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ABSTRACT: It is shown that a linear hydrodynamic damping term is an intrinsic feature of the vortex- 
induced vibrations of slender cylinders in the lock-in regime. The damping coefficient can be directly 
evaluated from experimental measurements of the force acting on a section of the cylinder forced to move 
m a uniform flow. 

1 INTRODUCTION 

Elastically mounted cylinders and long, flexible 
cylinders undergo vortex-induced vibrations when 
placed normal to a flow. The amplitude of this 
process is self-limiting with a maximum value ap- 
proximately equal to one to two cylinder diame- 
ters. Laboratory experiments have been conducted 
to measure forces on rigid cylinders that arc oscil- 
lated at a specific amplitude and frequency trans- 
versely to a uniform flow. These tests confirm that 
there is power input into the cylinder vibrations at 
small amplitudes of motion, for frequencies close 
to the Strouhal frequency of natural vortex forma- 
tion, whereas there is dissipation for larger ampli- 
tudes (King 1977, Staubli 1983, Bearman 1984). 
When a cylinder oscillates with a frequency that 
is within a narrow range about the Strouhal fre- 
quency, the vortex formation process synchronizes 
with the motion of the cylinder in what is called 
a condition of lock-in. Under lock-iu conditions, 
a vibrating cylinder is subject to a significantly 
increased drag force, up to three or more times 
higher than that of a stationary cylinder. 

Hartleu and Currie (1970) and several other au- 
thors (Bearman 1984) used the van der Pol oscilla- 
tor to represent qualitatively the self-limiting na- 
ture of the excitation lift force. Alternatively, the 
concept of energy balance has been incorporated 
in models to predict the response of long, flexible 
cylinders (Vandiver 1988). In these models, the di- 
rection of energy transfer is dependent on whether 
or not the motion of the cylinder, at a particular 
point is correlated with the vortex formation pro- 

cess. Energy is assumed to be transferred from 
the fluid to the cylinder at points where the mo- 
tion is synchronized with vortex shedding (lock-in 
condition), while it is assumed that the cylinder 
loses energy to the fluid at points where the mo- 
tion is not correlated with vortex shedding. At 
these points, the loss of energy is modelled by an 
"equivalent" hydrodynamic damping term, calcu- 
lated by linearizing the quadratic drag force acting 
on the cylinder. 

In this paper we show, on the basis of exper- 
imental results, that the vortex-induced lift force 
depends on the amplitude of the cylinder vibration 
in a manner which is characteristic of a process 
containing a purely linear damping term. This 
provides a direct way of evaluating the damping 
coefficient using laboratory measurements. 

In §2, we derive a model of hydrodynamic damp- 
ing for a simple harmonic response. The model is 
extended to the more general case of a narrow- 
band response in §3. In §4, we incorporate the 
model-into a simple scheme that predicts the vortex- 
induced response of flexibly mounted, rigid cylin- 
ders and long, flexible cylinders. We compare the 
predictions to previously published experimental 
results. 

2 HARMONIC RESPONSE 

The force acting on a section of a slender circular 
cylinder of diameter d, vibrating harmonically in 
the transverse direction relative to an oncoming 
flow of velocity V, is a nonlinear function of the 
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Figure 1. The lift coefficient in-phasc with velocity 
as a function of the amplitude-to-diameter ratio 
(King 1977). 

motion. We denote the lift force per unit span 
that is in-phase with the velocity by Lv{t) and its 
amplitude by L„ and proceed to nondimensionalize 
it to obtain the lift coefficient that is in-phase with 
velocity, Ci,\ 

Ci. = T pdV* (1) 

where p denotes the fluid density. 
Figure 1 shows a plot of the measured coeffi- 

cient, Ci., of rigid pivoted cylinders versus the 
vibration amplitude for a nondimensional oscilla- 
tion frequency close to the Strouhal number (King 
1977). Power input occurs when Ci, is positive 
and dissipation occurs when Ci, is negative. Ex- 
cept for small amplitudes, when the vortex forma- 
tion process is not well correlated along the span 
of the cylinder, there is clearly a linear relation be- 
tween the lift coefficient and the amplitude of mo- 
tion. Over a range of practical interest, typically 
for amplitude to diameter ratios higher than 0.4, 
the curve can be approximated by a straight line; 
with negative slope. This is a distinct feature of j 

a nonlinear process that contains a term that can 
be modelled through a linear damping coefficient. 
The damping coefficient can be directly obtained 
from the slope of the line. A simple representation 
of the lift force curve is 

CL. =C0-X- (2) 

where 4 is the amplitude-to-diameter ratio and C0 

and A are curve-fitting constants. Equation (2) is 
accurate if the cylinder vibrates with an amplitude 
that is larger than the threshold amplitude. 

