroscopic velocity 
gradient    alters    the    transition    from 
collisional dynamics discussed above, but 
has little influence on the ballistic regime 
itself.   In particular, this shows that 5V is ..   ,    „      ,.... r Fig. 5.  Effect of velocity gradients.   The solid lines are in a 
quite insensitive to gradients, a fact that is   ^^ flow ^ v_0 5 mdlA cm/s^ ^ ^^ lines Me 

not captured in kinetic theories of flow. in velocity gradients, the local flow velocity is 0.4 - 0.5 cm/s. 

Fluidized beds 
We have taken DWS data for particle motions in beds composed of 49 and 97 urn glass 

beads.   Beads of this size and density fall in the Geldart A category, in which increasing gas 
velocity causes the static bed first to fluidize uniformly and then admit macroscopic bubbles at a 
higher flow rates.  The hysteretic nature of these transitions has led to the belief that particles in 
the bed are able to attain less compact packings in the uniformly fluidized state and do not 
actually lose contact with neighbouring particles.  For a narrow regime of gas flow rates above 
the minimum velocity for fluidization, the 
DWS signal indicates that the particles 
are  static.     This,  for  the  first  time, 
directly  confirms   the   hypothesis   that 
interparticle contacts may be sustained 
above    minimum    fluidization. As 
bubbling     commences,     we     visually 
observe large-scale convective motions 
in the bead pack. Microscopic dynamics 
induced by this overall convection are ,0-° 10 ■    , , 
obtained in the DWS signal as shown in   „   ,   ^A 2.. . .      „       t   .. „    •„„ «.„„ °2 Fig. 6. <Ar (T)> VS. T at several gas flow rates (increasing from 
Fig 6 where we plot <Ar (x)> for a range   right t0 ,eft) for 49m ^^ fluidized by Nj gas. The dashed 
of flow rates from just above the uniform   iines represent diffusion (T

1
) and ballistic motion (t2) 
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fluidization threshold to flow rates well in excess of the bubbling threshold (flow rates increase 
from right to left). Just above the bubbling threshold we observe diffusive motions (as indicated 
by the dashed line with a slope T

1
). As the gas flow is further increased, the collisional regime is 

revealed (ballistic motion is indicated by the dashed line with slope T
2
.) and we can obtain the 

'granular temperature'6, (5V)2, the collision frequency, and the mean free path just as in the case 
of channel flow. 5V grows rapidly with increasing gas flow just above the bubbling threshold but 
appears to turn over to a slower dependence on gas velocity at higher rates of gas flow as may be 
seen in the crowding of the curves at the extreme left of Fig. 6 

CONCLUSIONS 

We have created a simple granular flow and described a technique which allows a full 
characterization of the macroscopic and microscopic behaviour of the system. This should serve 
as an experimental bench-mark for any theory of flow, which we feel is vital in a field where 
theory has been advanced well beyond experiment in the absence of such constraints. What have 
we directly learnt that is new? We believe that for the first time, we have been able to study a 
real, three dimensional flow and present both a qualitative and quantitative picture of the 
collisional regime. While hitherto unproven, the fact that collisional dynamics do occur will not 
surprise many. What is surprising and new are the scales of motion, the fact that a 'temperature' 
occurs in the absence of any shear gradient (and indeed, seems to be only weakly affected by a 
gradient), and a well-defined puzzle regarding the dependence of this 'temperature' and the other 
scales of the collisional dynamics on the average driving velocity. Yet another new and 
unexpected fact regards the relationship between the short-time collisional dynamics and the long- 
time behaviour. The large separation in time scale is reminiscent of dynamics in viscous liquids 
and dense colloids and suggest that there may be analogous cooperative dynamics underlying the 
problem of flow. The interplay between macroscopic velocity gradients and the nature of the 
cross-over from ballistic to diffusive regimes is also not captured in existing models of grain flow. 

