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1.0 Introduction 
This report documents work Lockheed Martin Advanced Technology Laboratories 
(ATL) performed July 1994 to May 1996 on the Distributed Systems Control (DSC) 
contract, F30602-94-C-0032. The U.S. Air Force's Rome Laboratory, Directorate of 
Command Control and Communications Computer Systems Technology Branch 
(C3AB), sponsored the contract. 

1.1 Program Rationale 
When the DSC effort began, global control in distributed systems had not been well 
researched. Control had only been addressed in a limited manner, such as for data- 
update consistency in distributed, redundant databases or for confidentiality controls 
(access control, authentication). The purpose of control is to allocate the system's 
resources to the most important objective. The system must manage resources during 
system operation. Anomalies are conditions that obstruct the system from achieving 
user objectives. Most research had been limited to a single-processor situation; 
however, research had to extend control to the distributed environment. The 
predictability of the external environment, communications delays, data accuracy 
(state information) and anomalies, and stability of decision algorithms constrain global 
control. The Advanced Technology Laboratories designed DSC to investigate the 
integration of controls, which at various levels of granularity, would enable distributed- 
systems control to operate, enable a multimedia application, enable video 
teleconferencing, and adapt to system conditions. 

1.2 Report Organization 
• Section 1 — Introduction, program objective, and team members 
• Section 2 — Overview of Distributed System Control 
• Section 3 — Adaptability of video teleconferencing 
• Section 4 — Implementation of the demonstration 
• Section 5 — Conclusions 
• Section 6 — Appendices. 

1.3 Program Organization 
The DSC program is an outgrowth of research done on contract for Rome Laboratory's 
Adaptive Fault Resistant System (AFRS) and its predecessor, Adaptive Fault tolerance 
(AFT). 

1.4 Team Members 
Tom Lawrence, U.S. Air Force Rome Laboratory C3AB, directed the efforts of ATL, 
which was the program's prime contractor. 

Other team members included Purdue University and the University of California, 
Irvine. Purdue University investigated new technology in video teleconferencing and 
made experimental modifications to Network Video (NV), a video teleconferencing 
application developed by Ron Frederick, Xerox PARC. The University of California, 
Irvine, investigated scheduling algorithms using benefit-loss functions. 

1/2 



2.0 Overview of Distributed System Control 
This section describes Distributed System Control (DSC) and the rationale behind its 
development. 

2J1 Program Objective 
The objective of the program was to research and demonstrate integrated-control 
concepts for adaptability in distributed systems that reflected user expectations for a 
quality of service (QoS). Quality of service is timeliness, precision, and accuracy (TPA) 
of information provided to the user. Adaptability to anomalies in the system is inherent 
in the control software and the application. The worked focused on adaptation and 
demonstration of video teleconferencing. 

In general, anomalies in distributed systems include failure of a previously working 
component, hardware and software design failures, and shared-resource conflicts. 
Distributed System Control established a control architecture that enabled adaptation 
by system control and adaptation by distributed application. See Figure 2-1: The DSC 
architecture included a system manager, local host managers, system-monitoring 
software, user-value function data, application data, and a library of application- 
program interface calls. 

CPU MEMORY HOST A CPU MEMORY HOSTB 

NETWORK 
CPU        MEMORY 

1 
\ HOSTn-1 
\ 

HOSTn 

SYSTEM 
MANAGER 
(redundant) 

Figure 2-1. Distributed System Control's system architecture. 

The DSC program developed and integrated control mechanisms that cooperatively 
controlled an application's dynamic requirements. The DSC characterized an 



application's requirements by using objective functions made of value functions. The 
objective functions enabled the system's resources to collaboratively provide the best 
overall QoS. Using DSC, an application established distinct QoS operations called 
Levels of Service (LoS). The system initially established and maintained resource 
requirements for LoS during operation. The DSC controlled the QoS provided to the 
end user by controlling the application's LoS. 

The DSC program investigated maximizing the overall value that the system provided 
to users. The Advanced Technology Laboratories (ATL) considered performance 
metrics (TPA) and the relationship of these metrics to the overall value a particular 
running application provided to the user. 

The Advanced Technology Laboratories also considered the allocation of local and 
global resources to individual applications. Also investigated was the problem of 
maximizing the value returned by the services on a particular host. Finally, ATL 
suggested a hierarchical approach, building upon the individual host solution, in 
solving the global, system-wide problem. 

2.2 Design Philosophy 
The Advanced Technology Laboratories viewed distributed system control as a 
complex, realtime, optimization, and resource-allocation problem. It is realtime 
because anomalies of different kinds occur in realtime and user requirements may 
change dynamically. The set of resources remains relatively fixed, and it must be 
allocated to those user requirements that are most important at that time. 

One possible approach is to have a complex, centralized resource manager that 
allocates based on input from all resources in the distributed system (system 
resources and application needs). This approach is the simplest to implement, but it is 
insufficient for most realtime decisions. The time-scale for different actions in the 
system covers a wide range; process scheduling may occur at the sub-millisecond 
range, while communications delays cannot be predicted to within tens of 
milliseconds. Having a centralized entity making communication-level or CPU- 
scheduling decisions is an unreasonable option. 

An extreme approach would be a full peer-to-peer approach without centralized 
decision making. However, this is also impractical because it is too complex to agree 
with every peer when a decision has to be made. 

There needed to be multiple levels of decision making, each with a well-defined set of 
services, timing granularity, and associated QoS. The ideal system may have 
schedulers for each resource that have the ability to interact with higher and lower 
level schedulers, as necessary. 

The Advanced Technology Laboratories realized that most decisions within a node 
(processor) are local (principle of locality) and that the system must manage different 
time scales of interest. For actions where several nodes must interact, ATL used a 
centralized System Manager (SM). For allocating resources within a node, it used a 
Local Manager (LM) to perform most of the work. For very fine grained control (CPU), 
ATL investigated several algorithms based on benefit-loss functions (BLF). 



2.2.1 System Assumptions 
The Advanced Technology Laboratories developed DSC with a particular system 
model. The model best described future distributed systems that may benefit from DSC 
and it defined the scope of the problem that DSC tried to solve: 

• •   Very Large Complex Systems — Present and future distributed systems 
contain hundreds, even thousands, of nodes; they will continue to increase as 
processor speed increases. These systems are configured as a wide-area 
network. 

• Diverse User Applications — Each application varies in its importance 
relative to others in the system. These applications also have diverse criticality, 
availability, and realtime requirements. 

• Dynamic Operational Environment — The DSC program was interested in 
networks that were prone to anomalies — frequent reconfigurations, drop-ins and 
drop-outs — due to the external environment in which they worked. 

• Limited Resources — There is no way to evaluate a priori all possible 
execution scenarios and/or configurations. 

• Stochastic Behavior — Assume that the applications are probabilistic to some 
degree. 

Distributed control in existing systems is a difficult problem, considering the lack of 
available integrated-control mechanisms. Heterogeneous platforms further restrict 
integrated solutions due to differing operating-system "hooks and handles." The 
Advanced Technology Laboratories developed a philosophy to monitor, manage 
resources, and adapt applications to the distributed application. The philosophy 
centered on consolidating existing control mechanisms into a resource-management 
system that allowed local and global control. 

2.2.2 Adaptation Types 
The DSC recognized two types of system adaptation: 

• Type-I — The system manages resources to completely meet an application's 
needs. Most developers today use and study type-l adaptation. Operating 
systems constantly schedule processes based on CPU use and input/output 
bandwidth. The system performs memory caching based on least-recently-used 
algorithms; this approach allows the more active processes a bigger share of 
local memory. The disadvantage is that an application will not run unless all of its 
resource needs are met. The system has only one set of application resources 
requirements, which are static and pre-calculated. 

Providing sophisticated distributed-control mechanisms is only a part of solving 
the adaptability problem. As important is the application's ability to adapt to 
degrees of resource availability. Almost none of the applications developed to 
date take advantage of these control mechanisms; applications run in a certain 
way or not at all. Response time is the only degree of freedom. 

The DSC program approach defined type-l I adaptation as the ability of the 
application to run with different resource configurations. This may mean using 
different algorithms that require varying amounts of resource capabilities (CPU, 
communications, storage). 

• Type-ll — Applications adapt by changing their expectations. Type-ll adaptation 



requires the application to have pre-defined and multiple expectation levels, this 
results in different Los associated with differing resource ^quiremen^ D fferent 
LoS allow more flexibility in maintaining an overall QoS among all distributed 
applications under DSC control. 

Durinq the project, ATL investigated both types of adaptation The DSC program 
suDported type-l by controlling the application's process-scheduling priorities, t 
supported type-ll by using LoS and the ability of the applicat.on to reconfigure to 
different LoS in realtime. 

2 2 3 Compliance of Distributed System Control 
The concept of DSC compliance is only pertinent to applications that wish to be 
controlledI by DSC. Compliant applications must be able to register communicate, and 
be controlled by DSC. Implementing compliance requires modification to existing 
«nnlirations and it is only a small consideration for new applications. The DSC 
ÄXfiS aÄation Programmer's Interface ^^^D^&^ 
6 4 5 that provided controls to build a DSC-compliant application. The DSC Program s 

benefits to the application relied on the reconfigurability and the number of LoS that 
the application could define. 

The DSC's ultimate impact on providing QoS to distributed applications in an 
anomalous environment always increased when it controlled all distributed 
IppZtZs in that environment. However, ATL designed DSC ^ operrte ona^m 
with applications outside its control. As a resource-management system, DSC reacted 
To a nScont°onable process that consumed resources as if they were unavailable 
due to a physical reason, such as a disabled network connection. 

"e^oriSS dÄ?n for DSC introduced the concepts of TPA to describe the value 
of services provided by the system: 

• Timeliness — Timing of required events 
• Precision — Quantity of required data 
• Accuracy — Compliance to semantics and contexts. 

The Advanced Technology Laboratories identified the relationship of TPA to user 
valuTas a vtk.e fSnction9By analyzing potential applications that may run under DSC, 
^hTranqe of possibilities for TPA often formed a set of discrete combinations, as 
opposedTto aSinuous function; for example: frame rate changed incremen ally. 
EachConfiguration in which an application ran represented one possibility-in h s set. 
Because changing an application's configuration option could change associated 
feve^ o^PA? the9re wasan inherent interdependence among them. Consequentiy, the 
app oach ATL took to describe an application's value functions was the following. 

PP.Tdentified each discrete combination of TPA values based on the various 
confiaurations in which an application could run 

. Ass qned a value to each configuration based on the relative importance that 
ftlronfigumtion had to the use" This approach quantified LoS w.thout the 
complexity of continuous functions. 



2.2.5 Global Management and Distributed Application Synchronization 
Resource management is a fairly simple task if the resources are local. However, 
decisions are complex when more than one host makes allocation decisions on global 
resources without regard to those made by other hosts For example, two hosts could 
locally allocate 100 percent of the network's bandwidth to local processes, which 
results in a 100-percent over-allocation of the network. The global resource-allocation 
decision must take the other hosts' decisions into account. 

The DSC program solved this problem by passing local allocation decisions to each 
host. For example: 

Suppose the network is idle and Host A decides to run a network- 
intensive program. Consequently, the other hosts notice a decrease in 
network availability. If another more valuable process needs a currently 
unavailable portion of network bandwidth, then it will not be activated 
unless it is controlled by the same host as the first process. The host 
controlling the second process has no way of deciding that it has a better 
service to provide because it does not have information about the first 
process. The DSC program solved this problem by creating a virtual 
process within Host A's process table; Host A can now include that 
process in its resource-allocation calculations. 

Another global-scheduling problem is when a distributed application's processes run 
on different hosts. A synchronization protocol must exist to guarantee that the 
application runs at the compatible LoS. To address this problem, the DSC program 
included the distributed process' LoS in the decisions that it made about local 
resource allocation. For example: 

Similar to the global-management solution, each host passed 
information about its local process to the distributed application on all 
other hosts. Specifically, the system passed LoS that the local process 
ran between hosts. The hosts invalidated all other LoS for the distributed 
application's local processes except for the LoS that ran remotely. This 
synchronized the application by disallowing a process to run at a 
different LoS. As soon as a process' LoS could be upgraded, the other 
hosts received notification of the upgrade and made allocation decisions 
based on that LoS. 

2.2.6 Benefit-Loss Functions 
The Advanced Technology Laboratories investigated BLFs as a way to better control 
applications. To provide the expected QoS, some applications were configured into 
multiple threads of execution within the application. It was possible to manage multiple 
threads with native host schedulers by varying the threads' priorities. Each thread had 
an associated BLF, which determined how DSC's local scheduler prioritized the 
threads within its host. 

Like value functions, BLFs determine how valuable a particular thread is to the overall 
system when it runs. Instead of relying on a thread's run value, the DSC accumulated 
a loss value if the thread did not run or if it missed its deadline. This function was 



application-dependent and relied on a thorough understanding of the inner details of 
the application. Figure 2-2 is an example of a BLF. A static positive value resulted if a 
thread ran before its deadline; likewise, a static negative value resulted when it did 
not. By comparing various runtime-scheduling parameters (laxity, earliest deadline, or 
highest benefit-loss value), DSC controlled the application's thread at the kernel- 
scheduler level. It did this by tracking the accumulation of the BLF over time. If the BLF 
reached a user-defined threshold, then the application could prompt DSC to adapt the 
application to a different LoS in the same way the application would adapt to a 
resource constraint. Therefore, in addition to providing a fine-grain level of control for 
DSC, an application-controllable adaptation mechanism can be implemented. 

Value 

Time 

Deadline 

Figure 2-2. Simple benefit-loss function. 

Appendix 6.5 discusses two items: implementation of a BLF scheduler that ATL 
investigated during the contract and results of tests using different implementations. 
The Advanced Technology Laboratories compared three schedulers: one based on 
least laxity (time remaining before the event deadline), one on highest benefit-loss 
value, and one on highest ratio of benefit-loss value to laxity. The comparison showed 
that the ratio of benefit-loss value to laxity was superior. The Advanced Technology 
Laboratories did not implement BLFs in DSC because of a threading bug it discovered 
in version 5.4 of Sun's Solaris operating system. Appendix 6.5 also reports results of 
tests ATL performed on version 5.3. 

