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ABSTRACT 

A Global Positioning System (GPS) based attitude determination system has never been used as 
the primary source of attitude information for a spacecraft application. The fundamental reason 
for this is (hat a spacecraft attitude determination system must achieve fast attitude acquisition and 
near perfect solution reliability. Existing GPS based attitude systems cannot meet these 
requirements, so GPS has only been used as a secondary sensor for spacecraft missions. In this 
thesis, an attitude determination system is developed which meets spacecraft performance 
requirements using GPS as the primary source of attitude information. System hardware includes 
a multiple antenna GPS receiver and a low cost three axis gyro assembly. The attitude 
determination software consists of an integer ambiguity solution algorithm, an Extended Kaiman 
Filter and an integrity monitoring architecture to improve robustness of the design. 

The integer solution algorithm resolves GPS integer ambiguity with no a priori attitude 
knowledge or external aiding. Processing is streamlined by solving the two-dimensional yaw and 
pitch problem and the one-dimensional roll problem independently. 

For performance analysis of the proposed architecture, GPS error sources are modeled using 
experimental data from an off-the-shelf GPS receiver. The models are also used for design of the 
Extended Kaiman Filter. 

Total attitude estimation errors average 0.25° RMS in nominal simulation test cases. Orbit 
parameters for the nominal tests are based on the Indium communications system constellation 
design. Off-nominal test cases prove system reliability for a wide range of initial conditions. 
Off-nominal test cases also show that tightly coupled gyro aiding significantly improves filter 
performance in the face of degraded GPS measurement quality. 
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Chapter 1 

Introduction 

Before the turn of the century, nearly 300 satellites will be launched into low-Earth-orbit (LEO) or 

medium-Earth-orbit (MEO) [5]. Much of this proliferation is driven by the current boom in com- 

mercial satellite telecommunications. The latest entries, including Iridium, Globalstar, Ellipso 

and Teledesic, are constellations which utilize large numbers of small, low cost satellites to pro- 

vide global personal communications service (GPCS). With ambitious production schedules and 

a simultaneous need to cut costs and maintain performance, satellite systems technology must be 

improved to keep pace with this growth in potential missions. 

Attitude determination is one of these critical technologies. Driven by the needs of the payload 

and support systems, most satellites require pointing knowledge to within at least a few degrees. 

For a communications satellite, proper orientation of the main antenna array is essential to mis- 

sion success, and usually requires attitude pointing accuracy on the order of 0.5° [20]. 

1.1 Objectives 
The objective of this thesis is to design an autonomous Global Positioning System (GPS) based 

attitude determination system (ADS) which meets performance requirements for a variety of low 

cost satellites including the most recent entries into the multi-satellite telecommunications mar- 

ket. 

The design must meet cost, performance and reliability criteria. Hardware costs for the ADS are 

minimal given the widespread availability of GPS hardware and the selection of a low cost gyro 

system for the analysis. Attitude estimation performance should meet mission requirements for a 

typical LEO communications satellite. Reliability is traditionally the main obstacle in the devel- 

opment of a dedicated GPS based attitude determination system [26] [17]. Because of this, GPS 

has never been used as the sole source of attitude information on an operational satellite. To prove 
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reliability, the ADS must demonstrate consistent attitude acquisition for a wide range of initial 

conditions. Following acquisition, the attitude error must remain bounded for all expected orbit 

positions and vehicle attitudes. 

The proposed ADS uses a combination of three or more GPS antennas and a three axis gyro 

assembly (TGA). A tightly coupled filtering approach is used, meaning that GPS and gyro mea- 

surement dynamics are incorporated into a single non-linear system. The filter inputs are gyro 

measurements and raw GPS phase observables. Loosely coupled designs treat GPS and gyro 

measurements separately. The inputs to a loosely coupled design are independent attitude esti- 

mates from the GPS receiver and the TGA. 

Initialization of the filter requires solution of the GPS integer ambiguity, a problem which is 

addressed in Chapter 2. The solution method developed in this thesis uses geometric constraints 

and a decoupling of the roll Euler angle estimate to speed determination of the integers.  Reliabil- 

ity of the algorithm is critical to viability of the ADS, so it is tested independently as well as in the 

orbital simulation. 

1.2 Mission Concept 
The Iridium system is relatively mature among GPCS proposals. First launch of an Iridium satel- 

lite occurred in May of 1997, and operational capability is targeted for late 1998 [16]. The config- 

uration of Iridium has been finalized, so it is used as a test platform for the ADS design. The 

Iridium constellation is designed to provide global coverage for ground-based wireless telephone 

users. Coverage is accomplished using six orbit planes, each with 11 satellites in near-polar orbit 

at an altitude of 421 nm. The main spacecraft bus is a triangular prism small enough to allow 

launch of 5 satellites simultaneously on the Delta II rocket. The main mission antennas, which 

extend outward from the body, are deployed with the solar arrays after separation from the 
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launcher [12]. Figure 1.1 shows the Indium spacecraft in its deployed configuration: 

Bus Section 

Solar Array Pane! 

Main Mission 
Antenna Pane) 160 in 

Gateway Antenna 

Figure 1.1: Iridium Spacecraft 

Attitude determination is critical to the mission of Iridium. The solar panels must be sun-oriented 

to generate power, and the main mission antennas must be nadir-pointing to provide the proper 

communications footprint. Preliminary attitude determination requirements are shown in table 

1.1: 

Axis 3-G Pointing Requirement 

Yaw 0.4° 

Pitch 0.3° 

Roll 0.2° 

Table 1.1: Iridium Attitude Determination Requirements 

The definition of 3-G used here is 99.74% probability. 

The Iridium satellite uses a traditional attitude determination sensor suite which provides a con- 

trast to the proposed ADS. A coarse horizon sensor is used for earth acquisition immediately after 

launch. After establishment of a nadir-pointing orientation using seven on-board Reaction Engine 
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Assemblies, an assembly of fine horizon sensors are used for precise pitch and roll determination. 

Yaw and roll error estimates are generated by measuring gyrocompassing of the single pitch axis 

Momentum Wheel Assembly (MWA). A three-axis gyro assembly complements the horizon sen- 

sors. 

Pitch control is accomplished through acceleration of the MWA; magnetic torquers are used for 

roll and yaw control as well as for MWA momentum dumping. 

1. 3 Background 

1.3.1 GPS Interferometry 
The use of differential phase for attitude determination, or GPS interferometry, was first proposed 

by Spinney in 1976. Texas Instruments performed the first test of a static interferometer in 1981. 

Since that time, several commercial three-axis attitude determination receivers have been devel- 

oped, including the Trimble Quadrex and TANS Vector, the Ashtech 3DF and the Loral Tensor. 

Interferometry has also been demonstrated for ground-based, ship-based and aircraft operation. 

Recent tests have explored the use of interferometry for space-based attitude determination: the 

US Air Force RADCAL satellite carries a Trimble Quadrex 4-antenna interferometer [26], and 

NASA flew a 4-antenna Loral Tensor on a 1996 Space Shuttle mission [17]. 

All of the commercially available GPS attitude determination systems use a least squares point 

solution for attitude. This means that each attitude solution is calculated using only the current 

epoch of measurements - previous attitude knowledge is discarded. The focus of interferometry 

research in recent years has shifted to filtering of the attitude solution to achieve superior perfor- 

mance over the least squares solution. 

1.3.2 MM Gyro 
The ADS design incorporates measurements from a low quality gyro system to aid the GPS atti- 

tude solution. The gyro model used in this investigation is based on performance of a microma- 

chined tuning fork gyro. This micro-mechanical (MM) gyro is the subject of current research at 

the C. S. Draper Laboratory [19]. MM gyros are well suited for satellite applications because of 
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their low power consumption, light weight and compact size. Advanced manufacturing tech- 

niques also make mass production, and hence low unit cost, a possibility. 

1.3.3 Previous Work 
Table 1.2 outlines the recent evolution of GPS attitude determination filters which are closely 

related to the proposed ADS: 

Year 1994 [11] 1994 [6] 1995[15] 1995 [26] 1996 [22] 

Researcher 
Fujikawa Chesley, 

Axelrad 
Howell, Tang Stohl Montgomery 

Axes 3 3 1 3 3 

Application Space Space Ground Space Aircraft 

Gyro No Yes Yes No Yes 

Tightly 
Coupled 

No No Yes No Yes 

Testing Simulated Simulated Simulated Simulated Experimental 

GPS Error 
Model 

White White White Colored White 

Table 1.2: Evolution of GPS Attitude Determination Filters 

Fujikawa presents an efficient two-antenna interferometer design for LEO spacecraft in [11]. The 

design uses a single baseline aligned with the vehicle roll axis. Rotation about a single baseline is 

unobservable to the GPS differential phase observable, so the filter must estimate roll through 

dynamic coupling with yaw and pitch. Simulated accuracy is on the order of 0.1° using a white 

noise error model for GPS. 

Chesley and Axelrad have focussed on integration of multiple sensors for the JAWSat small satel- 

lite. In [6], least-squares attitude output from the Vector receiver with an associated covariance 

estimate is used as one input to the Kaiman Filter. This is referred to as a loosely coupled design 

because the GPS and gyro measurement error covariances are treated separately to arrive at two 

independent estimates of the attitude before integration. 
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The tightly coupled integration of Howell and Tang uses a single GPS baseline to augment the 

heading accuracy of an INS for static applications. Montgomery [22] applies the tightly coupled 

GPS-gyro strategy to a highly dynamic aircraft platform. Through gyro aiding, the filter band- 

width is increased, and the coupled system is flight tested. Attitude propagation through a 20 sec- 

ond loss of GPS visibility is demonstrated. 

In [26], Stohl models GPS baseline length error, line bias and multipath using first order exponen- 

tially correlated random variables (ECRV). Simulation results for the USAF RADCAL satellite 

predict an RMS attitude error of 0.3-0.5 degrees on each axis using conservative error models. 

This thesis will refine the error models presented in [26], incorporate tightly coupled measure- 

ments from a micro-mechanical gyro and test the ADS design using experimental data collected 

from a TANS Vector receiver. 

1. 4 GPS Interferometry Theory 
The objective of attitude determination is to estimate orientation of a body with respect to a 

known reference frame. GPS accomplishes this task by precisely determining the relative posi- 

tions of three or more body-fixed antennas in the reference frame. Although the standard GPS 

position solution could be differenced to produce relative position, code phase accuracy is limited 

to about 30 meters, so a 30 meter antenna baseline would be required to attain accuracy on the 

order of one radian. The solution is to use GPS carrier phase. Carrier phase tracking allows the 

GPS receiver to measure LI signal phase with an accuracy better than 10°. Differencing of phase 

at two antennas produces a measurement of relative range to the GPS satellite with sub-centimeter 
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accuracy. Figure 1.2 illustrates this principle. Here, Ar is the relative range. 

Master Antenna 

b; 

GPS SVy 

Phase at Slave i = cp,- j 

Carrier Phase 

Phase at Master = cpM> j 

Figure 1.2: GPS Viewing Geometry 

Artj is the projection of the baseline vector bt onto the line-of-sight (LOS) vector py- for the GPS 

satellite (SV) on channel j: 

AriJ = bJ-pj = \bi\-cos(Q) L1 

9 is the aspect angle between the bt and f>j . The baseline b and delta range Ar are expressed in 

LI wavelengths for convenience. 

Delta range can be represented graphically as a function of the GPS LOS vector in the body 

frame. In figure 1.3, the horizontal plane denotes the azimuth and elevation to a GPS SV. For any 

given SV, the point on the tilted plane immediately above or below the SV body azimuth and ele- 
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vation represents delta range for the measurement on baseline b from that S V. 

270 

Ar=\b\ 

SV Body Azimuth 

Figure 1.3: Delta Range In the Body Frame 

Notice that the maximum delta range occurs when the GPS LOS vector is colinear with the base- 

line vector. In this case, the baseline is aligned at an azimuth of 45° and elevation 0° in the body 

frame, so an SV on the body frame horizon (the horizon is defined as 0° elevation) and 45° azi- 

muth produces a delta range of 161, the length of the baseline. A satellite directly overhead or 

orthogonal to the baseline vector produces a delta range of zero. 

Differential phase, Aq)i;-, is the primary observable for GPS interferometry. Acpy is the difference 

between slave antenna carrier phase, <py and master antenna carrier phase, <pMj. Absolute phase 

from the GPS satellite is unknown, so each phase measurement cp,y- contains an unknown integer 

number of carrier wavelengths, ktj. The resulting relationship between measured phase and dif- 

ferential range is shown in equation 1.2: 

Ar,- j = (<?Mj + kM,j)-(Vi,j + hß-hj 1.2 
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Acpy differs from delta range by the integer ambiguity Aktj. It is also corrupted by various errors 

in the received signal, which are combined into the common term e,y. If the integer ambiguity Ak 

can be solved, we can construct a measurement of Ar according to equation 1.3. 

AriJ = A<?iJ + AkiJ-eiJ 1.3 

Solving for Acfc ,• and substituting for Ar from equation 1.1 yields the measurement equation, 

which will be used frequently in this text: 

A<?iJ = bJ-pj-AkiJ + eiJ 1-4 

Least Squares Solution 

The attitude determination problem is solved here by estimating the direction cosine matrix 

(DCM), BCN, which relates the body frame (5) to the navigation frame (iV). To solve for   CT, 

equation 1.1 is rewritten with the baseline in the body frame and the GPS LOS vector expressed in 

the navigation frame: 

Aru = (bt)   ■   C  -pj 1-5 

The solution is straightforward if equation 1.5 can be restated in vector form. To do this, the 

DCM is first divided into its component rows Q: 

V = 
BcN

x 
BrN 

B   N 
c3 

1.6 

The superscripts on the row vectors Bcf are dropped for clarity: Ct implies   Cv for the remain- 

der of the text. 

Substituting the subdivided DCM into equation 1.5, 

- "d! - 
Ar,. , = (bf)T -V? 

V3- 

1.7 
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This leads to a vector form of the attitude determination problem with nine unknowns: 

ArU = bi,i(Pj)   bi,j(Pj)   bi>K(Pj)_ 

c\ c\ 
d = H c\ 

[4 [4 
1.8 

bi, i is the X component ofbt in the body frame and H is the measurement matrix. 

The least squares solution for   CT , shown in equation 1.9, can be solved with a vector of mea- 

surements Ar from a single epoch. This is the solution generated by receivers such as the TANS 

Vector: 

T       -1     T 
= (H H)   H Ar 1.9 

Although attitude is completely determined by three Euler rotations, there are nine unknowns in 

equation 1.8, so nine measurements are required to compute a linear solution. In practice, this 

number can be reduced to six if the antennas are coplanar. A body frame is chosen such that the 

baselines have no Z component, removing measurement dependence on the last three compo- 

nents of the DCM: 

*UJ = *«,/(Py)    bi,APj)    °(Pj)_ bi,l(Pj)    bi,APjK 
1.10 

The constraint of orthogonality on   CT is used to estimate ^3 based on w and C2: 

C3 = CixC2 
1.11 

Of course, the first two row estimates must first be normalized and made orthogonal by removing 

any linear dependence between the estimates. 
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The least squares solution covariance for unit intensity white sensor noise can be found by manip- 

ulation of equation 1.9. This "dilution of precision," or DOP, is a function of the measurement 

sensitivity H: 

DOPc = 4diag(HTH)~l 1.12 

Here, diag(x) is a vector consisting of the diagonal components of or. If the differential phase 

measurement noise is white, with intensity G^ DOP can be used to find the variance of the DCM 

components, 
oV(0 = DOPc(i) • av L13 

where BCN(i) is the ith row-wise element of the DCM. 

Although the point solution is simple to implement, it is poorly suited to closed loop control 

applications because of high frequency noise. In addition, a point solution does not allow for esti- 

mation of error sources and integration with other sensors. For these reasons, an Extended Kai- 

man Filter (EKF) implementation is chosen for this application. The EKF makes a one-step 

prediction of attitude based on the current attitude estimate and an a priori system model. This 

prediction is updated using any available sensor measurements. The prediction and update are 

optimal in the mean-square error sense, and dynamic sensor errors such as gyro biases can be esti- 

mated in real time. The result is a better steady state performance than the least squares solution. 

The least squares solution, however, will still be needed for solution of the integer ambiguity, 

Akij. This is presented in chapter 2. 

Single Difference Operator 
The procedure of subtracting slave antenna phase from master antenna phase is represented by the 
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single difference operator: 

A(Pi,i 
A(P2,1 
A9l,2 
A(P2,2 

1-10 0 0 0 
10-10 0 0 
0 0 0 1-10 

0 0   0    1   0-1 

9M,1 9M, l 

<P1,1 9i,i 

92,1 92,1 

9M, 2 
= SD- 

9M, 2 

<Pl,2 9l,2 

92,2 92,2 

_   " * *   _ 

1.14 

Equation 1.14 shows the single difference operator for baselines 1 and 2 tracking satellites 1 and 

2. The single difference operator is used extensively in chapter 3 to derive the differential phase 

error characteristics. 

Note also that the differential phase vector is listed first by baseline and then by channel, so: 

Acp = [Acp^! Acp2;1 ... A(pnBL>1 Acp21 ... A9BM>nJ 

Here, nBL is the number of baselines and nCH is the number of channels. 

1.15 

1. 5 Thesis Overview 
This chapter presented the objectives of this thesis and a background on GPS interferometry. In 

Chapter 2, "Integer Ambiguity Resolution" on page 31, an efficient integer solution algorithm is 

developed for initialization of the attitude filter. 

Chapter 3, "Error Characterization" on page 49, present derivation of error models for GPS and 

gyro measurements and experimental determination of error parameters for a multi-antenna GPS 

receiver. 

Chapter 4, "Filter Design" on page 89, details design of an Extended Kaiman Filter based on the 

error models of chapter 3. The filter uses tightly coupled GPS and gyro measurements to estimate 

spacecraft attitude, angular rates and gyro biases. 
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In Chapter 5, "Linear Covariance Analysis" on page 117, a linear covariance analysis is used to 

choose a reduced order Kaiman Filter design and evaluate the sensitivity of the filter to environ- 

mental and hardware parameter variations. 

Chapter 6, "Test and Simulation" on page 137, presents results of ADS performance using a com- 

puter simulation. The system is tested for the nominal Iridium orbit as well as off-nominal test 

cases using experimental and simulated error data. 

Chapter 7, "Conclusion" on page 193, discusses conclusions of this investigation and suggestions 

for future research. 
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Chapter 2 

Integer Ambiguity Resolution 

2.1 Introduction 
Figure 2.1 illustrates the one-axis attitude determination problem. In this example, the carrier 

phase at antenna 1 and the carrier phase at the master antenna are separated by two whole carrier 

wavelengths. This number is referred to as the integer ambiguity. GPS carrier phase tracking pro- 

vides a measurement of fractional phase at the antenna, so the integer ambiguity is not directly 

observable. Here, the phase measurement at both antennas is zero degrees, resulting in a differen- 

tial phase of zero degrees. The true aspect angle, 0j, has a corresponding delta range Ar = 2.0 

carrier wavelengths and an integer ambiguity of +2. Another possible orientation, 62, is indicated 

by the dashed line. Delta range for this orientation is Ar = 1.0, resulting in an integer ambiguity of 

+1. It is impossible to estimate the attitude until this integer ambiguityjs resolved. 

GPSSV 

Master Antenna 
Phase at Ant 1 = (pt 

Phase at Master = (pM 

Carrier Phase 

Figure 2.1: GPS Measurement Geometry 

This chapter addresses the problem of integer ambiguity in the GPS differential phase measure- 

ment. After reviewing the measurement geometry, an overview of common ambiguity solution 

methods is presented in section 2. 2. Section 2. 3 presents the algorithm developed for this appli- 
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cation, which incorporates geometric constraints and decoupling of the roll solution to streamline 

the ambiguity solution. Performance of the algorithm is evaluated in section 2.4. 

2. 2 Solution Methods 

2.2.1 Code Phase Coupling 
The integer ambiguity problem is essentially a high precision relative positioning problem. 

Because GPS code phase is already used in the receiver to generate position estimates, these esti- 

mates can be used to aid in the integer solution process. Various filtering algorithms have been 

developed to accomplish this [8], but aiding requires a long period of solution smoothing to 

reduce position uncertainty to the 1/2-cycle level. Code phase coupling is best suited to very long 

baseline applications with limited dynamics such as surveying. 

2.2.2 Search Methods 
For smaller baselines, integer solution is possible using a single epoch of measurements. To do 

this, some redundancy is required in the measurements. In equation 1.10, we saw that the three- 

axis attitude equation can be reduced to a sixth order linear problem. 

ArU = bi,l(Pj)    bi,APj)_ cT 
1.10 

This equation is still overdetermined, because the first two rows of the DCM must satisfy the 

orthonormality constraint: 

Cj-Cj = 5(i, y) 2.1 

This constraint provides the information needed to solve the integer ambiguity. The following 

paragraphs illustrate two of the most common methods for doing this, i.e. the integer search and 

the attitude search. 

Integer Search 

The integer search method chooses a trial vector of integer ambiguities and adds these to the 

actual measurement to form a trial vector of measurements Ar' [10], where the prime indicates 

that Ar'may not be the actual delta range. The least squares solution   C   is computed for each 
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possible set of integers. Because equation 1.10 is uniquely determined, the solution will appear to 

be perfect: 

Ar'-^Y-^-p^O 2.2 

However, the orthonormality constraint in equation 2.1 may not be satisfied. To select the correct 

solution, the DCM estimate is first orthonormalized using an algorithm such as the singular value 

decomposition: 

C   = SVD( C ) 2-5 

The measurement residual cost function is then calculated to evaluate the merit of this set of inte- 

gers. This cost function is a scalar parallel to Wahba's cost function for vector observables [8]: 

B2.N ^   _, B T   B^-N       \r    2 
J( C ,Ar') =  X X [Ar'y-Üftf]   •   C   ■ p^)] 2.4 

The vector of integers Ar' and the attitude matrix   C   which minimize J are chosen as the best 

solution. 

The integer search requires resolution of six integers to estimate the attitude matrix in this manner. 

This leads to (2N)6 potential integer sets, where N is the baseline length in GPS wavelengths. 

Obviously the problem quickly becomes intractable for large baselines, especially since an 

orthonormalization is required for each integer set. Various algorithms have been proposed to 

streamline this process [6], but the computational burden is still excessive when a fast solution is 

required. 

Attitude Search 
The attitude search method scans potential attitudes rather than potential phase integers. The idea 

is to rotate the attitude around a grid of possible roll, pitch and yaw combinations and calculate 

the expected differential phase at each of these attitudes: 
*   , ,.ßJ   B„N    ~N 2.5 Ar'u = (*,)   •   Ck-pj 

Here, Bdl is a trial attitude. Notice that the normality constraint does not need to be applied in 
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2.6 

this case; the trial attitude matrix is orthonormal by construction. For the true attitude and atti 

tudes very close to the truth, the fractional phase prediction will nearly match the actual phase 

measurement: 

fractionallyt • - Ar'• j) ~ 0 

The "fractional" operation removes the integer part of the difference. All that remains is to 

choose the best trial attitude using a modification of the cost function in equation 2.4: 
m      n 

J(BC^,Ar') =   2 £ (fractional^-Ar'tJ])2 2.7 

For the correct attitude matrix, the fractional error will only contain measurement noise. 

The difficulty with an attitude search is that, as baseline length grows, higher resolution is 

required in choosing trial attitudes to ensure that the true attitude is not passed over. 

Consider a one axis example. A test is conducted using the geometry in figure 2.1, with one 3- 

wavelength (0.57 m) baseline and two satellites in the plane, so the measurements are only depen- 

dent on the rotation angle 6. White noise with intensity 5 mm is added to both of the measure- 

ments, and the cost function of equation 2.7 is calculated using an angle increment of six degrees. 

Figure 2.2 shows the ability of the cost function to pick out the correct rotation angle, which is 60° 

in this case. The vertical axis is the figure of merit fom = 2/7, so the highest peak corresponds to 

minimum cost. The first two plots show the figure of merit for each of the measurements sepa- 

rately. Obviously, neither satellite alone is sufficient to specify the attitude, but the two measure- 

ments together pinpoint the correct solution, as shown in the third plot. 