We have also demonstrated the utility of DWS techniques in characterizing particle 
motions in gas-fluidized beds. We are able to show directly that particle contacts persist in the 
uniformly fluidized regime. At higher flow rates we are able to track both diffusional and 
collisional dynamics. DWS thus is a versatile, non-intrusive and sensitive probe of particle 
motions in granular systems at length scales much smaller than the grain size and is potentially a 
diagnostic of wide utility even in real industrial settings. 
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AVALANCHE SEGREGATION  OF BINARY MIXTURES  OF 
GRANULAR MEDIA 
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ABSTRACT 

When an initially homogeneous binary mixture of granular media such as fine and coarse sand is 
poured near the closed edge of a "quasi-two-dimensional" Hele-Shaw cell consisting of two 
vertical transparent plates held a narrow distance apart, the mixture spontaneously forms 
alternating segregated layers. Using digital images taken with a CCD camera and Fourier 
transformed to obtain the structure function of the banding pattern, the wavelength selection 
mechanism and degree of segregation are studied as the plate separation of the Hele-Shaw cell is 
systematically increased. For a given flow rate, the degree of segregation, as reflected in the 
amplitude of the peak in the structure function, decreases as the plate separation increases. For 
wider plate spacings the peak in the structure function shifts to lower wavelengths. These results 
are compared to numerical simulations of the avalanche segregation using a stochastic sandpile 
model. 

INTRODUCTION 

A striking property of granular media is segregation when a homogeneous mixture of 
granular materials of different sizes or masses is shaken or rotated.1"11 The former case is 
known as vertical segregation,4'5 wherein convective rolls due to interactions between the 
smaller particles and the side walls of the container cause the larger particles to be entrained and 
brought to the top surface,5 while the second case is termed axial segregation.6-11 If a cylinder 
partially filled with a binary mixture of granular media is tipped on its side so that its axis of 
symmetry is horizontal and rotated like a drum about that axis, the individual species will 
segregate into alternating bands of relatively pure single concentrations along the axis of rotation. 
This phenomenon has been discussed in terms of a model whereby the dynamic angle of repose 
of the mixed phase is greater than that of one of the homogeneous phases during rotation.9-11 

Recently a third type of segregation effect12-13 has been described by Makse and co-workers,12 

where an initially homogeneous mixture of fine and coarse sand will form alternating segregated 
layers when poured near the closed edge of a "quasi-two-dimensional" Hele-Shaw cell. This 
new form of de-mixing, which we term "avalanche segregation" may be the physical mechanism 
responsible for striation patterns in sandstone.14-19 In this paper we confirm this avalanche 
segregation effect and report on the influence of systematically varying the plate separation of the 
Hele-Shaw cell on the wavelength selection and segregation process. 

EXPERIMENTAL  TECHNIQUES  AND  RESULTS 

Our experimental setup is similar to that employed by Makse and co-workers.12 Two 
vertical Plexiglas sheets 6 mm thick of area 8 inches by 10.5 inches are mounted parallel to each 
other onto a plexiglas base plate. One sheet is bolted to the base plate, while the second vertical 
plate is attached at one edge to the fixed plate. By employing spacers which extend the full 
height of the vertical sheets (so that one edge remains closed), the separation between the plates 
can be varied from 3 mm to 24 mm. A 50/50 mixture by volume of sand and sugar is poured 
against the closed edge of this Hele-Shaw cell20 using a titrating bulb with a rotating stopcock. 
The granular material is pre-mixed by shaking and stirring prior to and once in the flow bulb. 
The sand is approximatetly spherical with an average diameter of 0.2 mm while the sugar crystals 
are approximatetly cylindrical with a length of - 0.8 mm. The sand has an average density of 1.5 
mg/mm3, while the sugar's density is only - 0.5 mg/mm3. The sand was dyed blue/black for 
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contrast in the photos, this dying does not influence the segregation process. Digital photos of 
the segregated pattern are taken with a monochrome CCD camera (Cohu 4910) in conjunction 
with a Scion LG-3 frame grabber and a Power Macintosh 7100/80. Data image analysis is 
performed using the public domain program Image from the NIH. 