2.3 Architecture of Distributed System Control 
The DSC system is hierarchical, so it supports different levels of control (Figure 2-3). At 
the top level, there is an SM, whose primary task is to monitor and control distributed 
DSC applications and system resources at a global level. One of DSC's goals was to 
maintain distributed application-execution in a faulty environment; therefore, ATL 
designed the SM to be redundant. 

An LM resides on every host. Its primary task is to control and monitor DSC 
applications and resources at a local level. The LM maximizes the use of resources 
based on the value of the application. It does this by allocating and scheduling the 
resources of DSC's processes. The LM also executes reconfiguration and start/stop 
commands it receives from the SM. 
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Figure 2-3 DSC system architecture. 

For the initial development and implementation of DSC, the system managed CPU, 
main memory use (local resources), and network bandwidth (a global resource). 

The DSC software components and DSC-controllable applications communicated via 
UNIX sockets using the tcp_comms communication package. The Advanced 
Technology Laboratories developed tcp_comms to provide a fast, multicast-process- 
group communication capability using transmission control protocol (TCPVInternet 
protocol (TCP/IP). 

2.3.1  System Manager 
The SM controls DSC applications at the global level. Its responsibilities include the 
following: 

• Monitoring system-level (global) resources 
• Monitoring and handling system-level connectivity between hosts 

• Coordinating start/stop of DSC applications 
• Providing a graphical user interface (GUI) for system administration. 

The initial DSC design had the SM manage global policy. Application performance 
and local-resource-use feedback from the LMs would be analyzed by dynamically- 



changing global-resource management policies. The LM would determine whether 
resources were being assigned to the most important distributed DSC applications. 
The SM commanded the LMs to reconfigure the DSC application processes, thereby 
dictating global resource-management policy. However, the timeliness of sending and 
synchronizing reconfiguration commands among hosts limited the usefulness of SM- 
based centralized control for realtime applications, such as video teleconferencing. 
The complexity involved in implementing any process-migration capability, a 
necessary coarse-grained reconfiguration tool, was beyond the program. For these 
reasons, ATL implemented a decentralized LM-based approach to global-resource 
management. Nonetheless, the SM was still the central location for starting and 
stopping DSC applications, as well as the location for monitoring network connectivity. 

See Figure 2-4: The SM's GUI provided DSC's basic global-level control functions. It 
monitored the availability of each LM on each host, and it allowed the user to control 
the application from a central location. 

iBlliS   ^^^. 

Figure 2-4. The SM's GUIs make system administration easy. 

Appendix 6.4.2 details the SM's GUI. 

2.3.2 Local Manager 
The LM is the parent process for all DSC-controlled processes. Its primary function 
was to allocate computing resources to processes. The reason for the allocation was 
to maximize the aggregate value of DSC applications running on the host without 
overusing available resources. The LM also coordinated its decisions with other hosts' 
LMs to ensure that distributed DSC applications ran in a consistent configuration. In 
DSC, LM allocated CPU use, core memory, and network bandwidth. However, there 
were no theoretical restrictions on including other shared computer resources, such as 
video cards or communication ports. The LM responded to systematic (e.g., process 
aborted) and application-specific application errors (e.g., an application reported to 
DSC to reconfigure when an application state changed). 

10 



The LM made allocation decisions on a cyclic basis (measurement period) based on 
user-supplied descriptions of DSC-controlled applications. A typical DSC application 
was reconfigurable into a number of LoS. (Refer to Figure 6-24, which describes each 
LoS.) The table contained elements describing the value of the applications' 
configuration and its estimated resource requirements for CPU use, memory, and 
network bandwidth. For every measurement period, the LM calculated a value/cost 
ratio for each LoS of each runnable DSC application. It based the calculation on the 
LoS's value and the predicted resource use for the application. It calculated predicted 
resource use by using an exponential, moving, average filter that accounted for past 
history and present use. The LM sorted DSC's applications on value/cost ratio and 
selected the highest LoS for each application that still ran with the remaining 
resources. 

Appendix 6.2 details the above methods. 

See Figure 2-5: The LM has a GUI that allowed developers and administrators to 
control various parameters of LM and other applications. The LM GUI gave a list of 
active processes it controlled and current measurements for CPU, memory, and 
network resources. By double-clicking on any application, an application's LoS GUI 
appeared. The GUI allowed the user to adjust the value of each defined LoS, 
measurement period, and EMA_constant, which directly weighted previous 
measurements in present resource calculations. 

Appendix 6.4.3 details the LM's GUI. 

Fife    Option    View 

i&miitmmwiigimam&mtimmiMjä 
View Help 

/loc»Vbo«er/»franco/in 

rzttjZSSBQSffl 
ml 

Figures 2-5. The user monitors and controls applications with these GUIs. 

2.3.3 tcp comms 
The Advanced Technology Laboratories developed tcp_comms as a small, fast, UNIX, 
socket-based communications package. All DSC software components and DSC- 
controllable applications communicate using tcp_comms. tcp_comms provides a 
communication substrate that allows multicast TCP/IP communication using a process 
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group communication model. tcp_comms abstracts message passing to a level where 
the software developer only has to create the message and send it to the correct 
process group. tcp_comms maintains group names and members via the nameserver 
(NS) daemon. 

Basic execution of tcp_comms process occurs in the following sequential manner: 
• The application must use tcp_comms_init (), which creates a point-to-point 

TCP socket from the process to the NS. 
• The application joins communication groups via tcp_comms_j oin_group (). 
• tcp_comms_j oin_group () sends a message to the NS, which registers the 

application as a member of that group and returns a list of other processes that 
are also group members. 

• tcp_comms_join_group () then creates point-to-point TCP sockets for those 
processes, if they have not already been established. If one of these processes 
aborts, then the application and the NS will be notified (via the death of the TCP 
port), and the group member information will be updated automatically by the NS. 

• Finally, tcp_comms__msg_send () sends a byte-array buffer to any group. 
tcp_coinms_wait_f or_next_msg () and tcp_comms_get_next_msg () 
provide blocking and non-blocking ways of receiving messages from a group. 

If one wishes to send messages to a particular group but not become a member of that 
group, tcp_comms_get_group_id () can be used. 

tcp_comms is thread-safe and assumes that the user will use threads to multiplex 
reception of messages from different groups. 

Appendix 6.3 details tcp_comms API. 

12 



3.0 Video Teleconferencing Adaptability 
3.1 Network Video Software 
The Advanced Technology Laboratories (ATL) developed Distributed System Control 
(DSC) to provide distributed application adaptability. The Advanced Technology 
Laboratories demonstrated this concept with a video teleconferencing application. The 
DSC used network video (NV) — a popular video-conferencing tool developed at 
XEROX PARC. The Advanced Technology Laboratories chose NV because of its 
availability and functionality: It transmits and receives video data across the Internet 
and it runs over a video range of network bandwidths. The NV uses a video- 
compression scheme that performs at a reasonable speed when implemented in 
software. It takes advantage of similarities between consecutive frames in a typical 
video stream and neighboring pixels in any region of the frame. The NV periodically 
transmits stationary blocks to improve image quality. The NV has three main modules: 
grabber, which grabs frames using a platform-specific video-capture card; encoder, 
which does lossy compression; and sender, which transmits data. 

3.2 Adaptability Trades 
The NV adapts color depth, frame resolution, frame size, and code scheme. For DSC, 
ATL used combinations of these adaptability features to establish levels of service 
(LoS), such as greyscale with 128-bit resolution and small frame size; or color with 
256-bit resolution and medium frame size. The Advanced Technology Laboratories 
augmented the NV with three modules: network probe, admission control, and VC 
adaptability collaborator. It also ran performance trades to establish resource-use 
(CPU and communications) parameters for differing compression approaches. The 
objective was to establish unique LoS with unique resource requirements. The 
analysis also yielded unexpected results: In some cases, system developers 
perceived the clarity of the video produced with greater compression as better than 
that produced with less compression. 

Section 6.1 details the NV studies. 

3.3 Reconfiguration Policy 
Based on adaptability trades, ATL developed policy guidelines for reconfiguring video- 
conferencing to meet timeliness, precision, and accuracy (TPA) goals when a system 
operated under resource constraints. These guidelines were the following: 

• Maintain Timliness when bandwidth decreases: 
— Reduce frame size 
— Reduce frame resolution 
— Dither color frame to black and white 
— Compress color depth 
— Switch to a code scheme that has a higher compression ratio. 

• Maintain accuracy when bandwidth decreases: 
— Switch to a lossless code scheme with reduced frame size 
— Dither color frame to black and white 
— Compress color depth 
— Do not use lossy code schemes 
— Do not reduce frame size or resolution by a large factor 

• Maintain timeliness when CPU-use increases: 
— Switch to a code scheme that requires less computation 
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— Reduce frame size 
— Dither color frame to black and white 
— Do not compress color depth 
— Do not reduce frame resolution 

• •  Maintain accuracy when CPU use increases: 
— Switch to a lossless code scheme 
— Reduce frame size 
— Dither color frame to black and white 
— Do not compress color depth 
— Do not reduce frame resolution 
— Do not use lossy code schemes. 

Section 6.1 details the NV studies. 
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4.0 Implementation of the Demonstration 
4.1 Hardware 
The Advanced Technology Laboratories (ATL) demonstrated the Distributed System 
Control (DSC) on a network of three Sun computers connected by Ethernet™. The 
network video (NV) video-teleconferencing tool required video cameras and interface 
cards. The Advanced Technology Laboratories configured Sun's SunVideo card and 
camera on two machines for this purpose. The machines with the SunVideo cards 
required at least 64MB memory. The third machine required the power of a Sun 
SparcStation 10 or higher with 64MB memory; the Advanced Technology Laboratories 
used a Sun SparcStation 20 due to its availability. Table 4-I lists the configuration of 
the Sun SparcStations. 

Table 4-1. System Configuration 

Machine Type Monitor Disk Memory SunVideo 
Neptune SparcIO 20" Color 525MB 64MB Yes 
Homer Sparc 10 20" Color 525MB 98 MB Yes 
Denali Sparc 20 20" Color 1.2GB 64MB No 

4.2 Software 
The necessary software consisted primarily of Sun Software Development packages. 
The Advanced Technology Laboratories installed SunVideo software on the machines 
that contained the video cards. The software is standard on Sun's Solaris operating 
system, version 5.4, but it is not a standard install option (Ref. SunVideo Users Manual 
for more details). The NV and DSC software are deliverables. The following was the 
required Sun software: 

• Solaris operating system, version 5.4 
• SparcWorks' C Compiler and Software Developer's Kit, version 3.0.1 or better 
• OpenWindows, version 3.0 or better 
• Motif 1.2 (SUNWmotif package comes with Sun OpenWindows) 
• SunVideo Software package (SUNWrtvc SUNWrtvcu packages). 

4.3 Demonstration Operation 
Figure 4-1 shows the demonstration architecture. The primary application NV ran on 
two machines, each with a SunVideo card and camera. A third machine (Denali in the 
figure) ran an X Windows server; it provided a central location for viewing and 
controlling the dynamic reconfiguration of NV on camera-supplied machines as the 
user added worker applications. Worker applications were simple resource consumers 
that varied available resources: Nethog used network resources and cpuhog 
consumed CPU bandwidth. 

The demonstration showed how DSC adapted the NV application based on available 
resources. As each worker application started, the system reconfigured NV to run at a 
different LoS — from full-frame-rate color to half-frame-rate black and white video. 

Appendix 6.4 explains how to boot DSC software components and how to run and 
control DSC-compliant applications for the demonstration. 
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Figure 4-1. Demonstration architecture. 
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5.0 Conclusions 
The Distributed Systems Control (DSC) program addressed the establishment of a set 
of controls that adjusted the quality of service (QoS) provided to the user based on the 
resources available to the system. The work focused on demonstrating controls with a 
multimedia application. The Advanced Technology Laboratories (ATL) established 
controls in a hierarchical structure to enable scalability, and it kept them simple to let 
the user understand and use them and to minimize system impact from intrusive 
monitoring. 

The DSC used two types of adaptability: 
• Type I — The application did not change its operation; rather the system 

adapted the resources to provide those needed by system requirements. 
• Type II — It complements type I. The application adapted to operate to a 

different QoS based on considerations of timeliness, precision, and accuracy 
(TPA) embodied in the user's assessment of value. The Advanced Technology 
Laboratories based the fundamental concept of effective system adaptability of 
DSC on predictable performance. The DSC took advantage of NV's stability to 
demonstrate cooperative adaptability between the system and the application — 
termed type-ll adaptability. 

The Advanced Technology Laboratories could not directly control the application's 
QoS through different TPA parameters at runtime. Instead, it selected and calibrated 
levels of service (LoS) to implement QoS — discrete application configurations — for 
anticipated resource needs. Once ATL mapped QoS into an LoS and its associated 
system resource needs, the DSC managed system resources according to user 
preferences. 

The Advanced Technology Laboratories selected unique LoS operating points for the 
video application: They were unique in the service provided and the resources 
required. The distinctions in service provided choices to the user for service and the 
distinct resource requirements provided meaningful choices to the control algorithms. 

Significant to the approach of building discrete LoS was the need for extended 
design-time evaluation of QoS; that is, what services were meaningful to the user and 
how could they be characterized in terms value? Analysis is needed to clarify users' 
adaptability requirements in the same way other requirements are examined. For 
video-conferencing, resource requirements were relatively consistent for each discrete 
LoS, so DSC's adaptation algorithms took advantage of that predictability. 

Instability in communication delays limited the ability to use fine controls. However, 
asynchronous-transfer-mode (ATM) communications provided the capability to specify 
QoS; therefore, it was possible to couple an application's QoS (as specified by an 
LoS) with a communication's QoS. This technique could be investigated as a way to 
implement various combinations of coarse and fine controls. 

The Advanced Technology Laboratories investigated the feasibility of fine-grain 
scheduling based on benefit-loss functions. It found that a scheduling algorithm that 
used a ratio of the value-to-laxity scheme was superior in reducing the cumulative 
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benefit-loss over time. However, two steps would need to be taken to use such fine- 
grain controls: 

•  Scheduling algorithms would have to be implemented in the kernel to 
operate efficiently. 

• •  Detailed analysis of the application would be required to break it into defined 
blocks with known timing requirements. 

