
RL-TR-97-29
Final Technical Report
June 1997

DISTRIBUTED SYSTEM
CONTROL

Lockheed Martin

James A. Berea, Bharat Bhangava, Tom Geigel, Kane Kim,
and Jus-eak Kim

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

19970918 129
DT3X5 QUALirT INSPECTED a

Rome Laboratory
Air Force Materiel Command

Rome, New York

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-97-29 has been reviewed and is approved for publication.

APPROVED:
THOMAS F. LAWRENCE
Project Engineer

,WMl/u4*uA> FOR THE COMMANDER:
^JOHN A. GRANIERO, Chief Scientist

Command, Control, & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please
notify RL/C3AB, 525 Brooks Road, Rome, NY 13441-4505. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing
the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information
Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 222D2-4302, and to the Office of Management and Budget, Paperwork Reduction Project 10704-0188|, Washington, DC 20503.

1. AGENCY USE ONLY /Leave blank) 2. REPORT DATE

June 1997
4. TITLE AND SUBTITLE

DISTRIBUTED SYSTEM CONTROL

3. REPORT TYPE AND DATES COVERED

Final Jun 94 - Mar 96

6. AUTHOR(S)

James A. Beres, Bharat Bhangava, Tom Geigel, Kane Kim, and Jus-eak Kim

5. FUNDING NUMBERS

C - F30602-94-C-0032
PE -62702F
PR - 5581
TA -21
WU-AH

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Lockheed Martin
Advanced Technology Laboratories
1 Federal St., A&E, 3W
Camden NJ 08102

. PERFORMING ORGANIZATION
REPORT NUMBER

N/A

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Rome Laboratory/C3AB
525 Brooks Road
Rome NY 13441-4505

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

RL-TR-97-29

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Thomas F. Lawrence/C3AB/(315) 330-2925

12a. DISTRIBUTION AVAILABILITY STATEMENT

Approved for public release; distribution unlimited

12b. DISTRIBUTION CODE

13. ABSTRACT /Maximum 200 words}

Global control in distributed systems had not been well researched. Control had only been addressed in a limited
manner, such as for data-update consistency in distributed, redundant databases or for confidentiality controls (access
control authentication). The purpose of control is to allocate the system's resources to the most important objective.
The system must manage resources during system operation. Anomalies are conditions that obstruct the system from
achieving user objective. Most research had been limited to a single-processor situation; however, research had to
extend control to the distributed environment. The predictability of the external environment, communication delays,
data accuracy (state information) and anomalies, and stability of decision algorithms constrain global control. The
integration of control, which at various levels of granularity, would enable distributed-teleconferencing, and adapt to
systems conditions, was investigated.

14. SUBJECT TERMS

Distributed Control, Quality of Service, Multimedia Distributed Systems, Resource
Management
17. SECURITY CLASSIFICATION

OF REPORT

UNCLASSIFIED

IB. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSJJF1ED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSDJIED

15. NUMBER OF PAGES

80
16. PRICE CODE

20. LIMITATION OF ABSTF5ACT

UL
Standard Form 298 (Reu. 2-89) (EG)
Prescribed by ANSI Std. 238.18
Designed using Perform Pro, WHS/DIOR, Oct 94

Table of Contents

Section Page

1.0 Introduction
1.1 Program Rationale
1.2 Report Organization
1.3 Program Organization
1.4 Team Members

2.0 Overview of Distributed System Control 3
2.1 Program Objective 3
2.2 Design Philosophy 4
2.2.1 System Assumptions 5
2.2.2 Adaptation Types 5
2.2.3 Compliance of Distributed Systems Control 6
2.2.4 Value Functions 6
2.2.5 Global Management and Synchronization 7
2.2.6 Benefit-Loss Functions 7
2.3 Architecture of Distributed System Control 8
2.3.1 System Manager 9
2.3.2 Local Manager 10,
2.3.3 tcp__conims 1 1

3.0 Video Teleconferencing Adaptability 13
3.1 Network Video Software 13
3.2 Adaptability Trades 13
3.3 Reconfiguration Policy 13

4.0 Implementation of the Demonstration 15
4.1 Hardware 15
4.2 Software 15
4.3 Demonstration Operation 15

5.0 Conclusions 17

6.0 Appendices 19
6.1 Adaptable Video Teleconferencing 21
6.2 Distributed System Control Algorithms 45
6.3 tcp_comms Interface and Users Guide 51
6.4 Demonstration User's Guide 53
6.5 Benefit Loss Scheduling 63

DTIC QUALITY INSPECTED &

Table of Contents
List of Figures

Figure Page

2-1 Distributed System Control's system architecture 3
2-2 Simple benefit-loss function 8
2-3 DSC system architecture 9
2-4 The SM's GUIs make system administration easy 10
2-5 The user monitors and controls applications with these GUIs 11

4-1 Demonstration architecture 16

6-1 Percentage of time encoding over total processing time for resizing 30
6-2 Percentage of time decoding over total processing time for resizing 30
6-3 Extended architecture of network video 32
6-4 Frame compression using pixel averaging to achieve 4:1 reduction 33
6-5 Frame rates for resized frames 36
6-6 Percentage of time encoding over total processing time for resizing 37
6-7 Percentage of time decoding over total processing time for resizing 37
6-8 Percentage of time encoding over total processing time for

resolution reduction 38
6-9 Percentage of time decoding over total processing time for

resolution reduction 38
6-10 Impact of momentum on DCT forward transform time 40
6-11 Impact of momentum on NV forward transform time 40
6-12 Impact of momentum on DCT reverse transform time 41
6-13 Impact of momentum on NV reverse transform time 41
6-14 Time spent in forward transform: NV versus DCT 42
6-15 Time spent in reverse transform: NV versus DCT 42
6-16 Compression ratio: NV versus DCT 42
6-17 Effect of recoding overhead on frame rates 44
6-18 Effect of changing recording frequencies on sizes of recordings 44
6-19 SM's LM window 55
6-20 SM's Start Application window 55
6-21 LM's GUI 55
6-22 LM's Control Panel window 56
6-23 LM's Application GUI window 57
6-24 Sample DSC Application resource file 59

ii

Table of Contents
List of Tables

Table Page

4-1 System Configuration 15

6-I CPU use Under Various LoS 30
6-II Image Qualities for Different Compression Factors for Y and UV

Components 35
6-III CPU Use in Various Codec Schemes Support by NV 39
6-IV Frame Rate Obtained Using Various Codec Schemes Supported

by NV 39
6-V Generic Resource Values 47
6-VI Results of the Benefit-Loss Experiment 65
6-VII Classes of Kernel Threads 67

in

1.0 Introduction
This report documents work Lockheed Martin Advanced Technology Laboratories
(ATL) performed July 1994 to May 1996 on the Distributed Systems Control (DSC)
contract, F30602-94-C-0032. The U.S. Air Force's Rome Laboratory, Directorate of
Command Control and Communications Computer Systems Technology Branch
(C3AB), sponsored the contract.

1.1 Program Rationale
When the DSC effort began, global control in distributed systems had not been well
researched. Control had only been addressed in a limited manner, such as for data-
update consistency in distributed, redundant databases or for confidentiality controls
(access control, authentication). The purpose of control is to allocate the system's
resources to the most important objective. The system must manage resources during
system operation. Anomalies are conditions that obstruct the system from achieving
user objectives. Most research had been limited to a single-processor situation;
however, research had to extend control to the distributed environment. The
predictability of the external environment, communications delays, data accuracy
(state information) and anomalies, and stability of decision algorithms constrain global
control. The Advanced Technology Laboratories designed DSC to investigate the
integration of controls, which at various levels of granularity, would enable distributed-
systems control to operate, enable a multimedia application, enable video
teleconferencing, and adapt to system conditions.

1.2 Report Organization
• Section 1 — Introduction, program objective, and team members
• Section 2 — Overview of Distributed System Control
• Section 3 — Adaptability of video teleconferencing
• Section 4 — Implementation of the demonstration
• Section 5 — Conclusions
• Section 6 — Appendices.

1.3 Program Organization
The DSC program is an outgrowth of research done on contract for Rome Laboratory's
Adaptive Fault Resistant System (AFRS) and its predecessor, Adaptive Fault tolerance
(AFT).

1.4 Team Members
Tom Lawrence, U.S. Air Force Rome Laboratory C3AB, directed the efforts of ATL,
which was the program's prime contractor.

Other team members included Purdue University and the University of California,
Irvine. Purdue University investigated new technology in video teleconferencing and
made experimental modifications to Network Video (NV), a video teleconferencing
application developed by Ron Frederick, Xerox PARC. The University of California,
Irvine, investigated scheduling algorithms using benefit-loss functions.

1/2

2.0 Overview of Distributed System Control
This section describes Distributed System Control (DSC) and the rationale behind its
development.

2J1 Program Objective
The objective of the program was to research and demonstrate integrated-control
concepts for adaptability in distributed systems that reflected user expectations for a
quality of service (QoS). Quality of service is timeliness, precision, and accuracy (TPA)
of information provided to the user. Adaptability to anomalies in the system is inherent
in the control software and the application. The worked focused on adaptation and
demonstration of video teleconferencing.

In general, anomalies in distributed systems include failure of a previously working
component, hardware and software design failures, and shared-resource conflicts.
Distributed System Control established a control architecture that enabled adaptation
by system control and adaptation by distributed application. See Figure 2-1: The DSC
architecture included a system manager, local host managers, system-monitoring
software, user-value function data, application data, and a library of application-
program interface calls.

CPU MEMORY HOST A CPU MEMORY HOSTB

NETWORK
CPU MEMORY

1
\ HOSTn-1
\

HOSTn

SYSTEM
MANAGER
(redundant)

Figure 2-1. Distributed System Control's system architecture.

The DSC program developed and integrated control mechanisms that cooperatively
controlled an application's dynamic requirements. The DSC characterized an

application's requirements by using objective functions made of value functions. The
objective functions enabled the system's resources to collaboratively provide the best
overall QoS. Using DSC, an application established distinct QoS operations called
Levels of Service (LoS). The system initially established and maintained resource
requirements for LoS during operation. The DSC controlled the QoS provided to the
end user by controlling the application's LoS.

The DSC program investigated maximizing the overall value that the system provided
to users. The Advanced Technology Laboratories (ATL) considered performance
metrics (TPA) and the relationship of these metrics to the overall value a particular
running application provided to the user.

The Advanced Technology Laboratories also considered the allocation of local and
global resources to individual applications. Also investigated was the problem of
maximizing the value returned by the services on a particular host. Finally, ATL
suggested a hierarchical approach, building upon the individual host solution, in
solving the global, system-wide problem.

2.2 Design Philosophy
The Advanced Technology Laboratories viewed distributed system control as a
complex, realtime, optimization, and resource-allocation problem. It is realtime
because anomalies of different kinds occur in realtime and user requirements may
change dynamically. The set of resources remains relatively fixed, and it must be
allocated to those user requirements that are most important at that time.

One possible approach is to have a complex, centralized resource manager that
allocates based on input from all resources in the distributed system (system
resources and application needs). This approach is the simplest to implement, but it is
insufficient for most realtime decisions. The time-scale for different actions in the
system covers a wide range; process scheduling may occur at the sub-millisecond
range, while communications delays cannot be predicted to within tens of
milliseconds. Having a centralized entity making communication-level or CPU-
scheduling decisions is an unreasonable option.

An extreme approach would be a full peer-to-peer approach without centralized
decision making. However, this is also impractical because it is too complex to agree
with every peer when a decision has to be made.

There needed to be multiple levels of decision making, each with a well-defined set of
services, timing granularity, and associated QoS. The ideal system may have
schedulers for each resource that have the ability to interact with higher and lower
level schedulers, as necessary.

The Advanced Technology Laboratories realized that most decisions within a node
(processor) are local (principle of locality) and that the system must manage different
time scales of interest. For actions where several nodes must interact, ATL used a
centralized System Manager (SM). For allocating resources within a node, it used a
Local Manager (LM) to perform most of the work. For very fine grained control (CPU),
ATL investigated several algorithms based on benefit-loss functions (BLF).

2.2.1 System Assumptions
The Advanced Technology Laboratories developed DSC with a particular system
model. The model best described future distributed systems that may benefit from DSC
and it defined the scope of the problem that DSC tried to solve:

• • Very Large Complex Systems — Present and future distributed systems
contain hundreds, even thousands, of nodes; they will continue to increase as
processor speed increases. These systems are configured as a wide-area
network.

• Diverse User Applications — Each application varies in its importance
relative to others in the system. These applications also have diverse criticality,
availability, and realtime requirements.

• Dynamic Operational Environment — The DSC program was interested in
networks that were prone to anomalies — frequent reconfigurations, drop-ins and
drop-outs — due to the external environment in which they worked.

• Limited Resources — There is no way to evaluate a priori all possible
execution scenarios and/or configurations.

• Stochastic Behavior — Assume that the applications are probabilistic to some
degree.

Distributed control in existing systems is a difficult problem, considering the lack of
available integrated-control mechanisms. Heterogeneous platforms further restrict
integrated solutions due to differing operating-system "hooks and handles." The
Advanced Technology Laboratories developed a philosophy to monitor, manage
resources, and adapt applications to the distributed application. The philosophy
centered on consolidating existing control mechanisms into a resource-management
system that allowed local and global control.

2.2.2 Adaptation Types
The DSC recognized two types of system adaptation:

• Type-I — The system manages resources to completely meet an application's
needs. Most developers today use and study type-l adaptation. Operating
systems constantly schedule processes based on CPU use and input/output
bandwidth. The system performs memory caching based on least-recently-used
algorithms; this approach allows the more active processes a bigger share of
local memory. The disadvantage is that an application will not run unless all of its
resource needs are met. The system has only one set of application resources
requirements, which are static and pre-calculated.

Providing sophisticated distributed-control mechanisms is only a part of solving
the adaptability problem. As important is the application's ability to adapt to
degrees of resource availability. Almost none of the applications developed to
date take advantage of these control mechanisms; applications run in a certain
way or not at all. Response time is the only degree of freedom.

The DSC program approach defined type-l I adaptation as the ability of the
application to run with different resource configurations. This may mean using
different algorithms that require varying amounts of resource capabilities (CPU,
communications, storage).

• Type-ll — Applications adapt by changing their expectations. Type-ll adaptation

requires the application to have pre-defined and multiple expectation levels, this
results in different Los associated with differing resource ^quiremen^ D fferent
LoS allow more flexibility in maintaining an overall QoS among all distributed
applications under DSC control.

Durinq the project, ATL investigated both types of adaptation The DSC program
suDported type-l by controlling the application's process-scheduling priorities, t
supported type-ll by using LoS and the ability of the applicat.on to reconfigure to
different LoS in realtime.

2 2 3 Compliance of Distributed System Control
The concept of DSC compliance is only pertinent to applications that wish to be
controlledI by DSC. Compliant applications must be able to register communicate, and
be controlled by DSC. Implementing compliance requires modification to existing
«nnlirations and it is only a small consideration for new applications. The DSC
ÄXfiS aÄation Programmer's Interface ^^^D^&^
6 4 5 that provided controls to build a DSC-compliant application. The DSC Program s

benefits to the application relied on the reconfigurability and the number of LoS that
the application could define.