Notice that the second highest peak in the total fom graph, at 320°, is nearly equal in magnitude to 

the true peak. This indicates that any more noise or a search with a larger rotation interval might 
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cause a false solution. 
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Figure 2.2: Attitude Search Cost Function 

Solution of the three dimension attitude problem is much more complex than the one dimensional 

case. Finding an efficient way to grid the three dimensional space of possible orientations without 

missing the true attitude is a challenge of its own. If a sequence of Euler rotations is used, with 60 

steps per axis (as in the example), there are 603 = 216000 attitudes to check. At each potential 

attitude, the cost is generated using equation 2.7. In general, the search grid must contain (360/ 

0O)3 points, where 60 is the angular resolution needed to differentiate the true attitude from other 

potential solutions. The resolution angle 0O becomes smaller as the length of the baseline grows, 

so the computation time required to reach a solution becomes excessive for long baselines. 

A more recent adaptation of the attitude search method is the maximum likelihood method [29]. 

Instead of using the cost function in equation 2.7, these methods use a maximum likelihood func- 
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tion: 

jjjC^,Q,^)-{jj{]Jp(A%\C^,6,^))^ d& dy 

jjj(U{UP(A%\C^Q'^)\d^ dQ <w 
i     J 

Here, C((|>, 0, \J/) is the direction cosine matrix for the Euler angles §, 0, and vjr. /?(•) is the differ- 

ential phase residual probability operator: 

p(A^j\C(^ 0, V)) = p(v = fractional^ - (bf)T(C(<$>, 0, \|/) • ßf)]) 2.9 

v ~ N(0, oe) 2.10 

where ae is the standard deviation of the differential phase error, e. 

Mathematically, this method extracts the most useful data out of the measurements, but in practice 

it is quite cumbersome. The triple integration of probability is just as computationally intensive 

as the standard attitude search method. The key benefit of this method is that it is nearly fail-safe. 

The likelihood function ensures that the integers eventually converge, and it also guarantees 

graceful degradation of the attitude solution if a number of measurements become invalid. 

2. 3 Decoupled and Constrained Ambiguity Resolution 
The decoupled and constrained ambiguity resolution method (DCAR) developed for this applica- 

tion is based on the integer search technique. Three modifications to the integer search are made 

to reduce the number of possible integer sets and minimize the computation time required to reach 

a solution. The most important change is the decoupling of the three dimensional problem into a 

two axis solution and a one axis solution. Next, geometry constraints are used to eliminate unrea- 

sonable integer sets. Finally, orthogonality constraints are imposed to choose the best solution. 

Figure 2.3 shows the solution algorithm: 
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Choose 3 Measurements 

to Solve Yaw and Pitch 

i 
Constrain potential integer sets 

I 
Form Potential Integer Set: 

Ak' 

v 
LLS Solution for C1 

*• T               T       -1     T 
Cx   = (H H)   H    Ar' 

J 
Compute Orthogonality Figure of Merit 

fom = 1/(1-CjC/) 

Discard M' 
No 

Yes 

Choose Integers which minimize RMS 
Error 

I 
Solve for Roll 

Figure 2.3: Integer Ambiguity Solution Algorithm 

37 



2.3.1 De-coupled Roll Search 
A closer examination of equation 1.5 reveals a simple solution to the complexity of the three axis 

attitude problem. If the body frame is defined with one baseline (bj, for example) aligned with 

the first axis, X, measurements from baseline 1 are dependent only on the first row of the DCM 

(Ci), and an explicit solution for Cx is possible with just three measurements. 

The measurements on this antenna are invariant to roll rotations, decoupling roll from the mea- 

surement equation. This relative positioning problem has (2N)3 possible solutions which can be 

further constrained by satellite geometry. Once this problem is solved, only the roll angle must be 

resolved. Solution of roll requires estimation of C2, resulting in a maximum of [(2N)3+(2N)3] 

potential solutions, rather than the (2N)6 possibilities for a traditional three axis solution. 

Choosing a set of Measurements 

To solve the two dimensional problem, all measurements must come from one baseline. If the 

body frame X axis is aligned with baseline 1, then the measurement matrix has 3 columns: 

A'U = 
C\ = HXJC\ 2.11 

Hx j is the measurement matrix for measurement Arjj. Three measurements are needed to solve 

the three degrees of freedom, and there is a single normality constraint: 

IM = 1 2.12 

Three satellites are chosen to produce a well-conditioned measurement matrix H^ To do this, a 

set of satellites is chosen which minimizes the total of the dot products between satellites accord- 

ing to equation 2.13: 

/(*)=      J    (fVpJ)2 2.13 
j=hj*k 

J(k) is the dot product "cost" for the satellite on channel k. Three channels are chosen with mini- 

mum total cost. This picks out satellites which are most nearly orthogonal to each other. 
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Constraining Integer Sets 
The objective of this step is to produce the minimum set of possible integers which is guaranteed 

to include the true vector of integers. This step exploits the fact that the baseline and satellite 

geometries are known a priori. For instance, the maximum measurement magnitude on a baseline 

is produced when the satellite LOS vector is collinear with the baseline vector. This constrains 

the absolute value of each measurement on baseline number i to bt, where bt is the baseline length 

in wavelengths. 

The second constraint on the measurements comes from the SNR. Satellites at high elevations 

with respect to the body frame and local frame will have stronger SNR than low elevation satel- 

lites. Measured SNR is used to bound the possible elevation of a satellite in the body frame, with 

a confidence interval determined from experimental data: 

10 20 30 40 50 60 
Body Frame Elevation (deg) 

Figure 2.4: SNR Constraints for Ambiguity Resolution 

The data shown here was collected using a static four antenna Trimble receiver on multiple days. 

The SNR forms an excellent linear fit to elevation. Unfortunately, the SNR characteristics are 

dependent on array geometry and the type of ground plane used. Consider the data in figure 2.5, 

taken at the same location with an array size of 60 cm rather than the 40 cm size used for figure 
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Figure 2.5: Measured SNR for 0.6m Array 

This data displays a non-linear relationship between elevation and SNR which is not one to one. 

The SNR can still be used to bound satellite elevation, but the bound is less tight for this configu- 

ration. 

The SNR constraint imposes a minimum elevation angle of the satellite with respect to the base- 

line vector. This leads to a maximum direction cosine between the baseline and satellite. The 

maximum measurement is simply (bfmax(cos(Q))), where bt is the length of the baseline and 9 is 

the SNR elevation constraint. 

All three measurements used to solve for the yaw and pitch share a common baseline. Figure 2.6 
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shows how this fact can be manipulated to further constrain the measurements. 

Figure 2.6: Satellite Geometry Constraint 

pt and p2 are the LOS vectors to satellites 1 and 2, respectively. When forming a vector of pos- 

sible measurements, the trial measurement from satellite 1, Ar\ {, determines the aspect angle 

between the baseline and the LOS vector: 

ccj = acos((Ar'1i)/^i) 2.14 

If 0C2 is the unknown angle between bx and p2and ß is the known angle separating pj and p2, 

then 02 is geometrically constrained by cq and ß: 

(a1-ß)<a2<(a1 + ß) 2.15 

The constraint on Oj restricts the possible range of measurements from satellite two, Ar\ 2, 

according to the measurement equation: 

Ar\ 2 = b2- cos(a2) 2.16 

These bounds are theoretically tight, but there is noise present in the measurements. The noise 

causes small errors in the estimated angle, ah so equation 2.15 is not "tight". It is necessary to 

loosen the bounds slightly to avoid creating bounds on Ar'12 which disqualify the true measure- 

ments. 
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Form Integer Set 
Once the bounds for measurement m have been defined given possible measurements l,...,(m-l), 

the possible values of the integer M1/n can be determined: 

min(Arh J < Acp^ m + Akh m < max(Arh J 2-17 

ceil[min(Arhm) - Aq>h J < Akh m < floor[max{Arx m) - A(p1; J 
2-18 

The ceil operator rounds up to the nearest integer, floor rounds down to the nearest integer. 

Least Squares Solution 

The LLS estimate of Cx is computed for each set of possible measurements according to equation 

2.19. 

c[ = (H\HX)
1

HXA? 2-19 

Since the measurement matrix H^ is independent of the true integers, it is only computed once. 

The residuals will be identically 0 since there are three measurements and three unknowns. 

2.3.2 Decision Metric 
The conventional method of orthonormalizing each solution before calculating residuals is over- 

kill for the problem at hand. Orthonormalization makes all of the possible solutions look like real 

solutions, regardless of whether they are correct. In reality, only the true direction cosine matrix 

will be orthonormal, so the "degree" of orthonormality can be used as a figure of merit for each 

potential integer set. For the single row Ch the "degree" of normality is defined by the cost func- 

tion /: 

7(C1) = (1-C1C1  ) 2'W 

The expected covariance of the solution Cx is calculated using the one axis dilution of precision 

and the measurement error intensity ae: 

^(«r^c/O'ÖE 2.21 

The covariance estimate is used to form a cost threshold for J. This eliminates most of the errone- 

ous potential integers. 
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If more than one potential integer set remains, each least squares solution of Cx is used to con- 

struct expected measurements on baseline 1 for the remaining nCH-3 satellites according to equa- 

tion 2.11: 

An, j = b* ■$•($) 2.11 

These predicted measurements are compared to the measured differential phase, and an RMS cost 

is calculated using equation 2.7. Once again, a maximum cost can be calculated using the 

expected covariance of the solution C\, and solutions with RMS error greater than the maximum 

are discarded. In testing, there is occasionally more than one valid solution at this point. Because 

the roll solution is very fast, the algorithm solves roll for each of the potential solutions of Cx and 

a best solution is chosen based on which complete solution leads to the smallest RMS errors with 

the incorporation of all valid satellites. 

2.3.3 Roll Solution 
Solving for the roll angle of the body frame requires estimation of the second row of the DCM. 

The yaw and pitch solution only needs three measurements to estimate the first row of the DCM 

because the first baseline is aligned with the body X axis, removing measurement dependence on 

the rest of the DCM. If the second baseline is aligned with the Y axis, the roll solution is also lim- 

ited to three ambiguities by using a roll axis parallel to equation 2.11: 

Ar2J = b2,APj) 
C2  ~ H2,jC2 2.22 

However, the requirement of orthogonal baselines is a bit restrictive. To get around this, a 

"pseudo-orthogonal" baseline is created by using the yaw and pitch estimate of Cj to remove 

dependence of measurements Ar2j on Cv The starting point is the measurement equation for the 

measurement on baseline 2: 

Ar2J = 
*2,/(Py)    62,y(Py)_ 

1.10 
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The component of each measurement which is dependent on the X axis component of baseline 2 

is removed using the estimate of C{. 

Ar 2,;" 
,B ,<p;>r][cH 

2.23 

A further reduction in the number of ambiguities to be solved is garnered by including the DCM 

orthogonality requirement explicitly in the measurement equation: 

°=m 2.24 

The complete measurement matrix is now: 

H2 = 

&2,i(Py2) 

2.25 

The first integer, which corresponds to the orthogonality condition, is always 0. The possible inte- 

gers for measurements 2 and 3 are constructed in a manner identical to the yaw and pitch solution. 

As a result, less than (2N)2 integer sets are searched. The least squares solution for C2 for each of 

the possible measurement vectors is always perfect because of the square measurement matrix. 

Once again, normality of each solution is checked using the figure of merit in equation 2.20. A 

figure of merit criteria is calculated based on the expected solution covariance, and solutions not 

meeting this criteria are discarded. 

An RMS error test is conducted on the possible integer solutions which remain using methods 

similar to the yaw and pitch solution. 

If more than one solution remains, a subset of the possible solutions is chosen using a quadrant 

check. The quadrant check eliminates any integer solutions for which valid satellites are below 

the estimated antenna "horizon", the plane in which the antennas are mounted. The surviving 

solution with minimum RMS error is picked as the best solution. 
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2.4 Performance 
The performance of an integer ambiguity solution method is measured by the speed with which a 

solution is computed and the reliability of the solution. 

2.4.1 Test Procedure 
The receiver for this application is configured with six channels and four antennas in a lm square 

planar array mounted on the zenith (top) face of the satellite. In theory, the integer ambiguity 

solution requires a minimum of two baselines and three channels to operate. However, the key to 

the success of the RMS check used in section 2.3.2 is the availability of redundant measurements 

to calculate the merit of solutions which pass the first figure of merit. In practice, a minimum 

tracking capability of five channels is needed when using this algorithm. 

The integer solution performance test aims to mimic the actual conditions under which the algo- 

rithm must successfully operate. The test is conducted by attempting a filter "cold start" at ran- 

dom positions at the Iridium orbit altitude of 800 km. It is assumed that the spacecraft will 

separate from the launch vehicle in an unknown attitude with some slow initial angular velocity 

due to tip off. At some point after release, the top face of the satellite should pass within about 

30° of zenith (this is addressed in more detail in section 6.5.4). To model this, each initialization 

is attempted with the spacecraft yaw, pitch and roll chosen at random from a uniform distribution 

spanning -30° to +30°. 

For each set of random initial conditions, a single epoch of measurements is fed to the integer 

solution algorithm. If a successful solution is reached, a new random position is chosen. If not, 

the orbit and attitude is propagated forward for one second using the simulation framework devel- 

oped in section 6.2.1 and another solution attempt is made with the next epoch of measurements. 

The procedure is continued until a correct solution is reached. 

The nominal tests use the lm array for which the algorithm is designed. To display the flexibility 

of the algorithm, the tests are repeated using smaller and larger arrays. 
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2.4.2 Results 

Nominal Configuration 
Nominal results for the lm array size are summarized in table 2.1. 1000 random initial conditions 

were used to generate the data: 

Attitude 
First 
Attempt 
Success (%) 

Average 
Epochs 
Required 

Average 
CPU Time 
(sec) 

3-a 
Number 
of Epochs 

Maximum 
Number 
of Epochs 

Local Level 93.00 1.2230 0.6229 13.0000 20.0000 

Off-Level (30°) 87.40 1.4510 2.3088 13.0000 81.0000 

Table 2.1: Integer Solution Performance for the Nominal Configuration 

First attempt success is the percentage of solution attempts which resulted in the correct ambigu- 

ity solution on the first epoch. Average epochs required is the average number of trials required to 

solve the ambiguity with a corresponding average CPU time. CPU time is for execution of the 

algorithm in a Matlab script on a Sun UNIX workstation. The 3-a and maximum number of 

epochs give an indication of the worst case number of trials required to reach a solution. 

The results indicate that an initial fix should occur within 13 epochs with 99.74% certainty in the 

local level attitude. 3-a performance is identical for attitudes up to 30° from the nominal. How- 

ever, the off-nominal case requires more average computation time. The maximum number of 

epochs needed also increases for the off-level case. The reason for this has to do with superior 

satellite availability and measurement quality in the local level attitude. The first two columns of 

table 2.2 show a comparison of the average number of satellites available for successful fixes and 

failed fixes for each of the attitudes: 

Average Number of Good 
Satellites 

Maximum Measurement 
Residual (mm) 

True Attitude Good Fix Bad Fix Good Fix Bad Fix 

Local Level 5.1470 4.5964 12.5622 11.4196 

Off-Level (30°) 5.0840 4.2661 13.5571 15.2948 

Table 2.2: Conditions Surrounding Successful and Failed Integer Resolution 

A satellite is defined as "available" if it is visible and all measurements from the satellite are valid. 
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Measurement validity is discussed in section 6.4.1. Average availability for the failed fixes is sig- 

nificantly less than the availability for successful solutions. This demonstrates that solution qual- 

ity is a function of the number of available satellites. Notice that satellite availability is generally 

lower for the off-level case. This is one cause of the increased computation time. 

The last two columns of table 2.2 show the average maximum measurement residual on measure- 

ments used to compute the integer solution. The maximum residual for the off-level case is con- 

sistently larger than for the nominal. This can also increase computation time, because multiple 

yaw and pitch solutions may appear valid. According to the algorithm, a roll solution must be 

computed for each of the valid yaw/pitch solutions to locate the true solution. 

Computation Time 

The greatest benefit of the DCAR algorithm is reduced computation time. Table 2.3 compares 

computation time of a standard integer search algorithm to that of the DCAR algorithm: 

Integer Search Constrained Uncoupled DCAR 

Order of Computations (2N)6 N6 (2N)3 N3 

CPU Time (sec) 33067 516.7 4.13 0.52 

Table 2.3: Ambiguity Solution Computational Time Comparison 

The results shown are for one epoch of measurements on a lm square antenna array. The con- 

strained and uncoupled approaches both show a vast improvement over the standard integer 

search technique, and combination of the two in the DCAR algorithm reduces computation time 

to under one second. The order of computations for the constrained search is an approximation, 

because the ability to constrain integers is dependent on the GPS geometry. 

Off-Nominal Array Size 
Performance of the integer ambiguity solution must be satisfactory for a range of array sizes. The 

off-level ambiguity tests are repeated here for a 0.6m and a 2.0m square array to examine sensitiv- 
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ity of the solution algorithm to array size. 

True Attitude 

0.6m Off-Level 

lm Off-Level 

2m Off-Level 

1st Attempt 
Success (%) 

94.09 

87.40 

63.82 

Average 
Epochs 
Required 

1.0909 

1.4510 

4.4236 

Average 
CPU 
Time 

0.6045 

2.3088 

15.6649 

Number 
Epochs 
3-G 

13 

102 

Maximum 
Epochs 

8 

81 

167 

Table 2.4: Off-Nominal Array Size Ambiguity Solution Performance 

Longer baselines produce more potential integer sets, so the increase in average computation time 

is expected. The decreased success rate and consequential increase in the maximum number of 

epochs required to reach a solution is also due to an increase in the number of possible integer 

sets. The large number of possible attitudes increases the chance that another attitude will look as 

good as the true solution in terms of the orthogonality of the DCM solution. This can lead to a 

false solution.   The average CPU time is much larger than for the lm case, but the time required 

is still a matter of seconds. Re-tuning of validity thresholds in the algorithm might result in per- 

formance improvements for the 2m array. 

Simulation Results 
Each of the orbital simulation test cases in Chapter 6 uses the DCAR solution algorithm during 

initialization. The DCAR performance results are shown in table 2.5: 

GPS Error Data Success (%) Maximum Epochs 

Experimental 100.00 1 

Simulated 95.00 2 

Table 2.5: Integer Solution Performance for Orbit Simulation 

Performance of the DCAR algorithm meets or exceeds expectations. All of the 40 nominal test 

cases start in a near local-level attitude; each time, a successful ambiguity resolution is reached 

within two epochs of the first measurement. As table 2.5 shows, a good solution is reached on the 

first attempt in 39 of the 40 cases. The single failure occurs when using simulated measurement 

errors. The filter integrity monitoring algorithm, developed in section 4.5.2, detects this error and 

another integer search is commanded. The second attempt results in a successful attitude fix. 
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Chapter 3 

Error Characterization 

3.1 Introduction 
The performance of a Kaiman Filter is critically dependent on system modeling. Uncertainty in 

the plant or error model can lead to sub-optimal performance or instability of the filter. This chap- 

ter presents models of GPS and gyro measurement errors for use in design of the Kaiman filter. 

The first section provides an overview of error sources in the GPS differential phase measure- 

ment. Dynamic models and measurement sensitivities are presented for each of the primary GPS 

error sources. In section 3. 3, experimental data is used to determine model parameters which 

accurately reflect the nature of differential phase error in a GPS receiver. A calibration model is 

also constructed to mitigate receiver-specific errors which are caused by phase center variation 

and body-fixed multipath sources. 

Section 3.4 details the primary error sources for a strapdown gyro. Dynamic error models are 

developed for use in the Kaiman filter design, and an overview of low cost gyro systems is pre- 

sented. 

3. 2 GPS Differential Phase Error 
Most interferometric GPS filter designs use a white noise model for differential phase errors 

[11] [4] [18] [22]. However, errors in the GPS differential phase measurement are spatially and 

temporally correlated [9] [14], and omission of these characteristics from the measurement model 

leads to degraded operational performance. The purpose of this section is to develop models for 

GPS differential phase error sources. 

3.2.1 Overview 
Error can enter the phase measurement at transmission, during atmospheric propagation, at the 
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antenna pre-amplifier or within the receiver tracking loop. The various sources of error are listed 

here in the order that they enter the carrier phase signal: 

Troposphere/Ionosphere errors: Signal phase shift caused by variations in atmospheric density 

and conductivity during propagation 

Multipath: Phase error due to reflected signals reaching the antenna. 

Phase Center Variation: Error due to movement of the electromagnetic center of the antenna. 

Receiver Noise: Total of errors caused by thermal noise at the antenna and receiver tracking loop 

errors (phase jitter). 

Line Bias: Phase delay due to cable path length from antenna to receiver. 

Clock Bias: Pseudorange error caused by drift in the receiver clock. 

Baseline Length Error: Differential phase error caused by changes in the relative position of two 

antennas. 

Models are developed here for multipath, phase center variation, receiver noise, line bias and 

baseline length error. Clock bias is not a factor because carrier phase measurement is not based 

on time synchronization with the GPS SV. Troposphere/Ionosphere errors are negligible due to 

the small distance (less than 3 meters) between the antennas considered in this investigation. 

Atmospheric effects are a function of the path along which the carrier signal travels; due to the 

relatively close proximity of the antennas, carrier phase signals arrive on nearly identical paths 

and encounter similar atmospheric properties. Differencing of two signals eliminates any signifi- 

cant atmospheric errors. 

The entry of these errors on the differential phase is shown in equation 3.1, which expands equa- 

tion 1.4 to include all of the modeled errors: 

A(Pi, j = bl ■ P;" Ah J + Ami, J + APi, J + Avi, J + A^ J + A(3<-+ ebu 31 

Am is multipath error on the differential phase. Ap is phase center variation, A£ is the correlated 

component of receiver noise, Av is the white noise component, and Aß is the line bias. These are 

all additive errors on the phase. Baseline length error, Bb, enters the differential phase as a func- 
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tion of the measurement geometry, as shown in equation 3.2: 

H = fb(bb> P5) 

The function fb is derived in the baseline length error discussion later in this section. 

3.2 

Ideal differential phase is an error free measurement taken from the nominal baseline: 

Aq>, ,■       = bt ■ p • - Afc, ■ Tl>JlDEAL l0      rJ l'J 
3.3 

The resulting total measurement error, Aei;-, is defined in equation 3.4: 

Ae- j = Acp,. j- Acp,.hDEAL = Am■ j + Ap. . + Av,. j + A^} + Aß, + ebjj 3.4 

Multipath, phase center variation, receiver noise and line bias are all errors which affect carrier 

phase before the single difference operation. Errors on differential phase are produced by single 

differencing: 

Ae = 
Ae 

Ae 
2.7J 

= SD 

e2J. 

3.5 

Here, e is an arbitrary error on the carrier phase and Ae is the effect of the error on differential 

phase. The differential phase error is correlated between baselines according to equation 3.6: 

AAe = E[AeT ■ Ae] = SDT ■ Ae_ ■ SD = 2 1 
1 2 

3.6 

A  is the covariance of the error e on undifferenced carrier phase. The differential phase error 

covariance, AAe, has two times the variance of the original error and is correlated across base- 

lines. Note that the covariance matrix is block diagonal, since the correlation does not extend 

between channels. 

Multipath 

Multipath is phase error created when a reflected or diffracted carrier wave reaches the GPS 

51 



antenna and interferes with the direct signal. Figure 3.1 shows direct and multipath corrupted sig- 

nals arriving simultaneously at an antenna. The direct signal is referred to as Sd, while the 

reflected energy is Sm: 

Figure 3.1: Multipath Geometry 

D is the distance from the antenna to the reflector. The path delay due to reflection, Lm, is time- 

varying due to movement of the GPS S V. This causes a frequency shift \|/ in the reflected signal 

[2]: 
sd = Ad-^V(Wd) 

Sm = Am- exp(y<pm) = Am- expOX^ + V)) 

3.7 

3.8 

q>d and <pOT are the phase of the direct and reflected signals while Ad and Am are their amplitudes. 

The phase shift \\f grows as a linear function of time, t. The rate of growth is dependent on the dis- 

tance from the antenna to the reflector and the movement of the GPS LOS with respect to the 

body frame. The growth of \\f causes a frequency shift in Sm. When the frequency shifted signal 

reaches the antenna, interference with the direct phase results in sinusoidal errors in the total 

phase at the multipath error frequency, C0m. Mullen characterizes this frequency in [23], and finds 

that the frequency com increases with the separation distance D. 