In summary, the DSC program demonstrated the ability to control system performance 
of video-conferencing. It did this by using a cooperative control methodology that had 
system and application adaptability. The DSC program highlighted the need for 
detailed adaptability design fortype-ll adaptability and defined conditions that would 
enable further integration of controls. 
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6.0 Appendices 
Appendices in this report are the following: 

• 6.1 Adaptable video teleconferencing 
• 6.2 Distributed System Control algorithms 

• • 6.3 tcp_comms application programmer's interface and user's guide 
• 6.4 Demonstration user's guide 
• 6.5 Benefit-Loss scheduling 
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6.1 Adaptable Video Teleconferencing 
6.1.1 Introduction 
Video conferencing systems are practical in commercial and research institutions 
because the technology has advanced in networking and multimedia applications. A 
video conferencing session involves multiple parties who might be geographically 
dispersed, and who exchange realtime video data. However, anomalies such as site 
failure and network partitioning determine the effectiveness of the communication 
capabilities. Video conferencing systems cannot dynamically adapt to variations in 
system resources, such as network bandwidths, CPU use, and memory and disk 
storage. For video conferencing systems, only users can change parameters, such as 
frame sizes, codec schemes, color depths, and frame resolutions. These changes 
cannot be made automatically based on system measurements of currently available 
resources. It is necessary to limit the user's burden in keeping the system running in 
the most suitable mode and to provide the best possible service based on the status of 
the system. Incorporating adaptability into video conferencing systems minimizes the 
effect of variations in system environments on the quality of video-conference 
sessions. 

The paragraphs in this section discuss the following: 
• Section 6.1.2 describes the concept of adaptability and how to achieve it in a 

video-conferencing system. 
• Section 6.1.3 describes common anomalies encountered in a distributed 

system. 
• Section 6.1.4 overviews the Network Video (NV) conferencing-system testbed, 

then describes extensions and modifications to NV and some reconfiguration 
issues. 

• Section 6.1.5 summarizes experimental data analyses, observations, and 
discussions. 

6.1.2 Adaptability 
Adaptability and reconfigurability are necessary to deal with the performance and 
reliability requirements of a system. Current distributed systems provide a rigid choice 
of algorithms to implement application software. Users make design decisions based 
on criteria, such as computational complexity, simulations under limited assumptions, 
and empirical evidence. The desired life- cycle of a system is at least several years. 
During such time, new applications surface and the technology advances, making 
earlier design choices less valid. Also, during a 24-hour period, users encounter a 
variety of load mixes, response-time requirements, and anomalies. An adaptable 
distributed system can meet the various application needs in the short term, and it can 
take advantage of advances in technology over the long term. Such a system will 
adapt to its environment during execution and it will be reconfigurable for new 
applications. 

Adaptability is particularly important for mission-critical and distributed systems. 
Mission-critical systems push current hardware and software technology to their limits 
to meet extreme fault-tolerance or realtime performance requirements. Distributed 
systems must be adaptable to support heterogeneous hosts and to provide graceful 
degradation during anomalies. Computer networks support a larger and more diverse 
user community than centralized systems. Hosts of many different types running 
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different software will be required to support this community. Therefore, the underlying 
distributed system must be adaptable to a wide range of hardware and software. 

Furthermore, failures that would require complete shutdown of a centralized system 
can often be tolerated with only slight performance degradation in a distributed 
system. The distributed-system software must be designed to be adaptable to a wide 
range of modes of operation, corresponding to the wide range of possible failure 
modes. For instance, a paper on dynamic quorum assigments1 describes an algorithm 
for responding to failures by dynamically adjusting quorum assignments. As a failure 
continues, the system modifies more and more quorum assignments. When the failure 
is repaired, quorums that were changed can be brought back to their original 
assignments. By dynamically adapting to the failure, the availability of data in the 
system is increased at a cost that is only incurred during failure or recovery. 

The principal advantages of adaptability are in reliability, performance, and software 
enhancement and maintenance. Adaptability provides for reliability through a design 
that is tolerant of site and communication failures. Adaptability improves performance 
because the system can adjust its transaction-processing algorithms for optimum 
processing of the current mix of transactions. Adaptability simplifies software 
enhancement and maintenance through a design that is oriented from the start to 
incorporate new ideas and approaches. 

Subsystems can be replaced without affecting other parts of the system, and the 
design of each subsystem supports implementation of new algorithms. With 
maintenance costs climbing as high as 80 percent of life-cycle costs for many systems, 
a design that supports future changes is becoming an essential part of software 
development. 

6.1.2.1 Flavors of Adaptability 
There are four broad categories of adaptability: structural static, structural dynamic, 
algorithmic, and heterogeneous: 

• Structural-static adaptability consists of software-engineering techniques to 
develop system software that can adapt to requirements changes over its life- 
cycle. Structural-static techniques are categorized differently if they refer to 
layered software or unlayered software: 
— Layered software supports vertical adaptability, which is the ability to 

replace a layer without affecting the other layers. Some layered software also 
supports horizontal adaptability, which is the ability to replace components 
within a layer. 

— Unlayered software can also take advantage of structural static 
adaptability. Fault-tolerance adaptability in hardware is classified into circuit- 
level and module level. Circuit level adaptability corresponds to software 
techniques that check for errors within a software module, using redundancy 
or correctness criteria. Module-level adaptability corresponds to techniques 
that isolate errors to within a single software module and allow the rest of the 
system to continue processing despite partial failures. Failure modes at the 
module level are often assumed to be fail-stop, which means that either the 

1 Bharat Bhargava and Shirley Browne. Adaptability to Failures Using Dynamic Quorum 
Assignments, Technical Report CSD-TR886, Purdue University, June 1989. 
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module does not produce a result or it produces the correct result. Module- 
and circuit-level adaptability in software also refer to the implementation 
techniques that support replacement of software modules or algorithms, 
respectively. 

• • Structural-dynamic adaptability, usually called reconfiguration, is restructuring . 
a running system in response to failures or performance requirements. 
Reconfiguration includes site-failure protocols, network-partitioning protocols, 
and other techniques to reorganize the way the sites in a distributed system work 
together. For instance, performance reconfiguration includes dynamically 
changing the communications structure of processors in a non-shared-memory 
multiprocessor in response to changing tasks. Reconfiguration also has long-term 
benefits. Users can easily integrate new hardware into a running system, and port 
the software to new architectures with different interconnections between 
processors. 

• Algorithmic adaptability is a set of techniques to dynamically change from the 
execution of one algorithm for a module to a different algorithm. For instance, a 
transaction system can change to a new concurrency controller, or a distributed 
system can change to a new site-failure algorithm. Algorithmic adaptability can 
take place in one of three ways: 
— Temporal adaptability refers to changes in algorithms over time. This 

method generally has a brief conversion period after which operation 
continues with the new algorithm. 

— Per-transaction adaptability consists of methods that allow each 
transaction to choose its own algorithm. Different transactions running at the 
same time may run different algorithms based on their requirements. 

— Spatial adaptability is a variant of per-transaction adaptability in which 
transactions choose the algorithm based on properties of the data items they 
access. Spatial adaptability is an advantage in cases in which properties of 
different algorithms are desired for different data items. 

• Heterogeneity deals with the issues involved in distributed computing using 
many different types of computing systems. The simpler problems of 
heterogeneity include establishing physical connection between the machines 
and resolving data-type differences (e.g., size of integers, byte order). More 
difficult problems include getting diverse database systems to work together and 
developing software that takes advantage of the particular strengths of each 
machine. Heterogeneity is an important problem for the future, because missions 
requiring several different types of computing engine will become more common. 
Systems that can incorporate heterogeneous hardware and software 
components will have the advantage of being able to incorporate new 
technologies more easily. Solving the problem of heterogeneity involves many of 
the problems in algorithmic and reconfiguration adaptability; it is aided over the 
long term by the software-design techniques of structural static adaptability. 

6.1.2.2 Techniques for Adaptability 
Adaptable software can be supported by an infrastructure of software tools. Support for 
modular design can make it easier to implement adaptability. The principle behind 
modular design is that abstract entities in the software design should be represented 
as physical entities in the implementation. For instance, separate activities should be 
represented as separate processes. In many operating systems, such as UNIX, this 
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means that the activities are represented as separate address spaces, each with a 
single thread of control. Shared resources are placed in one of the address spaces 
and accessed from the other address spaces via messages or remote-procedure calls. 
Because messages and remote-procedure calls usually cost an order of magnitude 
more than local accesses, the performance of the entire system suffers. The problem is 
that the operating systems only offer a single-process abstraction. More flexible 
process abstractions make sharing of resources, such as memory and files, efficient 
and easy. For instance, some operating systems support multiple threads of control 
within a single address space. 

Powerful remote communication primitives can also support adaptability. For instance, 
efficient multicast encourages the development of applications that can be spread 
among hosts in many different ways. Using logical multicast addresses, the application 
does not have to worry about the location of the destination. Servers can relocate 
without informing their clients. Any of a group of replicated servers can answer service 
requests directed to the logical address. 

New languages also support adaptability. Object-oriented languages provide data 
abstraction to clearly define the interface to the programmer. The syntax and 
semantics of object references are the same whether the message is to an object in 
the same address space, in a different address space on the same computer, or even 
on a different computer. A smart compiler can exploit this flexibility by clustering 
objects into processes according to reference patterns, so most object invocations can 
be simple procedure calls. In fact, the object can be dynamically moved during 
program execution as long as the interface is not affected. 

Models of adaptability are another tool. A sequencer model formalizes three basic 
approaches to algorithmic adaptability: generic state, converting state, and suffix- 
sufficient state. The model reduces the problem of adaptability to mapping the 
subsystem to a sequencer, choosing one of the adaptability approaches, and 
implementing it. Software engineers have studied design techniques that enhance 
structural static. Models for other types of adaptability are needed. 

6.1.2.3 Using Adaptability 
Incorporating adaptability into a system requires an understanding of how and when 
adaptability will be used. Structural-static adaptability is used every time the software 
is changed. Any software that will include maintenance in its life-cycle should 
incorporate techniques to make maintenance easier to reduce its life-cycle cost. 
Reconfiguration adaptability is necessary in systems for which availability is important 
or reconfiguration is common to maximize availability. Reconfiguration adaptability 
may also be necessary for mission-critical systems that must use different 
configurations to respond to different situations to perform correctly. Algorithmic 
adaptability is most important in systems that are pushing hardware performance to 
the limit or that require very high levels of fault tolerance. Algorithmic adaptability is 
useful for responding to environmental changes that are predictable or that last long 
enough to amortize the cost of the adaptation. Finally, support for heterogeneity is 
important in any system that has a long life-cycle or that will run on a large network of 
computers to maintain flexibility. In choosing when adaptability can be applied, there is 
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a trade-off between the costs and benefits. Experimental work is needed to evaluate 
adaptability in practical environments. 

6.1.2.4 Adaptability in Video-Conferencing System 
Adaptability is a very important concept in distributed systems. It means that a 
distributed system should be able to reconfigure itself. The reconfiguration is 
necessary to adjust to changes and anomalies in the system environments so it can 
provide services whose level is closest to the level of service (LoS) specified by the 
applications. Because there are various kinds of anomalies in a distributed system that 
can affect the services provided by the system, several levels of adaptability are 
needed to achieve this goal. In particular, a video-conferencing system should provide 
some policies and mechanisms to make it adaptable to the anomalies based on the 
available resources. The advantages of the adaptability schemes for video- 
conferencing systems include: 

• Heterogeneity — A video-conferencing system that will adapt to heterogeneous 
environments; that is, a video-conferencing session can be held on different 
hardware platforms and different networks. 

• Scalability — A video-conferencing system that will adapt itself as more users 
and more sites join a video conference in progress. 

• Anomaly management — A video-conferencing system that will adapt to 
anomalies and degrade gracefully when available resources decrease or 
become unavailable. 

• Resource management — A video-conferencing system that can make 
efficient use of resources, such as storage, CPU time, and communication 
bandwidth. 

The basic idea for achieving adaptability for video-conferencing systems is to trade-off 
some aspects of video quality for others. For example, the frame rate decreases as the 
available network bandwidth drops. Because the smoothness of a video session is 
sometimes more important than any other aspects of video quality, users may have to 
maintain a reasonable frame rate during a video-conference session, even though the 
network performance degrades. To achieve this, users must sacrifice some aspects of 
video quality, such as color or resolution of video frames. 

Adaptability can be achieved either by user intervention or by the system itself. If user 
intervention is required, then the system accepts inputs from the user and changes the 
LoS or some system parameters according to the new specification. If adaptability is 
automatically done by the system, then the distributed-control system periodically 
measures the available resources and supplies these parameters to the video- 
conferencing system. Based upon the current parameters, the video-conferencing 
system reconfigures itself in a user-transparent way to provide the best possible 
service based on some user-specified criteria that must be satisfied. 

6.1.3 Anomalies in a Distributed System 
Video-conferencing tools are inherently used on top of distributed systems. The 
anomalies in distributed systems will reduce the effectiveness and use of a video- 
conferencing tool. Typical distributed-system anomalies include the following: 

• System Resource Limits — System resources are usually limited and change 
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dynamically. Common limited resources include available network bandwidth, 
CPU time, and disk storages: 
— Network bandwidth in a distributed system is available in limited 

quantities and varies with network traffic. For example, the bandwidth of a 
typical Ethernet™ is 10 Mbps. Available network bandwidth may decrease 
drastically during a short period of time when many users simultaneously 
send large objects (packets). This is typical for video-conferencing sessions. 
When the available bandwidth drops sharply, the video-conferencing system 
can change the LoS by changing color or frame resolution to reduce the 
object's size. 

— CPU time available for the video-conferencing processes changes 
depending on the system load. The system may choose to avoid 
compressing the data before sending to decrease the CPU use if the 
available bandwidth is large enough. 

— Disk storage availability varies from machine to machine in distributed 
system. For example, a server in an organization may have several 
gigabytes of disk space and over 48 megabytes of memory, while a personal 
computer participating as a client may have only 500 megabytes of disk 
space and 4 megabytes of memory. In a heterogeneous environment like 
this, the system may choose to provide different kinds of service for each 
type of machine by negotiating before connecting. For example, the server 
may decide to reduce the frame rate or frame resolution if the participating 
site is a personal computer, while maintaining high-quality video frames for 
participating high-end workstations. 