The DSC's ultimate impact on providing QoS to distributed applications in an
anomalous environment always increased when it controlled all distributed
IppZtZs in that environment. However, ATL designed DSC ^ operrte ona^m
with applications outside its control. As a resource-management system, DSC reacted
To a nScont°onable process that consumed resources as if they were unavailable
due to a physical reason, such as a disabled network connection.

"e^oriSS dÄ?n for DSC introduced the concepts of TPA to describe the value
of services provided by the system:

• Timeliness — Timing of required events
• Precision — Quantity of required data
• Accuracy — Compliance to semantics and contexts.

The Advanced Technology Laboratories identified the relationship of TPA to user
valuTas a vtk.e fSnction9By analyzing potential applications that may run under DSC,
^hTranqe of possibilities for TPA often formed a set of discrete combinations, as
opposedTto aSinuous function; for example: frame rate changed incremen ally.
EachConfiguration in which an application ran represented one possibility-in h s set.
Because changing an application's configuration option could change associated
feve^ o^PA? the9re wasan inherent interdependence among them. Consequentiy, the
app oach ATL took to describe an application's value functions was the following.

PP.Tdentified each discrete combination of TPA values based on the various
confiaurations in which an application could run

. Ass qned a value to each configuration based on the relative importance that
ftlronfigumtion had to the use" This approach quantified LoS w.thout the
complexity of continuous functions.

2.2.5 Global Management and Distributed Application Synchronization
Resource management is a fairly simple task if the resources are local. However,
decisions are complex when more than one host makes allocation decisions on global
resources without regard to those made by other hosts For example, two hosts could
locally allocate 100 percent of the network's bandwidth to local processes, which
results in a 100-percent over-allocation of the network. The global resource-allocation
decision must take the other hosts' decisions into account.

The DSC program solved this problem by passing local allocation decisions to each
host. For example:

Suppose the network is idle and Host A decides to run a network-
intensive program. Consequently, the other hosts notice a decrease in
network availability. If another more valuable process needs a currently
unavailable portion of network bandwidth, then it will not be activated
unless it is controlled by the same host as the first process. The host
controlling the second process has no way of deciding that it has a better
service to provide because it does not have information about the first
process. The DSC program solved this problem by creating a virtual
process within Host A's process table; Host A can now include that
process in its resource-allocation calculations.

Another global-scheduling problem is when a distributed application's processes run
on different hosts. A synchronization protocol must exist to guarantee that the
application runs at the compatible LoS. To address this problem, the DSC program
included the distributed process' LoS in the decisions that it made about local
resource allocation. For example:

Similar to the global-management solution, each host passed
information about its local process to the distributed application on all
other hosts. Specifically, the system passed LoS that the local process
ran between hosts. The hosts invalidated all other LoS for the distributed
application's local processes except for the LoS that ran remotely. This
synchronized the application by disallowing a process to run at a
different LoS. As soon as a process' LoS could be upgraded, the other
hosts received notification of the upgrade and made allocation decisions
based on that LoS.

2.2.6 Benefit-Loss Functions
The Advanced Technology Laboratories investigated BLFs as a way to better control
applications. To provide the expected QoS, some applications were configured into
multiple threads of execution within the application. It was possible to manage multiple
threads with native host schedulers by varying the threads' priorities. Each thread had
an associated BLF, which determined how DSC's local scheduler prioritized the
threads within its host.

Like value functions, BLFs determine how valuable a particular thread is to the overall
system when it runs. Instead of relying on a thread's run value, the DSC accumulated
a loss value if the thread did not run or if it missed its deadline. This function was

application-dependent and relied on a thorough understanding of the inner details of
the application. Figure 2-2 is an example of a BLF. A static positive value resulted if a
thread ran before its deadline; likewise, a static negative value resulted when it did
not. By comparing various runtime-scheduling parameters (laxity, earliest deadline, or
highest benefit-loss value), DSC controlled the application's thread at the kernel-
scheduler level. It did this by tracking the accumulation of the BLF over time. If the BLF
reached a user-defined threshold, then the application could prompt DSC to adapt the
application to a different LoS in the same way the application would adapt to a
resource constraint. Therefore, in addition to providing a fine-grain level of control for
DSC, an application-controllable adaptation mechanism can be implemented.

Value

Time

Deadline

Figure 2-2. Simple benefit-loss function.

Appendix 6.5 discusses two items: implementation of a BLF scheduler that ATL
investigated during the contract and results of tests using different implementations.
The Advanced Technology Laboratories compared three schedulers: one based on
least laxity (time remaining before the event deadline), one on highest benefit-loss
value, and one on highest ratio of benefit-loss value to laxity. The comparison showed
that the ratio of benefit-loss value to laxity was superior. The Advanced Technology
Laboratories did not implement BLFs in DSC because of a threading bug it discovered
in version 5.4 of Sun's Solaris operating system. Appendix 6.5 also reports results of
tests ATL performed on version 5.3.

2.3 Architecture of Distributed System Control
The DSC system is hierarchical, so it supports different levels of control (Figure 2-3). At
the top level, there is an SM, whose primary task is to monitor and control distributed
DSC applications and system resources at a global level. One of DSC's goals was to
maintain distributed application-execution in a faulty environment; therefore, ATL
designed the SM to be redundant.

An LM resides on every host. Its primary task is to control and monitor DSC
applications and resources at a local level. The LM maximizes the use of resources
based on the value of the application. It does this by allocating and scheduling the
resources of DSC's processes. The LM also executes reconfiguration and start/stop
commands it receives from the SM.

CPU MEMORY

B
HOSTA CPU MEMORY HOSTB

/APPTN——

NETWORK

TT • • •
CPU MEMORY \ HOSTn-1

\

(APPTV—-—-

HOSTn

SYSTEM
MANAGER
(redundant)

Figure 2-3 DSC system architecture.

For the initial development and implementation of DSC, the system managed CPU,
main memory use (local resources), and network bandwidth (a global resource).

The DSC software components and DSC-controllable applications communicated via
UNIX sockets using the tcp_comms communication package. The Advanced
Technology Laboratories developed tcp_comms to provide a fast, multicast-process-
group communication capability using transmission control protocol (TCPVInternet
protocol (TCP/IP).

2.3.1 System Manager
The SM controls DSC applications at the global level. Its responsibilities include the
following:

• Monitoring system-level (global) resources
• Monitoring and handling system-level connectivity between hosts

• Coordinating start/stop of DSC applications
• Providing a graphical user interface (GUI) for system administration.

The initial DSC design had the SM manage global policy. Application performance
and local-resource-use feedback from the LMs would be analyzed by dynamically-

changing global-resource management policies. The LM would determine whether
resources were being assigned to the most important distributed DSC applications.
The SM commanded the LMs to reconfigure the DSC application processes, thereby
dictating global resource-management policy. However, the timeliness of sending and
synchronizing reconfiguration commands among hosts limited the usefulness of SM-
based centralized control for realtime applications, such as video teleconferencing.
The complexity involved in implementing any process-migration capability, a
necessary coarse-grained reconfiguration tool, was beyond the program. For these
reasons, ATL implemented a decentralized LM-based approach to global-resource
management. Nonetheless, the SM was still the central location for starting and
stopping DSC applications, as well as the location for monitoring network connectivity.

See Figure 2-4: The SM's GUI provided DSC's basic global-level control functions. It
monitored the availability of each LM on each host, and it allowed the user to control
the application from a central location.

iBlliS ^^^.

Figure 2-4. The SM's GUIs make system administration easy.

Appendix 6.4.2 details the SM's GUI.

2.3.2 Local Manager
The LM is the parent process for all DSC-controlled processes. Its primary function
was to allocate computing resources to processes. The reason for the allocation was
to maximize the aggregate value of DSC applications running on the host without
overusing available resources. The LM also coordinated its decisions with other hosts'
LMs to ensure that distributed DSC applications ran in a consistent configuration. In
DSC, LM allocated CPU use, core memory, and network bandwidth. However, there
were no theoretical restrictions on including other shared computer resources, such as
video cards or communication ports. The LM responded to systematic (e.g., process
aborted) and application-specific application errors (e.g., an application reported to
DSC to reconfigure when an application state changed).

10

The LM made allocation decisions on a cyclic basis (measurement period) based on
user-supplied descriptions of DSC-controlled applications. A typical DSC application
was reconfigurable into a number of LoS. (Refer to Figure 6-24, which describes each
LoS.) The table contained elements describing the value of the applications'
configuration and its estimated resource requirements for CPU use, memory, and
network bandwidth. For every measurement period, the LM calculated a value/cost
ratio for each LoS of each runnable DSC application. It based the calculation on the
LoS's value and the predicted resource use for the application. It calculated predicted
resource use by using an exponential, moving, average filter that accounted for past
history and present use. The LM sorted DSC's applications on value/cost ratio and
selected the highest LoS for each application that still ran with the remaining
resources.

Appendix 6.2 details the above methods.

See Figure 2-5: The LM has a GUI that allowed developers and administrators to
control various parameters of LM and other applications. The LM GUI gave a list of
active processes it controlled and current measurements for CPU, memory, and
network resources. By double-clicking on any application, an application's LoS GUI
appeared. The GUI allowed the user to adjust the value of each defined LoS,
measurement period, and EMA_constant, which directly weighted previous
measurements in present resource calculations.

Appendix 6.4.3 details the LM's GUI.

Fife Option View

i&miitmmwiigimam&mtimmiMjä
View Help

/loc»Vbo«er/»franco/in

rzttjZSSBQSffl
ml

Figures 2-5. The user monitors and controls applications with these GUIs.

2.3.3 tcp comms
The Advanced Technology Laboratories developed tcp_comms as a small, fast, UNIX,
socket-based communications package. All DSC software components and DSC-
controllable applications communicate using tcp_comms. tcp_comms provides a
communication substrate that allows multicast TCP/IP communication using a process

11

group communication model. tcp_comms abstracts message passing to a level where
the software developer only has to create the message and send it to the correct
process group. tcp_comms maintains group names and members via the nameserver
(NS) daemon.

Basic execution of tcp_comms process occurs in the following sequential manner:
• The application must use tcp_comms_init (), which creates a point-to-point

TCP socket from the process to the NS.
• The application joins communication groups via tcp_comms_j oin_group ().
• tcp_comms_j oin_group () sends a message to the NS, which registers the

application as a member of that group and returns a list of other processes that
are also group members.

• tcp_comms_join_group () then creates point-to-point TCP sockets for those
processes, if they have not already been established. If one of these processes
aborts, then the application and the NS will be notified (via the death of the TCP
port), and the group member information will be updated automatically by the NS.

• Finally, tcp_comms__msg_send () sends a byte-array buffer to any group.
tcp_coinms_wait_f or_next_msg () and tcp_comms_get_next_msg ()
provide blocking and non-blocking ways of receiving messages from a group.

If one wishes to send messages to a particular group but not become a member of that
group, tcp_comms_get_group_id () can be used.

tcp_comms is thread-safe and assumes that the user will use threads to multiplex
reception of messages from different groups.

Appendix 6.3 details tcp_comms API.

12

3.0 Video Teleconferencing Adaptability
3.1 Network Video Software
The Advanced Technology Laboratories (ATL) developed Distributed System Control
(DSC) to provide distributed application adaptability. The Advanced Technology
Laboratories demonstrated this concept with a video teleconferencing application. The
DSC used network video (NV) — a popular video-conferencing tool developed at
XEROX PARC. The Advanced Technology Laboratories chose NV because of its
availability and functionality: It transmits and receives video data across the Internet
and it runs over a video range of network bandwidths. The NV uses a video-
compression scheme that performs at a reasonable speed when implemented in
software. It takes advantage of similarities between consecutive frames in a typical
video stream and neighboring pixels in any region of the frame. The NV periodically
transmits stationary blocks to improve image quality. The NV has three main modules:
grabber, which grabs frames using a platform-specific video-capture card; encoder,
which does lossy compression; and sender, which transmits data.

3.2 Adaptability Trades
The NV adapts color depth, frame resolution, frame size, and code scheme. For DSC,
ATL used combinations of these adaptability features to establish levels of service
(LoS), such as greyscale with 128-bit resolution and small frame size; or color with
256-bit resolution and medium frame size. The Advanced Technology Laboratories
augmented the NV with three modules: network probe, admission control, and VC
adaptability collaborator. It also ran performance trades to establish resource-use
(CPU and communications) parameters for differing compression approaches. The
objective was to establish unique LoS with unique resource requirements. The
analysis also yielded unexpected results: In some cases, system developers
perceived the clarity of the video produced with greater compression as better than
that produced with less compression.

Section 6.1 details the NV studies.

3.3 Reconfiguration Policy
Based on adaptability trades, ATL developed policy guidelines for reconfiguring video-
conferencing to meet timeliness, precision, and accuracy (TPA) goals when a system
operated under resource constraints. These guidelines were the following:

• Maintain Timliness when bandwidth decreases:
— Reduce frame size
— Reduce frame resolution
— Dither color frame to black and white
— Compress color depth
— Switch to a code scheme that has a higher compression ratio.

• Maintain accuracy when bandwidth decreases:
— Switch to a lossless code scheme with reduced frame size
— Dither color frame to black and white
— Compress color depth
— Do not use lossy code schemes
— Do not reduce frame size or resolution by a large factor

• Maintain timeliness when CPU-use increases:
— Switch to a code scheme that requires less computation

13

— Reduce frame size
— Dither color frame to black and white
— Do not compress color depth
— Do not reduce frame resolution

• • Maintain accuracy when CPU use increases:
— Switch to a lossless code scheme
— Reduce frame size
— Dither color frame to black and white
— Do not compress color depth
— Do not reduce frame resolution
— Do not use lossy code schemes.

Section 6.1 details the NV studies.

14

4.0 Implementation of the Demonstration
4.1 Hardware
The Advanced Technology Laboratories (ATL) demonstrated the Distributed System
Control (DSC) on a network of three Sun computers connected by Ethernet™. The
network video (NV) video-teleconferencing tool required video cameras and interface
cards. The Advanced Technology Laboratories configured Sun's SunVideo card and
camera on two machines for this purpose. The machines with the SunVideo cards
required at least 64MB memory. The third machine required the power of a Sun
SparcStation 10 or higher with 64MB memory; the Advanced Technology Laboratories
used a Sun SparcStation 20 due to its availability. Table 4-I lists the configuration of
the Sun SparcStations.

Table 4-1. System Configuration

Machine Type Monitor Disk Memory SunVideo
Neptune SparcIO 20" Color 525MB 64MB Yes
Homer Sparc 10 20" Color 525MB 98 MB Yes
Denali Sparc 20 20" Color 1.2GB 64MB No

4.2 Software
The necessary software consisted primarily of Sun Software Development packages.
The Advanced Technology Laboratories installed SunVideo software on the machines
that contained the video cards. The software is standard on Sun's Solaris operating
system, version 5.4, but it is not a standard install option (Ref. SunVideo Users Manual
for more details). The NV and DSC software are deliverables. The following was the
required Sun software:

• Solaris operating system, version 5.4
• SparcWorks' C Compiler and Software Developer's Kit, version 3.0.1 or better
• OpenWindows, version 3.0 or better
• Motif 1.2 (SUNWmotif package comes with Sun OpenWindows)
• SunVideo Software package (SUNWrtvc SUNWrtvcu packages).