The amplitude of phase errors due to multipath is dependent on strength of the reflected signal and 
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attenuation of the reflected signal at the antenna. Because the GPS carrier is right hand circularly 

polarized (RHCP), a single reflection reverses the polarity of multipath radiation. In [23], Mullen 

demonstrates that a standard dipole GPS antenna attenuates most LHCP radiation at high eleva- 

tions. The theoretical antenna gain to LHCP signals results in the following profile of multipath 

phase error as a GPS SV descends from the zenith. The reflector is modeled as a vertical plane 4 

meters from the baseline. A baseline length of 1 m is used to generate the error data: 

0 20 
1 10- 

<=-   0 
g -10 
£-20 
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10 

Figure 3.2: Multipath Error on a Single Antenna 

For the purposes of interferometry, we are interested in the effect of multipath on a second 

antenna adjacent to the first. The distance to the reflector is unique for each antenna, and the 

change in distance slightly modifies the multipath error frequency for the second antenna. When 

phase of the two antennas is differenced, the small frequency offset results in a sinusoidal modu- 

lation of the error amplitude: 

~50r 
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w 

90 70 50 30 
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Figure 3.3: Multipath Error on Differential Phase 

Two sources of multipath are considered in this investigation, environmental sources and body- 

fixed sources. 

Environmental multipath is a greater problem for ground-based receivers than for space-based 

receivers. Examples of environmental multipath are buildings, ground reflection and other vehi- 

cles. The antenna array is not static, so amplitude and frequency of errors caused by environmen- 

tal multipath are time varying. Environmental multipath sources are usually widely separated 

from the receiver, resulting in relatively high frequency errors. These characteristics make a pri- 
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ori modeling of environmental multipath difficult. Axelrad and Comp [3] have had some success 

modeling environmental multipath through post-processing of SNR data, but a real time multipath 

mitigation technique has yet to be developed. 

In this thesis, a sinusoidal model for environmental multipath is used only to demonstrate the 

potential effects of multipath on an attitude determination filter. Multipath is modeled as the 

product of two sinusoids which approximates the behavior shown in figure 3.3. One sinusoid has 

a period of two minutes and the other has a period of 20 minutes. Maximum error amplitude is 10 

mm, and initial phase for each sinusoid, G0, is chosen from a uniformly distributed random vari- 

able. 

AmuW=.osi„(^+e0,)i„(^i + e0!) 

The parameters for this model are based on a 1 m baseline length, a reflector at a distance of 10 m 

and a satellite elevation of 30°. 

Multipath is an additive error unique to each measurement, so the multipath measurement sensi- 

tivity for corrupted measurements is the identity: 

^=5(U)5a0 310 
dAmkl 

Body-fixed multipath is multipath which is caused by nearby reflectors at known locations. The 

primary sources of body fixed multipath include vehicle appendages and antenna ground planes. 

In [28], Tranquilla et. al. claim that ground planes can cause phase errors through edge diffraction 

of the carrier phase. This kind of behavior is characterized as body-fixed multipath. The low fre- 

quency and time invariant nature of body-fixed multipath makes it possible to calibrate the result- 

ant differential phase error as a function of the GPS LOS vector in the body frame. Cohen and 

Parkinson demonstrate virtual cancellation of low frequency multipath errors in [9] using a spher- 

ical harmonic error model derived from experimental data. A similar calibration model will be 

developed for this research and used in the EKE The calibration cannot capture all of the multi- 

path dynamics, so the receiver noise model will be augmented to account for multipath mismodel- 

ling. 
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Phase Center Variation 
The gain and phase characteristics of a GPS patch antenna are a function of the dielectric sub- 

strate which captures the LI signal [28]. If the substrate is uniform and symmetric, the apparent 

center of radiation will coincide with the geometric center. Imperfections in the substrate lead to 

apparent movement of the phase center as a function of the incident angle of the radiated energy. 

Figure 3.4 depicts the phase error, p, caused by this movement. 

Antenna 

Substrate 

Physical Center     Phase Center 

Figure 3.4: Phase Center Variation on a Single Antenna 

Phase center deviations are always bounded by the size of the antenna patch, and usually produce 

errors of sub-centimeter magnitude. In [28], Tranquilla et. al. precisely map the phase center vari- 

ation of several microstrip GPS antennas and find typical RMS variation of 2-4 mm. This level of 

accuracy is of little concern to code phase users of GPS. For interferometry applications, the 

magnitude of phase center error is comparable to that of receiver noise, and it should be modeled. 

Much like the more common gain pattern, the phase pattern of an antenna can vary from one unit 

to another, so any modeling must be antenna specific. Phase center variation is body fixed and 

virtually time invariant, so it is modeled along with low frequency multipath in the calibration 

model. Any variation or mismodelling of the phase center state is accounted for using adjustment 

of the receiver correlated noise estimate. 

Receiver White Noise 
White noise in the receiver is the sum of all uncorrelated errors, including thermal noise and oscil- 

lator noise [24]. It is therefore modeled as white noise with a properly chosen intensity. 

Thermal noise in the tracking loop is the dominant source of white noise, and it can be modeled as 
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a function of the carrier loop noise bandwidth, Bn, carrier to noise ratio (C/N0) and the predetec- 

tion integration time T: 

r~ZZ 3.11 360 
2TC \C/Nr 

1  + 
 1_ 
IT ■ C/Nr 

RAv  - 

ctn is the thermal noise intensity. Bn and Tfor a typical GPS receiver are 10 Hz and 20.0 millisec- 

onds, respectively. 

In this application, experimental modeling of receiver white noise is used rather than the thermal 

noise model in equation 3.11. Through experimental modeling, a direct measurement of the dif- 

ferential phase noise intensity, aAv, is available. aAv is characterized as a function of GPS body 

frame elevation and is used by the filter as a GPS measurement noise estimate. Cross correlation 

of the measurement noise is a function of the single difference operator: 

"   °Av(0pi)     0.5-aAv(9pl) 0 0 

O.5-aAv(0pl)     aAv(9pl) 0 0 3U 

0 0 oAv(0p2)     O.5aAv(0p2) 

0 0 0.5-aAv(6p2)     aAv(9p2) 

ep, is the elevation of the SV on channel 1 in the body frame. This example is for two baselines 

and two satellites, but the extension to additional measurements is straightforward. 

Equation 3.13 shows the differential phase sensitivity to receiver white noise. Since Av is an addi- 

tive error, measurement sensitivity is the identity: 

^i = 8(i,*)5Q,Z) 3.13 

Receiver Correlated Noise 
Receiver correlated noise, A£, models any temporally correlated errors in the receiver. It is also as 

used to absorb mismodelling in the multipath and phase center error calibration. Correlated noise 

has the same measurement sensitivity as uncorrelated receiver noise, but the dynamics will differ. 

Assuming that the correlated dynamics are slow with respect to the 1 Hz receiver sampling rate, 
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they can be modeled as a first order ECRV, 

4-M(t) = -^(0 + ^(0 314 

where TAP is the time constant and wA^ is white Gaussian process noise. The random process is 

assumed to be zero mean due to the a priori calibration of measurement biases. The time constant 

and steady state error covariance for A£ are determined in section 3.3. Note that, because A£ is a 

product of the single difference operator, it is correlated between antennas. This is modeled by 

adding correlations in the process noise wA^. This is shown in equation 3.15 for a single channel 

and two baselines: 

QA^ = 
1   0.5 

0.5   1 
a2 315 

QAP is the process noise covariance. Variance of the driving noise, ow^, is based on the steady 

state covariance of A^, GA^: 

,2 
a2    = 2 • aAg(epj-) 3.16 

GAP is also modeled as a function of satellite elevation, 9p^. The measurement sensitivity is iden- 

tical to the white noise component: 

^ = o(U)oao ™ 

Line Bias 
The LI carrier signal travels from each of the patch antennas to the RPU along separate coaxial 

cables. Each cable has a unique electromagnetic path length known as the line bias. The single 

difference operator subtracts the line bias of each of the slave antennas from the master antenna 
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bias to give the differential line bias, Aß 

Aß = 
Aß! 

Aß2 

1 -1  0 

1  0 -1 

PM 

ßi 

ß2 

3.18 

Notice that this bias is strictly a function of the baseline; there is no dependence on what channel 

the measurement comes from. This means that only nBL line bias parameters are required, with 

the resulting measurement sensitivity shown in equation 3.19: 

3Aß, 
= 8(i,k) 3.19 

The dynamics of line bias are relatively slow and primarily dependent on temperature variations. 

A first order correlated error model is used to model the bias: 

■l\ß = -;r-(Aß-Aß0) + wAp(0 3.20 
dt lAß 

The nominal line bias, Aß0, must be loosely calibrated before attempting estimation. The driving 

noise intensity is a function of the steady state line bias covariance, and the correlation across 

baselines is identical to that of receiver noise: 

2a 2 
<5W     =    

Aß 

Aß 

QAP = 
1   0.5 

0.5   1 
a„ 

3.21 

3.22 
"A? 

Baseline Length Error 
The baseline vector separating two antennas, b, is subject to mechanical flexure, expansion and 

contraction. Although this is a physical change rather than an actual measurement error, the mea- 

surement equation (equation 1.4) is based on a nominal baseline vector, b0, so these effects lead to 

apparent errors in the differential phase. 

The mathematics of baseline errors are greatly simplified if the errors are strictly limited to con- 

58 



traction and expansion. In a spacecraft environment with meter-size baselines, it is possible to 

construct a platform which provides mm-level flexure rigidity. This would limit any flexure errors 

to less than the level of receiver noise. The only error of concern then becomes a change in the 

baseline length, bb due to thermal effects. 

If ub is the unit vector for a nominal baseline b0, an error 67? in the nominal length b0 results in the 

perturbed baseline vector b: 

b = b0 + Sb 

&b = bb ■ uh 

The measurement equation is now: 

A(PU =  (bi + bbJyPj + £other 

Error due to the baseline length error is, 

Eb = Ut ■ pj 

and this effect is shown in figure 3.5 

^^S 

3.23 

3.24 
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3.26 

Antl AntM 

Figure 3.5: Baseline Error Geometry 

Substituting from equations 3.24 and 3.26: 

% . = (ubi ■ p,.)5fc,. 3.27 
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This relationship is linearized about the line of sight geometry, py-, to give differential phase sen- 

sitivity to 8b: 

g^=8(a)(<,P,) 3.28 

Baseline error dynamics are dependent on the physical environment of a receiver. The predomi- 

nant source of expansion for spacecraft applications will be temperature gradients. A first order 

Markov process is used to model this effect, with the following error dynamics: 

4-(8b) = -Ub + wb(t) 3.29 
at — %b— 

2       2 • ab 3.30 ow  = wb x b 

Baseline length error does not effect raw carrier phase, so there is no cross correlation due to sin- 

gle differencing. There will likely be some cross coupling of the baseline errors due to simulta- 

neous expansion and contraction of the baselines, but an uncorrelated model is used to allow for 

baseline-specific variations. 

3. 3 Error Characterization 
The purpose of this section is to derive models for each of the components of differential phase 

error using experimental data. The models developed here are used to design the EKF in Chapter 

4 and to test nominal filter performance in Chapters 5 and 6. Two types of models are used. 

Phase center variation and body-fixed multipath are modeled using a measurement bias calibra- 

tion. The calibration is a table look-up which the EKF uses to correct incoming phase measure- 

ments. The remaining errors are stochastic. These errors are characterized by estimating 

parameters for the dynamic models of section 3. 2. 

3.3.1 Test Facility 

Receiver 
The receiver used for this analysis is a Trimble TANS Vector GPS receiver with four micro-strip 
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patch antennas mounted on a 2 meter maximum length adjustable kinematic frame constructed of 

reinforced aluminum beams. The frame is designed to limit flexure to less than 2 mm at full 

extension in moderate winds. Scales mounted to the frame allow antenna placement accuracy to 

one millimeter. Each antenna is mounted on a Trimble-supplied 8" radius metallic ground plane 

to improve high elevation gain and reduce susceptibility to reflected signals. The six channel 

tracking loops are time multiplexed across four antennas with a measurement output rate of 1 Hz. 

A more detailed discussion of the receiver architecture can be found in [7]. 

The antennas used on the Vector are standard Trimble L-band patch antennas. The gain and phase 

patterns are not uniform in azimuth, but the antenna elements are mutually aligned to minimize 

the effect of these variations when phase measurements are differenced across the antennas. For 

the error calibration tests, the antennas are arranged in a 60 X 60 cm square, with two 60 cm base- 

lines and one 84 cm baseline across the diagonal. 

Test Environment 
The receiver frame is mounted on a 2-axis turntable with arc-second readouts for azimuth and ele- 

vation. The platform position and attitude are surveyed to provide truth position and orientation. 

Position uncertainty is less than 0.5 m. Yaw, pitch and roll are accurate to 0.02°. The platform is 
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mounted on the south-facing edge of an 8-story building. 

Figure 3.6: Test Platform 

Two obstructions to the north of the platform are potential sources of multipath. The approximate 
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locations of the obstructions, an array of cooling stacks and a slanted sky light, are depicted in fig- 

ure 3.7: 

North 
360 

Cooling Stacks Sky Light 

270 

180 

Figure 3.7: Obstructions 

The obstructions block a very small portion of the sky: the vertical cooling stacks are 15m (80 

wavelengths) from the receiver, with a maximum apparent elevation of 10° in the antenna array 

frame. The sky light is more than 100m from the receiver, with a maximum apparent elevation of 

Test Procedure 
A rigorous procedure was followed during each test period to ensure uniform receiver perfor- 

mance from day to day. This allows comparison of random error sources to those which are 

repeatable. All receiver parameters, such as elevation and SNR mask settings, were identical dur- 

ing nominal data collection and environmental parameters such as temperature and wind speed 

were recorded to examine any corresponding change in measurement characteristics. 

The platform alignment truth data is used with precise measurement of the antenna positions to 

63 



compute expected phase measurements for the receiver using equation 3.3. GPS SV position is 

calculated using the 15 element precise ephemerides contained in the GPS navigation message. 

Figure 3.8 shows a typical comparison of real measurements to the truth model differential phase: 
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Figure 3.8: Real vs. Expected Phase 

The difference between predicted and measured phase is total differential phase error. A plot of 

errors for a half hour period including the above data is shown in figure 3.9 along with the satellite 

azimuth and elevation in the NED frame. The baseline for this trial was the 84 cm baseline, ori- 
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ented towards true north: 
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Figure 3.9: Measurement Error 

Scope of Analysis 
Although this analysis is conducted for a ground-based TANS Vector receiver, the test methods 

are valid for coplanar configurations with any number of baselines and channels. Slight modifica- 

tions would allow the error analysis to be performed for non-coplanar arrays as well. 

The error models computed in this study are appropriate for use in most ground-based applica- 

tions. The greatest uncertainty between applications is the reflection environment surrounding the 

receiver. Models presented here would be dangerously optimistic if applied to an environment 

with significant obstructions, such as operation near buildings and other planar reflectors. Con- 

versely, a spacecraft application will encounter less geometric interference than a ground based 

application. As a result, this study presents a conservative GPS error model which can be 
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adjusted to optimize performance in benign spacecraft environments. 

All of the stochastic error sources are assumed to be normally distributed. To verify this qualita- 

tively, error data for a region of the sky is plotted in a histogram as shown in figure 3.10: 

BL 11 Elevation 50:65 I Azimuth: 90:190 

-18    -16    -14 -12    -10     -R      -6      -4 
Phase Error (mm) 

Figure 3.10: Distribution of Differential Phase Residuals 

This plot includes ten hours of data and is for satellites at high elevations which are not subject to 

multipath. Satellites at very low elevations do not always have such a uniform distribution. There 

is a noticeable bias in this sample of data, and a bias of this magnitude is not unusual in the differ- 

ential phase measurement. The following section addresses these biases. 

3.3.2 Calibrated Bias Errors 
Body fixed multipath sources and phase center variation produce deterministic errors which are a 

function of the GPS LOS vector in the body frame [9]. By comparing measured phase to pre- 

dicted phase for a static receiver, these errors can be mapped into the antenna visibility cone and 

calibrated using numerical best fit methods. This bias map also facilitates initial calibration of 

two critical receiver parameters, the initial line bias (Aß0) and the initial baseline lengths (Ä,0)- 

Bias Map 
Six test days over a period of four months were used to compile data for the error bias map. The 

data spans a total of about 30 hours and was taken with the array in four different orientations, 

including three near-level orientations and one orientation in which the array is pitched up 30°. To 

construct the bias map, the sky was divided into 18 elevation steps and 72 azimuth steps for a total 

of 1296 squares, each 5 degrees on a side. For each square, a running count was kept of the num- 
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ber of data samples created by any satellite within the 5x5 square. In another matrix, a running 

sum was kept of phase residuals (total phase error) for measurements corresponding to the square. 

A third matrix was used to store the sum of the squared error for measurements in the square. The 

error, squared error, and data count allows a rough calculation of mean error and variance for dif- 

ferential phase produced by satellites at specific points in the sky. The total differential phase 

RMS error can also be calculated, and is shown in figure 3.11. To construct the total error shown 

in figure 3.11, RMS error was calculated for each of the 5x5° bins. RMS values for bins at the 

same elevation were averaged across all azimuth steps and all three baselines, producing average 

error as a function of elevation. Total error encompasses all of the error sources which will be 

modeled in this section. 
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Figure 3.11: Total Differential Phase Error (Unconnected) 

The error is referred to as uncorrected because part of the error is caused by errors in the nominal 

baseline vectors used to calculate the differential phase residuals. Calibration of the baseline vec- 

tors is now addressed. 

Baseline Length Calibration 

Baseline length calibration is used to estimate the nominal length of the antenna baselines. A dif- 

ference between the nominal antenna baseline estimate and the true baseline vector causes an 

apparent error in the measured differential phase. This error can be mapped as a function of the 
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satellite LOS vector in the body frame: 
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Figure 3.12: Phase Error Due to Baseline Expansion 

Here, the tilted plane represents differential phase error due to a baseline error 67>. The phase 

error is a function of SV azimuth and elevation, which is depicted in the horizontal plane, db is 

the magnitude of the length error. The figure is identical to figure 1.3, which displayed delta 

range as a function of SV LOS for a nominal baseline. This is expected, because baseline error 

enters the measurement equation at the same place as the nominal baseline vector. However, the 

baseline error bb may not be aligned with the nominal baseline b0, so the alignment of the plane in 

figure 3.12 is not known a priori. Still, baseline error has a distinct footprint which is signifi- 

cantly different from the other error sources, so it is the first calibration that is attempted using the 

phase error data. Note that this is not an error characterization, nor is it used in the filter. Rather, 

this is a calibration of the nominal baseline value which is needed to process the experimental 

data. By correcting the nominal baseline vector and removing the resulting contribution to the 

total error, characterization of the remaining error sources will be more accurate. 
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Figure 3.13 shows the map of average error for each bin over all of the data takes with the Vector 

receiver. The horizontal plane depicts location of a satellite in the sky. The value plotted above or 

below each square represents the average differential phase error for satellites within the square. 

There is significant bias on all three of the baselines, and baselines 1 and 2 show a distinct lop- 

sided pattern to the biases. 
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Figure 3.13: Uncorrected Bias Map 

Gaps in sky coverage give these maps a jagged appearance, so it is useful to examine a least- 

squares fit to the error data. Figure 3.14 shows a fit of the biases for baseline 1. For each 5° eleva- 

tion band, a fifth order polynomial model was fit to the bias data around 360° of azimuth. Eleva- 

tions with insufficient data to produce a useful model are excluded, resulting in a model which 

69 



extends from 20° to 80° elevation. 

+15 mm 

Figure 3.14: Uncorrected Bias Model 

The model displays a pattern very similar to the predicted error characteristic for a baseline length 

error. Although the antenna mount used for these tests is marked to millimeter accuracy, there 

appears to be an error in the calculation of the antenna baselines. The source of the uncertainty 

remains to be investigated, but through the bias model, it is possible to make a best fit correction 

to the nominal baseline estimate. 

For this application, a trial-and-error method was used to calculate the baseline correction vector, 

but an automated calibration using the full sky bias map could produce baseline estimates accu- 

rate to the millimeter level. The errors for baseline 1, 2 and 3 were 9mm, 7mm and 2mm, respec- 

tively. These corrected baselines are used to calculate differential phase residuals for the error 

analysis. After the correction, the biases have smaller magnitude and a less lopsided distribution: 
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Figure 3.15: Bias Map After Baseline Correction 

Total error is recalculated after the correction and compared to the original error in figure 3.16: 
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Figure 3.16: Total Differential Phase Error (Corrected) 

This figure shows that errors in the nominal baseline are responsible for part of the uncorrected 

error shown in figure 3.11, especially at low elevations. The corrected total RMS error is used as 

a starting point for the remaining analysis. 
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Line Bias 
Line bias is insensitive to changes in the GPS LOS vector, so it can be calibrated by simply taking 

the mean error on each baseline. The nominal value, Äß0, is calculated by averaging residuals for 

a single baseline across all of the channels and all of the days of data. In section 3.3.3, line bias is 

calculated on each day separately and compared to the nominal value. The day to day variation is 

used to estimate the stochastic properties of line bias. 

Phase Center and Multipath 
The remaining azimuth and elevation dependent biases are due to phase center variation and mul- 

tipath. This calibration will only attempt to model phase center variation and any multipath due to 

body-fixed sources, such as diffraction off of the ground planes. Calibration of environmental 

multipath is not possible, because the location of reflecting surfaces with respect to the array 

changes as the array is moved. The data used for the calibration model was shown in figure 3.15. 

In order to cancel the effects of environmental multipath in the model, the data includes measure- 

ments from all four test orientations. 

The best fit bias model for this data is shown in figure 3.17 
+5 mm 

-5 mm * 
Baseline 1 Baseline 2 Baseline 3 

Figure 3.17: Body-Fixed Bias Model 

This bias model again uses a fifth order polynomial fit for the measurement data at each elevation 

interval. The biases for each baseline are stored as a function of SV azimuth and elevation in the 

body frame. The EKF of Chapter 4 removes the modeled bias from each incoming differential 

phase measurement according to equation 3.31: 
3.31 
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Aq)' • • is the corrected differential phase measurement. 0p. and \j/p. are the filter estimates of 

azimuth and elevation to SV; in the body frame, i is the baseline number and % is the calibration 

value for this baseline, azimuth and elevation. 

The reduction in differential phase error realized using the bias model is shown in figure 3.18 as a 

function of SV elevation. The vertical axis shows the percentage of the total error covariance 

which is removed by the model: 

20 30 40 50 60 
Body Elevation (deg) 

70 

Figure 3.18: Reduction in Differential Phase Error after Calibration 

The error contribution removed by the calibration only averages about 5%, so it is likely that part 

of the phase center and multipath errors are not captured in the calibration. The ability of the bias 

model to map deterministic error sources is limited by the order of the model and the resolution of 

the 5x5 grid used to map the biases. Errors not accounted for in this model or in the stochastic 

analysis which follows are caused by uncalibrated biases. Uncalibrated biases are accounted for 

in the filter design by increasing the intensity of the correlated receiver noise model. 

The computational cost of this calibration model is relatively high for the reduction in differential 

phase errors displayed in figure 3.18. Performance might be improved by including more data in 

the model or using a different modeling technique. For example, in [9], Cohen achieves a bias fit 

with 1 mm RMS error using an eighth order spherical harmonic model. 

3.3.3 Stochastic Errors 
Stochastic errors do not repeat from day to day, so they cannot be calibrated out of the estimator. 
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However, an accurate dynamic model for random errors can be used to estimate the errors in the 

EKE Stochastic parameters are developed here for line bias, baseline length and total receiver 

error. 

All of the stochastic errors are analyzed by comparing differential phase data from the same GPS 

S V at the same position in the sky on different days. The GPS orbit period of approximately 

twelve hours makes this kind of investigation possible, because the location of a GPS satellite 

over any point on the earth repeats to within a few arc-minutes after a period of approximately 24 

hours. 