Failures — A failure is a deviation of a system from its normal operation due to 
some errors or faults. Various kinds of failures can occur during a video- 
conferencing session. These failures include hardware, software, network, and 
many others. Among them, the most relevant failures to a video-conferencing 
system are the following: 
— Site failures — The participating site may be down for some time and re- 

join the session later. This could be caused by various kinds of errors from 
hardware, operating system, software, memory, or disk. To deal with site 
failure, a video-conferencing system may record the session in some 
permanent storage and the failed site may retrieve it later when it resumes 
normal operation. To prevent site failure caused by disk error, a distributed 
system may use redundancy storages to store a duplicate copy of the data. 

— Network failures — The network may be disconnected for a time or the 
network may be congested due to large volume of traffic. To deal with 
network failure, the packets may be re-routed through other connections, or 
the system can store the data to be sent in some temporary storage and 
retransmit when the network becomes available. 

— System failures — These failures refer to a wide range of system-limit 
violations. For example, the hardware may malfunction for a time. There may 
be too many processes running on a system, which means no additional 
process can be created when needed. The disk space may be full, which 
means no temporary file can be created and the normal processing of the 
system cannot be continued. To deal with system failures, the application 
may go into a recovery mode and wait for the system to resume its normal 
state, then it can keep on running on its normal mode. 
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—    Number of participants varies — The number of users participating in a 
video-conferencing session varies. This changes the demands placed on 
the video-conferencing system. If the system load is too heavy, then the 
system may limit the number of users to provide reasonable service to each 
participant. It can also degrade the LoS for some users to maintain the 
system availability to all users. 

To deal with anomalies, a system can detect and report them, it can tolerate 
them, or it can be designed to fix the anomalies. A system must be able to 
detect anomalies to avoid an inconsistent state. There are two different kinds 
of anomalies: those that pop up suddenly and those that occur gradually. 
Each can be dealt with by a different strategy. For example, a power failure 
can occur and cause the system to stop immediately. If anomalies occur 
suddenly, the system may not prepare enough to recover from it. The system 
may immediately stop working so it does not cause further damage. This is 
called a fail-stop mode. However, sometimes the failure of the system can 
cause cascade damages. 

The distributed system should be prepared to deal with sudden anomalies 
and guarantee that the anomalies will not cause a lot of inconsistency to the 
system. For example, database logs constantly record the system status in 
the permanent storage. If a sudden failure occurs, then the system can 
recover the database back to some old but consistent state. Although some 
transactions may be redone or undone, the information contained in the 
system log can guarantee that no further damage will occur to the system. 

A video storage system can record all frames for a session and then make 
them available to play again. If anomalies grow slowly, then the distributed 
system can prepare more for recovery. The system can be designed to 
tolerate them, maybe by degrading the service gracefully, or it can try to fix 
the anomalies and resume normal processing. If the system wants to tolerate 
the anomalies, then it may substitute or reconfigure one of its components. 
However, the substituted component may be inefficient, it may be reliable 
only under limited circumstances (inputs), or it may be operational only for a 
limited time. For example, if a direct link between two sites was 
disconnected, the system may decide to re-route the data through some 
indirect route, with the penalty of additional delay for the data. There are 
always some overheads that exist if a distributed system must prepare to 
deal with anomalies. For example, a checkpoint is used to help recover 
processing back to a consistent state in the case of some failures, but there 
are some overheads associated with a checkpoint due to the periodic 
recording of the system status. 

Adaptability allows a distributed system to accommodate anomalies and 
reconfigure itself to provide service based on the available resources. 

6.1.4 Network Video Software 
The DSC team selected NV, a popular video-conferencing tool, developed by XEROX 
PARC, as the testbed to implement adaptability features. The team extended NV to 

27 



provide adaptability to network characteristics and to allow it to reconfigure itself to 
different parameters during anomalies. Being hardware-independent, the DSC team 
compared the overheads of NV in the software implementation of the team's 
algorithms without having to exclude the performance benefits due to the hardware of 
certain codec schemes. 

6.1.4.1 Structure of Network Video 
Network video transmits and receives video data across the Internet using remote 
transport protocol (RTP) built on top of user datagram protocol (UDP). Network video 
runs on a wide range of network bandwidths, and it can support slow-frame-rate video 
over a slow modem line, while also allowing higher quality video over a high-speed 
local area network (LAN). Network video uses a video-compression scheme designed 
to perform at a reasonable speed when implemented in software. It takes advantage of 
the similarity between consecutive frames in a typical video stream and the similarity 
between neighboring pixels in any given region of the frame. This block-based 
compression scheme takes only tens of milliseconds on a workstation to compute. The 
stationary blocks are periodically transmitted to improve image quality, which means 
packet losses are made up by retransmission triggered by motion. 

Network video has three main modules: 
• Grabber module grabs frames using the platform-specific video-capture board. 

It performs analog-to-digital conversion in hardware. 
• Encoder module does lossy compression. Human eyes are more sensitive to 

luminance than chrominance. By converting the red, green, blue (RGB) model to 
luminance-chrominance (YUV) model (the process of subsampling), the encoder 
module reduces chrominance information and retains luminance information. The 
encoder module also executes the block-based conditional-replenishment 
algorithm. Haar transformation is applied to each block to pick up the high- 
frequency components that help provide better looking text. The encoding 
process is finished with dead-zone quantization, where a single threshold value 
is used to eliminate low-energy terms and run-length coding. 

• Sender module transmits the compressed frames across the Internet to its 
client processes. 

6.1.4.2 Reconfiguration of Network Video 
Adaptability features of NV include color depth, frame resolution and size, and codec 
scheme. To incorporate adaptability into NV, important aspects must be considered, 
including inputs, reconfiguration policy, and reconfiguration mechanisms. 

6.1.4.2.1 Inputs 
To notify NV about changes in the system environment, there needs to be input from 
outside NV. Input parameters for adaptability that should be monitored from NV 
applications include number of users, delay/jitter, frame rate, color, frame size, and 
frame resolution. Input parameters that are available in DSC include CPU use, 
available network bandwidth, and storage requirements. The inputs can come from 
users, which means the parameters can be selected and modified interactively by 
users when the service is unsatisfiable. They can also come from the distributed 
system, which means the inputs come automatically from the distributed system based 
on current parameters of the environment, such as available bandwidth and CPU use. 
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If the input is from users, then it can be specified by selecting the LoS or by specifying 
actions that must be done by NV, such as compression of color depth or reduction of 
resolution. The input can also be some direct change to any parameters, such as color 
or frame size. 

If the input is from the distributed system, then the distributed system must periodically 
measure the available resources, including network bandwidth and CPU use. Based 
on the currently available resources, the distributed system calculates the necessary 
input parameters for NV. The input parameters are the result of a decision algorithm 
(usually in the form of an object-function evaluation) in terms of one or more Quality of 
Service (QoS) parameters and application attributes, such as timeliness, precision, 
and accuracy. When it receives the new parameters, NV reconfigures itself to run 
under the new LoS. 

When anomalies are detected and new available resources are measured by DSC, it 
must make decisions on what action should be taken by NV and notify NV of its 
decision (Ref. 6.1.4.2.2). Section 6.1.4.2.3 describes how the parameters and 
behaviors of NV will be changed when DSC chooses the policy. 

6.1.4.2.2 Reconfiguration Policy 
Reconfiguration policy is a decision derived from a set of decision rules. 
Reconfiguration policy guides the choice among several alternatives when a 
reconfiguration is possible and needed. In a reconfiguration policy, there are several 
sets of mutually exclusive alternatives that have to be traded. These trade-offs include 
communication/compression and timeliness, accuracy, precision (TPA). 

The trade-off between communication and compression depends on the available 
network bandwidth and CPU use. 

Table 6-I shows the CPU use under various LoS. 

If the data is compressed before sending, then it takes less bandwidth to send the 
data. However, it takes additional CPU time to compress the data at the sender side 
and to decompress it at the receiver side. If the data is sent without compression, then 
it takes more bandwidth to send the data but less CPU time for the sender and receiver 
to process it. 

Figures 6-1 and 6-2 show that the percentage of time encoding and decoding over 
total processing time decreases as the compression ratio increases from 1:1 to 1:16. 
Therefore, the decision to compress data should be made based on available network 
bandwidth and CPU use. 

Timeliness is defined as when an event is to occur. Maintaining it means meeting a 
deadline. Accuracy is defined as the degree to which the output conforms to the 
semantics and contexts of the applications. Maintaining it means guaranteeing the 
correctness of the data. For example, lossy-compression algorithms cause the loss of 
accuracy. Precision is defined as the quantity of information provided or processed. 
Maintaining it means maintaining the amount of data being processed or transmitted 
over the network. For example, the number of frames per session, number of pixels per 
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Table 6-1 CPU Use Under Various LoS. 

Level       Configuration     CPU Use 

-1 (G, 128, Sy )          67 -72 
2 (G, 256, S] 76 -81 
3 (G.512.S) 78 -83 
4 (C, 128, S) 64 -69 
5 (C, 256, S) 04 -79 
6 (C, 512, S) 77 -82 
7 (G, 128, M; 80 -85 
8 (G, 256, M] 86 -90 
9 (G, 512, M) 89 -93 
10 (C, 128, M) 78- -84 
11 (C, 256, M) 86- -89 
12 (C, 512, M) 91 ■ •94 
13 (G, 128, L) 92- 97 
14 (G, 256, L) 95- 98 
15 (G.512.L) 95- 98 
16 (C, 128, L) 95- 97 
17 (C, 256, L) 95- 97 
18 (C.512.L) 95- 97 
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Figure 6-1. Percentage of time encoding 
over total processing time for resizing. 

Figure 6-2. Percentage of time decoding 
over total processing time for resizing. 

frame, and number of bits per pixel are parameters used to describe the precision of a 
video-conferencing session. Timeliness, precision, and accuracy cannot be 
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simultaneously maintained at the highest level during anomalies. The user must trade- 
off among these attribute values. The policy to trade-off is the following: 

• Maintaining timeliness when bandwidth decreases: 
— Reduce frame size. The accuracy is maintained unless the frame size is 

below a certain value. 
— Reduce frame resolution. The accuracy and precision are reduced. 
— Dither color frame to black and white. 
— Compress color depth. 
— Switch to a codec scheme that has a higher compression ratio; side effect: 

CPU use increases, which can be compensated for by frame resizing and 
resolution reduction. 

• Maintaining accuracy when bandwidth decreases: 
— Switch to a lossless codec scheme with reduced frame size. 
— Dither color frame to black and white. 
— Compress color depth. Compress Y and UV no more than 2 bits each. 
— Do not use lossy codec schemes. 
— Do not reduce frame size or resolution by a big factor. 

• Maintaining timeliness when CPU use increases: 
— Switch to a codec scheme that requires less computation, usually with lower 

compression ratio. 
— Reduce frame size. 
— Dither color frame to black and white. 
— Do not compress color depth. 
— Do not reduce frame resolution. 

• Maintaining accuracy when CPU use increases: 
— Switch to a lossless codec scheme. 
— Reduce frame size. 
— Dither color frame to black and white. 
— Do not compress color depth. 
— Do not reduce frame resolution. 
— Do not use lossy codec schemes. 

6.1.4.2.3 Reconfiguration Mechanisms 
Reconfiguration mechanisms refer to the implementation of the reconfiguration policy 
that has already been decided. It is called the infrastructure of the adaptability in a 
system. For the DSC infrastructure, the team extended NV by adding new modules 
and modifying the three modules that existed in the original design. Figure 6-3 shows 
the extended architecture. The new modules added to NV are the network-probe 
module, admission-control module, and video-conferencing adaptability collaborator 
module. 

The network-probe module constantly monitors the network. It is integrated with the 
Wide Area Network Communication Emulation (WANCE) tool to track round-trip time 
and routing information of the packets. The admission-control module restricts the 
number of users if there are insufficient resources available. The video-conferencing 
adaptability collaborator module includes three new modules: 

• Recorder stores video data frames for future retrieval, retransmission, and 
reference. 
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Figure 6-3. Extended architecture of network video. 

• White board provides a way to write and send text, graphs, and other material 
during a conference. 

In addition to the new modules, the team modified the three original modules: 
• Grabber: 

— Change sampling rate, which is the frequency of grabbing frames in a 
stream of input. For example, grab alternate frames instead of all of them. 

— Reduce load on the sender machine to save computation in the encoder 
module. 

— Reduce load to help sender receive better (packets will not be lost). 
• Encoder: 

— Incorporate switching between Haar and Discrete Cosine Transform (DCT) 
transformations, depending on the application. Haar is good for video 
frames with high frequency components, such as edges. The DCT is good 
for other kind of frames, such as movie frames. 

— Add the ability to encode different levels of color: Full color is 24 bits per 
pixel (YUV); greyscale is 8 bits per pixel. 

— Extract the 16 UV bits. 
— Perform 4:1 reduction. 
— Merge the new 4 UV bits with the original 8 Y bits to get a total of 12 bits; 

similar to the dithering procedure. 
— Change resolution of frames. 
— Compute the value of a pixel as an average of 4 pixels (Figure 6-4). 
— Can be coded for Sun Video card. 
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Figure 6-4. Frame compression using pixel averaging to achieve 4:1 reduction. 

• Sender: 
— Switch protocols, depending on current network conditions, to achieve 

reliable transmission, better flow control, and better jitter control. 
— Prioritize sessions: 

- Add callback function (SetPriority) so that users can specify priority at the 
beginning of a session (static). 

- Add callback function (ChangePriority) so that users can modify a priority 
when a session is in progress (dynamic). 

- When network is congested, lower priority sessions are stored and not 
transmitted. 

— Admission control restricts the number of users in a session. 

The network-probe module monitors the network constantly. It measures network 
traffic, detects congestion, and calculates available bandwidth. It interfaces with the 
sender and encoder modules through shared memory. The variable bandwidth can be 
accessed by the grabber, encoder, and sender modules. There are two domains in 
monitoring the Internet. The network-probe module can either monitor the local 
network up to the gateway, or it can go beyond the gateway. However, statistics 
gathered beyond the gateway might not be accurate because the route the packets 
will take is unknown. In the DSC implementation, the team integrated the network- 
probe module with the WANCE tool to get a better environment for the experiment. 