4.3 Demonstration Operation
Figure 4-1 shows the demonstration architecture. The primary application NV ran on
two machines, each with a SunVideo card and camera. A third machine (Denali in the
figure) ran an X Windows server; it provided a central location for viewing and
controlling the dynamic reconfiguration of NV on camera-supplied machines as the
user added worker applications. Worker applications were simple resource consumers
that varied available resources: Nethog used network resources and cpuhog
consumed CPU bandwidth.

The demonstration showed how DSC adapted the NV application based on available
resources. As each worker application started, the system reconfigured NV to run at a
different LoS — from full-frame-rate color to half-frame-rate black and white video.

Appendix 6.4 explains how to boot DSC software components and how to run and
control DSC-compliant applications for the demonstration.

15

CPU MEMORY
m^m

v

• • •
NETWORK

HOMER CPU MEMORY NEPTUNE

H.<

exri

DENAÜI

X-Windows

SERVER B
WMOMFRI 1
WMFPTllNFll

csnwa I

\

Figure 4-1. Demonstration architecture.

16

5.0 Conclusions
The Distributed Systems Control (DSC) program addressed the establishment of a set
of controls that adjusted the quality of service (QoS) provided to the user based on the
resources available to the system. The work focused on demonstrating controls with a
multimedia application. The Advanced Technology Laboratories (ATL) established
controls in a hierarchical structure to enable scalability, and it kept them simple to let
the user understand and use them and to minimize system impact from intrusive
monitoring.

The DSC used two types of adaptability:
• Type I — The application did not change its operation; rather the system

adapted the resources to provide those needed by system requirements.
• Type II — It complements type I. The application adapted to operate to a

different QoS based on considerations of timeliness, precision, and accuracy
(TPA) embodied in the user's assessment of value. The Advanced Technology
Laboratories based the fundamental concept of effective system adaptability of
DSC on predictable performance. The DSC took advantage of NV's stability to
demonstrate cooperative adaptability between the system and the application —
termed type-ll adaptability.

The Advanced Technology Laboratories could not directly control the application's
QoS through different TPA parameters at runtime. Instead, it selected and calibrated
levels of service (LoS) to implement QoS — discrete application configurations — for
anticipated resource needs. Once ATL mapped QoS into an LoS and its associated
system resource needs, the DSC managed system resources according to user
preferences.

The Advanced Technology Laboratories selected unique LoS operating points for the
video application: They were unique in the service provided and the resources
required. The distinctions in service provided choices to the user for service and the
distinct resource requirements provided meaningful choices to the control algorithms.

Significant to the approach of building discrete LoS was the need for extended
design-time evaluation of QoS; that is, what services were meaningful to the user and
how could they be characterized in terms value? Analysis is needed to clarify users'
adaptability requirements in the same way other requirements are examined. For
video-conferencing, resource requirements were relatively consistent for each discrete
LoS, so DSC's adaptation algorithms took advantage of that predictability.

Instability in communication delays limited the ability to use fine controls. However,
asynchronous-transfer-mode (ATM) communications provided the capability to specify
QoS; therefore, it was possible to couple an application's QoS (as specified by an
LoS) with a communication's QoS. This technique could be investigated as a way to
implement various combinations of coarse and fine controls.

The Advanced Technology Laboratories investigated the feasibility of fine-grain
scheduling based on benefit-loss functions. It found that a scheduling algorithm that
used a ratio of the value-to-laxity scheme was superior in reducing the cumulative

17

benefit-loss over time. However, two steps would need to be taken to use such fine-
grain controls:

• Scheduling algorithms would have to be implemented in the kernel to
operate efficiently.

• • Detailed analysis of the application would be required to break it into defined
blocks with known timing requirements.

In summary, the DSC program demonstrated the ability to control system performance
of video-conferencing. It did this by using a cooperative control methodology that had
system and application adaptability. The DSC program highlighted the need for
detailed adaptability design fortype-ll adaptability and defined conditions that would
enable further integration of controls.

18

6.0 Appendices
Appendices in this report are the following:

• 6.1 Adaptable video teleconferencing
• 6.2 Distributed System Control algorithms

• • 6.3 tcp_comms application programmer's interface and user's guide
• 6.4 Demonstration user's guide
• 6.5 Benefit-Loss scheduling

19/20

6.1 Adaptable Video Teleconferencing
6.1.1 Introduction
Video conferencing systems are practical in commercial and research institutions
because the technology has advanced in networking and multimedia applications. A
video conferencing session involves multiple parties who might be geographically
dispersed, and who exchange realtime video data. However, anomalies such as site
failure and network partitioning determine the effectiveness of the communication
capabilities. Video conferencing systems cannot dynamically adapt to variations in
system resources, such as network bandwidths, CPU use, and memory and disk
storage. For video conferencing systems, only users can change parameters, such as
frame sizes, codec schemes, color depths, and frame resolutions. These changes
cannot be made automatically based on system measurements of currently available
resources. It is necessary to limit the user's burden in keeping the system running in
the most suitable mode and to provide the best possible service based on the status of
the system. Incorporating adaptability into video conferencing systems minimizes the
effect of variations in system environments on the quality of video-conference
sessions.

The paragraphs in this section discuss the following:
• Section 6.1.2 describes the concept of adaptability and how to achieve it in a

video-conferencing system.
• Section 6.1.3 describes common anomalies encountered in a distributed

system.
• Section 6.1.4 overviews the Network Video (NV) conferencing-system testbed,

then describes extensions and modifications to NV and some reconfiguration
issues.

• Section 6.1.5 summarizes experimental data analyses, observations, and
discussions.

6.1.2 Adaptability
Adaptability and reconfigurability are necessary to deal with the performance and
reliability requirements of a system. Current distributed systems provide a rigid choice
of algorithms to implement application software. Users make design decisions based
on criteria, such as computational complexity, simulations under limited assumptions,
and empirical evidence. The desired life- cycle of a system is at least several years.
During such time, new applications surface and the technology advances, making
earlier design choices less valid. Also, during a 24-hour period, users encounter a
variety of load mixes, response-time requirements, and anomalies. An adaptable
distributed system can meet the various application needs in the short term, and it can
take advantage of advances in technology over the long term. Such a system will
adapt to its environment during execution and it will be reconfigurable for new
applications.

Adaptability is particularly important for mission-critical and distributed systems.
Mission-critical systems push current hardware and software technology to their limits
to meet extreme fault-tolerance or realtime performance requirements. Distributed
systems must be adaptable to support heterogeneous hosts and to provide graceful
degradation during anomalies. Computer networks support a larger and more diverse
user community than centralized systems. Hosts of many different types running

21

different software will be required to support this community. Therefore, the underlying
distributed system must be adaptable to a wide range of hardware and software.

Furthermore, failures that would require complete shutdown of a centralized system
can often be tolerated with only slight performance degradation in a distributed
system. The distributed-system software must be designed to be adaptable to a wide
range of modes of operation, corresponding to the wide range of possible failure
modes. For instance, a paper on dynamic quorum assigments1 describes an algorithm
for responding to failures by dynamically adjusting quorum assignments. As a failure
continues, the system modifies more and more quorum assignments. When the failure
is repaired, quorums that were changed can be brought back to their original
assignments. By dynamically adapting to the failure, the availability of data in the
system is increased at a cost that is only incurred during failure or recovery.

The principal advantages of adaptability are in reliability, performance, and software
enhancement and maintenance. Adaptability provides for reliability through a design
that is tolerant of site and communication failures. Adaptability improves performance
because the system can adjust its transaction-processing algorithms for optimum
processing of the current mix of transactions. Adaptability simplifies software
enhancement and maintenance through a design that is oriented from the start to
incorporate new ideas and approaches.

Subsystems can be replaced without affecting other parts of the system, and the
design of each subsystem supports implementation of new algorithms. With
maintenance costs climbing as high as 80 percent of life-cycle costs for many systems,
a design that supports future changes is becoming an essential part of software
development.

6.1.2.1 Flavors of Adaptability
There are four broad categories of adaptability: structural static, structural dynamic,
algorithmic, and heterogeneous:

• Structural-static adaptability consists of software-engineering techniques to
develop system software that can adapt to requirements changes over its life-
cycle. Structural-static techniques are categorized differently if they refer to
layered software or unlayered software:
— Layered software supports vertical adaptability, which is the ability to

replace a layer without affecting the other layers. Some layered software also
supports horizontal adaptability, which is the ability to replace components
within a layer.

— Unlayered software can also take advantage of structural static
adaptability. Fault-tolerance adaptability in hardware is classified into circuit-
level and module level. Circuit level adaptability corresponds to software
techniques that check for errors within a software module, using redundancy
or correctness criteria. Module-level adaptability corresponds to techniques
that isolate errors to within a single software module and allow the rest of the
system to continue processing despite partial failures. Failure modes at the
module level are often assumed to be fail-stop, which means that either the

1 Bharat Bhargava and Shirley Browne. Adaptability to Failures Using Dynamic Quorum
Assignments, Technical Report CSD-TR886, Purdue University, June 1989.

22

module does not produce a result or it produces the correct result. Module-
and circuit-level adaptability in software also refer to the implementation
techniques that support replacement of software modules or algorithms,
respectively.

• • Structural-dynamic adaptability, usually called reconfiguration, is restructuring .
a running system in response to failures or performance requirements.
Reconfiguration includes site-failure protocols, network-partitioning protocols,
and other techniques to reorganize the way the sites in a distributed system work
together. For instance, performance reconfiguration includes dynamically
changing the communications structure of processors in a non-shared-memory
multiprocessor in response to changing tasks. Reconfiguration also has long-term
benefits. Users can easily integrate new hardware into a running system, and port
the software to new architectures with different interconnections between
processors.

• Algorithmic adaptability is a set of techniques to dynamically change from the
execution of one algorithm for a module to a different algorithm. For instance, a
transaction system can change to a new concurrency controller, or a distributed
system can change to a new site-failure algorithm. Algorithmic adaptability can
take place in one of three ways:
— Temporal adaptability refers to changes in algorithms over time. This

method generally has a brief conversion period after which operation
continues with the new algorithm.

— Per-transaction adaptability consists of methods that allow each
transaction to choose its own algorithm. Different transactions running at the
same time may run different algorithms based on their requirements.

— Spatial adaptability is a variant of per-transaction adaptability in which
transactions choose the algorithm based on properties of the data items they
access. Spatial adaptability is an advantage in cases in which properties of
different algorithms are desired for different data items.

• Heterogeneity deals with the issues involved in distributed computing using
many different types of computing systems. The simpler problems of
heterogeneity include establishing physical connection between the machines
and resolving data-type differences (e.g., size of integers, byte order). More
difficult problems include getting diverse database systems to work together and
developing software that takes advantage of the particular strengths of each
machine. Heterogeneity is an important problem for the future, because missions
requiring several different types of computing engine will become more common.
Systems that can incorporate heterogeneous hardware and software
components will have the advantage of being able to incorporate new
technologies more easily. Solving the problem of heterogeneity involves many of
the problems in algorithmic and reconfiguration adaptability; it is aided over the
long term by the software-design techniques of structural static adaptability.

6.1.2.2 Techniques for Adaptability
Adaptable software can be supported by an infrastructure of software tools. Support for
modular design can make it easier to implement adaptability. The principle behind
modular design is that abstract entities in the software design should be represented
as physical entities in the implementation. For instance, separate activities should be
represented as separate processes. In many operating systems, such as UNIX, this

23

means that the activities are represented as separate address spaces, each with a
single thread of control. Shared resources are placed in one of the address spaces
and accessed from the other address spaces via messages or remote-procedure calls.
Because messages and remote-procedure calls usually cost an order of magnitude
more than local accesses, the performance of the entire system suffers. The problem is
that the operating systems only offer a single-process abstraction. More flexible
process abstractions make sharing of resources, such as memory and files, efficient
and easy. For instance, some operating systems support multiple threads of control
within a single address space.

Powerful remote communication primitives can also support adaptability. For instance,
efficient multicast encourages the development of applications that can be spread
among hosts in many different ways. Using logical multicast addresses, the application
does not have to worry about the location of the destination. Servers can relocate
without informing their clients. Any of a group of replicated servers can answer service
requests directed to the logical address.

New languages also support adaptability. Object-oriented languages provide data
abstraction to clearly define the interface to the programmer. The syntax and
semantics of object references are the same whether the message is to an object in
the same address space, in a different address space on the same computer, or even
on a different computer. A smart compiler can exploit this flexibility by clustering
objects into processes according to reference patterns, so most object invocations can
be simple procedure calls. In fact, the object can be dynamically moved during
program execution as long as the interface is not affected.

Models of adaptability are another tool. A sequencer model formalizes three basic
approaches to algorithmic adaptability: generic state, converting state, and suffix-
sufficient state. The model reduces the problem of adaptability to mapping the
subsystem to a sequencer, choosing one of the adaptability approaches, and
implementing it. Software engineers have studied design techniques that enhance
structural static. Models for other types of adaptability are needed.

6.1.2.3 Using Adaptability
Incorporating adaptability into a system requires an understanding of how and when
adaptability will be used. Structural-static adaptability is used every time the software
is changed. Any software that will include maintenance in its life-cycle should
incorporate techniques to make maintenance easier to reduce its life-cycle cost.
Reconfiguration adaptability is necessary in systems for which availability is important
or reconfiguration is common to maximize availability. Reconfiguration adaptability
may also be necessary for mission-critical systems that must use different
configurations to respond to different situations to perform correctly. Algorithmic
adaptability is most important in systems that are pushing hardware performance to
the limit or that require very high levels of fault tolerance. Algorithmic adaptability is
useful for responding to environmental changes that are predictable or that last long
enough to amortize the cost of the adaptation. Finally, support for heterogeneity is
important in any system that has a long life-cycle or that will run on a large network of
computers to maintain flexibility. In choosing when adaptability can be applied, there is

24

a trade-off between the costs and benefits. Experimental work is needed to evaluate
adaptability in practical environments.

6.1.2.4 Adaptability in Video-Conferencing System
Adaptability is a very important concept in distributed systems. It means that a
distributed system should be able to reconfigure itself. The reconfiguration is
necessary to adjust to changes and anomalies in the system environments so it can
provide services whose level is closest to the level of service (LoS) specified by the
applications. Because there are various kinds of anomalies in a distributed system that
can affect the services provided by the system, several levels of adaptability are
needed to achieve this goal. In particular, a video-conferencing system should provide
some policies and mechanisms to make it adaptable to the anomalies based on the
available resources. The advantages of the adaptability schemes for video-
conferencing systems include:

• Heterogeneity — A video-conferencing system that will adapt to heterogeneous
environments; that is, a video-conferencing session can be held on different
hardware platforms and different networks.

• Scalability — A video-conferencing system that will adapt itself as more users
and more sites join a video conference in progress.

• Anomaly management — A video-conferencing system that will adapt to
anomalies and degrade gracefully when available resources decrease or
become unavailable.

• Resource management — A video-conferencing system that can make
efficient use of resources, such as storage, CPU time, and communication
bandwidth.