The position of the GPS satellites in the sky for a particular measurement is referred to as the sat- 

ellite geometry. Multipath and phase center variation are strictly geometry dependent. If the 

phase across two days is differenced using a time delay which result in identical geometry, errors 

in the "double differenced" signal will be solely due to stochastic effects. In equations 3.32 and 

3.33, multipath and phase center error on the single difference measurement are shown as func- 

tions of the GPS line of sight vector, while receiver error, line bias error and baseline length error 

are random functions of time. 

AeiJ(tO = AmiJ(pfJ) + ApiJ(pfJ) + AviJ(tl) + A^iJ(t1) + A^(tl) + Ebi(tl) 3.32 

Ae,.fa) = Am. j(plj) + APi>ßlj) + Avit fa) + A^ fa) + Aß,(f2) + ebfa) 3.33 

Equation 3.34 shows the double difference error which is formed by subtracting errors at t\ from 

those at t2.   For this investigation, the time difference (£2 - h) is always two GPS orbit periods, 

referred to here as Tops- This way, the geometric phase center and multipath effects cancel, leav- 

ing only time differenced error due to baseline length variation (Aeb ) and double differenced 

receiver noise (VAn,- j, VA^- j) and line bias error ( VAß;): 

VAe,. fa, t2) = Ae,. fa) - Ae,. fa) 3.34 

VAe- fa, t2) = VAv,./*!, t2) + VA^fa, t2) + VA$i(tl, t2) + Ae^'i, h) 3.35 
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The effect of repeating GPS geometry is apparent in figure 3.19: 
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Figure 3.19: Differential Phase Error for Identical GPS Geometry 

This figure shows differential phase errors for all six channels and three baselines of the receiver 

on two different days at time separated by TGPS. Errors for the first day are offset on the vertical 

axis by -15 mm while those for the second are offset by +15 mm. Clearly, a significant amount of 

the error energy is deterministic. This is the portion that was mapped by the bias model in section 

3.3.2. As equation 3.34 suggests, differencing of the errors between the two days should isolate 

the stochastic error component. The double difference for channel 6, baseline 2 is shown in figure 

3.20. This channel is chosen because the high GPS elevation (50°) rules out any multipath. Mea- 

surements for the two days are synchronized down to less than one second, and the GPS SV posi- 

tions match to 10 km. Line of sight to each of the satellites is greater than 20,000 km, resulting in 

line of sight angular errors less than 0.03° and a phase error contribution under 0.5 mm for a 1 
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meter baseline. 
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Figure 3.20: Double Difference Phase Error for Identical GPS Geometry 

Temperature variation across the data takes for this analysis were never greater than 20° F. The 

thermal coefficient of aluminum is 22.9x10"6/C \ leading to a maximum expansion on the 84 cm 

baseline of 0.4mm. This is an order of magnitude smaller than the receiver noise, so baseline 

expansion and contraction is assumed to be negligible during the tests. Elimination of baseline 

variation leaves line bias error and receiver noise as the only sources of stochastic error: 

VAeu(f!, t2) * VAvu(*!, t2) + VA^ijih, t2) + VAß,.^, t2) 3.36 

Line Bias 
The line bias time constant is chosen as a function of the receiver environment, so the only param- 

eter which needs to be calculated is the line bias steady state covariance, aAß. Because line bias 

varies slowly, it can be modeled as a constant, at least over the span of one day: 

Aß,.(0 - Aß,.(T0) 3.37 

(T0-43200) <f<(T0 +43200) 3.38 

This means the line bias contribution to the double differenced phase is approximately a constant: 

Vteu(tv t2) - VAvA/flf t2) + VA^/fj, t2) + Aß,(T2) - Aß,(T!) 3.39 

Taking the average across time and nCH channels, the double differenced line bias is estimated: 

_   "  [VAe, ,(tvt2)] ^,n 

tu t2j = i rneas 

Here, the time difference is always xGPS. nmeas is the number of measurements. Receiver noise is 

uncorrelated across the six satellite channels and is modeled as zero mean, so it drops out of the 
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calculation. The covariance is calculated as one half of the mean squared double difference value: 

3.41 2        (Aß,(T2)-Aß,(T,))' 
°Aß( =   ö  

The steady state line bias RMS error is shown in figure 3.21. The values were calculated using 

approximately 20 hours of data collection over a 5 day period: 

35 1 2 3 
Baseline 

Figure 3.21: Line Bias RMS Error 

As previously mentioned, the time constant is driven by the environment. Since the principal 

source of line bias variations is temperature, a twelve hour time constant is appropriate for 

ground-based applications. For space-based applications, a more suitable time constant is one 

half the orbital period, to account for solar heating and cooling. 

The contribution of line bias error to the total error covariance is shown in figure 3.22: 

25 

20 30 40 50 
Body Elevation (deg) 

60 70 80 

Figure 3.22: Line Bias Covariance Contribution 
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Receiver Noise 
Receiver noise is usually modeled as band-limited white noise [11][4][18], but this error analysis 

tests the white noise assumption by examining the spectral density of receiver errors. To isolate 

error due to the receiver, differential phase measurements are again compared for identical GPS 

geometries. With the line bias contribution removed, the remaining errors are stochastic receiver 

errors. 

The receiver noise model developed in section 3. 2 includes a first order ECRV (equation 3.14) 

and a white noise component. Spectral density for this model is shown in equation 3.42: 

SVA(p(co) = 2 

2 \2 

 T, + aAv 2     I   1 
CD   + 

XA^ 

3.42 

SVAcp(a)) is the double differenced phase power spectral density. The single difference spectral 

density is multiplied by 2 to reflect the effect of double differencing. The doubling of power is 

valid as long as errors on the two days are not correlated. One day is much longer than the 

receiver correlated noise time constant, so this is a safe assumption. 

The objective of this section is to determine three parameters: the correlated noise intensity and 

time constant, cA^ and xA^, and the white noise intensity, aAv The parameters are determined 

using spectral analysis of the double differenced phase errors. As an example, power spectral 
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density of the double differenced phase from figure 3.20 is shown in figure 3.23. 

0 0.05      0.1       0.15 0.2      0.25       0.3 
Frequency (Hz) 

Figure 3.23: PSD of Time Differenced Phase 

This spectral density was calculated using an average of three 512 point discrete Fourier trans- 

forms on the phase error data. To determine model parameters, individual spectral densities are 

averaged across all azimuths and multiple days by five degree satellite elevation increments to 

produce elevation-specific spectrum estimates. An example of the averaged spectrum for a five 

degree elevation increment is shown in figure 3.24: 

0.2      0.25      0.3 
Frequency (Hz) 

Figure 3.24: Mean Spectral Density for 40 to 45 ° Elevations 

The dashed line is a least squares fit to the actual data using the spectral model in equation 3.42. 

The best fit produces model parameter estimates as a function of elevation. 
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The estimated white noise intensity, dAv, is shown in figure 3.25: 

~3.5 

30 40 
Elevation (deg) 

Figure 3.25: Differential Phase White Noise Intensity 

Because data periods for the spectral analysis must have identical GPS geometry, the range of 

available satellite elevations is limited. Resolution is poorest at low elevations, so single differ- 

enced phase error statistics are examined for a number of additional days to fill in the blanks. 

Figure 3.26 shows standard deviation of single differenced phase residuals over multiple 30 

minute periods, plotted as a function of elevation. The large magnitude of the standard deviation 

at low elevation warrants an increase in the low elevation white noise intensity model. Inciden- 

tally, low elevation measurements are more susceptible to variations in the antenna gain and phase 

pattern [28]; to add a margin of safety to the filter design, an average of the noise estimates in fig- 

ures 3.25 and 3.26 is used for the filter design. 
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Figure 3.26: Standard Deviation of Single Difference Phase 
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Coefficients for the receiver correlated noise model are shown in figure 3.27: 
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Figure 3.27: Correlated Error Model 

The low intensity of correlated error in the stochastic model indicates that white noise is a valid 

model for errors within the receiver. However, the correlated error model is still needed to reflect 

unmodeled multipath and phase center errors. Figure 3.28 shows the contributions of correlated 
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error and white noise to the total phase error before modification of the correlated noise intensity: 

40 50 
Body Elevation (deg) 

Figure 3.28: Receiver Error Contribution 

An increase in the correlated noise covariance is used to compensate for unmodeled phase center 

variation and multipath errors. The magnitude of these unmodeled errors is calculated by sub- 

tracting all of the modeled error intensities (i.e. the calibration model, line bias, white noise and 

correlated noise before augmentation) from the total differential phase RMS error. The resulting 

correlated noise intensity is shown in figure 3.29: 
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Figure 3.29: Modeled vs. Unmodeled Error Intensity 

An error budget is now compiled which incorporates all of the error sources, showing the contri- 

82 



bution of each error source across the range of SV elevations: 
T 

60 

Unmodeled-Bias-Modeled    White Noise   Line Bias   Correlated Noise 

Figure 3.30: Differential Phase Error Budget 

Figure 3.30 shows a dominant contribution from unmodeled biases. This effect is captured in the 

filter correlated noise state through the increased steady state covariance. However, the result sug- 

gests that a higher order model of deterministic errors may be beneficial. 

3.3.4 Simulation Parameters 
Two adjustments are made for the orbital simulation. The most significant difference between the 

earth environment and the space environment from a receiver standpoint is much larger tempera- 

ture variations in orbit. The expected baseline length variation and line bias error covariance must 

be adjusted to reflect this. 

Assuming that the antennas are mounted on an aluminum structure, maximum baseline length 

variation is the product of the coefficient of thermal expansion for aluminum, 22.9x10" IC, and 

the maximum expected temperature variation. In [20], -45°C to +65°C is given as a typical allow- 

able temperature range for spacecraft structural components. This results in a maximum baseline 

variation of 2.3%. A conservative value of 3% RMS is used in the simulation and filter design. 

Temperature change is a primary cause of changes in the line bias, Aß. If the receiver cabling is 

shielded from severe temperature fluctuation, large changes in line bias variation may be avoided. 

A typical temperature range for spacecraft electronics is 0 to 40°C. Comparing this temperature 
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range to the ground based test environment, an approximate doubling of line bias is expected. 

Average line bias RMS on the ground is about 1.75 mm, so a line bias error RMS value of 3.5 mm 

is used on all baselines for the orbital tests. 

A summary of the parameter changes for space based applications is shown in table 3.1: 

Structure Cabling 

Temperature 
Range 

Length Variation 
Model (RMS) 

Temperature 
Range 

Line Bias 
Model (RMS) 

Ground 
Based 

0° to +20°C 0.0% 0° to +20°C 1.75 mm 

Space 
Based 

-45° to +65°C 3.0% 0 to 40°C 3.5 mm 

Table 3.1: Ground Based and Space Based Error Parameters 

3. 4 Gyro Errors 
The baseline gyro for the EKF design is the Draper Lab micro-mechanical tuning fork gyro [19]. 

This sensor is used for the primary analysis because of its small size, light weight and potential 

for low cost mass production. Instead of the traditional spinning mass system, the tuning fork 

gyro measures the vibration of a suspended mass to estimate angular velocity. The output is 

therefore an angular rate measurement as opposed to the small angle measurement produced by a 

rate integrating gyro. A system of three strapdown (body-fixed) gyros is used for this application. 

One gyro is aligned with each axis of the body frame, forming the three axis rate gyro assembly 

(TGA). 

A generic rate gyro error model is developed here and representative parameter values are given 

for the Draper gyro and other low cost systems. The purpose is to create a simple model which 

can be varied to test the sensitivity of the filter to gyro quality. Although the TGA is body-fixed, 

the gyro is an inertial system, so the dynamics are presented in the inertial frame. Transformation 

to the body frame is addressed in Chapter 4. 

Each gyro rate measurement is corrupted by white noise, gyro bias, misalignment and scale factor 
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errors: 

CD*, ==(1+*,)#<»+ VVft 3'43 

coM is the measurement from gyro i. k{ is the scale factor correction for axis i, 17,- is the gyro 

axis unit vector in the body frame, bg is the time varying bias and vg. is measurement noise. 

3.4.1 Dynamic Models 

Measurement Noise 

Measurement noise v   is modeled as white noise with intensity Rg. The noise is a function of the 

gyro output rate and is uncorrelated across the axes. Intensity of gyro noise is usually expressed 

in terms of the angle random walk (ARW). If the rate measurement is integrated to produce an 

angle change, the integrated noise produces Brownian motion on the angle measurement. The 

standard deviation at time t is ARW't1^. ARW is related to measurement noise by equation 3.44: 

ARW = ß~Jt 3-44 

dt is integration step size, or the inverse of the output rate. Typical ARW for a low cost gyro is 17 

hr1/2. This means that if initial attitude knowledge is perfect, estimate uncertainty due to mea- 

surement noise is only 1° (1-a) after one hour. However, performance is degraded by other error 

terms as well. 

Gyro Bias 
Slowly varying shifts in the gyro dynamics lead to a measurement drift term commonly referred 

to as gyro bias. Error due to this drift severely limits the quality of gyro output if the bias is not 

periodically recalibrated. Integration with GPS measurements provides a source of recalibration 

of the gyro drift rate. 
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The gyro bias is modeled as a 1st order ECRV: 

al  =  -* 3.46 

The time constant and steady state covariance are determined from experimental data. Typical 

values for a low cost gyro are a time constant of 8 hours and 10°/hr RMS bias error [19]. The ini- 

tial bias value can be calibrated on the ground, but some error will be present on start-up. 

Scale Factor 

Scale factor is an error in the constant of proportionality relating the angular velocity to the gyro 

output. For low rotational acceleration applications such as spacecraft, scale factor causes a 

slowly varying multiplicative error in the measurement. For this analysis, it is assumed that any 

scale factor error is adequately estimated through the gyro bias term. Typical scale factor for a 

low cost gyro is 100 ppm. 

Misalignment 
The gyro package is strapped down to the body and aligned with the body frame. Small misalign- 

ments cause error in the gyro measurement, but the contribution to total attitude error in the filter 

is negligible. Typical 1-sigma value of initial misalignment for a gyro is 1 milliradian. 

Assuming that the scale factor error and misalignments are negligible, the TGA measurement 

used in the filter is related to the vehicle angular rate by equation 3.47: 
(QM = <Q + bg + vg 3.47 
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3.4.2 Error Parameters for Low Cost Gyros 
Parameters are listed here for three gyro designs with varying levels of performance: 

Model Design ARW f/hr172) Bias (7hr) Size (cm3) 

Litton LN200 
[25] 

Fiber Optic 
Gyro 

0.021 0.47 490 

SAGEM GLC8 
[13] 

Ring Laser 
Gyro 

0.15 0.6 1000 

Draper MM 
Gyro [19] 

Tuning Fork 
Gyro 

0.25 5.0 27 

The Draper gyro is used in this design to demonstrate the potential benefits of a low cost gyro sys- 

tem. Bias drift performance of 5°/hr RMS for the MM gyro has only been achieved in tempera- 

ture controlled experiments. The gyro may encounter large temperature variations in space, so the 

gyro bias statistic is used only as a target value for future on orbit MM gyro performance. All of 

the simulation tests are conducted using the MM gyro error model. Linear covariance analysis is 

used in section 5. 4 to examine filter sensitivity to changes in the gyro error parameters. 
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Chapter 4 

Filter Design 

4.1 Introduction 
This chapter details design of an Extended Kaiman Filter for attitude determination using mea- 

surements from multiple GPS antennas and a three axis gyro assembly. After a review of the 

Extended Kaiman filter and description of the filter state, key elements of the filter algorithm are 

presented. The algorithm is divided into three components: state propagation, measurement 

update and integrity monitoring. In the state propagation section, spacecraft attitude dynamics are 

presented along with an overview of the major environmental disturbance torques acting on the 

vehicle. Discussion of the measurement update in section 4. 4 includes development of GPS and 

gyro measurement sensitivities as a function of the filter state. 

In section 4. 5, the motivation for an integrity monitoring algorithm is presented. This is followed 

by a description of the decision making logic used in the filter and potential shortcomings of the 

design. 

4. 2 Filter Equations 
Spacecraft attitude estimation involves propagation of nonlinear rotational dynamics. An optimal 

nonlinear solution does not exist to this problem, but an approximate solution is possible using the 

Extended Kaiman Filter. The Kaiman filter produces an optimal state estimate for a linear system 

driven by white process and measurement noise. Extension to nonlinear systems requires linear- 

ization of the dynamics about a nominal operating point. Consider the nonlinear dynamics given 

in equation 4.1: 

x(t) = f(x(t), t) + g(x(t), t)w(t) 4.1 

yk = h(xk_,tk) 4.2 

The subscript k refers to the measurement at time tt w(t) is a white Gaussian process noise with 
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intensity Q(t) and v^ is discrete white Gaussian measurement noise with intensity Rk: 

E[w(t)w(t-%)T] = Q(f)8(f-T) 4.3 

E[vkvT
k] = Rk8(k-j) 4.4 

Let x be the state estimate with associated error covariance matrix P. The estimate immediately 

prior to the incorporation of measurement^ is referred to as xk _. xk+ is the estimate immedi- 

ately after the measurement update. Dynamics of a small state error vector x can be expressed to 

first order by the linearized system: 

x(t) = F(t)x(t) + G(t)w(t) 4'5 

where the system is linearized about the best estimate of A: at time t: 

F(0«^/(*(0,OU(/_) 4-6 

G(0*4*(*(0,0U(,_, 4'7 

If a predicted measurement is formulated at time tk using the state estimate and the non-linear 

measurement equation, 

h = h(*k- > h) 4.8 

then the measurement residual zk is the difference between the predicted and actual measurement: 

z* = yk-h 4-9 

The residual is related to the state error x by the linearized sensitivity matrix, Hj., 

zk = Bk*k + vk 4'10 

rr _3^ 4.11 
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and the optimal state correction is a function of the residual and the Kaiman gain, Kk-. 

xk+  = xk_  +Kkzk 4.12 

Kfc is calculated as: 

K^P,_ H[(H,P,_ H[ + R,)
_1 4.13 

The error covariance matrix P must be updated to reflect incorporation of the measurement. The 

Joseph form of the covariance update is used to preserve symmetry of the covariance matrix: 

P,+ = (1 -K,Hfc)P,_ (1 -KkHf + K,R,K[ 4.14 

After the measurement update, the state estimate Sck + is propagated to time tk+1 using the noise- 

free nonlinear dynamics: 

Ht) = f(x(t),t) 415 

The dynamics of the linearized error covariance P over this interval are given by the matrix Ricatti 

equation: 

P = FP + FPr + GQGT 416 

Discrete propagation of the covariance matrix is possible using the linearized state transition 

matrix O and the process noise dynamics Q: 

p(ik+i)_  = **+i.* P^ *Li.* + Q(^+i.*) 4'17 

The state transition matrix is equivalent to linear propagation of a small state perturbation. <& and 
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Q  are calculated using integration of the linearized state dynamics: 
'*+! 

**+i,*=   |F(T)OTJX 4.18 

h 

Q('jt+i,*) =   j <^G(T)Q(T)G(T)r<Iyft 4.20 

Over small time steps computation of O and Q is streamlined by use of the first order Taylor 

series approximations: 

<&M=(l + FAf) 4'21 

Q(^ + i.t) = G[QAf]Gr 4.22 

Filter State 
The state of interest for this application is spacecraft orientation with respect to the Local Vertical 

Local Horizontal (LVLH) frame. The LVLH frame is constructed with the X axis in the orbit 

velocity direction, the Z axis toward the center of the Earth and the Y axis out of plane. Figure 4.1 

depicts the coordinate frame geometry. The body frame, referred to with the subscript B, is 

shown in an attitude with zero yaw and roll and a positive pitch angle 0. The LVLH frame is also 
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referred to as the navigation frame, and is denoted by the subscript N. 

Body Frame s 
*   Xß 

0 —rXN   (Direction of Motion) 

Figure 4.1: LVLH and Body Frames 

Various parameterizations can be used to represent the transformation from the navigation frame 

to the body frame. Euler angles are commonly used as an intuitive method of representing rota- 

tions, but they suffer from trigonometric terms and a singularity at 90° pitch which make imple- 

mentation difficult. A direction cosine matrix parameterization eliminates these problems, but the 

nine matrix elements lead to redundancy in the attitude state [30]. A quaternion attitude represen- 

tation is chosen to avoid the singularities of Euler angles and the redundancy of a direction cosine 

representation. 

Any coordinate transformation can be expressed in terms of an axis of rotation, e and a rotation 

angle <I>. The quaternion, q, is defined as a function of these two quantities: 

<h 

e ■ sin(O)   12   q 
_ cos(O) _ 13 

A. 

<L 

4.23 

q is defined as the vector part of the quaternion, while q is the scalar part. The quaternion from 

the LVLH to body frame is Bq   . In the remainder of the text, the quaternion # refers to the 
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B N LVLH to body transformation,   q   . The superscripts are dropped for clarity. 

With each sensor measurement, the filter makes a correction to the estimated quaternion <L. 

Quaternion corrections use the quaternion composition operator: 

q+ = f®q     = 

4 q3 -42 qi 

-q3' 4 qi' %i 

q2' -qi' 4 ti 

-qi' -q2 -& 4 

qi- 

q2- 

qs- 
4.24 

Here, q' is some arbitrary correction to the estimated state. The error quaternion, q, is defined as 

the quaternion rotation from the estimated state 2 to the true state 2: 
_ * 
q = q<2)q 4.25 

q  is the quaternion inverse operator: 

Q   = 
-q 

A. 

4.26 

If the update step is chosen small enough, the quaternion state correction at the update time will 

be sufficiently small to ensure that the scalar component is close to unity [21], and all of the cor- 

rection knowledge can captured in the vector part q. 

When deriving the differential phase measurement sensitivity, it is useful to relate the error 

B~N 
quaternion, q, to the DCM error,   C   , defined in equation 4.27: 

BcN = Bc\BcN)T 4.27 

For small rotation magnitudes, the DCM error can be expressed as a function of the small angle 
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roll, pitch and yaw Euler angles, <j>, 6, and \j/: 

BcN- 
4> 

1 + 0 

.¥. x_ 

4.28 

Here, [ ]x is the skew matrix: 

0   i|/ -9 

-\|/ 0   (|> 

e -<> o 

4.29 

By definition, the error q is just one half of the small Euler angle rotations, 

(j) e J 
q = 

2 2 2 

4.30 

resulting in a quaternion representation of the DCM error: 
B~ N 

C   «(l + [2q]x) 

Because of this convenient property, the filter attitude state is defined as 2q, making it inter- 

changeable with the small angle rotations. 

4.31 

The filter state also includes (QBN , the angular rate vector in the body-fixed frame.  @BN 

expresses motion of the body with respect to the navigation frame. A body fixed representation 

simplifies propagation of the attitude quaternion [21]. The rest of the state vector is composed of 

a disturbance torque estimate, iV0, the gyro bias estimate, bg, and the GPS error states 

[Aß A§ 8fc] : 

x = 2q a>B
BN N0bgA$AZ,Sb 

4.32 

Algorithm 
The filter algorithm is shown in figure 4.2. The attitude and gyro portion of the filter are con- 
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structed using a standard EKF design. GPS measurement integration requires some additional 

steps. GPS "housekeeping" involves satellite selection and calculation of the GPS spacecraft 

states. The selection algorithm is discussed in section 4. 5 along with the integrity monitoring 

algorithm. Integrity monitoring is necessary due to the non-linear nature of integer ambiguities 

and the differential phase measurement equation. 
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Figure 4.2: Filter Algorithm 
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4.3 State Propagation 
The propagation section is divided into two sections. Section 4.3.1 discusses the non-linear atti- 

tude dynamics required to predict the filter state. Section 4.3.2 presents the linearized attitude 

dynamics needed for propagation of the error covariance matrix. Linearized dynamics for the 

gyro and GPS error states are also presented here. The error states are all modeled as linear sys- 

tems, so these dynamics are used for both the state prediction and covariance propagation. 

4.3.1 Non-Linear Attitude Dynamics 
The quaternion attitude is propagated using the quaternion kinematic equation: 

2 = 2- 
®BN 

0 
4.33 

As stated previously, QBN is the angular rate of the body frame with respect to the navigation 

frame expressed in the body frame. coßA, can be measured directly from the gyros or propagated 

analytically using the rate dynamics. The former method, referred to as "gyro replacement 

mode," does not exploit a priori modeling of dynamic forces such as the gravity gradient torque. 