The admission-control module restricts the number of participants per session if 
sufficient resources are unavailable. It stores the session and retrieves them for later 
playback for users unable to join a session. It prioritizes sessions, media, recipients, 
and messages. It will cut conversation time or close the conversation for sessions with 
lower priorities, and send the most important messages first if the conversation time is 
limited. It closes the less important medium to save bandwidth when the available 
bandwidth decreases. In case of site failures, network congestion, or extreme low 
bandwidth, the admission-control module uses the video-conferencing collaborator to 
record a video session for later playback, retransmission, and retrieval. 

The recorder module records video frames in the video-stream database at the sender 
and receiver machines. The functionalities include the following: 

• Record frames every fixed interval (automatic, inflexible). 
• Record the changed part (difference, mostly foreground). 
• Record frames in variable rates (based on relative importance). 
• Record frames based on user-defined criteria (e.g., some particular time 

intervals) or frame features (e.g., some particular scenes). 
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The summarization module performs user-aided extraction of significant frames to 
organize frames by theme. It includes off-line processing because it is time-consuming 
and hard to achieve realtime for typical sessions. It includes on-line, user-assist 
processing for slowly evolving scenes. However, to effectively summarize a session, 
some computer-aided summarization (CAS) tools are needed. In addition to video, 
audio provides more information and can be combined into the summarization module 
for processing. 

The white-board module provides a user interface to NV. The module lets users see 
simultaneously the speaker and other information, such as slides, graphs, images, and 
maps. However, using the same window for speaker and information generates a lot of 
traffic in NV because of background changes. In the DSC design, the sender and 
receiver can interactively point to and modify objects on the white board. In DSC, user 
inputs are parsed using the Tcl/Tk interface and grabbed from the screen using the 
grabber module. There is also an interface with the video compression collaborator in 
our implementations. 

6.1.5 Experiments and Results 
6.1.5.1 Experimental Setup 
The team chose Network Video (NV) and enhanced it to incorporate adaptability and 
recording features, then used it as a testbed to conduct performance studies. 

The platforms for the experiments included a Sun Sparc 10 station and a Sun Sparc 5 
station connected in a LAN, and two video cameras. The workstations ran the Solaris 
2.3 operating system. 

6.1.5.2 Observations and Discussions 
6.1.5.2.1 Experiments on Color Depth Compression 
Two color models are often used in practice: RGB and YUV. Y stands for the 
luminance component of a pixel; U and V represent the chrominance components of a 
pixel. Many systems use the YUV model because it is easy to adjust colors. For 
example, in the YUV model, UV components can be changed easily and separately 
without disturbing Y components and vice versa. In the NV system, frames represented 
in RGB space are first captured and then converted into those in YUV space. This 
process is called subsampling. Because human eyes are less sensitive to 
chrominance than to luminance, the team can reduce the number of bits in encoding U 
and V components. They can do this while retaining the number of bits in encoding Y 
components and still guarantee relatively good quality in decoded color frames. 
Nevertheless, subsampling is lossy 

Although the team can achieve different levels of colors by using a different number of 
bits to encode UV components, they may still be needed to reduce the number of bits 
in encoding UV when the bandwidth is too small and the number of bits in encoding Y 
cannot be reduced any further. 

In an NV system, Y and UV components of a pixel are each 8 bits long. Color-depth 
compression is achieved by using fewer bits to represent Y and UV components, 
respectively. The team experimented with various configurations set up by separately 
compressing Y and UV components each by 1, 2, and 4 bits. For example, 
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compressing UV components by 2 bits means they are represented with only 6 bits. 
Table 6-11 shows the effect of reducing the number of bits in UV and Y components of a 
pixel on the quality of a video frame. One may divide Table 6-11 into three regions: A, B, 
and C, as described below: 

Table 6-11. Image Qualities for Different Compression Factors for Y and UV 
Components. 
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• Region A — Very good image quality can be achieved when either Y 
components alone or both Y and UV components are compressed by a small 
number of bits (up to 2 bits). Thus, up to 4 bits of combined Y and UV component 
compression can be achieved when a very good image quality is being 
maintained. 

• Region B — Human eyes can accept image quality in this region when the 
number of bits compressed for Y components is less than 4 bits. This can be 
attributed to more compression in UV components than in Y components. Thus, 
more bits in encoding UV components can be reduced than those in encoding Y 
components, as long as the compression for Y components does not reach a 
threshold value (4 bits). 

• Region C — The image quality in this region drops dramatically (though the 
image is still recognizable) when the number of bits compressed for Y 
components reaches a threshold value (4 bits in this case). Thus, the team has to 
compress more bits for UV components if the bandwidth becomes too small 
because the number of bits in encoding Y cannot be reduced any further. 

Therefore, the conclusions are the following: 
• Stay in Region A and obtain very good image quality if the combined number of 

bits of compression for Y and UV components of a pixel is not expected to exceed 
4 bits. 

• Enter Region B and obtain not-so-bad image quality when the combined number 
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of bits of compression for Y and UV components of a pixel is greater than 4 bits 
but is no larger than 6 bits. 

•  Enter Region C for a higher compression rate in combined number of bits to 
encode Y and UV components of a pixel but image quality is degraded 
substantially. Due to the relative importance of luminance components, the team 
should not compress Y for more than 4 bits if it wants to maintain a recognizable 
image quality. 

6.1.5.1.2.2 Experiments on Resolution Reduction and Frame Resizing 
To determine how frame resizing can be used for adaptability for video conferencing, 
the DSC team conducted experiments to measure the frame rates for frames of 
different sizes (Figure 6-5). For a particular frame size, as the available network 
bandwidth decreases, the corresponding frame rate also decreases. This results in 
loss of continuity and smoothness of video presentation at the sender and remote 
sites. In such a situation, the video-conferencing system adapts by changing to a 
smaller frame size to maintain (or even improve) the original frame rate. The DSC 
system supports only four discrete levels of frame sizes. Thus, the frame rate may be 
changed (improved) when the system changes to an LoS with less bandwidth. In the 
future, the team plans to provide more levels of frame sizes, which will allow the 
system to adhere closely to the current operating frame rate while reducing the 
network bandwidth requirements at the same time. 

200.0 400.0 600.0 
Bandwidth (kbps) 

800.0 

Figure 6-5. Frame rates for resized frames. 

To implement the dynamic frame resizing and resolution reduction, the team 
manipulated data before it was encoded and after it was decoded. Though it takes 
extra CPU time, the results show that this overhead was tolerable. The team computed 
the average time percentages for encoding and decoding in processing one frame. In 
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frame resizing, the combined time percentages for encoding and decoding were more 
than 50 percent of the overall processing time of one frame, which meant that 
encoding and decoding were the most expensive parts in video conferencing. 

When the compression factor value became 2 or 4, the combined time percentages for 
encoding and decoding dropped dramatically; they were no longer the most 
expensive parts of processing in video conferencing (Figures 6-6 and 6-7). Instead, 
the video transmission became the most expensive part of processing in video 
conferencing. Similarly, in resolution reduction, the time percentage for encoding 
decreased when the frame size decreased (Figure 6-8). However, the time percentage 
for decoding when the compression factor was equal to 2 or 4 increased compared to 
that when the compression factor was 1 (Figure 6-9). This was due to the extra 
computation overhead involved in resuming the original frame size. But the combined 
time percentages of encoding and decoding over total processing time were only 
slightly larger than those for original NV because of the decrease in the amount of data 
when the network was busy. 
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Figure 6-6. Percentage of time encoding 
over total processing time for resizing. 

Figure 6-7. Percentage of time decoding 
over total processing time for resizing. 

6.1.5.1.2.3 Experiments on Codec Schemes 
The original NV software supports three codec schemes: native NV scheme, CellB 
scheme invented at Sun Microsystem, Inc., and CU-SeeMe scheme. The DSC 
modified version of NV supports a scheme that replaces the Harr transform in the 
native NV scheme with the DCT algorithm. The DOT is the core transform used in 
many codec schemes, including JPEG and MPEG. The team implemented the DCT 
algorithm in NV and studied the performance of the four codec schemes in the context 
ofNV. 
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Figure 6-8. Percentage of time encoding over 
total processing time for resolution 
reduction. 

Figure 6-9. Percentage of time decoding 
over total processing time for resolution 
reduction. 

The native NV compression scheme is a sequence of Harr transform, quantization, 
and run-length coding. The uncompression process is the inverse. The team replaced 
the Harr transform with the DCT algorithm in the compression process and replaced 
the Harr inverse transform with the inverse DCT in the uncompression process. 

The importance of the incoming video data from the camera has been ignored to a 
certain degree in the performance study of video-conferencing softwares. The team 
investigated this in some detail and found that CPU use and frame rate also depended 
on the amount of motion in each frame and its frequency distribution. The latter 
depended on the content of a frame. For example, a textual frame usually has more 
high-frequency components, whereas a continuously toned frame has more low- 
frequency components. 

To measure the amount of motion precisely, the team defined the momentum of a 
frame to be the number of blocks whose contents had been changed. The team 
defined the relative momentum of a frame to be the percentage of the number of 
blocks whose contents had been changed over the total number of blocks in that 
frame. The team's hypothesis was that the processing time for video data was heavily 
influenced by the momentum. The DSC experiments supported this assertion. 

The team also conducted a series of experiments to study the performance of NV 
systems under various configurations. The configurable parameters included codec 
schemes (native NV scheme, CellB scheme, DCT scheme, and CU-SeeMe scheme); 
frame sizes (160 x 120 (small), 320 x 240 (medium), or 640 x 480 (large); and display 
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modes (color or greyscale mode). It measured CPU use of NV under various 
configurations; see Table 6-III. 

Table 6-III. CPU Use in Various Codec Schemes Supported by NV. 

Codinq Grey Scale Full Color 
Scheme            Size Small Medium Large Small Medium Large 

Native NV Scheme [62, 67] [72, 80] [99,103] [61,66] [71, 77] [100, 103] 

DCT Scheme [63, 67] [74, 75] [103, 108] [60, 63] [70, 73] [101,105] 

CellB Scheme [4.6, 6.5] [4.9, 6.5] [4.3, 7.6] [5.5, 7.4] [6.4, 7.4] [6.5, 9.4] 

CU-SeeMe Scheme [66, 70] [73, 76] [99, 101] Color mode not supported 

Note that in many cases, displaying frames in greyscale mode took more CPU time 
than in color mode. This appeared to contradict the fact that displaying frames in color 
mode was more expensive than in greyscale. However, it implied that the frame rate in 
greyscale mode was higher than that in color. Table 6-IV shows the frame rates under 
the same configurations. 

Table 6-IV. Frame Rate Obtained Using Various Codec Schemes Supported by NV. 

Codinq Grey Scale. Full Color 
Scheme            Size Small Medium Large Small Medium Large 
Native NV Scheme 1.9 0.5 0.2 1.6 0.4 0.2 

DCT Scheme 1.9 0.8 0.3 0.7 0.2 0.1 

CellB Scheme 6.0 1.5 0.3 6.0 1.6 0.3 

CU-SeeMe Scheme 5.9 1.0 0.8 Color mode not supported 

Figures 6-10 an 6-11 show how the distribution of the time spent in forward Harr 
transform and DCT for a frame depends on the relative momentum of that frame. 
Figures 6-12 and 6-13 show that for corresponding reverse transforms, the bigger the 
relative momentum, the longer a transform lasts. 

The team compared the performance between the NV scheme and the DCT scheme. 
Figures 6-14 and 6-15 show that the toward and inverse transforms of DCT take more 
time than those of NV because cosine functions in DCT are transcendent, and Harr 
functions are elementary, which implies that DCT is more computationally expensive 
than Harr transform. But the compression ratio is not in the realm of the team's 
expectation. Figure 6-16 shows that the compression ratio of NV is about twice that of 
DCT. This test was done for continuously tuned frames. DCT should have better 
compression ratio than Harr transform for such frames. 

6.1.5.1.2.4 Experiments on Session Recording 
Session recording involves both the computation overheads and secondary storage 
requirements. One important parameter to consider is the recording frequency, which 
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Figure 6-10. Impact of momentum on DCT forward transform time. 
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Figure 6-11. Impact of momentum on NV forward transform time. 
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Figure 6-12. Impact of momentum on DCT reverse transform time. 
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Figure 6-13. Impact of momentum on NV reverse transform time. 

41 



FTTxIO- 
190.00 F" 
180.00 
170.00 
160.00   -D*-1 

150.00   - 
14O.00 
130.00 
120.00 
110.00 
100.00 
90.00 
80.00' 
70.00 ■ - 
60.00-- 
50.00 
4O.00-- 
30.00- 
20.00 
10.00 

0.00 

NV 

■J FM 

0.00 20.00 4O.00 60.00 80.00 100.00 120.00 140.00 

Figure 6-14. Time spent in forward transform: NV versus DCT. 

rxios 

o.oo 20.00 40.00 60.00 80.00 100.00 120.00 140.00 
FM 

Figure 6-15. Time spent in reverse transform: NV versus DCT. 

0.00 20.00 40.00 60.00 80.00 100.00        120.00 140.00 
FM 

Figure 6-16. Compression ratio: NV versus DCT. 
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is the frequency at which the video frames are stored. This must be differentiated from 
the display frequency, which is the frequency at which the video frames are updated 
on a user terminal. The latter determines the continuity and smoothness of the video- 
session presentation. Storing every video frame generated during a video session is 
sometimes unnecessary because many consecutive frames may have almost the 
same contents, and because it would consume a lot of disk space. Conversely, 
recording frames at a very low recording frequency may hurt the smoothness of video 
sessions and degrade the video quality during replay. 

Recording video frames imposes computational overheads that can affect the rate at 
which video frames are generated for display (i.e., the display frequency). Because the 
system records the video-conferencing sessions only when an anomaly occurs — for 
example, when the available network bandwidth decreases dramatically — imposing 
computation and network overheads may affect the frame rate (display frequency) 
even more significantly. Figure 6-17 shows the comparison between the frame rates 
without recording and the frame rates with recording (recording every frame) under 
different available network bandwidths. The overhead (signified by drop in frame 
rates) imposed by recording the whole session is very small when the available 
bandwidth is small. This means that recording the entire session does not contribute to 
a large performance degradation when network bandwidth becomes a bottleneck. 
This is counter intuitive to the team's reasoning presented earlier. However, this can 
be explained as follows: When the network bandwidth is low, the system 
generates/transmits fewer frames per second to remote recipients. The low frame rate 
results in residual computation cycles on the system that are under used. These 
computation cycles can be used for storing the frames in the database without 
affecting the frame rate. Conversely, high available network bandwidth allows the 
system to generate/transmit larger number of frames to remote recipients. The process 
for storing the frames now must compete with the process for generating/displaying/- 
transmitting the video frames, which resulted in a drop in frame rate to almost half of 
the original. 