It should be noted that the methodology to re- 
place an amplitude-dependent excitation by equiv- 
alent motion-dependent terms has been applied 
before in other fields to analyze nonlinear phenom- 
ena, such as the value of wave-drift damping esti- 
mated from second order wave forces (Faltinsen 
1990). 

Experiments have been conducted in the MIT 
Testing Tank Facility on rigid circular cylinders of 
diameter 2.54 cm and span 30 cm, forced to move 
in a prescribed motion transversely to a flow with 
constant velocity V (Gopalkrishnan 1992). Figure 
2 shows several plots of the coefficient, CL,, for 
harmonic motion versus the amplitude-to-diameter 
ratio for various imposed frequencies, which are 
near the frequency of the maximum in-phase lift 
coefficient. It is interesting to note that the slope 
of the various curves varies little over a range of 
nondimensional frequencies, {£> where / is the os- 
cillation frequency in Hertz. 

For a purely sinusoidal force at circular frequency 
u = 2x/, equation 2 provides the component of 
the lift force in phase with velocity: 

Lv(t) = ^pdV2 (c. - A-)sinwt (3) 

If we define 

L.(t) = (\pdV*) C.smwt (4) 

^-(5^)3 (5) 

v(t) =<JJA sin ut (6) 

where v(t) is the cylinder velocity, we can write 
equation 3 more simply as 

Lv(t) = Lt(t) - bhv{t) (7) 
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Figure 2. Experimental measurements (Gopalkr- 
islnian 1992) of the lift coefficient in-phase with 
velocity as a function of the amplitude-to-diameter 
ratio for various values of the nondimensional fre- 
quency parameter ^. 

In equation 7, the lift force that is in-phase with 
the cylinder velocity is decomposed into two parts, 
one of which is a pure excitation force Le(t) and a 
second term which is a linear damping force b,,v(t). 
Equation 5 can be used to obtain a direct estimate 
of the hydrodynamic damping coefficient &/,, once 
the curve-fitting constant A is determined from 
experimental data. We define the hydrodynamic 
damping ratio, £/,, as: 

G = (8) 
_ p_J. A_ 

2mJ ~ pe 4JT
3
 St2 

where m is the mass per unit length of the cylinder 
and pc is the cylinder density. We have assumed 
that the harmonic motion is at the Strouhai fre- 
quency w„ = 2T/„ and write the Strouhai number 
as St = ty. Then, taking a metallic cylinder with * 
specific density equal to 5.0, specifying'a. Strouhai " 
number of St = 0.17, and calculating' A = 1.36 
from the experimental data in figure 2, we find 
that 0. = 0.076 (7.6% of critical). 

Both the damping coefficient, bk, and the pure 
excitation force in the direction of the velocity, 
Lt, are independent of amplitude. The excitation 
force, however, is phase-correlated with the veloc- 
ity.  This is important in any numerical calcula- 

tion, as shown in the sequel. For most applica- 
tions in water, the structural damping is small in 
comparison to hydrodynamic damping and may be 
neglected. In air, the structural damping is signif- 
icant and may be added directly to 6^. 

3 NARROW-BAND RESPONSE 

Lock-in of a flexibly mounted cylinder, or a flexi- 
ble structure is usually characterized by a narrow- 
band response with characteristic beating oscil- 
lations. We can extend heuristically the deriva- 
tion of §2 to apply to these cases when the re- 
sponse is not harmonic. For example, a three- 
dimensional plot of the lift coefficient in phase with 
velocity as function of the amplitude-to-diameter 
ratio and the frequency of oscillation can be con- 
structed from figure 2. Such plots have been pro- 
vided by Staubli (1983) and Gopalkrishnan (1992). 
The lift force that is in-phase with the velocity can 
be then represented then by the following, more 
general equation 

C£.(w) = ff(u)C. ■ A(W)A4 (9) 

which is similar to equation 2, but includes the 
frequency dependence w in the curve-fitting pa- 
rameters H and A. The functional form of the 
curve-fitting parameters is determined from exper- 
imental data, and C and A are as defined before. 
Because of the similarity in the the shapes of the 
curves in figure 2, we conclude that A(w) is very 
nearly constant over a narrow frequency range and 
is equal to one. This results in considerable sim- 
plification for use in numerical calculations. 