In order to take advantage of dynamic modeling, this filter uses the latter method, treating the 

gyro rate output as a measurement rather than truth. The required rate dynamics are now derived 

using conservation of angular momentum. 

Total angular momentum for a rigid body is given by equation 4.34: 

h = I(QBI 4.34 

The inertia tensor, /, and the inertial frame to body frame angular rates, (QBJ, must be expressed in 

a common frame. All of the following equations are formulated in the body frame if not other- 

wise specified. If internal momentum storage devices such as momentum wheels are used, the 

additional momentum must be included on the right hand side of equation 4.34. 

Conservation of angular momentum dictates that the derivative of h with respect to the inertial 
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frame equals the sum of the applied torques [11]: 

dh 
dt 

= N 4.35 

Here, N is the sum of external disturbance torques expressed in the body frame. Substituting for h 

according to 4.34 results in Euler's vector equation of motion: 
d_ 
-(^ffiß/) = N 4.36 

Equation 4.36 is formulated in inertial space, but the desired dynamics must be derived in the 

body frame. The two representations are related according to equation 4.37: 

+ ros/x(A) 4.37 
> , ■ s"> 

Applying this identity to equation 4.36, 

Jt1^ B 
+ ffi», x (/CQß/) = N 4.38 

Total angular velocity is the sum of the filter state, aBN, and the orbit rate, (QNI: 

%/ = ®BN + ®NI 4.39 

This substitution is used along with the assumption that the inertia tensor, /, is fixed in the body 

frame to isolate the derivative of ®BN: 

d®BN 

dt 

da 
!   "dt 

NI T-l = I   [N-aBIx(IaBI)] 4.40 

Applying equation 4.37 again, 

d 

dt 

daNI d(d 

d~t 

NI + ®BNXG>NI 
4.41 

N 

For a circular orbit, (QNI, the angular velocity of the navigation frame with respect to the inertial 
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frame, is constant in the navigation frame: 

N 
%/ = 

0 
-co 

0 
NI 

4.42 

Applying equation 4.41 and 4.42 to equation 4.40, the angular rate dynamics are expressed as a 

function of the current state: 

da 

dt 
BN = I    [N-(0RIX (/C0ß/)] - (QBN X CO 4.43 

Equation 4.43 is applied to the state estimate to predict mBN in the filter: 

d&BN 

dt 
r-i = I' [N0 + Ngg - &>BI x 7(©ß/)] - &>BN x co NI 

4.44 

B 

Nes, is the gravity gradient torque. The orbit rate is an estimate because the estimated attitude 
do 

matrix is used to transform the rate to the body frame: 

(QNI =   C QNI 4.45 

A first order linearized approximation of equation 4.44 is used to propagate (bBN in the filter at 

the integration rate of 2 Hz. At each integration step, the quaternion state estimate is propagated 

using the new rate estimate and equation 4.33. Any commanded control is added as an impulsive 

correction to the angular rate. 

Disturbance Torque 
The primary disturbance torques acting on a spacecraft in low earth orbit are the gravity gradient 

torque, solar pressure, magnetic dipole and aerodynamic forces [20]. Gravity gradient torque is 

computed analytically using the spacecraft inertia tensor and the estimated body attitude. Solar 

pressure, magnetic torque and other disturbances are lumped into a first order exponentially corre- 

lated stochastic term with a time constant of one half the orbit period. 
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The gravity gradient torque is conveniently expressed in body coordinates [26]: 

Ngg = ^5[rx(Ir)] 4.46 
\r\ 

Here, \i is the earth gravitational constant and r is the position of the vehicle in the ECEF frame 

expressed in body coordinates. The dependence of the gravity gradient torque (and hence angular 

acceleration) on spacecraft attitude will be factored into the linearized dynamics. 

The gravity gradient torque is a function of the spacecraft inertia tensor, /. The Iridium inertia 

tensor is estimated for this analysis by assuming a cylindrical body, two dimensional solar arrays 

and an even mass distribution. The resulting inertia tensor is shown in equation 4.47: 

/ = 
1538 0 0 

0 1006 0 

0 0 622 

4.47 

The remaining disturbance torques, N0, are modeled as a first order Markov process. The steady 

state covariance of this process is estimated using worst case equations from [20]. 

Solar radiation pressure torque, Nsp, is related to the spacecraft physical characteristics through 

equation 4.48: 
Nsp = Fsp(cps-cg) 4.48 

(cps - cg)1S me distance between the spacecraft center of solar pressure and center of gravity. A 

value of 1/6 of the total height, or 0.7 m, is used. Maximum solar pressure force, Fsp, is approxi- 

mately 7.3xl0"5 N in an 800 km orbit, so the maximum solar pressure is 5.0x10" N-m. 

Magnetic dipole is the product of the vehicle residual dipole, D, and the strength of the Earth's 

magnetic field, B. Typical value of D for a small spacecraft is 1 A«m2 [20], resulting in a maxi- 

mum magnetic torque of 4.3xl0"5 N-m. 

Aerodynamic forces are multiplied by the distance from the spacecraft center of pressure, csp, to 
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the center of gravity, cg, to give the aerodynamic torque: 

Na = Fa(cpa-Cg) 4.49 

The maximum expected aerodynamic force at 800 km is 5.6xl0~5 N. Because of the large offset 

of the Iridium solar panels from the center of gravity of the spacecraft, an aerodynamic offset of 1 

m is used to calculate the maximum aerodynamic torque. 

The total maximum disturbance torque from all three of these sources is 1.5xl0"4 N-m. As a con- 

servative approximation, this value is used as the steady state standard deviation of the distur- 

bance torque model on each axis, GN . A time constant of one half the orbit period is used to 

model dependence of the torques, primarily magnetic dipole and solar pressure, on the location of 

the satellite within its orbit. The resulting disturbance torque dynamics are shown in equations 

4.50 and 4.51: 

*.„, = -±K + W/i(t) 4.50 

al   = L< 4.51 

4.3.2 Linearized Dynamics 
The linearized dynamics are divided into an attitude partition and an error partition based on the 

following division of the state: 

*i = [2q <QBN iV0] 

x2 = [bg Aß A§ 5fc] 
4.52 

-\T 

The process noise is divided into two blocks which correspond to this partition. Notice that there 

is process noise on the angular rate but not on the attitude state: 

Wl  =   [°lx3 ww W
N\ 

w2 =   \^bt 
wAß WAZ, w8l\ 

4.53 
T 

102 



The resulting dynamics are given in equations 4.54 and 4.55: 

xi = ¥lx + Glwl 

X2 = F2X2 + G2w2 

4.54 

4.55 

The linearized attitude dynamics are computed by partial differentiation of equations 4.33, 4.44 

and 4.50: 

F, = 

A 1 3x3 0 

B 7_1C     / l 

0    0    -— 1 

A = [&BN]X 

3x3 

c = r1([/^/]x-[^/]x/)-[4/]x 

0     0 

G1 = r1  o 
.0   13X3 

4.56 

4.57 

4.58 

4.59 

4.60 
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Dynamics of the error states were derived in section 3. 2. The results are summarized here: 

F2 = 

— 1 L3x3 0 

0 rr      j  nBLxnBL LAßy 

0 

0 

0 

0 

0 

T    r    I    nBLXnBL 

0 

0 

v TAJ
;»CH/ 

LnBLxnBL 

0 

0 0 
1 

-—II 
8b 

X<.,   I    nBLXnBL 

G2 = 

l3x3         0 0                  0 

nBLxnBL 
0                  0 

0         0 
(nBLnCH)X(nBLnCH) 

0        0 "                   nBLxn 

4.61 

4.62 

As mentioned earlier, these linearized dynamics are used for the error state prediction as well as 

for covariance propagation. 

4. 4 Measurement Prediction and Update 
The measurement update incorporates all available sensor measurements to correct errors in the 

state estimate. The filter compares the actual measurement to the measurement prediction and 

applies an optimal gain to the difference based on the measurement sensitivity, H^.. This section 

presents calculation of the predicted measurements along with derivation of the associated mea- 

surement sensitivity for both GPS and gyro measurements. 

4.4.1 Differential Phase 

Predicted Phase 
The predicted phase at time tk is calculated by substituting the appropriate state estimates into 
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equation 1.4. All of the estimates come from the state x^.: 

A9I); = (<)r[pLj-A^ + ^ 4'63 

The estimated LOS vector, p*j est, is constructed by transforming the true LOS in the navigation 

frame using the estimated attitude matrix: 

The predicted GPS error is composed of the bias calibration value and the line bias, correlated 

noise and baseline length error estimates at time tk_. 

Ael7 = X([p-eJ,0 + Ap\ + Afu + (<.- lpBj,eJ)tii 4*65 

Implementation of the bias calibration model, %, is discussed in section 3.3.2. The differential 

phase error due to baseline length variation (67?,-) is formulated according to equation 3.27: 

%.= (<-P;)O^. 3.27 

Predicted phase is subtracted from measured differential phase to produce the differential phase 

residual, 

Z*GK = AjP('*)-A(p(^_ ) 4'66 

Differential Phase Sensitivity 
The differential phase measurement sensitivity is derived from the measurement equation: 

The error term was defined in section 3. 2, 

Ae,. j = Am,. } + APi> j + Aß,. + A$,. j + {ubi ■ ßJ)8fc,. + Av,. j 3-4 

and sensitivity of differential phase to each of the GPS differential phase errors was derived in 

section 3. 2. Sensitivity to the attitude state, 2q, is shown in equation 4.67: 

3Aq>, , 4.67 
l2q 82q 
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The sensitivity is easier to calculate if the differential phase prediction is first subtracted from the 

measurement: 

H     -    9   (Am    Ami - ÖZ*GM 4.68 

This is possible because the measurement prediction at time tk_ is not a function of the attitude 

state at time tk: 

3 -Acp(^_ ) = 0 4'69 

Assuming that the integer solution is correct, residual zk is calculated by substituting equations 1.4 

and 4.63 into equation 4.66: 

*       - (hB\T   fnB    nB     1 + AP AF 4.70 

An expression is needed for the error in the LOS vector. According to equation 4.31, the attitude 

error matrix can be formulated as a function of the error quaternion. This substitution is used with 

equation 4.64 to calculate error in the LOS vector as a function of the attitude error state: 

p^(l + [2q]x)^.p; *71 

pB = (l + [2q]x)[ß*„,] 4J2 

Py-[pL^] = [2q]x[p^J 4-73 

Incorporating this expression into equation 4.70, the measurement residual to first order is: 

ZiJ = bl-[2q]x-[f>lest]+A~Eij 4.74 

The left hand side of equation 4.74 is the component of the residual due to attitude error, while the 

term    Ae • • is the difference between the true and predicted GPS measurement errors, calculated 

using equations 3.4 and 4.65: 

Ae/y = Am.y + An .-x([p-eJ,0 + AßI + Ai-,y + (^.-[p^J)6^ + Av,;;. 4.75 
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Taking the partial derivative of equation 4.75 with respect to the quaternion error state 2q, 

did = r6"   i   b 
dz< *      -B    ,    u 4.76 

The GPS differential phase measurement has no sensitivity to the angular rate, disturbance torque 

or gyro bias. 

The remaining GPS error sensitivities are summarized here. Derivation of the error sensitivities 

can be found in section 3. 2. 

Correlated noise sensitivity is the identity for the channel and baseline corresponding to the corre- 

lated error state: 
dA<?u _ 

Wk.1 
= 8(U)oOW) 3-17 

Line bias sensitivity is the identity for each measurement on the appropriate baseline: 

^• = 5(U) 3.19 
5Aß* 

Sensitivity to a baseline length variation bbk is a function of the geometric relationship between 

the LOS vector and the baseline unit vector: 
9A<PU _ 5r; k). (U

T . oB    ) 3.28 

White Noise 
White noise on the GPS measurement is modeled according to equations 3.12 and 3.13 using the 

intensity model from section 3.3.3. 

4.4.2 Gyro Measurement 
Assuming that the gyro assembly is mounted at the center of gravity of the vehicle, the gyro mea- 

surement ®M is a direct measurement of the spacecraft inertial rates in the body frame corrupted 
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only by a bias term and white noise: 

(QM = ®BI + bg + vg 4.77 

Substituting from equation 4.39, 
B B      , 4 7» 

Prediction 
A measurement prediction is formulated based on the non-linear attitude propagation and linear 

gyro bias dynamics: 
~B      B~N   N     - A 7Q 

Update 
The measurement residual, zg, includes angular rate error, bias error, white noise and an orbit rate 

transformation error, [2q]x • (bN]. This term represents error in the orbit rate produced when the 

•    B^N 

rate is transformed to the body frame using and estimate of the attitude matrix,   C   . 

zg = &*BN + [2q]x • &B
NI + bg + vg 4,8° 

Taking the partial derivative of equation 4.80 with respect to the quaternion error state [2#] , 

^s- - -r«ß l 4-81 

The sensitivity to angular rate and gyro bias are both the identity: 

dzc "*"g -     1,     o 

d(0B
BN 

x3x3 

db„ *3x3 

4.82 

4.83 
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4. 5 Implementation 

4.5.1 Satellite Selection 
Ideally, a receiver would track every visible GPS satellite and all of the measurements could be 

processed to reach an optimal state estimate in the filter. In most applications, however, the num- 

ber of measurements must be limited by receiver capability or computational limitations. A sim- 

ple satellite selection algorithm is presented here which quickly selects a subset of satellites which 

produces minimal estimation error. 

A metric is needed for measuring the quality of a potential set of satellites. The most useful met- 

ric of GPS constellation quality for attitude determination is ADOP, or attitude dilution of preci- 

sion. As explained in section 1. 4, a dilution of precision gives the ratio between measurement 

error covariance and solution covariance for the case of normally distributed uncorrelated mea- 

surement noise [26]: 

a. = DOP ■ CJ„ 4-84 

The measurement error covariance used here, ae, is the sum total of all differential phase error 

sources. The least squares solution is not sensitive to the dynamics of each of the individual error 

sources. 

In section 1. 4, DOPc, the dilution of precision for the attitude matrix, was presented. The objec- 

tive here is to develop DOP2^, or ADOP, the dilution of precision for the small angle correction 

in the filter. This DOP provides a measure of the theoretical attitude solution accuracy possible 

with a given set of satellites. 

ADOP is derived by formulating the least squares solution for attitude at the filter update step. 

Measurement sensitivity to the small angle state is given in equation 4.76: 

H^ = [PL,]S-*,„ 4-76 

If at least three measurements are available, the least squares solution for the small angles can be 
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computed as shown in equation 4.85: 
T    H _   \-lnT.   .,. 4.85 2q = (H2- • H2q. .)   H2- j ■ zkaps 

If the measurement noise is uncorrelated, covariance of the solution is a function of the measure- 

ment sensitivity and the measurement noise covariance: 

J-       (\3T    IT   r!,r2 4-86 a2q  -  <-*i2q • *i2qJ    CT^? 

Solving for ADOP, 

ADOP2k = Jdiag(KT
2-q-Ilrqf

l 487 

Total ADOP, or ADOPTOT, is the RSS total of the components of ADOP2§: 

ADOPTOT = Jtr(H^ ■ H2-)
_1 488 

rr is the trace operator. Because 2q is the vector of small angle attitude errors, ADOPTOT is an 

estimate of total attitude solution accuracy, as shown in equation 4.89: 

H + al + <5l = ADOPTOT ■ °e 4'89 

The various forms of ADOP are derived in units of rad/rad. In the sequel, ADOP is converted to 

units of degrees of attitude error per millimeter of measurement noise (7mm). 

A small ADOP is desirable, as this leads to small estimation errors. Sullivan demonstrates in [27] 

that ADOPTOT is minimized for the two baseline, one satellite case by choosing a satellite which 

is orthogonal to the antenna plane. The satellite selection algorithm developed here extends this 

logic to the multiple satellite case by choosing the subset of visible satellites which are most 

nearly orthogonal. In this context, two vectors are defined as "nearly orthogonal" if their dot 

product is small.   For channel m, the selection algorithm chooses the visible SV with a line of 

sight vector which minimizes the cost function J: 
m-\ 

A^-xd&.v 4-90 
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Here, p • is the LOS vector for the satellite already chosen for channel j. J(SVi) is the sum of the 

squared dot products of a candidate satellite, i, with the m-1 satellites on channels 1 through m-1. 

As shown in figure 4.3, the cost function is minimized for the selection of every satellite besides 

the first. The highest satellite is selected first to guarantee that at least one of the satellites will 

remain valid until the next satellite selection step: 

Figure 4.3: Satellite Selection Algorithm 

The algorithm continues adding satellites until all of the channels are filled or all available satel- 

lites are selected. 

4.5.2 Integrity Monitoring 
There are two primary failure modes of this filter algorithm. One is violation of the small angle 

approximation and the other is an incorrect integer solution. 

Failure of Linearization 
The assumption of small error magnitudes is used to linearize the filter about a nominal operating 
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point. If the true errors violate these small magnitude constraints, the assumption fails and non- 

linear terms can de-stabilize the filter. For example, the sensitivity of differential phase to the atti- 

tude correction is based on the small angle DCM rule in equation 4.31: 

*C^(l + [2q]x) 4.31 

If the angular correction is large, this identity develops significant errors, and filter gains based on 

the linearization become invalid. 

The filter error covariance P can be used to measure uncertainty in the linearization. The linear- 

ization is based on the attitude estimate, so uncertainty in the linearization is measured using 

<5T0T, the total RSS attitude estimation covariance: 

<*TOT = V^V 491 

If <JTOT is greater than a pre-determined threshold, a filter reset is triggered. In practice, this 

occurs during periods of poor satellite visibility. If no GPS satellites are in sight for an extended 

period of time, process noise and disturbance torques will cause the attitude covariance to grow. 

When the uncertainty reaches the linearity threshold, a reset is commanded. As soon as enough 

satellites are available, the search algorithm resets the filter. In a filter without the linearity con- 

straint, GPS measurements are incorporated into the state estimate as soon as they become avail- 

able, even if attitude uncertainty is very large. This can lead to divergent state errors, because the 

filter gains are based on a linearization which may differ significantly from the truth. 

False Integers 
The second failure mode is selection of incorrect integers. An incorrect integer solution occurs 

when the ideal phase for a false attitude matches the measured fractional phase better than ideal 

measurements for the true attitude. At first, the measurement residuals will remain small, but any 

motion of the vehicle or the GPS constellation should change the viewing geometry enough to 

reveal that the integer solution is in error. Unfortunately, the filter has no way of knowing this, 

and it continues to compute an "optimal" correction with every measurement update. 

The integer validity algorithm solves this problem by identifying incorrect integers. Keep in mind 
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that this algorithm is independent of the integer solution algorithm; while that algorithm solves 

for possible integers, this algorithm evaluates validity of the integers based on the size of the mea- 

surement residuals. 

The integrity algorithm could reject any attitude solution which produces large measurement 

residuals, but some precautions are necessary to avoid invalidating the true solution. Before 

entering the integer validity loop, the algorithm determines whether the filter is in transient or 

steady state mode. Transient mode is defined as the time during which the combined attitude and 

angular rate uncertainty may result in large corrections to the attitude estimate. While this is 

occurring, large fluctuations in the measurement residuals might be falsely interpreted as invalid 

integers. Equation 4.92 defines the mode of the filter: 

SS = [Qtr(F2^) + At-tr(PJ) < 10°] 4.92 

Here, SS = 1 during steady state operation and SS = 0 during transient mode. 

The most common source of a transient mode is initialization of the filter after an integer reset. If 

the filter is not given time to settle transients before the integer validity subroutine is called, the 

filter may become stuck in endless loops of calling the integer solution and integer validity algo- 

rithms. 

If the filter is indeed in steady state mode, the integer validity subroutine is called. Only good 

measurements are used in the validity routine. Bad measurements include measurements from 

satellites flagged below the elevation mask and measurements reported as invalid by the receiver. 

Residuals are calculated by comparing the good measurements to predicted differential phase for 

the current attitude estimate. The residuals are compared to a threshold which is measurement- 

specific. The threshold is calculated by combining residual uncertainty from the state covariance 

with residual uncertainty from the measurement noise: 

<(2q, co) = ((H2qH2q)a^ + (HJHJ(A? aJ) 4.93 

<4(v) = R 4-94 

= ifi: 
2     .     u.^2   . . 4.95 + G Thresh ~ J VuAcp(2q, co) T uA<p(v) 
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<2 
aA (2~ co) is the differential Pnase uncertainty due to attitude and angular rate errors.   GA(p(v) is 

the uncertainty due to the measurement noise. As shown in equation 4.95, the threshold Zjhresh is 

three times the total uncertainty expected from the attitude, attitude rate and measurement noise. 

A more robust design could incorporate the uncertainty due to line bias, baseline length and corre- 

lated noise errors as well. 
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Figure 4.4 shows the integrity monitoring algorithm: 

No 
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Solve Integers 
Filter Reset 

Resolve Integers 

Filter Reset 
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To Validity Threshold 

Yes 

No 

Measurement Prediction 

Figure 4.4: Integrity Monitoring 

A filter reset consists of returning the state estimates to their nominal values and returning the 

covariance of each state to the steady state model 1-a value. The exception to this is the attitude 
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error covariance, which is calculated in the integer solution algorithm. 

As a final safeguard, two out of bound residuals are required to trigger a new integer solution. 

This is because otherwise a single large random noise value might invalidate a good attitude solu- 

tion. After the new integer solution is commanded, the attitude solution from the integer ambigu- 

ity solution is compared to the attitude before the reset. If the two attitudes are close, the rest of 

the state vector and covariance matrix is not reset. This kind of "nearby" solution indicates that 

the reset was triggered by noise rather than the wrong integer solution, and all of the estimated 

states will still be valid. If the integer solution differs significantly from the previous attitude 

solution, the entire state will be in error because of filter corrections based on a linearization 

which was nowhere near the true nominal. This triggers a complete reset of the filter states. 

Demonstration of performance of the integrity monitoring algorithm is found in sections 6.5.4 and 

6.5.5. 
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Chapter 5 

Linear Covariance Analysis 

5.1 Introduction 
The purpose of this chapter is to examine the theoretical error covariance of the integrated Kai- 

man filter. Three specific objectives are covered. In section 5. 2, performance of various reduced 

order filter designs is compared to the full order design using time domain covariance analysis. A 

single reduced order design is chosen, and an error budget is calculated for this final design. Sec- 

tion 5. 3 examines sensitivity of the reduced order filter to environmental uncertainty and changes 

in GPS error intensity using a steady state linear covariance solution. In section 5.4, the same 

steady state solution is used to look at the effects of hardware parameters such as array size and 

gyro quality on filter performance. 

The nominal model used here is a Kaiman filter with 18 GPS measurements and a three gyro 

MMIMU package. The full order filter includes states which model a correlated disturbance 

torque (3), gyro bias (3), correlated noise (18), line bias (3), and baseline length error (3). The full 

order filter has a total of 36 states. 

5. 2 Sub-Optimal Filter Design 
Optimal Kaiman filter performance is obtained when every system dynamic is included in the 

design model. However, performance of a Kaiman filter can be hindered by too many error states, 

especially if the number of available measurements is significantly less than the number of states. 

A high order filter may also cause excessive computational burden, so filter design is a compro- 

mise between obtaining good performance and choosing a reasonable set of states. A reduced 

order filter is chosen here after comparing the performance of various sub-optimal designs. 

The most simple method of predicting estimation error is to solve the closed loop Lyapunov equa- 
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tion for the linearized system: 

0 = (F - KH^ + PJF - KH)T + GQGr + KRKT 5.1 

Here, F, G, H, K, Q, and R are calculated at the linearized point and iteration is used to solve for 

P^, the steady state covariance. But interferometry is a time-varying problem: GPS satellite 

geometry is constantly changing, so the filter never reaches steady state at a single point. Instead 

of steady state analysis, performance is compared using time domain propagation of the error 

covariance matrix with the matrix Ricatti equation and the measurement update equation: 

P(0 = F(0P(0 + P(0F(0r + G(0Q(0G(0r 5'2 

Pk+ = (1 -KkUk)Vk_ (1 -K,H/ + K,R,K, 5.3 

P(0 is the estimate covariance, but it is not the covariance which is reported by the filter. The 

reduced order filters examined here are sub-optimal in the sense that they are designed with 

incomplete system models. This means that the covariance estimate within the filter is propagated 

using the reduced order system model: 

P(0 = F(0?(0 + P(OF(Or + G(OQ(OG(Or 5'4 

T 
P,+ = (l-?A)?t. (1-KA)   +K,RfeK * 

5.5 

Here, F, G, Q and R are the system matrices used for the suboptimal design, P is the estimated 

covariance and K is the suboptimal filter gain, calculated using P in equation 4.13. To calculate 

the true error covariance, P, the full order dynamics are propagated using equation 5.2 and 

updated with the suboptimal gain from the filter. If the order of the sub-optimal filter is nx, the 

gain matrix K must be padded with (36-nx) columns of zeros in order calculate the full order 

update. The augmented matrix is referred to as K'. 