Figure 1 shows a CCD image of the Hele-Shaw cell after avalanche segregation of the 
sand/sugar mixture has occured. The spacing between the vertical plates is 4 mm and the flow 
rate was 0.78 gm/sec. The mixture was poured against the closed edge of the cell, on the far 
right of fig. la. There are several features of note in fig. la. There is a "dead-zone" of mixed 
sand and sugar in the bottom corner which extends vertically up ~ 10 cm before the segregated 
bands appear. The volume of this dead-zone depends on the plate separation. A second feature 
of note is that the segregation is weaker toward the bottom and top of the pile (toward the left in 
fig. 1). Both of these features were reported by Makse and co-workers.12 As shown in fig. lb, 
we have also observed identical segregation patterns when the sand is poured in the center of the 
cell, the "downhill segregation", with the denser material (sugar) congregating near the bottom 
and the sand collecting near the top of the pile is not an edgewall effect. Fig. lc shows the 
results of numerical simulations of a stochastic sandpile model, as described later. 

The influence of varying the plate separation d of the Hele-Shaw cell on the avalanche 
segregation effect has been investigated. Two trends are observed as the plate separation is 
increased: the degree of segregation decreases and the spacing between segregated bands 
decreases. Both trends can be quantified through calculation of the structure function. Figure 2 
shows a digital image of the banding pattern near the top of the sandpile, as indicated by the 
white box in fig. la. The flow rates, plate separation and sand/sugar mixture were the same as in 
fig. 1. The program Image is used to convert the digital image in fig. 2 into a a plot of pixel 
intensity against position. Since the sand is dark and the sugar is white, the intensity on the 
image in fig. 2 corresponds roughly to the concentration of sand near the transparent vertical 
plate in the Hele-Shaw cell. A high pixel value corresponds to a high concentration of sand and a 
low pixel intensity corresponds to a high concentration of sugar, and an intermediate pixel value 
reflects a mixture of the two. One then records a series of peaks and valleys of the digital pixel 
values against position, which are then Fast Fourier transformed to yield the structure function 
for the banding pattern. The location of the peak in the plot of the FFT amplitude against 
wavevector in fig. 2 gives the average wavelength of the segregated bands, while the amplitude 
of the peak provides a quantitative measure of the degree of segregation. Figure 3 shows a log- 
log plot of this FFT amplitude and average wavelength against plate separation. The solid line in 
figs. 3a and 3b are fits to a power law expression, with power law exponents of ~ 1.6 and 0.8, 
respectively. These exponents are fairly reproducible, however, equally good fits to the data in 
figs. 3a and b can be obtained to an exponential dependence on plate separation. Consequently, 
without further theoretical insight as a guide, the results in fig. 3 should only be interpreted as 
demonstrating a clear decrease in segregation amplitude and banding wavelength with plate 
separation. 

We next address the physical mechanism for the avalanche segregation effect. As the 
binary granular mixture is poured against the closed edge of the Hele-Shaw cell, a heap or pile is 
formed which will eventually exceed the maximum angle of repose (which determines the 
stability condition) and the introduction of additional granular material will cause an avalanche 
event. 12,13,16 AS the granular material flows down the top surface of the pile, only the particles 
within a few grain diameters of the free surface can move. There is consequently a considerable 
shear near the top surface, due to this discontinuity in velocities.16-17 It is well known that 
granular materials dilate when sheared, so that this flowing top surface will be expanded relative 
to the stationary bulk of the pile.16 Within this dilated region, the smaller or denser granular 
material will sieve or percolate to the lower region of the flowing layer.8'17-21 The segregation 
process is stopped once the avalanche is complete, until the addition of further material at the top 
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(a) 

(b) 

(c) 