The accuracy of equation 9 is subject to the 
same amplitude-threshold considerations as those 
related to equation 2. In addition, we note that in 
order for equation 9 to apply to a multi-frequency 
response, linearity must be assumed. This is not 
correct for other parameters relevant to vortex- 
induced oscillations. For example, the excitation 
force for monochromatic excitation at nonlock-in 
conditions contains an additional component at 
the Strouhai frequency. Thus, in order to employ 
equation 9, we must assume that the dominant 
force component has a frequency content that is 
within a narrow band around a specific frequency 
w, and that the response is still within the lock- 
in regime. Triantafyllou and Karniadakis (1989) 
have shown numerically and Gopalkrishnan (1992) 



and Gopaikrishnan et al. (1992) have shown ex- 
perimentally that, in the case of a beating oscilla- 
tion, i.e., an oscillation consisting of two (or three 
equidistant) sinusoidal components, the harmonic 
results can be used to predict the lift force in a 
multi-frequency response, provided that the fre- 
quencies are sufficiently close together and within 
the lock-in regime. However, the drag force in a 
multi-frequency response can not be calculated on 
the basis of harmonic results. 

Hence, assuming that harmonic data can be used 
to calculate the lift force in a narrow-band re- 
sponse, we can write H and A as integro-differential 
operators in the time domain. The damping, as 
expressed by the term containing A, is still linear 
and resembles, in form, the weil-known, frequency- 
dependent damping of floating bodies in the pres- 
ence of a free surface (Faltinsen 1990). 

If the cylinder motion has a narrow-band spec- 
trum about U! = u;„, then we can exploit the fact 
that the slope of the lift-force coefficient in-phase 
with the velocity for a given imposed amplitude 
appears to be nearly frequency-independent (fig- 
ure 2), and we can write the time-dependent lift 
force approximately as 

where 

Lv{t) = 
v(t) 

«(0 J L„ - M(0 (10) 

where v(t) is the slowly varying envelope of v(t). 
The damping coefficient, 6/,, is given by equation 
5 with u = w„, and Lt0 is approximately given as 

L„ = H(u,)C0 C-pdV2 
(11) 

As with the case of the purely sinusoidal re- 
sponse, the expression for 6/, is simple and can be 
determined directly from experimental data (figure 
2). The difficulty in this case consists of ensuring 
that the excitation is indeed properly correlated 
with the velocity. This is straightforward in time- 
domain simulations, since one must calculate th*e 
envelope of the velocity at each time step before 
using equation 10. Often, however, frequency do- 
main techniques are employed, resulting in consid- 
erable savings in computational expense; an addi- 
tional requirement must then be imposed, to en- 
sure that the excitation is properly correlated, viz. 

lim i fTLe(t)v(t)dt 
T—ao T JO 

2L° 

(12) 

lim i [v{t)v{t)dt 
r—oo I Jo 

L.= [-pdV' Ca (13) 

4 APPLICATIONS 

Below, we provide the results of simple calculations 
of the vortex-induced response of cylinders based 
on the concepts and equations derived in §2 and 
§3- 

4.1 Cylinder in a Uniform Current 

We begin by considering the narrow-band, lock- 
in response of a flexibly-mounted, rigid cylinder. 
The natural frequency of the system is equal to 
the frequency of maximum lift coefficient in-phase 
with the velocity. A compilation of data for vibrat- 
ing cylinders as a function of the reduced damping 
from Griffin (1981) is shown, for comparison, in 
figure 3. The reduced damping is defined as the 
ratio of the structural damping ratio £ and the 
quantity ß, where 

c = b, 
2mui 

P = 
\PdV2 

mu)2d 

(14) 

(15) 

The term b, is the structural damping coefficient 
per unit span. 

Superimposed on the figure are calculations by 
the present method. Here, we have modelled the 
transverse motion, j/(r), of a rigid cylinder of unit 
span, having a mass m. mounted on a spring of 
constant fc and a linear dashpot of constant b„ and 
placed transversely to a constant flow of velocity 
V. The following is the equation of motion that is 
used for the calculations 

mim+b/M+ts{t)=m (16) 

The right hand side of the equation, /(£), is the 
fluid force, which is written as the sum of an added 
mass term and the lift force in-phase with the ve- 
locity, which is further decomposed in accordance 
with equation 9. The method of harmonic balance 
together with equation 12 provides the solution 
plotted in figure 3. The calculations show good 
agreement with experimental data, even for large 
values of structural damping when the response is 
smaller than the threshold value. 
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4.2 Taut String in a Shear Current 

For the next application, we consider a taut string 
of length L placed normal to a spatially-varying 
current with nominal velocity V. The transverse 
response of the string, y(t,s), is assumed to be 
described accurately by the following linear struc- 
tural model and a hydrodynamic force, f(s,t), 

d2y ,.dy      d ™£ + /(M)      (17) 

where s is the Lagrangian coordinate along the 
string, T{s) is the static tension, m is the mass 
per-unit-length and b, is the structural damping 
per-unit-length. The force, f{s,t), can be decom- 
posed into the approximate form of equation 10 
with a hydrodynamic damping force and an ex- 
citation force that is in-phase with £he velocity.' 
The decomposition also yields a term* that repre- 
sents the added mass force. It is further assumed 
that the characteristic wavelength of the string os- 
cillations is much smaller than the length of the 
string, hence the response is effectively that of an 
infinitely long string. 