Figure 5.1 shows this simultaneous propagation of the filter covariance and truth covariance. The 

output, P(t), is used to calculate statistical filter performance. A more elaborate description of this 

reduced order analysis technique is found in [26]: 
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Figure 5.1: Sub-Optimal Filter Analysis 

5.2.1 Implementation 
Performance is compared on a nominal trajectory. Each linearized point consists of a nominal 

state vector and nominal satellite geometry. Filter performance is not sensitive to nominal angular 

rate, so initial rates are identically zero. The state vector and satellite geometry history for the 

time domain simulation are produced by running the environment portion of the non-linear simu- 

lation developed in section 6.2.1 for two orbits with initial conditions taken from test case 02 (test 
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cases are developed in section 6. 3): 

Parameter Value 

Longitude of the Ascending Node (Q,Q) 135.0570° 

True Anomaly (Q,Q) 114.4437° 

Attitude +5° yaw, pitch, roll 

Angular Rate +0.017s yaw, pitch, roll 

Control Target LVLH Hold 

Table 5.1: Covariance Analysis Initial Position 

The disturbance torque model and differential phase error intensities used for the covariance anal- 

ysis are shown in table 5.2: 

Parameter Model (Simulated Data) 

Differential Phase White Noise Intensity in section 3.3.3 

Correlated Noise 1st order model (section 3.3.3) 

Line Bias TAß = TP/2 

Baseline Error %b = TP/2 

ab = 0.3% 

Disturbance Torque Gravity gradient + 1st order (section 4.3.1) 

XN  =TP/2 

aN = le-4 N-m 

Table 5.2: Covariance Analysis Error Parameters 

TP is the orbit period of 100 minutes. For each sub-optimal filter, the history of the total attitude 

1-a error, oTOT, is presented, where: 

°TOT = *jtr(p2q) 5-6 

In addition, the maximum value and 95% confidence interval of oTOT for each design is compared 

to the same values for the nominal design. 

All of the test cases use a 4-antenna, 1 m square antenna array as the baseline. 
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Full Order Filter 
The full order filter is presented first. Figure 5.2 shows the 1-G error bound (±CT0T) along with 

total ADOP and the number of valid measurements over the trial. Total ADOP is an indicator of 

the quality of the GPS viewing geometry, as described in section 4.5.1: 
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Figure 5.2:1-a Bound for Full Order Filter 

The scalloped appearance of the covariance bounds is the result of the satellite update rate. Satel- 

lite positions for the covariance analysis are sampled every 100 seconds during the simulation to 

reduce the size of the database. Notice that the covariance bounds do not change significantly 

over the time span of two orbits despite changes in the number of valid measurements and total 
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ADOP. The reason for this is that spacecraft disturbance torques cause very small angular accel- 

erations. In turn, the attitude covariance grows slowly in the open loop, and just a few measure- 

ments at the 1 Hz GPS output rate are enough to maintain tight covariance bounds. 

Figure 5.3 shows a bar chart of the total angle uncertainty statistics for the nominal run. The ini- 

tial transients are not included in the figure. Note that a 95% confidence interval for oT0T does 

not imply 95% estimation confidence. The chart is simply used as a comparison tool to measure 

sensitivity of the filter in its suboptimal configurations. 

'S    o 
o Full Order Filter 

Figure 5.3: Nominal cTOT Statistics 

Sub-optimal filters are now formulated which remove the states one at a time. 

Gyro Bias 
Estimation of the gyro bias is included in most integrated filters for good reason. Figure 5.4 

shows the attitude covariance bound for a filter which does not include a gyro bias state. The atti- 

tude error is only limited by the ability of the GPS measurements to contradict the gyro bias term. 
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If GPS visibility was poor, attitude error would grow without bound. 
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Figure 5.4: Simulation: No Gyro Bias State 

Figure 5.5 summarizes the change in RMS error. Obviously, elimination of the gyro bias state is 

not an option. 
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Figure 5.5: aT0T Statistics: No Gyro Bias State 

Disturbance Torque 
Removal of the disturbance torque results in a singularity in the Kaiman filter design, because the 

steady state attitude covariance is 0. To evaluate a design without correlated disturbance torques, 

attitude rate process noise is added to the filter design. Figure 5.6 shows the covariance bounds 

using process noise equal in intensity to the disturbance torque and no disturbance torque estima- 

tion. There is virtually no difference in the performance, indicating that estimation of the distur- 

bance torque is an unnecessary computational burden. The reason for this is that the gyros 

provide a measurement of external disturbance torques. Filter designs which use only GPS are 
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more sensitive to external disturbances. 
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Figure 5.6: Simulation: No Disturbance Torque State 

The uncertainty statistics show a negligible change in performance for the reduced order filter: 

CO 
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Figure 5.7: aT0T Statistics: No Disturbance Torque State 

Correlated Noise 
In the presence of correlated noise, a white noise error model produces excessive RSS attitude 

error. Figure 5.8 shows simulation results for a filter designed without correlated noise states. 

The average 1-cr bound is nearly doubled throughout most of this trajectory. Even worse, the 

bounds are much more sensitive to variations in satellite geometry than for the nominal filter. 

Note the large increase in the covariance bounds 1.7 hours into the simulation. This increase cor- 

responds to a period of time when only 9-10 measurements are valid. Covariance of the full order 
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filter does not change significantly in this time 
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Figure 5.8: Simulation: No Correlated Noise State 

For the error characteristics modeled in this thesis, the 18 correlated noise states recover a critical 

portion of the attitude errors. The benefit is summarized in figure 5.9 
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Figure 5.9: oTOT Statistics: No Correlated Noise State 

Line Bias 
There are only three line bias states, so estimation of line bias does not impose a heavy computa- 

tional burden. At the same time, linear covariance analysis shows that the impact of line bias 
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error on the attitude error covariance is significant: 
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Figure 5.10: Simulation: No Line Bias State 

Because line bias is independent of GPS constellation geometry, the increase in total RSS error is 

fairly constant during the simulation. 
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Figure 5.11: CTQJ Statistics: No Line Bias State 

The increase in total error of about 0.15° justifies retention of the line bias estimation state. 

Baseline Length Error 
The behavior of the filter with no baseline length error modeling is very interesting. The covari- 

ance increases significantly only in a very distinct set of GPS geometries. The reason for this 

characteristic is not clear, but it may correspond to the elevation of GPS satellites in the body 

frame. Baseline length variation causes a multiplicative error on differential phase, so phase from 
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low elevation satellites with high delta range incur the largest errors. 
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Figure 5.12: Simulation: No Baseline Length State 

Once again, the overall performance change is significant, so the three baseline length states will 

be kept in the reduced order filter. 
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Figure 5.13: oT0T Statistics: No Baseline Length Variation State 

Reduced Order Design 
The performance of the full order filter did not degrade appreciably after removal of the distur- 

bance torque state. Estimation of all of the other states is necessary to maintain filter l-o total 

attitude error near the 0.2° level achieved with the full order filter. With the elimination of the dis- 

turbance torque model, it is necessary to add process noise to the angular rate dynamics to com- 

pensate for the mismodeling. To choose a process noise intensity, theoretical RMS error is 

calculated for the reduced order filter with a range of values for angular rate process noise inten- 
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Figure 5.14: RSS Attitude Error as a Function of Design Process Noise Intensity 

The attitude covariance reaches a minimum for a design process noise RMS value of 3.6x10" N- 

m. This process noise intensity is used in the final filter design to offset the elimination of the cor- 

related disturbance state. 

5.2.2 Error Budget 
An error budget is calculated for the reduced order in order to see the contribution of each error 

source to the final filter attitude uncertainty. The errors are separated by propagating and updating 

one covariance contribution matrix for each of the error sources. The matrices are propagated 

using the full order system dynamics, but each one is driven solely by the process noise for the 

error source of interest. All of the covariance matrices are updated using the full order feedback 

gain, but the measurement noise intensity R is only included in updating the measurement noise 

covariance contribution. The resulting final error contributions are shown by axis in figure 
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Figure 5.15: Total Attitude Error Budget 

"IC" denotes the contribution of the initial covariance and "CN" is the correlated noise error con- 

tribution. As expected, correlated noise makes a large contribution to the attitude uncertainty. 

Notice the distribution of line bias errors. Sensitivity of differential phase to line bias variation 

has a similar structure to the roll and pitch angle sensitivities, so line bias primarily effects these 

two axes. The total error contributions are broken down in table 5.3: 

Source 
Percent of Total Error 
(%) 

RMS Error 
Contribution (deg) 

Initial Conditions 0.0000 0.0000 

Disturbance Torque 0.7561 0.0014 

Gyro Bias 15.5825 0.0282 

Line Bias 10.4384 0.0189 

Correlated Noise 45.9074 0.0832 

Baseline Length 1.4127 0.0026 

GPS Noise 25.9029 0.0469 

Table 5.3: Attitude Error Budget 

5.3 Environment Parameter Variation 
The sensitivity of the reduced order design to environmental parameter variation is now evaluated. 

The sensitivity is measured by calculating filter gains at a linearized nominal point with the nomi- 

nal error intensities and solving the Lyapunov equation with the nominal gains and perturbed dis- 
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turbance intensities. Using this analysis, insight can be gained into which error sources the filter 

is most sensitive to as well as how important accurate modeling of the errors is. 

The linearized system for this analysis uses the set of six satellites shown in figure 5.16, which 

produces a total ADOP of 0.055, typical for the Iridium orbit. One of the satellites is invalid: 

360 

Invalid Satellite 

Figure 5.16: Satellite Geometry for Linear Analysis 

In the following plots, the vertical axis represents total RMS attitude error and the horizontal axis 

is intensity of the environment parameter. The nominal parameter intensity value, used in the Iri- 

dium design, is at the center of the horizontal axis. The left set of bars (black) indicates RMS atti- 

tude error of a filter designed for the perturbed parameter intensity (optimal design). The right 

(white) bar is performance of the nominal filter in an environment with the perturbed parameter 

intensity (nominal design. Each parameter is tested from approximately 0.1 to 10 times the nom- 

inal value. All of the plots are shown with uniform limits on the vertical axis to allow for compar- 

ison between the various error sources. As a result, some of the larger RMS values are truncated 

at the limit of 0.4°. 

Disturbance Torque 
Variation of the disturbance torque has virtually no effect on the attitude solution, even if the nom- 
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inal design is not changed. 
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Figure 5.17: Sensitivity to External Torques with Gyros 

The lack of sensitivity to disturbance torque magnitude is a function of gyro augmentation. With- 

out the gyros, sensitivity to disturbance torque is more apparent, as shown in figure 5.18: 
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Figure 5.18: Sensitivity to External Torques without Gyros 

Without gyro aiding, the nominal design suffers from large errors as the disturbance torque grows 

larger than the nominal value. Much of this deterioration can be avoided if the larger disturbance 

magnitude is modeled in the filter. 

Correlated Noise 
The filter design is very sensitive to correlated noise magnitude regardless of whether the noise is 

modeled or not. Figure 5.19 shows a range of correlated noise intensities from less than half of a 

millimeter to over 1 cm. First, notice that the attitude error does not reach an equilibrium for large 

noise magnitudes. This makes sense, because a separate correlated noise state corrupts each of 

the GPS measurements; without any redundant measurements, the filter cannot attenuate large 

correlated noise magnitude. Fortunately, the measured correlated noise intensity is quite manage- 

able. In addition, performance of the nominal design is comparable to the optimal design for 

131 



intensities ranging from 1.5 to 5 mm. This means that the filter has some flexibility to deal with 

correlated noise intensity. At very small (less than 1 mm) correlated noise intensities, nominal 

design performance does break away from the optimal performance. The optimal design for a 

correlated noise intensity of 0.25 mm achieves a total RMS error of nearly 0.05°, but the nominal 

design performance remains at about 0.12° in this scenario. 

0.25 1.55 3.1 5.7 
Correlated Noise RMS for 25 deg Elevation (mm) 

10.45 

Figure 5.19: Sensitivity to Correlated Noise 

Correlated noise intensity for this test was scaled for all of the measurements simultaneously. The 

horizontal axis is the scaled value for a satellite at 25° elevation to provide a point of reference. 

Line Bias 
Line bias shares the low frequency properties of correlated receiver noise, but estimation of line 

bias is more flexible because one line bias measurement is available from each of the nch receiver 

channels. Line bias sensitivity is shown below for the case when five satellites are available. 
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Figure 5.20: Sensitivity to Line Bias 

The first few millimeters of line bias error have a significant effect on the attitude solution, but 

beyond about 5mm of RMS error, the attitude error contribution levels off for the optimal filter. 

The slow dynamics and redundant measurements of line bias allow the filter to effectively track 
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large line bias excursions. Error for the nominal design increases significantly above-about 7 mm 

RMS line bias intensity. 

Even with an optimal filter, large line bias variations can be dangerous when visibility degrades to 

two or three satellites. In poor visibility situations, line bias changes are indistinguishable from 

attitude movements. In applications with large temperature variations (such as this one), proper 

modeling of line bias dynamics is essential. 

Baseline Length Error 

The filter shows very little sensitivity to the baseline length error intensity. 
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Figure 5.21: Sensitivity to Baseline Length Error 

As with line bias, nCH measurements of each baseline length error state are available, making the 

baseline error very observable. The only significant increase in error occurs as the baseline 

expansion error RMS approaches 1%. However, this correspond to a 1 cm change in the length of 

aim baseline. Baseline errors this large are not likely to occur. 

5.4 Sensitivity to Hardware Configuration 
This section investigates the effect of hardware changes on the capabilities of the EKE The 

results are by no means exhaustive; the results are meant to aid in configuring an attitude determi- 

nation system by providing some hardware trade-offs. 

Array Size 
The first parameter examined is size of the array. Using four antennas arranged in a square array, 

133 



figure 5.22 shows the total steady state RSS attitude error as a function of array. 
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Figure 5.22: Attitude Error vs. Baseline Length 

The horizontal axis is the length in meters of one side of the array. Total RMS error is inversely 

proportional to the size of the array, and increases sharply for baselines shorter than about 1 meter. 

On the other hand, shorter arrays do simplify initialization, because the number of possible inte- 

gers for a differential phase measurement is proportional to baseline length. This is the primary 

trade-off required for designing an array. 

Receiver White Noise 
If the intensity of receiver- noise is modeled correctly, the filter shows very little sensitivity to the 

true intensity. Figure 5.23 show RSS error as a function of 1-G white noise intensity. The inten- 

sity shown on the horizontal axis is actually a scaling used on all of the measurements. The num- 

bers shown here are for a satellite at 25° elevation with respect to the body frame: 
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Figure 5.23: Attitude Error vs. Receiver White Noise Intensity 

Gyro Angle Random Walk 
For the nominal array and error parameters, steady state covariance is calculated for a range of 
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gyro angle random walk values. 
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Figure 5.24: Attitude Error vs. Gyro Random Walk 

The nominal gyro bias RMS value of 5°/hr is used for these trials. The filter shows very little sen- 

sitivity to angle random walk for values below the nominal value of 0.25 Yhr   . There are two 

reasons for this. First, the gyro is only an angular rate measurement; GPS is needed to fix abso- 

lute attitude, so rate aiding has a limited impact on attitude accuracy, especially with good satellite 

visibility. Also, gyro performance is still limited by the bias term. No matter how good the mea- 

surement is, the bias must still be separated from the actual angular rate. As the angle random 

walk grows, attitude error increases, and at 0.85°/hr1/2, attitude error is approaching the GPS-only 

total error of 0.26°. 

Gyro Bias 
With nominal angle random walk performance, the attitude determination performance sensitivity 

to gyro bias is also examined: 
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Figure 5.25: Attitude Error vs. Gyro Bias 

The gyro bias sensitivity looks quite different from the ARW sensitivity. In this case, the greatest 

sensitivity is at low values of the intensity. This means that reduction of the gyro bias term is a 
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paramount obstacle to improving performance of the integrated system. 
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Chapter 6 

Test and Simulation 

6.1 Introduction 
This chapter presents the computer simulation used to test the integrated attitude determination 

system. Section 6. 2 covers design of the simulation environment and generation of test measure- 

ments and disturbances. The remaining sections present the test results. Performance analysis is 

divided into nominal and off-nominal test cases. In section 6. 3, parameters are reviewed for each 

of the test cases. Section 6.4.1 includes overall performance results for the nominal test case for 

both experimental and simulated GPS measurement data. Detailed analysis is presented in sec- 

tion 6.4.2 for test cases which illustrate the unique capabilities of the ADS. 

After analysis of the nominal data, off-nominal test cases are used to demonstrate robustness of 

the software design. Several off-nominal test cases are used to examine the benefits of gyro aid- 

ing and correlated noise estimation in the EKE The remaining cases test the limits of the algo- 

rithms used for filter initialization and solution integrity monitoring. 

6. 2 Simulation 
The simulation code is divided into three modules. Figure 6.1 shows a flow chart of the construc- 
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tion: 
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GPS Measurement Model 

Gyro Measurement Model 

Figure 6.1: Simulation Block Diagram 

6.2.1 Environment 
The environment calculates truth states for the vehicle and GPS constellation. 

Orbit 
Vehicle position is computed using a circular orbit model with variable inclination, semi-major 

axis and longitude of the ascending node. Velocity is orthogonal to position with magnitude 

defined by the semi-major axis. No modeling of orbit perturbations is attempted. 

Attitude 
Computation of the truth attitude incorporates the disturbance torque models defined in section 

138 



4.3.1.  The angular rates and quaternion are updated using the dynamics defined in equations 4.33 

and 4.44. A first order Taylor series approximation is used with a 0.5 second integration time 

step. Control inputs generated using the control law in section 6.2.3 are added to the angular rate 

update with perfect following of the commanded rate and no lag. The control law maintains a 3- 

axis stabilized attitude aligned with the LVLH frame. 

GPS Constellation 
The GPS constellation is propagated using the ICD-GPS-200 almanac equations [1]. Input to the 

propagation routine is the GPS Yuma almanac data for week 900 (April 9, 1997). State vectors 

for all operational satellites are transformed to the LVLH frame and passed to the sensor block. 

6.2.2 Sensors 
The sensor block simulates on-orbit function of the gyro and GPS hardware. 

Gyro 
Gyro measurements are simulated using the gyro model developed in section 3.4. Simulated bias 

and noise terms are added to the true angular rate calculated in the environment. The orbital rate 

co0 is removed from the measurements before output to the filter. 

GPS Receiver 
The receiver is modeled with six-channels, four antennas and a nominal half-cone angle of 80°. If 

more than six GPS satellites are visible to the receiver, the satellite selection algorithm from sec- 

tion 4.5.1 is used to select a subset of six satellites for the attitude solution. 

GPS Measurement Errors 
GPS differential phase measurement errors can be generated through simulation or from experi- 

mental test data. Simulation is accomplished using the dynamic error models developed in sec- 

tion 3. 3. 

Experimental data comes from multiple data collection periods with the TANS Vector receiver. 

Measurements from the receiver are post-processed to extract the measurement error according to 
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equation 3.4: 
Ahj = A(Pu-A(P.,w£ 

3'4 

Here, the ideal phase is defined as the fractional part of true delta range based on knowledge of 

true body attitude i8^) during the test: 

The resulting total measurement error, Ae,;-, is calculated for an entire experiment and then stored 

in 5 minute intervals. Errors on each channel for each interval are labeled with the average SV 

azimuth and elevation with respect to the antenna frame during the interval. The errors are also 

indexed with elapsed time from the beginning of the interval, t£. 

During the simulation, true S V azimuth and elevation in the antenna frame are calculated for each 

SV using the environment output. Every 100 seconds, this azimuth and elevation is compared to 

values in the experimental data base. A best match is located in the error database by minimizing 

the sum of the squared azimuth and elevation differences between the simulated SV and an SV 

contained in the database. GPS measurements for the next 100 seconds are constructed by adding 

error data from the data base to delta range measurements predicted by the environment. The 

error data is added sequentially: t£ is matched to mod(t, 300), where t is the simulation time step in 

seconds. 
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Construction of the GPS measurement is outlined in figure 6.2: 

Match true azimuth and 

elevation to azimuth and 

elevation in database 

Yes 
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Extract 5 minutes of error 

data from the database 

Choose time from database 
te = mod{t, 300) 

I 
Construct Phase Measurement 

I 
Filter Step 

Figure 6.2: Experimental GPS Data Update 

Only the fractional part of the measurement is passed to the flight software. The sensor block also 

passes a vehicle position estimate from the receiver to the flight software. Errors on the GPS posi- 

tion fix are modeled as white noise with a standard deviation of 75 meters. These errors are added 

to the true vehicle position and the corrupted fix is passed to the software. 

6.2.3 Flight Software 
Flight software consists of the integer ambiguity algorithm developed in chapter 2, the EKF from 

chapter 4 and a simple feedback control law. The filter is parameterized to allow enabling and 

disabling of all of the error states. 
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A quaternion feedback law is used to align spacecraft attitude with the LVLH frame. Control 

action is taken if magnitude of the sum of the angle error and rate error falls outside of a pre- 

defined dead band threshold, QDB. Angle error is defined as 2eq, two times the vector part of the 

quaternion error, where quaternion error is the rotation from the desired quaternion to the esti- 

mated quaternion: 

6.1 h = 2o® 2 

The desired quaternion is simply: 

2o = 6.2 

The rate error, 6^, is the difference between the estimated rate, (bBN, and the desired rate, ro0, 

which is 0 in this case. 

Outside of this threshold, the commanded control is a linear combination of the vector part of the 

error quaternion and the rate error which is designed to give a closed loop natural frequency of 

0.05 Hz and a 0.707 damping ratio. To avoid excessive slew rates, the control system is rate lim- 

ited to a>max. Above this rate, the control law is strictly rate feedback. Implementation of this 

142 



control law is shown in figure 6.3 

Sc = -2CG>„(eJ-<oM(2e ) Qc = -2Cö>B(effl) 

r« = ' [<U 

Figure 6.3: Control Algorithm 

con and £ are the desired natural frequency and damping ratio, respectively. Qc is the commanded 

angular acceleration, which leads to a torque command Tc. 

6.3 Test Cases 
The flight software is tested in nominal and off-nominal configurations. The nominal test phase, 

which consists of 40 trajectories, is designed to determine expected performance of the system. 

The off-nominal test cases test the sensitivity of the filter to parameter variation and changes in 

the environment. Off-nominal test cases include tumble tests, free drift tests, high altitude and 

multipath tests and testing with no gyro aiding. 

Each test case is identified by two numbers followed by one or more letters. The numbers indi- 

cate the seed that was used to generate initial conditions and to initialize random process noise 

and measurement noise for the test case. The first letter indicates the source of differential phase 

error for the test case. "E" indicates experimental data while "S" indicates simulated data. Any 
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additional letters refer to off nominal test conditions. 

Initial conditions are generated at random to test filter performance across a representative sample 

of trajectories. Longitude of the ascending node, Q0, and mean anomaly, v0, are unique to each 

test case, resulting in a unique GPS viewing geometry for each case. Initial conditions for each of 

the error parameters are selected at random from a normal distribution with standard deviation 

equal to the modeled intensity (a). 

The process noise is also unique to each test case. The purpose is to create random, repeatable 

GPS and gyro error histories to be used in the performance analysis. This also creates a different 

disturbance torque environment for each test. 

6.3.1 Nominal Test Cases 
Each nominal trajectory lasts 7000 seconds, slightly longer than the 6000 second Iridium orbit. 