Fig. 1: Digital images of the avalanche segregation banding pattern for 
a 50/50 mixture of sand and sugar poured along the closed edge of a 
Hele-Shaw cell (fig. la) and in the center of the cell (fig. lb). Fig. lc is 
the resulting segregation pattern obtained from a numerical simulation of 
a stochastic sandpile model as described in the text. 
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Fig. 2: Digital image of the segregated banding pattern near the top of 
the sandpile (indicated by the white box in fig. la). Also shown is the 
average pixel intensity against position, obtained using the graphics 
program Image. The high pixel values correspond to the dark regions 
of the image (high sand concentration) and the low pixel values indicate 
regions of high sugar (white) concentration. This data is then Fourier 
transformed to yield the structure function of the banding pattern. 
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of the pile builds up to once again exceed the maximum angle of stability. Close examination of 
the mixture poured into the Hele-Shaw cell confirms that segregation occurs only during the 
avalanching event. The wavelength or width of the segregated bands reflects the balance 
between the flow rate at which granular material is poured into the cell at the top of the pile, and 
the average time between avalanches, which depends on the details of the granular material (the 
exact value of the maximum angle of repose) as well as the plate separation. A key aspect of this 
model, that the segregation process is triggered by avalanches of the granular material determined 
by the local maximum angle of repose, can be tested via numerical simulations using the 
stochastic sandpile model of Makse and co-workers,12 as described below. 

NUMERICAL   SIMULATIONS 

The simulation, following Makse et al,12 represents the granular material as two different 
rectangles having different heights and a constant width of unity. The granular particles arrive in 
colums from the edge of the two dimensional lattice, the probability of a granular particle falling 
onto a column decreases with a Gaussian distribution multiplied by an arbitrary thickness dx, so 
that the total sum of the rectangles under the Gaussian curve is properly normalized. The local 
slope between two adjacent columns determines the motion of the granular material. If the height 
difference between two columns is greater than some predetermined arbitrary maximum value, 
representing the maximum angle of repose, then the granular particle is moved to the next, lower 
colum. If a particle reaches the horizontal base of the lattice, then the entire pile is at the 
maximum angle of repose, which causes an avalanche event wherein particles move as described 
above based upon the smaller local height difference. The simulation was written in C++ and 
implemented with the GNU C compliler on a Pentium PC running the Linux operating system. 
The simulation results in fig. lc are for a run consisting of 100,000 granular particles with equal 
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Fig. 3a: Log-log plot of the amplitude of the 
peak in the structure function for the 
avalanche segregation banding pattern against 
plate separation of the Hele-Shaw cell for a 
mixture of sand and sugar. The solid line is a 
fit to the data with a power law dependence 
on plate separation, where the power law 
exponent is - 1.6. 

Fig. 3b: Log-log plot the wavelength of the 
the avalanche segregation banding pattern 
determined by the location of the peak in the 
structure function against plate separation of 
the Hele-Shaw cell for a mixture of sand and 
sugar. The solid line is a fit to the data with a 
power law dependence on plate separation, 
where the power law exponent is ~ 0.8. 
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volume ratios of the two different sizes. The heights of the grey and black particles were 3 and 
2, and the local slopes which would trigger movement were chosen to be 3.1 and 5.1, 
respectively. The segregation of the different sizes of granular particles into alternating layers in 
fig. lc is very similar to the experimentally observed avalanche segregation as in fig. la. We 
find that as the relative height difference between the granular particles is increased, while 
maintaining a constant arbitrary slope difference to trigger an avalanche event, then the 
spacingbetween the segregated layers decreases. However the segregated band pattern is very 
sensitive to the local slopes chosen to trigger an avalanche event. For fixed heights of granular 
particles, the segregated band widths increase when the larger of the avalanche triggering slopes 
increases, so that the difference between slopes increases, while regardless of particle size, as the 
ratio of smaller slope to larger slope decreases, the segregated band width increases. These 
numerical simulation results will be discussed in greater detail, and directly compared to 
experimental segregation processes, in a later publication. 
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DRIVEN GRANULAR MEDIA AND DISSIPATIVE GASES: 
CORRELATIONS AND LIQUID-GAS PHASE TRANSITIONS 
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ABSTRACT 

We study a simple model of a granular material or powder where the particles are excited 
by an external noise source and dissipate energy by inelastic collisions. Due to the inelastic 
collisions between particles there is an effective interaction between them. In one dimension 
this leads to long-range correlations between the particles in a gas phase despite the absence 
of long-range forces between the particles. In two dimensions the dissipative effects cause a 
very sharp liquid-gas phase transition at which the susceptibility has a pronounced peak. 