The team is currently developing support for storing full-quality video frames at the 
sender site. It also makes as a parameter the frequency at which the frames must be 
recorded at the local disk. This parameter can be specified by the sender at run-time. 
The team is experimenting in finding a frequency optimal for both the storage and the 
video quality. 

Another concern in recording video sessions is the storage-bandwidth requirements 
for recording the video frames. It is possible not to record every frame into the 
database and still maintain the quality of video replay. The team has observed the 
effects of changing recording frequencies on sizes of recorded video sessions (Figure 
6-18). As the recording frequency decreases, there is an exponential decay in size of 
the stored VC-session data. As the available network bandwidth increases, the rate at 
which the frame can be delivered to the remote sites also increases. Therefore, more 
frames are stored with the same recording frequency (time interval), thereby 
increasing the size of the recordings. The recording frequency takes the form of the 
time interval between two consecutive frames to be stored; it is actually the reciprocal 
of the time interval. 
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Figure 6-18. Effect of changing recording 
frequencies on sizes of recordings. 

For a particular network bandwidth, as the recording frequency decreases, the sizes of 
the recorded video-conferencing sessions decay exponentially. The reason that the 
decay in size of recorded video sessions is almost always better than the linear decay 
in size is because the encoded NV video frames are not constant in size. This is 
because the encoding scheme in NV encodes only the differential among the 
consecutive physical frames grabbed by the hardware and not the complete frames. 

For a particular network bandwidth, the size of the stored video session is constant up 
to a certain value of time interval for recording frames (recording frequency), beyond 
which it falls exponentially as the time interval increases between consecutive frames 
to be stored. The team calls this a turning point for a particular network bandwidth dt. 
For time interval less that td, the recording is higher than the display frequency, i.e., the 
frames are to be stored at a rate greater than those at which they are generated. This 
will result in duplicates of a frame being stored. However, in the DSC implementation 
of the recording module, one frame is stored only once, but every frame is stored up to 
dt. time interval. This is achieved by storing the unique timestamp of the encoded 
frame in the database, and storing a frame only if its timestamp is different from that of 
the most recently stored frame. 

To summarize, each frame is stored without duplicates for any time interval between 
two frames to be stored less than dt.. Beyond this point, the recording frequency is 
smaller than the display frequency; hence, a subset of the generated frames is stored 
in the database. 
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6.2 Distributed System Control Algorithms 
This section describes the two algorithms that the Local Manager (LM) used to 
determine resource allocation and to measure resource use: Local Manager 
Allocation algorithm and the Resource Measurement and Exponentially Moving 
Averages (EMA) algorithm. 

6.2.1 Algorithm: Local Manager Allocation 
The LM performed this algorithm during every measurement period to see what 
processes would run and consume available local resources. 

6.2.1.1 Available Information 
The LM had the following data available to it when deciding which services to provide: 

• Value of each LoS specified by the user on a common scale, e.g., 0-100: To 
start, the system reads a default value from a configuration file and allows the 
user to change the value by using a sliding scale on the LM's Graphical User 
Interface (GUI). 

• Available resources: 
— CPU cycles 
— Memory 
— Network bandwidth (at a global level). 

• Resource requirements for each LoS for the following uses: 
— CPU 
— Memory 
— Network. 

• A weighted cost function for each LoS, which is the weighted sum of all required 
resources. The user-supplied weighted costs can be optionally multiplied by the 
currently measured proportion to which each resource is being used in the 
system. If the user selects this option, then resources that are highly available 
become weighted more lightly, while heavily used resources become more 
heavily weighted. 

The system computed the weighted cost as follows: 

Cost = (W1 * R1 * U1) + (W2 * R2 * U2) + (W3 * R3 * U3) 

Where: 
— W is weight 
— R is a normalized resource-use figure for a particular service 
— U is a fraction of the corresponding resources that the system is currently 

using. The purpose of U is to weight more heavily a resource that is less 
available; whereas, the purpose of W is to allow either users or system 
administrators to weight one resource over another. 

When the system divides the value of a service by its weighted cost, it has a 
common metric, value-to-cost ratio, by which to compare different services. 

6.2.1.1 The Problem of Maximizing Value 
There is a problem of maximizing the total value of all the services provided, given the 
weighting criteria in section 6.2.1 and given that aggregate resource requirements for 
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all services on a particular host cannot exceed available resources. If the problem 
were limited to one available resource and if the value of each service were equated 
with its resource requirement, then a subset-sums problem 2 would result. Because the 
subset-sums problem, which is NP-complete, is equivalent to a simplified version of 
the value maximization problem, the exact solution is at least NP-hard. Section 6.2.1.2 
presents a heuristic that runs in o (nA2) time in the worst case and in o (n *   log (n)) 
time in the average case; n is the number of LoS. It will yield the optimal solution with 
few exceptions. 

6.2.1.2 The Heuristic 
The LM used two sorted lists of services, where the sorting criterion is the value-to-cost 
ratio of the service. One list was active while the other was inactive. Each list contained 
the currently active and inactive services, respectively. 

After the LM took resource measurements, it ran the following heuristic written in 
psuedo code to determine if services should be activated or deactivated: 

MAXIMIZE (active list, inactive list, resource availability levels). 
BEGIN MAXIMIZE. 

Note 
Whenever the system moved a service from inactive to active, it 
subtracted the algorithm's measured resource use from the resource 
availability levels. Conversely, when the system moved the service from 
active to inactive, it added the service's resource use. 

• Move all services in the active list to the inactive list. 
• Activate the highest ratio LoS by going through the sorted inactive list from 

highest to lowest ratio. Pick the highest ratio LoS for each requested service. If 
there are sufficient resources available to accommodate it, then move it to the 
active list. The active list now contains the most efficient LoS in terms of the value 
provided per resources consumed. 

• Upgrade services if there are sufficient resources by going through the inactive 
list from highest to lowest ratio. For each LoS, if there are sufficient resources 
available to accommodate them and if the LoS have higher values than the active 
levels corresponding to their processes, then move the inactive LoS to the active 
array and the active LoS to the inactive array. 

END MAXIMIZE 

After the Maximize algorithm completes execution, another function implements the 
prescribed changes by starting, stopping, or changing the LoS of affected processes. 
When a new process is requested, its associated services are inserted into the inactive 
list. After running Maximize, the system will determined if its LoS can be provided. 
When a user no longer needs a service, a function removes the associated LoS from 
the active and inactive lists and it kills the associated process. 

2The subset-sum problem consists of finding a subset of a set of integers the sum of which is 
maximal but less than some specified integer. 
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This algorithm maximizes the value of the services with one exception: If the system 
fully uses all resources and a service is requested that requires more resources than 
are available, then the algorithm will not displace existing services if they have higher 
value/cost ratios. This is the case even if a newly added lower ratio (new service) 
would result in a higher aggregate value. 

6.2.1.3 Example 
The following is a hypothetical situation to which the algorithm could be applied: 

•   See Table 6-V: To simplify the example, bypass calculating a weighted cost and 
measuring individual resources by using a single generic resource. Suppose 
there are 100 units of resources and values range between 1 to 100. 

Table 6-V. Generic Resource Values 

Value Cost Ratio 
Service 

80 1 
60 1.16 
50 1.2 
40 1.25 

Video 
<video color 30> 80 
<video color 15> 70 
<video bw 30> 60 
<video bw 15> 50 

Audio 
<audio 3> 80 
<audio 2> 70 
<audio 1> 60 

Drawing 
<draw 3> 30 
<draw 2> 20 
<draw 1> 8 

50 1.6 
40 1.75 
30 2 

30 1 
20 1 
4 2 

Assume a completely unloaded system — Enter all LoS for video into the 
inactive list and Maximize() selects <video bw 15> in its second step. In its third 

step, the video application is step by step, from highest to lowest ratio, upgraded 
to the highest LoS, <video color 30>, which uses 80 of 100 units. 
Add audio capability — After LoS are inserted into the inactive list, Maximize 
moves all active services to the inactive list before it moves <audio 1> and <video 
bw 15> to the active list. Because there are sufficient resources, Maximize() 
upgrades to <audio 3> and <video bw 30>, which uses 100 units of resources, 
yielding a value of 140. 
Add drawing services — Here is an example of the above mentioned case in 
which the heuristic does not yield an optimal solution. Maximize() puts <draw 1>, 
<audio 2>, and <video bw 15> in the active list. Because there are sufficient 
resources, Maximize() performs the following sequence of upgrades: <audio 1> 
to <audio 2> and <audio 2> to <audio 3>. In this configuration, the active list 
consists of <draw 1>, <audio 3>, and <video bw 15>, which uses 138 units, 
yielding a value of 94. Although Maximize() does achieve a higher overall value- 
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to-cost ratio, because the system has not fully used all available resources, the 
algorithm does not maximize the aggregate value of active LoS. 

Note that all LoS for all services compete independently for execution privileges. 
However, levels from the same service, like video, are mutually exclusive. So, when 
video service is requested, only one of the levels will run. If the user requested another 
instance of video service, then the system would consider it separately, and it may 
assign different values associated with the video's LoS. 

6.2.1.4 Special Case for Distributed or Client/Server Applications 
There is a special case to be concerned about when the application is distributed 
across different hosts. If a process was unable to receive the necessary resources on 
its host, then the entire application would not run. This is undesirable, so the team 
changed the algorithm. The paragraphs that follow describe this change. 

Let the term member of a distributed application mean a process that must coordinate 
its LoS with other members so the distributed application can function properly. Let 
each LoS on each member of the application correspond to the same level on any 
other member. Only if all members can provide the same LoS on all hosts will that LoS 
be provided by any of the hosts. 

A useful tool in solving this problem is the concept of invalidating LoS with regard to 
another member. If one LoS cannot be provided to a member, then that level should 
be invalidated for all other members of the distributed application. When an LoS is 
able to be provided, the corresponding LoS can be validated for the other members. 
For each LoS, the system tracks whether the level is valid with all other members of its 
distributed application. For distributed applications with up to 32 members, this is done 
with a bit-field modification of an integer. If the user sets a bit to 1 to invalidate an LoS 
to another member, then the user can check the integer for a zero value, which means 
the LoS is valid to all other members. 

The problem is solved by modifying the Maximize() algorithm as follows: 
• All LoS for nondistributed processes are always valid. An LoS must be valid with 

all members of the distributed application to be moved to the active list in any 
step. All distributed applications begin with all LoS in the valid state. 

• In step 2 of Maximize(), perform the following for each service that is selected to 
be moved to the active list and is a member of a distributed application: 
—    Validate: If the level was previously invalidated with the member at hand, 

then send a message to LMs hosting all members of that distributed 
application. This will validate the corresponding LoS with the 
aforementioned member. Only move the service to the active list if it is valid 
with all members; otherwise, pass over this LoS and examine the next one 
in the inactive list. 

• In step 3 of Maximize(), perform Validate each time a distributed application's 
LoS is selected to be upgraded, 

• After step 3 of Maximize(), for LoS for distributed applications not placed in the 
active list in the present call to Maximize(), send messages to all members to 
invalidate corresponding LoS with regard to the member at hand. 
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Note 
The above solution assumes that selected service can be provided on 
the local host. 

6.2.2 Algorithm: Resource Measurement and Exponentially Moving Averages 
(EMA) 
The LM measures resource availability and per-process use for CPU cycles in percent, 
memory in kilobytes, and network bandwidth in kilobytes per second. These measure- 
ments are taken periodically with a dynamically configurable interval. For resource 
availability and use for each service, three values are maintained for each resource: 

• The current or last-measured value is recorded. 
• The sum of all current values since the last calculation of an EMA is maintained 

for each resource. This value is used to calculate an average of all 
measurements taken since the last EMA calculation; it is possible for the period of 
EMA calculations to be greater than that of resource measurement. 

• An exponentially moving average is maintained. 

The formula used to calculate EMA follows: 

New EMA = (1 - C) * Old EMA + C * New Value 

Where: 
— New Value = Sum of measured values since last EMA calculation/number of 

measurements 
— C is a constant between 0 -1 inclusive. The closer C is to 1, the more weight 

that is given to new values; conversely, the closer C is to 0, the more weight 
that is given to old values. After expanding a few iterations of the formula, old 
values exponentially decrease their weighting with the constant C. 

The DSC monitors available resources and the consumption of resources by 
processes under its control. However, it cannot monitor resources outside its control; 
therefore, DCS sees these resources as decreased resource availability. 
Consequently, the sum of resources used by all processes that DSC monitors will 
never equal the difference between total and available resources. If a costly process is 
started outside of DSC's control, then DSC will see it as decreased resource 
availability. Although unaccounted for, decreased availability of resources will cause 
DSC to adjust LoS to adapt to the anomaly. 
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6.3 tcp_comms Application Programmers Interface and Users Guide 
This document will help users write programs using tcp_comms. tcp_comms is a fast, 
transmission control protocol/Internet protocol (TCP/IP)-based message-passing 
library that uses a process-group model to help send and receive messages in a 
cooperative, distributed environment. 

6.3.1 tcp_connns Functions 
• int tcp_comms_init (void) 

— initialize tcp_comms structures and threads. Returns 0 on success; 
otherwise, -1. Will exit (-1) if it cannot get system information, such as 
hostname etc.). 

• int tcp comms_join_group(char  *name) 
— Given a character string, registers the group specified by that string with the 

nameserver (NS) as a member of the group name. Blocks indefinitely until 
NS returns a gid. It is not thread-safe. It will break if > 1 thread simultan- 
eously does a tcp_comms_j oin_group () and/or a 
tcp_comms_get_group_id (). 

• int tcp_comms_get_group_id(char  *name) 
— Ask NS for gid of group, "name". Blocks indefinitely until NS replies. Returns 

gid if group exists; otherwise -1 not thread-safe. It will break if > 1 thread 
simultaneously does a tcp_comms_join_group () and/or a 
tcp_coimms_get_group_id (). 

• int tcp_comms_leave_group(int gid) 
— Unregisters process with group corresponding to gid. Not implemented. 