Twenty nominal trajectories are run using simulated GPS measurement data for the sensor output, 

each with unique initial conditions. The remaining 20 trajectories test filter performance on 

experimental GPS measurement data collected with the Vector receiver. These 20 trajectories use 

the same initial conditions as the 20 simulated data trials. 
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Simulation parameters for the nominal runs are shown in table 6.1: 

Item Parameter Value 

Orbit Altitude 421 nm 

Inclination 89° 

ß0 Random 

v0 
Random 

Initial Conditions Attitude +5° yaw, pitch, roll 

Angular Rate +0.017s yaw, pitch, 
roll 

Attitude Control Control Method 3-Axis Stabilized 

Target Attitude LVLH Aligned 

Receiver Number of Antennas 4 

Number of Channels 6 

Array Size lm x lm square 

Output Rate 1Hz 

Gyro Model MMIMU (Chapter 3) 

Output Rate 2 Hz 

Table 6.1: Nominal Simulation Parameters 

The orbit parameters are based on the Iridium constellation specifications. The receiver output 

rate is based on the Trimble Vector. The micro-mechanical gyro is capable of generating mea- 

surements faster than the 2 Hz update rate used in the simulation, but the slower output rate allows 

for pre-filtering of the gyro measurement. The 5° initial offset in yaw, pitch and roll simulates ini- 

tialization of the software near the nominal nadir-pointing attitude. Larger initial attitude and atti- 

tude rate offsets are considered in the off-nominal test phase. 
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Nominal error parameters for the sensors and environment are shown in table 6.2: 

Parameter 
Sensor Model 
(Simulated Data) 

Sensor Model 
(Experimental Data) Filter Model 

Position Error White, 75m RMS White, 75m RMS No Model 

Differential Phase 
White Noise 

Intensity in section 
3.3.3 

Experimental Intensity in section 
3.3.3 

Phase Center/Body 
Fixed Multipath 

Correlated Noise 

Calibrated bias (sec- 
tion 3.3.2) 

Experimental Calibrated bias (sec- 
tion 3.3.2) 

1st order model (sec- 
tion 3.3.3) 

Experimental 1st order model (sec- 
tion 3.3.3) 

Line Bias TAß = TP/2 

<TAß = 3 mm 

Experimental TAß = TP/2 

GAß = 3 mm 

Baseline Error xb = TP/2 

Gb = 0.3% 

xb = TP/2 

ab = 0.3% 

xb = TP/2 

Gb = 0.3% 

Multipath No model Experimental No model 

Disturbance Torque Gravity gradient + 1st 
order (section 4.3.1) 

xN =TP/2 

GAT = le-4 N-m 
iy 0 

Gravity gradient + 1st 
order (section 4.3.1) 

x^ =TP/2 

GAT = le-4 N-m 

Gravity gradient (sec- 
tion 4.3.1) 

White noise (section 
5.2) 
Gw,« = 1.2e-5N-m 

Table 6.2: Nominal Error Parameters 

TP is the orbit period. The only artificial error injected into the experimental data is a baseline 

length error designed to mimic potential expansion and contraction of the antenna array in space. 

As discussed in section 3.3.4, baseline expansion was not experienced on the ground due to mini- 

mal temperature variation. The intensity of line bias in the experimental measurements is about 

one half of the intensity used in the simulated data, so this difference must be considered when 

examining the test results. 

Performance of the software for the nominal test cases is indicative of on-orbit performance. 

However, the results cannot be considered a guarantee of on-orbit performance, as the test cases 

do not simulate every possible combination of gyro errors, GPS errors and visibility conditions. 

To ensure performance robustness and to test the operational limits of the filter, off-nominal test 

cases are considered. 
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6.3.2 Off-Nominal Test Cases 

No Gyro 
The benefit of gyro augmentation under nominal conditions is tested by conducting a test without 

measurements from the gyro. The results of this test are compared to predicted results using lin- 

ear covariance analysis. 

High Altitude 
GPS satellite visibility is generally very good for a LEO satellite. In order to test the filter in more 

sparse visibility conditions, high altitude simulations are conducted to define the upper altitude 

limit for unaided filter operation. Tests are conducted with and without gyro measurements to 

examine the role of gyros as GPS visibility degrades. 

Multipath 
The purpose of the multipath test is to examine the response of the filter to measurements that are 

artificially corrupted with multipath. No attempt is made in the software to model environmental 

sources of multipath, but it must remain stable in the presence of multipath. Ideally, the perfor- 

mance of the filter should not degrade significantly due to a typical multipath signal. Multipath 

error for the test is generated using the sinusoidal model developed in chapter 3. 

Tumble Initialization 
The nominal tests all use an initial 5° yaw, pitch and roll offset with a slow (0.017s) drift on each 

axis. The tumble initialization tests examine the ability of the attitude software to successfully 

initialize when the initial attitude and attitude rate are chosen at random. Ten tests are conducted, 

with some of the initial attitudes nearly inverted from the nominal. 

Free Drift 
The free drift test measures the ability of the filter to maintain attitude tracking during a loss of 

control authority. The worst case initial conditions from the tumble initialization are used as a 

starting point for this one orbit test. Results are compared with and without the availability of 

gyro measurements. 
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Correlated Noise 
The correlated noise tests demonstrate the impact of correlated noise on the attitude solution and 

examine the costs and benefits of removing correlated noise estimation. 

6. 4 Nominal Test Case Results 
Overall results for a single nominal test case are presented in section 6.4.1. In section 6.4.2, 

detailed analysis is presented for individual runs chosen to highlight the ability of the filter to 

reject disturbances in the presence of significant measurement uncertainty. 

The attitude solution and gyro bias estimate are of primary importance in the spacecraft guidance 

and control system. The attitude solution is needed for control system feedback as well as by all 

of the pointing equipment on the spacecraft. Gyro bias estimation is used to harness the full capa- 

bility of the gyro assembly; without knowledge of the gyro bias, gyro measurements are virtually 

useless. These two outputs will be at the focus of the nominal and off-nominal results discussion. 

The filter angular rate estimate is also used in the control system, but rate error performance can 

be gleaned directly from the gyro bias estimate. This is because the gyro assembly is the filter's 

only source of direct rate measurements. 

6.4.1 Overall Nominal Test Case Results 

Initialization 
Initialization of the filter includes solution of the integer ambiguity and the transient response of 

the filter to initial conditions. The transient response is defined as the initial 10 minutes of filter 

operation for each test case. Performance of the integer solution algorithm is addressed in section 

2. 4. Discussion of the transient response is found in the individual test case analyses, in section 

6.4.2. The portion of each test following initialization is defined as steady state operation. The 

attitude statistics presented here are calculated for filter steady state operation. 

Visibility Conditions 
The quality of a GPS based attitude solution is dependent on the geometry of GPS satellites visi- 

ble to the receiver and the validity of the measurements from those satellites. Two metrics of con- 
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stellation quality are examined here. The most simple measure of quality is the number of good 

measurements available to the receiver. The receiver is capable of handling 18 differential phase 

measurements per 1 second epoch, but 18 measurements will only be available when six satellites 

are within the 80° antenna half cone angle. In addition, each of the six satellites must be valid. A 

visible satellite will be invalid if the receiver cannot achieve a lock on the carrier phase from the 

satellite or if for any reason the receiver determines that measurements from the satellite are not 

reliable. 

With a low orbit altitude and a nadir-pointing vehicle attitude, the nominal configuration encoun- 

ters visibility similar to that expected on the earth. Figure 6.4 shows the number of valid GPS 

measurements available to the filter over all 20 of the test orbits for the experimental GPS mea- 

surement error tests: 
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Figure 6.4: Valid GPS Measurements (Experimental Data) 

The horizontal axis is the number of valid measurements. The height of each bar is the percentage 

of time at least that many valid measurements are available. Nine valid measurements is virtually 

a guarantee, but the frequency drops off sharply above 15 measurements. 

The fluctuations in validity are caused by characteristics of the Vector receiver used for ground 

based testing. Recall that the experimental data is stored in 5 minute intervals for use during the 

simulation. The receiver reports a validity flag with each measurement, and this flag is stored in 

the database as well. During the simulation, six satellites were visible to the receiver almost 80% 

of the time, but a measurement was only used if the corresponding ground based data was tagged 

with a good validity flag. 

Inspection of the experimental data reveals that two primary instances which lead to invalid mea- 
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surements. The receiver usually tags the measurements from a channel as invalid for a short 

period following each satellite change on the channel. Another frequent occurrence is intermit- 

tent invalidation of satellites at approximately 15° to 30° elevation in the body frame. This behav- 

ior could be caused by signal blockage, but as shown in the sky map in figure 3.7, the highest 

obstruction in the vicinity of the receiver is below 10° in the body frame. In fact, a mask setting of 

10° elevation was used during testing to prevent selection of satellites below this elevation. It is 

possible that the validity behavior is caused by gain pattern characteristics of the patch antennas at 

low elevation or by fault detection algorithms in the Vector software. 

This hardware characteristic is not modeled in the simulated data. As a result, measurement 

validity is much better for the simulated error cases: 

100 
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Valid Measurements 
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Figure 6.5: Valid GPS Measurements (Simulated Data) 

In fact, the validity data for simulated measurement is only a function of satellite geometry and 

the attitude estimate, not receiver characteristics. Validity is a function of the attitude estimate 

because a 10° body frame elevation mask angle is used to invalidate low-lying satellites. If the 

attitude estimate is in error, the software may erroneously label a valid measurement as invalid or 

vice-versa. Otherwise, every visible measurement is considered valid. The key validity statistics 
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are compared in table 6.3: 

Number Valid Measurements 
(Experimental Data) 

Number Valid Measurements 
(Simulated Data) 

Mean 14.9772 17.5721 

Standard Deviation 2.3847 1.1202 

1-a (Lower Bound) 15 18 

2-G 11 15 

3-a 6 12 

Table 6.3: GPS Validity Statistics 

The simulated data clearly has better average validity than the experimental data, but, as the 

ADOP discussion will show, the benefit of 18 measurements versus 15 measurements is marginal. 

The number of valid measurements is always 6 or greater. Six measurements are sufficient to 

determine the attitude of the spacecraft even without previous attitude knowledge (provided that 

the integers are resolved), so measurement validity never reaches a critical level. 

Another metric which measures the quality of the GPS geometry is ADOP. As explained in sec- 

tion 4.5.1, ADOP is an instantaneous measure of estimation accuracy which is dependent on the 

linearized differential phase measurement sensitivity. Total ADOP is used to estimate the total 

RSS attitude uncertainty as a function of total differential phase error: 

4.89 fil + OQ + aj = ADOPTOT ■ ce 

151 



The distribution of total ADOP for the nominal test cases is presented in figures 6.6 and 6.7: 
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Figure 6.6: ADOP (Experimental Measurements) 
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Figure 6.7: ADOP (Simulated Measurements) 

Here, the height of each bar denotes probability density. For example, the middle bar in figure 6.7 

shows that ADOP was greater than 0.0475 and less than 0.0525 about 60% of the time across all 

of the nominal test cases. Notice that, although the simulated data produces an average of three 

more valid measurements than the experimental data, the average ADOP only differs by about 

10%. This proves that the marginal benefit an added satellite when three or four are already avail- 

able is relatively small when calculating an attitude point solution. However, additional satellites 

do increase the resolution of the filter in estimating the gyro drift and combatting correlated noise 

and biases, so the difference in visibility could result in superior performance when using the sim- 

ulated GPS errors. 

Attitude 
The distribution of total attitude error (RSS) over the 20 nominal runs with experimental data is 
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shown in figure 6.8: 
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Figure 6.8: RSS Attitude Error Distribution (Experimental Data) 

The distribution shows that total RSS attitude error is typically 0.2 to 0.3°. Attitude error statistics 

for each axis are summarized in table 6.4: 

Yaw (deg) Pitch (deg) Roll (deg) Total (deg) 

RMS 0.1250 0.1548 0.1578 0.2540 

2-a 0.2357 0.2934 0.2996 0.3875 

3-a 0.3412 0.4029 0.4320 0.4836 

Maximum 0.4150 0.4537 0.4943 0.5706 

Table 6.4: Nominal Attitude Error Statistics (Experimental Data) 

Yaw performance is generally superior to pitch and roll. The difference is a result of the antenna 

array configuration. Yaw DOP for the planar antenna array is generally smaller than the DOP for 

pitch and roll because the baselines are orthogonal to the yaw axis. The geometry results in better 

conditioning of the yaw angle measurement sensitivity than pitch and roll. 

Recall that the Iridium design requires roll estimation performance superior to that of yaw and 

pitch: 

Axis 3-a Pointing Requirement 

Yaw 0.4° 

Pitch 0.3° 

Roll 0.2° 

Table 1.1: Iridium Attitude Determination Requirements 
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Nominal filter performance meets the yaw requirement, but the results fall slightly short of the roll 

and pitch specifications. If reduction of roll and pitch errors is mission critical, three methods 

may be used to improve performance. One is to incorporate additional sensors into the ADS 

suite. Another is to increase the size of the antenna array. The linear covariance analysis in sec- 

tion 5. 4 showed that doubling of the array size to a 2 m square reduces attitude errors by approx- 

imately one half. The third solution is to change the geometry of the existing array. Recall that 

yaw performance is better than roll and pitch because the array is orthogonal to the yaw axis. Tilt- 

ing the array forward into the plane orthogonal to the roll axis would decrease the roll ADOP. 

However, this would also result in less available measurements, so a better option would be to tilt 

the array slightly forward. Finally, a simple rotation of the square array would also improve roll 

performance. In the nominal configuration, the diagonal baseline is aligned with the roll axis. 

Rotation of the array to align the long baseline with the pitch axis would decrease the roll ADOP. 

Of course, this would come at the expense of pitch performance. 

Although the Iridium requirements are not satisfied, performance of the ADS should satisfy esti- 

mation requirements for many LEO spacecraft missions. Total 3-G pointing error over the nomi- 

nal test cases is only 0.48°. Another favorable characteristic is that maximum estimation errors on 

each axis are very well behaved. 

As mentioned previously, these are the steady state attitude performance statistics. Filter initial- 

ization for each of the test cases was excellent, with the results presented in section 2. 4. 

The attitude solution using simulated GPS data behaves much like the solution with experimental 

data. Recall that the average number of valid measurements with experimental data is lower than 

the number with simulated measurements, so improved performance might be expected with the 

simulated error data. The RMS errors are indeed smaller, but maximum roll and pitch errors for 

the simulated data case are significantly larger than the corresponding values for the experimental 
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data case. 

Yaw (deg) Pitch (deg) Roll (deg) Total (deg) 

RMS 0.0735 0.1390 0.1438 0.2131 

2-a 0.1383 0.2683 0.2692 0.3573 

3-a 0.3041 0.4737 0.4840 0.5610 

Maximum 0.3995 0.6388 0.5910 0.6648 

Table 6.5: Attitude Errors (Simulated Data) 

One cause of the difference in performance is the nature of stochastic errors. If the assumption of 

normally distributed experimental errors is not entirely accurate, the random noise sequences used 

to generate simulated GPS data will contain more (or less) outliers than typical samples of exper- 

imental data. If the stochastic error data does contain more outliers than the experimental data, 

the result would be large 3-a and maximum attitude error statistics. 

Another cause of the degradation of roll and pitch performance for the simulated data case might 

be a discrepancy in the line bias model. In section 3.3.4, measured line bias intensity from ground 

based tests was doubled to calculate line bias intensity for the simulated data. This modification 

adjusts for the harsh temperature extremes encountered in space. However, additional line bias 

was not added to the experimental data. Line bias intensity for the experimental tests is therefore 

smaller than for the simulated tests. Since roll and pitch are more sensitive to line bias than yaw, 

the difference leads to an increase in roll and pitch estimation errors for simulated measurement 

data. 

Figure 6.9 shows that the distribution of errors for the simulated data tests is slightly different 
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from the experimental data results: 
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Figure 6.9: RSS Attitude Error Distribution (Simulated Data) 

The median error is about 0.15°, as opposed to 0.25° for experimental data. However, large mag- 

nitude (>0.5°) RSS errors occur more often in the experimental data. As mentioned previously, 

this may be the result of a non-Gaussian experimental error distribution.. 

6.4.2 Detailed Test Analysis 
Four nominal test runs are presented here in detail. Test case 13E represents typical performance 

of the filter for nominal test conditions. Each of the three remaining tests target a specific error 

source. Test 5S illustrates response of the filter to a particularly ill-behaved correlated noise tra- 

jectory. Test 1 IE shows the response to a line bias deviation, test 7S focuses on gyro bias distur- 

bance rejection, and test is an example of a large baseline length variation. 

Some remarks on the formatting of output data are necessary before proceeding. 

Correlated noise errors are smoothed before plotting to clarify the low frequency dynamics of the 

error. True line bias is available for simulated measurement data, but it cannot be directly com- 

puted for the experimental measurements. Recall that the experimental measurement is formed 

by superimposing total error from real tests on top of ideal phase for the simulated attitude. To 

extract true line bias from these measurements, the average differential phase error is calculated 

across all six channels and across time for measurements on a single baseline. The average is then 

smoothed in a low pass filter to remove the high frequency component of the total error. This is 

the line bias truth used to compute errors for the experimental data runs. 
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Nominal Case 13E 
This test run exhibits performance which is typical for filter operation on experimental data. Atti- 

tude error, attitude rate error, gyro bias and gyro bias error and ADOP information are shown in 

figure 6.10. Figure 6.11 gives the line bias and line bias error, baseline length variation and length 

estimation error and satellite visibility data. Figure 6.12 and 6.13 show true correlated noise and 

correlated noise estimation error for all 18 measurements. 

Line bias and correlated noise are the main factors driving the attitude estimation error. To see 

this, notice the large negative roll deviation at t = 100 min. The roll axis is aligned with baseline 

2, so the source of the deviation must be an error on baselines 1 or 3 or a gyro bias error on the roll 

axis. Figure 6.10 shows that the roll gyro bias is relatively flat at the end of the run, so gyro bias 

is not a factor. True line biases on baselines 1 and 3 are fluctuating throughout the run with a 2-3 

mm amplitude, but there is no distinct trend in these biases. 

Examination of the correlated noise states reveals that the source of the roll error is the measure- 

ment on channel 2, baseline 3. Figure 6.14 provides a close-up view of the correlated noise 

behavior on this measurement along with the roll axis attitude error. At t = 96 min, a satellite 

change takes place on this channel. Examination of the correlated noise state reveals that the 

measurement from the new satellite has a large positive bias. The bias calibration model does not 

completely model the bias, so the correlated noise estimate is slightly low and the estimation error 

starts at about -2mm. 

The response of the filter to this measurement bias is a function of sensitivity of the measurement 

to each of the filter states. The two states of interest here are the correlated noise state and the 

small angle roll correction. Figure 6.14 shows the location of the satellite on channel 2 relative to 

baseline 3. The satellite is nearly overhead, so a positive roll angle (]) moves slave antenna 3 

"away" from the satellite. This decreases the delta range b»s, so the measurement has a negative 

sensitivity to roll. The correlated noise state is an additive error, so the measurement has a posi- 

tive sensitivity to the correlated noise state. 

Thus the positive measurement bias results in a combination of a negative roll correction and a 
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positive correction to the correlated noise state. The sudden change in the correlated noise state 

due to the satellite change occurs faster than the expected correlated noise dynamics, so the initial 

filter reaction is a negative roll correction. The other measurements cannot overrule this correc- 

tion, so the filter remains in error until the correlated noise state reaches a smaller value. 

Notice that the filter can estimate roll rate as the slope of the roll angle, so the negative roll correc- 

tion creates a negative roll rate bias. The gyro reports no change in the roll rate, so a positive gyro 

bias error develops as the filter attempts to reconcile the gyro measurement with the GPS correc- 

tion. 

Examination of the attitude error statistics reveals that this large of an attitude error deviation is 

unusual. In most instances, the abundance of GPS measurements is enough to counteract the drift 

due to correlated noise. 

As an aside, the detailed view of the noise in figure 6.14 reveals that there is a repeating pattern in 

the correlated noise state. This is not a physical phenomenon but a result of the experimental data 

test methodology. Recall that in the sensor model, GPS errors are extracted from a data base 

according to azimuth and elevation every 100 seconds. In this instance, the satellite on channel 2 

matched the same ground-based data set for three consecutive updates. A possible remedy for 

this would be to choose error data at random from the matching data set rather than extracting the 

data sequentially. 

158 



Yaw 

o 
3  0.2 n A' i iJl J\A ■ ' 

£      0 
■S 
I -0.2 
5 

1^ 1           Hi        I ■•'■ 

Pitch Roll 

0 50 100 

0 50 100 
Time (min) 

0.06 

0.04 

0.02 

50 100 

"JV-J^^v^^ 

0 50 100 
Time (min) 

10 

0 

10 

0 50 100 

0 50 100 

0.06 

0 50 100 
Time (min) 

Figure 6.10: Nominal Case 13E Attitude History 
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Figure 6.12: Nominal Case 13E True Correlated Noise State 
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Figure 6.13: Nominal Case 13E Correlated Noise State Error 
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Nominal Case 05S 
This test case exhibits a worst case combination of gyro bias and line bias errors. The discussion 

will again focus on the roll estimation error around t = 100 min. Attitude error, attitude rate error, 

gyro bias and gyro bias error and ADOP information are shown in figure 6.15. Figure 6.16 gives 

the line bias and line bias error, baseline length variation and length estimation error and satellite 

visibility data. 

No significant trends are present in the correlated noise states or the baseline length error through- 

out this test, but figure 6.16 shows that the line bias on baseline 3 changes by nearly 1.5 cm begin- 

ning at t = 50 min. The filter closely tracks the line bias until t = 100 min, and no large attitude 

errors develop before this point. 

In the mean time, the roll axis gyro bias begins a sharp decrease beginning at t = 90 min. As this 

happens, the filter bias estimate lags behind and a negative offset develops in the estimated roll 

rate. 

At 100 minutes, the line bias estimate has just reached equilibrium when the true line bias 

reverses direction and increases. The small angle roll state has a negative sensitivity to line bias 

on antenna 3. A negative error has already developed in the roll rate due to the gyro bias dynam- 

ics, so this compounds the negative roll tendency caused by an increase in line bias 3. The result 

is a sharp negative roll correction which peaks at a magnitude of -0.5°. This is the largest roll 

error over all 40 of the simulated and real nominal test cases. 

The results show that in the face of a worst case combination of a 1 cm line bias deviation and a 

4°/hr change in the gyro bias over a 50 minute period, the filter is able maintains pointing accu- 

racy to 0.5°, which is about 2-c using the attitude uncertainty estimate within the filter. 
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Figure 6.15: Nominal Case 05S Attitude History 
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Nominal Case HE 
This test case demonstrates the capacity of the filter to reject large, relatively fast changes in the 

baseline length. Figure 6.17 includes the standard attitude, gyro bias and ADOP plots. In figure 

6.18, notice the variation in the length of baseline 2. At t = 40 min, the length of baseline 2 rises 

from -5 mm to +4 mm and back down to nearly 1 cm shorter than the nominal in a matter of one 

hour. The maximum baseline length estimate error during this time is only about 4 mm. 

Baseline 2 is orthogonal to the pitch axis, so any effects of the length error should be seen in the 

pitch attitude estimate. At t = 40 min, the pitch error does reach slightly more than -0.3°, but this 

is reasonable given the magnitude of baseline length variation. Pitch peaks again at +0.4° around 

t = 80 min, but this error does not appear to be associated directly with the baseline length error. 

The peak-to-peak variation in baseline length through this test is over 1 cm, nearly 1% of the 

nominal baseline length, but attitude errors remain well bounded through the trajectory. The test 

suggests that the baseline length variation states make a valuable contribution to filter perfor- 

mance, especially considering the low order required to model baseline length variations. 