INTRODUCTION 

Granular materials or powders may be defined as any material which consists of "grains" or 
small particles. Examples include many products of importance to the agricultural, mining 
and food industries, such as rice, wheat, coal, most ores and most breakfast cereals. Although 
granular materials have long been of interest to engineers they have only attracted significant 
attention from the physics community over the past decade [1]. To physicists these materials 
are interesting because they exhibit a wide range of interesting phenomena, many of which 
remain either unexplained or not fully understood. These include, heaping, clustering, size- 
segregation and the breakdown of macroscopic hydrodynamics [1-16]. These effects, and 
others have been much studied experimentally and by computer simulation. However, despite 
extensive studies a reasonable understanding of granular materials is still lacking. This is 
presumably in part because the individual grains undergo complex interactions, where short 
range elastic forces and nonlinearities become important. However, there is clearly also a 
more fundamental reason. The vast majority of the experiments and simulations on granular 
materials involve several separate and identifiable influences. These are: 

(i) The interactions between the particles are inelastic. Thus when two particles collide, 
energy is dissipated. 

(ii) The systems studied usually include a boundary such as the walls of the container. 
(iii) Energy normally flows from the boundaries into the granular media. 
(iv) The system is placed in a gravitational field. 
Each of these influences obviously complicates the system and it is thus not surprising 

that many of the experiments and simulations show novel and rich behaviour. There are two 
obvious analogs here. The first is with the dynamics of simple fluids. In general the flows 
of such fluids away from fields and boundaries arc relatively easy to understand. However, 
in the presence of boundaries and fields simple fluids exhibit convection and turbulence and 
are still not perfectly understood. The second analogy is with the theory of magnetism. 
If one wants to understand ferromagnetism it is simplest to study the Ising model on an 
infinite lattice in the absence of any external fields, boundaries or imposed gradients. The 
situation with granular materials is even more complicated. In general influences (ii) to 
(iv) artificially break the symmetry and induce spatial gradients in the system which make 
a simple understanding somewhat difficult. In this paper we present a system which has 
some or all of these undesirable influences removed.   Indeed a step in that direction has 
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already been made [2-4]. The system is a dissipative gas, which is simply a gas in which the 
particles undergo inelastic collisions. Thus far the studies have concerned "cooling" gases 
which are not heated in any way. These gases can show interesting dynamics, but they have 
no non-trivial steady-state behaviour: i.e. all the particles just cool down and stop moving. 
The simplest system for which there is any non-trivial steady-state is the one we shall study 
here : a driven dissipative gas. This system was introduced in reference [15] and was studied 
further in [14] and [16]. 

In this system the particles undergo inelastic collisions but each particle is heated individ- 
ually and continuously. It thus includes the important difference between granular and other 
fluids (inelasticity) whilst ignoring the complicating boundary and field effects. This system 
is intrinsically much simpler than traditional granular materials. However, as we shall see 
here, an examination of driven dissipative fluids also reveals non-trivial behaviour and can 
lead to a better understanding material properties. 

CLUSTERING IN ONE-DIMENSIONAL GASES 

Clustering is observed when granular media are sheared [9-11]. In general clustering is 
driven by inelastic collisions. When two particles collide inelastically they dissipate energy, 
slow down and hence remain close to one another . Here we investigate numerically the effect 
of such inelastic collisions in a one-dimensional system of point-like particles that are excited 
by a thermal reservoir. We show that clustering, as described by the two-point correlation 
function, occurs even in the absence of any other forces between the particles. There have 
been several studies of systems which are started in a "hot" state and the slowly cool [2-4,6,7], 
as there is no energy input. In one and two dimensions these can show "inelastic collapse". 
The novel feature of the collapse is that for coefficients of restitution rj below a critical value 
r)c the kinetic energy is dissipated in a finite time. For r\> r\c the kinetic energy dissipates 
gradually. 