• int tcp_comms_msg_send(int gid, void *msg, int n, int 
send_to_ self_flag) 
— Send message (of size n bytes) to group, gid. If send_to_self_f lag is 

true, then also send this message to yourself if you are a member of gid. 
Returns 0 on success; otherwise -1. 

• int tcp_conms_get_ne2ct_msg(int gid,   void **msg,   int  *n) 
— Get next message from group gid and put address in*msg,   size  of msg 

in * n. It returns 0 on success. If there is no message for that gid, it does not 
block, but puts null in* msg,   0  in *n and returns-1. msg must be 
free () -ed when done. 

• int tcp_comms_wait_for_next_msg(int gid,   void **msg, 
int *n) 
— Get next message from group, gid, and put address in* msg,   size of msg 

in *n. If there is no msg for the group, it blocks indefinitely. Always returns 
0. msg must be  free () -ed when done. 

• void tcp_conims_wait_f orever (void) 
— Simple routine that allows the program to finish the main thread without 

exiting the process. Usually as soon as it reaches the end of the main, it 
exits. This command stops this from happening. 

6.3.2 How to Run tcp_comms 
The following paragraphs describe the list of commands needed to be executed for 
tcp_comms to work with any program: 

51 



• 0)  setenv NS_SERVlCE_PORT to whatever you want it to be. This is the TCP port 
to which NS will listen. Defaults to 26660. 

• 1) Start NS. 
cd  $tcp_comms_home;   ns   & 

Where: . 
- $tcp_comms_home is an environment variable whose value is the patn 

where tcp_comms_home resides. 

• 2) setenv NS_H0ST to the machine where NS is started. The user may have 
the equivalent of different groupname domains by starting multiple NS on 
different hosts and setting NS_HOST to whichever host the user's particular 
application wants to connect to or set NS_SERVICE_PORT to a different value. 
NS is not currently fault tolerant or redundant. 

• 3) Run the application. 

6.3.3 How to Link Programs with tcp_conims 
The following paragraphs describe the actions needed to compile and link tcp_comms 
into a program that will be using it: 

• #include <tcp_comms. h> in program source. 
• For compiling, use a command similar to: 

cc  -I$tcp_comms _home <your_file_name>.c   ... 
• For linking, use a command similar to: 

cc  -o <your_file_name>  <your_file_name>.o 
 L$tcp_comms _home  -ltcp_comms  -lsocket  lnsl  -lm 
 posix4   -lthread 

Where: . 
- $  tcp_coimus _home is an environmental variable whose value is the 

path where the tcp_comms  library,   libtcp_comms. a resides, e.g., 
$tcp  comms_home  =  /proj/dsc/tgeigel/tcp_comms) 
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6.4 Demonstration User's Guide 
The Advanced Technology Laboratories wrote this Demonstration Users Guide to help 
users run the DSC and to convert non-compliant applications to DSC-compliant ones. 
The guide has six sections: 

• •   6.4.1 How to Run DSC includes basic instructions on what processes to start 
and how and where to start them. 

• 6.4.2 Starting DSC Applications describes the SM's GUI for starting up DSC- 
compliant applications. 

• 6.4.3 Local Manager (LM) GUI explains the LM GUI and how to use it to 
control the DSC-compliant applications. 

• 6.4.4 Application Resource Files describes the format of Application 
Resource files for DSC-compliant applications. 

• 6.4.5 DSC Application Programming Interface (API) describes the DSC API 
functions to make a distributed application DSC-compliant. 

• 6.4.6 Final DSC Demonstration Setup Procedure provides step-by-step 
instructions on how to run the final DSC demonstration 

6.4.1 How to Run Distributed System Control 
This example assumes users have three machines: machine A, machine B, and 
machine C. $DSC_HOME is an environment variable whose value is the path where the 
DSC software resides: 

• tcp_comms must be started (Ref. Appendix 6.3). 
• Execute the following commands on machine A: 
— setenv NS_HOST machineA 
— setenv NS_SERVICE_PORT   2 6660 (optional) 
— setenv tcp_comms _home <path where  tcp_comms  resides> 

$tcp_comms _home  /ns  & 
• Start SM on any machine on the network; for this example, SM will be started on 

machine A. Before running the SM, set the NS_HOST environment variable to tell 
tcp_comms on which host to find the NS: 
— setenv NS_HOST machineA 
— setenv NS_SERVICE_PORT   26660 (optional) 

• Run the executable, smd: 
— cd   $DSC_HOME/SM 
— smd  & 

• Start LMs on various hosts; in this example, machine B and machine C. You must 
login as root to run the LM. 

• Before running each LM, set the NS_HOST environment variable to tell tcp_comms 
on which host to find the NS: 
— setenv NS_HOST machine A 
— setenv NS_SERVICE_PORT   2 6660 (optional) 

• Run the LM with monitoring turned on (-M): 
— cd $DSC_HOME/LM (see note3) 
— ./lmd  -M  & 

3Usually put the lmd in a directory local to the machine, such as /local/machineB/DSC/LM. 
Because the directory from which lmd is run is the default place to look for resource files, the team 
put them in the same directory. 
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• Type lmd -help to get help on running: lmd -help 

lmd [ -M ] [ -m ] [ -e ema_period] [ -r ServiceDir ] [ -p 
PollPeriod ] [ -s StartDelay ] [ -n NetOption ] [ -1 LogOption ] 

Where: 
 M monitors statistics for individual processes; default is not to monitor 

individual processes. 
 m when LM terminates; do not remove processes started (messy terminate). 
 r Service dir defines the path for LM to search for application service 

files. If -r is not specified, LM checks the APP_SERV_DIR environment variable. 
If the environment is not set, LM looks in the current directory. 
 p  PollPeriod is the period (in seconds) that LM polls applications for 

status 
 s  StartDelay is a delay (in seconds) that LM waits before gathering 

network file descriptor data. Currently not used. 
 n NetOption is the net monitoring option for LM. Defaults are 10 seconds 

inactive, 1 sec active. The valid options are: 
- active: time (in seconds) net monitoring is active. 
-- inactive: time (in seconds) net monitoring is inactive. 
- promise: flag to turn on/off promiscuous mode: on=1, off =0 
-- continuous: flag that overrides the previous netstat options. Network is 

monitored continuously, 
- off: do not monitor network. 
 1 LogOption is the logging option for LM. The valid options are: 

-- Console: write log message to console. 
-- File = filename: write log to file filename. 
-- Memory: write log to memory buffer. When terminated, LM writes memory 

buffer to Im.log file. 
-- msg = logserver: write log to logserver group of tcp_comms group. 

6.4.2 Starting DSC Applications 
The SM is used to start processes. For each active LM, an entry will appear in the 
HOSTS list of the SM. Click on a host to bring up a dialog box (Figure 6-19) The dialog 
box lists all the DSC applications on that host and some performance statistics. A title 
bar on the dialog allows users to perform the following actions: 
• Start App brings up a file selection box (Figure 6-20) which, when completed by 

the user, starts the entered application with arguments. 
• Stop App kills the application selected in the process list. 
• Zap App kills the application selected in the process list. 
• Zap All kills all DSC applications on this host. 
• Restart All kills and restarts all DSC applications on this host. 

6.4.3 Local Manager Graphical User Interface 
Figure 6-21 shows the LM display. The View menu button lets users bring down a 
Control Panel, which allows users to modify LM parameters with the Update button 
(Figure 6-22). See Appendix 6.2 for technical details on the modifiable parameters. 
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Figure  6-19. SM's LM window. Figure 6-20. SM's Start Application window. 
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Figure 6-21. LM's GUI. 
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Figure 6-22. LM's Control Panel window. 

Modifiable parameters are the following: 
• Weight — These are the weighting factors by which each raw amount of resource 

is multiplied to get the weighted cost for each process. If these values 
are negative, then each resource is additionally multiplied by the degree to which 
that resource is being used by the system. 

• Start Thresholds — Values by which available resources are reduced before 
running the Maximize algorithm. This enables a buffer amount of spare resources 
to prevent resource over use. 

• Kill Thresholds — Used previously but is now inactive. 
• Exp. Mov. Avg. Constant —This is the constant used to calculate EMAs for 

available system resources. 
• Application Poll Period — Frequency with which measurements are taken for 

both host and per process resource figures. 
• EMA Measurement Period —Frequency with which EMA calculations are 

performed. This is also the frequency with which the Maximize algorithm is called. 
• Min Kill Cost — The minimum weighted cost a process must have to be 

suspended. Some processes have 0 weighted costs; for example, the LM. Do not 
suspend this parameter. 

• Update — Updates the above values. 

The main display has the host's overall value, a list of processes running under DSC 
control, and available resource statistics. 

If the user double clicks on one of the applications in the list, an application dialog box 
will appear that lists the processes' LoS and associated values (Figure 6-23). 

On the application dialog: 
• The slider bar for priority is non-functional. 
• A box with a slider bar denotes each LoS bar for value. Users can change the 

slider any time. The line on the top of the box denotes the following information: 
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F/gi/re 5-23. LM's Application GUI window. 

— <Level id #> <Level name> <Valid/Not Valid> <Value/Cost 
Ratio <Weighted Cost> 

This line is highlighted in yellow for an active LoS. 

• If the user clicks on the down arrow, the box will expand to display more 
information, such as the resource use statistics for this process. In this box, the 
user can also modify values for the EMA constant and measurement interval for 
this particular LoS. All of this information is stored in the resource file on 
termination of the process. 

• The Option menu from the main window has three choices: 
— Suspend: Not implemented. 
— Kill: Kills the selected process in the process list. 
— Resume: Not implemented. 

6.4.4 Application Resource Files 
Each application has to have an associated resource file available to the LM. This file 
defines the application's LoS to the LM. The resource filename is expected to be: 

.<application_name>_srv 
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For example, NV, the teleconferencing application, would have a corresponding 
. nv_srv file to define its LoS. 

The format of the resource file is free-form ASCII text. The "#" character is a comment 
character Any line starting with a "#" is ignored. Each LoS is def.ned as follows: 

<LoS  Name>  <resourcel  usage>  <resource2  usage>  <resource3  usage> 

— Gr<LoS Name>  is a descriptive name for the LoS (It appears in the 
application's dialog box.) 

— <resourcen usage> is the estimated amount of resource used for the 
particular LoS, in absolute terms (e.g., percent of CPU use actual memory 
use in bytes, actual number of packets used). For the initial version of DSC, 
resourcel is CPU use, resource2 is memory use, and resource3 is 
network bandwidth. 

A CONSTANTS line is used when defining the ema_period and the ema_constant. 
• If a CONSTANTS line occurs before any LoS has been declared, then it defines 

the default values for these parameters for the entire application. 
.  If no CONSTANTS line occurs before an LoS is defined, then DSC default values 

3T6 USGCl ~J 
• If a CONSTANTS line occurs after an LoS, then it defines the ema_period and 

ema_constant for that particular LoS. A CONSTANTS: line is in the form: 

CONSTANTS:   <period>  <ema_const> 

— CONSTANTS- is the keyword and must begin a CONSTANTS line 
— <Period> is the ema_Period in seconds. This defines how often the 

system calculates measurements . 
— <ema_const> is the ema_constant. This value weights the importance of 

previous measurements. 

See Appendix 6.2 for details on the EMA algorithm, including detailed information on 
the ema_Period and ema_constant. Figure 6-24 shows a sample resource file. 

6 4 5 DSC Application Programming Interface .    .     *.   . 
To write DSC-compliant applications, users must select an application that can Tun 
under a variety of configurations, or LoS. For example, in the NV video-teleconfer- 
encmg application, frame rate, color, and frame size were some of the configurable 

Srs that affected resource use. After defining the application's LoS users must 
insert the proper DSC functions into the application so that rt can receive and handle 
LM messages The DSC API provides functions for users to set up the application to 
asynchronously receive LM messages as part of a main control loop as part of,a 
polling strategy, or as part of an automatic callback strategy. The DSC funct.ons are 
the following: 
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# This is an example application resource file for a DSC application 
# Default application specific values will be used unless a CONSTANTS 
# line is inserted before LoSs description lines.  A 
# CONSTANTS line specifies values that are applicable to the overall 

# application. 
' CONSTANTS: 100 .5 

# period ema_const 

# 
I 
# ema[ i] = (1 - ema_const) * ema[ i-1] + ema_const * x[ i] 
# There is one more line for each LoS which the 
# application will provide.  They will be formatted as follows: 
# Name value resourcel resource2 resource3 
level3 90 .95 9032446 1234567 
level2 80 .65 7654321 912345 
levell 70 .50 6543210 765432 

Figure 6-24. Sample DSC application resource file. 

• int  dsc_register(char *name,   int   (* service_cb) ())— Registers 
the application with the LM by setting up communications with LM via tcp_comms 
and creating an LM message handler thread, name is the name of the application 
and is used in naming tcp_comms process groups internal to DSC. service_cb 
is a callback function that the LM message-handler thread executes. It handles 
LM's change_level messages. Returns 1 on success, 0 otherwise. 

• int  dsc_get_initial_service(int  arge,   char*argv[])   —Sets 
the application to LoS value if specified in application's argument list. The 
command line switch -s <LoS> specifies that the application initially run at the 
LoS represented by <LoS>, where <LoS> is an integer. Returns the actual LoS 
value of the application, regardless of whether it was successfully changed. 

• void dsc_conf igure_done ()  — Sends a message to LM stating that the 
application is finished with its configuration. Not necessary to use, as it presently 
forces LM to only print out a log message. 

• void dsc  conf igure_done_and wait ()   — Like dsc_conf igure_done () , 
except that it blocks indefinitely. Used by multithreaded applications to stop the 
process from exiting. ,   ,    ,,.„..  .     . 

• void dscapp_cleanup(int  signo)   — Called if LM sends the UNIX signal, 
SIGHUP, to the application, and the user wants the application to continue. 
Cleans up the LM log from the application, signo is unused. 

• void dscapP_bye(int signo)  — Called if LM sends the UNIX signal, 
SIGKILL, to the application, and the user wants the application to continue. 
Cleans up the LM log from the application, signo is unused. 

• int dsc msg_handler(void)   — Checks for an incoming message from LM 
and processes it if there is one. Returns 1 if there is a message or 0 if no message 
is processed. 