The basic idea for achieving adaptability for video-conferencing systems is to trade-off
some aspects of video quality for others. For example, the frame rate decreases as the
available network bandwidth drops. Because the smoothness of a video session is
sometimes more important than any other aspects of video quality, users may have to
maintain a reasonable frame rate during a video-conference session, even though the
network performance degrades. To achieve this, users must sacrifice some aspects of
video quality, such as color or resolution of video frames.

Adaptability can be achieved either by user intervention or by the system itself. If user
intervention is required, then the system accepts inputs from the user and changes the
LoS or some system parameters according to the new specification. If adaptability is
automatically done by the system, then the distributed-control system periodically
measures the available resources and supplies these parameters to the video-
conferencing system. Based upon the current parameters, the video-conferencing
system reconfigures itself in a user-transparent way to provide the best possible
service based on some user-specified criteria that must be satisfied.

6.1.3 Anomalies in a Distributed System
Video-conferencing tools are inherently used on top of distributed systems. The
anomalies in distributed systems will reduce the effectiveness and use of a video-
conferencing tool. Typical distributed-system anomalies include the following:

• System Resource Limits — System resources are usually limited and change

25

•

dynamically. Common limited resources include available network bandwidth,
CPU time, and disk storages:
— Network bandwidth in a distributed system is available in limited

quantities and varies with network traffic. For example, the bandwidth of a
typical Ethernet™ is 10 Mbps. Available network bandwidth may decrease
drastically during a short period of time when many users simultaneously
send large objects (packets). This is typical for video-conferencing sessions.
When the available bandwidth drops sharply, the video-conferencing system
can change the LoS by changing color or frame resolution to reduce the
object's size.

— CPU time available for the video-conferencing processes changes
depending on the system load. The system may choose to avoid
compressing the data before sending to decrease the CPU use if the
available bandwidth is large enough.

— Disk storage availability varies from machine to machine in distributed
system. For example, a server in an organization may have several
gigabytes of disk space and over 48 megabytes of memory, while a personal
computer participating as a client may have only 500 megabytes of disk
space and 4 megabytes of memory. In a heterogeneous environment like
this, the system may choose to provide different kinds of service for each
type of machine by negotiating before connecting. For example, the server
may decide to reduce the frame rate or frame resolution if the participating
site is a personal computer, while maintaining high-quality video frames for
participating high-end workstations.

Failures — A failure is a deviation of a system from its normal operation due to
some errors or faults. Various kinds of failures can occur during a video-
conferencing session. These failures include hardware, software, network, and
many others. Among them, the most relevant failures to a video-conferencing
system are the following:
— Site failures — The participating site may be down for some time and re-

join the session later. This could be caused by various kinds of errors from
hardware, operating system, software, memory, or disk. To deal with site
failure, a video-conferencing system may record the session in some
permanent storage and the failed site may retrieve it later when it resumes
normal operation. To prevent site failure caused by disk error, a distributed
system may use redundancy storages to store a duplicate copy of the data.

— Network failures — The network may be disconnected for a time or the
network may be congested due to large volume of traffic. To deal with
network failure, the packets may be re-routed through other connections, or
the system can store the data to be sent in some temporary storage and
retransmit when the network becomes available.

— System failures — These failures refer to a wide range of system-limit
violations. For example, the hardware may malfunction for a time. There may
be too many processes running on a system, which means no additional
process can be created when needed. The disk space may be full, which
means no temporary file can be created and the normal processing of the
system cannot be continued. To deal with system failures, the application
may go into a recovery mode and wait for the system to resume its normal
state, then it can keep on running on its normal mode.

26

— Number of participants varies — The number of users participating in a
video-conferencing session varies. This changes the demands placed on
the video-conferencing system. If the system load is too heavy, then the
system may limit the number of users to provide reasonable service to each
participant. It can also degrade the LoS for some users to maintain the
system availability to all users.

To deal with anomalies, a system can detect and report them, it can tolerate
them, or it can be designed to fix the anomalies. A system must be able to
detect anomalies to avoid an inconsistent state. There are two different kinds
of anomalies: those that pop up suddenly and those that occur gradually.
Each can be dealt with by a different strategy. For example, a power failure
can occur and cause the system to stop immediately. If anomalies occur
suddenly, the system may not prepare enough to recover from it. The system
may immediately stop working so it does not cause further damage. This is
called a fail-stop mode. However, sometimes the failure of the system can
cause cascade damages.

The distributed system should be prepared to deal with sudden anomalies
and guarantee that the anomalies will not cause a lot of inconsistency to the
system. For example, database logs constantly record the system status in
the permanent storage. If a sudden failure occurs, then the system can
recover the database back to some old but consistent state. Although some
transactions may be redone or undone, the information contained in the
system log can guarantee that no further damage will occur to the system.

A video storage system can record all frames for a session and then make
them available to play again. If anomalies grow slowly, then the distributed
system can prepare more for recovery. The system can be designed to
tolerate them, maybe by degrading the service gracefully, or it can try to fix
the anomalies and resume normal processing. If the system wants to tolerate
the anomalies, then it may substitute or reconfigure one of its components.
However, the substituted component may be inefficient, it may be reliable
only under limited circumstances (inputs), or it may be operational only for a
limited time. For example, if a direct link between two sites was
disconnected, the system may decide to re-route the data through some
indirect route, with the penalty of additional delay for the data. There are
always some overheads that exist if a distributed system must prepare to
deal with anomalies. For example, a checkpoint is used to help recover
processing back to a consistent state in the case of some failures, but there
are some overheads associated with a checkpoint due to the periodic
recording of the system status.

Adaptability allows a distributed system to accommodate anomalies and
reconfigure itself to provide service based on the available resources.

6.1.4 Network Video Software
The DSC team selected NV, a popular video-conferencing tool, developed by XEROX
PARC, as the testbed to implement adaptability features. The team extended NV to

27

provide adaptability to network characteristics and to allow it to reconfigure itself to
different parameters during anomalies. Being hardware-independent, the DSC team
compared the overheads of NV in the software implementation of the team's
algorithms without having to exclude the performance benefits due to the hardware of
certain codec schemes.

6.1.4.1 Structure of Network Video
Network video transmits and receives video data across the Internet using remote
transport protocol (RTP) built on top of user datagram protocol (UDP). Network video
runs on a wide range of network bandwidths, and it can support slow-frame-rate video
over a slow modem line, while also allowing higher quality video over a high-speed
local area network (LAN). Network video uses a video-compression scheme designed
to perform at a reasonable speed when implemented in software. It takes advantage of
the similarity between consecutive frames in a typical video stream and the similarity
between neighboring pixels in any given region of the frame. This block-based
compression scheme takes only tens of milliseconds on a workstation to compute. The
stationary blocks are periodically transmitted to improve image quality, which means
packet losses are made up by retransmission triggered by motion.

Network video has three main modules:
• Grabber module grabs frames using the platform-specific video-capture board.

It performs analog-to-digital conversion in hardware.
• Encoder module does lossy compression. Human eyes are more sensitive to

luminance than chrominance. By converting the red, green, blue (RGB) model to
luminance-chrominance (YUV) model (the process of subsampling), the encoder
module reduces chrominance information and retains luminance information. The
encoder module also executes the block-based conditional-replenishment
algorithm. Haar transformation is applied to each block to pick up the high-
frequency components that help provide better looking text. The encoding
process is finished with dead-zone quantization, where a single threshold value
is used to eliminate low-energy terms and run-length coding.

• Sender module transmits the compressed frames across the Internet to its
client processes.

6.1.4.2 Reconfiguration of Network Video
Adaptability features of NV include color depth, frame resolution and size, and codec
scheme. To incorporate adaptability into NV, important aspects must be considered,
including inputs, reconfiguration policy, and reconfiguration mechanisms.

6.1.4.2.1 Inputs
To notify NV about changes in the system environment, there needs to be input from
outside NV. Input parameters for adaptability that should be monitored from NV
applications include number of users, delay/jitter, frame rate, color, frame size, and
frame resolution. Input parameters that are available in DSC include CPU use,
available network bandwidth, and storage requirements. The inputs can come from
users, which means the parameters can be selected and modified interactively by
users when the service is unsatisfiable. They can also come from the distributed
system, which means the inputs come automatically from the distributed system based
on current parameters of the environment, such as available bandwidth and CPU use.

28

If the input is from users, then it can be specified by selecting the LoS or by specifying
actions that must be done by NV, such as compression of color depth or reduction of
resolution. The input can also be some direct change to any parameters, such as color
or frame size.

If the input is from the distributed system, then the distributed system must periodically
measure the available resources, including network bandwidth and CPU use. Based
on the currently available resources, the distributed system calculates the necessary
input parameters for NV. The input parameters are the result of a decision algorithm
(usually in the form of an object-function evaluation) in terms of one or more Quality of
Service (QoS) parameters and application attributes, such as timeliness, precision,
and accuracy. When it receives the new parameters, NV reconfigures itself to run
under the new LoS.

When anomalies are detected and new available resources are measured by DSC, it
must make decisions on what action should be taken by NV and notify NV of its
decision (Ref. 6.1.4.2.2). Section 6.1.4.2.3 describes how the parameters and
behaviors of NV will be changed when DSC chooses the policy.

6.1.4.2.2 Reconfiguration Policy
Reconfiguration policy is a decision derived from a set of decision rules.
Reconfiguration policy guides the choice among several alternatives when a
reconfiguration is possible and needed. In a reconfiguration policy, there are several
sets of mutually exclusive alternatives that have to be traded. These trade-offs include
communication/compression and timeliness, accuracy, precision (TPA).

The trade-off between communication and compression depends on the available
network bandwidth and CPU use.

Table 6-I shows the CPU use under various LoS.

If the data is compressed before sending, then it takes less bandwidth to send the
data. However, it takes additional CPU time to compress the data at the sender side
and to decompress it at the receiver side. If the data is sent without compression, then
it takes more bandwidth to send the data but less CPU time for the sender and receiver
to process it.

Figures 6-1 and 6-2 show that the percentage of time encoding and decoding over
total processing time decreases as the compression ratio increases from 1:1 to 1:16.
Therefore, the decision to compress data should be made based on available network
bandwidth and CPU use.

Timeliness is defined as when an event is to occur. Maintaining it means meeting a
deadline. Accuracy is defined as the degree to which the output conforms to the
semantics and contexts of the applications. Maintaining it means guaranteeing the
correctness of the data. For example, lossy-compression algorithms cause the loss of
accuracy. Precision is defined as the quantity of information provided or processed.
Maintaining it means maintaining the amount of data being processed or transmitted
over the network. For example, the number of frames per session, number of pixels per

29

Table 6-1 CPU Use Under Various LoS.

Level Configuration CPU Use

-1 (G, 128, Sy) 67 -72
2 (G, 256, S] 76 -81
3 (G.512.S) 78 -83
4 (C, 128, S) 64 -69
5 (C, 256, S) 04 -79
6 (C, 512, S) 77 -82
7 (G, 128, M; 80 -85
8 (G, 256, M] 86 -90
9 (G, 512, M) 89 -93
10 (C, 128, M) 78- -84
11 (C, 256, M) 86- -89
12 (C, 512, M) 91 ■ •94
13 (G, 128, L) 92- 97
14 (G, 256, L) 95- 98
15 (G.512.L) 95- 98
16 (C, 128, L) 95- 97
17 (C, 256, L) 95- 97
18 (C.512.L) 95- 97

Percent ; i

j —Data Compression Rate
26.0pmrData Compression Rate
24 rjp^-Data Compression Rate

22.0
20.0

18.0
16.01-

i

14.0;

12.of

10.0J-
8.O.'

Percent

1:1
1:4
1:16

6.0"
4.0J-

2.0r

0.0 L_Ui
200.0 400.0 600.0

Bandwidth

800.0

40.0
38.0
36.0
34.0
32.0
30.0
28.0
26.0
24.0
22.0
20.0
18.0
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0

Data Compression Rate: 1:1
-■ Data Compression Rate: 1:4

Data Compression Rate: 1:16

200.0 400.0 600.0
Bandwidth

800.0

Figure 6-1. Percentage of time encoding
over total processing time for resizing.

Figure 6-2. Percentage of time decoding
over total processing time for resizing.

frame, and number of bits per pixel are parameters used to describe the precision of a
video-conferencing session. Timeliness, precision, and accuracy cannot be

30

simultaneously maintained at the highest level during anomalies. The user must trade-
off among these attribute values. The policy to trade-off is the following:

• Maintaining timeliness when bandwidth decreases:
— Reduce frame size. The accuracy is maintained unless the frame size is

below a certain value.
— Reduce frame resolution. The accuracy and precision are reduced.
— Dither color frame to black and white.
— Compress color depth.
— Switch to a codec scheme that has a higher compression ratio; side effect:

CPU use increases, which can be compensated for by frame resizing and
resolution reduction.

• Maintaining accuracy when bandwidth decreases:
— Switch to a lossless codec scheme with reduced frame size.
— Dither color frame to black and white.
— Compress color depth. Compress Y and UV no more than 2 bits each.
— Do not use lossy codec schemes.
— Do not reduce frame size or resolution by a big factor.

• Maintaining timeliness when CPU use increases:
— Switch to a codec scheme that requires less computation, usually with lower

compression ratio.
— Reduce frame size.
— Dither color frame to black and white.
— Do not compress color depth.
— Do not reduce frame resolution.

• Maintaining accuracy when CPU use increases:
— Switch to a lossless codec scheme.
— Reduce frame size.
— Dither color frame to black and white.
— Do not compress color depth.
— Do not reduce frame resolution.
— Do not use lossy codec schemes.

6.1.4.2.3 Reconfiguration Mechanisms
Reconfiguration mechanisms refer to the implementation of the reconfiguration policy
that has already been decided. It is called the infrastructure of the adaptability in a
system. For the DSC infrastructure, the team extended NV by adding new modules
and modifying the three modules that existed in the original design. Figure 6-3 shows
the extended architecture. The new modules added to NV are the network-probe
module, admission-control module, and video-conferencing adaptability collaborator
module.

The network-probe module constantly monitors the network. It is integrated with the
Wide Area Network Communication Emulation (WANCE) tool to track round-trip time
and routing information of the packets. The admission-control module restricts the
number of users if there are insufficient resources available. The video-conferencing
adaptability collaborator module includes three new modules:

• Recorder stores video data frames for future retrieval, retransmission, and
reference.

31

Initialization
TklnitQ

User
Input

Tcl/Tk Interpreter

CallBack
ChangeMaxBandwidthCmdO

ChangekColorCmdO

Recorder
StoreCurrentFrameO

StoreCurrentTimestampO;

Video
Server

Main

Configuration
Parameters

.,,...----.->.- J

Grabber
SunVideo_grabFrameO

Encoder
NV_encodeQ

Request
from

Receiver

Network-Probe
Module (etherd.c)

Sender
SendVideoQ

Internet

Figure 6-3. Extended architecture of network video.

• White board provides a way to write and send text, graphs, and other material
during a conference.

In addition to the new modules, the team modified the three original modules:
• Grabber:

— Change sampling rate, which is the frequency of grabbing frames in a
stream of input. For example, grab alternate frames instead of all of them.

— Reduce load on the sender machine to save computation in the encoder
module.