In the model considered here [14,15], we consider a continuous input of energy locally to 
each particle, as well as dissipative collisions. This might model for instance a system of 
particles confined to a line on a vibrating plate. For a coefficient of restitution rj < 1, the 
system eventually settles down to a "steady-state". For X] = 1, this steady-state looks, at 
least superficially, like an ideal gas, in which there are no significant spatial correlations 
between the particles. However, we show that as 77 is reduced, even in the absence of any 
long-range interactions, the system develops a structure factor that is characteristic of an 
equilibrium system with long-range interactions. In particular, the dissipative interactions 
lead to a correlation function g(x) that is no longer a constant as it would be for an ideal gas, 
but shows a peak near the origin. Furthermore, this enhancement of g(x) near x = 0 follows 
a power-law. Thus, the system behaves as if it there were long-range attractive interactions 
between the particles. Only in the limit -q ->• 1 does the correlation function become uniform. 
As r\ decreases g(x) becomes more and more sharply peaked about x = 0. 

We consider N point particles of unit mass, m = 1, confined to a line of length L = 1. We 
use periodic boundary conditions, so that the particles lie on a circle of unit circumference. 
When two particles i and j collide in this one-dimensional system, the final (primed) velocities 
are given in terms of the initial (unprimed) velocities by 

<=^-ri)Vi + -{l+n)Vj        v'j = -{l-r))vj + -{l + ri)vi (1) 

The main difference between this and previous studies of dissipative gases is that each indi- 
vidual particle is "heated" at a constant rate. This is done by adding a random amount to 
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the velocity of each particle during a time-step Ai via the Langevin equation 

ui(t + At) = Vi(t) + N/F%/ÄT/(t), (2) 

where f(t) is a random number chosen uniformly between -1/2 and 1/2 and r is a number 
proportional to the heating rate. After the velocities are adjusted the system is transferred 
to the centre of mass frame, so that vt -* vt — v, where v is the average velocity of all the 
particles in the system. The algorithm (2) ensures that the velocities undergo a random 
walk, whilst the transfer to the centre of mass frame ensures that the particle speeds do 
not increase indefinitely. This transfer step is for convenience only, since the properties of 
collisions do not depend on the absolute speeds, only on the relative speeds. Before the 
heating step the kinetic energy of the system is K = | J2iL\ v? and after heating it is 

K' = \ £> + ^,)2 = K + Y. »M + \ I>.)2 (3) 

where 5v{ = v/rv
/ÄT/(<). On average the term linear in v{ vanishes and the average of the 

remaining term, |EÜi(5v;)2> is ^tNtf2} = ±rtN. Hence the heating rate is ft = ir, 
which is the energy input per unit time per particle. Provided r\ < 1, this system, started 
with some initial random speeds, rapidly reaches a steady-state configuration. 

Qualitatively the system appears to form liquid-like clusters of high density surrounded by 
a gas-like "phase" of lower density. In order to study this effect quantitatively we use the 
two-particle correlation function g(x). We select a particle and ask what is the density of 
particles at distance x from it. This, suitably normalized, is g(x). For an ideal gas of point 
particles the answer is g(x) = a. constant. For a gas which has some attractive potential 
U(x) acting between the particles g(x) will be peaked about x = 0 and will decay to a 
constant as x —> oo. For the dissipative gas discussed here we find g(x) shows a peak at the 
origin, even though we have no potential acting between the particles. This peak is caused 
by the dissipation effect discussed above, and can be thought of a steady-state version of the 
collapse and clustering seen in cooling gases [2,7,3,4,6]. As r] ->• 1 the structure becomes less 
pronounced and g(x) approaches a constant. However, as T] becomes small, g(x) becomes 
very sharply peaked. Some characteristic results are shown in figure 1. We find that the 
correlation function depends only on the density and on rj and is independent of the heating 
rate. At least for small x, where the finite size of the system has little effect, g(x) can 
be approximated by a power law g(x) ~ x~al>n\ Here a{rj) is a monotonically increasing 
function of r/. In the limit of a perfectly elastic system rj —> 1 and a -> 0. However, for 
perfectly inelastic systems where ?; -> 0 we find a —> 1/2 