• int  dsc_wait_for_msg_handler (void)   — Like dsc_msg_handler, except 
this blocks indefinitely waiting for an incoming message from LM. Returns 1. 

6.4.6 Final Demonstration Setup Procedure 
The purpose of the final demonstration is to show that DSC can independently control 
multiple teleconferencing inputs. The demonstration consists of three machines, each 
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running an LM. Because of availability, only two machines have video cards and 
cameras installed. The third machine runs the SM. 

The NV runs on all three machines in receive-only mode on the machine without the 
card, with the other two NVs sending their input to it instead of each other. 

Setup consists of the following: 
• For all machines, there should be a /home/users/geigel/rome directory, 

which is where all pertinent DSC software resides. The environment variable, 
DSC_HOME, is set to this directory. For each machine, there is a 
<machine_name>_local directory, where the operator will go to start the 
appropriate DSC processes. 

• The following steps are needed to run the demo: 
— On the SM machine: 

-- cd $DSC_HOME/<SMmachine_name>_local 
-- nss (start tcp_comms' NS). 
-- smd& (start up the SM). 
- lmd& (start up the LM for the SM machine). 

Note 
lmd accesses local statistics from the kernel. Because of that, it is a setuid 
program owned by root. On occasion, the lmd will abort with a Segmentation 
Fault error. If this occurs, restart the NS and smd, then login as root and start 
the lmd as root) 

— On machine A: 
- cd $DSC_HOME/<machineA_Name>_local 
- lmd start up the LM for machine A. See note above). 

— On machine B: 
- cd  $DSC_HOME/<machineB_Name>_local 
-- lmd& (start up the LM for machine B). See note above). 

— On SM machine: 
-- Start up NV using the SM's GUI: 

o   On the SM GUI window labeled System Manager, double click on the 
lines lm_<machine_name> to bring up the SM Control Dialog for each 
machine (labeled lm_<machine_name>) 

o   On the lm_<SMmachine_name> window, click on the Action menu bar 
and click on the StartApp menu item. This will bring up the Start 
Application Window. Enter: 
/home/users/geigel/rome/<SMmachine_name>_local/nv 
-recvOnly <SMmachine_name> 

An empty NV window will pop up. This is the receiving NV process 
running on SM machine. 

o   On the lm_<MachineA_nanie> and lm_<MachineB_name> windows, 
do the same as lm_<SMmachine_name>, except enter the command: 
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/home/users/geigel/rome/<machine_name>_local/nv 
<SMmachine_name> 

The network video windows will appear on machine A and machine B 
with a video image from the cameras. The SM machine's NV will 
display two video images, one from each of the two machines. 

o   On the lm_<MachineB_name> window, start up a cpuhog process by 
entering: 

/home/users/geigel/rome/<MachineB_name>_local/cpuhog 
50 

A line for cpuhog will appear on machine B's LM GUI. The argument 
for cpuhog tells it for how many milliseconds to use the CPU. The LoS 
that the cpuhog runs under determines the duty cycle for CPU use: 

— #milliseconds of CPU use = argv[1] 
— #milliseconds of sleep = (LoS value * argv[1])/2 

Initially, cpuhog runs at level 1, which means that its duty is 66 
percent. If the LoS is changed to level 2, then the duty cycle is 50 
percent, and so on. 

On machine B: 
-- On the LM's GUI (labeled Distributed Systems Control), double click the 

line for the cpuhog process. An LM Application Control window (labeled 
the same as the process filename and its execution state) will appear. By 
varying the value of the serv_a LoS to 0 and increasing the serv_b LoS 
to >50, the user can reduce the amount of CPU consumed by the cpuhog, 
essentially simulating different CPU load levels on machine B. The result 
is that DSC will dynamically change the LoS for machine B's NV process, 
causing NV to adapt to varying CPU loads. On the SM machine's NV, the 
video image for machine B will vary to reflect the observed changes. 
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6.5 Benefit-Loss Scheduling 
6.5.1. Objective 
The objective of this task is to design and implement a thread scheduler on Solaris 2.3 
that schedules realtime threads to minimize the total benefit loss. The threads 
dynamically present their worst-case computation time estimates, deadlines, and 
benefit-loss functions (BLFs) associated with their next computation segments to be 
executed. 

6.5.2. Approach 
The following paragraphs outline the basic design of the benefit-loss scheduler: 

• An application process creates multiple threads that share the same address 
space with the parent process. 

• One of the multiple threads is designated as a scheduler thread, and the rest of 
the threads become worker threads (WTs) that are scheduled by the scheduler 
thread. 

• The WTs dynamically present their scheduling parameters (worst-case 
computation-time estimates, deadlines, BLFs, etc.) to the scheduler thread 
through a shared data structure called the scheduling parameter table (SPT). 
After they present themselves, they suspend themselves. 

• The scheduler thread periodically checks the SPT, determines which WT to 
execute next, and informs the Solaris 2.3 Kernel Thread Scheduler of the WTs 
identification. 

• The Solaris 2.3 Kernel Thread Scheduler dispatches the WT requested by the 
scheduler thread. Note that there are at most two threads seen by the Solaris 
Kernel Thread Scheduler in the Ready RealTime Thread Queue in the kernel. 

• Whenever the deadline of any WT is missed, the benefit-loss incurred due to the 
deadline miss is accumulated. If the accumulated benefit-loss gets higher than a 
predetermined benefit-loss limit, the scheduler thread displays the results and 
exits. 

6.5.3. Thread Model 
The following paragraphs describe the design details of the worker and scheduler 
threads: 

• Worker thread: 
— Each WT is "non-preemptible" and has its scheduling status, such as 

RUNNING, READY, and RECOVERING. The scheduler thread recognizes 
this status, but the Solaris Kernel Thread Scheduler may not. 

— The WT stores its computation-time estimate, deadline, and BLF (to 
generate benefit-loss upon deadline miss) into the SPT. Then it sets its 
status to READY and suspends itself. 

— When it is resumed (by the scheduler thread), it repeatedly reads the real- 
time clock until the amount of time equal to its computation time has passed 
as if it is doing its computation during that period. Initially, this step was 
implemented using a timer. It is currently being modified to use the realtime 
clock. After the period, the WT generates new computation-time estimates 
and new deadlines, stores them into the SPT, sets its status to READY, and 
then suspends itself. 

— Every WT is independent of the others. 
— The BLF bl<i> associated with each deadline imposed by the WT, Ti has 
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the following simple cliff form: 
bl<i>  = bl<max>    if Ti did not finish before its deadline, di. 
bl<i> = 0 otherwise. 

• Scheduler thread — When activated, it does the following: 
'     —    Checks if there is a WT in READY status whose deadline is going to be 

missed. If there is, computes an actual execution time for that WT and checks 
again if the deadline is going to be really missed. If so, then it sets the status 
of the WT to RECOVERING. In the current implementation, the recovery time 
for the WT that missed a deadline and is in RECOVERING is set to the 
absolute deadline of the WT, which will be missed by the WT. 

— Checks if there is any WT in RECOVERING status that must be reincarnated 
at present or any WT in RECOVERING status of which the reincarnation time 
has already passed. If there is, change the status of the WT to READY and 
set a new deadline for the WT, which should be calculated based on the 
reincarnation time. 

— Get the WT ID, which is selected upon the current scheduling policy, set the 
status of the WT to RUNNING, and then resume the execution of the WT by 
calling the Solaris 2.3 Kernel Thread Scheduler to dispatch the selected WT. 

6.5.4. Scheduling Policy 
To test the effectiveness of the benefit-loss scheduler, the team compared three 
scheduling algorithms, two simple non-preemptive benefit-loss-based scheduling 
algorithms, and a known non-preemptive algorithm: 

• Highest Benefit-Loss-to-Laxity-Ratio First (HBLLRF) — The WT whose 
laxity/benefit-loss is highest will get scheduled first. Laxity of WT = Absolute 
Deadline of WT - Current Time - Computation Time of WT. 

• Highest Benefit-Loss First (HBLF) — The WT whose benefit-loss is highest 
will get scheduled first. 

• Least Laxity First (LLF) — The WT whose Laxity is smallest will get 
scheduled first. 

6.5.5. Implementation 
The following paragraphs describe the implementation of the BLF scheduling design. 
Solaris 2.3 Thread Library is used to program multiple threads within a process. Each 
WT is created as a BOUND thread (Ref. section 6.5.8): 

• thr_create() 
• thr_suspend() 
• thr_continue() 
• thr_yield() 
• thr_self() 

Every thread is created as a thread of realtime class to avoid all system interventions 
during execution. 

A random number generator is used to generate computation-time estimates, actual 
computation times, and deadlines. To achieve better randomness, the current time in 
micro-second units is used as a random number. In the current version, the 
computation-time estimate is regarded as the actual computation time. This will be 
modified so that the actual computation time is less than or equal to the computation- 
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time estimate. The difference between the computation-time estimate and the actual 
computation time will be a random number. 

6.5.6. Result Analysis 
Whenever any WT is going to miss its deadline, its benefit-loss value is added to the 
total benefit-loss. If the total benefit loss exceeds some predetermined benefit-loss 
limit, the scheduler thread displays the elapsed time, total benefit-loss incurred, 
benefit-loss per millisecond, and then exits. 

The results depend on the various scheduling parameter settings. However, most of 
time, the HBLLRF performs most effectively. 

The scheduling parameters were set as follows for the experiment: 
• 10 msec <= Computation Time <= 200 msec 
• Deadline = Computation Time * 4 
• 00 <= Benefit Loss Value <= 1000 
• Benefit Loss Limit = 10000 

Table 6-VI lists the results of the experiment. 

Table 6-VI. Results of the Benefit-Loss Experiment 

BL/msec 

Run# HBLLRF HBLF LLF 

Run 1 2.21 6.56 2.86 
Run 2 1.84 4.87 2.30 
Run 3 1.84 8.36 2.84 
Run 4 3.00 5.85 2.10 
Run 5 2.78 5.37 2.63 
Average 2.334 6.202 2.546 

6.5.7. How to Partition the Application 
The partitioning decision intrinsically depends upon the application designer. 
However, it would be a reasonable approach to partition a program at each point of 
the blocking statement (e.g., receive statement). For example, atypical realtime task 
contains a loop that consists of a data-receiving part, data-processing part, and result- 
sending part. In this case, the loop body executed in each iteration can become one 
partition. 

6.5.8 Solaris 2.3 Facilities for Scheduling Processes and Threads 
The following paragraphs discuss the Solaris generic thread scheduler and how to 
use it to implement the BLF scheduler. 

•  Process scheduler (Kernel thread scheduler) — This schedules kernel 
threads onto processors. Each kernel thread is categorized into one of three 
classes, as shown in Table 6-VI I. When a user process is created, one initial 
Light-Weight Process (LWP) kernel thread is allocated to the user process and 
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inherits the class type and priority of the parent user process. User processes are 
either time-sharing class or realtime class. Kernel threads in the system class are 
responsible for the kernel activities. No LWPs are associated with kernel threads 
in the system class. The class-specific priorities are converted to the global 
priorities based on which kernel thread scheduler schedules kernel threads. 
Light-weight process (LWP) — This may be viewed as a virtual CPU for user 
processes or user-level threads. The LWP is a kernel thread for execution of user 
processes or user-level threads. 
Solaris thread library is the programmer's interface for multi-threading and the 
user-level thread scheduler on LWPs performs the LWP interface. 
User-Level Threads — New user-level threads are created by calling Solaris' 
thread-library function from the user process or another user-level thread. There 
are two types of user-level threads: 
— Unbound thread — When a user process or a user-level thread creates 

unbound threads, the default number of LWPs are also created, but the 
unbound threads are not mapped to the LWPs. The unbound threads are 
scheduled by the user-level thread scheduler with respect to the other 
unbound threads in the same process. User-level thread-scheduling 
strategy for unbound threads is fixed-priority scheduling with no adjustments 
and no kernel involvement. The kernel thread scheduler has no effect on 
scheduling of the LWPs. The user can change the priority of each unbound 
thread in the same process. 

— Bound thread — Because unbound threads are only scheduled within a 
process, they are not scheduled with respect to threads outside the process. 
By binding a user-level thread permanently to an LWP, scheduling of the 
user-level thread becomes equivalent to the scheduling of the kernel thread. 
Each kernel thread supporting the bound thread can have a unique 
scheduling class priority. This priority is visible to the kernel thread 
scheduler with respect to all the other kernel threads in the system. 
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Table 6-VII. Classes of Kernel Threads 

Class Type Time-sharing System Class 

Medium 

Time-sharing 
Class 

Global priority of      Lowest 
kernel thread 

Priority of 
kernel can thread 
in the same class 

Kernel thread Fixed in the kernel 
scheduler changes code and never 
the priority of the      changed 
kernel thread 
dynamically 
according to the 
behavior of the 
corresponding 
process or user- 
level thread 

Realtime Class 

Highest 

Only superuser 
can change 

Time slice of 
kernel thread 

Seem to have a 
default size of a 
time slice (not 
clearly mentioned) 
different time 
slices to kernel 
thread 

Administrators 
specify default 
time slices 

Superuser can 
assign 

User can change. 
Administrators 
specify default 
time slice for 
kernel threads 

Kernel thread 
scheduler assigns 
time slices of 
different lengths 
to kernel threads 
according to the 
priority 

User has no 
control 

Scheduling Policy: 
• Among different priority kernel threads: fixed priority preemptive 
• Among same priority kernel threads: round-robin 
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MISSION 
OF 

ROME LABORATORY 

Mission. The mission of Rome Laboratory is to advance the science and 
technologies of command, control, communications and intelligence and to 
transition them into systems to meet customer needs. To achieve this, 
Rome Lab: 

a. Conducts vigorous research, development and test programs in all 
applicable technologies; 

b. Transitions technology to current and future systems to improve 
operational capability, readiness, and supportability; 

c. Provides a full range of technical support to Air Force Material 
Command product centers and other Air Force organizations; 

d. Promotes transfer of technology to the private sector; 

e. Maintains leading edge technological expertise in the areas of 
surveillance, communications, command and control, intelligence, 
reliability science, electro-magnetic technology, photonics, signal 
processing, and computational science. 

The thrust areas of technical competence include: Surveillance, 
Communications, Command and Control, Intelligence, Signal Processing, 
Computer Science and Technology, Electromagnetic Technology, 
Photonics and Reliability Sciences. 