— Reduce load to help sender receive better (packets will not be lost).
• Encoder:

— Incorporate switching between Haar and Discrete Cosine Transform (DCT)
transformations, depending on the application. Haar is good for video
frames with high frequency components, such as edges. The DCT is good
for other kind of frames, such as movie frames.

— Add the ability to encode different levels of color: Full color is 24 bits per
pixel (YUV); greyscale is 8 bits per pixel.

— Extract the 16 UV bits.
— Perform 4:1 reduction.
— Merge the new 4 UV bits with the original 8 Y bits to get a total of 12 bits;

similar to the dithering procedure.
— Change resolution of frames.
— Compute the value of a pixel as an average of 4 pixels (Figure 6-4).
— Can be coded for Sun Video card.

32

x1

X5

X9

X13

x2
X6

X10

X14

x3 x4
x7 x8
X11 X12

X15 X16

Y1

Y1

Y3

Y3

Y1

Y1

Y3

Y3

Y2

Y2

Y4

Y4

Y2

Y2

Y4

Y4

4:1 Y1

Y3

Y2

Y4

Figure 6-4. Frame compression using pixel averaging to achieve 4:1 reduction.

• Sender:
— Switch protocols, depending on current network conditions, to achieve

reliable transmission, better flow control, and better jitter control.
— Prioritize sessions:

- Add callback function (SetPriority) so that users can specify priority at the
beginning of a session (static).

- Add callback function (ChangePriority) so that users can modify a priority
when a session is in progress (dynamic).

- When network is congested, lower priority sessions are stored and not
transmitted.

— Admission control restricts the number of users in a session.

The network-probe module monitors the network constantly. It measures network
traffic, detects congestion, and calculates available bandwidth. It interfaces with the
sender and encoder modules through shared memory. The variable bandwidth can be
accessed by the grabber, encoder, and sender modules. There are two domains in
monitoring the Internet. The network-probe module can either monitor the local
network up to the gateway, or it can go beyond the gateway. However, statistics
gathered beyond the gateway might not be accurate because the route the packets
will take is unknown. In the DSC implementation, the team integrated the network-
probe module with the WANCE tool to get a better environment for the experiment.

The admission-control module restricts the number of participants per session if
sufficient resources are unavailable. It stores the session and retrieves them for later
playback for users unable to join a session. It prioritizes sessions, media, recipients,
and messages. It will cut conversation time or close the conversation for sessions with
lower priorities, and send the most important messages first if the conversation time is
limited. It closes the less important medium to save bandwidth when the available
bandwidth decreases. In case of site failures, network congestion, or extreme low
bandwidth, the admission-control module uses the video-conferencing collaborator to
record a video session for later playback, retransmission, and retrieval.

The recorder module records video frames in the video-stream database at the sender
and receiver machines. The functionalities include the following:

• Record frames every fixed interval (automatic, inflexible).
• Record the changed part (difference, mostly foreground).
• Record frames in variable rates (based on relative importance).
• Record frames based on user-defined criteria (e.g., some particular time

intervals) or frame features (e.g., some particular scenes).

33

The summarization module performs user-aided extraction of significant frames to
organize frames by theme. It includes off-line processing because it is time-consuming
and hard to achieve realtime for typical sessions. It includes on-line, user-assist
processing for slowly evolving scenes. However, to effectively summarize a session,
some computer-aided summarization (CAS) tools are needed. In addition to video,
audio provides more information and can be combined into the summarization module
for processing.

The white-board module provides a user interface to NV. The module lets users see
simultaneously the speaker and other information, such as slides, graphs, images, and
maps. However, using the same window for speaker and information generates a lot of
traffic in NV because of background changes. In the DSC design, the sender and
receiver can interactively point to and modify objects on the white board. In DSC, user
inputs are parsed using the Tcl/Tk interface and grabbed from the screen using the
grabber module. There is also an interface with the video compression collaborator in
our implementations.

6.1.5 Experiments and Results
6.1.5.1 Experimental Setup
The team chose Network Video (NV) and enhanced it to incorporate adaptability and
recording features, then used it as a testbed to conduct performance studies.

The platforms for the experiments included a Sun Sparc 10 station and a Sun Sparc 5
station connected in a LAN, and two video cameras. The workstations ran the Solaris
2.3 operating system.

6.1.5.2 Observations and Discussions
6.1.5.2.1 Experiments on Color Depth Compression
Two color models are often used in practice: RGB and YUV. Y stands for the
luminance component of a pixel; U and V represent the chrominance components of a
pixel. Many systems use the YUV model because it is easy to adjust colors. For
example, in the YUV model, UV components can be changed easily and separately
without disturbing Y components and vice versa. In the NV system, frames represented
in RGB space are first captured and then converted into those in YUV space. This
process is called subsampling. Because human eyes are less sensitive to
chrominance than to luminance, the team can reduce the number of bits in encoding U
and V components. They can do this while retaining the number of bits in encoding Y
components and still guarantee relatively good quality in decoded color frames.
Nevertheless, subsampling is lossy

Although the team can achieve different levels of colors by using a different number of
bits to encode UV components, they may still be needed to reduce the number of bits
in encoding UV when the bandwidth is too small and the number of bits in encoding Y
cannot be reduced any further.

In an NV system, Y and UV components of a pixel are each 8 bits long. Color-depth
compression is achieved by using fewer bits to represent Y and UV components,
respectively. The team experimented with various configurations set up by separately
compressing Y and UV components each by 1, 2, and 4 bits. For example,

34

compressing UV components by 2 bits means they are represented with only 6 bits.
Table 6-11 shows the effect of reducing the number of bits in UV and Y components of a
pixel on the quality of a video frame. One may divide Table 6-11 into three regions: A, B,
and C, as described below:

Table 6-11. Image Qualities for Different Compression Factors for Y and UV
Components.

0
•(

2 4

0

J

original good good , noisy

1 i snowy -, tjQOd good r noisy

2 , less
' snowy snowy *~_good ' noisy

4

' with
'. - geld - .

with
- -grid- -

less *
- -snowy J

, noisy '

B-

• Region A — Very good image quality can be achieved when either Y
components alone or both Y and UV components are compressed by a small
number of bits (up to 2 bits). Thus, up to 4 bits of combined Y and UV component
compression can be achieved when a very good image quality is being
maintained.

• Region B — Human eyes can accept image quality in this region when the
number of bits compressed for Y components is less than 4 bits. This can be
attributed to more compression in UV components than in Y components. Thus,
more bits in encoding UV components can be reduced than those in encoding Y
components, as long as the compression for Y components does not reach a
threshold value (4 bits).

• Region C — The image quality in this region drops dramatically (though the
image is still recognizable) when the number of bits compressed for Y
components reaches a threshold value (4 bits in this case). Thus, the team has to
compress more bits for UV components if the bandwidth becomes too small
because the number of bits in encoding Y cannot be reduced any further.

Therefore, the conclusions are the following:
• Stay in Region A and obtain very good image quality if the combined number of

bits of compression for Y and UV components of a pixel is not expected to exceed
4 bits.

• Enter Region B and obtain not-so-bad image quality when the combined number

35

of bits of compression for Y and UV components of a pixel is greater than 4 bits
but is no larger than 6 bits.

• Enter Region C for a higher compression rate in combined number of bits to
encode Y and UV components of a pixel but image quality is degraded
substantially. Due to the relative importance of luminance components, the team
should not compress Y for more than 4 bits if it wants to maintain a recognizable
image quality.

6.1.5.1.2.2 Experiments on Resolution Reduction and Frame Resizing
To determine how frame resizing can be used for adaptability for video conferencing,
the DSC team conducted experiments to measure the frame rates for frames of
different sizes (Figure 6-5). For a particular frame size, as the available network
bandwidth decreases, the corresponding frame rate also decreases. This results in
loss of continuity and smoothness of video presentation at the sender and remote
sites. In such a situation, the video-conferencing system adapts by changing to a
smaller frame size to maintain (or even improve) the original frame rate. The DSC
system supports only four discrete levels of frame sizes. Thus, the frame rate may be
changed (improved) when the system changes to an LoS with less bandwidth. In the
future, the team plans to provide more levels of frame sizes, which will allow the
system to adhere closely to the current operating frame rate while reducing the
network bandwidth requirements at the same time.

200.0 400.0 600.0
Bandwidth (kbps)

800.0

Figure 6-5. Frame rates for resized frames.

To implement the dynamic frame resizing and resolution reduction, the team
manipulated data before it was encoded and after it was decoded. Though it takes
extra CPU time, the results show that this overhead was tolerable. The team computed
the average time percentages for encoding and decoding in processing one frame. In

36

frame resizing, the combined time percentages for encoding and decoding were more
than 50 percent of the overall processing time of one frame, which meant that
encoding and decoding were the most expensive parts in video conferencing.

When the compression factor value became 2 or 4, the combined time percentages for
encoding and decoding dropped dramatically; they were no longer the most
expensive parts of processing in video conferencing (Figures 6-6 and 6-7). Instead,
the video transmission became the most expensive part of processing in video
conferencing. Similarly, in resolution reduction, the time percentage for encoding
decreased when the frame size decreased (Figure 6-8). However, the time percentage
for decoding when the compression factor was equal to 2 or 4 increased compared to
that when the compression factor was 1 (Figure 6-9). This was due to the extra
computation overhead involved in resuming the original frame size. But the combined
time percentages of encoding and decoding over total processing time were only
slightly larger than those for original NV because of the decrease in the amount of data
when the network was busy.

Percent
28.0".

26.0 ""
24.0--

22.0
20.0;

18.0;
16.0:

14.o|
12.0:

10.0;
8.0-

6.or
4.0L

2.0"
0.0

■Data Compression Rate: 1:1
■"Data Compression Rate: 1:4
LData Compression Rate: 1:16

200.0 400.0 600.0
Bandwidth

800.0

Percent
40.Op—Data Compression Rate: 1:1
38.0pm»Data Compression Rate: 1:4
36.0j-»«»Data Compression Rate: 1:16 "
34.0
32.0
30.0
28.0
26.0
24.0
22.0
20.0
18.0
16.0
14.0
12.0
10.0
8.0
6.0
4.0
2.0
0.0

200.0 400.0 600.0 800.0
Bandwidth

Figure 6-6. Percentage of time encoding
over total processing time for resizing.

Figure 6-7. Percentage of time decoding
over total processing time for resizing.

6.1.5.1.2.3 Experiments on Codec Schemes
The original NV software supports three codec schemes: native NV scheme, CellB
scheme invented at Sun Microsystem, Inc., and CU-SeeMe scheme. The DSC
modified version of NV supports a scheme that replaces the Harr transform in the
native NV scheme with the DCT algorithm. The DOT is the core transform used in
many codec schemes, including JPEG and MPEG. The team implemented the DCT
algorithm in NV and studied the performance of the four codec schemes in the context
ofNV.

37

Percent
34.0
32 o r-**"*Data Compression Rate: 1:1

Data Compression Rate: 1:4
Data Compression Rate: 1:16

— Data Compression Rate: 1:1
percent Data Compression Rate: 1:4

— Data Compression Rate: 1:16

0.0—'
200.0 400.0 600.0

Bandwidth
800.0 200.0 400.0 600.0

Bandwidth
800.0

Figure 6-8. Percentage of time encoding over
total processing time for resolution
reduction.

Figure 6-9. Percentage of time decoding
over total processing time for resolution
reduction.

The native NV compression scheme is a sequence of Harr transform, quantization,
and run-length coding. The uncompression process is the inverse. The team replaced
the Harr transform with the DCT algorithm in the compression process and replaced
the Harr inverse transform with the inverse DCT in the uncompression process.

The importance of the incoming video data from the camera has been ignored to a
certain degree in the performance study of video-conferencing softwares. The team
investigated this in some detail and found that CPU use and frame rate also depended
on the amount of motion in each frame and its frequency distribution. The latter
depended on the content of a frame. For example, a textual frame usually has more
high-frequency components, whereas a continuously toned frame has more low-
frequency components.

To measure the amount of motion precisely, the team defined the momentum of a
frame to be the number of blocks whose contents had been changed. The team
defined the relative momentum of a frame to be the percentage of the number of
blocks whose contents had been changed over the total number of blocks in that
frame. The team's hypothesis was that the processing time for video data was heavily
influenced by the momentum. The DSC experiments supported this assertion.

The team also conducted a series of experiments to study the performance of NV
systems under various configurations. The configurable parameters included codec
schemes (native NV scheme, CellB scheme, DCT scheme, and CU-SeeMe scheme);
frame sizes (160 x 120 (small), 320 x 240 (medium), or 640 x 480 (large); and display

38

modes (color or greyscale mode). It measured CPU use of NV under various
configurations; see Table 6-III.

Table 6-III. CPU Use in Various Codec Schemes Supported by NV.

Codinq Grey Scale Full Color
Scheme Size Small Medium Large Small Medium Large

Native NV Scheme [62, 67] [72, 80] [99,103] [61,66] [71, 77] [100, 103]

DCT Scheme [63, 67] [74, 75] [103, 108] [60, 63] [70, 73] [101,105]

CellB Scheme [4.6, 6.5] [4.9, 6.5] [4.3, 7.6] [5.5, 7.4] [6.4, 7.4] [6.5, 9.4]

CU-SeeMe Scheme [66, 70] [73, 76] [99, 101] Color mode not supported

Note that in many cases, displaying frames in greyscale mode took more CPU time
than in color mode. This appeared to contradict the fact that displaying frames in color
mode was more expensive than in greyscale. However, it implied that the frame rate in
greyscale mode was higher than that in color. Table 6-IV shows the frame rates under
the same configurations.

Table 6-IV. Frame Rate Obtained Using Various Codec Schemes Supported by NV.

Codinq Grey Scale. Full Color
Scheme Size Small Medium Large Small Medium Large
Native NV Scheme 1.9 0.5 0.2 1.6 0.4 0.2

DCT Scheme 1.9 0.8 0.3 0.7 0.2 0.1

CellB Scheme 6.0 1.5 0.3 6.0 1.6 0.3

CU-SeeMe Scheme 5.9 1.0 0.8 Color mode not supported

Figures 6-10 an 6-11 show how the distribution of the time spent in forward Harr
transform and DCT for a frame depends on the relative momentum of that frame.
Figures 6-12 and 6-13 show that for corresponding reverse transforms, the bigger the
relative momentum, the longer a transform lasts.

The team compared the performance between the NV scheme and the DCT scheme.
Figures 6-14 and 6-15 show that the toward and inverse transforms of DCT take more
time than those of NV because cosine functions in DCT are transcendent, and Harr
functions are elementary, which implies that DCT is more computationally expensive
than Harr transform. But the compression ratio is not in the realm of the team's
expectation. Figure 6-16 shows that the compression ratio of NV is about twice that of
DCT. This test was done for continuously tuned frames. DCT should have better
compression ratio than Harr transform for such frames.

6.1.5.1.2.4 Experiments on Session Recording
Session recording involves both the computation overheads and secondary storage
requirements. One important parameter to consider is the recording frequency, which

39

FTTxIO-

^1 monftNV

400.00 500.00 600.00 700.00 800.00 900.00
IMx10"

Figure 6-10. Impact of momentum on DCT forward transform time.