The long-range correlations can be thought of as being induced by an effective potential of 
mean force, U{x) where g(x) oc exp(-U(x)/kT). Here kT can be taken as the kinetic energy 
of the particles. This potential is approximately logarithmic. Note however that since the 
only energy occurring in the problem is the kinetic energy of the particles the potential is 
just proportional to the temperature. 

TWO-DIMENSIONAL GASES: LIQUID-GAS PHASE TRANSITIONS 

In this section we study a two-dimensional excited dissipative gas. It is well known from 
the theory of phase transitions that the one-dimensional case is special. It is thus important 
to study the above effects in two dimensions. A logical question to ask is how do the long- 
range correlations affect the phases of this system in two or three dimensions. Here we show 
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Figure 1. A log-log plot of the two-point correlation func- 
tion versus distance for three values of the coefficient of 
restitution for N = 10 particles. For ?/ = 0.99 (low- 
est curve) the correlation function is almost a constant. 
For 77 = 0.5 (middle curve) strong correlations have de- 
veloped, and for ?; = 0.01 (upper curve) the function is 
clearly a power-law with exponent —1/2. The correla- 
tions arise because of the effect of inelasticity, i.e. when 
two particles collide they move more slowly and hence 
stay near each other, thus causing a correlation. The 
correlation function is independent of the heating rate fJ. 
Here we have superimposed data from two heating rates 
which differ by a factor of 100, Q = 0.0017 and Q = 0.17, 
and each point represents an average over 2 x 105 colli- 
sions. 
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Figure 2. Snapshots of the 2D lattice model for a 200 x 200 lattice with 7? = 0 and r = 5. 
The area fractions covered by the particles are (a) <j> = 0.25 (b) <j> = 0.259125 (c) <p = 0.25925 
and (d) 0 = 0.5. At low densities (a) the system is gas-like. Between (b) and (c) the system 
undergoes a sharp transition from gas to liquid-gas coexistence. In (c) and (d) the existence 
of a single droplet can clearly be seen. Note that periodic boundary conditions are used so 
there is only one droplet. The different shades of grey in the pictures correspond to different 
temperatures. Note that in going from (b) to (c) only five new particles are added, i.e. a 
change of area fraction of A</> = 1.25 x 10"4 = 0.04%</>. 
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Figure 3. The susceptibility \ versus the area fraction of 
particles, <j>, for different L x L lattices. Here ?; = 0 and 
r = 5. The different points are as follows: L = 30 -> 
+, L = 40 ->■ □ L = 100 -> o, L = 200 ->• •. The 
position of the beak gives the transition density at which 
the system changes from a gas to gas-liquid coexistence. 
Note that as the size of the lattice increases the sharpness 
of the peak increases. The fact that the peak is higher 
for L = 100 compared to L = 200 is probably a result of 
finite sample times. Near the transition point there are 
large fluctuations in the susceptibility and an accurate 
measurement requires many samples. 
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that they can induce a liquid phase in coexistence with a gas phase. The system we have 
in mind is a two-dimensional excited powder, i.e. a group of grains laid upon a surface, 
and gently randomly vibrated. The particles reside on a square L x L lattice with lattice 
constant unity, and move in the x and y directions, with velocity components vx and vy. 
The particles undergo inelastic collisions with each other with coefficient of restitution r). 
For simplicity we assume that the collision occurs only in the x direction or the y direction 
at any one time. Thus if the x direction is chosen the final (primed) and initial (unprimed) 
velocities of the two colliding particles, i and j are given by 

v'ix = zi1 ~ rivix + ^i1 + V)11)*        v'j* = 2(1 - V)vj* + ^i1 + V)vix (4) 

v'iy = V"J v'jy = viv (5) 