167 



Yaw Pitch 

0.06 

c?0.04 

ft* 
O 

0.02 W W W 
0 50 100 

Time (min) 

0 

-2 

0 

0.06 

50 100 

50 100 

50 100 

50 100 

0 50 100 
Time (min) 

Roll 

0.2 lv_£L>;4x-vJü)i--;i^-^ 

0 

0.2 

0 50 100 

-4 

-8 

ß /I    V 
ft A/ 

50 100 

0 50 100 
Time (min) 

Figure 6.17: Nominal Case HE Attitude History 
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6. 5 Off-Nominal Test Case Results 

6.5.1 GPS Only Test Case 
This test case, 02S-G, analyzes the effect of gyro augmentation on the filter performance under 

nominal conditions. Conditions during the test are identical to those of the nominal test, 02S; the 

only difference is that the filter does not used gyro measurements in case 02S-G. GPS visibility 

during the test is excellent and the spacecraft is stabilized in a nadir pointing attitude, so nominal 

estimation errors are predominantly caused by GPS differential phase errors. 

Figure 6.19 shows attitude error for the two cases: 
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Figure 6.19: Attitude Error with and without Gyros 

The most striking difference is in the character of the two solutions. The GPS only solution 

exhibits more high frequency noise than the gyro aided design. This is a result of the angular rate 

knowledge provided by the gyro assembly. A large process noise intensity on the angular rate is 

necessary to optimize the reduced order filter in the presence of a correlated disturbance torque 

(see section 5. 2). The process noise increases the bandwidth of the gyroless EKF, resulting in 

higher gains on the GPS measurements and less noise rejection. With angular rate knowledge 
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from the gyro, the gyro aided filter is able to reduce gains on the GPS measurement and hence 

GPS noise. 

The total RSS errors are shown in table 6.6: 

RSS Attitude Error (deg) 

Case Mean 3-a Max 

With Gyro 0.2021 0.5091 0.5285 

Without Gyro 0.2496 0.5532 0.5945 

Table 6.6: RSS Attitude Errors, Test 02S-G 

The average RSS attitude penalty of 0.04° without gyro aiding is an increase of almost 25% over 

the nominal performance. The gyro assembly also limits the size of attitude error peaks. A clear 

example of this is the negative roll error at t = 40 min. Without gyros, GPS errors force the roll 

error to a peak of -0.5°. With rate information from the gyros, the integrated design successfully 

limits the roll error to about -0.3°. The results show that gyro integration improves the quality of 

the filter attitude solution for two filters with an equivalent design bandwidth even with good GPS 

visibility. 

6.5.2 High Altitude Test Case 
The high altitude test case is a demonstration of the effects of high orbit altitude on the filter 

design and GPS interferometry in general. Reduced GPS availability also highlights the benefit of 

gyro augmentation at high orbit altitude. 

A number of possible altitudes were examined and one example is chosen which illustrates the 

key effects of a high altitude application. Altitude for this test is 10,000 km, with an orbit period 

of 5.6 hours. Incidentally, this is slightly less than one half the GPS orbit altitude. Initial condi- 

tions and error trajectories are taken from trial 02S, because the initial position results in a partic- 

ularly poor initial viewing geometry. Only three satellites are visible, and the integer solution 

cannot initialize the filter until about one minute into the test, when two more satellites come into 

view. 
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Attitude solution, gyro bias and ADOP outputs are shown in figure 6.20. Notice that the attitude 

covariance bound is significantly larger than for the nominal case. Also, the ADOP is consistently 

50 to 100% larger than the low orbit configuration. 
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Figure 6.20: High Altitude Test Case 02S-H 
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Despite the high altitude and very large values of ADOP, especially in roll, the solution remains 

stable, and growth of the covariance bounds is relatively slow. A second test run, 02S-HG, tests 

performance of the filter without gyro measurements at this high altitude. Figure 6.21 compares 

the attitude solution for the two cases. 
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Figure 6.21: High Altitude Performance With and Without Gyros 

The covariance bounds for test 02S-HG are larger than the bounds for 02S-H. The difference can 

be attributed to angular rate knowledge provided by the gyros. In addition, high frequency noise 

in the GPS-only solution is even more pronounced now due to degradation of the GPS viewing 

geometry. The result is a penalty on the GPS-only 3-a and maximum RSS attitude error statistics. 
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However, mean RSS error is actually larger with gyros: 

RSS Attitude Error (deg) 

Case Mean 3-a Max 

02S 0.2021 0.5091 0.5285 

02S-H 0.4141 0.6940 0.7173 

02S-HG 0.3805 0.7462 0.7889 

Table 6.7: High Altitude RSS Attitude Error with and without Gyros 

The large mean RSS error for the gyro aided design is caused primarily by a significant roll bias 

through most of the test. The gyro only measures relative position, not absolute position, so if 

GPS errors cause an attitude bias, the gyro will sometimes "sustain" the bias by keeping the angu- 

lar velocity estimate steady. Still, peak to peak error is much larger without the gyros. This is 

highlighted at t = 60 min, when both the pitch and roll attitude errors are large and negative for the 

no gyro case. The gyro is able to counteract this change in the attitude estimate, and very little 

effect is observed in performance of the nominal design. 

6.5.3 Multipath Test Cases 
The greatest challenge to attitude determination in an environment with reflecting surfaces is mul- 

tipath. These test cases examine the effect of environmental multipath on filter performance. A 

sinusoidal model of environmental multipath was presented in equation 3.9: 

*•«./'> =io'sK!+e°.HIö+e°.) 
This sinusoidal model is used to corrupt differential phase measurements for the multipath test 

cases. The test cases are executed at high orbit altitude in order to magnify the effects of multi- 

path. Multipath is most damaging when the number of available measurements is limited; a high 

orbit altitude furnishes the desired deterioration of GPS visibility. Results from the multipath test 

are compared to the nominal high altitude test case. 

Before conducting the time domain simulation, a linearized analysis is used to examine the poten- 

tial benefits of multipath estimation. Recall from section 3. 2 that environmental multipath is dif- 

ficult to model. The sources of environmental multipath are not fixed in the body frame, so the 
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frequency and amplitude of the resulting differential phase errors are time varying. Modeling 

multipath in a Kaiman filter would require knowledge of this frequency and amplitude and the 

addition of two filter states for each multipath corrupted measurement. Two states are required 

because of the oscillatory nature of multipath. An example of a stochastic model for multipath is 

shown in equation 6.3: 

Am,-, j 

Am/, j_ 

0 

-G>n ~2^n 

Am 
hj 

Am 1>U 

w 6.3 

(£>n is the modeled natural frequency and t, is the damping ratio. wm is white noise with an inten- 

sity ow   chosen as a function of the expected multipath amplitude. 

Performance of an augmented filter which includes this multipath model is evaluated by solving 

for steady state attitude covariance at a linearized point. The environment for the analysis 

includes the usual GPS error models and the multipath model of equation 6.3. Results are shown 

in figure 6.22. For the nominal ADS design, multipath performance does not improve dramati- 

cally when multipath estimation is added to the filter. However, in the absence of gyro measure- 

ments, attitude error increases dramatically without multipath estimation: 
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Figure 6.22: Sensitivity to Multipath Error 

"No CN State" indicates a design with no correlated noise estimation. Notice that performance of 

the fourth design deteriorates by about 0.3° RMS without a multipath model. This design does 

not incorporate correlated noise estimation or gyro aiding. 

The contrasts shown in figure 6.22 highlight the ability of the gyro and GPS error states to absorb 

multipath errors. A time domain simulation using initial condition 02S is conducted for gyro aug- 
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merited and GPS-only test cases. 

Figure 6.23 compares results for the two tests over a period of 15 minutes. The first row shows 

attitude errors for the augmented system, while the second row is the GPS-only filter. The third 

row shows the actual multipath error history used to corrupt the differential phase measurements. 
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Figure 6.23: Effect of Multipath on Attitude Solution 

There is a clear correlation between the multipath errors and the attitude errors on all three axes. 

Notice that the solution with gyro measurements has a smaller oscillation magnitude, but at least 

one axis, pitch, exhibits a larger bias than the GPS-only solution. The bias is triggered by the 
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large magnitude of multipath errors on baseline 2 around t = 75 min. The errors cause large nega- 

tive pitch corrections for both configurations at t = 75 min. The gyro assembly recognizes that no 

motion is taking place and limits the error magnitude. However, the same stabilizing effect pre- 

serves the pitch bias even after the error for the GPS-only design dissipates. 

The time period of t = 70 min to t = 85 min is chosen to highlight the contribution of the correlated 

noise states in mitigating multipath. Although the states are designed to combat low frequency 

bias mismodeling, they absorb some of the energy of the multipath signal. Figure 6.24 demon- 

strates this using test case 02S-HM. At t = 76 min, the SV channel which is corrupted by multi- 

path changes. The switch of multipath from one SV to another is an artificial phenomenon 

inserted into the simulation, but it illustrates a key point. In the first five minutes, while channel 2 

is corrupted by multipath, the correlated noise states on channel 2 clearly absorb some of the mul- 

tipath energy. After the multipath switches to channel 1, the channel 2 noise state returns to more 
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typical dynamics, while the noise states for channel 1 pick up tracking of the multipath error. 
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Figure 6.24: Interaction of Multipath and Correlated Noise 
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Table 6.8 shows the attitude error statistics for these test cases. 

RSS Attitude Error (deg) 

Case Mean 3-a Max 

02S-H 0.4141 0.6940 0.7173 

02-HM 0.4251 0.6820 0.7194 

02-HMG 0.4145 0.9480 1.0326 

Table 6.8: Multipath Corrupted RSS Error with and without Gyros 

As expected, mean RSS error in the presence of multipath is greater than in the nominal high alti- 

tude test case, but the differences are quite small. In fact, performance of the nominal filter design 

across the two tests is virtually unchanged. The multipath corrupted measurements do have an 

impact on the no gyro filter design, producing a maximum RSS attitude error 0.3° larger than the 

nominal design. Notice that mean RSS error for test case 02S-HM is actually larger than the 

mean for 02S-HMG. This is due to the pitch bias discussed earlier. 

6.5.4 Initial Tbmble Test Cases 
All of the nominal runs were conducted with 5° initial yaw, pitch and roll offsets from the LVLH 

frame and rates of 0.017s on each axis. The purpose of the initial tumble tests is to demonstrate 

capability of the flight software to initialize in an unknown attitude at an arbitrary angular rate. 

This scenario is designed to simulate satellite motion after orbit insertion or following a loss of 

attitude control. As a coincidental benefit, these tests validate the design of the quaternion feed- 

back control law. Large initial attitude offsets result in sustained slew commands from the con- 

troller. 

Ten test cases were executed. In each case, the initial condition attitude is a combination of ran- 

domly chosen yaw, pitch and roll. The initial angular rates for all three of the axes are chosen at 

from an uncorrelated normally distributed random variable with standard deviation of 17s. Table 
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6.9 shows the attitude initial conditions: 

Case Yaw (deg) Pitch (deg) Roll (deg) 

01E-T 4.6472 14.2258 -53.8577 

02E-T 9.2944 -28.4517 -107.7153 

03E-T 13.9416 42.6775 -161.5729 

04E-T 18.5889 -56.9034 144.5693 

05E-T 23.2361 71.1292 90.7117 

06E-T 27.8833 -85.3551 36.8540 

07E-T -147.4695 80.4191 162.9963 

08E-T -142.8223 -66.1932 109.1387 

09E-T -138.1750 51.9674 55.2810 

10E-T -133.5278 -37.7415 1.4233 

Table 6.9: Tumble Test Initial Conditions 

The integer ambiguity algorithm is automatically activated at every GPS measurement until a 

valid solution is found. The control system is only activated once this valid solution is reached. 

A successful attitude recovery was accomplished in each case. In fact, 9 of the attitudes achieved 
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a solution within five seconds. Figure 6.25 shows the results for test case 05E-T as anexample: 

Yaw 

60 

%' | 60 

g40 

-8 20 
-4—» 

S   0 

f 

1»  
,1 

1 
1      

1 
•\  

0 10 
Time (min) 

Pitch 

60 

40 

20 

0 
0 10 

Time (min) 

Roll 

150 

100 

50 

0 

150 

100 

50 

0 

A  

\ 

\ 

t  
1 
1 
l  
\ 

. .\  

\ 
\ 

0 10 
Time (min) 

Time (min) 

Figure 6.25: Tumble Recovery Case 5 

Successful initialization occurred with the first measurement set, so the estimated trajectory looks 

identical to the truth. The trajectory dynamics are a function of the commanded correction from 

the control system. 

Case 3 was the only test case which did not allow immediate ambiguity resolution. Figure 6.26 

shows the attitude and attitude estimate for this case along with the number of good measure- 
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merits. 
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Figure 6.26: Tumble Recovery Case 3 

Although the trial begins with no satellites visible, the angular drift brings additional satellites 

into view approximately one minute into the test. The filter initializes as soon as three satellites 

become visible, and the control system returns the vehicle to the nominal attitude. These results 

indicate that the filter should be able to initialize in low earth orbit even if the initial attitude is not 

close to the nominal. They also demonstrate operation of the filter integrity monitoring algorithm. 

When additional satellites become valid at t = 2 min, the algorithm recognizes that the measure- 

ment residuals are excessive. An new integer solution is commanded and a filter reset occurs 

when a good solution is reported. 

6.5.5 Free Drift Test Cases 
The free drift test is more strenuous than the initial tumble test. In this scenario, no controls are 
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commanded. The attitude dynamics are generated solely by rigid body kinematics and external 

disturbance torques on the vehicle. Figure 6.27 shows true attitude Euler angles and body rates 

for test case 07E-FD, which is chosen as a good demonstration of filter behavior in free drift 

mode: 
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Figure 6.27: True Attitude for Test 02E-FD 

In figure 6.28, filter performance is shown for the nominal free drift case, with all sensors operat- 

ing. The key feature here is the loss of most of the satellites and increase in ADOP around t = 20 

min. The filter develops a large negative roll error during this period, but the error is quickly cor- 

rected when more satellites become available: 
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The chattering of ADOP from t = 10 min to t = 20 min is due to a lack of valid measurements. 

During most of this period, only one satellite is valid, providing three measurements to the filter. 

Attitude rotations about the LOS vector to the satellite are unobservable in the differential phase. 

The result is that the least squares small angle attitude error solution is ill-conditioned, and ADOP 

becomes very large or infinite. In the case of three measurements, ADOP cannot be calculated, 

and a value of ADOP = 0 is stored in the simulation output. 

Performance of the filter with and without gyros is compared in figure 6.29. The most significant 

characteristic of the no gyro attitude error is the spike in yaw, pitch and roll which occurs at t = 20 

min. These large errors result from the lack of angular velocity knowledge in the no gyro design. 

During periods of poor GPS visibility, angular rate knowledge is crucial to propagation of the atti- 

tude estimate. As shown in figure 6.29, errors in the angular velocity estimate can cause rapid 
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growth of the attitude estimate errors. 
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Figure 6.29: Attitude Error for Tests 07E-FD and 07E-FDG 

The large error deviations for the no gyro case are evident in the attitude statistics, shown in table 
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6.10: 

RSS Attitude Error (deg) 

Case Mean 3-CT Max 

02S 0.2021 0.5091 0.5285 

02E-FD 0.3224 0.8021 0.8558 

02E-FDG 0.4088 2.2524 2.4865 

Table 6.10: Free Drift RSS Attitude Error with and without Gyros 

Gyro augmentation provides a critical margin of safety in this free drift case. The results show 

that even a low cost TGA can improve performance of a GPS based attitude determination sys- 

tem. Any satellite platform which may operate in an uncontrolled mode should include inertial 

sensors in the attitude determination system design. 

Both of these test cases demonstrate operation of the filter integrity monitoring system. At t = 20 

min, the attitude errors in each case become relatively large (>0.8°). Shortly thereafter, three new 

satellites become valid, as shown in figure 6.29. Large errors in the attitude estimate result in sig- 

nificant residuals when the new measurements are compared to the filter measurement prediction. 

The integrity monitoring algorithm recognizes this and calls the integer solution algorithm as a 

precaution in case the integers are in error. The ambiguity solution is good, and it agrees with the 

attitude estimate prior to the integrity check. As a result, all of the filter error estimates are pre- 

served and only the attitude solution is re-initialized. The integrity monitoring algorithm quickly 

detects incorrect integers, but, as shown here, it also recognizes when a full filter reset is not 

needed. 

6.5.6 Correlated Noise Test Cases 
The correlated noise test cases presented here investigate two scenarios related to changes in the 

correlated noise environment. The bulk of the correlated noise energy in the nominal error model 

comes from mismodeling of the phase center error and body-fixed multipath states. A better bias 

calibration model or less body-fixed errors might reduce the magnitude of correlated noise errors. 

The first test case, 02S-NE, examines how filter performance changes in the nominal environment 

if the assumption of white GPS noise is made in the filter design (i.e. no correlated noise estima- 
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tion). The second test, 02S-NC considers an environment in which no correlated noise is present. 

That is, body fixed biases are modeled perfectly or are not present to begin with. Performance of 

the nominal filter in this situation is compared to that of an optimal filter designed for this envi- 

ronment. 

No Correlated Noise Estimation 
If a white noise model is assumed for the measurement errors, 18 states can be removed from the 

filter. However, the filter can no longer track slowly varying biases caused by phase center varia- 

tion and multipath errors, so the attitude error increases, as shown in figure 6.30: 
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Figure 6.30: Attitude Error with and without Correlated Noise Estimation 

Rather than simply eliminating the correlated error states, the white noise intensity estimate is 

increased by a factor of three in test case 02S-NE in an attempt to compensate for the absence of 
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the correlated error states. However, the effect on the attitude estimate is dramatic: 

RSS Attitude Error (deg) 

Case Mean 3-G Max 

02S 0.1997 0.4834 0.5123 

02S-NE 0.2588 0.6457 0.6645 

Table 6.11: RSS Attitude Error with and without Correlated Noise Estimation 

Two important characteristics of the attitude solution for 02S-NE must be noted. Obviously, 

errors for the filter without correlated noise estimation are larger than for the nominal design. 

This was also shown through the linear covariance analysis of section 5. 2. Possibly more impor- 

tant is the drastic mismatch between the filter attitude error covariance estimate and the true error 

covariance for the white noise design. The filter estimate of RMS attitude error for test case 02S- 

NE is about 0.1° on each axis. This is denoted by the bounds in figure 6.30. True errors are closer 

to 0.2° RMS. The optimistic covariance estimate can lead to sluggish filter performance or even 

instability. 

No Correlated Noise 
This test case examines theoretical filter performance in the absence of correlated noise both with 

and without correlated noise estimation states. Figure 6.31 shows the attitude error for the two 

cases. Performance of the optimal (no correlated noise states) design is shown on the second row. 
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Notice that much tighter covariance bounds are achievable if correlated noise is not present: 
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Figure 6.31: Attitude Error With No Correlated Noise with and without 
Correlated Noise Estimation 

As table 6.12 shows, the optimal design reduces attitude error by almost one half. The challenge 

is really to eliminate correlated noise in the environment, because that is the only way to achieve 

this kind of performance. 

RSS Attitude Error (deg) 

Case Mean 3-a Max 

02S-NCNE 0.1826 0.3713 0.4033 

02S-NC 0.1016 0.1916 0.2041 

Table 6.12: RSS Attitude Error with No Correlated Noise 

The correlated noise test cases have shown that elimination of correlated noise effects is the pri- 

mary obstacle to improving filter performance. If the correlated noise environment is uncertain, 

meaning that the intensity of correlated noise is not know, incorporation of correlated noise esti- 

mation in the filter may cause sub-optimal performance. However, this is better than the alterna- 

tive of designing for white noise and underestimating the attitude error covariance. 
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Chapter 7 

Conclusion 

The goal of this thesis has been to design an autonomous GPS based attitude determination sys- 

tem for spacecraft attitude determination. The attitude determination system includes an integer 

ambiguity solution algorithm and a Kaiman filter incorporating measurements from multiple GPS 

antennas and a three-axis gyro assembly. An efficient ambiguity solution method was presented 

which integrates geometric integer constraints and decoupling of the three-axis attitude problem 

in order to reduce the number of required computations from order (2N)6 to order N3. A model 

was developed for total GPS differential phase error using experimental GPS measurement data. 

The model was used to design an Extended Kaiman Filter which incorporates tightly coupled 

GPS and gyro measurements. Performance of the complete system was tested using a non-linear 

orbital simulation, with nominal simulation parameters based on the Iridium GPCS constellation. 

7.1 Summary of Results 
The key obstacle to the design of an autonomous GPS based attitude determination system is 

development of a fast and reliable system of initialization. The integer ambiguity solution pre- 

sented here achieved an on-orbit first attempt success rate of 87.4% during tests with experimental 

measurement data, and solution success increased to 99.74% after 13 attempts. The ambiguity 

solution also proved successful at initializing the attitude solution with the spacecraft in a random 

tumble, which is an important practical consideration for satellite deployment. This level of speed 

and reliability should prove sufficient for most satellite applications. 

Orbit simulations were conducted using experimental GPS measurements as well as measure- 

ments generated with the stochastic GPS error model. Comparison of the results indicates that the 

stochastic model accurately represents the nature of differential phase error. The largest uncer- 

tainty in the model involves phase center variation and multipath errors. Calibration of these 

errors eliminates a small percentage of the error energy, but the remainder must be modeled as a 
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first order correlated noise process. Although correlated noise estimation suppresses the effects of 

the mismodeling, they still make large contribution to the total attitude estimation error. Attitude 

errors are also very sensitive to line bias error and the size of the antenna array, while they show 

less sensitivity to baseline length variations and the performance level of the TGA. 

Nominal performance in the computer simulation showed that a 3-c total attitude estimation 

uncertainty of 0.5° can be achieved using a four antenna, 1-m square antenna array. The hardware 

configuration for the nominal tests used a zenith pointing GPS antenna array and a TGA com- 

posed of low cost MM gyros. ADS performance remained excellent up to an orbit altitude of 

about 10,000 km, where GPS visibility began to degrade. At these high altitudes, gyro measure- 

ments became increasingly important. However, the integrated design exhibited occasional atti- 

tude error biases which were not present in the GPS-only design. Another scenario in which gyro 

augmentation was critical was the free drift test. With the control system shut off and the space- 

craft in a free tumble, gyro measurements helped propagate the attitude solution through outages 

in the GPS signal. 

The filter showed good suppression of multipath errors when a 20 mm peak-to-peak sinusoidal 

model for multipath was used to corrupt three GPS measurements. Gyro aiding and correlated 

noise estimation both limited the damage induced by this multipath model to less than 0.1° RMS. 

The ADS requires a minimum of three GPS antennas and three low quality gyros. Given the rapid 

growth of commercial GPS technology and recent development of low cost gyro systems, this 

design could become a cheap, simple alternative to traditional methods of attitude determination. 

7. 2 Suggestions for Future Work 
The most problematic errors in GPS differential phase are phase center variation and multipath. 

Further research into modeling of these errors could yield significant improvements to the perfor- 

mance of the EKE Two possible approaches are better calibration of errors using experimental 

data and development of adaptive filter dynamics to achieve real time mitigation of multipath. 
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The calibration model used in this thesis was a least squares fit. A larger experimental measure- 

ment data base and use of a spherical harmonic error model would attenuate some of the unmod- 

eled errors encountered with this design. Even the best calibration model cannot defeat 

environmental multipath. This requires adaptive filtering. An adaptive filtering technique 

involves real time identification of multipath corrupted signals and on line frequency and ampli- 

tude estimation. Advances in signal processing and computational speed are needed to make this 

kind of real time mitigation possible. 

Another area which merits further study is the role of gyros in an integrated attitude determination 

system. The integrated design occasionally develops an attitude error bias, as displayed in the 

high altitude and multipath off-nominal test cases. Further research into the cause and possible 

remedies for this behavior are needed. Another topic for future research is incorporation of space- 

craft dynamics in the EKE In this research, the filter used spacecraft dynamics to propagate the 

attitude, and gyro outputs were treated as angular rate measurements. In contrast, a model- 

replacement approach uses gyro output to replace the angular rate estimate during propagation. A 

performance comparison of the two designs would provide insight into the benefits and costs of 

including a spacecraft dynamic model in the filter. 

This thesis only investigated a small number of orbit scenarios for the ADS. System performance 

should be investigated for a wide range of missions, particularly highly elliptic orbits. Stand 

alone GPS attitude determination is not reliable for high apogee orbits due to degraded GPS visi- 

bility at altitudes approaching that of the GPS constellation. Gyro measurements may allow pres- 

ervation of the attitude estimate through the high altitude portion of flight, with GPS 

measurements providing recalibration of the gyro biases and other error states at and around peri- 

gee. 
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