TTx10
3

38.00
I I I I i ^ i

36.00 —

34.00 —
32.00 —

30.00 - ■ •
—

28.00 —

26.00 — —

24.00 — —

22.00 - • —

20.00 —
18.00 • - - . : . ,.

16.00

14.00

12.00
10.00

• • • •
. -" : • x

. •• * * • - "
** * #. - • I

- * ". • * —
.-* *■ : : ' ' —

• . * «- •

8.00
I

m
• *• • —

6 00 I i i 1 H

monftNV

IMx10"
400.00 500.00 600.00 700.00 800.00 900.00

Figure 6-11. Impact of momentum on NV forward transform time.

40

RTTxICh

100.00
95.00
90.00
85.00 -
80.00 -
75.00
70.00
65.00
60.00
55.00
50.00
45.00
40.00
35.00
30.00
25.00
20.00

15.00 -
10.00 \2_

400.00

— monrtDCT

1 _L _L J_
500.00 600.00 700.00 800.00 900.00

1x10"

Figure 6-12. Impact of momentum on DCT reverse transform time.

RTTxIO^

100.00
95.00
90.00
85.00
80.00
75.00
70.00
65.00
60.00
55.00
50.00
45.00
40.00
35.00
30.00
25.00
20.00 -
15.00 -
10.00 -

— monrtDCT

_L 1 _L
400.00 500.00 600.00 700.00 800.00 900.00

1x10 -3

Figure 6-13. Impact of momentum on NV reverse transform time.

41

FTTxIO-
190.00 F"
180.00
170.00
160.00 -D*-1

150.00 -
14O.00
130.00
120.00
110.00
100.00
90.00
80.00'
70.00 ■ -
60.00--
50.00
4O.00--
30.00-
20.00
10.00

0.00

NV

■J FM

0.00 20.00 4O.00 60.00 80.00 100.00 120.00 140.00

Figure 6-14. Time spent in forward transform: NV versus DCT.

rxios

o.oo 20.00 40.00 60.00 80.00 100.00 120.00 140.00
FM

Figure 6-15. Time spent in reverse transform: NV versus DCT.

0.00 20.00 40.00 60.00 80.00 100.00 120.00 140.00
FM

Figure 6-16. Compression ratio: NV versus DCT.

42

is the frequency at which the video frames are stored. This must be differentiated from
the display frequency, which is the frequency at which the video frames are updated
on a user terminal. The latter determines the continuity and smoothness of the video-
session presentation. Storing every video frame generated during a video session is
sometimes unnecessary because many consecutive frames may have almost the
same contents, and because it would consume a lot of disk space. Conversely,
recording frames at a very low recording frequency may hurt the smoothness of video
sessions and degrade the video quality during replay.

Recording video frames imposes computational overheads that can affect the rate at
which video frames are generated for display (i.e., the display frequency). Because the
system records the video-conferencing sessions only when an anomaly occurs — for
example, when the available network bandwidth decreases dramatically — imposing
computation and network overheads may affect the frame rate (display frequency)
even more significantly. Figure 6-17 shows the comparison between the frame rates
without recording and the frame rates with recording (recording every frame) under
different available network bandwidths. The overhead (signified by drop in frame
rates) imposed by recording the whole session is very small when the available
bandwidth is small. This means that recording the entire session does not contribute to
a large performance degradation when network bandwidth becomes a bottleneck.
This is counter intuitive to the team's reasoning presented earlier. However, this can
be explained as follows: When the network bandwidth is low, the system
generates/transmits fewer frames per second to remote recipients. The low frame rate
results in residual computation cycles on the system that are under used. These
computation cycles can be used for storing the frames in the database without
affecting the frame rate. Conversely, high available network bandwidth allows the
system to generate/transmit larger number of frames to remote recipients. The process
for storing the frames now must compete with the process for generating/displaying/-
transmitting the video frames, which resulted in a drop in frame rate to almost half of
the original.

The team is currently developing support for storing full-quality video frames at the
sender site. It also makes as a parameter the frequency at which the frames must be
recorded at the local disk. This parameter can be specified by the sender at run-time.
The team is experimenting in finding a frequency optimal for both the storage and the
video quality.

Another concern in recording video sessions is the storage-bandwidth requirements
for recording the video frames. It is possible not to record every frame into the
database and still maintain the quality of video replay. The team has observed the
effects of changing recording frequencies on sizes of recorded video sessions (Figure
6-18). As the recording frequency decreases, there is an exponential decay in size of
the stored VC-session data. As the available network bandwidth increases, the rate at
which the frame can be delivered to the remote sites also increases. Therefore, more
frames are stored with the same recording frequency (time interval), thereby
increasing the size of the recordings. The recording frequency takes the form of the
time interval between two consecutive frames to be stored; it is actually the reciprocal
of the time interval.

43

200.00 400.00 600.00

Bandwidth (kbps)

800.00 4.00 6.00 8.00

Tme Internal (Seconds)

10DO

Figure 6-17. Effect of recording overhead
on frame rates.

Figure 6-18. Effect of changing recording
frequencies on sizes of recordings.

For a particular network bandwidth, as the recording frequency decreases, the sizes of
the recorded video-conferencing sessions decay exponentially. The reason that the
decay in size of recorded video sessions is almost always better than the linear decay
in size is because the encoded NV video frames are not constant in size. This is
because the encoding scheme in NV encodes only the differential among the
consecutive physical frames grabbed by the hardware and not the complete frames.

For a particular network bandwidth, the size of the stored video session is constant up
to a certain value of time interval for recording frames (recording frequency), beyond
which it falls exponentially as the time interval increases between consecutive frames
to be stored. The team calls this a turning point for a particular network bandwidth dt.
For time interval less that td, the recording is higher than the display frequency, i.e., the
frames are to be stored at a rate greater than those at which they are generated. This
will result in duplicates of a frame being stored. However, in the DSC implementation
of the recording module, one frame is stored only once, but every frame is stored up to
dt. time interval. This is achieved by storing the unique timestamp of the encoded
frame in the database, and storing a frame only if its timestamp is different from that of
the most recently stored frame.

To summarize, each frame is stored without duplicates for any time interval between
two frames to be stored less than dt.. Beyond this point, the recording frequency is
smaller than the display frequency; hence, a subset of the generated frames is stored
in the database.

44

6.2 Distributed System Control Algorithms
This section describes the two algorithms that the Local Manager (LM) used to
determine resource allocation and to measure resource use: Local Manager
Allocation algorithm and the Resource Measurement and Exponentially Moving
Averages (EMA) algorithm.

6.2.1 Algorithm: Local Manager Allocation
The LM performed this algorithm during every measurement period to see what
processes would run and consume available local resources.

6.2.1.1 Available Information
The LM had the following data available to it when deciding which services to provide:

• Value of each LoS specified by the user on a common scale, e.g., 0-100: To
start, the system reads a default value from a configuration file and allows the
user to change the value by using a sliding scale on the LM's Graphical User
Interface (GUI).

• Available resources:
— CPU cycles
— Memory
— Network bandwidth (at a global level).

• Resource requirements for each LoS for the following uses:
— CPU
— Memory
— Network.

• A weighted cost function for each LoS, which is the weighted sum of all required
resources. The user-supplied weighted costs can be optionally multiplied by the
currently measured proportion to which each resource is being used in the
system. If the user selects this option, then resources that are highly available
become weighted more lightly, while heavily used resources become more
heavily weighted.

The system computed the weighted cost as follows:

Cost = (W1 * R1 * U1) + (W2 * R2 * U2) + (W3 * R3 * U3)

Where:
— W is weight
— R is a normalized resource-use figure for a particular service
— U is a fraction of the corresponding resources that the system is currently

using. The purpose of U is to weight more heavily a resource that is less
available; whereas, the purpose of W is to allow either users or system
administrators to weight one resource over another.

When the system divides the value of a service by its weighted cost, it has a
common metric, value-to-cost ratio, by which to compare different services.

6.2.1.1 The Problem of Maximizing Value
There is a problem of maximizing the total value of all the services provided, given the
weighting criteria in section 6.2.1 and given that aggregate resource requirements for

45

all services on a particular host cannot exceed available resources. If the problem
were limited to one available resource and if the value of each service were equated
with its resource requirement, then a subset-sums problem 2 would result. Because the
subset-sums problem, which is NP-complete, is equivalent to a simplified version of
the value maximization problem, the exact solution is at least NP-hard. Section 6.2.1.2
presents a heuristic that runs in o (nA2) time in the worst case and in o (n * log (n))
time in the average case; n is the number of LoS. It will yield the optimal solution with
few exceptions.

6.2.1.2 The Heuristic
The LM used two sorted lists of services, where the sorting criterion is the value-to-cost
ratio of the service. One list was active while the other was inactive. Each list contained
the currently active and inactive services, respectively.

After the LM took resource measurements, it ran the following heuristic written in
psuedo code to determine if services should be activated or deactivated:

MAXIMIZE (active list, inactive list, resource availability levels).
BEGIN MAXIMIZE.

Note
Whenever the system moved a service from inactive to active, it
subtracted the algorithm's measured resource use from the resource
availability levels. Conversely, when the system moved the service from
active to inactive, it added the service's resource use.

• Move all services in the active list to the inactive list.
• Activate the highest ratio LoS by going through the sorted inactive list from

highest to lowest ratio. Pick the highest ratio LoS for each requested service. If
there are sufficient resources available to accommodate it, then move it to the
active list. The active list now contains the most efficient LoS in terms of the value
provided per resources consumed.

• Upgrade services if there are sufficient resources by going through the inactive
list from highest to lowest ratio. For each LoS, if there are sufficient resources
available to accommodate them and if the LoS have higher values than the active
levels corresponding to their processes, then move the inactive LoS to the active
array and the active LoS to the inactive array.

END MAXIMIZE

After the Maximize algorithm completes execution, another function implements the
prescribed changes by starting, stopping, or changing the LoS of affected processes.
When a new process is requested, its associated services are inserted into the inactive
list. After running Maximize, the system will determined if its LoS can be provided.
When a user no longer needs a service, a function removes the associated LoS from
the active and inactive lists and it kills the associated process.

2The subset-sum problem consists of finding a subset of a set of integers the sum of which is
maximal but less than some specified integer.

46

This algorithm maximizes the value of the services with one exception: If the system
fully uses all resources and a service is requested that requires more resources than
are available, then the algorithm will not displace existing services if they have higher
value/cost ratios. This is the case even if a newly added lower ratio (new service)
would result in a higher aggregate value.

6.2.1.3 Example
The following is a hypothetical situation to which the algorithm could be applied:

• See Table 6-V: To simplify the example, bypass calculating a weighted cost and
measuring individual resources by using a single generic resource. Suppose
there are 100 units of resources and values range between 1 to 100.

Table 6-V. Generic Resource Values

Value Cost Ratio
Service

80 1
60 1.16
50 1.2
40 1.25

Video
<video color 30> 80
<video color 15> 70
<video bw 30> 60
<video bw 15> 50

Audio
<audio 3> 80
<audio 2> 70
<audio 1> 60

Drawing
<draw 3> 30
<draw 2> 20
<draw 1> 8

50 1.6
40 1.75
30 2

30 1
20 1
4 2

Assume a completely unloaded system — Enter all LoS for video into the
inactive list and Maximize() selects <video bw 15> in its second step. In its third

step, the video application is step by step, from highest to lowest ratio, upgraded
to the highest LoS, <video color 30>, which uses 80 of 100 units.
Add audio capability — After LoS are inserted into the inactive list, Maximize
moves all active services to the inactive list before it moves <audio 1> and <video
bw 15> to the active list. Because there are sufficient resources, Maximize()
upgrades to <audio 3> and <video bw 30>, which uses 100 units of resources,
yielding a value of 140.
Add drawing services — Here is an example of the above mentioned case in
which the heuristic does not yield an optimal solution. Maximize() puts <draw 1>,
<audio 2>, and <video bw 15> in the active list. Because there are sufficient
resources, Maximize() performs the following sequence of upgrades: <audio 1>
to <audio 2> and <audio 2> to <audio 3>. In this configuration, the active list
consists of <draw 1>, <audio 3>, and <video bw 15>, which uses 138 units,
yielding a value of 94. Although Maximize() does achieve a higher overall value-

47

to-cost ratio, because the system has not fully used all available resources, the
algorithm does not maximize the aggregate value of active LoS.

Note that all LoS for all services compete independently for execution privileges.
However, levels from the same service, like video, are mutually exclusive. So, when
video service is requested, only one of the levels will run. If the user requested another
instance of video service, then the system would consider it separately, and it may
assign different values associated with the video's LoS.

6.2.1.4 Special Case for Distributed or Client/Server Applications
There is a special case to be concerned about when the application is distributed
across different hosts. If a process was unable to receive the necessary resources on
its host, then the entire application would not run. This is undesirable, so the team
changed the algorithm. The paragraphs that follow describe this change.

Let the term member of a distributed application mean a process that must coordinate
its LoS with other members so the distributed application can function properly. Let
each LoS on each member of the application correspond to the same level on any
other member. Only if all members can provide the same LoS on all hosts will that LoS
be provided by any of the hosts.

A useful tool in solving this problem is the concept of invalidating LoS with regard to
another member. If one LoS cannot be provided to a member, then that level should
be invalidated for all other members of the distributed application. When an LoS is
able to be provided, the corresponding LoS can be validated for the other members.
For each LoS, the system tracks whether the level is valid with all other members of its
distributed application. For distributed applications with up to 32 members, this is done
with a bit-field modification of an integer. If the user sets a bit to 1 to invalidate an LoS
to another member, then the user can check the integer for a zero value, which means
the LoS is valid to all other members.

The problem is solved by modifying the Maximize() algorithm as follows:
• All LoS for nondistributed processes are always valid. An LoS must be valid with

all members of the distributed application to be moved to the active list in any
step. All distributed applications begin with all LoS in the valid state.

• In step 2 of Maximize(), perform the following for each service that is selected to
be moved to the active list and is a member of a distributed application:
— Validate: If the level was previously invalidated with the member at hand,

then send a message to LMs hosting all members of that distributed
application. This will validate the corresponding LoS with the
aforementioned member. Only move the service to the active list if it is valid
with all members; otherwise, pass over this LoS and examine the next one
in the inactive list.

• In step 3 of Maximize(), perform Validate each time a distributed application's
LoS is selected to be upgraded,

• After step 3 of Maximize(), for LoS for distributed applications not placed in the
active list in the present call to Maximize(), send messages to all members to
invalidate corresponding LoS with regard to the member at hand.

48

Note
The above solution assumes that selected service can be provided on
the local host.

6.2.2 Algorithm: Resource Measurement and Exponentially Moving Averages
(EMA)
The LM measures resource availability and per-process use for CPU cycles in percent,
memory in kilobytes, and network bandwidth in kilobytes per second. These measure-
ments are taken periodically with a dynamically configurable interval. For resource
availability and use for each service, three values are maintained for each resource:

• The current or last-measured value is recorded.
• The sum of all current values since the last calculation of an EMA is maintained

for each resource. This value is used to calculate an average of all
measurements taken since the last EMA calculation; it is possible for the period of
EMA calculations to be greater than that of resource measurement.

• An exponentially moving average is maintained.