The particles a continuously heated by changing either their x or y velocities as in the one 
dimensional case. If the x direction is chosen then 

vx(t + At) = vx{t) + VrÄif(t) vy(t + At) = vy{t) (6) 

where r and / have the same meanings as in the one-dimensional model. 
We use periodic boundary conditions. The algorithm for particle motion is as follows. (1) 

A particle is chosen at random and either the x or y direction is then chosen, also at random. 
The time step is fixed originally at At = 1 and is decremented as the particle moves. (2) 
If say the x direction is chosen and \vxt\ > 1 the particle attempts to move to the next 
lattice site. If this is unoccupied the time is decremented and step (1) is repeated. (3) If the 
chosen lattice site is occupied a collision takes place and the x velocities of the two particles 
are adjusted according to (4), (5) and the direction is again chosen randomly. (4) Once 
the particle has finished it motion, i.e \vxt\ < 1 another particle and direction is chosen at 
random and heated according to (6). The process then repeats. 

The advantage of using a lattice is clear in the collision step. Searching for collisions is 
trivial on a lattice, but would be very time-consuming in an off-lattice simulation. For off- 
lattice simulations with no heating an "event-driven" algorithm can be used, but for a heated 
system the random heating invalidates this algorithm. The particles undergo continual 
collisions and continuos heating. Eventually these two effects balance out and the system 
reaches a steady state. At low densities the system behaves like a gas. However, the gas is 
not ideal. This is because the inelastic collisions between particles cause correlations between 
them. The simplest way of seeing this is to consider two particles colliding in the centre of 
mass frame. Their initial speeds are v and their final speeds are rjv < v. Thus the particles 
recede from each other more slowly than they approached and indeed more slowly than if 
they had not collided. They thus spend more time together and a correlation is induced. As 
shown in section (2) , in one-dimension this correlation takes a power-law form. 

Some characteristic results are shown in figure (2). At low densities the inelastic correlation 
causes one to have a relatively uninteresting correlated gas. To the naked eye this looks very 
similar to an ideal gas, and only by looking in detail at the correlation function can one 
distinguish the two. However, at higher densities the effective "potential" induced by the 
inelastic collisions becomes very important. In particular, it leads to a first-order phase 
transition from a gas phase to a dense liquid phase which coexists with a vapour phase. This 
is clear in figure (2) where the behaviour of the system suddenly changes when the density 
is changed by of order 0.04%. 
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Although the transition is clear to the naked eye in large lattices it is not so clear on 
smaller lattices. For this reason and to describe the transition quantitatively, it is useful to 
introduce the susceptibility [17] x> defined by \ = <t>~lY.'s

s2ns- where ns is the number of 
clusters of s particles and the prime means that the largest cluster is omitted. Here if> is the 
fraction of sites occupied by the particles, which we also call the density. 

For small lattices where L = 30,40 the transition is not clear and manifests itself as a 
pronounced peak in the susceptibility (figure 3). However, for larger lattices the peak is very 
pronounced, and there is a clear transition density <f>t beyond which the susceptibility is zero. 
This, together with the visual evidence shows that the system undergoes a liquid-gas phase 
transition at this point. 

CONCLUSION 

In this paper we have a simple model for a granular material, a driven dissipative "gas". 
This model avoids many of the complications inherent in previous granular studies, but 
still shows non-trivial behaviour. This behaviour is entirely due to the inelastic collisions 
between the particles. In one dimension these lead to long-range correlations which have 
approximately a power-law form, state. In two dimensions the inelastic collisions lead to a 
transition from a gas phase to a liquid-gas coexistence. 
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