An important consideration in studying the re- 
sponse of long structures is the length over which 

the vortex formation process can be assumed to be 
correlated. It is assumed herein that vortex shed- 
ding is fully correlated over half of a wavelength 
of a travelling wave. This is based on experimen- 
tal measurements by Ramberg and Griffin (1976), 
who evaluated the cross-correlation between veloc- 
ities measured at two locations in the wake of a 
vibrating cable, separated by a distance s along 
the axis of the cable: They found nearly perfect 
correlation for all points between two successive 
nodes of the vibrating cable for vibrational ampli- 
tudes above a threshold value. Also, Gharib (1989) 
showed through visualization of the response of 
a flexible cylinder that there is full correlation in 
the vortex formation process between two succes- 
sive nodes, while, at the nodes, longitudinal vorti- 
cal structures destroy any vortex interconnection. 
The frequency of excitation within a half wave- 
length is assumed to be equal to the frequency at 
the anti-node, where the maximum amplitude oc- 
curs. 

Equation 17 can be solved together with equa- 
tion 10 to provide the time-domain response of a 
cable, even when the response is not monochro- 
matic. The present analysis is applicable provided 
that the response is narrow-banded and the max- 
imum response amplitude is larger than about 0.4 



diameters. 
For this paper, we used standard frequency do- 

main techniques to solve equations 10 and 17 and 
obtain the vibration amplitude of a tow cable in 
a shear current. The presence of shear current 
causes the vortex-induced vibrations to be ampli- 
tude modulated. The excitation force depends on 
the slowly varying envelope of the velocity of vi- 
bration, hence the solution is obtained by itera- 
tion. Once we calculate the vibration amplitude, 
we use the laboratory measurements of Gopalkr- 
ishnan (1992) to estimate the drag coefficient. 

We compared our predictions against the follow- 
ing data from full-scale experiments of towed ca- 
bles in shear currents: 

1. Data from Yoerger et al. (1991) for run 1A 
in the authors' notation, involving a 1,200- 
meter cable towed nearly vertical at 0.5 m/s 
in the presence of a measured shear current. 
The configuration of ehe cable was recorded 
using acoustic transponders, and from these 
measurements the drag coefficient was esti- 
mated to be equal to 2.47 ±0.24. By us- 
ing the measured shear current and the pro- 
cedure outlined above, we obtained a spa- 
tially varying drag coefficient along the ca- 
ble length, between the values of 2.0 and 2.7, 
with an average value of 2.21. 

2. Data from Yoerger et al. (1991) for run 2A 
involving an 800-meter cable towed at 0.5 
m/s in the presence of a shear current. The 
calculations provided an average drag coeffi- 
cient of 2.05. The measured full-scale drag 
coefficient was 2.24 ±0.24. 

3. Data from figure 14 in Grosenbaugh (1991) 
for a cable 1,200-meters long towed nearly 
vertically in a transient condition. Our cal- 
culations gave a spatially varying drag a> 
efficient in the range of 1.7 to 2.7, with an 
average value of 2.08. The average drag coef- 
ficient from the full-scale measurements was 
1.95 ±0.20. 

4. Data from figure 3 in Grosenbaugh (1991) 
corresponding to a 1,200-meter tow cable that 
had reached steady-state conditions. The 
calculation provided a spatially varying drag 
coefficient in the range of 1.6 to 2.4, with an 
average value of 1.95. The estimated average 
drag coefficient from the full-scale measure- 
ments was 2.15 ±0.20. 

5 SUMMARY 

The basic result of the present paper is that a 
linear hydrodynamic damping term is an intrinsic 
feature of vortex-induced vibrations in the lock-in 
regime, as experimental results demonstrate. The 
value of the linear damping term can be obtained 
directly from forced-motion tests on rigid cylin- 
ders. This allows simple and efficient calculations 
of the vortex-induced response under lock-in condi- 
tions of flexibly-mounted, rigid cylinders and long 
flexible cylinders. 
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