The formula used to calculate EMA follows:

New EMA = (1 - C) * Old EMA + C * New Value

Where:
— New Value = Sum of measured values since last EMA calculation/number of

measurements
— C is a constant between 0 -1 inclusive. The closer C is to 1, the more weight

that is given to new values; conversely, the closer C is to 0, the more weight
that is given to old values. After expanding a few iterations of the formula, old
values exponentially decrease their weighting with the constant C.

The DSC monitors available resources and the consumption of resources by
processes under its control. However, it cannot monitor resources outside its control;
therefore, DCS sees these resources as decreased resource availability.
Consequently, the sum of resources used by all processes that DSC monitors will
never equal the difference between total and available resources. If a costly process is
started outside of DSC's control, then DSC will see it as decreased resource
availability. Although unaccounted for, decreased availability of resources will cause
DSC to adjust LoS to adapt to the anomaly.

49/50

6.3 tcp_comms Application Programmers Interface and Users Guide
This document will help users write programs using tcp_comms. tcp_comms is a fast,
transmission control protocol/Internet protocol (TCP/IP)-based message-passing
library that uses a process-group model to help send and receive messages in a
cooperative, distributed environment.

6.3.1 tcp_connns Functions
• int tcp_comms_init (void)

— initialize tcp_comms structures and threads. Returns 0 on success;
otherwise, -1. Will exit (-1) if it cannot get system information, such as
hostname etc.).

• int tcp comms_join_group(char *name)
— Given a character string, registers the group specified by that string with the

nameserver (NS) as a member of the group name. Blocks indefinitely until
NS returns a gid. It is not thread-safe. It will break if > 1 thread simultan-
eously does a tcp_comms_j oin_group () and/or a
tcp_comms_get_group_id ().

• int tcp_comms_get_group_id(char *name)
— Ask NS for gid of group, "name". Blocks indefinitely until NS replies. Returns

gid if group exists; otherwise -1 not thread-safe. It will break if > 1 thread
simultaneously does a tcp_comms_join_group () and/or a
tcp_coimms_get_group_id ().

• int tcp_comms_leave_group(int gid)
— Unregisters process with group corresponding to gid. Not implemented.

• int tcp_comms_msg_send(int gid, void *msg, int n, int
send_to_ self_flag)
— Send message (of size n bytes) to group, gid. If send_to_self_f lag is

true, then also send this message to yourself if you are a member of gid.
Returns 0 on success; otherwise -1.

• int tcp_conms_get_ne2ct_msg(int gid, void **msg, int *n)
— Get next message from group gid and put address in*msg, size of msg

in * n. It returns 0 on success. If there is no message for that gid, it does not
block, but puts null in* msg, 0 in *n and returns-1. msg must be
free () -ed when done.

• int tcp_comms_wait_for_next_msg(int gid, void **msg,
int *n)
— Get next message from group, gid, and put address in* msg, size of msg

in *n. If there is no msg for the group, it blocks indefinitely. Always returns
0. msg must be free () -ed when done.

• void tcp_conims_wait_f orever (void)
— Simple routine that allows the program to finish the main thread without

exiting the process. Usually as soon as it reaches the end of the main, it
exits. This command stops this from happening.

6.3.2 How to Run tcp_comms
The following paragraphs describe the list of commands needed to be executed for
tcp_comms to work with any program:

51

• 0) setenv NS_SERVlCE_PORT to whatever you want it to be. This is the TCP port
to which NS will listen. Defaults to 26660.

• 1) Start NS.
cd $tcp_comms_home; ns &

Where: .
- $tcp_comms_home is an environment variable whose value is the patn

where tcp_comms_home resides.

• 2) setenv NS_H0ST to the machine where NS is started. The user may have
the equivalent of different groupname domains by starting multiple NS on
different hosts and setting NS_HOST to whichever host the user's particular
application wants to connect to or set NS_SERVICE_PORT to a different value.
NS is not currently fault tolerant or redundant.

• 3) Run the application.

6.3.3 How to Link Programs with tcp_conims
The following paragraphs describe the actions needed to compile and link tcp_comms
into a program that will be using it:

• #include <tcp_comms. h> in program source.
• For compiling, use a command similar to:

cc -I$tcp_comms _home <your_file_name>.c ...
• For linking, use a command similar to:

cc -o <your_file_name> <your_file_name>.o
 L$tcp_comms _home -ltcp_comms -lsocket lnsl -lm
 posix4 -lthread

Where: .
- $ tcp_coimus _home is an environmental variable whose value is the

path where the tcp_comms library, libtcp_comms. a resides, e.g.,
$tcp comms_home = /proj/dsc/tgeigel/tcp_comms)

52

6.4 Demonstration User's Guide
The Advanced Technology Laboratories wrote this Demonstration Users Guide to help
users run the DSC and to convert non-compliant applications to DSC-compliant ones.
The guide has six sections:

• • 6.4.1 How to Run DSC includes basic instructions on what processes to start
and how and where to start them.

• 6.4.2 Starting DSC Applications describes the SM's GUI for starting up DSC-
compliant applications.

• 6.4.3 Local Manager (LM) GUI explains the LM GUI and how to use it to
control the DSC-compliant applications.

• 6.4.4 Application Resource Files describes the format of Application
Resource files for DSC-compliant applications.

• 6.4.5 DSC Application Programming Interface (API) describes the DSC API
functions to make a distributed application DSC-compliant.

• 6.4.6 Final DSC Demonstration Setup Procedure provides step-by-step
instructions on how to run the final DSC demonstration

6.4.1 How to Run Distributed System Control
This example assumes users have three machines: machine A, machine B, and
machine C. $DSC_HOME is an environment variable whose value is the path where the
DSC software resides:

• tcp_comms must be started (Ref. Appendix 6.3).
• Execute the following commands on machine A:
— setenv NS_HOST machineA
— setenv NS_SERVICE_PORT 2 6660 (optional)
— setenv tcp_comms _home <path where tcp_comms resides>

$tcp_comms _home /ns &
• Start SM on any machine on the network; for this example, SM will be started on

machine A. Before running the SM, set the NS_HOST environment variable to tell
tcp_comms on which host to find the NS:
— setenv NS_HOST machineA
— setenv NS_SERVICE_PORT 26660 (optional)

• Run the executable, smd:
— cd $DSC_HOME/SM
— smd &

• Start LMs on various hosts; in this example, machine B and machine C. You must
login as root to run the LM.

• Before running each LM, set the NS_HOST environment variable to tell tcp_comms
on which host to find the NS:
— setenv NS_HOST machine A
— setenv NS_SERVICE_PORT 2 6660 (optional)

• Run the LM with monitoring turned on (-M):
— cd $DSC_HOME/LM (see note3)
— ./lmd -M &

3Usually put the lmd in a directory local to the machine, such as /local/machineB/DSC/LM.
Because the directory from which lmd is run is the default place to look for resource files, the team
put them in the same directory.

53

• Type lmd -help to get help on running: lmd -help

lmd [-M] [-m] [-e ema_period] [-r ServiceDir] [-p
PollPeriod] [-s StartDelay] [-n NetOption] [-1 LogOption]

Where:
 M monitors statistics for individual processes; default is not to monitor

individual processes.
 m when LM terminates; do not remove processes started (messy terminate).
 r Service dir defines the path for LM to search for application service

files. If -r is not specified, LM checks the APP_SERV_DIR environment variable.
If the environment is not set, LM looks in the current directory.
 p PollPeriod is the period (in seconds) that LM polls applications for

status
 s StartDelay is a delay (in seconds) that LM waits before gathering

network file descriptor data. Currently not used.
 n NetOption is the net monitoring option for LM. Defaults are 10 seconds

inactive, 1 sec active. The valid options are:
- active: time (in seconds) net monitoring is active.
-- inactive: time (in seconds) net monitoring is inactive.
- promise: flag to turn on/off promiscuous mode: on=1, off =0
-- continuous: flag that overrides the previous netstat options. Network is

monitored continuously,
- off: do not monitor network.
 1 LogOption is the logging option for LM. The valid options are:

-- Console: write log message to console.
-- File = filename: write log to file filename.
-- Memory: write log to memory buffer. When terminated, LM writes memory

buffer to Im.log file.
-- msg = logserver: write log to logserver group of tcp_comms group.

6.4.2 Starting DSC Applications
The SM is used to start processes. For each active LM, an entry will appear in the
HOSTS list of the SM. Click on a host to bring up a dialog box (Figure 6-19) The dialog
box lists all the DSC applications on that host and some performance statistics. A title
bar on the dialog allows users to perform the following actions:
• Start App brings up a file selection box (Figure 6-20) which, when completed by

the user, starts the entered application with arguments.
• Stop App kills the application selected in the process list.
• Zap App kills the application selected in the process list.
• Zap All kills all DSC applications on this host.
• Restart All kills and restarts all DSC applications on this host.

6.4.3 Local Manager Graphical User Interface
Figure 6-21 shows the LM display. The View menu button lets users bring down a
Control Panel, which allows users to modify LM parameters with the Update button
(Figure 6-22). See Appendix 6.2 for technical details on the modifiable parameters.

54

lÄIl
SKI Jit

P

"iJtj^rW r%^»MSB.V

Eösy

iHsir «iini»nj^mw«.>ijn» iTti Hi idi nr irriii <"i

Figure 6-19. SM's LM window. Figure 6-20. SM's Start Application window.

ü

'';.;::.ßaimmyi'\\-r-,£SlA V«h* V-K :Cunenl_VaL]c .''...Dnits

>-NBTWOIlX\.£JlilM05#'w. * OUM ' '* KBYTES. S^S^Mpl KBYTES/S EC

Figure 6-21. LM's GUI.

55

P2ß w^^^W'^ßiH-^l&^Wäras^^^

mmsm ■
mm

ißaöosooH

niO"t)0i

Ilpfft IPrtsif 1 ^ V
lin- »-T £

tratftw

, Exp;:MDV. Avg.,CorisiÄni•• rfititii

' Application rolllVriod: ■ T£~

Ä02%

EMA Meaeuramant Parted:

M0|

*n.

ÖBII Äiifiö

..'pdatCv ,'ij|'?,.; »»j

Figure 6-22. LM's Control Panel window.

Modifiable parameters are the following:
• Weight — These are the weighting factors by which each raw amount of resource

is multiplied to get the weighted cost for each process. If these values
are negative, then each resource is additionally multiplied by the degree to which
that resource is being used by the system.

• Start Thresholds — Values by which available resources are reduced before
running the Maximize algorithm. This enables a buffer amount of spare resources
to prevent resource over use.

• Kill Thresholds — Used previously but is now inactive.
• Exp. Mov. Avg. Constant —This is the constant used to calculate EMAs for

available system resources.
• Application Poll Period — Frequency with which measurements are taken for

both host and per process resource figures.
• EMA Measurement Period —Frequency with which EMA calculations are

performed. This is also the frequency with which the Maximize algorithm is called.
• Min Kill Cost — The minimum weighted cost a process must have to be

suspended. Some processes have 0 weighted costs; for example, the LM. Do not
suspend this parameter.

• Update — Updates the above values.

The main display has the host's overall value, a list of processes running under DSC
control, and available resource statistics.

If the user double clicks on one of the applications in the list, an application dialog box
will appear that lists the processes' LoS and associated values (Figure 6-23).

On the application dialog:
• The slider bar for priority is non-functional.
• A box with a slider bar denotes each LoS bar for value. Users can change the

slider any time. The line on the top of the box denotes the following information:

56

i^ro'raVhpmer/ati-a:nTO/hv;^'11TS3j7.RWN.B!i!V?i'.

File

: I_J_i tSK';'".}*' ~

T* jStefetE3S^K;-',yi2EJ^
i?vSifife>j

—- 2 r B&WiSd- Valla-0.93- ÖO.«»-"

■^W.-'.Äl^
*5?ift>SP

3 Ba>y:84 Valid 087 64 60—;-

56 >
^—---i—]—-^-rns^s^S' „SJCJ;

51

-*-„-„- 4 - COL 12$ -"Valic. - t ltf- öu TO^

&&&& A*

«til

;;sÄiicif'."':'
; 53.-11

:i:üxu3

•W35WCT8«!(|

'.KBYTES ..* '
.'•'KBitOifiiiL''

. -±-i—-5-COL256-Valit'.-*.7£-:ä?;97.r^TTT—T
!•••.'■•':'.' 1" • ••'. ■', '"'i '■■■",'*".':■' •.•'--X.:-''.''::. ••

fg^a'twjt-T^MSj
-*?$& i^t*^-ü%ti&'^*&*?

2BSS
^f:^^^S^j^«^'ii^Wya¥^B?

13

F/gi/re 5-23. LM's Application GUI window.

— <Level id #> <Level name> <Valid/Not Valid> <Value/Cost
Ratio <Weighted Cost>

This line is highlighted in yellow for an active LoS.

• If the user clicks on the down arrow, the box will expand to display more
information, such as the resource use statistics for this process. In this box, the
user can also modify values for the EMA constant and measurement interval for
this particular LoS. All of this information is stored in the resource file on
termination of the process.

• The Option menu from the main window has three choices:
— Suspend: Not implemented.
— Kill: Kills the selected process in the process list.
— Resume: Not implemented.

6.4.4 Application Resource Files
Each application has to have an associated resource file available to the LM. This file
defines the application's LoS to the LM. The resource filename is expected to be:

.<application_name>_srv

57

For example, NV, the teleconferencing application, would have a corresponding
. nv_srv file to define its LoS.

The format of the resource file is free-form ASCII text. The "#" character is a comment
character Any line starting with a "#" is ignored. Each LoS is def.ned as follows:

<LoS Name> <resourcel usage> <resource2 usage> <resource3 usage>

— Gr<LoS Name> is a descriptive name for the LoS (It appears in the
application's dialog box.)

— <resourcen usage> is the estimated amount of resource used for the
particular LoS, in absolute terms (e.g., percent of CPU use actual memory
use in bytes, actual number of packets used). For the initial version of DSC,
resourcel is CPU use, resource2 is memory use, and resource3 is
network bandwidth.

A CONSTANTS line is used when defining the ema_period and the ema_constant.
• If a CONSTANTS line occurs before any LoS has been declared, then it defines

the default values for these parameters for the entire application.
. If no CONSTANTS line occurs before an LoS is defined, then DSC default values

3T6 USGCl ~J
• If a CONSTANTS line occurs after an LoS, then it defines the ema_period and

ema_constant for that particular LoS. A CONSTANTS: line is in the form:

CONSTANTS: <period> <ema_const>

— CONSTANTS- is the keyword and must begin a CONSTANTS line
— <Period> is the ema_Period in seconds. This defines how often the

system calculates measurements .
— <ema_const> is the ema_constant. This value weights the importance of

previous measurements.

See Appendix 6.2 for details on the EMA algorithm, including detailed information on
the ema_Period and ema_constant. Figure 6-24 shows a sample resource file.

6 4 5 DSC Application Programming Interface . . *. .
To write DSC-compliant applications, users must select an application that can Tun
under a variety of configurations, or LoS. For example, in the NV video-teleconfer-
encmg application, frame rate, color, and frame size were some of the configurable

Srs that affected resource use. After defining the application's LoS users must
insert the proper DSC functions into the application so that rt can receive and handle
LM messages The DSC API provides functions for users to set up the application to
asynchronously receive LM messages as part of a main control loop as part of,a
polling strategy, or as part of an automatic callback strategy. The DSC funct.ons are
the following:

58

This is an example application resource file for a DSC application
Default application specific values will be used unless a CONSTANTS
line is inserted before LoSs description lines. A
CONSTANTS line specifies values that are applicable to the overall

application.
' CONSTANTS: 100 .5

period ema_const

I
ema[i] = (1 - ema_const) * ema[i-1] + ema_const * x[i]
There is one more line for each LoS which the
application will provide. They will be formatted as follows:
Name value resourcel resource2 resource3
level3 90 .95 9032446 1234567
level2 80 .65 7654321 912345
levell 70 .50 6543210 765432

Figure 6-24. Sample DSC application resource file.

• int dsc_register(char *name, int (* service_cb) ())— Registers
the application with the LM by setting up communications with LM via tcp_comms
and creating an LM message handler thread, name is the name of the application
and is used in naming tcp_comms process groups internal to DSC. service_cb
is a callback function that the LM message-handler thread executes. It handles
LM's change_level messages. Returns 1 on success, 0 otherwise.

• int dsc_get_initial_service(int arge, char*argv[]) —Sets
the application to LoS value if specified in application's argument list. The
command line switch -s <LoS> specifies that the application initially run at the
LoS represented by <LoS>, where <LoS> is an integer. Returns the actual LoS
value of the application, regardless of whether it was successfully changed.

• void dsc_conf igure_done () — Sends a message to LM stating that the
application is finished with its configuration. Not necessary to use, as it presently
forces LM to only print out a log message.

• void dsc conf igure_done_and wait () — Like dsc_conf igure_done () ,
except that it blocks indefinitely. Used by multithreaded applications to stop the
process from exiting. , , ,,.„.. . .

• void dscapp_cleanup(int signo) — Called if LM sends the UNIX signal,
SIGHUP, to the application, and the user wants the application to continue.
Cleans up the LM log from the application, signo is unused.

• void dscapP_bye(int signo) — Called if LM sends the UNIX signal,
SIGKILL, to the application, and the user wants the application to continue.
Cleans up the LM log from the application, signo is unused.

• int dsc msg_handler(void) — Checks for an incoming message from LM
and processes it if there is one. Returns 1 if there is a message or 0 if no message
is processed.

• int dsc_wait_for_msg_handler (void) — Like dsc_msg_handler, except
this blocks indefinitely waiting for an incoming message from LM. Returns 1.

6.4.6 Final Demonstration Setup Procedure
The purpose of the final demonstration is to show that DSC can independently control
multiple teleconferencing inputs. The demonstration consists of three machines, each

59

running an LM. Because of availability, only two machines have video cards and
cameras installed. The third machine runs the SM.

The NV runs on all three machines in receive-only mode on the machine without the
card, with the other two NVs sending their input to it instead of each other.

Setup consists of the following:
• For all machines, there should be a /home/users/geigel/rome directory,

which is where all pertinent DSC software resides. The environment variable,
DSC_HOME, is set to this directory. For each machine, there is a
<machine_name>_local directory, where the operator will go to start the
appropriate DSC processes.

• The following steps are needed to run the demo:
— On the SM machine:

-- cd $DSC_HOME/<SMmachine_name>_local
-- nss (start tcp_comms' NS).
-- smd& (start up the SM).
- lmd& (start up the LM for the SM machine).

Note
lmd accesses local statistics from the kernel. Because of that, it is a setuid
program owned by root. On occasion, the lmd will abort with a Segmentation
Fault error. If this occurs, restart the NS and smd, then login as root and start
the lmd as root)

— On machine A:
- cd $DSC_HOME/<machineA_Name>_local
- lmd start up the LM for machine A. See note above).

— On machine B:
- cd $DSC_HOME/<machineB_Name>_local
-- lmd& (start up the LM for machine B). See note above).

— On SM machine:
-- Start up NV using the SM's GUI:

o On the SM GUI window labeled System Manager, double click on the
lines lm_<machine_name> to bring up the SM Control Dialog for each
machine (labeled lm_<machine_name>)

o On the lm_<SMmachine_name> window, click on the Action menu bar
and click on the StartApp menu item. This will bring up the Start
Application Window. Enter:
/home/users/geigel/rome/<SMmachine_name>_local/nv
-recvOnly <SMmachine_name>

An empty NV window will pop up. This is the receiving NV process
running on SM machine.

o On the lm_<MachineA_nanie> and lm_<MachineB_name> windows,
do the same as lm_<SMmachine_name>, except enter the command:

60

/home/users/geigel/rome/<machine_name>_local/nv
<SMmachine_name>

The network video windows will appear on machine A and machine B
with a video image from the cameras. The SM machine's NV will
display two video images, one from each of the two machines.

o On the lm_<MachineB_name> window, start up a cpuhog process by
entering:

/home/users/geigel/rome/<MachineB_name>_local/cpuhog
50

A line for cpuhog will appear on machine B's LM GUI. The argument
for cpuhog tells it for how many milliseconds to use the CPU. The LoS
that the cpuhog runs under determines the duty cycle for CPU use:

— #milliseconds of CPU use = argv[1]
— #milliseconds of sleep = (LoS value * argv[1])/2

Initially, cpuhog runs at level 1, which means that its duty is 66
percent. If the LoS is changed to level 2, then the duty cycle is 50
percent, and so on.

On machine B:
-- On the LM's GUI (labeled Distributed Systems Control), double click the

line for the cpuhog process. An LM Application Control window (labeled
the same as the process filename and its execution state) will appear. By
varying the value of the serv_a LoS to 0 and increasing the serv_b LoS
to >50, the user can reduce the amount of CPU consumed by the cpuhog,
essentially simulating different CPU load levels on machine B. The result
is that DSC will dynamically change the LoS for machine B's NV process,
causing NV to adapt to varying CPU loads. On the SM machine's NV, the
video image for machine B will vary to reflect the observed changes.

61/62

6.5 Benefit-Loss Scheduling
6.5.1. Objective
The objective of this task is to design and implement a thread scheduler on Solaris 2.3
that schedules realtime threads to minimize the total benefit loss. The threads
dynamically present their worst-case computation time estimates, deadlines, and
benefit-loss functions (BLFs) associated with their next computation segments to be
executed.

6.5.2. Approach
The following paragraphs outline the basic design of the benefit-loss scheduler:

• An application process creates multiple threads that share the same address
space with the parent process.

• One of the multiple threads is designated as a scheduler thread, and the rest of
the threads become worker threads (WTs) that are scheduled by the scheduler
thread.

• The WTs dynamically present their scheduling parameters (worst-case
computation-time estimates, deadlines, BLFs, etc.) to the scheduler thread
through a shared data structure called the scheduling parameter table (SPT).
After they present themselves, they suspend themselves.

• The scheduler thread periodically checks the SPT, determines which WT to
execute next, and informs the Solaris 2.3 Kernel Thread Scheduler of the WTs
identification.

• The Solaris 2.3 Kernel Thread Scheduler dispatches the WT requested by the
scheduler thread. Note that there are at most two threads seen by the Solaris
Kernel Thread Scheduler in the Ready RealTime Thread Queue in the kernel.

• Whenever the deadline of any WT is missed, the benefit-loss incurred due to the
deadline miss is accumulated. If the accumulated benefit-loss gets higher than a
predetermined benefit-loss limit, the scheduler thread displays the results and
exits.

6.5.3. Thread Model
The following paragraphs describe the design details of the worker and scheduler
threads:

• Worker thread:
— Each WT is "non-preemptible" and has its scheduling status, such as

RUNNING, READY, and RECOVERING. The scheduler thread recognizes
this status, but the Solaris Kernel Thread Scheduler may not.

— The WT stores its computation-time estimate, deadline, and BLF (to
generate benefit-loss upon deadline miss) into the SPT. Then it sets its
status to READY and suspends itself.

— When it is resumed (by the scheduler thread), it repeatedly reads the real-
time clock until the amount of time equal to its computation time has passed
as if it is doing its computation during that period. Initially, this step was
implemented using a timer. It is currently being modified to use the realtime
clock. After the period, the WT generates new computation-time estimates
and new deadlines, stores them into the SPT, sets its status to READY, and
then suspends itself.

— Every WT is independent of the others.
— The BLF bl<i> associated with each deadline imposed by the WT, Ti has

63

the following simple cliff form:
bl<i> = bl<max> if Ti did not finish before its deadline, di.
bl<i> = 0 otherwise.

• Scheduler thread — When activated, it does the following:
' — Checks if there is a WT in READY status whose deadline is going to be

missed. If there is, computes an actual execution time for that WT and checks
again if the deadline is going to be really missed. If so, then it sets the status
of the WT to RECOVERING. In the current implementation, the recovery time
for the WT that missed a deadline and is in RECOVERING is set to the
absolute deadline of the WT, which will be missed by the WT.

— Checks if there is any WT in RECOVERING status that must be reincarnated
at present or any WT in RECOVERING status of which the reincarnation time
has already passed. If there is, change the status of the WT to READY and
set a new deadline for the WT, which should be calculated based on the
reincarnation time.

— Get the WT ID, which is selected upon the current scheduling policy, set the
status of the WT to RUNNING, and then resume the execution of the WT by
calling the Solaris 2.3 Kernel Thread Scheduler to dispatch the selected WT.

6.5.4. Scheduling Policy
To test the effectiveness of the benefit-loss scheduler, the team compared three
scheduling algorithms, two simple non-preemptive benefit-loss-based scheduling
algorithms, and a known non-preemptive algorithm:

• Highest Benefit-Loss-to-Laxity-Ratio First (HBLLRF) — The WT whose
laxity/benefit-loss is highest will get scheduled first. Laxity of WT = Absolute
Deadline of WT - Current Time - Computation Time of WT.

• Highest Benefit-Loss First (HBLF) — The WT whose benefit-loss is highest
will get scheduled first.

• Least Laxity First (LLF) — The WT whose Laxity is smallest will get
scheduled first.

6.5.5. Implementation
The following paragraphs describe the implementation of the BLF scheduling design.
Solaris 2.3 Thread Library is used to program multiple threads within a process. Each
WT is created as a BOUND thread (Ref. section 6.5.8):

• thr_create()
• thr_suspend()
• thr_continue()
• thr_yield()
• thr_self()

Every thread is created as a thread of realtime class to avoid all system interventions
during execution.

A random number generator is used to generate computation-time estimates, actual
computation times, and deadlines. To achieve better randomness, the current time in
micro-second units is used as a random number. In the current version, the
computation-time estimate is regarded as the actual computation time. This will be
modified so that the actual computation time is less than or equal to the computation-

64

time estimate. The difference between the computation-time estimate and the actual
computation time will be a random number.

6.5.6. Result Analysis
Whenever any WT is going to miss its deadline, its benefit-loss value is added to the
total benefit-loss. If the total benefit loss exceeds some predetermined benefit-loss
limit, the scheduler thread displays the elapsed time, total benefit-loss incurred,
benefit-loss per millisecond, and then exits.

The results depend on the various scheduling parameter settings. However, most of
time, the HBLLRF performs most effectively.

The scheduling parameters were set as follows for the experiment:
• 10 msec <= Computation Time <= 200 msec
• Deadline = Computation Time * 4
• 00 <= Benefit Loss Value <= 1000
• Benefit Loss Limit = 10000

Table 6-VI lists the results of the experiment.

Table 6-VI. Results of the Benefit-Loss Experiment

BL/msec

Run# HBLLRF HBLF LLF

Run 1 2.21 6.56 2.86
Run 2 1.84 4.87 2.30
Run 3 1.84 8.36 2.84
Run 4 3.00 5.85 2.10
Run 5 2.78 5.37 2.63
Average 2.334 6.202 2.546

6.5.7. How to Partition the Application
The partitioning decision intrinsically depends upon the application designer.
However, it would be a reasonable approach to partition a program at each point of
the blocking statement (e.g., receive statement). For example, atypical realtime task
contains a loop that consists of a data-receiving part, data-processing part, and result-
sending part. In this case, the loop body executed in each iteration can become one
partition.

6.5.8 Solaris 2.3 Facilities for Scheduling Processes and Threads
The following paragraphs discuss the Solaris generic thread scheduler and how to
use it to implement the BLF scheduler.

• Process scheduler (Kernel thread scheduler) — This schedules kernel
threads onto processors. Each kernel thread is categorized into one of three
classes, as shown in Table 6-VI I. When a user process is created, one initial
Light-Weight Process (LWP) kernel thread is allocated to the user process and

65

inherits the class type and priority of the parent user process. User processes are
either time-sharing class or realtime class. Kernel threads in the system class are
responsible for the kernel activities. No LWPs are associated with kernel threads
in the system class. The class-specific priorities are converted to the global
priorities based on which kernel thread scheduler schedules kernel threads.
Light-weight process (LWP) — This may be viewed as a virtual CPU for user
processes or user-level threads. The LWP is a kernel thread for execution of user
processes or user-level threads.
Solaris thread library is the programmer's interface for multi-threading and the
user-level thread scheduler on LWPs performs the LWP interface.
User-Level Threads — New user-level threads are created by calling Solaris'
thread-library function from the user process or another user-level thread. There
are two types of user-level threads:
— Unbound thread — When a user process or a user-level thread creates

unbound threads, the default number of LWPs are also created, but the
unbound threads are not mapped to the LWPs. The unbound threads are
scheduled by the user-level thread scheduler with respect to the other
unbound threads in the same process. User-level thread-scheduling
strategy for unbound threads is fixed-priority scheduling with no adjustments
and no kernel involvement. The kernel thread scheduler has no effect on
scheduling of the LWPs. The user can change the priority of each unbound
thread in the same process.

— Bound thread — Because unbound threads are only scheduled within a
process, they are not scheduled with respect to threads outside the process.
By binding a user-level thread permanently to an LWP, scheduling of the
user-level thread becomes equivalent to the scheduling of the kernel thread.
Each kernel thread supporting the bound thread can have a unique
scheduling class priority. This priority is visible to the kernel thread
scheduler with respect to all the other kernel threads in the system.

66

Table 6-VII. Classes of Kernel Threads

Class Type Time-sharing System Class

Medium

Time-sharing
Class

Global priority of Lowest
kernel thread

Priority of
kernel can thread
in the same class

Kernel thread Fixed in the kernel
scheduler changes code and never
the priority of the changed
kernel thread
dynamically
according to the
behavior of the
corresponding
process or user-
level thread

Realtime Class

Highest

Only superuser
can change

Time slice of
kernel thread

Seem to have a
default size of a
time slice (not
clearly mentioned)
different time
slices to kernel
thread

Administrators
specify default
time slices

Superuser can
assign

User can change.
Administrators
specify default
time slice for
kernel threads

Kernel thread
scheduler assigns
time slices of
different lengths
to kernel threads
according to the
priority

User has no
control

Scheduling Policy:
• Among different priority kernel threads: fixed priority preemptive
• Among same priority kernel threads: round-robin

«U.S. GOVERNMENT PRINTING OFFICE 1997-509-127-61009

67

MISSION
OF

ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous research, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Material
Command product centers and other Air Force organizations;

d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence,
reliability science, electro-magnetic technology, photonics, signal
processing, and computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

